dyn_relocs tidy
[deliverable/binutils-gdb.git] / bfd / elfnn-riscv.c
1 /* RISC-V-specific support for NN-bit ELF.
2 Copyright (C) 2011-2017 Free Software Foundation, Inc.
3
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
22
23 /* This file handles RISC-V ELF targets. */
24
25 #include "sysdep.h"
26 #include "bfd.h"
27 #include "libbfd.h"
28 #include "bfdlink.h"
29 #include "genlink.h"
30 #include "elf-bfd.h"
31 #include "elfxx-riscv.h"
32 #include "elf/riscv.h"
33 #include "opcode/riscv.h"
34
35 /* Internal relocations used exclusively by the relaxation pass. */
36 #define R_RISCV_DELETE (R_RISCV_max + 1)
37
38 #define ARCH_SIZE NN
39
40 #define MINUS_ONE ((bfd_vma)0 - 1)
41
42 #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
43
44 #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
45
46 /* The name of the dynamic interpreter. This is put in the .interp
47 section. */
48
49 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
50 #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
51
52 #define ELF_ARCH bfd_arch_riscv
53 #define ELF_TARGET_ID RISCV_ELF_DATA
54 #define ELF_MACHINE_CODE EM_RISCV
55 #define ELF_MAXPAGESIZE 0x1000
56 #define ELF_COMMONPAGESIZE 0x1000
57
58 /* RISC-V ELF linker hash entry. */
59
60 struct riscv_elf_link_hash_entry
61 {
62 struct elf_link_hash_entry elf;
63
64 /* Track dynamic relocs copied for this symbol. */
65 struct elf_dyn_relocs *dyn_relocs;
66
67 #define GOT_UNKNOWN 0
68 #define GOT_NORMAL 1
69 #define GOT_TLS_GD 2
70 #define GOT_TLS_IE 4
71 #define GOT_TLS_LE 8
72 char tls_type;
73 };
74
75 #define riscv_elf_hash_entry(ent) \
76 ((struct riscv_elf_link_hash_entry *)(ent))
77
78 struct _bfd_riscv_elf_obj_tdata
79 {
80 struct elf_obj_tdata root;
81
82 /* tls_type for each local got entry. */
83 char *local_got_tls_type;
84 };
85
86 #define _bfd_riscv_elf_tdata(abfd) \
87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
88
89 #define _bfd_riscv_elf_local_got_tls_type(abfd) \
90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
91
92 #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
95
96 #define is_riscv_elf(bfd) \
97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
98 && elf_tdata (bfd) != NULL \
99 && elf_object_id (bfd) == RISCV_ELF_DATA)
100
101 #include "elf/common.h"
102 #include "elf/internal.h"
103
104 struct riscv_elf_link_hash_table
105 {
106 struct elf_link_hash_table elf;
107
108 /* Short-cuts to get to dynamic linker sections. */
109 asection *sdyntdata;
110
111 /* Small local sym to section mapping cache. */
112 struct sym_cache sym_cache;
113
114 /* The max alignment of output sections. */
115 bfd_vma max_alignment;
116 };
117
118
119 /* Get the RISC-V ELF linker hash table from a link_info structure. */
120 #define riscv_elf_hash_table(p) \
121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
123
124 static void
125 riscv_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
126 arelent *cache_ptr,
127 Elf_Internal_Rela *dst)
128 {
129 cache_ptr->howto = riscv_elf_rtype_to_howto (ELFNN_R_TYPE (dst->r_info));
130 }
131
132 static void
133 riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
134 {
135 const struct elf_backend_data *bed;
136 bfd_byte *loc;
137
138 bed = get_elf_backend_data (abfd);
139 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
140 bed->s->swap_reloca_out (abfd, rel, loc);
141 }
142
143 /* PLT/GOT stuff. */
144
145 #define PLT_HEADER_INSNS 8
146 #define PLT_ENTRY_INSNS 4
147 #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
148 #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
149
150 #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
151
152 #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
153
154 #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
155
156 static bfd_vma
157 riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
158 {
159 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
160 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
161 }
162
163 #if ARCH_SIZE == 32
164 # define MATCH_LREG MATCH_LW
165 #else
166 # define MATCH_LREG MATCH_LD
167 #endif
168
169 /* Generate a PLT header. */
170
171 static void
172 riscv_make_plt_header (bfd_vma gotplt_addr, bfd_vma addr, uint32_t *entry)
173 {
174 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
175 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
176
177 /* auipc t2, %hi(.got.plt)
178 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
179 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
180 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
181 addi t0, t2, %lo(.got.plt) # &.got.plt
182 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
183 l[w|d] t0, PTRSIZE(t0) # link map
184 jr t3 */
185
186 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
187 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
188 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
189 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
190 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
191 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
192 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
193 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
194 }
195
196 /* Generate a PLT entry. */
197
198 static void
199 riscv_make_plt_entry (bfd_vma got, bfd_vma addr, uint32_t *entry)
200 {
201 /* auipc t3, %hi(.got.plt entry)
202 l[w|d] t3, %lo(.got.plt entry)(t3)
203 jalr t1, t3
204 nop */
205
206 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
207 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
208 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
209 entry[3] = RISCV_NOP;
210 }
211
212 /* Create an entry in an RISC-V ELF linker hash table. */
213
214 static struct bfd_hash_entry *
215 link_hash_newfunc (struct bfd_hash_entry *entry,
216 struct bfd_hash_table *table, const char *string)
217 {
218 /* Allocate the structure if it has not already been allocated by a
219 subclass. */
220 if (entry == NULL)
221 {
222 entry =
223 bfd_hash_allocate (table,
224 sizeof (struct riscv_elf_link_hash_entry));
225 if (entry == NULL)
226 return entry;
227 }
228
229 /* Call the allocation method of the superclass. */
230 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
231 if (entry != NULL)
232 {
233 struct riscv_elf_link_hash_entry *eh;
234
235 eh = (struct riscv_elf_link_hash_entry *) entry;
236 eh->dyn_relocs = NULL;
237 eh->tls_type = GOT_UNKNOWN;
238 }
239
240 return entry;
241 }
242
243 /* Create a RISC-V ELF linker hash table. */
244
245 static struct bfd_link_hash_table *
246 riscv_elf_link_hash_table_create (bfd *abfd)
247 {
248 struct riscv_elf_link_hash_table *ret;
249 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table);
250
251 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
252 if (ret == NULL)
253 return NULL;
254
255 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
256 sizeof (struct riscv_elf_link_hash_entry),
257 RISCV_ELF_DATA))
258 {
259 free (ret);
260 return NULL;
261 }
262
263 ret->max_alignment = (bfd_vma) -1;
264 return &ret->elf.root;
265 }
266
267 /* Create the .got section. */
268
269 static bfd_boolean
270 riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
271 {
272 flagword flags;
273 asection *s, *s_got;
274 struct elf_link_hash_entry *h;
275 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
276 struct elf_link_hash_table *htab = elf_hash_table (info);
277
278 /* This function may be called more than once. */
279 if (htab->sgot != NULL)
280 return TRUE;
281
282 flags = bed->dynamic_sec_flags;
283
284 s = bfd_make_section_anyway_with_flags (abfd,
285 (bed->rela_plts_and_copies_p
286 ? ".rela.got" : ".rel.got"),
287 (bed->dynamic_sec_flags
288 | SEC_READONLY));
289 if (s == NULL
290 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
291 return FALSE;
292 htab->srelgot = s;
293
294 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
295 if (s == NULL
296 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
297 return FALSE;
298 htab->sgot = s;
299
300 /* The first bit of the global offset table is the header. */
301 s->size += bed->got_header_size;
302
303 if (bed->want_got_plt)
304 {
305 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
306 if (s == NULL
307 || !bfd_set_section_alignment (abfd, s,
308 bed->s->log_file_align))
309 return FALSE;
310 htab->sgotplt = s;
311
312 /* Reserve room for the header. */
313 s->size += GOTPLT_HEADER_SIZE;
314 }
315
316 if (bed->want_got_sym)
317 {
318 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
319 section. We don't do this in the linker script because we don't want
320 to define the symbol if we are not creating a global offset
321 table. */
322 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
323 "_GLOBAL_OFFSET_TABLE_");
324 elf_hash_table (info)->hgot = h;
325 if (h == NULL)
326 return FALSE;
327 }
328
329 return TRUE;
330 }
331
332 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
333 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
334 hash table. */
335
336 static bfd_boolean
337 riscv_elf_create_dynamic_sections (bfd *dynobj,
338 struct bfd_link_info *info)
339 {
340 struct riscv_elf_link_hash_table *htab;
341
342 htab = riscv_elf_hash_table (info);
343 BFD_ASSERT (htab != NULL);
344
345 if (!riscv_elf_create_got_section (dynobj, info))
346 return FALSE;
347
348 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
349 return FALSE;
350
351 if (!bfd_link_pic (info))
352 {
353 htab->sdyntdata =
354 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
355 SEC_ALLOC | SEC_THREAD_LOCAL);
356 }
357
358 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
359 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
360 abort ();
361
362 return TRUE;
363 }
364
365 /* Copy the extra info we tack onto an elf_link_hash_entry. */
366
367 static void
368 riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
369 struct elf_link_hash_entry *dir,
370 struct elf_link_hash_entry *ind)
371 {
372 struct riscv_elf_link_hash_entry *edir, *eind;
373
374 edir = (struct riscv_elf_link_hash_entry *) dir;
375 eind = (struct riscv_elf_link_hash_entry *) ind;
376
377 if (eind->dyn_relocs != NULL)
378 {
379 if (edir->dyn_relocs != NULL)
380 {
381 struct elf_dyn_relocs **pp;
382 struct elf_dyn_relocs *p;
383
384 /* Add reloc counts against the indirect sym to the direct sym
385 list. Merge any entries against the same section. */
386 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
387 {
388 struct elf_dyn_relocs *q;
389
390 for (q = edir->dyn_relocs; q != NULL; q = q->next)
391 if (q->sec == p->sec)
392 {
393 q->pc_count += p->pc_count;
394 q->count += p->count;
395 *pp = p->next;
396 break;
397 }
398 if (q == NULL)
399 pp = &p->next;
400 }
401 *pp = edir->dyn_relocs;
402 }
403
404 edir->dyn_relocs = eind->dyn_relocs;
405 eind->dyn_relocs = NULL;
406 }
407
408 if (ind->root.type == bfd_link_hash_indirect
409 && dir->got.refcount <= 0)
410 {
411 edir->tls_type = eind->tls_type;
412 eind->tls_type = GOT_UNKNOWN;
413 }
414 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
415 }
416
417 static bfd_boolean
418 riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
419 unsigned long symndx, char tls_type)
420 {
421 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
422
423 *new_tls_type |= tls_type;
424 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
425 {
426 (*_bfd_error_handler)
427 (_("%B: `%s' accessed both as normal and thread local symbol"),
428 abfd, h ? h->root.root.string : "<local>");
429 return FALSE;
430 }
431 return TRUE;
432 }
433
434 static bfd_boolean
435 riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
436 struct elf_link_hash_entry *h, long symndx)
437 {
438 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
439 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
440
441 if (htab->elf.sgot == NULL)
442 {
443 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
444 return FALSE;
445 }
446
447 if (h != NULL)
448 {
449 h->got.refcount += 1;
450 return TRUE;
451 }
452
453 /* This is a global offset table entry for a local symbol. */
454 if (elf_local_got_refcounts (abfd) == NULL)
455 {
456 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
457 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
458 return FALSE;
459 _bfd_riscv_elf_local_got_tls_type (abfd)
460 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
461 }
462 elf_local_got_refcounts (abfd) [symndx] += 1;
463
464 return TRUE;
465 }
466
467 static bfd_boolean
468 bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
469 {
470 (*_bfd_error_handler)
471 (_("%B: relocation %s against `%s' can not be used when making a shared "
472 "object; recompile with -fPIC"),
473 abfd, riscv_elf_rtype_to_howto (r_type)->name,
474 h != NULL ? h->root.root.string : "a local symbol");
475 bfd_set_error (bfd_error_bad_value);
476 return FALSE;
477 }
478 /* Look through the relocs for a section during the first phase, and
479 allocate space in the global offset table or procedure linkage
480 table. */
481
482 static bfd_boolean
483 riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
484 asection *sec, const Elf_Internal_Rela *relocs)
485 {
486 struct riscv_elf_link_hash_table *htab;
487 Elf_Internal_Shdr *symtab_hdr;
488 struct elf_link_hash_entry **sym_hashes;
489 const Elf_Internal_Rela *rel;
490 asection *sreloc = NULL;
491
492 if (bfd_link_relocatable (info))
493 return TRUE;
494
495 htab = riscv_elf_hash_table (info);
496 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
497 sym_hashes = elf_sym_hashes (abfd);
498
499 if (htab->elf.dynobj == NULL)
500 htab->elf.dynobj = abfd;
501
502 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
503 {
504 unsigned int r_type;
505 unsigned int r_symndx;
506 struct elf_link_hash_entry *h;
507
508 r_symndx = ELFNN_R_SYM (rel->r_info);
509 r_type = ELFNN_R_TYPE (rel->r_info);
510
511 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
512 {
513 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
514 abfd, r_symndx);
515 return FALSE;
516 }
517
518 if (r_symndx < symtab_hdr->sh_info)
519 h = NULL;
520 else
521 {
522 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
523 while (h->root.type == bfd_link_hash_indirect
524 || h->root.type == bfd_link_hash_warning)
525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
526 }
527
528 switch (r_type)
529 {
530 case R_RISCV_TLS_GD_HI20:
531 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
532 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
533 return FALSE;
534 break;
535
536 case R_RISCV_TLS_GOT_HI20:
537 if (bfd_link_pic (info))
538 info->flags |= DF_STATIC_TLS;
539 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
540 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
541 return FALSE;
542 break;
543
544 case R_RISCV_GOT_HI20:
545 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
546 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
547 return FALSE;
548 break;
549
550 case R_RISCV_CALL_PLT:
551 /* This symbol requires a procedure linkage table entry. We
552 actually build the entry in adjust_dynamic_symbol,
553 because this might be a case of linking PIC code without
554 linking in any dynamic objects, in which case we don't
555 need to generate a procedure linkage table after all. */
556
557 if (h != NULL)
558 {
559 h->needs_plt = 1;
560 h->plt.refcount += 1;
561 }
562 break;
563
564 case R_RISCV_CALL:
565 case R_RISCV_JAL:
566 case R_RISCV_BRANCH:
567 case R_RISCV_RVC_BRANCH:
568 case R_RISCV_RVC_JUMP:
569 case R_RISCV_PCREL_HI20:
570 /* In shared libraries, these relocs are known to bind locally. */
571 if (bfd_link_pic (info))
572 break;
573 goto static_reloc;
574
575 case R_RISCV_TPREL_HI20:
576 if (!bfd_link_executable (info))
577 return bad_static_reloc (abfd, r_type, h);
578 if (h != NULL)
579 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
580 goto static_reloc;
581
582 case R_RISCV_HI20:
583 if (bfd_link_pic (info))
584 return bad_static_reloc (abfd, r_type, h);
585 /* Fall through. */
586
587 case R_RISCV_COPY:
588 case R_RISCV_JUMP_SLOT:
589 case R_RISCV_RELATIVE:
590 case R_RISCV_64:
591 case R_RISCV_32:
592 /* Fall through. */
593
594 static_reloc:
595 /* This reloc might not bind locally. */
596 if (h != NULL)
597 h->non_got_ref = 1;
598
599 if (h != NULL && !bfd_link_pic (info))
600 {
601 /* We may need a .plt entry if the function this reloc
602 refers to is in a shared lib. */
603 h->plt.refcount += 1;
604 }
605
606 /* If we are creating a shared library, and this is a reloc
607 against a global symbol, or a non PC relative reloc
608 against a local symbol, then we need to copy the reloc
609 into the shared library. However, if we are linking with
610 -Bsymbolic, we do not need to copy a reloc against a
611 global symbol which is defined in an object we are
612 including in the link (i.e., DEF_REGULAR is set). At
613 this point we have not seen all the input files, so it is
614 possible that DEF_REGULAR is not set now but will be set
615 later (it is never cleared). In case of a weak definition,
616 DEF_REGULAR may be cleared later by a strong definition in
617 a shared library. We account for that possibility below by
618 storing information in the relocs_copied field of the hash
619 table entry. A similar situation occurs when creating
620 shared libraries and symbol visibility changes render the
621 symbol local.
622
623 If on the other hand, we are creating an executable, we
624 may need to keep relocations for symbols satisfied by a
625 dynamic library if we manage to avoid copy relocs for the
626 symbol. */
627 if ((bfd_link_pic (info)
628 && (sec->flags & SEC_ALLOC) != 0
629 && (! riscv_elf_rtype_to_howto (r_type)->pc_relative
630 || (h != NULL
631 && (! info->symbolic
632 || h->root.type == bfd_link_hash_defweak
633 || !h->def_regular))))
634 || (!bfd_link_pic (info)
635 && (sec->flags & SEC_ALLOC) != 0
636 && h != NULL
637 && (h->root.type == bfd_link_hash_defweak
638 || !h->def_regular)))
639 {
640 struct elf_dyn_relocs *p;
641 struct elf_dyn_relocs **head;
642
643 /* When creating a shared object, we must copy these
644 relocs into the output file. We create a reloc
645 section in dynobj and make room for the reloc. */
646 if (sreloc == NULL)
647 {
648 sreloc = _bfd_elf_make_dynamic_reloc_section
649 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
650 abfd, /*rela?*/ TRUE);
651
652 if (sreloc == NULL)
653 return FALSE;
654 }
655
656 /* If this is a global symbol, we count the number of
657 relocations we need for this symbol. */
658 if (h != NULL)
659 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
660 else
661 {
662 /* Track dynamic relocs needed for local syms too.
663 We really need local syms available to do this
664 easily. Oh well. */
665
666 asection *s;
667 void *vpp;
668 Elf_Internal_Sym *isym;
669
670 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
671 abfd, r_symndx);
672 if (isym == NULL)
673 return FALSE;
674
675 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
676 if (s == NULL)
677 s = sec;
678
679 vpp = &elf_section_data (s)->local_dynrel;
680 head = (struct elf_dyn_relocs **) vpp;
681 }
682
683 p = *head;
684 if (p == NULL || p->sec != sec)
685 {
686 bfd_size_type amt = sizeof *p;
687 p = ((struct elf_dyn_relocs *)
688 bfd_alloc (htab->elf.dynobj, amt));
689 if (p == NULL)
690 return FALSE;
691 p->next = *head;
692 *head = p;
693 p->sec = sec;
694 p->count = 0;
695 p->pc_count = 0;
696 }
697
698 p->count += 1;
699 p->pc_count += riscv_elf_rtype_to_howto (r_type)->pc_relative;
700 }
701
702 break;
703
704 case R_RISCV_GNU_VTINHERIT:
705 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
706 return FALSE;
707 break;
708
709 case R_RISCV_GNU_VTENTRY:
710 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
711 return FALSE;
712 break;
713
714 default:
715 break;
716 }
717 }
718
719 return TRUE;
720 }
721
722 static asection *
723 riscv_elf_gc_mark_hook (asection *sec,
724 struct bfd_link_info *info,
725 Elf_Internal_Rela *rel,
726 struct elf_link_hash_entry *h,
727 Elf_Internal_Sym *sym)
728 {
729 if (h != NULL)
730 switch (ELFNN_R_TYPE (rel->r_info))
731 {
732 case R_RISCV_GNU_VTINHERIT:
733 case R_RISCV_GNU_VTENTRY:
734 return NULL;
735 }
736
737 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
738 }
739
740 /* Find dynamic relocs for H that apply to read-only sections. */
741
742 static asection *
743 readonly_dynrelocs (struct elf_link_hash_entry *h)
744 {
745 struct elf_dyn_relocs *p;
746
747 for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
748 {
749 asection *s = p->sec->output_section;
750
751 if (s != NULL && (s->flags & SEC_READONLY) != 0)
752 return p->sec;
753 }
754 return NULL;
755 }
756
757 /* Adjust a symbol defined by a dynamic object and referenced by a
758 regular object. The current definition is in some section of the
759 dynamic object, but we're not including those sections. We have to
760 change the definition to something the rest of the link can
761 understand. */
762
763 static bfd_boolean
764 riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
765 struct elf_link_hash_entry *h)
766 {
767 struct riscv_elf_link_hash_table *htab;
768 struct riscv_elf_link_hash_entry * eh;
769 bfd *dynobj;
770 asection *s, *srel;
771
772 htab = riscv_elf_hash_table (info);
773 BFD_ASSERT (htab != NULL);
774
775 dynobj = htab->elf.dynobj;
776
777 /* Make sure we know what is going on here. */
778 BFD_ASSERT (dynobj != NULL
779 && (h->needs_plt
780 || h->type == STT_GNU_IFUNC
781 || h->is_weakalias
782 || (h->def_dynamic
783 && h->ref_regular
784 && !h->def_regular)));
785
786 /* If this is a function, put it in the procedure linkage table. We
787 will fill in the contents of the procedure linkage table later
788 (although we could actually do it here). */
789 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
790 {
791 if (h->plt.refcount <= 0
792 || SYMBOL_CALLS_LOCAL (info, h)
793 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
794 && h->root.type == bfd_link_hash_undefweak))
795 {
796 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
797 input file, but the symbol was never referred to by a dynamic
798 object, or if all references were garbage collected. In such
799 a case, we don't actually need to build a PLT entry. */
800 h->plt.offset = (bfd_vma) -1;
801 h->needs_plt = 0;
802 }
803
804 return TRUE;
805 }
806 else
807 h->plt.offset = (bfd_vma) -1;
808
809 /* If this is a weak symbol, and there is a real definition, the
810 processor independent code will have arranged for us to see the
811 real definition first, and we can just use the same value. */
812 if (h->is_weakalias)
813 {
814 struct elf_link_hash_entry *def = weakdef (h);
815 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
816 h->root.u.def.section = def->root.u.def.section;
817 h->root.u.def.value = def->root.u.def.value;
818 return TRUE;
819 }
820
821 /* This is a reference to a symbol defined by a dynamic object which
822 is not a function. */
823
824 /* If we are creating a shared library, we must presume that the
825 only references to the symbol are via the global offset table.
826 For such cases we need not do anything here; the relocations will
827 be handled correctly by relocate_section. */
828 if (bfd_link_pic (info))
829 return TRUE;
830
831 /* If there are no references to this symbol that do not use the
832 GOT, we don't need to generate a copy reloc. */
833 if (!h->non_got_ref)
834 return TRUE;
835
836 /* If -z nocopyreloc was given, we won't generate them either. */
837 if (info->nocopyreloc)
838 {
839 h->non_got_ref = 0;
840 return TRUE;
841 }
842
843 /* If we don't find any dynamic relocs in read-only sections, then
844 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
845 if (!readonly_dynrelocs (h))
846 {
847 h->non_got_ref = 0;
848 return TRUE;
849 }
850
851 /* We must allocate the symbol in our .dynbss section, which will
852 become part of the .bss section of the executable. There will be
853 an entry for this symbol in the .dynsym section. The dynamic
854 object will contain position independent code, so all references
855 from the dynamic object to this symbol will go through the global
856 offset table. The dynamic linker will use the .dynsym entry to
857 determine the address it must put in the global offset table, so
858 both the dynamic object and the regular object will refer to the
859 same memory location for the variable. */
860
861 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
862 to copy the initial value out of the dynamic object and into the
863 runtime process image. We need to remember the offset into the
864 .rel.bss section we are going to use. */
865 eh = (struct riscv_elf_link_hash_entry *) h;
866 if (eh->tls_type & ~GOT_NORMAL)
867 {
868 s = htab->sdyntdata;
869 srel = htab->elf.srelbss;
870 }
871 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
872 {
873 s = htab->elf.sdynrelro;
874 srel = htab->elf.sreldynrelro;
875 }
876 else
877 {
878 s = htab->elf.sdynbss;
879 srel = htab->elf.srelbss;
880 }
881 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
882 {
883 srel->size += sizeof (ElfNN_External_Rela);
884 h->needs_copy = 1;
885 }
886
887 return _bfd_elf_adjust_dynamic_copy (info, h, s);
888 }
889
890 /* Allocate space in .plt, .got and associated reloc sections for
891 dynamic relocs. */
892
893 static bfd_boolean
894 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
895 {
896 struct bfd_link_info *info;
897 struct riscv_elf_link_hash_table *htab;
898 struct riscv_elf_link_hash_entry *eh;
899 struct elf_dyn_relocs *p;
900
901 if (h->root.type == bfd_link_hash_indirect)
902 return TRUE;
903
904 info = (struct bfd_link_info *) inf;
905 htab = riscv_elf_hash_table (info);
906 BFD_ASSERT (htab != NULL);
907
908 if (htab->elf.dynamic_sections_created
909 && h->plt.refcount > 0)
910 {
911 /* Make sure this symbol is output as a dynamic symbol.
912 Undefined weak syms won't yet be marked as dynamic. */
913 if (h->dynindx == -1
914 && !h->forced_local)
915 {
916 if (! bfd_elf_link_record_dynamic_symbol (info, h))
917 return FALSE;
918 }
919
920 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
921 {
922 asection *s = htab->elf.splt;
923
924 if (s->size == 0)
925 s->size = PLT_HEADER_SIZE;
926
927 h->plt.offset = s->size;
928
929 /* Make room for this entry. */
930 s->size += PLT_ENTRY_SIZE;
931
932 /* We also need to make an entry in the .got.plt section. */
933 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
934
935 /* We also need to make an entry in the .rela.plt section. */
936 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
937
938 /* If this symbol is not defined in a regular file, and we are
939 not generating a shared library, then set the symbol to this
940 location in the .plt. This is required to make function
941 pointers compare as equal between the normal executable and
942 the shared library. */
943 if (! bfd_link_pic (info)
944 && !h->def_regular)
945 {
946 h->root.u.def.section = s;
947 h->root.u.def.value = h->plt.offset;
948 }
949 }
950 else
951 {
952 h->plt.offset = (bfd_vma) -1;
953 h->needs_plt = 0;
954 }
955 }
956 else
957 {
958 h->plt.offset = (bfd_vma) -1;
959 h->needs_plt = 0;
960 }
961
962 if (h->got.refcount > 0)
963 {
964 asection *s;
965 bfd_boolean dyn;
966 int tls_type = riscv_elf_hash_entry (h)->tls_type;
967
968 /* Make sure this symbol is output as a dynamic symbol.
969 Undefined weak syms won't yet be marked as dynamic. */
970 if (h->dynindx == -1
971 && !h->forced_local)
972 {
973 if (! bfd_elf_link_record_dynamic_symbol (info, h))
974 return FALSE;
975 }
976
977 s = htab->elf.sgot;
978 h->got.offset = s->size;
979 dyn = htab->elf.dynamic_sections_created;
980 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
981 {
982 /* TLS_GD needs two dynamic relocs and two GOT slots. */
983 if (tls_type & GOT_TLS_GD)
984 {
985 s->size += 2 * RISCV_ELF_WORD_BYTES;
986 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
987 }
988
989 /* TLS_IE needs one dynamic reloc and one GOT slot. */
990 if (tls_type & GOT_TLS_IE)
991 {
992 s->size += RISCV_ELF_WORD_BYTES;
993 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
994 }
995 }
996 else
997 {
998 s->size += RISCV_ELF_WORD_BYTES;
999 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h))
1000 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1001 }
1002 }
1003 else
1004 h->got.offset = (bfd_vma) -1;
1005
1006 eh = (struct riscv_elf_link_hash_entry *) h;
1007 if (eh->dyn_relocs == NULL)
1008 return TRUE;
1009
1010 /* In the shared -Bsymbolic case, discard space allocated for
1011 dynamic pc-relative relocs against symbols which turn out to be
1012 defined in regular objects. For the normal shared case, discard
1013 space for pc-relative relocs that have become local due to symbol
1014 visibility changes. */
1015
1016 if (bfd_link_pic (info))
1017 {
1018 if (SYMBOL_CALLS_LOCAL (info, h))
1019 {
1020 struct elf_dyn_relocs **pp;
1021
1022 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1023 {
1024 p->count -= p->pc_count;
1025 p->pc_count = 0;
1026 if (p->count == 0)
1027 *pp = p->next;
1028 else
1029 pp = &p->next;
1030 }
1031 }
1032
1033 /* Also discard relocs on undefined weak syms with non-default
1034 visibility. */
1035 if (eh->dyn_relocs != NULL
1036 && h->root.type == bfd_link_hash_undefweak)
1037 {
1038 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1039 eh->dyn_relocs = NULL;
1040
1041 /* Make sure undefined weak symbols are output as a dynamic
1042 symbol in PIEs. */
1043 else if (h->dynindx == -1
1044 && !h->forced_local)
1045 {
1046 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1047 return FALSE;
1048 }
1049 }
1050 }
1051 else
1052 {
1053 /* For the non-shared case, discard space for relocs against
1054 symbols which turn out to need copy relocs or are not
1055 dynamic. */
1056
1057 if (!h->non_got_ref
1058 && ((h->def_dynamic
1059 && !h->def_regular)
1060 || (htab->elf.dynamic_sections_created
1061 && (h->root.type == bfd_link_hash_undefweak
1062 || h->root.type == bfd_link_hash_undefined))))
1063 {
1064 /* Make sure this symbol is output as a dynamic symbol.
1065 Undefined weak syms won't yet be marked as dynamic. */
1066 if (h->dynindx == -1
1067 && !h->forced_local)
1068 {
1069 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1070 return FALSE;
1071 }
1072
1073 /* If that succeeded, we know we'll be keeping all the
1074 relocs. */
1075 if (h->dynindx != -1)
1076 goto keep;
1077 }
1078
1079 eh->dyn_relocs = NULL;
1080
1081 keep: ;
1082 }
1083
1084 /* Finally, allocate space. */
1085 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1086 {
1087 asection *sreloc = elf_section_data (p->sec)->sreloc;
1088 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1089 }
1090
1091 return TRUE;
1092 }
1093
1094 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
1095 read-only sections. */
1096
1097 static bfd_boolean
1098 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
1099 {
1100 asection *sec;
1101
1102 if (h->root.type == bfd_link_hash_indirect)
1103 return TRUE;
1104
1105 sec = readonly_dynrelocs (h);
1106 if (sec != NULL)
1107 {
1108 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
1109
1110 info->flags |= DF_TEXTREL;
1111 info->callbacks->minfo
1112 (_("%B: dynamic relocation against `%T' in read-only section `%A'\n"),
1113 sec->owner, h->root.root.string, sec);
1114
1115 /* Not an error, just cut short the traversal. */
1116 return FALSE;
1117 }
1118 return TRUE;
1119 }
1120
1121 static bfd_boolean
1122 riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1123 {
1124 struct riscv_elf_link_hash_table *htab;
1125 bfd *dynobj;
1126 asection *s;
1127 bfd *ibfd;
1128
1129 htab = riscv_elf_hash_table (info);
1130 BFD_ASSERT (htab != NULL);
1131 dynobj = htab->elf.dynobj;
1132 BFD_ASSERT (dynobj != NULL);
1133
1134 if (elf_hash_table (info)->dynamic_sections_created)
1135 {
1136 /* Set the contents of the .interp section to the interpreter. */
1137 if (bfd_link_executable (info) && !info->nointerp)
1138 {
1139 s = bfd_get_linker_section (dynobj, ".interp");
1140 BFD_ASSERT (s != NULL);
1141 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1142 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1143 }
1144 }
1145
1146 /* Set up .got offsets for local syms, and space for local dynamic
1147 relocs. */
1148 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1149 {
1150 bfd_signed_vma *local_got;
1151 bfd_signed_vma *end_local_got;
1152 char *local_tls_type;
1153 bfd_size_type locsymcount;
1154 Elf_Internal_Shdr *symtab_hdr;
1155 asection *srel;
1156
1157 if (! is_riscv_elf (ibfd))
1158 continue;
1159
1160 for (s = ibfd->sections; s != NULL; s = s->next)
1161 {
1162 struct elf_dyn_relocs *p;
1163
1164 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1165 {
1166 if (!bfd_is_abs_section (p->sec)
1167 && bfd_is_abs_section (p->sec->output_section))
1168 {
1169 /* Input section has been discarded, either because
1170 it is a copy of a linkonce section or due to
1171 linker script /DISCARD/, so we'll be discarding
1172 the relocs too. */
1173 }
1174 else if (p->count != 0)
1175 {
1176 srel = elf_section_data (p->sec)->sreloc;
1177 srel->size += p->count * sizeof (ElfNN_External_Rela);
1178 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1179 info->flags |= DF_TEXTREL;
1180 }
1181 }
1182 }
1183
1184 local_got = elf_local_got_refcounts (ibfd);
1185 if (!local_got)
1186 continue;
1187
1188 symtab_hdr = &elf_symtab_hdr (ibfd);
1189 locsymcount = symtab_hdr->sh_info;
1190 end_local_got = local_got + locsymcount;
1191 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1192 s = htab->elf.sgot;
1193 srel = htab->elf.srelgot;
1194 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1195 {
1196 if (*local_got > 0)
1197 {
1198 *local_got = s->size;
1199 s->size += RISCV_ELF_WORD_BYTES;
1200 if (*local_tls_type & GOT_TLS_GD)
1201 s->size += RISCV_ELF_WORD_BYTES;
1202 if (bfd_link_pic (info)
1203 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1204 srel->size += sizeof (ElfNN_External_Rela);
1205 }
1206 else
1207 *local_got = (bfd_vma) -1;
1208 }
1209 }
1210
1211 /* Allocate global sym .plt and .got entries, and space for global
1212 sym dynamic relocs. */
1213 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1214
1215 if (htab->elf.sgotplt)
1216 {
1217 struct elf_link_hash_entry *got;
1218 got = elf_link_hash_lookup (elf_hash_table (info),
1219 "_GLOBAL_OFFSET_TABLE_",
1220 FALSE, FALSE, FALSE);
1221
1222 /* Don't allocate .got.plt section if there are no GOT nor PLT
1223 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1224 if ((got == NULL
1225 || !got->ref_regular_nonweak)
1226 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1227 && (htab->elf.splt == NULL
1228 || htab->elf.splt->size == 0)
1229 && (htab->elf.sgot == NULL
1230 || (htab->elf.sgot->size
1231 == get_elf_backend_data (output_bfd)->got_header_size)))
1232 htab->elf.sgotplt->size = 0;
1233 }
1234
1235 /* The check_relocs and adjust_dynamic_symbol entry points have
1236 determined the sizes of the various dynamic sections. Allocate
1237 memory for them. */
1238 for (s = dynobj->sections; s != NULL; s = s->next)
1239 {
1240 if ((s->flags & SEC_LINKER_CREATED) == 0)
1241 continue;
1242
1243 if (s == htab->elf.splt
1244 || s == htab->elf.sgot
1245 || s == htab->elf.sgotplt
1246 || s == htab->elf.sdynbss
1247 || s == htab->elf.sdynrelro)
1248 {
1249 /* Strip this section if we don't need it; see the
1250 comment below. */
1251 }
1252 else if (strncmp (s->name, ".rela", 5) == 0)
1253 {
1254 if (s->size != 0)
1255 {
1256 /* We use the reloc_count field as a counter if we need
1257 to copy relocs into the output file. */
1258 s->reloc_count = 0;
1259 }
1260 }
1261 else
1262 {
1263 /* It's not one of our sections. */
1264 continue;
1265 }
1266
1267 if (s->size == 0)
1268 {
1269 /* If we don't need this section, strip it from the
1270 output file. This is mostly to handle .rela.bss and
1271 .rela.plt. We must create both sections in
1272 create_dynamic_sections, because they must be created
1273 before the linker maps input sections to output
1274 sections. The linker does that before
1275 adjust_dynamic_symbol is called, and it is that
1276 function which decides whether anything needs to go
1277 into these sections. */
1278 s->flags |= SEC_EXCLUDE;
1279 continue;
1280 }
1281
1282 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1283 continue;
1284
1285 /* Allocate memory for the section contents. Zero the memory
1286 for the benefit of .rela.plt, which has 4 unused entries
1287 at the beginning, and we don't want garbage. */
1288 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1289 if (s->contents == NULL)
1290 return FALSE;
1291 }
1292
1293 if (elf_hash_table (info)->dynamic_sections_created)
1294 {
1295 /* Add some entries to the .dynamic section. We fill in the
1296 values later, in riscv_elf_finish_dynamic_sections, but we
1297 must add the entries now so that we get the correct size for
1298 the .dynamic section. The DT_DEBUG entry is filled in by the
1299 dynamic linker and used by the debugger. */
1300 #define add_dynamic_entry(TAG, VAL) \
1301 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1302
1303 if (bfd_link_executable (info))
1304 {
1305 if (!add_dynamic_entry (DT_DEBUG, 0))
1306 return FALSE;
1307 }
1308
1309 if (htab->elf.srelplt->size != 0)
1310 {
1311 if (!add_dynamic_entry (DT_PLTGOT, 0)
1312 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1313 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1314 || !add_dynamic_entry (DT_JMPREL, 0))
1315 return FALSE;
1316 }
1317
1318 if (!add_dynamic_entry (DT_RELA, 0)
1319 || !add_dynamic_entry (DT_RELASZ, 0)
1320 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1321 return FALSE;
1322
1323 /* If any dynamic relocs apply to a read-only section,
1324 then we need a DT_TEXTREL entry. */
1325 if ((info->flags & DF_TEXTREL) == 0)
1326 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
1327
1328 if (info->flags & DF_TEXTREL)
1329 {
1330 if (!add_dynamic_entry (DT_TEXTREL, 0))
1331 return FALSE;
1332 }
1333 }
1334 #undef add_dynamic_entry
1335
1336 return TRUE;
1337 }
1338
1339 #define TP_OFFSET 0
1340 #define DTP_OFFSET 0x800
1341
1342 /* Return the relocation value for a TLS dtp-relative reloc. */
1343
1344 static bfd_vma
1345 dtpoff (struct bfd_link_info *info, bfd_vma address)
1346 {
1347 /* If tls_sec is NULL, we should have signalled an error already. */
1348 if (elf_hash_table (info)->tls_sec == NULL)
1349 return 0;
1350 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1351 }
1352
1353 /* Return the relocation value for a static TLS tp-relative relocation. */
1354
1355 static bfd_vma
1356 tpoff (struct bfd_link_info *info, bfd_vma address)
1357 {
1358 /* If tls_sec is NULL, we should have signalled an error already. */
1359 if (elf_hash_table (info)->tls_sec == NULL)
1360 return 0;
1361 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1362 }
1363
1364 /* Return the global pointer's value, or 0 if it is not in use. */
1365
1366 static bfd_vma
1367 riscv_global_pointer_value (struct bfd_link_info *info)
1368 {
1369 struct bfd_link_hash_entry *h;
1370
1371 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
1372 if (h == NULL || h->type != bfd_link_hash_defined)
1373 return 0;
1374
1375 return h->u.def.value + sec_addr (h->u.def.section);
1376 }
1377
1378 /* Emplace a static relocation. */
1379
1380 static bfd_reloc_status_type
1381 perform_relocation (const reloc_howto_type *howto,
1382 const Elf_Internal_Rela *rel,
1383 bfd_vma value,
1384 asection *input_section,
1385 bfd *input_bfd,
1386 bfd_byte *contents)
1387 {
1388 if (howto->pc_relative)
1389 value -= sec_addr (input_section) + rel->r_offset;
1390 value += rel->r_addend;
1391
1392 switch (ELFNN_R_TYPE (rel->r_info))
1393 {
1394 case R_RISCV_HI20:
1395 case R_RISCV_TPREL_HI20:
1396 case R_RISCV_PCREL_HI20:
1397 case R_RISCV_GOT_HI20:
1398 case R_RISCV_TLS_GOT_HI20:
1399 case R_RISCV_TLS_GD_HI20:
1400 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1401 return bfd_reloc_overflow;
1402 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1403 break;
1404
1405 case R_RISCV_LO12_I:
1406 case R_RISCV_GPREL_I:
1407 case R_RISCV_TPREL_LO12_I:
1408 case R_RISCV_TPREL_I:
1409 case R_RISCV_PCREL_LO12_I:
1410 value = ENCODE_ITYPE_IMM (value);
1411 break;
1412
1413 case R_RISCV_LO12_S:
1414 case R_RISCV_GPREL_S:
1415 case R_RISCV_TPREL_LO12_S:
1416 case R_RISCV_TPREL_S:
1417 case R_RISCV_PCREL_LO12_S:
1418 value = ENCODE_STYPE_IMM (value);
1419 break;
1420
1421 case R_RISCV_CALL:
1422 case R_RISCV_CALL_PLT:
1423 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1424 return bfd_reloc_overflow;
1425 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1426 | (ENCODE_ITYPE_IMM (value) << 32);
1427 break;
1428
1429 case R_RISCV_JAL:
1430 if (!VALID_UJTYPE_IMM (value))
1431 return bfd_reloc_overflow;
1432 value = ENCODE_UJTYPE_IMM (value);
1433 break;
1434
1435 case R_RISCV_BRANCH:
1436 if (!VALID_SBTYPE_IMM (value))
1437 return bfd_reloc_overflow;
1438 value = ENCODE_SBTYPE_IMM (value);
1439 break;
1440
1441 case R_RISCV_RVC_BRANCH:
1442 if (!VALID_RVC_B_IMM (value))
1443 return bfd_reloc_overflow;
1444 value = ENCODE_RVC_B_IMM (value);
1445 break;
1446
1447 case R_RISCV_RVC_JUMP:
1448 if (!VALID_RVC_J_IMM (value))
1449 return bfd_reloc_overflow;
1450 value = ENCODE_RVC_J_IMM (value);
1451 break;
1452
1453 case R_RISCV_RVC_LUI:
1454 if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1455 return bfd_reloc_overflow;
1456 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1457 break;
1458
1459 case R_RISCV_32:
1460 case R_RISCV_64:
1461 case R_RISCV_ADD8:
1462 case R_RISCV_ADD16:
1463 case R_RISCV_ADD32:
1464 case R_RISCV_ADD64:
1465 case R_RISCV_SUB6:
1466 case R_RISCV_SUB8:
1467 case R_RISCV_SUB16:
1468 case R_RISCV_SUB32:
1469 case R_RISCV_SUB64:
1470 case R_RISCV_SET6:
1471 case R_RISCV_SET8:
1472 case R_RISCV_SET16:
1473 case R_RISCV_SET32:
1474 case R_RISCV_32_PCREL:
1475 case R_RISCV_TLS_DTPREL32:
1476 case R_RISCV_TLS_DTPREL64:
1477 break;
1478
1479 case R_RISCV_DELETE:
1480 return bfd_reloc_ok;
1481
1482 default:
1483 return bfd_reloc_notsupported;
1484 }
1485
1486 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1487 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1488 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1489
1490 return bfd_reloc_ok;
1491 }
1492
1493 /* Remember all PC-relative high-part relocs we've encountered to help us
1494 later resolve the corresponding low-part relocs. */
1495
1496 typedef struct
1497 {
1498 bfd_vma address;
1499 bfd_vma value;
1500 } riscv_pcrel_hi_reloc;
1501
1502 typedef struct riscv_pcrel_lo_reloc
1503 {
1504 asection * input_section;
1505 struct bfd_link_info * info;
1506 reloc_howto_type * howto;
1507 const Elf_Internal_Rela * reloc;
1508 bfd_vma addr;
1509 const char * name;
1510 bfd_byte * contents;
1511 struct riscv_pcrel_lo_reloc * next;
1512 } riscv_pcrel_lo_reloc;
1513
1514 typedef struct
1515 {
1516 htab_t hi_relocs;
1517 riscv_pcrel_lo_reloc *lo_relocs;
1518 } riscv_pcrel_relocs;
1519
1520 static hashval_t
1521 riscv_pcrel_reloc_hash (const void *entry)
1522 {
1523 const riscv_pcrel_hi_reloc *e = entry;
1524 return (hashval_t)(e->address >> 2);
1525 }
1526
1527 static bfd_boolean
1528 riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1529 {
1530 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1531 return e1->address == e2->address;
1532 }
1533
1534 static bfd_boolean
1535 riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1536 {
1537
1538 p->lo_relocs = NULL;
1539 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1540 riscv_pcrel_reloc_eq, free);
1541 return p->hi_relocs != NULL;
1542 }
1543
1544 static void
1545 riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1546 {
1547 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1548
1549 while (cur != NULL)
1550 {
1551 riscv_pcrel_lo_reloc *next = cur->next;
1552 free (cur);
1553 cur = next;
1554 }
1555
1556 htab_delete (p->hi_relocs);
1557 }
1558
1559 static bfd_boolean
1560 riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
1561 struct bfd_link_info *info,
1562 bfd_vma pc,
1563 bfd_vma addr,
1564 bfd_byte *contents,
1565 const reloc_howto_type *howto,
1566 bfd *input_bfd)
1567 {
1568 /* We may need to reference low addreses in PC-relative modes even when the
1569 * PC is far away from these addresses. For example, undefweak references
1570 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1571 * addresses that we can link PC-relative programs at, the linker can't
1572 * actually relocate references to those symbols. In order to allow these
1573 * programs to work we simply convert the PC-relative auipc sequences to
1574 * 0-relative lui sequences. */
1575 if (bfd_link_pic (info))
1576 return FALSE;
1577
1578 /* If it's possible to reference the symbol using auipc we do so, as that's
1579 * more in the spirit of the PC-relative relocations we're processing. */
1580 bfd_vma offset = addr - pc;
1581 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
1582 return FALSE;
1583
1584 /* If it's impossible to reference this with a LUI-based offset then don't
1585 * bother to convert it at all so users still see the PC-relative relocation
1586 * in the truncation message. */
1587 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
1588 return FALSE;
1589
1590 rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20);
1591
1592 bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset);
1593 insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
1594 bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1595 return TRUE;
1596 }
1597
1598 static bfd_boolean
1599 riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr,
1600 bfd_vma value, bfd_boolean absolute)
1601 {
1602 bfd_vma offset = absolute ? value : value - addr;
1603 riscv_pcrel_hi_reloc entry = {addr, offset};
1604 riscv_pcrel_hi_reloc **slot =
1605 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1606
1607 BFD_ASSERT (*slot == NULL);
1608 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1609 if (*slot == NULL)
1610 return FALSE;
1611 **slot = entry;
1612 return TRUE;
1613 }
1614
1615 static bfd_boolean
1616 riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1617 asection *input_section,
1618 struct bfd_link_info *info,
1619 reloc_howto_type *howto,
1620 const Elf_Internal_Rela *reloc,
1621 bfd_vma addr,
1622 const char *name,
1623 bfd_byte *contents)
1624 {
1625 riscv_pcrel_lo_reloc *entry;
1626 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1627 if (entry == NULL)
1628 return FALSE;
1629 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1630 name, contents, p->lo_relocs};
1631 p->lo_relocs = entry;
1632 return TRUE;
1633 }
1634
1635 static bfd_boolean
1636 riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1637 {
1638 riscv_pcrel_lo_reloc *r;
1639
1640 for (r = p->lo_relocs; r != NULL; r = r->next)
1641 {
1642 bfd *input_bfd = r->input_section->owner;
1643
1644 riscv_pcrel_hi_reloc search = {r->addr, 0};
1645 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
1646 if (entry == NULL)
1647 {
1648 ((*r->info->callbacks->reloc_overflow)
1649 (r->info, NULL, r->name, r->howto->name, (bfd_vma) 0,
1650 input_bfd, r->input_section, r->reloc->r_offset));
1651 return TRUE;
1652 }
1653
1654 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1655 input_bfd, r->contents);
1656 }
1657
1658 return TRUE;
1659 }
1660
1661 /* Relocate a RISC-V ELF section.
1662
1663 The RELOCATE_SECTION function is called by the new ELF backend linker
1664 to handle the relocations for a section.
1665
1666 The relocs are always passed as Rela structures.
1667
1668 This function is responsible for adjusting the section contents as
1669 necessary, and (if generating a relocatable output file) adjusting
1670 the reloc addend as necessary.
1671
1672 This function does not have to worry about setting the reloc
1673 address or the reloc symbol index.
1674
1675 LOCAL_SYMS is a pointer to the swapped in local symbols.
1676
1677 LOCAL_SECTIONS is an array giving the section in the input file
1678 corresponding to the st_shndx field of each local symbol.
1679
1680 The global hash table entry for the global symbols can be found
1681 via elf_sym_hashes (input_bfd).
1682
1683 When generating relocatable output, this function must handle
1684 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1685 going to be the section symbol corresponding to the output
1686 section, which means that the addend must be adjusted
1687 accordingly. */
1688
1689 static bfd_boolean
1690 riscv_elf_relocate_section (bfd *output_bfd,
1691 struct bfd_link_info *info,
1692 bfd *input_bfd,
1693 asection *input_section,
1694 bfd_byte *contents,
1695 Elf_Internal_Rela *relocs,
1696 Elf_Internal_Sym *local_syms,
1697 asection **local_sections)
1698 {
1699 Elf_Internal_Rela *rel;
1700 Elf_Internal_Rela *relend;
1701 riscv_pcrel_relocs pcrel_relocs;
1702 bfd_boolean ret = FALSE;
1703 asection *sreloc = elf_section_data (input_section)->sreloc;
1704 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1705 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1706 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1707 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
1708 bfd_boolean absolute;
1709
1710 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1711 return FALSE;
1712
1713 relend = relocs + input_section->reloc_count;
1714 for (rel = relocs; rel < relend; rel++)
1715 {
1716 unsigned long r_symndx;
1717 struct elf_link_hash_entry *h;
1718 Elf_Internal_Sym *sym;
1719 asection *sec;
1720 bfd_vma relocation;
1721 bfd_reloc_status_type r = bfd_reloc_ok;
1722 const char *name;
1723 bfd_vma off, ie_off;
1724 bfd_boolean unresolved_reloc, is_ie = FALSE;
1725 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1726 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
1727 reloc_howto_type *howto = riscv_elf_rtype_to_howto (r_type);
1728 const char *msg = NULL;
1729
1730 if (r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
1731 continue;
1732
1733 /* This is a final link. */
1734 r_symndx = ELFNN_R_SYM (rel->r_info);
1735 h = NULL;
1736 sym = NULL;
1737 sec = NULL;
1738 unresolved_reloc = FALSE;
1739 if (r_symndx < symtab_hdr->sh_info)
1740 {
1741 sym = local_syms + r_symndx;
1742 sec = local_sections[r_symndx];
1743 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1744 }
1745 else
1746 {
1747 bfd_boolean warned, ignored;
1748
1749 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1750 r_symndx, symtab_hdr, sym_hashes,
1751 h, sec, relocation,
1752 unresolved_reloc, warned, ignored);
1753 if (warned)
1754 {
1755 /* To avoid generating warning messages about truncated
1756 relocations, set the relocation's address to be the same as
1757 the start of this section. */
1758 if (input_section->output_section != NULL)
1759 relocation = input_section->output_section->vma;
1760 else
1761 relocation = 0;
1762 }
1763 }
1764
1765 if (sec != NULL && discarded_section (sec))
1766 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1767 rel, 1, relend, howto, 0, contents);
1768
1769 if (bfd_link_relocatable (info))
1770 continue;
1771
1772 if (h != NULL)
1773 name = h->root.root.string;
1774 else
1775 {
1776 name = (bfd_elf_string_from_elf_section
1777 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1778 if (name == NULL || *name == '\0')
1779 name = bfd_section_name (input_bfd, sec);
1780 }
1781
1782 switch (r_type)
1783 {
1784 case R_RISCV_NONE:
1785 case R_RISCV_RELAX:
1786 case R_RISCV_TPREL_ADD:
1787 case R_RISCV_COPY:
1788 case R_RISCV_JUMP_SLOT:
1789 case R_RISCV_RELATIVE:
1790 /* These require nothing of us at all. */
1791 continue;
1792
1793 case R_RISCV_HI20:
1794 case R_RISCV_BRANCH:
1795 case R_RISCV_RVC_BRANCH:
1796 case R_RISCV_RVC_LUI:
1797 case R_RISCV_LO12_I:
1798 case R_RISCV_LO12_S:
1799 case R_RISCV_SET6:
1800 case R_RISCV_SET8:
1801 case R_RISCV_SET16:
1802 case R_RISCV_SET32:
1803 case R_RISCV_32_PCREL:
1804 case R_RISCV_DELETE:
1805 /* These require no special handling beyond perform_relocation. */
1806 break;
1807
1808 case R_RISCV_GOT_HI20:
1809 if (h != NULL)
1810 {
1811 bfd_boolean dyn, pic;
1812
1813 off = h->got.offset;
1814 BFD_ASSERT (off != (bfd_vma) -1);
1815 dyn = elf_hash_table (info)->dynamic_sections_created;
1816 pic = bfd_link_pic (info);
1817
1818 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1819 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1820 {
1821 /* This is actually a static link, or it is a
1822 -Bsymbolic link and the symbol is defined
1823 locally, or the symbol was forced to be local
1824 because of a version file. We must initialize
1825 this entry in the global offset table. Since the
1826 offset must always be a multiple of the word size,
1827 we use the least significant bit to record whether
1828 we have initialized it already.
1829
1830 When doing a dynamic link, we create a .rela.got
1831 relocation entry to initialize the value. This
1832 is done in the finish_dynamic_symbol routine. */
1833 if ((off & 1) != 0)
1834 off &= ~1;
1835 else
1836 {
1837 bfd_put_NN (output_bfd, relocation,
1838 htab->elf.sgot->contents + off);
1839 h->got.offset |= 1;
1840 }
1841 }
1842 else
1843 unresolved_reloc = FALSE;
1844 }
1845 else
1846 {
1847 BFD_ASSERT (local_got_offsets != NULL
1848 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1849
1850 off = local_got_offsets[r_symndx];
1851
1852 /* The offset must always be a multiple of the word size.
1853 So, we can use the least significant bit to record
1854 whether we have already processed this entry. */
1855 if ((off & 1) != 0)
1856 off &= ~1;
1857 else
1858 {
1859 if (bfd_link_pic (info))
1860 {
1861 asection *s;
1862 Elf_Internal_Rela outrel;
1863
1864 /* We need to generate a R_RISCV_RELATIVE reloc
1865 for the dynamic linker. */
1866 s = htab->elf.srelgot;
1867 BFD_ASSERT (s != NULL);
1868
1869 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1870 outrel.r_info =
1871 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1872 outrel.r_addend = relocation;
1873 relocation = 0;
1874 riscv_elf_append_rela (output_bfd, s, &outrel);
1875 }
1876
1877 bfd_put_NN (output_bfd, relocation,
1878 htab->elf.sgot->contents + off);
1879 local_got_offsets[r_symndx] |= 1;
1880 }
1881 }
1882 relocation = sec_addr (htab->elf.sgot) + off;
1883 absolute = riscv_zero_pcrel_hi_reloc (rel,
1884 info,
1885 pc,
1886 relocation,
1887 contents,
1888 howto,
1889 input_bfd);
1890 r_type = ELFNN_R_TYPE (rel->r_info);
1891 howto = riscv_elf_rtype_to_howto (r_type);
1892 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1893 relocation, absolute))
1894 r = bfd_reloc_overflow;
1895 break;
1896
1897 case R_RISCV_ADD8:
1898 case R_RISCV_ADD16:
1899 case R_RISCV_ADD32:
1900 case R_RISCV_ADD64:
1901 {
1902 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1903 contents + rel->r_offset);
1904 relocation = old_value + relocation;
1905 }
1906 break;
1907
1908 case R_RISCV_SUB6:
1909 case R_RISCV_SUB8:
1910 case R_RISCV_SUB16:
1911 case R_RISCV_SUB32:
1912 case R_RISCV_SUB64:
1913 {
1914 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1915 contents + rel->r_offset);
1916 relocation = old_value - relocation;
1917 }
1918 break;
1919
1920 case R_RISCV_CALL_PLT:
1921 case R_RISCV_CALL:
1922 case R_RISCV_JAL:
1923 case R_RISCV_RVC_JUMP:
1924 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
1925 {
1926 /* Refer to the PLT entry. */
1927 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
1928 unresolved_reloc = FALSE;
1929 }
1930 break;
1931
1932 case R_RISCV_TPREL_HI20:
1933 relocation = tpoff (info, relocation);
1934 break;
1935
1936 case R_RISCV_TPREL_LO12_I:
1937 case R_RISCV_TPREL_LO12_S:
1938 relocation = tpoff (info, relocation);
1939 break;
1940
1941 case R_RISCV_TPREL_I:
1942 case R_RISCV_TPREL_S:
1943 relocation = tpoff (info, relocation);
1944 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
1945 {
1946 /* We can use tp as the base register. */
1947 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
1948 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1949 insn |= X_TP << OP_SH_RS1;
1950 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
1951 }
1952 else
1953 r = bfd_reloc_overflow;
1954 break;
1955
1956 case R_RISCV_GPREL_I:
1957 case R_RISCV_GPREL_S:
1958 {
1959 bfd_vma gp = riscv_global_pointer_value (info);
1960 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
1961 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
1962 {
1963 /* We can use x0 or gp as the base register. */
1964 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
1965 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1966 if (!x0_base)
1967 {
1968 rel->r_addend -= gp;
1969 insn |= X_GP << OP_SH_RS1;
1970 }
1971 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
1972 }
1973 else
1974 r = bfd_reloc_overflow;
1975 break;
1976 }
1977
1978 case R_RISCV_PCREL_HI20:
1979 absolute = riscv_zero_pcrel_hi_reloc (rel,
1980 info,
1981 pc,
1982 relocation,
1983 contents,
1984 howto,
1985 input_bfd);
1986 r_type = ELFNN_R_TYPE (rel->r_info);
1987 howto = riscv_elf_rtype_to_howto (r_type);
1988 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1989 relocation + rel->r_addend,
1990 absolute))
1991 r = bfd_reloc_overflow;
1992 break;
1993
1994 case R_RISCV_PCREL_LO12_I:
1995 case R_RISCV_PCREL_LO12_S:
1996 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
1997 howto, rel, relocation, name,
1998 contents))
1999 continue;
2000 r = bfd_reloc_overflow;
2001 break;
2002
2003 case R_RISCV_TLS_DTPREL32:
2004 case R_RISCV_TLS_DTPREL64:
2005 relocation = dtpoff (info, relocation);
2006 break;
2007
2008 case R_RISCV_32:
2009 case R_RISCV_64:
2010 if ((input_section->flags & SEC_ALLOC) == 0)
2011 break;
2012
2013 if ((bfd_link_pic (info)
2014 && (h == NULL
2015 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2016 || h->root.type != bfd_link_hash_undefweak)
2017 && (! howto->pc_relative
2018 || !SYMBOL_CALLS_LOCAL (info, h)))
2019 || (!bfd_link_pic (info)
2020 && h != NULL
2021 && h->dynindx != -1
2022 && !h->non_got_ref
2023 && ((h->def_dynamic
2024 && !h->def_regular)
2025 || h->root.type == bfd_link_hash_undefweak
2026 || h->root.type == bfd_link_hash_undefined)))
2027 {
2028 Elf_Internal_Rela outrel;
2029 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2030
2031 /* When generating a shared object, these relocations
2032 are copied into the output file to be resolved at run
2033 time. */
2034
2035 outrel.r_offset =
2036 _bfd_elf_section_offset (output_bfd, info, input_section,
2037 rel->r_offset);
2038 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2039 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2040 outrel.r_offset += sec_addr (input_section);
2041
2042 if (skip_dynamic_relocation)
2043 memset (&outrel, 0, sizeof outrel);
2044 else if (h != NULL && h->dynindx != -1
2045 && !(bfd_link_pic (info)
2046 && SYMBOLIC_BIND (info, h)
2047 && h->def_regular))
2048 {
2049 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2050 outrel.r_addend = rel->r_addend;
2051 }
2052 else
2053 {
2054 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2055 outrel.r_addend = relocation + rel->r_addend;
2056 }
2057
2058 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2059 if (skip_static_relocation)
2060 continue;
2061 }
2062 break;
2063
2064 case R_RISCV_TLS_GOT_HI20:
2065 is_ie = TRUE;
2066 /* Fall through. */
2067
2068 case R_RISCV_TLS_GD_HI20:
2069 if (h != NULL)
2070 {
2071 off = h->got.offset;
2072 h->got.offset |= 1;
2073 }
2074 else
2075 {
2076 off = local_got_offsets[r_symndx];
2077 local_got_offsets[r_symndx] |= 1;
2078 }
2079
2080 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2081 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2082 /* If this symbol is referenced by both GD and IE TLS, the IE
2083 reference's GOT slot follows the GD reference's slots. */
2084 ie_off = 0;
2085 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2086 ie_off = 2 * GOT_ENTRY_SIZE;
2087
2088 if ((off & 1) != 0)
2089 off &= ~1;
2090 else
2091 {
2092 Elf_Internal_Rela outrel;
2093 int indx = 0;
2094 bfd_boolean need_relocs = FALSE;
2095
2096 if (htab->elf.srelgot == NULL)
2097 abort ();
2098
2099 if (h != NULL)
2100 {
2101 bfd_boolean dyn, pic;
2102 dyn = htab->elf.dynamic_sections_created;
2103 pic = bfd_link_pic (info);
2104
2105 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2106 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2107 indx = h->dynindx;
2108 }
2109
2110 /* The GOT entries have not been initialized yet. Do it
2111 now, and emit any relocations. */
2112 if ((bfd_link_pic (info) || indx != 0)
2113 && (h == NULL
2114 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2115 || h->root.type != bfd_link_hash_undefweak))
2116 need_relocs = TRUE;
2117
2118 if (tls_type & GOT_TLS_GD)
2119 {
2120 if (need_relocs)
2121 {
2122 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2123 outrel.r_addend = 0;
2124 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2125 bfd_put_NN (output_bfd, 0,
2126 htab->elf.sgot->contents + off);
2127 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2128 if (indx == 0)
2129 {
2130 BFD_ASSERT (! unresolved_reloc);
2131 bfd_put_NN (output_bfd,
2132 dtpoff (info, relocation),
2133 (htab->elf.sgot->contents + off +
2134 RISCV_ELF_WORD_BYTES));
2135 }
2136 else
2137 {
2138 bfd_put_NN (output_bfd, 0,
2139 (htab->elf.sgot->contents + off +
2140 RISCV_ELF_WORD_BYTES));
2141 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2142 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2143 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2144 }
2145 }
2146 else
2147 {
2148 /* If we are not emitting relocations for a
2149 general dynamic reference, then we must be in a
2150 static link or an executable link with the
2151 symbol binding locally. Mark it as belonging
2152 to module 1, the executable. */
2153 bfd_put_NN (output_bfd, 1,
2154 htab->elf.sgot->contents + off);
2155 bfd_put_NN (output_bfd,
2156 dtpoff (info, relocation),
2157 (htab->elf.sgot->contents + off +
2158 RISCV_ELF_WORD_BYTES));
2159 }
2160 }
2161
2162 if (tls_type & GOT_TLS_IE)
2163 {
2164 if (need_relocs)
2165 {
2166 bfd_put_NN (output_bfd, 0,
2167 htab->elf.sgot->contents + off + ie_off);
2168 outrel.r_offset = sec_addr (htab->elf.sgot)
2169 + off + ie_off;
2170 outrel.r_addend = 0;
2171 if (indx == 0)
2172 outrel.r_addend = tpoff (info, relocation);
2173 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2174 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2175 }
2176 else
2177 {
2178 bfd_put_NN (output_bfd, tpoff (info, relocation),
2179 htab->elf.sgot->contents + off + ie_off);
2180 }
2181 }
2182 }
2183
2184 BFD_ASSERT (off < (bfd_vma) -2);
2185 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
2186 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2187 relocation, FALSE))
2188 r = bfd_reloc_overflow;
2189 unresolved_reloc = FALSE;
2190 break;
2191
2192 default:
2193 r = bfd_reloc_notsupported;
2194 }
2195
2196 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2197 because such sections are not SEC_ALLOC and thus ld.so will
2198 not process them. */
2199 if (unresolved_reloc
2200 && !((input_section->flags & SEC_DEBUGGING) != 0
2201 && h->def_dynamic)
2202 && _bfd_elf_section_offset (output_bfd, info, input_section,
2203 rel->r_offset) != (bfd_vma) -1)
2204 {
2205 (*_bfd_error_handler)
2206 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
2207 input_bfd,
2208 input_section,
2209 rel->r_offset,
2210 howto->name,
2211 h->root.root.string);
2212 continue;
2213 }
2214
2215 if (r == bfd_reloc_ok)
2216 r = perform_relocation (howto, rel, relocation, input_section,
2217 input_bfd, contents);
2218
2219 switch (r)
2220 {
2221 case bfd_reloc_ok:
2222 continue;
2223
2224 case bfd_reloc_overflow:
2225 info->callbacks->reloc_overflow
2226 (info, (h ? &h->root : NULL), name, howto->name,
2227 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2228 break;
2229
2230 case bfd_reloc_undefined:
2231 info->callbacks->undefined_symbol
2232 (info, name, input_bfd, input_section, rel->r_offset,
2233 TRUE);
2234 break;
2235
2236 case bfd_reloc_outofrange:
2237 msg = _("internal error: out of range error");
2238 break;
2239
2240 case bfd_reloc_notsupported:
2241 msg = _("internal error: unsupported relocation error");
2242 break;
2243
2244 case bfd_reloc_dangerous:
2245 msg = _("internal error: dangerous relocation");
2246 break;
2247
2248 default:
2249 msg = _("internal error: unknown error");
2250 break;
2251 }
2252
2253 if (msg)
2254 info->callbacks->warning
2255 (info, msg, name, input_bfd, input_section, rel->r_offset);
2256 goto out;
2257 }
2258
2259 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2260 out:
2261 riscv_free_pcrel_relocs (&pcrel_relocs);
2262 return ret;
2263 }
2264
2265 /* Finish up dynamic symbol handling. We set the contents of various
2266 dynamic sections here. */
2267
2268 static bfd_boolean
2269 riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2270 struct bfd_link_info *info,
2271 struct elf_link_hash_entry *h,
2272 Elf_Internal_Sym *sym)
2273 {
2274 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2275 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2276
2277 if (h->plt.offset != (bfd_vma) -1)
2278 {
2279 /* We've decided to create a PLT entry for this symbol. */
2280 bfd_byte *loc;
2281 bfd_vma i, header_address, plt_idx, got_address;
2282 uint32_t plt_entry[PLT_ENTRY_INSNS];
2283 Elf_Internal_Rela rela;
2284
2285 BFD_ASSERT (h->dynindx != -1);
2286
2287 /* Calculate the address of the PLT header. */
2288 header_address = sec_addr (htab->elf.splt);
2289
2290 /* Calculate the index of the entry. */
2291 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2292
2293 /* Calculate the address of the .got.plt entry. */
2294 got_address = riscv_elf_got_plt_val (plt_idx, info);
2295
2296 /* Find out where the .plt entry should go. */
2297 loc = htab->elf.splt->contents + h->plt.offset;
2298
2299 /* Fill in the PLT entry itself. */
2300 riscv_make_plt_entry (got_address, header_address + h->plt.offset,
2301 plt_entry);
2302 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2303 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2304
2305 /* Fill in the initial value of the .got.plt entry. */
2306 loc = htab->elf.sgotplt->contents
2307 + (got_address - sec_addr (htab->elf.sgotplt));
2308 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2309
2310 /* Fill in the entry in the .rela.plt section. */
2311 rela.r_offset = got_address;
2312 rela.r_addend = 0;
2313 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2314
2315 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2316 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2317
2318 if (!h->def_regular)
2319 {
2320 /* Mark the symbol as undefined, rather than as defined in
2321 the .plt section. Leave the value alone. */
2322 sym->st_shndx = SHN_UNDEF;
2323 /* If the symbol is weak, we do need to clear the value.
2324 Otherwise, the PLT entry would provide a definition for
2325 the symbol even if the symbol wasn't defined anywhere,
2326 and so the symbol would never be NULL. */
2327 if (!h->ref_regular_nonweak)
2328 sym->st_value = 0;
2329 }
2330 }
2331
2332 if (h->got.offset != (bfd_vma) -1
2333 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
2334 {
2335 asection *sgot;
2336 asection *srela;
2337 Elf_Internal_Rela rela;
2338
2339 /* This symbol has an entry in the GOT. Set it up. */
2340
2341 sgot = htab->elf.sgot;
2342 srela = htab->elf.srelgot;
2343 BFD_ASSERT (sgot != NULL && srela != NULL);
2344
2345 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2346
2347 /* If this is a -Bsymbolic link, and the symbol is defined
2348 locally, we just want to emit a RELATIVE reloc. Likewise if
2349 the symbol was forced to be local because of a version file.
2350 The entry in the global offset table will already have been
2351 initialized in the relocate_section function. */
2352 if (bfd_link_pic (info)
2353 && (info->symbolic || h->dynindx == -1)
2354 && h->def_regular)
2355 {
2356 asection *sec = h->root.u.def.section;
2357 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2358 rela.r_addend = (h->root.u.def.value
2359 + sec->output_section->vma
2360 + sec->output_offset);
2361 }
2362 else
2363 {
2364 BFD_ASSERT (h->dynindx != -1);
2365 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2366 rela.r_addend = 0;
2367 }
2368
2369 bfd_put_NN (output_bfd, 0,
2370 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2371 riscv_elf_append_rela (output_bfd, srela, &rela);
2372 }
2373
2374 if (h->needs_copy)
2375 {
2376 Elf_Internal_Rela rela;
2377 asection *s;
2378
2379 /* This symbols needs a copy reloc. Set it up. */
2380 BFD_ASSERT (h->dynindx != -1);
2381
2382 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2383 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2384 rela.r_addend = 0;
2385 if (h->root.u.def.section == htab->elf.sdynrelro)
2386 s = htab->elf.sreldynrelro;
2387 else
2388 s = htab->elf.srelbss;
2389 riscv_elf_append_rela (output_bfd, s, &rela);
2390 }
2391
2392 /* Mark some specially defined symbols as absolute. */
2393 if (h == htab->elf.hdynamic
2394 || (h == htab->elf.hgot || h == htab->elf.hplt))
2395 sym->st_shndx = SHN_ABS;
2396
2397 return TRUE;
2398 }
2399
2400 /* Finish up the dynamic sections. */
2401
2402 static bfd_boolean
2403 riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2404 bfd *dynobj, asection *sdyn)
2405 {
2406 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2407 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2408 size_t dynsize = bed->s->sizeof_dyn;
2409 bfd_byte *dyncon, *dynconend;
2410
2411 dynconend = sdyn->contents + sdyn->size;
2412 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2413 {
2414 Elf_Internal_Dyn dyn;
2415 asection *s;
2416
2417 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2418
2419 switch (dyn.d_tag)
2420 {
2421 case DT_PLTGOT:
2422 s = htab->elf.sgotplt;
2423 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2424 break;
2425 case DT_JMPREL:
2426 s = htab->elf.srelplt;
2427 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2428 break;
2429 case DT_PLTRELSZ:
2430 s = htab->elf.srelplt;
2431 dyn.d_un.d_val = s->size;
2432 break;
2433 default:
2434 continue;
2435 }
2436
2437 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2438 }
2439 return TRUE;
2440 }
2441
2442 static bfd_boolean
2443 riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2444 struct bfd_link_info *info)
2445 {
2446 bfd *dynobj;
2447 asection *sdyn;
2448 struct riscv_elf_link_hash_table *htab;
2449
2450 htab = riscv_elf_hash_table (info);
2451 BFD_ASSERT (htab != NULL);
2452 dynobj = htab->elf.dynobj;
2453
2454 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2455
2456 if (elf_hash_table (info)->dynamic_sections_created)
2457 {
2458 asection *splt;
2459 bfd_boolean ret;
2460
2461 splt = htab->elf.splt;
2462 BFD_ASSERT (splt != NULL && sdyn != NULL);
2463
2464 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2465
2466 if (!ret)
2467 return ret;
2468
2469 /* Fill in the head and tail entries in the procedure linkage table. */
2470 if (splt->size > 0)
2471 {
2472 int i;
2473 uint32_t plt_header[PLT_HEADER_INSNS];
2474 riscv_make_plt_header (sec_addr (htab->elf.sgotplt),
2475 sec_addr (splt), plt_header);
2476
2477 for (i = 0; i < PLT_HEADER_INSNS; i++)
2478 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
2479
2480 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2481 = PLT_ENTRY_SIZE;
2482 }
2483 }
2484
2485 if (htab->elf.sgotplt)
2486 {
2487 asection *output_section = htab->elf.sgotplt->output_section;
2488
2489 if (bfd_is_abs_section (output_section))
2490 {
2491 (*_bfd_error_handler)
2492 (_("discarded output section: `%A'"), htab->elf.sgotplt);
2493 return FALSE;
2494 }
2495
2496 if (htab->elf.sgotplt->size > 0)
2497 {
2498 /* Write the first two entries in .got.plt, needed for the dynamic
2499 linker. */
2500 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2501 bfd_put_NN (output_bfd, (bfd_vma) 0,
2502 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2503 }
2504
2505 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2506 }
2507
2508 if (htab->elf.sgot)
2509 {
2510 asection *output_section = htab->elf.sgot->output_section;
2511
2512 if (htab->elf.sgot->size > 0)
2513 {
2514 /* Set the first entry in the global offset table to the address of
2515 the dynamic section. */
2516 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2517 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2518 }
2519
2520 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2521 }
2522
2523 return TRUE;
2524 }
2525
2526 /* Return address for Ith PLT stub in section PLT, for relocation REL
2527 or (bfd_vma) -1 if it should not be included. */
2528
2529 static bfd_vma
2530 riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2531 const arelent *rel ATTRIBUTE_UNUSED)
2532 {
2533 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2534 }
2535
2536 static enum elf_reloc_type_class
2537 riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2538 const asection *rel_sec ATTRIBUTE_UNUSED,
2539 const Elf_Internal_Rela *rela)
2540 {
2541 switch (ELFNN_R_TYPE (rela->r_info))
2542 {
2543 case R_RISCV_RELATIVE:
2544 return reloc_class_relative;
2545 case R_RISCV_JUMP_SLOT:
2546 return reloc_class_plt;
2547 case R_RISCV_COPY:
2548 return reloc_class_copy;
2549 default:
2550 return reloc_class_normal;
2551 }
2552 }
2553
2554 /* Merge backend specific data from an object file to the output
2555 object file when linking. */
2556
2557 static bfd_boolean
2558 _bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
2559 {
2560 bfd *obfd = info->output_bfd;
2561 flagword new_flags = elf_elfheader (ibfd)->e_flags;
2562 flagword old_flags = elf_elfheader (obfd)->e_flags;
2563
2564 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
2565 return TRUE;
2566
2567 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
2568 {
2569 (*_bfd_error_handler)
2570 (_("%B: ABI is incompatible with that of the selected emulation:\n"
2571 " target emulation `%s' does not match `%s'"),
2572 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
2573 return FALSE;
2574 }
2575
2576 if (!_bfd_elf_merge_object_attributes (ibfd, info))
2577 return FALSE;
2578
2579 if (! elf_flags_init (obfd))
2580 {
2581 elf_flags_init (obfd) = TRUE;
2582 elf_elfheader (obfd)->e_flags = new_flags;
2583 return TRUE;
2584 }
2585
2586 /* Disallow linking different float ABIs. */
2587 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
2588 {
2589 (*_bfd_error_handler)
2590 (_("%B: can't link hard-float modules with soft-float modules"), ibfd);
2591 goto fail;
2592 }
2593
2594 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
2595 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
2596
2597 return TRUE;
2598
2599 fail:
2600 bfd_set_error (bfd_error_bad_value);
2601 return FALSE;
2602 }
2603
2604 /* Delete some bytes from a section while relaxing. */
2605
2606 static bfd_boolean
2607 riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count)
2608 {
2609 unsigned int i, symcount;
2610 bfd_vma toaddr = sec->size;
2611 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
2612 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2613 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2614 struct bfd_elf_section_data *data = elf_section_data (sec);
2615 bfd_byte *contents = data->this_hdr.contents;
2616
2617 /* Actually delete the bytes. */
2618 sec->size -= count;
2619 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
2620
2621 /* Adjust the location of all of the relocs. Note that we need not
2622 adjust the addends, since all PC-relative references must be against
2623 symbols, which we will adjust below. */
2624 for (i = 0; i < sec->reloc_count; i++)
2625 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
2626 data->relocs[i].r_offset -= count;
2627
2628 /* Adjust the local symbols defined in this section. */
2629 for (i = 0; i < symtab_hdr->sh_info; i++)
2630 {
2631 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
2632 if (sym->st_shndx == sec_shndx)
2633 {
2634 /* If the symbol is in the range of memory we just moved, we
2635 have to adjust its value. */
2636 if (sym->st_value > addr && sym->st_value <= toaddr)
2637 sym->st_value -= count;
2638
2639 /* If the symbol *spans* the bytes we just deleted (i.e. its
2640 *end* is in the moved bytes but its *start* isn't), then we
2641 must adjust its size. */
2642 if (sym->st_value <= addr
2643 && sym->st_value + sym->st_size > addr
2644 && sym->st_value + sym->st_size <= toaddr)
2645 sym->st_size -= count;
2646 }
2647 }
2648
2649 /* Now adjust the global symbols defined in this section. */
2650 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
2651 - symtab_hdr->sh_info);
2652
2653 for (i = 0; i < symcount; i++)
2654 {
2655 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
2656
2657 if ((sym_hash->root.type == bfd_link_hash_defined
2658 || sym_hash->root.type == bfd_link_hash_defweak)
2659 && sym_hash->root.u.def.section == sec)
2660 {
2661 /* As above, adjust the value if needed. */
2662 if (sym_hash->root.u.def.value > addr
2663 && sym_hash->root.u.def.value <= toaddr)
2664 sym_hash->root.u.def.value -= count;
2665
2666 /* As above, adjust the size if needed. */
2667 if (sym_hash->root.u.def.value <= addr
2668 && sym_hash->root.u.def.value + sym_hash->size > addr
2669 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
2670 sym_hash->size -= count;
2671 }
2672 }
2673
2674 return TRUE;
2675 }
2676
2677 /* A second format for recording PC-relative hi relocations. This stores the
2678 information required to relax them to GP-relative addresses. */
2679
2680 typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc;
2681 struct riscv_pcgp_hi_reloc
2682 {
2683 bfd_vma hi_sec_off;
2684 bfd_vma hi_addend;
2685 bfd_vma hi_addr;
2686 unsigned hi_sym;
2687 asection *sym_sec;
2688 riscv_pcgp_hi_reloc *next;
2689 };
2690
2691 typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc;
2692 struct riscv_pcgp_lo_reloc
2693 {
2694 bfd_vma hi_sec_off;
2695 riscv_pcgp_lo_reloc *next;
2696 };
2697
2698 typedef struct
2699 {
2700 riscv_pcgp_hi_reloc *hi;
2701 riscv_pcgp_lo_reloc *lo;
2702 } riscv_pcgp_relocs;
2703
2704 static bfd_boolean
2705 riscv_init_pcgp_relocs (riscv_pcgp_relocs *p)
2706 {
2707 p->hi = NULL;
2708 p->lo = NULL;
2709 return TRUE;
2710 }
2711
2712 static void
2713 riscv_free_pcgp_relocs (riscv_pcgp_relocs *p,
2714 bfd *abfd ATTRIBUTE_UNUSED,
2715 asection *sec ATTRIBUTE_UNUSED)
2716 {
2717 riscv_pcgp_hi_reloc *c;
2718 riscv_pcgp_lo_reloc *l;
2719
2720 for (c = p->hi; c != NULL;)
2721 {
2722 riscv_pcgp_hi_reloc *next = c->next;
2723 free (c);
2724 c = next;
2725 }
2726
2727 for (l = p->lo; l != NULL;)
2728 {
2729 riscv_pcgp_lo_reloc *next = l->next;
2730 free (l);
2731 l = next;
2732 }
2733 }
2734
2735 static bfd_boolean
2736 riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off,
2737 bfd_vma hi_addend, bfd_vma hi_addr,
2738 unsigned hi_sym, asection *sym_sec)
2739 {
2740 riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof(*new));
2741 if (!new)
2742 return FALSE;
2743 new->hi_sec_off = hi_sec_off;
2744 new->hi_addend = hi_addend;
2745 new->hi_addr = hi_addr;
2746 new->hi_sym = hi_sym;
2747 new->sym_sec = sym_sec;
2748 new->next = p->hi;
2749 p->hi = new;
2750 return TRUE;
2751 }
2752
2753 static riscv_pcgp_hi_reloc *
2754 riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2755 {
2756 riscv_pcgp_hi_reloc *c;
2757
2758 for (c = p->hi; c != NULL; c = c->next)
2759 if (c->hi_sec_off == hi_sec_off)
2760 return c;
2761 return NULL;
2762 }
2763
2764 static bfd_boolean
2765 riscv_delete_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2766 {
2767 bfd_boolean out = FALSE;
2768 riscv_pcgp_hi_reloc *c;
2769
2770 for (c = p->hi; c != NULL; c = c->next)
2771 if (c->hi_sec_off == hi_sec_off)
2772 out = TRUE;
2773
2774 return out;
2775 }
2776
2777 static bfd_boolean
2778 riscv_use_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2779 {
2780 bfd_boolean out = FALSE;
2781 riscv_pcgp_hi_reloc *c;
2782
2783 for (c = p->hi; c != NULL; c = c->next)
2784 if (c->hi_sec_off == hi_sec_off)
2785 out = TRUE;
2786
2787 return out;
2788 }
2789
2790 static bfd_boolean
2791 riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2792 {
2793 riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof(*new));
2794 if (!new)
2795 return FALSE;
2796 new->hi_sec_off = hi_sec_off;
2797 new->next = p->lo;
2798 p->lo = new;
2799 return TRUE;
2800 }
2801
2802 static bfd_boolean
2803 riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2804 {
2805 riscv_pcgp_lo_reloc *c;
2806
2807 for (c = p->lo; c != NULL; c = c->next)
2808 if (c->hi_sec_off == hi_sec_off)
2809 return TRUE;
2810 return FALSE;
2811 }
2812
2813 static bfd_boolean
2814 riscv_delete_pcgp_lo_reloc (riscv_pcgp_relocs *p ATTRIBUTE_UNUSED,
2815 bfd_vma lo_sec_off ATTRIBUTE_UNUSED,
2816 size_t bytes ATTRIBUTE_UNUSED)
2817 {
2818 return TRUE;
2819 }
2820
2821 typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *,
2822 struct bfd_link_info *,
2823 Elf_Internal_Rela *,
2824 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *,
2825 riscv_pcgp_relocs *);
2826
2827 /* Relax AUIPC + JALR into JAL. */
2828
2829 static bfd_boolean
2830 _bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
2831 struct bfd_link_info *link_info,
2832 Elf_Internal_Rela *rel,
2833 bfd_vma symval,
2834 bfd_vma max_alignment,
2835 bfd_vma reserve_size ATTRIBUTE_UNUSED,
2836 bfd_boolean *again,
2837 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
2838 {
2839 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2840 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
2841 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
2842 bfd_vma auipc, jalr;
2843 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2844
2845 /* If the call crosses section boundaries, an alignment directive could
2846 cause the PC-relative offset to later increase. */
2847 if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section)
2848 foff += (foff < 0 ? -max_alignment : max_alignment);
2849
2850 /* See if this function call can be shortened. */
2851 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
2852 return TRUE;
2853
2854 /* Shorten the function call. */
2855 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
2856
2857 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
2858 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
2859 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
2860 rvc = rvc && VALID_RVC_J_IMM (foff) && ARCH_SIZE == 32;
2861
2862 if (rvc && (rd == 0 || rd == X_RA))
2863 {
2864 /* Relax to C.J[AL] rd, addr. */
2865 r_type = R_RISCV_RVC_JUMP;
2866 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
2867 len = 2;
2868 }
2869 else if (VALID_UJTYPE_IMM (foff))
2870 {
2871 /* Relax to JAL rd, addr. */
2872 r_type = R_RISCV_JAL;
2873 auipc = MATCH_JAL | (rd << OP_SH_RD);
2874 }
2875 else /* near_zero */
2876 {
2877 /* Relax to JALR rd, x0, addr. */
2878 r_type = R_RISCV_LO12_I;
2879 auipc = MATCH_JALR | (rd << OP_SH_RD);
2880 }
2881
2882 /* Replace the R_RISCV_CALL reloc. */
2883 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
2884 /* Replace the AUIPC. */
2885 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
2886
2887 /* Delete unnecessary JALR. */
2888 *again = TRUE;
2889 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len);
2890 }
2891
2892 /* Traverse all output sections and return the max alignment. */
2893
2894 static bfd_vma
2895 _bfd_riscv_get_max_alignment (asection *sec)
2896 {
2897 unsigned int max_alignment_power = 0;
2898 asection *o;
2899
2900 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
2901 {
2902 if (o->alignment_power > max_alignment_power)
2903 max_alignment_power = o->alignment_power;
2904 }
2905
2906 return (bfd_vma) 1 << max_alignment_power;
2907 }
2908
2909 /* Relax non-PIC global variable references. */
2910
2911 static bfd_boolean
2912 _bfd_riscv_relax_lui (bfd *abfd,
2913 asection *sec,
2914 asection *sym_sec,
2915 struct bfd_link_info *link_info,
2916 Elf_Internal_Rela *rel,
2917 bfd_vma symval,
2918 bfd_vma max_alignment,
2919 bfd_vma reserve_size,
2920 bfd_boolean *again,
2921 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
2922 {
2923 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2924 bfd_vma gp = riscv_global_pointer_value (link_info);
2925 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2926
2927 /* Mergeable symbols and code might later move out of range. */
2928 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
2929 return TRUE;
2930
2931 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
2932
2933 if (gp)
2934 {
2935 /* If gp and the symbol are in the same output section, then
2936 consider only that section's alignment. */
2937 struct bfd_link_hash_entry *h =
2938 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
2939 TRUE);
2940 if (h->u.def.section->output_section == sym_sec->output_section)
2941 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
2942 }
2943
2944 /* Is the reference in range of x0 or gp?
2945 Valid gp range conservatively because of alignment issue. */
2946 if (VALID_ITYPE_IMM (symval)
2947 || (symval >= gp
2948 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
2949 || (symval < gp
2950 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
2951 {
2952 unsigned sym = ELFNN_R_SYM (rel->r_info);
2953 switch (ELFNN_R_TYPE (rel->r_info))
2954 {
2955 case R_RISCV_LO12_I:
2956 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
2957 return TRUE;
2958
2959 case R_RISCV_LO12_S:
2960 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
2961 return TRUE;
2962
2963 case R_RISCV_HI20:
2964 /* We can delete the unnecessary LUI and reloc. */
2965 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
2966 *again = TRUE;
2967 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4);
2968
2969 default:
2970 abort ();
2971 }
2972 }
2973
2974 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
2975 account for this assuming page alignment at worst. */
2976 if (use_rvc
2977 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
2978 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
2979 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE)))
2980 {
2981 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
2982 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
2983 unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD;
2984 if (rd == 0 || rd == X_SP)
2985 return TRUE;
2986
2987 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
2988 bfd_put_32 (abfd, lui, contents + rel->r_offset);
2989
2990 /* Replace the R_RISCV_HI20 reloc. */
2991 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
2992
2993 *again = TRUE;
2994 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2);
2995 }
2996
2997 return TRUE;
2998 }
2999
3000 /* Relax non-PIC TLS references. */
3001
3002 static bfd_boolean
3003 _bfd_riscv_relax_tls_le (bfd *abfd,
3004 asection *sec,
3005 asection *sym_sec ATTRIBUTE_UNUSED,
3006 struct bfd_link_info *link_info,
3007 Elf_Internal_Rela *rel,
3008 bfd_vma symval,
3009 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3010 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3011 bfd_boolean *again,
3012 riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED)
3013 {
3014 /* See if this symbol is in range of tp. */
3015 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
3016 return TRUE;
3017
3018 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3019 switch (ELFNN_R_TYPE (rel->r_info))
3020 {
3021 case R_RISCV_TPREL_LO12_I:
3022 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
3023 return TRUE;
3024
3025 case R_RISCV_TPREL_LO12_S:
3026 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
3027 return TRUE;
3028
3029 case R_RISCV_TPREL_HI20:
3030 case R_RISCV_TPREL_ADD:
3031 /* We can delete the unnecessary instruction and reloc. */
3032 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3033 *again = TRUE;
3034 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4);
3035
3036 default:
3037 abort ();
3038 }
3039 }
3040
3041 /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
3042
3043 static bfd_boolean
3044 _bfd_riscv_relax_align (bfd *abfd, asection *sec,
3045 asection *sym_sec,
3046 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3047 Elf_Internal_Rela *rel,
3048 bfd_vma symval,
3049 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3050 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3051 bfd_boolean *again ATTRIBUTE_UNUSED,
3052 riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED)
3053 {
3054 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3055 bfd_vma alignment = 1, pos;
3056 while (alignment <= rel->r_addend)
3057 alignment *= 2;
3058
3059 symval -= rel->r_addend;
3060 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
3061 bfd_vma nop_bytes = aligned_addr - symval;
3062
3063 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3064 sec->sec_flg0 = TRUE;
3065
3066 /* Make sure there are enough NOPs to actually achieve the alignment. */
3067 if (rel->r_addend < nop_bytes)
3068 {
3069 (*_bfd_error_handler)
3070 (_("%B(%A+0x%lx): %d bytes required for alignment "
3071 "to %d-byte boundary, but only %d present"),
3072 abfd, sym_sec, rel->r_offset, nop_bytes, alignment, rel->r_addend);
3073 bfd_set_error (bfd_error_bad_value);
3074 return FALSE;
3075 }
3076
3077 /* Delete the reloc. */
3078 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3079
3080 /* If the number of NOPs is already correct, there's nothing to do. */
3081 if (nop_bytes == rel->r_addend)
3082 return TRUE;
3083
3084 /* Write as many RISC-V NOPs as we need. */
3085 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
3086 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
3087
3088 /* Write a final RVC NOP if need be. */
3089 if (nop_bytes % 4 != 0)
3090 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
3091
3092 /* Delete the excess bytes. */
3093 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
3094 rel->r_addend - nop_bytes);
3095 }
3096
3097 /* Relax PC-relative references to GP-relative references. */
3098
3099 static bfd_boolean
3100 _bfd_riscv_relax_pc (bfd *abfd,
3101 asection *sec,
3102 asection *sym_sec,
3103 struct bfd_link_info *link_info,
3104 Elf_Internal_Rela *rel,
3105 bfd_vma symval,
3106 bfd_vma max_alignment,
3107 bfd_vma reserve_size,
3108 bfd_boolean *again ATTRIBUTE_UNUSED,
3109 riscv_pcgp_relocs *pcgp_relocs)
3110 {
3111 bfd_vma gp = riscv_global_pointer_value (link_info);
3112
3113 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3114
3115 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
3116 * actual target address. */
3117 riscv_pcgp_hi_reloc hi_reloc = {0};
3118 switch (ELFNN_R_TYPE (rel->r_info))
3119 {
3120 case R_RISCV_PCREL_LO12_I:
3121 case R_RISCV_PCREL_LO12_S:
3122 {
3123 riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs,
3124 symval - sec_addr(sym_sec));
3125 if (hi == NULL)
3126 {
3127 riscv_record_pcgp_lo_reloc (pcgp_relocs, symval - sec_addr(sym_sec));
3128 return TRUE;
3129 }
3130
3131 hi_reloc = *hi;
3132 symval = hi_reloc.hi_addr;
3133 sym_sec = hi_reloc.sym_sec;
3134 if (!riscv_use_pcgp_hi_reloc(pcgp_relocs, hi->hi_sec_off))
3135 (*_bfd_error_handler)
3136 (_("%B(%A+0x%lx): Unable to clear RISCV_PCREL_HI20 reloc"
3137 "for cooresponding RISCV_PCREL_LO12 reloc"),
3138 abfd, sec, rel->r_offset);
3139 }
3140 break;
3141
3142 case R_RISCV_PCREL_HI20:
3143 /* Mergeable symbols and code might later move out of range. */
3144 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3145 return TRUE;
3146
3147 /* If the cooresponding lo relocation has already been seen then it's not
3148 * safe to relax this relocation. */
3149 if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset))
3150 return TRUE;
3151
3152 break;
3153
3154 default:
3155 abort ();
3156 }
3157
3158 if (gp)
3159 {
3160 /* If gp and the symbol are in the same output section, then
3161 consider only that section's alignment. */
3162 struct bfd_link_hash_entry *h =
3163 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
3164 if (h->u.def.section->output_section == sym_sec->output_section)
3165 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3166 }
3167
3168 /* Is the reference in range of x0 or gp?
3169 Valid gp range conservatively because of alignment issue. */
3170 if (VALID_ITYPE_IMM (symval)
3171 || (symval >= gp
3172 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3173 || (symval < gp
3174 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
3175 {
3176 unsigned sym = hi_reloc.hi_sym;
3177 switch (ELFNN_R_TYPE (rel->r_info))
3178 {
3179 case R_RISCV_PCREL_LO12_I:
3180 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3181 rel->r_addend += hi_reloc.hi_addend;
3182 return riscv_delete_pcgp_lo_reloc (pcgp_relocs, rel->r_offset, 4);
3183
3184 case R_RISCV_PCREL_LO12_S:
3185 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3186 rel->r_addend += hi_reloc.hi_addend;
3187 return riscv_delete_pcgp_lo_reloc (pcgp_relocs, rel->r_offset, 4);
3188
3189 case R_RISCV_PCREL_HI20:
3190 riscv_record_pcgp_hi_reloc (pcgp_relocs,
3191 rel->r_offset,
3192 rel->r_addend,
3193 symval,
3194 ELFNN_R_SYM(rel->r_info),
3195 sym_sec);
3196 /* We can delete the unnecessary AUIPC and reloc. */
3197 rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE);
3198 rel->r_addend = 4;
3199 return riscv_delete_pcgp_hi_reloc (pcgp_relocs, rel->r_offset);
3200
3201 default:
3202 abort ();
3203 }
3204 }
3205
3206 return TRUE;
3207 }
3208
3209 /* Relax PC-relative references to GP-relative references. */
3210
3211 static bfd_boolean
3212 _bfd_riscv_relax_delete (bfd *abfd,
3213 asection *sec,
3214 asection *sym_sec ATTRIBUTE_UNUSED,
3215 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3216 Elf_Internal_Rela *rel,
3217 bfd_vma symval ATTRIBUTE_UNUSED,
3218 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3219 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3220 bfd_boolean *again ATTRIBUTE_UNUSED,
3221 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
3222 {
3223 if (!riscv_relax_delete_bytes(abfd, sec, rel->r_offset, rel->r_addend))
3224 return FALSE;
3225 rel->r_info = ELFNN_R_INFO(0, R_RISCV_NONE);
3226 return TRUE;
3227 }
3228
3229 /* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1
3230 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be
3231 disabled, handles code alignment directives. */
3232
3233 static bfd_boolean
3234 _bfd_riscv_relax_section (bfd *abfd, asection *sec,
3235 struct bfd_link_info *info,
3236 bfd_boolean *again)
3237 {
3238 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
3239 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
3240 struct bfd_elf_section_data *data = elf_section_data (sec);
3241 Elf_Internal_Rela *relocs;
3242 bfd_boolean ret = FALSE;
3243 unsigned int i;
3244 bfd_vma max_alignment, reserve_size = 0;
3245 riscv_pcgp_relocs pcgp_relocs;
3246
3247 *again = FALSE;
3248
3249 if (bfd_link_relocatable (info)
3250 || sec->sec_flg0
3251 || (sec->flags & SEC_RELOC) == 0
3252 || sec->reloc_count == 0
3253 || (info->disable_target_specific_optimizations
3254 && info->relax_pass == 0))
3255 return TRUE;
3256
3257 riscv_init_pcgp_relocs (&pcgp_relocs);
3258
3259 /* Read this BFD's relocs if we haven't done so already. */
3260 if (data->relocs)
3261 relocs = data->relocs;
3262 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3263 info->keep_memory)))
3264 goto fail;
3265
3266 if (htab)
3267 {
3268 max_alignment = htab->max_alignment;
3269 if (max_alignment == (bfd_vma) -1)
3270 {
3271 max_alignment = _bfd_riscv_get_max_alignment (sec);
3272 htab->max_alignment = max_alignment;
3273 }
3274 }
3275 else
3276 max_alignment = _bfd_riscv_get_max_alignment (sec);
3277
3278 /* Examine and consider relaxing each reloc. */
3279 for (i = 0; i < sec->reloc_count; i++)
3280 {
3281 asection *sym_sec;
3282 Elf_Internal_Rela *rel = relocs + i;
3283 relax_func_t relax_func;
3284 int type = ELFNN_R_TYPE (rel->r_info);
3285 bfd_vma symval;
3286
3287 relax_func = NULL;
3288 if (info->relax_pass == 0)
3289 {
3290 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
3291 relax_func = _bfd_riscv_relax_call;
3292 else if (type == R_RISCV_HI20
3293 || type == R_RISCV_LO12_I
3294 || type == R_RISCV_LO12_S)
3295 relax_func = _bfd_riscv_relax_lui;
3296 else if (!bfd_link_pic(info)
3297 && (type == R_RISCV_PCREL_HI20
3298 || type == R_RISCV_PCREL_LO12_I
3299 || type == R_RISCV_PCREL_LO12_S))
3300 relax_func = _bfd_riscv_relax_pc;
3301 else if (type == R_RISCV_TPREL_HI20
3302 || type == R_RISCV_TPREL_ADD
3303 || type == R_RISCV_TPREL_LO12_I
3304 || type == R_RISCV_TPREL_LO12_S)
3305 relax_func = _bfd_riscv_relax_tls_le;
3306 else
3307 continue;
3308
3309 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
3310 if (i == sec->reloc_count - 1
3311 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
3312 || rel->r_offset != (rel + 1)->r_offset)
3313 continue;
3314
3315 /* Skip over the R_RISCV_RELAX. */
3316 i++;
3317 }
3318 else if (info->relax_pass == 1 && type == R_RISCV_DELETE)
3319 relax_func = _bfd_riscv_relax_delete;
3320 else if (info->relax_pass == 2 && type == R_RISCV_ALIGN)
3321 relax_func = _bfd_riscv_relax_align;
3322 else
3323 continue;
3324
3325 data->relocs = relocs;
3326
3327 /* Read this BFD's contents if we haven't done so already. */
3328 if (!data->this_hdr.contents
3329 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
3330 goto fail;
3331
3332 /* Read this BFD's symbols if we haven't done so already. */
3333 if (symtab_hdr->sh_info != 0
3334 && !symtab_hdr->contents
3335 && !(symtab_hdr->contents =
3336 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
3337 symtab_hdr->sh_info,
3338 0, NULL, NULL, NULL)))
3339 goto fail;
3340
3341 /* Get the value of the symbol referred to by the reloc. */
3342 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
3343 {
3344 /* A local symbol. */
3345 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
3346 + ELFNN_R_SYM (rel->r_info));
3347 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
3348 ? 0 : isym->st_size - rel->r_addend;
3349
3350 if (isym->st_shndx == SHN_UNDEF)
3351 sym_sec = sec, symval = sec_addr (sec) + rel->r_offset;
3352 else
3353 {
3354 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
3355 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
3356 if (sec_addr (sym_sec) == 0)
3357 continue;
3358 symval = sec_addr (sym_sec) + isym->st_value;
3359 }
3360 }
3361 else
3362 {
3363 unsigned long indx;
3364 struct elf_link_hash_entry *h;
3365
3366 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
3367 h = elf_sym_hashes (abfd)[indx];
3368
3369 while (h->root.type == bfd_link_hash_indirect
3370 || h->root.type == bfd_link_hash_warning)
3371 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3372
3373 if (h->plt.offset != MINUS_ONE)
3374 symval = sec_addr (htab->elf.splt) + h->plt.offset;
3375 else if (h->root.u.def.section->output_section == NULL
3376 || (h->root.type != bfd_link_hash_defined
3377 && h->root.type != bfd_link_hash_defweak))
3378 continue;
3379 else
3380 symval = sec_addr (h->root.u.def.section) + h->root.u.def.value;
3381
3382 if (h->type != STT_FUNC)
3383 reserve_size =
3384 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
3385 sym_sec = h->root.u.def.section;
3386 }
3387
3388 symval += rel->r_addend;
3389
3390 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
3391 max_alignment, reserve_size, again,
3392 &pcgp_relocs))
3393 goto fail;
3394 }
3395
3396 ret = TRUE;
3397
3398 fail:
3399 if (relocs != data->relocs)
3400 free (relocs);
3401 riscv_free_pcgp_relocs(&pcgp_relocs, abfd, sec);
3402
3403 return ret;
3404 }
3405
3406 #if ARCH_SIZE == 32
3407 # define PRSTATUS_SIZE 0 /* FIXME */
3408 # define PRSTATUS_OFFSET_PR_CURSIG 12
3409 # define PRSTATUS_OFFSET_PR_PID 24
3410 # define PRSTATUS_OFFSET_PR_REG 72
3411 # define ELF_GREGSET_T_SIZE 128
3412 # define PRPSINFO_SIZE 128
3413 # define PRPSINFO_OFFSET_PR_PID 16
3414 # define PRPSINFO_OFFSET_PR_FNAME 32
3415 # define PRPSINFO_OFFSET_PR_PSARGS 48
3416 #else
3417 # define PRSTATUS_SIZE 376
3418 # define PRSTATUS_OFFSET_PR_CURSIG 12
3419 # define PRSTATUS_OFFSET_PR_PID 32
3420 # define PRSTATUS_OFFSET_PR_REG 112
3421 # define ELF_GREGSET_T_SIZE 256
3422 # define PRPSINFO_SIZE 136
3423 # define PRPSINFO_OFFSET_PR_PID 24
3424 # define PRPSINFO_OFFSET_PR_FNAME 40
3425 # define PRPSINFO_OFFSET_PR_PSARGS 56
3426 #endif
3427
3428 /* Support for core dump NOTE sections. */
3429
3430 static bfd_boolean
3431 riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3432 {
3433 switch (note->descsz)
3434 {
3435 default:
3436 return FALSE;
3437
3438 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
3439 /* pr_cursig */
3440 elf_tdata (abfd)->core->signal
3441 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
3442
3443 /* pr_pid */
3444 elf_tdata (abfd)->core->lwpid
3445 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
3446 break;
3447 }
3448
3449 /* Make a ".reg/999" section. */
3450 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
3451 note->descpos + PRSTATUS_OFFSET_PR_REG);
3452 }
3453
3454 static bfd_boolean
3455 riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3456 {
3457 switch (note->descsz)
3458 {
3459 default:
3460 return FALSE;
3461
3462 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
3463 /* pr_pid */
3464 elf_tdata (abfd)->core->pid
3465 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
3466
3467 /* pr_fname */
3468 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
3469 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
3470
3471 /* pr_psargs */
3472 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
3473 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
3474 break;
3475 }
3476
3477 /* Note that for some reason, a spurious space is tacked
3478 onto the end of the args in some (at least one anyway)
3479 implementations, so strip it off if it exists. */
3480
3481 {
3482 char *command = elf_tdata (abfd)->core->command;
3483 int n = strlen (command);
3484
3485 if (0 < n && command[n - 1] == ' ')
3486 command[n - 1] = '\0';
3487 }
3488
3489 return TRUE;
3490 }
3491
3492 /* Set the right mach type. */
3493 static bfd_boolean
3494 riscv_elf_object_p (bfd *abfd)
3495 {
3496 /* There are only two mach types in RISCV currently. */
3497 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0)
3498 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
3499 else
3500 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
3501
3502 return TRUE;
3503 }
3504
3505
3506 #define TARGET_LITTLE_SYM riscv_elfNN_vec
3507 #define TARGET_LITTLE_NAME "elfNN-littleriscv"
3508
3509 #define elf_backend_reloc_type_class riscv_reloc_type_class
3510
3511 #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
3512 #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
3513 #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
3514 #define bfd_elfNN_bfd_merge_private_bfd_data \
3515 _bfd_riscv_elf_merge_private_bfd_data
3516
3517 #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
3518 #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
3519 #define elf_backend_check_relocs riscv_elf_check_relocs
3520 #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
3521 #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
3522 #define elf_backend_relocate_section riscv_elf_relocate_section
3523 #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
3524 #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
3525 #define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
3526 #define elf_backend_plt_sym_val riscv_elf_plt_sym_val
3527 #define elf_backend_grok_prstatus riscv_elf_grok_prstatus
3528 #define elf_backend_grok_psinfo riscv_elf_grok_psinfo
3529 #define elf_backend_object_p riscv_elf_object_p
3530 #define elf_info_to_howto_rel NULL
3531 #define elf_info_to_howto riscv_info_to_howto_rela
3532 #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
3533
3534 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
3535
3536 #define elf_backend_can_gc_sections 1
3537 #define elf_backend_can_refcount 1
3538 #define elf_backend_want_got_plt 1
3539 #define elf_backend_plt_readonly 1
3540 #define elf_backend_plt_alignment 4
3541 #define elf_backend_want_plt_sym 1
3542 #define elf_backend_got_header_size (ARCH_SIZE / 8)
3543 #define elf_backend_want_dynrelro 1
3544 #define elf_backend_rela_normal 1
3545 #define elf_backend_default_execstack 0
3546
3547 #include "elfNN-target.h"
This page took 0.128016 seconds and 5 git commands to generate.