Fix problems with the AArch64 linker exposed by testing it with sanitization enabled.
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2020 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147 #include "cpu-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
220 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
221
222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
223 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
245
246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
247 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
258 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
259
260 #define ELIMINATE_COPY_RELOCS 1
261
262 /* Return size of a relocation entry. HTAB is the bfd's
263 elf_aarch64_link_hash_entry. */
264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
265
266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
267 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
268 #define PLT_ENTRY_SIZE (32)
269 #define PLT_SMALL_ENTRY_SIZE (16)
270 #define PLT_TLSDESC_ENTRY_SIZE (32)
271 /* PLT sizes with BTI insn. */
272 #define PLT_BTI_SMALL_ENTRY_SIZE (24)
273 /* PLT sizes with PAC insn. */
274 #define PLT_PAC_SMALL_ENTRY_SIZE (24)
275 /* PLT sizes with BTI and PAC insn. */
276 #define PLT_BTI_PAC_SMALL_ENTRY_SIZE (24)
277
278 /* Encoding of the nop instruction. */
279 #define INSN_NOP 0xd503201f
280
281 #define aarch64_compute_jump_table_size(htab) \
282 (((htab)->root.srelplt == NULL) ? 0 \
283 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
284
285 /* The first entry in a procedure linkage table looks like this
286 if the distance between the PLTGOT and the PLT is < 4GB use
287 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
288 in x16 and needs to work out PLTGOT[1] by using an address of
289 [x16,#-GOT_ENTRY_SIZE]. */
290 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
291 {
292 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
293 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
294 #if ARCH_SIZE == 64
295 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
296 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
297 #else
298 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
299 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
300 #endif
301 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
302 0x1f, 0x20, 0x03, 0xd5, /* nop */
303 0x1f, 0x20, 0x03, 0xd5, /* nop */
304 0x1f, 0x20, 0x03, 0xd5, /* nop */
305 };
306
307 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry[PLT_ENTRY_SIZE] =
308 {
309 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
310 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
311 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
312 #if ARCH_SIZE == 64
313 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
314 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
315 #else
316 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
317 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
318 #endif
319 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 0x1f, 0x20, 0x03, 0xd5, /* nop */
322 };
323
324 /* Per function entry in a procedure linkage table looks like this
325 if the distance between the PLTGOT and the PLT is < 4GB use
326 these PLT entries. Use BTI versions of the PLTs when enabled. */
327 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
328 {
329 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
330 #if ARCH_SIZE == 64
331 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
332 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
333 #else
334 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
335 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
336 #endif
337 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
338 };
339
340 static const bfd_byte
341 elfNN_aarch64_small_plt_bti_entry[PLT_BTI_SMALL_ENTRY_SIZE] =
342 {
343 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
344 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
345 #if ARCH_SIZE == 64
346 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
347 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
348 #else
349 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
350 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
351 #endif
352 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
353 0x1f, 0x20, 0x03, 0xd5, /* nop */
354 };
355
356 static const bfd_byte
357 elfNN_aarch64_small_plt_pac_entry[PLT_PAC_SMALL_ENTRY_SIZE] =
358 {
359 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
360 #if ARCH_SIZE == 64
361 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
362 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
363 #else
364 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
365 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
366 #endif
367 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
368 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
369 0x1f, 0x20, 0x03, 0xd5, /* nop */
370 };
371
372 static const bfd_byte
373 elfNN_aarch64_small_plt_bti_pac_entry[PLT_BTI_PAC_SMALL_ENTRY_SIZE] =
374 {
375 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
376 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
377 #if ARCH_SIZE == 64
378 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
379 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
380 #else
381 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
382 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
383 #endif
384 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
385 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
386 };
387
388 static const bfd_byte
389 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
390 {
391 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
392 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
393 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
394 #if ARCH_SIZE == 64
395 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
396 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
397 #else
398 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
399 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
400 #endif
401 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
402 0x1f, 0x20, 0x03, 0xd5, /* nop */
403 0x1f, 0x20, 0x03, 0xd5, /* nop */
404 };
405
406 static const bfd_byte
407 elfNN_aarch64_tlsdesc_small_plt_bti_entry[PLT_TLSDESC_ENTRY_SIZE] =
408 {
409 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
410 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
411 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
412 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
413 #if ARCH_SIZE == 64
414 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
415 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
416 #else
417 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
418 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
419 #endif
420 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
421 0x1f, 0x20, 0x03, 0xd5, /* nop */
422 };
423
424 #define elf_info_to_howto elfNN_aarch64_info_to_howto
425 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
426
427 #define AARCH64_ELF_ABI_VERSION 0
428
429 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
430 #define ALL_ONES (~ (bfd_vma) 0)
431
432 /* Indexed by the bfd interal reloc enumerators.
433 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
434 in reloc.c. */
435
436 static reloc_howto_type elfNN_aarch64_howto_table[] =
437 {
438 EMPTY_HOWTO (0),
439
440 /* Basic data relocations. */
441
442 /* Deprecated, but retained for backwards compatibility. */
443 HOWTO64 (R_AARCH64_NULL, /* type */
444 0, /* rightshift */
445 3, /* size (0 = byte, 1 = short, 2 = long) */
446 0, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_AARCH64_NULL", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0, /* dst_mask */
455 FALSE), /* pcrel_offset */
456 HOWTO (R_AARCH64_NONE, /* type */
457 0, /* rightshift */
458 3, /* size (0 = byte, 1 = short, 2 = long) */
459 0, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_dont, /* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_AARCH64_NONE", /* name */
465 FALSE, /* partial_inplace */
466 0, /* src_mask */
467 0, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 /* .xword: (S+A) */
471 HOWTO64 (AARCH64_R (ABS64), /* type */
472 0, /* rightshift */
473 4, /* size (4 = long long) */
474 64, /* bitsize */
475 FALSE, /* pc_relative */
476 0, /* bitpos */
477 complain_overflow_unsigned, /* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 AARCH64_R_STR (ABS64), /* name */
480 FALSE, /* partial_inplace */
481 ALL_ONES, /* src_mask */
482 ALL_ONES, /* dst_mask */
483 FALSE), /* pcrel_offset */
484
485 /* .word: (S+A) */
486 HOWTO (AARCH64_R (ABS32), /* type */
487 0, /* rightshift */
488 2, /* size (0 = byte, 1 = short, 2 = long) */
489 32, /* bitsize */
490 FALSE, /* pc_relative */
491 0, /* bitpos */
492 complain_overflow_unsigned, /* complain_on_overflow */
493 bfd_elf_generic_reloc, /* special_function */
494 AARCH64_R_STR (ABS32), /* name */
495 FALSE, /* partial_inplace */
496 0xffffffff, /* src_mask */
497 0xffffffff, /* dst_mask */
498 FALSE), /* pcrel_offset */
499
500 /* .half: (S+A) */
501 HOWTO (AARCH64_R (ABS16), /* type */
502 0, /* rightshift */
503 1, /* size (0 = byte, 1 = short, 2 = long) */
504 16, /* bitsize */
505 FALSE, /* pc_relative */
506 0, /* bitpos */
507 complain_overflow_unsigned, /* complain_on_overflow */
508 bfd_elf_generic_reloc, /* special_function */
509 AARCH64_R_STR (ABS16), /* name */
510 FALSE, /* partial_inplace */
511 0xffff, /* src_mask */
512 0xffff, /* dst_mask */
513 FALSE), /* pcrel_offset */
514
515 /* .xword: (S+A-P) */
516 HOWTO64 (AARCH64_R (PREL64), /* type */
517 0, /* rightshift */
518 4, /* size (4 = long long) */
519 64, /* bitsize */
520 TRUE, /* pc_relative */
521 0, /* bitpos */
522 complain_overflow_signed, /* complain_on_overflow */
523 bfd_elf_generic_reloc, /* special_function */
524 AARCH64_R_STR (PREL64), /* name */
525 FALSE, /* partial_inplace */
526 ALL_ONES, /* src_mask */
527 ALL_ONES, /* dst_mask */
528 TRUE), /* pcrel_offset */
529
530 /* .word: (S+A-P) */
531 HOWTO (AARCH64_R (PREL32), /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 32, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_signed, /* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 AARCH64_R_STR (PREL32), /* name */
540 FALSE, /* partial_inplace */
541 0xffffffff, /* src_mask */
542 0xffffffff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 /* .half: (S+A-P) */
546 HOWTO (AARCH64_R (PREL16), /* type */
547 0, /* rightshift */
548 1, /* size (0 = byte, 1 = short, 2 = long) */
549 16, /* bitsize */
550 TRUE, /* pc_relative */
551 0, /* bitpos */
552 complain_overflow_signed, /* complain_on_overflow */
553 bfd_elf_generic_reloc, /* special_function */
554 AARCH64_R_STR (PREL16), /* name */
555 FALSE, /* partial_inplace */
556 0xffff, /* src_mask */
557 0xffff, /* dst_mask */
558 TRUE), /* pcrel_offset */
559
560 /* Group relocations to create a 16, 32, 48 or 64 bit
561 unsigned data or abs address inline. */
562
563 /* MOVZ: ((S+A) >> 0) & 0xffff */
564 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 16, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_unsigned, /* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 AARCH64_R_STR (MOVW_UABS_G0), /* name */
573 FALSE, /* partial_inplace */
574 0xffff, /* src_mask */
575 0xffff, /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
579 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
580 0, /* rightshift */
581 2, /* size (0 = byte, 1 = short, 2 = long) */
582 16, /* bitsize */
583 FALSE, /* pc_relative */
584 0, /* bitpos */
585 complain_overflow_dont, /* complain_on_overflow */
586 bfd_elf_generic_reloc, /* special_function */
587 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
588 FALSE, /* partial_inplace */
589 0xffff, /* src_mask */
590 0xffff, /* dst_mask */
591 FALSE), /* pcrel_offset */
592
593 /* MOVZ: ((S+A) >> 16) & 0xffff */
594 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
595 16, /* rightshift */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
597 16, /* bitsize */
598 FALSE, /* pc_relative */
599 0, /* bitpos */
600 complain_overflow_unsigned, /* complain_on_overflow */
601 bfd_elf_generic_reloc, /* special_function */
602 AARCH64_R_STR (MOVW_UABS_G1), /* name */
603 FALSE, /* partial_inplace */
604 0xffff, /* src_mask */
605 0xffff, /* dst_mask */
606 FALSE), /* pcrel_offset */
607
608 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
609 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
610 16, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 16, /* bitsize */
613 FALSE, /* pc_relative */
614 0, /* bitpos */
615 complain_overflow_dont, /* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
618 FALSE, /* partial_inplace */
619 0xffff, /* src_mask */
620 0xffff, /* dst_mask */
621 FALSE), /* pcrel_offset */
622
623 /* MOVZ: ((S+A) >> 32) & 0xffff */
624 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
625 32, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 16, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_unsigned, /* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 AARCH64_R_STR (MOVW_UABS_G2), /* name */
633 FALSE, /* partial_inplace */
634 0xffff, /* src_mask */
635 0xffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
639 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
640 32, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 16, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
648 FALSE, /* partial_inplace */
649 0xffff, /* src_mask */
650 0xffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 /* MOVZ: ((S+A) >> 48) & 0xffff */
654 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
655 48, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 16, /* bitsize */
658 FALSE, /* pc_relative */
659 0, /* bitpos */
660 complain_overflow_unsigned, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 AARCH64_R_STR (MOVW_UABS_G3), /* name */
663 FALSE, /* partial_inplace */
664 0xffff, /* src_mask */
665 0xffff, /* dst_mask */
666 FALSE), /* pcrel_offset */
667
668 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
669 signed data or abs address inline. Will change instruction
670 to MOVN or MOVZ depending on sign of calculated value. */
671
672 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
673 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 17, /* bitsize */
677 FALSE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 AARCH64_R_STR (MOVW_SABS_G0), /* name */
682 FALSE, /* partial_inplace */
683 0xffff, /* src_mask */
684 0xffff, /* dst_mask */
685 FALSE), /* pcrel_offset */
686
687 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
688 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
689 16, /* rightshift */
690 2, /* size (0 = byte, 1 = short, 2 = long) */
691 17, /* bitsize */
692 FALSE, /* pc_relative */
693 0, /* bitpos */
694 complain_overflow_signed, /* complain_on_overflow */
695 bfd_elf_generic_reloc, /* special_function */
696 AARCH64_R_STR (MOVW_SABS_G1), /* name */
697 FALSE, /* partial_inplace */
698 0xffff, /* src_mask */
699 0xffff, /* dst_mask */
700 FALSE), /* pcrel_offset */
701
702 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
703 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
704 32, /* rightshift */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
706 17, /* bitsize */
707 FALSE, /* pc_relative */
708 0, /* bitpos */
709 complain_overflow_signed, /* complain_on_overflow */
710 bfd_elf_generic_reloc, /* special_function */
711 AARCH64_R_STR (MOVW_SABS_G2), /* name */
712 FALSE, /* partial_inplace */
713 0xffff, /* src_mask */
714 0xffff, /* dst_mask */
715 FALSE), /* pcrel_offset */
716
717 /* Group relocations to create a 16, 32, 48 or 64 bit
718 PC relative address inline. */
719
720 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
721 HOWTO (AARCH64_R (MOVW_PREL_G0), /* type */
722 0, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 17, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 AARCH64_R_STR (MOVW_PREL_G0), /* name */
730 FALSE, /* partial_inplace */
731 0xffff, /* src_mask */
732 0xffff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
736 HOWTO (AARCH64_R (MOVW_PREL_G0_NC), /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_dont, /* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
745 FALSE, /* partial_inplace */
746 0xffff, /* src_mask */
747 0xffff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
751 HOWTO (AARCH64_R (MOVW_PREL_G1), /* type */
752 16, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 17, /* bitsize */
755 TRUE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_signed, /* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 AARCH64_R_STR (MOVW_PREL_G1), /* name */
760 FALSE, /* partial_inplace */
761 0xffff, /* src_mask */
762 0xffff, /* dst_mask */
763 TRUE), /* pcrel_offset */
764
765 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
766 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
767 16, /* rightshift */
768 2, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 TRUE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_dont, /* complain_on_overflow */
773 bfd_elf_generic_reloc, /* special_function */
774 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
775 FALSE, /* partial_inplace */
776 0xffff, /* src_mask */
777 0xffff, /* dst_mask */
778 TRUE), /* pcrel_offset */
779
780 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
781 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
782 32, /* rightshift */
783 2, /* size (0 = byte, 1 = short, 2 = long) */
784 17, /* bitsize */
785 TRUE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 bfd_elf_generic_reloc, /* special_function */
789 AARCH64_R_STR (MOVW_PREL_G2), /* name */
790 FALSE, /* partial_inplace */
791 0xffff, /* src_mask */
792 0xffff, /* dst_mask */
793 TRUE), /* pcrel_offset */
794
795 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
796 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
797 32, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 16, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
805 FALSE, /* partial_inplace */
806 0xffff, /* src_mask */
807 0xffff, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
811 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
812 48, /* rightshift */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
814 16, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 AARCH64_R_STR (MOVW_PREL_G3), /* name */
820 FALSE, /* partial_inplace */
821 0xffff, /* src_mask */
822 0xffff, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
826 addresses: PG(x) is (x & ~0xfff). */
827
828 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
829 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
830 2, /* rightshift */
831 2, /* size (0 = byte, 1 = short, 2 = long) */
832 19, /* bitsize */
833 TRUE, /* pc_relative */
834 0, /* bitpos */
835 complain_overflow_signed, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 AARCH64_R_STR (LD_PREL_LO19), /* name */
838 FALSE, /* partial_inplace */
839 0x7ffff, /* src_mask */
840 0x7ffff, /* dst_mask */
841 TRUE), /* pcrel_offset */
842
843 /* ADR: (S+A-P) & 0x1fffff */
844 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
845 0, /* rightshift */
846 2, /* size (0 = byte, 1 = short, 2 = long) */
847 21, /* bitsize */
848 TRUE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_signed, /* complain_on_overflow */
851 bfd_elf_generic_reloc, /* special_function */
852 AARCH64_R_STR (ADR_PREL_LO21), /* name */
853 FALSE, /* partial_inplace */
854 0x1fffff, /* src_mask */
855 0x1fffff, /* dst_mask */
856 TRUE), /* pcrel_offset */
857
858 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
859 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
860 12, /* rightshift */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
862 21, /* bitsize */
863 TRUE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_signed, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
868 FALSE, /* partial_inplace */
869 0x1fffff, /* src_mask */
870 0x1fffff, /* dst_mask */
871 TRUE), /* pcrel_offset */
872
873 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
874 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
875 12, /* rightshift */
876 2, /* size (0 = byte, 1 = short, 2 = long) */
877 21, /* bitsize */
878 TRUE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_dont, /* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
883 FALSE, /* partial_inplace */
884 0x1fffff, /* src_mask */
885 0x1fffff, /* dst_mask */
886 TRUE), /* pcrel_offset */
887
888 /* ADD: (S+A) & 0xfff [no overflow check] */
889 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
890 0, /* rightshift */
891 2, /* size (0 = byte, 1 = short, 2 = long) */
892 12, /* bitsize */
893 FALSE, /* pc_relative */
894 10, /* bitpos */
895 complain_overflow_dont, /* complain_on_overflow */
896 bfd_elf_generic_reloc, /* special_function */
897 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
898 FALSE, /* partial_inplace */
899 0x3ffc00, /* src_mask */
900 0x3ffc00, /* dst_mask */
901 FALSE), /* pcrel_offset */
902
903 /* LD/ST8: (S+A) & 0xfff */
904 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
905 0, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 12, /* bitsize */
908 FALSE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_dont, /* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
913 FALSE, /* partial_inplace */
914 0xfff, /* src_mask */
915 0xfff, /* dst_mask */
916 FALSE), /* pcrel_offset */
917
918 /* Relocations for control-flow instructions. */
919
920 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
921 HOWTO (AARCH64_R (TSTBR14), /* type */
922 2, /* rightshift */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
924 14, /* bitsize */
925 TRUE, /* pc_relative */
926 0, /* bitpos */
927 complain_overflow_signed, /* complain_on_overflow */
928 bfd_elf_generic_reloc, /* special_function */
929 AARCH64_R_STR (TSTBR14), /* name */
930 FALSE, /* partial_inplace */
931 0x3fff, /* src_mask */
932 0x3fff, /* dst_mask */
933 TRUE), /* pcrel_offset */
934
935 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
936 HOWTO (AARCH64_R (CONDBR19), /* type */
937 2, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 19, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_signed, /* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 AARCH64_R_STR (CONDBR19), /* name */
945 FALSE, /* partial_inplace */
946 0x7ffff, /* src_mask */
947 0x7ffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 /* B: ((S+A-P) >> 2) & 0x3ffffff */
951 HOWTO (AARCH64_R (JUMP26), /* type */
952 2, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 26, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_signed, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 AARCH64_R_STR (JUMP26), /* name */
960 FALSE, /* partial_inplace */
961 0x3ffffff, /* src_mask */
962 0x3ffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
966 HOWTO (AARCH64_R (CALL26), /* type */
967 2, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 26, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_signed, /* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 AARCH64_R_STR (CALL26), /* name */
975 FALSE, /* partial_inplace */
976 0x3ffffff, /* src_mask */
977 0x3ffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
980 /* LD/ST16: (S+A) & 0xffe */
981 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
982 1, /* rightshift */
983 2, /* size (0 = byte, 1 = short, 2 = long) */
984 12, /* bitsize */
985 FALSE, /* pc_relative */
986 0, /* bitpos */
987 complain_overflow_dont, /* complain_on_overflow */
988 bfd_elf_generic_reloc, /* special_function */
989 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
990 FALSE, /* partial_inplace */
991 0xffe, /* src_mask */
992 0xffe, /* dst_mask */
993 FALSE), /* pcrel_offset */
994
995 /* LD/ST32: (S+A) & 0xffc */
996 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
997 2, /* rightshift */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
999 12, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_dont, /* complain_on_overflow */
1003 bfd_elf_generic_reloc, /* special_function */
1004 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
1005 FALSE, /* partial_inplace */
1006 0xffc, /* src_mask */
1007 0xffc, /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* LD/ST64: (S+A) & 0xff8 */
1011 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
1012 3, /* rightshift */
1013 2, /* size (0 = byte, 1 = short, 2 = long) */
1014 12, /* bitsize */
1015 FALSE, /* pc_relative */
1016 0, /* bitpos */
1017 complain_overflow_dont, /* complain_on_overflow */
1018 bfd_elf_generic_reloc, /* special_function */
1019 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
1020 FALSE, /* partial_inplace */
1021 0xff8, /* src_mask */
1022 0xff8, /* dst_mask */
1023 FALSE), /* pcrel_offset */
1024
1025 /* LD/ST128: (S+A) & 0xff0 */
1026 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
1027 4, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 12, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
1035 FALSE, /* partial_inplace */
1036 0xff0, /* src_mask */
1037 0xff0, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Set a load-literal immediate field to bits
1041 0x1FFFFC of G(S)-P */
1042 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
1043 2, /* rightshift */
1044 2, /* size (0 = byte,1 = short,2 = long) */
1045 19, /* bitsize */
1046 TRUE, /* pc_relative */
1047 0, /* bitpos */
1048 complain_overflow_signed, /* complain_on_overflow */
1049 bfd_elf_generic_reloc, /* special_function */
1050 AARCH64_R_STR (GOT_LD_PREL19), /* name */
1051 FALSE, /* partial_inplace */
1052 0xffffe0, /* src_mask */
1053 0xffffe0, /* dst_mask */
1054 TRUE), /* pcrel_offset */
1055
1056 /* Get to the page for the GOT entry for the symbol
1057 (G(S) - P) using an ADRP instruction. */
1058 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
1059 12, /* rightshift */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1061 21, /* bitsize */
1062 TRUE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_dont, /* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
1067 FALSE, /* partial_inplace */
1068 0x1fffff, /* src_mask */
1069 0x1fffff, /* dst_mask */
1070 TRUE), /* pcrel_offset */
1071
1072 /* LD64: GOT offset G(S) & 0xff8 */
1073 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
1074 3, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 12, /* bitsize */
1077 FALSE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont, /* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
1082 FALSE, /* partial_inplace */
1083 0xff8, /* src_mask */
1084 0xff8, /* dst_mask */
1085 FALSE), /* pcrel_offset */
1086
1087 /* LD32: GOT offset G(S) & 0xffc */
1088 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1089 2, /* rightshift */
1090 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 12, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_dont, /* complain_on_overflow */
1095 bfd_elf_generic_reloc, /* special_function */
1096 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1097 FALSE, /* partial_inplace */
1098 0xffc, /* src_mask */
1099 0xffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 /* Lower 16 bits of GOT offset for the symbol. */
1103 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1104 0, /* rightshift */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1106 16, /* bitsize */
1107 FALSE, /* pc_relative */
1108 0, /* bitpos */
1109 complain_overflow_dont, /* complain_on_overflow */
1110 bfd_elf_generic_reloc, /* special_function */
1111 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1112 FALSE, /* partial_inplace */
1113 0xffff, /* src_mask */
1114 0xffff, /* dst_mask */
1115 FALSE), /* pcrel_offset */
1116
1117 /* Higher 16 bits of GOT offset for the symbol. */
1118 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1119 16, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 16, /* bitsize */
1122 FALSE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_unsigned, /* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1127 FALSE, /* partial_inplace */
1128 0xffff, /* src_mask */
1129 0xffff, /* dst_mask */
1130 FALSE), /* pcrel_offset */
1131
1132 /* LD64: GOT offset for the symbol. */
1133 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1134 3, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 12, /* bitsize */
1137 FALSE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_unsigned, /* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1142 FALSE, /* partial_inplace */
1143 0x7ff8, /* src_mask */
1144 0x7ff8, /* dst_mask */
1145 FALSE), /* pcrel_offset */
1146
1147 /* LD32: GOT offset to the page address of GOT table.
1148 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1149 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1150 2, /* rightshift */
1151 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 12, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_unsigned, /* complain_on_overflow */
1156 bfd_elf_generic_reloc, /* special_function */
1157 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1158 FALSE, /* partial_inplace */
1159 0x5ffc, /* src_mask */
1160 0x5ffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* LD64: GOT offset to the page address of GOT table.
1164 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1165 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1166 3, /* rightshift */
1167 2, /* size (0 = byte, 1 = short, 2 = long) */
1168 12, /* bitsize */
1169 FALSE, /* pc_relative */
1170 0, /* bitpos */
1171 complain_overflow_unsigned, /* complain_on_overflow */
1172 bfd_elf_generic_reloc, /* special_function */
1173 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1174 FALSE, /* partial_inplace */
1175 0x7ff8, /* src_mask */
1176 0x7ff8, /* dst_mask */
1177 FALSE), /* pcrel_offset */
1178
1179 /* Get to the page for the GOT entry for the symbol
1180 (G(S) - P) using an ADRP instruction. */
1181 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1182 12, /* rightshift */
1183 2, /* size (0 = byte, 1 = short, 2 = long) */
1184 21, /* bitsize */
1185 TRUE, /* pc_relative */
1186 0, /* bitpos */
1187 complain_overflow_dont, /* complain_on_overflow */
1188 bfd_elf_generic_reloc, /* special_function */
1189 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1190 FALSE, /* partial_inplace */
1191 0x1fffff, /* src_mask */
1192 0x1fffff, /* dst_mask */
1193 TRUE), /* pcrel_offset */
1194
1195 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1196 0, /* rightshift */
1197 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 21, /* bitsize */
1199 TRUE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_dont, /* complain_on_overflow */
1202 bfd_elf_generic_reloc, /* special_function */
1203 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1204 FALSE, /* partial_inplace */
1205 0x1fffff, /* src_mask */
1206 0x1fffff, /* dst_mask */
1207 TRUE), /* pcrel_offset */
1208
1209 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1210 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1211 0, /* rightshift */
1212 2, /* size (0 = byte, 1 = short, 2 = long) */
1213 12, /* bitsize */
1214 FALSE, /* pc_relative */
1215 0, /* bitpos */
1216 complain_overflow_dont, /* complain_on_overflow */
1217 bfd_elf_generic_reloc, /* special_function */
1218 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1219 FALSE, /* partial_inplace */
1220 0xfff, /* src_mask */
1221 0xfff, /* dst_mask */
1222 FALSE), /* pcrel_offset */
1223
1224 /* Lower 16 bits of GOT offset to tls_index. */
1225 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1226 0, /* rightshift */
1227 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 16, /* bitsize */
1229 FALSE, /* pc_relative */
1230 0, /* bitpos */
1231 complain_overflow_dont, /* complain_on_overflow */
1232 bfd_elf_generic_reloc, /* special_function */
1233 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1234 FALSE, /* partial_inplace */
1235 0xffff, /* src_mask */
1236 0xffff, /* dst_mask */
1237 FALSE), /* pcrel_offset */
1238
1239 /* Higher 16 bits of GOT offset to tls_index. */
1240 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1241 16, /* rightshift */
1242 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 16, /* bitsize */
1244 FALSE, /* pc_relative */
1245 0, /* bitpos */
1246 complain_overflow_unsigned, /* complain_on_overflow */
1247 bfd_elf_generic_reloc, /* special_function */
1248 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1249 FALSE, /* partial_inplace */
1250 0xffff, /* src_mask */
1251 0xffff, /* dst_mask */
1252 FALSE), /* pcrel_offset */
1253
1254 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1255 12, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 21, /* bitsize */
1258 FALSE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont, /* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1263 FALSE, /* partial_inplace */
1264 0x1fffff, /* src_mask */
1265 0x1fffff, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1267
1268 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1269 3, /* rightshift */
1270 2, /* size (0 = byte, 1 = short, 2 = long) */
1271 12, /* bitsize */
1272 FALSE, /* pc_relative */
1273 0, /* bitpos */
1274 complain_overflow_dont, /* complain_on_overflow */
1275 bfd_elf_generic_reloc, /* special_function */
1276 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1277 FALSE, /* partial_inplace */
1278 0xff8, /* src_mask */
1279 0xff8, /* dst_mask */
1280 FALSE), /* pcrel_offset */
1281
1282 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1283 2, /* rightshift */
1284 2, /* size (0 = byte, 1 = short, 2 = long) */
1285 12, /* bitsize */
1286 FALSE, /* pc_relative */
1287 0, /* bitpos */
1288 complain_overflow_dont, /* complain_on_overflow */
1289 bfd_elf_generic_reloc, /* special_function */
1290 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1291 FALSE, /* partial_inplace */
1292 0xffc, /* src_mask */
1293 0xffc, /* dst_mask */
1294 FALSE), /* pcrel_offset */
1295
1296 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1297 2, /* rightshift */
1298 2, /* size (0 = byte, 1 = short, 2 = long) */
1299 19, /* bitsize */
1300 FALSE, /* pc_relative */
1301 0, /* bitpos */
1302 complain_overflow_dont, /* complain_on_overflow */
1303 bfd_elf_generic_reloc, /* special_function */
1304 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1305 FALSE, /* partial_inplace */
1306 0x1ffffc, /* src_mask */
1307 0x1ffffc, /* dst_mask */
1308 FALSE), /* pcrel_offset */
1309
1310 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 16, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
1318 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1319 FALSE, /* partial_inplace */
1320 0xffff, /* src_mask */
1321 0xffff, /* dst_mask */
1322 FALSE), /* pcrel_offset */
1323
1324 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1325 16, /* rightshift */
1326 2, /* size (0 = byte, 1 = short, 2 = long) */
1327 16, /* bitsize */
1328 FALSE, /* pc_relative */
1329 0, /* bitpos */
1330 complain_overflow_unsigned, /* complain_on_overflow */
1331 bfd_elf_generic_reloc, /* special_function */
1332 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1333 FALSE, /* partial_inplace */
1334 0xffff, /* src_mask */
1335 0xffff, /* dst_mask */
1336 FALSE), /* pcrel_offset */
1337
1338 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1339 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1340 12, /* rightshift */
1341 2, /* size (0 = byte, 1 = short, 2 = long) */
1342 12, /* bitsize */
1343 FALSE, /* pc_relative */
1344 0, /* bitpos */
1345 complain_overflow_unsigned, /* complain_on_overflow */
1346 bfd_elf_generic_reloc, /* special_function */
1347 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1348 FALSE, /* partial_inplace */
1349 0xfff, /* src_mask */
1350 0xfff, /* dst_mask */
1351 FALSE), /* pcrel_offset */
1352
1353 /* Unsigned 12 bit byte offset to module TLS base address. */
1354 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1355 0, /* rightshift */
1356 2, /* size (0 = byte, 1 = short, 2 = long) */
1357 12, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_unsigned, /* complain_on_overflow */
1361 bfd_elf_generic_reloc, /* special_function */
1362 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1363 FALSE, /* partial_inplace */
1364 0xfff, /* src_mask */
1365 0xfff, /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1369 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 12, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont, /* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1378 FALSE, /* partial_inplace */
1379 0xfff, /* src_mask */
1380 0xfff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1384 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1385 0, /* rightshift */
1386 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 12, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 bfd_elf_generic_reloc, /* special_function */
1392 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1393 FALSE, /* partial_inplace */
1394 0xfff, /* src_mask */
1395 0xfff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Get to the page for the GOT entry for the symbol
1399 (G(S) - P) using an ADRP instruction. */
1400 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1401 12, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 21, /* bitsize */
1404 TRUE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_signed, /* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1409 FALSE, /* partial_inplace */
1410 0x1fffff, /* src_mask */
1411 0x1fffff, /* dst_mask */
1412 TRUE), /* pcrel_offset */
1413
1414 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 21, /* bitsize */
1418 TRUE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1423 FALSE, /* partial_inplace */
1424 0x1fffff, /* src_mask */
1425 0x1fffff, /* dst_mask */
1426 TRUE), /* pcrel_offset */
1427
1428 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1429 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1430 1, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 11, /* bitsize */
1433 FALSE, /* pc_relative */
1434 10, /* bitpos */
1435 complain_overflow_unsigned, /* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1438 FALSE, /* partial_inplace */
1439 0x1ffc00, /* src_mask */
1440 0x1ffc00, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1444 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1445 1, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 11, /* bitsize */
1448 FALSE, /* pc_relative */
1449 10, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1453 FALSE, /* partial_inplace */
1454 0x1ffc00, /* src_mask */
1455 0x1ffc00, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1459 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1460 2, /* rightshift */
1461 2, /* size (0 = byte, 1 = short, 2 = long) */
1462 10, /* bitsize */
1463 FALSE, /* pc_relative */
1464 10, /* bitpos */
1465 complain_overflow_unsigned, /* complain_on_overflow */
1466 bfd_elf_generic_reloc, /* special_function */
1467 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1468 FALSE, /* partial_inplace */
1469 0x3ffc00, /* src_mask */
1470 0x3ffc00, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1474 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1475 2, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 10, /* bitsize */
1478 FALSE, /* pc_relative */
1479 10, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1483 FALSE, /* partial_inplace */
1484 0xffc00, /* src_mask */
1485 0xffc00, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1489 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1490 3, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 9, /* bitsize */
1493 FALSE, /* pc_relative */
1494 10, /* bitpos */
1495 complain_overflow_unsigned, /* complain_on_overflow */
1496 bfd_elf_generic_reloc, /* special_function */
1497 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1498 FALSE, /* partial_inplace */
1499 0x3ffc00, /* src_mask */
1500 0x3ffc00, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1504 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1505 3, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 9, /* bitsize */
1508 FALSE, /* pc_relative */
1509 10, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1513 FALSE, /* partial_inplace */
1514 0x7fc00, /* src_mask */
1515 0x7fc00, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1519 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1520 0, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 12, /* bitsize */
1523 FALSE, /* pc_relative */
1524 10, /* bitpos */
1525 complain_overflow_unsigned, /* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
1527 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1528 FALSE, /* partial_inplace */
1529 0x3ffc00, /* src_mask */
1530 0x3ffc00, /* dst_mask */
1531 FALSE), /* pcrel_offset */
1532
1533 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1534 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1535 0, /* rightshift */
1536 2, /* size (0 = byte, 1 = short, 2 = long) */
1537 12, /* bitsize */
1538 FALSE, /* pc_relative */
1539 10, /* bitpos */
1540 complain_overflow_dont, /* complain_on_overflow */
1541 bfd_elf_generic_reloc, /* special_function */
1542 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1543 FALSE, /* partial_inplace */
1544 0x3ffc00, /* src_mask */
1545 0x3ffc00, /* dst_mask */
1546 FALSE), /* pcrel_offset */
1547
1548 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1549 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1550 0, /* rightshift */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1552 16, /* bitsize */
1553 FALSE, /* pc_relative */
1554 0, /* bitpos */
1555 complain_overflow_unsigned, /* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
1557 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1558 FALSE, /* partial_inplace */
1559 0xffff, /* src_mask */
1560 0xffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
1562
1563 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1564 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1565 0, /* rightshift */
1566 2, /* size (0 = byte, 1 = short, 2 = long) */
1567 16, /* bitsize */
1568 FALSE, /* pc_relative */
1569 0, /* bitpos */
1570 complain_overflow_dont, /* complain_on_overflow */
1571 bfd_elf_generic_reloc, /* special_function */
1572 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1573 FALSE, /* partial_inplace */
1574 0xffff, /* src_mask */
1575 0xffff, /* dst_mask */
1576 FALSE), /* pcrel_offset */
1577
1578 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1579 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1580 16, /* rightshift */
1581 2, /* size (0 = byte, 1 = short, 2 = long) */
1582 16, /* bitsize */
1583 FALSE, /* pc_relative */
1584 0, /* bitpos */
1585 complain_overflow_unsigned, /* complain_on_overflow */
1586 bfd_elf_generic_reloc, /* special_function */
1587 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1588 FALSE, /* partial_inplace */
1589 0xffff, /* src_mask */
1590 0xffff, /* dst_mask */
1591 FALSE), /* pcrel_offset */
1592
1593 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1594 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1595 16, /* rightshift */
1596 2, /* size (0 = byte, 1 = short, 2 = long) */
1597 16, /* bitsize */
1598 FALSE, /* pc_relative */
1599 0, /* bitpos */
1600 complain_overflow_dont, /* complain_on_overflow */
1601 bfd_elf_generic_reloc, /* special_function */
1602 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1603 FALSE, /* partial_inplace */
1604 0xffff, /* src_mask */
1605 0xffff, /* dst_mask */
1606 FALSE), /* pcrel_offset */
1607
1608 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1609 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1610 32, /* rightshift */
1611 2, /* size (0 = byte, 1 = short, 2 = long) */
1612 16, /* bitsize */
1613 FALSE, /* pc_relative */
1614 0, /* bitpos */
1615 complain_overflow_unsigned, /* complain_on_overflow */
1616 bfd_elf_generic_reloc, /* special_function */
1617 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1618 FALSE, /* partial_inplace */
1619 0xffff, /* src_mask */
1620 0xffff, /* dst_mask */
1621 FALSE), /* pcrel_offset */
1622
1623 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1624 32, /* rightshift */
1625 2, /* size (0 = byte, 1 = short, 2 = long) */
1626 16, /* bitsize */
1627 FALSE, /* pc_relative */
1628 0, /* bitpos */
1629 complain_overflow_unsigned, /* complain_on_overflow */
1630 bfd_elf_generic_reloc, /* special_function */
1631 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1632 FALSE, /* partial_inplace */
1633 0xffff, /* src_mask */
1634 0xffff, /* dst_mask */
1635 FALSE), /* pcrel_offset */
1636
1637 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1638 16, /* rightshift */
1639 2, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 bfd_elf_generic_reloc, /* special_function */
1645 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1646 FALSE, /* partial_inplace */
1647 0xffff, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1652 16, /* rightshift */
1653 2, /* size (0 = byte, 1 = short, 2 = long) */
1654 16, /* bitsize */
1655 FALSE, /* pc_relative */
1656 0, /* bitpos */
1657 complain_overflow_dont, /* complain_on_overflow */
1658 bfd_elf_generic_reloc, /* special_function */
1659 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1660 FALSE, /* partial_inplace */
1661 0xffff, /* src_mask */
1662 0xffff, /* dst_mask */
1663 FALSE), /* pcrel_offset */
1664
1665 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1666 0, /* rightshift */
1667 2, /* size (0 = byte, 1 = short, 2 = long) */
1668 16, /* bitsize */
1669 FALSE, /* pc_relative */
1670 0, /* bitpos */
1671 complain_overflow_dont, /* complain_on_overflow */
1672 bfd_elf_generic_reloc, /* special_function */
1673 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1674 FALSE, /* partial_inplace */
1675 0xffff, /* src_mask */
1676 0xffff, /* dst_mask */
1677 FALSE), /* pcrel_offset */
1678
1679 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1680 0, /* rightshift */
1681 2, /* size (0 = byte, 1 = short, 2 = long) */
1682 16, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_dont, /* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1688 FALSE, /* partial_inplace */
1689 0xffff, /* src_mask */
1690 0xffff, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692
1693 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1694 12, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 12, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_unsigned, /* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1702 FALSE, /* partial_inplace */
1703 0xfff, /* src_mask */
1704 0xfff, /* dst_mask */
1705 FALSE), /* pcrel_offset */
1706
1707 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1708 0, /* rightshift */
1709 2, /* size (0 = byte, 1 = short, 2 = long) */
1710 12, /* bitsize */
1711 FALSE, /* pc_relative */
1712 0, /* bitpos */
1713 complain_overflow_unsigned, /* complain_on_overflow */
1714 bfd_elf_generic_reloc, /* special_function */
1715 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1716 FALSE, /* partial_inplace */
1717 0xfff, /* src_mask */
1718 0xfff, /* dst_mask */
1719 FALSE), /* pcrel_offset */
1720
1721 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1722 0, /* rightshift */
1723 2, /* size (0 = byte, 1 = short, 2 = long) */
1724 12, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_dont, /* complain_on_overflow */
1728 bfd_elf_generic_reloc, /* special_function */
1729 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1730 FALSE, /* partial_inplace */
1731 0xfff, /* src_mask */
1732 0xfff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1736 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1737 1, /* rightshift */
1738 2, /* size (0 = byte, 1 = short, 2 = long) */
1739 11, /* bitsize */
1740 FALSE, /* pc_relative */
1741 10, /* bitpos */
1742 complain_overflow_unsigned, /* complain_on_overflow */
1743 bfd_elf_generic_reloc, /* special_function */
1744 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1745 FALSE, /* partial_inplace */
1746 0x1ffc00, /* src_mask */
1747 0x1ffc00, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1751 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1752 1, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 11, /* bitsize */
1755 FALSE, /* pc_relative */
1756 10, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1760 FALSE, /* partial_inplace */
1761 0x1ffc00, /* src_mask */
1762 0x1ffc00, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1766 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1767 2, /* rightshift */
1768 2, /* size (0 = byte, 1 = short, 2 = long) */
1769 10, /* bitsize */
1770 FALSE, /* pc_relative */
1771 10, /* bitpos */
1772 complain_overflow_unsigned, /* complain_on_overflow */
1773 bfd_elf_generic_reloc, /* special_function */
1774 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1775 FALSE, /* partial_inplace */
1776 0xffc00, /* src_mask */
1777 0xffc00, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1781 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1782 2, /* rightshift */
1783 2, /* size (0 = byte, 1 = short, 2 = long) */
1784 10, /* bitsize */
1785 FALSE, /* pc_relative */
1786 10, /* bitpos */
1787 complain_overflow_dont, /* complain_on_overflow */
1788 bfd_elf_generic_reloc, /* special_function */
1789 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1790 FALSE, /* partial_inplace */
1791 0xffc00, /* src_mask */
1792 0xffc00, /* dst_mask */
1793 FALSE), /* pcrel_offset */
1794
1795 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1796 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1797 3, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 9, /* bitsize */
1800 FALSE, /* pc_relative */
1801 10, /* bitpos */
1802 complain_overflow_unsigned, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1805 FALSE, /* partial_inplace */
1806 0x7fc00, /* src_mask */
1807 0x7fc00, /* dst_mask */
1808 FALSE), /* pcrel_offset */
1809
1810 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1811 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1812 3, /* rightshift */
1813 2, /* size (0 = byte, 1 = short, 2 = long) */
1814 9, /* bitsize */
1815 FALSE, /* pc_relative */
1816 10, /* bitpos */
1817 complain_overflow_dont, /* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1820 FALSE, /* partial_inplace */
1821 0x7fc00, /* src_mask */
1822 0x7fc00, /* dst_mask */
1823 FALSE), /* pcrel_offset */
1824
1825 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1826 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1827 0, /* rightshift */
1828 2, /* size (0 = byte, 1 = short, 2 = long) */
1829 12, /* bitsize */
1830 FALSE, /* pc_relative */
1831 10, /* bitpos */
1832 complain_overflow_unsigned, /* complain_on_overflow */
1833 bfd_elf_generic_reloc, /* special_function */
1834 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1835 FALSE, /* partial_inplace */
1836 0x3ffc00, /* src_mask */
1837 0x3ffc00, /* dst_mask */
1838 FALSE), /* pcrel_offset */
1839
1840 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1841 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1842 0, /* rightshift */
1843 2, /* size (0 = byte, 1 = short, 2 = long) */
1844 12, /* bitsize */
1845 FALSE, /* pc_relative */
1846 10, /* bitpos */
1847 complain_overflow_dont, /* complain_on_overflow */
1848 bfd_elf_generic_reloc, /* special_function */
1849 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1850 FALSE, /* partial_inplace */
1851 0x3ffc00, /* src_mask */
1852 0x3ffc00, /* dst_mask */
1853 FALSE), /* pcrel_offset */
1854
1855 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1856 2, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 19, /* bitsize */
1859 TRUE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_dont, /* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1864 FALSE, /* partial_inplace */
1865 0x0ffffe0, /* src_mask */
1866 0x0ffffe0, /* dst_mask */
1867 TRUE), /* pcrel_offset */
1868
1869 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1870 0, /* rightshift */
1871 2, /* size (0 = byte, 1 = short, 2 = long) */
1872 21, /* bitsize */
1873 TRUE, /* pc_relative */
1874 0, /* bitpos */
1875 complain_overflow_dont, /* complain_on_overflow */
1876 bfd_elf_generic_reloc, /* special_function */
1877 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1878 FALSE, /* partial_inplace */
1879 0x1fffff, /* src_mask */
1880 0x1fffff, /* dst_mask */
1881 TRUE), /* pcrel_offset */
1882
1883 /* Get to the page for the GOT entry for the symbol
1884 (G(S) - P) using an ADRP instruction. */
1885 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1886 12, /* rightshift */
1887 2, /* size (0 = byte, 1 = short, 2 = long) */
1888 21, /* bitsize */
1889 TRUE, /* pc_relative */
1890 0, /* bitpos */
1891 complain_overflow_dont, /* complain_on_overflow */
1892 bfd_elf_generic_reloc, /* special_function */
1893 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1894 FALSE, /* partial_inplace */
1895 0x1fffff, /* src_mask */
1896 0x1fffff, /* dst_mask */
1897 TRUE), /* pcrel_offset */
1898
1899 /* LD64: GOT offset G(S) & 0xff8. */
1900 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1901 3, /* rightshift */
1902 2, /* size (0 = byte, 1 = short, 2 = long) */
1903 12, /* bitsize */
1904 FALSE, /* pc_relative */
1905 0, /* bitpos */
1906 complain_overflow_dont, /* complain_on_overflow */
1907 bfd_elf_generic_reloc, /* special_function */
1908 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1909 FALSE, /* partial_inplace */
1910 0xff8, /* src_mask */
1911 0xff8, /* dst_mask */
1912 FALSE), /* pcrel_offset */
1913
1914 /* LD32: GOT offset G(S) & 0xffc. */
1915 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1916 2, /* rightshift */
1917 2, /* size (0 = byte, 1 = short, 2 = long) */
1918 12, /* bitsize */
1919 FALSE, /* pc_relative */
1920 0, /* bitpos */
1921 complain_overflow_dont, /* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1924 FALSE, /* partial_inplace */
1925 0xffc, /* src_mask */
1926 0xffc, /* dst_mask */
1927 FALSE), /* pcrel_offset */
1928
1929 /* ADD: GOT offset G(S) & 0xfff. */
1930 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1931 0, /* rightshift */
1932 2, /* size (0 = byte, 1 = short, 2 = long) */
1933 12, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont,/* complain_on_overflow */
1937 bfd_elf_generic_reloc, /* special_function */
1938 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1939 FALSE, /* partial_inplace */
1940 0xfff, /* src_mask */
1941 0xfff, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1945 16, /* rightshift */
1946 2, /* size (0 = byte, 1 = short, 2 = long) */
1947 12, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_unsigned, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1953 FALSE, /* partial_inplace */
1954 0xffff, /* src_mask */
1955 0xffff, /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1959 0, /* rightshift */
1960 2, /* size (0 = byte, 1 = short, 2 = long) */
1961 12, /* bitsize */
1962 FALSE, /* pc_relative */
1963 0, /* bitpos */
1964 complain_overflow_dont, /* complain_on_overflow */
1965 bfd_elf_generic_reloc, /* special_function */
1966 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1967 FALSE, /* partial_inplace */
1968 0xffff, /* src_mask */
1969 0xffff, /* dst_mask */
1970 FALSE), /* pcrel_offset */
1971
1972 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1973 0, /* rightshift */
1974 2, /* size (0 = byte, 1 = short, 2 = long) */
1975 12, /* bitsize */
1976 FALSE, /* pc_relative */
1977 0, /* bitpos */
1978 complain_overflow_dont, /* complain_on_overflow */
1979 bfd_elf_generic_reloc, /* special_function */
1980 AARCH64_R_STR (TLSDESC_LDR), /* name */
1981 FALSE, /* partial_inplace */
1982 0x0, /* src_mask */
1983 0x0, /* dst_mask */
1984 FALSE), /* pcrel_offset */
1985
1986 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1987 0, /* rightshift */
1988 2, /* size (0 = byte, 1 = short, 2 = long) */
1989 12, /* bitsize */
1990 FALSE, /* pc_relative */
1991 0, /* bitpos */
1992 complain_overflow_dont, /* complain_on_overflow */
1993 bfd_elf_generic_reloc, /* special_function */
1994 AARCH64_R_STR (TLSDESC_ADD), /* name */
1995 FALSE, /* partial_inplace */
1996 0x0, /* src_mask */
1997 0x0, /* dst_mask */
1998 FALSE), /* pcrel_offset */
1999
2000 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
2001 0, /* rightshift */
2002 2, /* size (0 = byte, 1 = short, 2 = long) */
2003 0, /* bitsize */
2004 FALSE, /* pc_relative */
2005 0, /* bitpos */
2006 complain_overflow_dont, /* complain_on_overflow */
2007 bfd_elf_generic_reloc, /* special_function */
2008 AARCH64_R_STR (TLSDESC_CALL), /* name */
2009 FALSE, /* partial_inplace */
2010 0x0, /* src_mask */
2011 0x0, /* dst_mask */
2012 FALSE), /* pcrel_offset */
2013
2014 HOWTO (AARCH64_R (COPY), /* type */
2015 0, /* rightshift */
2016 2, /* size (0 = byte, 1 = short, 2 = long) */
2017 64, /* bitsize */
2018 FALSE, /* pc_relative */
2019 0, /* bitpos */
2020 complain_overflow_bitfield, /* complain_on_overflow */
2021 bfd_elf_generic_reloc, /* special_function */
2022 AARCH64_R_STR (COPY), /* name */
2023 TRUE, /* partial_inplace */
2024 0xffffffff, /* src_mask */
2025 0xffffffff, /* dst_mask */
2026 FALSE), /* pcrel_offset */
2027
2028 HOWTO (AARCH64_R (GLOB_DAT), /* type */
2029 0, /* rightshift */
2030 2, /* size (0 = byte, 1 = short, 2 = long) */
2031 64, /* bitsize */
2032 FALSE, /* pc_relative */
2033 0, /* bitpos */
2034 complain_overflow_bitfield, /* complain_on_overflow */
2035 bfd_elf_generic_reloc, /* special_function */
2036 AARCH64_R_STR (GLOB_DAT), /* name */
2037 TRUE, /* partial_inplace */
2038 0xffffffff, /* src_mask */
2039 0xffffffff, /* dst_mask */
2040 FALSE), /* pcrel_offset */
2041
2042 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
2043 0, /* rightshift */
2044 2, /* size (0 = byte, 1 = short, 2 = long) */
2045 64, /* bitsize */
2046 FALSE, /* pc_relative */
2047 0, /* bitpos */
2048 complain_overflow_bitfield, /* complain_on_overflow */
2049 bfd_elf_generic_reloc, /* special_function */
2050 AARCH64_R_STR (JUMP_SLOT), /* name */
2051 TRUE, /* partial_inplace */
2052 0xffffffff, /* src_mask */
2053 0xffffffff, /* dst_mask */
2054 FALSE), /* pcrel_offset */
2055
2056 HOWTO (AARCH64_R (RELATIVE), /* type */
2057 0, /* rightshift */
2058 2, /* size (0 = byte, 1 = short, 2 = long) */
2059 64, /* bitsize */
2060 FALSE, /* pc_relative */
2061 0, /* bitpos */
2062 complain_overflow_bitfield, /* complain_on_overflow */
2063 bfd_elf_generic_reloc, /* special_function */
2064 AARCH64_R_STR (RELATIVE), /* name */
2065 TRUE, /* partial_inplace */
2066 ALL_ONES, /* src_mask */
2067 ALL_ONES, /* dst_mask */
2068 FALSE), /* pcrel_offset */
2069
2070 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
2071 0, /* rightshift */
2072 2, /* size (0 = byte, 1 = short, 2 = long) */
2073 64, /* bitsize */
2074 FALSE, /* pc_relative */
2075 0, /* bitpos */
2076 complain_overflow_dont, /* complain_on_overflow */
2077 bfd_elf_generic_reloc, /* special_function */
2078 #if ARCH_SIZE == 64
2079 AARCH64_R_STR (TLS_DTPMOD64), /* name */
2080 #else
2081 AARCH64_R_STR (TLS_DTPMOD), /* name */
2082 #endif
2083 FALSE, /* partial_inplace */
2084 0, /* src_mask */
2085 ALL_ONES, /* dst_mask */
2086 FALSE), /* pc_reloffset */
2087
2088 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2089 0, /* rightshift */
2090 2, /* size (0 = byte, 1 = short, 2 = long) */
2091 64, /* bitsize */
2092 FALSE, /* pc_relative */
2093 0, /* bitpos */
2094 complain_overflow_dont, /* complain_on_overflow */
2095 bfd_elf_generic_reloc, /* special_function */
2096 #if ARCH_SIZE == 64
2097 AARCH64_R_STR (TLS_DTPREL64), /* name */
2098 #else
2099 AARCH64_R_STR (TLS_DTPREL), /* name */
2100 #endif
2101 FALSE, /* partial_inplace */
2102 0, /* src_mask */
2103 ALL_ONES, /* dst_mask */
2104 FALSE), /* pcrel_offset */
2105
2106 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2107 0, /* rightshift */
2108 2, /* size (0 = byte, 1 = short, 2 = long) */
2109 64, /* bitsize */
2110 FALSE, /* pc_relative */
2111 0, /* bitpos */
2112 complain_overflow_dont, /* complain_on_overflow */
2113 bfd_elf_generic_reloc, /* special_function */
2114 #if ARCH_SIZE == 64
2115 AARCH64_R_STR (TLS_TPREL64), /* name */
2116 #else
2117 AARCH64_R_STR (TLS_TPREL), /* name */
2118 #endif
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ALL_ONES, /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 HOWTO (AARCH64_R (TLSDESC), /* type */
2125 0, /* rightshift */
2126 2, /* size (0 = byte, 1 = short, 2 = long) */
2127 64, /* bitsize */
2128 FALSE, /* pc_relative */
2129 0, /* bitpos */
2130 complain_overflow_dont, /* complain_on_overflow */
2131 bfd_elf_generic_reloc, /* special_function */
2132 AARCH64_R_STR (TLSDESC), /* name */
2133 FALSE, /* partial_inplace */
2134 0, /* src_mask */
2135 ALL_ONES, /* dst_mask */
2136 FALSE), /* pcrel_offset */
2137
2138 HOWTO (AARCH64_R (IRELATIVE), /* type */
2139 0, /* rightshift */
2140 2, /* size (0 = byte, 1 = short, 2 = long) */
2141 64, /* bitsize */
2142 FALSE, /* pc_relative */
2143 0, /* bitpos */
2144 complain_overflow_bitfield, /* complain_on_overflow */
2145 bfd_elf_generic_reloc, /* special_function */
2146 AARCH64_R_STR (IRELATIVE), /* name */
2147 FALSE, /* partial_inplace */
2148 0, /* src_mask */
2149 ALL_ONES, /* dst_mask */
2150 FALSE), /* pcrel_offset */
2151
2152 EMPTY_HOWTO (0),
2153 };
2154
2155 static reloc_howto_type elfNN_aarch64_howto_none =
2156 HOWTO (R_AARCH64_NONE, /* type */
2157 0, /* rightshift */
2158 3, /* size (0 = byte, 1 = short, 2 = long) */
2159 0, /* bitsize */
2160 FALSE, /* pc_relative */
2161 0, /* bitpos */
2162 complain_overflow_dont,/* complain_on_overflow */
2163 bfd_elf_generic_reloc, /* special_function */
2164 "R_AARCH64_NONE", /* name */
2165 FALSE, /* partial_inplace */
2166 0, /* src_mask */
2167 0, /* dst_mask */
2168 FALSE); /* pcrel_offset */
2169
2170 /* Given HOWTO, return the bfd internal relocation enumerator. */
2171
2172 static bfd_reloc_code_real_type
2173 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2174 {
2175 const int size
2176 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2177 const ptrdiff_t offset
2178 = howto - elfNN_aarch64_howto_table;
2179
2180 if (offset > 0 && offset < size - 1)
2181 return BFD_RELOC_AARCH64_RELOC_START + offset;
2182
2183 if (howto == &elfNN_aarch64_howto_none)
2184 return BFD_RELOC_AARCH64_NONE;
2185
2186 return BFD_RELOC_AARCH64_RELOC_START;
2187 }
2188
2189 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2190
2191 static bfd_reloc_code_real_type
2192 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2193 {
2194 static bfd_boolean initialized_p = FALSE;
2195 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2196 static unsigned int offsets[R_AARCH64_end];
2197
2198 if (!initialized_p)
2199 {
2200 unsigned int i;
2201
2202 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2203 if (elfNN_aarch64_howto_table[i].type != 0)
2204 offsets[elfNN_aarch64_howto_table[i].type] = i;
2205
2206 initialized_p = TRUE;
2207 }
2208
2209 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2210 return BFD_RELOC_AARCH64_NONE;
2211
2212 /* PR 17512: file: b371e70a. */
2213 if (r_type >= R_AARCH64_end)
2214 {
2215 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2216 abfd, r_type);
2217 bfd_set_error (bfd_error_bad_value);
2218 return BFD_RELOC_AARCH64_NONE;
2219 }
2220
2221 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2222 }
2223
2224 struct elf_aarch64_reloc_map
2225 {
2226 bfd_reloc_code_real_type from;
2227 bfd_reloc_code_real_type to;
2228 };
2229
2230 /* Map bfd generic reloc to AArch64-specific reloc. */
2231 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2232 {
2233 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2234
2235 /* Basic data relocations. */
2236 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2237 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2238 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2239 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2240 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2241 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2242 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2243 };
2244
2245 /* Given the bfd internal relocation enumerator in CODE, return the
2246 corresponding howto entry. */
2247
2248 static reloc_howto_type *
2249 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2250 {
2251 unsigned int i;
2252
2253 /* Convert bfd generic reloc to AArch64-specific reloc. */
2254 if (code < BFD_RELOC_AARCH64_RELOC_START
2255 || code > BFD_RELOC_AARCH64_RELOC_END)
2256 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2257 if (elf_aarch64_reloc_map[i].from == code)
2258 {
2259 code = elf_aarch64_reloc_map[i].to;
2260 break;
2261 }
2262
2263 if (code > BFD_RELOC_AARCH64_RELOC_START
2264 && code < BFD_RELOC_AARCH64_RELOC_END)
2265 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2266 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2267
2268 if (code == BFD_RELOC_AARCH64_NONE)
2269 return &elfNN_aarch64_howto_none;
2270
2271 return NULL;
2272 }
2273
2274 static reloc_howto_type *
2275 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2276 {
2277 bfd_reloc_code_real_type val;
2278 reloc_howto_type *howto;
2279
2280 #if ARCH_SIZE == 32
2281 if (r_type > 256)
2282 {
2283 bfd_set_error (bfd_error_bad_value);
2284 return NULL;
2285 }
2286 #endif
2287
2288 if (r_type == R_AARCH64_NONE)
2289 return &elfNN_aarch64_howto_none;
2290
2291 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2292 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2293
2294 if (howto != NULL)
2295 return howto;
2296
2297 bfd_set_error (bfd_error_bad_value);
2298 return NULL;
2299 }
2300
2301 static bfd_boolean
2302 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2303 Elf_Internal_Rela *elf_reloc)
2304 {
2305 unsigned int r_type;
2306
2307 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2308 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2309
2310 if (bfd_reloc->howto == NULL)
2311 {
2312 /* xgettext:c-format */
2313 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2314 return FALSE;
2315 }
2316 return TRUE;
2317 }
2318
2319 static reloc_howto_type *
2320 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2321 bfd_reloc_code_real_type code)
2322 {
2323 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2324
2325 if (howto != NULL)
2326 return howto;
2327
2328 bfd_set_error (bfd_error_bad_value);
2329 return NULL;
2330 }
2331
2332 static reloc_howto_type *
2333 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2334 const char *r_name)
2335 {
2336 unsigned int i;
2337
2338 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2339 if (elfNN_aarch64_howto_table[i].name != NULL
2340 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2341 return &elfNN_aarch64_howto_table[i];
2342
2343 return NULL;
2344 }
2345
2346 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2347 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2348 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2349 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2350
2351 /* The linker script knows the section names for placement.
2352 The entry_names are used to do simple name mangling on the stubs.
2353 Given a function name, and its type, the stub can be found. The
2354 name can be changed. The only requirement is the %s be present. */
2355 #define STUB_ENTRY_NAME "__%s_veneer"
2356
2357 /* The name of the dynamic interpreter. This is put in the .interp
2358 section. */
2359 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2360
2361 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2362 (((1 << 25) - 1) << 2)
2363 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2364 (-((1 << 25) << 2))
2365
2366 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2367 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2368
2369 static int
2370 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2371 {
2372 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2373 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2374 }
2375
2376 static int
2377 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2378 {
2379 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2380 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2381 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2382 }
2383
2384 static const uint32_t aarch64_adrp_branch_stub [] =
2385 {
2386 0x90000010, /* adrp ip0, X */
2387 /* R_AARCH64_ADR_HI21_PCREL(X) */
2388 0x91000210, /* add ip0, ip0, :lo12:X */
2389 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2390 0xd61f0200, /* br ip0 */
2391 };
2392
2393 static const uint32_t aarch64_long_branch_stub[] =
2394 {
2395 #if ARCH_SIZE == 64
2396 0x58000090, /* ldr ip0, 1f */
2397 #else
2398 0x18000090, /* ldr wip0, 1f */
2399 #endif
2400 0x10000011, /* adr ip1, #0 */
2401 0x8b110210, /* add ip0, ip0, ip1 */
2402 0xd61f0200, /* br ip0 */
2403 0x00000000, /* 1: .xword or .word
2404 R_AARCH64_PRELNN(X) + 12
2405 */
2406 0x00000000,
2407 };
2408
2409 static const uint32_t aarch64_erratum_835769_stub[] =
2410 {
2411 0x00000000, /* Placeholder for multiply accumulate. */
2412 0x14000000, /* b <label> */
2413 };
2414
2415 static const uint32_t aarch64_erratum_843419_stub[] =
2416 {
2417 0x00000000, /* Placeholder for LDR instruction. */
2418 0x14000000, /* b <label> */
2419 };
2420
2421 /* Section name for stubs is the associated section name plus this
2422 string. */
2423 #define STUB_SUFFIX ".stub"
2424
2425 enum elf_aarch64_stub_type
2426 {
2427 aarch64_stub_none,
2428 aarch64_stub_adrp_branch,
2429 aarch64_stub_long_branch,
2430 aarch64_stub_erratum_835769_veneer,
2431 aarch64_stub_erratum_843419_veneer,
2432 };
2433
2434 struct elf_aarch64_stub_hash_entry
2435 {
2436 /* Base hash table entry structure. */
2437 struct bfd_hash_entry root;
2438
2439 /* The stub section. */
2440 asection *stub_sec;
2441
2442 /* Offset within stub_sec of the beginning of this stub. */
2443 bfd_vma stub_offset;
2444
2445 /* Given the symbol's value and its section we can determine its final
2446 value when building the stubs (so the stub knows where to jump). */
2447 bfd_vma target_value;
2448 asection *target_section;
2449
2450 enum elf_aarch64_stub_type stub_type;
2451
2452 /* The symbol table entry, if any, that this was derived from. */
2453 struct elf_aarch64_link_hash_entry *h;
2454
2455 /* Destination symbol type */
2456 unsigned char st_type;
2457
2458 /* Where this stub is being called from, or, in the case of combined
2459 stub sections, the first input section in the group. */
2460 asection *id_sec;
2461
2462 /* The name for the local symbol at the start of this stub. The
2463 stub name in the hash table has to be unique; this does not, so
2464 it can be friendlier. */
2465 char *output_name;
2466
2467 /* The instruction which caused this stub to be generated (only valid for
2468 erratum 835769 workaround stubs at present). */
2469 uint32_t veneered_insn;
2470
2471 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2472 bfd_vma adrp_offset;
2473 };
2474
2475 /* Used to build a map of a section. This is required for mixed-endian
2476 code/data. */
2477
2478 typedef struct elf_elf_section_map
2479 {
2480 bfd_vma vma;
2481 char type;
2482 }
2483 elf_aarch64_section_map;
2484
2485
2486 typedef struct _aarch64_elf_section_data
2487 {
2488 struct bfd_elf_section_data elf;
2489 unsigned int mapcount;
2490 unsigned int mapsize;
2491 elf_aarch64_section_map *map;
2492 }
2493 _aarch64_elf_section_data;
2494
2495 #define elf_aarch64_section_data(sec) \
2496 ((_aarch64_elf_section_data *) elf_section_data (sec))
2497
2498 /* The size of the thread control block which is defined to be two pointers. */
2499 #define TCB_SIZE (ARCH_SIZE/8)*2
2500
2501 struct elf_aarch64_local_symbol
2502 {
2503 unsigned int got_type;
2504 bfd_signed_vma got_refcount;
2505 bfd_vma got_offset;
2506
2507 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2508 offset is from the end of the jump table and reserved entries
2509 within the PLTGOT.
2510
2511 The magic value (bfd_vma) -1 indicates that an offset has not be
2512 allocated. */
2513 bfd_vma tlsdesc_got_jump_table_offset;
2514 };
2515
2516 struct elf_aarch64_obj_tdata
2517 {
2518 struct elf_obj_tdata root;
2519
2520 /* local symbol descriptors */
2521 struct elf_aarch64_local_symbol *locals;
2522
2523 /* Zero to warn when linking objects with incompatible enum sizes. */
2524 int no_enum_size_warning;
2525
2526 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2527 int no_wchar_size_warning;
2528
2529 /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties. */
2530 uint32_t gnu_and_prop;
2531
2532 /* Zero to warn when linking objects with incompatible
2533 GNU_PROPERTY_AARCH64_FEATURE_1_BTI. */
2534 int no_bti_warn;
2535
2536 /* PLT type based on security. */
2537 aarch64_plt_type plt_type;
2538 };
2539
2540 #define elf_aarch64_tdata(bfd) \
2541 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2542
2543 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2544
2545 #define is_aarch64_elf(bfd) \
2546 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2547 && elf_tdata (bfd) != NULL \
2548 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2549
2550 static bfd_boolean
2551 elfNN_aarch64_mkobject (bfd *abfd)
2552 {
2553 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2554 AARCH64_ELF_DATA);
2555 }
2556
2557 #define elf_aarch64_hash_entry(ent) \
2558 ((struct elf_aarch64_link_hash_entry *)(ent))
2559
2560 #define GOT_UNKNOWN 0
2561 #define GOT_NORMAL 1
2562 #define GOT_TLS_GD 2
2563 #define GOT_TLS_IE 4
2564 #define GOT_TLSDESC_GD 8
2565
2566 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2567
2568 /* AArch64 ELF linker hash entry. */
2569 struct elf_aarch64_link_hash_entry
2570 {
2571 struct elf_link_hash_entry root;
2572
2573 /* Since PLT entries have variable size, we need to record the
2574 index into .got.plt instead of recomputing it from the PLT
2575 offset. */
2576 bfd_signed_vma plt_got_offset;
2577
2578 /* Bit mask representing the type of GOT entry(s) if any required by
2579 this symbol. */
2580 unsigned int got_type;
2581
2582 /* A pointer to the most recently used stub hash entry against this
2583 symbol. */
2584 struct elf_aarch64_stub_hash_entry *stub_cache;
2585
2586 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2587 is from the end of the jump table and reserved entries within the PLTGOT.
2588
2589 The magic value (bfd_vma) -1 indicates that an offset has not
2590 be allocated. */
2591 bfd_vma tlsdesc_got_jump_table_offset;
2592 };
2593
2594 static unsigned int
2595 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2596 bfd *abfd,
2597 unsigned long r_symndx)
2598 {
2599 if (h)
2600 return elf_aarch64_hash_entry (h)->got_type;
2601
2602 if (! elf_aarch64_locals (abfd))
2603 return GOT_UNKNOWN;
2604
2605 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2606 }
2607
2608 /* Get the AArch64 elf linker hash table from a link_info structure. */
2609 #define elf_aarch64_hash_table(info) \
2610 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2611
2612 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2613 ((struct elf_aarch64_stub_hash_entry *) \
2614 bfd_hash_lookup ((table), (string), (create), (copy)))
2615
2616 /* AArch64 ELF linker hash table. */
2617 struct elf_aarch64_link_hash_table
2618 {
2619 /* The main hash table. */
2620 struct elf_link_hash_table root;
2621
2622 /* Nonzero to force PIC branch veneers. */
2623 int pic_veneer;
2624
2625 /* Fix erratum 835769. */
2626 int fix_erratum_835769;
2627
2628 /* Fix erratum 843419. */
2629 erratum_84319_opts fix_erratum_843419;
2630
2631 /* Don't apply link-time values for dynamic relocations. */
2632 int no_apply_dynamic_relocs;
2633
2634 /* The number of bytes in the initial entry in the PLT. */
2635 bfd_size_type plt_header_size;
2636
2637 /* The bytes of the initial PLT entry. */
2638 const bfd_byte *plt0_entry;
2639
2640 /* The number of bytes in the subsequent PLT entries. */
2641 bfd_size_type plt_entry_size;
2642
2643 /* The bytes of the subsequent PLT entry. */
2644 const bfd_byte *plt_entry;
2645
2646 /* For convenience in allocate_dynrelocs. */
2647 bfd *obfd;
2648
2649 /* The amount of space used by the reserved portion of the sgotplt
2650 section, plus whatever space is used by the jump slots. */
2651 bfd_vma sgotplt_jump_table_size;
2652
2653 /* The stub hash table. */
2654 struct bfd_hash_table stub_hash_table;
2655
2656 /* Linker stub bfd. */
2657 bfd *stub_bfd;
2658
2659 /* Linker call-backs. */
2660 asection *(*add_stub_section) (const char *, asection *);
2661 void (*layout_sections_again) (void);
2662
2663 /* Array to keep track of which stub sections have been created, and
2664 information on stub grouping. */
2665 struct map_stub
2666 {
2667 /* This is the section to which stubs in the group will be
2668 attached. */
2669 asection *link_sec;
2670 /* The stub section. */
2671 asection *stub_sec;
2672 } *stub_group;
2673
2674 /* Assorted information used by elfNN_aarch64_size_stubs. */
2675 unsigned int bfd_count;
2676 unsigned int top_index;
2677 asection **input_list;
2678
2679 /* JUMP_SLOT relocs for variant PCS symbols may be present. */
2680 int variant_pcs;
2681
2682 /* The number of bytes in the PLT enty for the TLS descriptor. */
2683 bfd_size_type tlsdesc_plt_entry_size;
2684
2685 /* Used by local STT_GNU_IFUNC symbols. */
2686 htab_t loc_hash_table;
2687 void * loc_hash_memory;
2688 };
2689
2690 /* Create an entry in an AArch64 ELF linker hash table. */
2691
2692 static struct bfd_hash_entry *
2693 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2694 struct bfd_hash_table *table,
2695 const char *string)
2696 {
2697 struct elf_aarch64_link_hash_entry *ret =
2698 (struct elf_aarch64_link_hash_entry *) entry;
2699
2700 /* Allocate the structure if it has not already been allocated by a
2701 subclass. */
2702 if (ret == NULL)
2703 ret = bfd_hash_allocate (table,
2704 sizeof (struct elf_aarch64_link_hash_entry));
2705 if (ret == NULL)
2706 return (struct bfd_hash_entry *) ret;
2707
2708 /* Call the allocation method of the superclass. */
2709 ret = ((struct elf_aarch64_link_hash_entry *)
2710 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2711 table, string));
2712 if (ret != NULL)
2713 {
2714 ret->got_type = GOT_UNKNOWN;
2715 ret->plt_got_offset = (bfd_vma) - 1;
2716 ret->stub_cache = NULL;
2717 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2718 }
2719
2720 return (struct bfd_hash_entry *) ret;
2721 }
2722
2723 /* Initialize an entry in the stub hash table. */
2724
2725 static struct bfd_hash_entry *
2726 stub_hash_newfunc (struct bfd_hash_entry *entry,
2727 struct bfd_hash_table *table, const char *string)
2728 {
2729 /* Allocate the structure if it has not already been allocated by a
2730 subclass. */
2731 if (entry == NULL)
2732 {
2733 entry = bfd_hash_allocate (table,
2734 sizeof (struct
2735 elf_aarch64_stub_hash_entry));
2736 if (entry == NULL)
2737 return entry;
2738 }
2739
2740 /* Call the allocation method of the superclass. */
2741 entry = bfd_hash_newfunc (entry, table, string);
2742 if (entry != NULL)
2743 {
2744 struct elf_aarch64_stub_hash_entry *eh;
2745
2746 /* Initialize the local fields. */
2747 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2748 eh->adrp_offset = 0;
2749 eh->stub_sec = NULL;
2750 eh->stub_offset = 0;
2751 eh->target_value = 0;
2752 eh->target_section = NULL;
2753 eh->stub_type = aarch64_stub_none;
2754 eh->h = NULL;
2755 eh->id_sec = NULL;
2756 }
2757
2758 return entry;
2759 }
2760
2761 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2762 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2763 as global symbol. We reuse indx and dynstr_index for local symbol
2764 hash since they aren't used by global symbols in this backend. */
2765
2766 static hashval_t
2767 elfNN_aarch64_local_htab_hash (const void *ptr)
2768 {
2769 struct elf_link_hash_entry *h
2770 = (struct elf_link_hash_entry *) ptr;
2771 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2772 }
2773
2774 /* Compare local hash entries. */
2775
2776 static int
2777 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2778 {
2779 struct elf_link_hash_entry *h1
2780 = (struct elf_link_hash_entry *) ptr1;
2781 struct elf_link_hash_entry *h2
2782 = (struct elf_link_hash_entry *) ptr2;
2783
2784 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2785 }
2786
2787 /* Find and/or create a hash entry for local symbol. */
2788
2789 static struct elf_link_hash_entry *
2790 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2791 bfd *abfd, const Elf_Internal_Rela *rel,
2792 bfd_boolean create)
2793 {
2794 struct elf_aarch64_link_hash_entry e, *ret;
2795 asection *sec = abfd->sections;
2796 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2797 ELFNN_R_SYM (rel->r_info));
2798 void **slot;
2799
2800 e.root.indx = sec->id;
2801 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2802 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2803 create ? INSERT : NO_INSERT);
2804
2805 if (!slot)
2806 return NULL;
2807
2808 if (*slot)
2809 {
2810 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2811 return &ret->root;
2812 }
2813
2814 ret = (struct elf_aarch64_link_hash_entry *)
2815 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2816 sizeof (struct elf_aarch64_link_hash_entry));
2817 if (ret)
2818 {
2819 memset (ret, 0, sizeof (*ret));
2820 ret->root.indx = sec->id;
2821 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2822 ret->root.dynindx = -1;
2823 *slot = ret;
2824 }
2825 return &ret->root;
2826 }
2827
2828 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2829
2830 static void
2831 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2832 struct elf_link_hash_entry *dir,
2833 struct elf_link_hash_entry *ind)
2834 {
2835 struct elf_aarch64_link_hash_entry *edir, *eind;
2836
2837 edir = (struct elf_aarch64_link_hash_entry *) dir;
2838 eind = (struct elf_aarch64_link_hash_entry *) ind;
2839
2840 if (ind->root.type == bfd_link_hash_indirect)
2841 {
2842 /* Copy over PLT info. */
2843 if (dir->got.refcount <= 0)
2844 {
2845 edir->got_type = eind->got_type;
2846 eind->got_type = GOT_UNKNOWN;
2847 }
2848 }
2849
2850 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2851 }
2852
2853 /* Merge non-visibility st_other attributes. */
2854
2855 static void
2856 elfNN_aarch64_merge_symbol_attribute (struct elf_link_hash_entry *h,
2857 const Elf_Internal_Sym *isym,
2858 bfd_boolean definition ATTRIBUTE_UNUSED,
2859 bfd_boolean dynamic ATTRIBUTE_UNUSED)
2860 {
2861 unsigned int isym_sto = isym->st_other & ~ELF_ST_VISIBILITY (-1);
2862 unsigned int h_sto = h->other & ~ELF_ST_VISIBILITY (-1);
2863
2864 if (isym_sto == h_sto)
2865 return;
2866
2867 if (isym_sto & ~STO_AARCH64_VARIANT_PCS)
2868 /* Not fatal, this callback cannot fail. */
2869 _bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"),
2870 h->root.root.string, isym_sto);
2871
2872 /* Note: Ideally we would warn about any attribute mismatch, but
2873 this api does not allow that without substantial changes. */
2874 if (isym_sto & STO_AARCH64_VARIANT_PCS)
2875 h->other |= STO_AARCH64_VARIANT_PCS;
2876 }
2877
2878 /* Destroy an AArch64 elf linker hash table. */
2879
2880 static void
2881 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2882 {
2883 struct elf_aarch64_link_hash_table *ret
2884 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2885
2886 if (ret->loc_hash_table)
2887 htab_delete (ret->loc_hash_table);
2888 if (ret->loc_hash_memory)
2889 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2890
2891 bfd_hash_table_free (&ret->stub_hash_table);
2892 _bfd_elf_link_hash_table_free (obfd);
2893 }
2894
2895 /* Create an AArch64 elf linker hash table. */
2896
2897 static struct bfd_link_hash_table *
2898 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2899 {
2900 struct elf_aarch64_link_hash_table *ret;
2901 size_t amt = sizeof (struct elf_aarch64_link_hash_table);
2902
2903 ret = bfd_zmalloc (amt);
2904 if (ret == NULL)
2905 return NULL;
2906
2907 if (!_bfd_elf_link_hash_table_init
2908 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2909 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2910 {
2911 free (ret);
2912 return NULL;
2913 }
2914
2915 ret->plt_header_size = PLT_ENTRY_SIZE;
2916 ret->plt0_entry = elfNN_aarch64_small_plt0_entry;
2917 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2918 ret->plt_entry = elfNN_aarch64_small_plt_entry;
2919 ret->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
2920 ret->obfd = abfd;
2921 ret->root.tlsdesc_got = (bfd_vma) - 1;
2922
2923 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2924 sizeof (struct elf_aarch64_stub_hash_entry)))
2925 {
2926 _bfd_elf_link_hash_table_free (abfd);
2927 return NULL;
2928 }
2929
2930 ret->loc_hash_table = htab_try_create (1024,
2931 elfNN_aarch64_local_htab_hash,
2932 elfNN_aarch64_local_htab_eq,
2933 NULL);
2934 ret->loc_hash_memory = objalloc_create ();
2935 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2936 {
2937 elfNN_aarch64_link_hash_table_free (abfd);
2938 return NULL;
2939 }
2940 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2941
2942 return &ret->root.root;
2943 }
2944
2945 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2946
2947 static bfd_boolean
2948 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2949 bfd_vma offset, bfd_vma value)
2950 {
2951 reloc_howto_type *howto;
2952 bfd_vma place;
2953
2954 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
2955 place = (input_section->output_section->vma + input_section->output_offset
2956 + offset);
2957
2958 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
2959 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, r_type, place,
2960 value, 0, FALSE);
2961 return _bfd_aarch64_elf_put_addend (input_bfd,
2962 input_section->contents + offset, r_type,
2963 howto, value) == bfd_reloc_ok;
2964 }
2965
2966 static enum elf_aarch64_stub_type
2967 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2968 {
2969 if (aarch64_valid_for_adrp_p (value, place))
2970 return aarch64_stub_adrp_branch;
2971 return aarch64_stub_long_branch;
2972 }
2973
2974 /* Determine the type of stub needed, if any, for a call. */
2975
2976 static enum elf_aarch64_stub_type
2977 aarch64_type_of_stub (asection *input_sec,
2978 const Elf_Internal_Rela *rel,
2979 asection *sym_sec,
2980 unsigned char st_type,
2981 bfd_vma destination)
2982 {
2983 bfd_vma location;
2984 bfd_signed_vma branch_offset;
2985 unsigned int r_type;
2986 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2987
2988 if (st_type != STT_FUNC
2989 && (sym_sec == input_sec))
2990 return stub_type;
2991
2992 /* Determine where the call point is. */
2993 location = (input_sec->output_offset
2994 + input_sec->output_section->vma + rel->r_offset);
2995
2996 branch_offset = (bfd_signed_vma) (destination - location);
2997
2998 r_type = ELFNN_R_TYPE (rel->r_info);
2999
3000 /* We don't want to redirect any old unconditional jump in this way,
3001 only one which is being used for a sibcall, where it is
3002 acceptable for the IP0 and IP1 registers to be clobbered. */
3003 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
3004 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
3005 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
3006 {
3007 stub_type = aarch64_stub_long_branch;
3008 }
3009
3010 return stub_type;
3011 }
3012
3013 /* Build a name for an entry in the stub hash table. */
3014
3015 static char *
3016 elfNN_aarch64_stub_name (const asection *input_section,
3017 const asection *sym_sec,
3018 const struct elf_aarch64_link_hash_entry *hash,
3019 const Elf_Internal_Rela *rel)
3020 {
3021 char *stub_name;
3022 bfd_size_type len;
3023
3024 if (hash)
3025 {
3026 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
3027 stub_name = bfd_malloc (len);
3028 if (stub_name != NULL)
3029 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
3030 (unsigned int) input_section->id,
3031 hash->root.root.root.string,
3032 rel->r_addend);
3033 }
3034 else
3035 {
3036 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3037 stub_name = bfd_malloc (len);
3038 if (stub_name != NULL)
3039 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
3040 (unsigned int) input_section->id,
3041 (unsigned int) sym_sec->id,
3042 (unsigned int) ELFNN_R_SYM (rel->r_info),
3043 rel->r_addend);
3044 }
3045
3046 return stub_name;
3047 }
3048
3049 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
3050 executable PLT slots where the executable never takes the address of those
3051 functions, the function symbols are not added to the hash table. */
3052
3053 static bfd_boolean
3054 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
3055 {
3056 if (h->plt.offset != (bfd_vma) -1
3057 && !h->def_regular
3058 && !h->pointer_equality_needed)
3059 return FALSE;
3060
3061 return _bfd_elf_hash_symbol (h);
3062 }
3063
3064
3065 /* Look up an entry in the stub hash. Stub entries are cached because
3066 creating the stub name takes a bit of time. */
3067
3068 static struct elf_aarch64_stub_hash_entry *
3069 elfNN_aarch64_get_stub_entry (const asection *input_section,
3070 const asection *sym_sec,
3071 struct elf_link_hash_entry *hash,
3072 const Elf_Internal_Rela *rel,
3073 struct elf_aarch64_link_hash_table *htab)
3074 {
3075 struct elf_aarch64_stub_hash_entry *stub_entry;
3076 struct elf_aarch64_link_hash_entry *h =
3077 (struct elf_aarch64_link_hash_entry *) hash;
3078 const asection *id_sec;
3079
3080 if ((input_section->flags & SEC_CODE) == 0)
3081 return NULL;
3082
3083 /* If this input section is part of a group of sections sharing one
3084 stub section, then use the id of the first section in the group.
3085 Stub names need to include a section id, as there may well be
3086 more than one stub used to reach say, printf, and we need to
3087 distinguish between them. */
3088 id_sec = htab->stub_group[input_section->id].link_sec;
3089
3090 if (h != NULL && h->stub_cache != NULL
3091 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3092 {
3093 stub_entry = h->stub_cache;
3094 }
3095 else
3096 {
3097 char *stub_name;
3098
3099 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3100 if (stub_name == NULL)
3101 return NULL;
3102
3103 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3104 stub_name, FALSE, FALSE);
3105 if (h != NULL)
3106 h->stub_cache = stub_entry;
3107
3108 free (stub_name);
3109 }
3110
3111 return stub_entry;
3112 }
3113
3114
3115 /* Create a stub section. */
3116
3117 static asection *
3118 _bfd_aarch64_create_stub_section (asection *section,
3119 struct elf_aarch64_link_hash_table *htab)
3120 {
3121 size_t namelen;
3122 bfd_size_type len;
3123 char *s_name;
3124
3125 namelen = strlen (section->name);
3126 len = namelen + sizeof (STUB_SUFFIX);
3127 s_name = bfd_alloc (htab->stub_bfd, len);
3128 if (s_name == NULL)
3129 return NULL;
3130
3131 memcpy (s_name, section->name, namelen);
3132 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3133 return (*htab->add_stub_section) (s_name, section);
3134 }
3135
3136
3137 /* Find or create a stub section for a link section.
3138
3139 Fix or create the stub section used to collect stubs attached to
3140 the specified link section. */
3141
3142 static asection *
3143 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3144 struct elf_aarch64_link_hash_table *htab)
3145 {
3146 if (htab->stub_group[link_section->id].stub_sec == NULL)
3147 htab->stub_group[link_section->id].stub_sec
3148 = _bfd_aarch64_create_stub_section (link_section, htab);
3149 return htab->stub_group[link_section->id].stub_sec;
3150 }
3151
3152
3153 /* Find or create a stub section in the stub group for an input
3154 section. */
3155
3156 static asection *
3157 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3158 struct elf_aarch64_link_hash_table *htab)
3159 {
3160 asection *link_sec = htab->stub_group[section->id].link_sec;
3161 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3162 }
3163
3164
3165 /* Add a new stub entry in the stub group associated with an input
3166 section to the stub hash. Not all fields of the new stub entry are
3167 initialised. */
3168
3169 static struct elf_aarch64_stub_hash_entry *
3170 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3171 asection *section,
3172 struct elf_aarch64_link_hash_table *htab)
3173 {
3174 asection *link_sec;
3175 asection *stub_sec;
3176 struct elf_aarch64_stub_hash_entry *stub_entry;
3177
3178 link_sec = htab->stub_group[section->id].link_sec;
3179 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3180
3181 /* Enter this entry into the linker stub hash table. */
3182 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3183 TRUE, FALSE);
3184 if (stub_entry == NULL)
3185 {
3186 /* xgettext:c-format */
3187 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3188 section->owner, stub_name);
3189 return NULL;
3190 }
3191
3192 stub_entry->stub_sec = stub_sec;
3193 stub_entry->stub_offset = 0;
3194 stub_entry->id_sec = link_sec;
3195
3196 return stub_entry;
3197 }
3198
3199 /* Add a new stub entry in the final stub section to the stub hash.
3200 Not all fields of the new stub entry are initialised. */
3201
3202 static struct elf_aarch64_stub_hash_entry *
3203 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3204 asection *link_section,
3205 struct elf_aarch64_link_hash_table *htab)
3206 {
3207 asection *stub_sec;
3208 struct elf_aarch64_stub_hash_entry *stub_entry;
3209
3210 stub_sec = NULL;
3211 /* Only create the actual stub if we will end up needing it. */
3212 if (htab->fix_erratum_843419 & ERRAT_ADRP)
3213 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3214 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3215 TRUE, FALSE);
3216 if (stub_entry == NULL)
3217 {
3218 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3219 return NULL;
3220 }
3221
3222 stub_entry->stub_sec = stub_sec;
3223 stub_entry->stub_offset = 0;
3224 stub_entry->id_sec = link_section;
3225
3226 return stub_entry;
3227 }
3228
3229
3230 static bfd_boolean
3231 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3232 void *in_arg)
3233 {
3234 struct elf_aarch64_stub_hash_entry *stub_entry;
3235 asection *stub_sec;
3236 bfd *stub_bfd;
3237 bfd_byte *loc;
3238 bfd_vma sym_value;
3239 bfd_vma veneered_insn_loc;
3240 bfd_vma veneer_entry_loc;
3241 bfd_signed_vma branch_offset = 0;
3242 unsigned int template_size;
3243 const uint32_t *template;
3244 unsigned int i;
3245 struct bfd_link_info *info;
3246
3247 /* Massage our args to the form they really have. */
3248 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3249
3250 info = (struct bfd_link_info *) in_arg;
3251
3252 /* Fail if the target section could not be assigned to an output
3253 section. The user should fix his linker script. */
3254 if (stub_entry->target_section->output_section == NULL
3255 && info->non_contiguous_regions)
3256 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
3257 "Retry without "
3258 "--enable-non-contiguous-regions.\n"),
3259 stub_entry->target_section);
3260
3261 stub_sec = stub_entry->stub_sec;
3262
3263 /* Make a note of the offset within the stubs for this entry. */
3264 stub_entry->stub_offset = stub_sec->size;
3265 loc = stub_sec->contents + stub_entry->stub_offset;
3266
3267 stub_bfd = stub_sec->owner;
3268
3269 /* This is the address of the stub destination. */
3270 sym_value = (stub_entry->target_value
3271 + stub_entry->target_section->output_offset
3272 + stub_entry->target_section->output_section->vma);
3273
3274 if (stub_entry->stub_type == aarch64_stub_long_branch)
3275 {
3276 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3277 + stub_sec->output_offset);
3278
3279 /* See if we can relax the stub. */
3280 if (aarch64_valid_for_adrp_p (sym_value, place))
3281 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3282 }
3283
3284 switch (stub_entry->stub_type)
3285 {
3286 case aarch64_stub_adrp_branch:
3287 template = aarch64_adrp_branch_stub;
3288 template_size = sizeof (aarch64_adrp_branch_stub);
3289 break;
3290 case aarch64_stub_long_branch:
3291 template = aarch64_long_branch_stub;
3292 template_size = sizeof (aarch64_long_branch_stub);
3293 break;
3294 case aarch64_stub_erratum_835769_veneer:
3295 template = aarch64_erratum_835769_stub;
3296 template_size = sizeof (aarch64_erratum_835769_stub);
3297 break;
3298 case aarch64_stub_erratum_843419_veneer:
3299 template = aarch64_erratum_843419_stub;
3300 template_size = sizeof (aarch64_erratum_843419_stub);
3301 break;
3302 default:
3303 abort ();
3304 }
3305
3306 for (i = 0; i < (template_size / sizeof template[0]); i++)
3307 {
3308 bfd_putl32 (template[i], loc);
3309 loc += 4;
3310 }
3311
3312 template_size = (template_size + 7) & ~7;
3313 stub_sec->size += template_size;
3314
3315 switch (stub_entry->stub_type)
3316 {
3317 case aarch64_stub_adrp_branch:
3318 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3319 stub_entry->stub_offset, sym_value))
3320 /* The stub would not have been relaxed if the offset was out
3321 of range. */
3322 BFD_FAIL ();
3323
3324 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3325 stub_entry->stub_offset + 4, sym_value))
3326 BFD_FAIL ();
3327 break;
3328
3329 case aarch64_stub_long_branch:
3330 /* We want the value relative to the address 12 bytes back from the
3331 value itself. */
3332 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3333 stub_entry->stub_offset + 16, sym_value + 12))
3334 BFD_FAIL ();
3335 break;
3336
3337 case aarch64_stub_erratum_835769_veneer:
3338 veneered_insn_loc = stub_entry->target_section->output_section->vma
3339 + stub_entry->target_section->output_offset
3340 + stub_entry->target_value;
3341 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3342 + stub_entry->stub_sec->output_offset
3343 + stub_entry->stub_offset;
3344 branch_offset = veneered_insn_loc - veneer_entry_loc;
3345 branch_offset >>= 2;
3346 branch_offset &= 0x3ffffff;
3347 bfd_putl32 (stub_entry->veneered_insn,
3348 stub_sec->contents + stub_entry->stub_offset);
3349 bfd_putl32 (template[1] | branch_offset,
3350 stub_sec->contents + stub_entry->stub_offset + 4);
3351 break;
3352
3353 case aarch64_stub_erratum_843419_veneer:
3354 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3355 stub_entry->stub_offset + 4, sym_value + 4))
3356 BFD_FAIL ();
3357 break;
3358
3359 default:
3360 abort ();
3361 }
3362
3363 return TRUE;
3364 }
3365
3366 /* As above, but don't actually build the stub. Just bump offset so
3367 we know stub section sizes. */
3368
3369 static bfd_boolean
3370 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
3371 {
3372 struct elf_aarch64_stub_hash_entry *stub_entry;
3373 struct elf_aarch64_link_hash_table *htab;
3374 int size;
3375
3376 /* Massage our args to the form they really have. */
3377 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3378 htab = (struct elf_aarch64_link_hash_table *) in_arg;
3379
3380 switch (stub_entry->stub_type)
3381 {
3382 case aarch64_stub_adrp_branch:
3383 size = sizeof (aarch64_adrp_branch_stub);
3384 break;
3385 case aarch64_stub_long_branch:
3386 size = sizeof (aarch64_long_branch_stub);
3387 break;
3388 case aarch64_stub_erratum_835769_veneer:
3389 size = sizeof (aarch64_erratum_835769_stub);
3390 break;
3391 case aarch64_stub_erratum_843419_veneer:
3392 {
3393 if (htab->fix_erratum_843419 == ERRAT_ADR)
3394 return TRUE;
3395 size = sizeof (aarch64_erratum_843419_stub);
3396 }
3397 break;
3398 default:
3399 abort ();
3400 }
3401
3402 size = (size + 7) & ~7;
3403 stub_entry->stub_sec->size += size;
3404 return TRUE;
3405 }
3406
3407 /* External entry points for sizing and building linker stubs. */
3408
3409 /* Set up various things so that we can make a list of input sections
3410 for each output section included in the link. Returns -1 on error,
3411 0 when no stubs will be needed, and 1 on success. */
3412
3413 int
3414 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3415 struct bfd_link_info *info)
3416 {
3417 bfd *input_bfd;
3418 unsigned int bfd_count;
3419 unsigned int top_id, top_index;
3420 asection *section;
3421 asection **input_list, **list;
3422 size_t amt;
3423 struct elf_aarch64_link_hash_table *htab =
3424 elf_aarch64_hash_table (info);
3425
3426 if (!is_elf_hash_table (htab))
3427 return 0;
3428
3429 /* Count the number of input BFDs and find the top input section id. */
3430 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3431 input_bfd != NULL; input_bfd = input_bfd->link.next)
3432 {
3433 bfd_count += 1;
3434 for (section = input_bfd->sections;
3435 section != NULL; section = section->next)
3436 {
3437 if (top_id < section->id)
3438 top_id = section->id;
3439 }
3440 }
3441 htab->bfd_count = bfd_count;
3442
3443 amt = sizeof (struct map_stub) * (top_id + 1);
3444 htab->stub_group = bfd_zmalloc (amt);
3445 if (htab->stub_group == NULL)
3446 return -1;
3447
3448 /* We can't use output_bfd->section_count here to find the top output
3449 section index as some sections may have been removed, and
3450 _bfd_strip_section_from_output doesn't renumber the indices. */
3451 for (section = output_bfd->sections, top_index = 0;
3452 section != NULL; section = section->next)
3453 {
3454 if (top_index < section->index)
3455 top_index = section->index;
3456 }
3457
3458 htab->top_index = top_index;
3459 amt = sizeof (asection *) * (top_index + 1);
3460 input_list = bfd_malloc (amt);
3461 htab->input_list = input_list;
3462 if (input_list == NULL)
3463 return -1;
3464
3465 /* For sections we aren't interested in, mark their entries with a
3466 value we can check later. */
3467 list = input_list + top_index;
3468 do
3469 *list = bfd_abs_section_ptr;
3470 while (list-- != input_list);
3471
3472 for (section = output_bfd->sections;
3473 section != NULL; section = section->next)
3474 {
3475 if ((section->flags & SEC_CODE) != 0)
3476 input_list[section->index] = NULL;
3477 }
3478
3479 return 1;
3480 }
3481
3482 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3483 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3484
3485 /* The linker repeatedly calls this function for each input section,
3486 in the order that input sections are linked into output sections.
3487 Build lists of input sections to determine groupings between which
3488 we may insert linker stubs. */
3489
3490 void
3491 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3492 {
3493 struct elf_aarch64_link_hash_table *htab =
3494 elf_aarch64_hash_table (info);
3495
3496 if (isec->output_section->index <= htab->top_index)
3497 {
3498 asection **list = htab->input_list + isec->output_section->index;
3499
3500 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
3501 {
3502 /* Steal the link_sec pointer for our list. */
3503 /* This happens to make the list in reverse order,
3504 which is what we want. */
3505 PREV_SEC (isec) = *list;
3506 *list = isec;
3507 }
3508 }
3509 }
3510
3511 /* See whether we can group stub sections together. Grouping stub
3512 sections may result in fewer stubs. More importantly, we need to
3513 put all .init* and .fini* stubs at the beginning of the .init or
3514 .fini output sections respectively, because glibc splits the
3515 _init and _fini functions into multiple parts. Putting a stub in
3516 the middle of a function is not a good idea. */
3517
3518 static void
3519 group_sections (struct elf_aarch64_link_hash_table *htab,
3520 bfd_size_type stub_group_size,
3521 bfd_boolean stubs_always_after_branch)
3522 {
3523 asection **list = htab->input_list;
3524
3525 do
3526 {
3527 asection *tail = *list;
3528 asection *head;
3529
3530 if (tail == bfd_abs_section_ptr)
3531 continue;
3532
3533 /* Reverse the list: we must avoid placing stubs at the
3534 beginning of the section because the beginning of the text
3535 section may be required for an interrupt vector in bare metal
3536 code. */
3537 #define NEXT_SEC PREV_SEC
3538 head = NULL;
3539 while (tail != NULL)
3540 {
3541 /* Pop from tail. */
3542 asection *item = tail;
3543 tail = PREV_SEC (item);
3544
3545 /* Push on head. */
3546 NEXT_SEC (item) = head;
3547 head = item;
3548 }
3549
3550 while (head != NULL)
3551 {
3552 asection *curr;
3553 asection *next;
3554 bfd_vma stub_group_start = head->output_offset;
3555 bfd_vma end_of_next;
3556
3557 curr = head;
3558 while (NEXT_SEC (curr) != NULL)
3559 {
3560 next = NEXT_SEC (curr);
3561 end_of_next = next->output_offset + next->size;
3562 if (end_of_next - stub_group_start >= stub_group_size)
3563 /* End of NEXT is too far from start, so stop. */
3564 break;
3565 /* Add NEXT to the group. */
3566 curr = next;
3567 }
3568
3569 /* OK, the size from the start to the start of CURR is less
3570 than stub_group_size and thus can be handled by one stub
3571 section. (Or the head section is itself larger than
3572 stub_group_size, in which case we may be toast.)
3573 We should really be keeping track of the total size of
3574 stubs added here, as stubs contribute to the final output
3575 section size. */
3576 do
3577 {
3578 next = NEXT_SEC (head);
3579 /* Set up this stub group. */
3580 htab->stub_group[head->id].link_sec = curr;
3581 }
3582 while (head != curr && (head = next) != NULL);
3583
3584 /* But wait, there's more! Input sections up to stub_group_size
3585 bytes after the stub section can be handled by it too. */
3586 if (!stubs_always_after_branch)
3587 {
3588 stub_group_start = curr->output_offset + curr->size;
3589
3590 while (next != NULL)
3591 {
3592 end_of_next = next->output_offset + next->size;
3593 if (end_of_next - stub_group_start >= stub_group_size)
3594 /* End of NEXT is too far from stubs, so stop. */
3595 break;
3596 /* Add NEXT to the stub group. */
3597 head = next;
3598 next = NEXT_SEC (head);
3599 htab->stub_group[head->id].link_sec = curr;
3600 }
3601 }
3602 head = next;
3603 }
3604 }
3605 while (list++ != htab->input_list + htab->top_index);
3606
3607 free (htab->input_list);
3608 }
3609
3610 #undef PREV_SEC
3611 #undef PREV_SEC
3612
3613 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3614
3615 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3616 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3617 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3618 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3619 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3620 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3621
3622 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3623 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3624 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3625 #define AARCH64_ZR 0x1f
3626
3627 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3628 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3629
3630 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3631 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3632 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3633 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3634 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3635 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3636 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3637 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3638 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3639 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3640 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3641 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3642 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3643 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3644 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3645 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3646 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3647 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3648
3649 /* Classify an INSN if it is indeed a load/store.
3650
3651 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3652
3653 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3654 is set equal to RT.
3655
3656 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3657
3658 static bfd_boolean
3659 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3660 bfd_boolean *pair, bfd_boolean *load)
3661 {
3662 uint32_t opcode;
3663 unsigned int r;
3664 uint32_t opc = 0;
3665 uint32_t v = 0;
3666 uint32_t opc_v = 0;
3667
3668 /* Bail out quickly if INSN doesn't fall into the load-store
3669 encoding space. */
3670 if (!AARCH64_LDST (insn))
3671 return FALSE;
3672
3673 *pair = FALSE;
3674 *load = FALSE;
3675 if (AARCH64_LDST_EX (insn))
3676 {
3677 *rt = AARCH64_RT (insn);
3678 *rt2 = *rt;
3679 if (AARCH64_BIT (insn, 21) == 1)
3680 {
3681 *pair = TRUE;
3682 *rt2 = AARCH64_RT2 (insn);
3683 }
3684 *load = AARCH64_LD (insn);
3685 return TRUE;
3686 }
3687 else if (AARCH64_LDST_NAP (insn)
3688 || AARCH64_LDSTP_PI (insn)
3689 || AARCH64_LDSTP_O (insn)
3690 || AARCH64_LDSTP_PRE (insn))
3691 {
3692 *pair = TRUE;
3693 *rt = AARCH64_RT (insn);
3694 *rt2 = AARCH64_RT2 (insn);
3695 *load = AARCH64_LD (insn);
3696 return TRUE;
3697 }
3698 else if (AARCH64_LDST_PCREL (insn)
3699 || AARCH64_LDST_UI (insn)
3700 || AARCH64_LDST_PIIMM (insn)
3701 || AARCH64_LDST_U (insn)
3702 || AARCH64_LDST_PREIMM (insn)
3703 || AARCH64_LDST_RO (insn)
3704 || AARCH64_LDST_UIMM (insn))
3705 {
3706 *rt = AARCH64_RT (insn);
3707 *rt2 = *rt;
3708 if (AARCH64_LDST_PCREL (insn))
3709 *load = TRUE;
3710 opc = AARCH64_BITS (insn, 22, 2);
3711 v = AARCH64_BIT (insn, 26);
3712 opc_v = opc | (v << 2);
3713 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3714 || opc_v == 5 || opc_v == 7);
3715 return TRUE;
3716 }
3717 else if (AARCH64_LDST_SIMD_M (insn)
3718 || AARCH64_LDST_SIMD_M_PI (insn))
3719 {
3720 *rt = AARCH64_RT (insn);
3721 *load = AARCH64_BIT (insn, 22);
3722 opcode = (insn >> 12) & 0xf;
3723 switch (opcode)
3724 {
3725 case 0:
3726 case 2:
3727 *rt2 = *rt + 3;
3728 break;
3729
3730 case 4:
3731 case 6:
3732 *rt2 = *rt + 2;
3733 break;
3734
3735 case 7:
3736 *rt2 = *rt;
3737 break;
3738
3739 case 8:
3740 case 10:
3741 *rt2 = *rt + 1;
3742 break;
3743
3744 default:
3745 return FALSE;
3746 }
3747 return TRUE;
3748 }
3749 else if (AARCH64_LDST_SIMD_S (insn)
3750 || AARCH64_LDST_SIMD_S_PI (insn))
3751 {
3752 *rt = AARCH64_RT (insn);
3753 r = (insn >> 21) & 1;
3754 *load = AARCH64_BIT (insn, 22);
3755 opcode = (insn >> 13) & 0x7;
3756 switch (opcode)
3757 {
3758 case 0:
3759 case 2:
3760 case 4:
3761 *rt2 = *rt + r;
3762 break;
3763
3764 case 1:
3765 case 3:
3766 case 5:
3767 *rt2 = *rt + (r == 0 ? 2 : 3);
3768 break;
3769
3770 case 6:
3771 *rt2 = *rt + r;
3772 break;
3773
3774 case 7:
3775 *rt2 = *rt + (r == 0 ? 2 : 3);
3776 break;
3777
3778 default:
3779 return FALSE;
3780 }
3781 return TRUE;
3782 }
3783
3784 return FALSE;
3785 }
3786
3787 /* Return TRUE if INSN is multiply-accumulate. */
3788
3789 static bfd_boolean
3790 aarch64_mlxl_p (uint32_t insn)
3791 {
3792 uint32_t op31 = AARCH64_OP31 (insn);
3793
3794 if (AARCH64_MAC (insn)
3795 && (op31 == 0 || op31 == 1 || op31 == 5)
3796 /* Exclude MUL instructions which are encoded as a multiple accumulate
3797 with RA = XZR. */
3798 && AARCH64_RA (insn) != AARCH64_ZR)
3799 return TRUE;
3800
3801 return FALSE;
3802 }
3803
3804 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3805 it is possible for a 64-bit multiply-accumulate instruction to generate an
3806 incorrect result. The details are quite complex and hard to
3807 determine statically, since branches in the code may exist in some
3808 circumstances, but all cases end with a memory (load, store, or
3809 prefetch) instruction followed immediately by the multiply-accumulate
3810 operation. We employ a linker patching technique, by moving the potentially
3811 affected multiply-accumulate instruction into a patch region and replacing
3812 the original instruction with a branch to the patch. This function checks
3813 if INSN_1 is the memory operation followed by a multiply-accumulate
3814 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3815 if INSN_1 and INSN_2 are safe. */
3816
3817 static bfd_boolean
3818 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3819 {
3820 uint32_t rt;
3821 uint32_t rt2;
3822 uint32_t rn;
3823 uint32_t rm;
3824 uint32_t ra;
3825 bfd_boolean pair;
3826 bfd_boolean load;
3827
3828 if (aarch64_mlxl_p (insn_2)
3829 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3830 {
3831 /* Any SIMD memory op is independent of the subsequent MLA
3832 by definition of the erratum. */
3833 if (AARCH64_BIT (insn_1, 26))
3834 return TRUE;
3835
3836 /* If not SIMD, check for integer memory ops and MLA relationship. */
3837 rn = AARCH64_RN (insn_2);
3838 ra = AARCH64_RA (insn_2);
3839 rm = AARCH64_RM (insn_2);
3840
3841 /* If this is a load and there's a true(RAW) dependency, we are safe
3842 and this is not an erratum sequence. */
3843 if (load &&
3844 (rt == rn || rt == rm || rt == ra
3845 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3846 return FALSE;
3847
3848 /* We conservatively put out stubs for all other cases (including
3849 writebacks). */
3850 return TRUE;
3851 }
3852
3853 return FALSE;
3854 }
3855
3856 /* Used to order a list of mapping symbols by address. */
3857
3858 static int
3859 elf_aarch64_compare_mapping (const void *a, const void *b)
3860 {
3861 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3862 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3863
3864 if (amap->vma > bmap->vma)
3865 return 1;
3866 else if (amap->vma < bmap->vma)
3867 return -1;
3868 else if (amap->type > bmap->type)
3869 /* Ensure results do not depend on the host qsort for objects with
3870 multiple mapping symbols at the same address by sorting on type
3871 after vma. */
3872 return 1;
3873 else if (amap->type < bmap->type)
3874 return -1;
3875 else
3876 return 0;
3877 }
3878
3879
3880 static char *
3881 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3882 {
3883 char *stub_name = (char *) bfd_malloc
3884 (strlen ("__erratum_835769_veneer_") + 16);
3885 if (stub_name != NULL)
3886 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3887 return stub_name;
3888 }
3889
3890 /* Scan for Cortex-A53 erratum 835769 sequence.
3891
3892 Return TRUE else FALSE on abnormal termination. */
3893
3894 static bfd_boolean
3895 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3896 struct bfd_link_info *info,
3897 unsigned int *num_fixes_p)
3898 {
3899 asection *section;
3900 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3901 unsigned int num_fixes = *num_fixes_p;
3902
3903 if (htab == NULL)
3904 return TRUE;
3905
3906 for (section = input_bfd->sections;
3907 section != NULL;
3908 section = section->next)
3909 {
3910 bfd_byte *contents = NULL;
3911 struct _aarch64_elf_section_data *sec_data;
3912 unsigned int span;
3913
3914 if (elf_section_type (section) != SHT_PROGBITS
3915 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3916 || (section->flags & SEC_EXCLUDE) != 0
3917 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3918 || (section->output_section == bfd_abs_section_ptr))
3919 continue;
3920
3921 if (elf_section_data (section)->this_hdr.contents != NULL)
3922 contents = elf_section_data (section)->this_hdr.contents;
3923 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3924 return FALSE;
3925
3926 sec_data = elf_aarch64_section_data (section);
3927
3928 if (sec_data->mapcount)
3929 qsort (sec_data->map, sec_data->mapcount,
3930 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3931
3932 for (span = 0; span < sec_data->mapcount; span++)
3933 {
3934 unsigned int span_start = sec_data->map[span].vma;
3935 unsigned int span_end = ((span == sec_data->mapcount - 1)
3936 ? sec_data->map[0].vma + section->size
3937 : sec_data->map[span + 1].vma);
3938 unsigned int i;
3939 char span_type = sec_data->map[span].type;
3940
3941 if (span_type == 'd')
3942 continue;
3943
3944 for (i = span_start; i + 4 < span_end; i += 4)
3945 {
3946 uint32_t insn_1 = bfd_getl32 (contents + i);
3947 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3948
3949 if (aarch64_erratum_sequence (insn_1, insn_2))
3950 {
3951 struct elf_aarch64_stub_hash_entry *stub_entry;
3952 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3953 if (! stub_name)
3954 return FALSE;
3955
3956 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3957 section,
3958 htab);
3959 if (! stub_entry)
3960 return FALSE;
3961
3962 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3963 stub_entry->target_section = section;
3964 stub_entry->target_value = i + 4;
3965 stub_entry->veneered_insn = insn_2;
3966 stub_entry->output_name = stub_name;
3967 num_fixes++;
3968 }
3969 }
3970 }
3971 if (elf_section_data (section)->this_hdr.contents == NULL)
3972 free (contents);
3973 }
3974
3975 *num_fixes_p = num_fixes;
3976
3977 return TRUE;
3978 }
3979
3980
3981 /* Test if instruction INSN is ADRP. */
3982
3983 static bfd_boolean
3984 _bfd_aarch64_adrp_p (uint32_t insn)
3985 {
3986 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
3987 }
3988
3989
3990 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3991
3992 static bfd_boolean
3993 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3994 uint32_t insn_3)
3995 {
3996 uint32_t rt;
3997 uint32_t rt2;
3998 bfd_boolean pair;
3999 bfd_boolean load;
4000
4001 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
4002 && (!pair
4003 || (pair && !load))
4004 && AARCH64_LDST_UIMM (insn_3)
4005 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
4006 }
4007
4008
4009 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
4010
4011 Return TRUE if section CONTENTS at offset I contains one of the
4012 erratum 843419 sequences, otherwise return FALSE. If a sequence is
4013 seen set P_VENEER_I to the offset of the final LOAD/STORE
4014 instruction in the sequence.
4015 */
4016
4017 static bfd_boolean
4018 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
4019 bfd_vma i, bfd_vma span_end,
4020 bfd_vma *p_veneer_i)
4021 {
4022 uint32_t insn_1 = bfd_getl32 (contents + i);
4023
4024 if (!_bfd_aarch64_adrp_p (insn_1))
4025 return FALSE;
4026
4027 if (span_end < i + 12)
4028 return FALSE;
4029
4030 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
4031 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
4032
4033 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
4034 return FALSE;
4035
4036 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
4037 {
4038 *p_veneer_i = i + 8;
4039 return TRUE;
4040 }
4041
4042 if (span_end < i + 16)
4043 return FALSE;
4044
4045 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
4046
4047 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
4048 {
4049 *p_veneer_i = i + 12;
4050 return TRUE;
4051 }
4052
4053 return FALSE;
4054 }
4055
4056
4057 /* Resize all stub sections. */
4058
4059 static void
4060 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
4061 {
4062 asection *section;
4063
4064 /* OK, we've added some stubs. Find out the new size of the
4065 stub sections. */
4066 for (section = htab->stub_bfd->sections;
4067 section != NULL; section = section->next)
4068 {
4069 /* Ignore non-stub sections. */
4070 if (!strstr (section->name, STUB_SUFFIX))
4071 continue;
4072 section->size = 0;
4073 }
4074
4075 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
4076
4077 for (section = htab->stub_bfd->sections;
4078 section != NULL; section = section->next)
4079 {
4080 if (!strstr (section->name, STUB_SUFFIX))
4081 continue;
4082
4083 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
4084 as long branch stubs contain a 64-bit address. */
4085 if (section->size)
4086 section->size += 8;
4087
4088 /* Ensure all stub sections have a size which is a multiple of
4089 4096. This is important in order to ensure that the insertion
4090 of stub sections does not in itself move existing code around
4091 in such a way that new errata sequences are created. We only do this
4092 when the ADRP workaround is enabled. If only the ADR workaround is
4093 enabled then the stubs workaround won't ever be used. */
4094 if (htab->fix_erratum_843419 & ERRAT_ADRP)
4095 if (section->size)
4096 section->size = BFD_ALIGN (section->size, 0x1000);
4097 }
4098 }
4099
4100 /* Construct an erratum 843419 workaround stub name. */
4101
4102 static char *
4103 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
4104 bfd_vma offset)
4105 {
4106 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
4107 char *stub_name = bfd_malloc (len);
4108
4109 if (stub_name != NULL)
4110 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
4111 input_section->owner->id,
4112 input_section->id,
4113 offset);
4114 return stub_name;
4115 }
4116
4117 /* Build a stub_entry structure describing an 843419 fixup.
4118
4119 The stub_entry constructed is populated with the bit pattern INSN
4120 of the instruction located at OFFSET within input SECTION.
4121
4122 Returns TRUE on success. */
4123
4124 static bfd_boolean
4125 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
4126 bfd_vma adrp_offset,
4127 bfd_vma ldst_offset,
4128 asection *section,
4129 struct bfd_link_info *info)
4130 {
4131 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4132 char *stub_name;
4133 struct elf_aarch64_stub_hash_entry *stub_entry;
4134
4135 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
4136 if (stub_name == NULL)
4137 return FALSE;
4138 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4139 FALSE, FALSE);
4140 if (stub_entry)
4141 {
4142 free (stub_name);
4143 return TRUE;
4144 }
4145
4146 /* We always place an 843419 workaround veneer in the stub section
4147 attached to the input section in which an erratum sequence has
4148 been found. This ensures that later in the link process (in
4149 elfNN_aarch64_write_section) when we copy the veneered
4150 instruction from the input section into the stub section the
4151 copied instruction will have had any relocations applied to it.
4152 If we placed workaround veneers in any other stub section then we
4153 could not assume that all relocations have been processed on the
4154 corresponding input section at the point we output the stub
4155 section. */
4156
4157 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4158 if (stub_entry == NULL)
4159 {
4160 free (stub_name);
4161 return FALSE;
4162 }
4163
4164 stub_entry->adrp_offset = adrp_offset;
4165 stub_entry->target_value = ldst_offset;
4166 stub_entry->target_section = section;
4167 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4168 stub_entry->veneered_insn = insn;
4169 stub_entry->output_name = stub_name;
4170
4171 return TRUE;
4172 }
4173
4174
4175 /* Scan an input section looking for the signature of erratum 843419.
4176
4177 Scans input SECTION in INPUT_BFD looking for erratum 843419
4178 signatures, for each signature found a stub_entry is created
4179 describing the location of the erratum for subsequent fixup.
4180
4181 Return TRUE on successful scan, FALSE on failure to scan.
4182 */
4183
4184 static bfd_boolean
4185 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4186 struct bfd_link_info *info)
4187 {
4188 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4189
4190 if (htab == NULL)
4191 return TRUE;
4192
4193 if (elf_section_type (section) != SHT_PROGBITS
4194 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4195 || (section->flags & SEC_EXCLUDE) != 0
4196 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4197 || (section->output_section == bfd_abs_section_ptr))
4198 return TRUE;
4199
4200 do
4201 {
4202 bfd_byte *contents = NULL;
4203 struct _aarch64_elf_section_data *sec_data;
4204 unsigned int span;
4205
4206 if (elf_section_data (section)->this_hdr.contents != NULL)
4207 contents = elf_section_data (section)->this_hdr.contents;
4208 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4209 return FALSE;
4210
4211 sec_data = elf_aarch64_section_data (section);
4212
4213 if (sec_data->mapcount)
4214 qsort (sec_data->map, sec_data->mapcount,
4215 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4216
4217 for (span = 0; span < sec_data->mapcount; span++)
4218 {
4219 unsigned int span_start = sec_data->map[span].vma;
4220 unsigned int span_end = ((span == sec_data->mapcount - 1)
4221 ? sec_data->map[0].vma + section->size
4222 : sec_data->map[span + 1].vma);
4223 unsigned int i;
4224 char span_type = sec_data->map[span].type;
4225
4226 if (span_type == 'd')
4227 continue;
4228
4229 for (i = span_start; i + 8 < span_end; i += 4)
4230 {
4231 bfd_vma vma = (section->output_section->vma
4232 + section->output_offset
4233 + i);
4234 bfd_vma veneer_i;
4235
4236 if (_bfd_aarch64_erratum_843419_p
4237 (contents, vma, i, span_end, &veneer_i))
4238 {
4239 uint32_t insn = bfd_getl32 (contents + veneer_i);
4240
4241 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4242 section, info))
4243 return FALSE;
4244 }
4245 }
4246 }
4247
4248 if (elf_section_data (section)->this_hdr.contents == NULL)
4249 free (contents);
4250 }
4251 while (0);
4252
4253 return TRUE;
4254 }
4255
4256
4257 /* Determine and set the size of the stub section for a final link.
4258
4259 The basic idea here is to examine all the relocations looking for
4260 PC-relative calls to a target that is unreachable with a "bl"
4261 instruction. */
4262
4263 bfd_boolean
4264 elfNN_aarch64_size_stubs (bfd *output_bfd,
4265 bfd *stub_bfd,
4266 struct bfd_link_info *info,
4267 bfd_signed_vma group_size,
4268 asection * (*add_stub_section) (const char *,
4269 asection *),
4270 void (*layout_sections_again) (void))
4271 {
4272 bfd_size_type stub_group_size;
4273 bfd_boolean stubs_always_before_branch;
4274 bfd_boolean stub_changed = FALSE;
4275 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4276 unsigned int num_erratum_835769_fixes = 0;
4277
4278 /* Propagate mach to stub bfd, because it may not have been
4279 finalized when we created stub_bfd. */
4280 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4281 bfd_get_mach (output_bfd));
4282
4283 /* Stash our params away. */
4284 htab->stub_bfd = stub_bfd;
4285 htab->add_stub_section = add_stub_section;
4286 htab->layout_sections_again = layout_sections_again;
4287 stubs_always_before_branch = group_size < 0;
4288 if (group_size < 0)
4289 stub_group_size = -group_size;
4290 else
4291 stub_group_size = group_size;
4292
4293 if (stub_group_size == 1)
4294 {
4295 /* Default values. */
4296 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4297 stub_group_size = 127 * 1024 * 1024;
4298 }
4299
4300 group_sections (htab, stub_group_size, stubs_always_before_branch);
4301
4302 (*htab->layout_sections_again) ();
4303
4304 if (htab->fix_erratum_835769)
4305 {
4306 bfd *input_bfd;
4307
4308 for (input_bfd = info->input_bfds;
4309 input_bfd != NULL; input_bfd = input_bfd->link.next)
4310 {
4311 if (!is_aarch64_elf (input_bfd)
4312 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4313 continue;
4314
4315 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4316 &num_erratum_835769_fixes))
4317 return FALSE;
4318 }
4319
4320 _bfd_aarch64_resize_stubs (htab);
4321 (*htab->layout_sections_again) ();
4322 }
4323
4324 if (htab->fix_erratum_843419 != ERRAT_NONE)
4325 {
4326 bfd *input_bfd;
4327
4328 for (input_bfd = info->input_bfds;
4329 input_bfd != NULL;
4330 input_bfd = input_bfd->link.next)
4331 {
4332 asection *section;
4333
4334 if (!is_aarch64_elf (input_bfd)
4335 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4336 continue;
4337
4338 for (section = input_bfd->sections;
4339 section != NULL;
4340 section = section->next)
4341 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4342 return FALSE;
4343 }
4344
4345 _bfd_aarch64_resize_stubs (htab);
4346 (*htab->layout_sections_again) ();
4347 }
4348
4349 while (1)
4350 {
4351 bfd *input_bfd;
4352
4353 for (input_bfd = info->input_bfds;
4354 input_bfd != NULL; input_bfd = input_bfd->link.next)
4355 {
4356 Elf_Internal_Shdr *symtab_hdr;
4357 asection *section;
4358 Elf_Internal_Sym *local_syms = NULL;
4359
4360 if (!is_aarch64_elf (input_bfd)
4361 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4362 continue;
4363
4364 /* We'll need the symbol table in a second. */
4365 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4366 if (symtab_hdr->sh_info == 0)
4367 continue;
4368
4369 /* Walk over each section attached to the input bfd. */
4370 for (section = input_bfd->sections;
4371 section != NULL; section = section->next)
4372 {
4373 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4374
4375 /* If there aren't any relocs, then there's nothing more
4376 to do. */
4377 if ((section->flags & SEC_RELOC) == 0
4378 || section->reloc_count == 0
4379 || (section->flags & SEC_CODE) == 0)
4380 continue;
4381
4382 /* If this section is a link-once section that will be
4383 discarded, then don't create any stubs. */
4384 if (section->output_section == NULL
4385 || section->output_section->owner != output_bfd)
4386 continue;
4387
4388 /* Get the relocs. */
4389 internal_relocs
4390 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4391 NULL, info->keep_memory);
4392 if (internal_relocs == NULL)
4393 goto error_ret_free_local;
4394
4395 /* Now examine each relocation. */
4396 irela = internal_relocs;
4397 irelaend = irela + section->reloc_count;
4398 for (; irela < irelaend; irela++)
4399 {
4400 unsigned int r_type, r_indx;
4401 enum elf_aarch64_stub_type stub_type;
4402 struct elf_aarch64_stub_hash_entry *stub_entry;
4403 asection *sym_sec;
4404 bfd_vma sym_value;
4405 bfd_vma destination;
4406 struct elf_aarch64_link_hash_entry *hash;
4407 const char *sym_name;
4408 char *stub_name;
4409 const asection *id_sec;
4410 unsigned char st_type;
4411 bfd_size_type len;
4412
4413 r_type = ELFNN_R_TYPE (irela->r_info);
4414 r_indx = ELFNN_R_SYM (irela->r_info);
4415
4416 if (r_type >= (unsigned int) R_AARCH64_end)
4417 {
4418 bfd_set_error (bfd_error_bad_value);
4419 error_ret_free_internal:
4420 if (elf_section_data (section)->relocs == NULL)
4421 free (internal_relocs);
4422 goto error_ret_free_local;
4423 }
4424
4425 /* Only look for stubs on unconditional branch and
4426 branch and link instructions. */
4427 if (r_type != (unsigned int) AARCH64_R (CALL26)
4428 && r_type != (unsigned int) AARCH64_R (JUMP26))
4429 continue;
4430
4431 /* Now determine the call target, its name, value,
4432 section. */
4433 sym_sec = NULL;
4434 sym_value = 0;
4435 destination = 0;
4436 hash = NULL;
4437 sym_name = NULL;
4438 if (r_indx < symtab_hdr->sh_info)
4439 {
4440 /* It's a local symbol. */
4441 Elf_Internal_Sym *sym;
4442 Elf_Internal_Shdr *hdr;
4443
4444 if (local_syms == NULL)
4445 {
4446 local_syms
4447 = (Elf_Internal_Sym *) symtab_hdr->contents;
4448 if (local_syms == NULL)
4449 local_syms
4450 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4451 symtab_hdr->sh_info, 0,
4452 NULL, NULL, NULL);
4453 if (local_syms == NULL)
4454 goto error_ret_free_internal;
4455 }
4456
4457 sym = local_syms + r_indx;
4458 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4459 sym_sec = hdr->bfd_section;
4460 if (!sym_sec)
4461 /* This is an undefined symbol. It can never
4462 be resolved. */
4463 continue;
4464
4465 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4466 sym_value = sym->st_value;
4467 destination = (sym_value + irela->r_addend
4468 + sym_sec->output_offset
4469 + sym_sec->output_section->vma);
4470 st_type = ELF_ST_TYPE (sym->st_info);
4471 sym_name
4472 = bfd_elf_string_from_elf_section (input_bfd,
4473 symtab_hdr->sh_link,
4474 sym->st_name);
4475 }
4476 else
4477 {
4478 int e_indx;
4479
4480 e_indx = r_indx - symtab_hdr->sh_info;
4481 hash = ((struct elf_aarch64_link_hash_entry *)
4482 elf_sym_hashes (input_bfd)[e_indx]);
4483
4484 while (hash->root.root.type == bfd_link_hash_indirect
4485 || hash->root.root.type == bfd_link_hash_warning)
4486 hash = ((struct elf_aarch64_link_hash_entry *)
4487 hash->root.root.u.i.link);
4488
4489 if (hash->root.root.type == bfd_link_hash_defined
4490 || hash->root.root.type == bfd_link_hash_defweak)
4491 {
4492 struct elf_aarch64_link_hash_table *globals =
4493 elf_aarch64_hash_table (info);
4494 sym_sec = hash->root.root.u.def.section;
4495 sym_value = hash->root.root.u.def.value;
4496 /* For a destination in a shared library,
4497 use the PLT stub as target address to
4498 decide whether a branch stub is
4499 needed. */
4500 if (globals->root.splt != NULL && hash != NULL
4501 && hash->root.plt.offset != (bfd_vma) - 1)
4502 {
4503 sym_sec = globals->root.splt;
4504 sym_value = hash->root.plt.offset;
4505 if (sym_sec->output_section != NULL)
4506 destination = (sym_value
4507 + sym_sec->output_offset
4508 +
4509 sym_sec->output_section->vma);
4510 }
4511 else if (sym_sec->output_section != NULL)
4512 destination = (sym_value + irela->r_addend
4513 + sym_sec->output_offset
4514 + sym_sec->output_section->vma);
4515 }
4516 else if (hash->root.root.type == bfd_link_hash_undefined
4517 || (hash->root.root.type
4518 == bfd_link_hash_undefweak))
4519 {
4520 /* For a shared library, use the PLT stub as
4521 target address to decide whether a long
4522 branch stub is needed.
4523 For absolute code, they cannot be handled. */
4524 struct elf_aarch64_link_hash_table *globals =
4525 elf_aarch64_hash_table (info);
4526
4527 if (globals->root.splt != NULL && hash != NULL
4528 && hash->root.plt.offset != (bfd_vma) - 1)
4529 {
4530 sym_sec = globals->root.splt;
4531 sym_value = hash->root.plt.offset;
4532 if (sym_sec->output_section != NULL)
4533 destination = (sym_value
4534 + sym_sec->output_offset
4535 +
4536 sym_sec->output_section->vma);
4537 }
4538 else
4539 continue;
4540 }
4541 else
4542 {
4543 bfd_set_error (bfd_error_bad_value);
4544 goto error_ret_free_internal;
4545 }
4546 st_type = ELF_ST_TYPE (hash->root.type);
4547 sym_name = hash->root.root.root.string;
4548 }
4549
4550 /* Determine what (if any) linker stub is needed. */
4551 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4552 st_type, destination);
4553 if (stub_type == aarch64_stub_none)
4554 continue;
4555
4556 /* Support for grouping stub sections. */
4557 id_sec = htab->stub_group[section->id].link_sec;
4558
4559 /* Get the name of this stub. */
4560 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4561 irela);
4562 if (!stub_name)
4563 goto error_ret_free_internal;
4564
4565 stub_entry =
4566 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4567 stub_name, FALSE, FALSE);
4568 if (stub_entry != NULL)
4569 {
4570 /* The proper stub has already been created. */
4571 free (stub_name);
4572 /* Always update this stub's target since it may have
4573 changed after layout. */
4574 stub_entry->target_value = sym_value + irela->r_addend;
4575 continue;
4576 }
4577
4578 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4579 (stub_name, section, htab);
4580 if (stub_entry == NULL)
4581 {
4582 free (stub_name);
4583 goto error_ret_free_internal;
4584 }
4585
4586 stub_entry->target_value = sym_value + irela->r_addend;
4587 stub_entry->target_section = sym_sec;
4588 stub_entry->stub_type = stub_type;
4589 stub_entry->h = hash;
4590 stub_entry->st_type = st_type;
4591
4592 if (sym_name == NULL)
4593 sym_name = "unnamed";
4594 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4595 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4596 if (stub_entry->output_name == NULL)
4597 {
4598 free (stub_name);
4599 goto error_ret_free_internal;
4600 }
4601
4602 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4603 sym_name);
4604
4605 stub_changed = TRUE;
4606 }
4607
4608 /* We're done with the internal relocs, free them. */
4609 if (elf_section_data (section)->relocs == NULL)
4610 free (internal_relocs);
4611 }
4612 }
4613
4614 if (!stub_changed)
4615 break;
4616
4617 _bfd_aarch64_resize_stubs (htab);
4618
4619 /* Ask the linker to do its stuff. */
4620 (*htab->layout_sections_again) ();
4621 stub_changed = FALSE;
4622 }
4623
4624 return TRUE;
4625
4626 error_ret_free_local:
4627 return FALSE;
4628 }
4629
4630 /* Build all the stubs associated with the current output file. The
4631 stubs are kept in a hash table attached to the main linker hash
4632 table. We also set up the .plt entries for statically linked PIC
4633 functions here. This function is called via aarch64_elf_finish in the
4634 linker. */
4635
4636 bfd_boolean
4637 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4638 {
4639 asection *stub_sec;
4640 struct bfd_hash_table *table;
4641 struct elf_aarch64_link_hash_table *htab;
4642
4643 htab = elf_aarch64_hash_table (info);
4644
4645 for (stub_sec = htab->stub_bfd->sections;
4646 stub_sec != NULL; stub_sec = stub_sec->next)
4647 {
4648 bfd_size_type size;
4649
4650 /* Ignore non-stub sections. */
4651 if (!strstr (stub_sec->name, STUB_SUFFIX))
4652 continue;
4653
4654 /* Allocate memory to hold the linker stubs. */
4655 size = stub_sec->size;
4656 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4657 if (stub_sec->contents == NULL && size != 0)
4658 return FALSE;
4659 stub_sec->size = 0;
4660
4661 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4662 aligned, as long branch stubs contain a 64-bit address. */
4663 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4664 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4665 stub_sec->size += 8;
4666 }
4667
4668 /* Build the stubs as directed by the stub hash table. */
4669 table = &htab->stub_hash_table;
4670 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4671
4672 return TRUE;
4673 }
4674
4675
4676 /* Add an entry to the code/data map for section SEC. */
4677
4678 static void
4679 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4680 {
4681 struct _aarch64_elf_section_data *sec_data =
4682 elf_aarch64_section_data (sec);
4683 unsigned int newidx;
4684
4685 if (sec_data->map == NULL)
4686 {
4687 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4688 sec_data->mapcount = 0;
4689 sec_data->mapsize = 1;
4690 }
4691
4692 newidx = sec_data->mapcount++;
4693
4694 if (sec_data->mapcount > sec_data->mapsize)
4695 {
4696 sec_data->mapsize *= 2;
4697 sec_data->map = bfd_realloc_or_free
4698 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4699 }
4700
4701 if (sec_data->map)
4702 {
4703 sec_data->map[newidx].vma = vma;
4704 sec_data->map[newidx].type = type;
4705 }
4706 }
4707
4708
4709 /* Initialise maps of insn/data for input BFDs. */
4710 void
4711 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4712 {
4713 Elf_Internal_Sym *isymbuf;
4714 Elf_Internal_Shdr *hdr;
4715 unsigned int i, localsyms;
4716
4717 /* Make sure that we are dealing with an AArch64 elf binary. */
4718 if (!is_aarch64_elf (abfd))
4719 return;
4720
4721 if ((abfd->flags & DYNAMIC) != 0)
4722 return;
4723
4724 hdr = &elf_symtab_hdr (abfd);
4725 localsyms = hdr->sh_info;
4726
4727 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4728 should contain the number of local symbols, which should come before any
4729 global symbols. Mapping symbols are always local. */
4730 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4731
4732 /* No internal symbols read? Skip this BFD. */
4733 if (isymbuf == NULL)
4734 return;
4735
4736 for (i = 0; i < localsyms; i++)
4737 {
4738 Elf_Internal_Sym *isym = &isymbuf[i];
4739 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4740 const char *name;
4741
4742 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4743 {
4744 name = bfd_elf_string_from_elf_section (abfd,
4745 hdr->sh_link,
4746 isym->st_name);
4747
4748 if (bfd_is_aarch64_special_symbol_name
4749 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4750 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4751 }
4752 }
4753 }
4754
4755 static void
4756 setup_plt_values (struct bfd_link_info *link_info,
4757 aarch64_plt_type plt_type)
4758 {
4759 struct elf_aarch64_link_hash_table *globals;
4760 globals = elf_aarch64_hash_table (link_info);
4761
4762 if (plt_type == PLT_BTI_PAC)
4763 {
4764 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4765
4766 /* Only in ET_EXEC we need PLTn with BTI. */
4767 if (bfd_link_pde (link_info))
4768 {
4769 globals->plt_entry_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
4770 globals->plt_entry = elfNN_aarch64_small_plt_bti_pac_entry;
4771 }
4772 else
4773 {
4774 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4775 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4776 }
4777 }
4778 else if (plt_type == PLT_BTI)
4779 {
4780 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4781
4782 /* Only in ET_EXEC we need PLTn with BTI. */
4783 if (bfd_link_pde (link_info))
4784 {
4785 globals->plt_entry_size = PLT_BTI_SMALL_ENTRY_SIZE;
4786 globals->plt_entry = elfNN_aarch64_small_plt_bti_entry;
4787 }
4788 }
4789 else if (plt_type == PLT_PAC)
4790 {
4791 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4792 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4793 }
4794 }
4795
4796 /* Set option values needed during linking. */
4797 void
4798 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4799 struct bfd_link_info *link_info,
4800 int no_enum_warn,
4801 int no_wchar_warn, int pic_veneer,
4802 int fix_erratum_835769,
4803 erratum_84319_opts fix_erratum_843419,
4804 int no_apply_dynamic_relocs,
4805 aarch64_bti_pac_info bp_info)
4806 {
4807 struct elf_aarch64_link_hash_table *globals;
4808
4809 globals = elf_aarch64_hash_table (link_info);
4810 globals->pic_veneer = pic_veneer;
4811 globals->fix_erratum_835769 = fix_erratum_835769;
4812 /* If the default options are used, then ERRAT_ADR will be set by default
4813 which will enable the ADRP->ADR workaround for the erratum 843419
4814 workaround. */
4815 globals->fix_erratum_843419 = fix_erratum_843419;
4816 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4817
4818 BFD_ASSERT (is_aarch64_elf (output_bfd));
4819 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4820 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4821
4822 switch (bp_info.bti_type)
4823 {
4824 case BTI_WARN:
4825 elf_aarch64_tdata (output_bfd)->no_bti_warn = 0;
4826 elf_aarch64_tdata (output_bfd)->gnu_and_prop
4827 |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
4828 break;
4829
4830 default:
4831 break;
4832 }
4833 elf_aarch64_tdata (output_bfd)->plt_type = bp_info.plt_type;
4834 setup_plt_values (link_info, bp_info.plt_type);
4835 }
4836
4837 static bfd_vma
4838 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4839 struct elf_aarch64_link_hash_table
4840 *globals, struct bfd_link_info *info,
4841 bfd_vma value, bfd *output_bfd,
4842 bfd_boolean *unresolved_reloc_p)
4843 {
4844 bfd_vma off = (bfd_vma) - 1;
4845 asection *basegot = globals->root.sgot;
4846 bfd_boolean dyn = globals->root.dynamic_sections_created;
4847
4848 if (h != NULL)
4849 {
4850 BFD_ASSERT (basegot != NULL);
4851 off = h->got.offset;
4852 BFD_ASSERT (off != (bfd_vma) - 1);
4853 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4854 || (bfd_link_pic (info)
4855 && SYMBOL_REFERENCES_LOCAL (info, h))
4856 || (ELF_ST_VISIBILITY (h->other)
4857 && h->root.type == bfd_link_hash_undefweak))
4858 {
4859 /* This is actually a static link, or it is a -Bsymbolic link
4860 and the symbol is defined locally. We must initialize this
4861 entry in the global offset table. Since the offset must
4862 always be a multiple of 8 (4 in the case of ILP32), we use
4863 the least significant bit to record whether we have
4864 initialized it already.
4865 When doing a dynamic link, we create a .rel(a).got relocation
4866 entry to initialize the value. This is done in the
4867 finish_dynamic_symbol routine. */
4868 if ((off & 1) != 0)
4869 off &= ~1;
4870 else
4871 {
4872 bfd_put_NN (output_bfd, value, basegot->contents + off);
4873 h->got.offset |= 1;
4874 }
4875 }
4876 else
4877 *unresolved_reloc_p = FALSE;
4878
4879 off = off + basegot->output_section->vma + basegot->output_offset;
4880 }
4881
4882 return off;
4883 }
4884
4885 /* Change R_TYPE to a more efficient access model where possible,
4886 return the new reloc type. */
4887
4888 static bfd_reloc_code_real_type
4889 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4890 struct elf_link_hash_entry *h)
4891 {
4892 bfd_boolean is_local = h == NULL;
4893
4894 switch (r_type)
4895 {
4896 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4897 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4898 return (is_local
4899 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4900 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4901
4902 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4903 return (is_local
4904 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4905 : r_type);
4906
4907 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4908 return (is_local
4909 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4910 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4911
4912 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4913 return (is_local
4914 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4915 : BFD_RELOC_AARCH64_NONE);
4916
4917 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4918 return (is_local
4919 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4920 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4921
4922 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4923 return (is_local
4924 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4925 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4926
4927 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4928 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4929 return (is_local
4930 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4931 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4932
4933 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4934 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4935
4936 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4937 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4938
4939 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4940 return r_type;
4941
4942 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4943 return (is_local
4944 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4945 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4946
4947 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4948 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4949 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4950 /* Instructions with these relocations will become NOPs. */
4951 return BFD_RELOC_AARCH64_NONE;
4952
4953 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4954 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4955 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4956 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4957
4958 #if ARCH_SIZE == 64
4959 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4960 return is_local
4961 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4962 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4963
4964 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4965 return is_local
4966 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4967 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4968 #endif
4969
4970 default:
4971 break;
4972 }
4973
4974 return r_type;
4975 }
4976
4977 static unsigned int
4978 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4979 {
4980 switch (r_type)
4981 {
4982 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4983 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4984 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4985 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4986 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4987 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4988 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4989 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4990 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4991 return GOT_NORMAL;
4992
4993 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4994 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4995 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4996 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4997 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4998 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4999 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5000 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5001 return GOT_TLS_GD;
5002
5003 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5004 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5005 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5006 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5007 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5008 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5009 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5010 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5011 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5012 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5013 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5014 return GOT_TLSDESC_GD;
5015
5016 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5017 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5018 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5019 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5020 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5021 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5022 return GOT_TLS_IE;
5023
5024 default:
5025 break;
5026 }
5027 return GOT_UNKNOWN;
5028 }
5029
5030 static bfd_boolean
5031 aarch64_can_relax_tls (bfd *input_bfd,
5032 struct bfd_link_info *info,
5033 bfd_reloc_code_real_type r_type,
5034 struct elf_link_hash_entry *h,
5035 unsigned long r_symndx)
5036 {
5037 unsigned int symbol_got_type;
5038 unsigned int reloc_got_type;
5039
5040 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
5041 return FALSE;
5042
5043 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
5044 reloc_got_type = aarch64_reloc_got_type (r_type);
5045
5046 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
5047 return TRUE;
5048
5049 if (!bfd_link_executable (info))
5050 return FALSE;
5051
5052 if (h && h->root.type == bfd_link_hash_undefweak)
5053 return FALSE;
5054
5055 return TRUE;
5056 }
5057
5058 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
5059 enumerator. */
5060
5061 static bfd_reloc_code_real_type
5062 aarch64_tls_transition (bfd *input_bfd,
5063 struct bfd_link_info *info,
5064 unsigned int r_type,
5065 struct elf_link_hash_entry *h,
5066 unsigned long r_symndx)
5067 {
5068 bfd_reloc_code_real_type bfd_r_type
5069 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
5070
5071 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
5072 return bfd_r_type;
5073
5074 return aarch64_tls_transition_without_check (bfd_r_type, h);
5075 }
5076
5077 /* Return the base VMA address which should be subtracted from real addresses
5078 when resolving R_AARCH64_TLS_DTPREL relocation. */
5079
5080 static bfd_vma
5081 dtpoff_base (struct bfd_link_info *info)
5082 {
5083 /* If tls_sec is NULL, we should have signalled an error already. */
5084 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
5085 return elf_hash_table (info)->tls_sec->vma;
5086 }
5087
5088 /* Return the base VMA address which should be subtracted from real addresses
5089 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
5090
5091 static bfd_vma
5092 tpoff_base (struct bfd_link_info *info)
5093 {
5094 struct elf_link_hash_table *htab = elf_hash_table (info);
5095
5096 /* If tls_sec is NULL, we should have signalled an error already. */
5097 BFD_ASSERT (htab->tls_sec != NULL);
5098
5099 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
5100 htab->tls_sec->alignment_power);
5101 return htab->tls_sec->vma - base;
5102 }
5103
5104 static bfd_vma *
5105 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5106 unsigned long r_symndx)
5107 {
5108 /* Calculate the address of the GOT entry for symbol
5109 referred to in h. */
5110 if (h != NULL)
5111 return &h->got.offset;
5112 else
5113 {
5114 /* local symbol */
5115 struct elf_aarch64_local_symbol *l;
5116
5117 l = elf_aarch64_locals (input_bfd);
5118 return &l[r_symndx].got_offset;
5119 }
5120 }
5121
5122 static void
5123 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5124 unsigned long r_symndx)
5125 {
5126 bfd_vma *p;
5127 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
5128 *p |= 1;
5129 }
5130
5131 static int
5132 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
5133 unsigned long r_symndx)
5134 {
5135 bfd_vma value;
5136 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5137 return value & 1;
5138 }
5139
5140 static bfd_vma
5141 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5142 unsigned long r_symndx)
5143 {
5144 bfd_vma value;
5145 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5146 value &= ~1;
5147 return value;
5148 }
5149
5150 static bfd_vma *
5151 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5152 unsigned long r_symndx)
5153 {
5154 /* Calculate the address of the GOT entry for symbol
5155 referred to in h. */
5156 if (h != NULL)
5157 {
5158 struct elf_aarch64_link_hash_entry *eh;
5159 eh = (struct elf_aarch64_link_hash_entry *) h;
5160 return &eh->tlsdesc_got_jump_table_offset;
5161 }
5162 else
5163 {
5164 /* local symbol */
5165 struct elf_aarch64_local_symbol *l;
5166
5167 l = elf_aarch64_locals (input_bfd);
5168 return &l[r_symndx].tlsdesc_got_jump_table_offset;
5169 }
5170 }
5171
5172 static void
5173 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5174 unsigned long r_symndx)
5175 {
5176 bfd_vma *p;
5177 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5178 *p |= 1;
5179 }
5180
5181 static int
5182 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
5183 struct elf_link_hash_entry *h,
5184 unsigned long r_symndx)
5185 {
5186 bfd_vma value;
5187 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5188 return value & 1;
5189 }
5190
5191 static bfd_vma
5192 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5193 unsigned long r_symndx)
5194 {
5195 bfd_vma value;
5196 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5197 value &= ~1;
5198 return value;
5199 }
5200
5201 /* Data for make_branch_to_erratum_835769_stub(). */
5202
5203 struct erratum_835769_branch_to_stub_data
5204 {
5205 struct bfd_link_info *info;
5206 asection *output_section;
5207 bfd_byte *contents;
5208 };
5209
5210 /* Helper to insert branches to erratum 835769 stubs in the right
5211 places for a particular section. */
5212
5213 static bfd_boolean
5214 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5215 void *in_arg)
5216 {
5217 struct elf_aarch64_stub_hash_entry *stub_entry;
5218 struct erratum_835769_branch_to_stub_data *data;
5219 bfd_byte *contents;
5220 unsigned long branch_insn = 0;
5221 bfd_vma veneered_insn_loc, veneer_entry_loc;
5222 bfd_signed_vma branch_offset;
5223 unsigned int target;
5224 bfd *abfd;
5225
5226 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5227 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5228
5229 if (stub_entry->target_section != data->output_section
5230 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5231 return TRUE;
5232
5233 contents = data->contents;
5234 veneered_insn_loc = stub_entry->target_section->output_section->vma
5235 + stub_entry->target_section->output_offset
5236 + stub_entry->target_value;
5237 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5238 + stub_entry->stub_sec->output_offset
5239 + stub_entry->stub_offset;
5240 branch_offset = veneer_entry_loc - veneered_insn_loc;
5241
5242 abfd = stub_entry->target_section->owner;
5243 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5244 _bfd_error_handler
5245 (_("%pB: error: erratum 835769 stub out "
5246 "of range (input file too large)"), abfd);
5247
5248 target = stub_entry->target_value;
5249 branch_insn = 0x14000000;
5250 branch_offset >>= 2;
5251 branch_offset &= 0x3ffffff;
5252 branch_insn |= branch_offset;
5253 bfd_putl32 (branch_insn, &contents[target]);
5254
5255 return TRUE;
5256 }
5257
5258
5259 static bfd_boolean
5260 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5261 void *in_arg)
5262 {
5263 struct elf_aarch64_stub_hash_entry *stub_entry
5264 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5265 struct erratum_835769_branch_to_stub_data *data
5266 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5267 struct bfd_link_info *info;
5268 struct elf_aarch64_link_hash_table *htab;
5269 bfd_byte *contents;
5270 asection *section;
5271 bfd *abfd;
5272 bfd_vma place;
5273 uint32_t insn;
5274
5275 info = data->info;
5276 contents = data->contents;
5277 section = data->output_section;
5278
5279 htab = elf_aarch64_hash_table (info);
5280
5281 if (stub_entry->target_section != section
5282 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5283 return TRUE;
5284
5285 BFD_ASSERT (((htab->fix_erratum_843419 & ERRAT_ADRP) && stub_entry->stub_sec)
5286 || (htab->fix_erratum_843419 & ERRAT_ADR));
5287
5288 /* Only update the stub section if we have one. We should always have one if
5289 we're allowed to use the ADRP errata workaround, otherwise it is not
5290 required. */
5291 if (stub_entry->stub_sec)
5292 {
5293 insn = bfd_getl32 (contents + stub_entry->target_value);
5294 bfd_putl32 (insn,
5295 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5296 }
5297
5298 place = (section->output_section->vma + section->output_offset
5299 + stub_entry->adrp_offset);
5300 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5301
5302 if (!_bfd_aarch64_adrp_p (insn))
5303 abort ();
5304
5305 bfd_signed_vma imm =
5306 (_bfd_aarch64_sign_extend
5307 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5308 - (place & 0xfff));
5309
5310 if ((htab->fix_erratum_843419 & ERRAT_ADR)
5311 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5312 {
5313 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5314 | AARCH64_RT (insn));
5315 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5316 /* Stub is not needed, don't map it out. */
5317 stub_entry->stub_type = aarch64_stub_none;
5318 }
5319 else if (htab->fix_erratum_843419 & ERRAT_ADRP)
5320 {
5321 bfd_vma veneered_insn_loc;
5322 bfd_vma veneer_entry_loc;
5323 bfd_signed_vma branch_offset;
5324 uint32_t branch_insn;
5325
5326 veneered_insn_loc = stub_entry->target_section->output_section->vma
5327 + stub_entry->target_section->output_offset
5328 + stub_entry->target_value;
5329 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5330 + stub_entry->stub_sec->output_offset
5331 + stub_entry->stub_offset;
5332 branch_offset = veneer_entry_loc - veneered_insn_loc;
5333
5334 abfd = stub_entry->target_section->owner;
5335 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5336 _bfd_error_handler
5337 (_("%pB: error: erratum 843419 stub out "
5338 "of range (input file too large)"), abfd);
5339
5340 branch_insn = 0x14000000;
5341 branch_offset >>= 2;
5342 branch_offset &= 0x3ffffff;
5343 branch_insn |= branch_offset;
5344 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5345 }
5346 else
5347 {
5348 abfd = stub_entry->target_section->owner;
5349 _bfd_error_handler
5350 (_("%pB: error: erratum 843419 immediate 0x%" BFD_VMA_FMT "x "
5351 "out of range for ADR (input file too large) and "
5352 "--fix-cortex-a53-843419=adr used. Run the linker with "
5353 "--fix-cortex-a53-843419=full instead"), abfd, imm);
5354 bfd_set_error (bfd_error_bad_value);
5355 /* This function is called inside a hashtable traversal and the error
5356 handlers called above turn into non-fatal errors. Which means this
5357 case ld returns an exit code 0 and also produces a broken object file.
5358 To prevent this, issue a hard abort. */
5359 BFD_FAIL ();
5360 }
5361 return TRUE;
5362 }
5363
5364
5365 static bfd_boolean
5366 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5367 struct bfd_link_info *link_info,
5368 asection *sec,
5369 bfd_byte *contents)
5370
5371 {
5372 struct elf_aarch64_link_hash_table *globals =
5373 elf_aarch64_hash_table (link_info);
5374
5375 if (globals == NULL)
5376 return FALSE;
5377
5378 /* Fix code to point to erratum 835769 stubs. */
5379 if (globals->fix_erratum_835769)
5380 {
5381 struct erratum_835769_branch_to_stub_data data;
5382
5383 data.info = link_info;
5384 data.output_section = sec;
5385 data.contents = contents;
5386 bfd_hash_traverse (&globals->stub_hash_table,
5387 make_branch_to_erratum_835769_stub, &data);
5388 }
5389
5390 if (globals->fix_erratum_843419)
5391 {
5392 struct erratum_835769_branch_to_stub_data data;
5393
5394 data.info = link_info;
5395 data.output_section = sec;
5396 data.contents = contents;
5397 bfd_hash_traverse (&globals->stub_hash_table,
5398 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5399 }
5400
5401 return FALSE;
5402 }
5403
5404 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5405
5406 static bfd_boolean
5407 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5408 {
5409 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5410 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5411 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5412 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5413 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5414 }
5415
5416 /* Perform a relocation as part of a final link. The input relocation type
5417 should be TLS relaxed. */
5418
5419 static bfd_reloc_status_type
5420 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5421 bfd *input_bfd,
5422 bfd *output_bfd,
5423 asection *input_section,
5424 bfd_byte *contents,
5425 Elf_Internal_Rela *rel,
5426 bfd_vma value,
5427 struct bfd_link_info *info,
5428 asection *sym_sec,
5429 struct elf_link_hash_entry *h,
5430 bfd_boolean *unresolved_reloc_p,
5431 bfd_boolean save_addend,
5432 bfd_vma *saved_addend,
5433 Elf_Internal_Sym *sym)
5434 {
5435 Elf_Internal_Shdr *symtab_hdr;
5436 unsigned int r_type = howto->type;
5437 bfd_reloc_code_real_type bfd_r_type
5438 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5439 unsigned long r_symndx;
5440 bfd_byte *hit_data = contents + rel->r_offset;
5441 bfd_vma place, off, got_entry_addr = 0;
5442 bfd_signed_vma signed_addend;
5443 struct elf_aarch64_link_hash_table *globals;
5444 bfd_boolean weak_undef_p;
5445 bfd_boolean relative_reloc;
5446 asection *base_got;
5447 bfd_vma orig_value = value;
5448 bfd_boolean resolved_to_zero;
5449 bfd_boolean abs_symbol_p;
5450 bfd_boolean via_plt_p;
5451
5452 globals = elf_aarch64_hash_table (info);
5453
5454 symtab_hdr = &elf_symtab_hdr (input_bfd);
5455
5456 BFD_ASSERT (is_aarch64_elf (input_bfd));
5457
5458 r_symndx = ELFNN_R_SYM (rel->r_info);
5459
5460 place = input_section->output_section->vma
5461 + input_section->output_offset + rel->r_offset;
5462
5463 /* Get addend, accumulating the addend for consecutive relocs
5464 which refer to the same offset. */
5465 signed_addend = saved_addend ? *saved_addend : 0;
5466 signed_addend += rel->r_addend;
5467
5468 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5469 : bfd_is_und_section (sym_sec));
5470 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5471
5472 via_plt_p = (globals->root.splt != NULL && h != NULL
5473 && h->plt.offset != (bfd_vma) - 1);
5474
5475 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5476 it here if it is defined in a non-shared object. */
5477 if (h != NULL
5478 && h->type == STT_GNU_IFUNC
5479 && h->def_regular)
5480 {
5481 asection *plt;
5482 const char *name;
5483 bfd_vma addend = 0;
5484
5485 if ((input_section->flags & SEC_ALLOC) == 0)
5486 {
5487 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5488 STT_GNU_IFUNC symbol as STT_FUNC. */
5489 if (elf_section_type (input_section) == SHT_NOTE)
5490 goto skip_ifunc;
5491
5492 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5493 sections because such sections are not SEC_ALLOC and
5494 thus ld.so will not process them. */
5495 if ((input_section->flags & SEC_DEBUGGING) != 0)
5496 return bfd_reloc_ok;
5497
5498 if (h->root.root.string)
5499 name = h->root.root.string;
5500 else
5501 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5502 _bfd_error_handler
5503 /* xgettext:c-format */
5504 (_("%pB(%pA+%#" PRIx64 "): "
5505 "unresolvable %s relocation against symbol `%s'"),
5506 input_bfd, input_section, (uint64_t) rel->r_offset,
5507 howto->name, name);
5508 bfd_set_error (bfd_error_bad_value);
5509 return bfd_reloc_notsupported;
5510 }
5511 else if (h->plt.offset == (bfd_vma) -1)
5512 goto bad_ifunc_reloc;
5513
5514 /* STT_GNU_IFUNC symbol must go through PLT. */
5515 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5516 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5517
5518 switch (bfd_r_type)
5519 {
5520 default:
5521 bad_ifunc_reloc:
5522 if (h->root.root.string)
5523 name = h->root.root.string;
5524 else
5525 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5526 NULL);
5527 _bfd_error_handler
5528 /* xgettext:c-format */
5529 (_("%pB: relocation %s against STT_GNU_IFUNC "
5530 "symbol `%s' isn't handled by %s"), input_bfd,
5531 howto->name, name, __FUNCTION__);
5532 bfd_set_error (bfd_error_bad_value);
5533 return bfd_reloc_notsupported;
5534
5535 case BFD_RELOC_AARCH64_NN:
5536 if (rel->r_addend != 0)
5537 {
5538 if (h->root.root.string)
5539 name = h->root.root.string;
5540 else
5541 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5542 sym, NULL);
5543 _bfd_error_handler
5544 /* xgettext:c-format */
5545 (_("%pB: relocation %s against STT_GNU_IFUNC "
5546 "symbol `%s' has non-zero addend: %" PRId64),
5547 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5548 bfd_set_error (bfd_error_bad_value);
5549 return bfd_reloc_notsupported;
5550 }
5551
5552 /* Generate dynamic relocation only when there is a
5553 non-GOT reference in a shared object. */
5554 if (bfd_link_pic (info) && h->non_got_ref)
5555 {
5556 Elf_Internal_Rela outrel;
5557 asection *sreloc;
5558
5559 /* Need a dynamic relocation to get the real function
5560 address. */
5561 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5562 info,
5563 input_section,
5564 rel->r_offset);
5565 if (outrel.r_offset == (bfd_vma) -1
5566 || outrel.r_offset == (bfd_vma) -2)
5567 abort ();
5568
5569 outrel.r_offset += (input_section->output_section->vma
5570 + input_section->output_offset);
5571
5572 if (h->dynindx == -1
5573 || h->forced_local
5574 || bfd_link_executable (info))
5575 {
5576 /* This symbol is resolved locally. */
5577 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5578 outrel.r_addend = (h->root.u.def.value
5579 + h->root.u.def.section->output_section->vma
5580 + h->root.u.def.section->output_offset);
5581 }
5582 else
5583 {
5584 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5585 outrel.r_addend = 0;
5586 }
5587
5588 sreloc = globals->root.irelifunc;
5589 elf_append_rela (output_bfd, sreloc, &outrel);
5590
5591 /* If this reloc is against an external symbol, we
5592 do not want to fiddle with the addend. Otherwise,
5593 we need to include the symbol value so that it
5594 becomes an addend for the dynamic reloc. For an
5595 internal symbol, we have updated addend. */
5596 return bfd_reloc_ok;
5597 }
5598 /* FALLTHROUGH */
5599 case BFD_RELOC_AARCH64_CALL26:
5600 case BFD_RELOC_AARCH64_JUMP26:
5601 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5602 place, value,
5603 signed_addend,
5604 weak_undef_p);
5605 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5606 howto, value);
5607 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5608 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5609 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5610 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5611 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5612 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5613 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5614 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5615 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5616 base_got = globals->root.sgot;
5617 off = h->got.offset;
5618
5619 if (base_got == NULL)
5620 abort ();
5621
5622 if (off == (bfd_vma) -1)
5623 {
5624 bfd_vma plt_index;
5625
5626 /* We can't use h->got.offset here to save state, or
5627 even just remember the offset, as finish_dynamic_symbol
5628 would use that as offset into .got. */
5629
5630 if (globals->root.splt != NULL)
5631 {
5632 plt_index = ((h->plt.offset - globals->plt_header_size) /
5633 globals->plt_entry_size);
5634 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5635 base_got = globals->root.sgotplt;
5636 }
5637 else
5638 {
5639 plt_index = h->plt.offset / globals->plt_entry_size;
5640 off = plt_index * GOT_ENTRY_SIZE;
5641 base_got = globals->root.igotplt;
5642 }
5643
5644 if (h->dynindx == -1
5645 || h->forced_local
5646 || info->symbolic)
5647 {
5648 /* This references the local definition. We must
5649 initialize this entry in the global offset table.
5650 Since the offset must always be a multiple of 8,
5651 we use the least significant bit to record
5652 whether we have initialized it already.
5653
5654 When doing a dynamic link, we create a .rela.got
5655 relocation entry to initialize the value. This
5656 is done in the finish_dynamic_symbol routine. */
5657 if ((off & 1) != 0)
5658 off &= ~1;
5659 else
5660 {
5661 bfd_put_NN (output_bfd, value,
5662 base_got->contents + off);
5663 /* Note that this is harmless as -1 | 1 still is -1. */
5664 h->got.offset |= 1;
5665 }
5666 }
5667 value = (base_got->output_section->vma
5668 + base_got->output_offset + off);
5669 }
5670 else
5671 value = aarch64_calculate_got_entry_vma (h, globals, info,
5672 value, output_bfd,
5673 unresolved_reloc_p);
5674
5675 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5676 addend = (globals->root.sgot->output_section->vma
5677 + globals->root.sgot->output_offset);
5678
5679 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5680 place, value,
5681 addend, weak_undef_p);
5682 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5683 case BFD_RELOC_AARCH64_ADD_LO12:
5684 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5685 break;
5686 }
5687 }
5688
5689 skip_ifunc:
5690 resolved_to_zero = (h != NULL
5691 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5692
5693 switch (bfd_r_type)
5694 {
5695 case BFD_RELOC_AARCH64_NONE:
5696 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5697 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5698 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5699 *unresolved_reloc_p = FALSE;
5700 return bfd_reloc_ok;
5701
5702 case BFD_RELOC_AARCH64_NN:
5703
5704 /* When generating a shared object or relocatable executable, these
5705 relocations are copied into the output file to be resolved at
5706 run time. */
5707 if (((bfd_link_pic (info)
5708 || globals->root.is_relocatable_executable)
5709 && (input_section->flags & SEC_ALLOC)
5710 && (h == NULL
5711 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5712 && !resolved_to_zero)
5713 || h->root.type != bfd_link_hash_undefweak))
5714 /* Or we are creating an executable, we may need to keep relocations
5715 for symbols satisfied by a dynamic library if we manage to avoid
5716 copy relocs for the symbol. */
5717 || (ELIMINATE_COPY_RELOCS
5718 && !bfd_link_pic (info)
5719 && h != NULL
5720 && (input_section->flags & SEC_ALLOC)
5721 && h->dynindx != -1
5722 && !h->non_got_ref
5723 && ((h->def_dynamic
5724 && !h->def_regular)
5725 || h->root.type == bfd_link_hash_undefweak
5726 || h->root.type == bfd_link_hash_undefined)))
5727 {
5728 Elf_Internal_Rela outrel;
5729 bfd_byte *loc;
5730 bfd_boolean skip, relocate;
5731 asection *sreloc;
5732
5733 *unresolved_reloc_p = FALSE;
5734
5735 skip = FALSE;
5736 relocate = FALSE;
5737
5738 outrel.r_addend = signed_addend;
5739 outrel.r_offset =
5740 _bfd_elf_section_offset (output_bfd, info, input_section,
5741 rel->r_offset);
5742 if (outrel.r_offset == (bfd_vma) - 1)
5743 skip = TRUE;
5744 else if (outrel.r_offset == (bfd_vma) - 2)
5745 {
5746 skip = TRUE;
5747 relocate = TRUE;
5748 }
5749 else if (abs_symbol_p)
5750 {
5751 /* Local absolute symbol. */
5752 skip = (h->forced_local || (h->dynindx == -1));
5753 relocate = skip;
5754 }
5755
5756 outrel.r_offset += (input_section->output_section->vma
5757 + input_section->output_offset);
5758
5759 if (skip)
5760 memset (&outrel, 0, sizeof outrel);
5761 else if (h != NULL
5762 && h->dynindx != -1
5763 && (!bfd_link_pic (info)
5764 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5765 || !h->def_regular))
5766 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5767 else
5768 {
5769 int symbol;
5770
5771 /* On SVR4-ish systems, the dynamic loader cannot
5772 relocate the text and data segments independently,
5773 so the symbol does not matter. */
5774 symbol = 0;
5775 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5776 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5777 outrel.r_addend += value;
5778 }
5779
5780 sreloc = elf_section_data (input_section)->sreloc;
5781 if (sreloc == NULL || sreloc->contents == NULL)
5782 return bfd_reloc_notsupported;
5783
5784 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5785 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5786
5787 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5788 {
5789 /* Sanity to check that we have previously allocated
5790 sufficient space in the relocation section for the
5791 number of relocations we actually want to emit. */
5792 abort ();
5793 }
5794
5795 /* If this reloc is against an external symbol, we do not want to
5796 fiddle with the addend. Otherwise, we need to include the symbol
5797 value so that it becomes an addend for the dynamic reloc. */
5798 if (!relocate)
5799 return bfd_reloc_ok;
5800
5801 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5802 contents, rel->r_offset, value,
5803 signed_addend);
5804 }
5805 else
5806 value += signed_addend;
5807 break;
5808
5809 case BFD_RELOC_AARCH64_BRANCH19:
5810 case BFD_RELOC_AARCH64_TSTBR14:
5811 /* A conditional branch to an undefined weak symbol is converted to a
5812 branch to itself. */
5813 if (weak_undef_p && !via_plt_p)
5814 {
5815 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5816 place, value,
5817 signed_addend,
5818 weak_undef_p);
5819 break;
5820 }
5821 /* Fall through. */
5822 case BFD_RELOC_AARCH64_CALL26:
5823 case BFD_RELOC_AARCH64_JUMP26:
5824 {
5825 asection *splt = globals->root.splt;
5826
5827 /* A call to an undefined weak symbol is converted to a jump to
5828 the next instruction unless a PLT entry will be created.
5829 The jump to the next instruction is optimized as a NOP.
5830 Do the same for local undefined symbols. */
5831 if (weak_undef_p && ! via_plt_p)
5832 {
5833 bfd_putl32 (INSN_NOP, hit_data);
5834 return bfd_reloc_ok;
5835 }
5836
5837 /* If the call goes through a PLT entry, make sure to
5838 check distance to the right destination address. */
5839 if (via_plt_p)
5840 value = (splt->output_section->vma
5841 + splt->output_offset + h->plt.offset);
5842
5843 /* Check if a stub has to be inserted because the destination
5844 is too far away. */
5845 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5846
5847 /* If the branch destination is directed to plt stub, "value" will be
5848 the final destination, otherwise we should plus signed_addend, it may
5849 contain non-zero value, for example call to local function symbol
5850 which are turned into "sec_sym + sec_off", and sec_off is kept in
5851 signed_addend. */
5852 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5853 place))
5854 /* The target is out of reach, so redirect the branch to
5855 the local stub for this function. */
5856 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5857 rel, globals);
5858 if (stub_entry != NULL)
5859 {
5860 value = (stub_entry->stub_offset
5861 + stub_entry->stub_sec->output_offset
5862 + stub_entry->stub_sec->output_section->vma);
5863
5864 /* We have redirected the destination to stub entry address,
5865 so ignore any addend record in the original rela entry. */
5866 signed_addend = 0;
5867 }
5868 }
5869 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5870 place, value,
5871 signed_addend, weak_undef_p);
5872 *unresolved_reloc_p = FALSE;
5873 break;
5874
5875 case BFD_RELOC_AARCH64_16_PCREL:
5876 case BFD_RELOC_AARCH64_32_PCREL:
5877 case BFD_RELOC_AARCH64_64_PCREL:
5878 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5879 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5880 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5881 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5882 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5883 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5884 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5885 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5886 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5887 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5888 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5889 if (bfd_link_pic (info)
5890 && (input_section->flags & SEC_ALLOC) != 0
5891 && (input_section->flags & SEC_READONLY) != 0
5892 && !SYMBOL_REFERENCES_LOCAL (info, h))
5893 {
5894 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5895
5896 _bfd_error_handler
5897 /* xgettext:c-format */
5898 (_("%pB: relocation %s against symbol `%s' which may bind "
5899 "externally can not be used when making a shared object; "
5900 "recompile with -fPIC"),
5901 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5902 h->root.root.string);
5903 bfd_set_error (bfd_error_bad_value);
5904 return bfd_reloc_notsupported;
5905 }
5906 /* Fall through. */
5907
5908 case BFD_RELOC_AARCH64_16:
5909 #if ARCH_SIZE == 64
5910 case BFD_RELOC_AARCH64_32:
5911 #endif
5912 case BFD_RELOC_AARCH64_ADD_LO12:
5913 case BFD_RELOC_AARCH64_LDST128_LO12:
5914 case BFD_RELOC_AARCH64_LDST16_LO12:
5915 case BFD_RELOC_AARCH64_LDST32_LO12:
5916 case BFD_RELOC_AARCH64_LDST64_LO12:
5917 case BFD_RELOC_AARCH64_LDST8_LO12:
5918 case BFD_RELOC_AARCH64_MOVW_G0:
5919 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5920 case BFD_RELOC_AARCH64_MOVW_G0_S:
5921 case BFD_RELOC_AARCH64_MOVW_G1:
5922 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5923 case BFD_RELOC_AARCH64_MOVW_G1_S:
5924 case BFD_RELOC_AARCH64_MOVW_G2:
5925 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5926 case BFD_RELOC_AARCH64_MOVW_G2_S:
5927 case BFD_RELOC_AARCH64_MOVW_G3:
5928 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5929 place, value,
5930 signed_addend, weak_undef_p);
5931 break;
5932
5933 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5934 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5935 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5936 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5937 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5938 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5939 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5940 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5941 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5942 if (globals->root.sgot == NULL)
5943 BFD_ASSERT (h != NULL);
5944
5945 relative_reloc = FALSE;
5946 if (h != NULL)
5947 {
5948 bfd_vma addend = 0;
5949
5950 /* If a symbol is not dynamic and is not undefined weak, bind it
5951 locally and generate a RELATIVE relocation under PIC mode.
5952
5953 NOTE: one symbol may be referenced by several relocations, we
5954 should only generate one RELATIVE relocation for that symbol.
5955 Therefore, check GOT offset mark first. */
5956 if (h->dynindx == -1
5957 && !h->forced_local
5958 && h->root.type != bfd_link_hash_undefweak
5959 && bfd_link_pic (info)
5960 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5961 relative_reloc = TRUE;
5962
5963 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5964 output_bfd,
5965 unresolved_reloc_p);
5966 /* Record the GOT entry address which will be used when generating
5967 RELATIVE relocation. */
5968 if (relative_reloc)
5969 got_entry_addr = value;
5970
5971 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5972 addend = (globals->root.sgot->output_section->vma
5973 + globals->root.sgot->output_offset);
5974 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5975 place, value,
5976 addend, weak_undef_p);
5977 }
5978 else
5979 {
5980 bfd_vma addend = 0;
5981 struct elf_aarch64_local_symbol *locals
5982 = elf_aarch64_locals (input_bfd);
5983
5984 if (locals == NULL)
5985 {
5986 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5987 _bfd_error_handler
5988 /* xgettext:c-format */
5989 (_("%pB: local symbol descriptor table be NULL when applying "
5990 "relocation %s against local symbol"),
5991 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5992 abort ();
5993 }
5994
5995 off = symbol_got_offset (input_bfd, h, r_symndx);
5996 base_got = globals->root.sgot;
5997 got_entry_addr = (base_got->output_section->vma
5998 + base_got->output_offset + off);
5999
6000 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6001 {
6002 bfd_put_64 (output_bfd, value, base_got->contents + off);
6003
6004 /* For local symbol, we have done absolute relocation in static
6005 linking stage. While for shared library, we need to update the
6006 content of GOT entry according to the shared object's runtime
6007 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
6008 for dynamic linker. */
6009 if (bfd_link_pic (info))
6010 relative_reloc = TRUE;
6011
6012 symbol_got_offset_mark (input_bfd, h, r_symndx);
6013 }
6014
6015 /* Update the relocation value to GOT entry addr as we have transformed
6016 the direct data access into indirect data access through GOT. */
6017 value = got_entry_addr;
6018
6019 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
6020 addend = base_got->output_section->vma + base_got->output_offset;
6021
6022 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6023 place, value,
6024 addend, weak_undef_p);
6025 }
6026
6027 if (relative_reloc)
6028 {
6029 asection *s;
6030 Elf_Internal_Rela outrel;
6031
6032 s = globals->root.srelgot;
6033 if (s == NULL)
6034 abort ();
6035
6036 outrel.r_offset = got_entry_addr;
6037 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6038 outrel.r_addend = orig_value;
6039 elf_append_rela (output_bfd, s, &outrel);
6040 }
6041 break;
6042
6043 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6044 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6045 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6046 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6047 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6048 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6049 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6050 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6051 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6052 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6053 if (globals->root.sgot == NULL)
6054 return bfd_reloc_notsupported;
6055
6056 value = (symbol_got_offset (input_bfd, h, r_symndx)
6057 + globals->root.sgot->output_section->vma
6058 + globals->root.sgot->output_offset);
6059
6060 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6061 place, value,
6062 0, weak_undef_p);
6063 *unresolved_reloc_p = FALSE;
6064 break;
6065
6066 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6067 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6068 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6069 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6070 if (globals->root.sgot == NULL)
6071 return bfd_reloc_notsupported;
6072
6073 value = symbol_got_offset (input_bfd, h, r_symndx);
6074 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6075 place, value,
6076 0, weak_undef_p);
6077 *unresolved_reloc_p = FALSE;
6078 break;
6079
6080 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
6081 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
6082 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6083 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
6084 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
6085 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
6086 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
6087 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
6088 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
6089 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
6090 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6091 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6092 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6093 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6094 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6095 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
6096 {
6097 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6098 {
6099 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6100 _bfd_error_handler
6101 /* xgettext:c-format */
6102 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6103 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6104 h->root.root.string);
6105 bfd_set_error (bfd_error_bad_value);
6106 return bfd_reloc_notsupported;
6107 }
6108
6109 bfd_vma def_value
6110 = weak_undef_p ? 0 : signed_addend - dtpoff_base (info);
6111 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6112 place, value,
6113 def_value, weak_undef_p);
6114 break;
6115 }
6116
6117 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6118 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6119 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6120 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
6121 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6122 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
6123 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6124 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
6125 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6126 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
6127 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6128 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6129 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6130 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6131 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6132 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6133 {
6134 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6135 {
6136 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6137 _bfd_error_handler
6138 /* xgettext:c-format */
6139 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6140 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6141 h->root.root.string);
6142 bfd_set_error (bfd_error_bad_value);
6143 return bfd_reloc_notsupported;
6144 }
6145
6146 bfd_vma def_value
6147 = weak_undef_p ? 0 : signed_addend - tpoff_base (info);
6148 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6149 place, value,
6150 def_value, weak_undef_p);
6151 *unresolved_reloc_p = FALSE;
6152 break;
6153 }
6154
6155 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6156 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6157 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6158 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6159 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6160 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6161 if (globals->root.sgot == NULL)
6162 return bfd_reloc_notsupported;
6163 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6164 + globals->root.sgotplt->output_section->vma
6165 + globals->root.sgotplt->output_offset
6166 + globals->sgotplt_jump_table_size);
6167
6168 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6169 place, value,
6170 0, weak_undef_p);
6171 *unresolved_reloc_p = FALSE;
6172 break;
6173
6174 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6175 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6176 if (globals->root.sgot == NULL)
6177 return bfd_reloc_notsupported;
6178
6179 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6180 + globals->root.sgotplt->output_section->vma
6181 + globals->root.sgotplt->output_offset
6182 + globals->sgotplt_jump_table_size);
6183
6184 value -= (globals->root.sgot->output_section->vma
6185 + globals->root.sgot->output_offset);
6186
6187 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6188 place, value,
6189 0, weak_undef_p);
6190 *unresolved_reloc_p = FALSE;
6191 break;
6192
6193 default:
6194 return bfd_reloc_notsupported;
6195 }
6196
6197 if (saved_addend)
6198 *saved_addend = value;
6199
6200 /* Only apply the final relocation in a sequence. */
6201 if (save_addend)
6202 return bfd_reloc_continue;
6203
6204 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
6205 howto, value);
6206 }
6207
6208 /* LP64 and ILP32 operates on x- and w-registers respectively.
6209 Next definitions take into account the difference between
6210 corresponding machine codes. R means x-register if the target
6211 arch is LP64, and w-register if the target is ILP32. */
6212
6213 #if ARCH_SIZE == 64
6214 # define add_R0_R0 (0x91000000)
6215 # define add_R0_R0_R1 (0x8b000020)
6216 # define add_R0_R1 (0x91400020)
6217 # define ldr_R0 (0x58000000)
6218 # define ldr_R0_mask(i) (i & 0xffffffe0)
6219 # define ldr_R0_x0 (0xf9400000)
6220 # define ldr_hw_R0 (0xf2a00000)
6221 # define movk_R0 (0xf2800000)
6222 # define movz_R0 (0xd2a00000)
6223 # define movz_hw_R0 (0xd2c00000)
6224 #else /*ARCH_SIZE == 32 */
6225 # define add_R0_R0 (0x11000000)
6226 # define add_R0_R0_R1 (0x0b000020)
6227 # define add_R0_R1 (0x11400020)
6228 # define ldr_R0 (0x18000000)
6229 # define ldr_R0_mask(i) (i & 0xbfffffe0)
6230 # define ldr_R0_x0 (0xb9400000)
6231 # define ldr_hw_R0 (0x72a00000)
6232 # define movk_R0 (0x72800000)
6233 # define movz_R0 (0x52a00000)
6234 # define movz_hw_R0 (0x52c00000)
6235 #endif
6236
6237 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6238 it is used to identify the stub information to reset. */
6239
6240 struct erratum_843419_branch_to_stub_clear_data
6241 {
6242 bfd_vma adrp_offset;
6243 asection *output_section;
6244 };
6245
6246 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6247 section inside IN_ARG matches. The clearing is done by setting the
6248 stub_type to none. */
6249
6250 static bfd_boolean
6251 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
6252 void *in_arg)
6253 {
6254 struct elf_aarch64_stub_hash_entry *stub_entry
6255 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
6256 struct erratum_843419_branch_to_stub_clear_data *data
6257 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
6258
6259 if (stub_entry->target_section != data->output_section
6260 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
6261 || stub_entry->adrp_offset != data->adrp_offset)
6262 return TRUE;
6263
6264 /* Change the stub type instead of removing the entry, removing from the hash
6265 table would be slower and we have already reserved the memory for the entry
6266 so there wouldn't be much gain. Changing the stub also keeps around a
6267 record of what was there before. */
6268 stub_entry->stub_type = aarch64_stub_none;
6269
6270 /* We're done and there could have been only one matching stub at that
6271 particular offset, so abort further traversal. */
6272 return FALSE;
6273 }
6274
6275 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6276 sequence. In this case the erratum no longer applies and we need to remove
6277 the entry from the pending stub generation. This clears matching adrp insn
6278 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
6279
6280 static void
6281 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
6282 bfd_vma adrp_offset, asection *input_section)
6283 {
6284 if (globals->fix_erratum_843419 & ERRAT_ADRP)
6285 {
6286 struct erratum_843419_branch_to_stub_clear_data data;
6287 data.adrp_offset = adrp_offset;
6288 data.output_section = input_section;
6289
6290 bfd_hash_traverse (&globals->stub_hash_table,
6291 _bfd_aarch64_erratum_843419_clear_stub, &data);
6292 }
6293 }
6294
6295 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6296 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6297 link.
6298
6299 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6300 is to then call final_link_relocate. Return other values in the
6301 case of error. */
6302
6303 static bfd_reloc_status_type
6304 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6305 bfd *input_bfd, asection *input_section,
6306 bfd_byte *contents, Elf_Internal_Rela *rel,
6307 struct elf_link_hash_entry *h)
6308 {
6309 bfd_boolean is_local = h == NULL;
6310 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6311 unsigned long insn;
6312
6313 BFD_ASSERT (globals && input_bfd && contents && rel);
6314
6315 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6316 {
6317 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6318 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6319 if (is_local)
6320 {
6321 /* GD->LE relaxation:
6322 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6323 or
6324 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6325
6326 Where R is x for LP64, and w for ILP32. */
6327 bfd_putl32 (movz_R0, contents + rel->r_offset);
6328 /* We have relaxed the adrp into a mov, we may have to clear any
6329 pending erratum fixes. */
6330 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6331 return bfd_reloc_continue;
6332 }
6333 else
6334 {
6335 /* GD->IE relaxation:
6336 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6337 or
6338 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6339 */
6340 return bfd_reloc_continue;
6341 }
6342
6343 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6344 BFD_ASSERT (0);
6345 break;
6346
6347 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6348 if (is_local)
6349 {
6350 /* Tiny TLSDESC->LE relaxation:
6351 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6352 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6353 .tlsdesccall var
6354 blr x1 => nop
6355
6356 Where R is x for LP64, and w for ILP32. */
6357 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6358 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6359
6360 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6361 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6362 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6363
6364 bfd_putl32 (movz_R0, contents + rel->r_offset);
6365 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6366 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6367 return bfd_reloc_continue;
6368 }
6369 else
6370 {
6371 /* Tiny TLSDESC->IE relaxation:
6372 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6373 adr x0, :tlsdesc:var => nop
6374 .tlsdesccall var
6375 blr x1 => nop
6376 */
6377 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6378 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6379
6380 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6381 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6382
6383 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6384 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6385 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6386 return bfd_reloc_continue;
6387 }
6388
6389 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6390 if (is_local)
6391 {
6392 /* Tiny GD->LE relaxation:
6393 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6394 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6395 nop => add R0, R0, #:tprel_lo12_nc:x
6396
6397 Where R is x for LP64, and x for Ilp32. */
6398
6399 /* First kill the tls_get_addr reloc on the bl instruction. */
6400 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6401
6402 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6403 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6404 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6405
6406 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6407 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6408 rel[1].r_offset = rel->r_offset + 8;
6409
6410 /* Move the current relocation to the second instruction in
6411 the sequence. */
6412 rel->r_offset += 4;
6413 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6414 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6415 return bfd_reloc_continue;
6416 }
6417 else
6418 {
6419 /* Tiny GD->IE relaxation:
6420 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6421 bl __tls_get_addr => mrs x1, tpidr_el0
6422 nop => add R0, R0, R1
6423
6424 Where R is x for LP64, and w for Ilp32. */
6425
6426 /* First kill the tls_get_addr reloc on the bl instruction. */
6427 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6428 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6429
6430 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6431 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6432 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6433 return bfd_reloc_continue;
6434 }
6435
6436 #if ARCH_SIZE == 64
6437 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6438 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6439 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6440 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6441
6442 if (is_local)
6443 {
6444 /* Large GD->LE relaxation:
6445 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6446 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6447 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6448 bl __tls_get_addr => mrs x1, tpidr_el0
6449 nop => add x0, x0, x1
6450 */
6451 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6452 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6453 rel[2].r_offset = rel->r_offset + 8;
6454
6455 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6456 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6457 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6458 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6459 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6460 }
6461 else
6462 {
6463 /* Large GD->IE relaxation:
6464 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6465 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6466 add x0, gp, x0 => ldr x0, [gp, x0]
6467 bl __tls_get_addr => mrs x1, tpidr_el0
6468 nop => add x0, x0, x1
6469 */
6470 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6471 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6472 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6473 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6474 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6475 }
6476 return bfd_reloc_continue;
6477
6478 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6479 return bfd_reloc_continue;
6480 #endif
6481
6482 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6483 return bfd_reloc_continue;
6484
6485 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6486 if (is_local)
6487 {
6488 /* GD->LE relaxation:
6489 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6490
6491 Where R is x for lp64 mode, and w for ILP32 mode. */
6492 bfd_putl32 (movk_R0, contents + rel->r_offset);
6493 return bfd_reloc_continue;
6494 }
6495 else
6496 {
6497 /* GD->IE relaxation:
6498 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6499
6500 Where R is x for lp64 mode, and w for ILP32 mode. */
6501 insn = bfd_getl32 (contents + rel->r_offset);
6502 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6503 return bfd_reloc_continue;
6504 }
6505
6506 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6507 if (is_local)
6508 {
6509 /* GD->LE relaxation
6510 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6511 bl __tls_get_addr => mrs x1, tpidr_el0
6512 nop => add R0, R1, R0
6513
6514 Where R is x for lp64 mode, and w for ILP32 mode. */
6515
6516 /* First kill the tls_get_addr reloc on the bl instruction. */
6517 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6518 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6519
6520 bfd_putl32 (movk_R0, contents + rel->r_offset);
6521 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6522 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6523 return bfd_reloc_continue;
6524 }
6525 else
6526 {
6527 /* GD->IE relaxation
6528 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6529 BL __tls_get_addr => mrs x1, tpidr_el0
6530 R_AARCH64_CALL26
6531 NOP => add R0, R1, R0
6532
6533 Where R is x for lp64 mode, and w for ilp32 mode. */
6534
6535 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6536
6537 /* Remove the relocation on the BL instruction. */
6538 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6539
6540 /* We choose to fixup the BL and NOP instructions using the
6541 offset from the second relocation to allow flexibility in
6542 scheduling instructions between the ADD and BL. */
6543 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6544 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6545 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6546 return bfd_reloc_continue;
6547 }
6548
6549 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6550 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6551 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6552 /* GD->IE/LE relaxation:
6553 add x0, x0, #:tlsdesc_lo12:var => nop
6554 blr xd => nop
6555 */
6556 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6557 return bfd_reloc_ok;
6558
6559 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6560 if (is_local)
6561 {
6562 /* GD->LE relaxation:
6563 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6564
6565 Where R is x for lp64 mode, and w for ILP32 mode. */
6566 bfd_putl32 (movk_R0, contents + rel->r_offset);
6567 return bfd_reloc_continue;
6568 }
6569 else
6570 {
6571 /* GD->IE relaxation:
6572 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6573
6574 Where R is x for lp64 mode, and w for ILP32 mode. */
6575 insn = bfd_getl32 (contents + rel->r_offset);
6576 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6577 return bfd_reloc_ok;
6578 }
6579
6580 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6581 /* GD->LE relaxation:
6582 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6583 GD->IE relaxation:
6584 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6585
6586 Where R is x for lp64 mode, and w for ILP32 mode. */
6587 if (is_local)
6588 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6589 return bfd_reloc_continue;
6590
6591 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6592 if (is_local)
6593 {
6594 /* GD->LE relaxation:
6595 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6596
6597 Where R is x for lp64 mode, and w for ILP32 mode. */
6598 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6599 return bfd_reloc_continue;
6600 }
6601 else
6602 {
6603 /* GD->IE relaxation:
6604 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6605
6606 Where R is x for lp64 mode, and w for ILP32 mode. */
6607 insn = bfd_getl32 (contents + rel->r_offset);
6608 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6609 return bfd_reloc_continue;
6610 }
6611
6612 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6613 /* IE->LE relaxation:
6614 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6615
6616 Where R is x for lp64 mode, and w for ILP32 mode. */
6617 if (is_local)
6618 {
6619 insn = bfd_getl32 (contents + rel->r_offset);
6620 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6621 /* We have relaxed the adrp into a mov, we may have to clear any
6622 pending erratum fixes. */
6623 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6624 }
6625 return bfd_reloc_continue;
6626
6627 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6628 /* IE->LE relaxation:
6629 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6630
6631 Where R is x for lp64 mode, and w for ILP32 mode. */
6632 if (is_local)
6633 {
6634 insn = bfd_getl32 (contents + rel->r_offset);
6635 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6636 }
6637 return bfd_reloc_continue;
6638
6639 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6640 /* LD->LE relaxation (tiny):
6641 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6642 bl __tls_get_addr => add R0, R0, TCB_SIZE
6643
6644 Where R is x for lp64 mode, and w for ilp32 mode. */
6645 if (is_local)
6646 {
6647 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6648 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6649 /* No need of CALL26 relocation for tls_get_addr. */
6650 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6651 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6652 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6653 contents + rel->r_offset + 4);
6654 return bfd_reloc_ok;
6655 }
6656 return bfd_reloc_continue;
6657
6658 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6659 /* LD->LE relaxation (small):
6660 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6661 */
6662 if (is_local)
6663 {
6664 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6665 return bfd_reloc_ok;
6666 }
6667 return bfd_reloc_continue;
6668
6669 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6670 /* LD->LE relaxation (small):
6671 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6672 bl __tls_get_addr => nop
6673
6674 Where R is x for lp64 mode, and w for ilp32 mode. */
6675 if (is_local)
6676 {
6677 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6678 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6679 /* No need of CALL26 relocation for tls_get_addr. */
6680 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6681 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6682 contents + rel->r_offset + 0);
6683 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6684 return bfd_reloc_ok;
6685 }
6686 return bfd_reloc_continue;
6687
6688 default:
6689 return bfd_reloc_continue;
6690 }
6691
6692 return bfd_reloc_ok;
6693 }
6694
6695 /* Relocate an AArch64 ELF section. */
6696
6697 static bfd_boolean
6698 elfNN_aarch64_relocate_section (bfd *output_bfd,
6699 struct bfd_link_info *info,
6700 bfd *input_bfd,
6701 asection *input_section,
6702 bfd_byte *contents,
6703 Elf_Internal_Rela *relocs,
6704 Elf_Internal_Sym *local_syms,
6705 asection **local_sections)
6706 {
6707 Elf_Internal_Shdr *symtab_hdr;
6708 struct elf_link_hash_entry **sym_hashes;
6709 Elf_Internal_Rela *rel;
6710 Elf_Internal_Rela *relend;
6711 const char *name;
6712 struct elf_aarch64_link_hash_table *globals;
6713 bfd_boolean save_addend = FALSE;
6714 bfd_vma addend = 0;
6715
6716 globals = elf_aarch64_hash_table (info);
6717
6718 symtab_hdr = &elf_symtab_hdr (input_bfd);
6719 sym_hashes = elf_sym_hashes (input_bfd);
6720
6721 rel = relocs;
6722 relend = relocs + input_section->reloc_count;
6723 for (; rel < relend; rel++)
6724 {
6725 unsigned int r_type;
6726 bfd_reloc_code_real_type bfd_r_type;
6727 bfd_reloc_code_real_type relaxed_bfd_r_type;
6728 reloc_howto_type *howto;
6729 unsigned long r_symndx;
6730 Elf_Internal_Sym *sym;
6731 asection *sec;
6732 struct elf_link_hash_entry *h;
6733 bfd_vma relocation;
6734 bfd_reloc_status_type r;
6735 arelent bfd_reloc;
6736 char sym_type;
6737 bfd_boolean unresolved_reloc = FALSE;
6738 char *error_message = NULL;
6739
6740 r_symndx = ELFNN_R_SYM (rel->r_info);
6741 r_type = ELFNN_R_TYPE (rel->r_info);
6742
6743 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6744 howto = bfd_reloc.howto;
6745
6746 if (howto == NULL)
6747 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6748
6749 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6750
6751 h = NULL;
6752 sym = NULL;
6753 sec = NULL;
6754
6755 if (r_symndx < symtab_hdr->sh_info)
6756 {
6757 sym = local_syms + r_symndx;
6758 sym_type = ELFNN_ST_TYPE (sym->st_info);
6759 sec = local_sections[r_symndx];
6760
6761 /* An object file might have a reference to a local
6762 undefined symbol. This is a daft object file, but we
6763 should at least do something about it. */
6764 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6765 && bfd_is_und_section (sec)
6766 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6767 (*info->callbacks->undefined_symbol)
6768 (info, bfd_elf_string_from_elf_section
6769 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6770 input_bfd, input_section, rel->r_offset, TRUE);
6771
6772 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6773
6774 /* Relocate against local STT_GNU_IFUNC symbol. */
6775 if (!bfd_link_relocatable (info)
6776 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6777 {
6778 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6779 rel, FALSE);
6780 if (h == NULL)
6781 abort ();
6782
6783 /* Set STT_GNU_IFUNC symbol value. */
6784 h->root.u.def.value = sym->st_value;
6785 h->root.u.def.section = sec;
6786 }
6787 }
6788 else
6789 {
6790 bfd_boolean warned, ignored;
6791
6792 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6793 r_symndx, symtab_hdr, sym_hashes,
6794 h, sec, relocation,
6795 unresolved_reloc, warned, ignored);
6796
6797 sym_type = h->type;
6798 }
6799
6800 if (sec != NULL && discarded_section (sec))
6801 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6802 rel, 1, relend, howto, 0, contents);
6803
6804 if (bfd_link_relocatable (info))
6805 continue;
6806
6807 if (h != NULL)
6808 name = h->root.root.string;
6809 else
6810 {
6811 name = (bfd_elf_string_from_elf_section
6812 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6813 if (name == NULL || *name == '\0')
6814 name = bfd_section_name (sec);
6815 }
6816
6817 if (r_symndx != 0
6818 && r_type != R_AARCH64_NONE
6819 && r_type != R_AARCH64_NULL
6820 && (h == NULL
6821 || h->root.type == bfd_link_hash_defined
6822 || h->root.type == bfd_link_hash_defweak)
6823 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6824 {
6825 _bfd_error_handler
6826 ((sym_type == STT_TLS
6827 /* xgettext:c-format */
6828 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6829 /* xgettext:c-format */
6830 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6831 input_bfd,
6832 input_section, (uint64_t) rel->r_offset, howto->name, name);
6833 }
6834
6835 /* We relax only if we can see that there can be a valid transition
6836 from a reloc type to another.
6837 We call elfNN_aarch64_final_link_relocate unless we're completely
6838 done, i.e., the relaxation produced the final output we want. */
6839
6840 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6841 h, r_symndx);
6842 if (relaxed_bfd_r_type != bfd_r_type)
6843 {
6844 bfd_r_type = relaxed_bfd_r_type;
6845 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6846 BFD_ASSERT (howto != NULL);
6847 r_type = howto->type;
6848 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6849 contents, rel, h);
6850 unresolved_reloc = 0;
6851 }
6852 else
6853 r = bfd_reloc_continue;
6854
6855 /* There may be multiple consecutive relocations for the
6856 same offset. In that case we are supposed to treat the
6857 output of each relocation as the addend for the next. */
6858 if (rel + 1 < relend
6859 && rel->r_offset == rel[1].r_offset
6860 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6861 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6862 save_addend = TRUE;
6863 else
6864 save_addend = FALSE;
6865
6866 if (r == bfd_reloc_continue)
6867 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6868 input_section, contents, rel,
6869 relocation, info, sec,
6870 h, &unresolved_reloc,
6871 save_addend, &addend, sym);
6872
6873 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6874 {
6875 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6876 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6877 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6878 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6879 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6880 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6881 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6882 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6883 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6884 {
6885 bfd_boolean need_relocs = FALSE;
6886 bfd_byte *loc;
6887 int indx;
6888 bfd_vma off;
6889
6890 off = symbol_got_offset (input_bfd, h, r_symndx);
6891 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6892
6893 need_relocs =
6894 (!bfd_link_executable (info) || indx != 0) &&
6895 (h == NULL
6896 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6897 || h->root.type != bfd_link_hash_undefweak);
6898
6899 BFD_ASSERT (globals->root.srelgot != NULL);
6900
6901 if (need_relocs)
6902 {
6903 Elf_Internal_Rela rela;
6904 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6905 rela.r_addend = 0;
6906 rela.r_offset = globals->root.sgot->output_section->vma +
6907 globals->root.sgot->output_offset + off;
6908
6909
6910 loc = globals->root.srelgot->contents;
6911 loc += globals->root.srelgot->reloc_count++
6912 * RELOC_SIZE (htab);
6913 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6914
6915 bfd_reloc_code_real_type real_type =
6916 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6917
6918 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6919 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6920 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6921 {
6922 /* For local dynamic, don't generate DTPREL in any case.
6923 Initialize the DTPREL slot into zero, so we get module
6924 base address when invoke runtime TLS resolver. */
6925 bfd_put_NN (output_bfd, 0,
6926 globals->root.sgot->contents + off
6927 + GOT_ENTRY_SIZE);
6928 }
6929 else if (indx == 0)
6930 {
6931 bfd_put_NN (output_bfd,
6932 relocation - dtpoff_base (info),
6933 globals->root.sgot->contents + off
6934 + GOT_ENTRY_SIZE);
6935 }
6936 else
6937 {
6938 /* This TLS symbol is global. We emit a
6939 relocation to fixup the tls offset at load
6940 time. */
6941 rela.r_info =
6942 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6943 rela.r_addend = 0;
6944 rela.r_offset =
6945 (globals->root.sgot->output_section->vma
6946 + globals->root.sgot->output_offset + off
6947 + GOT_ENTRY_SIZE);
6948
6949 loc = globals->root.srelgot->contents;
6950 loc += globals->root.srelgot->reloc_count++
6951 * RELOC_SIZE (globals);
6952 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6953 bfd_put_NN (output_bfd, (bfd_vma) 0,
6954 globals->root.sgot->contents + off
6955 + GOT_ENTRY_SIZE);
6956 }
6957 }
6958 else
6959 {
6960 bfd_put_NN (output_bfd, (bfd_vma) 1,
6961 globals->root.sgot->contents + off);
6962 bfd_put_NN (output_bfd,
6963 relocation - dtpoff_base (info),
6964 globals->root.sgot->contents + off
6965 + GOT_ENTRY_SIZE);
6966 }
6967
6968 symbol_got_offset_mark (input_bfd, h, r_symndx);
6969 }
6970 break;
6971
6972 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6973 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6974 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6975 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6976 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6977 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6978 {
6979 bfd_boolean need_relocs = FALSE;
6980 bfd_byte *loc;
6981 int indx;
6982 bfd_vma off;
6983
6984 off = symbol_got_offset (input_bfd, h, r_symndx);
6985
6986 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6987
6988 need_relocs =
6989 (!bfd_link_executable (info) || indx != 0) &&
6990 (h == NULL
6991 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6992 || h->root.type != bfd_link_hash_undefweak);
6993
6994 BFD_ASSERT (globals->root.srelgot != NULL);
6995
6996 if (need_relocs)
6997 {
6998 Elf_Internal_Rela rela;
6999
7000 if (indx == 0)
7001 rela.r_addend = relocation - dtpoff_base (info);
7002 else
7003 rela.r_addend = 0;
7004
7005 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
7006 rela.r_offset = globals->root.sgot->output_section->vma +
7007 globals->root.sgot->output_offset + off;
7008
7009 loc = globals->root.srelgot->contents;
7010 loc += globals->root.srelgot->reloc_count++
7011 * RELOC_SIZE (htab);
7012
7013 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7014
7015 bfd_put_NN (output_bfd, rela.r_addend,
7016 globals->root.sgot->contents + off);
7017 }
7018 else
7019 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
7020 globals->root.sgot->contents + off);
7021
7022 symbol_got_offset_mark (input_bfd, h, r_symndx);
7023 }
7024 break;
7025
7026 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7027 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7028 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7029 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
7030 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7031 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7032 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7033 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
7034 {
7035 bfd_boolean need_relocs = FALSE;
7036 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
7037 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
7038
7039 need_relocs = (h == NULL
7040 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7041 || h->root.type != bfd_link_hash_undefweak);
7042
7043 BFD_ASSERT (globals->root.srelgot != NULL);
7044 BFD_ASSERT (globals->root.sgot != NULL);
7045
7046 if (need_relocs)
7047 {
7048 bfd_byte *loc;
7049 Elf_Internal_Rela rela;
7050 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
7051
7052 rela.r_addend = 0;
7053 rela.r_offset = (globals->root.sgotplt->output_section->vma
7054 + globals->root.sgotplt->output_offset
7055 + off + globals->sgotplt_jump_table_size);
7056
7057 if (indx == 0)
7058 rela.r_addend = relocation - dtpoff_base (info);
7059
7060 /* Allocate the next available slot in the PLT reloc
7061 section to hold our R_AARCH64_TLSDESC, the next
7062 available slot is determined from reloc_count,
7063 which we step. But note, reloc_count was
7064 artifically moved down while allocating slots for
7065 real PLT relocs such that all of the PLT relocs
7066 will fit above the initial reloc_count and the
7067 extra stuff will fit below. */
7068 loc = globals->root.srelplt->contents;
7069 loc += globals->root.srelplt->reloc_count++
7070 * RELOC_SIZE (globals);
7071
7072 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7073
7074 bfd_put_NN (output_bfd, (bfd_vma) 0,
7075 globals->root.sgotplt->contents + off +
7076 globals->sgotplt_jump_table_size);
7077 bfd_put_NN (output_bfd, (bfd_vma) 0,
7078 globals->root.sgotplt->contents + off +
7079 globals->sgotplt_jump_table_size +
7080 GOT_ENTRY_SIZE);
7081 }
7082
7083 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
7084 }
7085 break;
7086 default:
7087 break;
7088 }
7089
7090 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7091 because such sections are not SEC_ALLOC and thus ld.so will
7092 not process them. */
7093 if (unresolved_reloc
7094 && !((input_section->flags & SEC_DEBUGGING) != 0
7095 && h->def_dynamic)
7096 && _bfd_elf_section_offset (output_bfd, info, input_section,
7097 +rel->r_offset) != (bfd_vma) - 1)
7098 {
7099 _bfd_error_handler
7100 /* xgettext:c-format */
7101 (_("%pB(%pA+%#" PRIx64 "): "
7102 "unresolvable %s relocation against symbol `%s'"),
7103 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
7104 h->root.root.string);
7105 return FALSE;
7106 }
7107
7108 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
7109 {
7110 bfd_reloc_code_real_type real_r_type
7111 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
7112
7113 switch (r)
7114 {
7115 case bfd_reloc_overflow:
7116 (*info->callbacks->reloc_overflow)
7117 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
7118 input_bfd, input_section, rel->r_offset);
7119 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
7120 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
7121 {
7122 (*info->callbacks->warning)
7123 (info,
7124 _("too many GOT entries for -fpic, "
7125 "please recompile with -fPIC"),
7126 name, input_bfd, input_section, rel->r_offset);
7127 return FALSE;
7128 }
7129 /* Overflow can occur when a variable is referenced with a type
7130 that has a larger alignment than the type with which it was
7131 declared. eg:
7132 file1.c: extern int foo; int a (void) { return foo; }
7133 file2.c: char bar, foo, baz;
7134 If the variable is placed into a data section at an offset
7135 that is incompatible with the larger alignment requirement
7136 overflow will occur. (Strictly speaking this is not overflow
7137 but rather an alignment problem, but the bfd_reloc_ error
7138 enum does not have a value to cover that situation).
7139
7140 Try to catch this situation here and provide a more helpful
7141 error message to the user. */
7142 if (addend & ((1 << howto->rightshift) - 1)
7143 /* FIXME: Are we testing all of the appropriate reloc
7144 types here ? */
7145 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
7146 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
7147 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
7148 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
7149 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
7150 {
7151 info->callbacks->warning
7152 (info, _("one possible cause of this error is that the \
7153 symbol is being referenced in the indicated code as if it had a larger \
7154 alignment than was declared where it was defined"),
7155 name, input_bfd, input_section, rel->r_offset);
7156 }
7157 break;
7158
7159 case bfd_reloc_undefined:
7160 (*info->callbacks->undefined_symbol)
7161 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
7162 break;
7163
7164 case bfd_reloc_outofrange:
7165 error_message = _("out of range");
7166 goto common_error;
7167
7168 case bfd_reloc_notsupported:
7169 error_message = _("unsupported relocation");
7170 goto common_error;
7171
7172 case bfd_reloc_dangerous:
7173 /* error_message should already be set. */
7174 goto common_error;
7175
7176 default:
7177 error_message = _("unknown error");
7178 /* Fall through. */
7179
7180 common_error:
7181 BFD_ASSERT (error_message != NULL);
7182 (*info->callbacks->reloc_dangerous)
7183 (info, error_message, input_bfd, input_section, rel->r_offset);
7184 break;
7185 }
7186 }
7187
7188 if (!save_addend)
7189 addend = 0;
7190 }
7191
7192 return TRUE;
7193 }
7194
7195 /* Set the right machine number. */
7196
7197 static bfd_boolean
7198 elfNN_aarch64_object_p (bfd *abfd)
7199 {
7200 #if ARCH_SIZE == 32
7201 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
7202 #else
7203 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
7204 #endif
7205 return TRUE;
7206 }
7207
7208 /* Function to keep AArch64 specific flags in the ELF header. */
7209
7210 static bfd_boolean
7211 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
7212 {
7213 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
7214 {
7215 }
7216 else
7217 {
7218 elf_elfheader (abfd)->e_flags = flags;
7219 elf_flags_init (abfd) = TRUE;
7220 }
7221
7222 return TRUE;
7223 }
7224
7225 /* Merge backend specific data from an object file to the output
7226 object file when linking. */
7227
7228 static bfd_boolean
7229 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
7230 {
7231 bfd *obfd = info->output_bfd;
7232 flagword out_flags;
7233 flagword in_flags;
7234 bfd_boolean flags_compatible = TRUE;
7235 asection *sec;
7236
7237 /* Check if we have the same endianess. */
7238 if (!_bfd_generic_verify_endian_match (ibfd, info))
7239 return FALSE;
7240
7241 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
7242 return TRUE;
7243
7244 /* The input BFD must have had its flags initialised. */
7245 /* The following seems bogus to me -- The flags are initialized in
7246 the assembler but I don't think an elf_flags_init field is
7247 written into the object. */
7248 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7249
7250 in_flags = elf_elfheader (ibfd)->e_flags;
7251 out_flags = elf_elfheader (obfd)->e_flags;
7252
7253 if (!elf_flags_init (obfd))
7254 {
7255 /* If the input is the default architecture and had the default
7256 flags then do not bother setting the flags for the output
7257 architecture, instead allow future merges to do this. If no
7258 future merges ever set these flags then they will retain their
7259 uninitialised values, which surprise surprise, correspond
7260 to the default values. */
7261 if (bfd_get_arch_info (ibfd)->the_default
7262 && elf_elfheader (ibfd)->e_flags == 0)
7263 return TRUE;
7264
7265 elf_flags_init (obfd) = TRUE;
7266 elf_elfheader (obfd)->e_flags = in_flags;
7267
7268 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7269 && bfd_get_arch_info (obfd)->the_default)
7270 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7271 bfd_get_mach (ibfd));
7272
7273 return TRUE;
7274 }
7275
7276 /* Identical flags must be compatible. */
7277 if (in_flags == out_flags)
7278 return TRUE;
7279
7280 /* Check to see if the input BFD actually contains any sections. If
7281 not, its flags may not have been initialised either, but it
7282 cannot actually cause any incompatiblity. Do not short-circuit
7283 dynamic objects; their section list may be emptied by
7284 elf_link_add_object_symbols.
7285
7286 Also check to see if there are no code sections in the input.
7287 In this case there is no need to check for code specific flags.
7288 XXX - do we need to worry about floating-point format compatability
7289 in data sections ? */
7290 if (!(ibfd->flags & DYNAMIC))
7291 {
7292 bfd_boolean null_input_bfd = TRUE;
7293 bfd_boolean only_data_sections = TRUE;
7294
7295 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7296 {
7297 if ((bfd_section_flags (sec)
7298 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7299 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7300 only_data_sections = FALSE;
7301
7302 null_input_bfd = FALSE;
7303 break;
7304 }
7305
7306 if (null_input_bfd || only_data_sections)
7307 return TRUE;
7308 }
7309
7310 return flags_compatible;
7311 }
7312
7313 /* Display the flags field. */
7314
7315 static bfd_boolean
7316 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7317 {
7318 FILE *file = (FILE *) ptr;
7319 unsigned long flags;
7320
7321 BFD_ASSERT (abfd != NULL && ptr != NULL);
7322
7323 /* Print normal ELF private data. */
7324 _bfd_elf_print_private_bfd_data (abfd, ptr);
7325
7326 flags = elf_elfheader (abfd)->e_flags;
7327 /* Ignore init flag - it may not be set, despite the flags field
7328 containing valid data. */
7329
7330 /* xgettext:c-format */
7331 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7332
7333 if (flags)
7334 fprintf (file, _("<Unrecognised flag bits set>"));
7335
7336 fputc ('\n', file);
7337
7338 return TRUE;
7339 }
7340
7341 /* Return true if we need copy relocation against EH. */
7342
7343 static bfd_boolean
7344 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7345 {
7346 struct elf_dyn_relocs *p;
7347 asection *s;
7348
7349 for (p = eh->root.dyn_relocs; p != NULL; p = p->next)
7350 {
7351 /* If there is any pc-relative reference, we need to keep copy relocation
7352 to avoid propagating the relocation into runtime that current glibc
7353 does not support. */
7354 if (p->pc_count)
7355 return TRUE;
7356
7357 s = p->sec->output_section;
7358 /* Need copy relocation if it's against read-only section. */
7359 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7360 return TRUE;
7361 }
7362
7363 return FALSE;
7364 }
7365
7366 /* Adjust a symbol defined by a dynamic object and referenced by a
7367 regular object. The current definition is in some section of the
7368 dynamic object, but we're not including those sections. We have to
7369 change the definition to something the rest of the link can
7370 understand. */
7371
7372 static bfd_boolean
7373 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7374 struct elf_link_hash_entry *h)
7375 {
7376 struct elf_aarch64_link_hash_table *htab;
7377 asection *s, *srel;
7378
7379 /* If this is a function, put it in the procedure linkage table. We
7380 will fill in the contents of the procedure linkage table later,
7381 when we know the address of the .got section. */
7382 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7383 {
7384 if (h->plt.refcount <= 0
7385 || (h->type != STT_GNU_IFUNC
7386 && (SYMBOL_CALLS_LOCAL (info, h)
7387 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7388 && h->root.type == bfd_link_hash_undefweak))))
7389 {
7390 /* This case can occur if we saw a CALL26 reloc in
7391 an input file, but the symbol wasn't referred to
7392 by a dynamic object or all references were
7393 garbage collected. In which case we can end up
7394 resolving. */
7395 h->plt.offset = (bfd_vma) - 1;
7396 h->needs_plt = 0;
7397 }
7398
7399 return TRUE;
7400 }
7401 else
7402 /* Otherwise, reset to -1. */
7403 h->plt.offset = (bfd_vma) - 1;
7404
7405
7406 /* If this is a weak symbol, and there is a real definition, the
7407 processor independent code will have arranged for us to see the
7408 real definition first, and we can just use the same value. */
7409 if (h->is_weakalias)
7410 {
7411 struct elf_link_hash_entry *def = weakdef (h);
7412 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7413 h->root.u.def.section = def->root.u.def.section;
7414 h->root.u.def.value = def->root.u.def.value;
7415 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7416 h->non_got_ref = def->non_got_ref;
7417 return TRUE;
7418 }
7419
7420 /* If we are creating a shared library, we must presume that the
7421 only references to the symbol are via the global offset table.
7422 For such cases we need not do anything here; the relocations will
7423 be handled correctly by relocate_section. */
7424 if (bfd_link_pic (info))
7425 return TRUE;
7426
7427 /* If there are no references to this symbol that do not use the
7428 GOT, we don't need to generate a copy reloc. */
7429 if (!h->non_got_ref)
7430 return TRUE;
7431
7432 /* If -z nocopyreloc was given, we won't generate them either. */
7433 if (info->nocopyreloc)
7434 {
7435 h->non_got_ref = 0;
7436 return TRUE;
7437 }
7438
7439 if (ELIMINATE_COPY_RELOCS)
7440 {
7441 struct elf_aarch64_link_hash_entry *eh;
7442 /* If we don't find any dynamic relocs in read-only sections, then
7443 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7444 eh = (struct elf_aarch64_link_hash_entry *) h;
7445 if (!need_copy_relocation_p (eh))
7446 {
7447 h->non_got_ref = 0;
7448 return TRUE;
7449 }
7450 }
7451
7452 /* We must allocate the symbol in our .dynbss section, which will
7453 become part of the .bss section of the executable. There will be
7454 an entry for this symbol in the .dynsym section. The dynamic
7455 object will contain position independent code, so all references
7456 from the dynamic object to this symbol will go through the global
7457 offset table. The dynamic linker will use the .dynsym entry to
7458 determine the address it must put in the global offset table, so
7459 both the dynamic object and the regular object will refer to the
7460 same memory location for the variable. */
7461
7462 htab = elf_aarch64_hash_table (info);
7463
7464 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7465 to copy the initial value out of the dynamic object and into the
7466 runtime process image. */
7467 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7468 {
7469 s = htab->root.sdynrelro;
7470 srel = htab->root.sreldynrelro;
7471 }
7472 else
7473 {
7474 s = htab->root.sdynbss;
7475 srel = htab->root.srelbss;
7476 }
7477 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7478 {
7479 srel->size += RELOC_SIZE (htab);
7480 h->needs_copy = 1;
7481 }
7482
7483 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7484
7485 }
7486
7487 static bfd_boolean
7488 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7489 {
7490 struct elf_aarch64_local_symbol *locals;
7491 locals = elf_aarch64_locals (abfd);
7492 if (locals == NULL)
7493 {
7494 locals = (struct elf_aarch64_local_symbol *)
7495 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7496 if (locals == NULL)
7497 return FALSE;
7498 elf_aarch64_locals (abfd) = locals;
7499 }
7500 return TRUE;
7501 }
7502
7503 /* Create the .got section to hold the global offset table. */
7504
7505 static bfd_boolean
7506 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7507 {
7508 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7509 flagword flags;
7510 asection *s;
7511 struct elf_link_hash_entry *h;
7512 struct elf_link_hash_table *htab = elf_hash_table (info);
7513
7514 /* This function may be called more than once. */
7515 if (htab->sgot != NULL)
7516 return TRUE;
7517
7518 flags = bed->dynamic_sec_flags;
7519
7520 s = bfd_make_section_anyway_with_flags (abfd,
7521 (bed->rela_plts_and_copies_p
7522 ? ".rela.got" : ".rel.got"),
7523 (bed->dynamic_sec_flags
7524 | SEC_READONLY));
7525 if (s == NULL
7526 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7527 return FALSE;
7528 htab->srelgot = s;
7529
7530 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7531 if (s == NULL
7532 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7533 return FALSE;
7534 htab->sgot = s;
7535 htab->sgot->size += GOT_ENTRY_SIZE;
7536
7537 if (bed->want_got_sym)
7538 {
7539 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7540 (or .got.plt) section. We don't do this in the linker script
7541 because we don't want to define the symbol if we are not creating
7542 a global offset table. */
7543 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7544 "_GLOBAL_OFFSET_TABLE_");
7545 elf_hash_table (info)->hgot = h;
7546 if (h == NULL)
7547 return FALSE;
7548 }
7549
7550 if (bed->want_got_plt)
7551 {
7552 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7553 if (s == NULL
7554 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7555 return FALSE;
7556 htab->sgotplt = s;
7557 }
7558
7559 /* The first bit of the global offset table is the header. */
7560 s->size += bed->got_header_size;
7561
7562 return TRUE;
7563 }
7564
7565 /* Look through the relocs for a section during the first phase. */
7566
7567 static bfd_boolean
7568 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7569 asection *sec, const Elf_Internal_Rela *relocs)
7570 {
7571 Elf_Internal_Shdr *symtab_hdr;
7572 struct elf_link_hash_entry **sym_hashes;
7573 const Elf_Internal_Rela *rel;
7574 const Elf_Internal_Rela *rel_end;
7575 asection *sreloc;
7576
7577 struct elf_aarch64_link_hash_table *htab;
7578
7579 if (bfd_link_relocatable (info))
7580 return TRUE;
7581
7582 BFD_ASSERT (is_aarch64_elf (abfd));
7583
7584 htab = elf_aarch64_hash_table (info);
7585 sreloc = NULL;
7586
7587 symtab_hdr = &elf_symtab_hdr (abfd);
7588 sym_hashes = elf_sym_hashes (abfd);
7589
7590 rel_end = relocs + sec->reloc_count;
7591 for (rel = relocs; rel < rel_end; rel++)
7592 {
7593 struct elf_link_hash_entry *h;
7594 unsigned int r_symndx;
7595 unsigned int r_type;
7596 bfd_reloc_code_real_type bfd_r_type;
7597 Elf_Internal_Sym *isym;
7598
7599 r_symndx = ELFNN_R_SYM (rel->r_info);
7600 r_type = ELFNN_R_TYPE (rel->r_info);
7601
7602 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7603 {
7604 /* xgettext:c-format */
7605 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7606 return FALSE;
7607 }
7608
7609 if (r_symndx < symtab_hdr->sh_info)
7610 {
7611 /* A local symbol. */
7612 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache,
7613 abfd, r_symndx);
7614 if (isym == NULL)
7615 return FALSE;
7616
7617 /* Check relocation against local STT_GNU_IFUNC symbol. */
7618 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7619 {
7620 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7621 TRUE);
7622 if (h == NULL)
7623 return FALSE;
7624
7625 /* Fake a STT_GNU_IFUNC symbol. */
7626 h->type = STT_GNU_IFUNC;
7627 h->def_regular = 1;
7628 h->ref_regular = 1;
7629 h->forced_local = 1;
7630 h->root.type = bfd_link_hash_defined;
7631 }
7632 else
7633 h = NULL;
7634 }
7635 else
7636 {
7637 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7638 while (h->root.type == bfd_link_hash_indirect
7639 || h->root.type == bfd_link_hash_warning)
7640 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7641 }
7642
7643 /* Could be done earlier, if h were already available. */
7644 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7645
7646 if (h != NULL)
7647 {
7648 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7649 This shows up in particular in an R_AARCH64_PREL64 in large model
7650 when calculating the pc-relative address to .got section which is
7651 used to initialize the gp register. */
7652 if (h->root.root.string
7653 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7654 {
7655 if (htab->root.dynobj == NULL)
7656 htab->root.dynobj = abfd;
7657
7658 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7659 return FALSE;
7660
7661 BFD_ASSERT (h == htab->root.hgot);
7662 }
7663
7664 /* Create the ifunc sections for static executables. If we
7665 never see an indirect function symbol nor we are building
7666 a static executable, those sections will be empty and
7667 won't appear in output. */
7668 switch (bfd_r_type)
7669 {
7670 default:
7671 break;
7672
7673 case BFD_RELOC_AARCH64_ADD_LO12:
7674 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7675 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7676 case BFD_RELOC_AARCH64_CALL26:
7677 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7678 case BFD_RELOC_AARCH64_JUMP26:
7679 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7680 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7681 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7682 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7683 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7684 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7685 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7686 case BFD_RELOC_AARCH64_NN:
7687 if (htab->root.dynobj == NULL)
7688 htab->root.dynobj = abfd;
7689 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7690 return FALSE;
7691 break;
7692 }
7693
7694 /* It is referenced by a non-shared object. */
7695 h->ref_regular = 1;
7696 }
7697
7698 switch (bfd_r_type)
7699 {
7700 case BFD_RELOC_AARCH64_16:
7701 #if ARCH_SIZE == 64
7702 case BFD_RELOC_AARCH64_32:
7703 #endif
7704 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7705 {
7706 if (h != NULL
7707 /* This is an absolute symbol. It represents a value instead
7708 of an address. */
7709 && (bfd_is_abs_symbol (&h->root)
7710 /* This is an undefined symbol. */
7711 || h->root.type == bfd_link_hash_undefined))
7712 break;
7713
7714 /* For local symbols, defined global symbols in a non-ABS section,
7715 it is assumed that the value is an address. */
7716 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7717 _bfd_error_handler
7718 /* xgettext:c-format */
7719 (_("%pB: relocation %s against `%s' can not be used when making "
7720 "a shared object"),
7721 abfd, elfNN_aarch64_howto_table[howto_index].name,
7722 (h) ? h->root.root.string : "a local symbol");
7723 bfd_set_error (bfd_error_bad_value);
7724 return FALSE;
7725 }
7726 else
7727 break;
7728
7729 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7730 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7731 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7732 case BFD_RELOC_AARCH64_MOVW_G3:
7733 if (bfd_link_pic (info))
7734 {
7735 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7736 _bfd_error_handler
7737 /* xgettext:c-format */
7738 (_("%pB: relocation %s against `%s' can not be used when making "
7739 "a shared object; recompile with -fPIC"),
7740 abfd, elfNN_aarch64_howto_table[howto_index].name,
7741 (h) ? h->root.root.string : "a local symbol");
7742 bfd_set_error (bfd_error_bad_value);
7743 return FALSE;
7744 }
7745 /* Fall through. */
7746
7747 case BFD_RELOC_AARCH64_16_PCREL:
7748 case BFD_RELOC_AARCH64_32_PCREL:
7749 case BFD_RELOC_AARCH64_64_PCREL:
7750 case BFD_RELOC_AARCH64_ADD_LO12:
7751 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7752 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7753 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7754 case BFD_RELOC_AARCH64_LDST128_LO12:
7755 case BFD_RELOC_AARCH64_LDST16_LO12:
7756 case BFD_RELOC_AARCH64_LDST32_LO12:
7757 case BFD_RELOC_AARCH64_LDST64_LO12:
7758 case BFD_RELOC_AARCH64_LDST8_LO12:
7759 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7760 if (h == NULL || bfd_link_pic (info))
7761 break;
7762 /* Fall through. */
7763
7764 case BFD_RELOC_AARCH64_NN:
7765
7766 /* We don't need to handle relocs into sections not going into
7767 the "real" output. */
7768 if ((sec->flags & SEC_ALLOC) == 0)
7769 break;
7770
7771 if (h != NULL)
7772 {
7773 if (!bfd_link_pic (info))
7774 h->non_got_ref = 1;
7775
7776 h->plt.refcount += 1;
7777 h->pointer_equality_needed = 1;
7778 }
7779
7780 /* No need to do anything if we're not creating a shared
7781 object. */
7782 if (!(bfd_link_pic (info)
7783 /* If on the other hand, we are creating an executable, we
7784 may need to keep relocations for symbols satisfied by a
7785 dynamic library if we manage to avoid copy relocs for the
7786 symbol.
7787
7788 NOTE: Currently, there is no support of copy relocs
7789 elimination on pc-relative relocation types, because there is
7790 no dynamic relocation support for them in glibc. We still
7791 record the dynamic symbol reference for them. This is
7792 because one symbol may be referenced by both absolute
7793 relocation (for example, BFD_RELOC_AARCH64_NN) and
7794 pc-relative relocation. We need full symbol reference
7795 information to make correct decision later in
7796 elfNN_aarch64_adjust_dynamic_symbol. */
7797 || (ELIMINATE_COPY_RELOCS
7798 && !bfd_link_pic (info)
7799 && h != NULL
7800 && (h->root.type == bfd_link_hash_defweak
7801 || !h->def_regular))))
7802 break;
7803
7804 {
7805 struct elf_dyn_relocs *p;
7806 struct elf_dyn_relocs **head;
7807 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7808
7809 /* We must copy these reloc types into the output file.
7810 Create a reloc section in dynobj and make room for
7811 this reloc. */
7812 if (sreloc == NULL)
7813 {
7814 if (htab->root.dynobj == NULL)
7815 htab->root.dynobj = abfd;
7816
7817 sreloc = _bfd_elf_make_dynamic_reloc_section
7818 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7819
7820 if (sreloc == NULL)
7821 return FALSE;
7822 }
7823
7824 /* If this is a global symbol, we count the number of
7825 relocations we need for this symbol. */
7826 if (h != NULL)
7827 {
7828 head = &h->dyn_relocs;
7829 }
7830 else
7831 {
7832 /* Track dynamic relocs needed for local syms too.
7833 We really need local syms available to do this
7834 easily. Oh well. */
7835
7836 asection *s;
7837 void **vpp;
7838
7839 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache,
7840 abfd, r_symndx);
7841 if (isym == NULL)
7842 return FALSE;
7843
7844 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7845 if (s == NULL)
7846 s = sec;
7847
7848 /* Beware of type punned pointers vs strict aliasing
7849 rules. */
7850 vpp = &(elf_section_data (s)->local_dynrel);
7851 head = (struct elf_dyn_relocs **) vpp;
7852 }
7853
7854 p = *head;
7855 if (p == NULL || p->sec != sec)
7856 {
7857 size_t amt = sizeof *p;
7858 p = ((struct elf_dyn_relocs *)
7859 bfd_zalloc (htab->root.dynobj, amt));
7860 if (p == NULL)
7861 return FALSE;
7862 p->next = *head;
7863 *head = p;
7864 p->sec = sec;
7865 }
7866
7867 p->count += 1;
7868
7869 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7870 p->pc_count += 1;
7871 }
7872 break;
7873
7874 /* RR: We probably want to keep a consistency check that
7875 there are no dangling GOT_PAGE relocs. */
7876 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7877 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7878 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7879 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7880 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7881 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7882 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7883 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7884 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7885 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7886 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7887 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7888 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7889 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7890 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7891 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7892 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7893 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7894 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7895 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7896 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7897 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7898 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7899 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7900 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7901 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7902 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7903 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7904 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7905 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7906 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7907 {
7908 unsigned got_type;
7909 unsigned old_got_type;
7910
7911 got_type = aarch64_reloc_got_type (bfd_r_type);
7912
7913 if (h)
7914 {
7915 h->got.refcount += 1;
7916 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7917 }
7918 else
7919 {
7920 struct elf_aarch64_local_symbol *locals;
7921
7922 if (!elfNN_aarch64_allocate_local_symbols
7923 (abfd, symtab_hdr->sh_info))
7924 return FALSE;
7925
7926 locals = elf_aarch64_locals (abfd);
7927 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7928 locals[r_symndx].got_refcount += 1;
7929 old_got_type = locals[r_symndx].got_type;
7930 }
7931
7932 /* If a variable is accessed with both general dynamic TLS
7933 methods, two slots may be created. */
7934 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7935 got_type |= old_got_type;
7936
7937 /* We will already have issued an error message if there
7938 is a TLS/non-TLS mismatch, based on the symbol type.
7939 So just combine any TLS types needed. */
7940 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7941 && got_type != GOT_NORMAL)
7942 got_type |= old_got_type;
7943
7944 /* If the symbol is accessed by both IE and GD methods, we
7945 are able to relax. Turn off the GD flag, without
7946 messing up with any other kind of TLS types that may be
7947 involved. */
7948 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7949 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7950
7951 if (old_got_type != got_type)
7952 {
7953 if (h != NULL)
7954 elf_aarch64_hash_entry (h)->got_type = got_type;
7955 else
7956 {
7957 struct elf_aarch64_local_symbol *locals;
7958 locals = elf_aarch64_locals (abfd);
7959 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7960 locals[r_symndx].got_type = got_type;
7961 }
7962 }
7963
7964 if (htab->root.dynobj == NULL)
7965 htab->root.dynobj = abfd;
7966 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7967 return FALSE;
7968 break;
7969 }
7970
7971 case BFD_RELOC_AARCH64_BRANCH19:
7972 case BFD_RELOC_AARCH64_TSTBR14:
7973 case BFD_RELOC_AARCH64_CALL26:
7974 case BFD_RELOC_AARCH64_JUMP26:
7975 /* If this is a local symbol then we resolve it
7976 directly without creating a PLT entry. */
7977 if (h == NULL)
7978 continue;
7979
7980 h->needs_plt = 1;
7981 if (h->plt.refcount <= 0)
7982 h->plt.refcount = 1;
7983 else
7984 h->plt.refcount += 1;
7985 break;
7986
7987 default:
7988 break;
7989 }
7990 }
7991
7992 return TRUE;
7993 }
7994
7995 /* Treat mapping symbols as special target symbols. */
7996
7997 static bfd_boolean
7998 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7999 asymbol *sym)
8000 {
8001 return bfd_is_aarch64_special_symbol_name (sym->name,
8002 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
8003 }
8004
8005 /* If the ELF symbol SYM might be a function in SEC, return the
8006 function size and set *CODE_OFF to the function's entry point,
8007 otherwise return zero. */
8008
8009 static bfd_size_type
8010 elfNN_aarch64_maybe_function_sym (const asymbol *sym, asection *sec,
8011 bfd_vma *code_off)
8012 {
8013 bfd_size_type size;
8014
8015 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
8016 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
8017 || sym->section != sec)
8018 return 0;
8019
8020 if (!(sym->flags & BSF_SYNTHETIC))
8021 switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info))
8022 {
8023 case STT_FUNC:
8024 case STT_NOTYPE:
8025 break;
8026 default:
8027 return 0;
8028 }
8029
8030 if ((sym->flags & BSF_LOCAL)
8031 && bfd_is_aarch64_special_symbol_name (sym->name,
8032 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY))
8033 return 0;
8034
8035 *code_off = sym->value;
8036 size = 0;
8037 if (!(sym->flags & BSF_SYNTHETIC))
8038 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
8039 if (size == 0)
8040 size = 1;
8041 return size;
8042 }
8043
8044 static bfd_boolean
8045 elfNN_aarch64_find_inliner_info (bfd *abfd,
8046 const char **filename_ptr,
8047 const char **functionname_ptr,
8048 unsigned int *line_ptr)
8049 {
8050 bfd_boolean found;
8051 found = _bfd_dwarf2_find_inliner_info
8052 (abfd, filename_ptr,
8053 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
8054 return found;
8055 }
8056
8057
8058 static bfd_boolean
8059 elfNN_aarch64_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
8060 {
8061 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
8062
8063 if (!_bfd_elf_init_file_header (abfd, link_info))
8064 return FALSE;
8065
8066 i_ehdrp = elf_elfheader (abfd);
8067 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
8068 return TRUE;
8069 }
8070
8071 static enum elf_reloc_type_class
8072 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
8073 const asection *rel_sec ATTRIBUTE_UNUSED,
8074 const Elf_Internal_Rela *rela)
8075 {
8076 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
8077
8078 if (htab->root.dynsym != NULL
8079 && htab->root.dynsym->contents != NULL)
8080 {
8081 /* Check relocation against STT_GNU_IFUNC symbol if there are
8082 dynamic symbols. */
8083 bfd *abfd = info->output_bfd;
8084 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8085 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
8086 if (r_symndx != STN_UNDEF)
8087 {
8088 Elf_Internal_Sym sym;
8089 if (!bed->s->swap_symbol_in (abfd,
8090 (htab->root.dynsym->contents
8091 + r_symndx * bed->s->sizeof_sym),
8092 0, &sym))
8093 {
8094 /* xgettext:c-format */
8095 _bfd_error_handler (_("%pB symbol number %lu references"
8096 " nonexistent SHT_SYMTAB_SHNDX section"),
8097 abfd, r_symndx);
8098 /* Ideally an error class should be returned here. */
8099 }
8100 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
8101 return reloc_class_ifunc;
8102 }
8103 }
8104
8105 switch ((int) ELFNN_R_TYPE (rela->r_info))
8106 {
8107 case AARCH64_R (IRELATIVE):
8108 return reloc_class_ifunc;
8109 case AARCH64_R (RELATIVE):
8110 return reloc_class_relative;
8111 case AARCH64_R (JUMP_SLOT):
8112 return reloc_class_plt;
8113 case AARCH64_R (COPY):
8114 return reloc_class_copy;
8115 default:
8116 return reloc_class_normal;
8117 }
8118 }
8119
8120 /* Handle an AArch64 specific section when reading an object file. This is
8121 called when bfd_section_from_shdr finds a section with an unknown
8122 type. */
8123
8124 static bfd_boolean
8125 elfNN_aarch64_section_from_shdr (bfd *abfd,
8126 Elf_Internal_Shdr *hdr,
8127 const char *name, int shindex)
8128 {
8129 /* There ought to be a place to keep ELF backend specific flags, but
8130 at the moment there isn't one. We just keep track of the
8131 sections by their name, instead. Fortunately, the ABI gives
8132 names for all the AArch64 specific sections, so we will probably get
8133 away with this. */
8134 switch (hdr->sh_type)
8135 {
8136 case SHT_AARCH64_ATTRIBUTES:
8137 break;
8138
8139 default:
8140 return FALSE;
8141 }
8142
8143 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
8144 return FALSE;
8145
8146 return TRUE;
8147 }
8148
8149 /* A structure used to record a list of sections, independently
8150 of the next and prev fields in the asection structure. */
8151 typedef struct section_list
8152 {
8153 asection *sec;
8154 struct section_list *next;
8155 struct section_list *prev;
8156 }
8157 section_list;
8158
8159 /* Unfortunately we need to keep a list of sections for which
8160 an _aarch64_elf_section_data structure has been allocated. This
8161 is because it is possible for functions like elfNN_aarch64_write_section
8162 to be called on a section which has had an elf_data_structure
8163 allocated for it (and so the used_by_bfd field is valid) but
8164 for which the AArch64 extended version of this structure - the
8165 _aarch64_elf_section_data structure - has not been allocated. */
8166 static section_list *sections_with_aarch64_elf_section_data = NULL;
8167
8168 static void
8169 record_section_with_aarch64_elf_section_data (asection *sec)
8170 {
8171 struct section_list *entry;
8172
8173 entry = bfd_malloc (sizeof (*entry));
8174 if (entry == NULL)
8175 return;
8176 entry->sec = sec;
8177 entry->next = sections_with_aarch64_elf_section_data;
8178 entry->prev = NULL;
8179 if (entry->next != NULL)
8180 entry->next->prev = entry;
8181 sections_with_aarch64_elf_section_data = entry;
8182 }
8183
8184 static struct section_list *
8185 find_aarch64_elf_section_entry (asection *sec)
8186 {
8187 struct section_list *entry;
8188 static struct section_list *last_entry = NULL;
8189
8190 /* This is a short cut for the typical case where the sections are added
8191 to the sections_with_aarch64_elf_section_data list in forward order and
8192 then looked up here in backwards order. This makes a real difference
8193 to the ld-srec/sec64k.exp linker test. */
8194 entry = sections_with_aarch64_elf_section_data;
8195 if (last_entry != NULL)
8196 {
8197 if (last_entry->sec == sec)
8198 entry = last_entry;
8199 else if (last_entry->next != NULL && last_entry->next->sec == sec)
8200 entry = last_entry->next;
8201 }
8202
8203 for (; entry; entry = entry->next)
8204 if (entry->sec == sec)
8205 break;
8206
8207 if (entry)
8208 /* Record the entry prior to this one - it is the entry we are
8209 most likely to want to locate next time. Also this way if we
8210 have been called from
8211 unrecord_section_with_aarch64_elf_section_data () we will not
8212 be caching a pointer that is about to be freed. */
8213 last_entry = entry->prev;
8214
8215 return entry;
8216 }
8217
8218 static void
8219 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8220 {
8221 struct section_list *entry;
8222
8223 entry = find_aarch64_elf_section_entry (sec);
8224
8225 if (entry)
8226 {
8227 if (entry->prev != NULL)
8228 entry->prev->next = entry->next;
8229 if (entry->next != NULL)
8230 entry->next->prev = entry->prev;
8231 if (entry == sections_with_aarch64_elf_section_data)
8232 sections_with_aarch64_elf_section_data = entry->next;
8233 free (entry);
8234 }
8235 }
8236
8237
8238 typedef struct
8239 {
8240 void *finfo;
8241 struct bfd_link_info *info;
8242 asection *sec;
8243 int sec_shndx;
8244 int (*func) (void *, const char *, Elf_Internal_Sym *,
8245 asection *, struct elf_link_hash_entry *);
8246 } output_arch_syminfo;
8247
8248 enum map_symbol_type
8249 {
8250 AARCH64_MAP_INSN,
8251 AARCH64_MAP_DATA
8252 };
8253
8254
8255 /* Output a single mapping symbol. */
8256
8257 static bfd_boolean
8258 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8259 enum map_symbol_type type, bfd_vma offset)
8260 {
8261 static const char *names[2] = { "$x", "$d" };
8262 Elf_Internal_Sym sym;
8263
8264 sym.st_value = (osi->sec->output_section->vma
8265 + osi->sec->output_offset + offset);
8266 sym.st_size = 0;
8267 sym.st_other = 0;
8268 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8269 sym.st_shndx = osi->sec_shndx;
8270 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8271 }
8272
8273 /* Output a single local symbol for a generated stub. */
8274
8275 static bfd_boolean
8276 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8277 bfd_vma offset, bfd_vma size)
8278 {
8279 Elf_Internal_Sym sym;
8280
8281 sym.st_value = (osi->sec->output_section->vma
8282 + osi->sec->output_offset + offset);
8283 sym.st_size = size;
8284 sym.st_other = 0;
8285 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8286 sym.st_shndx = osi->sec_shndx;
8287 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8288 }
8289
8290 static bfd_boolean
8291 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8292 {
8293 struct elf_aarch64_stub_hash_entry *stub_entry;
8294 asection *stub_sec;
8295 bfd_vma addr;
8296 char *stub_name;
8297 output_arch_syminfo *osi;
8298
8299 /* Massage our args to the form they really have. */
8300 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8301 osi = (output_arch_syminfo *) in_arg;
8302
8303 stub_sec = stub_entry->stub_sec;
8304
8305 /* Ensure this stub is attached to the current section being
8306 processed. */
8307 if (stub_sec != osi->sec)
8308 return TRUE;
8309
8310 addr = (bfd_vma) stub_entry->stub_offset;
8311
8312 stub_name = stub_entry->output_name;
8313
8314 switch (stub_entry->stub_type)
8315 {
8316 case aarch64_stub_adrp_branch:
8317 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8318 sizeof (aarch64_adrp_branch_stub)))
8319 return FALSE;
8320 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8321 return FALSE;
8322 break;
8323 case aarch64_stub_long_branch:
8324 if (!elfNN_aarch64_output_stub_sym
8325 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8326 return FALSE;
8327 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8328 return FALSE;
8329 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8330 return FALSE;
8331 break;
8332 case aarch64_stub_erratum_835769_veneer:
8333 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8334 sizeof (aarch64_erratum_835769_stub)))
8335 return FALSE;
8336 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8337 return FALSE;
8338 break;
8339 case aarch64_stub_erratum_843419_veneer:
8340 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8341 sizeof (aarch64_erratum_843419_stub)))
8342 return FALSE;
8343 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8344 return FALSE;
8345 break;
8346 case aarch64_stub_none:
8347 break;
8348
8349 default:
8350 abort ();
8351 }
8352
8353 return TRUE;
8354 }
8355
8356 /* Output mapping symbols for linker generated sections. */
8357
8358 static bfd_boolean
8359 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8360 struct bfd_link_info *info,
8361 void *finfo,
8362 int (*func) (void *, const char *,
8363 Elf_Internal_Sym *,
8364 asection *,
8365 struct elf_link_hash_entry
8366 *))
8367 {
8368 output_arch_syminfo osi;
8369 struct elf_aarch64_link_hash_table *htab;
8370
8371 htab = elf_aarch64_hash_table (info);
8372
8373 osi.finfo = finfo;
8374 osi.info = info;
8375 osi.func = func;
8376
8377 /* Long calls stubs. */
8378 if (htab->stub_bfd && htab->stub_bfd->sections)
8379 {
8380 asection *stub_sec;
8381
8382 for (stub_sec = htab->stub_bfd->sections;
8383 stub_sec != NULL; stub_sec = stub_sec->next)
8384 {
8385 /* Ignore non-stub sections. */
8386 if (!strstr (stub_sec->name, STUB_SUFFIX))
8387 continue;
8388
8389 osi.sec = stub_sec;
8390
8391 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8392 (output_bfd, osi.sec->output_section);
8393
8394 /* The first instruction in a stub is always a branch. */
8395 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8396 return FALSE;
8397
8398 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8399 &osi);
8400 }
8401 }
8402
8403 /* Finally, output mapping symbols for the PLT. */
8404 if (!htab->root.splt || htab->root.splt->size == 0)
8405 return TRUE;
8406
8407 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8408 (output_bfd, htab->root.splt->output_section);
8409 osi.sec = htab->root.splt;
8410
8411 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8412
8413 return TRUE;
8414
8415 }
8416
8417 /* Allocate target specific section data. */
8418
8419 static bfd_boolean
8420 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8421 {
8422 if (!sec->used_by_bfd)
8423 {
8424 _aarch64_elf_section_data *sdata;
8425 size_t amt = sizeof (*sdata);
8426
8427 sdata = bfd_zalloc (abfd, amt);
8428 if (sdata == NULL)
8429 return FALSE;
8430 sec->used_by_bfd = sdata;
8431 }
8432
8433 record_section_with_aarch64_elf_section_data (sec);
8434
8435 return _bfd_elf_new_section_hook (abfd, sec);
8436 }
8437
8438
8439 static void
8440 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8441 asection *sec,
8442 void *ignore ATTRIBUTE_UNUSED)
8443 {
8444 unrecord_section_with_aarch64_elf_section_data (sec);
8445 }
8446
8447 static bfd_boolean
8448 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8449 {
8450 if (abfd->sections)
8451 bfd_map_over_sections (abfd,
8452 unrecord_section_via_map_over_sections, NULL);
8453
8454 return _bfd_elf_close_and_cleanup (abfd);
8455 }
8456
8457 static bfd_boolean
8458 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8459 {
8460 if (abfd->sections)
8461 bfd_map_over_sections (abfd,
8462 unrecord_section_via_map_over_sections, NULL);
8463
8464 return _bfd_free_cached_info (abfd);
8465 }
8466
8467 /* Create dynamic sections. This is different from the ARM backend in that
8468 the got, plt, gotplt and their relocation sections are all created in the
8469 standard part of the bfd elf backend. */
8470
8471 static bfd_boolean
8472 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8473 struct bfd_link_info *info)
8474 {
8475 /* We need to create .got section. */
8476 if (!aarch64_elf_create_got_section (dynobj, info))
8477 return FALSE;
8478
8479 return _bfd_elf_create_dynamic_sections (dynobj, info);
8480 }
8481
8482
8483 /* Allocate space in .plt, .got and associated reloc sections for
8484 dynamic relocs. */
8485
8486 static bfd_boolean
8487 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8488 {
8489 struct bfd_link_info *info;
8490 struct elf_aarch64_link_hash_table *htab;
8491 struct elf_aarch64_link_hash_entry *eh;
8492 struct elf_dyn_relocs *p;
8493
8494 /* An example of a bfd_link_hash_indirect symbol is versioned
8495 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8496 -> __gxx_personality_v0(bfd_link_hash_defined)
8497
8498 There is no need to process bfd_link_hash_indirect symbols here
8499 because we will also be presented with the concrete instance of
8500 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8501 called to copy all relevant data from the generic to the concrete
8502 symbol instance. */
8503 if (h->root.type == bfd_link_hash_indirect)
8504 return TRUE;
8505
8506 if (h->root.type == bfd_link_hash_warning)
8507 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8508
8509 info = (struct bfd_link_info *) inf;
8510 htab = elf_aarch64_hash_table (info);
8511
8512 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8513 here if it is defined and referenced in a non-shared object. */
8514 if (h->type == STT_GNU_IFUNC
8515 && h->def_regular)
8516 return TRUE;
8517 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8518 {
8519 /* Make sure this symbol is output as a dynamic symbol.
8520 Undefined weak syms won't yet be marked as dynamic. */
8521 if (h->dynindx == -1 && !h->forced_local
8522 && h->root.type == bfd_link_hash_undefweak)
8523 {
8524 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8525 return FALSE;
8526 }
8527
8528 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8529 {
8530 asection *s = htab->root.splt;
8531
8532 /* If this is the first .plt entry, make room for the special
8533 first entry. */
8534 if (s->size == 0)
8535 s->size += htab->plt_header_size;
8536
8537 h->plt.offset = s->size;
8538
8539 /* If this symbol is not defined in a regular file, and we are
8540 not generating a shared library, then set the symbol to this
8541 location in the .plt. This is required to make function
8542 pointers compare as equal between the normal executable and
8543 the shared library. */
8544 if (!bfd_link_pic (info) && !h->def_regular)
8545 {
8546 h->root.u.def.section = s;
8547 h->root.u.def.value = h->plt.offset;
8548 }
8549
8550 /* Make room for this entry. For now we only create the
8551 small model PLT entries. We later need to find a way
8552 of relaxing into these from the large model PLT entries. */
8553 s->size += htab->plt_entry_size;
8554
8555 /* We also need to make an entry in the .got.plt section, which
8556 will be placed in the .got section by the linker script. */
8557 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8558
8559 /* We also need to make an entry in the .rela.plt section. */
8560 htab->root.srelplt->size += RELOC_SIZE (htab);
8561
8562 /* We need to ensure that all GOT entries that serve the PLT
8563 are consecutive with the special GOT slots [0] [1] and
8564 [2]. Any addtional relocations, such as
8565 R_AARCH64_TLSDESC, must be placed after the PLT related
8566 entries. We abuse the reloc_count such that during
8567 sizing we adjust reloc_count to indicate the number of
8568 PLT related reserved entries. In subsequent phases when
8569 filling in the contents of the reloc entries, PLT related
8570 entries are placed by computing their PLT index (0
8571 .. reloc_count). While other none PLT relocs are placed
8572 at the slot indicated by reloc_count and reloc_count is
8573 updated. */
8574
8575 htab->root.srelplt->reloc_count++;
8576
8577 /* Mark the DSO in case R_<CLS>_JUMP_SLOT relocs against
8578 variant PCS symbols are present. */
8579 if (h->other & STO_AARCH64_VARIANT_PCS)
8580 htab->variant_pcs = 1;
8581
8582 }
8583 else
8584 {
8585 h->plt.offset = (bfd_vma) - 1;
8586 h->needs_plt = 0;
8587 }
8588 }
8589 else
8590 {
8591 h->plt.offset = (bfd_vma) - 1;
8592 h->needs_plt = 0;
8593 }
8594
8595 eh = (struct elf_aarch64_link_hash_entry *) h;
8596 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8597
8598 if (h->got.refcount > 0)
8599 {
8600 bfd_boolean dyn;
8601 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8602
8603 h->got.offset = (bfd_vma) - 1;
8604
8605 dyn = htab->root.dynamic_sections_created;
8606
8607 /* Make sure this symbol is output as a dynamic symbol.
8608 Undefined weak syms won't yet be marked as dynamic. */
8609 if (dyn && h->dynindx == -1 && !h->forced_local
8610 && h->root.type == bfd_link_hash_undefweak)
8611 {
8612 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8613 return FALSE;
8614 }
8615
8616 if (got_type == GOT_UNKNOWN)
8617 {
8618 }
8619 else if (got_type == GOT_NORMAL)
8620 {
8621 h->got.offset = htab->root.sgot->size;
8622 htab->root.sgot->size += GOT_ENTRY_SIZE;
8623 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8624 || h->root.type != bfd_link_hash_undefweak)
8625 && (bfd_link_pic (info)
8626 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8627 /* Undefined weak symbol in static PIE resolves to 0 without
8628 any dynamic relocations. */
8629 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8630 {
8631 htab->root.srelgot->size += RELOC_SIZE (htab);
8632 }
8633 }
8634 else
8635 {
8636 int indx;
8637 if (got_type & GOT_TLSDESC_GD)
8638 {
8639 eh->tlsdesc_got_jump_table_offset =
8640 (htab->root.sgotplt->size
8641 - aarch64_compute_jump_table_size (htab));
8642 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8643 h->got.offset = (bfd_vma) - 2;
8644 }
8645
8646 if (got_type & GOT_TLS_GD)
8647 {
8648 h->got.offset = htab->root.sgot->size;
8649 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8650 }
8651
8652 if (got_type & GOT_TLS_IE)
8653 {
8654 h->got.offset = htab->root.sgot->size;
8655 htab->root.sgot->size += GOT_ENTRY_SIZE;
8656 }
8657
8658 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8659 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8660 || h->root.type != bfd_link_hash_undefweak)
8661 && (!bfd_link_executable (info)
8662 || indx != 0
8663 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8664 {
8665 if (got_type & GOT_TLSDESC_GD)
8666 {
8667 htab->root.srelplt->size += RELOC_SIZE (htab);
8668 /* Note reloc_count not incremented here! We have
8669 already adjusted reloc_count for this relocation
8670 type. */
8671
8672 /* TLSDESC PLT is now needed, but not yet determined. */
8673 htab->root.tlsdesc_plt = (bfd_vma) - 1;
8674 }
8675
8676 if (got_type & GOT_TLS_GD)
8677 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8678
8679 if (got_type & GOT_TLS_IE)
8680 htab->root.srelgot->size += RELOC_SIZE (htab);
8681 }
8682 }
8683 }
8684 else
8685 {
8686 h->got.offset = (bfd_vma) - 1;
8687 }
8688
8689 if (h->dyn_relocs == NULL)
8690 return TRUE;
8691
8692 /* In the shared -Bsymbolic case, discard space allocated for
8693 dynamic pc-relative relocs against symbols which turn out to be
8694 defined in regular objects. For the normal shared case, discard
8695 space for pc-relative relocs that have become local due to symbol
8696 visibility changes. */
8697
8698 if (bfd_link_pic (info))
8699 {
8700 /* Relocs that use pc_count are those that appear on a call
8701 insn, or certain REL relocs that can generated via assembly.
8702 We want calls to protected symbols to resolve directly to the
8703 function rather than going via the plt. If people want
8704 function pointer comparisons to work as expected then they
8705 should avoid writing weird assembly. */
8706 if (SYMBOL_CALLS_LOCAL (info, h))
8707 {
8708 struct elf_dyn_relocs **pp;
8709
8710 for (pp = &h->dyn_relocs; (p = *pp) != NULL;)
8711 {
8712 p->count -= p->pc_count;
8713 p->pc_count = 0;
8714 if (p->count == 0)
8715 *pp = p->next;
8716 else
8717 pp = &p->next;
8718 }
8719 }
8720
8721 /* Also discard relocs on undefined weak syms with non-default
8722 visibility. */
8723 if (h->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8724 {
8725 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8726 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8727 h->dyn_relocs = NULL;
8728
8729 /* Make sure undefined weak symbols are output as a dynamic
8730 symbol in PIEs. */
8731 else if (h->dynindx == -1
8732 && !h->forced_local
8733 && h->root.type == bfd_link_hash_undefweak
8734 && !bfd_elf_link_record_dynamic_symbol (info, h))
8735 return FALSE;
8736 }
8737
8738 }
8739 else if (ELIMINATE_COPY_RELOCS)
8740 {
8741 /* For the non-shared case, discard space for relocs against
8742 symbols which turn out to need copy relocs or are not
8743 dynamic. */
8744
8745 if (!h->non_got_ref
8746 && ((h->def_dynamic
8747 && !h->def_regular)
8748 || (htab->root.dynamic_sections_created
8749 && (h->root.type == bfd_link_hash_undefweak
8750 || h->root.type == bfd_link_hash_undefined))))
8751 {
8752 /* Make sure this symbol is output as a dynamic symbol.
8753 Undefined weak syms won't yet be marked as dynamic. */
8754 if (h->dynindx == -1
8755 && !h->forced_local
8756 && h->root.type == bfd_link_hash_undefweak
8757 && !bfd_elf_link_record_dynamic_symbol (info, h))
8758 return FALSE;
8759
8760 /* If that succeeded, we know we'll be keeping all the
8761 relocs. */
8762 if (h->dynindx != -1)
8763 goto keep;
8764 }
8765
8766 h->dyn_relocs = NULL;
8767
8768 keep:;
8769 }
8770
8771 /* Finally, allocate space. */
8772 for (p = h->dyn_relocs; p != NULL; p = p->next)
8773 {
8774 asection *sreloc;
8775
8776 sreloc = elf_section_data (p->sec)->sreloc;
8777
8778 BFD_ASSERT (sreloc != NULL);
8779
8780 sreloc->size += p->count * RELOC_SIZE (htab);
8781 }
8782
8783 return TRUE;
8784 }
8785
8786 /* Allocate space in .plt, .got and associated reloc sections for
8787 ifunc dynamic relocs. */
8788
8789 static bfd_boolean
8790 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8791 void *inf)
8792 {
8793 struct bfd_link_info *info;
8794 struct elf_aarch64_link_hash_table *htab;
8795
8796 /* An example of a bfd_link_hash_indirect symbol is versioned
8797 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8798 -> __gxx_personality_v0(bfd_link_hash_defined)
8799
8800 There is no need to process bfd_link_hash_indirect symbols here
8801 because we will also be presented with the concrete instance of
8802 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8803 called to copy all relevant data from the generic to the concrete
8804 symbol instance. */
8805 if (h->root.type == bfd_link_hash_indirect)
8806 return TRUE;
8807
8808 if (h->root.type == bfd_link_hash_warning)
8809 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8810
8811 info = (struct bfd_link_info *) inf;
8812 htab = elf_aarch64_hash_table (info);
8813
8814 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8815 here if it is defined and referenced in a non-shared object. */
8816 if (h->type == STT_GNU_IFUNC
8817 && h->def_regular)
8818 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8819 &h->dyn_relocs,
8820 htab->plt_entry_size,
8821 htab->plt_header_size,
8822 GOT_ENTRY_SIZE,
8823 FALSE);
8824 return TRUE;
8825 }
8826
8827 /* Allocate space in .plt, .got and associated reloc sections for
8828 local ifunc dynamic relocs. */
8829
8830 static bfd_boolean
8831 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8832 {
8833 struct elf_link_hash_entry *h
8834 = (struct elf_link_hash_entry *) *slot;
8835
8836 if (h->type != STT_GNU_IFUNC
8837 || !h->def_regular
8838 || !h->ref_regular
8839 || !h->forced_local
8840 || h->root.type != bfd_link_hash_defined)
8841 abort ();
8842
8843 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8844 }
8845
8846 /* This is the most important function of all . Innocuosly named
8847 though ! */
8848
8849 static bfd_boolean
8850 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8851 struct bfd_link_info *info)
8852 {
8853 struct elf_aarch64_link_hash_table *htab;
8854 bfd *dynobj;
8855 asection *s;
8856 bfd_boolean relocs;
8857 bfd *ibfd;
8858
8859 htab = elf_aarch64_hash_table ((info));
8860 dynobj = htab->root.dynobj;
8861
8862 BFD_ASSERT (dynobj != NULL);
8863
8864 if (htab->root.dynamic_sections_created)
8865 {
8866 if (bfd_link_executable (info) && !info->nointerp)
8867 {
8868 s = bfd_get_linker_section (dynobj, ".interp");
8869 if (s == NULL)
8870 abort ();
8871 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8872 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8873 }
8874 }
8875
8876 /* Set up .got offsets for local syms, and space for local dynamic
8877 relocs. */
8878 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8879 {
8880 struct elf_aarch64_local_symbol *locals = NULL;
8881 Elf_Internal_Shdr *symtab_hdr;
8882 asection *srel;
8883 unsigned int i;
8884
8885 if (!is_aarch64_elf (ibfd))
8886 continue;
8887
8888 for (s = ibfd->sections; s != NULL; s = s->next)
8889 {
8890 struct elf_dyn_relocs *p;
8891
8892 for (p = (struct elf_dyn_relocs *)
8893 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8894 {
8895 if (!bfd_is_abs_section (p->sec)
8896 && bfd_is_abs_section (p->sec->output_section))
8897 {
8898 /* Input section has been discarded, either because
8899 it is a copy of a linkonce section or due to
8900 linker script /DISCARD/, so we'll be discarding
8901 the relocs too. */
8902 }
8903 else if (p->count != 0)
8904 {
8905 srel = elf_section_data (p->sec)->sreloc;
8906 srel->size += p->count * RELOC_SIZE (htab);
8907 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8908 info->flags |= DF_TEXTREL;
8909 }
8910 }
8911 }
8912
8913 locals = elf_aarch64_locals (ibfd);
8914 if (!locals)
8915 continue;
8916
8917 symtab_hdr = &elf_symtab_hdr (ibfd);
8918 srel = htab->root.srelgot;
8919 for (i = 0; i < symtab_hdr->sh_info; i++)
8920 {
8921 locals[i].got_offset = (bfd_vma) - 1;
8922 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8923 if (locals[i].got_refcount > 0)
8924 {
8925 unsigned got_type = locals[i].got_type;
8926 if (got_type & GOT_TLSDESC_GD)
8927 {
8928 locals[i].tlsdesc_got_jump_table_offset =
8929 (htab->root.sgotplt->size
8930 - aarch64_compute_jump_table_size (htab));
8931 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8932 locals[i].got_offset = (bfd_vma) - 2;
8933 }
8934
8935 if (got_type & GOT_TLS_GD)
8936 {
8937 locals[i].got_offset = htab->root.sgot->size;
8938 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8939 }
8940
8941 if (got_type & GOT_TLS_IE
8942 || got_type & GOT_NORMAL)
8943 {
8944 locals[i].got_offset = htab->root.sgot->size;
8945 htab->root.sgot->size += GOT_ENTRY_SIZE;
8946 }
8947
8948 if (got_type == GOT_UNKNOWN)
8949 {
8950 }
8951
8952 if (bfd_link_pic (info))
8953 {
8954 if (got_type & GOT_TLSDESC_GD)
8955 {
8956 htab->root.srelplt->size += RELOC_SIZE (htab);
8957 /* Note RELOC_COUNT not incremented here! */
8958 htab->root.tlsdesc_plt = (bfd_vma) - 1;
8959 }
8960
8961 if (got_type & GOT_TLS_GD)
8962 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8963
8964 if (got_type & GOT_TLS_IE
8965 || got_type & GOT_NORMAL)
8966 htab->root.srelgot->size += RELOC_SIZE (htab);
8967 }
8968 }
8969 else
8970 {
8971 locals[i].got_refcount = (bfd_vma) - 1;
8972 }
8973 }
8974 }
8975
8976
8977 /* Allocate global sym .plt and .got entries, and space for global
8978 sym dynamic relocs. */
8979 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8980 info);
8981
8982 /* Allocate global ifunc sym .plt and .got entries, and space for global
8983 ifunc sym dynamic relocs. */
8984 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8985 info);
8986
8987 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8988 htab_traverse (htab->loc_hash_table,
8989 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8990 info);
8991
8992 /* For every jump slot reserved in the sgotplt, reloc_count is
8993 incremented. However, when we reserve space for TLS descriptors,
8994 it's not incremented, so in order to compute the space reserved
8995 for them, it suffices to multiply the reloc count by the jump
8996 slot size. */
8997
8998 if (htab->root.srelplt)
8999 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
9000
9001 if (htab->root.tlsdesc_plt)
9002 {
9003 if (htab->root.splt->size == 0)
9004 htab->root.splt->size += htab->plt_header_size;
9005
9006 /* If we're not using lazy TLS relocations, don't generate the
9007 GOT and PLT entry required. */
9008 if ((info->flags & DF_BIND_NOW))
9009 htab->root.tlsdesc_plt = 0;
9010 else
9011 {
9012 htab->root.tlsdesc_plt = htab->root.splt->size;
9013 htab->root.splt->size += htab->tlsdesc_plt_entry_size;
9014
9015 htab->root.tlsdesc_got = htab->root.sgot->size;
9016 htab->root.sgot->size += GOT_ENTRY_SIZE;
9017 }
9018 }
9019
9020 /* Init mapping symbols information to use later to distingush between
9021 code and data while scanning for errata. */
9022 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
9023 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9024 {
9025 if (!is_aarch64_elf (ibfd))
9026 continue;
9027 bfd_elfNN_aarch64_init_maps (ibfd);
9028 }
9029
9030 /* We now have determined the sizes of the various dynamic sections.
9031 Allocate memory for them. */
9032 relocs = FALSE;
9033 for (s = dynobj->sections; s != NULL; s = s->next)
9034 {
9035 if ((s->flags & SEC_LINKER_CREATED) == 0)
9036 continue;
9037
9038 if (s == htab->root.splt
9039 || s == htab->root.sgot
9040 || s == htab->root.sgotplt
9041 || s == htab->root.iplt
9042 || s == htab->root.igotplt
9043 || s == htab->root.sdynbss
9044 || s == htab->root.sdynrelro)
9045 {
9046 /* Strip this section if we don't need it; see the
9047 comment below. */
9048 }
9049 else if (CONST_STRNEQ (bfd_section_name (s), ".rela"))
9050 {
9051 if (s->size != 0 && s != htab->root.srelplt)
9052 relocs = TRUE;
9053
9054 /* We use the reloc_count field as a counter if we need
9055 to copy relocs into the output file. */
9056 if (s != htab->root.srelplt)
9057 s->reloc_count = 0;
9058 }
9059 else
9060 {
9061 /* It's not one of our sections, so don't allocate space. */
9062 continue;
9063 }
9064
9065 if (s->size == 0)
9066 {
9067 /* If we don't need this section, strip it from the
9068 output file. This is mostly to handle .rela.bss and
9069 .rela.plt. We must create both sections in
9070 create_dynamic_sections, because they must be created
9071 before the linker maps input sections to output
9072 sections. The linker does that before
9073 adjust_dynamic_symbol is called, and it is that
9074 function which decides whether anything needs to go
9075 into these sections. */
9076 s->flags |= SEC_EXCLUDE;
9077 continue;
9078 }
9079
9080 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9081 continue;
9082
9083 /* Allocate memory for the section contents. We use bfd_zalloc
9084 here in case unused entries are not reclaimed before the
9085 section's contents are written out. This should not happen,
9086 but this way if it does, we get a R_AARCH64_NONE reloc instead
9087 of garbage. */
9088 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9089 if (s->contents == NULL)
9090 return FALSE;
9091 }
9092
9093 if (htab->root.dynamic_sections_created)
9094 {
9095 /* Add some entries to the .dynamic section. We fill in the
9096 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9097 must add the entries now so that we get the correct size for
9098 the .dynamic section. The DT_DEBUG entry is filled in by the
9099 dynamic linker and used by the debugger. */
9100 #define add_dynamic_entry(TAG, VAL) \
9101 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9102
9103 if (!_bfd_elf_add_dynamic_tags (output_bfd, info, relocs))
9104 return FALSE;
9105
9106 if (htab->root.splt->size != 0)
9107 {
9108 if (htab->variant_pcs
9109 && !add_dynamic_entry (DT_AARCH64_VARIANT_PCS, 0))
9110 return FALSE;
9111
9112 if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI_PAC)
9113 && (!add_dynamic_entry (DT_AARCH64_BTI_PLT, 0)
9114 || !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0)))
9115 return FALSE;
9116
9117 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI)
9118 && !add_dynamic_entry (DT_AARCH64_BTI_PLT, 0))
9119 return FALSE;
9120
9121 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_PAC)
9122 && !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0))
9123 return FALSE;
9124 }
9125 }
9126 #undef add_dynamic_entry
9127
9128 return TRUE;
9129 }
9130
9131 static inline void
9132 elf_aarch64_update_plt_entry (bfd *output_bfd,
9133 bfd_reloc_code_real_type r_type,
9134 bfd_byte *plt_entry, bfd_vma value)
9135 {
9136 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
9137
9138 /* FIXME: We should check the return value from this function call. */
9139 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9140 }
9141
9142 static void
9143 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9144 struct elf_aarch64_link_hash_table
9145 *htab, bfd *output_bfd,
9146 struct bfd_link_info *info)
9147 {
9148 bfd_byte *plt_entry;
9149 bfd_vma plt_index;
9150 bfd_vma got_offset;
9151 bfd_vma gotplt_entry_address;
9152 bfd_vma plt_entry_address;
9153 Elf_Internal_Rela rela;
9154 bfd_byte *loc;
9155 asection *plt, *gotplt, *relplt;
9156
9157 /* When building a static executable, use .iplt, .igot.plt and
9158 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9159 if (htab->root.splt != NULL)
9160 {
9161 plt = htab->root.splt;
9162 gotplt = htab->root.sgotplt;
9163 relplt = htab->root.srelplt;
9164 }
9165 else
9166 {
9167 plt = htab->root.iplt;
9168 gotplt = htab->root.igotplt;
9169 relplt = htab->root.irelplt;
9170 }
9171
9172 /* Get the index in the procedure linkage table which
9173 corresponds to this symbol. This is the index of this symbol
9174 in all the symbols for which we are making plt entries. The
9175 first entry in the procedure linkage table is reserved.
9176
9177 Get the offset into the .got table of the entry that
9178 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9179 bytes. The first three are reserved for the dynamic linker.
9180
9181 For static executables, we don't reserve anything. */
9182
9183 if (plt == htab->root.splt)
9184 {
9185 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9186 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9187 }
9188 else
9189 {
9190 plt_index = h->plt.offset / htab->plt_entry_size;
9191 got_offset = plt_index * GOT_ENTRY_SIZE;
9192 }
9193
9194 plt_entry = plt->contents + h->plt.offset;
9195 plt_entry_address = plt->output_section->vma
9196 + plt->output_offset + h->plt.offset;
9197 gotplt_entry_address = gotplt->output_section->vma +
9198 gotplt->output_offset + got_offset;
9199
9200 /* Copy in the boiler-plate for the PLTn entry. */
9201 memcpy (plt_entry, htab->plt_entry, htab->plt_entry_size);
9202
9203 /* First instruction in BTI enabled PLT stub is a BTI
9204 instruction so skip it. */
9205 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI
9206 && elf_elfheader (output_bfd)->e_type == ET_EXEC)
9207 plt_entry = plt_entry + 4;
9208
9209 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9210 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9211 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9212 plt_entry,
9213 PG (gotplt_entry_address) -
9214 PG (plt_entry_address));
9215
9216 /* Fill in the lo12 bits for the load from the pltgot. */
9217 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9218 plt_entry + 4,
9219 PG_OFFSET (gotplt_entry_address));
9220
9221 /* Fill in the lo12 bits for the add from the pltgot entry. */
9222 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9223 plt_entry + 8,
9224 PG_OFFSET (gotplt_entry_address));
9225
9226 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9227 bfd_put_NN (output_bfd,
9228 plt->output_section->vma + plt->output_offset,
9229 gotplt->contents + got_offset);
9230
9231 rela.r_offset = gotplt_entry_address;
9232
9233 if (h->dynindx == -1
9234 || ((bfd_link_executable (info)
9235 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9236 && h->def_regular
9237 && h->type == STT_GNU_IFUNC))
9238 {
9239 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9240 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9241 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9242 rela.r_addend = (h->root.u.def.value
9243 + h->root.u.def.section->output_section->vma
9244 + h->root.u.def.section->output_offset);
9245 }
9246 else
9247 {
9248 /* Fill in the entry in the .rela.plt section. */
9249 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9250 rela.r_addend = 0;
9251 }
9252
9253 /* Compute the relocation entry to used based on PLT index and do
9254 not adjust reloc_count. The reloc_count has already been adjusted
9255 to account for this entry. */
9256 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9257 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9258 }
9259
9260 /* Size sections even though they're not dynamic. We use it to setup
9261 _TLS_MODULE_BASE_, if needed. */
9262
9263 static bfd_boolean
9264 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9265 struct bfd_link_info *info)
9266 {
9267 asection *tls_sec;
9268
9269 if (bfd_link_relocatable (info))
9270 return TRUE;
9271
9272 tls_sec = elf_hash_table (info)->tls_sec;
9273
9274 if (tls_sec)
9275 {
9276 struct elf_link_hash_entry *tlsbase;
9277
9278 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9279 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9280
9281 if (tlsbase)
9282 {
9283 struct bfd_link_hash_entry *h = NULL;
9284 const struct elf_backend_data *bed =
9285 get_elf_backend_data (output_bfd);
9286
9287 if (!(_bfd_generic_link_add_one_symbol
9288 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9289 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9290 return FALSE;
9291
9292 tlsbase->type = STT_TLS;
9293 tlsbase = (struct elf_link_hash_entry *) h;
9294 tlsbase->def_regular = 1;
9295 tlsbase->other = STV_HIDDEN;
9296 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9297 }
9298 }
9299
9300 return TRUE;
9301 }
9302
9303 /* Finish up dynamic symbol handling. We set the contents of various
9304 dynamic sections here. */
9305
9306 static bfd_boolean
9307 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9308 struct bfd_link_info *info,
9309 struct elf_link_hash_entry *h,
9310 Elf_Internal_Sym *sym)
9311 {
9312 struct elf_aarch64_link_hash_table *htab;
9313 htab = elf_aarch64_hash_table (info);
9314
9315 if (h->plt.offset != (bfd_vma) - 1)
9316 {
9317 asection *plt, *gotplt, *relplt;
9318
9319 /* This symbol has an entry in the procedure linkage table. Set
9320 it up. */
9321
9322 /* When building a static executable, use .iplt, .igot.plt and
9323 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9324 if (htab->root.splt != NULL)
9325 {
9326 plt = htab->root.splt;
9327 gotplt = htab->root.sgotplt;
9328 relplt = htab->root.srelplt;
9329 }
9330 else
9331 {
9332 plt = htab->root.iplt;
9333 gotplt = htab->root.igotplt;
9334 relplt = htab->root.irelplt;
9335 }
9336
9337 /* This symbol has an entry in the procedure linkage table. Set
9338 it up. */
9339 if ((h->dynindx == -1
9340 && !((h->forced_local || bfd_link_executable (info))
9341 && h->def_regular
9342 && h->type == STT_GNU_IFUNC))
9343 || plt == NULL
9344 || gotplt == NULL
9345 || relplt == NULL)
9346 return FALSE;
9347
9348 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9349 if (!h->def_regular)
9350 {
9351 /* Mark the symbol as undefined, rather than as defined in
9352 the .plt section. */
9353 sym->st_shndx = SHN_UNDEF;
9354 /* If the symbol is weak we need to clear the value.
9355 Otherwise, the PLT entry would provide a definition for
9356 the symbol even if the symbol wasn't defined anywhere,
9357 and so the symbol would never be NULL. Leave the value if
9358 there were any relocations where pointer equality matters
9359 (this is a clue for the dynamic linker, to make function
9360 pointer comparisons work between an application and shared
9361 library). */
9362 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9363 sym->st_value = 0;
9364 }
9365 }
9366
9367 if (h->got.offset != (bfd_vma) - 1
9368 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9369 /* Undefined weak symbol in static PIE resolves to 0 without
9370 any dynamic relocations. */
9371 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9372 {
9373 Elf_Internal_Rela rela;
9374 bfd_byte *loc;
9375
9376 /* This symbol has an entry in the global offset table. Set it
9377 up. */
9378 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9379 abort ();
9380
9381 rela.r_offset = (htab->root.sgot->output_section->vma
9382 + htab->root.sgot->output_offset
9383 + (h->got.offset & ~(bfd_vma) 1));
9384
9385 if (h->def_regular
9386 && h->type == STT_GNU_IFUNC)
9387 {
9388 if (bfd_link_pic (info))
9389 {
9390 /* Generate R_AARCH64_GLOB_DAT. */
9391 goto do_glob_dat;
9392 }
9393 else
9394 {
9395 asection *plt;
9396
9397 if (!h->pointer_equality_needed)
9398 abort ();
9399
9400 /* For non-shared object, we can't use .got.plt, which
9401 contains the real function address if we need pointer
9402 equality. We load the GOT entry with the PLT entry. */
9403 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9404 bfd_put_NN (output_bfd, (plt->output_section->vma
9405 + plt->output_offset
9406 + h->plt.offset),
9407 htab->root.sgot->contents
9408 + (h->got.offset & ~(bfd_vma) 1));
9409 return TRUE;
9410 }
9411 }
9412 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9413 {
9414 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9415 return FALSE;
9416
9417 BFD_ASSERT ((h->got.offset & 1) != 0);
9418 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9419 rela.r_addend = (h->root.u.def.value
9420 + h->root.u.def.section->output_section->vma
9421 + h->root.u.def.section->output_offset);
9422 }
9423 else
9424 {
9425 do_glob_dat:
9426 BFD_ASSERT ((h->got.offset & 1) == 0);
9427 bfd_put_NN (output_bfd, (bfd_vma) 0,
9428 htab->root.sgot->contents + h->got.offset);
9429 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9430 rela.r_addend = 0;
9431 }
9432
9433 loc = htab->root.srelgot->contents;
9434 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9435 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9436 }
9437
9438 if (h->needs_copy)
9439 {
9440 Elf_Internal_Rela rela;
9441 asection *s;
9442 bfd_byte *loc;
9443
9444 /* This symbol needs a copy reloc. Set it up. */
9445 if (h->dynindx == -1
9446 || (h->root.type != bfd_link_hash_defined
9447 && h->root.type != bfd_link_hash_defweak)
9448 || htab->root.srelbss == NULL)
9449 abort ();
9450
9451 rela.r_offset = (h->root.u.def.value
9452 + h->root.u.def.section->output_section->vma
9453 + h->root.u.def.section->output_offset);
9454 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9455 rela.r_addend = 0;
9456 if (h->root.u.def.section == htab->root.sdynrelro)
9457 s = htab->root.sreldynrelro;
9458 else
9459 s = htab->root.srelbss;
9460 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9461 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9462 }
9463
9464 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9465 be NULL for local symbols. */
9466 if (sym != NULL
9467 && (h == elf_hash_table (info)->hdynamic
9468 || h == elf_hash_table (info)->hgot))
9469 sym->st_shndx = SHN_ABS;
9470
9471 return TRUE;
9472 }
9473
9474 /* Finish up local dynamic symbol handling. We set the contents of
9475 various dynamic sections here. */
9476
9477 static bfd_boolean
9478 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9479 {
9480 struct elf_link_hash_entry *h
9481 = (struct elf_link_hash_entry *) *slot;
9482 struct bfd_link_info *info
9483 = (struct bfd_link_info *) inf;
9484
9485 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9486 info, h, NULL);
9487 }
9488
9489 static void
9490 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9491 struct elf_aarch64_link_hash_table
9492 *htab)
9493 {
9494 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9495 small and large plts and at the minute just generates
9496 the small PLT. */
9497
9498 /* PLT0 of the small PLT looks like this in ELF64 -
9499 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9500 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9501 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9502 // symbol resolver
9503 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9504 // GOTPLT entry for this.
9505 br x17
9506 PLT0 will be slightly different in ELF32 due to different got entry
9507 size. */
9508 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9509 bfd_vma plt_base;
9510
9511
9512 memcpy (htab->root.splt->contents, htab->plt0_entry,
9513 htab->plt_header_size);
9514
9515 /* PR 26312: Explicitly set the sh_entsize to 0 so that
9516 consumers do not think that the section contains fixed
9517 sized objects. */
9518 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize = 0;
9519
9520 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9521 + htab->root.sgotplt->output_offset
9522 + GOT_ENTRY_SIZE * 2);
9523
9524 plt_base = htab->root.splt->output_section->vma +
9525 htab->root.splt->output_offset;
9526
9527 /* First instruction in BTI enabled PLT stub is a BTI
9528 instruction so skip it. */
9529 bfd_byte *plt0_entry = htab->root.splt->contents;
9530 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI)
9531 plt0_entry = plt0_entry + 4;
9532
9533 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9534 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9535 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9536 plt0_entry + 4,
9537 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9538
9539 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9540 plt0_entry + 8,
9541 PG_OFFSET (plt_got_2nd_ent));
9542
9543 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9544 plt0_entry + 12,
9545 PG_OFFSET (plt_got_2nd_ent));
9546 }
9547
9548 static bfd_boolean
9549 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9550 struct bfd_link_info *info)
9551 {
9552 struct elf_aarch64_link_hash_table *htab;
9553 bfd *dynobj;
9554 asection *sdyn;
9555
9556 htab = elf_aarch64_hash_table (info);
9557 dynobj = htab->root.dynobj;
9558 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9559
9560 if (htab->root.dynamic_sections_created)
9561 {
9562 ElfNN_External_Dyn *dyncon, *dynconend;
9563
9564 if (sdyn == NULL || htab->root.sgot == NULL)
9565 abort ();
9566
9567 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9568 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9569 for (; dyncon < dynconend; dyncon++)
9570 {
9571 Elf_Internal_Dyn dyn;
9572 asection *s;
9573
9574 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9575
9576 switch (dyn.d_tag)
9577 {
9578 default:
9579 continue;
9580
9581 case DT_PLTGOT:
9582 s = htab->root.sgotplt;
9583 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9584 break;
9585
9586 case DT_JMPREL:
9587 s = htab->root.srelplt;
9588 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9589 break;
9590
9591 case DT_PLTRELSZ:
9592 s = htab->root.srelplt;
9593 dyn.d_un.d_val = s->size;
9594 break;
9595
9596 case DT_TLSDESC_PLT:
9597 s = htab->root.splt;
9598 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9599 + htab->root.tlsdesc_plt;
9600 break;
9601
9602 case DT_TLSDESC_GOT:
9603 s = htab->root.sgot;
9604 BFD_ASSERT (htab->root.tlsdesc_got != (bfd_vma)-1);
9605 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9606 + htab->root.tlsdesc_got;
9607 break;
9608 }
9609
9610 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9611 }
9612
9613 }
9614
9615 /* Fill in the special first entry in the procedure linkage table. */
9616 if (htab->root.splt && htab->root.splt->size > 0)
9617 {
9618 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9619
9620 if (htab->root.tlsdesc_plt && !(info->flags & DF_BIND_NOW))
9621 {
9622 BFD_ASSERT (htab->root.tlsdesc_got != (bfd_vma)-1);
9623 bfd_put_NN (output_bfd, (bfd_vma) 0,
9624 htab->root.sgot->contents + htab->root.tlsdesc_got);
9625
9626 const bfd_byte *entry = elfNN_aarch64_tlsdesc_small_plt_entry;
9627 htab->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
9628
9629 aarch64_plt_type type = elf_aarch64_tdata (output_bfd)->plt_type;
9630 if (type == PLT_BTI || type == PLT_BTI_PAC)
9631 {
9632 entry = elfNN_aarch64_tlsdesc_small_plt_bti_entry;
9633 }
9634
9635 memcpy (htab->root.splt->contents + htab->root.tlsdesc_plt,
9636 entry, htab->tlsdesc_plt_entry_size);
9637
9638 {
9639 bfd_vma adrp1_addr =
9640 htab->root.splt->output_section->vma
9641 + htab->root.splt->output_offset
9642 + htab->root.tlsdesc_plt + 4;
9643
9644 bfd_vma adrp2_addr = adrp1_addr + 4;
9645
9646 bfd_vma got_addr =
9647 htab->root.sgot->output_section->vma
9648 + htab->root.sgot->output_offset;
9649
9650 bfd_vma pltgot_addr =
9651 htab->root.sgotplt->output_section->vma
9652 + htab->root.sgotplt->output_offset;
9653
9654 bfd_vma dt_tlsdesc_got = got_addr + htab->root.tlsdesc_got;
9655
9656 bfd_byte *plt_entry =
9657 htab->root.splt->contents + htab->root.tlsdesc_plt;
9658
9659 /* First instruction in BTI enabled PLT stub is a BTI
9660 instruction so skip it. */
9661 if (type & PLT_BTI)
9662 {
9663 plt_entry = plt_entry + 4;
9664 adrp1_addr = adrp1_addr + 4;
9665 adrp2_addr = adrp2_addr + 4;
9666 }
9667
9668 /* adrp x2, DT_TLSDESC_GOT */
9669 elf_aarch64_update_plt_entry (output_bfd,
9670 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9671 plt_entry + 4,
9672 (PG (dt_tlsdesc_got)
9673 - PG (adrp1_addr)));
9674
9675 /* adrp x3, 0 */
9676 elf_aarch64_update_plt_entry (output_bfd,
9677 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9678 plt_entry + 8,
9679 (PG (pltgot_addr)
9680 - PG (adrp2_addr)));
9681
9682 /* ldr x2, [x2, #0] */
9683 elf_aarch64_update_plt_entry (output_bfd,
9684 BFD_RELOC_AARCH64_LDSTNN_LO12,
9685 plt_entry + 12,
9686 PG_OFFSET (dt_tlsdesc_got));
9687
9688 /* add x3, x3, 0 */
9689 elf_aarch64_update_plt_entry (output_bfd,
9690 BFD_RELOC_AARCH64_ADD_LO12,
9691 plt_entry + 16,
9692 PG_OFFSET (pltgot_addr));
9693 }
9694 }
9695 }
9696
9697 if (htab->root.sgotplt)
9698 {
9699 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9700 {
9701 _bfd_error_handler
9702 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9703 return FALSE;
9704 }
9705
9706 /* Fill in the first three entries in the global offset table. */
9707 if (htab->root.sgotplt->size > 0)
9708 {
9709 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9710
9711 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9712 bfd_put_NN (output_bfd,
9713 (bfd_vma) 0,
9714 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9715 bfd_put_NN (output_bfd,
9716 (bfd_vma) 0,
9717 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9718 }
9719
9720 if (htab->root.sgot)
9721 {
9722 if (htab->root.sgot->size > 0)
9723 {
9724 bfd_vma addr =
9725 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9726 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9727 }
9728 }
9729
9730 elf_section_data (htab->root.sgotplt->output_section)->
9731 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9732 }
9733
9734 if (htab->root.sgot && htab->root.sgot->size > 0)
9735 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9736 = GOT_ENTRY_SIZE;
9737
9738 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9739 htab_traverse (htab->loc_hash_table,
9740 elfNN_aarch64_finish_local_dynamic_symbol,
9741 info);
9742
9743 return TRUE;
9744 }
9745
9746 /* Check if BTI enabled PLTs are needed. Returns the type needed. */
9747 static aarch64_plt_type
9748 get_plt_type (bfd *abfd)
9749 {
9750 aarch64_plt_type ret = PLT_NORMAL;
9751 bfd_byte *contents, *extdyn, *extdynend;
9752 asection *sec = bfd_get_section_by_name (abfd, ".dynamic");
9753 if (!sec || !bfd_malloc_and_get_section (abfd, sec, &contents))
9754 return ret;
9755 extdyn = contents;
9756 extdynend = contents + sec->size;
9757 for (; extdyn < extdynend; extdyn += sizeof (ElfNN_External_Dyn))
9758 {
9759 Elf_Internal_Dyn dyn;
9760 bfd_elfNN_swap_dyn_in (abfd, extdyn, &dyn);
9761
9762 /* Let's check the processor specific dynamic array tags. */
9763 bfd_vma tag = dyn.d_tag;
9764 if (tag < DT_LOPROC || tag > DT_HIPROC)
9765 continue;
9766
9767 switch (tag)
9768 {
9769 case DT_AARCH64_BTI_PLT:
9770 ret |= PLT_BTI;
9771 break;
9772
9773 case DT_AARCH64_PAC_PLT:
9774 ret |= PLT_PAC;
9775 break;
9776
9777 default: break;
9778 }
9779 }
9780 free (contents);
9781 return ret;
9782 }
9783
9784 static long
9785 elfNN_aarch64_get_synthetic_symtab (bfd *abfd,
9786 long symcount,
9787 asymbol **syms,
9788 long dynsymcount,
9789 asymbol **dynsyms,
9790 asymbol **ret)
9791 {
9792 elf_aarch64_tdata (abfd)->plt_type = get_plt_type (abfd);
9793 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
9794 dynsymcount, dynsyms, ret);
9795 }
9796
9797 /* Return address for Ith PLT stub in section PLT, for relocation REL
9798 or (bfd_vma) -1 if it should not be included. */
9799
9800 static bfd_vma
9801 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9802 const arelent *rel ATTRIBUTE_UNUSED)
9803 {
9804 size_t plt0_size = PLT_ENTRY_SIZE;
9805 size_t pltn_size = PLT_SMALL_ENTRY_SIZE;
9806
9807 if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI_PAC)
9808 {
9809 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9810 pltn_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
9811 else
9812 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9813 }
9814 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI)
9815 {
9816 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9817 pltn_size = PLT_BTI_SMALL_ENTRY_SIZE;
9818 }
9819 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_PAC)
9820 {
9821 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9822 }
9823
9824 return plt->vma + plt0_size + i * pltn_size;
9825 }
9826
9827 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9828 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9829 It also allows a period initiated suffix to be added to the symbol, ie:
9830 "$[adtx]\.[:sym_char]+". */
9831
9832 static bfd_boolean
9833 is_aarch64_mapping_symbol (const char * name)
9834 {
9835 return name != NULL /* Paranoia. */
9836 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9837 the mapping symbols could have acquired a prefix.
9838 We do not support this here, since such symbols no
9839 longer conform to the ARM ELF ABI. */
9840 && (name[1] == 'd' || name[1] == 'x')
9841 && (name[2] == 0 || name[2] == '.');
9842 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9843 any characters that follow the period are legal characters for the body
9844 of a symbol's name. For now we just assume that this is the case. */
9845 }
9846
9847 /* Make sure that mapping symbols in object files are not removed via the
9848 "strip --strip-unneeded" tool. These symbols might needed in order to
9849 correctly generate linked files. Once an object file has been linked,
9850 it should be safe to remove them. */
9851
9852 static void
9853 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9854 {
9855 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9856 && sym->section != bfd_abs_section_ptr
9857 && is_aarch64_mapping_symbol (sym->name))
9858 sym->flags |= BSF_KEEP;
9859 }
9860
9861 /* Implement elf_backend_setup_gnu_properties for AArch64. It serves as a
9862 wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
9863 for the effect of GNU properties of the output_bfd. */
9864 static bfd *
9865 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info *info)
9866 {
9867 uint32_t prop = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9868 bfd *pbfd = _bfd_aarch64_elf_link_setup_gnu_properties (info, &prop);
9869 elf_aarch64_tdata (info->output_bfd)->gnu_and_prop = prop;
9870 elf_aarch64_tdata (info->output_bfd)->plt_type
9871 |= (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ? PLT_BTI : 0;
9872 setup_plt_values (info, elf_aarch64_tdata (info->output_bfd)->plt_type);
9873 return pbfd;
9874 }
9875
9876 /* Implement elf_backend_merge_gnu_properties for AArch64. It serves as a
9877 wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
9878 for the effect of GNU properties of the output_bfd. */
9879 static bfd_boolean
9880 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info *info,
9881 bfd *abfd, bfd *bbfd,
9882 elf_property *aprop,
9883 elf_property *bprop)
9884 {
9885 uint32_t prop
9886 = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9887
9888 /* If output has been marked with BTI using command line argument, give out
9889 warning if necessary. */
9890 /* Properties are merged per type, hence only check for warnings when merging
9891 GNU_PROPERTY_AARCH64_FEATURE_1_AND. */
9892 if (((aprop && aprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
9893 || (bprop && bprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND))
9894 && (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
9895 && (!elf_aarch64_tdata (info->output_bfd)->no_bti_warn))
9896 {
9897 if ((aprop && !(aprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9898 || !aprop)
9899 {
9900 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9901 "all inputs do not have BTI in NOTE section."),
9902 abfd);
9903 }
9904 if ((bprop && !(bprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9905 || !bprop)
9906 {
9907 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9908 "all inputs do not have BTI in NOTE section."),
9909 bbfd);
9910 }
9911 }
9912
9913 return _bfd_aarch64_elf_merge_gnu_properties (info, abfd, aprop,
9914 bprop, prop);
9915 }
9916
9917 /* We use this so we can override certain functions
9918 (though currently we don't). */
9919
9920 const struct elf_size_info elfNN_aarch64_size_info =
9921 {
9922 sizeof (ElfNN_External_Ehdr),
9923 sizeof (ElfNN_External_Phdr),
9924 sizeof (ElfNN_External_Shdr),
9925 sizeof (ElfNN_External_Rel),
9926 sizeof (ElfNN_External_Rela),
9927 sizeof (ElfNN_External_Sym),
9928 sizeof (ElfNN_External_Dyn),
9929 sizeof (Elf_External_Note),
9930 4, /* Hash table entry size. */
9931 1, /* Internal relocs per external relocs. */
9932 ARCH_SIZE, /* Arch size. */
9933 LOG_FILE_ALIGN, /* Log_file_align. */
9934 ELFCLASSNN, EV_CURRENT,
9935 bfd_elfNN_write_out_phdrs,
9936 bfd_elfNN_write_shdrs_and_ehdr,
9937 bfd_elfNN_checksum_contents,
9938 bfd_elfNN_write_relocs,
9939 bfd_elfNN_swap_symbol_in,
9940 bfd_elfNN_swap_symbol_out,
9941 bfd_elfNN_slurp_reloc_table,
9942 bfd_elfNN_slurp_symbol_table,
9943 bfd_elfNN_swap_dyn_in,
9944 bfd_elfNN_swap_dyn_out,
9945 bfd_elfNN_swap_reloc_in,
9946 bfd_elfNN_swap_reloc_out,
9947 bfd_elfNN_swap_reloca_in,
9948 bfd_elfNN_swap_reloca_out
9949 };
9950
9951 #define ELF_ARCH bfd_arch_aarch64
9952 #define ELF_MACHINE_CODE EM_AARCH64
9953 #define ELF_MAXPAGESIZE 0x10000
9954 #define ELF_MINPAGESIZE 0x1000
9955 #define ELF_COMMONPAGESIZE 0x1000
9956
9957 #define bfd_elfNN_close_and_cleanup \
9958 elfNN_aarch64_close_and_cleanup
9959
9960 #define bfd_elfNN_bfd_free_cached_info \
9961 elfNN_aarch64_bfd_free_cached_info
9962
9963 #define bfd_elfNN_bfd_is_target_special_symbol \
9964 elfNN_aarch64_is_target_special_symbol
9965
9966 #define bfd_elfNN_bfd_link_hash_table_create \
9967 elfNN_aarch64_link_hash_table_create
9968
9969 #define bfd_elfNN_bfd_merge_private_bfd_data \
9970 elfNN_aarch64_merge_private_bfd_data
9971
9972 #define bfd_elfNN_bfd_print_private_bfd_data \
9973 elfNN_aarch64_print_private_bfd_data
9974
9975 #define bfd_elfNN_bfd_reloc_type_lookup \
9976 elfNN_aarch64_reloc_type_lookup
9977
9978 #define bfd_elfNN_bfd_reloc_name_lookup \
9979 elfNN_aarch64_reloc_name_lookup
9980
9981 #define bfd_elfNN_bfd_set_private_flags \
9982 elfNN_aarch64_set_private_flags
9983
9984 #define bfd_elfNN_find_inliner_info \
9985 elfNN_aarch64_find_inliner_info
9986
9987 #define bfd_elfNN_get_synthetic_symtab \
9988 elfNN_aarch64_get_synthetic_symtab
9989
9990 #define bfd_elfNN_mkobject \
9991 elfNN_aarch64_mkobject
9992
9993 #define bfd_elfNN_new_section_hook \
9994 elfNN_aarch64_new_section_hook
9995
9996 #define elf_backend_adjust_dynamic_symbol \
9997 elfNN_aarch64_adjust_dynamic_symbol
9998
9999 #define elf_backend_always_size_sections \
10000 elfNN_aarch64_always_size_sections
10001
10002 #define elf_backend_check_relocs \
10003 elfNN_aarch64_check_relocs
10004
10005 #define elf_backend_copy_indirect_symbol \
10006 elfNN_aarch64_copy_indirect_symbol
10007
10008 #define elf_backend_merge_symbol_attribute \
10009 elfNN_aarch64_merge_symbol_attribute
10010
10011 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
10012 to them in our hash. */
10013 #define elf_backend_create_dynamic_sections \
10014 elfNN_aarch64_create_dynamic_sections
10015
10016 #define elf_backend_init_index_section \
10017 _bfd_elf_init_2_index_sections
10018
10019 #define elf_backend_finish_dynamic_sections \
10020 elfNN_aarch64_finish_dynamic_sections
10021
10022 #define elf_backend_finish_dynamic_symbol \
10023 elfNN_aarch64_finish_dynamic_symbol
10024
10025 #define elf_backend_object_p \
10026 elfNN_aarch64_object_p
10027
10028 #define elf_backend_output_arch_local_syms \
10029 elfNN_aarch64_output_arch_local_syms
10030
10031 #define elf_backend_maybe_function_sym \
10032 elfNN_aarch64_maybe_function_sym
10033
10034 #define elf_backend_plt_sym_val \
10035 elfNN_aarch64_plt_sym_val
10036
10037 #define elf_backend_init_file_header \
10038 elfNN_aarch64_init_file_header
10039
10040 #define elf_backend_relocate_section \
10041 elfNN_aarch64_relocate_section
10042
10043 #define elf_backend_reloc_type_class \
10044 elfNN_aarch64_reloc_type_class
10045
10046 #define elf_backend_section_from_shdr \
10047 elfNN_aarch64_section_from_shdr
10048
10049 #define elf_backend_size_dynamic_sections \
10050 elfNN_aarch64_size_dynamic_sections
10051
10052 #define elf_backend_size_info \
10053 elfNN_aarch64_size_info
10054
10055 #define elf_backend_write_section \
10056 elfNN_aarch64_write_section
10057
10058 #define elf_backend_symbol_processing \
10059 elfNN_aarch64_backend_symbol_processing
10060
10061 #define elf_backend_setup_gnu_properties \
10062 elfNN_aarch64_link_setup_gnu_properties
10063
10064 #define elf_backend_merge_gnu_properties \
10065 elfNN_aarch64_merge_gnu_properties
10066
10067 #define elf_backend_can_refcount 1
10068 #define elf_backend_can_gc_sections 1
10069 #define elf_backend_plt_readonly 1
10070 #define elf_backend_want_got_plt 1
10071 #define elf_backend_want_plt_sym 0
10072 #define elf_backend_want_dynrelro 1
10073 #define elf_backend_may_use_rel_p 0
10074 #define elf_backend_may_use_rela_p 1
10075 #define elf_backend_default_use_rela_p 1
10076 #define elf_backend_rela_normal 1
10077 #define elf_backend_dtrel_excludes_plt 1
10078 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10079 #define elf_backend_default_execstack 0
10080 #define elf_backend_extern_protected_data 1
10081 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10082
10083 #undef elf_backend_obj_attrs_section
10084 #define elf_backend_obj_attrs_section ".ARM.attributes"
10085
10086 #include "elfNN-target.h"
10087
10088 /* CloudABI support. */
10089
10090 #undef TARGET_LITTLE_SYM
10091 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
10092 #undef TARGET_LITTLE_NAME
10093 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
10094 #undef TARGET_BIG_SYM
10095 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
10096 #undef TARGET_BIG_NAME
10097 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
10098
10099 #undef ELF_OSABI
10100 #define ELF_OSABI ELFOSABI_CLOUDABI
10101
10102 #undef elfNN_bed
10103 #define elfNN_bed elfNN_aarch64_cloudabi_bed
10104
10105 #include "elfNN-target.h"
This page took 0.228839 seconds and 5 git commands to generate.