Better handking for unresolved symbols
[deliverable/binutils-gdb.git] / bfd / elfxx-ia64.c
1 /* IA-64 support for 64-bit ELF
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/ia64.h"
26 #include "elf/ia64.h"
27
28 /* THE RULES for all the stuff the linker creates --
29
30 GOT Entries created in response to LTOFF or LTOFF_FPTR
31 relocations. Dynamic relocs created for dynamic
32 symbols in an application; REL relocs for locals
33 in a shared library.
34
35 FPTR The canonical function descriptor. Created for local
36 symbols in applications. Descriptors for dynamic symbols
37 and local symbols in shared libraries are created by
38 ld.so. Thus there are no dynamic relocs against these
39 objects. The FPTR relocs for such _are_ passed through
40 to the dynamic relocation tables.
41
42 FULL_PLT Created for a PCREL21B relocation against a dynamic symbol.
43 Requires the creation of a PLTOFF entry. This does not
44 require any dynamic relocations.
45
46 PLTOFF Created by PLTOFF relocations. For local symbols, this
47 is an alternate function descriptor, and in shared libraries
48 requires two REL relocations. Note that this cannot be
49 transformed into an FPTR relocation, since it must be in
50 range of the GP. For dynamic symbols, this is a function
51 descriptor for a MIN_PLT entry, and requires one IPLT reloc.
52
53 MIN_PLT Created by PLTOFF entries against dynamic symbols. This
54 does not reqire dynamic relocations. */
55
56 #define NELEMS(a) ((int) (sizeof (a) / sizeof ((a)[0])))
57
58 typedef struct bfd_hash_entry *(*new_hash_entry_func)
59 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
60
61 /* In dynamically (linker-) created sections, we generally need to keep track
62 of the place a symbol or expression got allocated to. This is done via hash
63 tables that store entries of the following type. */
64
65 struct elfNN_ia64_dyn_sym_info
66 {
67 /* The addend for which this entry is relevant. */
68 bfd_vma addend;
69
70 /* Next addend in the list. */
71 struct elfNN_ia64_dyn_sym_info *next;
72
73 bfd_vma got_offset;
74 bfd_vma fptr_offset;
75 bfd_vma pltoff_offset;
76 bfd_vma plt_offset;
77 bfd_vma plt2_offset;
78 bfd_vma tprel_offset;
79 bfd_vma dtpmod_offset;
80 bfd_vma dtprel_offset;
81
82 /* The symbol table entry, if any, that this was derrived from. */
83 struct elf_link_hash_entry *h;
84
85 /* Used to count non-got, non-plt relocations for delayed sizing
86 of relocation sections. */
87 struct elfNN_ia64_dyn_reloc_entry
88 {
89 struct elfNN_ia64_dyn_reloc_entry *next;
90 asection *srel;
91 int type;
92 int count;
93 } *reloc_entries;
94
95 /* TRUE when the section contents have been updated. */
96 unsigned got_done : 1;
97 unsigned fptr_done : 1;
98 unsigned pltoff_done : 1;
99 unsigned tprel_done : 1;
100 unsigned dtpmod_done : 1;
101 unsigned dtprel_done : 1;
102
103 /* TRUE for the different kinds of linker data we want created. */
104 unsigned want_got : 1;
105 unsigned want_gotx : 1;
106 unsigned want_fptr : 1;
107 unsigned want_ltoff_fptr : 1;
108 unsigned want_plt : 1;
109 unsigned want_plt2 : 1;
110 unsigned want_pltoff : 1;
111 unsigned want_tprel : 1;
112 unsigned want_dtpmod : 1;
113 unsigned want_dtprel : 1;
114 };
115
116 struct elfNN_ia64_local_hash_entry
117 {
118 struct bfd_hash_entry root;
119 struct elfNN_ia64_dyn_sym_info *info;
120
121 /* TRUE if this hash entry's addends was translated for
122 SHF_MERGE optimization. */
123 unsigned sec_merge_done : 1;
124 };
125
126 struct elfNN_ia64_local_hash_table
127 {
128 struct bfd_hash_table root;
129 /* No additional fields for now. */
130 };
131
132 struct elfNN_ia64_link_hash_entry
133 {
134 struct elf_link_hash_entry root;
135 struct elfNN_ia64_dyn_sym_info *info;
136 };
137
138 struct elfNN_ia64_link_hash_table
139 {
140 /* The main hash table. */
141 struct elf_link_hash_table root;
142
143 asection *got_sec; /* the linkage table section (or NULL) */
144 asection *rel_got_sec; /* dynamic relocation section for same */
145 asection *fptr_sec; /* function descriptor table (or NULL) */
146 asection *rel_fptr_sec; /* dynamic relocation section for same */
147 asection *plt_sec; /* the primary plt section (or NULL) */
148 asection *pltoff_sec; /* private descriptors for plt (or NULL) */
149 asection *rel_pltoff_sec; /* dynamic relocation section for same */
150
151 bfd_size_type minplt_entries; /* number of minplt entries */
152 unsigned reltext : 1; /* are there relocs against readonly sections? */
153 unsigned self_dtpmod_done : 1;/* has self DTPMOD entry been finished? */
154 bfd_vma self_dtpmod_offset; /* .got offset to self DTPMOD entry */
155
156 struct elfNN_ia64_local_hash_table loc_hash_table;
157 };
158
159 struct elfNN_ia64_allocate_data
160 {
161 struct bfd_link_info *info;
162 bfd_size_type ofs;
163 };
164
165 #define elfNN_ia64_hash_table(p) \
166 ((struct elfNN_ia64_link_hash_table *) ((p)->hash))
167
168 static bfd_reloc_status_type elfNN_ia64_reloc
169 PARAMS ((bfd *abfd, arelent *reloc, asymbol *sym, PTR data,
170 asection *input_section, bfd *output_bfd, char **error_message));
171 static reloc_howto_type * lookup_howto
172 PARAMS ((unsigned int rtype));
173 static reloc_howto_type *elfNN_ia64_reloc_type_lookup
174 PARAMS ((bfd *abfd, bfd_reloc_code_real_type bfd_code));
175 static void elfNN_ia64_info_to_howto
176 PARAMS ((bfd *abfd, arelent *bfd_reloc, Elf_Internal_Rela *elf_reloc));
177 static bfd_boolean elfNN_ia64_relax_section
178 PARAMS((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
179 bfd_boolean *again));
180 static void elfNN_ia64_relax_ldxmov
181 PARAMS((bfd *abfd, bfd_byte *contents, bfd_vma off));
182 static bfd_boolean is_unwind_section_name
183 PARAMS ((bfd *abfd, const char *));
184 static bfd_boolean elfNN_ia64_section_from_shdr
185 PARAMS ((bfd *, Elf_Internal_Shdr *, const char *));
186 static bfd_boolean elfNN_ia64_section_flags
187 PARAMS ((flagword *, Elf_Internal_Shdr *));
188 static bfd_boolean elfNN_ia64_fake_sections
189 PARAMS ((bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec));
190 static void elfNN_ia64_final_write_processing
191 PARAMS ((bfd *abfd, bfd_boolean linker));
192 static bfd_boolean elfNN_ia64_add_symbol_hook
193 PARAMS ((bfd *abfd, struct bfd_link_info *info, const Elf_Internal_Sym *sym,
194 const char **namep, flagword *flagsp, asection **secp,
195 bfd_vma *valp));
196 static int elfNN_ia64_additional_program_headers
197 PARAMS ((bfd *abfd));
198 static bfd_boolean elfNN_ia64_modify_segment_map
199 PARAMS ((bfd *));
200 static bfd_boolean elfNN_ia64_is_local_label_name
201 PARAMS ((bfd *abfd, const char *name));
202 static bfd_boolean elfNN_ia64_dynamic_symbol_p
203 PARAMS ((struct elf_link_hash_entry *h, struct bfd_link_info *info, int));
204 static bfd_boolean elfNN_ia64_local_hash_table_init
205 PARAMS ((struct elfNN_ia64_local_hash_table *ht, bfd *abfd,
206 new_hash_entry_func new));
207 static struct bfd_hash_entry *elfNN_ia64_new_loc_hash_entry
208 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
209 const char *string));
210 static struct bfd_hash_entry *elfNN_ia64_new_elf_hash_entry
211 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
212 const char *string));
213 static void elfNN_ia64_hash_copy_indirect
214 PARAMS ((const struct elf_backend_data *, struct elf_link_hash_entry *,
215 struct elf_link_hash_entry *));
216 static void elfNN_ia64_hash_hide_symbol
217 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean));
218 static struct bfd_link_hash_table *elfNN_ia64_hash_table_create
219 PARAMS ((bfd *abfd));
220 static struct elfNN_ia64_local_hash_entry *elfNN_ia64_local_hash_lookup
221 PARAMS ((struct elfNN_ia64_local_hash_table *table, const char *string,
222 bfd_boolean create, bfd_boolean copy));
223 static bfd_boolean elfNN_ia64_global_dyn_sym_thunk
224 PARAMS ((struct bfd_hash_entry *, PTR));
225 static bfd_boolean elfNN_ia64_local_dyn_sym_thunk
226 PARAMS ((struct bfd_hash_entry *, PTR));
227 static void elfNN_ia64_dyn_sym_traverse
228 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
229 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
230 PTR info));
231 static bfd_boolean elfNN_ia64_create_dynamic_sections
232 PARAMS ((bfd *abfd, struct bfd_link_info *info));
233 static struct elfNN_ia64_local_hash_entry * get_local_sym_hash
234 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
235 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
236 static struct elfNN_ia64_dyn_sym_info * get_dyn_sym_info
237 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
238 struct elf_link_hash_entry *h,
239 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
240 static asection *get_got
241 PARAMS ((bfd *abfd, struct bfd_link_info *info,
242 struct elfNN_ia64_link_hash_table *ia64_info));
243 static asection *get_fptr
244 PARAMS ((bfd *abfd, struct bfd_link_info *info,
245 struct elfNN_ia64_link_hash_table *ia64_info));
246 static asection *get_pltoff
247 PARAMS ((bfd *abfd, struct bfd_link_info *info,
248 struct elfNN_ia64_link_hash_table *ia64_info));
249 static asection *get_reloc_section
250 PARAMS ((bfd *abfd, struct elfNN_ia64_link_hash_table *ia64_info,
251 asection *sec, bfd_boolean create));
252 static bfd_boolean count_dyn_reloc
253 PARAMS ((bfd *abfd, struct elfNN_ia64_dyn_sym_info *dyn_i,
254 asection *srel, int type));
255 static bfd_boolean elfNN_ia64_check_relocs
256 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
257 const Elf_Internal_Rela *relocs));
258 static bfd_boolean elfNN_ia64_adjust_dynamic_symbol
259 PARAMS ((struct bfd_link_info *info, struct elf_link_hash_entry *h));
260 static long global_sym_index
261 PARAMS ((struct elf_link_hash_entry *h));
262 static bfd_boolean allocate_fptr
263 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
264 static bfd_boolean allocate_global_data_got
265 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
266 static bfd_boolean allocate_global_fptr_got
267 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
268 static bfd_boolean allocate_local_got
269 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
270 static bfd_boolean allocate_pltoff_entries
271 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
272 static bfd_boolean allocate_plt_entries
273 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
274 static bfd_boolean allocate_plt2_entries
275 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
276 static bfd_boolean allocate_dynrel_entries
277 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
278 static bfd_boolean elfNN_ia64_size_dynamic_sections
279 PARAMS ((bfd *output_bfd, struct bfd_link_info *info));
280 static bfd_reloc_status_type elfNN_ia64_install_value
281 PARAMS ((bfd *abfd, bfd_byte *hit_addr, bfd_vma val, unsigned int r_type));
282 static void elfNN_ia64_install_dyn_reloc
283 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
284 asection *srel, bfd_vma offset, unsigned int type,
285 long dynindx, bfd_vma addend));
286 static bfd_vma set_got_entry
287 PARAMS ((bfd *abfd, struct bfd_link_info *info,
288 struct elfNN_ia64_dyn_sym_info *dyn_i, long dynindx,
289 bfd_vma addend, bfd_vma value, unsigned int dyn_r_type));
290 static bfd_vma set_fptr_entry
291 PARAMS ((bfd *abfd, struct bfd_link_info *info,
292 struct elfNN_ia64_dyn_sym_info *dyn_i,
293 bfd_vma value));
294 static bfd_vma set_pltoff_entry
295 PARAMS ((bfd *abfd, struct bfd_link_info *info,
296 struct elfNN_ia64_dyn_sym_info *dyn_i,
297 bfd_vma value, bfd_boolean));
298 static bfd_vma elfNN_ia64_tprel_base
299 PARAMS ((struct bfd_link_info *info));
300 static bfd_vma elfNN_ia64_dtprel_base
301 PARAMS ((struct bfd_link_info *info));
302 static int elfNN_ia64_unwind_entry_compare
303 PARAMS ((const PTR, const PTR));
304 static bfd_boolean elfNN_ia64_choose_gp
305 PARAMS ((bfd *abfd, struct bfd_link_info *info));
306 static bfd_boolean elfNN_ia64_final_link
307 PARAMS ((bfd *abfd, struct bfd_link_info *info));
308 static bfd_boolean elfNN_ia64_relocate_section
309 PARAMS ((bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd,
310 asection *input_section, bfd_byte *contents,
311 Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms,
312 asection **local_sections));
313 static bfd_boolean elfNN_ia64_finish_dynamic_symbol
314 PARAMS ((bfd *output_bfd, struct bfd_link_info *info,
315 struct elf_link_hash_entry *h, Elf_Internal_Sym *sym));
316 static bfd_boolean elfNN_ia64_finish_dynamic_sections
317 PARAMS ((bfd *abfd, struct bfd_link_info *info));
318 static bfd_boolean elfNN_ia64_set_private_flags
319 PARAMS ((bfd *abfd, flagword flags));
320 static bfd_boolean elfNN_ia64_merge_private_bfd_data
321 PARAMS ((bfd *ibfd, bfd *obfd));
322 static bfd_boolean elfNN_ia64_print_private_bfd_data
323 PARAMS ((bfd *abfd, PTR ptr));
324 static enum elf_reloc_type_class elfNN_ia64_reloc_type_class
325 PARAMS ((const Elf_Internal_Rela *));
326 static bfd_boolean elfNN_ia64_hpux_vec
327 PARAMS ((const bfd_target *vec));
328 static void elfNN_hpux_post_process_headers
329 PARAMS ((bfd *abfd, struct bfd_link_info *info));
330 bfd_boolean elfNN_hpux_backend_section_from_bfd_section
331 PARAMS ((bfd *abfd, asection *sec, int *retval));
332 \f
333 /* ia64-specific relocation. */
334
335 /* Perform a relocation. Not much to do here as all the hard work is
336 done in elfNN_ia64_final_link_relocate. */
337 static bfd_reloc_status_type
338 elfNN_ia64_reloc (abfd, reloc, sym, data, input_section,
339 output_bfd, error_message)
340 bfd *abfd ATTRIBUTE_UNUSED;
341 arelent *reloc;
342 asymbol *sym ATTRIBUTE_UNUSED;
343 PTR data ATTRIBUTE_UNUSED;
344 asection *input_section;
345 bfd *output_bfd;
346 char **error_message;
347 {
348 if (output_bfd)
349 {
350 reloc->address += input_section->output_offset;
351 return bfd_reloc_ok;
352 }
353
354 if (input_section->flags & SEC_DEBUGGING)
355 return bfd_reloc_continue;
356
357 *error_message = "Unsupported call to elfNN_ia64_reloc";
358 return bfd_reloc_notsupported;
359 }
360
361 #define IA64_HOWTO(TYPE, NAME, SIZE, PCREL, IN) \
362 HOWTO (TYPE, 0, SIZE, 0, PCREL, 0, complain_overflow_signed, \
363 elfNN_ia64_reloc, NAME, FALSE, 0, -1, IN)
364
365 /* This table has to be sorted according to increasing number of the
366 TYPE field. */
367 static reloc_howto_type ia64_howto_table[] =
368 {
369 IA64_HOWTO (R_IA64_NONE, "NONE", 0, FALSE, TRUE),
370
371 IA64_HOWTO (R_IA64_IMM14, "IMM14", 0, FALSE, TRUE),
372 IA64_HOWTO (R_IA64_IMM22, "IMM22", 0, FALSE, TRUE),
373 IA64_HOWTO (R_IA64_IMM64, "IMM64", 0, FALSE, TRUE),
374 IA64_HOWTO (R_IA64_DIR32MSB, "DIR32MSB", 2, FALSE, TRUE),
375 IA64_HOWTO (R_IA64_DIR32LSB, "DIR32LSB", 2, FALSE, TRUE),
376 IA64_HOWTO (R_IA64_DIR64MSB, "DIR64MSB", 4, FALSE, TRUE),
377 IA64_HOWTO (R_IA64_DIR64LSB, "DIR64LSB", 4, FALSE, TRUE),
378
379 IA64_HOWTO (R_IA64_GPREL22, "GPREL22", 0, FALSE, TRUE),
380 IA64_HOWTO (R_IA64_GPREL64I, "GPREL64I", 0, FALSE, TRUE),
381 IA64_HOWTO (R_IA64_GPREL32MSB, "GPREL32MSB", 2, FALSE, TRUE),
382 IA64_HOWTO (R_IA64_GPREL32LSB, "GPREL32LSB", 2, FALSE, TRUE),
383 IA64_HOWTO (R_IA64_GPREL64MSB, "GPREL64MSB", 4, FALSE, TRUE),
384 IA64_HOWTO (R_IA64_GPREL64LSB, "GPREL64LSB", 4, FALSE, TRUE),
385
386 IA64_HOWTO (R_IA64_LTOFF22, "LTOFF22", 0, FALSE, TRUE),
387 IA64_HOWTO (R_IA64_LTOFF64I, "LTOFF64I", 0, FALSE, TRUE),
388
389 IA64_HOWTO (R_IA64_PLTOFF22, "PLTOFF22", 0, FALSE, TRUE),
390 IA64_HOWTO (R_IA64_PLTOFF64I, "PLTOFF64I", 0, FALSE, TRUE),
391 IA64_HOWTO (R_IA64_PLTOFF64MSB, "PLTOFF64MSB", 4, FALSE, TRUE),
392 IA64_HOWTO (R_IA64_PLTOFF64LSB, "PLTOFF64LSB", 4, FALSE, TRUE),
393
394 IA64_HOWTO (R_IA64_FPTR64I, "FPTR64I", 0, FALSE, TRUE),
395 IA64_HOWTO (R_IA64_FPTR32MSB, "FPTR32MSB", 2, FALSE, TRUE),
396 IA64_HOWTO (R_IA64_FPTR32LSB, "FPTR32LSB", 2, FALSE, TRUE),
397 IA64_HOWTO (R_IA64_FPTR64MSB, "FPTR64MSB", 4, FALSE, TRUE),
398 IA64_HOWTO (R_IA64_FPTR64LSB, "FPTR64LSB", 4, FALSE, TRUE),
399
400 IA64_HOWTO (R_IA64_PCREL60B, "PCREL60B", 0, TRUE, TRUE),
401 IA64_HOWTO (R_IA64_PCREL21B, "PCREL21B", 0, TRUE, TRUE),
402 IA64_HOWTO (R_IA64_PCREL21M, "PCREL21M", 0, TRUE, TRUE),
403 IA64_HOWTO (R_IA64_PCREL21F, "PCREL21F", 0, TRUE, TRUE),
404 IA64_HOWTO (R_IA64_PCREL32MSB, "PCREL32MSB", 2, TRUE, TRUE),
405 IA64_HOWTO (R_IA64_PCREL32LSB, "PCREL32LSB", 2, TRUE, TRUE),
406 IA64_HOWTO (R_IA64_PCREL64MSB, "PCREL64MSB", 4, TRUE, TRUE),
407 IA64_HOWTO (R_IA64_PCREL64LSB, "PCREL64LSB", 4, TRUE, TRUE),
408
409 IA64_HOWTO (R_IA64_LTOFF_FPTR22, "LTOFF_FPTR22", 0, FALSE, TRUE),
410 IA64_HOWTO (R_IA64_LTOFF_FPTR64I, "LTOFF_FPTR64I", 0, FALSE, TRUE),
411 IA64_HOWTO (R_IA64_LTOFF_FPTR32MSB, "LTOFF_FPTR32MSB", 2, FALSE, TRUE),
412 IA64_HOWTO (R_IA64_LTOFF_FPTR32LSB, "LTOFF_FPTR32LSB", 2, FALSE, TRUE),
413 IA64_HOWTO (R_IA64_LTOFF_FPTR64MSB, "LTOFF_FPTR64MSB", 4, FALSE, TRUE),
414 IA64_HOWTO (R_IA64_LTOFF_FPTR64LSB, "LTOFF_FPTR64LSB", 4, FALSE, TRUE),
415
416 IA64_HOWTO (R_IA64_SEGREL32MSB, "SEGREL32MSB", 2, FALSE, TRUE),
417 IA64_HOWTO (R_IA64_SEGREL32LSB, "SEGREL32LSB", 2, FALSE, TRUE),
418 IA64_HOWTO (R_IA64_SEGREL64MSB, "SEGREL64MSB", 4, FALSE, TRUE),
419 IA64_HOWTO (R_IA64_SEGREL64LSB, "SEGREL64LSB", 4, FALSE, TRUE),
420
421 IA64_HOWTO (R_IA64_SECREL32MSB, "SECREL32MSB", 2, FALSE, TRUE),
422 IA64_HOWTO (R_IA64_SECREL32LSB, "SECREL32LSB", 2, FALSE, TRUE),
423 IA64_HOWTO (R_IA64_SECREL64MSB, "SECREL64MSB", 4, FALSE, TRUE),
424 IA64_HOWTO (R_IA64_SECREL64LSB, "SECREL64LSB", 4, FALSE, TRUE),
425
426 IA64_HOWTO (R_IA64_REL32MSB, "REL32MSB", 2, FALSE, TRUE),
427 IA64_HOWTO (R_IA64_REL32LSB, "REL32LSB", 2, FALSE, TRUE),
428 IA64_HOWTO (R_IA64_REL64MSB, "REL64MSB", 4, FALSE, TRUE),
429 IA64_HOWTO (R_IA64_REL64LSB, "REL64LSB", 4, FALSE, TRUE),
430
431 IA64_HOWTO (R_IA64_LTV32MSB, "LTV32MSB", 2, FALSE, TRUE),
432 IA64_HOWTO (R_IA64_LTV32LSB, "LTV32LSB", 2, FALSE, TRUE),
433 IA64_HOWTO (R_IA64_LTV64MSB, "LTV64MSB", 4, FALSE, TRUE),
434 IA64_HOWTO (R_IA64_LTV64LSB, "LTV64LSB", 4, FALSE, TRUE),
435
436 IA64_HOWTO (R_IA64_PCREL21BI, "PCREL21BI", 0, TRUE, TRUE),
437 IA64_HOWTO (R_IA64_PCREL22, "PCREL22", 0, TRUE, TRUE),
438 IA64_HOWTO (R_IA64_PCREL64I, "PCREL64I", 0, TRUE, TRUE),
439
440 IA64_HOWTO (R_IA64_IPLTMSB, "IPLTMSB", 4, FALSE, TRUE),
441 IA64_HOWTO (R_IA64_IPLTLSB, "IPLTLSB", 4, FALSE, TRUE),
442 IA64_HOWTO (R_IA64_COPY, "COPY", 4, FALSE, TRUE),
443 IA64_HOWTO (R_IA64_LTOFF22X, "LTOFF22X", 0, FALSE, TRUE),
444 IA64_HOWTO (R_IA64_LDXMOV, "LDXMOV", 0, FALSE, TRUE),
445
446 IA64_HOWTO (R_IA64_TPREL14, "TPREL14", 0, FALSE, FALSE),
447 IA64_HOWTO (R_IA64_TPREL22, "TPREL22", 0, FALSE, FALSE),
448 IA64_HOWTO (R_IA64_TPREL64I, "TPREL64I", 0, FALSE, FALSE),
449 IA64_HOWTO (R_IA64_TPREL64MSB, "TPREL64MSB", 8, FALSE, FALSE),
450 IA64_HOWTO (R_IA64_TPREL64LSB, "TPREL64LSB", 8, FALSE, FALSE),
451 IA64_HOWTO (R_IA64_LTOFF_TPREL22, "LTOFF_TPREL22", 0, FALSE, FALSE),
452
453 IA64_HOWTO (R_IA64_DTPMOD64MSB, "TPREL64MSB", 8, FALSE, FALSE),
454 IA64_HOWTO (R_IA64_DTPMOD64LSB, "TPREL64LSB", 8, FALSE, FALSE),
455 IA64_HOWTO (R_IA64_LTOFF_DTPMOD22, "LTOFF_DTPMOD22", 0, FALSE, FALSE),
456
457 IA64_HOWTO (R_IA64_DTPREL14, "DTPREL14", 0, FALSE, FALSE),
458 IA64_HOWTO (R_IA64_DTPREL22, "DTPREL22", 0, FALSE, FALSE),
459 IA64_HOWTO (R_IA64_DTPREL64I, "DTPREL64I", 0, FALSE, FALSE),
460 IA64_HOWTO (R_IA64_DTPREL32MSB, "DTPREL32MSB", 4, FALSE, FALSE),
461 IA64_HOWTO (R_IA64_DTPREL32LSB, "DTPREL32LSB", 4, FALSE, FALSE),
462 IA64_HOWTO (R_IA64_DTPREL64MSB, "DTPREL64MSB", 8, FALSE, FALSE),
463 IA64_HOWTO (R_IA64_DTPREL64LSB, "DTPREL64LSB", 8, FALSE, FALSE),
464 IA64_HOWTO (R_IA64_LTOFF_DTPREL22, "LTOFF_DTPREL22", 0, FALSE, FALSE),
465 };
466
467 static unsigned char elf_code_to_howto_index[R_IA64_MAX_RELOC_CODE + 1];
468
469 /* Given a BFD reloc type, return the matching HOWTO structure. */
470
471 static reloc_howto_type *
472 lookup_howto (rtype)
473 unsigned int rtype;
474 {
475 static int inited = 0;
476 int i;
477
478 if (!inited)
479 {
480 inited = 1;
481
482 memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index));
483 for (i = 0; i < NELEMS (ia64_howto_table); ++i)
484 elf_code_to_howto_index[ia64_howto_table[i].type] = i;
485 }
486
487 BFD_ASSERT (rtype <= R_IA64_MAX_RELOC_CODE);
488 i = elf_code_to_howto_index[rtype];
489 if (i >= NELEMS (ia64_howto_table))
490 return 0;
491 return ia64_howto_table + i;
492 }
493
494 static reloc_howto_type*
495 elfNN_ia64_reloc_type_lookup (abfd, bfd_code)
496 bfd *abfd ATTRIBUTE_UNUSED;
497 bfd_reloc_code_real_type bfd_code;
498 {
499 unsigned int rtype;
500
501 switch (bfd_code)
502 {
503 case BFD_RELOC_NONE: rtype = R_IA64_NONE; break;
504
505 case BFD_RELOC_IA64_IMM14: rtype = R_IA64_IMM14; break;
506 case BFD_RELOC_IA64_IMM22: rtype = R_IA64_IMM22; break;
507 case BFD_RELOC_IA64_IMM64: rtype = R_IA64_IMM64; break;
508
509 case BFD_RELOC_IA64_DIR32MSB: rtype = R_IA64_DIR32MSB; break;
510 case BFD_RELOC_IA64_DIR32LSB: rtype = R_IA64_DIR32LSB; break;
511 case BFD_RELOC_IA64_DIR64MSB: rtype = R_IA64_DIR64MSB; break;
512 case BFD_RELOC_IA64_DIR64LSB: rtype = R_IA64_DIR64LSB; break;
513
514 case BFD_RELOC_IA64_GPREL22: rtype = R_IA64_GPREL22; break;
515 case BFD_RELOC_IA64_GPREL64I: rtype = R_IA64_GPREL64I; break;
516 case BFD_RELOC_IA64_GPREL32MSB: rtype = R_IA64_GPREL32MSB; break;
517 case BFD_RELOC_IA64_GPREL32LSB: rtype = R_IA64_GPREL32LSB; break;
518 case BFD_RELOC_IA64_GPREL64MSB: rtype = R_IA64_GPREL64MSB; break;
519 case BFD_RELOC_IA64_GPREL64LSB: rtype = R_IA64_GPREL64LSB; break;
520
521 case BFD_RELOC_IA64_LTOFF22: rtype = R_IA64_LTOFF22; break;
522 case BFD_RELOC_IA64_LTOFF64I: rtype = R_IA64_LTOFF64I; break;
523
524 case BFD_RELOC_IA64_PLTOFF22: rtype = R_IA64_PLTOFF22; break;
525 case BFD_RELOC_IA64_PLTOFF64I: rtype = R_IA64_PLTOFF64I; break;
526 case BFD_RELOC_IA64_PLTOFF64MSB: rtype = R_IA64_PLTOFF64MSB; break;
527 case BFD_RELOC_IA64_PLTOFF64LSB: rtype = R_IA64_PLTOFF64LSB; break;
528 case BFD_RELOC_IA64_FPTR64I: rtype = R_IA64_FPTR64I; break;
529 case BFD_RELOC_IA64_FPTR32MSB: rtype = R_IA64_FPTR32MSB; break;
530 case BFD_RELOC_IA64_FPTR32LSB: rtype = R_IA64_FPTR32LSB; break;
531 case BFD_RELOC_IA64_FPTR64MSB: rtype = R_IA64_FPTR64MSB; break;
532 case BFD_RELOC_IA64_FPTR64LSB: rtype = R_IA64_FPTR64LSB; break;
533
534 case BFD_RELOC_IA64_PCREL21B: rtype = R_IA64_PCREL21B; break;
535 case BFD_RELOC_IA64_PCREL21BI: rtype = R_IA64_PCREL21BI; break;
536 case BFD_RELOC_IA64_PCREL21M: rtype = R_IA64_PCREL21M; break;
537 case BFD_RELOC_IA64_PCREL21F: rtype = R_IA64_PCREL21F; break;
538 case BFD_RELOC_IA64_PCREL22: rtype = R_IA64_PCREL22; break;
539 case BFD_RELOC_IA64_PCREL60B: rtype = R_IA64_PCREL60B; break;
540 case BFD_RELOC_IA64_PCREL64I: rtype = R_IA64_PCREL64I; break;
541 case BFD_RELOC_IA64_PCREL32MSB: rtype = R_IA64_PCREL32MSB; break;
542 case BFD_RELOC_IA64_PCREL32LSB: rtype = R_IA64_PCREL32LSB; break;
543 case BFD_RELOC_IA64_PCREL64MSB: rtype = R_IA64_PCREL64MSB; break;
544 case BFD_RELOC_IA64_PCREL64LSB: rtype = R_IA64_PCREL64LSB; break;
545
546 case BFD_RELOC_IA64_LTOFF_FPTR22: rtype = R_IA64_LTOFF_FPTR22; break;
547 case BFD_RELOC_IA64_LTOFF_FPTR64I: rtype = R_IA64_LTOFF_FPTR64I; break;
548 case BFD_RELOC_IA64_LTOFF_FPTR32MSB: rtype = R_IA64_LTOFF_FPTR32MSB; break;
549 case BFD_RELOC_IA64_LTOFF_FPTR32LSB: rtype = R_IA64_LTOFF_FPTR32LSB; break;
550 case BFD_RELOC_IA64_LTOFF_FPTR64MSB: rtype = R_IA64_LTOFF_FPTR64MSB; break;
551 case BFD_RELOC_IA64_LTOFF_FPTR64LSB: rtype = R_IA64_LTOFF_FPTR64LSB; break;
552
553 case BFD_RELOC_IA64_SEGREL32MSB: rtype = R_IA64_SEGREL32MSB; break;
554 case BFD_RELOC_IA64_SEGREL32LSB: rtype = R_IA64_SEGREL32LSB; break;
555 case BFD_RELOC_IA64_SEGREL64MSB: rtype = R_IA64_SEGREL64MSB; break;
556 case BFD_RELOC_IA64_SEGREL64LSB: rtype = R_IA64_SEGREL64LSB; break;
557
558 case BFD_RELOC_IA64_SECREL32MSB: rtype = R_IA64_SECREL32MSB; break;
559 case BFD_RELOC_IA64_SECREL32LSB: rtype = R_IA64_SECREL32LSB; break;
560 case BFD_RELOC_IA64_SECREL64MSB: rtype = R_IA64_SECREL64MSB; break;
561 case BFD_RELOC_IA64_SECREL64LSB: rtype = R_IA64_SECREL64LSB; break;
562
563 case BFD_RELOC_IA64_REL32MSB: rtype = R_IA64_REL32MSB; break;
564 case BFD_RELOC_IA64_REL32LSB: rtype = R_IA64_REL32LSB; break;
565 case BFD_RELOC_IA64_REL64MSB: rtype = R_IA64_REL64MSB; break;
566 case BFD_RELOC_IA64_REL64LSB: rtype = R_IA64_REL64LSB; break;
567
568 case BFD_RELOC_IA64_LTV32MSB: rtype = R_IA64_LTV32MSB; break;
569 case BFD_RELOC_IA64_LTV32LSB: rtype = R_IA64_LTV32LSB; break;
570 case BFD_RELOC_IA64_LTV64MSB: rtype = R_IA64_LTV64MSB; break;
571 case BFD_RELOC_IA64_LTV64LSB: rtype = R_IA64_LTV64LSB; break;
572
573 case BFD_RELOC_IA64_IPLTMSB: rtype = R_IA64_IPLTMSB; break;
574 case BFD_RELOC_IA64_IPLTLSB: rtype = R_IA64_IPLTLSB; break;
575 case BFD_RELOC_IA64_COPY: rtype = R_IA64_COPY; break;
576 case BFD_RELOC_IA64_LTOFF22X: rtype = R_IA64_LTOFF22X; break;
577 case BFD_RELOC_IA64_LDXMOV: rtype = R_IA64_LDXMOV; break;
578
579 case BFD_RELOC_IA64_TPREL14: rtype = R_IA64_TPREL14; break;
580 case BFD_RELOC_IA64_TPREL22: rtype = R_IA64_TPREL22; break;
581 case BFD_RELOC_IA64_TPREL64I: rtype = R_IA64_TPREL64I; break;
582 case BFD_RELOC_IA64_TPREL64MSB: rtype = R_IA64_TPREL64MSB; break;
583 case BFD_RELOC_IA64_TPREL64LSB: rtype = R_IA64_TPREL64LSB; break;
584 case BFD_RELOC_IA64_LTOFF_TPREL22: rtype = R_IA64_LTOFF_TPREL22; break;
585
586 case BFD_RELOC_IA64_DTPMOD64MSB: rtype = R_IA64_DTPMOD64MSB; break;
587 case BFD_RELOC_IA64_DTPMOD64LSB: rtype = R_IA64_DTPMOD64LSB; break;
588 case BFD_RELOC_IA64_LTOFF_DTPMOD22: rtype = R_IA64_LTOFF_DTPMOD22; break;
589
590 case BFD_RELOC_IA64_DTPREL14: rtype = R_IA64_DTPREL14; break;
591 case BFD_RELOC_IA64_DTPREL22: rtype = R_IA64_DTPREL22; break;
592 case BFD_RELOC_IA64_DTPREL64I: rtype = R_IA64_DTPREL64I; break;
593 case BFD_RELOC_IA64_DTPREL32MSB: rtype = R_IA64_DTPREL32MSB; break;
594 case BFD_RELOC_IA64_DTPREL32LSB: rtype = R_IA64_DTPREL32LSB; break;
595 case BFD_RELOC_IA64_DTPREL64MSB: rtype = R_IA64_DTPREL64MSB; break;
596 case BFD_RELOC_IA64_DTPREL64LSB: rtype = R_IA64_DTPREL64LSB; break;
597 case BFD_RELOC_IA64_LTOFF_DTPREL22: rtype = R_IA64_LTOFF_DTPREL22; break;
598
599 default: return 0;
600 }
601 return lookup_howto (rtype);
602 }
603
604 /* Given a ELF reloc, return the matching HOWTO structure. */
605
606 static void
607 elfNN_ia64_info_to_howto (abfd, bfd_reloc, elf_reloc)
608 bfd *abfd ATTRIBUTE_UNUSED;
609 arelent *bfd_reloc;
610 Elf_Internal_Rela *elf_reloc;
611 {
612 bfd_reloc->howto
613 = lookup_howto ((unsigned int) ELFNN_R_TYPE (elf_reloc->r_info));
614 }
615 \f
616 #define PLT_HEADER_SIZE (3 * 16)
617 #define PLT_MIN_ENTRY_SIZE (1 * 16)
618 #define PLT_FULL_ENTRY_SIZE (2 * 16)
619 #define PLT_RESERVED_WORDS 3
620
621 static const bfd_byte plt_header[PLT_HEADER_SIZE] =
622 {
623 0x0b, 0x10, 0x00, 0x1c, 0x00, 0x21, /* [MMI] mov r2=r14;; */
624 0xe0, 0x00, 0x08, 0x00, 0x48, 0x00, /* addl r14=0,r2 */
625 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
626 0x0b, 0x80, 0x20, 0x1c, 0x18, 0x14, /* [MMI] ld8 r16=[r14],8;; */
627 0x10, 0x41, 0x38, 0x30, 0x28, 0x00, /* ld8 r17=[r14],8 */
628 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
629 0x11, 0x08, 0x00, 0x1c, 0x18, 0x10, /* [MIB] ld8 r1=[r14] */
630 0x60, 0x88, 0x04, 0x80, 0x03, 0x00, /* mov b6=r17 */
631 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
632 };
633
634 static const bfd_byte plt_min_entry[PLT_MIN_ENTRY_SIZE] =
635 {
636 0x11, 0x78, 0x00, 0x00, 0x00, 0x24, /* [MIB] mov r15=0 */
637 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, /* nop.i 0x0 */
638 0x00, 0x00, 0x00, 0x40 /* br.few 0 <PLT0>;; */
639 };
640
641 static const bfd_byte plt_full_entry[PLT_FULL_ENTRY_SIZE] =
642 {
643 0x0b, 0x78, 0x00, 0x02, 0x00, 0x24, /* [MMI] addl r15=0,r1;; */
644 0x00, 0x41, 0x3c, 0x30, 0x28, 0xc0, /* ld8 r16=[r15],8 */
645 0x01, 0x08, 0x00, 0x84, /* mov r14=r1;; */
646 0x11, 0x08, 0x00, 0x1e, 0x18, 0x10, /* [MIB] ld8 r1=[r15] */
647 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
648 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
649 };
650
651 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
652
653 static const bfd_byte oor_brl[16] =
654 {
655 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
656 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.sptk.few tgt;; */
657 0x00, 0x00, 0x00, 0xc0
658 };
659 \f
660 /* These functions do relaxation for IA-64 ELF. */
661
662 static bfd_boolean
663 elfNN_ia64_relax_section (abfd, sec, link_info, again)
664 bfd *abfd;
665 asection *sec;
666 struct bfd_link_info *link_info;
667 bfd_boolean *again;
668 {
669 struct one_fixup
670 {
671 struct one_fixup *next;
672 asection *tsec;
673 bfd_vma toff;
674 bfd_vma trampoff;
675 };
676
677 Elf_Internal_Shdr *symtab_hdr;
678 Elf_Internal_Rela *internal_relocs;
679 Elf_Internal_Rela *irel, *irelend;
680 bfd_byte *contents;
681 Elf_Internal_Sym *isymbuf = NULL;
682 struct elfNN_ia64_link_hash_table *ia64_info;
683 struct one_fixup *fixups = NULL;
684 bfd_boolean changed_contents = FALSE;
685 bfd_boolean changed_relocs = FALSE;
686 bfd_boolean changed_got = FALSE;
687 bfd_vma gp = 0;
688
689 /* Assume we're not going to change any sizes, and we'll only need
690 one pass. */
691 *again = FALSE;
692
693 /* Don't even try to relax for non-ELF outputs. */
694 if (link_info->hash->creator->flavour != bfd_target_elf_flavour)
695 return FALSE;
696
697 /* Nothing to do if there are no relocations or there is no need for
698 the relax finalize pass. */
699 if ((sec->flags & SEC_RELOC) == 0
700 || sec->reloc_count == 0
701 || (link_info->relax_finalizing
702 && sec->need_finalize_relax == 0))
703 return TRUE;
704
705 /* If this is the first time we have been called for this section,
706 initialize the cooked size. */
707 if (sec->_cooked_size == 0)
708 sec->_cooked_size = sec->_raw_size;
709
710 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
711
712 /* Load the relocations for this section. */
713 internal_relocs = (_bfd_elf_link_read_relocs
714 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
715 link_info->keep_memory));
716 if (internal_relocs == NULL)
717 return FALSE;
718
719 ia64_info = elfNN_ia64_hash_table (link_info);
720 irelend = internal_relocs + sec->reloc_count;
721
722 /* Get the section contents. */
723 if (elf_section_data (sec)->this_hdr.contents != NULL)
724 contents = elf_section_data (sec)->this_hdr.contents;
725 else
726 {
727 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
728 if (contents == NULL)
729 goto error_return;
730
731 if (! bfd_get_section_contents (abfd, sec, contents,
732 (file_ptr) 0, sec->_raw_size))
733 goto error_return;
734 }
735
736 for (irel = internal_relocs; irel < irelend; irel++)
737 {
738 unsigned long r_type = ELFNN_R_TYPE (irel->r_info);
739 bfd_vma symaddr, reladdr, trampoff, toff, roff;
740 asection *tsec;
741 struct one_fixup *f;
742 bfd_size_type amt;
743 bfd_boolean is_branch;
744 struct elfNN_ia64_dyn_sym_info *dyn_i;
745
746 switch (r_type)
747 {
748 case R_IA64_PCREL21B:
749 case R_IA64_PCREL21BI:
750 case R_IA64_PCREL21M:
751 case R_IA64_PCREL21F:
752 if (link_info->relax_finalizing)
753 continue;
754 is_branch = TRUE;
755 break;
756
757 case R_IA64_LTOFF22X:
758 case R_IA64_LDXMOV:
759 if (!link_info->relax_finalizing)
760 {
761 sec->need_finalize_relax = 1;
762 continue;
763 }
764 is_branch = FALSE;
765 break;
766
767 default:
768 continue;
769 }
770
771 /* Get the value of the symbol referred to by the reloc. */
772 if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info)
773 {
774 /* A local symbol. */
775 Elf_Internal_Sym *isym;
776
777 /* Read this BFD's local symbols. */
778 if (isymbuf == NULL)
779 {
780 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
781 if (isymbuf == NULL)
782 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
783 symtab_hdr->sh_info, 0,
784 NULL, NULL, NULL);
785 if (isymbuf == 0)
786 goto error_return;
787 }
788
789 isym = isymbuf + ELFNN_R_SYM (irel->r_info);
790 if (isym->st_shndx == SHN_UNDEF)
791 continue; /* We can't do anthing with undefined symbols. */
792 else if (isym->st_shndx == SHN_ABS)
793 tsec = bfd_abs_section_ptr;
794 else if (isym->st_shndx == SHN_COMMON)
795 tsec = bfd_com_section_ptr;
796 else if (isym->st_shndx == SHN_IA_64_ANSI_COMMON)
797 tsec = bfd_com_section_ptr;
798 else
799 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
800
801 toff = isym->st_value;
802 dyn_i = get_dyn_sym_info (ia64_info, NULL, abfd, irel, FALSE);
803 }
804 else
805 {
806 unsigned long indx;
807 struct elf_link_hash_entry *h;
808
809 indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info;
810 h = elf_sym_hashes (abfd)[indx];
811 BFD_ASSERT (h != NULL);
812
813 while (h->root.type == bfd_link_hash_indirect
814 || h->root.type == bfd_link_hash_warning)
815 h = (struct elf_link_hash_entry *) h->root.u.i.link;
816
817 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, irel, FALSE);
818
819 /* For branches to dynamic symbols, we're interested instead
820 in a branch to the PLT entry. */
821 if (is_branch && dyn_i && dyn_i->want_plt2)
822 {
823 /* Internal branches shouldn't be sent to the PLT.
824 Leave this for now and we'll give an error later. */
825 if (r_type != R_IA64_PCREL21B)
826 continue;
827
828 tsec = ia64_info->plt_sec;
829 toff = dyn_i->plt2_offset;
830 BFD_ASSERT (irel->r_addend == 0);
831 }
832
833 /* Can't do anything else with dynamic symbols. */
834 else if (elfNN_ia64_dynamic_symbol_p (h, link_info, r_type))
835 continue;
836
837 else
838 {
839 /* We can't do anthing with undefined symbols. */
840 if (h->root.type == bfd_link_hash_undefined
841 || h->root.type == bfd_link_hash_undefweak)
842 continue;
843
844 tsec = h->root.u.def.section;
845 toff = h->root.u.def.value;
846 }
847 }
848
849 if (tsec->sec_info_type == ELF_INFO_TYPE_MERGE)
850 toff = _bfd_merged_section_offset (abfd, &tsec,
851 elf_section_data (tsec)->sec_info,
852 toff + irel->r_addend,
853 (bfd_vma) 0);
854 else
855 toff += irel->r_addend;
856
857 symaddr = tsec->output_section->vma + tsec->output_offset + toff;
858
859 roff = irel->r_offset;
860
861 if (is_branch)
862 {
863 reladdr = (sec->output_section->vma
864 + sec->output_offset
865 + roff) & (bfd_vma) -4;
866
867 /* If the branch is in range, no need to do anything. */
868 if ((bfd_signed_vma) (symaddr - reladdr) >= -0x1000000
869 && (bfd_signed_vma) (symaddr - reladdr) <= 0x0FFFFF0)
870 continue;
871
872 /* If the branch and target are in the same section, you've
873 got one honking big section and we can't help you. You'll
874 get an error message later. */
875 if (tsec == sec)
876 continue;
877
878 /* Look for an existing fixup to this address. */
879 for (f = fixups; f ; f = f->next)
880 if (f->tsec == tsec && f->toff == toff)
881 break;
882
883 if (f == NULL)
884 {
885 /* Two alternatives: If it's a branch to a PLT entry, we can
886 make a copy of the FULL_PLT entry. Otherwise, we'll have
887 to use a `brl' insn to get where we're going. */
888
889 size_t size;
890
891 if (tsec == ia64_info->plt_sec)
892 size = sizeof (plt_full_entry);
893 else
894 {
895 size = sizeof (oor_brl);
896 }
897
898 /* Resize the current section to make room for the new branch. */
899 trampoff = (sec->_cooked_size + 15) & (bfd_vma) -16;
900 amt = trampoff + size;
901 contents = (bfd_byte *) bfd_realloc (contents, amt);
902 if (contents == NULL)
903 goto error_return;
904 sec->_cooked_size = amt;
905
906 if (tsec == ia64_info->plt_sec)
907 {
908 memcpy (contents + trampoff, plt_full_entry, size);
909
910 /* Hijack the old relocation for use as the PLTOFF reloc. */
911 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
912 R_IA64_PLTOFF22);
913 irel->r_offset = trampoff;
914 }
915 else
916 {
917 memcpy (contents + trampoff, oor_brl, size);
918 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
919 R_IA64_PCREL60B);
920 irel->r_offset = trampoff + 2;
921 }
922
923 /* Record the fixup so we don't do it again this section. */
924 f = (struct one_fixup *)
925 bfd_malloc ((bfd_size_type) sizeof (*f));
926 f->next = fixups;
927 f->tsec = tsec;
928 f->toff = toff;
929 f->trampoff = trampoff;
930 fixups = f;
931 }
932 else
933 {
934 /* Nop out the reloc, since we're finalizing things here. */
935 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
936 }
937
938 /* Fix up the existing branch to hit the trampoline. Hope like
939 hell this doesn't overflow too. */
940 if (elfNN_ia64_install_value (abfd, contents + roff,
941 f->trampoff - (roff & (bfd_vma) -4),
942 r_type) != bfd_reloc_ok)
943 goto error_return;
944
945 changed_contents = TRUE;
946 changed_relocs = TRUE;
947 }
948 else
949 {
950 /* Fetch the gp. */
951 if (gp == 0)
952 {
953 bfd *obfd = sec->output_section->owner;
954 gp = _bfd_get_gp_value (obfd);
955 if (gp == 0)
956 {
957 if (!elfNN_ia64_choose_gp (obfd, link_info))
958 goto error_return;
959 gp = _bfd_get_gp_value (obfd);
960 }
961 }
962
963 /* If the data is out of range, do nothing. */
964 if ((bfd_signed_vma) (symaddr - gp) >= 0x200000
965 ||(bfd_signed_vma) (symaddr - gp) < -0x200000)
966 continue;
967
968 if (r_type == R_IA64_LTOFF22X)
969 {
970 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
971 R_IA64_GPREL22);
972 changed_relocs = TRUE;
973 if (dyn_i->want_gotx)
974 {
975 dyn_i->want_gotx = 0;
976 changed_got |= !dyn_i->want_got;
977 }
978 }
979 else
980 {
981 elfNN_ia64_relax_ldxmov (abfd, contents, roff);
982 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
983 changed_contents = TRUE;
984 changed_relocs = TRUE;
985 }
986 }
987 }
988
989 /* ??? If we created fixups, this may push the code segment large
990 enough that the data segment moves, which will change the GP.
991 Reset the GP so that we re-calculate next round. We need to
992 do this at the _beginning_ of the next round; now will not do. */
993
994 /* Clean up and go home. */
995 while (fixups)
996 {
997 struct one_fixup *f = fixups;
998 fixups = fixups->next;
999 free (f);
1000 }
1001
1002 if (isymbuf != NULL
1003 && symtab_hdr->contents != (unsigned char *) isymbuf)
1004 {
1005 if (! link_info->keep_memory)
1006 free (isymbuf);
1007 else
1008 {
1009 /* Cache the symbols for elf_link_input_bfd. */
1010 symtab_hdr->contents = (unsigned char *) isymbuf;
1011 }
1012 }
1013
1014 if (contents != NULL
1015 && elf_section_data (sec)->this_hdr.contents != contents)
1016 {
1017 if (!changed_contents && !link_info->keep_memory)
1018 free (contents);
1019 else
1020 {
1021 /* Cache the section contents for elf_link_input_bfd. */
1022 elf_section_data (sec)->this_hdr.contents = contents;
1023 }
1024 }
1025
1026 if (elf_section_data (sec)->relocs != internal_relocs)
1027 {
1028 if (!changed_relocs)
1029 free (internal_relocs);
1030 else
1031 elf_section_data (sec)->relocs = internal_relocs;
1032 }
1033
1034 if (changed_got)
1035 {
1036 struct elfNN_ia64_allocate_data data;
1037 data.info = link_info;
1038 data.ofs = 0;
1039 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
1040
1041 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
1042 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
1043 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
1044 ia64_info->got_sec->_raw_size = data.ofs;
1045 ia64_info->got_sec->_cooked_size = data.ofs;
1046
1047 /* ??? Resize .rela.got too. */
1048 }
1049
1050 if (link_info->relax_finalizing)
1051 sec->need_finalize_relax = 0;
1052
1053 *again = changed_contents || changed_relocs;
1054 return TRUE;
1055
1056 error_return:
1057 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
1058 free (isymbuf);
1059 if (contents != NULL
1060 && elf_section_data (sec)->this_hdr.contents != contents)
1061 free (contents);
1062 if (internal_relocs != NULL
1063 && elf_section_data (sec)->relocs != internal_relocs)
1064 free (internal_relocs);
1065 return FALSE;
1066 }
1067
1068 static void
1069 elfNN_ia64_relax_ldxmov (abfd, contents, off)
1070 bfd *abfd;
1071 bfd_byte *contents;
1072 bfd_vma off;
1073 {
1074 int shift, r1, r3;
1075 bfd_vma dword, insn;
1076
1077 switch ((int)off & 0x3)
1078 {
1079 case 0: shift = 5; break;
1080 case 1: shift = 14; off += 3; break;
1081 case 2: shift = 23; off += 6; break;
1082 default:
1083 abort ();
1084 }
1085
1086 dword = bfd_get_64 (abfd, contents + off);
1087 insn = (dword >> shift) & 0x1ffffffffffLL;
1088
1089 r1 = (insn >> 6) & 127;
1090 r3 = (insn >> 20) & 127;
1091 if (r1 == r3)
1092 insn = 0x8000000; /* nop */
1093 else
1094 insn = (insn & 0x7f01fff) | 0x10800000000LL; /* (qp) mov r1 = r3 */
1095
1096 dword &= ~(0x1ffffffffffLL << shift);
1097 dword |= (insn << shift);
1098 bfd_put_64 (abfd, dword, contents + off);
1099 }
1100 \f
1101 /* Return TRUE if NAME is an unwind table section name. */
1102
1103 static inline bfd_boolean
1104 is_unwind_section_name (abfd, name)
1105 bfd *abfd;
1106 const char *name;
1107 {
1108 size_t len1, len2, len3;
1109
1110 if (elfNN_ia64_hpux_vec (abfd->xvec)
1111 && !strcmp (name, ELF_STRING_ia64_unwind_hdr))
1112 return FALSE;
1113
1114 len1 = sizeof (ELF_STRING_ia64_unwind) - 1;
1115 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
1116 len3 = sizeof (ELF_STRING_ia64_unwind_once) - 1;
1117 return ((strncmp (name, ELF_STRING_ia64_unwind, len1) == 0
1118 && strncmp (name, ELF_STRING_ia64_unwind_info, len2) != 0)
1119 || strncmp (name, ELF_STRING_ia64_unwind_once, len3) == 0);
1120 }
1121
1122 /* Handle an IA-64 specific section when reading an object file. This
1123 is called when elfcode.h finds a section with an unknown type. */
1124
1125 static bfd_boolean
1126 elfNN_ia64_section_from_shdr (abfd, hdr, name)
1127 bfd *abfd;
1128 Elf_Internal_Shdr *hdr;
1129 const char *name;
1130 {
1131 asection *newsect;
1132
1133 /* There ought to be a place to keep ELF backend specific flags, but
1134 at the moment there isn't one. We just keep track of the
1135 sections by their name, instead. Fortunately, the ABI gives
1136 suggested names for all the MIPS specific sections, so we will
1137 probably get away with this. */
1138 switch (hdr->sh_type)
1139 {
1140 case SHT_IA_64_UNWIND:
1141 case SHT_IA_64_HP_OPT_ANOT:
1142 break;
1143
1144 case SHT_IA_64_EXT:
1145 if (strcmp (name, ELF_STRING_ia64_archext) != 0)
1146 return FALSE;
1147 break;
1148
1149 default:
1150 return FALSE;
1151 }
1152
1153 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1154 return FALSE;
1155 newsect = hdr->bfd_section;
1156
1157 return TRUE;
1158 }
1159
1160 /* Convert IA-64 specific section flags to bfd internal section flags. */
1161
1162 /* ??? There is no bfd internal flag equivalent to the SHF_IA_64_NORECOV
1163 flag. */
1164
1165 static bfd_boolean
1166 elfNN_ia64_section_flags (flags, hdr)
1167 flagword *flags;
1168 Elf_Internal_Shdr *hdr;
1169 {
1170 if (hdr->sh_flags & SHF_IA_64_SHORT)
1171 *flags |= SEC_SMALL_DATA;
1172
1173 return TRUE;
1174 }
1175
1176 /* Set the correct type for an IA-64 ELF section. We do this by the
1177 section name, which is a hack, but ought to work. */
1178
1179 static bfd_boolean
1180 elfNN_ia64_fake_sections (abfd, hdr, sec)
1181 bfd *abfd ATTRIBUTE_UNUSED;
1182 Elf_Internal_Shdr *hdr;
1183 asection *sec;
1184 {
1185 register const char *name;
1186
1187 name = bfd_get_section_name (abfd, sec);
1188
1189 if (is_unwind_section_name (abfd, name))
1190 {
1191 /* We don't have the sections numbered at this point, so sh_info
1192 is set later, in elfNN_ia64_final_write_processing. */
1193 hdr->sh_type = SHT_IA_64_UNWIND;
1194 hdr->sh_flags |= SHF_LINK_ORDER;
1195 }
1196 else if (strcmp (name, ELF_STRING_ia64_archext) == 0)
1197 hdr->sh_type = SHT_IA_64_EXT;
1198 else if (strcmp (name, ".HP.opt_annot") == 0)
1199 hdr->sh_type = SHT_IA_64_HP_OPT_ANOT;
1200 else if (strcmp (name, ".reloc") == 0)
1201 /* This is an ugly, but unfortunately necessary hack that is
1202 needed when producing EFI binaries on IA-64. It tells
1203 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1204 containing ELF relocation info. We need this hack in order to
1205 be able to generate ELF binaries that can be translated into
1206 EFI applications (which are essentially COFF objects). Those
1207 files contain a COFF ".reloc" section inside an ELFNN object,
1208 which would normally cause BFD to segfault because it would
1209 attempt to interpret this section as containing relocation
1210 entries for section "oc". With this hack enabled, ".reloc"
1211 will be treated as a normal data section, which will avoid the
1212 segfault. However, you won't be able to create an ELFNN binary
1213 with a section named "oc" that needs relocations, but that's
1214 the kind of ugly side-effects you get when detecting section
1215 types based on their names... In practice, this limitation is
1216 unlikely to bite. */
1217 hdr->sh_type = SHT_PROGBITS;
1218
1219 if (sec->flags & SEC_SMALL_DATA)
1220 hdr->sh_flags |= SHF_IA_64_SHORT;
1221
1222 return TRUE;
1223 }
1224
1225 /* The final processing done just before writing out an IA-64 ELF
1226 object file. */
1227
1228 static void
1229 elfNN_ia64_final_write_processing (abfd, linker)
1230 bfd *abfd;
1231 bfd_boolean linker ATTRIBUTE_UNUSED;
1232 {
1233 Elf_Internal_Shdr *hdr;
1234 const char *sname;
1235 asection *text_sect, *s;
1236 size_t len;
1237
1238 for (s = abfd->sections; s; s = s->next)
1239 {
1240 hdr = &elf_section_data (s)->this_hdr;
1241 switch (hdr->sh_type)
1242 {
1243 case SHT_IA_64_UNWIND:
1244 /* See comments in gas/config/tc-ia64.c:dot_endp on why we
1245 have to do this. */
1246 sname = bfd_get_section_name (abfd, s);
1247 len = sizeof (ELF_STRING_ia64_unwind) - 1;
1248 if (sname && strncmp (sname, ELF_STRING_ia64_unwind, len) == 0)
1249 {
1250 sname += len;
1251
1252 if (sname[0] == '\0')
1253 /* .IA_64.unwind -> .text */
1254 text_sect = bfd_get_section_by_name (abfd, ".text");
1255 else
1256 /* .IA_64.unwindFOO -> FOO */
1257 text_sect = bfd_get_section_by_name (abfd, sname);
1258 }
1259 else if (sname
1260 && (len = sizeof (ELF_STRING_ia64_unwind_once) - 1,
1261 strncmp (sname, ELF_STRING_ia64_unwind_once, len)) == 0)
1262 {
1263 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.t.FOO */
1264 size_t len2 = sizeof (".gnu.linkonce.t.") - 1;
1265 char *once_name = bfd_malloc (len2 + strlen (sname + len) + 1);
1266
1267 if (once_name != NULL)
1268 {
1269 memcpy (once_name, ".gnu.linkonce.t.", len2);
1270 strcpy (once_name + len2, sname + len);
1271 text_sect = bfd_get_section_by_name (abfd, once_name);
1272 free (once_name);
1273 }
1274 else
1275 /* Should only happen if we run out of memory, in
1276 which case we're probably toast anyway. Try to
1277 cope by finding the section the slow way. */
1278 for (text_sect = abfd->sections;
1279 text_sect != NULL;
1280 text_sect = text_sect->next)
1281 {
1282 if (strncmp (bfd_section_name (abfd, text_sect),
1283 ".gnu.linkonce.t.", len2) == 0
1284 && strcmp (bfd_section_name (abfd, text_sect) + len2,
1285 sname + len) == 0)
1286 break;
1287 }
1288 }
1289 else
1290 /* last resort: fall back on .text */
1291 text_sect = bfd_get_section_by_name (abfd, ".text");
1292
1293 if (text_sect)
1294 {
1295 /* The IA-64 processor-specific ABI requires setting
1296 sh_link to the unwind section, whereas HP-UX requires
1297 sh_info to do so. For maximum compatibility, we'll
1298 set both for now... */
1299 hdr->sh_link = elf_section_data (text_sect)->this_idx;
1300 hdr->sh_info = elf_section_data (text_sect)->this_idx;
1301 }
1302 break;
1303 }
1304 }
1305
1306 if (! elf_flags_init (abfd))
1307 {
1308 unsigned long flags = 0;
1309
1310 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
1311 flags |= EF_IA_64_BE;
1312 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
1313 flags |= EF_IA_64_ABI64;
1314
1315 elf_elfheader(abfd)->e_flags = flags;
1316 elf_flags_init (abfd) = TRUE;
1317 }
1318 }
1319
1320 /* Hook called by the linker routine which adds symbols from an object
1321 file. We use it to put .comm items in .sbss, and not .bss. */
1322
1323 static bfd_boolean
1324 elfNN_ia64_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1325 bfd *abfd;
1326 struct bfd_link_info *info;
1327 const Elf_Internal_Sym *sym;
1328 const char **namep ATTRIBUTE_UNUSED;
1329 flagword *flagsp ATTRIBUTE_UNUSED;
1330 asection **secp;
1331 bfd_vma *valp;
1332 {
1333 if (sym->st_shndx == SHN_COMMON
1334 && !info->relocatable
1335 && sym->st_size <= elf_gp_size (abfd))
1336 {
1337 /* Common symbols less than or equal to -G nn bytes are
1338 automatically put into .sbss. */
1339
1340 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1341
1342 if (scomm == NULL)
1343 {
1344 scomm = bfd_make_section (abfd, ".scommon");
1345 if (scomm == NULL
1346 || !bfd_set_section_flags (abfd, scomm, (SEC_ALLOC
1347 | SEC_IS_COMMON
1348 | SEC_LINKER_CREATED)))
1349 return FALSE;
1350 }
1351
1352 *secp = scomm;
1353 *valp = sym->st_size;
1354 }
1355
1356 return TRUE;
1357 }
1358
1359 /* Return the number of additional phdrs we will need. */
1360
1361 static int
1362 elfNN_ia64_additional_program_headers (abfd)
1363 bfd *abfd;
1364 {
1365 asection *s;
1366 int ret = 0;
1367
1368 /* See if we need a PT_IA_64_ARCHEXT segment. */
1369 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1370 if (s && (s->flags & SEC_LOAD))
1371 ++ret;
1372
1373 /* Count how many PT_IA_64_UNWIND segments we need. */
1374 for (s = abfd->sections; s; s = s->next)
1375 if (is_unwind_section_name (abfd, s->name) && (s->flags & SEC_LOAD))
1376 ++ret;
1377
1378 return ret;
1379 }
1380
1381 static bfd_boolean
1382 elfNN_ia64_modify_segment_map (abfd)
1383 bfd *abfd;
1384 {
1385 struct elf_segment_map *m, **pm;
1386 Elf_Internal_Shdr *hdr;
1387 asection *s;
1388
1389 /* If we need a PT_IA_64_ARCHEXT segment, it must come before
1390 all PT_LOAD segments. */
1391 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1392 if (s && (s->flags & SEC_LOAD))
1393 {
1394 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1395 if (m->p_type == PT_IA_64_ARCHEXT)
1396 break;
1397 if (m == NULL)
1398 {
1399 m = ((struct elf_segment_map *)
1400 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1401 if (m == NULL)
1402 return FALSE;
1403
1404 m->p_type = PT_IA_64_ARCHEXT;
1405 m->count = 1;
1406 m->sections[0] = s;
1407
1408 /* We want to put it after the PHDR and INTERP segments. */
1409 pm = &elf_tdata (abfd)->segment_map;
1410 while (*pm != NULL
1411 && ((*pm)->p_type == PT_PHDR
1412 || (*pm)->p_type == PT_INTERP))
1413 pm = &(*pm)->next;
1414
1415 m->next = *pm;
1416 *pm = m;
1417 }
1418 }
1419
1420 /* Install PT_IA_64_UNWIND segments, if needed. */
1421 for (s = abfd->sections; s; s = s->next)
1422 {
1423 hdr = &elf_section_data (s)->this_hdr;
1424 if (hdr->sh_type != SHT_IA_64_UNWIND)
1425 continue;
1426
1427 if (s && (s->flags & SEC_LOAD))
1428 {
1429 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1430 if (m->p_type == PT_IA_64_UNWIND)
1431 {
1432 int i;
1433
1434 /* Look through all sections in the unwind segment
1435 for a match since there may be multiple sections
1436 to a segment. */
1437 for (i = m->count - 1; i >= 0; --i)
1438 if (m->sections[i] == s)
1439 break;
1440
1441 if (i >= 0)
1442 break;
1443 }
1444
1445 if (m == NULL)
1446 {
1447 m = ((struct elf_segment_map *)
1448 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1449 if (m == NULL)
1450 return FALSE;
1451
1452 m->p_type = PT_IA_64_UNWIND;
1453 m->count = 1;
1454 m->sections[0] = s;
1455 m->next = NULL;
1456
1457 /* We want to put it last. */
1458 pm = &elf_tdata (abfd)->segment_map;
1459 while (*pm != NULL)
1460 pm = &(*pm)->next;
1461 *pm = m;
1462 }
1463 }
1464 }
1465
1466 /* Turn on PF_IA_64_NORECOV if needed. This involves traversing all of
1467 the input sections for each output section in the segment and testing
1468 for SHF_IA_64_NORECOV on each. */
1469 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1470 if (m->p_type == PT_LOAD)
1471 {
1472 int i;
1473 for (i = m->count - 1; i >= 0; --i)
1474 {
1475 struct bfd_link_order *order = m->sections[i]->link_order_head;
1476 while (order)
1477 {
1478 if (order->type == bfd_indirect_link_order)
1479 {
1480 asection *is = order->u.indirect.section;
1481 bfd_vma flags = elf_section_data(is)->this_hdr.sh_flags;
1482 if (flags & SHF_IA_64_NORECOV)
1483 {
1484 m->p_flags |= PF_IA_64_NORECOV;
1485 goto found;
1486 }
1487 }
1488 order = order->next;
1489 }
1490 }
1491 found:;
1492 }
1493
1494 return TRUE;
1495 }
1496
1497 /* According to the Tahoe assembler spec, all labels starting with a
1498 '.' are local. */
1499
1500 static bfd_boolean
1501 elfNN_ia64_is_local_label_name (abfd, name)
1502 bfd *abfd ATTRIBUTE_UNUSED;
1503 const char *name;
1504 {
1505 return name[0] == '.';
1506 }
1507
1508 /* Should we do dynamic things to this symbol? */
1509
1510 static bfd_boolean
1511 elfNN_ia64_dynamic_symbol_p (h, info, r_type)
1512 struct elf_link_hash_entry *h;
1513 struct bfd_link_info *info;
1514 int r_type;
1515 {
1516 bfd_boolean ignore_protected
1517 = ((r_type & 0xf8) == 0x40 /* FPTR relocs */
1518 || (r_type & 0xf8) == 0x50); /* LTOFF_FPTR relocs */
1519
1520 return _bfd_elf_dynamic_symbol_p (h, info, ignore_protected);
1521 }
1522 \f
1523 static bfd_boolean
1524 elfNN_ia64_local_hash_table_init (ht, abfd, new)
1525 struct elfNN_ia64_local_hash_table *ht;
1526 bfd *abfd ATTRIBUTE_UNUSED;
1527 new_hash_entry_func new;
1528 {
1529 memset (ht, 0, sizeof (*ht));
1530 return bfd_hash_table_init (&ht->root, new);
1531 }
1532
1533 static struct bfd_hash_entry*
1534 elfNN_ia64_new_loc_hash_entry (entry, table, string)
1535 struct bfd_hash_entry *entry;
1536 struct bfd_hash_table *table;
1537 const char *string;
1538 {
1539 struct elfNN_ia64_local_hash_entry *ret;
1540 ret = (struct elfNN_ia64_local_hash_entry *) entry;
1541
1542 /* Allocate the structure if it has not already been allocated by a
1543 subclass. */
1544 if (!ret)
1545 ret = bfd_hash_allocate (table, sizeof (*ret));
1546
1547 if (!ret)
1548 return 0;
1549
1550 /* Initialize our local data. All zeros, and definitely easier
1551 than setting a handful of bit fields. */
1552 memset (ret, 0, sizeof (*ret));
1553
1554 /* Call the allocation method of the superclass. */
1555 ret = ((struct elfNN_ia64_local_hash_entry *)
1556 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
1557
1558 return (struct bfd_hash_entry *) ret;
1559 }
1560
1561 static struct bfd_hash_entry*
1562 elfNN_ia64_new_elf_hash_entry (entry, table, string)
1563 struct bfd_hash_entry *entry;
1564 struct bfd_hash_table *table;
1565 const char *string;
1566 {
1567 struct elfNN_ia64_link_hash_entry *ret;
1568 ret = (struct elfNN_ia64_link_hash_entry *) entry;
1569
1570 /* Allocate the structure if it has not already been allocated by a
1571 subclass. */
1572 if (!ret)
1573 ret = bfd_hash_allocate (table, sizeof (*ret));
1574
1575 if (!ret)
1576 return 0;
1577
1578 /* Initialize our local data. All zeros, and definitely easier
1579 than setting a handful of bit fields. */
1580 memset (ret, 0, sizeof (*ret));
1581
1582 /* Call the allocation method of the superclass. */
1583 ret = ((struct elfNN_ia64_link_hash_entry *)
1584 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1585 table, string));
1586
1587 return (struct bfd_hash_entry *) ret;
1588 }
1589
1590 static void
1591 elfNN_ia64_hash_copy_indirect (bed, xdir, xind)
1592 const struct elf_backend_data *bed ATTRIBUTE_UNUSED;
1593 struct elf_link_hash_entry *xdir, *xind;
1594 {
1595 struct elfNN_ia64_link_hash_entry *dir, *ind;
1596
1597 dir = (struct elfNN_ia64_link_hash_entry *) xdir;
1598 ind = (struct elfNN_ia64_link_hash_entry *) xind;
1599
1600 /* Copy down any references that we may have already seen to the
1601 symbol which just became indirect. */
1602
1603 dir->root.elf_link_hash_flags |=
1604 (ind->root.elf_link_hash_flags
1605 & (ELF_LINK_HASH_REF_DYNAMIC
1606 | ELF_LINK_HASH_REF_REGULAR
1607 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1608
1609 if (ind->root.root.type != bfd_link_hash_indirect)
1610 return;
1611
1612 /* Copy over the got and plt data. This would have been done
1613 by check_relocs. */
1614
1615 if (dir->info == NULL)
1616 {
1617 struct elfNN_ia64_dyn_sym_info *dyn_i;
1618
1619 dir->info = dyn_i = ind->info;
1620 ind->info = NULL;
1621
1622 /* Fix up the dyn_sym_info pointers to the global symbol. */
1623 for (; dyn_i; dyn_i = dyn_i->next)
1624 dyn_i->h = &dir->root;
1625 }
1626 BFD_ASSERT (ind->info == NULL);
1627
1628 /* Copy over the dynindx. */
1629
1630 if (dir->root.dynindx == -1)
1631 {
1632 dir->root.dynindx = ind->root.dynindx;
1633 dir->root.dynstr_index = ind->root.dynstr_index;
1634 ind->root.dynindx = -1;
1635 ind->root.dynstr_index = 0;
1636 }
1637 BFD_ASSERT (ind->root.dynindx == -1);
1638 }
1639
1640 static void
1641 elfNN_ia64_hash_hide_symbol (info, xh, force_local)
1642 struct bfd_link_info *info;
1643 struct elf_link_hash_entry *xh;
1644 bfd_boolean force_local;
1645 {
1646 struct elfNN_ia64_link_hash_entry *h;
1647 struct elfNN_ia64_dyn_sym_info *dyn_i;
1648
1649 h = (struct elfNN_ia64_link_hash_entry *)xh;
1650
1651 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
1652
1653 for (dyn_i = h->info; dyn_i; dyn_i = dyn_i->next)
1654 {
1655 dyn_i->want_plt2 = 0;
1656 dyn_i->want_plt = 0;
1657 }
1658 }
1659
1660 /* Create the derived linker hash table. The IA-64 ELF port uses this
1661 derived hash table to keep information specific to the IA-64 ElF
1662 linker (without using static variables). */
1663
1664 static struct bfd_link_hash_table*
1665 elfNN_ia64_hash_table_create (abfd)
1666 bfd *abfd;
1667 {
1668 struct elfNN_ia64_link_hash_table *ret;
1669
1670 ret = bfd_zmalloc ((bfd_size_type) sizeof (*ret));
1671 if (!ret)
1672 return 0;
1673
1674 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
1675 elfNN_ia64_new_elf_hash_entry))
1676 {
1677 free (ret);
1678 return 0;
1679 }
1680
1681 if (!elfNN_ia64_local_hash_table_init (&ret->loc_hash_table, abfd,
1682 elfNN_ia64_new_loc_hash_entry))
1683 {
1684 free (ret);
1685 return 0;
1686 }
1687
1688 return &ret->root.root;
1689 }
1690
1691 /* Look up an entry in a Alpha ELF linker hash table. */
1692
1693 static INLINE struct elfNN_ia64_local_hash_entry *
1694 elfNN_ia64_local_hash_lookup(table, string, create, copy)
1695 struct elfNN_ia64_local_hash_table *table;
1696 const char *string;
1697 bfd_boolean create, copy;
1698 {
1699 return ((struct elfNN_ia64_local_hash_entry *)
1700 bfd_hash_lookup (&table->root, string, create, copy));
1701 }
1702
1703 /* Traverse both local and global hash tables. */
1704
1705 struct elfNN_ia64_dyn_sym_traverse_data
1706 {
1707 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
1708 PTR data;
1709 };
1710
1711 static bfd_boolean
1712 elfNN_ia64_global_dyn_sym_thunk (xentry, xdata)
1713 struct bfd_hash_entry *xentry;
1714 PTR xdata;
1715 {
1716 struct elfNN_ia64_link_hash_entry *entry
1717 = (struct elfNN_ia64_link_hash_entry *) xentry;
1718 struct elfNN_ia64_dyn_sym_traverse_data *data
1719 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1720 struct elfNN_ia64_dyn_sym_info *dyn_i;
1721
1722 if (entry->root.root.type == bfd_link_hash_warning)
1723 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1724
1725 for (dyn_i = entry->info; dyn_i; dyn_i = dyn_i->next)
1726 if (! (*data->func) (dyn_i, data->data))
1727 return FALSE;
1728 return TRUE;
1729 }
1730
1731 static bfd_boolean
1732 elfNN_ia64_local_dyn_sym_thunk (xentry, xdata)
1733 struct bfd_hash_entry *xentry;
1734 PTR xdata;
1735 {
1736 struct elfNN_ia64_local_hash_entry *entry
1737 = (struct elfNN_ia64_local_hash_entry *) xentry;
1738 struct elfNN_ia64_dyn_sym_traverse_data *data
1739 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1740 struct elfNN_ia64_dyn_sym_info *dyn_i;
1741
1742 for (dyn_i = entry->info; dyn_i; dyn_i = dyn_i->next)
1743 if (! (*data->func) (dyn_i, data->data))
1744 return FALSE;
1745 return TRUE;
1746 }
1747
1748 static void
1749 elfNN_ia64_dyn_sym_traverse (ia64_info, func, data)
1750 struct elfNN_ia64_link_hash_table *ia64_info;
1751 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
1752 PTR data;
1753 {
1754 struct elfNN_ia64_dyn_sym_traverse_data xdata;
1755
1756 xdata.func = func;
1757 xdata.data = data;
1758
1759 elf_link_hash_traverse (&ia64_info->root,
1760 elfNN_ia64_global_dyn_sym_thunk, &xdata);
1761 bfd_hash_traverse (&ia64_info->loc_hash_table.root,
1762 elfNN_ia64_local_dyn_sym_thunk, &xdata);
1763 }
1764 \f
1765 static bfd_boolean
1766 elfNN_ia64_create_dynamic_sections (abfd, info)
1767 bfd *abfd;
1768 struct bfd_link_info *info;
1769 {
1770 struct elfNN_ia64_link_hash_table *ia64_info;
1771 asection *s;
1772
1773 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1774 return FALSE;
1775
1776 ia64_info = elfNN_ia64_hash_table (info);
1777
1778 ia64_info->plt_sec = bfd_get_section_by_name (abfd, ".plt");
1779 ia64_info->got_sec = bfd_get_section_by_name (abfd, ".got");
1780
1781 {
1782 flagword flags = bfd_get_section_flags (abfd, ia64_info->got_sec);
1783 bfd_set_section_flags (abfd, ia64_info->got_sec, SEC_SMALL_DATA | flags);
1784 }
1785
1786 if (!get_pltoff (abfd, info, ia64_info))
1787 return FALSE;
1788
1789 s = bfd_make_section(abfd, ".rela.IA_64.pltoff");
1790 if (s == NULL
1791 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1792 | SEC_HAS_CONTENTS
1793 | SEC_IN_MEMORY
1794 | SEC_LINKER_CREATED
1795 | SEC_READONLY))
1796 || !bfd_set_section_alignment (abfd, s, 3))
1797 return FALSE;
1798 ia64_info->rel_pltoff_sec = s;
1799
1800 s = bfd_make_section(abfd, ".rela.got");
1801 if (s == NULL
1802 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1803 | SEC_HAS_CONTENTS
1804 | SEC_IN_MEMORY
1805 | SEC_LINKER_CREATED
1806 | SEC_READONLY))
1807 || !bfd_set_section_alignment (abfd, s, 3))
1808 return FALSE;
1809 ia64_info->rel_got_sec = s;
1810
1811 return TRUE;
1812 }
1813
1814 /* Find and/or create a hash entry for local symbol. */
1815 static struct elfNN_ia64_local_hash_entry *
1816 get_local_sym_hash (ia64_info, abfd, rel, create)
1817 struct elfNN_ia64_link_hash_table *ia64_info;
1818 bfd *abfd;
1819 const Elf_Internal_Rela *rel;
1820 bfd_boolean create;
1821 {
1822 struct elfNN_ia64_local_hash_entry *ret;
1823 asection *sec = abfd->sections;
1824 char addr_name [34];
1825
1826 BFD_ASSERT ((sizeof (sec->id)*2 + 1 + sizeof (unsigned long)*2 + 1) <= 34);
1827 BFD_ASSERT (sec);
1828
1829 /* Construct a string for use in the elfNN_ia64_local_hash_table.
1830 name describes what was once anonymous memory. */
1831
1832 sprintf (addr_name, "%x:%lx",
1833 sec->id, (unsigned long) ELFNN_R_SYM (rel->r_info));
1834
1835 /* Collect the canonical entry data for this address. */
1836 ret = elfNN_ia64_local_hash_lookup (&ia64_info->loc_hash_table,
1837 addr_name, create, create);
1838 return ret;
1839 }
1840
1841 /* Find and/or create a descriptor for dynamic symbol info. This will
1842 vary based on global or local symbol, and the addend to the reloc. */
1843
1844 static struct elfNN_ia64_dyn_sym_info *
1845 get_dyn_sym_info (ia64_info, h, abfd, rel, create)
1846 struct elfNN_ia64_link_hash_table *ia64_info;
1847 struct elf_link_hash_entry *h;
1848 bfd *abfd;
1849 const Elf_Internal_Rela *rel;
1850 bfd_boolean create;
1851 {
1852 struct elfNN_ia64_dyn_sym_info **pp;
1853 struct elfNN_ia64_dyn_sym_info *dyn_i;
1854 bfd_vma addend = rel ? rel->r_addend : 0;
1855
1856 if (h)
1857 pp = &((struct elfNN_ia64_link_hash_entry *)h)->info;
1858 else
1859 {
1860 struct elfNN_ia64_local_hash_entry *loc_h;
1861
1862 loc_h = get_local_sym_hash (ia64_info, abfd, rel, create);
1863 if (!loc_h)
1864 {
1865 BFD_ASSERT (!create);
1866 return NULL;
1867 }
1868
1869 pp = &loc_h->info;
1870 }
1871
1872 for (dyn_i = *pp; dyn_i && dyn_i->addend != addend; dyn_i = *pp)
1873 pp = &dyn_i->next;
1874
1875 if (dyn_i == NULL && create)
1876 {
1877 dyn_i = ((struct elfNN_ia64_dyn_sym_info *)
1878 bfd_zalloc (abfd, (bfd_size_type) sizeof *dyn_i));
1879 *pp = dyn_i;
1880 dyn_i->addend = addend;
1881 }
1882
1883 return dyn_i;
1884 }
1885
1886 static asection *
1887 get_got (abfd, info, ia64_info)
1888 bfd *abfd;
1889 struct bfd_link_info *info;
1890 struct elfNN_ia64_link_hash_table *ia64_info;
1891 {
1892 asection *got;
1893 bfd *dynobj;
1894
1895 got = ia64_info->got_sec;
1896 if (!got)
1897 {
1898 flagword flags;
1899
1900 dynobj = ia64_info->root.dynobj;
1901 if (!dynobj)
1902 ia64_info->root.dynobj = dynobj = abfd;
1903 if (!_bfd_elf_create_got_section (dynobj, info))
1904 return 0;
1905
1906 got = bfd_get_section_by_name (dynobj, ".got");
1907 BFD_ASSERT (got);
1908 ia64_info->got_sec = got;
1909
1910 /* The .got section is always aligned at 8 bytes. */
1911 if (!bfd_set_section_alignment (abfd, got, 3))
1912 return 0;
1913
1914 flags = bfd_get_section_flags (abfd, got);
1915 bfd_set_section_flags (abfd, got, SEC_SMALL_DATA | flags);
1916 }
1917
1918 return got;
1919 }
1920
1921 /* Create function descriptor section (.opd). This section is called .opd
1922 because it contains "official prodecure descriptors". The "official"
1923 refers to the fact that these descriptors are used when taking the address
1924 of a procedure, thus ensuring a unique address for each procedure. */
1925
1926 static asection *
1927 get_fptr (abfd, info, ia64_info)
1928 bfd *abfd;
1929 struct bfd_link_info *info;
1930 struct elfNN_ia64_link_hash_table *ia64_info;
1931 {
1932 asection *fptr;
1933 bfd *dynobj;
1934
1935 fptr = ia64_info->fptr_sec;
1936 if (!fptr)
1937 {
1938 dynobj = ia64_info->root.dynobj;
1939 if (!dynobj)
1940 ia64_info->root.dynobj = dynobj = abfd;
1941
1942 fptr = bfd_make_section (dynobj, ".opd");
1943 if (!fptr
1944 || !bfd_set_section_flags (dynobj, fptr,
1945 (SEC_ALLOC
1946 | SEC_LOAD
1947 | SEC_HAS_CONTENTS
1948 | SEC_IN_MEMORY
1949 | (info->pie ? 0 : SEC_READONLY)
1950 | SEC_LINKER_CREATED))
1951 || !bfd_set_section_alignment (abfd, fptr, 4))
1952 {
1953 BFD_ASSERT (0);
1954 return NULL;
1955 }
1956
1957 ia64_info->fptr_sec = fptr;
1958
1959 if (info->pie)
1960 {
1961 asection *fptr_rel;
1962 fptr_rel = bfd_make_section(abfd, ".rela.opd");
1963 if (fptr_rel == NULL
1964 || !bfd_set_section_flags (abfd, fptr_rel,
1965 (SEC_ALLOC | SEC_LOAD
1966 | SEC_HAS_CONTENTS
1967 | SEC_IN_MEMORY
1968 | SEC_LINKER_CREATED
1969 | SEC_READONLY))
1970 || !bfd_set_section_alignment (abfd, fptr_rel, 3))
1971 {
1972 BFD_ASSERT (0);
1973 return NULL;
1974 }
1975
1976 ia64_info->rel_fptr_sec = fptr_rel;
1977 }
1978 }
1979
1980 return fptr;
1981 }
1982
1983 static asection *
1984 get_pltoff (abfd, info, ia64_info)
1985 bfd *abfd;
1986 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1987 struct elfNN_ia64_link_hash_table *ia64_info;
1988 {
1989 asection *pltoff;
1990 bfd *dynobj;
1991
1992 pltoff = ia64_info->pltoff_sec;
1993 if (!pltoff)
1994 {
1995 dynobj = ia64_info->root.dynobj;
1996 if (!dynobj)
1997 ia64_info->root.dynobj = dynobj = abfd;
1998
1999 pltoff = bfd_make_section (dynobj, ELF_STRING_ia64_pltoff);
2000 if (!pltoff
2001 || !bfd_set_section_flags (dynobj, pltoff,
2002 (SEC_ALLOC
2003 | SEC_LOAD
2004 | SEC_HAS_CONTENTS
2005 | SEC_IN_MEMORY
2006 | SEC_SMALL_DATA
2007 | SEC_LINKER_CREATED))
2008 || !bfd_set_section_alignment (abfd, pltoff, 4))
2009 {
2010 BFD_ASSERT (0);
2011 return NULL;
2012 }
2013
2014 ia64_info->pltoff_sec = pltoff;
2015 }
2016
2017 return pltoff;
2018 }
2019
2020 static asection *
2021 get_reloc_section (abfd, ia64_info, sec, create)
2022 bfd *abfd;
2023 struct elfNN_ia64_link_hash_table *ia64_info;
2024 asection *sec;
2025 bfd_boolean create;
2026 {
2027 const char *srel_name;
2028 asection *srel;
2029 bfd *dynobj;
2030
2031 srel_name = (bfd_elf_string_from_elf_section
2032 (abfd, elf_elfheader(abfd)->e_shstrndx,
2033 elf_section_data(sec)->rel_hdr.sh_name));
2034 if (srel_name == NULL)
2035 return NULL;
2036
2037 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
2038 && strcmp (bfd_get_section_name (abfd, sec),
2039 srel_name+5) == 0)
2040 || (strncmp (srel_name, ".rel", 4) == 0
2041 && strcmp (bfd_get_section_name (abfd, sec),
2042 srel_name+4) == 0));
2043
2044 dynobj = ia64_info->root.dynobj;
2045 if (!dynobj)
2046 ia64_info->root.dynobj = dynobj = abfd;
2047
2048 srel = bfd_get_section_by_name (dynobj, srel_name);
2049 if (srel == NULL && create)
2050 {
2051 srel = bfd_make_section (dynobj, srel_name);
2052 if (srel == NULL
2053 || !bfd_set_section_flags (dynobj, srel,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY))
2060 || !bfd_set_section_alignment (dynobj, srel, 3))
2061 return NULL;
2062 }
2063
2064 if (sec->flags & SEC_READONLY)
2065 ia64_info->reltext = 1;
2066
2067 return srel;
2068 }
2069
2070 static bfd_boolean
2071 count_dyn_reloc (abfd, dyn_i, srel, type)
2072 bfd *abfd;
2073 struct elfNN_ia64_dyn_sym_info *dyn_i;
2074 asection *srel;
2075 int type;
2076 {
2077 struct elfNN_ia64_dyn_reloc_entry *rent;
2078
2079 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2080 if (rent->srel == srel && rent->type == type)
2081 break;
2082
2083 if (!rent)
2084 {
2085 rent = ((struct elfNN_ia64_dyn_reloc_entry *)
2086 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)));
2087 if (!rent)
2088 return FALSE;
2089
2090 rent->next = dyn_i->reloc_entries;
2091 rent->srel = srel;
2092 rent->type = type;
2093 rent->count = 0;
2094 dyn_i->reloc_entries = rent;
2095 }
2096 rent->count++;
2097
2098 return TRUE;
2099 }
2100
2101 static bfd_boolean
2102 elfNN_ia64_check_relocs (abfd, info, sec, relocs)
2103 bfd *abfd;
2104 struct bfd_link_info *info;
2105 asection *sec;
2106 const Elf_Internal_Rela *relocs;
2107 {
2108 struct elfNN_ia64_link_hash_table *ia64_info;
2109 const Elf_Internal_Rela *relend;
2110 Elf_Internal_Shdr *symtab_hdr;
2111 const Elf_Internal_Rela *rel;
2112 asection *got, *fptr, *srel;
2113
2114 if (info->relocatable)
2115 return TRUE;
2116
2117 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2118 ia64_info = elfNN_ia64_hash_table (info);
2119
2120 got = fptr = srel = NULL;
2121
2122 relend = relocs + sec->reloc_count;
2123 for (rel = relocs; rel < relend; ++rel)
2124 {
2125 enum {
2126 NEED_GOT = 1,
2127 NEED_GOTX = 2,
2128 NEED_FPTR = 4,
2129 NEED_PLTOFF = 8,
2130 NEED_MIN_PLT = 16,
2131 NEED_FULL_PLT = 32,
2132 NEED_DYNREL = 64,
2133 NEED_LTOFF_FPTR = 128,
2134 NEED_TPREL = 256,
2135 NEED_DTPMOD = 512,
2136 NEED_DTPREL = 1024
2137 };
2138
2139 struct elf_link_hash_entry *h = NULL;
2140 unsigned long r_symndx = ELFNN_R_SYM (rel->r_info);
2141 struct elfNN_ia64_dyn_sym_info *dyn_i;
2142 int need_entry;
2143 bfd_boolean maybe_dynamic;
2144 int dynrel_type = R_IA64_NONE;
2145
2146 if (r_symndx >= symtab_hdr->sh_info)
2147 {
2148 /* We're dealing with a global symbol -- find its hash entry
2149 and mark it as being referenced. */
2150 long indx = r_symndx - symtab_hdr->sh_info;
2151 h = elf_sym_hashes (abfd)[indx];
2152 while (h->root.type == bfd_link_hash_indirect
2153 || h->root.type == bfd_link_hash_warning)
2154 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2155
2156 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2157 }
2158
2159 /* We can only get preliminary data on whether a symbol is
2160 locally or externally defined, as not all of the input files
2161 have yet been processed. Do something with what we know, as
2162 this may help reduce memory usage and processing time later. */
2163 maybe_dynamic = FALSE;
2164 if (h && ((!info->executable
2165 && (!info->symbolic || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2166 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2167 || h->root.type == bfd_link_hash_defweak))
2168 maybe_dynamic = TRUE;
2169
2170 need_entry = 0;
2171 switch (ELFNN_R_TYPE (rel->r_info))
2172 {
2173 case R_IA64_TPREL64MSB:
2174 case R_IA64_TPREL64LSB:
2175 if (info->shared || maybe_dynamic)
2176 need_entry = NEED_DYNREL;
2177 dynrel_type = R_IA64_TPREL64LSB;
2178 if (info->shared)
2179 info->flags |= DF_STATIC_TLS;
2180 break;
2181
2182 case R_IA64_LTOFF_TPREL22:
2183 need_entry = NEED_TPREL;
2184 if (info->shared)
2185 info->flags |= DF_STATIC_TLS;
2186 break;
2187
2188 case R_IA64_DTPREL64MSB:
2189 case R_IA64_DTPREL64LSB:
2190 if (info->shared || maybe_dynamic)
2191 need_entry = NEED_DYNREL;
2192 dynrel_type = R_IA64_DTPREL64LSB;
2193 break;
2194
2195 case R_IA64_LTOFF_DTPREL22:
2196 need_entry = NEED_DTPREL;
2197 break;
2198
2199 case R_IA64_DTPMOD64MSB:
2200 case R_IA64_DTPMOD64LSB:
2201 if (info->shared || maybe_dynamic)
2202 need_entry = NEED_DYNREL;
2203 dynrel_type = R_IA64_DTPMOD64LSB;
2204 break;
2205
2206 case R_IA64_LTOFF_DTPMOD22:
2207 need_entry = NEED_DTPMOD;
2208 break;
2209
2210 case R_IA64_LTOFF_FPTR22:
2211 case R_IA64_LTOFF_FPTR64I:
2212 case R_IA64_LTOFF_FPTR32MSB:
2213 case R_IA64_LTOFF_FPTR32LSB:
2214 case R_IA64_LTOFF_FPTR64MSB:
2215 case R_IA64_LTOFF_FPTR64LSB:
2216 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2217 break;
2218
2219 case R_IA64_FPTR64I:
2220 case R_IA64_FPTR32MSB:
2221 case R_IA64_FPTR32LSB:
2222 case R_IA64_FPTR64MSB:
2223 case R_IA64_FPTR64LSB:
2224 if (info->shared || h)
2225 need_entry = NEED_FPTR | NEED_DYNREL;
2226 else
2227 need_entry = NEED_FPTR;
2228 dynrel_type = R_IA64_FPTR64LSB;
2229 break;
2230
2231 case R_IA64_LTOFF22:
2232 case R_IA64_LTOFF64I:
2233 need_entry = NEED_GOT;
2234 break;
2235
2236 case R_IA64_LTOFF22X:
2237 need_entry = NEED_GOTX;
2238 break;
2239
2240 case R_IA64_PLTOFF22:
2241 case R_IA64_PLTOFF64I:
2242 case R_IA64_PLTOFF64MSB:
2243 case R_IA64_PLTOFF64LSB:
2244 need_entry = NEED_PLTOFF;
2245 if (h)
2246 {
2247 if (maybe_dynamic)
2248 need_entry |= NEED_MIN_PLT;
2249 }
2250 else
2251 {
2252 (*info->callbacks->warning)
2253 (info, _("@pltoff reloc against local symbol"), 0,
2254 abfd, 0, (bfd_vma) 0);
2255 }
2256 break;
2257
2258 case R_IA64_PCREL21B:
2259 case R_IA64_PCREL60B:
2260 /* Depending on where this symbol is defined, we may or may not
2261 need a full plt entry. Only skip if we know we'll not need
2262 the entry -- static or symbolic, and the symbol definition
2263 has already been seen. */
2264 if (maybe_dynamic && rel->r_addend == 0)
2265 need_entry = NEED_FULL_PLT;
2266 break;
2267
2268 case R_IA64_IMM14:
2269 case R_IA64_IMM22:
2270 case R_IA64_IMM64:
2271 case R_IA64_DIR32MSB:
2272 case R_IA64_DIR32LSB:
2273 case R_IA64_DIR64MSB:
2274 case R_IA64_DIR64LSB:
2275 /* Shared objects will always need at least a REL relocation. */
2276 if (info->shared || maybe_dynamic)
2277 need_entry = NEED_DYNREL;
2278 dynrel_type = R_IA64_DIR64LSB;
2279 break;
2280
2281 case R_IA64_IPLTMSB:
2282 case R_IA64_IPLTLSB:
2283 /* Shared objects will always need at least a REL relocation. */
2284 if (info->shared || maybe_dynamic)
2285 need_entry = NEED_DYNREL;
2286 dynrel_type = R_IA64_IPLTLSB;
2287 break;
2288
2289 case R_IA64_PCREL22:
2290 case R_IA64_PCREL64I:
2291 case R_IA64_PCREL32MSB:
2292 case R_IA64_PCREL32LSB:
2293 case R_IA64_PCREL64MSB:
2294 case R_IA64_PCREL64LSB:
2295 if (maybe_dynamic)
2296 need_entry = NEED_DYNREL;
2297 dynrel_type = R_IA64_PCREL64LSB;
2298 break;
2299 }
2300
2301 if (!need_entry)
2302 continue;
2303
2304 if ((need_entry & NEED_FPTR) != 0
2305 && rel->r_addend)
2306 {
2307 (*info->callbacks->warning)
2308 (info, _("non-zero addend in @fptr reloc"), 0,
2309 abfd, 0, (bfd_vma) 0);
2310 }
2311
2312 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, rel, TRUE);
2313
2314 /* Record whether or not this is a local symbol. */
2315 dyn_i->h = h;
2316
2317 /* Create what's needed. */
2318 if (need_entry & (NEED_GOT | NEED_GOTX | NEED_TPREL
2319 | NEED_DTPMOD | NEED_DTPREL))
2320 {
2321 if (!got)
2322 {
2323 got = get_got (abfd, info, ia64_info);
2324 if (!got)
2325 return FALSE;
2326 }
2327 if (need_entry & NEED_GOT)
2328 dyn_i->want_got = 1;
2329 if (need_entry & NEED_GOTX)
2330 dyn_i->want_gotx = 1;
2331 if (need_entry & NEED_TPREL)
2332 dyn_i->want_tprel = 1;
2333 if (need_entry & NEED_DTPMOD)
2334 dyn_i->want_dtpmod = 1;
2335 if (need_entry & NEED_DTPREL)
2336 dyn_i->want_dtprel = 1;
2337 }
2338 if (need_entry & NEED_FPTR)
2339 {
2340 if (!fptr)
2341 {
2342 fptr = get_fptr (abfd, info, ia64_info);
2343 if (!fptr)
2344 return FALSE;
2345 }
2346
2347 /* FPTRs for shared libraries are allocated by the dynamic
2348 linker. Make sure this local symbol will appear in the
2349 dynamic symbol table. */
2350 if (!h && info->shared)
2351 {
2352 if (! (_bfd_elfNN_link_record_local_dynamic_symbol
2353 (info, abfd, (long) r_symndx)))
2354 return FALSE;
2355 }
2356
2357 dyn_i->want_fptr = 1;
2358 }
2359 if (need_entry & NEED_LTOFF_FPTR)
2360 dyn_i->want_ltoff_fptr = 1;
2361 if (need_entry & (NEED_MIN_PLT | NEED_FULL_PLT))
2362 {
2363 if (!ia64_info->root.dynobj)
2364 ia64_info->root.dynobj = abfd;
2365 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2366 dyn_i->want_plt = 1;
2367 }
2368 if (need_entry & NEED_FULL_PLT)
2369 dyn_i->want_plt2 = 1;
2370 if (need_entry & NEED_PLTOFF)
2371 dyn_i->want_pltoff = 1;
2372 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
2373 {
2374 if (!srel)
2375 {
2376 srel = get_reloc_section (abfd, ia64_info, sec, TRUE);
2377 if (!srel)
2378 return FALSE;
2379 }
2380 if (!count_dyn_reloc (abfd, dyn_i, srel, dynrel_type))
2381 return FALSE;
2382 }
2383 }
2384
2385 return TRUE;
2386 }
2387
2388 /* For cleanliness, and potentially faster dynamic loading, allocate
2389 external GOT entries first. */
2390
2391 static bfd_boolean
2392 allocate_global_data_got (dyn_i, data)
2393 struct elfNN_ia64_dyn_sym_info *dyn_i;
2394 PTR data;
2395 {
2396 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2397
2398 if ((dyn_i->want_got || dyn_i->want_gotx)
2399 && ! dyn_i->want_fptr
2400 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2401 {
2402 dyn_i->got_offset = x->ofs;
2403 x->ofs += 8;
2404 }
2405 if (dyn_i->want_tprel)
2406 {
2407 dyn_i->tprel_offset = x->ofs;
2408 x->ofs += 8;
2409 }
2410 if (dyn_i->want_dtpmod)
2411 {
2412 if (elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2413 {
2414 dyn_i->dtpmod_offset = x->ofs;
2415 x->ofs += 8;
2416 }
2417 else
2418 {
2419 struct elfNN_ia64_link_hash_table *ia64_info;
2420
2421 ia64_info = elfNN_ia64_hash_table (x->info);
2422 if (ia64_info->self_dtpmod_offset == (bfd_vma) -1)
2423 {
2424 ia64_info->self_dtpmod_offset = x->ofs;
2425 x->ofs += 8;
2426 }
2427 dyn_i->dtpmod_offset = ia64_info->self_dtpmod_offset;
2428 }
2429 }
2430 if (dyn_i->want_dtprel)
2431 {
2432 dyn_i->dtprel_offset = x->ofs;
2433 x->ofs += 8;
2434 }
2435 return TRUE;
2436 }
2437
2438 /* Next, allocate all the GOT entries used by LTOFF_FPTR relocs. */
2439
2440 static bfd_boolean
2441 allocate_global_fptr_got (dyn_i, data)
2442 struct elfNN_ia64_dyn_sym_info *dyn_i;
2443 PTR data;
2444 {
2445 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2446
2447 if (dyn_i->want_got
2448 && dyn_i->want_fptr
2449 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, R_IA64_FPTR64LSB))
2450 {
2451 dyn_i->got_offset = x->ofs;
2452 x->ofs += 8;
2453 }
2454 return TRUE;
2455 }
2456
2457 /* Lastly, allocate all the GOT entries for local data. */
2458
2459 static bfd_boolean
2460 allocate_local_got (dyn_i, data)
2461 struct elfNN_ia64_dyn_sym_info *dyn_i;
2462 PTR data;
2463 {
2464 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2465
2466 if ((dyn_i->want_got || dyn_i->want_gotx)
2467 && !elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2468 {
2469 dyn_i->got_offset = x->ofs;
2470 x->ofs += 8;
2471 }
2472 return TRUE;
2473 }
2474
2475 /* Search for the index of a global symbol in it's defining object file. */
2476
2477 static long
2478 global_sym_index (h)
2479 struct elf_link_hash_entry *h;
2480 {
2481 struct elf_link_hash_entry **p;
2482 bfd *obj;
2483
2484 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2485 || h->root.type == bfd_link_hash_defweak);
2486
2487 obj = h->root.u.def.section->owner;
2488 for (p = elf_sym_hashes (obj); *p != h; ++p)
2489 continue;
2490
2491 return p - elf_sym_hashes (obj) + elf_tdata (obj)->symtab_hdr.sh_info;
2492 }
2493
2494 /* Allocate function descriptors. We can do these for every function
2495 in a main executable that is not exported. */
2496
2497 static bfd_boolean
2498 allocate_fptr (dyn_i, data)
2499 struct elfNN_ia64_dyn_sym_info *dyn_i;
2500 PTR data;
2501 {
2502 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2503
2504 if (dyn_i->want_fptr)
2505 {
2506 struct elf_link_hash_entry *h = dyn_i->h;
2507
2508 if (h)
2509 while (h->root.type == bfd_link_hash_indirect
2510 || h->root.type == bfd_link_hash_warning)
2511 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2512
2513 if (!x->info->executable
2514 && (!h
2515 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2516 || h->root.type != bfd_link_hash_undefweak))
2517 {
2518 if (h && h->dynindx == -1)
2519 {
2520 BFD_ASSERT ((h->root.type == bfd_link_hash_defined)
2521 || (h->root.type == bfd_link_hash_defweak));
2522
2523 if (!_bfd_elfNN_link_record_local_dynamic_symbol
2524 (x->info, h->root.u.def.section->owner,
2525 global_sym_index (h)))
2526 return FALSE;
2527 }
2528
2529 dyn_i->want_fptr = 0;
2530 }
2531 else if (h == NULL || h->dynindx == -1)
2532 {
2533 dyn_i->fptr_offset = x->ofs;
2534 x->ofs += 16;
2535 }
2536 else
2537 dyn_i->want_fptr = 0;
2538 }
2539 return TRUE;
2540 }
2541
2542 /* Allocate all the minimal PLT entries. */
2543
2544 static bfd_boolean
2545 allocate_plt_entries (dyn_i, data)
2546 struct elfNN_ia64_dyn_sym_info *dyn_i;
2547 PTR data;
2548 {
2549 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2550
2551 if (dyn_i->want_plt)
2552 {
2553 struct elf_link_hash_entry *h = dyn_i->h;
2554
2555 if (h)
2556 while (h->root.type == bfd_link_hash_indirect
2557 || h->root.type == bfd_link_hash_warning)
2558 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2559
2560 /* ??? Versioned symbols seem to lose ELF_LINK_HASH_NEEDS_PLT. */
2561 if (elfNN_ia64_dynamic_symbol_p (h, x->info, 0))
2562 {
2563 bfd_size_type offset = x->ofs;
2564 if (offset == 0)
2565 offset = PLT_HEADER_SIZE;
2566 dyn_i->plt_offset = offset;
2567 x->ofs = offset + PLT_MIN_ENTRY_SIZE;
2568
2569 dyn_i->want_pltoff = 1;
2570 }
2571 else
2572 {
2573 dyn_i->want_plt = 0;
2574 dyn_i->want_plt2 = 0;
2575 }
2576 }
2577 return TRUE;
2578 }
2579
2580 /* Allocate all the full PLT entries. */
2581
2582 static bfd_boolean
2583 allocate_plt2_entries (dyn_i, data)
2584 struct elfNN_ia64_dyn_sym_info *dyn_i;
2585 PTR data;
2586 {
2587 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2588
2589 if (dyn_i->want_plt2)
2590 {
2591 struct elf_link_hash_entry *h = dyn_i->h;
2592 bfd_size_type ofs = x->ofs;
2593
2594 dyn_i->plt2_offset = ofs;
2595 x->ofs = ofs + PLT_FULL_ENTRY_SIZE;
2596
2597 while (h->root.type == bfd_link_hash_indirect
2598 || h->root.type == bfd_link_hash_warning)
2599 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2600 dyn_i->h->plt.offset = ofs;
2601 }
2602 return TRUE;
2603 }
2604
2605 /* Allocate all the PLTOFF entries requested by relocations and
2606 plt entries. We can't share space with allocated FPTR entries,
2607 because the latter are not necessarily addressable by the GP.
2608 ??? Relaxation might be able to determine that they are. */
2609
2610 static bfd_boolean
2611 allocate_pltoff_entries (dyn_i, data)
2612 struct elfNN_ia64_dyn_sym_info *dyn_i;
2613 PTR data;
2614 {
2615 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2616
2617 if (dyn_i->want_pltoff)
2618 {
2619 dyn_i->pltoff_offset = x->ofs;
2620 x->ofs += 16;
2621 }
2622 return TRUE;
2623 }
2624
2625 /* Allocate dynamic relocations for those symbols that turned out
2626 to be dynamic. */
2627
2628 static bfd_boolean
2629 allocate_dynrel_entries (dyn_i, data)
2630 struct elfNN_ia64_dyn_sym_info *dyn_i;
2631 PTR data;
2632 {
2633 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2634 struct elfNN_ia64_link_hash_table *ia64_info;
2635 struct elfNN_ia64_dyn_reloc_entry *rent;
2636 bfd_boolean dynamic_symbol, shared, resolved_zero;
2637
2638 ia64_info = elfNN_ia64_hash_table (x->info);
2639
2640 /* Note that this can't be used in relation to FPTR relocs below. */
2641 dynamic_symbol = elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0);
2642
2643 shared = x->info->shared;
2644 resolved_zero = (dyn_i->h
2645 && ELF_ST_VISIBILITY (dyn_i->h->other)
2646 && dyn_i->h->root.type == bfd_link_hash_undefweak);
2647
2648 /* Take care of the normal data relocations. */
2649
2650 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2651 {
2652 int count = rent->count;
2653
2654 switch (rent->type)
2655 {
2656 case R_IA64_FPTR64LSB:
2657 /* Allocate one iff !want_fptr and not PIE, which by this point
2658 will be true only if we're actually allocating one statically
2659 in the main executable. Position independent executables
2660 need a relative reloc. */
2661 if (dyn_i->want_fptr && !x->info->pie)
2662 continue;
2663 break;
2664 case R_IA64_PCREL64LSB:
2665 if (!dynamic_symbol)
2666 continue;
2667 break;
2668 case R_IA64_DIR64LSB:
2669 if (!dynamic_symbol && !shared)
2670 continue;
2671 break;
2672 case R_IA64_IPLTLSB:
2673 if (!dynamic_symbol && !shared)
2674 continue;
2675 /* Use two REL relocations for IPLT relocations
2676 against local symbols. */
2677 if (!dynamic_symbol)
2678 count *= 2;
2679 break;
2680 case R_IA64_TPREL64LSB:
2681 case R_IA64_DTPREL64LSB:
2682 case R_IA64_DTPMOD64LSB:
2683 break;
2684 default:
2685 abort ();
2686 }
2687 rent->srel->_raw_size += sizeof (ElfNN_External_Rela) * count;
2688 }
2689
2690 /* Take care of the GOT and PLT relocations. */
2691
2692 if ((!resolved_zero
2693 && (dynamic_symbol || shared)
2694 && (dyn_i->want_got || dyn_i->want_gotx))
2695 || (dyn_i->want_ltoff_fptr
2696 && dyn_i->h
2697 && dyn_i->h->dynindx != -1))
2698 {
2699 if (!dyn_i->want_ltoff_fptr
2700 || !x->info->pie
2701 || dyn_i->h == NULL
2702 || dyn_i->h->root.type != bfd_link_hash_undefweak)
2703 ia64_info->rel_got_sec->_raw_size += sizeof (ElfNN_External_Rela);
2704 }
2705 if ((dynamic_symbol || shared) && dyn_i->want_tprel)
2706 ia64_info->rel_got_sec->_raw_size += sizeof (ElfNN_External_Rela);
2707 if (dynamic_symbol && dyn_i->want_dtpmod)
2708 ia64_info->rel_got_sec->_raw_size += sizeof (ElfNN_External_Rela);
2709 if (dynamic_symbol && dyn_i->want_dtprel)
2710 ia64_info->rel_got_sec->_raw_size += sizeof (ElfNN_External_Rela);
2711 if (ia64_info->rel_fptr_sec && dyn_i->want_fptr)
2712 {
2713 if (dyn_i->h == NULL || dyn_i->h->root.type != bfd_link_hash_undefweak)
2714 ia64_info->rel_fptr_sec->_raw_size += sizeof (ElfNN_External_Rela);
2715 }
2716
2717 if (!resolved_zero && dyn_i->want_pltoff)
2718 {
2719 bfd_size_type t = 0;
2720
2721 /* Dynamic symbols get one IPLT relocation. Local symbols in
2722 shared libraries get two REL relocations. Local symbols in
2723 main applications get nothing. */
2724 if (dynamic_symbol)
2725 t = sizeof (ElfNN_External_Rela);
2726 else if (shared)
2727 t = 2 * sizeof (ElfNN_External_Rela);
2728
2729 ia64_info->rel_pltoff_sec->_raw_size += t;
2730 }
2731
2732 return TRUE;
2733 }
2734
2735 static bfd_boolean
2736 elfNN_ia64_adjust_dynamic_symbol (info, h)
2737 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2738 struct elf_link_hash_entry *h;
2739 {
2740 /* ??? Undefined symbols with PLT entries should be re-defined
2741 to be the PLT entry. */
2742
2743 /* If this is a weak symbol, and there is a real definition, the
2744 processor independent code will have arranged for us to see the
2745 real definition first, and we can just use the same value. */
2746 if (h->weakdef != NULL)
2747 {
2748 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
2749 || h->weakdef->root.type == bfd_link_hash_defweak);
2750 h->root.u.def.section = h->weakdef->root.u.def.section;
2751 h->root.u.def.value = h->weakdef->root.u.def.value;
2752 return TRUE;
2753 }
2754
2755 /* If this is a reference to a symbol defined by a dynamic object which
2756 is not a function, we might allocate the symbol in our .dynbss section
2757 and allocate a COPY dynamic relocation.
2758
2759 But IA-64 code is canonically PIC, so as a rule we can avoid this sort
2760 of hackery. */
2761
2762 return TRUE;
2763 }
2764
2765 static bfd_boolean
2766 elfNN_ia64_size_dynamic_sections (output_bfd, info)
2767 bfd *output_bfd ATTRIBUTE_UNUSED;
2768 struct bfd_link_info *info;
2769 {
2770 struct elfNN_ia64_allocate_data data;
2771 struct elfNN_ia64_link_hash_table *ia64_info;
2772 asection *sec;
2773 bfd *dynobj;
2774 bfd_boolean relplt = FALSE;
2775
2776 dynobj = elf_hash_table(info)->dynobj;
2777 ia64_info = elfNN_ia64_hash_table (info);
2778 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
2779 BFD_ASSERT(dynobj != NULL);
2780 data.info = info;
2781
2782 /* Set the contents of the .interp section to the interpreter. */
2783 if (ia64_info->root.dynamic_sections_created
2784 && info->executable)
2785 {
2786 sec = bfd_get_section_by_name (dynobj, ".interp");
2787 BFD_ASSERT (sec != NULL);
2788 sec->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
2789 sec->_raw_size = strlen (ELF_DYNAMIC_INTERPRETER) + 1;
2790 }
2791
2792 /* Allocate the GOT entries. */
2793
2794 if (ia64_info->got_sec)
2795 {
2796 data.ofs = 0;
2797 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
2798 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
2799 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
2800 ia64_info->got_sec->_raw_size = data.ofs;
2801 }
2802
2803 /* Allocate the FPTR entries. */
2804
2805 if (ia64_info->fptr_sec)
2806 {
2807 data.ofs = 0;
2808 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_fptr, &data);
2809 ia64_info->fptr_sec->_raw_size = data.ofs;
2810 }
2811
2812 /* Now that we've seen all of the input files, we can decide which
2813 symbols need plt entries. Allocate the minimal PLT entries first.
2814 We do this even though dynamic_sections_created may be FALSE, because
2815 this has the side-effect of clearing want_plt and want_plt2. */
2816
2817 data.ofs = 0;
2818 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt_entries, &data);
2819
2820 ia64_info->minplt_entries = 0;
2821 if (data.ofs)
2822 {
2823 ia64_info->minplt_entries
2824 = (data.ofs - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
2825 }
2826
2827 /* Align the pointer for the plt2 entries. */
2828 data.ofs = (data.ofs + 31) & (bfd_vma) -32;
2829
2830 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt2_entries, &data);
2831 if (data.ofs != 0)
2832 {
2833 BFD_ASSERT (ia64_info->root.dynamic_sections_created);
2834
2835 ia64_info->plt_sec->_raw_size = data.ofs;
2836
2837 /* If we've got a .plt, we need some extra memory for the dynamic
2838 linker. We stuff these in .got.plt. */
2839 sec = bfd_get_section_by_name (dynobj, ".got.plt");
2840 sec->_raw_size = 8 * PLT_RESERVED_WORDS;
2841 }
2842
2843 /* Allocate the PLTOFF entries. */
2844
2845 if (ia64_info->pltoff_sec)
2846 {
2847 data.ofs = 0;
2848 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_pltoff_entries, &data);
2849 ia64_info->pltoff_sec->_raw_size = data.ofs;
2850 }
2851
2852 if (ia64_info->root.dynamic_sections_created)
2853 {
2854 /* Allocate space for the dynamic relocations that turned out to be
2855 required. */
2856
2857 if (info->shared && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
2858 ia64_info->rel_got_sec->_raw_size += sizeof (ElfNN_External_Rela);
2859 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, &data);
2860 }
2861
2862 /* We have now determined the sizes of the various dynamic sections.
2863 Allocate memory for them. */
2864 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2865 {
2866 bfd_boolean strip;
2867
2868 if (!(sec->flags & SEC_LINKER_CREATED))
2869 continue;
2870
2871 /* If we don't need this section, strip it from the output file.
2872 There were several sections primarily related to dynamic
2873 linking that must be create before the linker maps input
2874 sections to output sections. The linker does that before
2875 bfd_elf_size_dynamic_sections is called, and it is that
2876 function which decides whether anything needs to go into
2877 these sections. */
2878
2879 strip = (sec->_raw_size == 0);
2880
2881 if (sec == ia64_info->got_sec)
2882 strip = FALSE;
2883 else if (sec == ia64_info->rel_got_sec)
2884 {
2885 if (strip)
2886 ia64_info->rel_got_sec = NULL;
2887 else
2888 /* We use the reloc_count field as a counter if we need to
2889 copy relocs into the output file. */
2890 sec->reloc_count = 0;
2891 }
2892 else if (sec == ia64_info->fptr_sec)
2893 {
2894 if (strip)
2895 ia64_info->fptr_sec = NULL;
2896 }
2897 else if (sec == ia64_info->plt_sec)
2898 {
2899 if (strip)
2900 ia64_info->plt_sec = NULL;
2901 }
2902 else if (sec == ia64_info->pltoff_sec)
2903 {
2904 if (strip)
2905 ia64_info->pltoff_sec = NULL;
2906 }
2907 else if (sec == ia64_info->rel_pltoff_sec)
2908 {
2909 if (strip)
2910 ia64_info->rel_pltoff_sec = NULL;
2911 else
2912 {
2913 relplt = TRUE;
2914 /* We use the reloc_count field as a counter if we need to
2915 copy relocs into the output file. */
2916 sec->reloc_count = 0;
2917 }
2918 }
2919 else
2920 {
2921 const char *name;
2922
2923 /* It's OK to base decisions on the section name, because none
2924 of the dynobj section names depend upon the input files. */
2925 name = bfd_get_section_name (dynobj, sec);
2926
2927 if (strcmp (name, ".got.plt") == 0)
2928 strip = FALSE;
2929 else if (strncmp (name, ".rel", 4) == 0)
2930 {
2931 if (!strip)
2932 {
2933 /* We use the reloc_count field as a counter if we need to
2934 copy relocs into the output file. */
2935 sec->reloc_count = 0;
2936 }
2937 }
2938 else
2939 continue;
2940 }
2941
2942 if (strip)
2943 _bfd_strip_section_from_output (info, sec);
2944 else
2945 {
2946 /* Allocate memory for the section contents. */
2947 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->_raw_size);
2948 if (sec->contents == NULL && sec->_raw_size != 0)
2949 return FALSE;
2950 }
2951 }
2952
2953 if (elf_hash_table (info)->dynamic_sections_created)
2954 {
2955 /* Add some entries to the .dynamic section. We fill in the values
2956 later (in finish_dynamic_sections) but we must add the entries now
2957 so that we get the correct size for the .dynamic section. */
2958
2959 if (info->executable)
2960 {
2961 /* The DT_DEBUG entry is filled in by the dynamic linker and used
2962 by the debugger. */
2963 #define add_dynamic_entry(TAG, VAL) \
2964 bfd_elfNN_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2965
2966 if (!add_dynamic_entry (DT_DEBUG, 0))
2967 return FALSE;
2968 }
2969
2970 if (!add_dynamic_entry (DT_IA_64_PLT_RESERVE, 0))
2971 return FALSE;
2972 if (!add_dynamic_entry (DT_PLTGOT, 0))
2973 return FALSE;
2974
2975 if (relplt)
2976 {
2977 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2978 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2979 || !add_dynamic_entry (DT_JMPREL, 0))
2980 return FALSE;
2981 }
2982
2983 if (!add_dynamic_entry (DT_RELA, 0)
2984 || !add_dynamic_entry (DT_RELASZ, 0)
2985 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
2986 return FALSE;
2987
2988 if (ia64_info->reltext)
2989 {
2990 if (!add_dynamic_entry (DT_TEXTREL, 0))
2991 return FALSE;
2992 info->flags |= DF_TEXTREL;
2993 }
2994 }
2995
2996 /* ??? Perhaps force __gp local. */
2997
2998 return TRUE;
2999 }
3000
3001 static bfd_reloc_status_type
3002 elfNN_ia64_install_value (abfd, hit_addr, v, r_type)
3003 bfd *abfd;
3004 bfd_byte *hit_addr;
3005 bfd_vma v;
3006 unsigned int r_type;
3007 {
3008 const struct ia64_operand *op;
3009 int bigendian = 0, shift = 0;
3010 bfd_vma t0, t1, insn, dword;
3011 enum ia64_opnd opnd;
3012 const char *err;
3013 size_t size = 8;
3014 #ifdef BFD_HOST_U_64_BIT
3015 BFD_HOST_U_64_BIT val = (BFD_HOST_U_64_BIT) v;
3016 #else
3017 bfd_vma val = v;
3018 #endif
3019
3020 opnd = IA64_OPND_NIL;
3021 switch (r_type)
3022 {
3023 case R_IA64_NONE:
3024 case R_IA64_LDXMOV:
3025 return bfd_reloc_ok;
3026
3027 /* Instruction relocations. */
3028
3029 case R_IA64_IMM14:
3030 case R_IA64_TPREL14:
3031 case R_IA64_DTPREL14:
3032 opnd = IA64_OPND_IMM14;
3033 break;
3034
3035 case R_IA64_PCREL21F: opnd = IA64_OPND_TGT25; break;
3036 case R_IA64_PCREL21M: opnd = IA64_OPND_TGT25b; break;
3037 case R_IA64_PCREL60B: opnd = IA64_OPND_TGT64; break;
3038 case R_IA64_PCREL21B:
3039 case R_IA64_PCREL21BI:
3040 opnd = IA64_OPND_TGT25c;
3041 break;
3042
3043 case R_IA64_IMM22:
3044 case R_IA64_GPREL22:
3045 case R_IA64_LTOFF22:
3046 case R_IA64_LTOFF22X:
3047 case R_IA64_PLTOFF22:
3048 case R_IA64_PCREL22:
3049 case R_IA64_LTOFF_FPTR22:
3050 case R_IA64_TPREL22:
3051 case R_IA64_DTPREL22:
3052 case R_IA64_LTOFF_TPREL22:
3053 case R_IA64_LTOFF_DTPMOD22:
3054 case R_IA64_LTOFF_DTPREL22:
3055 opnd = IA64_OPND_IMM22;
3056 break;
3057
3058 case R_IA64_IMM64:
3059 case R_IA64_GPREL64I:
3060 case R_IA64_LTOFF64I:
3061 case R_IA64_PLTOFF64I:
3062 case R_IA64_PCREL64I:
3063 case R_IA64_FPTR64I:
3064 case R_IA64_LTOFF_FPTR64I:
3065 case R_IA64_TPREL64I:
3066 case R_IA64_DTPREL64I:
3067 opnd = IA64_OPND_IMMU64;
3068 break;
3069
3070 /* Data relocations. */
3071
3072 case R_IA64_DIR32MSB:
3073 case R_IA64_GPREL32MSB:
3074 case R_IA64_FPTR32MSB:
3075 case R_IA64_PCREL32MSB:
3076 case R_IA64_LTOFF_FPTR32MSB:
3077 case R_IA64_SEGREL32MSB:
3078 case R_IA64_SECREL32MSB:
3079 case R_IA64_LTV32MSB:
3080 case R_IA64_DTPREL32MSB:
3081 size = 4; bigendian = 1;
3082 break;
3083
3084 case R_IA64_DIR32LSB:
3085 case R_IA64_GPREL32LSB:
3086 case R_IA64_FPTR32LSB:
3087 case R_IA64_PCREL32LSB:
3088 case R_IA64_LTOFF_FPTR32LSB:
3089 case R_IA64_SEGREL32LSB:
3090 case R_IA64_SECREL32LSB:
3091 case R_IA64_LTV32LSB:
3092 case R_IA64_DTPREL32LSB:
3093 size = 4; bigendian = 0;
3094 break;
3095
3096 case R_IA64_DIR64MSB:
3097 case R_IA64_GPREL64MSB:
3098 case R_IA64_PLTOFF64MSB:
3099 case R_IA64_FPTR64MSB:
3100 case R_IA64_PCREL64MSB:
3101 case R_IA64_LTOFF_FPTR64MSB:
3102 case R_IA64_SEGREL64MSB:
3103 case R_IA64_SECREL64MSB:
3104 case R_IA64_LTV64MSB:
3105 case R_IA64_TPREL64MSB:
3106 case R_IA64_DTPMOD64MSB:
3107 case R_IA64_DTPREL64MSB:
3108 size = 8; bigendian = 1;
3109 break;
3110
3111 case R_IA64_DIR64LSB:
3112 case R_IA64_GPREL64LSB:
3113 case R_IA64_PLTOFF64LSB:
3114 case R_IA64_FPTR64LSB:
3115 case R_IA64_PCREL64LSB:
3116 case R_IA64_LTOFF_FPTR64LSB:
3117 case R_IA64_SEGREL64LSB:
3118 case R_IA64_SECREL64LSB:
3119 case R_IA64_LTV64LSB:
3120 case R_IA64_TPREL64LSB:
3121 case R_IA64_DTPMOD64LSB:
3122 case R_IA64_DTPREL64LSB:
3123 size = 8; bigendian = 0;
3124 break;
3125
3126 /* Unsupported / Dynamic relocations. */
3127 default:
3128 return bfd_reloc_notsupported;
3129 }
3130
3131 switch (opnd)
3132 {
3133 case IA64_OPND_IMMU64:
3134 hit_addr -= (long) hit_addr & 0x3;
3135 t0 = bfd_get_64 (abfd, hit_addr);
3136 t1 = bfd_get_64 (abfd, hit_addr + 8);
3137
3138 /* tmpl/s: bits 0.. 5 in t0
3139 slot 0: bits 5..45 in t0
3140 slot 1: bits 46..63 in t0, bits 0..22 in t1
3141 slot 2: bits 23..63 in t1 */
3142
3143 /* First, clear the bits that form the 64 bit constant. */
3144 t0 &= ~(0x3ffffLL << 46);
3145 t1 &= ~(0x7fffffLL
3146 | (( (0x07fLL << 13) | (0x1ffLL << 27)
3147 | (0x01fLL << 22) | (0x001LL << 21)
3148 | (0x001LL << 36)) << 23));
3149
3150 t0 |= ((val >> 22) & 0x03ffffLL) << 46; /* 18 lsbs of imm41 */
3151 t1 |= ((val >> 40) & 0x7fffffLL) << 0; /* 23 msbs of imm41 */
3152 t1 |= ( (((val >> 0) & 0x07f) << 13) /* imm7b */
3153 | (((val >> 7) & 0x1ff) << 27) /* imm9d */
3154 | (((val >> 16) & 0x01f) << 22) /* imm5c */
3155 | (((val >> 21) & 0x001) << 21) /* ic */
3156 | (((val >> 63) & 0x001) << 36)) << 23; /* i */
3157
3158 bfd_put_64 (abfd, t0, hit_addr);
3159 bfd_put_64 (abfd, t1, hit_addr + 8);
3160 break;
3161
3162 case IA64_OPND_TGT64:
3163 hit_addr -= (long) hit_addr & 0x3;
3164 t0 = bfd_get_64 (abfd, hit_addr);
3165 t1 = bfd_get_64 (abfd, hit_addr + 8);
3166
3167 /* tmpl/s: bits 0.. 5 in t0
3168 slot 0: bits 5..45 in t0
3169 slot 1: bits 46..63 in t0, bits 0..22 in t1
3170 slot 2: bits 23..63 in t1 */
3171
3172 /* First, clear the bits that form the 64 bit constant. */
3173 t0 &= ~(0x3ffffLL << 46);
3174 t1 &= ~(0x7fffffLL
3175 | ((1LL << 36 | 0xfffffLL << 13) << 23));
3176
3177 val >>= 4;
3178 t0 |= ((val >> 20) & 0xffffLL) << 2 << 46; /* 16 lsbs of imm39 */
3179 t1 |= ((val >> 36) & 0x7fffffLL) << 0; /* 23 msbs of imm39 */
3180 t1 |= ((((val >> 0) & 0xfffffLL) << 13) /* imm20b */
3181 | (((val >> 59) & 0x1LL) << 36)) << 23; /* i */
3182
3183 bfd_put_64 (abfd, t0, hit_addr);
3184 bfd_put_64 (abfd, t1, hit_addr + 8);
3185 break;
3186
3187 default:
3188 switch ((long) hit_addr & 0x3)
3189 {
3190 case 0: shift = 5; break;
3191 case 1: shift = 14; hit_addr += 3; break;
3192 case 2: shift = 23; hit_addr += 6; break;
3193 case 3: return bfd_reloc_notsupported; /* shouldn't happen... */
3194 }
3195 dword = bfd_get_64 (abfd, hit_addr);
3196 insn = (dword >> shift) & 0x1ffffffffffLL;
3197
3198 op = elf64_ia64_operands + opnd;
3199 err = (*op->insert) (op, val, (ia64_insn *)& insn);
3200 if (err)
3201 return bfd_reloc_overflow;
3202
3203 dword &= ~(0x1ffffffffffLL << shift);
3204 dword |= (insn << shift);
3205 bfd_put_64 (abfd, dword, hit_addr);
3206 break;
3207
3208 case IA64_OPND_NIL:
3209 /* A data relocation. */
3210 if (bigendian)
3211 if (size == 4)
3212 bfd_putb32 (val, hit_addr);
3213 else
3214 bfd_putb64 (val, hit_addr);
3215 else
3216 if (size == 4)
3217 bfd_putl32 (val, hit_addr);
3218 else
3219 bfd_putl64 (val, hit_addr);
3220 break;
3221 }
3222
3223 return bfd_reloc_ok;
3224 }
3225
3226 static void
3227 elfNN_ia64_install_dyn_reloc (abfd, info, sec, srel, offset, type,
3228 dynindx, addend)
3229 bfd *abfd;
3230 struct bfd_link_info *info;
3231 asection *sec;
3232 asection *srel;
3233 bfd_vma offset;
3234 unsigned int type;
3235 long dynindx;
3236 bfd_vma addend;
3237 {
3238 Elf_Internal_Rela outrel;
3239 bfd_byte *loc;
3240
3241 BFD_ASSERT (dynindx != -1);
3242 outrel.r_info = ELFNN_R_INFO (dynindx, type);
3243 outrel.r_addend = addend;
3244 outrel.r_offset = _bfd_elf_section_offset (abfd, info, sec, offset);
3245 if (outrel.r_offset >= (bfd_vma) -2)
3246 {
3247 /* Run for the hills. We shouldn't be outputting a relocation
3248 for this. So do what everyone else does and output a no-op. */
3249 outrel.r_info = ELFNN_R_INFO (0, R_IA64_NONE);
3250 outrel.r_addend = 0;
3251 outrel.r_offset = 0;
3252 }
3253 else
3254 outrel.r_offset += sec->output_section->vma + sec->output_offset;
3255
3256 loc = srel->contents;
3257 loc += srel->reloc_count++ * sizeof (ElfNN_External_Rela);
3258 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
3259 BFD_ASSERT (sizeof (ElfNN_External_Rela) * srel->reloc_count
3260 <= srel->_cooked_size);
3261 }
3262
3263 /* Store an entry for target address TARGET_ADDR in the linkage table
3264 and return the gp-relative address of the linkage table entry. */
3265
3266 static bfd_vma
3267 set_got_entry (abfd, info, dyn_i, dynindx, addend, value, dyn_r_type)
3268 bfd *abfd;
3269 struct bfd_link_info *info;
3270 struct elfNN_ia64_dyn_sym_info *dyn_i;
3271 long dynindx;
3272 bfd_vma addend;
3273 bfd_vma value;
3274 unsigned int dyn_r_type;
3275 {
3276 struct elfNN_ia64_link_hash_table *ia64_info;
3277 asection *got_sec;
3278 bfd_boolean done;
3279 bfd_vma got_offset;
3280
3281 ia64_info = elfNN_ia64_hash_table (info);
3282 got_sec = ia64_info->got_sec;
3283
3284 switch (dyn_r_type)
3285 {
3286 case R_IA64_TPREL64LSB:
3287 done = dyn_i->tprel_done;
3288 dyn_i->tprel_done = TRUE;
3289 got_offset = dyn_i->tprel_offset;
3290 break;
3291 case R_IA64_DTPMOD64LSB:
3292 if (dyn_i->dtpmod_offset != ia64_info->self_dtpmod_offset)
3293 {
3294 done = dyn_i->dtpmod_done;
3295 dyn_i->dtpmod_done = TRUE;
3296 }
3297 else
3298 {
3299 done = ia64_info->self_dtpmod_done;
3300 ia64_info->self_dtpmod_done = TRUE;
3301 dynindx = 0;
3302 }
3303 got_offset = dyn_i->dtpmod_offset;
3304 break;
3305 case R_IA64_DTPREL64LSB:
3306 done = dyn_i->dtprel_done;
3307 dyn_i->dtprel_done = TRUE;
3308 got_offset = dyn_i->dtprel_offset;
3309 break;
3310 default:
3311 done = dyn_i->got_done;
3312 dyn_i->got_done = TRUE;
3313 got_offset = dyn_i->got_offset;
3314 break;
3315 }
3316
3317 BFD_ASSERT ((got_offset & 7) == 0);
3318
3319 if (! done)
3320 {
3321 /* Store the target address in the linkage table entry. */
3322 bfd_put_64 (abfd, value, got_sec->contents + got_offset);
3323
3324 /* Install a dynamic relocation if needed. */
3325 if (((info->shared
3326 && (!dyn_i->h
3327 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
3328 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3329 && dyn_r_type != R_IA64_DTPREL64LSB)
3330 || elfNN_ia64_dynamic_symbol_p (dyn_i->h, info, dyn_r_type)
3331 || (dynindx != -1 && dyn_r_type == R_IA64_FPTR64LSB))
3332 && (!dyn_i->want_ltoff_fptr
3333 || !info->pie
3334 || !dyn_i->h
3335 || dyn_i->h->root.type != bfd_link_hash_undefweak))
3336 {
3337 if (dynindx == -1
3338 && dyn_r_type != R_IA64_TPREL64LSB
3339 && dyn_r_type != R_IA64_DTPMOD64LSB
3340 && dyn_r_type != R_IA64_DTPREL64LSB)
3341 {
3342 dyn_r_type = R_IA64_REL64LSB;
3343 dynindx = 0;
3344 addend = value;
3345 }
3346
3347 if (bfd_big_endian (abfd))
3348 {
3349 switch (dyn_r_type)
3350 {
3351 case R_IA64_REL64LSB:
3352 dyn_r_type = R_IA64_REL64MSB;
3353 break;
3354 case R_IA64_DIR64LSB:
3355 dyn_r_type = R_IA64_DIR64MSB;
3356 break;
3357 case R_IA64_FPTR64LSB:
3358 dyn_r_type = R_IA64_FPTR64MSB;
3359 break;
3360 case R_IA64_TPREL64LSB:
3361 dyn_r_type = R_IA64_TPREL64MSB;
3362 break;
3363 case R_IA64_DTPMOD64LSB:
3364 dyn_r_type = R_IA64_DTPMOD64MSB;
3365 break;
3366 case R_IA64_DTPREL64LSB:
3367 dyn_r_type = R_IA64_DTPREL64MSB;
3368 break;
3369 default:
3370 BFD_ASSERT (FALSE);
3371 break;
3372 }
3373 }
3374
3375 elfNN_ia64_install_dyn_reloc (abfd, NULL, got_sec,
3376 ia64_info->rel_got_sec,
3377 got_offset, dyn_r_type,
3378 dynindx, addend);
3379 }
3380 }
3381
3382 /* Return the address of the linkage table entry. */
3383 value = (got_sec->output_section->vma
3384 + got_sec->output_offset
3385 + got_offset);
3386
3387 return value;
3388 }
3389
3390 /* Fill in a function descriptor consisting of the function's code
3391 address and its global pointer. Return the descriptor's address. */
3392
3393 static bfd_vma
3394 set_fptr_entry (abfd, info, dyn_i, value)
3395 bfd *abfd;
3396 struct bfd_link_info *info;
3397 struct elfNN_ia64_dyn_sym_info *dyn_i;
3398 bfd_vma value;
3399 {
3400 struct elfNN_ia64_link_hash_table *ia64_info;
3401 asection *fptr_sec;
3402
3403 ia64_info = elfNN_ia64_hash_table (info);
3404 fptr_sec = ia64_info->fptr_sec;
3405
3406 if (!dyn_i->fptr_done)
3407 {
3408 dyn_i->fptr_done = 1;
3409
3410 /* Fill in the function descriptor. */
3411 bfd_put_64 (abfd, value, fptr_sec->contents + dyn_i->fptr_offset);
3412 bfd_put_64 (abfd, _bfd_get_gp_value (abfd),
3413 fptr_sec->contents + dyn_i->fptr_offset + 8);
3414 if (ia64_info->rel_fptr_sec)
3415 {
3416 Elf_Internal_Rela outrel;
3417 bfd_byte *loc;
3418
3419 if (bfd_little_endian (abfd))
3420 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTLSB);
3421 else
3422 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTMSB);
3423 outrel.r_addend = value;
3424 outrel.r_offset = (fptr_sec->output_section->vma
3425 + fptr_sec->output_offset
3426 + dyn_i->fptr_offset);
3427 loc = ia64_info->rel_fptr_sec->contents;
3428 loc += ia64_info->rel_fptr_sec->reloc_count++
3429 * sizeof (ElfNN_External_Rela);
3430 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
3431 }
3432 }
3433
3434 /* Return the descriptor's address. */
3435 value = (fptr_sec->output_section->vma
3436 + fptr_sec->output_offset
3437 + dyn_i->fptr_offset);
3438
3439 return value;
3440 }
3441
3442 /* Fill in a PLTOFF entry consisting of the function's code address
3443 and its global pointer. Return the descriptor's address. */
3444
3445 static bfd_vma
3446 set_pltoff_entry (abfd, info, dyn_i, value, is_plt)
3447 bfd *abfd;
3448 struct bfd_link_info *info;
3449 struct elfNN_ia64_dyn_sym_info *dyn_i;
3450 bfd_vma value;
3451 bfd_boolean is_plt;
3452 {
3453 struct elfNN_ia64_link_hash_table *ia64_info;
3454 asection *pltoff_sec;
3455
3456 ia64_info = elfNN_ia64_hash_table (info);
3457 pltoff_sec = ia64_info->pltoff_sec;
3458
3459 /* Don't do anything if this symbol uses a real PLT entry. In
3460 that case, we'll fill this in during finish_dynamic_symbol. */
3461 if ((! dyn_i->want_plt || is_plt)
3462 && !dyn_i->pltoff_done)
3463 {
3464 bfd_vma gp = _bfd_get_gp_value (abfd);
3465
3466 /* Fill in the function descriptor. */
3467 bfd_put_64 (abfd, value, pltoff_sec->contents + dyn_i->pltoff_offset);
3468 bfd_put_64 (abfd, gp, pltoff_sec->contents + dyn_i->pltoff_offset + 8);
3469
3470 /* Install dynamic relocations if needed. */
3471 if (!is_plt
3472 && info->shared
3473 && (!dyn_i->h
3474 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
3475 || dyn_i->h->root.type != bfd_link_hash_undefweak))
3476 {
3477 unsigned int dyn_r_type;
3478
3479 if (bfd_big_endian (abfd))
3480 dyn_r_type = R_IA64_REL64MSB;
3481 else
3482 dyn_r_type = R_IA64_REL64LSB;
3483
3484 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
3485 ia64_info->rel_pltoff_sec,
3486 dyn_i->pltoff_offset,
3487 dyn_r_type, 0, value);
3488 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
3489 ia64_info->rel_pltoff_sec,
3490 dyn_i->pltoff_offset + 8,
3491 dyn_r_type, 0, gp);
3492 }
3493
3494 dyn_i->pltoff_done = 1;
3495 }
3496
3497 /* Return the descriptor's address. */
3498 value = (pltoff_sec->output_section->vma
3499 + pltoff_sec->output_offset
3500 + dyn_i->pltoff_offset);
3501
3502 return value;
3503 }
3504
3505 /* Return the base VMA address which should be subtracted from real addresses
3506 when resolving @tprel() relocation.
3507 Main program TLS (whose template starts at PT_TLS p_vaddr)
3508 is assigned offset round(16, PT_TLS p_align). */
3509
3510 static bfd_vma
3511 elfNN_ia64_tprel_base (info)
3512 struct bfd_link_info *info;
3513 {
3514 struct elf_link_tls_segment *tls_segment
3515 = elf_hash_table (info)->tls_segment;
3516
3517 BFD_ASSERT (tls_segment != NULL);
3518 return (tls_segment->start
3519 - align_power ((bfd_vma) 16, tls_segment->align));
3520 }
3521
3522 /* Return the base VMA address which should be subtracted from real addresses
3523 when resolving @dtprel() relocation.
3524 This is PT_TLS segment p_vaddr. */
3525
3526 static bfd_vma
3527 elfNN_ia64_dtprel_base (info)
3528 struct bfd_link_info *info;
3529 {
3530 BFD_ASSERT (elf_hash_table (info)->tls_segment != NULL);
3531 return elf_hash_table (info)->tls_segment->start;
3532 }
3533
3534 /* Called through qsort to sort the .IA_64.unwind section during a
3535 non-relocatable link. Set elfNN_ia64_unwind_entry_compare_bfd
3536 to the output bfd so we can do proper endianness frobbing. */
3537
3538 static bfd *elfNN_ia64_unwind_entry_compare_bfd;
3539
3540 static int
3541 elfNN_ia64_unwind_entry_compare (a, b)
3542 const PTR a;
3543 const PTR b;
3544 {
3545 bfd_vma av, bv;
3546
3547 av = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, a);
3548 bv = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, b);
3549
3550 return (av < bv ? -1 : av > bv ? 1 : 0);
3551 }
3552
3553 /* Make sure we've got ourselves a nice fat __gp value. */
3554 static bfd_boolean
3555 elfNN_ia64_choose_gp (abfd, info)
3556 bfd *abfd;
3557 struct bfd_link_info *info;
3558 {
3559 bfd_vma min_vma = (bfd_vma) -1, max_vma = 0;
3560 bfd_vma min_short_vma = min_vma, max_short_vma = 0;
3561 struct elf_link_hash_entry *gp;
3562 bfd_vma gp_val;
3563 asection *os;
3564 struct elfNN_ia64_link_hash_table *ia64_info;
3565
3566 ia64_info = elfNN_ia64_hash_table (info);
3567
3568 /* Find the min and max vma of all sections marked short. Also collect
3569 min and max vma of any type, for use in selecting a nice gp. */
3570 for (os = abfd->sections; os ; os = os->next)
3571 {
3572 bfd_vma lo, hi;
3573
3574 if ((os->flags & SEC_ALLOC) == 0)
3575 continue;
3576
3577 lo = os->vma;
3578 hi = os->vma + os->_raw_size;
3579 if (hi < lo)
3580 hi = (bfd_vma) -1;
3581
3582 if (min_vma > lo)
3583 min_vma = lo;
3584 if (max_vma < hi)
3585 max_vma = hi;
3586 if (os->flags & SEC_SMALL_DATA)
3587 {
3588 if (min_short_vma > lo)
3589 min_short_vma = lo;
3590 if (max_short_vma < hi)
3591 max_short_vma = hi;
3592 }
3593 }
3594
3595 /* See if the user wants to force a value. */
3596 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
3597 FALSE, FALSE);
3598
3599 if (gp
3600 && (gp->root.type == bfd_link_hash_defined
3601 || gp->root.type == bfd_link_hash_defweak))
3602 {
3603 asection *gp_sec = gp->root.u.def.section;
3604 gp_val = (gp->root.u.def.value
3605 + gp_sec->output_section->vma
3606 + gp_sec->output_offset);
3607 }
3608 else
3609 {
3610 /* Pick a sensible value. */
3611
3612 asection *got_sec = ia64_info->got_sec;
3613
3614 /* Start with just the address of the .got. */
3615 if (got_sec)
3616 gp_val = got_sec->output_section->vma;
3617 else if (max_short_vma != 0)
3618 gp_val = min_short_vma;
3619 else
3620 gp_val = min_vma;
3621
3622 /* If it is possible to address the entire image, but we
3623 don't with the choice above, adjust. */
3624 if (max_vma - min_vma < 0x400000
3625 && max_vma - gp_val <= 0x200000
3626 && gp_val - min_vma > 0x200000)
3627 gp_val = min_vma + 0x200000;
3628 else if (max_short_vma != 0)
3629 {
3630 /* If we don't cover all the short data, adjust. */
3631 if (max_short_vma - gp_val >= 0x200000)
3632 gp_val = min_short_vma + 0x200000;
3633
3634 /* If we're addressing stuff past the end, adjust back. */
3635 if (gp_val > max_vma)
3636 gp_val = max_vma - 0x200000 + 8;
3637 }
3638 }
3639
3640 /* Validate whether all SHF_IA_64_SHORT sections are within
3641 range of the chosen GP. */
3642
3643 if (max_short_vma != 0)
3644 {
3645 if (max_short_vma - min_short_vma >= 0x400000)
3646 {
3647 (*_bfd_error_handler)
3648 (_("%s: short data segment overflowed (0x%lx >= 0x400000)"),
3649 bfd_get_filename (abfd),
3650 (unsigned long) (max_short_vma - min_short_vma));
3651 return FALSE;
3652 }
3653 else if ((gp_val > min_short_vma
3654 && gp_val - min_short_vma > 0x200000)
3655 || (gp_val < max_short_vma
3656 && max_short_vma - gp_val >= 0x200000))
3657 {
3658 (*_bfd_error_handler)
3659 (_("%s: __gp does not cover short data segment"),
3660 bfd_get_filename (abfd));
3661 return FALSE;
3662 }
3663 }
3664
3665 _bfd_set_gp_value (abfd, gp_val);
3666
3667 return TRUE;
3668 }
3669
3670 static bfd_boolean
3671 elfNN_ia64_final_link (abfd, info)
3672 bfd *abfd;
3673 struct bfd_link_info *info;
3674 {
3675 struct elfNN_ia64_link_hash_table *ia64_info;
3676 asection *unwind_output_sec;
3677
3678 ia64_info = elfNN_ia64_hash_table (info);
3679
3680 /* Make sure we've got ourselves a nice fat __gp value. */
3681 if (!info->relocatable)
3682 {
3683 bfd_vma gp_val = _bfd_get_gp_value (abfd);
3684 struct elf_link_hash_entry *gp;
3685
3686 if (gp_val == 0)
3687 {
3688 if (! elfNN_ia64_choose_gp (abfd, info))
3689 return FALSE;
3690 gp_val = _bfd_get_gp_value (abfd);
3691 }
3692
3693 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
3694 FALSE, FALSE);
3695 if (gp)
3696 {
3697 gp->root.type = bfd_link_hash_defined;
3698 gp->root.u.def.value = gp_val;
3699 gp->root.u.def.section = bfd_abs_section_ptr;
3700 }
3701 }
3702
3703 /* If we're producing a final executable, we need to sort the contents
3704 of the .IA_64.unwind section. Force this section to be relocated
3705 into memory rather than written immediately to the output file. */
3706 unwind_output_sec = NULL;
3707 if (!info->relocatable)
3708 {
3709 asection *s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_unwind);
3710 if (s)
3711 {
3712 unwind_output_sec = s->output_section;
3713 unwind_output_sec->contents
3714 = bfd_malloc (unwind_output_sec->_raw_size);
3715 if (unwind_output_sec->contents == NULL)
3716 return FALSE;
3717 }
3718 }
3719
3720 /* Invoke the regular ELF backend linker to do all the work. */
3721 if (!bfd_elfNN_bfd_final_link (abfd, info))
3722 return FALSE;
3723
3724 if (unwind_output_sec)
3725 {
3726 elfNN_ia64_unwind_entry_compare_bfd = abfd;
3727 qsort (unwind_output_sec->contents,
3728 (size_t) (unwind_output_sec->_raw_size / 24),
3729 24,
3730 elfNN_ia64_unwind_entry_compare);
3731
3732 if (! bfd_set_section_contents (abfd, unwind_output_sec,
3733 unwind_output_sec->contents, (bfd_vma) 0,
3734 unwind_output_sec->_raw_size))
3735 return FALSE;
3736 }
3737
3738 return TRUE;
3739 }
3740
3741 static bfd_boolean
3742 elfNN_ia64_relocate_section (output_bfd, info, input_bfd, input_section,
3743 contents, relocs, local_syms, local_sections)
3744 bfd *output_bfd;
3745 struct bfd_link_info *info;
3746 bfd *input_bfd;
3747 asection *input_section;
3748 bfd_byte *contents;
3749 Elf_Internal_Rela *relocs;
3750 Elf_Internal_Sym *local_syms;
3751 asection **local_sections;
3752 {
3753 struct elfNN_ia64_link_hash_table *ia64_info;
3754 Elf_Internal_Shdr *symtab_hdr;
3755 Elf_Internal_Rela *rel;
3756 Elf_Internal_Rela *relend;
3757 asection *srel;
3758 bfd_boolean ret_val = TRUE; /* for non-fatal errors */
3759 bfd_vma gp_val;
3760
3761 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3762 ia64_info = elfNN_ia64_hash_table (info);
3763
3764 /* Infect various flags from the input section to the output section. */
3765 if (info->relocatable)
3766 {
3767 bfd_vma flags;
3768
3769 flags = elf_section_data(input_section)->this_hdr.sh_flags;
3770 flags &= SHF_IA_64_NORECOV;
3771
3772 elf_section_data(input_section->output_section)
3773 ->this_hdr.sh_flags |= flags;
3774 return TRUE;
3775 }
3776
3777 gp_val = _bfd_get_gp_value (output_bfd);
3778 srel = get_reloc_section (input_bfd, ia64_info, input_section, FALSE);
3779
3780 rel = relocs;
3781 relend = relocs + input_section->reloc_count;
3782 for (; rel < relend; ++rel)
3783 {
3784 struct elf_link_hash_entry *h;
3785 struct elfNN_ia64_dyn_sym_info *dyn_i;
3786 bfd_reloc_status_type r;
3787 reloc_howto_type *howto;
3788 unsigned long r_symndx;
3789 Elf_Internal_Sym *sym;
3790 unsigned int r_type;
3791 bfd_vma value;
3792 asection *sym_sec;
3793 bfd_byte *hit_addr;
3794 bfd_boolean dynamic_symbol_p;
3795 bfd_boolean undef_weak_ref;
3796
3797 r_type = ELFNN_R_TYPE (rel->r_info);
3798 if (r_type > R_IA64_MAX_RELOC_CODE)
3799 {
3800 (*_bfd_error_handler)
3801 (_("%s: unknown relocation type %d"),
3802 bfd_archive_filename (input_bfd), (int)r_type);
3803 bfd_set_error (bfd_error_bad_value);
3804 ret_val = FALSE;
3805 continue;
3806 }
3807
3808 howto = lookup_howto (r_type);
3809 r_symndx = ELFNN_R_SYM (rel->r_info);
3810 h = NULL;
3811 sym = NULL;
3812 sym_sec = NULL;
3813 undef_weak_ref = FALSE;
3814
3815 if (r_symndx < symtab_hdr->sh_info)
3816 {
3817 /* Reloc against local symbol. */
3818 sym = local_syms + r_symndx;
3819 sym_sec = local_sections[r_symndx];
3820 value = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3821 if ((sym_sec->flags & SEC_MERGE)
3822 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
3823 && sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE)
3824 {
3825 struct elfNN_ia64_local_hash_entry *loc_h;
3826
3827 loc_h = get_local_sym_hash (ia64_info, input_bfd, rel, FALSE);
3828 if (loc_h && ! loc_h->sec_merge_done)
3829 {
3830 struct elfNN_ia64_dyn_sym_info *dynent;
3831 asection *msec;
3832
3833 for (dynent = loc_h->info; dynent; dynent = dynent->next)
3834 {
3835 msec = sym_sec;
3836 dynent->addend =
3837 _bfd_merged_section_offset (output_bfd, &msec,
3838 elf_section_data (msec)->
3839 sec_info,
3840 sym->st_value
3841 + dynent->addend,
3842 (bfd_vma) 0);
3843 dynent->addend -= sym->st_value;
3844 dynent->addend += msec->output_section->vma
3845 + msec->output_offset
3846 - sym_sec->output_section->vma
3847 - sym_sec->output_offset;
3848 }
3849 loc_h->sec_merge_done = 1;
3850 }
3851 }
3852 }
3853 else
3854 {
3855 bfd_boolean unresolved_reloc;
3856 bfd_boolean warned;
3857
3858 RELOC_FOR_GLOBAL_SYMBOL (h, elf_sym_hashes (input_bfd),
3859 r_symndx,
3860 symtab_hdr, value, sym_sec,
3861 unresolved_reloc, info,
3862 warned);
3863
3864 if (h->root.type == bfd_link_hash_undefweak)
3865 undef_weak_ref = TRUE;
3866 else if (warned)
3867 continue;
3868 }
3869
3870 hit_addr = contents + rel->r_offset;
3871 value += rel->r_addend;
3872 dynamic_symbol_p = elfNN_ia64_dynamic_symbol_p (h, info, r_type);
3873
3874 switch (r_type)
3875 {
3876 case R_IA64_NONE:
3877 case R_IA64_LDXMOV:
3878 continue;
3879
3880 case R_IA64_IMM14:
3881 case R_IA64_IMM22:
3882 case R_IA64_IMM64:
3883 case R_IA64_DIR32MSB:
3884 case R_IA64_DIR32LSB:
3885 case R_IA64_DIR64MSB:
3886 case R_IA64_DIR64LSB:
3887 /* Install a dynamic relocation for this reloc. */
3888 if ((dynamic_symbol_p || info->shared)
3889 && r_symndx != 0
3890 && (input_section->flags & SEC_ALLOC) != 0)
3891 {
3892 unsigned int dyn_r_type;
3893 long dynindx;
3894 bfd_vma addend;
3895
3896 BFD_ASSERT (srel != NULL);
3897
3898 /* If we don't need dynamic symbol lookup, find a
3899 matching RELATIVE relocation. */
3900 dyn_r_type = r_type;
3901 if (dynamic_symbol_p)
3902 {
3903 dynindx = h->dynindx;
3904 addend = rel->r_addend;
3905 value = 0;
3906 }
3907 else
3908 {
3909 switch (r_type)
3910 {
3911 case R_IA64_DIR32MSB:
3912 dyn_r_type = R_IA64_REL32MSB;
3913 break;
3914 case R_IA64_DIR32LSB:
3915 dyn_r_type = R_IA64_REL32LSB;
3916 break;
3917 case R_IA64_DIR64MSB:
3918 dyn_r_type = R_IA64_REL64MSB;
3919 break;
3920 case R_IA64_DIR64LSB:
3921 dyn_r_type = R_IA64_REL64LSB;
3922 break;
3923
3924 default:
3925 /* We can't represent this without a dynamic symbol.
3926 Adjust the relocation to be against an output
3927 section symbol, which are always present in the
3928 dynamic symbol table. */
3929 /* ??? People shouldn't be doing non-pic code in
3930 shared libraries. Hork. */
3931 (*_bfd_error_handler)
3932 (_("%s: linking non-pic code in a shared library"),
3933 bfd_archive_filename (input_bfd));
3934 ret_val = FALSE;
3935 continue;
3936 }
3937 dynindx = 0;
3938 addend = value;
3939 }
3940
3941 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
3942 srel, rel->r_offset, dyn_r_type,
3943 dynindx, addend);
3944 }
3945 /* Fall through. */
3946
3947 case R_IA64_LTV32MSB:
3948 case R_IA64_LTV32LSB:
3949 case R_IA64_LTV64MSB:
3950 case R_IA64_LTV64LSB:
3951 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
3952 break;
3953
3954 case R_IA64_GPREL22:
3955 case R_IA64_GPREL64I:
3956 case R_IA64_GPREL32MSB:
3957 case R_IA64_GPREL32LSB:
3958 case R_IA64_GPREL64MSB:
3959 case R_IA64_GPREL64LSB:
3960 if (dynamic_symbol_p)
3961 {
3962 (*_bfd_error_handler)
3963 (_("%s: @gprel relocation against dynamic symbol %s"),
3964 bfd_archive_filename (input_bfd), h->root.root.string);
3965 ret_val = FALSE;
3966 continue;
3967 }
3968 value -= gp_val;
3969 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
3970 break;
3971
3972 case R_IA64_LTOFF22:
3973 case R_IA64_LTOFF22X:
3974 case R_IA64_LTOFF64I:
3975 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
3976 value = set_got_entry (input_bfd, info, dyn_i, (h ? h->dynindx : -1),
3977 rel->r_addend, value, R_IA64_DIR64LSB);
3978 value -= gp_val;
3979 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
3980 break;
3981
3982 case R_IA64_PLTOFF22:
3983 case R_IA64_PLTOFF64I:
3984 case R_IA64_PLTOFF64MSB:
3985 case R_IA64_PLTOFF64LSB:
3986 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
3987 value = set_pltoff_entry (output_bfd, info, dyn_i, value, FALSE);
3988 value -= gp_val;
3989 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
3990 break;
3991
3992 case R_IA64_FPTR64I:
3993 case R_IA64_FPTR32MSB:
3994 case R_IA64_FPTR32LSB:
3995 case R_IA64_FPTR64MSB:
3996 case R_IA64_FPTR64LSB:
3997 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
3998 if (dyn_i->want_fptr)
3999 {
4000 if (!undef_weak_ref)
4001 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4002 }
4003 if (!dyn_i->want_fptr || info->pie)
4004 {
4005 long dynindx;
4006 unsigned int dyn_r_type = r_type;
4007 bfd_vma addend = rel->r_addend;
4008
4009 /* Otherwise, we expect the dynamic linker to create
4010 the entry. */
4011
4012 if (dyn_i->want_fptr)
4013 {
4014 if (r_type == R_IA64_FPTR64I)
4015 {
4016 /* We can't represent this without a dynamic symbol.
4017 Adjust the relocation to be against an output
4018 section symbol, which are always present in the
4019 dynamic symbol table. */
4020 /* ??? People shouldn't be doing non-pic code in
4021 shared libraries. Hork. */
4022 (*_bfd_error_handler)
4023 (_("%s: linking non-pic code in a position independent executable"),
4024 bfd_archive_filename (input_bfd));
4025 ret_val = FALSE;
4026 continue;
4027 }
4028 dynindx = 0;
4029 addend = value;
4030 dyn_r_type = r_type + R_IA64_REL64LSB - R_IA64_FPTR64LSB;
4031 }
4032 else if (h)
4033 {
4034 if (h->dynindx != -1)
4035 dynindx = h->dynindx;
4036 else
4037 dynindx = (_bfd_elf_link_lookup_local_dynindx
4038 (info, h->root.u.def.section->owner,
4039 global_sym_index (h)));
4040 value = 0;
4041 }
4042 else
4043 {
4044 dynindx = (_bfd_elf_link_lookup_local_dynindx
4045 (info, input_bfd, (long) r_symndx));
4046 value = 0;
4047 }
4048
4049 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4050 srel, rel->r_offset, dyn_r_type,
4051 dynindx, addend);
4052 }
4053
4054 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4055 break;
4056
4057 case R_IA64_LTOFF_FPTR22:
4058 case R_IA64_LTOFF_FPTR64I:
4059 case R_IA64_LTOFF_FPTR32MSB:
4060 case R_IA64_LTOFF_FPTR32LSB:
4061 case R_IA64_LTOFF_FPTR64MSB:
4062 case R_IA64_LTOFF_FPTR64LSB:
4063 {
4064 long dynindx;
4065
4066 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4067 if (dyn_i->want_fptr)
4068 {
4069 BFD_ASSERT (h == NULL || h->dynindx == -1)
4070 if (!undef_weak_ref)
4071 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4072 dynindx = -1;
4073 }
4074 else
4075 {
4076 /* Otherwise, we expect the dynamic linker to create
4077 the entry. */
4078 if (h)
4079 {
4080 if (h->dynindx != -1)
4081 dynindx = h->dynindx;
4082 else
4083 dynindx = (_bfd_elf_link_lookup_local_dynindx
4084 (info, h->root.u.def.section->owner,
4085 global_sym_index (h)));
4086 }
4087 else
4088 dynindx = (_bfd_elf_link_lookup_local_dynindx
4089 (info, input_bfd, (long) r_symndx));
4090 value = 0;
4091 }
4092
4093 value = set_got_entry (output_bfd, info, dyn_i, dynindx,
4094 rel->r_addend, value, R_IA64_FPTR64LSB);
4095 value -= gp_val;
4096 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4097 }
4098 break;
4099
4100 case R_IA64_PCREL32MSB:
4101 case R_IA64_PCREL32LSB:
4102 case R_IA64_PCREL64MSB:
4103 case R_IA64_PCREL64LSB:
4104 /* Install a dynamic relocation for this reloc. */
4105 if (dynamic_symbol_p && r_symndx != 0)
4106 {
4107 BFD_ASSERT (srel != NULL);
4108
4109 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4110 srel, rel->r_offset, r_type,
4111 h->dynindx, rel->r_addend);
4112 }
4113 goto finish_pcrel;
4114
4115 case R_IA64_PCREL21B:
4116 case R_IA64_PCREL60B:
4117 /* We should have created a PLT entry for any dynamic symbol. */
4118 dyn_i = NULL;
4119 if (h)
4120 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4121
4122 if (dyn_i && dyn_i->want_plt2)
4123 {
4124 /* Should have caught this earlier. */
4125 BFD_ASSERT (rel->r_addend == 0);
4126
4127 value = (ia64_info->plt_sec->output_section->vma
4128 + ia64_info->plt_sec->output_offset
4129 + dyn_i->plt2_offset);
4130 }
4131 else
4132 {
4133 /* Since there's no PLT entry, Validate that this is
4134 locally defined. */
4135 BFD_ASSERT (undef_weak_ref || sym_sec->output_section != NULL);
4136
4137 /* If the symbol is undef_weak, we shouldn't be trying
4138 to call it. There's every chance that we'd wind up
4139 with an out-of-range fixup here. Don't bother setting
4140 any value at all. */
4141 if (undef_weak_ref)
4142 continue;
4143 }
4144 goto finish_pcrel;
4145
4146 case R_IA64_PCREL21BI:
4147 case R_IA64_PCREL21F:
4148 case R_IA64_PCREL21M:
4149 case R_IA64_PCREL22:
4150 case R_IA64_PCREL64I:
4151 /* The PCREL21BI reloc is specifically not intended for use with
4152 dynamic relocs. PCREL21F and PCREL21M are used for speculation
4153 fixup code, and thus probably ought not be dynamic. The
4154 PCREL22 and PCREL64I relocs aren't emitted as dynamic relocs. */
4155 if (dynamic_symbol_p)
4156 {
4157 const char *msg;
4158
4159 if (r_type == R_IA64_PCREL21BI)
4160 msg = _("%s: @internal branch to dynamic symbol %s");
4161 else if (r_type == R_IA64_PCREL21F || r_type == R_IA64_PCREL21M)
4162 msg = _("%s: speculation fixup to dynamic symbol %s");
4163 else
4164 msg = _("%s: @pcrel relocation against dynamic symbol %s");
4165 (*_bfd_error_handler) (msg, bfd_archive_filename (input_bfd),
4166 h->root.root.string);
4167 ret_val = FALSE;
4168 continue;
4169 }
4170 goto finish_pcrel;
4171
4172 finish_pcrel:
4173 /* Make pc-relative. */
4174 value -= (input_section->output_section->vma
4175 + input_section->output_offset
4176 + rel->r_offset) & ~ (bfd_vma) 0x3;
4177 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4178 break;
4179
4180 case R_IA64_SEGREL32MSB:
4181 case R_IA64_SEGREL32LSB:
4182 case R_IA64_SEGREL64MSB:
4183 case R_IA64_SEGREL64LSB:
4184 if (r_symndx == 0)
4185 {
4186 /* If the input section was discarded from the output, then
4187 do nothing. */
4188 r = bfd_reloc_ok;
4189 }
4190 else
4191 {
4192 struct elf_segment_map *m;
4193 Elf_Internal_Phdr *p;
4194
4195 /* Find the segment that contains the output_section. */
4196 for (m = elf_tdata (output_bfd)->segment_map,
4197 p = elf_tdata (output_bfd)->phdr;
4198 m != NULL;
4199 m = m->next, p++)
4200 {
4201 int i;
4202 for (i = m->count - 1; i >= 0; i--)
4203 if (m->sections[i] == input_section->output_section)
4204 break;
4205 if (i >= 0)
4206 break;
4207 }
4208
4209 if (m == NULL)
4210 {
4211 r = bfd_reloc_notsupported;
4212 }
4213 else
4214 {
4215 /* The VMA of the segment is the vaddr of the associated
4216 program header. */
4217 if (value > p->p_vaddr)
4218 value -= p->p_vaddr;
4219 else
4220 value = 0;
4221 r = elfNN_ia64_install_value (output_bfd, hit_addr, value,
4222 r_type);
4223 }
4224 break;
4225 }
4226
4227 case R_IA64_SECREL32MSB:
4228 case R_IA64_SECREL32LSB:
4229 case R_IA64_SECREL64MSB:
4230 case R_IA64_SECREL64LSB:
4231 /* Make output-section relative. */
4232 if (value > input_section->output_section->vma)
4233 value -= input_section->output_section->vma;
4234 else
4235 value = 0;
4236 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4237 break;
4238
4239 case R_IA64_IPLTMSB:
4240 case R_IA64_IPLTLSB:
4241 /* Install a dynamic relocation for this reloc. */
4242 if ((dynamic_symbol_p || info->shared)
4243 && (input_section->flags & SEC_ALLOC) != 0)
4244 {
4245 BFD_ASSERT (srel != NULL);
4246
4247 /* If we don't need dynamic symbol lookup, install two
4248 RELATIVE relocations. */
4249 if (!dynamic_symbol_p)
4250 {
4251 unsigned int dyn_r_type;
4252
4253 if (r_type == R_IA64_IPLTMSB)
4254 dyn_r_type = R_IA64_REL64MSB;
4255 else
4256 dyn_r_type = R_IA64_REL64LSB;
4257
4258 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4259 input_section,
4260 srel, rel->r_offset,
4261 dyn_r_type, 0, value);
4262 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4263 input_section,
4264 srel, rel->r_offset + 8,
4265 dyn_r_type, 0, gp_val);
4266 }
4267 else
4268 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4269 srel, rel->r_offset, r_type,
4270 h->dynindx, rel->r_addend);
4271 }
4272
4273 if (r_type == R_IA64_IPLTMSB)
4274 r_type = R_IA64_DIR64MSB;
4275 else
4276 r_type = R_IA64_DIR64LSB;
4277 elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4278 r = elfNN_ia64_install_value (output_bfd, hit_addr + 8, gp_val,
4279 r_type);
4280 break;
4281
4282 case R_IA64_TPREL14:
4283 case R_IA64_TPREL22:
4284 case R_IA64_TPREL64I:
4285 value -= elfNN_ia64_tprel_base (info);
4286 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4287 break;
4288
4289 case R_IA64_DTPREL14:
4290 case R_IA64_DTPREL22:
4291 case R_IA64_DTPREL64I:
4292 case R_IA64_DTPREL64LSB:
4293 case R_IA64_DTPREL64MSB:
4294 value -= elfNN_ia64_dtprel_base (info);
4295 r = elfNN_ia64_install_value (output_bfd, hit_addr, value, r_type);
4296 break;
4297
4298 case R_IA64_LTOFF_TPREL22:
4299 case R_IA64_LTOFF_DTPMOD22:
4300 case R_IA64_LTOFF_DTPREL22:
4301 {
4302 int got_r_type;
4303 long dynindx = h ? h->dynindx : -1;
4304 bfd_vma r_addend = rel->r_addend;
4305
4306 switch (r_type)
4307 {
4308 default:
4309 case R_IA64_LTOFF_TPREL22:
4310 if (!dynamic_symbol_p)
4311 {
4312 if (!info->shared)
4313 value -= elfNN_ia64_tprel_base (info);
4314 else
4315 {
4316 r_addend += value - elfNN_ia64_dtprel_base (info);
4317 dynindx = 0;
4318 }
4319 }
4320 got_r_type = R_IA64_TPREL64LSB;
4321 break;
4322 case R_IA64_LTOFF_DTPMOD22:
4323 if (!dynamic_symbol_p && !info->shared)
4324 value = 1;
4325 got_r_type = R_IA64_DTPMOD64LSB;
4326 break;
4327 case R_IA64_LTOFF_DTPREL22:
4328 if (!dynamic_symbol_p)
4329 value -= elfNN_ia64_dtprel_base (info);
4330 got_r_type = R_IA64_DTPREL64LSB;
4331 break;
4332 }
4333 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4334 value = set_got_entry (input_bfd, info, dyn_i, dynindx, r_addend,
4335 value, got_r_type);
4336 value -= gp_val;
4337 r = elfNN_ia64_install_value (output_bfd, hit_addr, value,
4338 r_type);
4339 }
4340 break;
4341
4342 default:
4343 r = bfd_reloc_notsupported;
4344 break;
4345 }
4346
4347 switch (r)
4348 {
4349 case bfd_reloc_ok:
4350 break;
4351
4352 case bfd_reloc_undefined:
4353 /* This can happen for global table relative relocs if
4354 __gp is undefined. This is a panic situation so we
4355 don't try to continue. */
4356 (*info->callbacks->undefined_symbol)
4357 (info, "__gp", input_bfd, input_section, rel->r_offset, 1);
4358 return FALSE;
4359
4360 case bfd_reloc_notsupported:
4361 {
4362 const char *name;
4363
4364 if (h)
4365 name = h->root.root.string;
4366 else
4367 {
4368 name = bfd_elf_string_from_elf_section (input_bfd,
4369 symtab_hdr->sh_link,
4370 sym->st_name);
4371 if (name == NULL)
4372 return FALSE;
4373 if (*name == '\0')
4374 name = bfd_section_name (input_bfd, input_section);
4375 }
4376 if (!(*info->callbacks->warning) (info, _("unsupported reloc"),
4377 name, input_bfd,
4378 input_section, rel->r_offset))
4379 return FALSE;
4380 ret_val = FALSE;
4381 }
4382 break;
4383
4384 case bfd_reloc_dangerous:
4385 case bfd_reloc_outofrange:
4386 case bfd_reloc_overflow:
4387 default:
4388 {
4389 const char *name;
4390
4391 if (h)
4392 name = h->root.root.string;
4393 else
4394 {
4395 name = bfd_elf_string_from_elf_section (input_bfd,
4396 symtab_hdr->sh_link,
4397 sym->st_name);
4398 if (name == NULL)
4399 return FALSE;
4400 if (*name == '\0')
4401 name = bfd_section_name (input_bfd, input_section);
4402 }
4403 if (!(*info->callbacks->reloc_overflow) (info, name,
4404 howto->name,
4405 (bfd_vma) 0,
4406 input_bfd,
4407 input_section,
4408 rel->r_offset))
4409 return FALSE;
4410 ret_val = FALSE;
4411 }
4412 break;
4413 }
4414 }
4415
4416 return ret_val;
4417 }
4418
4419 static bfd_boolean
4420 elfNN_ia64_finish_dynamic_symbol (output_bfd, info, h, sym)
4421 bfd *output_bfd;
4422 struct bfd_link_info *info;
4423 struct elf_link_hash_entry *h;
4424 Elf_Internal_Sym *sym;
4425 {
4426 struct elfNN_ia64_link_hash_table *ia64_info;
4427 struct elfNN_ia64_dyn_sym_info *dyn_i;
4428
4429 ia64_info = elfNN_ia64_hash_table (info);
4430 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4431
4432 /* Fill in the PLT data, if required. */
4433 if (dyn_i && dyn_i->want_plt)
4434 {
4435 Elf_Internal_Rela outrel;
4436 bfd_byte *loc;
4437 asection *plt_sec;
4438 bfd_vma plt_addr, pltoff_addr, gp_val, index;
4439
4440 gp_val = _bfd_get_gp_value (output_bfd);
4441
4442 /* Initialize the minimal PLT entry. */
4443
4444 index = (dyn_i->plt_offset - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
4445 plt_sec = ia64_info->plt_sec;
4446 loc = plt_sec->contents + dyn_i->plt_offset;
4447
4448 memcpy (loc, plt_min_entry, PLT_MIN_ENTRY_SIZE);
4449 elfNN_ia64_install_value (output_bfd, loc, index, R_IA64_IMM22);
4450 elfNN_ia64_install_value (output_bfd, loc+2, -dyn_i->plt_offset,
4451 R_IA64_PCREL21B);
4452
4453 plt_addr = (plt_sec->output_section->vma
4454 + plt_sec->output_offset
4455 + dyn_i->plt_offset);
4456 pltoff_addr = set_pltoff_entry (output_bfd, info, dyn_i, plt_addr, TRUE);
4457
4458 /* Initialize the FULL PLT entry, if needed. */
4459 if (dyn_i->want_plt2)
4460 {
4461 loc = plt_sec->contents + dyn_i->plt2_offset;
4462
4463 memcpy (loc, plt_full_entry, PLT_FULL_ENTRY_SIZE);
4464 elfNN_ia64_install_value (output_bfd, loc, pltoff_addr - gp_val,
4465 R_IA64_IMM22);
4466
4467 /* Mark the symbol as undefined, rather than as defined in the
4468 plt section. Leave the value alone. */
4469 /* ??? We didn't redefine it in adjust_dynamic_symbol in the
4470 first place. But perhaps elflink.h did some for us. */
4471 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4472 sym->st_shndx = SHN_UNDEF;
4473 }
4474
4475 /* Create the dynamic relocation. */
4476 outrel.r_offset = pltoff_addr;
4477 if (bfd_little_endian (output_bfd))
4478 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTLSB);
4479 else
4480 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTMSB);
4481 outrel.r_addend = 0;
4482
4483 /* This is fun. In the .IA_64.pltoff section, we've got entries
4484 that correspond both to real PLT entries, and those that
4485 happened to resolve to local symbols but need to be created
4486 to satisfy @pltoff relocations. The .rela.IA_64.pltoff
4487 relocations for the real PLT should come at the end of the
4488 section, so that they can be indexed by plt entry at runtime.
4489
4490 We emitted all of the relocations for the non-PLT @pltoff
4491 entries during relocate_section. So we can consider the
4492 existing sec->reloc_count to be the base of the array of
4493 PLT relocations. */
4494
4495 loc = ia64_info->rel_pltoff_sec->contents;
4496 loc += ((ia64_info->rel_pltoff_sec->reloc_count + index)
4497 * sizeof (ElfNN_External_Rela));
4498 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
4499 }
4500
4501 /* Mark some specially defined symbols as absolute. */
4502 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
4503 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
4504 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
4505 sym->st_shndx = SHN_ABS;
4506
4507 return TRUE;
4508 }
4509
4510 static bfd_boolean
4511 elfNN_ia64_finish_dynamic_sections (abfd, info)
4512 bfd *abfd;
4513 struct bfd_link_info *info;
4514 {
4515 struct elfNN_ia64_link_hash_table *ia64_info;
4516 bfd *dynobj;
4517
4518 ia64_info = elfNN_ia64_hash_table (info);
4519 dynobj = ia64_info->root.dynobj;
4520
4521 if (elf_hash_table (info)->dynamic_sections_created)
4522 {
4523 ElfNN_External_Dyn *dyncon, *dynconend;
4524 asection *sdyn, *sgotplt;
4525 bfd_vma gp_val;
4526
4527 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4528 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
4529 BFD_ASSERT (sdyn != NULL);
4530 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
4531 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4532
4533 gp_val = _bfd_get_gp_value (abfd);
4534
4535 for (; dyncon < dynconend; dyncon++)
4536 {
4537 Elf_Internal_Dyn dyn;
4538
4539 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
4540
4541 switch (dyn.d_tag)
4542 {
4543 case DT_PLTGOT:
4544 dyn.d_un.d_ptr = gp_val;
4545 break;
4546
4547 case DT_PLTRELSZ:
4548 dyn.d_un.d_val = (ia64_info->minplt_entries
4549 * sizeof (ElfNN_External_Rela));
4550 break;
4551
4552 case DT_JMPREL:
4553 /* See the comment above in finish_dynamic_symbol. */
4554 dyn.d_un.d_ptr = (ia64_info->rel_pltoff_sec->output_section->vma
4555 + ia64_info->rel_pltoff_sec->output_offset
4556 + (ia64_info->rel_pltoff_sec->reloc_count
4557 * sizeof (ElfNN_External_Rela)));
4558 break;
4559
4560 case DT_IA_64_PLT_RESERVE:
4561 dyn.d_un.d_ptr = (sgotplt->output_section->vma
4562 + sgotplt->output_offset);
4563 break;
4564
4565 case DT_RELASZ:
4566 /* Do not have RELASZ include JMPREL. This makes things
4567 easier on ld.so. This is not what the rest of BFD set up. */
4568 dyn.d_un.d_val -= (ia64_info->minplt_entries
4569 * sizeof (ElfNN_External_Rela));
4570 break;
4571 }
4572
4573 bfd_elfNN_swap_dyn_out (abfd, &dyn, dyncon);
4574 }
4575
4576 /* Initialize the PLT0 entry. */
4577 if (ia64_info->plt_sec)
4578 {
4579 bfd_byte *loc = ia64_info->plt_sec->contents;
4580 bfd_vma pltres;
4581
4582 memcpy (loc, plt_header, PLT_HEADER_SIZE);
4583
4584 pltres = (sgotplt->output_section->vma
4585 + sgotplt->output_offset
4586 - gp_val);
4587
4588 elfNN_ia64_install_value (abfd, loc+1, pltres, R_IA64_GPREL22);
4589 }
4590 }
4591
4592 return TRUE;
4593 }
4594 \f
4595 /* ELF file flag handling: */
4596
4597 /* Function to keep IA-64 specific file flags. */
4598 static bfd_boolean
4599 elfNN_ia64_set_private_flags (abfd, flags)
4600 bfd *abfd;
4601 flagword flags;
4602 {
4603 BFD_ASSERT (!elf_flags_init (abfd)
4604 || elf_elfheader (abfd)->e_flags == flags);
4605
4606 elf_elfheader (abfd)->e_flags = flags;
4607 elf_flags_init (abfd) = TRUE;
4608 return TRUE;
4609 }
4610
4611 /* Merge backend specific data from an object file to the output
4612 object file when linking. */
4613 static bfd_boolean
4614 elfNN_ia64_merge_private_bfd_data (ibfd, obfd)
4615 bfd *ibfd, *obfd;
4616 {
4617 flagword out_flags;
4618 flagword in_flags;
4619 bfd_boolean ok = TRUE;
4620
4621 /* Don't even pretend to support mixed-format linking. */
4622 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4623 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4624 return FALSE;
4625
4626 in_flags = elf_elfheader (ibfd)->e_flags;
4627 out_flags = elf_elfheader (obfd)->e_flags;
4628
4629 if (! elf_flags_init (obfd))
4630 {
4631 elf_flags_init (obfd) = TRUE;
4632 elf_elfheader (obfd)->e_flags = in_flags;
4633
4634 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4635 && bfd_get_arch_info (obfd)->the_default)
4636 {
4637 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4638 bfd_get_mach (ibfd));
4639 }
4640
4641 return TRUE;
4642 }
4643
4644 /* Check flag compatibility. */
4645 if (in_flags == out_flags)
4646 return TRUE;
4647
4648 /* Output has EF_IA_64_REDUCEDFP set only if all inputs have it set. */
4649 if (!(in_flags & EF_IA_64_REDUCEDFP) && (out_flags & EF_IA_64_REDUCEDFP))
4650 elf_elfheader (obfd)->e_flags &= ~EF_IA_64_REDUCEDFP;
4651
4652 if ((in_flags & EF_IA_64_TRAPNIL) != (out_flags & EF_IA_64_TRAPNIL))
4653 {
4654 (*_bfd_error_handler)
4655 (_("%s: linking trap-on-NULL-dereference with non-trapping files"),
4656 bfd_archive_filename (ibfd));
4657
4658 bfd_set_error (bfd_error_bad_value);
4659 ok = FALSE;
4660 }
4661 if ((in_flags & EF_IA_64_BE) != (out_flags & EF_IA_64_BE))
4662 {
4663 (*_bfd_error_handler)
4664 (_("%s: linking big-endian files with little-endian files"),
4665 bfd_archive_filename (ibfd));
4666
4667 bfd_set_error (bfd_error_bad_value);
4668 ok = FALSE;
4669 }
4670 if ((in_flags & EF_IA_64_ABI64) != (out_flags & EF_IA_64_ABI64))
4671 {
4672 (*_bfd_error_handler)
4673 (_("%s: linking 64-bit files with 32-bit files"),
4674 bfd_archive_filename (ibfd));
4675
4676 bfd_set_error (bfd_error_bad_value);
4677 ok = FALSE;
4678 }
4679 if ((in_flags & EF_IA_64_CONS_GP) != (out_flags & EF_IA_64_CONS_GP))
4680 {
4681 (*_bfd_error_handler)
4682 (_("%s: linking constant-gp files with non-constant-gp files"),
4683 bfd_archive_filename (ibfd));
4684
4685 bfd_set_error (bfd_error_bad_value);
4686 ok = FALSE;
4687 }
4688 if ((in_flags & EF_IA_64_NOFUNCDESC_CONS_GP)
4689 != (out_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
4690 {
4691 (*_bfd_error_handler)
4692 (_("%s: linking auto-pic files with non-auto-pic files"),
4693 bfd_archive_filename (ibfd));
4694
4695 bfd_set_error (bfd_error_bad_value);
4696 ok = FALSE;
4697 }
4698
4699 return ok;
4700 }
4701
4702 static bfd_boolean
4703 elfNN_ia64_print_private_bfd_data (abfd, ptr)
4704 bfd *abfd;
4705 PTR ptr;
4706 {
4707 FILE *file = (FILE *) ptr;
4708 flagword flags = elf_elfheader (abfd)->e_flags;
4709
4710 BFD_ASSERT (abfd != NULL && ptr != NULL);
4711
4712 fprintf (file, "private flags = %s%s%s%s%s%s%s%s\n",
4713 (flags & EF_IA_64_TRAPNIL) ? "TRAPNIL, " : "",
4714 (flags & EF_IA_64_EXT) ? "EXT, " : "",
4715 (flags & EF_IA_64_BE) ? "BE, " : "LE, ",
4716 (flags & EF_IA_64_REDUCEDFP) ? "REDUCEDFP, " : "",
4717 (flags & EF_IA_64_CONS_GP) ? "CONS_GP, " : "",
4718 (flags & EF_IA_64_NOFUNCDESC_CONS_GP) ? "NOFUNCDESC_CONS_GP, " : "",
4719 (flags & EF_IA_64_ABSOLUTE) ? "ABSOLUTE, " : "",
4720 (flags & EF_IA_64_ABI64) ? "ABI64" : "ABI32");
4721
4722 _bfd_elf_print_private_bfd_data (abfd, ptr);
4723 return TRUE;
4724 }
4725
4726 static enum elf_reloc_type_class
4727 elfNN_ia64_reloc_type_class (rela)
4728 const Elf_Internal_Rela *rela;
4729 {
4730 switch ((int) ELFNN_R_TYPE (rela->r_info))
4731 {
4732 case R_IA64_REL32MSB:
4733 case R_IA64_REL32LSB:
4734 case R_IA64_REL64MSB:
4735 case R_IA64_REL64LSB:
4736 return reloc_class_relative;
4737 case R_IA64_IPLTMSB:
4738 case R_IA64_IPLTLSB:
4739 return reloc_class_plt;
4740 case R_IA64_COPY:
4741 return reloc_class_copy;
4742 default:
4743 return reloc_class_normal;
4744 }
4745 }
4746
4747 static struct bfd_elf_special_section const elfNN_ia64_special_sections[]=
4748 {
4749 { ".sbss", 0, NULL, 0,
4750 SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
4751 { ".sdata", 0, NULL, 0,
4752 SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
4753 { NULL, 0, NULL, 0,
4754 0, 0 }
4755 };
4756
4757 static bfd_boolean
4758 elfNN_ia64_hpux_vec (const bfd_target *vec)
4759 {
4760 extern const bfd_target bfd_elfNN_ia64_hpux_big_vec;
4761 return (vec == & bfd_elfNN_ia64_hpux_big_vec);
4762 }
4763
4764 static void
4765 elfNN_hpux_post_process_headers (abfd, info)
4766 bfd *abfd;
4767 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4768 {
4769 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4770
4771 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4772 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
4773 }
4774
4775 bfd_boolean
4776 elfNN_hpux_backend_section_from_bfd_section (abfd, sec, retval)
4777 bfd *abfd ATTRIBUTE_UNUSED;
4778 asection *sec;
4779 int *retval;
4780 {
4781 if (bfd_is_com_section (sec))
4782 {
4783 *retval = SHN_IA_64_ANSI_COMMON;
4784 return TRUE;
4785 }
4786 return FALSE;
4787 }
4788 \f
4789 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_little_vec
4790 #define TARGET_LITTLE_NAME "elfNN-ia64-little"
4791 #define TARGET_BIG_SYM bfd_elfNN_ia64_big_vec
4792 #define TARGET_BIG_NAME "elfNN-ia64-big"
4793 #define ELF_ARCH bfd_arch_ia64
4794 #define ELF_MACHINE_CODE EM_IA_64
4795 #define ELF_MACHINE_ALT1 1999 /* EAS2.3 */
4796 #define ELF_MACHINE_ALT2 1998 /* EAS2.2 */
4797 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
4798
4799 #define elf_backend_section_from_shdr \
4800 elfNN_ia64_section_from_shdr
4801 #define elf_backend_section_flags \
4802 elfNN_ia64_section_flags
4803 #define elf_backend_fake_sections \
4804 elfNN_ia64_fake_sections
4805 #define elf_backend_final_write_processing \
4806 elfNN_ia64_final_write_processing
4807 #define elf_backend_add_symbol_hook \
4808 elfNN_ia64_add_symbol_hook
4809 #define elf_backend_additional_program_headers \
4810 elfNN_ia64_additional_program_headers
4811 #define elf_backend_modify_segment_map \
4812 elfNN_ia64_modify_segment_map
4813 #define elf_info_to_howto \
4814 elfNN_ia64_info_to_howto
4815
4816 #define bfd_elfNN_bfd_reloc_type_lookup \
4817 elfNN_ia64_reloc_type_lookup
4818 #define bfd_elfNN_bfd_is_local_label_name \
4819 elfNN_ia64_is_local_label_name
4820 #define bfd_elfNN_bfd_relax_section \
4821 elfNN_ia64_relax_section
4822
4823 /* Stuff for the BFD linker: */
4824 #define bfd_elfNN_bfd_link_hash_table_create \
4825 elfNN_ia64_hash_table_create
4826 #define elf_backend_create_dynamic_sections \
4827 elfNN_ia64_create_dynamic_sections
4828 #define elf_backend_check_relocs \
4829 elfNN_ia64_check_relocs
4830 #define elf_backend_adjust_dynamic_symbol \
4831 elfNN_ia64_adjust_dynamic_symbol
4832 #define elf_backend_size_dynamic_sections \
4833 elfNN_ia64_size_dynamic_sections
4834 #define elf_backend_relocate_section \
4835 elfNN_ia64_relocate_section
4836 #define elf_backend_finish_dynamic_symbol \
4837 elfNN_ia64_finish_dynamic_symbol
4838 #define elf_backend_finish_dynamic_sections \
4839 elfNN_ia64_finish_dynamic_sections
4840 #define bfd_elfNN_bfd_final_link \
4841 elfNN_ia64_final_link
4842
4843 #define bfd_elfNN_bfd_merge_private_bfd_data \
4844 elfNN_ia64_merge_private_bfd_data
4845 #define bfd_elfNN_bfd_set_private_flags \
4846 elfNN_ia64_set_private_flags
4847 #define bfd_elfNN_bfd_print_private_bfd_data \
4848 elfNN_ia64_print_private_bfd_data
4849
4850 #define elf_backend_plt_readonly 1
4851 #define elf_backend_want_plt_sym 0
4852 #define elf_backend_plt_alignment 5
4853 #define elf_backend_got_header_size 0
4854 #define elf_backend_plt_header_size PLT_HEADER_SIZE
4855 #define elf_backend_want_got_plt 1
4856 #define elf_backend_may_use_rel_p 1
4857 #define elf_backend_may_use_rela_p 1
4858 #define elf_backend_default_use_rela_p 1
4859 #define elf_backend_want_dynbss 0
4860 #define elf_backend_copy_indirect_symbol elfNN_ia64_hash_copy_indirect
4861 #define elf_backend_hide_symbol elfNN_ia64_hash_hide_symbol
4862 #define elf_backend_reloc_type_class elfNN_ia64_reloc_type_class
4863 #define elf_backend_rela_normal 1
4864 #define elf_backend_special_sections elfNN_ia64_special_sections
4865
4866 #include "elfNN-target.h"
4867
4868 /* HPUX-specific vectors. */
4869
4870 #undef TARGET_LITTLE_SYM
4871 #undef TARGET_LITTLE_NAME
4872 #undef TARGET_BIG_SYM
4873 #define TARGET_BIG_SYM bfd_elfNN_ia64_hpux_big_vec
4874 #undef TARGET_BIG_NAME
4875 #define TARGET_BIG_NAME "elfNN-ia64-hpux-big"
4876
4877 /* These are HP-UX specific functions. */
4878
4879 #undef elf_backend_post_process_headers
4880 #define elf_backend_post_process_headers elfNN_hpux_post_process_headers
4881
4882 #undef elf_backend_section_from_bfd_section
4883 #define elf_backend_section_from_bfd_section elfNN_hpux_backend_section_from_bfd_section
4884
4885 #undef elf_backend_want_p_paddr_set_to_zero
4886 #define elf_backend_want_p_paddr_set_to_zero 1
4887
4888 #undef ELF_MAXPAGESIZE
4889 #define ELF_MAXPAGESIZE 0x1000 /* 1K */
4890
4891 #undef elfNN_bed
4892 #define elfNN_bed elfNN_ia64_hpux_bed
4893
4894 #include "elfNN-target.h"
4895
4896 #undef elf_backend_want_p_paddr_set_to_zero
This page took 0.145881 seconds and 4 git commands to generate.