[AArch64] Cleanup TLS relocation types which don't go through GOT table
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2015 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #endif
158
159 #if ARCH_SIZE == 32
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
165 #endif
166
167 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
192 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
193
194 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
195 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC)
207
208 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
209 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
221
222 #define ELIMINATE_COPY_RELOCS 0
223
224 /* Return size of a relocation entry. HTAB is the bfd's
225 elf_aarch64_link_hash_entry. */
226 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
227
228 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
229 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
230 #define PLT_ENTRY_SIZE (32)
231 #define PLT_SMALL_ENTRY_SIZE (16)
232 #define PLT_TLSDESC_ENTRY_SIZE (32)
233
234 /* Encoding of the nop instruction */
235 #define INSN_NOP 0xd503201f
236
237 #define aarch64_compute_jump_table_size(htab) \
238 (((htab)->root.srelplt == NULL) ? 0 \
239 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
240
241 /* The first entry in a procedure linkage table looks like this
242 if the distance between the PLTGOT and the PLT is < 4GB use
243 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
244 in x16 and needs to work out PLTGOT[1] by using an address of
245 [x16,#-GOT_ENTRY_SIZE]. */
246 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
247 {
248 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
249 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
250 #if ARCH_SIZE == 64
251 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
252 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
253 #else
254 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
255 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
256 #endif
257 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
258 0x1f, 0x20, 0x03, 0xd5, /* nop */
259 0x1f, 0x20, 0x03, 0xd5, /* nop */
260 0x1f, 0x20, 0x03, 0xd5, /* nop */
261 };
262
263 /* Per function entry in a procedure linkage table looks like this
264 if the distance between the PLTGOT and the PLT is < 4GB use
265 these PLT entries. */
266 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
267 {
268 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
269 #if ARCH_SIZE == 64
270 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
271 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
272 #else
273 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
274 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
275 #endif
276 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
277 };
278
279 static const bfd_byte
280 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
281 {
282 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
283 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
284 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
285 #if ARCH_SIZE == 64
286 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
287 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
288 #else
289 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
290 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
291 #endif
292 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
293 0x1f, 0x20, 0x03, 0xd5, /* nop */
294 0x1f, 0x20, 0x03, 0xd5, /* nop */
295 };
296
297 #define elf_info_to_howto elfNN_aarch64_info_to_howto
298 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
299
300 #define AARCH64_ELF_ABI_VERSION 0
301
302 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
303 #define ALL_ONES (~ (bfd_vma) 0)
304
305 /* Indexed by the bfd interal reloc enumerators.
306 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
307 in reloc.c. */
308
309 static reloc_howto_type elfNN_aarch64_howto_table[] =
310 {
311 EMPTY_HOWTO (0),
312
313 /* Basic data relocations. */
314
315 #if ARCH_SIZE == 64
316 HOWTO (R_AARCH64_NULL, /* type */
317 0, /* rightshift */
318 3, /* size (0 = byte, 1 = short, 2 = long) */
319 0, /* bitsize */
320 FALSE, /* pc_relative */
321 0, /* bitpos */
322 complain_overflow_dont, /* complain_on_overflow */
323 bfd_elf_generic_reloc, /* special_function */
324 "R_AARCH64_NULL", /* name */
325 FALSE, /* partial_inplace */
326 0, /* src_mask */
327 0, /* dst_mask */
328 FALSE), /* pcrel_offset */
329 #else
330 HOWTO (R_AARCH64_NONE, /* type */
331 0, /* rightshift */
332 3, /* size (0 = byte, 1 = short, 2 = long) */
333 0, /* bitsize */
334 FALSE, /* pc_relative */
335 0, /* bitpos */
336 complain_overflow_dont, /* complain_on_overflow */
337 bfd_elf_generic_reloc, /* special_function */
338 "R_AARCH64_NONE", /* name */
339 FALSE, /* partial_inplace */
340 0, /* src_mask */
341 0, /* dst_mask */
342 FALSE), /* pcrel_offset */
343 #endif
344
345 /* .xword: (S+A) */
346 HOWTO64 (AARCH64_R (ABS64), /* type */
347 0, /* rightshift */
348 4, /* size (4 = long long) */
349 64, /* bitsize */
350 FALSE, /* pc_relative */
351 0, /* bitpos */
352 complain_overflow_unsigned, /* complain_on_overflow */
353 bfd_elf_generic_reloc, /* special_function */
354 AARCH64_R_STR (ABS64), /* name */
355 FALSE, /* partial_inplace */
356 ALL_ONES, /* src_mask */
357 ALL_ONES, /* dst_mask */
358 FALSE), /* pcrel_offset */
359
360 /* .word: (S+A) */
361 HOWTO (AARCH64_R (ABS32), /* type */
362 0, /* rightshift */
363 2, /* size (0 = byte, 1 = short, 2 = long) */
364 32, /* bitsize */
365 FALSE, /* pc_relative */
366 0, /* bitpos */
367 complain_overflow_unsigned, /* complain_on_overflow */
368 bfd_elf_generic_reloc, /* special_function */
369 AARCH64_R_STR (ABS32), /* name */
370 FALSE, /* partial_inplace */
371 0xffffffff, /* src_mask */
372 0xffffffff, /* dst_mask */
373 FALSE), /* pcrel_offset */
374
375 /* .half: (S+A) */
376 HOWTO (AARCH64_R (ABS16), /* type */
377 0, /* rightshift */
378 1, /* size (0 = byte, 1 = short, 2 = long) */
379 16, /* bitsize */
380 FALSE, /* pc_relative */
381 0, /* bitpos */
382 complain_overflow_unsigned, /* complain_on_overflow */
383 bfd_elf_generic_reloc, /* special_function */
384 AARCH64_R_STR (ABS16), /* name */
385 FALSE, /* partial_inplace */
386 0xffff, /* src_mask */
387 0xffff, /* dst_mask */
388 FALSE), /* pcrel_offset */
389
390 /* .xword: (S+A-P) */
391 HOWTO64 (AARCH64_R (PREL64), /* type */
392 0, /* rightshift */
393 4, /* size (4 = long long) */
394 64, /* bitsize */
395 TRUE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_signed, /* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 AARCH64_R_STR (PREL64), /* name */
400 FALSE, /* partial_inplace */
401 ALL_ONES, /* src_mask */
402 ALL_ONES, /* dst_mask */
403 TRUE), /* pcrel_offset */
404
405 /* .word: (S+A-P) */
406 HOWTO (AARCH64_R (PREL32), /* type */
407 0, /* rightshift */
408 2, /* size (0 = byte, 1 = short, 2 = long) */
409 32, /* bitsize */
410 TRUE, /* pc_relative */
411 0, /* bitpos */
412 complain_overflow_signed, /* complain_on_overflow */
413 bfd_elf_generic_reloc, /* special_function */
414 AARCH64_R_STR (PREL32), /* name */
415 FALSE, /* partial_inplace */
416 0xffffffff, /* src_mask */
417 0xffffffff, /* dst_mask */
418 TRUE), /* pcrel_offset */
419
420 /* .half: (S+A-P) */
421 HOWTO (AARCH64_R (PREL16), /* type */
422 0, /* rightshift */
423 1, /* size (0 = byte, 1 = short, 2 = long) */
424 16, /* bitsize */
425 TRUE, /* pc_relative */
426 0, /* bitpos */
427 complain_overflow_signed, /* complain_on_overflow */
428 bfd_elf_generic_reloc, /* special_function */
429 AARCH64_R_STR (PREL16), /* name */
430 FALSE, /* partial_inplace */
431 0xffff, /* src_mask */
432 0xffff, /* dst_mask */
433 TRUE), /* pcrel_offset */
434
435 /* Group relocations to create a 16, 32, 48 or 64 bit
436 unsigned data or abs address inline. */
437
438 /* MOVZ: ((S+A) >> 0) & 0xffff */
439 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
440 0, /* rightshift */
441 2, /* size (0 = byte, 1 = short, 2 = long) */
442 16, /* bitsize */
443 FALSE, /* pc_relative */
444 0, /* bitpos */
445 complain_overflow_unsigned, /* complain_on_overflow */
446 bfd_elf_generic_reloc, /* special_function */
447 AARCH64_R_STR (MOVW_UABS_G0), /* name */
448 FALSE, /* partial_inplace */
449 0xffff, /* src_mask */
450 0xffff, /* dst_mask */
451 FALSE), /* pcrel_offset */
452
453 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
454 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
455 0, /* rightshift */
456 2, /* size (0 = byte, 1 = short, 2 = long) */
457 16, /* bitsize */
458 FALSE, /* pc_relative */
459 0, /* bitpos */
460 complain_overflow_dont, /* complain_on_overflow */
461 bfd_elf_generic_reloc, /* special_function */
462 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
463 FALSE, /* partial_inplace */
464 0xffff, /* src_mask */
465 0xffff, /* dst_mask */
466 FALSE), /* pcrel_offset */
467
468 /* MOVZ: ((S+A) >> 16) & 0xffff */
469 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
470 16, /* rightshift */
471 2, /* size (0 = byte, 1 = short, 2 = long) */
472 16, /* bitsize */
473 FALSE, /* pc_relative */
474 0, /* bitpos */
475 complain_overflow_unsigned, /* complain_on_overflow */
476 bfd_elf_generic_reloc, /* special_function */
477 AARCH64_R_STR (MOVW_UABS_G1), /* name */
478 FALSE, /* partial_inplace */
479 0xffff, /* src_mask */
480 0xffff, /* dst_mask */
481 FALSE), /* pcrel_offset */
482
483 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
484 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
485 16, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 16, /* bitsize */
488 FALSE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_dont, /* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
493 FALSE, /* partial_inplace */
494 0xffff, /* src_mask */
495 0xffff, /* dst_mask */
496 FALSE), /* pcrel_offset */
497
498 /* MOVZ: ((S+A) >> 32) & 0xffff */
499 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
500 32, /* rightshift */
501 2, /* size (0 = byte, 1 = short, 2 = long) */
502 16, /* bitsize */
503 FALSE, /* pc_relative */
504 0, /* bitpos */
505 complain_overflow_unsigned, /* complain_on_overflow */
506 bfd_elf_generic_reloc, /* special_function */
507 AARCH64_R_STR (MOVW_UABS_G2), /* name */
508 FALSE, /* partial_inplace */
509 0xffff, /* src_mask */
510 0xffff, /* dst_mask */
511 FALSE), /* pcrel_offset */
512
513 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
514 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
515 32, /* rightshift */
516 2, /* size (0 = byte, 1 = short, 2 = long) */
517 16, /* bitsize */
518 FALSE, /* pc_relative */
519 0, /* bitpos */
520 complain_overflow_dont, /* complain_on_overflow */
521 bfd_elf_generic_reloc, /* special_function */
522 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
523 FALSE, /* partial_inplace */
524 0xffff, /* src_mask */
525 0xffff, /* dst_mask */
526 FALSE), /* pcrel_offset */
527
528 /* MOVZ: ((S+A) >> 48) & 0xffff */
529 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
530 48, /* rightshift */
531 2, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_unsigned, /* complain_on_overflow */
536 bfd_elf_generic_reloc, /* special_function */
537 AARCH64_R_STR (MOVW_UABS_G3), /* name */
538 FALSE, /* partial_inplace */
539 0xffff, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
544 signed data or abs address inline. Will change instruction
545 to MOVN or MOVZ depending on sign of calculated value. */
546
547 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
548 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
549 0, /* rightshift */
550 2, /* size (0 = byte, 1 = short, 2 = long) */
551 16, /* bitsize */
552 FALSE, /* pc_relative */
553 0, /* bitpos */
554 complain_overflow_signed, /* complain_on_overflow */
555 bfd_elf_generic_reloc, /* special_function */
556 AARCH64_R_STR (MOVW_SABS_G0), /* name */
557 FALSE, /* partial_inplace */
558 0xffff, /* src_mask */
559 0xffff, /* dst_mask */
560 FALSE), /* pcrel_offset */
561
562 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
563 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
564 16, /* rightshift */
565 2, /* size (0 = byte, 1 = short, 2 = long) */
566 16, /* bitsize */
567 FALSE, /* pc_relative */
568 0, /* bitpos */
569 complain_overflow_signed, /* complain_on_overflow */
570 bfd_elf_generic_reloc, /* special_function */
571 AARCH64_R_STR (MOVW_SABS_G1), /* name */
572 FALSE, /* partial_inplace */
573 0xffff, /* src_mask */
574 0xffff, /* dst_mask */
575 FALSE), /* pcrel_offset */
576
577 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
578 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
579 32, /* rightshift */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
581 16, /* bitsize */
582 FALSE, /* pc_relative */
583 0, /* bitpos */
584 complain_overflow_signed, /* complain_on_overflow */
585 bfd_elf_generic_reloc, /* special_function */
586 AARCH64_R_STR (MOVW_SABS_G2), /* name */
587 FALSE, /* partial_inplace */
588 0xffff, /* src_mask */
589 0xffff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591
592 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
593 addresses: PG(x) is (x & ~0xfff). */
594
595 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
596 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
597 2, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 19, /* bitsize */
600 TRUE, /* pc_relative */
601 0, /* bitpos */
602 complain_overflow_signed, /* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 AARCH64_R_STR (LD_PREL_LO19), /* name */
605 FALSE, /* partial_inplace */
606 0x7ffff, /* src_mask */
607 0x7ffff, /* dst_mask */
608 TRUE), /* pcrel_offset */
609
610 /* ADR: (S+A-P) & 0x1fffff */
611 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
612 0, /* rightshift */
613 2, /* size (0 = byte, 1 = short, 2 = long) */
614 21, /* bitsize */
615 TRUE, /* pc_relative */
616 0, /* bitpos */
617 complain_overflow_signed, /* complain_on_overflow */
618 bfd_elf_generic_reloc, /* special_function */
619 AARCH64_R_STR (ADR_PREL_LO21), /* name */
620 FALSE, /* partial_inplace */
621 0x1fffff, /* src_mask */
622 0x1fffff, /* dst_mask */
623 TRUE), /* pcrel_offset */
624
625 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
626 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
627 12, /* rightshift */
628 2, /* size (0 = byte, 1 = short, 2 = long) */
629 21, /* bitsize */
630 TRUE, /* pc_relative */
631 0, /* bitpos */
632 complain_overflow_signed, /* complain_on_overflow */
633 bfd_elf_generic_reloc, /* special_function */
634 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
635 FALSE, /* partial_inplace */
636 0x1fffff, /* src_mask */
637 0x1fffff, /* dst_mask */
638 TRUE), /* pcrel_offset */
639
640 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
641 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
642 12, /* rightshift */
643 2, /* size (0 = byte, 1 = short, 2 = long) */
644 21, /* bitsize */
645 TRUE, /* pc_relative */
646 0, /* bitpos */
647 complain_overflow_dont, /* complain_on_overflow */
648 bfd_elf_generic_reloc, /* special_function */
649 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
650 FALSE, /* partial_inplace */
651 0x1fffff, /* src_mask */
652 0x1fffff, /* dst_mask */
653 TRUE), /* pcrel_offset */
654
655 /* ADD: (S+A) & 0xfff [no overflow check] */
656 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
657 0, /* rightshift */
658 2, /* size (0 = byte, 1 = short, 2 = long) */
659 12, /* bitsize */
660 FALSE, /* pc_relative */
661 10, /* bitpos */
662 complain_overflow_dont, /* complain_on_overflow */
663 bfd_elf_generic_reloc, /* special_function */
664 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
665 FALSE, /* partial_inplace */
666 0x3ffc00, /* src_mask */
667 0x3ffc00, /* dst_mask */
668 FALSE), /* pcrel_offset */
669
670 /* LD/ST8: (S+A) & 0xfff */
671 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 12, /* bitsize */
675 FALSE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_dont, /* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
680 FALSE, /* partial_inplace */
681 0xfff, /* src_mask */
682 0xfff, /* dst_mask */
683 FALSE), /* pcrel_offset */
684
685 /* Relocations for control-flow instructions. */
686
687 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
688 HOWTO (AARCH64_R (TSTBR14), /* type */
689 2, /* rightshift */
690 2, /* size (0 = byte, 1 = short, 2 = long) */
691 14, /* bitsize */
692 TRUE, /* pc_relative */
693 0, /* bitpos */
694 complain_overflow_signed, /* complain_on_overflow */
695 bfd_elf_generic_reloc, /* special_function */
696 AARCH64_R_STR (TSTBR14), /* name */
697 FALSE, /* partial_inplace */
698 0x3fff, /* src_mask */
699 0x3fff, /* dst_mask */
700 TRUE), /* pcrel_offset */
701
702 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
703 HOWTO (AARCH64_R (CONDBR19), /* type */
704 2, /* rightshift */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
706 19, /* bitsize */
707 TRUE, /* pc_relative */
708 0, /* bitpos */
709 complain_overflow_signed, /* complain_on_overflow */
710 bfd_elf_generic_reloc, /* special_function */
711 AARCH64_R_STR (CONDBR19), /* name */
712 FALSE, /* partial_inplace */
713 0x7ffff, /* src_mask */
714 0x7ffff, /* dst_mask */
715 TRUE), /* pcrel_offset */
716
717 /* B: ((S+A-P) >> 2) & 0x3ffffff */
718 HOWTO (AARCH64_R (JUMP26), /* type */
719 2, /* rightshift */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
721 26, /* bitsize */
722 TRUE, /* pc_relative */
723 0, /* bitpos */
724 complain_overflow_signed, /* complain_on_overflow */
725 bfd_elf_generic_reloc, /* special_function */
726 AARCH64_R_STR (JUMP26), /* name */
727 FALSE, /* partial_inplace */
728 0x3ffffff, /* src_mask */
729 0x3ffffff, /* dst_mask */
730 TRUE), /* pcrel_offset */
731
732 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
733 HOWTO (AARCH64_R (CALL26), /* type */
734 2, /* rightshift */
735 2, /* size (0 = byte, 1 = short, 2 = long) */
736 26, /* bitsize */
737 TRUE, /* pc_relative */
738 0, /* bitpos */
739 complain_overflow_signed, /* complain_on_overflow */
740 bfd_elf_generic_reloc, /* special_function */
741 AARCH64_R_STR (CALL26), /* name */
742 FALSE, /* partial_inplace */
743 0x3ffffff, /* src_mask */
744 0x3ffffff, /* dst_mask */
745 TRUE), /* pcrel_offset */
746
747 /* LD/ST16: (S+A) & 0xffe */
748 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
749 1, /* rightshift */
750 2, /* size (0 = byte, 1 = short, 2 = long) */
751 12, /* bitsize */
752 FALSE, /* pc_relative */
753 0, /* bitpos */
754 complain_overflow_dont, /* complain_on_overflow */
755 bfd_elf_generic_reloc, /* special_function */
756 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
757 FALSE, /* partial_inplace */
758 0xffe, /* src_mask */
759 0xffe, /* dst_mask */
760 FALSE), /* pcrel_offset */
761
762 /* LD/ST32: (S+A) & 0xffc */
763 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
764 2, /* rightshift */
765 2, /* size (0 = byte, 1 = short, 2 = long) */
766 12, /* bitsize */
767 FALSE, /* pc_relative */
768 0, /* bitpos */
769 complain_overflow_dont, /* complain_on_overflow */
770 bfd_elf_generic_reloc, /* special_function */
771 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
772 FALSE, /* partial_inplace */
773 0xffc, /* src_mask */
774 0xffc, /* dst_mask */
775 FALSE), /* pcrel_offset */
776
777 /* LD/ST64: (S+A) & 0xff8 */
778 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
779 3, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 12, /* bitsize */
782 FALSE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont, /* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
787 FALSE, /* partial_inplace */
788 0xff8, /* src_mask */
789 0xff8, /* dst_mask */
790 FALSE), /* pcrel_offset */
791
792 /* LD/ST128: (S+A) & 0xff0 */
793 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
794 4, /* rightshift */
795 2, /* size (0 = byte, 1 = short, 2 = long) */
796 12, /* bitsize */
797 FALSE, /* pc_relative */
798 0, /* bitpos */
799 complain_overflow_dont, /* complain_on_overflow */
800 bfd_elf_generic_reloc, /* special_function */
801 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
802 FALSE, /* partial_inplace */
803 0xff0, /* src_mask */
804 0xff0, /* dst_mask */
805 FALSE), /* pcrel_offset */
806
807 /* Set a load-literal immediate field to bits
808 0x1FFFFC of G(S)-P */
809 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
810 2, /* rightshift */
811 2, /* size (0 = byte,1 = short,2 = long) */
812 19, /* bitsize */
813 TRUE, /* pc_relative */
814 0, /* bitpos */
815 complain_overflow_signed, /* complain_on_overflow */
816 bfd_elf_generic_reloc, /* special_function */
817 AARCH64_R_STR (GOT_LD_PREL19), /* name */
818 FALSE, /* partial_inplace */
819 0xffffe0, /* src_mask */
820 0xffffe0, /* dst_mask */
821 TRUE), /* pcrel_offset */
822
823 /* Get to the page for the GOT entry for the symbol
824 (G(S) - P) using an ADRP instruction. */
825 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
826 12, /* rightshift */
827 2, /* size (0 = byte, 1 = short, 2 = long) */
828 21, /* bitsize */
829 TRUE, /* pc_relative */
830 0, /* bitpos */
831 complain_overflow_dont, /* complain_on_overflow */
832 bfd_elf_generic_reloc, /* special_function */
833 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
834 FALSE, /* partial_inplace */
835 0x1fffff, /* src_mask */
836 0x1fffff, /* dst_mask */
837 TRUE), /* pcrel_offset */
838
839 /* LD64: GOT offset G(S) & 0xff8 */
840 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
841 3, /* rightshift */
842 2, /* size (0 = byte, 1 = short, 2 = long) */
843 12, /* bitsize */
844 FALSE, /* pc_relative */
845 0, /* bitpos */
846 complain_overflow_dont, /* complain_on_overflow */
847 bfd_elf_generic_reloc, /* special_function */
848 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
849 FALSE, /* partial_inplace */
850 0xff8, /* src_mask */
851 0xff8, /* dst_mask */
852 FALSE), /* pcrel_offset */
853
854 /* LD32: GOT offset G(S) & 0xffc */
855 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
856 2, /* rightshift */
857 2, /* size (0 = byte, 1 = short, 2 = long) */
858 12, /* bitsize */
859 FALSE, /* pc_relative */
860 0, /* bitpos */
861 complain_overflow_dont, /* complain_on_overflow */
862 bfd_elf_generic_reloc, /* special_function */
863 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
864 FALSE, /* partial_inplace */
865 0xffc, /* src_mask */
866 0xffc, /* dst_mask */
867 FALSE), /* pcrel_offset */
868
869 /* LD64: GOT offset for the symbol. */
870 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
871 3, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 12, /* bitsize */
874 FALSE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_unsigned, /* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
879 FALSE, /* partial_inplace */
880 0x7ff8, /* src_mask */
881 0x7ff8, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* LD32: GOT offset to the page address of GOT table.
885 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
886 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
887 2, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 12, /* bitsize */
890 FALSE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_unsigned, /* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
895 FALSE, /* partial_inplace */
896 0x5ffc, /* src_mask */
897 0x5ffc, /* dst_mask */
898 FALSE), /* pcrel_offset */
899
900 /* LD64: GOT offset to the page address of GOT table.
901 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
902 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
903 3, /* rightshift */
904 2, /* size (0 = byte, 1 = short, 2 = long) */
905 12, /* bitsize */
906 FALSE, /* pc_relative */
907 0, /* bitpos */
908 complain_overflow_unsigned, /* complain_on_overflow */
909 bfd_elf_generic_reloc, /* special_function */
910 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
911 FALSE, /* partial_inplace */
912 0x7ff8, /* src_mask */
913 0x7ff8, /* dst_mask */
914 FALSE), /* pcrel_offset */
915
916 /* Get to the page for the GOT entry for the symbol
917 (G(S) - P) using an ADRP instruction. */
918 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
919 12, /* rightshift */
920 2, /* size (0 = byte, 1 = short, 2 = long) */
921 21, /* bitsize */
922 TRUE, /* pc_relative */
923 0, /* bitpos */
924 complain_overflow_dont, /* complain_on_overflow */
925 bfd_elf_generic_reloc, /* special_function */
926 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
927 FALSE, /* partial_inplace */
928 0x1fffff, /* src_mask */
929 0x1fffff, /* dst_mask */
930 TRUE), /* pcrel_offset */
931
932 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
933 0, /* rightshift */
934 2, /* size (0 = byte, 1 = short, 2 = long) */
935 21, /* bitsize */
936 TRUE, /* pc_relative */
937 0, /* bitpos */
938 complain_overflow_dont, /* complain_on_overflow */
939 bfd_elf_generic_reloc, /* special_function */
940 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
941 FALSE, /* partial_inplace */
942 0x1fffff, /* src_mask */
943 0x1fffff, /* dst_mask */
944 TRUE), /* pcrel_offset */
945
946 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
947 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
948 0, /* rightshift */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
950 12, /* bitsize */
951 FALSE, /* pc_relative */
952 0, /* bitpos */
953 complain_overflow_dont, /* complain_on_overflow */
954 bfd_elf_generic_reloc, /* special_function */
955 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
956 FALSE, /* partial_inplace */
957 0xfff, /* src_mask */
958 0xfff, /* dst_mask */
959 FALSE), /* pcrel_offset */
960
961 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
962 16, /* rightshift */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
964 16, /* bitsize */
965 FALSE, /* pc_relative */
966 0, /* bitpos */
967 complain_overflow_dont, /* complain_on_overflow */
968 bfd_elf_generic_reloc, /* special_function */
969 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
970 FALSE, /* partial_inplace */
971 0xffff, /* src_mask */
972 0xffff, /* dst_mask */
973 FALSE), /* pcrel_offset */
974
975 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
976 0, /* rightshift */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
978 16, /* bitsize */
979 FALSE, /* pc_relative */
980 0, /* bitpos */
981 complain_overflow_dont, /* complain_on_overflow */
982 bfd_elf_generic_reloc, /* special_function */
983 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
984 FALSE, /* partial_inplace */
985 0xffff, /* src_mask */
986 0xffff, /* dst_mask */
987 FALSE), /* pcrel_offset */
988
989 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
990 12, /* rightshift */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
992 21, /* bitsize */
993 FALSE, /* pc_relative */
994 0, /* bitpos */
995 complain_overflow_dont, /* complain_on_overflow */
996 bfd_elf_generic_reloc, /* special_function */
997 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
998 FALSE, /* partial_inplace */
999 0x1fffff, /* src_mask */
1000 0x1fffff, /* dst_mask */
1001 FALSE), /* pcrel_offset */
1002
1003 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1004 3, /* rightshift */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1006 12, /* bitsize */
1007 FALSE, /* pc_relative */
1008 0, /* bitpos */
1009 complain_overflow_dont, /* complain_on_overflow */
1010 bfd_elf_generic_reloc, /* special_function */
1011 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1012 FALSE, /* partial_inplace */
1013 0xff8, /* src_mask */
1014 0xff8, /* dst_mask */
1015 FALSE), /* pcrel_offset */
1016
1017 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1018 2, /* rightshift */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1020 12, /* bitsize */
1021 FALSE, /* pc_relative */
1022 0, /* bitpos */
1023 complain_overflow_dont, /* complain_on_overflow */
1024 bfd_elf_generic_reloc, /* special_function */
1025 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1026 FALSE, /* partial_inplace */
1027 0xffc, /* src_mask */
1028 0xffc, /* dst_mask */
1029 FALSE), /* pcrel_offset */
1030
1031 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1032 2, /* rightshift */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1034 19, /* bitsize */
1035 FALSE, /* pc_relative */
1036 0, /* bitpos */
1037 complain_overflow_dont, /* complain_on_overflow */
1038 bfd_elf_generic_reloc, /* special_function */
1039 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1040 FALSE, /* partial_inplace */
1041 0x1ffffc, /* src_mask */
1042 0x1ffffc, /* dst_mask */
1043 FALSE), /* pcrel_offset */
1044
1045 /* Unsigned 12 bit byte offset to module TLS base address. */
1046 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1047 0, /* rightshift */
1048 2, /* size (0 = byte, 1 = short, 2 = long) */
1049 12, /* bitsize */
1050 FALSE, /* pc_relative */
1051 0, /* bitpos */
1052 complain_overflow_unsigned, /* complain_on_overflow */
1053 bfd_elf_generic_reloc, /* special_function */
1054 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1055 FALSE, /* partial_inplace */
1056 0xfff, /* src_mask */
1057 0xfff, /* dst_mask */
1058 FALSE), /* pcrel_offset */
1059
1060 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1061 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1062 0, /* rightshift */
1063 2, /* size (0 = byte, 1 = short, 2 = long) */
1064 12, /* bitsize */
1065 FALSE, /* pc_relative */
1066 0, /* bitpos */
1067 complain_overflow_dont, /* complain_on_overflow */
1068 bfd_elf_generic_reloc, /* special_function */
1069 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1070 FALSE, /* partial_inplace */
1071 0xfff, /* src_mask */
1072 0xfff, /* dst_mask */
1073 FALSE), /* pcrel_offset */
1074
1075 /* Get to the page for the GOT entry for the symbol
1076 (G(S) - P) using an ADRP instruction. */
1077 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1078 12, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 21, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_signed, /* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1086 FALSE, /* partial_inplace */
1087 0x1fffff, /* src_mask */
1088 0x1fffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 21, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_signed, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1100 FALSE, /* partial_inplace */
1101 0x1fffff, /* src_mask */
1102 0x1fffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1106 32, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 16, /* bitsize */
1109 FALSE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_unsigned, /* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1114 FALSE, /* partial_inplace */
1115 0xffff, /* src_mask */
1116 0xffff, /* dst_mask */
1117 FALSE), /* pcrel_offset */
1118
1119 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1120 16, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 16, /* bitsize */
1123 FALSE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont, /* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1128 FALSE, /* partial_inplace */
1129 0xffff, /* src_mask */
1130 0xffff, /* dst_mask */
1131 FALSE), /* pcrel_offset */
1132
1133 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1134 16, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 16, /* bitsize */
1137 FALSE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont, /* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1142 FALSE, /* partial_inplace */
1143 0xffff, /* src_mask */
1144 0xffff, /* dst_mask */
1145 FALSE), /* pcrel_offset */
1146
1147 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 16, /* bitsize */
1151 FALSE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont, /* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1156 FALSE, /* partial_inplace */
1157 0xffff, /* src_mask */
1158 0xffff, /* dst_mask */
1159 FALSE), /* pcrel_offset */
1160
1161 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 16, /* bitsize */
1165 FALSE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont, /* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1170 FALSE, /* partial_inplace */
1171 0xffff, /* src_mask */
1172 0xffff, /* dst_mask */
1173 FALSE), /* pcrel_offset */
1174
1175 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1176 12, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 12, /* bitsize */
1179 FALSE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_unsigned, /* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1184 FALSE, /* partial_inplace */
1185 0xfff, /* src_mask */
1186 0xfff, /* dst_mask */
1187 FALSE), /* pcrel_offset */
1188
1189 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 12, /* bitsize */
1193 FALSE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_unsigned, /* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1198 FALSE, /* partial_inplace */
1199 0xfff, /* src_mask */
1200 0xfff, /* dst_mask */
1201 FALSE), /* pcrel_offset */
1202
1203 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 12, /* bitsize */
1207 FALSE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont, /* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1212 FALSE, /* partial_inplace */
1213 0xfff, /* src_mask */
1214 0xfff, /* dst_mask */
1215 FALSE), /* pcrel_offset */
1216
1217 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1218 2, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 19, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont, /* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1226 FALSE, /* partial_inplace */
1227 0x0ffffe0, /* src_mask */
1228 0x0ffffe0, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 21, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont, /* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1240 FALSE, /* partial_inplace */
1241 0x1fffff, /* src_mask */
1242 0x1fffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 /* Get to the page for the GOT entry for the symbol
1246 (G(S) - P) using an ADRP instruction. */
1247 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1248 12, /* rightshift */
1249 2, /* size (0 = byte, 1 = short, 2 = long) */
1250 21, /* bitsize */
1251 TRUE, /* pc_relative */
1252 0, /* bitpos */
1253 complain_overflow_dont, /* complain_on_overflow */
1254 bfd_elf_generic_reloc, /* special_function */
1255 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1256 FALSE, /* partial_inplace */
1257 0x1fffff, /* src_mask */
1258 0x1fffff, /* dst_mask */
1259 TRUE), /* pcrel_offset */
1260
1261 /* LD64: GOT offset G(S) & 0xff8. */
1262 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
1263 3, /* rightshift */
1264 2, /* size (0 = byte, 1 = short, 2 = long) */
1265 12, /* bitsize */
1266 FALSE, /* pc_relative */
1267 0, /* bitpos */
1268 complain_overflow_dont, /* complain_on_overflow */
1269 bfd_elf_generic_reloc, /* special_function */
1270 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
1271 FALSE, /* partial_inplace */
1272 0xff8, /* src_mask */
1273 0xff8, /* dst_mask */
1274 FALSE), /* pcrel_offset */
1275
1276 /* LD32: GOT offset G(S) & 0xffc. */
1277 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1278 2, /* rightshift */
1279 2, /* size (0 = byte, 1 = short, 2 = long) */
1280 12, /* bitsize */
1281 FALSE, /* pc_relative */
1282 0, /* bitpos */
1283 complain_overflow_dont, /* complain_on_overflow */
1284 bfd_elf_generic_reloc, /* special_function */
1285 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1286 FALSE, /* partial_inplace */
1287 0xffc, /* src_mask */
1288 0xffc, /* dst_mask */
1289 FALSE), /* pcrel_offset */
1290
1291 /* ADD: GOT offset G(S) & 0xfff. */
1292 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
1293 0, /* rightshift */
1294 2, /* size (0 = byte, 1 = short, 2 = long) */
1295 12, /* bitsize */
1296 FALSE, /* pc_relative */
1297 0, /* bitpos */
1298 complain_overflow_dont, /* complain_on_overflow */
1299 bfd_elf_generic_reloc, /* special_function */
1300 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
1301 FALSE, /* partial_inplace */
1302 0xfff, /* src_mask */
1303 0xfff, /* dst_mask */
1304 FALSE), /* pcrel_offset */
1305
1306 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1307 16, /* rightshift */
1308 2, /* size (0 = byte, 1 = short, 2 = long) */
1309 12, /* bitsize */
1310 FALSE, /* pc_relative */
1311 0, /* bitpos */
1312 complain_overflow_dont, /* complain_on_overflow */
1313 bfd_elf_generic_reloc, /* special_function */
1314 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1315 FALSE, /* partial_inplace */
1316 0xffff, /* src_mask */
1317 0xffff, /* dst_mask */
1318 FALSE), /* pcrel_offset */
1319
1320 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1321 0, /* rightshift */
1322 2, /* size (0 = byte, 1 = short, 2 = long) */
1323 12, /* bitsize */
1324 FALSE, /* pc_relative */
1325 0, /* bitpos */
1326 complain_overflow_dont, /* complain_on_overflow */
1327 bfd_elf_generic_reloc, /* special_function */
1328 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1329 FALSE, /* partial_inplace */
1330 0xffff, /* src_mask */
1331 0xffff, /* dst_mask */
1332 FALSE), /* pcrel_offset */
1333
1334 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1335 0, /* rightshift */
1336 2, /* size (0 = byte, 1 = short, 2 = long) */
1337 12, /* bitsize */
1338 FALSE, /* pc_relative */
1339 0, /* bitpos */
1340 complain_overflow_dont, /* complain_on_overflow */
1341 bfd_elf_generic_reloc, /* special_function */
1342 AARCH64_R_STR (TLSDESC_LDR), /* name */
1343 FALSE, /* partial_inplace */
1344 0x0, /* src_mask */
1345 0x0, /* dst_mask */
1346 FALSE), /* pcrel_offset */
1347
1348 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1349 0, /* rightshift */
1350 2, /* size (0 = byte, 1 = short, 2 = long) */
1351 12, /* bitsize */
1352 FALSE, /* pc_relative */
1353 0, /* bitpos */
1354 complain_overflow_dont, /* complain_on_overflow */
1355 bfd_elf_generic_reloc, /* special_function */
1356 AARCH64_R_STR (TLSDESC_ADD), /* name */
1357 FALSE, /* partial_inplace */
1358 0x0, /* src_mask */
1359 0x0, /* dst_mask */
1360 FALSE), /* pcrel_offset */
1361
1362 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1363 0, /* rightshift */
1364 2, /* size (0 = byte, 1 = short, 2 = long) */
1365 0, /* bitsize */
1366 FALSE, /* pc_relative */
1367 0, /* bitpos */
1368 complain_overflow_dont, /* complain_on_overflow */
1369 bfd_elf_generic_reloc, /* special_function */
1370 AARCH64_R_STR (TLSDESC_CALL), /* name */
1371 FALSE, /* partial_inplace */
1372 0x0, /* src_mask */
1373 0x0, /* dst_mask */
1374 FALSE), /* pcrel_offset */
1375
1376 HOWTO (AARCH64_R (COPY), /* type */
1377 0, /* rightshift */
1378 2, /* size (0 = byte, 1 = short, 2 = long) */
1379 64, /* bitsize */
1380 FALSE, /* pc_relative */
1381 0, /* bitpos */
1382 complain_overflow_bitfield, /* complain_on_overflow */
1383 bfd_elf_generic_reloc, /* special_function */
1384 AARCH64_R_STR (COPY), /* name */
1385 TRUE, /* partial_inplace */
1386 0xffffffff, /* src_mask */
1387 0xffffffff, /* dst_mask */
1388 FALSE), /* pcrel_offset */
1389
1390 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1391 0, /* rightshift */
1392 2, /* size (0 = byte, 1 = short, 2 = long) */
1393 64, /* bitsize */
1394 FALSE, /* pc_relative */
1395 0, /* bitpos */
1396 complain_overflow_bitfield, /* complain_on_overflow */
1397 bfd_elf_generic_reloc, /* special_function */
1398 AARCH64_R_STR (GLOB_DAT), /* name */
1399 TRUE, /* partial_inplace */
1400 0xffffffff, /* src_mask */
1401 0xffffffff, /* dst_mask */
1402 FALSE), /* pcrel_offset */
1403
1404 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1405 0, /* rightshift */
1406 2, /* size (0 = byte, 1 = short, 2 = long) */
1407 64, /* bitsize */
1408 FALSE, /* pc_relative */
1409 0, /* bitpos */
1410 complain_overflow_bitfield, /* complain_on_overflow */
1411 bfd_elf_generic_reloc, /* special_function */
1412 AARCH64_R_STR (JUMP_SLOT), /* name */
1413 TRUE, /* partial_inplace */
1414 0xffffffff, /* src_mask */
1415 0xffffffff, /* dst_mask */
1416 FALSE), /* pcrel_offset */
1417
1418 HOWTO (AARCH64_R (RELATIVE), /* type */
1419 0, /* rightshift */
1420 2, /* size (0 = byte, 1 = short, 2 = long) */
1421 64, /* bitsize */
1422 FALSE, /* pc_relative */
1423 0, /* bitpos */
1424 complain_overflow_bitfield, /* complain_on_overflow */
1425 bfd_elf_generic_reloc, /* special_function */
1426 AARCH64_R_STR (RELATIVE), /* name */
1427 TRUE, /* partial_inplace */
1428 ALL_ONES, /* src_mask */
1429 ALL_ONES, /* dst_mask */
1430 FALSE), /* pcrel_offset */
1431
1432 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1433 0, /* rightshift */
1434 2, /* size (0 = byte, 1 = short, 2 = long) */
1435 64, /* bitsize */
1436 FALSE, /* pc_relative */
1437 0, /* bitpos */
1438 complain_overflow_dont, /* complain_on_overflow */
1439 bfd_elf_generic_reloc, /* special_function */
1440 #if ARCH_SIZE == 64
1441 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1442 #else
1443 AARCH64_R_STR (TLS_DTPMOD), /* name */
1444 #endif
1445 FALSE, /* partial_inplace */
1446 0, /* src_mask */
1447 ALL_ONES, /* dst_mask */
1448 FALSE), /* pc_reloffset */
1449
1450 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1451 0, /* rightshift */
1452 2, /* size (0 = byte, 1 = short, 2 = long) */
1453 64, /* bitsize */
1454 FALSE, /* pc_relative */
1455 0, /* bitpos */
1456 complain_overflow_dont, /* complain_on_overflow */
1457 bfd_elf_generic_reloc, /* special_function */
1458 #if ARCH_SIZE == 64
1459 AARCH64_R_STR (TLS_DTPREL64), /* name */
1460 #else
1461 AARCH64_R_STR (TLS_DTPREL), /* name */
1462 #endif
1463 FALSE, /* partial_inplace */
1464 0, /* src_mask */
1465 ALL_ONES, /* dst_mask */
1466 FALSE), /* pcrel_offset */
1467
1468 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1469 0, /* rightshift */
1470 2, /* size (0 = byte, 1 = short, 2 = long) */
1471 64, /* bitsize */
1472 FALSE, /* pc_relative */
1473 0, /* bitpos */
1474 complain_overflow_dont, /* complain_on_overflow */
1475 bfd_elf_generic_reloc, /* special_function */
1476 #if ARCH_SIZE == 64
1477 AARCH64_R_STR (TLS_TPREL64), /* name */
1478 #else
1479 AARCH64_R_STR (TLS_TPREL), /* name */
1480 #endif
1481 FALSE, /* partial_inplace */
1482 0, /* src_mask */
1483 ALL_ONES, /* dst_mask */
1484 FALSE), /* pcrel_offset */
1485
1486 HOWTO (AARCH64_R (TLSDESC), /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 64, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_dont, /* complain_on_overflow */
1493 bfd_elf_generic_reloc, /* special_function */
1494 AARCH64_R_STR (TLSDESC), /* name */
1495 FALSE, /* partial_inplace */
1496 0, /* src_mask */
1497 ALL_ONES, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (AARCH64_R (IRELATIVE), /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 64, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield, /* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 AARCH64_R_STR (IRELATIVE), /* name */
1509 FALSE, /* partial_inplace */
1510 0, /* src_mask */
1511 ALL_ONES, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 EMPTY_HOWTO (0),
1515 };
1516
1517 static reloc_howto_type elfNN_aarch64_howto_none =
1518 HOWTO (R_AARCH64_NONE, /* type */
1519 0, /* rightshift */
1520 3, /* size (0 = byte, 1 = short, 2 = long) */
1521 0, /* bitsize */
1522 FALSE, /* pc_relative */
1523 0, /* bitpos */
1524 complain_overflow_dont,/* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_AARCH64_NONE", /* name */
1527 FALSE, /* partial_inplace */
1528 0, /* src_mask */
1529 0, /* dst_mask */
1530 FALSE); /* pcrel_offset */
1531
1532 /* Given HOWTO, return the bfd internal relocation enumerator. */
1533
1534 static bfd_reloc_code_real_type
1535 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1536 {
1537 const int size
1538 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1539 const ptrdiff_t offset
1540 = howto - elfNN_aarch64_howto_table;
1541
1542 if (offset > 0 && offset < size - 1)
1543 return BFD_RELOC_AARCH64_RELOC_START + offset;
1544
1545 if (howto == &elfNN_aarch64_howto_none)
1546 return BFD_RELOC_AARCH64_NONE;
1547
1548 return BFD_RELOC_AARCH64_RELOC_START;
1549 }
1550
1551 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1552
1553 static bfd_reloc_code_real_type
1554 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1555 {
1556 static bfd_boolean initialized_p = FALSE;
1557 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1558 static unsigned int offsets[R_AARCH64_end];
1559
1560 if (initialized_p == FALSE)
1561 {
1562 unsigned int i;
1563
1564 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1565 if (elfNN_aarch64_howto_table[i].type != 0)
1566 offsets[elfNN_aarch64_howto_table[i].type] = i;
1567
1568 initialized_p = TRUE;
1569 }
1570
1571 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1572 return BFD_RELOC_AARCH64_NONE;
1573
1574 /* PR 17512: file: b371e70a. */
1575 if (r_type >= R_AARCH64_end)
1576 {
1577 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1578 bfd_set_error (bfd_error_bad_value);
1579 return BFD_RELOC_AARCH64_NONE;
1580 }
1581
1582 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1583 }
1584
1585 struct elf_aarch64_reloc_map
1586 {
1587 bfd_reloc_code_real_type from;
1588 bfd_reloc_code_real_type to;
1589 };
1590
1591 /* Map bfd generic reloc to AArch64-specific reloc. */
1592 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1593 {
1594 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1595
1596 /* Basic data relocations. */
1597 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1598 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1599 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1600 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1601 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1602 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1603 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1604 };
1605
1606 /* Given the bfd internal relocation enumerator in CODE, return the
1607 corresponding howto entry. */
1608
1609 static reloc_howto_type *
1610 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1611 {
1612 unsigned int i;
1613
1614 /* Convert bfd generic reloc to AArch64-specific reloc. */
1615 if (code < BFD_RELOC_AARCH64_RELOC_START
1616 || code > BFD_RELOC_AARCH64_RELOC_END)
1617 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1618 if (elf_aarch64_reloc_map[i].from == code)
1619 {
1620 code = elf_aarch64_reloc_map[i].to;
1621 break;
1622 }
1623
1624 if (code > BFD_RELOC_AARCH64_RELOC_START
1625 && code < BFD_RELOC_AARCH64_RELOC_END)
1626 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1627 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1628
1629 if (code == BFD_RELOC_AARCH64_NONE)
1630 return &elfNN_aarch64_howto_none;
1631
1632 return NULL;
1633 }
1634
1635 static reloc_howto_type *
1636 elfNN_aarch64_howto_from_type (unsigned int r_type)
1637 {
1638 bfd_reloc_code_real_type val;
1639 reloc_howto_type *howto;
1640
1641 #if ARCH_SIZE == 32
1642 if (r_type > 256)
1643 {
1644 bfd_set_error (bfd_error_bad_value);
1645 return NULL;
1646 }
1647 #endif
1648
1649 if (r_type == R_AARCH64_NONE)
1650 return &elfNN_aarch64_howto_none;
1651
1652 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1653 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
1654
1655 if (howto != NULL)
1656 return howto;
1657
1658 bfd_set_error (bfd_error_bad_value);
1659 return NULL;
1660 }
1661
1662 static void
1663 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
1664 Elf_Internal_Rela *elf_reloc)
1665 {
1666 unsigned int r_type;
1667
1668 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1669 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
1670 }
1671
1672 static reloc_howto_type *
1673 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1674 bfd_reloc_code_real_type code)
1675 {
1676 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
1677
1678 if (howto != NULL)
1679 return howto;
1680
1681 bfd_set_error (bfd_error_bad_value);
1682 return NULL;
1683 }
1684
1685 static reloc_howto_type *
1686 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1687 const char *r_name)
1688 {
1689 unsigned int i;
1690
1691 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1692 if (elfNN_aarch64_howto_table[i].name != NULL
1693 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
1694 return &elfNN_aarch64_howto_table[i];
1695
1696 return NULL;
1697 }
1698
1699 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
1700 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
1701 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
1702 #define TARGET_BIG_NAME "elfNN-bigaarch64"
1703
1704 /* The linker script knows the section names for placement.
1705 The entry_names are used to do simple name mangling on the stubs.
1706 Given a function name, and its type, the stub can be found. The
1707 name can be changed. The only requirement is the %s be present. */
1708 #define STUB_ENTRY_NAME "__%s_veneer"
1709
1710 /* The name of the dynamic interpreter. This is put in the .interp
1711 section. */
1712 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1713
1714 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
1715 (((1 << 25) - 1) << 2)
1716 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
1717 (-((1 << 25) << 2))
1718
1719 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
1720 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
1721
1722 static int
1723 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
1724 {
1725 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
1726 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
1727 }
1728
1729 static int
1730 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
1731 {
1732 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
1733 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
1734 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
1735 }
1736
1737 static const uint32_t aarch64_adrp_branch_stub [] =
1738 {
1739 0x90000010, /* adrp ip0, X */
1740 /* R_AARCH64_ADR_HI21_PCREL(X) */
1741 0x91000210, /* add ip0, ip0, :lo12:X */
1742 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
1743 0xd61f0200, /* br ip0 */
1744 };
1745
1746 static const uint32_t aarch64_long_branch_stub[] =
1747 {
1748 #if ARCH_SIZE == 64
1749 0x58000090, /* ldr ip0, 1f */
1750 #else
1751 0x18000090, /* ldr wip0, 1f */
1752 #endif
1753 0x10000011, /* adr ip1, #0 */
1754 0x8b110210, /* add ip0, ip0, ip1 */
1755 0xd61f0200, /* br ip0 */
1756 0x00000000, /* 1: .xword or .word
1757 R_AARCH64_PRELNN(X) + 12
1758 */
1759 0x00000000,
1760 };
1761
1762 static const uint32_t aarch64_erratum_835769_stub[] =
1763 {
1764 0x00000000, /* Placeholder for multiply accumulate. */
1765 0x14000000, /* b <label> */
1766 };
1767
1768 static const uint32_t aarch64_erratum_843419_stub[] =
1769 {
1770 0x00000000, /* Placeholder for LDR instruction. */
1771 0x14000000, /* b <label> */
1772 };
1773
1774 /* Section name for stubs is the associated section name plus this
1775 string. */
1776 #define STUB_SUFFIX ".stub"
1777
1778 enum elf_aarch64_stub_type
1779 {
1780 aarch64_stub_none,
1781 aarch64_stub_adrp_branch,
1782 aarch64_stub_long_branch,
1783 aarch64_stub_erratum_835769_veneer,
1784 aarch64_stub_erratum_843419_veneer,
1785 };
1786
1787 struct elf_aarch64_stub_hash_entry
1788 {
1789 /* Base hash table entry structure. */
1790 struct bfd_hash_entry root;
1791
1792 /* The stub section. */
1793 asection *stub_sec;
1794
1795 /* Offset within stub_sec of the beginning of this stub. */
1796 bfd_vma stub_offset;
1797
1798 /* Given the symbol's value and its section we can determine its final
1799 value when building the stubs (so the stub knows where to jump). */
1800 bfd_vma target_value;
1801 asection *target_section;
1802
1803 enum elf_aarch64_stub_type stub_type;
1804
1805 /* The symbol table entry, if any, that this was derived from. */
1806 struct elf_aarch64_link_hash_entry *h;
1807
1808 /* Destination symbol type */
1809 unsigned char st_type;
1810
1811 /* Where this stub is being called from, or, in the case of combined
1812 stub sections, the first input section in the group. */
1813 asection *id_sec;
1814
1815 /* The name for the local symbol at the start of this stub. The
1816 stub name in the hash table has to be unique; this does not, so
1817 it can be friendlier. */
1818 char *output_name;
1819
1820 /* The instruction which caused this stub to be generated (only valid for
1821 erratum 835769 workaround stubs at present). */
1822 uint32_t veneered_insn;
1823
1824 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
1825 bfd_vma adrp_offset;
1826 };
1827
1828 /* Used to build a map of a section. This is required for mixed-endian
1829 code/data. */
1830
1831 typedef struct elf_elf_section_map
1832 {
1833 bfd_vma vma;
1834 char type;
1835 }
1836 elf_aarch64_section_map;
1837
1838
1839 typedef struct _aarch64_elf_section_data
1840 {
1841 struct bfd_elf_section_data elf;
1842 unsigned int mapcount;
1843 unsigned int mapsize;
1844 elf_aarch64_section_map *map;
1845 }
1846 _aarch64_elf_section_data;
1847
1848 #define elf_aarch64_section_data(sec) \
1849 ((_aarch64_elf_section_data *) elf_section_data (sec))
1850
1851 /* The size of the thread control block which is defined to be two pointers. */
1852 #define TCB_SIZE (ARCH_SIZE/8)*2
1853
1854 struct elf_aarch64_local_symbol
1855 {
1856 unsigned int got_type;
1857 bfd_signed_vma got_refcount;
1858 bfd_vma got_offset;
1859
1860 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
1861 offset is from the end of the jump table and reserved entries
1862 within the PLTGOT.
1863
1864 The magic value (bfd_vma) -1 indicates that an offset has not be
1865 allocated. */
1866 bfd_vma tlsdesc_got_jump_table_offset;
1867 };
1868
1869 struct elf_aarch64_obj_tdata
1870 {
1871 struct elf_obj_tdata root;
1872
1873 /* local symbol descriptors */
1874 struct elf_aarch64_local_symbol *locals;
1875
1876 /* Zero to warn when linking objects with incompatible enum sizes. */
1877 int no_enum_size_warning;
1878
1879 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
1880 int no_wchar_size_warning;
1881 };
1882
1883 #define elf_aarch64_tdata(bfd) \
1884 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
1885
1886 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
1887
1888 #define is_aarch64_elf(bfd) \
1889 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1890 && elf_tdata (bfd) != NULL \
1891 && elf_object_id (bfd) == AARCH64_ELF_DATA)
1892
1893 static bfd_boolean
1894 elfNN_aarch64_mkobject (bfd *abfd)
1895 {
1896 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
1897 AARCH64_ELF_DATA);
1898 }
1899
1900 #define elf_aarch64_hash_entry(ent) \
1901 ((struct elf_aarch64_link_hash_entry *)(ent))
1902
1903 #define GOT_UNKNOWN 0
1904 #define GOT_NORMAL 1
1905 #define GOT_TLS_GD 2
1906 #define GOT_TLS_IE 4
1907 #define GOT_TLSDESC_GD 8
1908
1909 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
1910
1911 /* AArch64 ELF linker hash entry. */
1912 struct elf_aarch64_link_hash_entry
1913 {
1914 struct elf_link_hash_entry root;
1915
1916 /* Track dynamic relocs copied for this symbol. */
1917 struct elf_dyn_relocs *dyn_relocs;
1918
1919 /* Since PLT entries have variable size, we need to record the
1920 index into .got.plt instead of recomputing it from the PLT
1921 offset. */
1922 bfd_signed_vma plt_got_offset;
1923
1924 /* Bit mask representing the type of GOT entry(s) if any required by
1925 this symbol. */
1926 unsigned int got_type;
1927
1928 /* A pointer to the most recently used stub hash entry against this
1929 symbol. */
1930 struct elf_aarch64_stub_hash_entry *stub_cache;
1931
1932 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
1933 is from the end of the jump table and reserved entries within the PLTGOT.
1934
1935 The magic value (bfd_vma) -1 indicates that an offset has not
1936 be allocated. */
1937 bfd_vma tlsdesc_got_jump_table_offset;
1938 };
1939
1940 static unsigned int
1941 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
1942 bfd *abfd,
1943 unsigned long r_symndx)
1944 {
1945 if (h)
1946 return elf_aarch64_hash_entry (h)->got_type;
1947
1948 if (! elf_aarch64_locals (abfd))
1949 return GOT_UNKNOWN;
1950
1951 return elf_aarch64_locals (abfd)[r_symndx].got_type;
1952 }
1953
1954 /* Get the AArch64 elf linker hash table from a link_info structure. */
1955 #define elf_aarch64_hash_table(info) \
1956 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
1957
1958 #define aarch64_stub_hash_lookup(table, string, create, copy) \
1959 ((struct elf_aarch64_stub_hash_entry *) \
1960 bfd_hash_lookup ((table), (string), (create), (copy)))
1961
1962 /* AArch64 ELF linker hash table. */
1963 struct elf_aarch64_link_hash_table
1964 {
1965 /* The main hash table. */
1966 struct elf_link_hash_table root;
1967
1968 /* Nonzero to force PIC branch veneers. */
1969 int pic_veneer;
1970
1971 /* Fix erratum 835769. */
1972 int fix_erratum_835769;
1973
1974 /* Fix erratum 843419. */
1975 int fix_erratum_843419;
1976
1977 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
1978 int fix_erratum_843419_adr;
1979
1980 /* The number of bytes in the initial entry in the PLT. */
1981 bfd_size_type plt_header_size;
1982
1983 /* The number of bytes in the subsequent PLT etries. */
1984 bfd_size_type plt_entry_size;
1985
1986 /* Short-cuts to get to dynamic linker sections. */
1987 asection *sdynbss;
1988 asection *srelbss;
1989
1990 /* Small local sym cache. */
1991 struct sym_cache sym_cache;
1992
1993 /* For convenience in allocate_dynrelocs. */
1994 bfd *obfd;
1995
1996 /* The amount of space used by the reserved portion of the sgotplt
1997 section, plus whatever space is used by the jump slots. */
1998 bfd_vma sgotplt_jump_table_size;
1999
2000 /* The stub hash table. */
2001 struct bfd_hash_table stub_hash_table;
2002
2003 /* Linker stub bfd. */
2004 bfd *stub_bfd;
2005
2006 /* Linker call-backs. */
2007 asection *(*add_stub_section) (const char *, asection *);
2008 void (*layout_sections_again) (void);
2009
2010 /* Array to keep track of which stub sections have been created, and
2011 information on stub grouping. */
2012 struct map_stub
2013 {
2014 /* This is the section to which stubs in the group will be
2015 attached. */
2016 asection *link_sec;
2017 /* The stub section. */
2018 asection *stub_sec;
2019 } *stub_group;
2020
2021 /* Assorted information used by elfNN_aarch64_size_stubs. */
2022 unsigned int bfd_count;
2023 int top_index;
2024 asection **input_list;
2025
2026 /* The offset into splt of the PLT entry for the TLS descriptor
2027 resolver. Special values are 0, if not necessary (or not found
2028 to be necessary yet), and -1 if needed but not determined
2029 yet. */
2030 bfd_vma tlsdesc_plt;
2031
2032 /* The GOT offset for the lazy trampoline. Communicated to the
2033 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2034 indicates an offset is not allocated. */
2035 bfd_vma dt_tlsdesc_got;
2036
2037 /* Used by local STT_GNU_IFUNC symbols. */
2038 htab_t loc_hash_table;
2039 void * loc_hash_memory;
2040 };
2041
2042 /* Create an entry in an AArch64 ELF linker hash table. */
2043
2044 static struct bfd_hash_entry *
2045 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2046 struct bfd_hash_table *table,
2047 const char *string)
2048 {
2049 struct elf_aarch64_link_hash_entry *ret =
2050 (struct elf_aarch64_link_hash_entry *) entry;
2051
2052 /* Allocate the structure if it has not already been allocated by a
2053 subclass. */
2054 if (ret == NULL)
2055 ret = bfd_hash_allocate (table,
2056 sizeof (struct elf_aarch64_link_hash_entry));
2057 if (ret == NULL)
2058 return (struct bfd_hash_entry *) ret;
2059
2060 /* Call the allocation method of the superclass. */
2061 ret = ((struct elf_aarch64_link_hash_entry *)
2062 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2063 table, string));
2064 if (ret != NULL)
2065 {
2066 ret->dyn_relocs = NULL;
2067 ret->got_type = GOT_UNKNOWN;
2068 ret->plt_got_offset = (bfd_vma) - 1;
2069 ret->stub_cache = NULL;
2070 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2071 }
2072
2073 return (struct bfd_hash_entry *) ret;
2074 }
2075
2076 /* Initialize an entry in the stub hash table. */
2077
2078 static struct bfd_hash_entry *
2079 stub_hash_newfunc (struct bfd_hash_entry *entry,
2080 struct bfd_hash_table *table, const char *string)
2081 {
2082 /* Allocate the structure if it has not already been allocated by a
2083 subclass. */
2084 if (entry == NULL)
2085 {
2086 entry = bfd_hash_allocate (table,
2087 sizeof (struct
2088 elf_aarch64_stub_hash_entry));
2089 if (entry == NULL)
2090 return entry;
2091 }
2092
2093 /* Call the allocation method of the superclass. */
2094 entry = bfd_hash_newfunc (entry, table, string);
2095 if (entry != NULL)
2096 {
2097 struct elf_aarch64_stub_hash_entry *eh;
2098
2099 /* Initialize the local fields. */
2100 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2101 eh->adrp_offset = 0;
2102 eh->stub_sec = NULL;
2103 eh->stub_offset = 0;
2104 eh->target_value = 0;
2105 eh->target_section = NULL;
2106 eh->stub_type = aarch64_stub_none;
2107 eh->h = NULL;
2108 eh->id_sec = NULL;
2109 }
2110
2111 return entry;
2112 }
2113
2114 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2115 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2116 as global symbol. We reuse indx and dynstr_index for local symbol
2117 hash since they aren't used by global symbols in this backend. */
2118
2119 static hashval_t
2120 elfNN_aarch64_local_htab_hash (const void *ptr)
2121 {
2122 struct elf_link_hash_entry *h
2123 = (struct elf_link_hash_entry *) ptr;
2124 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2125 }
2126
2127 /* Compare local hash entries. */
2128
2129 static int
2130 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2131 {
2132 struct elf_link_hash_entry *h1
2133 = (struct elf_link_hash_entry *) ptr1;
2134 struct elf_link_hash_entry *h2
2135 = (struct elf_link_hash_entry *) ptr2;
2136
2137 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2138 }
2139
2140 /* Find and/or create a hash entry for local symbol. */
2141
2142 static struct elf_link_hash_entry *
2143 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2144 bfd *abfd, const Elf_Internal_Rela *rel,
2145 bfd_boolean create)
2146 {
2147 struct elf_aarch64_link_hash_entry e, *ret;
2148 asection *sec = abfd->sections;
2149 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2150 ELFNN_R_SYM (rel->r_info));
2151 void **slot;
2152
2153 e.root.indx = sec->id;
2154 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2155 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2156 create ? INSERT : NO_INSERT);
2157
2158 if (!slot)
2159 return NULL;
2160
2161 if (*slot)
2162 {
2163 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2164 return &ret->root;
2165 }
2166
2167 ret = (struct elf_aarch64_link_hash_entry *)
2168 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2169 sizeof (struct elf_aarch64_link_hash_entry));
2170 if (ret)
2171 {
2172 memset (ret, 0, sizeof (*ret));
2173 ret->root.indx = sec->id;
2174 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2175 ret->root.dynindx = -1;
2176 *slot = ret;
2177 }
2178 return &ret->root;
2179 }
2180
2181 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2182
2183 static void
2184 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2185 struct elf_link_hash_entry *dir,
2186 struct elf_link_hash_entry *ind)
2187 {
2188 struct elf_aarch64_link_hash_entry *edir, *eind;
2189
2190 edir = (struct elf_aarch64_link_hash_entry *) dir;
2191 eind = (struct elf_aarch64_link_hash_entry *) ind;
2192
2193 if (eind->dyn_relocs != NULL)
2194 {
2195 if (edir->dyn_relocs != NULL)
2196 {
2197 struct elf_dyn_relocs **pp;
2198 struct elf_dyn_relocs *p;
2199
2200 /* Add reloc counts against the indirect sym to the direct sym
2201 list. Merge any entries against the same section. */
2202 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2203 {
2204 struct elf_dyn_relocs *q;
2205
2206 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2207 if (q->sec == p->sec)
2208 {
2209 q->pc_count += p->pc_count;
2210 q->count += p->count;
2211 *pp = p->next;
2212 break;
2213 }
2214 if (q == NULL)
2215 pp = &p->next;
2216 }
2217 *pp = edir->dyn_relocs;
2218 }
2219
2220 edir->dyn_relocs = eind->dyn_relocs;
2221 eind->dyn_relocs = NULL;
2222 }
2223
2224 if (ind->root.type == bfd_link_hash_indirect)
2225 {
2226 /* Copy over PLT info. */
2227 if (dir->got.refcount <= 0)
2228 {
2229 edir->got_type = eind->got_type;
2230 eind->got_type = GOT_UNKNOWN;
2231 }
2232 }
2233
2234 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2235 }
2236
2237 /* Destroy an AArch64 elf linker hash table. */
2238
2239 static void
2240 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2241 {
2242 struct elf_aarch64_link_hash_table *ret
2243 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2244
2245 if (ret->loc_hash_table)
2246 htab_delete (ret->loc_hash_table);
2247 if (ret->loc_hash_memory)
2248 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2249
2250 bfd_hash_table_free (&ret->stub_hash_table);
2251 _bfd_elf_link_hash_table_free (obfd);
2252 }
2253
2254 /* Create an AArch64 elf linker hash table. */
2255
2256 static struct bfd_link_hash_table *
2257 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2258 {
2259 struct elf_aarch64_link_hash_table *ret;
2260 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2261
2262 ret = bfd_zmalloc (amt);
2263 if (ret == NULL)
2264 return NULL;
2265
2266 if (!_bfd_elf_link_hash_table_init
2267 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2268 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2269 {
2270 free (ret);
2271 return NULL;
2272 }
2273
2274 ret->plt_header_size = PLT_ENTRY_SIZE;
2275 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2276 ret->obfd = abfd;
2277 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2278
2279 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2280 sizeof (struct elf_aarch64_stub_hash_entry)))
2281 {
2282 _bfd_elf_link_hash_table_free (abfd);
2283 return NULL;
2284 }
2285
2286 ret->loc_hash_table = htab_try_create (1024,
2287 elfNN_aarch64_local_htab_hash,
2288 elfNN_aarch64_local_htab_eq,
2289 NULL);
2290 ret->loc_hash_memory = objalloc_create ();
2291 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2292 {
2293 elfNN_aarch64_link_hash_table_free (abfd);
2294 return NULL;
2295 }
2296 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2297
2298 return &ret->root.root;
2299 }
2300
2301 static bfd_boolean
2302 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2303 bfd_vma offset, bfd_vma value)
2304 {
2305 reloc_howto_type *howto;
2306 bfd_vma place;
2307
2308 howto = elfNN_aarch64_howto_from_type (r_type);
2309 place = (input_section->output_section->vma + input_section->output_offset
2310 + offset);
2311
2312 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2313 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2314 return _bfd_aarch64_elf_put_addend (input_bfd,
2315 input_section->contents + offset, r_type,
2316 howto, value);
2317 }
2318
2319 static enum elf_aarch64_stub_type
2320 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2321 {
2322 if (aarch64_valid_for_adrp_p (value, place))
2323 return aarch64_stub_adrp_branch;
2324 return aarch64_stub_long_branch;
2325 }
2326
2327 /* Determine the type of stub needed, if any, for a call. */
2328
2329 static enum elf_aarch64_stub_type
2330 aarch64_type_of_stub (struct bfd_link_info *info,
2331 asection *input_sec,
2332 const Elf_Internal_Rela *rel,
2333 asection *sym_sec,
2334 unsigned char st_type,
2335 struct elf_aarch64_link_hash_entry *hash,
2336 bfd_vma destination)
2337 {
2338 bfd_vma location;
2339 bfd_signed_vma branch_offset;
2340 unsigned int r_type;
2341 struct elf_aarch64_link_hash_table *globals;
2342 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2343 bfd_boolean via_plt_p;
2344
2345 if (st_type != STT_FUNC
2346 && (sym_sec != bfd_abs_section_ptr))
2347 return stub_type;
2348
2349 globals = elf_aarch64_hash_table (info);
2350 via_plt_p = (globals->root.splt != NULL && hash != NULL
2351 && hash->root.plt.offset != (bfd_vma) - 1);
2352 /* Make sure call to plt stub can fit into the branch range. */
2353 if (via_plt_p)
2354 destination = (globals->root.splt->output_section->vma
2355 + globals->root.splt->output_offset
2356 + hash->root.plt.offset);
2357
2358 /* Determine where the call point is. */
2359 location = (input_sec->output_offset
2360 + input_sec->output_section->vma + rel->r_offset);
2361
2362 branch_offset = (bfd_signed_vma) (destination - location);
2363
2364 r_type = ELFNN_R_TYPE (rel->r_info);
2365
2366 /* We don't want to redirect any old unconditional jump in this way,
2367 only one which is being used for a sibcall, where it is
2368 acceptable for the IP0 and IP1 registers to be clobbered. */
2369 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2370 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2371 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2372 {
2373 stub_type = aarch64_stub_long_branch;
2374 }
2375
2376 return stub_type;
2377 }
2378
2379 /* Build a name for an entry in the stub hash table. */
2380
2381 static char *
2382 elfNN_aarch64_stub_name (const asection *input_section,
2383 const asection *sym_sec,
2384 const struct elf_aarch64_link_hash_entry *hash,
2385 const Elf_Internal_Rela *rel)
2386 {
2387 char *stub_name;
2388 bfd_size_type len;
2389
2390 if (hash)
2391 {
2392 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2393 stub_name = bfd_malloc (len);
2394 if (stub_name != NULL)
2395 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2396 (unsigned int) input_section->id,
2397 hash->root.root.root.string,
2398 rel->r_addend);
2399 }
2400 else
2401 {
2402 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2403 stub_name = bfd_malloc (len);
2404 if (stub_name != NULL)
2405 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2406 (unsigned int) input_section->id,
2407 (unsigned int) sym_sec->id,
2408 (unsigned int) ELFNN_R_SYM (rel->r_info),
2409 rel->r_addend);
2410 }
2411
2412 return stub_name;
2413 }
2414
2415 /* Look up an entry in the stub hash. Stub entries are cached because
2416 creating the stub name takes a bit of time. */
2417
2418 static struct elf_aarch64_stub_hash_entry *
2419 elfNN_aarch64_get_stub_entry (const asection *input_section,
2420 const asection *sym_sec,
2421 struct elf_link_hash_entry *hash,
2422 const Elf_Internal_Rela *rel,
2423 struct elf_aarch64_link_hash_table *htab)
2424 {
2425 struct elf_aarch64_stub_hash_entry *stub_entry;
2426 struct elf_aarch64_link_hash_entry *h =
2427 (struct elf_aarch64_link_hash_entry *) hash;
2428 const asection *id_sec;
2429
2430 if ((input_section->flags & SEC_CODE) == 0)
2431 return NULL;
2432
2433 /* If this input section is part of a group of sections sharing one
2434 stub section, then use the id of the first section in the group.
2435 Stub names need to include a section id, as there may well be
2436 more than one stub used to reach say, printf, and we need to
2437 distinguish between them. */
2438 id_sec = htab->stub_group[input_section->id].link_sec;
2439
2440 if (h != NULL && h->stub_cache != NULL
2441 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2442 {
2443 stub_entry = h->stub_cache;
2444 }
2445 else
2446 {
2447 char *stub_name;
2448
2449 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2450 if (stub_name == NULL)
2451 return NULL;
2452
2453 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2454 stub_name, FALSE, FALSE);
2455 if (h != NULL)
2456 h->stub_cache = stub_entry;
2457
2458 free (stub_name);
2459 }
2460
2461 return stub_entry;
2462 }
2463
2464
2465 /* Create a stub section. */
2466
2467 static asection *
2468 _bfd_aarch64_create_stub_section (asection *section,
2469 struct elf_aarch64_link_hash_table *htab)
2470 {
2471 size_t namelen;
2472 bfd_size_type len;
2473 char *s_name;
2474
2475 namelen = strlen (section->name);
2476 len = namelen + sizeof (STUB_SUFFIX);
2477 s_name = bfd_alloc (htab->stub_bfd, len);
2478 if (s_name == NULL)
2479 return NULL;
2480
2481 memcpy (s_name, section->name, namelen);
2482 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2483 return (*htab->add_stub_section) (s_name, section);
2484 }
2485
2486
2487 /* Find or create a stub section for a link section.
2488
2489 Fix or create the stub section used to collect stubs attached to
2490 the specified link section. */
2491
2492 static asection *
2493 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
2494 struct elf_aarch64_link_hash_table *htab)
2495 {
2496 if (htab->stub_group[link_section->id].stub_sec == NULL)
2497 htab->stub_group[link_section->id].stub_sec
2498 = _bfd_aarch64_create_stub_section (link_section, htab);
2499 return htab->stub_group[link_section->id].stub_sec;
2500 }
2501
2502
2503 /* Find or create a stub section in the stub group for an input
2504 section. */
2505
2506 static asection *
2507 _bfd_aarch64_create_or_find_stub_sec (asection *section,
2508 struct elf_aarch64_link_hash_table *htab)
2509 {
2510 asection *link_sec = htab->stub_group[section->id].link_sec;
2511 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
2512 }
2513
2514
2515 /* Add a new stub entry in the stub group associated with an input
2516 section to the stub hash. Not all fields of the new stub entry are
2517 initialised. */
2518
2519 static struct elf_aarch64_stub_hash_entry *
2520 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2521 asection *section,
2522 struct elf_aarch64_link_hash_table *htab)
2523 {
2524 asection *link_sec;
2525 asection *stub_sec;
2526 struct elf_aarch64_stub_hash_entry *stub_entry;
2527
2528 link_sec = htab->stub_group[section->id].link_sec;
2529 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2530
2531 /* Enter this entry into the linker stub hash table. */
2532 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2533 TRUE, FALSE);
2534 if (stub_entry == NULL)
2535 {
2536 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2537 section->owner, stub_name);
2538 return NULL;
2539 }
2540
2541 stub_entry->stub_sec = stub_sec;
2542 stub_entry->stub_offset = 0;
2543 stub_entry->id_sec = link_sec;
2544
2545 return stub_entry;
2546 }
2547
2548 /* Add a new stub entry in the final stub section to the stub hash.
2549 Not all fields of the new stub entry are initialised. */
2550
2551 static struct elf_aarch64_stub_hash_entry *
2552 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
2553 asection *link_section,
2554 struct elf_aarch64_link_hash_table *htab)
2555 {
2556 asection *stub_sec;
2557 struct elf_aarch64_stub_hash_entry *stub_entry;
2558
2559 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2560 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2561 TRUE, FALSE);
2562 if (stub_entry == NULL)
2563 {
2564 (*_bfd_error_handler) (_("cannot create stub entry %s"), stub_name);
2565 return NULL;
2566 }
2567
2568 stub_entry->stub_sec = stub_sec;
2569 stub_entry->stub_offset = 0;
2570 stub_entry->id_sec = link_section;
2571
2572 return stub_entry;
2573 }
2574
2575
2576 static bfd_boolean
2577 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2578 void *in_arg ATTRIBUTE_UNUSED)
2579 {
2580 struct elf_aarch64_stub_hash_entry *stub_entry;
2581 asection *stub_sec;
2582 bfd *stub_bfd;
2583 bfd_byte *loc;
2584 bfd_vma sym_value;
2585 bfd_vma veneered_insn_loc;
2586 bfd_vma veneer_entry_loc;
2587 bfd_signed_vma branch_offset = 0;
2588 unsigned int template_size;
2589 const uint32_t *template;
2590 unsigned int i;
2591
2592 /* Massage our args to the form they really have. */
2593 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2594
2595 stub_sec = stub_entry->stub_sec;
2596
2597 /* Make a note of the offset within the stubs for this entry. */
2598 stub_entry->stub_offset = stub_sec->size;
2599 loc = stub_sec->contents + stub_entry->stub_offset;
2600
2601 stub_bfd = stub_sec->owner;
2602
2603 /* This is the address of the stub destination. */
2604 sym_value = (stub_entry->target_value
2605 + stub_entry->target_section->output_offset
2606 + stub_entry->target_section->output_section->vma);
2607
2608 if (stub_entry->stub_type == aarch64_stub_long_branch)
2609 {
2610 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2611 + stub_sec->output_offset);
2612
2613 /* See if we can relax the stub. */
2614 if (aarch64_valid_for_adrp_p (sym_value, place))
2615 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2616 }
2617
2618 switch (stub_entry->stub_type)
2619 {
2620 case aarch64_stub_adrp_branch:
2621 template = aarch64_adrp_branch_stub;
2622 template_size = sizeof (aarch64_adrp_branch_stub);
2623 break;
2624 case aarch64_stub_long_branch:
2625 template = aarch64_long_branch_stub;
2626 template_size = sizeof (aarch64_long_branch_stub);
2627 break;
2628 case aarch64_stub_erratum_835769_veneer:
2629 template = aarch64_erratum_835769_stub;
2630 template_size = sizeof (aarch64_erratum_835769_stub);
2631 break;
2632 case aarch64_stub_erratum_843419_veneer:
2633 template = aarch64_erratum_843419_stub;
2634 template_size = sizeof (aarch64_erratum_843419_stub);
2635 break;
2636 default:
2637 abort ();
2638 }
2639
2640 for (i = 0; i < (template_size / sizeof template[0]); i++)
2641 {
2642 bfd_putl32 (template[i], loc);
2643 loc += 4;
2644 }
2645
2646 template_size = (template_size + 7) & ~7;
2647 stub_sec->size += template_size;
2648
2649 switch (stub_entry->stub_type)
2650 {
2651 case aarch64_stub_adrp_branch:
2652 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
2653 stub_entry->stub_offset, sym_value))
2654 /* The stub would not have been relaxed if the offset was out
2655 of range. */
2656 BFD_FAIL ();
2657
2658 if (aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
2659 stub_entry->stub_offset + 4, sym_value))
2660 BFD_FAIL ();
2661 break;
2662
2663 case aarch64_stub_long_branch:
2664 /* We want the value relative to the address 12 bytes back from the
2665 value itself. */
2666 if (aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
2667 stub_entry->stub_offset + 16, sym_value + 12))
2668 BFD_FAIL ();
2669 break;
2670
2671 case aarch64_stub_erratum_835769_veneer:
2672 veneered_insn_loc = stub_entry->target_section->output_section->vma
2673 + stub_entry->target_section->output_offset
2674 + stub_entry->target_value;
2675 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
2676 + stub_entry->stub_sec->output_offset
2677 + stub_entry->stub_offset;
2678 branch_offset = veneered_insn_loc - veneer_entry_loc;
2679 branch_offset >>= 2;
2680 branch_offset &= 0x3ffffff;
2681 bfd_putl32 (stub_entry->veneered_insn,
2682 stub_sec->contents + stub_entry->stub_offset);
2683 bfd_putl32 (template[1] | branch_offset,
2684 stub_sec->contents + stub_entry->stub_offset + 4);
2685 break;
2686
2687 case aarch64_stub_erratum_843419_veneer:
2688 if (aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
2689 stub_entry->stub_offset + 4, sym_value + 4))
2690 BFD_FAIL ();
2691 break;
2692
2693 default:
2694 abort ();
2695 }
2696
2697 return TRUE;
2698 }
2699
2700 /* As above, but don't actually build the stub. Just bump offset so
2701 we know stub section sizes. */
2702
2703 static bfd_boolean
2704 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
2705 void *in_arg ATTRIBUTE_UNUSED)
2706 {
2707 struct elf_aarch64_stub_hash_entry *stub_entry;
2708 int size;
2709
2710 /* Massage our args to the form they really have. */
2711 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2712
2713 switch (stub_entry->stub_type)
2714 {
2715 case aarch64_stub_adrp_branch:
2716 size = sizeof (aarch64_adrp_branch_stub);
2717 break;
2718 case aarch64_stub_long_branch:
2719 size = sizeof (aarch64_long_branch_stub);
2720 break;
2721 case aarch64_stub_erratum_835769_veneer:
2722 size = sizeof (aarch64_erratum_835769_stub);
2723 break;
2724 case aarch64_stub_erratum_843419_veneer:
2725 size = sizeof (aarch64_erratum_843419_stub);
2726 break;
2727 default:
2728 abort ();
2729 }
2730
2731 size = (size + 7) & ~7;
2732 stub_entry->stub_sec->size += size;
2733 return TRUE;
2734 }
2735
2736 /* External entry points for sizing and building linker stubs. */
2737
2738 /* Set up various things so that we can make a list of input sections
2739 for each output section included in the link. Returns -1 on error,
2740 0 when no stubs will be needed, and 1 on success. */
2741
2742 int
2743 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
2744 struct bfd_link_info *info)
2745 {
2746 bfd *input_bfd;
2747 unsigned int bfd_count;
2748 int top_id, top_index;
2749 asection *section;
2750 asection **input_list, **list;
2751 bfd_size_type amt;
2752 struct elf_aarch64_link_hash_table *htab =
2753 elf_aarch64_hash_table (info);
2754
2755 if (!is_elf_hash_table (htab))
2756 return 0;
2757
2758 /* Count the number of input BFDs and find the top input section id. */
2759 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2760 input_bfd != NULL; input_bfd = input_bfd->link.next)
2761 {
2762 bfd_count += 1;
2763 for (section = input_bfd->sections;
2764 section != NULL; section = section->next)
2765 {
2766 if (top_id < section->id)
2767 top_id = section->id;
2768 }
2769 }
2770 htab->bfd_count = bfd_count;
2771
2772 amt = sizeof (struct map_stub) * (top_id + 1);
2773 htab->stub_group = bfd_zmalloc (amt);
2774 if (htab->stub_group == NULL)
2775 return -1;
2776
2777 /* We can't use output_bfd->section_count here to find the top output
2778 section index as some sections may have been removed, and
2779 _bfd_strip_section_from_output doesn't renumber the indices. */
2780 for (section = output_bfd->sections, top_index = 0;
2781 section != NULL; section = section->next)
2782 {
2783 if (top_index < section->index)
2784 top_index = section->index;
2785 }
2786
2787 htab->top_index = top_index;
2788 amt = sizeof (asection *) * (top_index + 1);
2789 input_list = bfd_malloc (amt);
2790 htab->input_list = input_list;
2791 if (input_list == NULL)
2792 return -1;
2793
2794 /* For sections we aren't interested in, mark their entries with a
2795 value we can check later. */
2796 list = input_list + top_index;
2797 do
2798 *list = bfd_abs_section_ptr;
2799 while (list-- != input_list);
2800
2801 for (section = output_bfd->sections;
2802 section != NULL; section = section->next)
2803 {
2804 if ((section->flags & SEC_CODE) != 0)
2805 input_list[section->index] = NULL;
2806 }
2807
2808 return 1;
2809 }
2810
2811 /* Used by elfNN_aarch64_next_input_section and group_sections. */
2812 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2813
2814 /* The linker repeatedly calls this function for each input section,
2815 in the order that input sections are linked into output sections.
2816 Build lists of input sections to determine groupings between which
2817 we may insert linker stubs. */
2818
2819 void
2820 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
2821 {
2822 struct elf_aarch64_link_hash_table *htab =
2823 elf_aarch64_hash_table (info);
2824
2825 if (isec->output_section->index <= htab->top_index)
2826 {
2827 asection **list = htab->input_list + isec->output_section->index;
2828
2829 if (*list != bfd_abs_section_ptr)
2830 {
2831 /* Steal the link_sec pointer for our list. */
2832 /* This happens to make the list in reverse order,
2833 which is what we want. */
2834 PREV_SEC (isec) = *list;
2835 *list = isec;
2836 }
2837 }
2838 }
2839
2840 /* See whether we can group stub sections together. Grouping stub
2841 sections may result in fewer stubs. More importantly, we need to
2842 put all .init* and .fini* stubs at the beginning of the .init or
2843 .fini output sections respectively, because glibc splits the
2844 _init and _fini functions into multiple parts. Putting a stub in
2845 the middle of a function is not a good idea. */
2846
2847 static void
2848 group_sections (struct elf_aarch64_link_hash_table *htab,
2849 bfd_size_type stub_group_size,
2850 bfd_boolean stubs_always_before_branch)
2851 {
2852 asection **list = htab->input_list + htab->top_index;
2853
2854 do
2855 {
2856 asection *tail = *list;
2857
2858 if (tail == bfd_abs_section_ptr)
2859 continue;
2860
2861 while (tail != NULL)
2862 {
2863 asection *curr;
2864 asection *prev;
2865 bfd_size_type total;
2866
2867 curr = tail;
2868 total = tail->size;
2869 while ((prev = PREV_SEC (curr)) != NULL
2870 && ((total += curr->output_offset - prev->output_offset)
2871 < stub_group_size))
2872 curr = prev;
2873
2874 /* OK, the size from the start of CURR to the end is less
2875 than stub_group_size and thus can be handled by one stub
2876 section. (Or the tail section is itself larger than
2877 stub_group_size, in which case we may be toast.)
2878 We should really be keeping track of the total size of
2879 stubs added here, as stubs contribute to the final output
2880 section size. */
2881 do
2882 {
2883 prev = PREV_SEC (tail);
2884 /* Set up this stub group. */
2885 htab->stub_group[tail->id].link_sec = curr;
2886 }
2887 while (tail != curr && (tail = prev) != NULL);
2888
2889 /* But wait, there's more! Input sections up to stub_group_size
2890 bytes before the stub section can be handled by it too. */
2891 if (!stubs_always_before_branch)
2892 {
2893 total = 0;
2894 while (prev != NULL
2895 && ((total += tail->output_offset - prev->output_offset)
2896 < stub_group_size))
2897 {
2898 tail = prev;
2899 prev = PREV_SEC (tail);
2900 htab->stub_group[tail->id].link_sec = curr;
2901 }
2902 }
2903 tail = prev;
2904 }
2905 }
2906 while (list-- != htab->input_list);
2907
2908 free (htab->input_list);
2909 }
2910
2911 #undef PREV_SEC
2912
2913 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
2914
2915 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
2916 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
2917 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
2918 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
2919 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
2920 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
2921
2922 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
2923 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
2924 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
2925 #define AARCH64_ZR 0x1f
2926
2927 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
2928 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
2929
2930 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
2931 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
2932 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
2933 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
2934 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
2935 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
2936 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
2937 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
2938 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
2939 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
2940 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
2941 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
2942 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
2943 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
2944 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
2945 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
2946 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
2947 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
2948
2949 /* Classify an INSN if it is indeed a load/store.
2950
2951 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
2952
2953 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
2954 is set equal to RT.
2955
2956 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned.
2957
2958 */
2959
2960 static bfd_boolean
2961 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
2962 bfd_boolean *pair, bfd_boolean *load)
2963 {
2964 uint32_t opcode;
2965 unsigned int r;
2966 uint32_t opc = 0;
2967 uint32_t v = 0;
2968 uint32_t opc_v = 0;
2969
2970 /* Bail out quickly if INSN doesn't fall into the the load-store
2971 encoding space. */
2972 if (!AARCH64_LDST (insn))
2973 return FALSE;
2974
2975 *pair = FALSE;
2976 *load = FALSE;
2977 if (AARCH64_LDST_EX (insn))
2978 {
2979 *rt = AARCH64_RT (insn);
2980 *rt2 = *rt;
2981 if (AARCH64_BIT (insn, 21) == 1)
2982 {
2983 *pair = TRUE;
2984 *rt2 = AARCH64_RT2 (insn);
2985 }
2986 *load = AARCH64_LD (insn);
2987 return TRUE;
2988 }
2989 else if (AARCH64_LDST_NAP (insn)
2990 || AARCH64_LDSTP_PI (insn)
2991 || AARCH64_LDSTP_O (insn)
2992 || AARCH64_LDSTP_PRE (insn))
2993 {
2994 *pair = TRUE;
2995 *rt = AARCH64_RT (insn);
2996 *rt2 = AARCH64_RT2 (insn);
2997 *load = AARCH64_LD (insn);
2998 return TRUE;
2999 }
3000 else if (AARCH64_LDST_PCREL (insn)
3001 || AARCH64_LDST_UI (insn)
3002 || AARCH64_LDST_PIIMM (insn)
3003 || AARCH64_LDST_U (insn)
3004 || AARCH64_LDST_PREIMM (insn)
3005 || AARCH64_LDST_RO (insn)
3006 || AARCH64_LDST_UIMM (insn))
3007 {
3008 *rt = AARCH64_RT (insn);
3009 *rt2 = *rt;
3010 if (AARCH64_LDST_PCREL (insn))
3011 *load = TRUE;
3012 opc = AARCH64_BITS (insn, 22, 2);
3013 v = AARCH64_BIT (insn, 26);
3014 opc_v = opc | (v << 2);
3015 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3016 || opc_v == 5 || opc_v == 7);
3017 return TRUE;
3018 }
3019 else if (AARCH64_LDST_SIMD_M (insn)
3020 || AARCH64_LDST_SIMD_M_PI (insn))
3021 {
3022 *rt = AARCH64_RT (insn);
3023 *load = AARCH64_BIT (insn, 22);
3024 opcode = (insn >> 12) & 0xf;
3025 switch (opcode)
3026 {
3027 case 0:
3028 case 2:
3029 *rt2 = *rt + 3;
3030 break;
3031
3032 case 4:
3033 case 6:
3034 *rt2 = *rt + 2;
3035 break;
3036
3037 case 7:
3038 *rt2 = *rt;
3039 break;
3040
3041 case 8:
3042 case 10:
3043 *rt2 = *rt + 1;
3044 break;
3045
3046 default:
3047 return FALSE;
3048 }
3049 return TRUE;
3050 }
3051 else if (AARCH64_LDST_SIMD_S (insn)
3052 || AARCH64_LDST_SIMD_S_PI (insn))
3053 {
3054 *rt = AARCH64_RT (insn);
3055 r = (insn >> 21) & 1;
3056 *load = AARCH64_BIT (insn, 22);
3057 opcode = (insn >> 13) & 0x7;
3058 switch (opcode)
3059 {
3060 case 0:
3061 case 2:
3062 case 4:
3063 *rt2 = *rt + r;
3064 break;
3065
3066 case 1:
3067 case 3:
3068 case 5:
3069 *rt2 = *rt + (r == 0 ? 2 : 3);
3070 break;
3071
3072 case 6:
3073 *rt2 = *rt + r;
3074 break;
3075
3076 case 7:
3077 *rt2 = *rt + (r == 0 ? 2 : 3);
3078 break;
3079
3080 default:
3081 return FALSE;
3082 }
3083 return TRUE;
3084 }
3085
3086 return FALSE;
3087 }
3088
3089 /* Return TRUE if INSN is multiply-accumulate. */
3090
3091 static bfd_boolean
3092 aarch64_mlxl_p (uint32_t insn)
3093 {
3094 uint32_t op31 = AARCH64_OP31 (insn);
3095
3096 if (AARCH64_MAC (insn)
3097 && (op31 == 0 || op31 == 1 || op31 == 5)
3098 /* Exclude MUL instructions which are encoded as a multiple accumulate
3099 with RA = XZR. */
3100 && AARCH64_RA (insn) != AARCH64_ZR)
3101 return TRUE;
3102
3103 return FALSE;
3104 }
3105
3106 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3107 it is possible for a 64-bit multiply-accumulate instruction to generate an
3108 incorrect result. The details are quite complex and hard to
3109 determine statically, since branches in the code may exist in some
3110 circumstances, but all cases end with a memory (load, store, or
3111 prefetch) instruction followed immediately by the multiply-accumulate
3112 operation. We employ a linker patching technique, by moving the potentially
3113 affected multiply-accumulate instruction into a patch region and replacing
3114 the original instruction with a branch to the patch. This function checks
3115 if INSN_1 is the memory operation followed by a multiply-accumulate
3116 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3117 if INSN_1 and INSN_2 are safe. */
3118
3119 static bfd_boolean
3120 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3121 {
3122 uint32_t rt;
3123 uint32_t rt2;
3124 uint32_t rn;
3125 uint32_t rm;
3126 uint32_t ra;
3127 bfd_boolean pair;
3128 bfd_boolean load;
3129
3130 if (aarch64_mlxl_p (insn_2)
3131 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3132 {
3133 /* Any SIMD memory op is independent of the subsequent MLA
3134 by definition of the erratum. */
3135 if (AARCH64_BIT (insn_1, 26))
3136 return TRUE;
3137
3138 /* If not SIMD, check for integer memory ops and MLA relationship. */
3139 rn = AARCH64_RN (insn_2);
3140 ra = AARCH64_RA (insn_2);
3141 rm = AARCH64_RM (insn_2);
3142
3143 /* If this is a load and there's a true(RAW) dependency, we are safe
3144 and this is not an erratum sequence. */
3145 if (load &&
3146 (rt == rn || rt == rm || rt == ra
3147 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3148 return FALSE;
3149
3150 /* We conservatively put out stubs for all other cases (including
3151 writebacks). */
3152 return TRUE;
3153 }
3154
3155 return FALSE;
3156 }
3157
3158 /* Used to order a list of mapping symbols by address. */
3159
3160 static int
3161 elf_aarch64_compare_mapping (const void *a, const void *b)
3162 {
3163 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3164 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3165
3166 if (amap->vma > bmap->vma)
3167 return 1;
3168 else if (amap->vma < bmap->vma)
3169 return -1;
3170 else if (amap->type > bmap->type)
3171 /* Ensure results do not depend on the host qsort for objects with
3172 multiple mapping symbols at the same address by sorting on type
3173 after vma. */
3174 return 1;
3175 else if (amap->type < bmap->type)
3176 return -1;
3177 else
3178 return 0;
3179 }
3180
3181
3182 static char *
3183 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3184 {
3185 char *stub_name = (char *) bfd_malloc
3186 (strlen ("__erratum_835769_veneer_") + 16);
3187 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3188 return stub_name;
3189 }
3190
3191 /* Scan for Cortex-A53 erratum 835769 sequence.
3192
3193 Return TRUE else FALSE on abnormal termination. */
3194
3195 static bfd_boolean
3196 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3197 struct bfd_link_info *info,
3198 unsigned int *num_fixes_p)
3199 {
3200 asection *section;
3201 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3202 unsigned int num_fixes = *num_fixes_p;
3203
3204 if (htab == NULL)
3205 return TRUE;
3206
3207 for (section = input_bfd->sections;
3208 section != NULL;
3209 section = section->next)
3210 {
3211 bfd_byte *contents = NULL;
3212 struct _aarch64_elf_section_data *sec_data;
3213 unsigned int span;
3214
3215 if (elf_section_type (section) != SHT_PROGBITS
3216 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3217 || (section->flags & SEC_EXCLUDE) != 0
3218 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3219 || (section->output_section == bfd_abs_section_ptr))
3220 continue;
3221
3222 if (elf_section_data (section)->this_hdr.contents != NULL)
3223 contents = elf_section_data (section)->this_hdr.contents;
3224 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3225 return FALSE;
3226
3227 sec_data = elf_aarch64_section_data (section);
3228
3229 qsort (sec_data->map, sec_data->mapcount,
3230 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3231
3232 for (span = 0; span < sec_data->mapcount; span++)
3233 {
3234 unsigned int span_start = sec_data->map[span].vma;
3235 unsigned int span_end = ((span == sec_data->mapcount - 1)
3236 ? sec_data->map[0].vma + section->size
3237 : sec_data->map[span + 1].vma);
3238 unsigned int i;
3239 char span_type = sec_data->map[span].type;
3240
3241 if (span_type == 'd')
3242 continue;
3243
3244 for (i = span_start; i + 4 < span_end; i += 4)
3245 {
3246 uint32_t insn_1 = bfd_getl32 (contents + i);
3247 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3248
3249 if (aarch64_erratum_sequence (insn_1, insn_2))
3250 {
3251 struct elf_aarch64_stub_hash_entry *stub_entry;
3252 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3253 if (! stub_name)
3254 return FALSE;
3255
3256 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3257 section,
3258 htab);
3259 if (! stub_entry)
3260 return FALSE;
3261
3262 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3263 stub_entry->target_section = section;
3264 stub_entry->target_value = i + 4;
3265 stub_entry->veneered_insn = insn_2;
3266 stub_entry->output_name = stub_name;
3267 num_fixes++;
3268 }
3269 }
3270 }
3271 if (elf_section_data (section)->this_hdr.contents == NULL)
3272 free (contents);
3273 }
3274
3275 *num_fixes_p = num_fixes;
3276
3277 return TRUE;
3278 }
3279
3280
3281 /* Test if instruction INSN is ADRP. */
3282
3283 static bfd_boolean
3284 _bfd_aarch64_adrp_p (uint32_t insn)
3285 {
3286 return ((insn & 0x9f000000) == 0x90000000);
3287 }
3288
3289
3290 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3291
3292 static bfd_boolean
3293 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3294 uint32_t insn_3)
3295 {
3296 uint32_t rt;
3297 uint32_t rt2;
3298 bfd_boolean pair;
3299 bfd_boolean load;
3300
3301 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3302 && (!pair
3303 || (pair && !load))
3304 && AARCH64_LDST_UIMM (insn_3)
3305 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3306 }
3307
3308
3309 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3310
3311 Return TRUE if section CONTENTS at offset I contains one of the
3312 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3313 seen set P_VENEER_I to the offset of the final LOAD/STORE
3314 instruction in the sequence.
3315 */
3316
3317 static bfd_boolean
3318 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3319 bfd_vma i, bfd_vma span_end,
3320 bfd_vma *p_veneer_i)
3321 {
3322 uint32_t insn_1 = bfd_getl32 (contents + i);
3323
3324 if (!_bfd_aarch64_adrp_p (insn_1))
3325 return FALSE;
3326
3327 if (span_end < i + 12)
3328 return FALSE;
3329
3330 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3331 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3332
3333 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3334 return FALSE;
3335
3336 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3337 {
3338 *p_veneer_i = i + 8;
3339 return TRUE;
3340 }
3341
3342 if (span_end < i + 16)
3343 return FALSE;
3344
3345 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3346
3347 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3348 {
3349 *p_veneer_i = i + 12;
3350 return TRUE;
3351 }
3352
3353 return FALSE;
3354 }
3355
3356
3357 /* Resize all stub sections. */
3358
3359 static void
3360 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3361 {
3362 asection *section;
3363
3364 /* OK, we've added some stubs. Find out the new size of the
3365 stub sections. */
3366 for (section = htab->stub_bfd->sections;
3367 section != NULL; section = section->next)
3368 {
3369 /* Ignore non-stub sections. */
3370 if (!strstr (section->name, STUB_SUFFIX))
3371 continue;
3372 section->size = 0;
3373 }
3374
3375 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3376
3377 for (section = htab->stub_bfd->sections;
3378 section != NULL; section = section->next)
3379 {
3380 if (!strstr (section->name, STUB_SUFFIX))
3381 continue;
3382
3383 if (section->size)
3384 section->size += 4;
3385
3386 /* Ensure all stub sections have a size which is a multiple of
3387 4096. This is important in order to ensure that the insertion
3388 of stub sections does not in itself move existing code around
3389 in such a way that new errata sequences are created. */
3390 if (htab->fix_erratum_843419)
3391 if (section->size)
3392 section->size = BFD_ALIGN (section->size, 0x1000);
3393 }
3394 }
3395
3396
3397 /* Construct an erratum 843419 workaround stub name.
3398 */
3399
3400 static char *
3401 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3402 bfd_vma offset)
3403 {
3404 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3405 char *stub_name = bfd_malloc (len);
3406
3407 if (stub_name != NULL)
3408 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3409 input_section->owner->id,
3410 input_section->id,
3411 offset);
3412 return stub_name;
3413 }
3414
3415 /* Build a stub_entry structure describing an 843419 fixup.
3416
3417 The stub_entry constructed is populated with the bit pattern INSN
3418 of the instruction located at OFFSET within input SECTION.
3419
3420 Returns TRUE on success. */
3421
3422 static bfd_boolean
3423 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3424 bfd_vma adrp_offset,
3425 bfd_vma ldst_offset,
3426 asection *section,
3427 struct bfd_link_info *info)
3428 {
3429 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3430 char *stub_name;
3431 struct elf_aarch64_stub_hash_entry *stub_entry;
3432
3433 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3434 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3435 FALSE, FALSE);
3436 if (stub_entry)
3437 {
3438 free (stub_name);
3439 return TRUE;
3440 }
3441
3442 /* We always place an 843419 workaround veneer in the stub section
3443 attached to the input section in which an erratum sequence has
3444 been found. This ensures that later in the link process (in
3445 elfNN_aarch64_write_section) when we copy the veneered
3446 instruction from the input section into the stub section the
3447 copied instruction will have had any relocations applied to it.
3448 If we placed workaround veneers in any other stub section then we
3449 could not assume that all relocations have been processed on the
3450 corresponding input section at the point we output the stub
3451 section.
3452 */
3453
3454 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3455 if (stub_entry == NULL)
3456 {
3457 free (stub_name);
3458 return FALSE;
3459 }
3460
3461 stub_entry->adrp_offset = adrp_offset;
3462 stub_entry->target_value = ldst_offset;
3463 stub_entry->target_section = section;
3464 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3465 stub_entry->veneered_insn = insn;
3466 stub_entry->output_name = stub_name;
3467
3468 return TRUE;
3469 }
3470
3471
3472 /* Scan an input section looking for the signature of erratum 843419.
3473
3474 Scans input SECTION in INPUT_BFD looking for erratum 843419
3475 signatures, for each signature found a stub_entry is created
3476 describing the location of the erratum for subsequent fixup.
3477
3478 Return TRUE on successful scan, FALSE on failure to scan.
3479 */
3480
3481 static bfd_boolean
3482 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3483 struct bfd_link_info *info)
3484 {
3485 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3486
3487 if (htab == NULL)
3488 return TRUE;
3489
3490 if (elf_section_type (section) != SHT_PROGBITS
3491 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3492 || (section->flags & SEC_EXCLUDE) != 0
3493 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3494 || (section->output_section == bfd_abs_section_ptr))
3495 return TRUE;
3496
3497 do
3498 {
3499 bfd_byte *contents = NULL;
3500 struct _aarch64_elf_section_data *sec_data;
3501 unsigned int span;
3502
3503 if (elf_section_data (section)->this_hdr.contents != NULL)
3504 contents = elf_section_data (section)->this_hdr.contents;
3505 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3506 return FALSE;
3507
3508 sec_data = elf_aarch64_section_data (section);
3509
3510 qsort (sec_data->map, sec_data->mapcount,
3511 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3512
3513 for (span = 0; span < sec_data->mapcount; span++)
3514 {
3515 unsigned int span_start = sec_data->map[span].vma;
3516 unsigned int span_end = ((span == sec_data->mapcount - 1)
3517 ? sec_data->map[0].vma + section->size
3518 : sec_data->map[span + 1].vma);
3519 unsigned int i;
3520 char span_type = sec_data->map[span].type;
3521
3522 if (span_type == 'd')
3523 continue;
3524
3525 for (i = span_start; i + 8 < span_end; i += 4)
3526 {
3527 bfd_vma vma = (section->output_section->vma
3528 + section->output_offset
3529 + i);
3530 bfd_vma veneer_i;
3531
3532 if (_bfd_aarch64_erratum_843419_p
3533 (contents, vma, i, span_end, &veneer_i))
3534 {
3535 uint32_t insn = bfd_getl32 (contents + veneer_i);
3536
3537 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3538 section, info))
3539 return FALSE;
3540 }
3541 }
3542 }
3543
3544 if (elf_section_data (section)->this_hdr.contents == NULL)
3545 free (contents);
3546 }
3547 while (0);
3548
3549 return TRUE;
3550 }
3551
3552
3553 /* Determine and set the size of the stub section for a final link.
3554
3555 The basic idea here is to examine all the relocations looking for
3556 PC-relative calls to a target that is unreachable with a "bl"
3557 instruction. */
3558
3559 bfd_boolean
3560 elfNN_aarch64_size_stubs (bfd *output_bfd,
3561 bfd *stub_bfd,
3562 struct bfd_link_info *info,
3563 bfd_signed_vma group_size,
3564 asection * (*add_stub_section) (const char *,
3565 asection *),
3566 void (*layout_sections_again) (void))
3567 {
3568 bfd_size_type stub_group_size;
3569 bfd_boolean stubs_always_before_branch;
3570 bfd_boolean stub_changed = FALSE;
3571 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3572 unsigned int num_erratum_835769_fixes = 0;
3573
3574 /* Propagate mach to stub bfd, because it may not have been
3575 finalized when we created stub_bfd. */
3576 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3577 bfd_get_mach (output_bfd));
3578
3579 /* Stash our params away. */
3580 htab->stub_bfd = stub_bfd;
3581 htab->add_stub_section = add_stub_section;
3582 htab->layout_sections_again = layout_sections_again;
3583 stubs_always_before_branch = group_size < 0;
3584 if (group_size < 0)
3585 stub_group_size = -group_size;
3586 else
3587 stub_group_size = group_size;
3588
3589 if (stub_group_size == 1)
3590 {
3591 /* Default values. */
3592 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
3593 stub_group_size = 127 * 1024 * 1024;
3594 }
3595
3596 group_sections (htab, stub_group_size, stubs_always_before_branch);
3597
3598 (*htab->layout_sections_again) ();
3599
3600 if (htab->fix_erratum_835769)
3601 {
3602 bfd *input_bfd;
3603
3604 for (input_bfd = info->input_bfds;
3605 input_bfd != NULL; input_bfd = input_bfd->link.next)
3606 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
3607 &num_erratum_835769_fixes))
3608 return FALSE;
3609
3610 _bfd_aarch64_resize_stubs (htab);
3611 (*htab->layout_sections_again) ();
3612 }
3613
3614 if (htab->fix_erratum_843419)
3615 {
3616 bfd *input_bfd;
3617
3618 for (input_bfd = info->input_bfds;
3619 input_bfd != NULL;
3620 input_bfd = input_bfd->link.next)
3621 {
3622 asection *section;
3623
3624 for (section = input_bfd->sections;
3625 section != NULL;
3626 section = section->next)
3627 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
3628 return FALSE;
3629 }
3630
3631 _bfd_aarch64_resize_stubs (htab);
3632 (*htab->layout_sections_again) ();
3633 }
3634
3635 while (1)
3636 {
3637 bfd *input_bfd;
3638
3639 for (input_bfd = info->input_bfds;
3640 input_bfd != NULL; input_bfd = input_bfd->link.next)
3641 {
3642 Elf_Internal_Shdr *symtab_hdr;
3643 asection *section;
3644 Elf_Internal_Sym *local_syms = NULL;
3645
3646 /* We'll need the symbol table in a second. */
3647 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3648 if (symtab_hdr->sh_info == 0)
3649 continue;
3650
3651 /* Walk over each section attached to the input bfd. */
3652 for (section = input_bfd->sections;
3653 section != NULL; section = section->next)
3654 {
3655 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3656
3657 /* If there aren't any relocs, then there's nothing more
3658 to do. */
3659 if ((section->flags & SEC_RELOC) == 0
3660 || section->reloc_count == 0
3661 || (section->flags & SEC_CODE) == 0)
3662 continue;
3663
3664 /* If this section is a link-once section that will be
3665 discarded, then don't create any stubs. */
3666 if (section->output_section == NULL
3667 || section->output_section->owner != output_bfd)
3668 continue;
3669
3670 /* Get the relocs. */
3671 internal_relocs
3672 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3673 NULL, info->keep_memory);
3674 if (internal_relocs == NULL)
3675 goto error_ret_free_local;
3676
3677 /* Now examine each relocation. */
3678 irela = internal_relocs;
3679 irelaend = irela + section->reloc_count;
3680 for (; irela < irelaend; irela++)
3681 {
3682 unsigned int r_type, r_indx;
3683 enum elf_aarch64_stub_type stub_type;
3684 struct elf_aarch64_stub_hash_entry *stub_entry;
3685 asection *sym_sec;
3686 bfd_vma sym_value;
3687 bfd_vma destination;
3688 struct elf_aarch64_link_hash_entry *hash;
3689 const char *sym_name;
3690 char *stub_name;
3691 const asection *id_sec;
3692 unsigned char st_type;
3693 bfd_size_type len;
3694
3695 r_type = ELFNN_R_TYPE (irela->r_info);
3696 r_indx = ELFNN_R_SYM (irela->r_info);
3697
3698 if (r_type >= (unsigned int) R_AARCH64_end)
3699 {
3700 bfd_set_error (bfd_error_bad_value);
3701 error_ret_free_internal:
3702 if (elf_section_data (section)->relocs == NULL)
3703 free (internal_relocs);
3704 goto error_ret_free_local;
3705 }
3706
3707 /* Only look for stubs on unconditional branch and
3708 branch and link instructions. */
3709 if (r_type != (unsigned int) AARCH64_R (CALL26)
3710 && r_type != (unsigned int) AARCH64_R (JUMP26))
3711 continue;
3712
3713 /* Now determine the call target, its name, value,
3714 section. */
3715 sym_sec = NULL;
3716 sym_value = 0;
3717 destination = 0;
3718 hash = NULL;
3719 sym_name = NULL;
3720 if (r_indx < symtab_hdr->sh_info)
3721 {
3722 /* It's a local symbol. */
3723 Elf_Internal_Sym *sym;
3724 Elf_Internal_Shdr *hdr;
3725
3726 if (local_syms == NULL)
3727 {
3728 local_syms
3729 = (Elf_Internal_Sym *) symtab_hdr->contents;
3730 if (local_syms == NULL)
3731 local_syms
3732 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3733 symtab_hdr->sh_info, 0,
3734 NULL, NULL, NULL);
3735 if (local_syms == NULL)
3736 goto error_ret_free_internal;
3737 }
3738
3739 sym = local_syms + r_indx;
3740 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3741 sym_sec = hdr->bfd_section;
3742 if (!sym_sec)
3743 /* This is an undefined symbol. It can never
3744 be resolved. */
3745 continue;
3746
3747 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3748 sym_value = sym->st_value;
3749 destination = (sym_value + irela->r_addend
3750 + sym_sec->output_offset
3751 + sym_sec->output_section->vma);
3752 st_type = ELF_ST_TYPE (sym->st_info);
3753 sym_name
3754 = bfd_elf_string_from_elf_section (input_bfd,
3755 symtab_hdr->sh_link,
3756 sym->st_name);
3757 }
3758 else
3759 {
3760 int e_indx;
3761
3762 e_indx = r_indx - symtab_hdr->sh_info;
3763 hash = ((struct elf_aarch64_link_hash_entry *)
3764 elf_sym_hashes (input_bfd)[e_indx]);
3765
3766 while (hash->root.root.type == bfd_link_hash_indirect
3767 || hash->root.root.type == bfd_link_hash_warning)
3768 hash = ((struct elf_aarch64_link_hash_entry *)
3769 hash->root.root.u.i.link);
3770
3771 if (hash->root.root.type == bfd_link_hash_defined
3772 || hash->root.root.type == bfd_link_hash_defweak)
3773 {
3774 struct elf_aarch64_link_hash_table *globals =
3775 elf_aarch64_hash_table (info);
3776 sym_sec = hash->root.root.u.def.section;
3777 sym_value = hash->root.root.u.def.value;
3778 /* For a destination in a shared library,
3779 use the PLT stub as target address to
3780 decide whether a branch stub is
3781 needed. */
3782 if (globals->root.splt != NULL && hash != NULL
3783 && hash->root.plt.offset != (bfd_vma) - 1)
3784 {
3785 sym_sec = globals->root.splt;
3786 sym_value = hash->root.plt.offset;
3787 if (sym_sec->output_section != NULL)
3788 destination = (sym_value
3789 + sym_sec->output_offset
3790 +
3791 sym_sec->output_section->vma);
3792 }
3793 else if (sym_sec->output_section != NULL)
3794 destination = (sym_value + irela->r_addend
3795 + sym_sec->output_offset
3796 + sym_sec->output_section->vma);
3797 }
3798 else if (hash->root.root.type == bfd_link_hash_undefined
3799 || (hash->root.root.type
3800 == bfd_link_hash_undefweak))
3801 {
3802 /* For a shared library, use the PLT stub as
3803 target address to decide whether a long
3804 branch stub is needed.
3805 For absolute code, they cannot be handled. */
3806 struct elf_aarch64_link_hash_table *globals =
3807 elf_aarch64_hash_table (info);
3808
3809 if (globals->root.splt != NULL && hash != NULL
3810 && hash->root.plt.offset != (bfd_vma) - 1)
3811 {
3812 sym_sec = globals->root.splt;
3813 sym_value = hash->root.plt.offset;
3814 if (sym_sec->output_section != NULL)
3815 destination = (sym_value
3816 + sym_sec->output_offset
3817 +
3818 sym_sec->output_section->vma);
3819 }
3820 else
3821 continue;
3822 }
3823 else
3824 {
3825 bfd_set_error (bfd_error_bad_value);
3826 goto error_ret_free_internal;
3827 }
3828 st_type = ELF_ST_TYPE (hash->root.type);
3829 sym_name = hash->root.root.root.string;
3830 }
3831
3832 /* Determine what (if any) linker stub is needed. */
3833 stub_type = aarch64_type_of_stub
3834 (info, section, irela, sym_sec, st_type, hash, destination);
3835 if (stub_type == aarch64_stub_none)
3836 continue;
3837
3838 /* Support for grouping stub sections. */
3839 id_sec = htab->stub_group[section->id].link_sec;
3840
3841 /* Get the name of this stub. */
3842 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
3843 irela);
3844 if (!stub_name)
3845 goto error_ret_free_internal;
3846
3847 stub_entry =
3848 aarch64_stub_hash_lookup (&htab->stub_hash_table,
3849 stub_name, FALSE, FALSE);
3850 if (stub_entry != NULL)
3851 {
3852 /* The proper stub has already been created. */
3853 free (stub_name);
3854 continue;
3855 }
3856
3857 stub_entry = _bfd_aarch64_add_stub_entry_in_group
3858 (stub_name, section, htab);
3859 if (stub_entry == NULL)
3860 {
3861 free (stub_name);
3862 goto error_ret_free_internal;
3863 }
3864
3865 stub_entry->target_value = sym_value;
3866 stub_entry->target_section = sym_sec;
3867 stub_entry->stub_type = stub_type;
3868 stub_entry->h = hash;
3869 stub_entry->st_type = st_type;
3870
3871 if (sym_name == NULL)
3872 sym_name = "unnamed";
3873 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
3874 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
3875 if (stub_entry->output_name == NULL)
3876 {
3877 free (stub_name);
3878 goto error_ret_free_internal;
3879 }
3880
3881 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
3882 sym_name);
3883
3884 stub_changed = TRUE;
3885 }
3886
3887 /* We're done with the internal relocs, free them. */
3888 if (elf_section_data (section)->relocs == NULL)
3889 free (internal_relocs);
3890 }
3891 }
3892
3893 if (!stub_changed)
3894 break;
3895
3896 _bfd_aarch64_resize_stubs (htab);
3897
3898 /* Ask the linker to do its stuff. */
3899 (*htab->layout_sections_again) ();
3900 stub_changed = FALSE;
3901 }
3902
3903 return TRUE;
3904
3905 error_ret_free_local:
3906 return FALSE;
3907 }
3908
3909 /* Build all the stubs associated with the current output file. The
3910 stubs are kept in a hash table attached to the main linker hash
3911 table. We also set up the .plt entries for statically linked PIC
3912 functions here. This function is called via aarch64_elf_finish in the
3913 linker. */
3914
3915 bfd_boolean
3916 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
3917 {
3918 asection *stub_sec;
3919 struct bfd_hash_table *table;
3920 struct elf_aarch64_link_hash_table *htab;
3921
3922 htab = elf_aarch64_hash_table (info);
3923
3924 for (stub_sec = htab->stub_bfd->sections;
3925 stub_sec != NULL; stub_sec = stub_sec->next)
3926 {
3927 bfd_size_type size;
3928
3929 /* Ignore non-stub sections. */
3930 if (!strstr (stub_sec->name, STUB_SUFFIX))
3931 continue;
3932
3933 /* Allocate memory to hold the linker stubs. */
3934 size = stub_sec->size;
3935 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3936 if (stub_sec->contents == NULL && size != 0)
3937 return FALSE;
3938 stub_sec->size = 0;
3939
3940 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
3941 stub_sec->size += 4;
3942 }
3943
3944 /* Build the stubs as directed by the stub hash table. */
3945 table = &htab->stub_hash_table;
3946 bfd_hash_traverse (table, aarch64_build_one_stub, info);
3947
3948 return TRUE;
3949 }
3950
3951
3952 /* Add an entry to the code/data map for section SEC. */
3953
3954 static void
3955 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
3956 {
3957 struct _aarch64_elf_section_data *sec_data =
3958 elf_aarch64_section_data (sec);
3959 unsigned int newidx;
3960
3961 if (sec_data->map == NULL)
3962 {
3963 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
3964 sec_data->mapcount = 0;
3965 sec_data->mapsize = 1;
3966 }
3967
3968 newidx = sec_data->mapcount++;
3969
3970 if (sec_data->mapcount > sec_data->mapsize)
3971 {
3972 sec_data->mapsize *= 2;
3973 sec_data->map = bfd_realloc_or_free
3974 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
3975 }
3976
3977 if (sec_data->map)
3978 {
3979 sec_data->map[newidx].vma = vma;
3980 sec_data->map[newidx].type = type;
3981 }
3982 }
3983
3984
3985 /* Initialise maps of insn/data for input BFDs. */
3986 void
3987 bfd_elfNN_aarch64_init_maps (bfd *abfd)
3988 {
3989 Elf_Internal_Sym *isymbuf;
3990 Elf_Internal_Shdr *hdr;
3991 unsigned int i, localsyms;
3992
3993 /* Make sure that we are dealing with an AArch64 elf binary. */
3994 if (!is_aarch64_elf (abfd))
3995 return;
3996
3997 if ((abfd->flags & DYNAMIC) != 0)
3998 return;
3999
4000 hdr = &elf_symtab_hdr (abfd);
4001 localsyms = hdr->sh_info;
4002
4003 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4004 should contain the number of local symbols, which should come before any
4005 global symbols. Mapping symbols are always local. */
4006 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4007
4008 /* No internal symbols read? Skip this BFD. */
4009 if (isymbuf == NULL)
4010 return;
4011
4012 for (i = 0; i < localsyms; i++)
4013 {
4014 Elf_Internal_Sym *isym = &isymbuf[i];
4015 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4016 const char *name;
4017
4018 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4019 {
4020 name = bfd_elf_string_from_elf_section (abfd,
4021 hdr->sh_link,
4022 isym->st_name);
4023
4024 if (bfd_is_aarch64_special_symbol_name
4025 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4026 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4027 }
4028 }
4029 }
4030
4031 /* Set option values needed during linking. */
4032 void
4033 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4034 struct bfd_link_info *link_info,
4035 int no_enum_warn,
4036 int no_wchar_warn, int pic_veneer,
4037 int fix_erratum_835769,
4038 int fix_erratum_843419)
4039 {
4040 struct elf_aarch64_link_hash_table *globals;
4041
4042 globals = elf_aarch64_hash_table (link_info);
4043 globals->pic_veneer = pic_veneer;
4044 globals->fix_erratum_835769 = fix_erratum_835769;
4045 globals->fix_erratum_843419 = fix_erratum_843419;
4046 globals->fix_erratum_843419_adr = TRUE;
4047
4048 BFD_ASSERT (is_aarch64_elf (output_bfd));
4049 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4050 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4051 }
4052
4053 static bfd_vma
4054 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4055 struct elf_aarch64_link_hash_table
4056 *globals, struct bfd_link_info *info,
4057 bfd_vma value, bfd *output_bfd,
4058 bfd_boolean *unresolved_reloc_p)
4059 {
4060 bfd_vma off = (bfd_vma) - 1;
4061 asection *basegot = globals->root.sgot;
4062 bfd_boolean dyn = globals->root.dynamic_sections_created;
4063
4064 if (h != NULL)
4065 {
4066 BFD_ASSERT (basegot != NULL);
4067 off = h->got.offset;
4068 BFD_ASSERT (off != (bfd_vma) - 1);
4069 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4070 || (bfd_link_pic (info)
4071 && SYMBOL_REFERENCES_LOCAL (info, h))
4072 || (ELF_ST_VISIBILITY (h->other)
4073 && h->root.type == bfd_link_hash_undefweak))
4074 {
4075 /* This is actually a static link, or it is a -Bsymbolic link
4076 and the symbol is defined locally. We must initialize this
4077 entry in the global offset table. Since the offset must
4078 always be a multiple of 8 (4 in the case of ILP32), we use
4079 the least significant bit to record whether we have
4080 initialized it already.
4081 When doing a dynamic link, we create a .rel(a).got relocation
4082 entry to initialize the value. This is done in the
4083 finish_dynamic_symbol routine. */
4084 if ((off & 1) != 0)
4085 off &= ~1;
4086 else
4087 {
4088 bfd_put_NN (output_bfd, value, basegot->contents + off);
4089 h->got.offset |= 1;
4090 }
4091 }
4092 else
4093 *unresolved_reloc_p = FALSE;
4094
4095 off = off + basegot->output_section->vma + basegot->output_offset;
4096 }
4097
4098 return off;
4099 }
4100
4101 /* Change R_TYPE to a more efficient access model where possible,
4102 return the new reloc type. */
4103
4104 static bfd_reloc_code_real_type
4105 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4106 struct elf_link_hash_entry *h)
4107 {
4108 bfd_boolean is_local = h == NULL;
4109
4110 switch (r_type)
4111 {
4112 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4113 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4114 return (is_local
4115 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4116 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4117
4118 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4119 return (is_local
4120 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4121 : r_type);
4122
4123 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4124 return (is_local
4125 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4126 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4127
4128 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4129 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4130 return (is_local
4131 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4132 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4133
4134 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4135 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4136
4137 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4138 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4139
4140 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4141 return r_type;
4142
4143 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4144 return (is_local
4145 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4146 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4147
4148 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4149 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4150 /* Instructions with these relocations will become NOPs. */
4151 return BFD_RELOC_AARCH64_NONE;
4152
4153 default:
4154 break;
4155 }
4156
4157 return r_type;
4158 }
4159
4160 static unsigned int
4161 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4162 {
4163 switch (r_type)
4164 {
4165 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4166 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4167 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4168 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4169 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4170 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4171 return GOT_NORMAL;
4172
4173 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4174 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4175 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4176 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4177 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4178 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4179 return GOT_TLS_GD;
4180
4181 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4182 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4183 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4184 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4185 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4186 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
4187 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4188 return GOT_TLSDESC_GD;
4189
4190 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4191 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4192 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4193 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4194 return GOT_TLS_IE;
4195
4196 default:
4197 break;
4198 }
4199 return GOT_UNKNOWN;
4200 }
4201
4202 static bfd_boolean
4203 aarch64_can_relax_tls (bfd *input_bfd,
4204 struct bfd_link_info *info,
4205 bfd_reloc_code_real_type r_type,
4206 struct elf_link_hash_entry *h,
4207 unsigned long r_symndx)
4208 {
4209 unsigned int symbol_got_type;
4210 unsigned int reloc_got_type;
4211
4212 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4213 return FALSE;
4214
4215 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4216 reloc_got_type = aarch64_reloc_got_type (r_type);
4217
4218 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4219 return TRUE;
4220
4221 if (bfd_link_pic (info))
4222 return FALSE;
4223
4224 if (h && h->root.type == bfd_link_hash_undefweak)
4225 return FALSE;
4226
4227 return TRUE;
4228 }
4229
4230 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4231 enumerator. */
4232
4233 static bfd_reloc_code_real_type
4234 aarch64_tls_transition (bfd *input_bfd,
4235 struct bfd_link_info *info,
4236 unsigned int r_type,
4237 struct elf_link_hash_entry *h,
4238 unsigned long r_symndx)
4239 {
4240 bfd_reloc_code_real_type bfd_r_type
4241 = elfNN_aarch64_bfd_reloc_from_type (r_type);
4242
4243 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4244 return bfd_r_type;
4245
4246 return aarch64_tls_transition_without_check (bfd_r_type, h);
4247 }
4248
4249 /* Return the base VMA address which should be subtracted from real addresses
4250 when resolving R_AARCH64_TLS_DTPREL relocation. */
4251
4252 static bfd_vma
4253 dtpoff_base (struct bfd_link_info *info)
4254 {
4255 /* If tls_sec is NULL, we should have signalled an error already. */
4256 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4257 return elf_hash_table (info)->tls_sec->vma;
4258 }
4259
4260 /* Return the base VMA address which should be subtracted from real addresses
4261 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4262
4263 static bfd_vma
4264 tpoff_base (struct bfd_link_info *info)
4265 {
4266 struct elf_link_hash_table *htab = elf_hash_table (info);
4267
4268 /* If tls_sec is NULL, we should have signalled an error already. */
4269 BFD_ASSERT (htab->tls_sec != NULL);
4270
4271 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4272 htab->tls_sec->alignment_power);
4273 return htab->tls_sec->vma - base;
4274 }
4275
4276 static bfd_vma *
4277 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4278 unsigned long r_symndx)
4279 {
4280 /* Calculate the address of the GOT entry for symbol
4281 referred to in h. */
4282 if (h != NULL)
4283 return &h->got.offset;
4284 else
4285 {
4286 /* local symbol */
4287 struct elf_aarch64_local_symbol *l;
4288
4289 l = elf_aarch64_locals (input_bfd);
4290 return &l[r_symndx].got_offset;
4291 }
4292 }
4293
4294 static void
4295 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4296 unsigned long r_symndx)
4297 {
4298 bfd_vma *p;
4299 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4300 *p |= 1;
4301 }
4302
4303 static int
4304 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4305 unsigned long r_symndx)
4306 {
4307 bfd_vma value;
4308 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4309 return value & 1;
4310 }
4311
4312 static bfd_vma
4313 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4314 unsigned long r_symndx)
4315 {
4316 bfd_vma value;
4317 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4318 value &= ~1;
4319 return value;
4320 }
4321
4322 static bfd_vma *
4323 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4324 unsigned long r_symndx)
4325 {
4326 /* Calculate the address of the GOT entry for symbol
4327 referred to in h. */
4328 if (h != NULL)
4329 {
4330 struct elf_aarch64_link_hash_entry *eh;
4331 eh = (struct elf_aarch64_link_hash_entry *) h;
4332 return &eh->tlsdesc_got_jump_table_offset;
4333 }
4334 else
4335 {
4336 /* local symbol */
4337 struct elf_aarch64_local_symbol *l;
4338
4339 l = elf_aarch64_locals (input_bfd);
4340 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4341 }
4342 }
4343
4344 static void
4345 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4346 unsigned long r_symndx)
4347 {
4348 bfd_vma *p;
4349 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4350 *p |= 1;
4351 }
4352
4353 static int
4354 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4355 struct elf_link_hash_entry *h,
4356 unsigned long r_symndx)
4357 {
4358 bfd_vma value;
4359 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4360 return value & 1;
4361 }
4362
4363 static bfd_vma
4364 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4365 unsigned long r_symndx)
4366 {
4367 bfd_vma value;
4368 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4369 value &= ~1;
4370 return value;
4371 }
4372
4373 /* Data for make_branch_to_erratum_835769_stub(). */
4374
4375 struct erratum_835769_branch_to_stub_data
4376 {
4377 struct bfd_link_info *info;
4378 asection *output_section;
4379 bfd_byte *contents;
4380 };
4381
4382 /* Helper to insert branches to erratum 835769 stubs in the right
4383 places for a particular section. */
4384
4385 static bfd_boolean
4386 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4387 void *in_arg)
4388 {
4389 struct elf_aarch64_stub_hash_entry *stub_entry;
4390 struct erratum_835769_branch_to_stub_data *data;
4391 bfd_byte *contents;
4392 unsigned long branch_insn = 0;
4393 bfd_vma veneered_insn_loc, veneer_entry_loc;
4394 bfd_signed_vma branch_offset;
4395 unsigned int target;
4396 bfd *abfd;
4397
4398 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4399 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4400
4401 if (stub_entry->target_section != data->output_section
4402 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4403 return TRUE;
4404
4405 contents = data->contents;
4406 veneered_insn_loc = stub_entry->target_section->output_section->vma
4407 + stub_entry->target_section->output_offset
4408 + stub_entry->target_value;
4409 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4410 + stub_entry->stub_sec->output_offset
4411 + stub_entry->stub_offset;
4412 branch_offset = veneer_entry_loc - veneered_insn_loc;
4413
4414 abfd = stub_entry->target_section->owner;
4415 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4416 (*_bfd_error_handler)
4417 (_("%B: error: Erratum 835769 stub out "
4418 "of range (input file too large)"), abfd);
4419
4420 target = stub_entry->target_value;
4421 branch_insn = 0x14000000;
4422 branch_offset >>= 2;
4423 branch_offset &= 0x3ffffff;
4424 branch_insn |= branch_offset;
4425 bfd_putl32 (branch_insn, &contents[target]);
4426
4427 return TRUE;
4428 }
4429
4430
4431 static bfd_boolean
4432 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4433 void *in_arg)
4434 {
4435 struct elf_aarch64_stub_hash_entry *stub_entry
4436 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4437 struct erratum_835769_branch_to_stub_data *data
4438 = (struct erratum_835769_branch_to_stub_data *) in_arg;
4439 struct bfd_link_info *info;
4440 struct elf_aarch64_link_hash_table *htab;
4441 bfd_byte *contents;
4442 asection *section;
4443 bfd *abfd;
4444 bfd_vma place;
4445 uint32_t insn;
4446
4447 info = data->info;
4448 contents = data->contents;
4449 section = data->output_section;
4450
4451 htab = elf_aarch64_hash_table (info);
4452
4453 if (stub_entry->target_section != section
4454 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4455 return TRUE;
4456
4457 insn = bfd_getl32 (contents + stub_entry->target_value);
4458 bfd_putl32 (insn,
4459 stub_entry->stub_sec->contents + stub_entry->stub_offset);
4460
4461 place = (section->output_section->vma + section->output_offset
4462 + stub_entry->adrp_offset);
4463 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4464
4465 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
4466 abort ();
4467
4468 bfd_signed_vma imm =
4469 (_bfd_aarch64_sign_extend
4470 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4471 - (place & 0xfff));
4472
4473 if (htab->fix_erratum_843419_adr
4474 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
4475 {
4476 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4477 | AARCH64_RT (insn));
4478 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4479 }
4480 else
4481 {
4482 bfd_vma veneered_insn_loc;
4483 bfd_vma veneer_entry_loc;
4484 bfd_signed_vma branch_offset;
4485 uint32_t branch_insn;
4486
4487 veneered_insn_loc = stub_entry->target_section->output_section->vma
4488 + stub_entry->target_section->output_offset
4489 + stub_entry->target_value;
4490 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4491 + stub_entry->stub_sec->output_offset
4492 + stub_entry->stub_offset;
4493 branch_offset = veneer_entry_loc - veneered_insn_loc;
4494
4495 abfd = stub_entry->target_section->owner;
4496 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4497 (*_bfd_error_handler)
4498 (_("%B: error: Erratum 843419 stub out "
4499 "of range (input file too large)"), abfd);
4500
4501 branch_insn = 0x14000000;
4502 branch_offset >>= 2;
4503 branch_offset &= 0x3ffffff;
4504 branch_insn |= branch_offset;
4505 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4506 }
4507 return TRUE;
4508 }
4509
4510
4511 static bfd_boolean
4512 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
4513 struct bfd_link_info *link_info,
4514 asection *sec,
4515 bfd_byte *contents)
4516
4517 {
4518 struct elf_aarch64_link_hash_table *globals =
4519 elf_aarch64_hash_table (link_info);
4520
4521 if (globals == NULL)
4522 return FALSE;
4523
4524 /* Fix code to point to erratum 835769 stubs. */
4525 if (globals->fix_erratum_835769)
4526 {
4527 struct erratum_835769_branch_to_stub_data data;
4528
4529 data.info = link_info;
4530 data.output_section = sec;
4531 data.contents = contents;
4532 bfd_hash_traverse (&globals->stub_hash_table,
4533 make_branch_to_erratum_835769_stub, &data);
4534 }
4535
4536 if (globals->fix_erratum_843419)
4537 {
4538 struct erratum_835769_branch_to_stub_data data;
4539
4540 data.info = link_info;
4541 data.output_section = sec;
4542 data.contents = contents;
4543 bfd_hash_traverse (&globals->stub_hash_table,
4544 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
4545 }
4546
4547 return FALSE;
4548 }
4549
4550 /* Perform a relocation as part of a final link. */
4551 static bfd_reloc_status_type
4552 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
4553 bfd *input_bfd,
4554 bfd *output_bfd,
4555 asection *input_section,
4556 bfd_byte *contents,
4557 Elf_Internal_Rela *rel,
4558 bfd_vma value,
4559 struct bfd_link_info *info,
4560 asection *sym_sec,
4561 struct elf_link_hash_entry *h,
4562 bfd_boolean *unresolved_reloc_p,
4563 bfd_boolean save_addend,
4564 bfd_vma *saved_addend,
4565 Elf_Internal_Sym *sym)
4566 {
4567 Elf_Internal_Shdr *symtab_hdr;
4568 unsigned int r_type = howto->type;
4569 bfd_reloc_code_real_type bfd_r_type
4570 = elfNN_aarch64_bfd_reloc_from_howto (howto);
4571 bfd_reloc_code_real_type new_bfd_r_type;
4572 unsigned long r_symndx;
4573 bfd_byte *hit_data = contents + rel->r_offset;
4574 bfd_vma place, off;
4575 bfd_signed_vma signed_addend;
4576 struct elf_aarch64_link_hash_table *globals;
4577 bfd_boolean weak_undef_p;
4578 asection *base_got;
4579
4580 globals = elf_aarch64_hash_table (info);
4581
4582 symtab_hdr = &elf_symtab_hdr (input_bfd);
4583
4584 BFD_ASSERT (is_aarch64_elf (input_bfd));
4585
4586 r_symndx = ELFNN_R_SYM (rel->r_info);
4587
4588 /* It is possible to have linker relaxations on some TLS access
4589 models. Update our information here. */
4590 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
4591 if (new_bfd_r_type != bfd_r_type)
4592 {
4593 bfd_r_type = new_bfd_r_type;
4594 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
4595 BFD_ASSERT (howto != NULL);
4596 r_type = howto->type;
4597 }
4598
4599 place = input_section->output_section->vma
4600 + input_section->output_offset + rel->r_offset;
4601
4602 /* Get addend, accumulating the addend for consecutive relocs
4603 which refer to the same offset. */
4604 signed_addend = saved_addend ? *saved_addend : 0;
4605 signed_addend += rel->r_addend;
4606
4607 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
4608 : bfd_is_und_section (sym_sec));
4609
4610 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4611 it here if it is defined in a non-shared object. */
4612 if (h != NULL
4613 && h->type == STT_GNU_IFUNC
4614 && h->def_regular)
4615 {
4616 asection *plt;
4617 const char *name;
4618 bfd_vma addend = 0;
4619
4620 if ((input_section->flags & SEC_ALLOC) == 0
4621 || h->plt.offset == (bfd_vma) -1)
4622 abort ();
4623
4624 /* STT_GNU_IFUNC symbol must go through PLT. */
4625 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
4626 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
4627
4628 switch (bfd_r_type)
4629 {
4630 default:
4631 if (h->root.root.string)
4632 name = h->root.root.string;
4633 else
4634 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4635 NULL);
4636 (*_bfd_error_handler)
4637 (_("%B: relocation %s against STT_GNU_IFUNC "
4638 "symbol `%s' isn't handled by %s"), input_bfd,
4639 howto->name, name, __FUNCTION__);
4640 bfd_set_error (bfd_error_bad_value);
4641 return FALSE;
4642
4643 case BFD_RELOC_AARCH64_NN:
4644 if (rel->r_addend != 0)
4645 {
4646 if (h->root.root.string)
4647 name = h->root.root.string;
4648 else
4649 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4650 sym, NULL);
4651 (*_bfd_error_handler)
4652 (_("%B: relocation %s against STT_GNU_IFUNC "
4653 "symbol `%s' has non-zero addend: %d"),
4654 input_bfd, howto->name, name, rel->r_addend);
4655 bfd_set_error (bfd_error_bad_value);
4656 return FALSE;
4657 }
4658
4659 /* Generate dynamic relocation only when there is a
4660 non-GOT reference in a shared object. */
4661 if (bfd_link_pic (info) && h->non_got_ref)
4662 {
4663 Elf_Internal_Rela outrel;
4664 asection *sreloc;
4665
4666 /* Need a dynamic relocation to get the real function
4667 address. */
4668 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
4669 info,
4670 input_section,
4671 rel->r_offset);
4672 if (outrel.r_offset == (bfd_vma) -1
4673 || outrel.r_offset == (bfd_vma) -2)
4674 abort ();
4675
4676 outrel.r_offset += (input_section->output_section->vma
4677 + input_section->output_offset);
4678
4679 if (h->dynindx == -1
4680 || h->forced_local
4681 || bfd_link_executable (info))
4682 {
4683 /* This symbol is resolved locally. */
4684 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
4685 outrel.r_addend = (h->root.u.def.value
4686 + h->root.u.def.section->output_section->vma
4687 + h->root.u.def.section->output_offset);
4688 }
4689 else
4690 {
4691 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
4692 outrel.r_addend = 0;
4693 }
4694
4695 sreloc = globals->root.irelifunc;
4696 elf_append_rela (output_bfd, sreloc, &outrel);
4697
4698 /* If this reloc is against an external symbol, we
4699 do not want to fiddle with the addend. Otherwise,
4700 we need to include the symbol value so that it
4701 becomes an addend for the dynamic reloc. For an
4702 internal symbol, we have updated addend. */
4703 return bfd_reloc_ok;
4704 }
4705 /* FALLTHROUGH */
4706 case BFD_RELOC_AARCH64_CALL26:
4707 case BFD_RELOC_AARCH64_JUMP26:
4708 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
4709 signed_addend,
4710 weak_undef_p);
4711 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
4712 howto, value);
4713 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4714 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4715 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4716 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4717 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4718 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4719 base_got = globals->root.sgot;
4720 off = h->got.offset;
4721
4722 if (base_got == NULL)
4723 abort ();
4724
4725 if (off == (bfd_vma) -1)
4726 {
4727 bfd_vma plt_index;
4728
4729 /* We can't use h->got.offset here to save state, or
4730 even just remember the offset, as finish_dynamic_symbol
4731 would use that as offset into .got. */
4732
4733 if (globals->root.splt != NULL)
4734 {
4735 plt_index = ((h->plt.offset - globals->plt_header_size) /
4736 globals->plt_entry_size);
4737 off = (plt_index + 3) * GOT_ENTRY_SIZE;
4738 base_got = globals->root.sgotplt;
4739 }
4740 else
4741 {
4742 plt_index = h->plt.offset / globals->plt_entry_size;
4743 off = plt_index * GOT_ENTRY_SIZE;
4744 base_got = globals->root.igotplt;
4745 }
4746
4747 if (h->dynindx == -1
4748 || h->forced_local
4749 || info->symbolic)
4750 {
4751 /* This references the local definition. We must
4752 initialize this entry in the global offset table.
4753 Since the offset must always be a multiple of 8,
4754 we use the least significant bit to record
4755 whether we have initialized it already.
4756
4757 When doing a dynamic link, we create a .rela.got
4758 relocation entry to initialize the value. This
4759 is done in the finish_dynamic_symbol routine. */
4760 if ((off & 1) != 0)
4761 off &= ~1;
4762 else
4763 {
4764 bfd_put_NN (output_bfd, value,
4765 base_got->contents + off);
4766 /* Note that this is harmless as -1 | 1 still is -1. */
4767 h->got.offset |= 1;
4768 }
4769 }
4770 value = (base_got->output_section->vma
4771 + base_got->output_offset + off);
4772 }
4773 else
4774 value = aarch64_calculate_got_entry_vma (h, globals, info,
4775 value, output_bfd,
4776 unresolved_reloc_p);
4777 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
4778 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
4779 addend = (globals->root.sgot->output_section->vma
4780 + globals->root.sgot->output_offset);
4781 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
4782 addend, weak_undef_p);
4783 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
4784 case BFD_RELOC_AARCH64_ADD_LO12:
4785 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
4786 break;
4787 }
4788 }
4789
4790 switch (bfd_r_type)
4791 {
4792 case BFD_RELOC_AARCH64_NONE:
4793 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4794 *unresolved_reloc_p = FALSE;
4795 return bfd_reloc_ok;
4796
4797 case BFD_RELOC_AARCH64_NN:
4798
4799 /* When generating a shared object or relocatable executable, these
4800 relocations are copied into the output file to be resolved at
4801 run time. */
4802 if (((bfd_link_pic (info) == TRUE)
4803 || globals->root.is_relocatable_executable)
4804 && (input_section->flags & SEC_ALLOC)
4805 && (h == NULL
4806 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4807 || h->root.type != bfd_link_hash_undefweak))
4808 {
4809 Elf_Internal_Rela outrel;
4810 bfd_byte *loc;
4811 bfd_boolean skip, relocate;
4812 asection *sreloc;
4813
4814 *unresolved_reloc_p = FALSE;
4815
4816 skip = FALSE;
4817 relocate = FALSE;
4818
4819 outrel.r_addend = signed_addend;
4820 outrel.r_offset =
4821 _bfd_elf_section_offset (output_bfd, info, input_section,
4822 rel->r_offset);
4823 if (outrel.r_offset == (bfd_vma) - 1)
4824 skip = TRUE;
4825 else if (outrel.r_offset == (bfd_vma) - 2)
4826 {
4827 skip = TRUE;
4828 relocate = TRUE;
4829 }
4830
4831 outrel.r_offset += (input_section->output_section->vma
4832 + input_section->output_offset);
4833
4834 if (skip)
4835 memset (&outrel, 0, sizeof outrel);
4836 else if (h != NULL
4837 && h->dynindx != -1
4838 && (!bfd_link_pic (info)
4839 || !SYMBOLIC_BIND (info, h)
4840 || !h->def_regular))
4841 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
4842 else
4843 {
4844 int symbol;
4845
4846 /* On SVR4-ish systems, the dynamic loader cannot
4847 relocate the text and data segments independently,
4848 so the symbol does not matter. */
4849 symbol = 0;
4850 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
4851 outrel.r_addend += value;
4852 }
4853
4854 sreloc = elf_section_data (input_section)->sreloc;
4855 if (sreloc == NULL || sreloc->contents == NULL)
4856 return bfd_reloc_notsupported;
4857
4858 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
4859 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
4860
4861 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
4862 {
4863 /* Sanity to check that we have previously allocated
4864 sufficient space in the relocation section for the
4865 number of relocations we actually want to emit. */
4866 abort ();
4867 }
4868
4869 /* If this reloc is against an external symbol, we do not want to
4870 fiddle with the addend. Otherwise, we need to include the symbol
4871 value so that it becomes an addend for the dynamic reloc. */
4872 if (!relocate)
4873 return bfd_reloc_ok;
4874
4875 return _bfd_final_link_relocate (howto, input_bfd, input_section,
4876 contents, rel->r_offset, value,
4877 signed_addend);
4878 }
4879 else
4880 value += signed_addend;
4881 break;
4882
4883 case BFD_RELOC_AARCH64_CALL26:
4884 case BFD_RELOC_AARCH64_JUMP26:
4885 {
4886 asection *splt = globals->root.splt;
4887 bfd_boolean via_plt_p =
4888 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
4889
4890 /* A call to an undefined weak symbol is converted to a jump to
4891 the next instruction unless a PLT entry will be created.
4892 The jump to the next instruction is optimized as a NOP.
4893 Do the same for local undefined symbols. */
4894 if (weak_undef_p && ! via_plt_p)
4895 {
4896 bfd_putl32 (INSN_NOP, hit_data);
4897 return bfd_reloc_ok;
4898 }
4899
4900 /* If the call goes through a PLT entry, make sure to
4901 check distance to the right destination address. */
4902 if (via_plt_p)
4903 value = (splt->output_section->vma
4904 + splt->output_offset + h->plt.offset);
4905
4906 /* Check if a stub has to be inserted because the destination
4907 is too far away. */
4908 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
4909 if (! aarch64_valid_branch_p (value, place))
4910 /* The target is out of reach, so redirect the branch to
4911 the local stub for this function. */
4912 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
4913 rel, globals);
4914 if (stub_entry != NULL)
4915 value = (stub_entry->stub_offset
4916 + stub_entry->stub_sec->output_offset
4917 + stub_entry->stub_sec->output_section->vma);
4918 }
4919 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
4920 signed_addend, weak_undef_p);
4921 *unresolved_reloc_p = FALSE;
4922 break;
4923
4924 case BFD_RELOC_AARCH64_16_PCREL:
4925 case BFD_RELOC_AARCH64_32_PCREL:
4926 case BFD_RELOC_AARCH64_64_PCREL:
4927 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
4928 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
4929 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
4930 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
4931 if (bfd_link_pic (info)
4932 && (input_section->flags & SEC_ALLOC) != 0
4933 && (input_section->flags & SEC_READONLY) != 0
4934 && h != NULL
4935 && !h->def_regular)
4936 {
4937 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
4938
4939 (*_bfd_error_handler)
4940 (_("%B: relocation %s against external symbol `%s' can not be used"
4941 " when making a shared object; recompile with -fPIC"),
4942 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
4943 h->root.root.string);
4944 bfd_set_error (bfd_error_bad_value);
4945 return FALSE;
4946 }
4947
4948 case BFD_RELOC_AARCH64_16:
4949 #if ARCH_SIZE == 64
4950 case BFD_RELOC_AARCH64_32:
4951 #endif
4952 case BFD_RELOC_AARCH64_ADD_LO12:
4953 case BFD_RELOC_AARCH64_BRANCH19:
4954 case BFD_RELOC_AARCH64_LDST128_LO12:
4955 case BFD_RELOC_AARCH64_LDST16_LO12:
4956 case BFD_RELOC_AARCH64_LDST32_LO12:
4957 case BFD_RELOC_AARCH64_LDST64_LO12:
4958 case BFD_RELOC_AARCH64_LDST8_LO12:
4959 case BFD_RELOC_AARCH64_MOVW_G0:
4960 case BFD_RELOC_AARCH64_MOVW_G0_NC:
4961 case BFD_RELOC_AARCH64_MOVW_G0_S:
4962 case BFD_RELOC_AARCH64_MOVW_G1:
4963 case BFD_RELOC_AARCH64_MOVW_G1_NC:
4964 case BFD_RELOC_AARCH64_MOVW_G1_S:
4965 case BFD_RELOC_AARCH64_MOVW_G2:
4966 case BFD_RELOC_AARCH64_MOVW_G2_NC:
4967 case BFD_RELOC_AARCH64_MOVW_G2_S:
4968 case BFD_RELOC_AARCH64_MOVW_G3:
4969 case BFD_RELOC_AARCH64_TSTBR14:
4970 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
4971 signed_addend, weak_undef_p);
4972 break;
4973
4974 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4975 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4976 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4977 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4978 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4979 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4980 if (globals->root.sgot == NULL)
4981 BFD_ASSERT (h != NULL);
4982
4983 if (h != NULL)
4984 {
4985 bfd_vma addend = 0;
4986 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
4987 output_bfd,
4988 unresolved_reloc_p);
4989 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
4990 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
4991 addend = (globals->root.sgot->output_section->vma
4992 + globals->root.sgot->output_offset);
4993 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
4994 addend, weak_undef_p);
4995 }
4996 else
4997 {
4998 bfd_vma addend = 0;
4999 struct elf_aarch64_local_symbol *locals
5000 = elf_aarch64_locals (input_bfd);
5001
5002 if (locals == NULL)
5003 {
5004 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5005 (*_bfd_error_handler)
5006 (_("%B: Local symbol descriptor table be NULL when applying "
5007 "relocation %s against local symbol"),
5008 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5009 abort ();
5010 }
5011
5012 off = symbol_got_offset (input_bfd, h, r_symndx);
5013 base_got = globals->root.sgot;
5014 bfd_vma got_entry_addr = (base_got->output_section->vma
5015 + base_got->output_offset + off);
5016
5017 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5018 {
5019 bfd_put_64 (output_bfd, value, base_got->contents + off);
5020
5021 if (bfd_link_pic (info))
5022 {
5023 asection *s;
5024 Elf_Internal_Rela outrel;
5025
5026 /* For local symbol, we have done absolute relocation in static
5027 linking stageh. While for share library, we need to update
5028 the content of GOT entry according to the share objects
5029 loading base address. So we need to generate a
5030 R_AARCH64_RELATIVE reloc for dynamic linker. */
5031 s = globals->root.srelgot;
5032 if (s == NULL)
5033 abort ();
5034
5035 outrel.r_offset = got_entry_addr;
5036 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5037 outrel.r_addend = value;
5038 elf_append_rela (output_bfd, s, &outrel);
5039 }
5040
5041 symbol_got_offset_mark (input_bfd, h, r_symndx);
5042 }
5043
5044 /* Update the relocation value to GOT entry addr as we have transformed
5045 the direct data access into indirect data access through GOT. */
5046 value = got_entry_addr;
5047
5048 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5049 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5050 addend = base_got->output_section->vma + base_got->output_offset;
5051
5052 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5053 addend, weak_undef_p);
5054 }
5055
5056 break;
5057
5058 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5059 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5060 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5061 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5062 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5063 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5064 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5065 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5066 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5067 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5068 if (globals->root.sgot == NULL)
5069 return bfd_reloc_notsupported;
5070
5071 value = (symbol_got_offset (input_bfd, h, r_symndx)
5072 + globals->root.sgot->output_section->vma
5073 + globals->root.sgot->output_offset);
5074
5075 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5076 0, weak_undef_p);
5077 *unresolved_reloc_p = FALSE;
5078 break;
5079
5080 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5081 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5082 signed_addend - dtpoff_base (info),
5083 weak_undef_p);
5084 break;
5085
5086 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5087 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5088 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5089 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5090 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5091 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5092 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5093 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5094 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5095 signed_addend - tpoff_base (info),
5096 weak_undef_p);
5097 *unresolved_reloc_p = FALSE;
5098 break;
5099
5100 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5101 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5102 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5103 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5104 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5105 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
5106 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5107 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5108 if (globals->root.sgot == NULL)
5109 return bfd_reloc_notsupported;
5110 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5111 + globals->root.sgotplt->output_section->vma
5112 + globals->root.sgotplt->output_offset
5113 + globals->sgotplt_jump_table_size);
5114
5115 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5116 0, weak_undef_p);
5117 *unresolved_reloc_p = FALSE;
5118 break;
5119
5120 default:
5121 return bfd_reloc_notsupported;
5122 }
5123
5124 if (saved_addend)
5125 *saved_addend = value;
5126
5127 /* Only apply the final relocation in a sequence. */
5128 if (save_addend)
5129 return bfd_reloc_continue;
5130
5131 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5132 howto, value);
5133 }
5134
5135 /* Handle TLS relaxations. Relaxing is possible for symbols that use
5136 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5137 link.
5138
5139 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5140 is to then call final_link_relocate. Return other values in the
5141 case of error. */
5142
5143 static bfd_reloc_status_type
5144 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
5145 bfd *input_bfd, bfd_byte *contents,
5146 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5147 {
5148 bfd_boolean is_local = h == NULL;
5149 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
5150 unsigned long insn;
5151
5152 BFD_ASSERT (globals && input_bfd && contents && rel);
5153
5154 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5155 {
5156 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5157 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5158 if (is_local)
5159 {
5160 /* GD->LE relaxation:
5161 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
5162 or
5163 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
5164 */
5165 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5166 return bfd_reloc_continue;
5167 }
5168 else
5169 {
5170 /* GD->IE relaxation:
5171 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5172 or
5173 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5174 */
5175 return bfd_reloc_continue;
5176 }
5177
5178 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5179 BFD_ASSERT (0);
5180 break;
5181
5182 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5183 if (is_local)
5184 {
5185 /* Tiny TLSDESC->LE relaxation:
5186 ldr x1, :tlsdesc:var => movz x0, #:tprel_g1:var
5187 adr x0, :tlsdesc:var => movk x0, #:tprel_g0_nc:var
5188 .tlsdesccall var
5189 blr x1 => nop
5190 */
5191 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5192 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5193
5194 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5195 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5196 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5197
5198 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5199 bfd_putl32 (0xf2800000, contents + rel->r_offset + 4);
5200 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5201 return bfd_reloc_continue;
5202 }
5203 else
5204 {
5205 /* Tiny TLSDESC->IE relaxation:
5206 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5207 adr x0, :tlsdesc:var => nop
5208 .tlsdesccall var
5209 blr x1 => nop
5210 */
5211 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5212 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5213
5214 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5215 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5216
5217 bfd_putl32 (0x58000000, contents + rel->r_offset);
5218 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5219 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5220 return bfd_reloc_continue;
5221 }
5222
5223 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5224 if (is_local)
5225 {
5226 /* Tiny GD->LE relaxation:
5227 adr x0, :tlsgd:var => mrs x1, tpidr_el0
5228 bl __tls_get_addr => add x0, x1, #:tprel_hi12:x, lsl #12
5229 nop => add x0, x0, #:tprel_lo12_nc:x
5230 */
5231
5232 /* First kill the tls_get_addr reloc on the bl instruction. */
5233 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5234
5235 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
5236 bfd_putl32 (0x91400020, contents + rel->r_offset + 4);
5237 bfd_putl32 (0x91000000, contents + rel->r_offset + 8);
5238
5239 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5240 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5241 rel[1].r_offset = rel->r_offset + 8;
5242
5243 /* Move the current relocation to the second instruction in
5244 the sequence. */
5245 rel->r_offset += 4;
5246 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5247 AARCH64_R (TLSLE_ADD_TPREL_HI12));
5248 return bfd_reloc_continue;
5249 }
5250 else
5251 {
5252 /* Tiny GD->IE relaxation:
5253 adr x0, :tlsgd:var => ldr x0, :gottprel:var
5254 bl __tls_get_addr => mrs x1, tpidr_el0
5255 nop => add x0, x0, x1
5256 */
5257
5258 /* First kill the tls_get_addr reloc on the bl instruction. */
5259 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5260 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5261
5262 bfd_putl32 (0x58000000, contents + rel->r_offset);
5263 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5264 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5265 return bfd_reloc_continue;
5266 }
5267
5268 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5269 return bfd_reloc_continue;
5270
5271 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
5272 if (is_local)
5273 {
5274 /* GD->LE relaxation:
5275 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
5276 */
5277 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5278 return bfd_reloc_continue;
5279 }
5280 else
5281 {
5282 /* GD->IE relaxation:
5283 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
5284 */
5285 insn = bfd_getl32 (contents + rel->r_offset);
5286 insn &= 0xffffffe0;
5287 bfd_putl32 (insn, contents + rel->r_offset);
5288 return bfd_reloc_continue;
5289 }
5290
5291 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5292 if (is_local)
5293 {
5294 /* GD->LE relaxation
5295 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
5296 bl __tls_get_addr => mrs x1, tpidr_el0
5297 nop => add x0, x1, x0
5298 */
5299
5300 /* First kill the tls_get_addr reloc on the bl instruction. */
5301 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5302 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5303
5304 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5305 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5306 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5307 return bfd_reloc_continue;
5308 }
5309 else
5310 {
5311 /* GD->IE relaxation
5312 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
5313 BL __tls_get_addr => mrs x1, tpidr_el0
5314 R_AARCH64_CALL26
5315 NOP => add x0, x1, x0
5316 */
5317
5318 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5319
5320 /* Remove the relocation on the BL instruction. */
5321 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5322
5323 bfd_putl32 (0xf9400000, contents + rel->r_offset);
5324
5325 /* We choose to fixup the BL and NOP instructions using the
5326 offset from the second relocation to allow flexibility in
5327 scheduling instructions between the ADD and BL. */
5328 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
5329 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
5330 return bfd_reloc_continue;
5331 }
5332
5333 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5334 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5335 /* GD->IE/LE relaxation:
5336 add x0, x0, #:tlsdesc_lo12:var => nop
5337 blr xd => nop
5338 */
5339 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
5340 return bfd_reloc_ok;
5341
5342 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5343 /* IE->LE relaxation:
5344 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
5345 */
5346 if (is_local)
5347 {
5348 insn = bfd_getl32 (contents + rel->r_offset);
5349 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5350 }
5351 return bfd_reloc_continue;
5352
5353 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
5354 /* IE->LE relaxation:
5355 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
5356 */
5357 if (is_local)
5358 {
5359 insn = bfd_getl32 (contents + rel->r_offset);
5360 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
5361 }
5362 return bfd_reloc_continue;
5363
5364 default:
5365 return bfd_reloc_continue;
5366 }
5367
5368 return bfd_reloc_ok;
5369 }
5370
5371 /* Relocate an AArch64 ELF section. */
5372
5373 static bfd_boolean
5374 elfNN_aarch64_relocate_section (bfd *output_bfd,
5375 struct bfd_link_info *info,
5376 bfd *input_bfd,
5377 asection *input_section,
5378 bfd_byte *contents,
5379 Elf_Internal_Rela *relocs,
5380 Elf_Internal_Sym *local_syms,
5381 asection **local_sections)
5382 {
5383 Elf_Internal_Shdr *symtab_hdr;
5384 struct elf_link_hash_entry **sym_hashes;
5385 Elf_Internal_Rela *rel;
5386 Elf_Internal_Rela *relend;
5387 const char *name;
5388 struct elf_aarch64_link_hash_table *globals;
5389 bfd_boolean save_addend = FALSE;
5390 bfd_vma addend = 0;
5391
5392 globals = elf_aarch64_hash_table (info);
5393
5394 symtab_hdr = &elf_symtab_hdr (input_bfd);
5395 sym_hashes = elf_sym_hashes (input_bfd);
5396
5397 rel = relocs;
5398 relend = relocs + input_section->reloc_count;
5399 for (; rel < relend; rel++)
5400 {
5401 unsigned int r_type;
5402 bfd_reloc_code_real_type bfd_r_type;
5403 bfd_reloc_code_real_type relaxed_bfd_r_type;
5404 reloc_howto_type *howto;
5405 unsigned long r_symndx;
5406 Elf_Internal_Sym *sym;
5407 asection *sec;
5408 struct elf_link_hash_entry *h;
5409 bfd_vma relocation;
5410 bfd_reloc_status_type r;
5411 arelent bfd_reloc;
5412 char sym_type;
5413 bfd_boolean unresolved_reloc = FALSE;
5414 char *error_message = NULL;
5415
5416 r_symndx = ELFNN_R_SYM (rel->r_info);
5417 r_type = ELFNN_R_TYPE (rel->r_info);
5418
5419 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
5420 howto = bfd_reloc.howto;
5421
5422 if (howto == NULL)
5423 {
5424 (*_bfd_error_handler)
5425 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
5426 input_bfd, input_section, r_type);
5427 return FALSE;
5428 }
5429 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
5430
5431 h = NULL;
5432 sym = NULL;
5433 sec = NULL;
5434
5435 if (r_symndx < symtab_hdr->sh_info)
5436 {
5437 sym = local_syms + r_symndx;
5438 sym_type = ELFNN_ST_TYPE (sym->st_info);
5439 sec = local_sections[r_symndx];
5440
5441 /* An object file might have a reference to a local
5442 undefined symbol. This is a daft object file, but we
5443 should at least do something about it. */
5444 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
5445 && bfd_is_und_section (sec)
5446 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
5447 {
5448 if (!info->callbacks->undefined_symbol
5449 (info, bfd_elf_string_from_elf_section
5450 (input_bfd, symtab_hdr->sh_link, sym->st_name),
5451 input_bfd, input_section, rel->r_offset, TRUE))
5452 return FALSE;
5453 }
5454
5455 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
5456
5457 /* Relocate against local STT_GNU_IFUNC symbol. */
5458 if (!bfd_link_relocatable (info)
5459 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
5460 {
5461 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
5462 rel, FALSE);
5463 if (h == NULL)
5464 abort ();
5465
5466 /* Set STT_GNU_IFUNC symbol value. */
5467 h->root.u.def.value = sym->st_value;
5468 h->root.u.def.section = sec;
5469 }
5470 }
5471 else
5472 {
5473 bfd_boolean warned, ignored;
5474
5475 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
5476 r_symndx, symtab_hdr, sym_hashes,
5477 h, sec, relocation,
5478 unresolved_reloc, warned, ignored);
5479
5480 sym_type = h->type;
5481 }
5482
5483 if (sec != NULL && discarded_section (sec))
5484 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
5485 rel, 1, relend, howto, 0, contents);
5486
5487 if (bfd_link_relocatable (info))
5488 continue;
5489
5490 if (h != NULL)
5491 name = h->root.root.string;
5492 else
5493 {
5494 name = (bfd_elf_string_from_elf_section
5495 (input_bfd, symtab_hdr->sh_link, sym->st_name));
5496 if (name == NULL || *name == '\0')
5497 name = bfd_section_name (input_bfd, sec);
5498 }
5499
5500 if (r_symndx != 0
5501 && r_type != R_AARCH64_NONE
5502 && r_type != R_AARCH64_NULL
5503 && (h == NULL
5504 || h->root.type == bfd_link_hash_defined
5505 || h->root.type == bfd_link_hash_defweak)
5506 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
5507 {
5508 (*_bfd_error_handler)
5509 ((sym_type == STT_TLS
5510 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
5511 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
5512 input_bfd,
5513 input_section, (long) rel->r_offset, howto->name, name);
5514 }
5515
5516 /* We relax only if we can see that there can be a valid transition
5517 from a reloc type to another.
5518 We call elfNN_aarch64_final_link_relocate unless we're completely
5519 done, i.e., the relaxation produced the final output we want. */
5520
5521 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
5522 h, r_symndx);
5523 if (relaxed_bfd_r_type != bfd_r_type)
5524 {
5525 bfd_r_type = relaxed_bfd_r_type;
5526 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
5527 BFD_ASSERT (howto != NULL);
5528 r_type = howto->type;
5529 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
5530 unresolved_reloc = 0;
5531 }
5532 else
5533 r = bfd_reloc_continue;
5534
5535 /* There may be multiple consecutive relocations for the
5536 same offset. In that case we are supposed to treat the
5537 output of each relocation as the addend for the next. */
5538 if (rel + 1 < relend
5539 && rel->r_offset == rel[1].r_offset
5540 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
5541 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
5542 save_addend = TRUE;
5543 else
5544 save_addend = FALSE;
5545
5546 if (r == bfd_reloc_continue)
5547 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
5548 input_section, contents, rel,
5549 relocation, info, sec,
5550 h, &unresolved_reloc,
5551 save_addend, &addend, sym);
5552
5553 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5554 {
5555 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5556 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5557 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5558 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5559 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5560 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5561 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5562 {
5563 bfd_boolean need_relocs = FALSE;
5564 bfd_byte *loc;
5565 int indx;
5566 bfd_vma off;
5567
5568 off = symbol_got_offset (input_bfd, h, r_symndx);
5569 indx = h && h->dynindx != -1 ? h->dynindx : 0;
5570
5571 need_relocs =
5572 (bfd_link_pic (info) || indx != 0) &&
5573 (h == NULL
5574 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5575 || h->root.type != bfd_link_hash_undefweak);
5576
5577 BFD_ASSERT (globals->root.srelgot != NULL);
5578
5579 if (need_relocs)
5580 {
5581 Elf_Internal_Rela rela;
5582 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
5583 rela.r_addend = 0;
5584 rela.r_offset = globals->root.sgot->output_section->vma +
5585 globals->root.sgot->output_offset + off;
5586
5587
5588 loc = globals->root.srelgot->contents;
5589 loc += globals->root.srelgot->reloc_count++
5590 * RELOC_SIZE (htab);
5591 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
5592
5593 bfd_reloc_code_real_type real_type =
5594 elfNN_aarch64_bfd_reloc_from_type (r_type);
5595
5596 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
5597 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
5598 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
5599 {
5600 /* For local dynamic, don't generate DTPREL in any case.
5601 Initialize the DTPREL slot into zero, so we get module
5602 base address when invoke runtime TLS resolver. */
5603 bfd_put_NN (output_bfd, 0,
5604 globals->root.sgot->contents + off
5605 + GOT_ENTRY_SIZE);
5606 }
5607 else if (indx == 0)
5608 {
5609 bfd_put_NN (output_bfd,
5610 relocation - dtpoff_base (info),
5611 globals->root.sgot->contents + off
5612 + GOT_ENTRY_SIZE);
5613 }
5614 else
5615 {
5616 /* This TLS symbol is global. We emit a
5617 relocation to fixup the tls offset at load
5618 time. */
5619 rela.r_info =
5620 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
5621 rela.r_addend = 0;
5622 rela.r_offset =
5623 (globals->root.sgot->output_section->vma
5624 + globals->root.sgot->output_offset + off
5625 + GOT_ENTRY_SIZE);
5626
5627 loc = globals->root.srelgot->contents;
5628 loc += globals->root.srelgot->reloc_count++
5629 * RELOC_SIZE (globals);
5630 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
5631 bfd_put_NN (output_bfd, (bfd_vma) 0,
5632 globals->root.sgot->contents + off
5633 + GOT_ENTRY_SIZE);
5634 }
5635 }
5636 else
5637 {
5638 bfd_put_NN (output_bfd, (bfd_vma) 1,
5639 globals->root.sgot->contents + off);
5640 bfd_put_NN (output_bfd,
5641 relocation - dtpoff_base (info),
5642 globals->root.sgot->contents + off
5643 + GOT_ENTRY_SIZE);
5644 }
5645
5646 symbol_got_offset_mark (input_bfd, h, r_symndx);
5647 }
5648 break;
5649
5650 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5651 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
5652 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5653 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5654 {
5655 bfd_boolean need_relocs = FALSE;
5656 bfd_byte *loc;
5657 int indx;
5658 bfd_vma off;
5659
5660 off = symbol_got_offset (input_bfd, h, r_symndx);
5661
5662 indx = h && h->dynindx != -1 ? h->dynindx : 0;
5663
5664 need_relocs =
5665 (bfd_link_pic (info) || indx != 0) &&
5666 (h == NULL
5667 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5668 || h->root.type != bfd_link_hash_undefweak);
5669
5670 BFD_ASSERT (globals->root.srelgot != NULL);
5671
5672 if (need_relocs)
5673 {
5674 Elf_Internal_Rela rela;
5675
5676 if (indx == 0)
5677 rela.r_addend = relocation - dtpoff_base (info);
5678 else
5679 rela.r_addend = 0;
5680
5681 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
5682 rela.r_offset = globals->root.sgot->output_section->vma +
5683 globals->root.sgot->output_offset + off;
5684
5685 loc = globals->root.srelgot->contents;
5686 loc += globals->root.srelgot->reloc_count++
5687 * RELOC_SIZE (htab);
5688
5689 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
5690
5691 bfd_put_NN (output_bfd, rela.r_addend,
5692 globals->root.sgot->contents + off);
5693 }
5694 else
5695 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
5696 globals->root.sgot->contents + off);
5697
5698 symbol_got_offset_mark (input_bfd, h, r_symndx);
5699 }
5700 break;
5701
5702 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5703 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5704 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5705 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
5706 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5707 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
5708 {
5709 bfd_boolean need_relocs = FALSE;
5710 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
5711 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
5712
5713 need_relocs = (h == NULL
5714 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5715 || h->root.type != bfd_link_hash_undefweak);
5716
5717 BFD_ASSERT (globals->root.srelgot != NULL);
5718 BFD_ASSERT (globals->root.sgot != NULL);
5719
5720 if (need_relocs)
5721 {
5722 bfd_byte *loc;
5723 Elf_Internal_Rela rela;
5724 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
5725
5726 rela.r_addend = 0;
5727 rela.r_offset = (globals->root.sgotplt->output_section->vma
5728 + globals->root.sgotplt->output_offset
5729 + off + globals->sgotplt_jump_table_size);
5730
5731 if (indx == 0)
5732 rela.r_addend = relocation - dtpoff_base (info);
5733
5734 /* Allocate the next available slot in the PLT reloc
5735 section to hold our R_AARCH64_TLSDESC, the next
5736 available slot is determined from reloc_count,
5737 which we step. But note, reloc_count was
5738 artifically moved down while allocating slots for
5739 real PLT relocs such that all of the PLT relocs
5740 will fit above the initial reloc_count and the
5741 extra stuff will fit below. */
5742 loc = globals->root.srelplt->contents;
5743 loc += globals->root.srelplt->reloc_count++
5744 * RELOC_SIZE (globals);
5745
5746 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
5747
5748 bfd_put_NN (output_bfd, (bfd_vma) 0,
5749 globals->root.sgotplt->contents + off +
5750 globals->sgotplt_jump_table_size);
5751 bfd_put_NN (output_bfd, (bfd_vma) 0,
5752 globals->root.sgotplt->contents + off +
5753 globals->sgotplt_jump_table_size +
5754 GOT_ENTRY_SIZE);
5755 }
5756
5757 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
5758 }
5759 break;
5760 default:
5761 break;
5762 }
5763
5764 if (!save_addend)
5765 addend = 0;
5766
5767
5768 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
5769 because such sections are not SEC_ALLOC and thus ld.so will
5770 not process them. */
5771 if (unresolved_reloc
5772 && !((input_section->flags & SEC_DEBUGGING) != 0
5773 && h->def_dynamic)
5774 && _bfd_elf_section_offset (output_bfd, info, input_section,
5775 +rel->r_offset) != (bfd_vma) - 1)
5776 {
5777 (*_bfd_error_handler)
5778 (_
5779 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
5780 input_bfd, input_section, (long) rel->r_offset, howto->name,
5781 h->root.root.string);
5782 return FALSE;
5783 }
5784
5785 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
5786 {
5787 bfd_reloc_code_real_type real_r_type
5788 = elfNN_aarch64_bfd_reloc_from_type (r_type);
5789
5790 switch (r)
5791 {
5792 case bfd_reloc_overflow:
5793 if (!(*info->callbacks->reloc_overflow)
5794 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
5795 input_bfd, input_section, rel->r_offset))
5796 return FALSE;
5797 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5798 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5799 {
5800 (*info->callbacks->warning)
5801 (info,
5802 _("Too many GOT entries for -fpic, "
5803 "please recompile with -fPIC"),
5804 name, input_bfd, input_section, rel->r_offset);
5805 return FALSE;
5806 }
5807 break;
5808
5809 case bfd_reloc_undefined:
5810 if (!((*info->callbacks->undefined_symbol)
5811 (info, name, input_bfd, input_section,
5812 rel->r_offset, TRUE)))
5813 return FALSE;
5814 break;
5815
5816 case bfd_reloc_outofrange:
5817 error_message = _("out of range");
5818 goto common_error;
5819
5820 case bfd_reloc_notsupported:
5821 error_message = _("unsupported relocation");
5822 goto common_error;
5823
5824 case bfd_reloc_dangerous:
5825 /* error_message should already be set. */
5826 goto common_error;
5827
5828 default:
5829 error_message = _("unknown error");
5830 /* Fall through. */
5831
5832 common_error:
5833 BFD_ASSERT (error_message != NULL);
5834 if (!((*info->callbacks->reloc_dangerous)
5835 (info, error_message, input_bfd, input_section,
5836 rel->r_offset)))
5837 return FALSE;
5838 break;
5839 }
5840 }
5841 }
5842
5843 return TRUE;
5844 }
5845
5846 /* Set the right machine number. */
5847
5848 static bfd_boolean
5849 elfNN_aarch64_object_p (bfd *abfd)
5850 {
5851 #if ARCH_SIZE == 32
5852 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
5853 #else
5854 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
5855 #endif
5856 return TRUE;
5857 }
5858
5859 /* Function to keep AArch64 specific flags in the ELF header. */
5860
5861 static bfd_boolean
5862 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
5863 {
5864 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
5865 {
5866 }
5867 else
5868 {
5869 elf_elfheader (abfd)->e_flags = flags;
5870 elf_flags_init (abfd) = TRUE;
5871 }
5872
5873 return TRUE;
5874 }
5875
5876 /* Merge backend specific data from an object file to the output
5877 object file when linking. */
5878
5879 static bfd_boolean
5880 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5881 {
5882 flagword out_flags;
5883 flagword in_flags;
5884 bfd_boolean flags_compatible = TRUE;
5885 asection *sec;
5886
5887 /* Check if we have the same endianess. */
5888 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
5889 return FALSE;
5890
5891 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
5892 return TRUE;
5893
5894 /* The input BFD must have had its flags initialised. */
5895 /* The following seems bogus to me -- The flags are initialized in
5896 the assembler but I don't think an elf_flags_init field is
5897 written into the object. */
5898 /* BFD_ASSERT (elf_flags_init (ibfd)); */
5899
5900 in_flags = elf_elfheader (ibfd)->e_flags;
5901 out_flags = elf_elfheader (obfd)->e_flags;
5902
5903 if (!elf_flags_init (obfd))
5904 {
5905 /* If the input is the default architecture and had the default
5906 flags then do not bother setting the flags for the output
5907 architecture, instead allow future merges to do this. If no
5908 future merges ever set these flags then they will retain their
5909 uninitialised values, which surprise surprise, correspond
5910 to the default values. */
5911 if (bfd_get_arch_info (ibfd)->the_default
5912 && elf_elfheader (ibfd)->e_flags == 0)
5913 return TRUE;
5914
5915 elf_flags_init (obfd) = TRUE;
5916 elf_elfheader (obfd)->e_flags = in_flags;
5917
5918 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
5919 && bfd_get_arch_info (obfd)->the_default)
5920 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
5921 bfd_get_mach (ibfd));
5922
5923 return TRUE;
5924 }
5925
5926 /* Identical flags must be compatible. */
5927 if (in_flags == out_flags)
5928 return TRUE;
5929
5930 /* Check to see if the input BFD actually contains any sections. If
5931 not, its flags may not have been initialised either, but it
5932 cannot actually cause any incompatiblity. Do not short-circuit
5933 dynamic objects; their section list may be emptied by
5934 elf_link_add_object_symbols.
5935
5936 Also check to see if there are no code sections in the input.
5937 In this case there is no need to check for code specific flags.
5938 XXX - do we need to worry about floating-point format compatability
5939 in data sections ? */
5940 if (!(ibfd->flags & DYNAMIC))
5941 {
5942 bfd_boolean null_input_bfd = TRUE;
5943 bfd_boolean only_data_sections = TRUE;
5944
5945 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
5946 {
5947 if ((bfd_get_section_flags (ibfd, sec)
5948 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
5949 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
5950 only_data_sections = FALSE;
5951
5952 null_input_bfd = FALSE;
5953 break;
5954 }
5955
5956 if (null_input_bfd || only_data_sections)
5957 return TRUE;
5958 }
5959
5960 return flags_compatible;
5961 }
5962
5963 /* Display the flags field. */
5964
5965 static bfd_boolean
5966 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
5967 {
5968 FILE *file = (FILE *) ptr;
5969 unsigned long flags;
5970
5971 BFD_ASSERT (abfd != NULL && ptr != NULL);
5972
5973 /* Print normal ELF private data. */
5974 _bfd_elf_print_private_bfd_data (abfd, ptr);
5975
5976 flags = elf_elfheader (abfd)->e_flags;
5977 /* Ignore init flag - it may not be set, despite the flags field
5978 containing valid data. */
5979
5980 /* xgettext:c-format */
5981 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
5982
5983 if (flags)
5984 fprintf (file, _("<Unrecognised flag bits set>"));
5985
5986 fputc ('\n', file);
5987
5988 return TRUE;
5989 }
5990
5991 /* Update the got entry reference counts for the section being removed. */
5992
5993 static bfd_boolean
5994 elfNN_aarch64_gc_sweep_hook (bfd *abfd,
5995 struct bfd_link_info *info,
5996 asection *sec,
5997 const Elf_Internal_Rela * relocs)
5998 {
5999 struct elf_aarch64_link_hash_table *htab;
6000 Elf_Internal_Shdr *symtab_hdr;
6001 struct elf_link_hash_entry **sym_hashes;
6002 struct elf_aarch64_local_symbol *locals;
6003 const Elf_Internal_Rela *rel, *relend;
6004
6005 if (bfd_link_relocatable (info))
6006 return TRUE;
6007
6008 htab = elf_aarch64_hash_table (info);
6009
6010 if (htab == NULL)
6011 return FALSE;
6012
6013 elf_section_data (sec)->local_dynrel = NULL;
6014
6015 symtab_hdr = &elf_symtab_hdr (abfd);
6016 sym_hashes = elf_sym_hashes (abfd);
6017
6018 locals = elf_aarch64_locals (abfd);
6019
6020 relend = relocs + sec->reloc_count;
6021 for (rel = relocs; rel < relend; rel++)
6022 {
6023 unsigned long r_symndx;
6024 unsigned int r_type;
6025 struct elf_link_hash_entry *h = NULL;
6026
6027 r_symndx = ELFNN_R_SYM (rel->r_info);
6028
6029 if (r_symndx >= symtab_hdr->sh_info)
6030 {
6031
6032 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6033 while (h->root.type == bfd_link_hash_indirect
6034 || h->root.type == bfd_link_hash_warning)
6035 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6036 }
6037 else
6038 {
6039 Elf_Internal_Sym *isym;
6040
6041 /* A local symbol. */
6042 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6043 abfd, r_symndx);
6044
6045 /* Check relocation against local STT_GNU_IFUNC symbol. */
6046 if (isym != NULL
6047 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6048 {
6049 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
6050 if (h == NULL)
6051 abort ();
6052 }
6053 }
6054
6055 if (h)
6056 {
6057 struct elf_aarch64_link_hash_entry *eh;
6058 struct elf_dyn_relocs **pp;
6059 struct elf_dyn_relocs *p;
6060
6061 eh = (struct elf_aarch64_link_hash_entry *) h;
6062
6063 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6064 if (p->sec == sec)
6065 {
6066 /* Everything must go for SEC. */
6067 *pp = p->next;
6068 break;
6069 }
6070 }
6071
6072 r_type = ELFNN_R_TYPE (rel->r_info);
6073 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
6074 {
6075 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6076 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6077 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6078 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6079 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6080 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6081 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6082 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6083 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6084 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6085 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6086 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6087 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6088 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6089 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6090 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6091 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6092 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6093 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6094 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6095 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6096 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6097 if (h != NULL)
6098 {
6099 if (h->got.refcount > 0)
6100 h->got.refcount -= 1;
6101
6102 if (h->type == STT_GNU_IFUNC)
6103 {
6104 if (h->plt.refcount > 0)
6105 h->plt.refcount -= 1;
6106 }
6107 }
6108 else if (locals != NULL)
6109 {
6110 if (locals[r_symndx].got_refcount > 0)
6111 locals[r_symndx].got_refcount -= 1;
6112 }
6113 break;
6114
6115 case BFD_RELOC_AARCH64_CALL26:
6116 case BFD_RELOC_AARCH64_JUMP26:
6117 /* If this is a local symbol then we resolve it
6118 directly without creating a PLT entry. */
6119 if (h == NULL)
6120 continue;
6121
6122 if (h->plt.refcount > 0)
6123 h->plt.refcount -= 1;
6124 break;
6125
6126 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6127 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6128 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6129 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6130 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6131 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6132 case BFD_RELOC_AARCH64_MOVW_G3:
6133 case BFD_RELOC_AARCH64_NN:
6134 if (h != NULL && bfd_link_executable (info))
6135 {
6136 if (h->plt.refcount > 0)
6137 h->plt.refcount -= 1;
6138 }
6139 break;
6140
6141 default:
6142 break;
6143 }
6144 }
6145
6146 return TRUE;
6147 }
6148
6149 /* Adjust a symbol defined by a dynamic object and referenced by a
6150 regular object. The current definition is in some section of the
6151 dynamic object, but we're not including those sections. We have to
6152 change the definition to something the rest of the link can
6153 understand. */
6154
6155 static bfd_boolean
6156 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
6157 struct elf_link_hash_entry *h)
6158 {
6159 struct elf_aarch64_link_hash_table *htab;
6160 asection *s;
6161
6162 /* If this is a function, put it in the procedure linkage table. We
6163 will fill in the contents of the procedure linkage table later,
6164 when we know the address of the .got section. */
6165 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
6166 {
6167 if (h->plt.refcount <= 0
6168 || (h->type != STT_GNU_IFUNC
6169 && (SYMBOL_CALLS_LOCAL (info, h)
6170 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6171 && h->root.type == bfd_link_hash_undefweak))))
6172 {
6173 /* This case can occur if we saw a CALL26 reloc in
6174 an input file, but the symbol wasn't referred to
6175 by a dynamic object or all references were
6176 garbage collected. In which case we can end up
6177 resolving. */
6178 h->plt.offset = (bfd_vma) - 1;
6179 h->needs_plt = 0;
6180 }
6181
6182 return TRUE;
6183 }
6184 else
6185 /* Otherwise, reset to -1. */
6186 h->plt.offset = (bfd_vma) - 1;
6187
6188
6189 /* If this is a weak symbol, and there is a real definition, the
6190 processor independent code will have arranged for us to see the
6191 real definition first, and we can just use the same value. */
6192 if (h->u.weakdef != NULL)
6193 {
6194 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6195 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6196 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6197 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6198 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6199 h->non_got_ref = h->u.weakdef->non_got_ref;
6200 return TRUE;
6201 }
6202
6203 /* If we are creating a shared library, we must presume that the
6204 only references to the symbol are via the global offset table.
6205 For such cases we need not do anything here; the relocations will
6206 be handled correctly by relocate_section. */
6207 if (bfd_link_pic (info))
6208 return TRUE;
6209
6210 /* If there are no references to this symbol that do not use the
6211 GOT, we don't need to generate a copy reloc. */
6212 if (!h->non_got_ref)
6213 return TRUE;
6214
6215 /* If -z nocopyreloc was given, we won't generate them either. */
6216 if (info->nocopyreloc)
6217 {
6218 h->non_got_ref = 0;
6219 return TRUE;
6220 }
6221
6222 /* We must allocate the symbol in our .dynbss section, which will
6223 become part of the .bss section of the executable. There will be
6224 an entry for this symbol in the .dynsym section. The dynamic
6225 object will contain position independent code, so all references
6226 from the dynamic object to this symbol will go through the global
6227 offset table. The dynamic linker will use the .dynsym entry to
6228 determine the address it must put in the global offset table, so
6229 both the dynamic object and the regular object will refer to the
6230 same memory location for the variable. */
6231
6232 htab = elf_aarch64_hash_table (info);
6233
6234 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6235 to copy the initial value out of the dynamic object and into the
6236 runtime process image. */
6237 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6238 {
6239 htab->srelbss->size += RELOC_SIZE (htab);
6240 h->needs_copy = 1;
6241 }
6242
6243 s = htab->sdynbss;
6244
6245 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6246
6247 }
6248
6249 static bfd_boolean
6250 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
6251 {
6252 struct elf_aarch64_local_symbol *locals;
6253 locals = elf_aarch64_locals (abfd);
6254 if (locals == NULL)
6255 {
6256 locals = (struct elf_aarch64_local_symbol *)
6257 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
6258 if (locals == NULL)
6259 return FALSE;
6260 elf_aarch64_locals (abfd) = locals;
6261 }
6262 return TRUE;
6263 }
6264
6265 /* Create the .got section to hold the global offset table. */
6266
6267 static bfd_boolean
6268 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
6269 {
6270 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6271 flagword flags;
6272 asection *s;
6273 struct elf_link_hash_entry *h;
6274 struct elf_link_hash_table *htab = elf_hash_table (info);
6275
6276 /* This function may be called more than once. */
6277 s = bfd_get_linker_section (abfd, ".got");
6278 if (s != NULL)
6279 return TRUE;
6280
6281 flags = bed->dynamic_sec_flags;
6282
6283 s = bfd_make_section_anyway_with_flags (abfd,
6284 (bed->rela_plts_and_copies_p
6285 ? ".rela.got" : ".rel.got"),
6286 (bed->dynamic_sec_flags
6287 | SEC_READONLY));
6288 if (s == NULL
6289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6290 return FALSE;
6291 htab->srelgot = s;
6292
6293 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
6294 if (s == NULL
6295 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6296 return FALSE;
6297 htab->sgot = s;
6298 htab->sgot->size += GOT_ENTRY_SIZE;
6299
6300 if (bed->want_got_sym)
6301 {
6302 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
6303 (or .got.plt) section. We don't do this in the linker script
6304 because we don't want to define the symbol if we are not creating
6305 a global offset table. */
6306 h = _bfd_elf_define_linkage_sym (abfd, info, s,
6307 "_GLOBAL_OFFSET_TABLE_");
6308 elf_hash_table (info)->hgot = h;
6309 if (h == NULL)
6310 return FALSE;
6311 }
6312
6313 if (bed->want_got_plt)
6314 {
6315 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
6316 if (s == NULL
6317 || !bfd_set_section_alignment (abfd, s,
6318 bed->s->log_file_align))
6319 return FALSE;
6320 htab->sgotplt = s;
6321 }
6322
6323 /* The first bit of the global offset table is the header. */
6324 s->size += bed->got_header_size;
6325
6326 return TRUE;
6327 }
6328
6329 /* Look through the relocs for a section during the first phase. */
6330
6331 static bfd_boolean
6332 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
6333 asection *sec, const Elf_Internal_Rela *relocs)
6334 {
6335 Elf_Internal_Shdr *symtab_hdr;
6336 struct elf_link_hash_entry **sym_hashes;
6337 const Elf_Internal_Rela *rel;
6338 const Elf_Internal_Rela *rel_end;
6339 asection *sreloc;
6340
6341 struct elf_aarch64_link_hash_table *htab;
6342
6343 if (bfd_link_relocatable (info))
6344 return TRUE;
6345
6346 BFD_ASSERT (is_aarch64_elf (abfd));
6347
6348 htab = elf_aarch64_hash_table (info);
6349 sreloc = NULL;
6350
6351 symtab_hdr = &elf_symtab_hdr (abfd);
6352 sym_hashes = elf_sym_hashes (abfd);
6353
6354 rel_end = relocs + sec->reloc_count;
6355 for (rel = relocs; rel < rel_end; rel++)
6356 {
6357 struct elf_link_hash_entry *h;
6358 unsigned long r_symndx;
6359 unsigned int r_type;
6360 bfd_reloc_code_real_type bfd_r_type;
6361 Elf_Internal_Sym *isym;
6362
6363 r_symndx = ELFNN_R_SYM (rel->r_info);
6364 r_type = ELFNN_R_TYPE (rel->r_info);
6365
6366 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
6367 {
6368 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
6369 r_symndx);
6370 return FALSE;
6371 }
6372
6373 if (r_symndx < symtab_hdr->sh_info)
6374 {
6375 /* A local symbol. */
6376 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6377 abfd, r_symndx);
6378 if (isym == NULL)
6379 return FALSE;
6380
6381 /* Check relocation against local STT_GNU_IFUNC symbol. */
6382 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6383 {
6384 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
6385 TRUE);
6386 if (h == NULL)
6387 return FALSE;
6388
6389 /* Fake a STT_GNU_IFUNC symbol. */
6390 h->type = STT_GNU_IFUNC;
6391 h->def_regular = 1;
6392 h->ref_regular = 1;
6393 h->forced_local = 1;
6394 h->root.type = bfd_link_hash_defined;
6395 }
6396 else
6397 h = NULL;
6398 }
6399 else
6400 {
6401 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6402 while (h->root.type == bfd_link_hash_indirect
6403 || h->root.type == bfd_link_hash_warning)
6404 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6405
6406 /* PR15323, ref flags aren't set for references in the same
6407 object. */
6408 h->root.non_ir_ref = 1;
6409 }
6410
6411 /* Could be done earlier, if h were already available. */
6412 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
6413
6414 if (h != NULL)
6415 {
6416 /* Create the ifunc sections for static executables. If we
6417 never see an indirect function symbol nor we are building
6418 a static executable, those sections will be empty and
6419 won't appear in output. */
6420 switch (bfd_r_type)
6421 {
6422 default:
6423 break;
6424
6425 case BFD_RELOC_AARCH64_ADD_LO12:
6426 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6427 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6428 case BFD_RELOC_AARCH64_CALL26:
6429 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6430 case BFD_RELOC_AARCH64_JUMP26:
6431 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6432 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6433 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6434 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6435 case BFD_RELOC_AARCH64_NN:
6436 if (htab->root.dynobj == NULL)
6437 htab->root.dynobj = abfd;
6438 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
6439 return FALSE;
6440 break;
6441 }
6442
6443 /* It is referenced by a non-shared object. */
6444 h->ref_regular = 1;
6445 h->root.non_ir_ref = 1;
6446 }
6447
6448 switch (bfd_r_type)
6449 {
6450 case BFD_RELOC_AARCH64_NN:
6451
6452 /* We don't need to handle relocs into sections not going into
6453 the "real" output. */
6454 if ((sec->flags & SEC_ALLOC) == 0)
6455 break;
6456
6457 if (h != NULL)
6458 {
6459 if (!bfd_link_pic (info))
6460 h->non_got_ref = 1;
6461
6462 h->plt.refcount += 1;
6463 h->pointer_equality_needed = 1;
6464 }
6465
6466 /* No need to do anything if we're not creating a shared
6467 object. */
6468 if (! bfd_link_pic (info))
6469 break;
6470
6471 {
6472 struct elf_dyn_relocs *p;
6473 struct elf_dyn_relocs **head;
6474
6475 /* We must copy these reloc types into the output file.
6476 Create a reloc section in dynobj and make room for
6477 this reloc. */
6478 if (sreloc == NULL)
6479 {
6480 if (htab->root.dynobj == NULL)
6481 htab->root.dynobj = abfd;
6482
6483 sreloc = _bfd_elf_make_dynamic_reloc_section
6484 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
6485
6486 if (sreloc == NULL)
6487 return FALSE;
6488 }
6489
6490 /* If this is a global symbol, we count the number of
6491 relocations we need for this symbol. */
6492 if (h != NULL)
6493 {
6494 struct elf_aarch64_link_hash_entry *eh;
6495 eh = (struct elf_aarch64_link_hash_entry *) h;
6496 head = &eh->dyn_relocs;
6497 }
6498 else
6499 {
6500 /* Track dynamic relocs needed for local syms too.
6501 We really need local syms available to do this
6502 easily. Oh well. */
6503
6504 asection *s;
6505 void **vpp;
6506
6507 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6508 abfd, r_symndx);
6509 if (isym == NULL)
6510 return FALSE;
6511
6512 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
6513 if (s == NULL)
6514 s = sec;
6515
6516 /* Beware of type punned pointers vs strict aliasing
6517 rules. */
6518 vpp = &(elf_section_data (s)->local_dynrel);
6519 head = (struct elf_dyn_relocs **) vpp;
6520 }
6521
6522 p = *head;
6523 if (p == NULL || p->sec != sec)
6524 {
6525 bfd_size_type amt = sizeof *p;
6526 p = ((struct elf_dyn_relocs *)
6527 bfd_zalloc (htab->root.dynobj, amt));
6528 if (p == NULL)
6529 return FALSE;
6530 p->next = *head;
6531 *head = p;
6532 p->sec = sec;
6533 }
6534
6535 p->count += 1;
6536
6537 }
6538 break;
6539
6540 /* RR: We probably want to keep a consistency check that
6541 there are no dangling GOT_PAGE relocs. */
6542 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6543 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6544 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6545 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6546 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6547 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6548 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6549 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6550 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6551 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6552 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6553 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6554 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6555 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6556 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6557 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6558 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6559 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6560 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6561 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6562 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6563 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6564 {
6565 unsigned got_type;
6566 unsigned old_got_type;
6567
6568 got_type = aarch64_reloc_got_type (bfd_r_type);
6569
6570 if (h)
6571 {
6572 h->got.refcount += 1;
6573 old_got_type = elf_aarch64_hash_entry (h)->got_type;
6574 }
6575 else
6576 {
6577 struct elf_aarch64_local_symbol *locals;
6578
6579 if (!elfNN_aarch64_allocate_local_symbols
6580 (abfd, symtab_hdr->sh_info))
6581 return FALSE;
6582
6583 locals = elf_aarch64_locals (abfd);
6584 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
6585 locals[r_symndx].got_refcount += 1;
6586 old_got_type = locals[r_symndx].got_type;
6587 }
6588
6589 /* If a variable is accessed with both general dynamic TLS
6590 methods, two slots may be created. */
6591 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
6592 got_type |= old_got_type;
6593
6594 /* We will already have issued an error message if there
6595 is a TLS/non-TLS mismatch, based on the symbol type.
6596 So just combine any TLS types needed. */
6597 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
6598 && got_type != GOT_NORMAL)
6599 got_type |= old_got_type;
6600
6601 /* If the symbol is accessed by both IE and GD methods, we
6602 are able to relax. Turn off the GD flag, without
6603 messing up with any other kind of TLS types that may be
6604 involved. */
6605 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
6606 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
6607
6608 if (old_got_type != got_type)
6609 {
6610 if (h != NULL)
6611 elf_aarch64_hash_entry (h)->got_type = got_type;
6612 else
6613 {
6614 struct elf_aarch64_local_symbol *locals;
6615 locals = elf_aarch64_locals (abfd);
6616 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
6617 locals[r_symndx].got_type = got_type;
6618 }
6619 }
6620
6621 if (htab->root.dynobj == NULL)
6622 htab->root.dynobj = abfd;
6623 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
6624 return FALSE;
6625 break;
6626 }
6627
6628 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6629 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6630 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6631 case BFD_RELOC_AARCH64_MOVW_G3:
6632 if (bfd_link_pic (info))
6633 {
6634 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6635 (*_bfd_error_handler)
6636 (_("%B: relocation %s against `%s' can not be used when making "
6637 "a shared object; recompile with -fPIC"),
6638 abfd, elfNN_aarch64_howto_table[howto_index].name,
6639 (h) ? h->root.root.string : "a local symbol");
6640 bfd_set_error (bfd_error_bad_value);
6641 return FALSE;
6642 }
6643
6644 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6645 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6646 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6647 if (h != NULL && bfd_link_executable (info))
6648 {
6649 /* If this reloc is in a read-only section, we might
6650 need a copy reloc. We can't check reliably at this
6651 stage whether the section is read-only, as input
6652 sections have not yet been mapped to output sections.
6653 Tentatively set the flag for now, and correct in
6654 adjust_dynamic_symbol. */
6655 h->non_got_ref = 1;
6656 h->plt.refcount += 1;
6657 h->pointer_equality_needed = 1;
6658 }
6659 /* FIXME:: RR need to handle these in shared libraries
6660 and essentially bomb out as these being non-PIC
6661 relocations in shared libraries. */
6662 break;
6663
6664 case BFD_RELOC_AARCH64_CALL26:
6665 case BFD_RELOC_AARCH64_JUMP26:
6666 /* If this is a local symbol then we resolve it
6667 directly without creating a PLT entry. */
6668 if (h == NULL)
6669 continue;
6670
6671 h->needs_plt = 1;
6672 if (h->plt.refcount <= 0)
6673 h->plt.refcount = 1;
6674 else
6675 h->plt.refcount += 1;
6676 break;
6677
6678 default:
6679 break;
6680 }
6681 }
6682
6683 return TRUE;
6684 }
6685
6686 /* Treat mapping symbols as special target symbols. */
6687
6688 static bfd_boolean
6689 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6690 asymbol *sym)
6691 {
6692 return bfd_is_aarch64_special_symbol_name (sym->name,
6693 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
6694 }
6695
6696 /* This is a copy of elf_find_function () from elf.c except that
6697 AArch64 mapping symbols are ignored when looking for function names. */
6698
6699 static bfd_boolean
6700 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6701 asymbol **symbols,
6702 asection *section,
6703 bfd_vma offset,
6704 const char **filename_ptr,
6705 const char **functionname_ptr)
6706 {
6707 const char *filename = NULL;
6708 asymbol *func = NULL;
6709 bfd_vma low_func = 0;
6710 asymbol **p;
6711
6712 for (p = symbols; *p != NULL; p++)
6713 {
6714 elf_symbol_type *q;
6715
6716 q = (elf_symbol_type *) * p;
6717
6718 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6719 {
6720 default:
6721 break;
6722 case STT_FILE:
6723 filename = bfd_asymbol_name (&q->symbol);
6724 break;
6725 case STT_FUNC:
6726 case STT_NOTYPE:
6727 /* Skip mapping symbols. */
6728 if ((q->symbol.flags & BSF_LOCAL)
6729 && (bfd_is_aarch64_special_symbol_name
6730 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
6731 continue;
6732 /* Fall through. */
6733 if (bfd_get_section (&q->symbol) == section
6734 && q->symbol.value >= low_func && q->symbol.value <= offset)
6735 {
6736 func = (asymbol *) q;
6737 low_func = q->symbol.value;
6738 }
6739 break;
6740 }
6741 }
6742
6743 if (func == NULL)
6744 return FALSE;
6745
6746 if (filename_ptr)
6747 *filename_ptr = filename;
6748 if (functionname_ptr)
6749 *functionname_ptr = bfd_asymbol_name (func);
6750
6751 return TRUE;
6752 }
6753
6754
6755 /* Find the nearest line to a particular section and offset, for error
6756 reporting. This code is a duplicate of the code in elf.c, except
6757 that it uses aarch64_elf_find_function. */
6758
6759 static bfd_boolean
6760 elfNN_aarch64_find_nearest_line (bfd *abfd,
6761 asymbol **symbols,
6762 asection *section,
6763 bfd_vma offset,
6764 const char **filename_ptr,
6765 const char **functionname_ptr,
6766 unsigned int *line_ptr,
6767 unsigned int *discriminator_ptr)
6768 {
6769 bfd_boolean found = FALSE;
6770
6771 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
6772 filename_ptr, functionname_ptr,
6773 line_ptr, discriminator_ptr,
6774 dwarf_debug_sections, 0,
6775 &elf_tdata (abfd)->dwarf2_find_line_info))
6776 {
6777 if (!*functionname_ptr)
6778 aarch64_elf_find_function (abfd, symbols, section, offset,
6779 *filename_ptr ? NULL : filename_ptr,
6780 functionname_ptr);
6781
6782 return TRUE;
6783 }
6784
6785 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
6786 toolchain uses DWARF1. */
6787
6788 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6789 &found, filename_ptr,
6790 functionname_ptr, line_ptr,
6791 &elf_tdata (abfd)->line_info))
6792 return FALSE;
6793
6794 if (found && (*functionname_ptr || *line_ptr))
6795 return TRUE;
6796
6797 if (symbols == NULL)
6798 return FALSE;
6799
6800 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
6801 filename_ptr, functionname_ptr))
6802 return FALSE;
6803
6804 *line_ptr = 0;
6805 return TRUE;
6806 }
6807
6808 static bfd_boolean
6809 elfNN_aarch64_find_inliner_info (bfd *abfd,
6810 const char **filename_ptr,
6811 const char **functionname_ptr,
6812 unsigned int *line_ptr)
6813 {
6814 bfd_boolean found;
6815 found = _bfd_dwarf2_find_inliner_info
6816 (abfd, filename_ptr,
6817 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
6818 return found;
6819 }
6820
6821
6822 static void
6823 elfNN_aarch64_post_process_headers (bfd *abfd,
6824 struct bfd_link_info *link_info)
6825 {
6826 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
6827
6828 i_ehdrp = elf_elfheader (abfd);
6829 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
6830
6831 _bfd_elf_post_process_headers (abfd, link_info);
6832 }
6833
6834 static enum elf_reloc_type_class
6835 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
6836 const asection *rel_sec ATTRIBUTE_UNUSED,
6837 const Elf_Internal_Rela *rela)
6838 {
6839 switch ((int) ELFNN_R_TYPE (rela->r_info))
6840 {
6841 case AARCH64_R (RELATIVE):
6842 return reloc_class_relative;
6843 case AARCH64_R (JUMP_SLOT):
6844 return reloc_class_plt;
6845 case AARCH64_R (COPY):
6846 return reloc_class_copy;
6847 default:
6848 return reloc_class_normal;
6849 }
6850 }
6851
6852 /* Handle an AArch64 specific section when reading an object file. This is
6853 called when bfd_section_from_shdr finds a section with an unknown
6854 type. */
6855
6856 static bfd_boolean
6857 elfNN_aarch64_section_from_shdr (bfd *abfd,
6858 Elf_Internal_Shdr *hdr,
6859 const char *name, int shindex)
6860 {
6861 /* There ought to be a place to keep ELF backend specific flags, but
6862 at the moment there isn't one. We just keep track of the
6863 sections by their name, instead. Fortunately, the ABI gives
6864 names for all the AArch64 specific sections, so we will probably get
6865 away with this. */
6866 switch (hdr->sh_type)
6867 {
6868 case SHT_AARCH64_ATTRIBUTES:
6869 break;
6870
6871 default:
6872 return FALSE;
6873 }
6874
6875 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6876 return FALSE;
6877
6878 return TRUE;
6879 }
6880
6881 /* A structure used to record a list of sections, independently
6882 of the next and prev fields in the asection structure. */
6883 typedef struct section_list
6884 {
6885 asection *sec;
6886 struct section_list *next;
6887 struct section_list *prev;
6888 }
6889 section_list;
6890
6891 /* Unfortunately we need to keep a list of sections for which
6892 an _aarch64_elf_section_data structure has been allocated. This
6893 is because it is possible for functions like elfNN_aarch64_write_section
6894 to be called on a section which has had an elf_data_structure
6895 allocated for it (and so the used_by_bfd field is valid) but
6896 for which the AArch64 extended version of this structure - the
6897 _aarch64_elf_section_data structure - has not been allocated. */
6898 static section_list *sections_with_aarch64_elf_section_data = NULL;
6899
6900 static void
6901 record_section_with_aarch64_elf_section_data (asection *sec)
6902 {
6903 struct section_list *entry;
6904
6905 entry = bfd_malloc (sizeof (*entry));
6906 if (entry == NULL)
6907 return;
6908 entry->sec = sec;
6909 entry->next = sections_with_aarch64_elf_section_data;
6910 entry->prev = NULL;
6911 if (entry->next != NULL)
6912 entry->next->prev = entry;
6913 sections_with_aarch64_elf_section_data = entry;
6914 }
6915
6916 static struct section_list *
6917 find_aarch64_elf_section_entry (asection *sec)
6918 {
6919 struct section_list *entry;
6920 static struct section_list *last_entry = NULL;
6921
6922 /* This is a short cut for the typical case where the sections are added
6923 to the sections_with_aarch64_elf_section_data list in forward order and
6924 then looked up here in backwards order. This makes a real difference
6925 to the ld-srec/sec64k.exp linker test. */
6926 entry = sections_with_aarch64_elf_section_data;
6927 if (last_entry != NULL)
6928 {
6929 if (last_entry->sec == sec)
6930 entry = last_entry;
6931 else if (last_entry->next != NULL && last_entry->next->sec == sec)
6932 entry = last_entry->next;
6933 }
6934
6935 for (; entry; entry = entry->next)
6936 if (entry->sec == sec)
6937 break;
6938
6939 if (entry)
6940 /* Record the entry prior to this one - it is the entry we are
6941 most likely to want to locate next time. Also this way if we
6942 have been called from
6943 unrecord_section_with_aarch64_elf_section_data () we will not
6944 be caching a pointer that is about to be freed. */
6945 last_entry = entry->prev;
6946
6947 return entry;
6948 }
6949
6950 static void
6951 unrecord_section_with_aarch64_elf_section_data (asection *sec)
6952 {
6953 struct section_list *entry;
6954
6955 entry = find_aarch64_elf_section_entry (sec);
6956
6957 if (entry)
6958 {
6959 if (entry->prev != NULL)
6960 entry->prev->next = entry->next;
6961 if (entry->next != NULL)
6962 entry->next->prev = entry->prev;
6963 if (entry == sections_with_aarch64_elf_section_data)
6964 sections_with_aarch64_elf_section_data = entry->next;
6965 free (entry);
6966 }
6967 }
6968
6969
6970 typedef struct
6971 {
6972 void *finfo;
6973 struct bfd_link_info *info;
6974 asection *sec;
6975 int sec_shndx;
6976 int (*func) (void *, const char *, Elf_Internal_Sym *,
6977 asection *, struct elf_link_hash_entry *);
6978 } output_arch_syminfo;
6979
6980 enum map_symbol_type
6981 {
6982 AARCH64_MAP_INSN,
6983 AARCH64_MAP_DATA
6984 };
6985
6986
6987 /* Output a single mapping symbol. */
6988
6989 static bfd_boolean
6990 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
6991 enum map_symbol_type type, bfd_vma offset)
6992 {
6993 static const char *names[2] = { "$x", "$d" };
6994 Elf_Internal_Sym sym;
6995
6996 sym.st_value = (osi->sec->output_section->vma
6997 + osi->sec->output_offset + offset);
6998 sym.st_size = 0;
6999 sym.st_other = 0;
7000 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7001 sym.st_shndx = osi->sec_shndx;
7002 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7003 }
7004
7005
7006
7007 /* Output mapping symbols for PLT entries associated with H. */
7008
7009 static bfd_boolean
7010 elfNN_aarch64_output_plt_map (struct elf_link_hash_entry *h, void *inf)
7011 {
7012 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
7013 bfd_vma addr;
7014
7015 if (h->root.type == bfd_link_hash_indirect)
7016 return TRUE;
7017
7018 if (h->root.type == bfd_link_hash_warning)
7019 /* When warning symbols are created, they **replace** the "real"
7020 entry in the hash table, thus we never get to see the real
7021 symbol in a hash traversal. So look at it now. */
7022 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7023
7024 if (h->plt.offset == (bfd_vma) - 1)
7025 return TRUE;
7026
7027 addr = h->plt.offset;
7028 if (addr == 32)
7029 {
7030 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7031 return FALSE;
7032 }
7033 return TRUE;
7034 }
7035
7036
7037 /* Output a single local symbol for a generated stub. */
7038
7039 static bfd_boolean
7040 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
7041 bfd_vma offset, bfd_vma size)
7042 {
7043 Elf_Internal_Sym sym;
7044
7045 sym.st_value = (osi->sec->output_section->vma
7046 + osi->sec->output_offset + offset);
7047 sym.st_size = size;
7048 sym.st_other = 0;
7049 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7050 sym.st_shndx = osi->sec_shndx;
7051 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7052 }
7053
7054 static bfd_boolean
7055 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7056 {
7057 struct elf_aarch64_stub_hash_entry *stub_entry;
7058 asection *stub_sec;
7059 bfd_vma addr;
7060 char *stub_name;
7061 output_arch_syminfo *osi;
7062
7063 /* Massage our args to the form they really have. */
7064 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
7065 osi = (output_arch_syminfo *) in_arg;
7066
7067 stub_sec = stub_entry->stub_sec;
7068
7069 /* Ensure this stub is attached to the current section being
7070 processed. */
7071 if (stub_sec != osi->sec)
7072 return TRUE;
7073
7074 addr = (bfd_vma) stub_entry->stub_offset;
7075
7076 stub_name = stub_entry->output_name;
7077
7078 switch (stub_entry->stub_type)
7079 {
7080 case aarch64_stub_adrp_branch:
7081 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7082 sizeof (aarch64_adrp_branch_stub)))
7083 return FALSE;
7084 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7085 return FALSE;
7086 break;
7087 case aarch64_stub_long_branch:
7088 if (!elfNN_aarch64_output_stub_sym
7089 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7090 return FALSE;
7091 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7092 return FALSE;
7093 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
7094 return FALSE;
7095 break;
7096 case aarch64_stub_erratum_835769_veneer:
7097 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7098 sizeof (aarch64_erratum_835769_stub)))
7099 return FALSE;
7100 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7101 return FALSE;
7102 break;
7103 case aarch64_stub_erratum_843419_veneer:
7104 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7105 sizeof (aarch64_erratum_843419_stub)))
7106 return FALSE;
7107 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7108 return FALSE;
7109 break;
7110
7111 default:
7112 abort ();
7113 }
7114
7115 return TRUE;
7116 }
7117
7118 /* Output mapping symbols for linker generated sections. */
7119
7120 static bfd_boolean
7121 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
7122 struct bfd_link_info *info,
7123 void *finfo,
7124 int (*func) (void *, const char *,
7125 Elf_Internal_Sym *,
7126 asection *,
7127 struct elf_link_hash_entry
7128 *))
7129 {
7130 output_arch_syminfo osi;
7131 struct elf_aarch64_link_hash_table *htab;
7132
7133 htab = elf_aarch64_hash_table (info);
7134
7135 osi.finfo = finfo;
7136 osi.info = info;
7137 osi.func = func;
7138
7139 /* Long calls stubs. */
7140 if (htab->stub_bfd && htab->stub_bfd->sections)
7141 {
7142 asection *stub_sec;
7143
7144 for (stub_sec = htab->stub_bfd->sections;
7145 stub_sec != NULL; stub_sec = stub_sec->next)
7146 {
7147 /* Ignore non-stub sections. */
7148 if (!strstr (stub_sec->name, STUB_SUFFIX))
7149 continue;
7150
7151 osi.sec = stub_sec;
7152
7153 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7154 (output_bfd, osi.sec->output_section);
7155
7156 /* The first instruction in a stub is always a branch. */
7157 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7158 return FALSE;
7159
7160 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7161 &osi);
7162 }
7163 }
7164
7165 /* Finally, output mapping symbols for the PLT. */
7166 if (!htab->root.splt || htab->root.splt->size == 0)
7167 return TRUE;
7168
7169 /* For now live without mapping symbols for the plt. */
7170 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7171 (output_bfd, htab->root.splt->output_section);
7172 osi.sec = htab->root.splt;
7173
7174 elf_link_hash_traverse (&htab->root, elfNN_aarch64_output_plt_map,
7175 (void *) &osi);
7176
7177 return TRUE;
7178
7179 }
7180
7181 /* Allocate target specific section data. */
7182
7183 static bfd_boolean
7184 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
7185 {
7186 if (!sec->used_by_bfd)
7187 {
7188 _aarch64_elf_section_data *sdata;
7189 bfd_size_type amt = sizeof (*sdata);
7190
7191 sdata = bfd_zalloc (abfd, amt);
7192 if (sdata == NULL)
7193 return FALSE;
7194 sec->used_by_bfd = sdata;
7195 }
7196
7197 record_section_with_aarch64_elf_section_data (sec);
7198
7199 return _bfd_elf_new_section_hook (abfd, sec);
7200 }
7201
7202
7203 static void
7204 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
7205 asection *sec,
7206 void *ignore ATTRIBUTE_UNUSED)
7207 {
7208 unrecord_section_with_aarch64_elf_section_data (sec);
7209 }
7210
7211 static bfd_boolean
7212 elfNN_aarch64_close_and_cleanup (bfd *abfd)
7213 {
7214 if (abfd->sections)
7215 bfd_map_over_sections (abfd,
7216 unrecord_section_via_map_over_sections, NULL);
7217
7218 return _bfd_elf_close_and_cleanup (abfd);
7219 }
7220
7221 static bfd_boolean
7222 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
7223 {
7224 if (abfd->sections)
7225 bfd_map_over_sections (abfd,
7226 unrecord_section_via_map_over_sections, NULL);
7227
7228 return _bfd_free_cached_info (abfd);
7229 }
7230
7231 /* Create dynamic sections. This is different from the ARM backend in that
7232 the got, plt, gotplt and their relocation sections are all created in the
7233 standard part of the bfd elf backend. */
7234
7235 static bfd_boolean
7236 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
7237 struct bfd_link_info *info)
7238 {
7239 struct elf_aarch64_link_hash_table *htab;
7240
7241 /* We need to create .got section. */
7242 if (!aarch64_elf_create_got_section (dynobj, info))
7243 return FALSE;
7244
7245 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
7246 return FALSE;
7247
7248 htab = elf_aarch64_hash_table (info);
7249 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
7250 if (!bfd_link_pic (info))
7251 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
7252
7253 if (!htab->sdynbss || (!bfd_link_pic (info) && !htab->srelbss))
7254 abort ();
7255
7256 return TRUE;
7257 }
7258
7259
7260 /* Allocate space in .plt, .got and associated reloc sections for
7261 dynamic relocs. */
7262
7263 static bfd_boolean
7264 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7265 {
7266 struct bfd_link_info *info;
7267 struct elf_aarch64_link_hash_table *htab;
7268 struct elf_aarch64_link_hash_entry *eh;
7269 struct elf_dyn_relocs *p;
7270
7271 /* An example of a bfd_link_hash_indirect symbol is versioned
7272 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7273 -> __gxx_personality_v0(bfd_link_hash_defined)
7274
7275 There is no need to process bfd_link_hash_indirect symbols here
7276 because we will also be presented with the concrete instance of
7277 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
7278 called to copy all relevant data from the generic to the concrete
7279 symbol instance.
7280 */
7281 if (h->root.type == bfd_link_hash_indirect)
7282 return TRUE;
7283
7284 if (h->root.type == bfd_link_hash_warning)
7285 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7286
7287 info = (struct bfd_link_info *) inf;
7288 htab = elf_aarch64_hash_table (info);
7289
7290 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7291 here if it is defined and referenced in a non-shared object. */
7292 if (h->type == STT_GNU_IFUNC
7293 && h->def_regular)
7294 return TRUE;
7295 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
7296 {
7297 /* Make sure this symbol is output as a dynamic symbol.
7298 Undefined weak syms won't yet be marked as dynamic. */
7299 if (h->dynindx == -1 && !h->forced_local)
7300 {
7301 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7302 return FALSE;
7303 }
7304
7305 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
7306 {
7307 asection *s = htab->root.splt;
7308
7309 /* If this is the first .plt entry, make room for the special
7310 first entry. */
7311 if (s->size == 0)
7312 s->size += htab->plt_header_size;
7313
7314 h->plt.offset = s->size;
7315
7316 /* If this symbol is not defined in a regular file, and we are
7317 not generating a shared library, then set the symbol to this
7318 location in the .plt. This is required to make function
7319 pointers compare as equal between the normal executable and
7320 the shared library. */
7321 if (!bfd_link_pic (info) && !h->def_regular)
7322 {
7323 h->root.u.def.section = s;
7324 h->root.u.def.value = h->plt.offset;
7325 }
7326
7327 /* Make room for this entry. For now we only create the
7328 small model PLT entries. We later need to find a way
7329 of relaxing into these from the large model PLT entries. */
7330 s->size += PLT_SMALL_ENTRY_SIZE;
7331
7332 /* We also need to make an entry in the .got.plt section, which
7333 will be placed in the .got section by the linker script. */
7334 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
7335
7336 /* We also need to make an entry in the .rela.plt section. */
7337 htab->root.srelplt->size += RELOC_SIZE (htab);
7338
7339 /* We need to ensure that all GOT entries that serve the PLT
7340 are consecutive with the special GOT slots [0] [1] and
7341 [2]. Any addtional relocations, such as
7342 R_AARCH64_TLSDESC, must be placed after the PLT related
7343 entries. We abuse the reloc_count such that during
7344 sizing we adjust reloc_count to indicate the number of
7345 PLT related reserved entries. In subsequent phases when
7346 filling in the contents of the reloc entries, PLT related
7347 entries are placed by computing their PLT index (0
7348 .. reloc_count). While other none PLT relocs are placed
7349 at the slot indicated by reloc_count and reloc_count is
7350 updated. */
7351
7352 htab->root.srelplt->reloc_count++;
7353 }
7354 else
7355 {
7356 h->plt.offset = (bfd_vma) - 1;
7357 h->needs_plt = 0;
7358 }
7359 }
7360 else
7361 {
7362 h->plt.offset = (bfd_vma) - 1;
7363 h->needs_plt = 0;
7364 }
7365
7366 eh = (struct elf_aarch64_link_hash_entry *) h;
7367 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
7368
7369 if (h->got.refcount > 0)
7370 {
7371 bfd_boolean dyn;
7372 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
7373
7374 h->got.offset = (bfd_vma) - 1;
7375
7376 dyn = htab->root.dynamic_sections_created;
7377
7378 /* Make sure this symbol is output as a dynamic symbol.
7379 Undefined weak syms won't yet be marked as dynamic. */
7380 if (dyn && h->dynindx == -1 && !h->forced_local)
7381 {
7382 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7383 return FALSE;
7384 }
7385
7386 if (got_type == GOT_UNKNOWN)
7387 {
7388 }
7389 else if (got_type == GOT_NORMAL)
7390 {
7391 h->got.offset = htab->root.sgot->size;
7392 htab->root.sgot->size += GOT_ENTRY_SIZE;
7393 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7394 || h->root.type != bfd_link_hash_undefweak)
7395 && (bfd_link_pic (info)
7396 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
7397 {
7398 htab->root.srelgot->size += RELOC_SIZE (htab);
7399 }
7400 }
7401 else
7402 {
7403 int indx;
7404 if (got_type & GOT_TLSDESC_GD)
7405 {
7406 eh->tlsdesc_got_jump_table_offset =
7407 (htab->root.sgotplt->size
7408 - aarch64_compute_jump_table_size (htab));
7409 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
7410 h->got.offset = (bfd_vma) - 2;
7411 }
7412
7413 if (got_type & GOT_TLS_GD)
7414 {
7415 h->got.offset = htab->root.sgot->size;
7416 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
7417 }
7418
7419 if (got_type & GOT_TLS_IE)
7420 {
7421 h->got.offset = htab->root.sgot->size;
7422 htab->root.sgot->size += GOT_ENTRY_SIZE;
7423 }
7424
7425 indx = h && h->dynindx != -1 ? h->dynindx : 0;
7426 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7427 || h->root.type != bfd_link_hash_undefweak)
7428 && (bfd_link_pic (info)
7429 || indx != 0
7430 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
7431 {
7432 if (got_type & GOT_TLSDESC_GD)
7433 {
7434 htab->root.srelplt->size += RELOC_SIZE (htab);
7435 /* Note reloc_count not incremented here! We have
7436 already adjusted reloc_count for this relocation
7437 type. */
7438
7439 /* TLSDESC PLT is now needed, but not yet determined. */
7440 htab->tlsdesc_plt = (bfd_vma) - 1;
7441 }
7442
7443 if (got_type & GOT_TLS_GD)
7444 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
7445
7446 if (got_type & GOT_TLS_IE)
7447 htab->root.srelgot->size += RELOC_SIZE (htab);
7448 }
7449 }
7450 }
7451 else
7452 {
7453 h->got.offset = (bfd_vma) - 1;
7454 }
7455
7456 if (eh->dyn_relocs == NULL)
7457 return TRUE;
7458
7459 /* In the shared -Bsymbolic case, discard space allocated for
7460 dynamic pc-relative relocs against symbols which turn out to be
7461 defined in regular objects. For the normal shared case, discard
7462 space for pc-relative relocs that have become local due to symbol
7463 visibility changes. */
7464
7465 if (bfd_link_pic (info))
7466 {
7467 /* Relocs that use pc_count are those that appear on a call
7468 insn, or certain REL relocs that can generated via assembly.
7469 We want calls to protected symbols to resolve directly to the
7470 function rather than going via the plt. If people want
7471 function pointer comparisons to work as expected then they
7472 should avoid writing weird assembly. */
7473 if (SYMBOL_CALLS_LOCAL (info, h))
7474 {
7475 struct elf_dyn_relocs **pp;
7476
7477 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
7478 {
7479 p->count -= p->pc_count;
7480 p->pc_count = 0;
7481 if (p->count == 0)
7482 *pp = p->next;
7483 else
7484 pp = &p->next;
7485 }
7486 }
7487
7488 /* Also discard relocs on undefined weak syms with non-default
7489 visibility. */
7490 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
7491 {
7492 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
7493 eh->dyn_relocs = NULL;
7494
7495 /* Make sure undefined weak symbols are output as a dynamic
7496 symbol in PIEs. */
7497 else if (h->dynindx == -1
7498 && !h->forced_local
7499 && !bfd_elf_link_record_dynamic_symbol (info, h))
7500 return FALSE;
7501 }
7502
7503 }
7504 else if (ELIMINATE_COPY_RELOCS)
7505 {
7506 /* For the non-shared case, discard space for relocs against
7507 symbols which turn out to need copy relocs or are not
7508 dynamic. */
7509
7510 if (!h->non_got_ref
7511 && ((h->def_dynamic
7512 && !h->def_regular)
7513 || (htab->root.dynamic_sections_created
7514 && (h->root.type == bfd_link_hash_undefweak
7515 || h->root.type == bfd_link_hash_undefined))))
7516 {
7517 /* Make sure this symbol is output as a dynamic symbol.
7518 Undefined weak syms won't yet be marked as dynamic. */
7519 if (h->dynindx == -1
7520 && !h->forced_local
7521 && !bfd_elf_link_record_dynamic_symbol (info, h))
7522 return FALSE;
7523
7524 /* If that succeeded, we know we'll be keeping all the
7525 relocs. */
7526 if (h->dynindx != -1)
7527 goto keep;
7528 }
7529
7530 eh->dyn_relocs = NULL;
7531
7532 keep:;
7533 }
7534
7535 /* Finally, allocate space. */
7536 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7537 {
7538 asection *sreloc;
7539
7540 sreloc = elf_section_data (p->sec)->sreloc;
7541
7542 BFD_ASSERT (sreloc != NULL);
7543
7544 sreloc->size += p->count * RELOC_SIZE (htab);
7545 }
7546
7547 return TRUE;
7548 }
7549
7550 /* Allocate space in .plt, .got and associated reloc sections for
7551 ifunc dynamic relocs. */
7552
7553 static bfd_boolean
7554 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
7555 void *inf)
7556 {
7557 struct bfd_link_info *info;
7558 struct elf_aarch64_link_hash_table *htab;
7559 struct elf_aarch64_link_hash_entry *eh;
7560
7561 /* An example of a bfd_link_hash_indirect symbol is versioned
7562 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7563 -> __gxx_personality_v0(bfd_link_hash_defined)
7564
7565 There is no need to process bfd_link_hash_indirect symbols here
7566 because we will also be presented with the concrete instance of
7567 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
7568 called to copy all relevant data from the generic to the concrete
7569 symbol instance.
7570 */
7571 if (h->root.type == bfd_link_hash_indirect)
7572 return TRUE;
7573
7574 if (h->root.type == bfd_link_hash_warning)
7575 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7576
7577 info = (struct bfd_link_info *) inf;
7578 htab = elf_aarch64_hash_table (info);
7579
7580 eh = (struct elf_aarch64_link_hash_entry *) h;
7581
7582 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7583 here if it is defined and referenced in a non-shared object. */
7584 if (h->type == STT_GNU_IFUNC
7585 && h->def_regular)
7586 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
7587 &eh->dyn_relocs,
7588 htab->plt_entry_size,
7589 htab->plt_header_size,
7590 GOT_ENTRY_SIZE);
7591 return TRUE;
7592 }
7593
7594 /* Allocate space in .plt, .got and associated reloc sections for
7595 local dynamic relocs. */
7596
7597 static bfd_boolean
7598 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
7599 {
7600 struct elf_link_hash_entry *h
7601 = (struct elf_link_hash_entry *) *slot;
7602
7603 if (h->type != STT_GNU_IFUNC
7604 || !h->def_regular
7605 || !h->ref_regular
7606 || !h->forced_local
7607 || h->root.type != bfd_link_hash_defined)
7608 abort ();
7609
7610 return elfNN_aarch64_allocate_dynrelocs (h, inf);
7611 }
7612
7613 /* Allocate space in .plt, .got and associated reloc sections for
7614 local ifunc dynamic relocs. */
7615
7616 static bfd_boolean
7617 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
7618 {
7619 struct elf_link_hash_entry *h
7620 = (struct elf_link_hash_entry *) *slot;
7621
7622 if (h->type != STT_GNU_IFUNC
7623 || !h->def_regular
7624 || !h->ref_regular
7625 || !h->forced_local
7626 || h->root.type != bfd_link_hash_defined)
7627 abort ();
7628
7629 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
7630 }
7631
7632 /* Find any dynamic relocs that apply to read-only sections. */
7633
7634 static bfd_boolean
7635 aarch64_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
7636 {
7637 struct elf_aarch64_link_hash_entry * eh;
7638 struct elf_dyn_relocs * p;
7639
7640 eh = (struct elf_aarch64_link_hash_entry *) h;
7641 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7642 {
7643 asection *s = p->sec;
7644
7645 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7646 {
7647 struct bfd_link_info *info = (struct bfd_link_info *) inf;
7648
7649 info->flags |= DF_TEXTREL;
7650
7651 /* Not an error, just cut short the traversal. */
7652 return FALSE;
7653 }
7654 }
7655 return TRUE;
7656 }
7657
7658 /* This is the most important function of all . Innocuosly named
7659 though ! */
7660 static bfd_boolean
7661 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
7662 struct bfd_link_info *info)
7663 {
7664 struct elf_aarch64_link_hash_table *htab;
7665 bfd *dynobj;
7666 asection *s;
7667 bfd_boolean relocs;
7668 bfd *ibfd;
7669
7670 htab = elf_aarch64_hash_table ((info));
7671 dynobj = htab->root.dynobj;
7672
7673 BFD_ASSERT (dynobj != NULL);
7674
7675 if (htab->root.dynamic_sections_created)
7676 {
7677 if (bfd_link_executable (info))
7678 {
7679 s = bfd_get_linker_section (dynobj, ".interp");
7680 if (s == NULL)
7681 abort ();
7682 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
7683 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
7684 }
7685 }
7686
7687 /* Set up .got offsets for local syms, and space for local dynamic
7688 relocs. */
7689 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7690 {
7691 struct elf_aarch64_local_symbol *locals = NULL;
7692 Elf_Internal_Shdr *symtab_hdr;
7693 asection *srel;
7694 unsigned int i;
7695
7696 if (!is_aarch64_elf (ibfd))
7697 continue;
7698
7699 for (s = ibfd->sections; s != NULL; s = s->next)
7700 {
7701 struct elf_dyn_relocs *p;
7702
7703 for (p = (struct elf_dyn_relocs *)
7704 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
7705 {
7706 if (!bfd_is_abs_section (p->sec)
7707 && bfd_is_abs_section (p->sec->output_section))
7708 {
7709 /* Input section has been discarded, either because
7710 it is a copy of a linkonce section or due to
7711 linker script /DISCARD/, so we'll be discarding
7712 the relocs too. */
7713 }
7714 else if (p->count != 0)
7715 {
7716 srel = elf_section_data (p->sec)->sreloc;
7717 srel->size += p->count * RELOC_SIZE (htab);
7718 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
7719 info->flags |= DF_TEXTREL;
7720 }
7721 }
7722 }
7723
7724 locals = elf_aarch64_locals (ibfd);
7725 if (!locals)
7726 continue;
7727
7728 symtab_hdr = &elf_symtab_hdr (ibfd);
7729 srel = htab->root.srelgot;
7730 for (i = 0; i < symtab_hdr->sh_info; i++)
7731 {
7732 locals[i].got_offset = (bfd_vma) - 1;
7733 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
7734 if (locals[i].got_refcount > 0)
7735 {
7736 unsigned got_type = locals[i].got_type;
7737 if (got_type & GOT_TLSDESC_GD)
7738 {
7739 locals[i].tlsdesc_got_jump_table_offset =
7740 (htab->root.sgotplt->size
7741 - aarch64_compute_jump_table_size (htab));
7742 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
7743 locals[i].got_offset = (bfd_vma) - 2;
7744 }
7745
7746 if (got_type & GOT_TLS_GD)
7747 {
7748 locals[i].got_offset = htab->root.sgot->size;
7749 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
7750 }
7751
7752 if (got_type & GOT_TLS_IE
7753 || got_type & GOT_NORMAL)
7754 {
7755 locals[i].got_offset = htab->root.sgot->size;
7756 htab->root.sgot->size += GOT_ENTRY_SIZE;
7757 }
7758
7759 if (got_type == GOT_UNKNOWN)
7760 {
7761 }
7762
7763 if (bfd_link_pic (info))
7764 {
7765 if (got_type & GOT_TLSDESC_GD)
7766 {
7767 htab->root.srelplt->size += RELOC_SIZE (htab);
7768 /* Note RELOC_COUNT not incremented here! */
7769 htab->tlsdesc_plt = (bfd_vma) - 1;
7770 }
7771
7772 if (got_type & GOT_TLS_GD)
7773 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
7774
7775 if (got_type & GOT_TLS_IE
7776 || got_type & GOT_NORMAL)
7777 htab->root.srelgot->size += RELOC_SIZE (htab);
7778 }
7779 }
7780 else
7781 {
7782 locals[i].got_refcount = (bfd_vma) - 1;
7783 }
7784 }
7785 }
7786
7787
7788 /* Allocate global sym .plt and .got entries, and space for global
7789 sym dynamic relocs. */
7790 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
7791 info);
7792
7793 /* Allocate global ifunc sym .plt and .got entries, and space for global
7794 ifunc sym dynamic relocs. */
7795 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
7796 info);
7797
7798 /* Allocate .plt and .got entries, and space for local symbols. */
7799 htab_traverse (htab->loc_hash_table,
7800 elfNN_aarch64_allocate_local_dynrelocs,
7801 info);
7802
7803 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
7804 htab_traverse (htab->loc_hash_table,
7805 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
7806 info);
7807
7808 /* For every jump slot reserved in the sgotplt, reloc_count is
7809 incremented. However, when we reserve space for TLS descriptors,
7810 it's not incremented, so in order to compute the space reserved
7811 for them, it suffices to multiply the reloc count by the jump
7812 slot size. */
7813
7814 if (htab->root.srelplt)
7815 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
7816
7817 if (htab->tlsdesc_plt)
7818 {
7819 if (htab->root.splt->size == 0)
7820 htab->root.splt->size += PLT_ENTRY_SIZE;
7821
7822 htab->tlsdesc_plt = htab->root.splt->size;
7823 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
7824
7825 /* If we're not using lazy TLS relocations, don't generate the
7826 GOT entry required. */
7827 if (!(info->flags & DF_BIND_NOW))
7828 {
7829 htab->dt_tlsdesc_got = htab->root.sgot->size;
7830 htab->root.sgot->size += GOT_ENTRY_SIZE;
7831 }
7832 }
7833
7834 /* Init mapping symbols information to use later to distingush between
7835 code and data while scanning for errata. */
7836 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
7837 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7838 {
7839 if (!is_aarch64_elf (ibfd))
7840 continue;
7841 bfd_elfNN_aarch64_init_maps (ibfd);
7842 }
7843
7844 /* We now have determined the sizes of the various dynamic sections.
7845 Allocate memory for them. */
7846 relocs = FALSE;
7847 for (s = dynobj->sections; s != NULL; s = s->next)
7848 {
7849 if ((s->flags & SEC_LINKER_CREATED) == 0)
7850 continue;
7851
7852 if (s == htab->root.splt
7853 || s == htab->root.sgot
7854 || s == htab->root.sgotplt
7855 || s == htab->root.iplt
7856 || s == htab->root.igotplt || s == htab->sdynbss)
7857 {
7858 /* Strip this section if we don't need it; see the
7859 comment below. */
7860 }
7861 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
7862 {
7863 if (s->size != 0 && s != htab->root.srelplt)
7864 relocs = TRUE;
7865
7866 /* We use the reloc_count field as a counter if we need
7867 to copy relocs into the output file. */
7868 if (s != htab->root.srelplt)
7869 s->reloc_count = 0;
7870 }
7871 else
7872 {
7873 /* It's not one of our sections, so don't allocate space. */
7874 continue;
7875 }
7876
7877 if (s->size == 0)
7878 {
7879 /* If we don't need this section, strip it from the
7880 output file. This is mostly to handle .rela.bss and
7881 .rela.plt. We must create both sections in
7882 create_dynamic_sections, because they must be created
7883 before the linker maps input sections to output
7884 sections. The linker does that before
7885 adjust_dynamic_symbol is called, and it is that
7886 function which decides whether anything needs to go
7887 into these sections. */
7888
7889 s->flags |= SEC_EXCLUDE;
7890 continue;
7891 }
7892
7893 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7894 continue;
7895
7896 /* Allocate memory for the section contents. We use bfd_zalloc
7897 here in case unused entries are not reclaimed before the
7898 section's contents are written out. This should not happen,
7899 but this way if it does, we get a R_AARCH64_NONE reloc instead
7900 of garbage. */
7901 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
7902 if (s->contents == NULL)
7903 return FALSE;
7904 }
7905
7906 if (htab->root.dynamic_sections_created)
7907 {
7908 /* Add some entries to the .dynamic section. We fill in the
7909 values later, in elfNN_aarch64_finish_dynamic_sections, but we
7910 must add the entries now so that we get the correct size for
7911 the .dynamic section. The DT_DEBUG entry is filled in by the
7912 dynamic linker and used by the debugger. */
7913 #define add_dynamic_entry(TAG, VAL) \
7914 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
7915
7916 if (bfd_link_executable (info))
7917 {
7918 if (!add_dynamic_entry (DT_DEBUG, 0))
7919 return FALSE;
7920 }
7921
7922 if (htab->root.splt->size != 0)
7923 {
7924 if (!add_dynamic_entry (DT_PLTGOT, 0)
7925 || !add_dynamic_entry (DT_PLTRELSZ, 0)
7926 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
7927 || !add_dynamic_entry (DT_JMPREL, 0))
7928 return FALSE;
7929
7930 if (htab->tlsdesc_plt
7931 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
7932 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
7933 return FALSE;
7934 }
7935
7936 if (relocs)
7937 {
7938 if (!add_dynamic_entry (DT_RELA, 0)
7939 || !add_dynamic_entry (DT_RELASZ, 0)
7940 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
7941 return FALSE;
7942
7943 /* If any dynamic relocs apply to a read-only section,
7944 then we need a DT_TEXTREL entry. */
7945 if ((info->flags & DF_TEXTREL) == 0)
7946 elf_link_hash_traverse (& htab->root, aarch64_readonly_dynrelocs,
7947 info);
7948
7949 if ((info->flags & DF_TEXTREL) != 0)
7950 {
7951 if (!add_dynamic_entry (DT_TEXTREL, 0))
7952 return FALSE;
7953 }
7954 }
7955 }
7956 #undef add_dynamic_entry
7957
7958 return TRUE;
7959 }
7960
7961 static inline void
7962 elf_aarch64_update_plt_entry (bfd *output_bfd,
7963 bfd_reloc_code_real_type r_type,
7964 bfd_byte *plt_entry, bfd_vma value)
7965 {
7966 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
7967
7968 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
7969 }
7970
7971 static void
7972 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
7973 struct elf_aarch64_link_hash_table
7974 *htab, bfd *output_bfd,
7975 struct bfd_link_info *info)
7976 {
7977 bfd_byte *plt_entry;
7978 bfd_vma plt_index;
7979 bfd_vma got_offset;
7980 bfd_vma gotplt_entry_address;
7981 bfd_vma plt_entry_address;
7982 Elf_Internal_Rela rela;
7983 bfd_byte *loc;
7984 asection *plt, *gotplt, *relplt;
7985
7986 /* When building a static executable, use .iplt, .igot.plt and
7987 .rela.iplt sections for STT_GNU_IFUNC symbols. */
7988 if (htab->root.splt != NULL)
7989 {
7990 plt = htab->root.splt;
7991 gotplt = htab->root.sgotplt;
7992 relplt = htab->root.srelplt;
7993 }
7994 else
7995 {
7996 plt = htab->root.iplt;
7997 gotplt = htab->root.igotplt;
7998 relplt = htab->root.irelplt;
7999 }
8000
8001 /* Get the index in the procedure linkage table which
8002 corresponds to this symbol. This is the index of this symbol
8003 in all the symbols for which we are making plt entries. The
8004 first entry in the procedure linkage table is reserved.
8005
8006 Get the offset into the .got table of the entry that
8007 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8008 bytes. The first three are reserved for the dynamic linker.
8009
8010 For static executables, we don't reserve anything. */
8011
8012 if (plt == htab->root.splt)
8013 {
8014 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8015 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8016 }
8017 else
8018 {
8019 plt_index = h->plt.offset / htab->plt_entry_size;
8020 got_offset = plt_index * GOT_ENTRY_SIZE;
8021 }
8022
8023 plt_entry = plt->contents + h->plt.offset;
8024 plt_entry_address = plt->output_section->vma
8025 + plt->output_offset + h->plt.offset;
8026 gotplt_entry_address = gotplt->output_section->vma +
8027 gotplt->output_offset + got_offset;
8028
8029 /* Copy in the boiler-plate for the PLTn entry. */
8030 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
8031
8032 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8033 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8034 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8035 plt_entry,
8036 PG (gotplt_entry_address) -
8037 PG (plt_entry_address));
8038
8039 /* Fill in the lo12 bits for the load from the pltgot. */
8040 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8041 plt_entry + 4,
8042 PG_OFFSET (gotplt_entry_address));
8043
8044 /* Fill in the lo12 bits for the add from the pltgot entry. */
8045 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8046 plt_entry + 8,
8047 PG_OFFSET (gotplt_entry_address));
8048
8049 /* All the GOTPLT Entries are essentially initialized to PLT0. */
8050 bfd_put_NN (output_bfd,
8051 plt->output_section->vma + plt->output_offset,
8052 gotplt->contents + got_offset);
8053
8054 rela.r_offset = gotplt_entry_address;
8055
8056 if (h->dynindx == -1
8057 || ((bfd_link_executable (info)
8058 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8059 && h->def_regular
8060 && h->type == STT_GNU_IFUNC))
8061 {
8062 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8063 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8064 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8065 rela.r_addend = (h->root.u.def.value
8066 + h->root.u.def.section->output_section->vma
8067 + h->root.u.def.section->output_offset);
8068 }
8069 else
8070 {
8071 /* Fill in the entry in the .rela.plt section. */
8072 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8073 rela.r_addend = 0;
8074 }
8075
8076 /* Compute the relocation entry to used based on PLT index and do
8077 not adjust reloc_count. The reloc_count has already been adjusted
8078 to account for this entry. */
8079 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
8080 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8081 }
8082
8083 /* Size sections even though they're not dynamic. We use it to setup
8084 _TLS_MODULE_BASE_, if needed. */
8085
8086 static bfd_boolean
8087 elfNN_aarch64_always_size_sections (bfd *output_bfd,
8088 struct bfd_link_info *info)
8089 {
8090 asection *tls_sec;
8091
8092 if (bfd_link_relocatable (info))
8093 return TRUE;
8094
8095 tls_sec = elf_hash_table (info)->tls_sec;
8096
8097 if (tls_sec)
8098 {
8099 struct elf_link_hash_entry *tlsbase;
8100
8101 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8102 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8103
8104 if (tlsbase)
8105 {
8106 struct bfd_link_hash_entry *h = NULL;
8107 const struct elf_backend_data *bed =
8108 get_elf_backend_data (output_bfd);
8109
8110 if (!(_bfd_generic_link_add_one_symbol
8111 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8112 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8113 return FALSE;
8114
8115 tlsbase->type = STT_TLS;
8116 tlsbase = (struct elf_link_hash_entry *) h;
8117 tlsbase->def_regular = 1;
8118 tlsbase->other = STV_HIDDEN;
8119 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8120 }
8121 }
8122
8123 return TRUE;
8124 }
8125
8126 /* Finish up dynamic symbol handling. We set the contents of various
8127 dynamic sections here. */
8128 static bfd_boolean
8129 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
8130 struct bfd_link_info *info,
8131 struct elf_link_hash_entry *h,
8132 Elf_Internal_Sym *sym)
8133 {
8134 struct elf_aarch64_link_hash_table *htab;
8135 htab = elf_aarch64_hash_table (info);
8136
8137 if (h->plt.offset != (bfd_vma) - 1)
8138 {
8139 asection *plt, *gotplt, *relplt;
8140
8141 /* This symbol has an entry in the procedure linkage table. Set
8142 it up. */
8143
8144 /* When building a static executable, use .iplt, .igot.plt and
8145 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8146 if (htab->root.splt != NULL)
8147 {
8148 plt = htab->root.splt;
8149 gotplt = htab->root.sgotplt;
8150 relplt = htab->root.srelplt;
8151 }
8152 else
8153 {
8154 plt = htab->root.iplt;
8155 gotplt = htab->root.igotplt;
8156 relplt = htab->root.irelplt;
8157 }
8158
8159 /* This symbol has an entry in the procedure linkage table. Set
8160 it up. */
8161 if ((h->dynindx == -1
8162 && !((h->forced_local || bfd_link_executable (info))
8163 && h->def_regular
8164 && h->type == STT_GNU_IFUNC))
8165 || plt == NULL
8166 || gotplt == NULL
8167 || relplt == NULL)
8168 abort ();
8169
8170 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
8171 if (!h->def_regular)
8172 {
8173 /* Mark the symbol as undefined, rather than as defined in
8174 the .plt section. */
8175 sym->st_shndx = SHN_UNDEF;
8176 /* If the symbol is weak we need to clear the value.
8177 Otherwise, the PLT entry would provide a definition for
8178 the symbol even if the symbol wasn't defined anywhere,
8179 and so the symbol would never be NULL. Leave the value if
8180 there were any relocations where pointer equality matters
8181 (this is a clue for the dynamic linker, to make function
8182 pointer comparisons work between an application and shared
8183 library). */
8184 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8185 sym->st_value = 0;
8186 }
8187 }
8188
8189 if (h->got.offset != (bfd_vma) - 1
8190 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
8191 {
8192 Elf_Internal_Rela rela;
8193 bfd_byte *loc;
8194
8195 /* This symbol has an entry in the global offset table. Set it
8196 up. */
8197 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
8198 abort ();
8199
8200 rela.r_offset = (htab->root.sgot->output_section->vma
8201 + htab->root.sgot->output_offset
8202 + (h->got.offset & ~(bfd_vma) 1));
8203
8204 if (h->def_regular
8205 && h->type == STT_GNU_IFUNC)
8206 {
8207 if (bfd_link_pic (info))
8208 {
8209 /* Generate R_AARCH64_GLOB_DAT. */
8210 goto do_glob_dat;
8211 }
8212 else
8213 {
8214 asection *plt;
8215
8216 if (!h->pointer_equality_needed)
8217 abort ();
8218
8219 /* For non-shared object, we can't use .got.plt, which
8220 contains the real function address if we need pointer
8221 equality. We load the GOT entry with the PLT entry. */
8222 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
8223 bfd_put_NN (output_bfd, (plt->output_section->vma
8224 + plt->output_offset
8225 + h->plt.offset),
8226 htab->root.sgot->contents
8227 + (h->got.offset & ~(bfd_vma) 1));
8228 return TRUE;
8229 }
8230 }
8231 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
8232 {
8233 if (!h->def_regular)
8234 return FALSE;
8235
8236 BFD_ASSERT ((h->got.offset & 1) != 0);
8237 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
8238 rela.r_addend = (h->root.u.def.value
8239 + h->root.u.def.section->output_section->vma
8240 + h->root.u.def.section->output_offset);
8241 }
8242 else
8243 {
8244 do_glob_dat:
8245 BFD_ASSERT ((h->got.offset & 1) == 0);
8246 bfd_put_NN (output_bfd, (bfd_vma) 0,
8247 htab->root.sgot->contents + h->got.offset);
8248 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
8249 rela.r_addend = 0;
8250 }
8251
8252 loc = htab->root.srelgot->contents;
8253 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
8254 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8255 }
8256
8257 if (h->needs_copy)
8258 {
8259 Elf_Internal_Rela rela;
8260 bfd_byte *loc;
8261
8262 /* This symbol needs a copy reloc. Set it up. */
8263
8264 if (h->dynindx == -1
8265 || (h->root.type != bfd_link_hash_defined
8266 && h->root.type != bfd_link_hash_defweak)
8267 || htab->srelbss == NULL)
8268 abort ();
8269
8270 rela.r_offset = (h->root.u.def.value
8271 + h->root.u.def.section->output_section->vma
8272 + h->root.u.def.section->output_offset);
8273 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
8274 rela.r_addend = 0;
8275 loc = htab->srelbss->contents;
8276 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
8277 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8278 }
8279
8280 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
8281 be NULL for local symbols. */
8282 if (sym != NULL
8283 && (h == elf_hash_table (info)->hdynamic
8284 || h == elf_hash_table (info)->hgot))
8285 sym->st_shndx = SHN_ABS;
8286
8287 return TRUE;
8288 }
8289
8290 /* Finish up local dynamic symbol handling. We set the contents of
8291 various dynamic sections here. */
8292
8293 static bfd_boolean
8294 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
8295 {
8296 struct elf_link_hash_entry *h
8297 = (struct elf_link_hash_entry *) *slot;
8298 struct bfd_link_info *info
8299 = (struct bfd_link_info *) inf;
8300
8301 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
8302 info, h, NULL);
8303 }
8304
8305 static void
8306 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
8307 struct elf_aarch64_link_hash_table
8308 *htab)
8309 {
8310 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
8311 small and large plts and at the minute just generates
8312 the small PLT. */
8313
8314 /* PLT0 of the small PLT looks like this in ELF64 -
8315 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
8316 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
8317 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
8318 // symbol resolver
8319 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
8320 // GOTPLT entry for this.
8321 br x17
8322 PLT0 will be slightly different in ELF32 due to different got entry
8323 size.
8324 */
8325 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
8326 bfd_vma plt_base;
8327
8328
8329 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
8330 PLT_ENTRY_SIZE);
8331 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
8332 PLT_ENTRY_SIZE;
8333
8334 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
8335 + htab->root.sgotplt->output_offset
8336 + GOT_ENTRY_SIZE * 2);
8337
8338 plt_base = htab->root.splt->output_section->vma +
8339 htab->root.splt->output_offset;
8340
8341 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8342 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8343 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8344 htab->root.splt->contents + 4,
8345 PG (plt_got_2nd_ent) - PG (plt_base + 4));
8346
8347 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8348 htab->root.splt->contents + 8,
8349 PG_OFFSET (plt_got_2nd_ent));
8350
8351 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8352 htab->root.splt->contents + 12,
8353 PG_OFFSET (plt_got_2nd_ent));
8354 }
8355
8356 static bfd_boolean
8357 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
8358 struct bfd_link_info *info)
8359 {
8360 struct elf_aarch64_link_hash_table *htab;
8361 bfd *dynobj;
8362 asection *sdyn;
8363
8364 htab = elf_aarch64_hash_table (info);
8365 dynobj = htab->root.dynobj;
8366 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
8367
8368 if (htab->root.dynamic_sections_created)
8369 {
8370 ElfNN_External_Dyn *dyncon, *dynconend;
8371
8372 if (sdyn == NULL || htab->root.sgot == NULL)
8373 abort ();
8374
8375 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
8376 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
8377 for (; dyncon < dynconend; dyncon++)
8378 {
8379 Elf_Internal_Dyn dyn;
8380 asection *s;
8381
8382 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
8383
8384 switch (dyn.d_tag)
8385 {
8386 default:
8387 continue;
8388
8389 case DT_PLTGOT:
8390 s = htab->root.sgotplt;
8391 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8392 break;
8393
8394 case DT_JMPREL:
8395 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
8396 break;
8397
8398 case DT_PLTRELSZ:
8399 s = htab->root.srelplt;
8400 dyn.d_un.d_val = s->size;
8401 break;
8402
8403 case DT_RELASZ:
8404 /* The procedure linkage table relocs (DT_JMPREL) should
8405 not be included in the overall relocs (DT_RELA).
8406 Therefore, we override the DT_RELASZ entry here to
8407 make it not include the JMPREL relocs. Since the
8408 linker script arranges for .rela.plt to follow all
8409 other relocation sections, we don't have to worry
8410 about changing the DT_RELA entry. */
8411 if (htab->root.srelplt != NULL)
8412 {
8413 s = htab->root.srelplt;
8414 dyn.d_un.d_val -= s->size;
8415 }
8416 break;
8417
8418 case DT_TLSDESC_PLT:
8419 s = htab->root.splt;
8420 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
8421 + htab->tlsdesc_plt;
8422 break;
8423
8424 case DT_TLSDESC_GOT:
8425 s = htab->root.sgot;
8426 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
8427 + htab->dt_tlsdesc_got;
8428 break;
8429 }
8430
8431 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
8432 }
8433
8434 }
8435
8436 /* Fill in the special first entry in the procedure linkage table. */
8437 if (htab->root.splt && htab->root.splt->size > 0)
8438 {
8439 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
8440
8441 elf_section_data (htab->root.splt->output_section)->
8442 this_hdr.sh_entsize = htab->plt_entry_size;
8443
8444
8445 if (htab->tlsdesc_plt)
8446 {
8447 bfd_put_NN (output_bfd, (bfd_vma) 0,
8448 htab->root.sgot->contents + htab->dt_tlsdesc_got);
8449
8450 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
8451 elfNN_aarch64_tlsdesc_small_plt_entry,
8452 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
8453
8454 {
8455 bfd_vma adrp1_addr =
8456 htab->root.splt->output_section->vma
8457 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
8458
8459 bfd_vma adrp2_addr = adrp1_addr + 4;
8460
8461 bfd_vma got_addr =
8462 htab->root.sgot->output_section->vma
8463 + htab->root.sgot->output_offset;
8464
8465 bfd_vma pltgot_addr =
8466 htab->root.sgotplt->output_section->vma
8467 + htab->root.sgotplt->output_offset;
8468
8469 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
8470
8471 bfd_byte *plt_entry =
8472 htab->root.splt->contents + htab->tlsdesc_plt;
8473
8474 /* adrp x2, DT_TLSDESC_GOT */
8475 elf_aarch64_update_plt_entry (output_bfd,
8476 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8477 plt_entry + 4,
8478 (PG (dt_tlsdesc_got)
8479 - PG (adrp1_addr)));
8480
8481 /* adrp x3, 0 */
8482 elf_aarch64_update_plt_entry (output_bfd,
8483 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8484 plt_entry + 8,
8485 (PG (pltgot_addr)
8486 - PG (adrp2_addr)));
8487
8488 /* ldr x2, [x2, #0] */
8489 elf_aarch64_update_plt_entry (output_bfd,
8490 BFD_RELOC_AARCH64_LDSTNN_LO12,
8491 plt_entry + 12,
8492 PG_OFFSET (dt_tlsdesc_got));
8493
8494 /* add x3, x3, 0 */
8495 elf_aarch64_update_plt_entry (output_bfd,
8496 BFD_RELOC_AARCH64_ADD_LO12,
8497 plt_entry + 16,
8498 PG_OFFSET (pltgot_addr));
8499 }
8500 }
8501 }
8502
8503 if (htab->root.sgotplt)
8504 {
8505 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
8506 {
8507 (*_bfd_error_handler)
8508 (_("discarded output section: `%A'"), htab->root.sgotplt);
8509 return FALSE;
8510 }
8511
8512 /* Fill in the first three entries in the global offset table. */
8513 if (htab->root.sgotplt->size > 0)
8514 {
8515 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
8516
8517 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
8518 bfd_put_NN (output_bfd,
8519 (bfd_vma) 0,
8520 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
8521 bfd_put_NN (output_bfd,
8522 (bfd_vma) 0,
8523 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
8524 }
8525
8526 if (htab->root.sgot)
8527 {
8528 if (htab->root.sgot->size > 0)
8529 {
8530 bfd_vma addr =
8531 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
8532 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
8533 }
8534 }
8535
8536 elf_section_data (htab->root.sgotplt->output_section)->
8537 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
8538 }
8539
8540 if (htab->root.sgot && htab->root.sgot->size > 0)
8541 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
8542 = GOT_ENTRY_SIZE;
8543
8544 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
8545 htab_traverse (htab->loc_hash_table,
8546 elfNN_aarch64_finish_local_dynamic_symbol,
8547 info);
8548
8549 return TRUE;
8550 }
8551
8552 /* Return address for Ith PLT stub in section PLT, for relocation REL
8553 or (bfd_vma) -1 if it should not be included. */
8554
8555 static bfd_vma
8556 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
8557 const arelent *rel ATTRIBUTE_UNUSED)
8558 {
8559 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
8560 }
8561
8562
8563 /* We use this so we can override certain functions
8564 (though currently we don't). */
8565
8566 const struct elf_size_info elfNN_aarch64_size_info =
8567 {
8568 sizeof (ElfNN_External_Ehdr),
8569 sizeof (ElfNN_External_Phdr),
8570 sizeof (ElfNN_External_Shdr),
8571 sizeof (ElfNN_External_Rel),
8572 sizeof (ElfNN_External_Rela),
8573 sizeof (ElfNN_External_Sym),
8574 sizeof (ElfNN_External_Dyn),
8575 sizeof (Elf_External_Note),
8576 4, /* Hash table entry size. */
8577 1, /* Internal relocs per external relocs. */
8578 ARCH_SIZE, /* Arch size. */
8579 LOG_FILE_ALIGN, /* Log_file_align. */
8580 ELFCLASSNN, EV_CURRENT,
8581 bfd_elfNN_write_out_phdrs,
8582 bfd_elfNN_write_shdrs_and_ehdr,
8583 bfd_elfNN_checksum_contents,
8584 bfd_elfNN_write_relocs,
8585 bfd_elfNN_swap_symbol_in,
8586 bfd_elfNN_swap_symbol_out,
8587 bfd_elfNN_slurp_reloc_table,
8588 bfd_elfNN_slurp_symbol_table,
8589 bfd_elfNN_swap_dyn_in,
8590 bfd_elfNN_swap_dyn_out,
8591 bfd_elfNN_swap_reloc_in,
8592 bfd_elfNN_swap_reloc_out,
8593 bfd_elfNN_swap_reloca_in,
8594 bfd_elfNN_swap_reloca_out
8595 };
8596
8597 #define ELF_ARCH bfd_arch_aarch64
8598 #define ELF_MACHINE_CODE EM_AARCH64
8599 #define ELF_MAXPAGESIZE 0x10000
8600 #define ELF_MINPAGESIZE 0x1000
8601 #define ELF_COMMONPAGESIZE 0x1000
8602
8603 #define bfd_elfNN_close_and_cleanup \
8604 elfNN_aarch64_close_and_cleanup
8605
8606 #define bfd_elfNN_bfd_free_cached_info \
8607 elfNN_aarch64_bfd_free_cached_info
8608
8609 #define bfd_elfNN_bfd_is_target_special_symbol \
8610 elfNN_aarch64_is_target_special_symbol
8611
8612 #define bfd_elfNN_bfd_link_hash_table_create \
8613 elfNN_aarch64_link_hash_table_create
8614
8615 #define bfd_elfNN_bfd_merge_private_bfd_data \
8616 elfNN_aarch64_merge_private_bfd_data
8617
8618 #define bfd_elfNN_bfd_print_private_bfd_data \
8619 elfNN_aarch64_print_private_bfd_data
8620
8621 #define bfd_elfNN_bfd_reloc_type_lookup \
8622 elfNN_aarch64_reloc_type_lookup
8623
8624 #define bfd_elfNN_bfd_reloc_name_lookup \
8625 elfNN_aarch64_reloc_name_lookup
8626
8627 #define bfd_elfNN_bfd_set_private_flags \
8628 elfNN_aarch64_set_private_flags
8629
8630 #define bfd_elfNN_find_inliner_info \
8631 elfNN_aarch64_find_inliner_info
8632
8633 #define bfd_elfNN_find_nearest_line \
8634 elfNN_aarch64_find_nearest_line
8635
8636 #define bfd_elfNN_mkobject \
8637 elfNN_aarch64_mkobject
8638
8639 #define bfd_elfNN_new_section_hook \
8640 elfNN_aarch64_new_section_hook
8641
8642 #define elf_backend_adjust_dynamic_symbol \
8643 elfNN_aarch64_adjust_dynamic_symbol
8644
8645 #define elf_backend_always_size_sections \
8646 elfNN_aarch64_always_size_sections
8647
8648 #define elf_backend_check_relocs \
8649 elfNN_aarch64_check_relocs
8650
8651 #define elf_backend_copy_indirect_symbol \
8652 elfNN_aarch64_copy_indirect_symbol
8653
8654 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
8655 to them in our hash. */
8656 #define elf_backend_create_dynamic_sections \
8657 elfNN_aarch64_create_dynamic_sections
8658
8659 #define elf_backend_init_index_section \
8660 _bfd_elf_init_2_index_sections
8661
8662 #define elf_backend_finish_dynamic_sections \
8663 elfNN_aarch64_finish_dynamic_sections
8664
8665 #define elf_backend_finish_dynamic_symbol \
8666 elfNN_aarch64_finish_dynamic_symbol
8667
8668 #define elf_backend_gc_sweep_hook \
8669 elfNN_aarch64_gc_sweep_hook
8670
8671 #define elf_backend_object_p \
8672 elfNN_aarch64_object_p
8673
8674 #define elf_backend_output_arch_local_syms \
8675 elfNN_aarch64_output_arch_local_syms
8676
8677 #define elf_backend_plt_sym_val \
8678 elfNN_aarch64_plt_sym_val
8679
8680 #define elf_backend_post_process_headers \
8681 elfNN_aarch64_post_process_headers
8682
8683 #define elf_backend_relocate_section \
8684 elfNN_aarch64_relocate_section
8685
8686 #define elf_backend_reloc_type_class \
8687 elfNN_aarch64_reloc_type_class
8688
8689 #define elf_backend_section_from_shdr \
8690 elfNN_aarch64_section_from_shdr
8691
8692 #define elf_backend_size_dynamic_sections \
8693 elfNN_aarch64_size_dynamic_sections
8694
8695 #define elf_backend_size_info \
8696 elfNN_aarch64_size_info
8697
8698 #define elf_backend_write_section \
8699 elfNN_aarch64_write_section
8700
8701 #define elf_backend_can_refcount 1
8702 #define elf_backend_can_gc_sections 1
8703 #define elf_backend_plt_readonly 1
8704 #define elf_backend_want_got_plt 1
8705 #define elf_backend_want_plt_sym 0
8706 #define elf_backend_may_use_rel_p 0
8707 #define elf_backend_may_use_rela_p 1
8708 #define elf_backend_default_use_rela_p 1
8709 #define elf_backend_rela_normal 1
8710 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
8711 #define elf_backend_default_execstack 0
8712 #define elf_backend_extern_protected_data 1
8713
8714 #undef elf_backend_obj_attrs_section
8715 #define elf_backend_obj_attrs_section ".ARM.attributes"
8716
8717 #include "elfNN-target.h"
This page took 0.199723 seconds and 5 git commands to generate.