2007-08-24 Joseph Myers <joseph@codesourcery.com>
[deliverable/binutils-gdb.git] / bfd / elfxx-ia64.c
1 /* IA-64 support for 64-bit ELF
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "opcode/ia64.h"
28 #include "elf/ia64.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31
32 #define ARCH_SIZE NN
33
34 #if ARCH_SIZE == 64
35 #define LOG_SECTION_ALIGN 3
36 #endif
37
38 #if ARCH_SIZE == 32
39 #define LOG_SECTION_ALIGN 2
40 #endif
41
42 /* THE RULES for all the stuff the linker creates --
43
44 GOT Entries created in response to LTOFF or LTOFF_FPTR
45 relocations. Dynamic relocs created for dynamic
46 symbols in an application; REL relocs for locals
47 in a shared library.
48
49 FPTR The canonical function descriptor. Created for local
50 symbols in applications. Descriptors for dynamic symbols
51 and local symbols in shared libraries are created by
52 ld.so. Thus there are no dynamic relocs against these
53 objects. The FPTR relocs for such _are_ passed through
54 to the dynamic relocation tables.
55
56 FULL_PLT Created for a PCREL21B relocation against a dynamic symbol.
57 Requires the creation of a PLTOFF entry. This does not
58 require any dynamic relocations.
59
60 PLTOFF Created by PLTOFF relocations. For local symbols, this
61 is an alternate function descriptor, and in shared libraries
62 requires two REL relocations. Note that this cannot be
63 transformed into an FPTR relocation, since it must be in
64 range of the GP. For dynamic symbols, this is a function
65 descriptor for a MIN_PLT entry, and requires one IPLT reloc.
66
67 MIN_PLT Created by PLTOFF entries against dynamic symbols. This
68 does not require dynamic relocations. */
69
70 #define NELEMS(a) ((int) (sizeof (a) / sizeof ((a)[0])))
71
72 typedef struct bfd_hash_entry *(*new_hash_entry_func)
73 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
74
75 /* In dynamically (linker-) created sections, we generally need to keep track
76 of the place a symbol or expression got allocated to. This is done via hash
77 tables that store entries of the following type. */
78
79 struct elfNN_ia64_dyn_sym_info
80 {
81 /* The addend for which this entry is relevant. */
82 bfd_vma addend;
83
84 bfd_vma got_offset;
85 bfd_vma fptr_offset;
86 bfd_vma pltoff_offset;
87 bfd_vma plt_offset;
88 bfd_vma plt2_offset;
89 bfd_vma tprel_offset;
90 bfd_vma dtpmod_offset;
91 bfd_vma dtprel_offset;
92
93 /* The symbol table entry, if any, that this was derived from. */
94 struct elf_link_hash_entry *h;
95
96 /* Used to count non-got, non-plt relocations for delayed sizing
97 of relocation sections. */
98 struct elfNN_ia64_dyn_reloc_entry
99 {
100 struct elfNN_ia64_dyn_reloc_entry *next;
101 asection *srel;
102 int type;
103 int count;
104
105 /* Is this reloc against readonly section? */
106 bfd_boolean reltext;
107 } *reloc_entries;
108
109 /* TRUE when the section contents have been updated. */
110 unsigned got_done : 1;
111 unsigned fptr_done : 1;
112 unsigned pltoff_done : 1;
113 unsigned tprel_done : 1;
114 unsigned dtpmod_done : 1;
115 unsigned dtprel_done : 1;
116
117 /* TRUE for the different kinds of linker data we want created. */
118 unsigned want_got : 1;
119 unsigned want_gotx : 1;
120 unsigned want_fptr : 1;
121 unsigned want_ltoff_fptr : 1;
122 unsigned want_plt : 1;
123 unsigned want_plt2 : 1;
124 unsigned want_pltoff : 1;
125 unsigned want_tprel : 1;
126 unsigned want_dtpmod : 1;
127 unsigned want_dtprel : 1;
128 };
129
130 struct elfNN_ia64_local_hash_entry
131 {
132 int id;
133 unsigned int r_sym;
134 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
135 unsigned int count;
136 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
137 unsigned int sorted_count;
138 /* The size of elfNN_ia64_dyn_sym_info array. */
139 unsigned int size;
140 /* The array of elfNN_ia64_dyn_sym_info. */
141 struct elfNN_ia64_dyn_sym_info *info;
142
143 /* TRUE if this hash entry's addends was translated for
144 SHF_MERGE optimization. */
145 unsigned sec_merge_done : 1;
146 };
147
148 struct elfNN_ia64_link_hash_entry
149 {
150 struct elf_link_hash_entry root;
151 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
152 unsigned int count;
153 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
154 unsigned int sorted_count;
155 /* The size of elfNN_ia64_dyn_sym_info array. */
156 unsigned int size;
157 /* The array of elfNN_ia64_dyn_sym_info. */
158 struct elfNN_ia64_dyn_sym_info *info;
159 };
160
161 struct elfNN_ia64_link_hash_table
162 {
163 /* The main hash table. */
164 struct elf_link_hash_table root;
165
166 asection *got_sec; /* the linkage table section (or NULL) */
167 asection *rel_got_sec; /* dynamic relocation section for same */
168 asection *fptr_sec; /* function descriptor table (or NULL) */
169 asection *rel_fptr_sec; /* dynamic relocation section for same */
170 asection *plt_sec; /* the primary plt section (or NULL) */
171 asection *pltoff_sec; /* private descriptors for plt (or NULL) */
172 asection *rel_pltoff_sec; /* dynamic relocation section for same */
173
174 bfd_size_type minplt_entries; /* number of minplt entries */
175 unsigned reltext : 1; /* are there relocs against readonly sections? */
176 unsigned self_dtpmod_done : 1;/* has self DTPMOD entry been finished? */
177 bfd_vma self_dtpmod_offset; /* .got offset to self DTPMOD entry */
178
179 htab_t loc_hash_table;
180 void *loc_hash_memory;
181 };
182
183 struct elfNN_ia64_allocate_data
184 {
185 struct bfd_link_info *info;
186 bfd_size_type ofs;
187 bfd_boolean only_got;
188 };
189
190 #define elfNN_ia64_hash_table(p) \
191 ((struct elfNN_ia64_link_hash_table *) ((p)->hash))
192
193 static struct elfNN_ia64_dyn_sym_info * get_dyn_sym_info
194 (struct elfNN_ia64_link_hash_table *ia64_info,
195 struct elf_link_hash_entry *h,
196 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create);
197 static bfd_boolean elfNN_ia64_dynamic_symbol_p
198 (struct elf_link_hash_entry *h, struct bfd_link_info *info, int);
199 static bfd_reloc_status_type elfNN_ia64_install_value
200 (bfd_byte *hit_addr, bfd_vma val, unsigned int r_type);
201 static bfd_boolean elfNN_ia64_choose_gp
202 (bfd *abfd, struct bfd_link_info *info);
203 static void elfNN_ia64_relax_ldxmov
204 (bfd_byte *contents, bfd_vma off);
205 static void elfNN_ia64_dyn_sym_traverse
206 (struct elfNN_ia64_link_hash_table *ia64_info,
207 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
208 PTR info);
209 static bfd_boolean allocate_global_data_got
210 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
211 static bfd_boolean allocate_global_fptr_got
212 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
213 static bfd_boolean allocate_local_got
214 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
215 static bfd_boolean elfNN_ia64_hpux_vec
216 (const bfd_target *vec);
217 static bfd_boolean allocate_dynrel_entries
218 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
219 static asection *get_pltoff
220 (bfd *abfd, struct bfd_link_info *info,
221 struct elfNN_ia64_link_hash_table *ia64_info);
222 \f
223 /* ia64-specific relocation. */
224
225 /* Perform a relocation. Not much to do here as all the hard work is
226 done in elfNN_ia64_final_link_relocate. */
227 static bfd_reloc_status_type
228 elfNN_ia64_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc,
229 asymbol *sym ATTRIBUTE_UNUSED,
230 PTR data ATTRIBUTE_UNUSED, asection *input_section,
231 bfd *output_bfd, char **error_message)
232 {
233 if (output_bfd)
234 {
235 reloc->address += input_section->output_offset;
236 return bfd_reloc_ok;
237 }
238
239 if (input_section->flags & SEC_DEBUGGING)
240 return bfd_reloc_continue;
241
242 *error_message = "Unsupported call to elfNN_ia64_reloc";
243 return bfd_reloc_notsupported;
244 }
245
246 #define IA64_HOWTO(TYPE, NAME, SIZE, PCREL, IN) \
247 HOWTO (TYPE, 0, SIZE, 0, PCREL, 0, complain_overflow_signed, \
248 elfNN_ia64_reloc, NAME, FALSE, 0, -1, IN)
249
250 /* This table has to be sorted according to increasing number of the
251 TYPE field. */
252 static reloc_howto_type ia64_howto_table[] =
253 {
254 IA64_HOWTO (R_IA64_NONE, "NONE", 0, FALSE, TRUE),
255
256 IA64_HOWTO (R_IA64_IMM14, "IMM14", 0, FALSE, TRUE),
257 IA64_HOWTO (R_IA64_IMM22, "IMM22", 0, FALSE, TRUE),
258 IA64_HOWTO (R_IA64_IMM64, "IMM64", 0, FALSE, TRUE),
259 IA64_HOWTO (R_IA64_DIR32MSB, "DIR32MSB", 2, FALSE, TRUE),
260 IA64_HOWTO (R_IA64_DIR32LSB, "DIR32LSB", 2, FALSE, TRUE),
261 IA64_HOWTO (R_IA64_DIR64MSB, "DIR64MSB", 4, FALSE, TRUE),
262 IA64_HOWTO (R_IA64_DIR64LSB, "DIR64LSB", 4, FALSE, TRUE),
263
264 IA64_HOWTO (R_IA64_GPREL22, "GPREL22", 0, FALSE, TRUE),
265 IA64_HOWTO (R_IA64_GPREL64I, "GPREL64I", 0, FALSE, TRUE),
266 IA64_HOWTO (R_IA64_GPREL32MSB, "GPREL32MSB", 2, FALSE, TRUE),
267 IA64_HOWTO (R_IA64_GPREL32LSB, "GPREL32LSB", 2, FALSE, TRUE),
268 IA64_HOWTO (R_IA64_GPREL64MSB, "GPREL64MSB", 4, FALSE, TRUE),
269 IA64_HOWTO (R_IA64_GPREL64LSB, "GPREL64LSB", 4, FALSE, TRUE),
270
271 IA64_HOWTO (R_IA64_LTOFF22, "LTOFF22", 0, FALSE, TRUE),
272 IA64_HOWTO (R_IA64_LTOFF64I, "LTOFF64I", 0, FALSE, TRUE),
273
274 IA64_HOWTO (R_IA64_PLTOFF22, "PLTOFF22", 0, FALSE, TRUE),
275 IA64_HOWTO (R_IA64_PLTOFF64I, "PLTOFF64I", 0, FALSE, TRUE),
276 IA64_HOWTO (R_IA64_PLTOFF64MSB, "PLTOFF64MSB", 4, FALSE, TRUE),
277 IA64_HOWTO (R_IA64_PLTOFF64LSB, "PLTOFF64LSB", 4, FALSE, TRUE),
278
279 IA64_HOWTO (R_IA64_FPTR64I, "FPTR64I", 0, FALSE, TRUE),
280 IA64_HOWTO (R_IA64_FPTR32MSB, "FPTR32MSB", 2, FALSE, TRUE),
281 IA64_HOWTO (R_IA64_FPTR32LSB, "FPTR32LSB", 2, FALSE, TRUE),
282 IA64_HOWTO (R_IA64_FPTR64MSB, "FPTR64MSB", 4, FALSE, TRUE),
283 IA64_HOWTO (R_IA64_FPTR64LSB, "FPTR64LSB", 4, FALSE, TRUE),
284
285 IA64_HOWTO (R_IA64_PCREL60B, "PCREL60B", 0, TRUE, TRUE),
286 IA64_HOWTO (R_IA64_PCREL21B, "PCREL21B", 0, TRUE, TRUE),
287 IA64_HOWTO (R_IA64_PCREL21M, "PCREL21M", 0, TRUE, TRUE),
288 IA64_HOWTO (R_IA64_PCREL21F, "PCREL21F", 0, TRUE, TRUE),
289 IA64_HOWTO (R_IA64_PCREL32MSB, "PCREL32MSB", 2, TRUE, TRUE),
290 IA64_HOWTO (R_IA64_PCREL32LSB, "PCREL32LSB", 2, TRUE, TRUE),
291 IA64_HOWTO (R_IA64_PCREL64MSB, "PCREL64MSB", 4, TRUE, TRUE),
292 IA64_HOWTO (R_IA64_PCREL64LSB, "PCREL64LSB", 4, TRUE, TRUE),
293
294 IA64_HOWTO (R_IA64_LTOFF_FPTR22, "LTOFF_FPTR22", 0, FALSE, TRUE),
295 IA64_HOWTO (R_IA64_LTOFF_FPTR64I, "LTOFF_FPTR64I", 0, FALSE, TRUE),
296 IA64_HOWTO (R_IA64_LTOFF_FPTR32MSB, "LTOFF_FPTR32MSB", 2, FALSE, TRUE),
297 IA64_HOWTO (R_IA64_LTOFF_FPTR32LSB, "LTOFF_FPTR32LSB", 2, FALSE, TRUE),
298 IA64_HOWTO (R_IA64_LTOFF_FPTR64MSB, "LTOFF_FPTR64MSB", 4, FALSE, TRUE),
299 IA64_HOWTO (R_IA64_LTOFF_FPTR64LSB, "LTOFF_FPTR64LSB", 4, FALSE, TRUE),
300
301 IA64_HOWTO (R_IA64_SEGREL32MSB, "SEGREL32MSB", 2, FALSE, TRUE),
302 IA64_HOWTO (R_IA64_SEGREL32LSB, "SEGREL32LSB", 2, FALSE, TRUE),
303 IA64_HOWTO (R_IA64_SEGREL64MSB, "SEGREL64MSB", 4, FALSE, TRUE),
304 IA64_HOWTO (R_IA64_SEGREL64LSB, "SEGREL64LSB", 4, FALSE, TRUE),
305
306 IA64_HOWTO (R_IA64_SECREL32MSB, "SECREL32MSB", 2, FALSE, TRUE),
307 IA64_HOWTO (R_IA64_SECREL32LSB, "SECREL32LSB", 2, FALSE, TRUE),
308 IA64_HOWTO (R_IA64_SECREL64MSB, "SECREL64MSB", 4, FALSE, TRUE),
309 IA64_HOWTO (R_IA64_SECREL64LSB, "SECREL64LSB", 4, FALSE, TRUE),
310
311 IA64_HOWTO (R_IA64_REL32MSB, "REL32MSB", 2, FALSE, TRUE),
312 IA64_HOWTO (R_IA64_REL32LSB, "REL32LSB", 2, FALSE, TRUE),
313 IA64_HOWTO (R_IA64_REL64MSB, "REL64MSB", 4, FALSE, TRUE),
314 IA64_HOWTO (R_IA64_REL64LSB, "REL64LSB", 4, FALSE, TRUE),
315
316 IA64_HOWTO (R_IA64_LTV32MSB, "LTV32MSB", 2, FALSE, TRUE),
317 IA64_HOWTO (R_IA64_LTV32LSB, "LTV32LSB", 2, FALSE, TRUE),
318 IA64_HOWTO (R_IA64_LTV64MSB, "LTV64MSB", 4, FALSE, TRUE),
319 IA64_HOWTO (R_IA64_LTV64LSB, "LTV64LSB", 4, FALSE, TRUE),
320
321 IA64_HOWTO (R_IA64_PCREL21BI, "PCREL21BI", 0, TRUE, TRUE),
322 IA64_HOWTO (R_IA64_PCREL22, "PCREL22", 0, TRUE, TRUE),
323 IA64_HOWTO (R_IA64_PCREL64I, "PCREL64I", 0, TRUE, TRUE),
324
325 IA64_HOWTO (R_IA64_IPLTMSB, "IPLTMSB", 4, FALSE, TRUE),
326 IA64_HOWTO (R_IA64_IPLTLSB, "IPLTLSB", 4, FALSE, TRUE),
327 IA64_HOWTO (R_IA64_COPY, "COPY", 4, FALSE, TRUE),
328 IA64_HOWTO (R_IA64_LTOFF22X, "LTOFF22X", 0, FALSE, TRUE),
329 IA64_HOWTO (R_IA64_LDXMOV, "LDXMOV", 0, FALSE, TRUE),
330
331 IA64_HOWTO (R_IA64_TPREL14, "TPREL14", 0, FALSE, FALSE),
332 IA64_HOWTO (R_IA64_TPREL22, "TPREL22", 0, FALSE, FALSE),
333 IA64_HOWTO (R_IA64_TPREL64I, "TPREL64I", 0, FALSE, FALSE),
334 IA64_HOWTO (R_IA64_TPREL64MSB, "TPREL64MSB", 4, FALSE, FALSE),
335 IA64_HOWTO (R_IA64_TPREL64LSB, "TPREL64LSB", 4, FALSE, FALSE),
336 IA64_HOWTO (R_IA64_LTOFF_TPREL22, "LTOFF_TPREL22", 0, FALSE, FALSE),
337
338 IA64_HOWTO (R_IA64_DTPMOD64MSB, "DTPMOD64MSB", 4, FALSE, FALSE),
339 IA64_HOWTO (R_IA64_DTPMOD64LSB, "DTPMOD64LSB", 4, FALSE, FALSE),
340 IA64_HOWTO (R_IA64_LTOFF_DTPMOD22, "LTOFF_DTPMOD22", 0, FALSE, FALSE),
341
342 IA64_HOWTO (R_IA64_DTPREL14, "DTPREL14", 0, FALSE, FALSE),
343 IA64_HOWTO (R_IA64_DTPREL22, "DTPREL22", 0, FALSE, FALSE),
344 IA64_HOWTO (R_IA64_DTPREL64I, "DTPREL64I", 0, FALSE, FALSE),
345 IA64_HOWTO (R_IA64_DTPREL32MSB, "DTPREL32MSB", 2, FALSE, FALSE),
346 IA64_HOWTO (R_IA64_DTPREL32LSB, "DTPREL32LSB", 2, FALSE, FALSE),
347 IA64_HOWTO (R_IA64_DTPREL64MSB, "DTPREL64MSB", 4, FALSE, FALSE),
348 IA64_HOWTO (R_IA64_DTPREL64LSB, "DTPREL64LSB", 4, FALSE, FALSE),
349 IA64_HOWTO (R_IA64_LTOFF_DTPREL22, "LTOFF_DTPREL22", 0, FALSE, FALSE),
350 };
351
352 static unsigned char elf_code_to_howto_index[R_IA64_MAX_RELOC_CODE + 1];
353
354 /* Given a BFD reloc type, return the matching HOWTO structure. */
355
356 static reloc_howto_type *
357 lookup_howto (unsigned int rtype)
358 {
359 static int inited = 0;
360 int i;
361
362 if (!inited)
363 {
364 inited = 1;
365
366 memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index));
367 for (i = 0; i < NELEMS (ia64_howto_table); ++i)
368 elf_code_to_howto_index[ia64_howto_table[i].type] = i;
369 }
370
371 if (rtype > R_IA64_MAX_RELOC_CODE)
372 return 0;
373 i = elf_code_to_howto_index[rtype];
374 if (i >= NELEMS (ia64_howto_table))
375 return 0;
376 return ia64_howto_table + i;
377 }
378
379 static reloc_howto_type*
380 elfNN_ia64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
381 bfd_reloc_code_real_type bfd_code)
382 {
383 unsigned int rtype;
384
385 switch (bfd_code)
386 {
387 case BFD_RELOC_NONE: rtype = R_IA64_NONE; break;
388
389 case BFD_RELOC_IA64_IMM14: rtype = R_IA64_IMM14; break;
390 case BFD_RELOC_IA64_IMM22: rtype = R_IA64_IMM22; break;
391 case BFD_RELOC_IA64_IMM64: rtype = R_IA64_IMM64; break;
392
393 case BFD_RELOC_IA64_DIR32MSB: rtype = R_IA64_DIR32MSB; break;
394 case BFD_RELOC_IA64_DIR32LSB: rtype = R_IA64_DIR32LSB; break;
395 case BFD_RELOC_IA64_DIR64MSB: rtype = R_IA64_DIR64MSB; break;
396 case BFD_RELOC_IA64_DIR64LSB: rtype = R_IA64_DIR64LSB; break;
397
398 case BFD_RELOC_IA64_GPREL22: rtype = R_IA64_GPREL22; break;
399 case BFD_RELOC_IA64_GPREL64I: rtype = R_IA64_GPREL64I; break;
400 case BFD_RELOC_IA64_GPREL32MSB: rtype = R_IA64_GPREL32MSB; break;
401 case BFD_RELOC_IA64_GPREL32LSB: rtype = R_IA64_GPREL32LSB; break;
402 case BFD_RELOC_IA64_GPREL64MSB: rtype = R_IA64_GPREL64MSB; break;
403 case BFD_RELOC_IA64_GPREL64LSB: rtype = R_IA64_GPREL64LSB; break;
404
405 case BFD_RELOC_IA64_LTOFF22: rtype = R_IA64_LTOFF22; break;
406 case BFD_RELOC_IA64_LTOFF64I: rtype = R_IA64_LTOFF64I; break;
407
408 case BFD_RELOC_IA64_PLTOFF22: rtype = R_IA64_PLTOFF22; break;
409 case BFD_RELOC_IA64_PLTOFF64I: rtype = R_IA64_PLTOFF64I; break;
410 case BFD_RELOC_IA64_PLTOFF64MSB: rtype = R_IA64_PLTOFF64MSB; break;
411 case BFD_RELOC_IA64_PLTOFF64LSB: rtype = R_IA64_PLTOFF64LSB; break;
412 case BFD_RELOC_IA64_FPTR64I: rtype = R_IA64_FPTR64I; break;
413 case BFD_RELOC_IA64_FPTR32MSB: rtype = R_IA64_FPTR32MSB; break;
414 case BFD_RELOC_IA64_FPTR32LSB: rtype = R_IA64_FPTR32LSB; break;
415 case BFD_RELOC_IA64_FPTR64MSB: rtype = R_IA64_FPTR64MSB; break;
416 case BFD_RELOC_IA64_FPTR64LSB: rtype = R_IA64_FPTR64LSB; break;
417
418 case BFD_RELOC_IA64_PCREL21B: rtype = R_IA64_PCREL21B; break;
419 case BFD_RELOC_IA64_PCREL21BI: rtype = R_IA64_PCREL21BI; break;
420 case BFD_RELOC_IA64_PCREL21M: rtype = R_IA64_PCREL21M; break;
421 case BFD_RELOC_IA64_PCREL21F: rtype = R_IA64_PCREL21F; break;
422 case BFD_RELOC_IA64_PCREL22: rtype = R_IA64_PCREL22; break;
423 case BFD_RELOC_IA64_PCREL60B: rtype = R_IA64_PCREL60B; break;
424 case BFD_RELOC_IA64_PCREL64I: rtype = R_IA64_PCREL64I; break;
425 case BFD_RELOC_IA64_PCREL32MSB: rtype = R_IA64_PCREL32MSB; break;
426 case BFD_RELOC_IA64_PCREL32LSB: rtype = R_IA64_PCREL32LSB; break;
427 case BFD_RELOC_IA64_PCREL64MSB: rtype = R_IA64_PCREL64MSB; break;
428 case BFD_RELOC_IA64_PCREL64LSB: rtype = R_IA64_PCREL64LSB; break;
429
430 case BFD_RELOC_IA64_LTOFF_FPTR22: rtype = R_IA64_LTOFF_FPTR22; break;
431 case BFD_RELOC_IA64_LTOFF_FPTR64I: rtype = R_IA64_LTOFF_FPTR64I; break;
432 case BFD_RELOC_IA64_LTOFF_FPTR32MSB: rtype = R_IA64_LTOFF_FPTR32MSB; break;
433 case BFD_RELOC_IA64_LTOFF_FPTR32LSB: rtype = R_IA64_LTOFF_FPTR32LSB; break;
434 case BFD_RELOC_IA64_LTOFF_FPTR64MSB: rtype = R_IA64_LTOFF_FPTR64MSB; break;
435 case BFD_RELOC_IA64_LTOFF_FPTR64LSB: rtype = R_IA64_LTOFF_FPTR64LSB; break;
436
437 case BFD_RELOC_IA64_SEGREL32MSB: rtype = R_IA64_SEGREL32MSB; break;
438 case BFD_RELOC_IA64_SEGREL32LSB: rtype = R_IA64_SEGREL32LSB; break;
439 case BFD_RELOC_IA64_SEGREL64MSB: rtype = R_IA64_SEGREL64MSB; break;
440 case BFD_RELOC_IA64_SEGREL64LSB: rtype = R_IA64_SEGREL64LSB; break;
441
442 case BFD_RELOC_IA64_SECREL32MSB: rtype = R_IA64_SECREL32MSB; break;
443 case BFD_RELOC_IA64_SECREL32LSB: rtype = R_IA64_SECREL32LSB; break;
444 case BFD_RELOC_IA64_SECREL64MSB: rtype = R_IA64_SECREL64MSB; break;
445 case BFD_RELOC_IA64_SECREL64LSB: rtype = R_IA64_SECREL64LSB; break;
446
447 case BFD_RELOC_IA64_REL32MSB: rtype = R_IA64_REL32MSB; break;
448 case BFD_RELOC_IA64_REL32LSB: rtype = R_IA64_REL32LSB; break;
449 case BFD_RELOC_IA64_REL64MSB: rtype = R_IA64_REL64MSB; break;
450 case BFD_RELOC_IA64_REL64LSB: rtype = R_IA64_REL64LSB; break;
451
452 case BFD_RELOC_IA64_LTV32MSB: rtype = R_IA64_LTV32MSB; break;
453 case BFD_RELOC_IA64_LTV32LSB: rtype = R_IA64_LTV32LSB; break;
454 case BFD_RELOC_IA64_LTV64MSB: rtype = R_IA64_LTV64MSB; break;
455 case BFD_RELOC_IA64_LTV64LSB: rtype = R_IA64_LTV64LSB; break;
456
457 case BFD_RELOC_IA64_IPLTMSB: rtype = R_IA64_IPLTMSB; break;
458 case BFD_RELOC_IA64_IPLTLSB: rtype = R_IA64_IPLTLSB; break;
459 case BFD_RELOC_IA64_COPY: rtype = R_IA64_COPY; break;
460 case BFD_RELOC_IA64_LTOFF22X: rtype = R_IA64_LTOFF22X; break;
461 case BFD_RELOC_IA64_LDXMOV: rtype = R_IA64_LDXMOV; break;
462
463 case BFD_RELOC_IA64_TPREL14: rtype = R_IA64_TPREL14; break;
464 case BFD_RELOC_IA64_TPREL22: rtype = R_IA64_TPREL22; break;
465 case BFD_RELOC_IA64_TPREL64I: rtype = R_IA64_TPREL64I; break;
466 case BFD_RELOC_IA64_TPREL64MSB: rtype = R_IA64_TPREL64MSB; break;
467 case BFD_RELOC_IA64_TPREL64LSB: rtype = R_IA64_TPREL64LSB; break;
468 case BFD_RELOC_IA64_LTOFF_TPREL22: rtype = R_IA64_LTOFF_TPREL22; break;
469
470 case BFD_RELOC_IA64_DTPMOD64MSB: rtype = R_IA64_DTPMOD64MSB; break;
471 case BFD_RELOC_IA64_DTPMOD64LSB: rtype = R_IA64_DTPMOD64LSB; break;
472 case BFD_RELOC_IA64_LTOFF_DTPMOD22: rtype = R_IA64_LTOFF_DTPMOD22; break;
473
474 case BFD_RELOC_IA64_DTPREL14: rtype = R_IA64_DTPREL14; break;
475 case BFD_RELOC_IA64_DTPREL22: rtype = R_IA64_DTPREL22; break;
476 case BFD_RELOC_IA64_DTPREL64I: rtype = R_IA64_DTPREL64I; break;
477 case BFD_RELOC_IA64_DTPREL32MSB: rtype = R_IA64_DTPREL32MSB; break;
478 case BFD_RELOC_IA64_DTPREL32LSB: rtype = R_IA64_DTPREL32LSB; break;
479 case BFD_RELOC_IA64_DTPREL64MSB: rtype = R_IA64_DTPREL64MSB; break;
480 case BFD_RELOC_IA64_DTPREL64LSB: rtype = R_IA64_DTPREL64LSB; break;
481 case BFD_RELOC_IA64_LTOFF_DTPREL22: rtype = R_IA64_LTOFF_DTPREL22; break;
482
483 default: return 0;
484 }
485 return lookup_howto (rtype);
486 }
487
488 static reloc_howto_type *
489 elfNN_ia64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
490 const char *r_name)
491 {
492 unsigned int i;
493
494 for (i = 0;
495 i < sizeof (ia64_howto_table) / sizeof (ia64_howto_table[0]);
496 i++)
497 if (ia64_howto_table[i].name != NULL
498 && strcasecmp (ia64_howto_table[i].name, r_name) == 0)
499 return &ia64_howto_table[i];
500
501 return NULL;
502 }
503
504 /* Given a ELF reloc, return the matching HOWTO structure. */
505
506 static void
507 elfNN_ia64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
508 arelent *bfd_reloc,
509 Elf_Internal_Rela *elf_reloc)
510 {
511 bfd_reloc->howto
512 = lookup_howto ((unsigned int) ELFNN_R_TYPE (elf_reloc->r_info));
513 }
514 \f
515 #define PLT_HEADER_SIZE (3 * 16)
516 #define PLT_MIN_ENTRY_SIZE (1 * 16)
517 #define PLT_FULL_ENTRY_SIZE (2 * 16)
518 #define PLT_RESERVED_WORDS 3
519
520 static const bfd_byte plt_header[PLT_HEADER_SIZE] =
521 {
522 0x0b, 0x10, 0x00, 0x1c, 0x00, 0x21, /* [MMI] mov r2=r14;; */
523 0xe0, 0x00, 0x08, 0x00, 0x48, 0x00, /* addl r14=0,r2 */
524 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
525 0x0b, 0x80, 0x20, 0x1c, 0x18, 0x14, /* [MMI] ld8 r16=[r14],8;; */
526 0x10, 0x41, 0x38, 0x30, 0x28, 0x00, /* ld8 r17=[r14],8 */
527 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
528 0x11, 0x08, 0x00, 0x1c, 0x18, 0x10, /* [MIB] ld8 r1=[r14] */
529 0x60, 0x88, 0x04, 0x80, 0x03, 0x00, /* mov b6=r17 */
530 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
531 };
532
533 static const bfd_byte plt_min_entry[PLT_MIN_ENTRY_SIZE] =
534 {
535 0x11, 0x78, 0x00, 0x00, 0x00, 0x24, /* [MIB] mov r15=0 */
536 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, /* nop.i 0x0 */
537 0x00, 0x00, 0x00, 0x40 /* br.few 0 <PLT0>;; */
538 };
539
540 static const bfd_byte plt_full_entry[PLT_FULL_ENTRY_SIZE] =
541 {
542 0x0b, 0x78, 0x00, 0x02, 0x00, 0x24, /* [MMI] addl r15=0,r1;; */
543 0x00, 0x41, 0x3c, 0x70, 0x29, 0xc0, /* ld8.acq r16=[r15],8*/
544 0x01, 0x08, 0x00, 0x84, /* mov r14=r1;; */
545 0x11, 0x08, 0x00, 0x1e, 0x18, 0x10, /* [MIB] ld8 r1=[r15] */
546 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
547 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
548 };
549
550 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
551
552 static const bfd_byte oor_brl[16] =
553 {
554 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
555 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.sptk.few tgt;; */
556 0x00, 0x00, 0x00, 0xc0
557 };
558
559 static const bfd_byte oor_ip[48] =
560 {
561 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
562 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, /* movl r15=0 */
563 0x01, 0x00, 0x00, 0x60,
564 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MII] nop.m 0 */
565 0x00, 0x01, 0x00, 0x60, 0x00, 0x00, /* mov r16=ip;; */
566 0xf2, 0x80, 0x00, 0x80, /* add r16=r15,r16;; */
567 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */
568 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
569 0x60, 0x00, 0x80, 0x00 /* br b6;; */
570 };
571
572 static size_t oor_branch_size = sizeof (oor_brl);
573
574 void
575 bfd_elfNN_ia64_after_parse (int itanium)
576 {
577 oor_branch_size = itanium ? sizeof (oor_ip) : sizeof (oor_brl);
578 }
579
580 #define BTYPE_SHIFT 6
581 #define Y_SHIFT 26
582 #define X6_SHIFT 27
583 #define X4_SHIFT 27
584 #define X3_SHIFT 33
585 #define X2_SHIFT 31
586 #define X_SHIFT 33
587 #define OPCODE_SHIFT 37
588
589 #define OPCODE_BITS (0xfLL << OPCODE_SHIFT)
590 #define X6_BITS (0x3fLL << X6_SHIFT)
591 #define X4_BITS (0xfLL << X4_SHIFT)
592 #define X3_BITS (0x7LL << X3_SHIFT)
593 #define X2_BITS (0x3LL << X2_SHIFT)
594 #define X_BITS (0x1LL << X_SHIFT)
595 #define Y_BITS (0x1LL << Y_SHIFT)
596 #define BTYPE_BITS (0x7LL << BTYPE_SHIFT)
597 #define PREDICATE_BITS (0x3fLL)
598
599 #define IS_NOP_B(i) \
600 (((i) & (OPCODE_BITS | X6_BITS)) == (2LL << OPCODE_SHIFT))
601 #define IS_NOP_F(i) \
602 (((i) & (OPCODE_BITS | X_BITS | X6_BITS | Y_BITS)) \
603 == (0x1LL << X6_SHIFT))
604 #define IS_NOP_I(i) \
605 (((i) & (OPCODE_BITS | X3_BITS | X6_BITS | Y_BITS)) \
606 == (0x1LL << X6_SHIFT))
607 #define IS_NOP_M(i) \
608 (((i) & (OPCODE_BITS | X3_BITS | X2_BITS | X4_BITS | Y_BITS)) \
609 == (0x1LL << X4_SHIFT))
610 #define IS_BR_COND(i) \
611 (((i) & (OPCODE_BITS | BTYPE_BITS)) == (0x4LL << OPCODE_SHIFT))
612 #define IS_BR_CALL(i) \
613 (((i) & OPCODE_BITS) == (0x5LL << OPCODE_SHIFT))
614
615 static bfd_boolean
616 elfNN_ia64_relax_br (bfd_byte *contents, bfd_vma off)
617 {
618 unsigned int template, mlx;
619 bfd_vma t0, t1, s0, s1, s2, br_code;
620 long br_slot;
621 bfd_byte *hit_addr;
622
623 hit_addr = (bfd_byte *) (contents + off);
624 br_slot = (long) hit_addr & 0x3;
625 hit_addr -= br_slot;
626 t0 = bfd_getl64 (hit_addr + 0);
627 t1 = bfd_getl64 (hit_addr + 8);
628
629 /* Check if we can turn br into brl. A label is always at the start
630 of the bundle. Even if there are predicates on NOPs, we still
631 perform this optimization. */
632 template = t0 & 0x1e;
633 s0 = (t0 >> 5) & 0x1ffffffffffLL;
634 s1 = ((t0 >> 46) | (t1 << 18)) & 0x1ffffffffffLL;
635 s2 = (t1 >> 23) & 0x1ffffffffffLL;
636 switch (br_slot)
637 {
638 case 0:
639 /* Check if slot 1 and slot 2 are NOPs. Possible template is
640 BBB. We only need to check nop.b. */
641 if (!(IS_NOP_B (s1) && IS_NOP_B (s2)))
642 return FALSE;
643 br_code = s0;
644 break;
645 case 1:
646 /* Check if slot 2 is NOP. Possible templates are MBB and BBB.
647 For BBB, slot 0 also has to be nop.b. */
648 if (!((template == 0x12 /* MBB */
649 && IS_NOP_B (s2))
650 || (template == 0x16 /* BBB */
651 && IS_NOP_B (s0)
652 && IS_NOP_B (s2))))
653 return FALSE;
654 br_code = s1;
655 break;
656 case 2:
657 /* Check if slot 1 is NOP. Possible templates are MIB, MBB, BBB,
658 MMB and MFB. For BBB, slot 0 also has to be nop.b. */
659 if (!((template == 0x10 /* MIB */
660 && IS_NOP_I (s1))
661 || (template == 0x12 /* MBB */
662 && IS_NOP_B (s1))
663 || (template == 0x16 /* BBB */
664 && IS_NOP_B (s0)
665 && IS_NOP_B (s1))
666 || (template == 0x18 /* MMB */
667 && IS_NOP_M (s1))
668 || (template == 0x1c /* MFB */
669 && IS_NOP_F (s1))))
670 return FALSE;
671 br_code = s2;
672 break;
673 default:
674 /* It should never happen. */
675 abort ();
676 }
677
678 /* We can turn br.cond/br.call into brl.cond/brl.call. */
679 if (!(IS_BR_COND (br_code) || IS_BR_CALL (br_code)))
680 return FALSE;
681
682 /* Turn br into brl by setting bit 40. */
683 br_code |= 0x1LL << 40;
684
685 /* Turn the old bundle into a MLX bundle with the same stop-bit
686 variety. */
687 if (t0 & 0x1)
688 mlx = 0x5;
689 else
690 mlx = 0x4;
691
692 if (template == 0x16)
693 {
694 /* For BBB, we need to put nop.m in slot 0. We keep the original
695 predicate only if slot 0 isn't br. */
696 if (br_slot == 0)
697 t0 = 0LL;
698 else
699 t0 &= PREDICATE_BITS << 5;
700 t0 |= 0x1LL << (X4_SHIFT + 5);
701 }
702 else
703 {
704 /* Keep the original instruction in slot 0. */
705 t0 &= 0x1ffffffffffLL << 5;
706 }
707
708 t0 |= mlx;
709
710 /* Put brl in slot 1. */
711 t1 = br_code << 23;
712
713 bfd_putl64 (t0, hit_addr);
714 bfd_putl64 (t1, hit_addr + 8);
715 return TRUE;
716 }
717
718 static void
719 elfNN_ia64_relax_brl (bfd_byte *contents, bfd_vma off)
720 {
721 int template;
722 bfd_byte *hit_addr;
723 bfd_vma t0, t1, i0, i1, i2;
724
725 hit_addr = (bfd_byte *) (contents + off);
726 hit_addr -= (long) hit_addr & 0x3;
727 t0 = bfd_getl64 (hit_addr);
728 t1 = bfd_getl64 (hit_addr + 8);
729
730 /* Keep the instruction in slot 0. */
731 i0 = (t0 >> 5) & 0x1ffffffffffLL;
732 /* Use nop.b for slot 1. */
733 i1 = 0x4000000000LL;
734 /* For slot 2, turn brl into br by masking out bit 40. */
735 i2 = (t1 >> 23) & 0x0ffffffffffLL;
736
737 /* Turn a MLX bundle into a MBB bundle with the same stop-bit
738 variety. */
739 if (t0 & 0x1)
740 template = 0x13;
741 else
742 template = 0x12;
743 t0 = (i1 << 46) | (i0 << 5) | template;
744 t1 = (i2 << 23) | (i1 >> 18);
745
746 bfd_putl64 (t0, hit_addr);
747 bfd_putl64 (t1, hit_addr + 8);
748 }
749
750 /* Rename some of the generic section flags to better document how they
751 are used here. */
752 #define skip_relax_pass_0 need_finalize_relax
753 #define skip_relax_pass_1 has_gp_reloc
754
755 \f
756 /* These functions do relaxation for IA-64 ELF. */
757
758 static bfd_boolean
759 elfNN_ia64_relax_section (bfd *abfd, asection *sec,
760 struct bfd_link_info *link_info,
761 bfd_boolean *again)
762 {
763 struct one_fixup
764 {
765 struct one_fixup *next;
766 asection *tsec;
767 bfd_vma toff;
768 bfd_vma trampoff;
769 };
770
771 Elf_Internal_Shdr *symtab_hdr;
772 Elf_Internal_Rela *internal_relocs;
773 Elf_Internal_Rela *irel, *irelend;
774 bfd_byte *contents;
775 Elf_Internal_Sym *isymbuf = NULL;
776 struct elfNN_ia64_link_hash_table *ia64_info;
777 struct one_fixup *fixups = NULL;
778 bfd_boolean changed_contents = FALSE;
779 bfd_boolean changed_relocs = FALSE;
780 bfd_boolean changed_got = FALSE;
781 bfd_boolean skip_relax_pass_0 = TRUE;
782 bfd_boolean skip_relax_pass_1 = TRUE;
783 bfd_vma gp = 0;
784
785 /* Assume we're not going to change any sizes, and we'll only need
786 one pass. */
787 *again = FALSE;
788
789 /* Don't even try to relax for non-ELF outputs. */
790 if (!is_elf_hash_table (link_info->hash))
791 return FALSE;
792
793 /* Nothing to do if there are no relocations or there is no need for
794 the current pass. */
795 if ((sec->flags & SEC_RELOC) == 0
796 || sec->reloc_count == 0
797 || (link_info->relax_pass == 0 && sec->skip_relax_pass_0)
798 || (link_info->relax_pass == 1 && sec->skip_relax_pass_1))
799 return TRUE;
800
801 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
802
803 /* Load the relocations for this section. */
804 internal_relocs = (_bfd_elf_link_read_relocs
805 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
806 link_info->keep_memory));
807 if (internal_relocs == NULL)
808 return FALSE;
809
810 ia64_info = elfNN_ia64_hash_table (link_info);
811 irelend = internal_relocs + sec->reloc_count;
812
813 /* Get the section contents. */
814 if (elf_section_data (sec)->this_hdr.contents != NULL)
815 contents = elf_section_data (sec)->this_hdr.contents;
816 else
817 {
818 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
819 goto error_return;
820 }
821
822 for (irel = internal_relocs; irel < irelend; irel++)
823 {
824 unsigned long r_type = ELFNN_R_TYPE (irel->r_info);
825 bfd_vma symaddr, reladdr, trampoff, toff, roff;
826 asection *tsec;
827 struct one_fixup *f;
828 bfd_size_type amt;
829 bfd_boolean is_branch;
830 struct elfNN_ia64_dyn_sym_info *dyn_i;
831 char symtype;
832
833 switch (r_type)
834 {
835 case R_IA64_PCREL21B:
836 case R_IA64_PCREL21BI:
837 case R_IA64_PCREL21M:
838 case R_IA64_PCREL21F:
839 /* In pass 1, all br relaxations are done. We can skip it. */
840 if (link_info->relax_pass == 1)
841 continue;
842 skip_relax_pass_0 = FALSE;
843 is_branch = TRUE;
844 break;
845
846 case R_IA64_PCREL60B:
847 /* We can't optimize brl to br in pass 0 since br relaxations
848 will increase the code size. Defer it to pass 1. */
849 if (link_info->relax_pass == 0)
850 {
851 skip_relax_pass_1 = FALSE;
852 continue;
853 }
854 is_branch = TRUE;
855 break;
856
857 case R_IA64_LTOFF22X:
858 case R_IA64_LDXMOV:
859 /* We can't relax ldx/mov in pass 0 since br relaxations will
860 increase the code size. Defer it to pass 1. */
861 if (link_info->relax_pass == 0)
862 {
863 skip_relax_pass_1 = FALSE;
864 continue;
865 }
866 is_branch = FALSE;
867 break;
868
869 default:
870 continue;
871 }
872
873 /* Get the value of the symbol referred to by the reloc. */
874 if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info)
875 {
876 /* A local symbol. */
877 Elf_Internal_Sym *isym;
878
879 /* Read this BFD's local symbols. */
880 if (isymbuf == NULL)
881 {
882 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
883 if (isymbuf == NULL)
884 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
885 symtab_hdr->sh_info, 0,
886 NULL, NULL, NULL);
887 if (isymbuf == 0)
888 goto error_return;
889 }
890
891 isym = isymbuf + ELFNN_R_SYM (irel->r_info);
892 if (isym->st_shndx == SHN_UNDEF)
893 continue; /* We can't do anything with undefined symbols. */
894 else if (isym->st_shndx == SHN_ABS)
895 tsec = bfd_abs_section_ptr;
896 else if (isym->st_shndx == SHN_COMMON)
897 tsec = bfd_com_section_ptr;
898 else if (isym->st_shndx == SHN_IA_64_ANSI_COMMON)
899 tsec = bfd_com_section_ptr;
900 else
901 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
902
903 toff = isym->st_value;
904 dyn_i = get_dyn_sym_info (ia64_info, NULL, abfd, irel, FALSE);
905 symtype = ELF_ST_TYPE (isym->st_info);
906 }
907 else
908 {
909 unsigned long indx;
910 struct elf_link_hash_entry *h;
911
912 indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info;
913 h = elf_sym_hashes (abfd)[indx];
914 BFD_ASSERT (h != NULL);
915
916 while (h->root.type == bfd_link_hash_indirect
917 || h->root.type == bfd_link_hash_warning)
918 h = (struct elf_link_hash_entry *) h->root.u.i.link;
919
920 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, irel, FALSE);
921
922 /* For branches to dynamic symbols, we're interested instead
923 in a branch to the PLT entry. */
924 if (is_branch && dyn_i && dyn_i->want_plt2)
925 {
926 /* Internal branches shouldn't be sent to the PLT.
927 Leave this for now and we'll give an error later. */
928 if (r_type != R_IA64_PCREL21B)
929 continue;
930
931 tsec = ia64_info->plt_sec;
932 toff = dyn_i->plt2_offset;
933 BFD_ASSERT (irel->r_addend == 0);
934 }
935
936 /* Can't do anything else with dynamic symbols. */
937 else if (elfNN_ia64_dynamic_symbol_p (h, link_info, r_type))
938 continue;
939
940 else
941 {
942 /* We can't do anything with undefined symbols. */
943 if (h->root.type == bfd_link_hash_undefined
944 || h->root.type == bfd_link_hash_undefweak)
945 continue;
946
947 tsec = h->root.u.def.section;
948 toff = h->root.u.def.value;
949 }
950
951 symtype = h->type;
952 }
953
954 if (tsec->sec_info_type == ELF_INFO_TYPE_MERGE)
955 {
956 /* At this stage in linking, no SEC_MERGE symbol has been
957 adjusted, so all references to such symbols need to be
958 passed through _bfd_merged_section_offset. (Later, in
959 relocate_section, all SEC_MERGE symbols *except* for
960 section symbols have been adjusted.)
961
962 gas may reduce relocations against symbols in SEC_MERGE
963 sections to a relocation against the section symbol when
964 the original addend was zero. When the reloc is against
965 a section symbol we should include the addend in the
966 offset passed to _bfd_merged_section_offset, since the
967 location of interest is the original symbol. On the
968 other hand, an access to "sym+addend" where "sym" is not
969 a section symbol should not include the addend; Such an
970 access is presumed to be an offset from "sym"; The
971 location of interest is just "sym". */
972 if (symtype == STT_SECTION)
973 toff += irel->r_addend;
974
975 toff = _bfd_merged_section_offset (abfd, &tsec,
976 elf_section_data (tsec)->sec_info,
977 toff);
978
979 if (symtype != STT_SECTION)
980 toff += irel->r_addend;
981 }
982 else
983 toff += irel->r_addend;
984
985 symaddr = tsec->output_section->vma + tsec->output_offset + toff;
986
987 roff = irel->r_offset;
988
989 if (is_branch)
990 {
991 bfd_signed_vma offset;
992
993 reladdr = (sec->output_section->vma
994 + sec->output_offset
995 + roff) & (bfd_vma) -4;
996
997 /* If the branch is in range, no need to do anything. */
998 if ((bfd_signed_vma) (symaddr - reladdr) >= -0x1000000
999 && (bfd_signed_vma) (symaddr - reladdr) <= 0x0FFFFF0)
1000 {
1001 /* If the 60-bit branch is in 21-bit range, optimize it. */
1002 if (r_type == R_IA64_PCREL60B)
1003 {
1004 elfNN_ia64_relax_brl (contents, roff);
1005
1006 irel->r_info
1007 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1008 R_IA64_PCREL21B);
1009
1010 /* If the original relocation offset points to slot
1011 1, change it to slot 2. */
1012 if ((irel->r_offset & 3) == 1)
1013 irel->r_offset += 1;
1014 }
1015
1016 continue;
1017 }
1018 else if (r_type == R_IA64_PCREL60B)
1019 continue;
1020 else if (elfNN_ia64_relax_br (contents, roff))
1021 {
1022 irel->r_info
1023 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1024 R_IA64_PCREL60B);
1025
1026 /* Make the relocation offset point to slot 1. */
1027 irel->r_offset = (irel->r_offset & ~((bfd_vma) 0x3)) + 1;
1028 continue;
1029 }
1030
1031 /* We can't put a trampoline in a .init/.fini section. Issue
1032 an error. */
1033 if (strcmp (sec->output_section->name, ".init") == 0
1034 || strcmp (sec->output_section->name, ".fini") == 0)
1035 {
1036 (*_bfd_error_handler)
1037 (_("%B: Can't relax br at 0x%lx in section `%A'. Please use brl or indirect branch."),
1038 sec->owner, sec, (unsigned long) roff);
1039 bfd_set_error (bfd_error_bad_value);
1040 goto error_return;
1041 }
1042
1043 /* If the branch and target are in the same section, you've
1044 got one honking big section and we can't help you unless
1045 you are branching backwards. You'll get an error message
1046 later. */
1047 if (tsec == sec && toff > roff)
1048 continue;
1049
1050 /* Look for an existing fixup to this address. */
1051 for (f = fixups; f ; f = f->next)
1052 if (f->tsec == tsec && f->toff == toff)
1053 break;
1054
1055 if (f == NULL)
1056 {
1057 /* Two alternatives: If it's a branch to a PLT entry, we can
1058 make a copy of the FULL_PLT entry. Otherwise, we'll have
1059 to use a `brl' insn to get where we're going. */
1060
1061 size_t size;
1062
1063 if (tsec == ia64_info->plt_sec)
1064 size = sizeof (plt_full_entry);
1065 else
1066 size = oor_branch_size;
1067
1068 /* Resize the current section to make room for the new branch. */
1069 trampoff = (sec->size + 15) & (bfd_vma) -16;
1070
1071 /* If trampoline is out of range, there is nothing we
1072 can do. */
1073 offset = trampoff - (roff & (bfd_vma) -4);
1074 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1075 continue;
1076
1077 amt = trampoff + size;
1078 contents = (bfd_byte *) bfd_realloc (contents, amt);
1079 if (contents == NULL)
1080 goto error_return;
1081 sec->size = amt;
1082
1083 if (tsec == ia64_info->plt_sec)
1084 {
1085 memcpy (contents + trampoff, plt_full_entry, size);
1086
1087 /* Hijack the old relocation for use as the PLTOFF reloc. */
1088 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1089 R_IA64_PLTOFF22);
1090 irel->r_offset = trampoff;
1091 }
1092 else
1093 {
1094 if (size == sizeof (oor_ip))
1095 {
1096 memcpy (contents + trampoff, oor_ip, size);
1097 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1098 R_IA64_PCREL64I);
1099 irel->r_addend -= 16;
1100 irel->r_offset = trampoff + 2;
1101 }
1102 else
1103 {
1104 memcpy (contents + trampoff, oor_brl, size);
1105 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1106 R_IA64_PCREL60B);
1107 irel->r_offset = trampoff + 2;
1108 }
1109
1110 }
1111
1112 /* Record the fixup so we don't do it again this section. */
1113 f = (struct one_fixup *)
1114 bfd_malloc ((bfd_size_type) sizeof (*f));
1115 f->next = fixups;
1116 f->tsec = tsec;
1117 f->toff = toff;
1118 f->trampoff = trampoff;
1119 fixups = f;
1120 }
1121 else
1122 {
1123 /* If trampoline is out of range, there is nothing we
1124 can do. */
1125 offset = f->trampoff - (roff & (bfd_vma) -4);
1126 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1127 continue;
1128
1129 /* Nop out the reloc, since we're finalizing things here. */
1130 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1131 }
1132
1133 /* Fix up the existing branch to hit the trampoline. */
1134 if (elfNN_ia64_install_value (contents + roff, offset, r_type)
1135 != bfd_reloc_ok)
1136 goto error_return;
1137
1138 changed_contents = TRUE;
1139 changed_relocs = TRUE;
1140 }
1141 else
1142 {
1143 /* Fetch the gp. */
1144 if (gp == 0)
1145 {
1146 bfd *obfd = sec->output_section->owner;
1147 gp = _bfd_get_gp_value (obfd);
1148 if (gp == 0)
1149 {
1150 if (!elfNN_ia64_choose_gp (obfd, link_info))
1151 goto error_return;
1152 gp = _bfd_get_gp_value (obfd);
1153 }
1154 }
1155
1156 /* If the data is out of range, do nothing. */
1157 if ((bfd_signed_vma) (symaddr - gp) >= 0x200000
1158 ||(bfd_signed_vma) (symaddr - gp) < -0x200000)
1159 continue;
1160
1161 if (r_type == R_IA64_LTOFF22X)
1162 {
1163 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1164 R_IA64_GPREL22);
1165 changed_relocs = TRUE;
1166 if (dyn_i->want_gotx)
1167 {
1168 dyn_i->want_gotx = 0;
1169 changed_got |= !dyn_i->want_got;
1170 }
1171 }
1172 else
1173 {
1174 elfNN_ia64_relax_ldxmov (contents, roff);
1175 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1176 changed_contents = TRUE;
1177 changed_relocs = TRUE;
1178 }
1179 }
1180 }
1181
1182 /* ??? If we created fixups, this may push the code segment large
1183 enough that the data segment moves, which will change the GP.
1184 Reset the GP so that we re-calculate next round. We need to
1185 do this at the _beginning_ of the next round; now will not do. */
1186
1187 /* Clean up and go home. */
1188 while (fixups)
1189 {
1190 struct one_fixup *f = fixups;
1191 fixups = fixups->next;
1192 free (f);
1193 }
1194
1195 if (isymbuf != NULL
1196 && symtab_hdr->contents != (unsigned char *) isymbuf)
1197 {
1198 if (! link_info->keep_memory)
1199 free (isymbuf);
1200 else
1201 {
1202 /* Cache the symbols for elf_link_input_bfd. */
1203 symtab_hdr->contents = (unsigned char *) isymbuf;
1204 }
1205 }
1206
1207 if (contents != NULL
1208 && elf_section_data (sec)->this_hdr.contents != contents)
1209 {
1210 if (!changed_contents && !link_info->keep_memory)
1211 free (contents);
1212 else
1213 {
1214 /* Cache the section contents for elf_link_input_bfd. */
1215 elf_section_data (sec)->this_hdr.contents = contents;
1216 }
1217 }
1218
1219 if (elf_section_data (sec)->relocs != internal_relocs)
1220 {
1221 if (!changed_relocs)
1222 free (internal_relocs);
1223 else
1224 elf_section_data (sec)->relocs = internal_relocs;
1225 }
1226
1227 if (changed_got)
1228 {
1229 struct elfNN_ia64_allocate_data data;
1230 data.info = link_info;
1231 data.ofs = 0;
1232 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
1233
1234 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
1235 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
1236 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
1237 ia64_info->got_sec->size = data.ofs;
1238
1239 if (ia64_info->root.dynamic_sections_created
1240 && ia64_info->rel_got_sec != NULL)
1241 {
1242 /* Resize .rela.got. */
1243 ia64_info->rel_got_sec->size = 0;
1244 if (link_info->shared
1245 && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
1246 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
1247 data.only_got = TRUE;
1248 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries,
1249 &data);
1250 }
1251 }
1252
1253 if (link_info->relax_pass == 0)
1254 {
1255 /* Pass 0 is only needed to relax br. */
1256 sec->skip_relax_pass_0 = skip_relax_pass_0;
1257 sec->skip_relax_pass_1 = skip_relax_pass_1;
1258 }
1259
1260 *again = changed_contents || changed_relocs;
1261 return TRUE;
1262
1263 error_return:
1264 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
1265 free (isymbuf);
1266 if (contents != NULL
1267 && elf_section_data (sec)->this_hdr.contents != contents)
1268 free (contents);
1269 if (internal_relocs != NULL
1270 && elf_section_data (sec)->relocs != internal_relocs)
1271 free (internal_relocs);
1272 return FALSE;
1273 }
1274 #undef skip_relax_pass_0
1275 #undef skip_relax_pass_1
1276
1277 static void
1278 elfNN_ia64_relax_ldxmov (bfd_byte *contents, bfd_vma off)
1279 {
1280 int shift, r1, r3;
1281 bfd_vma dword, insn;
1282
1283 switch ((int)off & 0x3)
1284 {
1285 case 0: shift = 5; break;
1286 case 1: shift = 14; off += 3; break;
1287 case 2: shift = 23; off += 6; break;
1288 default:
1289 abort ();
1290 }
1291
1292 dword = bfd_getl64 (contents + off);
1293 insn = (dword >> shift) & 0x1ffffffffffLL;
1294
1295 r1 = (insn >> 6) & 127;
1296 r3 = (insn >> 20) & 127;
1297 if (r1 == r3)
1298 insn = 0x8000000; /* nop */
1299 else
1300 insn = (insn & 0x7f01fff) | 0x10800000000LL; /* (qp) mov r1 = r3 */
1301
1302 dword &= ~(0x1ffffffffffLL << shift);
1303 dword |= (insn << shift);
1304 bfd_putl64 (dword, contents + off);
1305 }
1306 \f
1307 /* Return TRUE if NAME is an unwind table section name. */
1308
1309 static inline bfd_boolean
1310 is_unwind_section_name (bfd *abfd, const char *name)
1311 {
1312 if (elfNN_ia64_hpux_vec (abfd->xvec)
1313 && !strcmp (name, ELF_STRING_ia64_unwind_hdr))
1314 return FALSE;
1315
1316 return ((CONST_STRNEQ (name, ELF_STRING_ia64_unwind)
1317 && ! CONST_STRNEQ (name, ELF_STRING_ia64_unwind_info))
1318 || CONST_STRNEQ (name, ELF_STRING_ia64_unwind_once));
1319 }
1320
1321 /* Handle an IA-64 specific section when reading an object file. This
1322 is called when bfd_section_from_shdr finds a section with an unknown
1323 type. */
1324
1325 static bfd_boolean
1326 elfNN_ia64_section_from_shdr (bfd *abfd,
1327 Elf_Internal_Shdr *hdr,
1328 const char *name,
1329 int shindex)
1330 {
1331 asection *newsect;
1332
1333 /* There ought to be a place to keep ELF backend specific flags, but
1334 at the moment there isn't one. We just keep track of the
1335 sections by their name, instead. Fortunately, the ABI gives
1336 suggested names for all the MIPS specific sections, so we will
1337 probably get away with this. */
1338 switch (hdr->sh_type)
1339 {
1340 case SHT_IA_64_UNWIND:
1341 case SHT_IA_64_HP_OPT_ANOT:
1342 break;
1343
1344 case SHT_IA_64_EXT:
1345 if (strcmp (name, ELF_STRING_ia64_archext) != 0)
1346 return FALSE;
1347 break;
1348
1349 default:
1350 return FALSE;
1351 }
1352
1353 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1354 return FALSE;
1355 newsect = hdr->bfd_section;
1356
1357 return TRUE;
1358 }
1359
1360 /* Convert IA-64 specific section flags to bfd internal section flags. */
1361
1362 /* ??? There is no bfd internal flag equivalent to the SHF_IA_64_NORECOV
1363 flag. */
1364
1365 static bfd_boolean
1366 elfNN_ia64_section_flags (flagword *flags,
1367 const Elf_Internal_Shdr *hdr)
1368 {
1369 if (hdr->sh_flags & SHF_IA_64_SHORT)
1370 *flags |= SEC_SMALL_DATA;
1371
1372 return TRUE;
1373 }
1374
1375 /* Set the correct type for an IA-64 ELF section. We do this by the
1376 section name, which is a hack, but ought to work. */
1377
1378 static bfd_boolean
1379 elfNN_ia64_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr,
1380 asection *sec)
1381 {
1382 register const char *name;
1383
1384 name = bfd_get_section_name (abfd, sec);
1385
1386 if (is_unwind_section_name (abfd, name))
1387 {
1388 /* We don't have the sections numbered at this point, so sh_info
1389 is set later, in elfNN_ia64_final_write_processing. */
1390 hdr->sh_type = SHT_IA_64_UNWIND;
1391 hdr->sh_flags |= SHF_LINK_ORDER;
1392 }
1393 else if (strcmp (name, ELF_STRING_ia64_archext) == 0)
1394 hdr->sh_type = SHT_IA_64_EXT;
1395 else if (strcmp (name, ".HP.opt_annot") == 0)
1396 hdr->sh_type = SHT_IA_64_HP_OPT_ANOT;
1397 else if (strcmp (name, ".reloc") == 0)
1398 /* This is an ugly, but unfortunately necessary hack that is
1399 needed when producing EFI binaries on IA-64. It tells
1400 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1401 containing ELF relocation info. We need this hack in order to
1402 be able to generate ELF binaries that can be translated into
1403 EFI applications (which are essentially COFF objects). Those
1404 files contain a COFF ".reloc" section inside an ELFNN object,
1405 which would normally cause BFD to segfault because it would
1406 attempt to interpret this section as containing relocation
1407 entries for section "oc". With this hack enabled, ".reloc"
1408 will be treated as a normal data section, which will avoid the
1409 segfault. However, you won't be able to create an ELFNN binary
1410 with a section named "oc" that needs relocations, but that's
1411 the kind of ugly side-effects you get when detecting section
1412 types based on their names... In practice, this limitation is
1413 unlikely to bite. */
1414 hdr->sh_type = SHT_PROGBITS;
1415
1416 if (sec->flags & SEC_SMALL_DATA)
1417 hdr->sh_flags |= SHF_IA_64_SHORT;
1418
1419 /* Some HP linkers look for the SHF_IA_64_HP_TLS flag instead of SHF_TLS. */
1420
1421 if (elfNN_ia64_hpux_vec (abfd->xvec) && (sec->flags & SHF_TLS))
1422 hdr->sh_flags |= SHF_IA_64_HP_TLS;
1423
1424 return TRUE;
1425 }
1426
1427 /* The final processing done just before writing out an IA-64 ELF
1428 object file. */
1429
1430 static void
1431 elfNN_ia64_final_write_processing (bfd *abfd,
1432 bfd_boolean linker ATTRIBUTE_UNUSED)
1433 {
1434 Elf_Internal_Shdr *hdr;
1435 asection *s;
1436
1437 for (s = abfd->sections; s; s = s->next)
1438 {
1439 hdr = &elf_section_data (s)->this_hdr;
1440 switch (hdr->sh_type)
1441 {
1442 case SHT_IA_64_UNWIND:
1443 /* The IA-64 processor-specific ABI requires setting sh_link
1444 to the unwind section, whereas HP-UX requires sh_info to
1445 do so. For maximum compatibility, we'll set both for
1446 now... */
1447 hdr->sh_info = hdr->sh_link;
1448 break;
1449 }
1450 }
1451
1452 if (! elf_flags_init (abfd))
1453 {
1454 unsigned long flags = 0;
1455
1456 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
1457 flags |= EF_IA_64_BE;
1458 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
1459 flags |= EF_IA_64_ABI64;
1460
1461 elf_elfheader(abfd)->e_flags = flags;
1462 elf_flags_init (abfd) = TRUE;
1463 }
1464 }
1465
1466 /* Hook called by the linker routine which adds symbols from an object
1467 file. We use it to put .comm items in .sbss, and not .bss. */
1468
1469 static bfd_boolean
1470 elfNN_ia64_add_symbol_hook (bfd *abfd,
1471 struct bfd_link_info *info,
1472 Elf_Internal_Sym *sym,
1473 const char **namep ATTRIBUTE_UNUSED,
1474 flagword *flagsp ATTRIBUTE_UNUSED,
1475 asection **secp,
1476 bfd_vma *valp)
1477 {
1478 if (sym->st_shndx == SHN_COMMON
1479 && !info->relocatable
1480 && sym->st_size <= elf_gp_size (abfd))
1481 {
1482 /* Common symbols less than or equal to -G nn bytes are
1483 automatically put into .sbss. */
1484
1485 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1486
1487 if (scomm == NULL)
1488 {
1489 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1490 (SEC_ALLOC
1491 | SEC_IS_COMMON
1492 | SEC_LINKER_CREATED));
1493 if (scomm == NULL)
1494 return FALSE;
1495 }
1496
1497 *secp = scomm;
1498 *valp = sym->st_size;
1499 }
1500
1501 return TRUE;
1502 }
1503
1504 /* Return the number of additional phdrs we will need. */
1505
1506 static int
1507 elfNN_ia64_additional_program_headers (bfd *abfd,
1508 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1509 {
1510 asection *s;
1511 int ret = 0;
1512
1513 /* See if we need a PT_IA_64_ARCHEXT segment. */
1514 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1515 if (s && (s->flags & SEC_LOAD))
1516 ++ret;
1517
1518 /* Count how many PT_IA_64_UNWIND segments we need. */
1519 for (s = abfd->sections; s; s = s->next)
1520 if (is_unwind_section_name (abfd, s->name) && (s->flags & SEC_LOAD))
1521 ++ret;
1522
1523 return ret;
1524 }
1525
1526 static bfd_boolean
1527 elfNN_ia64_modify_segment_map (bfd *abfd,
1528 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1529 {
1530 struct elf_segment_map *m, **pm;
1531 Elf_Internal_Shdr *hdr;
1532 asection *s;
1533
1534 /* If we need a PT_IA_64_ARCHEXT segment, it must come before
1535 all PT_LOAD segments. */
1536 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1537 if (s && (s->flags & SEC_LOAD))
1538 {
1539 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1540 if (m->p_type == PT_IA_64_ARCHEXT)
1541 break;
1542 if (m == NULL)
1543 {
1544 m = ((struct elf_segment_map *)
1545 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1546 if (m == NULL)
1547 return FALSE;
1548
1549 m->p_type = PT_IA_64_ARCHEXT;
1550 m->count = 1;
1551 m->sections[0] = s;
1552
1553 /* We want to put it after the PHDR and INTERP segments. */
1554 pm = &elf_tdata (abfd)->segment_map;
1555 while (*pm != NULL
1556 && ((*pm)->p_type == PT_PHDR
1557 || (*pm)->p_type == PT_INTERP))
1558 pm = &(*pm)->next;
1559
1560 m->next = *pm;
1561 *pm = m;
1562 }
1563 }
1564
1565 /* Install PT_IA_64_UNWIND segments, if needed. */
1566 for (s = abfd->sections; s; s = s->next)
1567 {
1568 hdr = &elf_section_data (s)->this_hdr;
1569 if (hdr->sh_type != SHT_IA_64_UNWIND)
1570 continue;
1571
1572 if (s && (s->flags & SEC_LOAD))
1573 {
1574 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1575 if (m->p_type == PT_IA_64_UNWIND)
1576 {
1577 int i;
1578
1579 /* Look through all sections in the unwind segment
1580 for a match since there may be multiple sections
1581 to a segment. */
1582 for (i = m->count - 1; i >= 0; --i)
1583 if (m->sections[i] == s)
1584 break;
1585
1586 if (i >= 0)
1587 break;
1588 }
1589
1590 if (m == NULL)
1591 {
1592 m = ((struct elf_segment_map *)
1593 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1594 if (m == NULL)
1595 return FALSE;
1596
1597 m->p_type = PT_IA_64_UNWIND;
1598 m->count = 1;
1599 m->sections[0] = s;
1600 m->next = NULL;
1601
1602 /* We want to put it last. */
1603 pm = &elf_tdata (abfd)->segment_map;
1604 while (*pm != NULL)
1605 pm = &(*pm)->next;
1606 *pm = m;
1607 }
1608 }
1609 }
1610
1611 return TRUE;
1612 }
1613
1614 /* Turn on PF_IA_64_NORECOV if needed. This involves traversing all of
1615 the input sections for each output section in the segment and testing
1616 for SHF_IA_64_NORECOV on each. */
1617
1618 static bfd_boolean
1619 elfNN_ia64_modify_program_headers (bfd *abfd,
1620 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1621 {
1622 struct elf_obj_tdata *tdata = elf_tdata (abfd);
1623 struct elf_segment_map *m;
1624 Elf_Internal_Phdr *p;
1625
1626 for (p = tdata->phdr, m = tdata->segment_map; m != NULL; m = m->next, p++)
1627 if (m->p_type == PT_LOAD)
1628 {
1629 int i;
1630 for (i = m->count - 1; i >= 0; --i)
1631 {
1632 struct bfd_link_order *order = m->sections[i]->map_head.link_order;
1633
1634 while (order != NULL)
1635 {
1636 if (order->type == bfd_indirect_link_order)
1637 {
1638 asection *is = order->u.indirect.section;
1639 bfd_vma flags = elf_section_data(is)->this_hdr.sh_flags;
1640 if (flags & SHF_IA_64_NORECOV)
1641 {
1642 p->p_flags |= PF_IA_64_NORECOV;
1643 goto found;
1644 }
1645 }
1646 order = order->next;
1647 }
1648 }
1649 found:;
1650 }
1651
1652 return TRUE;
1653 }
1654
1655 /* According to the Tahoe assembler spec, all labels starting with a
1656 '.' are local. */
1657
1658 static bfd_boolean
1659 elfNN_ia64_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
1660 const char *name)
1661 {
1662 return name[0] == '.';
1663 }
1664
1665 /* Should we do dynamic things to this symbol? */
1666
1667 static bfd_boolean
1668 elfNN_ia64_dynamic_symbol_p (struct elf_link_hash_entry *h,
1669 struct bfd_link_info *info, int r_type)
1670 {
1671 bfd_boolean ignore_protected
1672 = ((r_type & 0xf8) == 0x40 /* FPTR relocs */
1673 || (r_type & 0xf8) == 0x50); /* LTOFF_FPTR relocs */
1674
1675 return _bfd_elf_dynamic_symbol_p (h, info, ignore_protected);
1676 }
1677 \f
1678 static struct bfd_hash_entry*
1679 elfNN_ia64_new_elf_hash_entry (struct bfd_hash_entry *entry,
1680 struct bfd_hash_table *table,
1681 const char *string)
1682 {
1683 struct elfNN_ia64_link_hash_entry *ret;
1684 ret = (struct elfNN_ia64_link_hash_entry *) entry;
1685
1686 /* Allocate the structure if it has not already been allocated by a
1687 subclass. */
1688 if (!ret)
1689 ret = bfd_hash_allocate (table, sizeof (*ret));
1690
1691 if (!ret)
1692 return 0;
1693
1694 /* Call the allocation method of the superclass. */
1695 ret = ((struct elfNN_ia64_link_hash_entry *)
1696 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1697 table, string));
1698
1699 ret->info = NULL;
1700 ret->count = 0;
1701 ret->sorted_count = 0;
1702 ret->size = 0;
1703 return (struct bfd_hash_entry *) ret;
1704 }
1705
1706 static void
1707 elfNN_ia64_hash_copy_indirect (struct bfd_link_info *info,
1708 struct elf_link_hash_entry *xdir,
1709 struct elf_link_hash_entry *xind)
1710 {
1711 struct elfNN_ia64_link_hash_entry *dir, *ind;
1712
1713 dir = (struct elfNN_ia64_link_hash_entry *) xdir;
1714 ind = (struct elfNN_ia64_link_hash_entry *) xind;
1715
1716 /* Copy down any references that we may have already seen to the
1717 symbol which just became indirect. */
1718
1719 dir->root.ref_dynamic |= ind->root.ref_dynamic;
1720 dir->root.ref_regular |= ind->root.ref_regular;
1721 dir->root.ref_regular_nonweak |= ind->root.ref_regular_nonweak;
1722 dir->root.needs_plt |= ind->root.needs_plt;
1723
1724 if (ind->root.root.type != bfd_link_hash_indirect)
1725 return;
1726
1727 /* Copy over the got and plt data. This would have been done
1728 by check_relocs. */
1729
1730 if (ind->info != NULL)
1731 {
1732 struct elfNN_ia64_dyn_sym_info *dyn_i;
1733 unsigned int count;
1734
1735 if (dir->info)
1736 free (dir->info);
1737
1738 dir->info = ind->info;
1739 dir->count = ind->count;
1740 dir->sorted_count = ind->sorted_count;
1741 dir->size = ind->size;
1742
1743 ind->info = NULL;
1744 ind->count = 0;
1745 ind->sorted_count = 0;
1746 ind->size = 0;
1747
1748 /* Fix up the dyn_sym_info pointers to the global symbol. */
1749 for (count = dir->count, dyn_i = dir->info;
1750 count != 0;
1751 count--, dyn_i++)
1752 dyn_i->h = &dir->root;
1753 }
1754
1755 /* Copy over the dynindx. */
1756
1757 if (ind->root.dynindx != -1)
1758 {
1759 if (dir->root.dynindx != -1)
1760 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1761 dir->root.dynstr_index);
1762 dir->root.dynindx = ind->root.dynindx;
1763 dir->root.dynstr_index = ind->root.dynstr_index;
1764 ind->root.dynindx = -1;
1765 ind->root.dynstr_index = 0;
1766 }
1767 }
1768
1769 static void
1770 elfNN_ia64_hash_hide_symbol (struct bfd_link_info *info,
1771 struct elf_link_hash_entry *xh,
1772 bfd_boolean force_local)
1773 {
1774 struct elfNN_ia64_link_hash_entry *h;
1775 struct elfNN_ia64_dyn_sym_info *dyn_i;
1776 unsigned int count;
1777
1778 h = (struct elfNN_ia64_link_hash_entry *)xh;
1779
1780 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
1781
1782 for (count = h->count, dyn_i = h->info;
1783 count != 0;
1784 count--, dyn_i++)
1785 {
1786 dyn_i->want_plt2 = 0;
1787 dyn_i->want_plt = 0;
1788 }
1789 }
1790
1791 /* Compute a hash of a local hash entry. */
1792
1793 static hashval_t
1794 elfNN_ia64_local_htab_hash (const void *ptr)
1795 {
1796 struct elfNN_ia64_local_hash_entry *entry
1797 = (struct elfNN_ia64_local_hash_entry *) ptr;
1798
1799 return (((entry->id & 0xff) << 24) | ((entry->id & 0xff00) << 8))
1800 ^ entry->r_sym ^ (entry->id >> 16);
1801 }
1802
1803 /* Compare local hash entries. */
1804
1805 static int
1806 elfNN_ia64_local_htab_eq (const void *ptr1, const void *ptr2)
1807 {
1808 struct elfNN_ia64_local_hash_entry *entry1
1809 = (struct elfNN_ia64_local_hash_entry *) ptr1;
1810 struct elfNN_ia64_local_hash_entry *entry2
1811 = (struct elfNN_ia64_local_hash_entry *) ptr2;
1812
1813 return entry1->id == entry2->id && entry1->r_sym == entry2->r_sym;
1814 }
1815
1816 /* Create the derived linker hash table. The IA-64 ELF port uses this
1817 derived hash table to keep information specific to the IA-64 ElF
1818 linker (without using static variables). */
1819
1820 static struct bfd_link_hash_table*
1821 elfNN_ia64_hash_table_create (bfd *abfd)
1822 {
1823 struct elfNN_ia64_link_hash_table *ret;
1824
1825 ret = bfd_zmalloc ((bfd_size_type) sizeof (*ret));
1826 if (!ret)
1827 return 0;
1828
1829 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
1830 elfNN_ia64_new_elf_hash_entry,
1831 sizeof (struct elfNN_ia64_link_hash_entry)))
1832 {
1833 free (ret);
1834 return 0;
1835 }
1836
1837 ret->loc_hash_table = htab_try_create (1024, elfNN_ia64_local_htab_hash,
1838 elfNN_ia64_local_htab_eq, NULL);
1839 ret->loc_hash_memory = objalloc_create ();
1840 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1841 {
1842 free (ret);
1843 return 0;
1844 }
1845
1846 return &ret->root.root;
1847 }
1848
1849 /* Free the global elfNN_ia64_dyn_sym_info array. */
1850
1851 static bfd_boolean
1852 elfNN_ia64_global_dyn_info_free (void **xentry,
1853 PTR unused ATTRIBUTE_UNUSED)
1854 {
1855 struct elfNN_ia64_link_hash_entry *entry
1856 = (struct elfNN_ia64_link_hash_entry *) xentry;
1857
1858 if (entry->root.root.type == bfd_link_hash_warning)
1859 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1860
1861 if (entry->info)
1862 {
1863 free (entry->info);
1864 entry->info = NULL;
1865 entry->count = 0;
1866 entry->sorted_count = 0;
1867 entry->size = 0;
1868 }
1869
1870 return TRUE;
1871 }
1872
1873 /* Free the local elfNN_ia64_dyn_sym_info array. */
1874
1875 static bfd_boolean
1876 elfNN_ia64_local_dyn_info_free (void **slot,
1877 PTR unused ATTRIBUTE_UNUSED)
1878 {
1879 struct elfNN_ia64_local_hash_entry *entry
1880 = (struct elfNN_ia64_local_hash_entry *) *slot;
1881
1882 if (entry->info)
1883 {
1884 free (entry->info);
1885 entry->info = NULL;
1886 entry->count = 0;
1887 entry->sorted_count = 0;
1888 entry->size = 0;
1889 }
1890
1891 return TRUE;
1892 }
1893
1894 /* Destroy IA-64 linker hash table. */
1895
1896 static void
1897 elfNN_ia64_hash_table_free (struct bfd_link_hash_table *hash)
1898 {
1899 struct elfNN_ia64_link_hash_table *ia64_info
1900 = (struct elfNN_ia64_link_hash_table *) hash;
1901 if (ia64_info->loc_hash_table)
1902 {
1903 htab_traverse (ia64_info->loc_hash_table,
1904 elfNN_ia64_local_dyn_info_free, NULL);
1905 htab_delete (ia64_info->loc_hash_table);
1906 }
1907 if (ia64_info->loc_hash_memory)
1908 objalloc_free ((struct objalloc *) ia64_info->loc_hash_memory);
1909 elf_link_hash_traverse (&ia64_info->root,
1910 elfNN_ia64_global_dyn_info_free, NULL);
1911 _bfd_generic_link_hash_table_free (hash);
1912 }
1913
1914 /* Traverse both local and global hash tables. */
1915
1916 struct elfNN_ia64_dyn_sym_traverse_data
1917 {
1918 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR);
1919 PTR data;
1920 };
1921
1922 static bfd_boolean
1923 elfNN_ia64_global_dyn_sym_thunk (struct bfd_hash_entry *xentry,
1924 PTR xdata)
1925 {
1926 struct elfNN_ia64_link_hash_entry *entry
1927 = (struct elfNN_ia64_link_hash_entry *) xentry;
1928 struct elfNN_ia64_dyn_sym_traverse_data *data
1929 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1930 struct elfNN_ia64_dyn_sym_info *dyn_i;
1931 unsigned int count;
1932
1933 if (entry->root.root.type == bfd_link_hash_warning)
1934 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1935
1936 for (count = entry->count, dyn_i = entry->info;
1937 count != 0;
1938 count--, dyn_i++)
1939 if (! (*data->func) (dyn_i, data->data))
1940 return FALSE;
1941 return TRUE;
1942 }
1943
1944 static bfd_boolean
1945 elfNN_ia64_local_dyn_sym_thunk (void **slot, PTR xdata)
1946 {
1947 struct elfNN_ia64_local_hash_entry *entry
1948 = (struct elfNN_ia64_local_hash_entry *) *slot;
1949 struct elfNN_ia64_dyn_sym_traverse_data *data
1950 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1951 struct elfNN_ia64_dyn_sym_info *dyn_i;
1952 unsigned int count;
1953
1954 for (count = entry->count, dyn_i = entry->info;
1955 count != 0;
1956 count--, dyn_i++)
1957 if (! (*data->func) (dyn_i, data->data))
1958 return FALSE;
1959 return TRUE;
1960 }
1961
1962 static void
1963 elfNN_ia64_dyn_sym_traverse (struct elfNN_ia64_link_hash_table *ia64_info,
1964 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
1965 PTR data)
1966 {
1967 struct elfNN_ia64_dyn_sym_traverse_data xdata;
1968
1969 xdata.func = func;
1970 xdata.data = data;
1971
1972 elf_link_hash_traverse (&ia64_info->root,
1973 elfNN_ia64_global_dyn_sym_thunk, &xdata);
1974 htab_traverse (ia64_info->loc_hash_table,
1975 elfNN_ia64_local_dyn_sym_thunk, &xdata);
1976 }
1977 \f
1978 static bfd_boolean
1979 elfNN_ia64_create_dynamic_sections (bfd *abfd,
1980 struct bfd_link_info *info)
1981 {
1982 struct elfNN_ia64_link_hash_table *ia64_info;
1983 asection *s;
1984
1985 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1986 return FALSE;
1987
1988 ia64_info = elfNN_ia64_hash_table (info);
1989
1990 ia64_info->plt_sec = bfd_get_section_by_name (abfd, ".plt");
1991 ia64_info->got_sec = bfd_get_section_by_name (abfd, ".got");
1992
1993 {
1994 flagword flags = bfd_get_section_flags (abfd, ia64_info->got_sec);
1995 bfd_set_section_flags (abfd, ia64_info->got_sec, SEC_SMALL_DATA | flags);
1996 /* The .got section is always aligned at 8 bytes. */
1997 bfd_set_section_alignment (abfd, ia64_info->got_sec, 3);
1998 }
1999
2000 if (!get_pltoff (abfd, info, ia64_info))
2001 return FALSE;
2002
2003 s = bfd_make_section_with_flags (abfd, ".rela.IA_64.pltoff",
2004 (SEC_ALLOC | SEC_LOAD
2005 | SEC_HAS_CONTENTS
2006 | SEC_IN_MEMORY
2007 | SEC_LINKER_CREATED
2008 | SEC_READONLY));
2009 if (s == NULL
2010 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2011 return FALSE;
2012 ia64_info->rel_pltoff_sec = s;
2013
2014 s = bfd_make_section_with_flags (abfd, ".rela.got",
2015 (SEC_ALLOC | SEC_LOAD
2016 | SEC_HAS_CONTENTS
2017 | SEC_IN_MEMORY
2018 | SEC_LINKER_CREATED
2019 | SEC_READONLY));
2020 if (s == NULL
2021 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2022 return FALSE;
2023 ia64_info->rel_got_sec = s;
2024
2025 return TRUE;
2026 }
2027
2028 /* Find and/or create a hash entry for local symbol. */
2029 static struct elfNN_ia64_local_hash_entry *
2030 get_local_sym_hash (struct elfNN_ia64_link_hash_table *ia64_info,
2031 bfd *abfd, const Elf_Internal_Rela *rel,
2032 bfd_boolean create)
2033 {
2034 struct elfNN_ia64_local_hash_entry e, *ret;
2035 asection *sec = abfd->sections;
2036 hashval_t h = (((sec->id & 0xff) << 24) | ((sec->id & 0xff00) << 8))
2037 ^ ELFNN_R_SYM (rel->r_info) ^ (sec->id >> 16);
2038 void **slot;
2039
2040 e.id = sec->id;
2041 e.r_sym = ELFNN_R_SYM (rel->r_info);
2042 slot = htab_find_slot_with_hash (ia64_info->loc_hash_table, &e, h,
2043 create ? INSERT : NO_INSERT);
2044
2045 if (!slot)
2046 return NULL;
2047
2048 if (*slot)
2049 return (struct elfNN_ia64_local_hash_entry *) *slot;
2050
2051 ret = (struct elfNN_ia64_local_hash_entry *)
2052 objalloc_alloc ((struct objalloc *) ia64_info->loc_hash_memory,
2053 sizeof (struct elfNN_ia64_local_hash_entry));
2054 if (ret)
2055 {
2056 memset (ret, 0, sizeof (*ret));
2057 ret->id = sec->id;
2058 ret->r_sym = ELFNN_R_SYM (rel->r_info);
2059 *slot = ret;
2060 }
2061 return ret;
2062 }
2063
2064 /* Used to sort elfNN_ia64_dyn_sym_info array. */
2065
2066 static int
2067 addend_compare (const void *xp, const void *yp)
2068 {
2069 const struct elfNN_ia64_dyn_sym_info *x
2070 = (const struct elfNN_ia64_dyn_sym_info *) xp;
2071 const struct elfNN_ia64_dyn_sym_info *y
2072 = (const struct elfNN_ia64_dyn_sym_info *) yp;
2073
2074 return x->addend < y->addend ? -1 : x->addend > y->addend ? 1 : 0;
2075 }
2076
2077 /* Sort elfNN_ia64_dyn_sym_info array and remove duplicates. */
2078
2079 static unsigned int
2080 sort_dyn_sym_info (struct elfNN_ia64_dyn_sym_info *info,
2081 unsigned int count)
2082 {
2083 bfd_vma curr, prev, got_offset;
2084 unsigned int i, kept, dup, diff, dest, src, len;
2085
2086 qsort (info, count, sizeof (*info), addend_compare);
2087
2088 /* Find the first duplicate. */
2089 prev = info [0].addend;
2090 got_offset = info [0].got_offset;
2091 for (i = 1; i < count; i++)
2092 {
2093 curr = info [i].addend;
2094 if (curr == prev)
2095 {
2096 /* For duplicates, make sure that GOT_OFFSET is valid. */
2097 if (got_offset == (bfd_vma) -1)
2098 got_offset = info [i].got_offset;
2099 break;
2100 }
2101 got_offset = info [i].got_offset;
2102 prev = curr;
2103 }
2104
2105 /* We may move a block of elements to here. */
2106 dest = i++;
2107
2108 /* Remove duplicates. */
2109 if (i < count)
2110 {
2111 while (i < count)
2112 {
2113 /* For duplicates, make sure that the kept one has a valid
2114 got_offset. */
2115 kept = dest - 1;
2116 if (got_offset != (bfd_vma) -1)
2117 info [kept].got_offset = got_offset;
2118
2119 curr = info [i].addend;
2120 got_offset = info [i].got_offset;
2121
2122 /* Move a block of elements whose first one is different from
2123 the previous. */
2124 if (curr == prev)
2125 {
2126 for (src = i + 1; src < count; src++)
2127 {
2128 if (info [src].addend != curr)
2129 break;
2130 /* For duplicates, make sure that GOT_OFFSET is
2131 valid. */
2132 if (got_offset == (bfd_vma) -1)
2133 got_offset = info [src].got_offset;
2134 }
2135
2136 /* Make sure that the kept one has a valid got_offset. */
2137 if (got_offset != (bfd_vma) -1)
2138 info [kept].got_offset = got_offset;
2139 }
2140 else
2141 src = i;
2142
2143 if (src >= count)
2144 break;
2145
2146 /* Find the next duplicate. SRC will be kept. */
2147 prev = info [src].addend;
2148 got_offset = info [src].got_offset;
2149 for (dup = src + 1; dup < count; dup++)
2150 {
2151 curr = info [dup].addend;
2152 if (curr == prev)
2153 {
2154 /* Make sure that got_offset is valid. */
2155 if (got_offset == (bfd_vma) -1)
2156 got_offset = info [dup].got_offset;
2157
2158 /* For duplicates, make sure that the kept one has
2159 a valid got_offset. */
2160 if (got_offset != (bfd_vma) -1)
2161 info [dup - 1].got_offset = got_offset;
2162 break;
2163 }
2164 got_offset = info [dup].got_offset;
2165 prev = curr;
2166 }
2167
2168 /* How much to move. */
2169 len = dup - src;
2170 i = dup + 1;
2171
2172 if (len == 1 && dup < count)
2173 {
2174 /* If we only move 1 element, we combine it with the next
2175 one. There must be at least a duplicate. Find the
2176 next different one. */
2177 for (diff = dup + 1, src++; diff < count; diff++, src++)
2178 {
2179 if (info [diff].addend != curr)
2180 break;
2181 /* Make sure that got_offset is valid. */
2182 if (got_offset == (bfd_vma) -1)
2183 got_offset = info [diff].got_offset;
2184 }
2185
2186 /* Makre sure that the last duplicated one has an valid
2187 offset. */
2188 BFD_ASSERT (curr == prev);
2189 if (got_offset != (bfd_vma) -1)
2190 info [diff - 1].got_offset = got_offset;
2191
2192 if (diff < count)
2193 {
2194 /* Find the next duplicate. Track the current valid
2195 offset. */
2196 prev = info [diff].addend;
2197 got_offset = info [diff].got_offset;
2198 for (dup = diff + 1; dup < count; dup++)
2199 {
2200 curr = info [dup].addend;
2201 if (curr == prev)
2202 {
2203 /* For duplicates, make sure that GOT_OFFSET
2204 is valid. */
2205 if (got_offset == (bfd_vma) -1)
2206 got_offset = info [dup].got_offset;
2207 break;
2208 }
2209 got_offset = info [dup].got_offset;
2210 prev = curr;
2211 diff++;
2212 }
2213
2214 len = diff - src + 1;
2215 i = diff + 1;
2216 }
2217 }
2218
2219 memmove (&info [dest], &info [src], len * sizeof (*info));
2220
2221 dest += len;
2222 }
2223
2224 count = dest;
2225 }
2226 else
2227 {
2228 /* When we get here, either there is no duplicate at all or
2229 the only duplicate is the last element. */
2230 if (dest < count)
2231 {
2232 /* If the last element is a duplicate, make sure that the
2233 kept one has a valid got_offset. We also update count. */
2234 if (got_offset != (bfd_vma) -1)
2235 info [dest - 1].got_offset = got_offset;
2236 count = dest;
2237 }
2238 }
2239
2240 return count;
2241 }
2242
2243 /* Find and/or create a descriptor for dynamic symbol info. This will
2244 vary based on global or local symbol, and the addend to the reloc.
2245
2246 We don't sort when inserting. Also, we sort and eliminate
2247 duplicates if there is an unsorted section. Typically, this will
2248 only happen once, because we do all insertions before lookups. We
2249 then use bsearch to do a lookup. This also allows lookups to be
2250 fast. So we have fast insertion (O(log N) due to duplicate check),
2251 fast lookup (O(log N)) and one sort (O(N log N) expected time).
2252 Previously, all lookups were O(N) because of the use of the linked
2253 list and also all insertions were O(N) because of the check for
2254 duplicates. There are some complications here because the array
2255 size grows occasionally, which may add an O(N) factor, but this
2256 should be rare. Also, we free the excess array allocation, which
2257 requires a copy which is O(N), but this only happens once. */
2258
2259 static struct elfNN_ia64_dyn_sym_info *
2260 get_dyn_sym_info (struct elfNN_ia64_link_hash_table *ia64_info,
2261 struct elf_link_hash_entry *h, bfd *abfd,
2262 const Elf_Internal_Rela *rel, bfd_boolean create)
2263 {
2264 struct elfNN_ia64_dyn_sym_info **info_p, *info, *dyn_i, key;
2265 unsigned int *count_p, *sorted_count_p, *size_p;
2266 unsigned int count, sorted_count, size;
2267 bfd_vma addend = rel ? rel->r_addend : 0;
2268 bfd_size_type amt;
2269
2270 if (h)
2271 {
2272 struct elfNN_ia64_link_hash_entry *global_h;
2273
2274 global_h = (struct elfNN_ia64_link_hash_entry *) h;
2275 info_p = &global_h->info;
2276 count_p = &global_h->count;
2277 sorted_count_p = &global_h->sorted_count;
2278 size_p = &global_h->size;
2279 }
2280 else
2281 {
2282 struct elfNN_ia64_local_hash_entry *loc_h;
2283
2284 loc_h = get_local_sym_hash (ia64_info, abfd, rel, create);
2285 if (!loc_h)
2286 {
2287 BFD_ASSERT (!create);
2288 return NULL;
2289 }
2290
2291 info_p = &loc_h->info;
2292 count_p = &loc_h->count;
2293 sorted_count_p = &loc_h->sorted_count;
2294 size_p = &loc_h->size;
2295 }
2296
2297 count = *count_p;
2298 sorted_count = *sorted_count_p;
2299 size = *size_p;
2300 info = *info_p;
2301 if (create)
2302 {
2303 /* When we create the array, we don't check for duplicates,
2304 except in the previously sorted section if one exists, and
2305 against the last inserted entry. This allows insertions to
2306 be fast. */
2307 if (info)
2308 {
2309 if (sorted_count)
2310 {
2311 /* Try bsearch first on the sorted section. */
2312 key.addend = addend;
2313 dyn_i = bsearch (&key, info, sorted_count,
2314 sizeof (*info), addend_compare);
2315
2316 if (dyn_i)
2317 {
2318 return dyn_i;
2319 }
2320 }
2321
2322 /* Do a quick check for the last inserted entry. */
2323 dyn_i = info + count - 1;
2324 if (dyn_i->addend == addend)
2325 {
2326 return dyn_i;
2327 }
2328 }
2329
2330 if (size == 0)
2331 {
2332 /* It is the very first element. We create the array of size
2333 1. */
2334 size = 1;
2335 amt = size * sizeof (*info);
2336 info = bfd_malloc (amt);
2337 }
2338 else if (size <= count)
2339 {
2340 /* We double the array size every time when we reach the
2341 size limit. */
2342 size += size;
2343 amt = size * sizeof (*info);
2344 info = bfd_realloc (info, amt);
2345 }
2346 else
2347 goto has_space;
2348
2349 if (info == NULL)
2350 return NULL;
2351 *size_p = size;
2352 *info_p = info;
2353
2354 has_space:
2355 /* Append the new one to the array. */
2356 dyn_i = info + count;
2357 memset (dyn_i, 0, sizeof (*dyn_i));
2358 dyn_i->got_offset = (bfd_vma) -1;
2359 dyn_i->addend = addend;
2360
2361 /* We increment count only since the new ones are unsorted and
2362 may have duplicate. */
2363 (*count_p)++;
2364 }
2365 else
2366 {
2367 /* It is a lookup without insertion. Sort array if part of the
2368 array isn't sorted. */
2369 if (count != sorted_count)
2370 {
2371 count = sort_dyn_sym_info (info, count);
2372 *count_p = count;
2373 *sorted_count_p = count;
2374 }
2375
2376 /* Free unused memory. */
2377 if (size != count)
2378 {
2379 amt = count * sizeof (*info);
2380 info = bfd_malloc (amt);
2381 if (info != NULL)
2382 {
2383 memcpy (info, *info_p, amt);
2384 free (*info_p);
2385 *size_p = count;
2386 *info_p = info;
2387 }
2388 }
2389
2390 key.addend = addend;
2391 dyn_i = bsearch (&key, info, count,
2392 sizeof (*info), addend_compare);
2393 }
2394
2395 return dyn_i;
2396 }
2397
2398 static asection *
2399 get_got (bfd *abfd, struct bfd_link_info *info,
2400 struct elfNN_ia64_link_hash_table *ia64_info)
2401 {
2402 asection *got;
2403 bfd *dynobj;
2404
2405 got = ia64_info->got_sec;
2406 if (!got)
2407 {
2408 flagword flags;
2409
2410 dynobj = ia64_info->root.dynobj;
2411 if (!dynobj)
2412 ia64_info->root.dynobj = dynobj = abfd;
2413 if (!_bfd_elf_create_got_section (dynobj, info))
2414 return 0;
2415
2416 got = bfd_get_section_by_name (dynobj, ".got");
2417 BFD_ASSERT (got);
2418 ia64_info->got_sec = got;
2419
2420 /* The .got section is always aligned at 8 bytes. */
2421 if (!bfd_set_section_alignment (abfd, got, 3))
2422 return 0;
2423
2424 flags = bfd_get_section_flags (abfd, got);
2425 bfd_set_section_flags (abfd, got, SEC_SMALL_DATA | flags);
2426 }
2427
2428 return got;
2429 }
2430
2431 /* Create function descriptor section (.opd). This section is called .opd
2432 because it contains "official procedure descriptors". The "official"
2433 refers to the fact that these descriptors are used when taking the address
2434 of a procedure, thus ensuring a unique address for each procedure. */
2435
2436 static asection *
2437 get_fptr (bfd *abfd, struct bfd_link_info *info,
2438 struct elfNN_ia64_link_hash_table *ia64_info)
2439 {
2440 asection *fptr;
2441 bfd *dynobj;
2442
2443 fptr = ia64_info->fptr_sec;
2444 if (!fptr)
2445 {
2446 dynobj = ia64_info->root.dynobj;
2447 if (!dynobj)
2448 ia64_info->root.dynobj = dynobj = abfd;
2449
2450 fptr = bfd_make_section_with_flags (dynobj, ".opd",
2451 (SEC_ALLOC
2452 | SEC_LOAD
2453 | SEC_HAS_CONTENTS
2454 | SEC_IN_MEMORY
2455 | (info->pie ? 0 : SEC_READONLY)
2456 | SEC_LINKER_CREATED));
2457 if (!fptr
2458 || !bfd_set_section_alignment (abfd, fptr, 4))
2459 {
2460 BFD_ASSERT (0);
2461 return NULL;
2462 }
2463
2464 ia64_info->fptr_sec = fptr;
2465
2466 if (info->pie)
2467 {
2468 asection *fptr_rel;
2469 fptr_rel = bfd_make_section_with_flags (dynobj, ".rela.opd",
2470 (SEC_ALLOC | SEC_LOAD
2471 | SEC_HAS_CONTENTS
2472 | SEC_IN_MEMORY
2473 | SEC_LINKER_CREATED
2474 | SEC_READONLY));
2475 if (fptr_rel == NULL
2476 || !bfd_set_section_alignment (abfd, fptr_rel,
2477 LOG_SECTION_ALIGN))
2478 {
2479 BFD_ASSERT (0);
2480 return NULL;
2481 }
2482
2483 ia64_info->rel_fptr_sec = fptr_rel;
2484 }
2485 }
2486
2487 return fptr;
2488 }
2489
2490 static asection *
2491 get_pltoff (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED,
2492 struct elfNN_ia64_link_hash_table *ia64_info)
2493 {
2494 asection *pltoff;
2495 bfd *dynobj;
2496
2497 pltoff = ia64_info->pltoff_sec;
2498 if (!pltoff)
2499 {
2500 dynobj = ia64_info->root.dynobj;
2501 if (!dynobj)
2502 ia64_info->root.dynobj = dynobj = abfd;
2503
2504 pltoff = bfd_make_section_with_flags (dynobj,
2505 ELF_STRING_ia64_pltoff,
2506 (SEC_ALLOC
2507 | SEC_LOAD
2508 | SEC_HAS_CONTENTS
2509 | SEC_IN_MEMORY
2510 | SEC_SMALL_DATA
2511 | SEC_LINKER_CREATED));
2512 if (!pltoff
2513 || !bfd_set_section_alignment (abfd, pltoff, 4))
2514 {
2515 BFD_ASSERT (0);
2516 return NULL;
2517 }
2518
2519 ia64_info->pltoff_sec = pltoff;
2520 }
2521
2522 return pltoff;
2523 }
2524
2525 static asection *
2526 get_reloc_section (bfd *abfd,
2527 struct elfNN_ia64_link_hash_table *ia64_info,
2528 asection *sec, bfd_boolean create)
2529 {
2530 const char *srel_name;
2531 asection *srel;
2532 bfd *dynobj;
2533
2534 srel_name = (bfd_elf_string_from_elf_section
2535 (abfd, elf_elfheader(abfd)->e_shstrndx,
2536 elf_section_data(sec)->rel_hdr.sh_name));
2537 if (srel_name == NULL)
2538 return NULL;
2539
2540 BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
2541 && strcmp (bfd_get_section_name (abfd, sec),
2542 srel_name+5) == 0)
2543 || (CONST_STRNEQ (srel_name, ".rel")
2544 && strcmp (bfd_get_section_name (abfd, sec),
2545 srel_name+4) == 0));
2546
2547 dynobj = ia64_info->root.dynobj;
2548 if (!dynobj)
2549 ia64_info->root.dynobj = dynobj = abfd;
2550
2551 srel = bfd_get_section_by_name (dynobj, srel_name);
2552 if (srel == NULL && create)
2553 {
2554 srel = bfd_make_section_with_flags (dynobj, srel_name,
2555 (SEC_ALLOC | SEC_LOAD
2556 | SEC_HAS_CONTENTS
2557 | SEC_IN_MEMORY
2558 | SEC_LINKER_CREATED
2559 | SEC_READONLY));
2560 if (srel == NULL
2561 || !bfd_set_section_alignment (dynobj, srel,
2562 LOG_SECTION_ALIGN))
2563 return NULL;
2564 }
2565
2566 return srel;
2567 }
2568
2569 static bfd_boolean
2570 count_dyn_reloc (bfd *abfd, struct elfNN_ia64_dyn_sym_info *dyn_i,
2571 asection *srel, int type, bfd_boolean reltext)
2572 {
2573 struct elfNN_ia64_dyn_reloc_entry *rent;
2574
2575 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2576 if (rent->srel == srel && rent->type == type)
2577 break;
2578
2579 if (!rent)
2580 {
2581 rent = ((struct elfNN_ia64_dyn_reloc_entry *)
2582 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)));
2583 if (!rent)
2584 return FALSE;
2585
2586 rent->next = dyn_i->reloc_entries;
2587 rent->srel = srel;
2588 rent->type = type;
2589 rent->count = 0;
2590 dyn_i->reloc_entries = rent;
2591 }
2592 rent->reltext = reltext;
2593 rent->count++;
2594
2595 return TRUE;
2596 }
2597
2598 static bfd_boolean
2599 elfNN_ia64_check_relocs (bfd *abfd, struct bfd_link_info *info,
2600 asection *sec,
2601 const Elf_Internal_Rela *relocs)
2602 {
2603 struct elfNN_ia64_link_hash_table *ia64_info;
2604 const Elf_Internal_Rela *relend;
2605 Elf_Internal_Shdr *symtab_hdr;
2606 const Elf_Internal_Rela *rel;
2607 asection *got, *fptr, *srel, *pltoff;
2608 enum {
2609 NEED_GOT = 1,
2610 NEED_GOTX = 2,
2611 NEED_FPTR = 4,
2612 NEED_PLTOFF = 8,
2613 NEED_MIN_PLT = 16,
2614 NEED_FULL_PLT = 32,
2615 NEED_DYNREL = 64,
2616 NEED_LTOFF_FPTR = 128,
2617 NEED_TPREL = 256,
2618 NEED_DTPMOD = 512,
2619 NEED_DTPREL = 1024
2620 };
2621 int need_entry;
2622 struct elf_link_hash_entry *h;
2623 unsigned long r_symndx;
2624 bfd_boolean maybe_dynamic;
2625
2626 if (info->relocatable)
2627 return TRUE;
2628
2629 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2630 ia64_info = elfNN_ia64_hash_table (info);
2631
2632 got = fptr = srel = pltoff = NULL;
2633
2634 relend = relocs + sec->reloc_count;
2635
2636 /* We scan relocations first to create dynamic relocation arrays. We
2637 modified get_dyn_sym_info to allow fast insertion and support fast
2638 lookup in the next loop. */
2639 for (rel = relocs; rel < relend; ++rel)
2640 {
2641 r_symndx = ELFNN_R_SYM (rel->r_info);
2642 if (r_symndx >= symtab_hdr->sh_info)
2643 {
2644 long indx = r_symndx - symtab_hdr->sh_info;
2645 h = elf_sym_hashes (abfd)[indx];
2646 while (h->root.type == bfd_link_hash_indirect
2647 || h->root.type == bfd_link_hash_warning)
2648 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2649 }
2650 else
2651 h = NULL;
2652
2653 /* We can only get preliminary data on whether a symbol is
2654 locally or externally defined, as not all of the input files
2655 have yet been processed. Do something with what we know, as
2656 this may help reduce memory usage and processing time later. */
2657 maybe_dynamic = (h && ((!info->executable
2658 && (!SYMBOLIC_BIND (info, h)
2659 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2660 || !h->def_regular
2661 || h->root.type == bfd_link_hash_defweak));
2662
2663 need_entry = 0;
2664 switch (ELFNN_R_TYPE (rel->r_info))
2665 {
2666 case R_IA64_TPREL64MSB:
2667 case R_IA64_TPREL64LSB:
2668 if (info->shared || maybe_dynamic)
2669 need_entry = NEED_DYNREL;
2670 break;
2671
2672 case R_IA64_LTOFF_TPREL22:
2673 need_entry = NEED_TPREL;
2674 if (info->shared)
2675 info->flags |= DF_STATIC_TLS;
2676 break;
2677
2678 case R_IA64_DTPREL32MSB:
2679 case R_IA64_DTPREL32LSB:
2680 case R_IA64_DTPREL64MSB:
2681 case R_IA64_DTPREL64LSB:
2682 if (info->shared || maybe_dynamic)
2683 need_entry = NEED_DYNREL;
2684 break;
2685
2686 case R_IA64_LTOFF_DTPREL22:
2687 need_entry = NEED_DTPREL;
2688 break;
2689
2690 case R_IA64_DTPMOD64MSB:
2691 case R_IA64_DTPMOD64LSB:
2692 if (info->shared || maybe_dynamic)
2693 need_entry = NEED_DYNREL;
2694 break;
2695
2696 case R_IA64_LTOFF_DTPMOD22:
2697 need_entry = NEED_DTPMOD;
2698 break;
2699
2700 case R_IA64_LTOFF_FPTR22:
2701 case R_IA64_LTOFF_FPTR64I:
2702 case R_IA64_LTOFF_FPTR32MSB:
2703 case R_IA64_LTOFF_FPTR32LSB:
2704 case R_IA64_LTOFF_FPTR64MSB:
2705 case R_IA64_LTOFF_FPTR64LSB:
2706 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2707 break;
2708
2709 case R_IA64_FPTR64I:
2710 case R_IA64_FPTR32MSB:
2711 case R_IA64_FPTR32LSB:
2712 case R_IA64_FPTR64MSB:
2713 case R_IA64_FPTR64LSB:
2714 if (info->shared || h)
2715 need_entry = NEED_FPTR | NEED_DYNREL;
2716 else
2717 need_entry = NEED_FPTR;
2718 break;
2719
2720 case R_IA64_LTOFF22:
2721 case R_IA64_LTOFF64I:
2722 need_entry = NEED_GOT;
2723 break;
2724
2725 case R_IA64_LTOFF22X:
2726 need_entry = NEED_GOTX;
2727 break;
2728
2729 case R_IA64_PLTOFF22:
2730 case R_IA64_PLTOFF64I:
2731 case R_IA64_PLTOFF64MSB:
2732 case R_IA64_PLTOFF64LSB:
2733 need_entry = NEED_PLTOFF;
2734 if (h)
2735 {
2736 if (maybe_dynamic)
2737 need_entry |= NEED_MIN_PLT;
2738 }
2739 else
2740 {
2741 (*info->callbacks->warning)
2742 (info, _("@pltoff reloc against local symbol"), 0,
2743 abfd, 0, (bfd_vma) 0);
2744 }
2745 break;
2746
2747 case R_IA64_PCREL21B:
2748 case R_IA64_PCREL60B:
2749 /* Depending on where this symbol is defined, we may or may not
2750 need a full plt entry. Only skip if we know we'll not need
2751 the entry -- static or symbolic, and the symbol definition
2752 has already been seen. */
2753 if (maybe_dynamic && rel->r_addend == 0)
2754 need_entry = NEED_FULL_PLT;
2755 break;
2756
2757 case R_IA64_IMM14:
2758 case R_IA64_IMM22:
2759 case R_IA64_IMM64:
2760 case R_IA64_DIR32MSB:
2761 case R_IA64_DIR32LSB:
2762 case R_IA64_DIR64MSB:
2763 case R_IA64_DIR64LSB:
2764 /* Shared objects will always need at least a REL relocation. */
2765 if (info->shared || maybe_dynamic)
2766 need_entry = NEED_DYNREL;
2767 break;
2768
2769 case R_IA64_IPLTMSB:
2770 case R_IA64_IPLTLSB:
2771 /* Shared objects will always need at least a REL relocation. */
2772 if (info->shared || maybe_dynamic)
2773 need_entry = NEED_DYNREL;
2774 break;
2775
2776 case R_IA64_PCREL22:
2777 case R_IA64_PCREL64I:
2778 case R_IA64_PCREL32MSB:
2779 case R_IA64_PCREL32LSB:
2780 case R_IA64_PCREL64MSB:
2781 case R_IA64_PCREL64LSB:
2782 if (maybe_dynamic)
2783 need_entry = NEED_DYNREL;
2784 break;
2785 }
2786
2787 if (!need_entry)
2788 continue;
2789
2790 if ((need_entry & NEED_FPTR) != 0
2791 && rel->r_addend)
2792 {
2793 (*info->callbacks->warning)
2794 (info, _("non-zero addend in @fptr reloc"), 0,
2795 abfd, 0, (bfd_vma) 0);
2796 }
2797
2798 if (get_dyn_sym_info (ia64_info, h, abfd, rel, TRUE) == NULL)
2799 return FALSE;
2800 }
2801
2802 /* Now, we only do lookup without insertion, which is very fast
2803 with the modified get_dyn_sym_info. */
2804 for (rel = relocs; rel < relend; ++rel)
2805 {
2806 struct elfNN_ia64_dyn_sym_info *dyn_i;
2807 int dynrel_type = R_IA64_NONE;
2808
2809 r_symndx = ELFNN_R_SYM (rel->r_info);
2810 if (r_symndx >= symtab_hdr->sh_info)
2811 {
2812 /* We're dealing with a global symbol -- find its hash entry
2813 and mark it as being referenced. */
2814 long indx = r_symndx - symtab_hdr->sh_info;
2815 h = elf_sym_hashes (abfd)[indx];
2816 while (h->root.type == bfd_link_hash_indirect
2817 || h->root.type == bfd_link_hash_warning)
2818 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2819
2820 h->ref_regular = 1;
2821 }
2822 else
2823 h = NULL;
2824
2825 /* We can only get preliminary data on whether a symbol is
2826 locally or externally defined, as not all of the input files
2827 have yet been processed. Do something with what we know, as
2828 this may help reduce memory usage and processing time later. */
2829 maybe_dynamic = (h && ((!info->executable
2830 && (!SYMBOLIC_BIND (info, h)
2831 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2832 || !h->def_regular
2833 || h->root.type == bfd_link_hash_defweak));
2834
2835 need_entry = 0;
2836 switch (ELFNN_R_TYPE (rel->r_info))
2837 {
2838 case R_IA64_TPREL64MSB:
2839 case R_IA64_TPREL64LSB:
2840 if (info->shared || maybe_dynamic)
2841 need_entry = NEED_DYNREL;
2842 dynrel_type = R_IA64_TPREL64LSB;
2843 if (info->shared)
2844 info->flags |= DF_STATIC_TLS;
2845 break;
2846
2847 case R_IA64_LTOFF_TPREL22:
2848 need_entry = NEED_TPREL;
2849 if (info->shared)
2850 info->flags |= DF_STATIC_TLS;
2851 break;
2852
2853 case R_IA64_DTPREL32MSB:
2854 case R_IA64_DTPREL32LSB:
2855 case R_IA64_DTPREL64MSB:
2856 case R_IA64_DTPREL64LSB:
2857 if (info->shared || maybe_dynamic)
2858 need_entry = NEED_DYNREL;
2859 dynrel_type = R_IA64_DTPRELNNLSB;
2860 break;
2861
2862 case R_IA64_LTOFF_DTPREL22:
2863 need_entry = NEED_DTPREL;
2864 break;
2865
2866 case R_IA64_DTPMOD64MSB:
2867 case R_IA64_DTPMOD64LSB:
2868 if (info->shared || maybe_dynamic)
2869 need_entry = NEED_DYNREL;
2870 dynrel_type = R_IA64_DTPMOD64LSB;
2871 break;
2872
2873 case R_IA64_LTOFF_DTPMOD22:
2874 need_entry = NEED_DTPMOD;
2875 break;
2876
2877 case R_IA64_LTOFF_FPTR22:
2878 case R_IA64_LTOFF_FPTR64I:
2879 case R_IA64_LTOFF_FPTR32MSB:
2880 case R_IA64_LTOFF_FPTR32LSB:
2881 case R_IA64_LTOFF_FPTR64MSB:
2882 case R_IA64_LTOFF_FPTR64LSB:
2883 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2884 break;
2885
2886 case R_IA64_FPTR64I:
2887 case R_IA64_FPTR32MSB:
2888 case R_IA64_FPTR32LSB:
2889 case R_IA64_FPTR64MSB:
2890 case R_IA64_FPTR64LSB:
2891 if (info->shared || h)
2892 need_entry = NEED_FPTR | NEED_DYNREL;
2893 else
2894 need_entry = NEED_FPTR;
2895 dynrel_type = R_IA64_FPTRNNLSB;
2896 break;
2897
2898 case R_IA64_LTOFF22:
2899 case R_IA64_LTOFF64I:
2900 need_entry = NEED_GOT;
2901 break;
2902
2903 case R_IA64_LTOFF22X:
2904 need_entry = NEED_GOTX;
2905 break;
2906
2907 case R_IA64_PLTOFF22:
2908 case R_IA64_PLTOFF64I:
2909 case R_IA64_PLTOFF64MSB:
2910 case R_IA64_PLTOFF64LSB:
2911 need_entry = NEED_PLTOFF;
2912 if (h)
2913 {
2914 if (maybe_dynamic)
2915 need_entry |= NEED_MIN_PLT;
2916 }
2917 break;
2918
2919 case R_IA64_PCREL21B:
2920 case R_IA64_PCREL60B:
2921 /* Depending on where this symbol is defined, we may or may not
2922 need a full plt entry. Only skip if we know we'll not need
2923 the entry -- static or symbolic, and the symbol definition
2924 has already been seen. */
2925 if (maybe_dynamic && rel->r_addend == 0)
2926 need_entry = NEED_FULL_PLT;
2927 break;
2928
2929 case R_IA64_IMM14:
2930 case R_IA64_IMM22:
2931 case R_IA64_IMM64:
2932 case R_IA64_DIR32MSB:
2933 case R_IA64_DIR32LSB:
2934 case R_IA64_DIR64MSB:
2935 case R_IA64_DIR64LSB:
2936 /* Shared objects will always need at least a REL relocation. */
2937 if (info->shared || maybe_dynamic)
2938 need_entry = NEED_DYNREL;
2939 dynrel_type = R_IA64_DIRNNLSB;
2940 break;
2941
2942 case R_IA64_IPLTMSB:
2943 case R_IA64_IPLTLSB:
2944 /* Shared objects will always need at least a REL relocation. */
2945 if (info->shared || maybe_dynamic)
2946 need_entry = NEED_DYNREL;
2947 dynrel_type = R_IA64_IPLTLSB;
2948 break;
2949
2950 case R_IA64_PCREL22:
2951 case R_IA64_PCREL64I:
2952 case R_IA64_PCREL32MSB:
2953 case R_IA64_PCREL32LSB:
2954 case R_IA64_PCREL64MSB:
2955 case R_IA64_PCREL64LSB:
2956 if (maybe_dynamic)
2957 need_entry = NEED_DYNREL;
2958 dynrel_type = R_IA64_PCRELNNLSB;
2959 break;
2960 }
2961
2962 if (!need_entry)
2963 continue;
2964
2965 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, rel, FALSE);
2966
2967 /* Record whether or not this is a local symbol. */
2968 dyn_i->h = h;
2969
2970 /* Create what's needed. */
2971 if (need_entry & (NEED_GOT | NEED_GOTX | NEED_TPREL
2972 | NEED_DTPMOD | NEED_DTPREL))
2973 {
2974 if (!got)
2975 {
2976 got = get_got (abfd, info, ia64_info);
2977 if (!got)
2978 return FALSE;
2979 }
2980 if (need_entry & NEED_GOT)
2981 dyn_i->want_got = 1;
2982 if (need_entry & NEED_GOTX)
2983 dyn_i->want_gotx = 1;
2984 if (need_entry & NEED_TPREL)
2985 dyn_i->want_tprel = 1;
2986 if (need_entry & NEED_DTPMOD)
2987 dyn_i->want_dtpmod = 1;
2988 if (need_entry & NEED_DTPREL)
2989 dyn_i->want_dtprel = 1;
2990 }
2991 if (need_entry & NEED_FPTR)
2992 {
2993 if (!fptr)
2994 {
2995 fptr = get_fptr (abfd, info, ia64_info);
2996 if (!fptr)
2997 return FALSE;
2998 }
2999
3000 /* FPTRs for shared libraries are allocated by the dynamic
3001 linker. Make sure this local symbol will appear in the
3002 dynamic symbol table. */
3003 if (!h && info->shared)
3004 {
3005 if (! (bfd_elf_link_record_local_dynamic_symbol
3006 (info, abfd, (long) r_symndx)))
3007 return FALSE;
3008 }
3009
3010 dyn_i->want_fptr = 1;
3011 }
3012 if (need_entry & NEED_LTOFF_FPTR)
3013 dyn_i->want_ltoff_fptr = 1;
3014 if (need_entry & (NEED_MIN_PLT | NEED_FULL_PLT))
3015 {
3016 if (!ia64_info->root.dynobj)
3017 ia64_info->root.dynobj = abfd;
3018 h->needs_plt = 1;
3019 dyn_i->want_plt = 1;
3020 }
3021 if (need_entry & NEED_FULL_PLT)
3022 dyn_i->want_plt2 = 1;
3023 if (need_entry & NEED_PLTOFF)
3024 {
3025 /* This is needed here, in case @pltoff is used in a non-shared
3026 link. */
3027 if (!pltoff)
3028 {
3029 pltoff = get_pltoff (abfd, info, ia64_info);
3030 if (!pltoff)
3031 return FALSE;
3032 }
3033
3034 dyn_i->want_pltoff = 1;
3035 }
3036 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
3037 {
3038 if (!srel)
3039 {
3040 srel = get_reloc_section (abfd, ia64_info, sec, TRUE);
3041 if (!srel)
3042 return FALSE;
3043 }
3044 if (!count_dyn_reloc (abfd, dyn_i, srel, dynrel_type,
3045 (sec->flags & SEC_READONLY) != 0))
3046 return FALSE;
3047 }
3048 }
3049
3050 return TRUE;
3051 }
3052
3053 /* For cleanliness, and potentially faster dynamic loading, allocate
3054 external GOT entries first. */
3055
3056 static bfd_boolean
3057 allocate_global_data_got (struct elfNN_ia64_dyn_sym_info *dyn_i,
3058 PTR data)
3059 {
3060 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3061
3062 if ((dyn_i->want_got || dyn_i->want_gotx)
3063 && ! dyn_i->want_fptr
3064 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3065 {
3066 dyn_i->got_offset = x->ofs;
3067 x->ofs += 8;
3068 }
3069 if (dyn_i->want_tprel)
3070 {
3071 dyn_i->tprel_offset = x->ofs;
3072 x->ofs += 8;
3073 }
3074 if (dyn_i->want_dtpmod)
3075 {
3076 if (elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3077 {
3078 dyn_i->dtpmod_offset = x->ofs;
3079 x->ofs += 8;
3080 }
3081 else
3082 {
3083 struct elfNN_ia64_link_hash_table *ia64_info;
3084
3085 ia64_info = elfNN_ia64_hash_table (x->info);
3086 if (ia64_info->self_dtpmod_offset == (bfd_vma) -1)
3087 {
3088 ia64_info->self_dtpmod_offset = x->ofs;
3089 x->ofs += 8;
3090 }
3091 dyn_i->dtpmod_offset = ia64_info->self_dtpmod_offset;
3092 }
3093 }
3094 if (dyn_i->want_dtprel)
3095 {
3096 dyn_i->dtprel_offset = x->ofs;
3097 x->ofs += 8;
3098 }
3099 return TRUE;
3100 }
3101
3102 /* Next, allocate all the GOT entries used by LTOFF_FPTR relocs. */
3103
3104 static bfd_boolean
3105 allocate_global_fptr_got (struct elfNN_ia64_dyn_sym_info *dyn_i,
3106 PTR data)
3107 {
3108 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3109
3110 if (dyn_i->want_got
3111 && dyn_i->want_fptr
3112 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, R_IA64_FPTRNNLSB))
3113 {
3114 dyn_i->got_offset = x->ofs;
3115 x->ofs += 8;
3116 }
3117 return TRUE;
3118 }
3119
3120 /* Lastly, allocate all the GOT entries for local data. */
3121
3122 static bfd_boolean
3123 allocate_local_got (struct elfNN_ia64_dyn_sym_info *dyn_i,
3124 PTR data)
3125 {
3126 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3127
3128 if ((dyn_i->want_got || dyn_i->want_gotx)
3129 && !elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3130 {
3131 dyn_i->got_offset = x->ofs;
3132 x->ofs += 8;
3133 }
3134 return TRUE;
3135 }
3136
3137 /* Search for the index of a global symbol in it's defining object file. */
3138
3139 static long
3140 global_sym_index (struct elf_link_hash_entry *h)
3141 {
3142 struct elf_link_hash_entry **p;
3143 bfd *obj;
3144
3145 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3146 || h->root.type == bfd_link_hash_defweak);
3147
3148 obj = h->root.u.def.section->owner;
3149 for (p = elf_sym_hashes (obj); *p != h; ++p)
3150 continue;
3151
3152 return p - elf_sym_hashes (obj) + elf_tdata (obj)->symtab_hdr.sh_info;
3153 }
3154
3155 /* Allocate function descriptors. We can do these for every function
3156 in a main executable that is not exported. */
3157
3158 static bfd_boolean
3159 allocate_fptr (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data)
3160 {
3161 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3162
3163 if (dyn_i->want_fptr)
3164 {
3165 struct elf_link_hash_entry *h = dyn_i->h;
3166
3167 if (h)
3168 while (h->root.type == bfd_link_hash_indirect
3169 || h->root.type == bfd_link_hash_warning)
3170 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3171
3172 if (!x->info->executable
3173 && (!h
3174 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3175 || (h->root.type != bfd_link_hash_undefweak
3176 && h->root.type != bfd_link_hash_undefined)))
3177 {
3178 if (h && h->dynindx == -1)
3179 {
3180 BFD_ASSERT ((h->root.type == bfd_link_hash_defined)
3181 || (h->root.type == bfd_link_hash_defweak));
3182
3183 if (!bfd_elf_link_record_local_dynamic_symbol
3184 (x->info, h->root.u.def.section->owner,
3185 global_sym_index (h)))
3186 return FALSE;
3187 }
3188
3189 dyn_i->want_fptr = 0;
3190 }
3191 else if (h == NULL || h->dynindx == -1)
3192 {
3193 dyn_i->fptr_offset = x->ofs;
3194 x->ofs += 16;
3195 }
3196 else
3197 dyn_i->want_fptr = 0;
3198 }
3199 return TRUE;
3200 }
3201
3202 /* Allocate all the minimal PLT entries. */
3203
3204 static bfd_boolean
3205 allocate_plt_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3206 PTR data)
3207 {
3208 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3209
3210 if (dyn_i->want_plt)
3211 {
3212 struct elf_link_hash_entry *h = dyn_i->h;
3213
3214 if (h)
3215 while (h->root.type == bfd_link_hash_indirect
3216 || h->root.type == bfd_link_hash_warning)
3217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3218
3219 /* ??? Versioned symbols seem to lose NEEDS_PLT. */
3220 if (elfNN_ia64_dynamic_symbol_p (h, x->info, 0))
3221 {
3222 bfd_size_type offset = x->ofs;
3223 if (offset == 0)
3224 offset = PLT_HEADER_SIZE;
3225 dyn_i->plt_offset = offset;
3226 x->ofs = offset + PLT_MIN_ENTRY_SIZE;
3227
3228 dyn_i->want_pltoff = 1;
3229 }
3230 else
3231 {
3232 dyn_i->want_plt = 0;
3233 dyn_i->want_plt2 = 0;
3234 }
3235 }
3236 return TRUE;
3237 }
3238
3239 /* Allocate all the full PLT entries. */
3240
3241 static bfd_boolean
3242 allocate_plt2_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3243 PTR data)
3244 {
3245 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3246
3247 if (dyn_i->want_plt2)
3248 {
3249 struct elf_link_hash_entry *h = dyn_i->h;
3250 bfd_size_type ofs = x->ofs;
3251
3252 dyn_i->plt2_offset = ofs;
3253 x->ofs = ofs + PLT_FULL_ENTRY_SIZE;
3254
3255 while (h->root.type == bfd_link_hash_indirect
3256 || h->root.type == bfd_link_hash_warning)
3257 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3258 dyn_i->h->plt.offset = ofs;
3259 }
3260 return TRUE;
3261 }
3262
3263 /* Allocate all the PLTOFF entries requested by relocations and
3264 plt entries. We can't share space with allocated FPTR entries,
3265 because the latter are not necessarily addressable by the GP.
3266 ??? Relaxation might be able to determine that they are. */
3267
3268 static bfd_boolean
3269 allocate_pltoff_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3270 PTR data)
3271 {
3272 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3273
3274 if (dyn_i->want_pltoff)
3275 {
3276 dyn_i->pltoff_offset = x->ofs;
3277 x->ofs += 16;
3278 }
3279 return TRUE;
3280 }
3281
3282 /* Allocate dynamic relocations for those symbols that turned out
3283 to be dynamic. */
3284
3285 static bfd_boolean
3286 allocate_dynrel_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3287 PTR data)
3288 {
3289 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3290 struct elfNN_ia64_link_hash_table *ia64_info;
3291 struct elfNN_ia64_dyn_reloc_entry *rent;
3292 bfd_boolean dynamic_symbol, shared, resolved_zero;
3293
3294 ia64_info = elfNN_ia64_hash_table (x->info);
3295
3296 /* Note that this can't be used in relation to FPTR relocs below. */
3297 dynamic_symbol = elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0);
3298
3299 shared = x->info->shared;
3300 resolved_zero = (dyn_i->h
3301 && ELF_ST_VISIBILITY (dyn_i->h->other)
3302 && dyn_i->h->root.type == bfd_link_hash_undefweak);
3303
3304 /* Take care of the GOT and PLT relocations. */
3305
3306 if ((!resolved_zero
3307 && (dynamic_symbol || shared)
3308 && (dyn_i->want_got || dyn_i->want_gotx))
3309 || (dyn_i->want_ltoff_fptr
3310 && dyn_i->h
3311 && dyn_i->h->dynindx != -1))
3312 {
3313 if (!dyn_i->want_ltoff_fptr
3314 || !x->info->pie
3315 || dyn_i->h == NULL
3316 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3317 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3318 }
3319 if ((dynamic_symbol || shared) && dyn_i->want_tprel)
3320 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3321 if (dynamic_symbol && dyn_i->want_dtpmod)
3322 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3323 if (dynamic_symbol && dyn_i->want_dtprel)
3324 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3325
3326 if (x->only_got)
3327 return TRUE;
3328
3329 if (ia64_info->rel_fptr_sec && dyn_i->want_fptr)
3330 {
3331 if (dyn_i->h == NULL || dyn_i->h->root.type != bfd_link_hash_undefweak)
3332 ia64_info->rel_fptr_sec->size += sizeof (ElfNN_External_Rela);
3333 }
3334
3335 if (!resolved_zero && dyn_i->want_pltoff)
3336 {
3337 bfd_size_type t = 0;
3338
3339 /* Dynamic symbols get one IPLT relocation. Local symbols in
3340 shared libraries get two REL relocations. Local symbols in
3341 main applications get nothing. */
3342 if (dynamic_symbol)
3343 t = sizeof (ElfNN_External_Rela);
3344 else if (shared)
3345 t = 2 * sizeof (ElfNN_External_Rela);
3346
3347 ia64_info->rel_pltoff_sec->size += t;
3348 }
3349
3350 /* Take care of the normal data relocations. */
3351
3352 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
3353 {
3354 int count = rent->count;
3355
3356 switch (rent->type)
3357 {
3358 case R_IA64_FPTR32LSB:
3359 case R_IA64_FPTR64LSB:
3360 /* Allocate one iff !want_fptr and not PIE, which by this point
3361 will be true only if we're actually allocating one statically
3362 in the main executable. Position independent executables
3363 need a relative reloc. */
3364 if (dyn_i->want_fptr && !x->info->pie)
3365 continue;
3366 break;
3367 case R_IA64_PCREL32LSB:
3368 case R_IA64_PCREL64LSB:
3369 if (!dynamic_symbol)
3370 continue;
3371 break;
3372 case R_IA64_DIR32LSB:
3373 case R_IA64_DIR64LSB:
3374 if (!dynamic_symbol && !shared)
3375 continue;
3376 break;
3377 case R_IA64_IPLTLSB:
3378 if (!dynamic_symbol && !shared)
3379 continue;
3380 /* Use two REL relocations for IPLT relocations
3381 against local symbols. */
3382 if (!dynamic_symbol)
3383 count *= 2;
3384 break;
3385 case R_IA64_DTPREL32LSB:
3386 case R_IA64_TPREL64LSB:
3387 case R_IA64_DTPREL64LSB:
3388 case R_IA64_DTPMOD64LSB:
3389 break;
3390 default:
3391 abort ();
3392 }
3393 if (rent->reltext)
3394 ia64_info->reltext = 1;
3395 rent->srel->size += sizeof (ElfNN_External_Rela) * count;
3396 }
3397
3398 return TRUE;
3399 }
3400
3401 static bfd_boolean
3402 elfNN_ia64_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3403 struct elf_link_hash_entry *h)
3404 {
3405 /* ??? Undefined symbols with PLT entries should be re-defined
3406 to be the PLT entry. */
3407
3408 /* If this is a weak symbol, and there is a real definition, the
3409 processor independent code will have arranged for us to see the
3410 real definition first, and we can just use the same value. */
3411 if (h->u.weakdef != NULL)
3412 {
3413 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3414 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3415 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3416 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3417 return TRUE;
3418 }
3419
3420 /* If this is a reference to a symbol defined by a dynamic object which
3421 is not a function, we might allocate the symbol in our .dynbss section
3422 and allocate a COPY dynamic relocation.
3423
3424 But IA-64 code is canonically PIC, so as a rule we can avoid this sort
3425 of hackery. */
3426
3427 return TRUE;
3428 }
3429
3430 static bfd_boolean
3431 elfNN_ia64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3432 struct bfd_link_info *info)
3433 {
3434 struct elfNN_ia64_allocate_data data;
3435 struct elfNN_ia64_link_hash_table *ia64_info;
3436 asection *sec;
3437 bfd *dynobj;
3438 bfd_boolean relplt = FALSE;
3439
3440 dynobj = elf_hash_table(info)->dynobj;
3441 ia64_info = elfNN_ia64_hash_table (info);
3442 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
3443 BFD_ASSERT(dynobj != NULL);
3444 data.info = info;
3445
3446 /* Set the contents of the .interp section to the interpreter. */
3447 if (ia64_info->root.dynamic_sections_created
3448 && info->executable)
3449 {
3450 sec = bfd_get_section_by_name (dynobj, ".interp");
3451 BFD_ASSERT (sec != NULL);
3452 sec->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
3453 sec->size = strlen (ELF_DYNAMIC_INTERPRETER) + 1;
3454 }
3455
3456 /* Allocate the GOT entries. */
3457
3458 if (ia64_info->got_sec)
3459 {
3460 data.ofs = 0;
3461 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
3462 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
3463 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
3464 ia64_info->got_sec->size = data.ofs;
3465 }
3466
3467 /* Allocate the FPTR entries. */
3468
3469 if (ia64_info->fptr_sec)
3470 {
3471 data.ofs = 0;
3472 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_fptr, &data);
3473 ia64_info->fptr_sec->size = data.ofs;
3474 }
3475
3476 /* Now that we've seen all of the input files, we can decide which
3477 symbols need plt entries. Allocate the minimal PLT entries first.
3478 We do this even though dynamic_sections_created may be FALSE, because
3479 this has the side-effect of clearing want_plt and want_plt2. */
3480
3481 data.ofs = 0;
3482 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt_entries, &data);
3483
3484 ia64_info->minplt_entries = 0;
3485 if (data.ofs)
3486 {
3487 ia64_info->minplt_entries
3488 = (data.ofs - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
3489 }
3490
3491 /* Align the pointer for the plt2 entries. */
3492 data.ofs = (data.ofs + 31) & (bfd_vma) -32;
3493
3494 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt2_entries, &data);
3495 if (data.ofs != 0 || ia64_info->root.dynamic_sections_created)
3496 {
3497 /* FIXME: we always reserve the memory for dynamic linker even if
3498 there are no PLT entries since dynamic linker may assume the
3499 reserved memory always exists. */
3500
3501 BFD_ASSERT (ia64_info->root.dynamic_sections_created);
3502
3503 ia64_info->plt_sec->size = data.ofs;
3504
3505 /* If we've got a .plt, we need some extra memory for the dynamic
3506 linker. We stuff these in .got.plt. */
3507 sec = bfd_get_section_by_name (dynobj, ".got.plt");
3508 sec->size = 8 * PLT_RESERVED_WORDS;
3509 }
3510
3511 /* Allocate the PLTOFF entries. */
3512
3513 if (ia64_info->pltoff_sec)
3514 {
3515 data.ofs = 0;
3516 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_pltoff_entries, &data);
3517 ia64_info->pltoff_sec->size = data.ofs;
3518 }
3519
3520 if (ia64_info->root.dynamic_sections_created)
3521 {
3522 /* Allocate space for the dynamic relocations that turned out to be
3523 required. */
3524
3525 if (info->shared && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
3526 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3527 data.only_got = FALSE;
3528 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, &data);
3529 }
3530
3531 /* We have now determined the sizes of the various dynamic sections.
3532 Allocate memory for them. */
3533 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
3534 {
3535 bfd_boolean strip;
3536
3537 if (!(sec->flags & SEC_LINKER_CREATED))
3538 continue;
3539
3540 /* If we don't need this section, strip it from the output file.
3541 There were several sections primarily related to dynamic
3542 linking that must be create before the linker maps input
3543 sections to output sections. The linker does that before
3544 bfd_elf_size_dynamic_sections is called, and it is that
3545 function which decides whether anything needs to go into
3546 these sections. */
3547
3548 strip = (sec->size == 0);
3549
3550 if (sec == ia64_info->got_sec)
3551 strip = FALSE;
3552 else if (sec == ia64_info->rel_got_sec)
3553 {
3554 if (strip)
3555 ia64_info->rel_got_sec = NULL;
3556 else
3557 /* We use the reloc_count field as a counter if we need to
3558 copy relocs into the output file. */
3559 sec->reloc_count = 0;
3560 }
3561 else if (sec == ia64_info->fptr_sec)
3562 {
3563 if (strip)
3564 ia64_info->fptr_sec = NULL;
3565 }
3566 else if (sec == ia64_info->rel_fptr_sec)
3567 {
3568 if (strip)
3569 ia64_info->rel_fptr_sec = NULL;
3570 else
3571 /* We use the reloc_count field as a counter if we need to
3572 copy relocs into the output file. */
3573 sec->reloc_count = 0;
3574 }
3575 else if (sec == ia64_info->plt_sec)
3576 {
3577 if (strip)
3578 ia64_info->plt_sec = NULL;
3579 }
3580 else if (sec == ia64_info->pltoff_sec)
3581 {
3582 if (strip)
3583 ia64_info->pltoff_sec = NULL;
3584 }
3585 else if (sec == ia64_info->rel_pltoff_sec)
3586 {
3587 if (strip)
3588 ia64_info->rel_pltoff_sec = NULL;
3589 else
3590 {
3591 relplt = TRUE;
3592 /* We use the reloc_count field as a counter if we need to
3593 copy relocs into the output file. */
3594 sec->reloc_count = 0;
3595 }
3596 }
3597 else
3598 {
3599 const char *name;
3600
3601 /* It's OK to base decisions on the section name, because none
3602 of the dynobj section names depend upon the input files. */
3603 name = bfd_get_section_name (dynobj, sec);
3604
3605 if (strcmp (name, ".got.plt") == 0)
3606 strip = FALSE;
3607 else if (CONST_STRNEQ (name, ".rel"))
3608 {
3609 if (!strip)
3610 {
3611 /* We use the reloc_count field as a counter if we need to
3612 copy relocs into the output file. */
3613 sec->reloc_count = 0;
3614 }
3615 }
3616 else
3617 continue;
3618 }
3619
3620 if (strip)
3621 sec->flags |= SEC_EXCLUDE;
3622 else
3623 {
3624 /* Allocate memory for the section contents. */
3625 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
3626 if (sec->contents == NULL && sec->size != 0)
3627 return FALSE;
3628 }
3629 }
3630
3631 if (elf_hash_table (info)->dynamic_sections_created)
3632 {
3633 /* Add some entries to the .dynamic section. We fill in the values
3634 later (in finish_dynamic_sections) but we must add the entries now
3635 so that we get the correct size for the .dynamic section. */
3636
3637 if (info->executable)
3638 {
3639 /* The DT_DEBUG entry is filled in by the dynamic linker and used
3640 by the debugger. */
3641 #define add_dynamic_entry(TAG, VAL) \
3642 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3643
3644 if (!add_dynamic_entry (DT_DEBUG, 0))
3645 return FALSE;
3646 }
3647
3648 if (!add_dynamic_entry (DT_IA_64_PLT_RESERVE, 0))
3649 return FALSE;
3650 if (!add_dynamic_entry (DT_PLTGOT, 0))
3651 return FALSE;
3652
3653 if (relplt)
3654 {
3655 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3656 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3657 || !add_dynamic_entry (DT_JMPREL, 0))
3658 return FALSE;
3659 }
3660
3661 if (!add_dynamic_entry (DT_RELA, 0)
3662 || !add_dynamic_entry (DT_RELASZ, 0)
3663 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
3664 return FALSE;
3665
3666 if (ia64_info->reltext)
3667 {
3668 if (!add_dynamic_entry (DT_TEXTREL, 0))
3669 return FALSE;
3670 info->flags |= DF_TEXTREL;
3671 }
3672 }
3673
3674 /* ??? Perhaps force __gp local. */
3675
3676 return TRUE;
3677 }
3678
3679 static bfd_reloc_status_type
3680 elfNN_ia64_install_value (bfd_byte *hit_addr, bfd_vma v,
3681 unsigned int r_type)
3682 {
3683 const struct ia64_operand *op;
3684 int bigendian = 0, shift = 0;
3685 bfd_vma t0, t1, dword;
3686 ia64_insn insn;
3687 enum ia64_opnd opnd;
3688 const char *err;
3689 size_t size = 8;
3690 #ifdef BFD_HOST_U_64_BIT
3691 BFD_HOST_U_64_BIT val = (BFD_HOST_U_64_BIT) v;
3692 #else
3693 bfd_vma val = v;
3694 #endif
3695
3696 opnd = IA64_OPND_NIL;
3697 switch (r_type)
3698 {
3699 case R_IA64_NONE:
3700 case R_IA64_LDXMOV:
3701 return bfd_reloc_ok;
3702
3703 /* Instruction relocations. */
3704
3705 case R_IA64_IMM14:
3706 case R_IA64_TPREL14:
3707 case R_IA64_DTPREL14:
3708 opnd = IA64_OPND_IMM14;
3709 break;
3710
3711 case R_IA64_PCREL21F: opnd = IA64_OPND_TGT25; break;
3712 case R_IA64_PCREL21M: opnd = IA64_OPND_TGT25b; break;
3713 case R_IA64_PCREL60B: opnd = IA64_OPND_TGT64; break;
3714 case R_IA64_PCREL21B:
3715 case R_IA64_PCREL21BI:
3716 opnd = IA64_OPND_TGT25c;
3717 break;
3718
3719 case R_IA64_IMM22:
3720 case R_IA64_GPREL22:
3721 case R_IA64_LTOFF22:
3722 case R_IA64_LTOFF22X:
3723 case R_IA64_PLTOFF22:
3724 case R_IA64_PCREL22:
3725 case R_IA64_LTOFF_FPTR22:
3726 case R_IA64_TPREL22:
3727 case R_IA64_DTPREL22:
3728 case R_IA64_LTOFF_TPREL22:
3729 case R_IA64_LTOFF_DTPMOD22:
3730 case R_IA64_LTOFF_DTPREL22:
3731 opnd = IA64_OPND_IMM22;
3732 break;
3733
3734 case R_IA64_IMM64:
3735 case R_IA64_GPREL64I:
3736 case R_IA64_LTOFF64I:
3737 case R_IA64_PLTOFF64I:
3738 case R_IA64_PCREL64I:
3739 case R_IA64_FPTR64I:
3740 case R_IA64_LTOFF_FPTR64I:
3741 case R_IA64_TPREL64I:
3742 case R_IA64_DTPREL64I:
3743 opnd = IA64_OPND_IMMU64;
3744 break;
3745
3746 /* Data relocations. */
3747
3748 case R_IA64_DIR32MSB:
3749 case R_IA64_GPREL32MSB:
3750 case R_IA64_FPTR32MSB:
3751 case R_IA64_PCREL32MSB:
3752 case R_IA64_LTOFF_FPTR32MSB:
3753 case R_IA64_SEGREL32MSB:
3754 case R_IA64_SECREL32MSB:
3755 case R_IA64_LTV32MSB:
3756 case R_IA64_DTPREL32MSB:
3757 size = 4; bigendian = 1;
3758 break;
3759
3760 case R_IA64_DIR32LSB:
3761 case R_IA64_GPREL32LSB:
3762 case R_IA64_FPTR32LSB:
3763 case R_IA64_PCREL32LSB:
3764 case R_IA64_LTOFF_FPTR32LSB:
3765 case R_IA64_SEGREL32LSB:
3766 case R_IA64_SECREL32LSB:
3767 case R_IA64_LTV32LSB:
3768 case R_IA64_DTPREL32LSB:
3769 size = 4; bigendian = 0;
3770 break;
3771
3772 case R_IA64_DIR64MSB:
3773 case R_IA64_GPREL64MSB:
3774 case R_IA64_PLTOFF64MSB:
3775 case R_IA64_FPTR64MSB:
3776 case R_IA64_PCREL64MSB:
3777 case R_IA64_LTOFF_FPTR64MSB:
3778 case R_IA64_SEGREL64MSB:
3779 case R_IA64_SECREL64MSB:
3780 case R_IA64_LTV64MSB:
3781 case R_IA64_TPREL64MSB:
3782 case R_IA64_DTPMOD64MSB:
3783 case R_IA64_DTPREL64MSB:
3784 size = 8; bigendian = 1;
3785 break;
3786
3787 case R_IA64_DIR64LSB:
3788 case R_IA64_GPREL64LSB:
3789 case R_IA64_PLTOFF64LSB:
3790 case R_IA64_FPTR64LSB:
3791 case R_IA64_PCREL64LSB:
3792 case R_IA64_LTOFF_FPTR64LSB:
3793 case R_IA64_SEGREL64LSB:
3794 case R_IA64_SECREL64LSB:
3795 case R_IA64_LTV64LSB:
3796 case R_IA64_TPREL64LSB:
3797 case R_IA64_DTPMOD64LSB:
3798 case R_IA64_DTPREL64LSB:
3799 size = 8; bigendian = 0;
3800 break;
3801
3802 /* Unsupported / Dynamic relocations. */
3803 default:
3804 return bfd_reloc_notsupported;
3805 }
3806
3807 switch (opnd)
3808 {
3809 case IA64_OPND_IMMU64:
3810 hit_addr -= (long) hit_addr & 0x3;
3811 t0 = bfd_getl64 (hit_addr);
3812 t1 = bfd_getl64 (hit_addr + 8);
3813
3814 /* tmpl/s: bits 0.. 5 in t0
3815 slot 0: bits 5..45 in t0
3816 slot 1: bits 46..63 in t0, bits 0..22 in t1
3817 slot 2: bits 23..63 in t1 */
3818
3819 /* First, clear the bits that form the 64 bit constant. */
3820 t0 &= ~(0x3ffffLL << 46);
3821 t1 &= ~(0x7fffffLL
3822 | (( (0x07fLL << 13) | (0x1ffLL << 27)
3823 | (0x01fLL << 22) | (0x001LL << 21)
3824 | (0x001LL << 36)) << 23));
3825
3826 t0 |= ((val >> 22) & 0x03ffffLL) << 46; /* 18 lsbs of imm41 */
3827 t1 |= ((val >> 40) & 0x7fffffLL) << 0; /* 23 msbs of imm41 */
3828 t1 |= ( (((val >> 0) & 0x07f) << 13) /* imm7b */
3829 | (((val >> 7) & 0x1ff) << 27) /* imm9d */
3830 | (((val >> 16) & 0x01f) << 22) /* imm5c */
3831 | (((val >> 21) & 0x001) << 21) /* ic */
3832 | (((val >> 63) & 0x001) << 36)) << 23; /* i */
3833
3834 bfd_putl64 (t0, hit_addr);
3835 bfd_putl64 (t1, hit_addr + 8);
3836 break;
3837
3838 case IA64_OPND_TGT64:
3839 hit_addr -= (long) hit_addr & 0x3;
3840 t0 = bfd_getl64 (hit_addr);
3841 t1 = bfd_getl64 (hit_addr + 8);
3842
3843 /* tmpl/s: bits 0.. 5 in t0
3844 slot 0: bits 5..45 in t0
3845 slot 1: bits 46..63 in t0, bits 0..22 in t1
3846 slot 2: bits 23..63 in t1 */
3847
3848 /* First, clear the bits that form the 64 bit constant. */
3849 t0 &= ~(0x3ffffLL << 46);
3850 t1 &= ~(0x7fffffLL
3851 | ((1LL << 36 | 0xfffffLL << 13) << 23));
3852
3853 val >>= 4;
3854 t0 |= ((val >> 20) & 0xffffLL) << 2 << 46; /* 16 lsbs of imm39 */
3855 t1 |= ((val >> 36) & 0x7fffffLL) << 0; /* 23 msbs of imm39 */
3856 t1 |= ((((val >> 0) & 0xfffffLL) << 13) /* imm20b */
3857 | (((val >> 59) & 0x1LL) << 36)) << 23; /* i */
3858
3859 bfd_putl64 (t0, hit_addr);
3860 bfd_putl64 (t1, hit_addr + 8);
3861 break;
3862
3863 default:
3864 switch ((long) hit_addr & 0x3)
3865 {
3866 case 0: shift = 5; break;
3867 case 1: shift = 14; hit_addr += 3; break;
3868 case 2: shift = 23; hit_addr += 6; break;
3869 case 3: return bfd_reloc_notsupported; /* shouldn't happen... */
3870 }
3871 dword = bfd_getl64 (hit_addr);
3872 insn = (dword >> shift) & 0x1ffffffffffLL;
3873
3874 op = elf64_ia64_operands + opnd;
3875 err = (*op->insert) (op, val, &insn);
3876 if (err)
3877 return bfd_reloc_overflow;
3878
3879 dword &= ~(0x1ffffffffffLL << shift);
3880 dword |= (insn << shift);
3881 bfd_putl64 (dword, hit_addr);
3882 break;
3883
3884 case IA64_OPND_NIL:
3885 /* A data relocation. */
3886 if (bigendian)
3887 if (size == 4)
3888 bfd_putb32 (val, hit_addr);
3889 else
3890 bfd_putb64 (val, hit_addr);
3891 else
3892 if (size == 4)
3893 bfd_putl32 (val, hit_addr);
3894 else
3895 bfd_putl64 (val, hit_addr);
3896 break;
3897 }
3898
3899 return bfd_reloc_ok;
3900 }
3901
3902 static void
3903 elfNN_ia64_install_dyn_reloc (bfd *abfd, struct bfd_link_info *info,
3904 asection *sec, asection *srel,
3905 bfd_vma offset, unsigned int type,
3906 long dynindx, bfd_vma addend)
3907 {
3908 Elf_Internal_Rela outrel;
3909 bfd_byte *loc;
3910
3911 BFD_ASSERT (dynindx != -1);
3912 outrel.r_info = ELFNN_R_INFO (dynindx, type);
3913 outrel.r_addend = addend;
3914 outrel.r_offset = _bfd_elf_section_offset (abfd, info, sec, offset);
3915 if (outrel.r_offset >= (bfd_vma) -2)
3916 {
3917 /* Run for the hills. We shouldn't be outputting a relocation
3918 for this. So do what everyone else does and output a no-op. */
3919 outrel.r_info = ELFNN_R_INFO (0, R_IA64_NONE);
3920 outrel.r_addend = 0;
3921 outrel.r_offset = 0;
3922 }
3923 else
3924 outrel.r_offset += sec->output_section->vma + sec->output_offset;
3925
3926 loc = srel->contents;
3927 loc += srel->reloc_count++ * sizeof (ElfNN_External_Rela);
3928 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
3929 BFD_ASSERT (sizeof (ElfNN_External_Rela) * srel->reloc_count <= srel->size);
3930 }
3931
3932 /* Store an entry for target address TARGET_ADDR in the linkage table
3933 and return the gp-relative address of the linkage table entry. */
3934
3935 static bfd_vma
3936 set_got_entry (bfd *abfd, struct bfd_link_info *info,
3937 struct elfNN_ia64_dyn_sym_info *dyn_i,
3938 long dynindx, bfd_vma addend, bfd_vma value,
3939 unsigned int dyn_r_type)
3940 {
3941 struct elfNN_ia64_link_hash_table *ia64_info;
3942 asection *got_sec;
3943 bfd_boolean done;
3944 bfd_vma got_offset;
3945
3946 ia64_info = elfNN_ia64_hash_table (info);
3947 got_sec = ia64_info->got_sec;
3948
3949 switch (dyn_r_type)
3950 {
3951 case R_IA64_TPREL64LSB:
3952 done = dyn_i->tprel_done;
3953 dyn_i->tprel_done = TRUE;
3954 got_offset = dyn_i->tprel_offset;
3955 break;
3956 case R_IA64_DTPMOD64LSB:
3957 if (dyn_i->dtpmod_offset != ia64_info->self_dtpmod_offset)
3958 {
3959 done = dyn_i->dtpmod_done;
3960 dyn_i->dtpmod_done = TRUE;
3961 }
3962 else
3963 {
3964 done = ia64_info->self_dtpmod_done;
3965 ia64_info->self_dtpmod_done = TRUE;
3966 dynindx = 0;
3967 }
3968 got_offset = dyn_i->dtpmod_offset;
3969 break;
3970 case R_IA64_DTPREL32LSB:
3971 case R_IA64_DTPREL64LSB:
3972 done = dyn_i->dtprel_done;
3973 dyn_i->dtprel_done = TRUE;
3974 got_offset = dyn_i->dtprel_offset;
3975 break;
3976 default:
3977 done = dyn_i->got_done;
3978 dyn_i->got_done = TRUE;
3979 got_offset = dyn_i->got_offset;
3980 break;
3981 }
3982
3983 BFD_ASSERT ((got_offset & 7) == 0);
3984
3985 if (! done)
3986 {
3987 /* Store the target address in the linkage table entry. */
3988 bfd_put_64 (abfd, value, got_sec->contents + got_offset);
3989
3990 /* Install a dynamic relocation if needed. */
3991 if (((info->shared
3992 && (!dyn_i->h
3993 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
3994 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3995 && dyn_r_type != R_IA64_DTPREL32LSB
3996 && dyn_r_type != R_IA64_DTPREL64LSB)
3997 || elfNN_ia64_dynamic_symbol_p (dyn_i->h, info, dyn_r_type)
3998 || (dynindx != -1
3999 && (dyn_r_type == R_IA64_FPTR32LSB
4000 || dyn_r_type == R_IA64_FPTR64LSB)))
4001 && (!dyn_i->want_ltoff_fptr
4002 || !info->pie
4003 || !dyn_i->h
4004 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4005 {
4006 if (dynindx == -1
4007 && dyn_r_type != R_IA64_TPREL64LSB
4008 && dyn_r_type != R_IA64_DTPMOD64LSB
4009 && dyn_r_type != R_IA64_DTPREL32LSB
4010 && dyn_r_type != R_IA64_DTPREL64LSB)
4011 {
4012 dyn_r_type = R_IA64_RELNNLSB;
4013 dynindx = 0;
4014 addend = value;
4015 }
4016
4017 if (bfd_big_endian (abfd))
4018 {
4019 switch (dyn_r_type)
4020 {
4021 case R_IA64_REL32LSB:
4022 dyn_r_type = R_IA64_REL32MSB;
4023 break;
4024 case R_IA64_DIR32LSB:
4025 dyn_r_type = R_IA64_DIR32MSB;
4026 break;
4027 case R_IA64_FPTR32LSB:
4028 dyn_r_type = R_IA64_FPTR32MSB;
4029 break;
4030 case R_IA64_DTPREL32LSB:
4031 dyn_r_type = R_IA64_DTPREL32MSB;
4032 break;
4033 case R_IA64_REL64LSB:
4034 dyn_r_type = R_IA64_REL64MSB;
4035 break;
4036 case R_IA64_DIR64LSB:
4037 dyn_r_type = R_IA64_DIR64MSB;
4038 break;
4039 case R_IA64_FPTR64LSB:
4040 dyn_r_type = R_IA64_FPTR64MSB;
4041 break;
4042 case R_IA64_TPREL64LSB:
4043 dyn_r_type = R_IA64_TPREL64MSB;
4044 break;
4045 case R_IA64_DTPMOD64LSB:
4046 dyn_r_type = R_IA64_DTPMOD64MSB;
4047 break;
4048 case R_IA64_DTPREL64LSB:
4049 dyn_r_type = R_IA64_DTPREL64MSB;
4050 break;
4051 default:
4052 BFD_ASSERT (FALSE);
4053 break;
4054 }
4055 }
4056
4057 elfNN_ia64_install_dyn_reloc (abfd, NULL, got_sec,
4058 ia64_info->rel_got_sec,
4059 got_offset, dyn_r_type,
4060 dynindx, addend);
4061 }
4062 }
4063
4064 /* Return the address of the linkage table entry. */
4065 value = (got_sec->output_section->vma
4066 + got_sec->output_offset
4067 + got_offset);
4068
4069 return value;
4070 }
4071
4072 /* Fill in a function descriptor consisting of the function's code
4073 address and its global pointer. Return the descriptor's address. */
4074
4075 static bfd_vma
4076 set_fptr_entry (bfd *abfd, struct bfd_link_info *info,
4077 struct elfNN_ia64_dyn_sym_info *dyn_i,
4078 bfd_vma value)
4079 {
4080 struct elfNN_ia64_link_hash_table *ia64_info;
4081 asection *fptr_sec;
4082
4083 ia64_info = elfNN_ia64_hash_table (info);
4084 fptr_sec = ia64_info->fptr_sec;
4085
4086 if (!dyn_i->fptr_done)
4087 {
4088 dyn_i->fptr_done = 1;
4089
4090 /* Fill in the function descriptor. */
4091 bfd_put_64 (abfd, value, fptr_sec->contents + dyn_i->fptr_offset);
4092 bfd_put_64 (abfd, _bfd_get_gp_value (abfd),
4093 fptr_sec->contents + dyn_i->fptr_offset + 8);
4094 if (ia64_info->rel_fptr_sec)
4095 {
4096 Elf_Internal_Rela outrel;
4097 bfd_byte *loc;
4098
4099 if (bfd_little_endian (abfd))
4100 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTLSB);
4101 else
4102 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTMSB);
4103 outrel.r_addend = value;
4104 outrel.r_offset = (fptr_sec->output_section->vma
4105 + fptr_sec->output_offset
4106 + dyn_i->fptr_offset);
4107 loc = ia64_info->rel_fptr_sec->contents;
4108 loc += ia64_info->rel_fptr_sec->reloc_count++
4109 * sizeof (ElfNN_External_Rela);
4110 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
4111 }
4112 }
4113
4114 /* Return the descriptor's address. */
4115 value = (fptr_sec->output_section->vma
4116 + fptr_sec->output_offset
4117 + dyn_i->fptr_offset);
4118
4119 return value;
4120 }
4121
4122 /* Fill in a PLTOFF entry consisting of the function's code address
4123 and its global pointer. Return the descriptor's address. */
4124
4125 static bfd_vma
4126 set_pltoff_entry (bfd *abfd, struct bfd_link_info *info,
4127 struct elfNN_ia64_dyn_sym_info *dyn_i,
4128 bfd_vma value, bfd_boolean is_plt)
4129 {
4130 struct elfNN_ia64_link_hash_table *ia64_info;
4131 asection *pltoff_sec;
4132
4133 ia64_info = elfNN_ia64_hash_table (info);
4134 pltoff_sec = ia64_info->pltoff_sec;
4135
4136 /* Don't do anything if this symbol uses a real PLT entry. In
4137 that case, we'll fill this in during finish_dynamic_symbol. */
4138 if ((! dyn_i->want_plt || is_plt)
4139 && !dyn_i->pltoff_done)
4140 {
4141 bfd_vma gp = _bfd_get_gp_value (abfd);
4142
4143 /* Fill in the function descriptor. */
4144 bfd_put_64 (abfd, value, pltoff_sec->contents + dyn_i->pltoff_offset);
4145 bfd_put_64 (abfd, gp, pltoff_sec->contents + dyn_i->pltoff_offset + 8);
4146
4147 /* Install dynamic relocations if needed. */
4148 if (!is_plt
4149 && info->shared
4150 && (!dyn_i->h
4151 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
4152 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4153 {
4154 unsigned int dyn_r_type;
4155
4156 if (bfd_big_endian (abfd))
4157 dyn_r_type = R_IA64_RELNNMSB;
4158 else
4159 dyn_r_type = R_IA64_RELNNLSB;
4160
4161 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4162 ia64_info->rel_pltoff_sec,
4163 dyn_i->pltoff_offset,
4164 dyn_r_type, 0, value);
4165 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4166 ia64_info->rel_pltoff_sec,
4167 dyn_i->pltoff_offset + ARCH_SIZE / 8,
4168 dyn_r_type, 0, gp);
4169 }
4170
4171 dyn_i->pltoff_done = 1;
4172 }
4173
4174 /* Return the descriptor's address. */
4175 value = (pltoff_sec->output_section->vma
4176 + pltoff_sec->output_offset
4177 + dyn_i->pltoff_offset);
4178
4179 return value;
4180 }
4181
4182 /* Return the base VMA address which should be subtracted from real addresses
4183 when resolving @tprel() relocation.
4184 Main program TLS (whose template starts at PT_TLS p_vaddr)
4185 is assigned offset round(2 * size of pointer, PT_TLS p_align). */
4186
4187 static bfd_vma
4188 elfNN_ia64_tprel_base (struct bfd_link_info *info)
4189 {
4190 asection *tls_sec = elf_hash_table (info)->tls_sec;
4191
4192 BFD_ASSERT (tls_sec != NULL);
4193 return tls_sec->vma - align_power ((bfd_vma) ARCH_SIZE / 4,
4194 tls_sec->alignment_power);
4195 }
4196
4197 /* Return the base VMA address which should be subtracted from real addresses
4198 when resolving @dtprel() relocation.
4199 This is PT_TLS segment p_vaddr. */
4200
4201 static bfd_vma
4202 elfNN_ia64_dtprel_base (struct bfd_link_info *info)
4203 {
4204 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4205 return elf_hash_table (info)->tls_sec->vma;
4206 }
4207
4208 /* Called through qsort to sort the .IA_64.unwind section during a
4209 non-relocatable link. Set elfNN_ia64_unwind_entry_compare_bfd
4210 to the output bfd so we can do proper endianness frobbing. */
4211
4212 static bfd *elfNN_ia64_unwind_entry_compare_bfd;
4213
4214 static int
4215 elfNN_ia64_unwind_entry_compare (const PTR a, const PTR b)
4216 {
4217 bfd_vma av, bv;
4218
4219 av = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, a);
4220 bv = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, b);
4221
4222 return (av < bv ? -1 : av > bv ? 1 : 0);
4223 }
4224
4225 /* Make sure we've got ourselves a nice fat __gp value. */
4226 static bfd_boolean
4227 elfNN_ia64_choose_gp (bfd *abfd, struct bfd_link_info *info)
4228 {
4229 bfd_vma min_vma = (bfd_vma) -1, max_vma = 0;
4230 bfd_vma min_short_vma = min_vma, max_short_vma = 0;
4231 struct elf_link_hash_entry *gp;
4232 bfd_vma gp_val;
4233 asection *os;
4234 struct elfNN_ia64_link_hash_table *ia64_info;
4235
4236 ia64_info = elfNN_ia64_hash_table (info);
4237
4238 /* Find the min and max vma of all sections marked short. Also collect
4239 min and max vma of any type, for use in selecting a nice gp. */
4240 for (os = abfd->sections; os ; os = os->next)
4241 {
4242 bfd_vma lo, hi;
4243
4244 if ((os->flags & SEC_ALLOC) == 0)
4245 continue;
4246
4247 lo = os->vma;
4248 hi = os->vma + (os->rawsize ? os->rawsize : os->size);
4249 if (hi < lo)
4250 hi = (bfd_vma) -1;
4251
4252 if (min_vma > lo)
4253 min_vma = lo;
4254 if (max_vma < hi)
4255 max_vma = hi;
4256 if (os->flags & SEC_SMALL_DATA)
4257 {
4258 if (min_short_vma > lo)
4259 min_short_vma = lo;
4260 if (max_short_vma < hi)
4261 max_short_vma = hi;
4262 }
4263 }
4264
4265 /* See if the user wants to force a value. */
4266 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4267 FALSE, FALSE);
4268
4269 if (gp
4270 && (gp->root.type == bfd_link_hash_defined
4271 || gp->root.type == bfd_link_hash_defweak))
4272 {
4273 asection *gp_sec = gp->root.u.def.section;
4274 gp_val = (gp->root.u.def.value
4275 + gp_sec->output_section->vma
4276 + gp_sec->output_offset);
4277 }
4278 else
4279 {
4280 /* Pick a sensible value. */
4281
4282 asection *got_sec = ia64_info->got_sec;
4283
4284 /* Start with just the address of the .got. */
4285 if (got_sec)
4286 gp_val = got_sec->output_section->vma;
4287 else if (max_short_vma != 0)
4288 gp_val = min_short_vma;
4289 else if (max_vma - min_vma < 0x200000)
4290 gp_val = min_vma;
4291 else
4292 gp_val = max_vma - 0x200000 + 8;
4293
4294 /* If it is possible to address the entire image, but we
4295 don't with the choice above, adjust. */
4296 if (max_vma - min_vma < 0x400000
4297 && (max_vma - gp_val >= 0x200000
4298 || gp_val - min_vma > 0x200000))
4299 gp_val = min_vma + 0x200000;
4300 else if (max_short_vma != 0)
4301 {
4302 /* If we don't cover all the short data, adjust. */
4303 if (max_short_vma - gp_val >= 0x200000)
4304 gp_val = min_short_vma + 0x200000;
4305
4306 /* If we're addressing stuff past the end, adjust back. */
4307 if (gp_val > max_vma)
4308 gp_val = max_vma - 0x200000 + 8;
4309 }
4310 }
4311
4312 /* Validate whether all SHF_IA_64_SHORT sections are within
4313 range of the chosen GP. */
4314
4315 if (max_short_vma != 0)
4316 {
4317 if (max_short_vma - min_short_vma >= 0x400000)
4318 {
4319 (*_bfd_error_handler)
4320 (_("%s: short data segment overflowed (0x%lx >= 0x400000)"),
4321 bfd_get_filename (abfd),
4322 (unsigned long) (max_short_vma - min_short_vma));
4323 return FALSE;
4324 }
4325 else if ((gp_val > min_short_vma
4326 && gp_val - min_short_vma > 0x200000)
4327 || (gp_val < max_short_vma
4328 && max_short_vma - gp_val >= 0x200000))
4329 {
4330 (*_bfd_error_handler)
4331 (_("%s: __gp does not cover short data segment"),
4332 bfd_get_filename (abfd));
4333 return FALSE;
4334 }
4335 }
4336
4337 _bfd_set_gp_value (abfd, gp_val);
4338
4339 return TRUE;
4340 }
4341
4342 static bfd_boolean
4343 elfNN_ia64_final_link (bfd *abfd, struct bfd_link_info *info)
4344 {
4345 struct elfNN_ia64_link_hash_table *ia64_info;
4346 asection *unwind_output_sec;
4347
4348 ia64_info = elfNN_ia64_hash_table (info);
4349
4350 /* Make sure we've got ourselves a nice fat __gp value. */
4351 if (!info->relocatable)
4352 {
4353 bfd_vma gp_val;
4354 struct elf_link_hash_entry *gp;
4355
4356 /* We assume after gp is set, section size will only decrease. We
4357 need to adjust gp for it. */
4358 _bfd_set_gp_value (abfd, 0);
4359 if (! elfNN_ia64_choose_gp (abfd, info))
4360 return FALSE;
4361 gp_val = _bfd_get_gp_value (abfd);
4362
4363 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4364 FALSE, FALSE);
4365 if (gp)
4366 {
4367 gp->root.type = bfd_link_hash_defined;
4368 gp->root.u.def.value = gp_val;
4369 gp->root.u.def.section = bfd_abs_section_ptr;
4370 }
4371 }
4372
4373 /* If we're producing a final executable, we need to sort the contents
4374 of the .IA_64.unwind section. Force this section to be relocated
4375 into memory rather than written immediately to the output file. */
4376 unwind_output_sec = NULL;
4377 if (!info->relocatable)
4378 {
4379 asection *s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_unwind);
4380 if (s)
4381 {
4382 unwind_output_sec = s->output_section;
4383 unwind_output_sec->contents
4384 = bfd_malloc (unwind_output_sec->size);
4385 if (unwind_output_sec->contents == NULL)
4386 return FALSE;
4387 }
4388 }
4389
4390 /* Invoke the regular ELF backend linker to do all the work. */
4391 if (!bfd_elf_final_link (abfd, info))
4392 return FALSE;
4393
4394 if (unwind_output_sec)
4395 {
4396 elfNN_ia64_unwind_entry_compare_bfd = abfd;
4397 qsort (unwind_output_sec->contents,
4398 (size_t) (unwind_output_sec->size / 24),
4399 24,
4400 elfNN_ia64_unwind_entry_compare);
4401
4402 if (! bfd_set_section_contents (abfd, unwind_output_sec,
4403 unwind_output_sec->contents, (bfd_vma) 0,
4404 unwind_output_sec->size))
4405 return FALSE;
4406 }
4407
4408 return TRUE;
4409 }
4410
4411 static bfd_boolean
4412 elfNN_ia64_relocate_section (bfd *output_bfd,
4413 struct bfd_link_info *info,
4414 bfd *input_bfd,
4415 asection *input_section,
4416 bfd_byte *contents,
4417 Elf_Internal_Rela *relocs,
4418 Elf_Internal_Sym *local_syms,
4419 asection **local_sections)
4420 {
4421 struct elfNN_ia64_link_hash_table *ia64_info;
4422 Elf_Internal_Shdr *symtab_hdr;
4423 Elf_Internal_Rela *rel;
4424 Elf_Internal_Rela *relend;
4425 asection *srel;
4426 bfd_boolean ret_val = TRUE; /* for non-fatal errors */
4427 bfd_vma gp_val;
4428
4429 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4430 ia64_info = elfNN_ia64_hash_table (info);
4431
4432 /* Infect various flags from the input section to the output section. */
4433 if (info->relocatable)
4434 {
4435 bfd_vma flags;
4436
4437 flags = elf_section_data(input_section)->this_hdr.sh_flags;
4438 flags &= SHF_IA_64_NORECOV;
4439
4440 elf_section_data(input_section->output_section)
4441 ->this_hdr.sh_flags |= flags;
4442 }
4443
4444 gp_val = _bfd_get_gp_value (output_bfd);
4445 srel = get_reloc_section (input_bfd, ia64_info, input_section, FALSE);
4446
4447 rel = relocs;
4448 relend = relocs + input_section->reloc_count;
4449 for (; rel < relend; ++rel)
4450 {
4451 struct elf_link_hash_entry *h;
4452 struct elfNN_ia64_dyn_sym_info *dyn_i;
4453 bfd_reloc_status_type r;
4454 reloc_howto_type *howto;
4455 unsigned long r_symndx;
4456 Elf_Internal_Sym *sym;
4457 unsigned int r_type;
4458 bfd_vma value;
4459 asection *sym_sec;
4460 bfd_byte *hit_addr;
4461 bfd_boolean dynamic_symbol_p;
4462 bfd_boolean undef_weak_ref;
4463
4464 r_type = ELFNN_R_TYPE (rel->r_info);
4465 if (r_type > R_IA64_MAX_RELOC_CODE)
4466 {
4467 (*_bfd_error_handler)
4468 (_("%B: unknown relocation type %d"),
4469 input_bfd, (int) r_type);
4470 bfd_set_error (bfd_error_bad_value);
4471 ret_val = FALSE;
4472 continue;
4473 }
4474
4475 howto = lookup_howto (r_type);
4476 r_symndx = ELFNN_R_SYM (rel->r_info);
4477 h = NULL;
4478 sym = NULL;
4479 sym_sec = NULL;
4480 undef_weak_ref = FALSE;
4481
4482 if (r_symndx < symtab_hdr->sh_info)
4483 {
4484 /* Reloc against local symbol. */
4485 asection *msec;
4486 sym = local_syms + r_symndx;
4487 sym_sec = local_sections[r_symndx];
4488 msec = sym_sec;
4489 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4490 if (!info->relocatable
4491 && (sym_sec->flags & SEC_MERGE) != 0
4492 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4493 && sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE)
4494 {
4495 struct elfNN_ia64_local_hash_entry *loc_h;
4496
4497 loc_h = get_local_sym_hash (ia64_info, input_bfd, rel, FALSE);
4498 if (loc_h && ! loc_h->sec_merge_done)
4499 {
4500 struct elfNN_ia64_dyn_sym_info *dynent;
4501 unsigned int count;
4502
4503 for (count = loc_h->count, dynent = loc_h->info;
4504 count != 0;
4505 count--, dynent++)
4506 {
4507 msec = sym_sec;
4508 dynent->addend =
4509 _bfd_merged_section_offset (output_bfd, &msec,
4510 elf_section_data (msec)->
4511 sec_info,
4512 sym->st_value
4513 + dynent->addend);
4514 dynent->addend -= sym->st_value;
4515 dynent->addend += msec->output_section->vma
4516 + msec->output_offset
4517 - sym_sec->output_section->vma
4518 - sym_sec->output_offset;
4519 }
4520
4521 /* We may have introduced duplicated entries. We need
4522 to remove them properly. */
4523 count = sort_dyn_sym_info (loc_h->info, loc_h->count);
4524 if (count != loc_h->count)
4525 {
4526 loc_h->count = count;
4527 loc_h->sorted_count = count;
4528 }
4529
4530 loc_h->sec_merge_done = 1;
4531 }
4532 }
4533 }
4534 else
4535 {
4536 bfd_boolean unresolved_reloc;
4537 bfd_boolean warned;
4538 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4539
4540 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4541 r_symndx, symtab_hdr, sym_hashes,
4542 h, sym_sec, value,
4543 unresolved_reloc, warned);
4544
4545 if (h->root.type == bfd_link_hash_undefweak)
4546 undef_weak_ref = TRUE;
4547 else if (warned)
4548 continue;
4549 }
4550
4551 /* For relocs against symbols from removed linkonce sections,
4552 or sections discarded by a linker script, we just want the
4553 section contents zeroed. Avoid any special processing. */
4554 if (sym_sec != NULL && elf_discarded_section (sym_sec))
4555 {
4556 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
4557 rel->r_info = 0;
4558 rel->r_addend = 0;
4559 continue;
4560 }
4561
4562 if (info->relocatable)
4563 continue;
4564
4565 hit_addr = contents + rel->r_offset;
4566 value += rel->r_addend;
4567 dynamic_symbol_p = elfNN_ia64_dynamic_symbol_p (h, info, r_type);
4568
4569 switch (r_type)
4570 {
4571 case R_IA64_NONE:
4572 case R_IA64_LDXMOV:
4573 continue;
4574
4575 case R_IA64_IMM14:
4576 case R_IA64_IMM22:
4577 case R_IA64_IMM64:
4578 case R_IA64_DIR32MSB:
4579 case R_IA64_DIR32LSB:
4580 case R_IA64_DIR64MSB:
4581 case R_IA64_DIR64LSB:
4582 /* Install a dynamic relocation for this reloc. */
4583 if ((dynamic_symbol_p || info->shared)
4584 && r_symndx != 0
4585 && (input_section->flags & SEC_ALLOC) != 0)
4586 {
4587 unsigned int dyn_r_type;
4588 long dynindx;
4589 bfd_vma addend;
4590
4591 BFD_ASSERT (srel != NULL);
4592
4593 switch (r_type)
4594 {
4595 case R_IA64_IMM14:
4596 case R_IA64_IMM22:
4597 case R_IA64_IMM64:
4598 /* ??? People shouldn't be doing non-pic code in
4599 shared libraries nor dynamic executables. */
4600 (*_bfd_error_handler)
4601 (_("%B: non-pic code with imm relocation against dynamic symbol `%s'"),
4602 input_bfd,
4603 h ? h->root.root.string
4604 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4605 sym_sec));
4606 ret_val = FALSE;
4607 continue;
4608
4609 default:
4610 break;
4611 }
4612
4613 /* If we don't need dynamic symbol lookup, find a
4614 matching RELATIVE relocation. */
4615 dyn_r_type = r_type;
4616 if (dynamic_symbol_p)
4617 {
4618 dynindx = h->dynindx;
4619 addend = rel->r_addend;
4620 value = 0;
4621 }
4622 else
4623 {
4624 switch (r_type)
4625 {
4626 case R_IA64_DIR32MSB:
4627 dyn_r_type = R_IA64_REL32MSB;
4628 break;
4629 case R_IA64_DIR32LSB:
4630 dyn_r_type = R_IA64_REL32LSB;
4631 break;
4632 case R_IA64_DIR64MSB:
4633 dyn_r_type = R_IA64_REL64MSB;
4634 break;
4635 case R_IA64_DIR64LSB:
4636 dyn_r_type = R_IA64_REL64LSB;
4637 break;
4638
4639 default:
4640 break;
4641 }
4642 dynindx = 0;
4643 addend = value;
4644 }
4645
4646 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4647 srel, rel->r_offset, dyn_r_type,
4648 dynindx, addend);
4649 }
4650 /* Fall through. */
4651
4652 case R_IA64_LTV32MSB:
4653 case R_IA64_LTV32LSB:
4654 case R_IA64_LTV64MSB:
4655 case R_IA64_LTV64LSB:
4656 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4657 break;
4658
4659 case R_IA64_GPREL22:
4660 case R_IA64_GPREL64I:
4661 case R_IA64_GPREL32MSB:
4662 case R_IA64_GPREL32LSB:
4663 case R_IA64_GPREL64MSB:
4664 case R_IA64_GPREL64LSB:
4665 if (dynamic_symbol_p)
4666 {
4667 (*_bfd_error_handler)
4668 (_("%B: @gprel relocation against dynamic symbol %s"),
4669 input_bfd,
4670 h ? h->root.root.string
4671 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4672 sym_sec));
4673 ret_val = FALSE;
4674 continue;
4675 }
4676 value -= gp_val;
4677 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4678 break;
4679
4680 case R_IA64_LTOFF22:
4681 case R_IA64_LTOFF22X:
4682 case R_IA64_LTOFF64I:
4683 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4684 value = set_got_entry (input_bfd, info, dyn_i, (h ? h->dynindx : -1),
4685 rel->r_addend, value, R_IA64_DIRNNLSB);
4686 value -= gp_val;
4687 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4688 break;
4689
4690 case R_IA64_PLTOFF22:
4691 case R_IA64_PLTOFF64I:
4692 case R_IA64_PLTOFF64MSB:
4693 case R_IA64_PLTOFF64LSB:
4694 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4695 value = set_pltoff_entry (output_bfd, info, dyn_i, value, FALSE);
4696 value -= gp_val;
4697 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4698 break;
4699
4700 case R_IA64_FPTR64I:
4701 case R_IA64_FPTR32MSB:
4702 case R_IA64_FPTR32LSB:
4703 case R_IA64_FPTR64MSB:
4704 case R_IA64_FPTR64LSB:
4705 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4706 if (dyn_i->want_fptr)
4707 {
4708 if (!undef_weak_ref)
4709 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4710 }
4711 if (!dyn_i->want_fptr || info->pie)
4712 {
4713 long dynindx;
4714 unsigned int dyn_r_type = r_type;
4715 bfd_vma addend = rel->r_addend;
4716
4717 /* Otherwise, we expect the dynamic linker to create
4718 the entry. */
4719
4720 if (dyn_i->want_fptr)
4721 {
4722 if (r_type == R_IA64_FPTR64I)
4723 {
4724 /* We can't represent this without a dynamic symbol.
4725 Adjust the relocation to be against an output
4726 section symbol, which are always present in the
4727 dynamic symbol table. */
4728 /* ??? People shouldn't be doing non-pic code in
4729 shared libraries. Hork. */
4730 (*_bfd_error_handler)
4731 (_("%B: linking non-pic code in a position independent executable"),
4732 input_bfd);
4733 ret_val = FALSE;
4734 continue;
4735 }
4736 dynindx = 0;
4737 addend = value;
4738 dyn_r_type = r_type + R_IA64_RELNNLSB - R_IA64_FPTRNNLSB;
4739 }
4740 else if (h)
4741 {
4742 if (h->dynindx != -1)
4743 dynindx = h->dynindx;
4744 else
4745 dynindx = (_bfd_elf_link_lookup_local_dynindx
4746 (info, h->root.u.def.section->owner,
4747 global_sym_index (h)));
4748 value = 0;
4749 }
4750 else
4751 {
4752 dynindx = (_bfd_elf_link_lookup_local_dynindx
4753 (info, input_bfd, (long) r_symndx));
4754 value = 0;
4755 }
4756
4757 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4758 srel, rel->r_offset, dyn_r_type,
4759 dynindx, addend);
4760 }
4761
4762 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4763 break;
4764
4765 case R_IA64_LTOFF_FPTR22:
4766 case R_IA64_LTOFF_FPTR64I:
4767 case R_IA64_LTOFF_FPTR32MSB:
4768 case R_IA64_LTOFF_FPTR32LSB:
4769 case R_IA64_LTOFF_FPTR64MSB:
4770 case R_IA64_LTOFF_FPTR64LSB:
4771 {
4772 long dynindx;
4773
4774 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4775 if (dyn_i->want_fptr)
4776 {
4777 BFD_ASSERT (h == NULL || h->dynindx == -1);
4778 if (!undef_weak_ref)
4779 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4780 dynindx = -1;
4781 }
4782 else
4783 {
4784 /* Otherwise, we expect the dynamic linker to create
4785 the entry. */
4786 if (h)
4787 {
4788 if (h->dynindx != -1)
4789 dynindx = h->dynindx;
4790 else
4791 dynindx = (_bfd_elf_link_lookup_local_dynindx
4792 (info, h->root.u.def.section->owner,
4793 global_sym_index (h)));
4794 }
4795 else
4796 dynindx = (_bfd_elf_link_lookup_local_dynindx
4797 (info, input_bfd, (long) r_symndx));
4798 value = 0;
4799 }
4800
4801 value = set_got_entry (output_bfd, info, dyn_i, dynindx,
4802 rel->r_addend, value, R_IA64_FPTRNNLSB);
4803 value -= gp_val;
4804 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4805 }
4806 break;
4807
4808 case R_IA64_PCREL32MSB:
4809 case R_IA64_PCREL32LSB:
4810 case R_IA64_PCREL64MSB:
4811 case R_IA64_PCREL64LSB:
4812 /* Install a dynamic relocation for this reloc. */
4813 if (dynamic_symbol_p && r_symndx != 0)
4814 {
4815 BFD_ASSERT (srel != NULL);
4816
4817 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4818 srel, rel->r_offset, r_type,
4819 h->dynindx, rel->r_addend);
4820 }
4821 goto finish_pcrel;
4822
4823 case R_IA64_PCREL21B:
4824 case R_IA64_PCREL60B:
4825 /* We should have created a PLT entry for any dynamic symbol. */
4826 dyn_i = NULL;
4827 if (h)
4828 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4829
4830 if (dyn_i && dyn_i->want_plt2)
4831 {
4832 /* Should have caught this earlier. */
4833 BFD_ASSERT (rel->r_addend == 0);
4834
4835 value = (ia64_info->plt_sec->output_section->vma
4836 + ia64_info->plt_sec->output_offset
4837 + dyn_i->plt2_offset);
4838 }
4839 else
4840 {
4841 /* Since there's no PLT entry, Validate that this is
4842 locally defined. */
4843 BFD_ASSERT (undef_weak_ref || sym_sec->output_section != NULL);
4844
4845 /* If the symbol is undef_weak, we shouldn't be trying
4846 to call it. There's every chance that we'd wind up
4847 with an out-of-range fixup here. Don't bother setting
4848 any value at all. */
4849 if (undef_weak_ref)
4850 continue;
4851 }
4852 goto finish_pcrel;
4853
4854 case R_IA64_PCREL21BI:
4855 case R_IA64_PCREL21F:
4856 case R_IA64_PCREL21M:
4857 case R_IA64_PCREL22:
4858 case R_IA64_PCREL64I:
4859 /* The PCREL21BI reloc is specifically not intended for use with
4860 dynamic relocs. PCREL21F and PCREL21M are used for speculation
4861 fixup code, and thus probably ought not be dynamic. The
4862 PCREL22 and PCREL64I relocs aren't emitted as dynamic relocs. */
4863 if (dynamic_symbol_p)
4864 {
4865 const char *msg;
4866
4867 if (r_type == R_IA64_PCREL21BI)
4868 msg = _("%B: @internal branch to dynamic symbol %s");
4869 else if (r_type == R_IA64_PCREL21F || r_type == R_IA64_PCREL21M)
4870 msg = _("%B: speculation fixup to dynamic symbol %s");
4871 else
4872 msg = _("%B: @pcrel relocation against dynamic symbol %s");
4873 (*_bfd_error_handler) (msg, input_bfd,
4874 h ? h->root.root.string
4875 : bfd_elf_sym_name (input_bfd,
4876 symtab_hdr,
4877 sym,
4878 sym_sec));
4879 ret_val = FALSE;
4880 continue;
4881 }
4882 goto finish_pcrel;
4883
4884 finish_pcrel:
4885 /* Make pc-relative. */
4886 value -= (input_section->output_section->vma
4887 + input_section->output_offset
4888 + rel->r_offset) & ~ (bfd_vma) 0x3;
4889 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4890 break;
4891
4892 case R_IA64_SEGREL32MSB:
4893 case R_IA64_SEGREL32LSB:
4894 case R_IA64_SEGREL64MSB:
4895 case R_IA64_SEGREL64LSB:
4896 {
4897 struct elf_segment_map *m;
4898 Elf_Internal_Phdr *p;
4899
4900 /* Find the segment that contains the output_section. */
4901 for (m = elf_tdata (output_bfd)->segment_map,
4902 p = elf_tdata (output_bfd)->phdr;
4903 m != NULL;
4904 m = m->next, p++)
4905 {
4906 int i;
4907 for (i = m->count - 1; i >= 0; i--)
4908 if (m->sections[i] == input_section->output_section)
4909 break;
4910 if (i >= 0)
4911 break;
4912 }
4913
4914 if (m == NULL)
4915 {
4916 r = bfd_reloc_notsupported;
4917 }
4918 else
4919 {
4920 /* The VMA of the segment is the vaddr of the associated
4921 program header. */
4922 if (value > p->p_vaddr)
4923 value -= p->p_vaddr;
4924 else
4925 value = 0;
4926 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4927 }
4928 break;
4929 }
4930
4931 case R_IA64_SECREL32MSB:
4932 case R_IA64_SECREL32LSB:
4933 case R_IA64_SECREL64MSB:
4934 case R_IA64_SECREL64LSB:
4935 /* Make output-section relative to section where the symbol
4936 is defined. PR 475 */
4937 if (sym_sec)
4938 value -= sym_sec->output_section->vma;
4939 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4940 break;
4941
4942 case R_IA64_IPLTMSB:
4943 case R_IA64_IPLTLSB:
4944 /* Install a dynamic relocation for this reloc. */
4945 if ((dynamic_symbol_p || info->shared)
4946 && (input_section->flags & SEC_ALLOC) != 0)
4947 {
4948 BFD_ASSERT (srel != NULL);
4949
4950 /* If we don't need dynamic symbol lookup, install two
4951 RELATIVE relocations. */
4952 if (!dynamic_symbol_p)
4953 {
4954 unsigned int dyn_r_type;
4955
4956 if (r_type == R_IA64_IPLTMSB)
4957 dyn_r_type = R_IA64_REL64MSB;
4958 else
4959 dyn_r_type = R_IA64_REL64LSB;
4960
4961 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4962 input_section,
4963 srel, rel->r_offset,
4964 dyn_r_type, 0, value);
4965 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4966 input_section,
4967 srel, rel->r_offset + 8,
4968 dyn_r_type, 0, gp_val);
4969 }
4970 else
4971 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4972 srel, rel->r_offset, r_type,
4973 h->dynindx, rel->r_addend);
4974 }
4975
4976 if (r_type == R_IA64_IPLTMSB)
4977 r_type = R_IA64_DIR64MSB;
4978 else
4979 r_type = R_IA64_DIR64LSB;
4980 elfNN_ia64_install_value (hit_addr, value, r_type);
4981 r = elfNN_ia64_install_value (hit_addr + 8, gp_val, r_type);
4982 break;
4983
4984 case R_IA64_TPREL14:
4985 case R_IA64_TPREL22:
4986 case R_IA64_TPREL64I:
4987 value -= elfNN_ia64_tprel_base (info);
4988 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4989 break;
4990
4991 case R_IA64_DTPREL14:
4992 case R_IA64_DTPREL22:
4993 case R_IA64_DTPREL64I:
4994 case R_IA64_DTPREL32LSB:
4995 case R_IA64_DTPREL32MSB:
4996 case R_IA64_DTPREL64LSB:
4997 case R_IA64_DTPREL64MSB:
4998 value -= elfNN_ia64_dtprel_base (info);
4999 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5000 break;
5001
5002 case R_IA64_LTOFF_TPREL22:
5003 case R_IA64_LTOFF_DTPMOD22:
5004 case R_IA64_LTOFF_DTPREL22:
5005 {
5006 int got_r_type;
5007 long dynindx = h ? h->dynindx : -1;
5008 bfd_vma r_addend = rel->r_addend;
5009
5010 switch (r_type)
5011 {
5012 default:
5013 case R_IA64_LTOFF_TPREL22:
5014 if (!dynamic_symbol_p)
5015 {
5016 if (!info->shared)
5017 value -= elfNN_ia64_tprel_base (info);
5018 else
5019 {
5020 r_addend += value - elfNN_ia64_dtprel_base (info);
5021 dynindx = 0;
5022 }
5023 }
5024 got_r_type = R_IA64_TPREL64LSB;
5025 break;
5026 case R_IA64_LTOFF_DTPMOD22:
5027 if (!dynamic_symbol_p && !info->shared)
5028 value = 1;
5029 got_r_type = R_IA64_DTPMOD64LSB;
5030 break;
5031 case R_IA64_LTOFF_DTPREL22:
5032 if (!dynamic_symbol_p)
5033 value -= elfNN_ia64_dtprel_base (info);
5034 got_r_type = R_IA64_DTPRELNNLSB;
5035 break;
5036 }
5037 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
5038 value = set_got_entry (input_bfd, info, dyn_i, dynindx, r_addend,
5039 value, got_r_type);
5040 value -= gp_val;
5041 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5042 }
5043 break;
5044
5045 default:
5046 r = bfd_reloc_notsupported;
5047 break;
5048 }
5049
5050 switch (r)
5051 {
5052 case bfd_reloc_ok:
5053 break;
5054
5055 case bfd_reloc_undefined:
5056 /* This can happen for global table relative relocs if
5057 __gp is undefined. This is a panic situation so we
5058 don't try to continue. */
5059 (*info->callbacks->undefined_symbol)
5060 (info, "__gp", input_bfd, input_section, rel->r_offset, 1);
5061 return FALSE;
5062
5063 case bfd_reloc_notsupported:
5064 {
5065 const char *name;
5066
5067 if (h)
5068 name = h->root.root.string;
5069 else
5070 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5071 sym_sec);
5072 if (!(*info->callbacks->warning) (info, _("unsupported reloc"),
5073 name, input_bfd,
5074 input_section, rel->r_offset))
5075 return FALSE;
5076 ret_val = FALSE;
5077 }
5078 break;
5079
5080 case bfd_reloc_dangerous:
5081 case bfd_reloc_outofrange:
5082 case bfd_reloc_overflow:
5083 default:
5084 {
5085 const char *name;
5086
5087 if (h)
5088 name = h->root.root.string;
5089 else
5090 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5091 sym_sec);
5092
5093 switch (r_type)
5094 {
5095 case R_IA64_PCREL21B:
5096 case R_IA64_PCREL21BI:
5097 case R_IA64_PCREL21M:
5098 case R_IA64_PCREL21F:
5099 if (is_elf_hash_table (info->hash))
5100 {
5101 /* Relaxtion is always performed for ELF output.
5102 Overflow failures for those relocations mean
5103 that the section is too big to relax. */
5104 (*_bfd_error_handler)
5105 (_("%B: Can't relax br (%s) to `%s' at 0x%lx in section `%A' with size 0x%lx (> 0x1000000)."),
5106 input_bfd, input_section, howto->name, name,
5107 rel->r_offset, input_section->size);
5108 break;
5109 }
5110 default:
5111 if (!(*info->callbacks->reloc_overflow) (info,
5112 &h->root,
5113 name,
5114 howto->name,
5115 (bfd_vma) 0,
5116 input_bfd,
5117 input_section,
5118 rel->r_offset))
5119 return FALSE;
5120 break;
5121 }
5122
5123 ret_val = FALSE;
5124 }
5125 break;
5126 }
5127 }
5128
5129 return ret_val;
5130 }
5131
5132 static bfd_boolean
5133 elfNN_ia64_finish_dynamic_symbol (bfd *output_bfd,
5134 struct bfd_link_info *info,
5135 struct elf_link_hash_entry *h,
5136 Elf_Internal_Sym *sym)
5137 {
5138 struct elfNN_ia64_link_hash_table *ia64_info;
5139 struct elfNN_ia64_dyn_sym_info *dyn_i;
5140
5141 ia64_info = elfNN_ia64_hash_table (info);
5142 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
5143
5144 /* Fill in the PLT data, if required. */
5145 if (dyn_i && dyn_i->want_plt)
5146 {
5147 Elf_Internal_Rela outrel;
5148 bfd_byte *loc;
5149 asection *plt_sec;
5150 bfd_vma plt_addr, pltoff_addr, gp_val, index;
5151
5152 gp_val = _bfd_get_gp_value (output_bfd);
5153
5154 /* Initialize the minimal PLT entry. */
5155
5156 index = (dyn_i->plt_offset - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
5157 plt_sec = ia64_info->plt_sec;
5158 loc = plt_sec->contents + dyn_i->plt_offset;
5159
5160 memcpy (loc, plt_min_entry, PLT_MIN_ENTRY_SIZE);
5161 elfNN_ia64_install_value (loc, index, R_IA64_IMM22);
5162 elfNN_ia64_install_value (loc+2, -dyn_i->plt_offset, R_IA64_PCREL21B);
5163
5164 plt_addr = (plt_sec->output_section->vma
5165 + plt_sec->output_offset
5166 + dyn_i->plt_offset);
5167 pltoff_addr = set_pltoff_entry (output_bfd, info, dyn_i, plt_addr, TRUE);
5168
5169 /* Initialize the FULL PLT entry, if needed. */
5170 if (dyn_i->want_plt2)
5171 {
5172 loc = plt_sec->contents + dyn_i->plt2_offset;
5173
5174 memcpy (loc, plt_full_entry, PLT_FULL_ENTRY_SIZE);
5175 elfNN_ia64_install_value (loc, pltoff_addr - gp_val, R_IA64_IMM22);
5176
5177 /* Mark the symbol as undefined, rather than as defined in the
5178 plt section. Leave the value alone. */
5179 /* ??? We didn't redefine it in adjust_dynamic_symbol in the
5180 first place. But perhaps elflink.c did some for us. */
5181 if (!h->def_regular)
5182 sym->st_shndx = SHN_UNDEF;
5183 }
5184
5185 /* Create the dynamic relocation. */
5186 outrel.r_offset = pltoff_addr;
5187 if (bfd_little_endian (output_bfd))
5188 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTLSB);
5189 else
5190 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTMSB);
5191 outrel.r_addend = 0;
5192
5193 /* This is fun. In the .IA_64.pltoff section, we've got entries
5194 that correspond both to real PLT entries, and those that
5195 happened to resolve to local symbols but need to be created
5196 to satisfy @pltoff relocations. The .rela.IA_64.pltoff
5197 relocations for the real PLT should come at the end of the
5198 section, so that they can be indexed by plt entry at runtime.
5199
5200 We emitted all of the relocations for the non-PLT @pltoff
5201 entries during relocate_section. So we can consider the
5202 existing sec->reloc_count to be the base of the array of
5203 PLT relocations. */
5204
5205 loc = ia64_info->rel_pltoff_sec->contents;
5206 loc += ((ia64_info->rel_pltoff_sec->reloc_count + index)
5207 * sizeof (ElfNN_External_Rela));
5208 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5209 }
5210
5211 /* Mark some specially defined symbols as absolute. */
5212 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
5213 || h == ia64_info->root.hgot
5214 || h == ia64_info->root.hplt)
5215 sym->st_shndx = SHN_ABS;
5216
5217 return TRUE;
5218 }
5219
5220 static bfd_boolean
5221 elfNN_ia64_finish_dynamic_sections (bfd *abfd,
5222 struct bfd_link_info *info)
5223 {
5224 struct elfNN_ia64_link_hash_table *ia64_info;
5225 bfd *dynobj;
5226
5227 ia64_info = elfNN_ia64_hash_table (info);
5228 dynobj = ia64_info->root.dynobj;
5229
5230 if (elf_hash_table (info)->dynamic_sections_created)
5231 {
5232 ElfNN_External_Dyn *dyncon, *dynconend;
5233 asection *sdyn, *sgotplt;
5234 bfd_vma gp_val;
5235
5236 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
5237 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
5238 BFD_ASSERT (sdyn != NULL);
5239 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
5240 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
5241
5242 gp_val = _bfd_get_gp_value (abfd);
5243
5244 for (; dyncon < dynconend; dyncon++)
5245 {
5246 Elf_Internal_Dyn dyn;
5247
5248 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
5249
5250 switch (dyn.d_tag)
5251 {
5252 case DT_PLTGOT:
5253 dyn.d_un.d_ptr = gp_val;
5254 break;
5255
5256 case DT_PLTRELSZ:
5257 dyn.d_un.d_val = (ia64_info->minplt_entries
5258 * sizeof (ElfNN_External_Rela));
5259 break;
5260
5261 case DT_JMPREL:
5262 /* See the comment above in finish_dynamic_symbol. */
5263 dyn.d_un.d_ptr = (ia64_info->rel_pltoff_sec->output_section->vma
5264 + ia64_info->rel_pltoff_sec->output_offset
5265 + (ia64_info->rel_pltoff_sec->reloc_count
5266 * sizeof (ElfNN_External_Rela)));
5267 break;
5268
5269 case DT_IA_64_PLT_RESERVE:
5270 dyn.d_un.d_ptr = (sgotplt->output_section->vma
5271 + sgotplt->output_offset);
5272 break;
5273
5274 case DT_RELASZ:
5275 /* Do not have RELASZ include JMPREL. This makes things
5276 easier on ld.so. This is not what the rest of BFD set up. */
5277 dyn.d_un.d_val -= (ia64_info->minplt_entries
5278 * sizeof (ElfNN_External_Rela));
5279 break;
5280 }
5281
5282 bfd_elfNN_swap_dyn_out (abfd, &dyn, dyncon);
5283 }
5284
5285 /* Initialize the PLT0 entry. */
5286 if (ia64_info->plt_sec)
5287 {
5288 bfd_byte *loc = ia64_info->plt_sec->contents;
5289 bfd_vma pltres;
5290
5291 memcpy (loc, plt_header, PLT_HEADER_SIZE);
5292
5293 pltres = (sgotplt->output_section->vma
5294 + sgotplt->output_offset
5295 - gp_val);
5296
5297 elfNN_ia64_install_value (loc+1, pltres, R_IA64_GPREL22);
5298 }
5299 }
5300
5301 return TRUE;
5302 }
5303 \f
5304 /* ELF file flag handling: */
5305
5306 /* Function to keep IA-64 specific file flags. */
5307 static bfd_boolean
5308 elfNN_ia64_set_private_flags (bfd *abfd, flagword flags)
5309 {
5310 BFD_ASSERT (!elf_flags_init (abfd)
5311 || elf_elfheader (abfd)->e_flags == flags);
5312
5313 elf_elfheader (abfd)->e_flags = flags;
5314 elf_flags_init (abfd) = TRUE;
5315 return TRUE;
5316 }
5317
5318 /* Merge backend specific data from an object file to the output
5319 object file when linking. */
5320 static bfd_boolean
5321 elfNN_ia64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5322 {
5323 flagword out_flags;
5324 flagword in_flags;
5325 bfd_boolean ok = TRUE;
5326
5327 /* Don't even pretend to support mixed-format linking. */
5328 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5329 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5330 return FALSE;
5331
5332 in_flags = elf_elfheader (ibfd)->e_flags;
5333 out_flags = elf_elfheader (obfd)->e_flags;
5334
5335 if (! elf_flags_init (obfd))
5336 {
5337 elf_flags_init (obfd) = TRUE;
5338 elf_elfheader (obfd)->e_flags = in_flags;
5339
5340 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
5341 && bfd_get_arch_info (obfd)->the_default)
5342 {
5343 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
5344 bfd_get_mach (ibfd));
5345 }
5346
5347 return TRUE;
5348 }
5349
5350 /* Check flag compatibility. */
5351 if (in_flags == out_flags)
5352 return TRUE;
5353
5354 /* Output has EF_IA_64_REDUCEDFP set only if all inputs have it set. */
5355 if (!(in_flags & EF_IA_64_REDUCEDFP) && (out_flags & EF_IA_64_REDUCEDFP))
5356 elf_elfheader (obfd)->e_flags &= ~EF_IA_64_REDUCEDFP;
5357
5358 if ((in_flags & EF_IA_64_TRAPNIL) != (out_flags & EF_IA_64_TRAPNIL))
5359 {
5360 (*_bfd_error_handler)
5361 (_("%B: linking trap-on-NULL-dereference with non-trapping files"),
5362 ibfd);
5363
5364 bfd_set_error (bfd_error_bad_value);
5365 ok = FALSE;
5366 }
5367 if ((in_flags & EF_IA_64_BE) != (out_flags & EF_IA_64_BE))
5368 {
5369 (*_bfd_error_handler)
5370 (_("%B: linking big-endian files with little-endian files"),
5371 ibfd);
5372
5373 bfd_set_error (bfd_error_bad_value);
5374 ok = FALSE;
5375 }
5376 if ((in_flags & EF_IA_64_ABI64) != (out_flags & EF_IA_64_ABI64))
5377 {
5378 (*_bfd_error_handler)
5379 (_("%B: linking 64-bit files with 32-bit files"),
5380 ibfd);
5381
5382 bfd_set_error (bfd_error_bad_value);
5383 ok = FALSE;
5384 }
5385 if ((in_flags & EF_IA_64_CONS_GP) != (out_flags & EF_IA_64_CONS_GP))
5386 {
5387 (*_bfd_error_handler)
5388 (_("%B: linking constant-gp files with non-constant-gp files"),
5389 ibfd);
5390
5391 bfd_set_error (bfd_error_bad_value);
5392 ok = FALSE;
5393 }
5394 if ((in_flags & EF_IA_64_NOFUNCDESC_CONS_GP)
5395 != (out_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
5396 {
5397 (*_bfd_error_handler)
5398 (_("%B: linking auto-pic files with non-auto-pic files"),
5399 ibfd);
5400
5401 bfd_set_error (bfd_error_bad_value);
5402 ok = FALSE;
5403 }
5404
5405 return ok;
5406 }
5407
5408 static bfd_boolean
5409 elfNN_ia64_print_private_bfd_data (bfd *abfd, PTR ptr)
5410 {
5411 FILE *file = (FILE *) ptr;
5412 flagword flags = elf_elfheader (abfd)->e_flags;
5413
5414 BFD_ASSERT (abfd != NULL && ptr != NULL);
5415
5416 fprintf (file, "private flags = %s%s%s%s%s%s%s%s\n",
5417 (flags & EF_IA_64_TRAPNIL) ? "TRAPNIL, " : "",
5418 (flags & EF_IA_64_EXT) ? "EXT, " : "",
5419 (flags & EF_IA_64_BE) ? "BE, " : "LE, ",
5420 (flags & EF_IA_64_REDUCEDFP) ? "REDUCEDFP, " : "",
5421 (flags & EF_IA_64_CONS_GP) ? "CONS_GP, " : "",
5422 (flags & EF_IA_64_NOFUNCDESC_CONS_GP) ? "NOFUNCDESC_CONS_GP, " : "",
5423 (flags & EF_IA_64_ABSOLUTE) ? "ABSOLUTE, " : "",
5424 (flags & EF_IA_64_ABI64) ? "ABI64" : "ABI32");
5425
5426 _bfd_elf_print_private_bfd_data (abfd, ptr);
5427 return TRUE;
5428 }
5429
5430 static enum elf_reloc_type_class
5431 elfNN_ia64_reloc_type_class (const Elf_Internal_Rela *rela)
5432 {
5433 switch ((int) ELFNN_R_TYPE (rela->r_info))
5434 {
5435 case R_IA64_REL32MSB:
5436 case R_IA64_REL32LSB:
5437 case R_IA64_REL64MSB:
5438 case R_IA64_REL64LSB:
5439 return reloc_class_relative;
5440 case R_IA64_IPLTMSB:
5441 case R_IA64_IPLTLSB:
5442 return reloc_class_plt;
5443 case R_IA64_COPY:
5444 return reloc_class_copy;
5445 default:
5446 return reloc_class_normal;
5447 }
5448 }
5449
5450 static const struct bfd_elf_special_section elfNN_ia64_special_sections[] =
5451 {
5452 { STRING_COMMA_LEN (".sbss"), -1, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5453 { STRING_COMMA_LEN (".sdata"), -1, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5454 { NULL, 0, 0, 0, 0 }
5455 };
5456
5457 static bfd_boolean
5458 elfNN_ia64_object_p (bfd *abfd)
5459 {
5460 asection *sec;
5461 asection *group, *unwi, *unw;
5462 flagword flags;
5463 const char *name;
5464 char *unwi_name, *unw_name;
5465 bfd_size_type amt;
5466
5467 if (abfd->flags & DYNAMIC)
5468 return TRUE;
5469
5470 /* Flags for fake group section. */
5471 flags = (SEC_LINKER_CREATED | SEC_GROUP | SEC_LINK_ONCE
5472 | SEC_EXCLUDE);
5473
5474 /* We add a fake section group for each .gnu.linkonce.t.* section,
5475 which isn't in a section group, and its unwind sections. */
5476 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5477 {
5478 if (elf_sec_group (sec) == NULL
5479 && ((sec->flags & (SEC_LINK_ONCE | SEC_CODE | SEC_GROUP))
5480 == (SEC_LINK_ONCE | SEC_CODE))
5481 && CONST_STRNEQ (sec->name, ".gnu.linkonce.t."))
5482 {
5483 name = sec->name + 16;
5484
5485 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unwi.");
5486 unwi_name = bfd_alloc (abfd, amt);
5487 if (!unwi_name)
5488 return FALSE;
5489
5490 strcpy (stpcpy (unwi_name, ".gnu.linkonce.ia64unwi."), name);
5491 unwi = bfd_get_section_by_name (abfd, unwi_name);
5492
5493 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unw.");
5494 unw_name = bfd_alloc (abfd, amt);
5495 if (!unw_name)
5496 return FALSE;
5497
5498 strcpy (stpcpy (unw_name, ".gnu.linkonce.ia64unw."), name);
5499 unw = bfd_get_section_by_name (abfd, unw_name);
5500
5501 /* We need to create a fake group section for it and its
5502 unwind sections. */
5503 group = bfd_make_section_anyway_with_flags (abfd, name,
5504 flags);
5505 if (group == NULL)
5506 return FALSE;
5507
5508 /* Move the fake group section to the beginning. */
5509 bfd_section_list_remove (abfd, group);
5510 bfd_section_list_prepend (abfd, group);
5511
5512 elf_next_in_group (group) = sec;
5513
5514 elf_group_name (sec) = name;
5515 elf_next_in_group (sec) = sec;
5516 elf_sec_group (sec) = group;
5517
5518 if (unwi)
5519 {
5520 elf_group_name (unwi) = name;
5521 elf_next_in_group (unwi) = sec;
5522 elf_next_in_group (sec) = unwi;
5523 elf_sec_group (unwi) = group;
5524 }
5525
5526 if (unw)
5527 {
5528 elf_group_name (unw) = name;
5529 if (unwi)
5530 {
5531 elf_next_in_group (unw) = elf_next_in_group (unwi);
5532 elf_next_in_group (unwi) = unw;
5533 }
5534 else
5535 {
5536 elf_next_in_group (unw) = sec;
5537 elf_next_in_group (sec) = unw;
5538 }
5539 elf_sec_group (unw) = group;
5540 }
5541
5542 /* Fake SHT_GROUP section header. */
5543 elf_section_data (group)->this_hdr.bfd_section = group;
5544 elf_section_data (group)->this_hdr.sh_type = SHT_GROUP;
5545 }
5546 }
5547 return TRUE;
5548 }
5549
5550 static bfd_boolean
5551 elfNN_ia64_hpux_vec (const bfd_target *vec)
5552 {
5553 extern const bfd_target bfd_elfNN_ia64_hpux_big_vec;
5554 return (vec == & bfd_elfNN_ia64_hpux_big_vec);
5555 }
5556
5557 static void
5558 elfNN_hpux_post_process_headers (bfd *abfd,
5559 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5560 {
5561 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5562
5563 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
5564 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
5565 }
5566
5567 static bfd_boolean
5568 elfNN_hpux_backend_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5569 asection *sec, int *retval)
5570 {
5571 if (bfd_is_com_section (sec))
5572 {
5573 *retval = SHN_IA_64_ANSI_COMMON;
5574 return TRUE;
5575 }
5576 return FALSE;
5577 }
5578
5579 static void
5580 elfNN_hpux_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5581 asymbol *asym)
5582 {
5583 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5584
5585 switch (elfsym->internal_elf_sym.st_shndx)
5586 {
5587 case SHN_IA_64_ANSI_COMMON:
5588 asym->section = bfd_com_section_ptr;
5589 asym->value = elfsym->internal_elf_sym.st_size;
5590 asym->flags &= ~BSF_GLOBAL;
5591 break;
5592 }
5593 }
5594
5595 \f
5596 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_little_vec
5597 #define TARGET_LITTLE_NAME "elfNN-ia64-little"
5598 #define TARGET_BIG_SYM bfd_elfNN_ia64_big_vec
5599 #define TARGET_BIG_NAME "elfNN-ia64-big"
5600 #define ELF_ARCH bfd_arch_ia64
5601 #define ELF_MACHINE_CODE EM_IA_64
5602 #define ELF_MACHINE_ALT1 1999 /* EAS2.3 */
5603 #define ELF_MACHINE_ALT2 1998 /* EAS2.2 */
5604 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
5605 #define ELF_COMMONPAGESIZE 0x4000 /* 16KB */
5606
5607 #define elf_backend_section_from_shdr \
5608 elfNN_ia64_section_from_shdr
5609 #define elf_backend_section_flags \
5610 elfNN_ia64_section_flags
5611 #define elf_backend_fake_sections \
5612 elfNN_ia64_fake_sections
5613 #define elf_backend_final_write_processing \
5614 elfNN_ia64_final_write_processing
5615 #define elf_backend_add_symbol_hook \
5616 elfNN_ia64_add_symbol_hook
5617 #define elf_backend_additional_program_headers \
5618 elfNN_ia64_additional_program_headers
5619 #define elf_backend_modify_segment_map \
5620 elfNN_ia64_modify_segment_map
5621 #define elf_backend_modify_program_headers \
5622 elfNN_ia64_modify_program_headers
5623 #define elf_info_to_howto \
5624 elfNN_ia64_info_to_howto
5625
5626 #define bfd_elfNN_bfd_reloc_type_lookup \
5627 elfNN_ia64_reloc_type_lookup
5628 #define bfd_elfNN_bfd_reloc_name_lookup \
5629 elfNN_ia64_reloc_name_lookup
5630 #define bfd_elfNN_bfd_is_local_label_name \
5631 elfNN_ia64_is_local_label_name
5632 #define bfd_elfNN_bfd_relax_section \
5633 elfNN_ia64_relax_section
5634
5635 #define elf_backend_object_p \
5636 elfNN_ia64_object_p
5637
5638 /* Stuff for the BFD linker: */
5639 #define bfd_elfNN_bfd_link_hash_table_create \
5640 elfNN_ia64_hash_table_create
5641 #define bfd_elfNN_bfd_link_hash_table_free \
5642 elfNN_ia64_hash_table_free
5643 #define elf_backend_create_dynamic_sections \
5644 elfNN_ia64_create_dynamic_sections
5645 #define elf_backend_check_relocs \
5646 elfNN_ia64_check_relocs
5647 #define elf_backend_adjust_dynamic_symbol \
5648 elfNN_ia64_adjust_dynamic_symbol
5649 #define elf_backend_size_dynamic_sections \
5650 elfNN_ia64_size_dynamic_sections
5651 #define elf_backend_omit_section_dynsym \
5652 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
5653 #define elf_backend_relocate_section \
5654 elfNN_ia64_relocate_section
5655 #define elf_backend_finish_dynamic_symbol \
5656 elfNN_ia64_finish_dynamic_symbol
5657 #define elf_backend_finish_dynamic_sections \
5658 elfNN_ia64_finish_dynamic_sections
5659 #define bfd_elfNN_bfd_final_link \
5660 elfNN_ia64_final_link
5661
5662 #define bfd_elfNN_bfd_merge_private_bfd_data \
5663 elfNN_ia64_merge_private_bfd_data
5664 #define bfd_elfNN_bfd_set_private_flags \
5665 elfNN_ia64_set_private_flags
5666 #define bfd_elfNN_bfd_print_private_bfd_data \
5667 elfNN_ia64_print_private_bfd_data
5668
5669 #define elf_backend_plt_readonly 1
5670 #define elf_backend_want_plt_sym 0
5671 #define elf_backend_plt_alignment 5
5672 #define elf_backend_got_header_size 0
5673 #define elf_backend_want_got_plt 1
5674 #define elf_backend_may_use_rel_p 1
5675 #define elf_backend_may_use_rela_p 1
5676 #define elf_backend_default_use_rela_p 1
5677 #define elf_backend_want_dynbss 0
5678 #define elf_backend_copy_indirect_symbol elfNN_ia64_hash_copy_indirect
5679 #define elf_backend_hide_symbol elfNN_ia64_hash_hide_symbol
5680 #define elf_backend_fixup_symbol _bfd_elf_link_hash_fixup_symbol
5681 #define elf_backend_reloc_type_class elfNN_ia64_reloc_type_class
5682 #define elf_backend_rela_normal 1
5683 #define elf_backend_special_sections elfNN_ia64_special_sections
5684 #define elf_backend_default_execstack 0
5685
5686 /* FIXME: PR 290: The Intel C compiler generates SHT_IA_64_UNWIND with
5687 SHF_LINK_ORDER. But it doesn't set the sh_link or sh_info fields.
5688 We don't want to flood users with so many error messages. We turn
5689 off the warning for now. It will be turned on later when the Intel
5690 compiler is fixed. */
5691 #define elf_backend_link_order_error_handler NULL
5692
5693 #include "elfNN-target.h"
5694
5695 /* HPUX-specific vectors. */
5696
5697 #undef TARGET_LITTLE_SYM
5698 #undef TARGET_LITTLE_NAME
5699 #undef TARGET_BIG_SYM
5700 #define TARGET_BIG_SYM bfd_elfNN_ia64_hpux_big_vec
5701 #undef TARGET_BIG_NAME
5702 #define TARGET_BIG_NAME "elfNN-ia64-hpux-big"
5703
5704 /* These are HP-UX specific functions. */
5705
5706 #undef elf_backend_post_process_headers
5707 #define elf_backend_post_process_headers elfNN_hpux_post_process_headers
5708
5709 #undef elf_backend_section_from_bfd_section
5710 #define elf_backend_section_from_bfd_section elfNN_hpux_backend_section_from_bfd_section
5711
5712 #undef elf_backend_symbol_processing
5713 #define elf_backend_symbol_processing elfNN_hpux_backend_symbol_processing
5714
5715 #undef elf_backend_want_p_paddr_set_to_zero
5716 #define elf_backend_want_p_paddr_set_to_zero 1
5717
5718 #undef ELF_MAXPAGESIZE
5719 #define ELF_MAXPAGESIZE 0x1000 /* 4K */
5720 #undef ELF_COMMONPAGESIZE
5721 #undef ELF_OSABI
5722 #define ELF_OSABI ELFOSABI_HPUX
5723
5724 #undef elfNN_bed
5725 #define elfNN_bed elfNN_ia64_hpux_bed
5726
5727 #include "elfNN-target.h"
5728
5729 #undef elf_backend_want_p_paddr_set_to_zero
This page took 0.148693 seconds and 4 git commands to generate.