bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-ia64.c
1 /* IA-64 support for 64-bit ELF
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "opcode/ia64.h"
27 #include "elf/ia64.h"
28 #include "objalloc.h"
29 #include "hashtab.h"
30
31 #define ARCH_SIZE NN
32
33 #if ARCH_SIZE == 64
34 #define LOG_SECTION_ALIGN 3
35 #endif
36
37 #if ARCH_SIZE == 32
38 #define LOG_SECTION_ALIGN 2
39 #endif
40
41 /* THE RULES for all the stuff the linker creates --
42
43 GOT Entries created in response to LTOFF or LTOFF_FPTR
44 relocations. Dynamic relocs created for dynamic
45 symbols in an application; REL relocs for locals
46 in a shared library.
47
48 FPTR The canonical function descriptor. Created for local
49 symbols in applications. Descriptors for dynamic symbols
50 and local symbols in shared libraries are created by
51 ld.so. Thus there are no dynamic relocs against these
52 objects. The FPTR relocs for such _are_ passed through
53 to the dynamic relocation tables.
54
55 FULL_PLT Created for a PCREL21B relocation against a dynamic symbol.
56 Requires the creation of a PLTOFF entry. This does not
57 require any dynamic relocations.
58
59 PLTOFF Created by PLTOFF relocations. For local symbols, this
60 is an alternate function descriptor, and in shared libraries
61 requires two REL relocations. Note that this cannot be
62 transformed into an FPTR relocation, since it must be in
63 range of the GP. For dynamic symbols, this is a function
64 descriptor for a MIN_PLT entry, and requires one IPLT reloc.
65
66 MIN_PLT Created by PLTOFF entries against dynamic symbols. This
67 does not require dynamic relocations. */
68
69 #define NELEMS(a) ((int) (sizeof (a) / sizeof ((a)[0])))
70
71 typedef struct bfd_hash_entry *(*new_hash_entry_func)
72 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
73
74 /* In dynamically (linker-) created sections, we generally need to keep track
75 of the place a symbol or expression got allocated to. This is done via hash
76 tables that store entries of the following type. */
77
78 struct elfNN_ia64_dyn_sym_info
79 {
80 /* The addend for which this entry is relevant. */
81 bfd_vma addend;
82
83 bfd_vma got_offset;
84 bfd_vma fptr_offset;
85 bfd_vma pltoff_offset;
86 bfd_vma plt_offset;
87 bfd_vma plt2_offset;
88 bfd_vma tprel_offset;
89 bfd_vma dtpmod_offset;
90 bfd_vma dtprel_offset;
91
92 /* The symbol table entry, if any, that this was derived from. */
93 struct elf_link_hash_entry *h;
94
95 /* Used to count non-got, non-plt relocations for delayed sizing
96 of relocation sections. */
97 struct elfNN_ia64_dyn_reloc_entry
98 {
99 struct elfNN_ia64_dyn_reloc_entry *next;
100 asection *srel;
101 int type;
102 int count;
103
104 /* Is this reloc against readonly section? */
105 bfd_boolean reltext;
106 } *reloc_entries;
107
108 /* TRUE when the section contents have been updated. */
109 unsigned got_done : 1;
110 unsigned fptr_done : 1;
111 unsigned pltoff_done : 1;
112 unsigned tprel_done : 1;
113 unsigned dtpmod_done : 1;
114 unsigned dtprel_done : 1;
115
116 /* TRUE for the different kinds of linker data we want created. */
117 unsigned want_got : 1;
118 unsigned want_gotx : 1;
119 unsigned want_fptr : 1;
120 unsigned want_ltoff_fptr : 1;
121 unsigned want_plt : 1;
122 unsigned want_plt2 : 1;
123 unsigned want_pltoff : 1;
124 unsigned want_tprel : 1;
125 unsigned want_dtpmod : 1;
126 unsigned want_dtprel : 1;
127 };
128
129 struct elfNN_ia64_local_hash_entry
130 {
131 int id;
132 unsigned int r_sym;
133 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
134 unsigned int count;
135 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
136 unsigned int sorted_count;
137 /* The size of elfNN_ia64_dyn_sym_info array. */
138 unsigned int size;
139 /* The array of elfNN_ia64_dyn_sym_info. */
140 struct elfNN_ia64_dyn_sym_info *info;
141
142 /* TRUE if this hash entry's addends was translated for
143 SHF_MERGE optimization. */
144 unsigned sec_merge_done : 1;
145 };
146
147 struct elfNN_ia64_link_hash_entry
148 {
149 struct elf_link_hash_entry root;
150 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
151 unsigned int count;
152 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
153 unsigned int sorted_count;
154 /* The size of elfNN_ia64_dyn_sym_info array. */
155 unsigned int size;
156 /* The array of elfNN_ia64_dyn_sym_info. */
157 struct elfNN_ia64_dyn_sym_info *info;
158 };
159
160 struct elfNN_ia64_link_hash_table
161 {
162 /* The main hash table. */
163 struct elf_link_hash_table root;
164
165 asection *got_sec; /* the linkage table section (or NULL) */
166 asection *rel_got_sec; /* dynamic relocation section for same */
167 asection *fptr_sec; /* function descriptor table (or NULL) */
168 asection *rel_fptr_sec; /* dynamic relocation section for same */
169 asection *plt_sec; /* the primary plt section (or NULL) */
170 asection *pltoff_sec; /* private descriptors for plt (or NULL) */
171 asection *rel_pltoff_sec; /* dynamic relocation section for same */
172
173 bfd_size_type minplt_entries; /* number of minplt entries */
174 unsigned reltext : 1; /* are there relocs against readonly sections? */
175 unsigned self_dtpmod_done : 1;/* has self DTPMOD entry been finished? */
176 bfd_vma self_dtpmod_offset; /* .got offset to self DTPMOD entry */
177
178 htab_t loc_hash_table;
179 void *loc_hash_memory;
180 };
181
182 struct elfNN_ia64_allocate_data
183 {
184 struct bfd_link_info *info;
185 bfd_size_type ofs;
186 bfd_boolean only_got;
187 };
188
189 #define elfNN_ia64_hash_table(p) \
190 ((struct elfNN_ia64_link_hash_table *) ((p)->hash))
191
192 static bfd_reloc_status_type elfNN_ia64_reloc
193 PARAMS ((bfd *abfd, arelent *reloc, asymbol *sym, PTR data,
194 asection *input_section, bfd *output_bfd, char **error_message));
195 static reloc_howto_type * lookup_howto
196 PARAMS ((unsigned int rtype));
197 static reloc_howto_type *elfNN_ia64_reloc_type_lookup
198 PARAMS ((bfd *abfd, bfd_reloc_code_real_type bfd_code));
199 static void elfNN_ia64_info_to_howto
200 PARAMS ((bfd *abfd, arelent *bfd_reloc, Elf_Internal_Rela *elf_reloc));
201 static bfd_boolean elfNN_ia64_relax_section
202 PARAMS((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
203 bfd_boolean *again));
204 static void elfNN_ia64_relax_ldxmov
205 PARAMS((bfd_byte *contents, bfd_vma off));
206 static bfd_boolean is_unwind_section_name
207 PARAMS ((bfd *abfd, const char *));
208 static bfd_boolean elfNN_ia64_section_flags
209 PARAMS ((flagword *, const Elf_Internal_Shdr *));
210 static bfd_boolean elfNN_ia64_fake_sections
211 PARAMS ((bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec));
212 static void elfNN_ia64_final_write_processing
213 PARAMS ((bfd *abfd, bfd_boolean linker));
214 static bfd_boolean elfNN_ia64_add_symbol_hook
215 PARAMS ((bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *sym,
216 const char **namep, flagword *flagsp, asection **secp,
217 bfd_vma *valp));
218 static int elfNN_ia64_additional_program_headers
219 PARAMS ((bfd *abfd));
220 static bfd_boolean elfNN_ia64_modify_segment_map
221 PARAMS ((bfd *, struct bfd_link_info *));
222 static bfd_boolean elfNN_ia64_is_local_label_name
223 PARAMS ((bfd *abfd, const char *name));
224 static bfd_boolean elfNN_ia64_dynamic_symbol_p
225 PARAMS ((struct elf_link_hash_entry *h, struct bfd_link_info *info, int));
226 static struct bfd_hash_entry *elfNN_ia64_new_elf_hash_entry
227 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
228 const char *string));
229 static void elfNN_ia64_hash_copy_indirect
230 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *,
231 struct elf_link_hash_entry *));
232 static void elfNN_ia64_hash_hide_symbol
233 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean));
234 static hashval_t elfNN_ia64_local_htab_hash PARAMS ((const void *));
235 static int elfNN_ia64_local_htab_eq PARAMS ((const void *ptr1,
236 const void *ptr2));
237 static struct bfd_link_hash_table *elfNN_ia64_hash_table_create
238 PARAMS ((bfd *abfd));
239 static void elfNN_ia64_hash_table_free
240 PARAMS ((struct bfd_link_hash_table *hash));
241 static bfd_boolean elfNN_ia64_global_dyn_sym_thunk
242 PARAMS ((struct bfd_hash_entry *, PTR));
243 static int elfNN_ia64_local_dyn_sym_thunk
244 PARAMS ((void **, PTR));
245 static void elfNN_ia64_dyn_sym_traverse
246 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
247 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
248 PTR info));
249 static bfd_boolean elfNN_ia64_create_dynamic_sections
250 PARAMS ((bfd *abfd, struct bfd_link_info *info));
251 static struct elfNN_ia64_local_hash_entry * get_local_sym_hash
252 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
253 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
254 static struct elfNN_ia64_dyn_sym_info * get_dyn_sym_info
255 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
256 struct elf_link_hash_entry *h,
257 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
258 static asection *get_got
259 PARAMS ((bfd *abfd, struct bfd_link_info *info,
260 struct elfNN_ia64_link_hash_table *ia64_info));
261 static asection *get_fptr
262 PARAMS ((bfd *abfd, struct bfd_link_info *info,
263 struct elfNN_ia64_link_hash_table *ia64_info));
264 static asection *get_pltoff
265 PARAMS ((bfd *abfd, struct bfd_link_info *info,
266 struct elfNN_ia64_link_hash_table *ia64_info));
267 static asection *get_reloc_section
268 PARAMS ((bfd *abfd, struct elfNN_ia64_link_hash_table *ia64_info,
269 asection *sec, bfd_boolean create));
270 static bfd_boolean elfNN_ia64_check_relocs
271 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
272 const Elf_Internal_Rela *relocs));
273 static bfd_boolean elfNN_ia64_adjust_dynamic_symbol
274 PARAMS ((struct bfd_link_info *info, struct elf_link_hash_entry *h));
275 static long global_sym_index
276 PARAMS ((struct elf_link_hash_entry *h));
277 static bfd_boolean allocate_fptr
278 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
279 static bfd_boolean allocate_global_data_got
280 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
281 static bfd_boolean allocate_global_fptr_got
282 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
283 static bfd_boolean allocate_local_got
284 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
285 static bfd_boolean allocate_pltoff_entries
286 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
287 static bfd_boolean allocate_plt_entries
288 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
289 static bfd_boolean allocate_plt2_entries
290 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
291 static bfd_boolean allocate_dynrel_entries
292 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
293 static bfd_boolean elfNN_ia64_size_dynamic_sections
294 PARAMS ((bfd *output_bfd, struct bfd_link_info *info));
295 static bfd_reloc_status_type elfNN_ia64_install_value
296 PARAMS ((bfd_byte *hit_addr, bfd_vma val, unsigned int r_type));
297 static void elfNN_ia64_install_dyn_reloc
298 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
299 asection *srel, bfd_vma offset, unsigned int type,
300 long dynindx, bfd_vma addend));
301 static bfd_vma set_got_entry
302 PARAMS ((bfd *abfd, struct bfd_link_info *info,
303 struct elfNN_ia64_dyn_sym_info *dyn_i, long dynindx,
304 bfd_vma addend, bfd_vma value, unsigned int dyn_r_type));
305 static bfd_vma set_fptr_entry
306 PARAMS ((bfd *abfd, struct bfd_link_info *info,
307 struct elfNN_ia64_dyn_sym_info *dyn_i,
308 bfd_vma value));
309 static bfd_vma set_pltoff_entry
310 PARAMS ((bfd *abfd, struct bfd_link_info *info,
311 struct elfNN_ia64_dyn_sym_info *dyn_i,
312 bfd_vma value, bfd_boolean));
313 static bfd_vma elfNN_ia64_tprel_base
314 PARAMS ((struct bfd_link_info *info));
315 static bfd_vma elfNN_ia64_dtprel_base
316 PARAMS ((struct bfd_link_info *info));
317 static int elfNN_ia64_unwind_entry_compare
318 PARAMS ((const PTR, const PTR));
319 static bfd_boolean elfNN_ia64_choose_gp
320 PARAMS ((bfd *abfd, struct bfd_link_info *info));
321 static bfd_boolean elfNN_ia64_final_link
322 PARAMS ((bfd *abfd, struct bfd_link_info *info));
323 static bfd_boolean elfNN_ia64_relocate_section
324 PARAMS ((bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd,
325 asection *input_section, bfd_byte *contents,
326 Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms,
327 asection **local_sections));
328 static bfd_boolean elfNN_ia64_finish_dynamic_symbol
329 PARAMS ((bfd *output_bfd, struct bfd_link_info *info,
330 struct elf_link_hash_entry *h, Elf_Internal_Sym *sym));
331 static bfd_boolean elfNN_ia64_finish_dynamic_sections
332 PARAMS ((bfd *abfd, struct bfd_link_info *info));
333 static bfd_boolean elfNN_ia64_set_private_flags
334 PARAMS ((bfd *abfd, flagword flags));
335 static bfd_boolean elfNN_ia64_merge_private_bfd_data
336 PARAMS ((bfd *ibfd, bfd *obfd));
337 static bfd_boolean elfNN_ia64_print_private_bfd_data
338 PARAMS ((bfd *abfd, PTR ptr));
339 static enum elf_reloc_type_class elfNN_ia64_reloc_type_class
340 PARAMS ((const Elf_Internal_Rela *));
341 static bfd_boolean elfNN_ia64_hpux_vec
342 PARAMS ((const bfd_target *vec));
343 static void elfNN_hpux_post_process_headers
344 PARAMS ((bfd *abfd, struct bfd_link_info *info));
345 bfd_boolean elfNN_hpux_backend_section_from_bfd_section
346 PARAMS ((bfd *abfd, asection *sec, int *retval));
347 \f
348 /* ia64-specific relocation. */
349
350 /* Perform a relocation. Not much to do here as all the hard work is
351 done in elfNN_ia64_final_link_relocate. */
352 static bfd_reloc_status_type
353 elfNN_ia64_reloc (abfd, reloc, sym, data, input_section,
354 output_bfd, error_message)
355 bfd *abfd ATTRIBUTE_UNUSED;
356 arelent *reloc;
357 asymbol *sym ATTRIBUTE_UNUSED;
358 PTR data ATTRIBUTE_UNUSED;
359 asection *input_section;
360 bfd *output_bfd;
361 char **error_message;
362 {
363 if (output_bfd)
364 {
365 reloc->address += input_section->output_offset;
366 return bfd_reloc_ok;
367 }
368
369 if (input_section->flags & SEC_DEBUGGING)
370 return bfd_reloc_continue;
371
372 *error_message = "Unsupported call to elfNN_ia64_reloc";
373 return bfd_reloc_notsupported;
374 }
375
376 #define IA64_HOWTO(TYPE, NAME, SIZE, PCREL, IN) \
377 HOWTO (TYPE, 0, SIZE, 0, PCREL, 0, complain_overflow_signed, \
378 elfNN_ia64_reloc, NAME, FALSE, 0, -1, IN)
379
380 /* This table has to be sorted according to increasing number of the
381 TYPE field. */
382 static reloc_howto_type ia64_howto_table[] =
383 {
384 IA64_HOWTO (R_IA64_NONE, "NONE", 0, FALSE, TRUE),
385
386 IA64_HOWTO (R_IA64_IMM14, "IMM14", 0, FALSE, TRUE),
387 IA64_HOWTO (R_IA64_IMM22, "IMM22", 0, FALSE, TRUE),
388 IA64_HOWTO (R_IA64_IMM64, "IMM64", 0, FALSE, TRUE),
389 IA64_HOWTO (R_IA64_DIR32MSB, "DIR32MSB", 2, FALSE, TRUE),
390 IA64_HOWTO (R_IA64_DIR32LSB, "DIR32LSB", 2, FALSE, TRUE),
391 IA64_HOWTO (R_IA64_DIR64MSB, "DIR64MSB", 4, FALSE, TRUE),
392 IA64_HOWTO (R_IA64_DIR64LSB, "DIR64LSB", 4, FALSE, TRUE),
393
394 IA64_HOWTO (R_IA64_GPREL22, "GPREL22", 0, FALSE, TRUE),
395 IA64_HOWTO (R_IA64_GPREL64I, "GPREL64I", 0, FALSE, TRUE),
396 IA64_HOWTO (R_IA64_GPREL32MSB, "GPREL32MSB", 2, FALSE, TRUE),
397 IA64_HOWTO (R_IA64_GPREL32LSB, "GPREL32LSB", 2, FALSE, TRUE),
398 IA64_HOWTO (R_IA64_GPREL64MSB, "GPREL64MSB", 4, FALSE, TRUE),
399 IA64_HOWTO (R_IA64_GPREL64LSB, "GPREL64LSB", 4, FALSE, TRUE),
400
401 IA64_HOWTO (R_IA64_LTOFF22, "LTOFF22", 0, FALSE, TRUE),
402 IA64_HOWTO (R_IA64_LTOFF64I, "LTOFF64I", 0, FALSE, TRUE),
403
404 IA64_HOWTO (R_IA64_PLTOFF22, "PLTOFF22", 0, FALSE, TRUE),
405 IA64_HOWTO (R_IA64_PLTOFF64I, "PLTOFF64I", 0, FALSE, TRUE),
406 IA64_HOWTO (R_IA64_PLTOFF64MSB, "PLTOFF64MSB", 4, FALSE, TRUE),
407 IA64_HOWTO (R_IA64_PLTOFF64LSB, "PLTOFF64LSB", 4, FALSE, TRUE),
408
409 IA64_HOWTO (R_IA64_FPTR64I, "FPTR64I", 0, FALSE, TRUE),
410 IA64_HOWTO (R_IA64_FPTR32MSB, "FPTR32MSB", 2, FALSE, TRUE),
411 IA64_HOWTO (R_IA64_FPTR32LSB, "FPTR32LSB", 2, FALSE, TRUE),
412 IA64_HOWTO (R_IA64_FPTR64MSB, "FPTR64MSB", 4, FALSE, TRUE),
413 IA64_HOWTO (R_IA64_FPTR64LSB, "FPTR64LSB", 4, FALSE, TRUE),
414
415 IA64_HOWTO (R_IA64_PCREL60B, "PCREL60B", 0, TRUE, TRUE),
416 IA64_HOWTO (R_IA64_PCREL21B, "PCREL21B", 0, TRUE, TRUE),
417 IA64_HOWTO (R_IA64_PCREL21M, "PCREL21M", 0, TRUE, TRUE),
418 IA64_HOWTO (R_IA64_PCREL21F, "PCREL21F", 0, TRUE, TRUE),
419 IA64_HOWTO (R_IA64_PCREL32MSB, "PCREL32MSB", 2, TRUE, TRUE),
420 IA64_HOWTO (R_IA64_PCREL32LSB, "PCREL32LSB", 2, TRUE, TRUE),
421 IA64_HOWTO (R_IA64_PCREL64MSB, "PCREL64MSB", 4, TRUE, TRUE),
422 IA64_HOWTO (R_IA64_PCREL64LSB, "PCREL64LSB", 4, TRUE, TRUE),
423
424 IA64_HOWTO (R_IA64_LTOFF_FPTR22, "LTOFF_FPTR22", 0, FALSE, TRUE),
425 IA64_HOWTO (R_IA64_LTOFF_FPTR64I, "LTOFF_FPTR64I", 0, FALSE, TRUE),
426 IA64_HOWTO (R_IA64_LTOFF_FPTR32MSB, "LTOFF_FPTR32MSB", 2, FALSE, TRUE),
427 IA64_HOWTO (R_IA64_LTOFF_FPTR32LSB, "LTOFF_FPTR32LSB", 2, FALSE, TRUE),
428 IA64_HOWTO (R_IA64_LTOFF_FPTR64MSB, "LTOFF_FPTR64MSB", 4, FALSE, TRUE),
429 IA64_HOWTO (R_IA64_LTOFF_FPTR64LSB, "LTOFF_FPTR64LSB", 4, FALSE, TRUE),
430
431 IA64_HOWTO (R_IA64_SEGREL32MSB, "SEGREL32MSB", 2, FALSE, TRUE),
432 IA64_HOWTO (R_IA64_SEGREL32LSB, "SEGREL32LSB", 2, FALSE, TRUE),
433 IA64_HOWTO (R_IA64_SEGREL64MSB, "SEGREL64MSB", 4, FALSE, TRUE),
434 IA64_HOWTO (R_IA64_SEGREL64LSB, "SEGREL64LSB", 4, FALSE, TRUE),
435
436 IA64_HOWTO (R_IA64_SECREL32MSB, "SECREL32MSB", 2, FALSE, TRUE),
437 IA64_HOWTO (R_IA64_SECREL32LSB, "SECREL32LSB", 2, FALSE, TRUE),
438 IA64_HOWTO (R_IA64_SECREL64MSB, "SECREL64MSB", 4, FALSE, TRUE),
439 IA64_HOWTO (R_IA64_SECREL64LSB, "SECREL64LSB", 4, FALSE, TRUE),
440
441 IA64_HOWTO (R_IA64_REL32MSB, "REL32MSB", 2, FALSE, TRUE),
442 IA64_HOWTO (R_IA64_REL32LSB, "REL32LSB", 2, FALSE, TRUE),
443 IA64_HOWTO (R_IA64_REL64MSB, "REL64MSB", 4, FALSE, TRUE),
444 IA64_HOWTO (R_IA64_REL64LSB, "REL64LSB", 4, FALSE, TRUE),
445
446 IA64_HOWTO (R_IA64_LTV32MSB, "LTV32MSB", 2, FALSE, TRUE),
447 IA64_HOWTO (R_IA64_LTV32LSB, "LTV32LSB", 2, FALSE, TRUE),
448 IA64_HOWTO (R_IA64_LTV64MSB, "LTV64MSB", 4, FALSE, TRUE),
449 IA64_HOWTO (R_IA64_LTV64LSB, "LTV64LSB", 4, FALSE, TRUE),
450
451 IA64_HOWTO (R_IA64_PCREL21BI, "PCREL21BI", 0, TRUE, TRUE),
452 IA64_HOWTO (R_IA64_PCREL22, "PCREL22", 0, TRUE, TRUE),
453 IA64_HOWTO (R_IA64_PCREL64I, "PCREL64I", 0, TRUE, TRUE),
454
455 IA64_HOWTO (R_IA64_IPLTMSB, "IPLTMSB", 4, FALSE, TRUE),
456 IA64_HOWTO (R_IA64_IPLTLSB, "IPLTLSB", 4, FALSE, TRUE),
457 IA64_HOWTO (R_IA64_COPY, "COPY", 4, FALSE, TRUE),
458 IA64_HOWTO (R_IA64_LTOFF22X, "LTOFF22X", 0, FALSE, TRUE),
459 IA64_HOWTO (R_IA64_LDXMOV, "LDXMOV", 0, FALSE, TRUE),
460
461 IA64_HOWTO (R_IA64_TPREL14, "TPREL14", 0, FALSE, FALSE),
462 IA64_HOWTO (R_IA64_TPREL22, "TPREL22", 0, FALSE, FALSE),
463 IA64_HOWTO (R_IA64_TPREL64I, "TPREL64I", 0, FALSE, FALSE),
464 IA64_HOWTO (R_IA64_TPREL64MSB, "TPREL64MSB", 4, FALSE, FALSE),
465 IA64_HOWTO (R_IA64_TPREL64LSB, "TPREL64LSB", 4, FALSE, FALSE),
466 IA64_HOWTO (R_IA64_LTOFF_TPREL22, "LTOFF_TPREL22", 0, FALSE, FALSE),
467
468 IA64_HOWTO (R_IA64_DTPMOD64MSB, "DTPMOD64MSB", 4, FALSE, FALSE),
469 IA64_HOWTO (R_IA64_DTPMOD64LSB, "DTPMOD64LSB", 4, FALSE, FALSE),
470 IA64_HOWTO (R_IA64_LTOFF_DTPMOD22, "LTOFF_DTPMOD22", 0, FALSE, FALSE),
471
472 IA64_HOWTO (R_IA64_DTPREL14, "DTPREL14", 0, FALSE, FALSE),
473 IA64_HOWTO (R_IA64_DTPREL22, "DTPREL22", 0, FALSE, FALSE),
474 IA64_HOWTO (R_IA64_DTPREL64I, "DTPREL64I", 0, FALSE, FALSE),
475 IA64_HOWTO (R_IA64_DTPREL32MSB, "DTPREL32MSB", 2, FALSE, FALSE),
476 IA64_HOWTO (R_IA64_DTPREL32LSB, "DTPREL32LSB", 2, FALSE, FALSE),
477 IA64_HOWTO (R_IA64_DTPREL64MSB, "DTPREL64MSB", 4, FALSE, FALSE),
478 IA64_HOWTO (R_IA64_DTPREL64LSB, "DTPREL64LSB", 4, FALSE, FALSE),
479 IA64_HOWTO (R_IA64_LTOFF_DTPREL22, "LTOFF_DTPREL22", 0, FALSE, FALSE),
480 };
481
482 static unsigned char elf_code_to_howto_index[R_IA64_MAX_RELOC_CODE + 1];
483
484 /* Given a BFD reloc type, return the matching HOWTO structure. */
485
486 static reloc_howto_type *
487 lookup_howto (rtype)
488 unsigned int rtype;
489 {
490 static int inited = 0;
491 int i;
492
493 if (!inited)
494 {
495 inited = 1;
496
497 memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index));
498 for (i = 0; i < NELEMS (ia64_howto_table); ++i)
499 elf_code_to_howto_index[ia64_howto_table[i].type] = i;
500 }
501
502 if (rtype > R_IA64_MAX_RELOC_CODE)
503 return 0;
504 i = elf_code_to_howto_index[rtype];
505 if (i >= NELEMS (ia64_howto_table))
506 return 0;
507 return ia64_howto_table + i;
508 }
509
510 static reloc_howto_type*
511 elfNN_ia64_reloc_type_lookup (abfd, bfd_code)
512 bfd *abfd ATTRIBUTE_UNUSED;
513 bfd_reloc_code_real_type bfd_code;
514 {
515 unsigned int rtype;
516
517 switch (bfd_code)
518 {
519 case BFD_RELOC_NONE: rtype = R_IA64_NONE; break;
520
521 case BFD_RELOC_IA64_IMM14: rtype = R_IA64_IMM14; break;
522 case BFD_RELOC_IA64_IMM22: rtype = R_IA64_IMM22; break;
523 case BFD_RELOC_IA64_IMM64: rtype = R_IA64_IMM64; break;
524
525 case BFD_RELOC_IA64_DIR32MSB: rtype = R_IA64_DIR32MSB; break;
526 case BFD_RELOC_IA64_DIR32LSB: rtype = R_IA64_DIR32LSB; break;
527 case BFD_RELOC_IA64_DIR64MSB: rtype = R_IA64_DIR64MSB; break;
528 case BFD_RELOC_IA64_DIR64LSB: rtype = R_IA64_DIR64LSB; break;
529
530 case BFD_RELOC_IA64_GPREL22: rtype = R_IA64_GPREL22; break;
531 case BFD_RELOC_IA64_GPREL64I: rtype = R_IA64_GPREL64I; break;
532 case BFD_RELOC_IA64_GPREL32MSB: rtype = R_IA64_GPREL32MSB; break;
533 case BFD_RELOC_IA64_GPREL32LSB: rtype = R_IA64_GPREL32LSB; break;
534 case BFD_RELOC_IA64_GPREL64MSB: rtype = R_IA64_GPREL64MSB; break;
535 case BFD_RELOC_IA64_GPREL64LSB: rtype = R_IA64_GPREL64LSB; break;
536
537 case BFD_RELOC_IA64_LTOFF22: rtype = R_IA64_LTOFF22; break;
538 case BFD_RELOC_IA64_LTOFF64I: rtype = R_IA64_LTOFF64I; break;
539
540 case BFD_RELOC_IA64_PLTOFF22: rtype = R_IA64_PLTOFF22; break;
541 case BFD_RELOC_IA64_PLTOFF64I: rtype = R_IA64_PLTOFF64I; break;
542 case BFD_RELOC_IA64_PLTOFF64MSB: rtype = R_IA64_PLTOFF64MSB; break;
543 case BFD_RELOC_IA64_PLTOFF64LSB: rtype = R_IA64_PLTOFF64LSB; break;
544 case BFD_RELOC_IA64_FPTR64I: rtype = R_IA64_FPTR64I; break;
545 case BFD_RELOC_IA64_FPTR32MSB: rtype = R_IA64_FPTR32MSB; break;
546 case BFD_RELOC_IA64_FPTR32LSB: rtype = R_IA64_FPTR32LSB; break;
547 case BFD_RELOC_IA64_FPTR64MSB: rtype = R_IA64_FPTR64MSB; break;
548 case BFD_RELOC_IA64_FPTR64LSB: rtype = R_IA64_FPTR64LSB; break;
549
550 case BFD_RELOC_IA64_PCREL21B: rtype = R_IA64_PCREL21B; break;
551 case BFD_RELOC_IA64_PCREL21BI: rtype = R_IA64_PCREL21BI; break;
552 case BFD_RELOC_IA64_PCREL21M: rtype = R_IA64_PCREL21M; break;
553 case BFD_RELOC_IA64_PCREL21F: rtype = R_IA64_PCREL21F; break;
554 case BFD_RELOC_IA64_PCREL22: rtype = R_IA64_PCREL22; break;
555 case BFD_RELOC_IA64_PCREL60B: rtype = R_IA64_PCREL60B; break;
556 case BFD_RELOC_IA64_PCREL64I: rtype = R_IA64_PCREL64I; break;
557 case BFD_RELOC_IA64_PCREL32MSB: rtype = R_IA64_PCREL32MSB; break;
558 case BFD_RELOC_IA64_PCREL32LSB: rtype = R_IA64_PCREL32LSB; break;
559 case BFD_RELOC_IA64_PCREL64MSB: rtype = R_IA64_PCREL64MSB; break;
560 case BFD_RELOC_IA64_PCREL64LSB: rtype = R_IA64_PCREL64LSB; break;
561
562 case BFD_RELOC_IA64_LTOFF_FPTR22: rtype = R_IA64_LTOFF_FPTR22; break;
563 case BFD_RELOC_IA64_LTOFF_FPTR64I: rtype = R_IA64_LTOFF_FPTR64I; break;
564 case BFD_RELOC_IA64_LTOFF_FPTR32MSB: rtype = R_IA64_LTOFF_FPTR32MSB; break;
565 case BFD_RELOC_IA64_LTOFF_FPTR32LSB: rtype = R_IA64_LTOFF_FPTR32LSB; break;
566 case BFD_RELOC_IA64_LTOFF_FPTR64MSB: rtype = R_IA64_LTOFF_FPTR64MSB; break;
567 case BFD_RELOC_IA64_LTOFF_FPTR64LSB: rtype = R_IA64_LTOFF_FPTR64LSB; break;
568
569 case BFD_RELOC_IA64_SEGREL32MSB: rtype = R_IA64_SEGREL32MSB; break;
570 case BFD_RELOC_IA64_SEGREL32LSB: rtype = R_IA64_SEGREL32LSB; break;
571 case BFD_RELOC_IA64_SEGREL64MSB: rtype = R_IA64_SEGREL64MSB; break;
572 case BFD_RELOC_IA64_SEGREL64LSB: rtype = R_IA64_SEGREL64LSB; break;
573
574 case BFD_RELOC_IA64_SECREL32MSB: rtype = R_IA64_SECREL32MSB; break;
575 case BFD_RELOC_IA64_SECREL32LSB: rtype = R_IA64_SECREL32LSB; break;
576 case BFD_RELOC_IA64_SECREL64MSB: rtype = R_IA64_SECREL64MSB; break;
577 case BFD_RELOC_IA64_SECREL64LSB: rtype = R_IA64_SECREL64LSB; break;
578
579 case BFD_RELOC_IA64_REL32MSB: rtype = R_IA64_REL32MSB; break;
580 case BFD_RELOC_IA64_REL32LSB: rtype = R_IA64_REL32LSB; break;
581 case BFD_RELOC_IA64_REL64MSB: rtype = R_IA64_REL64MSB; break;
582 case BFD_RELOC_IA64_REL64LSB: rtype = R_IA64_REL64LSB; break;
583
584 case BFD_RELOC_IA64_LTV32MSB: rtype = R_IA64_LTV32MSB; break;
585 case BFD_RELOC_IA64_LTV32LSB: rtype = R_IA64_LTV32LSB; break;
586 case BFD_RELOC_IA64_LTV64MSB: rtype = R_IA64_LTV64MSB; break;
587 case BFD_RELOC_IA64_LTV64LSB: rtype = R_IA64_LTV64LSB; break;
588
589 case BFD_RELOC_IA64_IPLTMSB: rtype = R_IA64_IPLTMSB; break;
590 case BFD_RELOC_IA64_IPLTLSB: rtype = R_IA64_IPLTLSB; break;
591 case BFD_RELOC_IA64_COPY: rtype = R_IA64_COPY; break;
592 case BFD_RELOC_IA64_LTOFF22X: rtype = R_IA64_LTOFF22X; break;
593 case BFD_RELOC_IA64_LDXMOV: rtype = R_IA64_LDXMOV; break;
594
595 case BFD_RELOC_IA64_TPREL14: rtype = R_IA64_TPREL14; break;
596 case BFD_RELOC_IA64_TPREL22: rtype = R_IA64_TPREL22; break;
597 case BFD_RELOC_IA64_TPREL64I: rtype = R_IA64_TPREL64I; break;
598 case BFD_RELOC_IA64_TPREL64MSB: rtype = R_IA64_TPREL64MSB; break;
599 case BFD_RELOC_IA64_TPREL64LSB: rtype = R_IA64_TPREL64LSB; break;
600 case BFD_RELOC_IA64_LTOFF_TPREL22: rtype = R_IA64_LTOFF_TPREL22; break;
601
602 case BFD_RELOC_IA64_DTPMOD64MSB: rtype = R_IA64_DTPMOD64MSB; break;
603 case BFD_RELOC_IA64_DTPMOD64LSB: rtype = R_IA64_DTPMOD64LSB; break;
604 case BFD_RELOC_IA64_LTOFF_DTPMOD22: rtype = R_IA64_LTOFF_DTPMOD22; break;
605
606 case BFD_RELOC_IA64_DTPREL14: rtype = R_IA64_DTPREL14; break;
607 case BFD_RELOC_IA64_DTPREL22: rtype = R_IA64_DTPREL22; break;
608 case BFD_RELOC_IA64_DTPREL64I: rtype = R_IA64_DTPREL64I; break;
609 case BFD_RELOC_IA64_DTPREL32MSB: rtype = R_IA64_DTPREL32MSB; break;
610 case BFD_RELOC_IA64_DTPREL32LSB: rtype = R_IA64_DTPREL32LSB; break;
611 case BFD_RELOC_IA64_DTPREL64MSB: rtype = R_IA64_DTPREL64MSB; break;
612 case BFD_RELOC_IA64_DTPREL64LSB: rtype = R_IA64_DTPREL64LSB; break;
613 case BFD_RELOC_IA64_LTOFF_DTPREL22: rtype = R_IA64_LTOFF_DTPREL22; break;
614
615 default: return 0;
616 }
617 return lookup_howto (rtype);
618 }
619
620 /* Given a ELF reloc, return the matching HOWTO structure. */
621
622 static void
623 elfNN_ia64_info_to_howto (abfd, bfd_reloc, elf_reloc)
624 bfd *abfd ATTRIBUTE_UNUSED;
625 arelent *bfd_reloc;
626 Elf_Internal_Rela *elf_reloc;
627 {
628 bfd_reloc->howto
629 = lookup_howto ((unsigned int) ELFNN_R_TYPE (elf_reloc->r_info));
630 }
631 \f
632 #define PLT_HEADER_SIZE (3 * 16)
633 #define PLT_MIN_ENTRY_SIZE (1 * 16)
634 #define PLT_FULL_ENTRY_SIZE (2 * 16)
635 #define PLT_RESERVED_WORDS 3
636
637 static const bfd_byte plt_header[PLT_HEADER_SIZE] =
638 {
639 0x0b, 0x10, 0x00, 0x1c, 0x00, 0x21, /* [MMI] mov r2=r14;; */
640 0xe0, 0x00, 0x08, 0x00, 0x48, 0x00, /* addl r14=0,r2 */
641 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
642 0x0b, 0x80, 0x20, 0x1c, 0x18, 0x14, /* [MMI] ld8 r16=[r14],8;; */
643 0x10, 0x41, 0x38, 0x30, 0x28, 0x00, /* ld8 r17=[r14],8 */
644 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
645 0x11, 0x08, 0x00, 0x1c, 0x18, 0x10, /* [MIB] ld8 r1=[r14] */
646 0x60, 0x88, 0x04, 0x80, 0x03, 0x00, /* mov b6=r17 */
647 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
648 };
649
650 static const bfd_byte plt_min_entry[PLT_MIN_ENTRY_SIZE] =
651 {
652 0x11, 0x78, 0x00, 0x00, 0x00, 0x24, /* [MIB] mov r15=0 */
653 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, /* nop.i 0x0 */
654 0x00, 0x00, 0x00, 0x40 /* br.few 0 <PLT0>;; */
655 };
656
657 static const bfd_byte plt_full_entry[PLT_FULL_ENTRY_SIZE] =
658 {
659 0x0b, 0x78, 0x00, 0x02, 0x00, 0x24, /* [MMI] addl r15=0,r1;; */
660 0x00, 0x41, 0x3c, 0x70, 0x29, 0xc0, /* ld8.acq r16=[r15],8*/
661 0x01, 0x08, 0x00, 0x84, /* mov r14=r1;; */
662 0x11, 0x08, 0x00, 0x1e, 0x18, 0x10, /* [MIB] ld8 r1=[r15] */
663 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
664 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
665 };
666
667 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
668
669 static const bfd_byte oor_brl[16] =
670 {
671 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
672 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.sptk.few tgt;; */
673 0x00, 0x00, 0x00, 0xc0
674 };
675
676 static const bfd_byte oor_ip[48] =
677 {
678 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
679 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, /* movl r15=0 */
680 0x01, 0x00, 0x00, 0x60,
681 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MII] nop.m 0 */
682 0x00, 0x01, 0x00, 0x60, 0x00, 0x00, /* mov r16=ip;; */
683 0xf2, 0x80, 0x00, 0x80, /* add r16=r15,r16;; */
684 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */
685 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
686 0x60, 0x00, 0x80, 0x00 /* br b6;; */
687 };
688
689 static size_t oor_branch_size = sizeof (oor_brl);
690
691 void
692 bfd_elfNN_ia64_after_parse (int itanium)
693 {
694 oor_branch_size = itanium ? sizeof (oor_ip) : sizeof (oor_brl);
695 }
696
697 #define BTYPE_SHIFT 6
698 #define Y_SHIFT 26
699 #define X6_SHIFT 27
700 #define X4_SHIFT 27
701 #define X3_SHIFT 33
702 #define X2_SHIFT 31
703 #define X_SHIFT 33
704 #define OPCODE_SHIFT 37
705
706 #define OPCODE_BITS (0xfLL << OPCODE_SHIFT)
707 #define X6_BITS (0x3fLL << X6_SHIFT)
708 #define X4_BITS (0xfLL << X4_SHIFT)
709 #define X3_BITS (0x7LL << X3_SHIFT)
710 #define X2_BITS (0x3LL << X2_SHIFT)
711 #define X_BITS (0x1LL << X_SHIFT)
712 #define Y_BITS (0x1LL << Y_SHIFT)
713 #define BTYPE_BITS (0x7LL << BTYPE_SHIFT)
714 #define PREDICATE_BITS (0x3fLL)
715
716 #define IS_NOP_B(i) \
717 (((i) & (OPCODE_BITS | X6_BITS)) == (2LL << OPCODE_SHIFT))
718 #define IS_NOP_F(i) \
719 (((i) & (OPCODE_BITS | X_BITS | X6_BITS | Y_BITS)) \
720 == (0x1LL << X6_SHIFT))
721 #define IS_NOP_I(i) \
722 (((i) & (OPCODE_BITS | X3_BITS | X6_BITS | Y_BITS)) \
723 == (0x1LL << X6_SHIFT))
724 #define IS_NOP_M(i) \
725 (((i) & (OPCODE_BITS | X3_BITS | X2_BITS | X4_BITS | Y_BITS)) \
726 == (0x1LL << X4_SHIFT))
727 #define IS_BR_COND(i) \
728 (((i) & (OPCODE_BITS | BTYPE_BITS)) == (0x4LL << OPCODE_SHIFT))
729 #define IS_BR_CALL(i) \
730 (((i) & OPCODE_BITS) == (0x5LL << OPCODE_SHIFT))
731
732 static bfd_boolean
733 elfNN_ia64_relax_br (bfd_byte *contents, bfd_vma off)
734 {
735 unsigned int template, mlx;
736 bfd_vma t0, t1, s0, s1, s2, br_code;
737 long br_slot;
738 bfd_byte *hit_addr;
739
740 hit_addr = (bfd_byte *) (contents + off);
741 br_slot = (long) hit_addr & 0x3;
742 hit_addr -= br_slot;
743 t0 = bfd_getl64 (hit_addr + 0);
744 t1 = bfd_getl64 (hit_addr + 8);
745
746 /* Check if we can turn br into brl. A label is always at the start
747 of the bundle. Even if there are predicates on NOPs, we still
748 perform this optimization. */
749 template = t0 & 0x1e;
750 s0 = (t0 >> 5) & 0x1ffffffffffLL;
751 s1 = ((t0 >> 46) | (t1 << 18)) & 0x1ffffffffffLL;
752 s2 = (t1 >> 23) & 0x1ffffffffffLL;
753 switch (br_slot)
754 {
755 case 0:
756 /* Check if slot 1 and slot 2 are NOPs. Possible template is
757 BBB. We only need to check nop.b. */
758 if (!(IS_NOP_B (s1) && IS_NOP_B (s2)))
759 return FALSE;
760 br_code = s0;
761 break;
762 case 1:
763 /* Check if slot 2 is NOP. Possible templates are MBB and BBB.
764 For BBB, slot 0 also has to be nop.b. */
765 if (!((template == 0x12 /* MBB */
766 && IS_NOP_B (s2))
767 || (template == 0x16 /* BBB */
768 && IS_NOP_B (s0)
769 && IS_NOP_B (s2))))
770 return FALSE;
771 br_code = s1;
772 break;
773 case 2:
774 /* Check if slot 1 is NOP. Possible templates are MIB, MBB, BBB,
775 MMB and MFB. For BBB, slot 0 also has to be nop.b. */
776 if (!((template == 0x10 /* MIB */
777 && IS_NOP_I (s1))
778 || (template == 0x12 /* MBB */
779 && IS_NOP_B (s1))
780 || (template == 0x16 /* BBB */
781 && IS_NOP_B (s0)
782 && IS_NOP_B (s1))
783 || (template == 0x18 /* MMB */
784 && IS_NOP_M (s1))
785 || (template == 0x1c /* MFB */
786 && IS_NOP_F (s1))))
787 return FALSE;
788 br_code = s2;
789 break;
790 default:
791 /* It should never happen. */
792 abort ();
793 }
794
795 /* We can turn br.cond/br.call into brl.cond/brl.call. */
796 if (!(IS_BR_COND (br_code) || IS_BR_CALL (br_code)))
797 return FALSE;
798
799 /* Turn br into brl by setting bit 40. */
800 br_code |= 0x1LL << 40;
801
802 /* Turn the old bundle into a MLX bundle with the same stop-bit
803 variety. */
804 if (t0 & 0x1)
805 mlx = 0x5;
806 else
807 mlx = 0x4;
808
809 if (template == 0x16)
810 {
811 /* For BBB, we need to put nop.m in slot 0. We keep the original
812 predicate only if slot 0 isn't br. */
813 if (br_slot == 0)
814 t0 = 0LL;
815 else
816 t0 &= PREDICATE_BITS << 5;
817 t0 |= 0x1LL << (X4_SHIFT + 5);
818 }
819 else
820 {
821 /* Keep the original instruction in slot 0. */
822 t0 &= 0x1ffffffffffLL << 5;
823 }
824
825 t0 |= mlx;
826
827 /* Put brl in slot 1. */
828 t1 = br_code << 23;
829
830 bfd_putl64 (t0, hit_addr);
831 bfd_putl64 (t1, hit_addr + 8);
832 return TRUE;
833 }
834
835 static void
836 elfNN_ia64_relax_brl (bfd_byte *contents, bfd_vma off)
837 {
838 int template;
839 bfd_byte *hit_addr;
840 bfd_vma t0, t1, i0, i1, i2;
841
842 hit_addr = (bfd_byte *) (contents + off);
843 hit_addr -= (long) hit_addr & 0x3;
844 t0 = bfd_getl64 (hit_addr);
845 t1 = bfd_getl64 (hit_addr + 8);
846
847 /* Keep the instruction in slot 0. */
848 i0 = (t0 >> 5) & 0x1ffffffffffLL;
849 /* Use nop.b for slot 1. */
850 i1 = 0x4000000000LL;
851 /* For slot 2, turn brl into br by masking out bit 40. */
852 i2 = (t1 >> 23) & 0x0ffffffffffLL;
853
854 /* Turn a MLX bundle into a MBB bundle with the same stop-bit
855 variety. */
856 if (t0 & 0x1)
857 template = 0x13;
858 else
859 template = 0x12;
860 t0 = (i1 << 46) | (i0 << 5) | template;
861 t1 = (i2 << 23) | (i1 >> 18);
862
863 bfd_putl64 (t0, hit_addr);
864 bfd_putl64 (t1, hit_addr + 8);
865 }
866
867 /* Rename some of the generic section flags to better document how they
868 are used here. */
869 #define skip_relax_pass_0 need_finalize_relax
870 #define skip_relax_pass_1 has_gp_reloc
871
872 \f
873 /* These functions do relaxation for IA-64 ELF. */
874
875 static bfd_boolean
876 elfNN_ia64_relax_section (abfd, sec, link_info, again)
877 bfd *abfd;
878 asection *sec;
879 struct bfd_link_info *link_info;
880 bfd_boolean *again;
881 {
882 struct one_fixup
883 {
884 struct one_fixup *next;
885 asection *tsec;
886 bfd_vma toff;
887 bfd_vma trampoff;
888 };
889
890 Elf_Internal_Shdr *symtab_hdr;
891 Elf_Internal_Rela *internal_relocs;
892 Elf_Internal_Rela *irel, *irelend;
893 bfd_byte *contents;
894 Elf_Internal_Sym *isymbuf = NULL;
895 struct elfNN_ia64_link_hash_table *ia64_info;
896 struct one_fixup *fixups = NULL;
897 bfd_boolean changed_contents = FALSE;
898 bfd_boolean changed_relocs = FALSE;
899 bfd_boolean changed_got = FALSE;
900 bfd_boolean skip_relax_pass_0 = TRUE;
901 bfd_boolean skip_relax_pass_1 = TRUE;
902 bfd_vma gp = 0;
903
904 /* Assume we're not going to change any sizes, and we'll only need
905 one pass. */
906 *again = FALSE;
907
908 /* Don't even try to relax for non-ELF outputs. */
909 if (!is_elf_hash_table (link_info->hash))
910 return FALSE;
911
912 /* Nothing to do if there are no relocations or there is no need for
913 the current pass. */
914 if ((sec->flags & SEC_RELOC) == 0
915 || sec->reloc_count == 0
916 || (link_info->relax_pass == 0 && sec->skip_relax_pass_0)
917 || (link_info->relax_pass == 1 && sec->skip_relax_pass_1))
918 return TRUE;
919
920 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
921
922 /* Load the relocations for this section. */
923 internal_relocs = (_bfd_elf_link_read_relocs
924 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
925 link_info->keep_memory));
926 if (internal_relocs == NULL)
927 return FALSE;
928
929 ia64_info = elfNN_ia64_hash_table (link_info);
930 irelend = internal_relocs + sec->reloc_count;
931
932 /* Get the section contents. */
933 if (elf_section_data (sec)->this_hdr.contents != NULL)
934 contents = elf_section_data (sec)->this_hdr.contents;
935 else
936 {
937 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
938 goto error_return;
939 }
940
941 for (irel = internal_relocs; irel < irelend; irel++)
942 {
943 unsigned long r_type = ELFNN_R_TYPE (irel->r_info);
944 bfd_vma symaddr, reladdr, trampoff, toff, roff;
945 asection *tsec;
946 struct one_fixup *f;
947 bfd_size_type amt;
948 bfd_boolean is_branch;
949 struct elfNN_ia64_dyn_sym_info *dyn_i;
950 char symtype;
951
952 switch (r_type)
953 {
954 case R_IA64_PCREL21B:
955 case R_IA64_PCREL21BI:
956 case R_IA64_PCREL21M:
957 case R_IA64_PCREL21F:
958 /* In pass 1, all br relaxations are done. We can skip it. */
959 if (link_info->relax_pass == 1)
960 continue;
961 skip_relax_pass_0 = FALSE;
962 is_branch = TRUE;
963 break;
964
965 case R_IA64_PCREL60B:
966 /* We can't optimize brl to br in pass 0 since br relaxations
967 will increase the code size. Defer it to pass 1. */
968 if (link_info->relax_pass == 0)
969 {
970 skip_relax_pass_1 = FALSE;
971 continue;
972 }
973 is_branch = TRUE;
974 break;
975
976 case R_IA64_LTOFF22X:
977 case R_IA64_LDXMOV:
978 /* We can't relax ldx/mov in pass 0 since br relaxations will
979 increase the code size. Defer it to pass 1. */
980 if (link_info->relax_pass == 0)
981 {
982 skip_relax_pass_1 = FALSE;
983 continue;
984 }
985 is_branch = FALSE;
986 break;
987
988 default:
989 continue;
990 }
991
992 /* Get the value of the symbol referred to by the reloc. */
993 if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info)
994 {
995 /* A local symbol. */
996 Elf_Internal_Sym *isym;
997
998 /* Read this BFD's local symbols. */
999 if (isymbuf == NULL)
1000 {
1001 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1002 if (isymbuf == NULL)
1003 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1004 symtab_hdr->sh_info, 0,
1005 NULL, NULL, NULL);
1006 if (isymbuf == 0)
1007 goto error_return;
1008 }
1009
1010 isym = isymbuf + ELFNN_R_SYM (irel->r_info);
1011 if (isym->st_shndx == SHN_UNDEF)
1012 continue; /* We can't do anything with undefined symbols. */
1013 else if (isym->st_shndx == SHN_ABS)
1014 tsec = bfd_abs_section_ptr;
1015 else if (isym->st_shndx == SHN_COMMON)
1016 tsec = bfd_com_section_ptr;
1017 else if (isym->st_shndx == SHN_IA_64_ANSI_COMMON)
1018 tsec = bfd_com_section_ptr;
1019 else
1020 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1021
1022 toff = isym->st_value;
1023 dyn_i = get_dyn_sym_info (ia64_info, NULL, abfd, irel, FALSE);
1024 symtype = ELF_ST_TYPE (isym->st_info);
1025 }
1026 else
1027 {
1028 unsigned long indx;
1029 struct elf_link_hash_entry *h;
1030
1031 indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info;
1032 h = elf_sym_hashes (abfd)[indx];
1033 BFD_ASSERT (h != NULL);
1034
1035 while (h->root.type == bfd_link_hash_indirect
1036 || h->root.type == bfd_link_hash_warning)
1037 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1038
1039 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, irel, FALSE);
1040
1041 /* For branches to dynamic symbols, we're interested instead
1042 in a branch to the PLT entry. */
1043 if (is_branch && dyn_i && dyn_i->want_plt2)
1044 {
1045 /* Internal branches shouldn't be sent to the PLT.
1046 Leave this for now and we'll give an error later. */
1047 if (r_type != R_IA64_PCREL21B)
1048 continue;
1049
1050 tsec = ia64_info->plt_sec;
1051 toff = dyn_i->plt2_offset;
1052 BFD_ASSERT (irel->r_addend == 0);
1053 }
1054
1055 /* Can't do anything else with dynamic symbols. */
1056 else if (elfNN_ia64_dynamic_symbol_p (h, link_info, r_type))
1057 continue;
1058
1059 else
1060 {
1061 /* We can't do anything with undefined symbols. */
1062 if (h->root.type == bfd_link_hash_undefined
1063 || h->root.type == bfd_link_hash_undefweak)
1064 continue;
1065
1066 tsec = h->root.u.def.section;
1067 toff = h->root.u.def.value;
1068 }
1069
1070 symtype = h->type;
1071 }
1072
1073 if (tsec->sec_info_type == ELF_INFO_TYPE_MERGE)
1074 {
1075 /* At this stage in linking, no SEC_MERGE symbol has been
1076 adjusted, so all references to such symbols need to be
1077 passed through _bfd_merged_section_offset. (Later, in
1078 relocate_section, all SEC_MERGE symbols *except* for
1079 section symbols have been adjusted.)
1080
1081 gas may reduce relocations against symbols in SEC_MERGE
1082 sections to a relocation against the section symbol when
1083 the original addend was zero. When the reloc is against
1084 a section symbol we should include the addend in the
1085 offset passed to _bfd_merged_section_offset, since the
1086 location of interest is the original symbol. On the
1087 other hand, an access to "sym+addend" where "sym" is not
1088 a section symbol should not include the addend; Such an
1089 access is presumed to be an offset from "sym"; The
1090 location of interest is just "sym". */
1091 if (symtype == STT_SECTION)
1092 toff += irel->r_addend;
1093
1094 toff = _bfd_merged_section_offset (abfd, &tsec,
1095 elf_section_data (tsec)->sec_info,
1096 toff);
1097
1098 if (symtype != STT_SECTION)
1099 toff += irel->r_addend;
1100 }
1101 else
1102 toff += irel->r_addend;
1103
1104 symaddr = tsec->output_section->vma + tsec->output_offset + toff;
1105
1106 roff = irel->r_offset;
1107
1108 if (is_branch)
1109 {
1110 bfd_signed_vma offset;
1111
1112 reladdr = (sec->output_section->vma
1113 + sec->output_offset
1114 + roff) & (bfd_vma) -4;
1115
1116 /* If the branch is in range, no need to do anything. */
1117 if ((bfd_signed_vma) (symaddr - reladdr) >= -0x1000000
1118 && (bfd_signed_vma) (symaddr - reladdr) <= 0x0FFFFF0)
1119 {
1120 /* If the 60-bit branch is in 21-bit range, optimize it. */
1121 if (r_type == R_IA64_PCREL60B)
1122 {
1123 elfNN_ia64_relax_brl (contents, roff);
1124
1125 irel->r_info
1126 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1127 R_IA64_PCREL21B);
1128
1129 /* If the original relocation offset points to slot
1130 1, change it to slot 2. */
1131 if ((irel->r_offset & 3) == 1)
1132 irel->r_offset += 1;
1133 }
1134
1135 continue;
1136 }
1137 else if (r_type == R_IA64_PCREL60B)
1138 continue;
1139 else if (elfNN_ia64_relax_br (contents, roff))
1140 {
1141 irel->r_info
1142 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1143 R_IA64_PCREL60B);
1144
1145 /* Make the relocation offset point to slot 1. */
1146 irel->r_offset = (irel->r_offset & ~((bfd_vma) 0x3)) + 1;
1147 continue;
1148 }
1149
1150 /* We can't put a trampoline in a .init/.fini section. Issue
1151 an error. */
1152 if (strcmp (sec->output_section->name, ".init") == 0
1153 || strcmp (sec->output_section->name, ".fini") == 0)
1154 {
1155 (*_bfd_error_handler)
1156 (_("%B: Can't relax br at 0x%lx in section `%A'. Please use brl or indirect branch."),
1157 sec->owner, sec, (unsigned long) roff);
1158 bfd_set_error (bfd_error_bad_value);
1159 goto error_return;
1160 }
1161
1162 /* If the branch and target are in the same section, you've
1163 got one honking big section and we can't help you unless
1164 you are branching backwards. You'll get an error message
1165 later. */
1166 if (tsec == sec && toff > roff)
1167 continue;
1168
1169 /* Look for an existing fixup to this address. */
1170 for (f = fixups; f ; f = f->next)
1171 if (f->tsec == tsec && f->toff == toff)
1172 break;
1173
1174 if (f == NULL)
1175 {
1176 /* Two alternatives: If it's a branch to a PLT entry, we can
1177 make a copy of the FULL_PLT entry. Otherwise, we'll have
1178 to use a `brl' insn to get where we're going. */
1179
1180 size_t size;
1181
1182 if (tsec == ia64_info->plt_sec)
1183 size = sizeof (plt_full_entry);
1184 else
1185 size = oor_branch_size;
1186
1187 /* Resize the current section to make room for the new branch. */
1188 trampoff = (sec->size + 15) & (bfd_vma) -16;
1189
1190 /* If trampoline is out of range, there is nothing we
1191 can do. */
1192 offset = trampoff - (roff & (bfd_vma) -4);
1193 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1194 continue;
1195
1196 amt = trampoff + size;
1197 contents = (bfd_byte *) bfd_realloc (contents, amt);
1198 if (contents == NULL)
1199 goto error_return;
1200 sec->size = amt;
1201
1202 if (tsec == ia64_info->plt_sec)
1203 {
1204 memcpy (contents + trampoff, plt_full_entry, size);
1205
1206 /* Hijack the old relocation for use as the PLTOFF reloc. */
1207 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1208 R_IA64_PLTOFF22);
1209 irel->r_offset = trampoff;
1210 }
1211 else
1212 {
1213 if (size == sizeof (oor_ip))
1214 {
1215 memcpy (contents + trampoff, oor_ip, size);
1216 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1217 R_IA64_PCREL64I);
1218 irel->r_addend -= 16;
1219 irel->r_offset = trampoff + 2;
1220 }
1221 else
1222 {
1223 memcpy (contents + trampoff, oor_brl, size);
1224 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1225 R_IA64_PCREL60B);
1226 irel->r_offset = trampoff + 2;
1227 }
1228
1229 }
1230
1231 /* Record the fixup so we don't do it again this section. */
1232 f = (struct one_fixup *)
1233 bfd_malloc ((bfd_size_type) sizeof (*f));
1234 f->next = fixups;
1235 f->tsec = tsec;
1236 f->toff = toff;
1237 f->trampoff = trampoff;
1238 fixups = f;
1239 }
1240 else
1241 {
1242 /* If trampoline is out of range, there is nothing we
1243 can do. */
1244 offset = f->trampoff - (roff & (bfd_vma) -4);
1245 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1246 continue;
1247
1248 /* Nop out the reloc, since we're finalizing things here. */
1249 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1250 }
1251
1252 /* Fix up the existing branch to hit the trampoline. */
1253 if (elfNN_ia64_install_value (contents + roff, offset, r_type)
1254 != bfd_reloc_ok)
1255 goto error_return;
1256
1257 changed_contents = TRUE;
1258 changed_relocs = TRUE;
1259 }
1260 else
1261 {
1262 /* Fetch the gp. */
1263 if (gp == 0)
1264 {
1265 bfd *obfd = sec->output_section->owner;
1266 gp = _bfd_get_gp_value (obfd);
1267 if (gp == 0)
1268 {
1269 if (!elfNN_ia64_choose_gp (obfd, link_info))
1270 goto error_return;
1271 gp = _bfd_get_gp_value (obfd);
1272 }
1273 }
1274
1275 /* If the data is out of range, do nothing. */
1276 if ((bfd_signed_vma) (symaddr - gp) >= 0x200000
1277 ||(bfd_signed_vma) (symaddr - gp) < -0x200000)
1278 continue;
1279
1280 if (r_type == R_IA64_LTOFF22X)
1281 {
1282 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1283 R_IA64_GPREL22);
1284 changed_relocs = TRUE;
1285 if (dyn_i->want_gotx)
1286 {
1287 dyn_i->want_gotx = 0;
1288 changed_got |= !dyn_i->want_got;
1289 }
1290 }
1291 else
1292 {
1293 elfNN_ia64_relax_ldxmov (contents, roff);
1294 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1295 changed_contents = TRUE;
1296 changed_relocs = TRUE;
1297 }
1298 }
1299 }
1300
1301 /* ??? If we created fixups, this may push the code segment large
1302 enough that the data segment moves, which will change the GP.
1303 Reset the GP so that we re-calculate next round. We need to
1304 do this at the _beginning_ of the next round; now will not do. */
1305
1306 /* Clean up and go home. */
1307 while (fixups)
1308 {
1309 struct one_fixup *f = fixups;
1310 fixups = fixups->next;
1311 free (f);
1312 }
1313
1314 if (isymbuf != NULL
1315 && symtab_hdr->contents != (unsigned char *) isymbuf)
1316 {
1317 if (! link_info->keep_memory)
1318 free (isymbuf);
1319 else
1320 {
1321 /* Cache the symbols for elf_link_input_bfd. */
1322 symtab_hdr->contents = (unsigned char *) isymbuf;
1323 }
1324 }
1325
1326 if (contents != NULL
1327 && elf_section_data (sec)->this_hdr.contents != contents)
1328 {
1329 if (!changed_contents && !link_info->keep_memory)
1330 free (contents);
1331 else
1332 {
1333 /* Cache the section contents for elf_link_input_bfd. */
1334 elf_section_data (sec)->this_hdr.contents = contents;
1335 }
1336 }
1337
1338 if (elf_section_data (sec)->relocs != internal_relocs)
1339 {
1340 if (!changed_relocs)
1341 free (internal_relocs);
1342 else
1343 elf_section_data (sec)->relocs = internal_relocs;
1344 }
1345
1346 if (changed_got)
1347 {
1348 struct elfNN_ia64_allocate_data data;
1349 data.info = link_info;
1350 data.ofs = 0;
1351 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
1352
1353 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
1354 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
1355 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
1356 ia64_info->got_sec->size = data.ofs;
1357
1358 if (ia64_info->root.dynamic_sections_created
1359 && ia64_info->rel_got_sec != NULL)
1360 {
1361 /* Resize .rela.got. */
1362 ia64_info->rel_got_sec->size = 0;
1363 if (link_info->shared
1364 && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
1365 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
1366 data.only_got = TRUE;
1367 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries,
1368 &data);
1369 }
1370 }
1371
1372 if (link_info->relax_pass == 0)
1373 {
1374 /* Pass 0 is only needed to relax br. */
1375 sec->skip_relax_pass_0 = skip_relax_pass_0;
1376 sec->skip_relax_pass_1 = skip_relax_pass_1;
1377 }
1378
1379 *again = changed_contents || changed_relocs;
1380 return TRUE;
1381
1382 error_return:
1383 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
1384 free (isymbuf);
1385 if (contents != NULL
1386 && elf_section_data (sec)->this_hdr.contents != contents)
1387 free (contents);
1388 if (internal_relocs != NULL
1389 && elf_section_data (sec)->relocs != internal_relocs)
1390 free (internal_relocs);
1391 return FALSE;
1392 }
1393 #undef skip_relax_pass_0
1394 #undef skip_relax_pass_1
1395
1396 static void
1397 elfNN_ia64_relax_ldxmov (contents, off)
1398 bfd_byte *contents;
1399 bfd_vma off;
1400 {
1401 int shift, r1, r3;
1402 bfd_vma dword, insn;
1403
1404 switch ((int)off & 0x3)
1405 {
1406 case 0: shift = 5; break;
1407 case 1: shift = 14; off += 3; break;
1408 case 2: shift = 23; off += 6; break;
1409 default:
1410 abort ();
1411 }
1412
1413 dword = bfd_getl64 (contents + off);
1414 insn = (dword >> shift) & 0x1ffffffffffLL;
1415
1416 r1 = (insn >> 6) & 127;
1417 r3 = (insn >> 20) & 127;
1418 if (r1 == r3)
1419 insn = 0x8000000; /* nop */
1420 else
1421 insn = (insn & 0x7f01fff) | 0x10800000000LL; /* (qp) mov r1 = r3 */
1422
1423 dword &= ~(0x1ffffffffffLL << shift);
1424 dword |= (insn << shift);
1425 bfd_putl64 (dword, contents + off);
1426 }
1427 \f
1428 /* Return TRUE if NAME is an unwind table section name. */
1429
1430 static inline bfd_boolean
1431 is_unwind_section_name (abfd, name)
1432 bfd *abfd;
1433 const char *name;
1434 {
1435 size_t len1, len2, len3;
1436
1437 if (elfNN_ia64_hpux_vec (abfd->xvec)
1438 && !strcmp (name, ELF_STRING_ia64_unwind_hdr))
1439 return FALSE;
1440
1441 len1 = sizeof (ELF_STRING_ia64_unwind) - 1;
1442 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
1443 len3 = sizeof (ELF_STRING_ia64_unwind_once) - 1;
1444 return ((strncmp (name, ELF_STRING_ia64_unwind, len1) == 0
1445 && strncmp (name, ELF_STRING_ia64_unwind_info, len2) != 0)
1446 || strncmp (name, ELF_STRING_ia64_unwind_once, len3) == 0);
1447 }
1448
1449 /* Handle an IA-64 specific section when reading an object file. This
1450 is called when bfd_section_from_shdr finds a section with an unknown
1451 type. */
1452
1453 static bfd_boolean
1454 elfNN_ia64_section_from_shdr (bfd *abfd,
1455 Elf_Internal_Shdr *hdr,
1456 const char *name,
1457 int shindex)
1458 {
1459 asection *newsect;
1460
1461 /* There ought to be a place to keep ELF backend specific flags, but
1462 at the moment there isn't one. We just keep track of the
1463 sections by their name, instead. Fortunately, the ABI gives
1464 suggested names for all the MIPS specific sections, so we will
1465 probably get away with this. */
1466 switch (hdr->sh_type)
1467 {
1468 case SHT_IA_64_UNWIND:
1469 case SHT_IA_64_HP_OPT_ANOT:
1470 break;
1471
1472 case SHT_IA_64_EXT:
1473 if (strcmp (name, ELF_STRING_ia64_archext) != 0)
1474 return FALSE;
1475 break;
1476
1477 default:
1478 return FALSE;
1479 }
1480
1481 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1482 return FALSE;
1483 newsect = hdr->bfd_section;
1484
1485 return TRUE;
1486 }
1487
1488 /* Convert IA-64 specific section flags to bfd internal section flags. */
1489
1490 /* ??? There is no bfd internal flag equivalent to the SHF_IA_64_NORECOV
1491 flag. */
1492
1493 static bfd_boolean
1494 elfNN_ia64_section_flags (flags, hdr)
1495 flagword *flags;
1496 const Elf_Internal_Shdr *hdr;
1497 {
1498 if (hdr->sh_flags & SHF_IA_64_SHORT)
1499 *flags |= SEC_SMALL_DATA;
1500
1501 return TRUE;
1502 }
1503
1504 /* Set the correct type for an IA-64 ELF section. We do this by the
1505 section name, which is a hack, but ought to work. */
1506
1507 static bfd_boolean
1508 elfNN_ia64_fake_sections (abfd, hdr, sec)
1509 bfd *abfd ATTRIBUTE_UNUSED;
1510 Elf_Internal_Shdr *hdr;
1511 asection *sec;
1512 {
1513 register const char *name;
1514
1515 name = bfd_get_section_name (abfd, sec);
1516
1517 if (is_unwind_section_name (abfd, name))
1518 {
1519 /* We don't have the sections numbered at this point, so sh_info
1520 is set later, in elfNN_ia64_final_write_processing. */
1521 hdr->sh_type = SHT_IA_64_UNWIND;
1522 hdr->sh_flags |= SHF_LINK_ORDER;
1523 }
1524 else if (strcmp (name, ELF_STRING_ia64_archext) == 0)
1525 hdr->sh_type = SHT_IA_64_EXT;
1526 else if (strcmp (name, ".HP.opt_annot") == 0)
1527 hdr->sh_type = SHT_IA_64_HP_OPT_ANOT;
1528 else if (strcmp (name, ".reloc") == 0)
1529 /* This is an ugly, but unfortunately necessary hack that is
1530 needed when producing EFI binaries on IA-64. It tells
1531 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1532 containing ELF relocation info. We need this hack in order to
1533 be able to generate ELF binaries that can be translated into
1534 EFI applications (which are essentially COFF objects). Those
1535 files contain a COFF ".reloc" section inside an ELFNN object,
1536 which would normally cause BFD to segfault because it would
1537 attempt to interpret this section as containing relocation
1538 entries for section "oc". With this hack enabled, ".reloc"
1539 will be treated as a normal data section, which will avoid the
1540 segfault. However, you won't be able to create an ELFNN binary
1541 with a section named "oc" that needs relocations, but that's
1542 the kind of ugly side-effects you get when detecting section
1543 types based on their names... In practice, this limitation is
1544 unlikely to bite. */
1545 hdr->sh_type = SHT_PROGBITS;
1546
1547 if (sec->flags & SEC_SMALL_DATA)
1548 hdr->sh_flags |= SHF_IA_64_SHORT;
1549
1550 /* Some HP linkers look for the SHF_IA_64_HP_TLS flag instead of SHF_TLS. */
1551
1552 if (elfNN_ia64_hpux_vec (abfd->xvec) && (sec->flags & SHF_TLS))
1553 hdr->sh_flags |= SHF_IA_64_HP_TLS;
1554
1555 return TRUE;
1556 }
1557
1558 /* The final processing done just before writing out an IA-64 ELF
1559 object file. */
1560
1561 static void
1562 elfNN_ia64_final_write_processing (abfd, linker)
1563 bfd *abfd;
1564 bfd_boolean linker ATTRIBUTE_UNUSED;
1565 {
1566 Elf_Internal_Shdr *hdr;
1567 asection *s;
1568
1569 for (s = abfd->sections; s; s = s->next)
1570 {
1571 hdr = &elf_section_data (s)->this_hdr;
1572 switch (hdr->sh_type)
1573 {
1574 case SHT_IA_64_UNWIND:
1575 /* The IA-64 processor-specific ABI requires setting sh_link
1576 to the unwind section, whereas HP-UX requires sh_info to
1577 do so. For maximum compatibility, we'll set both for
1578 now... */
1579 hdr->sh_info = hdr->sh_link;
1580 break;
1581 }
1582 }
1583
1584 if (! elf_flags_init (abfd))
1585 {
1586 unsigned long flags = 0;
1587
1588 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
1589 flags |= EF_IA_64_BE;
1590 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
1591 flags |= EF_IA_64_ABI64;
1592
1593 elf_elfheader(abfd)->e_flags = flags;
1594 elf_flags_init (abfd) = TRUE;
1595 }
1596 }
1597
1598 /* Hook called by the linker routine which adds symbols from an object
1599 file. We use it to put .comm items in .sbss, and not .bss. */
1600
1601 static bfd_boolean
1602 elfNN_ia64_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1603 bfd *abfd;
1604 struct bfd_link_info *info;
1605 Elf_Internal_Sym *sym;
1606 const char **namep ATTRIBUTE_UNUSED;
1607 flagword *flagsp ATTRIBUTE_UNUSED;
1608 asection **secp;
1609 bfd_vma *valp;
1610 {
1611 if (sym->st_shndx == SHN_COMMON
1612 && !info->relocatable
1613 && sym->st_size <= elf_gp_size (abfd))
1614 {
1615 /* Common symbols less than or equal to -G nn bytes are
1616 automatically put into .sbss. */
1617
1618 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1619
1620 if (scomm == NULL)
1621 {
1622 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1623 (SEC_ALLOC
1624 | SEC_IS_COMMON
1625 | SEC_LINKER_CREATED));
1626 if (scomm == NULL)
1627 return FALSE;
1628 }
1629
1630 *secp = scomm;
1631 *valp = sym->st_size;
1632 }
1633
1634 return TRUE;
1635 }
1636
1637 /* Return the number of additional phdrs we will need. */
1638
1639 static int
1640 elfNN_ia64_additional_program_headers (abfd)
1641 bfd *abfd;
1642 {
1643 asection *s;
1644 int ret = 0;
1645
1646 /* See if we need a PT_IA_64_ARCHEXT segment. */
1647 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1648 if (s && (s->flags & SEC_LOAD))
1649 ++ret;
1650
1651 /* Count how many PT_IA_64_UNWIND segments we need. */
1652 for (s = abfd->sections; s; s = s->next)
1653 if (is_unwind_section_name (abfd, s->name) && (s->flags & SEC_LOAD))
1654 ++ret;
1655
1656 return ret;
1657 }
1658
1659 static bfd_boolean
1660 elfNN_ia64_modify_segment_map (abfd, info)
1661 bfd *abfd;
1662 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1663 {
1664 struct elf_segment_map *m, **pm;
1665 Elf_Internal_Shdr *hdr;
1666 asection *s;
1667
1668 /* If we need a PT_IA_64_ARCHEXT segment, it must come before
1669 all PT_LOAD segments. */
1670 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1671 if (s && (s->flags & SEC_LOAD))
1672 {
1673 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1674 if (m->p_type == PT_IA_64_ARCHEXT)
1675 break;
1676 if (m == NULL)
1677 {
1678 m = ((struct elf_segment_map *)
1679 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1680 if (m == NULL)
1681 return FALSE;
1682
1683 m->p_type = PT_IA_64_ARCHEXT;
1684 m->count = 1;
1685 m->sections[0] = s;
1686
1687 /* We want to put it after the PHDR and INTERP segments. */
1688 pm = &elf_tdata (abfd)->segment_map;
1689 while (*pm != NULL
1690 && ((*pm)->p_type == PT_PHDR
1691 || (*pm)->p_type == PT_INTERP))
1692 pm = &(*pm)->next;
1693
1694 m->next = *pm;
1695 *pm = m;
1696 }
1697 }
1698
1699 /* Install PT_IA_64_UNWIND segments, if needed. */
1700 for (s = abfd->sections; s; s = s->next)
1701 {
1702 hdr = &elf_section_data (s)->this_hdr;
1703 if (hdr->sh_type != SHT_IA_64_UNWIND)
1704 continue;
1705
1706 if (s && (s->flags & SEC_LOAD))
1707 {
1708 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1709 if (m->p_type == PT_IA_64_UNWIND)
1710 {
1711 int i;
1712
1713 /* Look through all sections in the unwind segment
1714 for a match since there may be multiple sections
1715 to a segment. */
1716 for (i = m->count - 1; i >= 0; --i)
1717 if (m->sections[i] == s)
1718 break;
1719
1720 if (i >= 0)
1721 break;
1722 }
1723
1724 if (m == NULL)
1725 {
1726 m = ((struct elf_segment_map *)
1727 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1728 if (m == NULL)
1729 return FALSE;
1730
1731 m->p_type = PT_IA_64_UNWIND;
1732 m->count = 1;
1733 m->sections[0] = s;
1734 m->next = NULL;
1735
1736 /* We want to put it last. */
1737 pm = &elf_tdata (abfd)->segment_map;
1738 while (*pm != NULL)
1739 pm = &(*pm)->next;
1740 *pm = m;
1741 }
1742 }
1743 }
1744
1745 /* Turn on PF_IA_64_NORECOV if needed. This involves traversing all of
1746 the input sections for each output section in the segment and testing
1747 for SHF_IA_64_NORECOV on each. */
1748 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1749 if (m->p_type == PT_LOAD)
1750 {
1751 int i;
1752 for (i = m->count - 1; i >= 0; --i)
1753 {
1754 struct bfd_link_order *order = m->sections[i]->map_head.link_order;
1755 while (order)
1756 {
1757 if (order->type == bfd_indirect_link_order)
1758 {
1759 asection *is = order->u.indirect.section;
1760 bfd_vma flags = elf_section_data(is)->this_hdr.sh_flags;
1761 if (flags & SHF_IA_64_NORECOV)
1762 {
1763 m->p_flags |= PF_IA_64_NORECOV;
1764 goto found;
1765 }
1766 }
1767 order = order->next;
1768 }
1769 }
1770 found:;
1771 }
1772
1773 return TRUE;
1774 }
1775
1776 /* According to the Tahoe assembler spec, all labels starting with a
1777 '.' are local. */
1778
1779 static bfd_boolean
1780 elfNN_ia64_is_local_label_name (abfd, name)
1781 bfd *abfd ATTRIBUTE_UNUSED;
1782 const char *name;
1783 {
1784 return name[0] == '.';
1785 }
1786
1787 /* Should we do dynamic things to this symbol? */
1788
1789 static bfd_boolean
1790 elfNN_ia64_dynamic_symbol_p (h, info, r_type)
1791 struct elf_link_hash_entry *h;
1792 struct bfd_link_info *info;
1793 int r_type;
1794 {
1795 bfd_boolean ignore_protected
1796 = ((r_type & 0xf8) == 0x40 /* FPTR relocs */
1797 || (r_type & 0xf8) == 0x50); /* LTOFF_FPTR relocs */
1798
1799 return _bfd_elf_dynamic_symbol_p (h, info, ignore_protected);
1800 }
1801 \f
1802 static struct bfd_hash_entry*
1803 elfNN_ia64_new_elf_hash_entry (entry, table, string)
1804 struct bfd_hash_entry *entry;
1805 struct bfd_hash_table *table;
1806 const char *string;
1807 {
1808 struct elfNN_ia64_link_hash_entry *ret;
1809 ret = (struct elfNN_ia64_link_hash_entry *) entry;
1810
1811 /* Allocate the structure if it has not already been allocated by a
1812 subclass. */
1813 if (!ret)
1814 ret = bfd_hash_allocate (table, sizeof (*ret));
1815
1816 if (!ret)
1817 return 0;
1818
1819 /* Call the allocation method of the superclass. */
1820 ret = ((struct elfNN_ia64_link_hash_entry *)
1821 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1822 table, string));
1823
1824 ret->info = NULL;
1825 ret->count = 0;
1826 ret->sorted_count = 0;
1827 ret->size = 0;
1828 return (struct bfd_hash_entry *) ret;
1829 }
1830
1831 static void
1832 elfNN_ia64_hash_copy_indirect (info, xdir, xind)
1833 struct bfd_link_info *info;
1834 struct elf_link_hash_entry *xdir, *xind;
1835 {
1836 struct elfNN_ia64_link_hash_entry *dir, *ind;
1837
1838 dir = (struct elfNN_ia64_link_hash_entry *) xdir;
1839 ind = (struct elfNN_ia64_link_hash_entry *) xind;
1840
1841 /* Copy down any references that we may have already seen to the
1842 symbol which just became indirect. */
1843
1844 dir->root.ref_dynamic |= ind->root.ref_dynamic;
1845 dir->root.ref_regular |= ind->root.ref_regular;
1846 dir->root.ref_regular_nonweak |= ind->root.ref_regular_nonweak;
1847 dir->root.needs_plt |= ind->root.needs_plt;
1848
1849 if (ind->root.root.type != bfd_link_hash_indirect)
1850 return;
1851
1852 /* Copy over the got and plt data. This would have been done
1853 by check_relocs. */
1854
1855 if (ind->info != NULL)
1856 {
1857 struct elfNN_ia64_dyn_sym_info *dyn_i;
1858 unsigned int count;
1859
1860 if (dir->info)
1861 free (dir->info);
1862
1863 dir->info = ind->info;
1864 dir->count = ind->count;
1865 dir->sorted_count = ind->sorted_count;
1866 dir->size = ind->size;
1867
1868 ind->info = NULL;
1869 ind->count = 0;
1870 ind->sorted_count = 0;
1871 ind->size = 0;
1872
1873 /* Fix up the dyn_sym_info pointers to the global symbol. */
1874 for (count = dir->count, dyn_i = dir->info;
1875 count != 0;
1876 count--, dyn_i++)
1877 dyn_i->h = &dir->root;
1878 }
1879
1880 /* Copy over the dynindx. */
1881
1882 if (ind->root.dynindx != -1)
1883 {
1884 if (dir->root.dynindx != -1)
1885 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1886 dir->root.dynstr_index);
1887 dir->root.dynindx = ind->root.dynindx;
1888 dir->root.dynstr_index = ind->root.dynstr_index;
1889 ind->root.dynindx = -1;
1890 ind->root.dynstr_index = 0;
1891 }
1892 }
1893
1894 static void
1895 elfNN_ia64_hash_hide_symbol (info, xh, force_local)
1896 struct bfd_link_info *info;
1897 struct elf_link_hash_entry *xh;
1898 bfd_boolean force_local;
1899 {
1900 struct elfNN_ia64_link_hash_entry *h;
1901 struct elfNN_ia64_dyn_sym_info *dyn_i;
1902 unsigned int count;
1903
1904 h = (struct elfNN_ia64_link_hash_entry *)xh;
1905
1906 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
1907
1908 for (count = h->count, dyn_i = h->info;
1909 count != 0;
1910 count--, dyn_i++)
1911 {
1912 dyn_i->want_plt2 = 0;
1913 dyn_i->want_plt = 0;
1914 }
1915 }
1916
1917 /* Compute a hash of a local hash entry. */
1918
1919 static hashval_t
1920 elfNN_ia64_local_htab_hash (ptr)
1921 const void *ptr;
1922 {
1923 struct elfNN_ia64_local_hash_entry *entry
1924 = (struct elfNN_ia64_local_hash_entry *) ptr;
1925
1926 return (((entry->id & 0xff) << 24) | ((entry->id & 0xff00) << 8))
1927 ^ entry->r_sym ^ (entry->id >> 16);
1928 }
1929
1930 /* Compare local hash entries. */
1931
1932 static int
1933 elfNN_ia64_local_htab_eq (ptr1, ptr2)
1934 const void *ptr1, *ptr2;
1935 {
1936 struct elfNN_ia64_local_hash_entry *entry1
1937 = (struct elfNN_ia64_local_hash_entry *) ptr1;
1938 struct elfNN_ia64_local_hash_entry *entry2
1939 = (struct elfNN_ia64_local_hash_entry *) ptr2;
1940
1941 return entry1->id == entry2->id && entry1->r_sym == entry2->r_sym;
1942 }
1943
1944 /* Create the derived linker hash table. The IA-64 ELF port uses this
1945 derived hash table to keep information specific to the IA-64 ElF
1946 linker (without using static variables). */
1947
1948 static struct bfd_link_hash_table*
1949 elfNN_ia64_hash_table_create (abfd)
1950 bfd *abfd;
1951 {
1952 struct elfNN_ia64_link_hash_table *ret;
1953
1954 ret = bfd_zmalloc ((bfd_size_type) sizeof (*ret));
1955 if (!ret)
1956 return 0;
1957
1958 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
1959 elfNN_ia64_new_elf_hash_entry,
1960 sizeof (struct elfNN_ia64_link_hash_entry)))
1961 {
1962 free (ret);
1963 return 0;
1964 }
1965
1966 ret->loc_hash_table = htab_try_create (1024, elfNN_ia64_local_htab_hash,
1967 elfNN_ia64_local_htab_eq, NULL);
1968 ret->loc_hash_memory = objalloc_create ();
1969 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1970 {
1971 free (ret);
1972 return 0;
1973 }
1974
1975 return &ret->root.root;
1976 }
1977
1978 /* Free the global elfNN_ia64_dyn_sym_info array. */
1979
1980 static bfd_boolean
1981 elfNN_ia64_global_dyn_info_free (void **xentry,
1982 PTR unused ATTRIBUTE_UNUSED)
1983 {
1984 struct elfNN_ia64_link_hash_entry *entry
1985 = (struct elfNN_ia64_link_hash_entry *) xentry;
1986
1987 if (entry->root.root.type == bfd_link_hash_warning)
1988 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1989
1990 if (entry->info)
1991 {
1992 free (entry->info);
1993 entry->info = NULL;
1994 entry->count = 0;
1995 entry->sorted_count = 0;
1996 entry->size = 0;
1997 }
1998
1999 return TRUE;
2000 }
2001
2002 /* Free the local elfNN_ia64_dyn_sym_info array. */
2003
2004 static bfd_boolean
2005 elfNN_ia64_local_dyn_info_free (void **slot,
2006 PTR unused ATTRIBUTE_UNUSED)
2007 {
2008 struct elfNN_ia64_local_hash_entry *entry
2009 = (struct elfNN_ia64_local_hash_entry *) *slot;
2010
2011 if (entry->info)
2012 {
2013 free (entry->info);
2014 entry->info = NULL;
2015 entry->count = 0;
2016 entry->sorted_count = 0;
2017 entry->size = 0;
2018 }
2019
2020 return TRUE;
2021 }
2022
2023 /* Destroy IA-64 linker hash table. */
2024
2025 static void
2026 elfNN_ia64_hash_table_free (hash)
2027 struct bfd_link_hash_table *hash;
2028 {
2029 struct elfNN_ia64_link_hash_table *ia64_info
2030 = (struct elfNN_ia64_link_hash_table *) hash;
2031 if (ia64_info->loc_hash_table)
2032 {
2033 htab_traverse (ia64_info->loc_hash_table,
2034 elfNN_ia64_local_dyn_info_free, NULL);
2035 htab_delete (ia64_info->loc_hash_table);
2036 }
2037 if (ia64_info->loc_hash_memory)
2038 objalloc_free ((struct objalloc *) ia64_info->loc_hash_memory);
2039 elf_link_hash_traverse (&ia64_info->root,
2040 elfNN_ia64_global_dyn_info_free, NULL);
2041 _bfd_generic_link_hash_table_free (hash);
2042 }
2043
2044 /* Traverse both local and global hash tables. */
2045
2046 struct elfNN_ia64_dyn_sym_traverse_data
2047 {
2048 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
2049 PTR data;
2050 };
2051
2052 static bfd_boolean
2053 elfNN_ia64_global_dyn_sym_thunk (xentry, xdata)
2054 struct bfd_hash_entry *xentry;
2055 PTR xdata;
2056 {
2057 struct elfNN_ia64_link_hash_entry *entry
2058 = (struct elfNN_ia64_link_hash_entry *) xentry;
2059 struct elfNN_ia64_dyn_sym_traverse_data *data
2060 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
2061 struct elfNN_ia64_dyn_sym_info *dyn_i;
2062 unsigned int count;
2063
2064 if (entry->root.root.type == bfd_link_hash_warning)
2065 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
2066
2067 for (count = entry->count, dyn_i = entry->info;
2068 count != 0;
2069 count--, dyn_i++)
2070 if (! (*data->func) (dyn_i, data->data))
2071 return FALSE;
2072 return TRUE;
2073 }
2074
2075 static bfd_boolean
2076 elfNN_ia64_local_dyn_sym_thunk (slot, xdata)
2077 void **slot;
2078 PTR xdata;
2079 {
2080 struct elfNN_ia64_local_hash_entry *entry
2081 = (struct elfNN_ia64_local_hash_entry *) *slot;
2082 struct elfNN_ia64_dyn_sym_traverse_data *data
2083 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
2084 struct elfNN_ia64_dyn_sym_info *dyn_i;
2085 unsigned int count;
2086
2087 for (count = entry->count, dyn_i = entry->info;
2088 count != 0;
2089 count--, dyn_i++)
2090 if (! (*data->func) (dyn_i, data->data))
2091 return FALSE;
2092 return TRUE;
2093 }
2094
2095 static void
2096 elfNN_ia64_dyn_sym_traverse (ia64_info, func, data)
2097 struct elfNN_ia64_link_hash_table *ia64_info;
2098 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
2099 PTR data;
2100 {
2101 struct elfNN_ia64_dyn_sym_traverse_data xdata;
2102
2103 xdata.func = func;
2104 xdata.data = data;
2105
2106 elf_link_hash_traverse (&ia64_info->root,
2107 elfNN_ia64_global_dyn_sym_thunk, &xdata);
2108 htab_traverse (ia64_info->loc_hash_table,
2109 elfNN_ia64_local_dyn_sym_thunk, &xdata);
2110 }
2111 \f
2112 static bfd_boolean
2113 elfNN_ia64_create_dynamic_sections (abfd, info)
2114 bfd *abfd;
2115 struct bfd_link_info *info;
2116 {
2117 struct elfNN_ia64_link_hash_table *ia64_info;
2118 asection *s;
2119
2120 if (! _bfd_elf_create_dynamic_sections (abfd, info))
2121 return FALSE;
2122
2123 ia64_info = elfNN_ia64_hash_table (info);
2124
2125 ia64_info->plt_sec = bfd_get_section_by_name (abfd, ".plt");
2126 ia64_info->got_sec = bfd_get_section_by_name (abfd, ".got");
2127
2128 {
2129 flagword flags = bfd_get_section_flags (abfd, ia64_info->got_sec);
2130 bfd_set_section_flags (abfd, ia64_info->got_sec, SEC_SMALL_DATA | flags);
2131 /* The .got section is always aligned at 8 bytes. */
2132 bfd_set_section_alignment (abfd, ia64_info->got_sec, 3);
2133 }
2134
2135 if (!get_pltoff (abfd, info, ia64_info))
2136 return FALSE;
2137
2138 s = bfd_make_section_with_flags (abfd, ".rela.IA_64.pltoff",
2139 (SEC_ALLOC | SEC_LOAD
2140 | SEC_HAS_CONTENTS
2141 | SEC_IN_MEMORY
2142 | SEC_LINKER_CREATED
2143 | SEC_READONLY));
2144 if (s == NULL
2145 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2146 return FALSE;
2147 ia64_info->rel_pltoff_sec = s;
2148
2149 s = bfd_make_section_with_flags (abfd, ".rela.got",
2150 (SEC_ALLOC | SEC_LOAD
2151 | SEC_HAS_CONTENTS
2152 | SEC_IN_MEMORY
2153 | SEC_LINKER_CREATED
2154 | SEC_READONLY));
2155 if (s == NULL
2156 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2157 return FALSE;
2158 ia64_info->rel_got_sec = s;
2159
2160 return TRUE;
2161 }
2162
2163 /* Find and/or create a hash entry for local symbol. */
2164 static struct elfNN_ia64_local_hash_entry *
2165 get_local_sym_hash (ia64_info, abfd, rel, create)
2166 struct elfNN_ia64_link_hash_table *ia64_info;
2167 bfd *abfd;
2168 const Elf_Internal_Rela *rel;
2169 bfd_boolean create;
2170 {
2171 struct elfNN_ia64_local_hash_entry e, *ret;
2172 asection *sec = abfd->sections;
2173 hashval_t h = (((sec->id & 0xff) << 24) | ((sec->id & 0xff00) << 8))
2174 ^ ELFNN_R_SYM (rel->r_info) ^ (sec->id >> 16);
2175 void **slot;
2176
2177 e.id = sec->id;
2178 e.r_sym = ELFNN_R_SYM (rel->r_info);
2179 slot = htab_find_slot_with_hash (ia64_info->loc_hash_table, &e, h,
2180 create ? INSERT : NO_INSERT);
2181
2182 if (!slot)
2183 return NULL;
2184
2185 if (*slot)
2186 return (struct elfNN_ia64_local_hash_entry *) *slot;
2187
2188 ret = (struct elfNN_ia64_local_hash_entry *)
2189 objalloc_alloc ((struct objalloc *) ia64_info->loc_hash_memory,
2190 sizeof (struct elfNN_ia64_local_hash_entry));
2191 if (ret)
2192 {
2193 memset (ret, 0, sizeof (*ret));
2194 ret->id = sec->id;
2195 ret->r_sym = ELFNN_R_SYM (rel->r_info);
2196 *slot = ret;
2197 }
2198 return ret;
2199 }
2200
2201 /* Used to sort elfNN_ia64_dyn_sym_info array. */
2202
2203 static int
2204 addend_compare (const void *xp, const void *yp)
2205 {
2206 const struct elfNN_ia64_dyn_sym_info *x
2207 = (const struct elfNN_ia64_dyn_sym_info *) xp;
2208 const struct elfNN_ia64_dyn_sym_info *y
2209 = (const struct elfNN_ia64_dyn_sym_info *) yp;
2210
2211 return x->addend - y->addend;
2212 }
2213
2214 /* Sort elfNN_ia64_dyn_sym_info array and remove duplicates. */
2215
2216 static unsigned int
2217 sort_dyn_sym_info (struct elfNN_ia64_dyn_sym_info *info,
2218 unsigned int count)
2219 {
2220 bfd_vma curr, prev;
2221 unsigned int i, dup, diff, dest, src, len;
2222
2223 qsort (info, count, sizeof (*info), addend_compare);
2224
2225 /* Find the first duplicate. */
2226 prev = info [0].addend;
2227 for (i = 1; i < count; i++)
2228 {
2229 curr = info [i].addend;
2230 if (curr == prev)
2231 break;
2232 prev = curr;
2233 }
2234
2235 /* Remove duplicates. */
2236 if (i < count)
2237 {
2238 /* We need to move a block of elements to here. */
2239 dest = i++;
2240 while (i < count)
2241 {
2242 curr = info [i].addend;
2243
2244 /* Move a block of elements whose first one is different from
2245 the previous. */
2246 if (curr == prev)
2247 {
2248 for (src = i + 1; src < count; src++)
2249 if (info [src].addend != curr)
2250 break;
2251 }
2252 else
2253 src = i;
2254
2255 if (src >= count)
2256 break;
2257
2258 /* Find the next duplicate. */
2259 prev = info [src].addend;
2260 for (dup = src + 1; dup < count; dup++)
2261 {
2262 curr = info [dup].addend;
2263 if (curr == prev)
2264 break;
2265 prev = curr;
2266 }
2267
2268 /* How much to move. */
2269 len = dup - src;
2270 i = dup + 1;
2271
2272 if (len == 1 && dup < count)
2273 {
2274 /* If we only move 1 element, we combine it with the next
2275 one. Find the next different one. */
2276 for (diff = dup + 1, src++; diff < count; diff++, src++)
2277 if (info [diff].addend != curr)
2278 break;
2279
2280 if (diff < count)
2281 {
2282 /* Find the next duplicate. */
2283 prev = info [diff].addend;
2284 for (dup = diff + 1; dup < count; dup++)
2285 {
2286 curr = info [dup].addend;
2287 if (curr == prev)
2288 break;
2289 prev = curr;
2290 diff++;
2291 }
2292
2293 len = diff - src + 1;
2294 i = diff + 1;
2295 }
2296 }
2297
2298 memmove (&info [dest], &info [src], len * sizeof (*info));
2299
2300 dest += len;
2301 }
2302
2303 count = dest;
2304 }
2305
2306 return count;
2307 }
2308
2309 /* Find and/or create a descriptor for dynamic symbol info. This will
2310 vary based on global or local symbol, and the addend to the reloc.
2311
2312 We don't sort when inserting. Also, we sort and eliminate
2313 duplicates if there is an unsorted section. Typically, this will
2314 only happen once, because we do all insertions before lookups. We
2315 then use bsearch to do a lookup. This also allows lookups to be
2316 fast. So we have fast insertion (O(log N) due to duplicate check),
2317 fast lookup (O(log N)) and one sort (O(N log N) expected time).
2318 Previously, all lookups were O(N) because of the use of the linked
2319 list and also all insertions were O(N) because of the check for
2320 duplicates. There are some complications here because the array
2321 size grows occasionally, which may add an O(N) factor, but this
2322 should be rare. Also, we free the excess array allocation, which
2323 requires a copy which is O(N), but this only happens once. */
2324
2325 static struct elfNN_ia64_dyn_sym_info *
2326 get_dyn_sym_info (ia64_info, h, abfd, rel, create)
2327 struct elfNN_ia64_link_hash_table *ia64_info;
2328 struct elf_link_hash_entry *h;
2329 bfd *abfd;
2330 const Elf_Internal_Rela *rel;
2331 bfd_boolean create;
2332 {
2333 struct elfNN_ia64_dyn_sym_info **info_p, *info, *dyn_i, key;
2334 unsigned int *count_p, *sorted_count_p, *size_p;
2335 unsigned int count, sorted_count, size;
2336 bfd_vma addend = rel ? rel->r_addend : 0;
2337 bfd_size_type amt;
2338
2339 if (h)
2340 {
2341 struct elfNN_ia64_link_hash_entry *global_h;
2342
2343 global_h = (struct elfNN_ia64_link_hash_entry *) h;
2344 info_p = &global_h->info;
2345 count_p = &global_h->count;
2346 sorted_count_p = &global_h->sorted_count;
2347 size_p = &global_h->size;
2348 }
2349 else
2350 {
2351 struct elfNN_ia64_local_hash_entry *loc_h;
2352
2353 loc_h = get_local_sym_hash (ia64_info, abfd, rel, create);
2354 if (!loc_h)
2355 {
2356 BFD_ASSERT (!create);
2357 return NULL;
2358 }
2359
2360 info_p = &loc_h->info;
2361 count_p = &loc_h->count;
2362 sorted_count_p = &loc_h->sorted_count;
2363 size_p = &loc_h->size;
2364 }
2365
2366 count = *count_p;
2367 sorted_count = *sorted_count_p;
2368 size = *size_p;
2369 info = *info_p;
2370 if (create)
2371 {
2372 /* When we create the array, we don't check for duplicates,
2373 except in the previously sorted section if one exists, and
2374 against the last inserted entry. This allows insertions to
2375 be fast. */
2376 if (info)
2377 {
2378 if (sorted_count)
2379 {
2380 /* Try bsearch first on the sorted section. */
2381 key.addend = addend;
2382 dyn_i = bsearch (&key, info, sorted_count,
2383 sizeof (*info), addend_compare);
2384
2385 if (dyn_i)
2386 {
2387 return dyn_i;
2388 }
2389 }
2390
2391 /* Do a quick check for the last inserted entry. */
2392 dyn_i = info + count - 1;
2393 if (dyn_i->addend == addend)
2394 {
2395 return dyn_i;
2396 }
2397 }
2398
2399 if (size == 0)
2400 {
2401 /* It is the very first element. We create the array of size
2402 1. */
2403 size = 1;
2404 amt = size * sizeof (*info);
2405 info = bfd_malloc (amt);
2406 }
2407 else if (size <= count)
2408 {
2409 /* We double the array size every time when we reach the
2410 size limit. */
2411 size += size;
2412 amt = size * sizeof (*info);
2413 info = bfd_realloc (info, amt);
2414 }
2415 else
2416 goto has_space;
2417
2418 if (info == NULL)
2419 return NULL;
2420 *size_p = size;
2421 *info_p = info;
2422
2423 has_space:
2424 /* Append the new one to the array. */
2425 dyn_i = info + count;
2426 memset (dyn_i, 0, sizeof (*dyn_i));
2427 dyn_i->addend = addend;
2428
2429 /* We increment count only since the new ones are unsorted and
2430 may have duplicate. */
2431 (*count_p)++;
2432 }
2433 else
2434 {
2435 /* It is a lookup without insertion. Sort array if part of the
2436 array isn't sorted. */
2437 if (count != sorted_count)
2438 {
2439 count = sort_dyn_sym_info (info, count);
2440 *count_p = count;
2441 *sorted_count_p = count;
2442 }
2443
2444 /* Free unused memory. */
2445 if (size != count)
2446 {
2447 amt = count * sizeof (*info);
2448 info = bfd_malloc (amt);
2449 if (info != NULL)
2450 {
2451 memcpy (info, *info_p, amt);
2452 free (*info_p);
2453 *size_p = count;
2454 *info_p = info;
2455 }
2456 }
2457
2458 key.addend = addend;
2459 dyn_i = bsearch (&key, info, count,
2460 sizeof (*info), addend_compare);
2461 }
2462
2463 return dyn_i;
2464 }
2465
2466 static asection *
2467 get_got (abfd, info, ia64_info)
2468 bfd *abfd;
2469 struct bfd_link_info *info;
2470 struct elfNN_ia64_link_hash_table *ia64_info;
2471 {
2472 asection *got;
2473 bfd *dynobj;
2474
2475 got = ia64_info->got_sec;
2476 if (!got)
2477 {
2478 flagword flags;
2479
2480 dynobj = ia64_info->root.dynobj;
2481 if (!dynobj)
2482 ia64_info->root.dynobj = dynobj = abfd;
2483 if (!_bfd_elf_create_got_section (dynobj, info))
2484 return 0;
2485
2486 got = bfd_get_section_by_name (dynobj, ".got");
2487 BFD_ASSERT (got);
2488 ia64_info->got_sec = got;
2489
2490 /* The .got section is always aligned at 8 bytes. */
2491 if (!bfd_set_section_alignment (abfd, got, 3))
2492 return 0;
2493
2494 flags = bfd_get_section_flags (abfd, got);
2495 bfd_set_section_flags (abfd, got, SEC_SMALL_DATA | flags);
2496 }
2497
2498 return got;
2499 }
2500
2501 /* Create function descriptor section (.opd). This section is called .opd
2502 because it contains "official procedure descriptors". The "official"
2503 refers to the fact that these descriptors are used when taking the address
2504 of a procedure, thus ensuring a unique address for each procedure. */
2505
2506 static asection *
2507 get_fptr (abfd, info, ia64_info)
2508 bfd *abfd;
2509 struct bfd_link_info *info;
2510 struct elfNN_ia64_link_hash_table *ia64_info;
2511 {
2512 asection *fptr;
2513 bfd *dynobj;
2514
2515 fptr = ia64_info->fptr_sec;
2516 if (!fptr)
2517 {
2518 dynobj = ia64_info->root.dynobj;
2519 if (!dynobj)
2520 ia64_info->root.dynobj = dynobj = abfd;
2521
2522 fptr = bfd_make_section_with_flags (dynobj, ".opd",
2523 (SEC_ALLOC
2524 | SEC_LOAD
2525 | SEC_HAS_CONTENTS
2526 | SEC_IN_MEMORY
2527 | (info->pie ? 0 : SEC_READONLY)
2528 | SEC_LINKER_CREATED));
2529 if (!fptr
2530 || !bfd_set_section_alignment (abfd, fptr, 4))
2531 {
2532 BFD_ASSERT (0);
2533 return NULL;
2534 }
2535
2536 ia64_info->fptr_sec = fptr;
2537
2538 if (info->pie)
2539 {
2540 asection *fptr_rel;
2541 fptr_rel = bfd_make_section_with_flags (dynobj, ".rela.opd",
2542 (SEC_ALLOC | SEC_LOAD
2543 | SEC_HAS_CONTENTS
2544 | SEC_IN_MEMORY
2545 | SEC_LINKER_CREATED
2546 | SEC_READONLY));
2547 if (fptr_rel == NULL
2548 || !bfd_set_section_alignment (abfd, fptr_rel,
2549 LOG_SECTION_ALIGN))
2550 {
2551 BFD_ASSERT (0);
2552 return NULL;
2553 }
2554
2555 ia64_info->rel_fptr_sec = fptr_rel;
2556 }
2557 }
2558
2559 return fptr;
2560 }
2561
2562 static asection *
2563 get_pltoff (abfd, info, ia64_info)
2564 bfd *abfd;
2565 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2566 struct elfNN_ia64_link_hash_table *ia64_info;
2567 {
2568 asection *pltoff;
2569 bfd *dynobj;
2570
2571 pltoff = ia64_info->pltoff_sec;
2572 if (!pltoff)
2573 {
2574 dynobj = ia64_info->root.dynobj;
2575 if (!dynobj)
2576 ia64_info->root.dynobj = dynobj = abfd;
2577
2578 pltoff = bfd_make_section_with_flags (dynobj,
2579 ELF_STRING_ia64_pltoff,
2580 (SEC_ALLOC
2581 | SEC_LOAD
2582 | SEC_HAS_CONTENTS
2583 | SEC_IN_MEMORY
2584 | SEC_SMALL_DATA
2585 | SEC_LINKER_CREATED));
2586 if (!pltoff
2587 || !bfd_set_section_alignment (abfd, pltoff, 4))
2588 {
2589 BFD_ASSERT (0);
2590 return NULL;
2591 }
2592
2593 ia64_info->pltoff_sec = pltoff;
2594 }
2595
2596 return pltoff;
2597 }
2598
2599 static asection *
2600 get_reloc_section (abfd, ia64_info, sec, create)
2601 bfd *abfd;
2602 struct elfNN_ia64_link_hash_table *ia64_info;
2603 asection *sec;
2604 bfd_boolean create;
2605 {
2606 const char *srel_name;
2607 asection *srel;
2608 bfd *dynobj;
2609
2610 srel_name = (bfd_elf_string_from_elf_section
2611 (abfd, elf_elfheader(abfd)->e_shstrndx,
2612 elf_section_data(sec)->rel_hdr.sh_name));
2613 if (srel_name == NULL)
2614 return NULL;
2615
2616 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
2617 && strcmp (bfd_get_section_name (abfd, sec),
2618 srel_name+5) == 0)
2619 || (strncmp (srel_name, ".rel", 4) == 0
2620 && strcmp (bfd_get_section_name (abfd, sec),
2621 srel_name+4) == 0));
2622
2623 dynobj = ia64_info->root.dynobj;
2624 if (!dynobj)
2625 ia64_info->root.dynobj = dynobj = abfd;
2626
2627 srel = bfd_get_section_by_name (dynobj, srel_name);
2628 if (srel == NULL && create)
2629 {
2630 srel = bfd_make_section_with_flags (dynobj, srel_name,
2631 (SEC_ALLOC | SEC_LOAD
2632 | SEC_HAS_CONTENTS
2633 | SEC_IN_MEMORY
2634 | SEC_LINKER_CREATED
2635 | SEC_READONLY));
2636 if (srel == NULL
2637 || !bfd_set_section_alignment (dynobj, srel,
2638 LOG_SECTION_ALIGN))
2639 return NULL;
2640 }
2641
2642 return srel;
2643 }
2644
2645 static bfd_boolean
2646 count_dyn_reloc (bfd *abfd, struct elfNN_ia64_dyn_sym_info *dyn_i,
2647 asection *srel, int type, bfd_boolean reltext)
2648 {
2649 struct elfNN_ia64_dyn_reloc_entry *rent;
2650
2651 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2652 if (rent->srel == srel && rent->type == type)
2653 break;
2654
2655 if (!rent)
2656 {
2657 rent = ((struct elfNN_ia64_dyn_reloc_entry *)
2658 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)));
2659 if (!rent)
2660 return FALSE;
2661
2662 rent->next = dyn_i->reloc_entries;
2663 rent->srel = srel;
2664 rent->type = type;
2665 rent->count = 0;
2666 dyn_i->reloc_entries = rent;
2667 }
2668 rent->reltext = reltext;
2669 rent->count++;
2670
2671 return TRUE;
2672 }
2673
2674 static bfd_boolean
2675 elfNN_ia64_check_relocs (abfd, info, sec, relocs)
2676 bfd *abfd;
2677 struct bfd_link_info *info;
2678 asection *sec;
2679 const Elf_Internal_Rela *relocs;
2680 {
2681 struct elfNN_ia64_link_hash_table *ia64_info;
2682 const Elf_Internal_Rela *relend;
2683 Elf_Internal_Shdr *symtab_hdr;
2684 const Elf_Internal_Rela *rel;
2685 asection *got, *fptr, *srel, *pltoff;
2686 enum {
2687 NEED_GOT = 1,
2688 NEED_GOTX = 2,
2689 NEED_FPTR = 4,
2690 NEED_PLTOFF = 8,
2691 NEED_MIN_PLT = 16,
2692 NEED_FULL_PLT = 32,
2693 NEED_DYNREL = 64,
2694 NEED_LTOFF_FPTR = 128,
2695 NEED_TPREL = 256,
2696 NEED_DTPMOD = 512,
2697 NEED_DTPREL = 1024
2698 };
2699 int need_entry;
2700 struct elf_link_hash_entry *h;
2701 unsigned long r_symndx;
2702 bfd_boolean maybe_dynamic;
2703
2704 if (info->relocatable)
2705 return TRUE;
2706
2707 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2708 ia64_info = elfNN_ia64_hash_table (info);
2709
2710 got = fptr = srel = pltoff = NULL;
2711
2712 relend = relocs + sec->reloc_count;
2713
2714 /* We scan relocations first to create dynamic relocation arrays. We
2715 modified get_dyn_sym_info to allow fast insertion and support fast
2716 lookup in the next loop. */
2717 for (rel = relocs; rel < relend; ++rel)
2718 {
2719 r_symndx = ELFNN_R_SYM (rel->r_info);
2720 if (r_symndx >= symtab_hdr->sh_info)
2721 {
2722 long indx = r_symndx - symtab_hdr->sh_info;
2723 h = elf_sym_hashes (abfd)[indx];
2724 while (h->root.type == bfd_link_hash_indirect
2725 || h->root.type == bfd_link_hash_warning)
2726 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2727 }
2728 else
2729 h = NULL;
2730
2731 /* We can only get preliminary data on whether a symbol is
2732 locally or externally defined, as not all of the input files
2733 have yet been processed. Do something with what we know, as
2734 this may help reduce memory usage and processing time later. */
2735 maybe_dynamic = (h && ((!info->executable
2736 && (!info->symbolic
2737 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2738 || !h->def_regular
2739 || h->root.type == bfd_link_hash_defweak));
2740
2741 need_entry = 0;
2742 switch (ELFNN_R_TYPE (rel->r_info))
2743 {
2744 case R_IA64_TPREL64MSB:
2745 case R_IA64_TPREL64LSB:
2746 if (info->shared || maybe_dynamic)
2747 need_entry = NEED_DYNREL;
2748 break;
2749
2750 case R_IA64_LTOFF_TPREL22:
2751 need_entry = NEED_TPREL;
2752 if (info->shared)
2753 info->flags |= DF_STATIC_TLS;
2754 break;
2755
2756 case R_IA64_DTPREL32MSB:
2757 case R_IA64_DTPREL32LSB:
2758 case R_IA64_DTPREL64MSB:
2759 case R_IA64_DTPREL64LSB:
2760 if (info->shared || maybe_dynamic)
2761 need_entry = NEED_DYNREL;
2762 break;
2763
2764 case R_IA64_LTOFF_DTPREL22:
2765 need_entry = NEED_DTPREL;
2766 break;
2767
2768 case R_IA64_DTPMOD64MSB:
2769 case R_IA64_DTPMOD64LSB:
2770 if (info->shared || maybe_dynamic)
2771 need_entry = NEED_DYNREL;
2772 break;
2773
2774 case R_IA64_LTOFF_DTPMOD22:
2775 need_entry = NEED_DTPMOD;
2776 break;
2777
2778 case R_IA64_LTOFF_FPTR22:
2779 case R_IA64_LTOFF_FPTR64I:
2780 case R_IA64_LTOFF_FPTR32MSB:
2781 case R_IA64_LTOFF_FPTR32LSB:
2782 case R_IA64_LTOFF_FPTR64MSB:
2783 case R_IA64_LTOFF_FPTR64LSB:
2784 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2785 break;
2786
2787 case R_IA64_FPTR64I:
2788 case R_IA64_FPTR32MSB:
2789 case R_IA64_FPTR32LSB:
2790 case R_IA64_FPTR64MSB:
2791 case R_IA64_FPTR64LSB:
2792 if (info->shared || h)
2793 need_entry = NEED_FPTR | NEED_DYNREL;
2794 else
2795 need_entry = NEED_FPTR;
2796 break;
2797
2798 case R_IA64_LTOFF22:
2799 case R_IA64_LTOFF64I:
2800 need_entry = NEED_GOT;
2801 break;
2802
2803 case R_IA64_LTOFF22X:
2804 need_entry = NEED_GOTX;
2805 break;
2806
2807 case R_IA64_PLTOFF22:
2808 case R_IA64_PLTOFF64I:
2809 case R_IA64_PLTOFF64MSB:
2810 case R_IA64_PLTOFF64LSB:
2811 need_entry = NEED_PLTOFF;
2812 if (h)
2813 {
2814 if (maybe_dynamic)
2815 need_entry |= NEED_MIN_PLT;
2816 }
2817 else
2818 {
2819 (*info->callbacks->warning)
2820 (info, _("@pltoff reloc against local symbol"), 0,
2821 abfd, 0, (bfd_vma) 0);
2822 }
2823 break;
2824
2825 case R_IA64_PCREL21B:
2826 case R_IA64_PCREL60B:
2827 /* Depending on where this symbol is defined, we may or may not
2828 need a full plt entry. Only skip if we know we'll not need
2829 the entry -- static or symbolic, and the symbol definition
2830 has already been seen. */
2831 if (maybe_dynamic && rel->r_addend == 0)
2832 need_entry = NEED_FULL_PLT;
2833 break;
2834
2835 case R_IA64_IMM14:
2836 case R_IA64_IMM22:
2837 case R_IA64_IMM64:
2838 case R_IA64_DIR32MSB:
2839 case R_IA64_DIR32LSB:
2840 case R_IA64_DIR64MSB:
2841 case R_IA64_DIR64LSB:
2842 /* Shared objects will always need at least a REL relocation. */
2843 if (info->shared || maybe_dynamic)
2844 need_entry = NEED_DYNREL;
2845 break;
2846
2847 case R_IA64_IPLTMSB:
2848 case R_IA64_IPLTLSB:
2849 /* Shared objects will always need at least a REL relocation. */
2850 if (info->shared || maybe_dynamic)
2851 need_entry = NEED_DYNREL;
2852 break;
2853
2854 case R_IA64_PCREL22:
2855 case R_IA64_PCREL64I:
2856 case R_IA64_PCREL32MSB:
2857 case R_IA64_PCREL32LSB:
2858 case R_IA64_PCREL64MSB:
2859 case R_IA64_PCREL64LSB:
2860 if (maybe_dynamic)
2861 need_entry = NEED_DYNREL;
2862 break;
2863 }
2864
2865 if (!need_entry)
2866 continue;
2867
2868 if ((need_entry & NEED_FPTR) != 0
2869 && rel->r_addend)
2870 {
2871 (*info->callbacks->warning)
2872 (info, _("non-zero addend in @fptr reloc"), 0,
2873 abfd, 0, (bfd_vma) 0);
2874 }
2875
2876 if (get_dyn_sym_info (ia64_info, h, abfd, rel, TRUE) == NULL)
2877 return FALSE;
2878 }
2879
2880 /* Now, we only do lookup without insertion, which is very fast
2881 with the modified get_dyn_sym_info. */
2882 for (rel = relocs; rel < relend; ++rel)
2883 {
2884 struct elfNN_ia64_dyn_sym_info *dyn_i;
2885 int dynrel_type = R_IA64_NONE;
2886
2887 r_symndx = ELFNN_R_SYM (rel->r_info);
2888 if (r_symndx >= symtab_hdr->sh_info)
2889 {
2890 /* We're dealing with a global symbol -- find its hash entry
2891 and mark it as being referenced. */
2892 long indx = r_symndx - symtab_hdr->sh_info;
2893 h = elf_sym_hashes (abfd)[indx];
2894 while (h->root.type == bfd_link_hash_indirect
2895 || h->root.type == bfd_link_hash_warning)
2896 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2897
2898 h->ref_regular = 1;
2899 }
2900 else
2901 h = NULL;
2902
2903 /* We can only get preliminary data on whether a symbol is
2904 locally or externally defined, as not all of the input files
2905 have yet been processed. Do something with what we know, as
2906 this may help reduce memory usage and processing time later. */
2907 maybe_dynamic = (h && ((!info->executable
2908 && (!info->symbolic
2909 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2910 || !h->def_regular
2911 || h->root.type == bfd_link_hash_defweak));
2912
2913 need_entry = 0;
2914 switch (ELFNN_R_TYPE (rel->r_info))
2915 {
2916 case R_IA64_TPREL64MSB:
2917 case R_IA64_TPREL64LSB:
2918 if (info->shared || maybe_dynamic)
2919 need_entry = NEED_DYNREL;
2920 dynrel_type = R_IA64_TPREL64LSB;
2921 if (info->shared)
2922 info->flags |= DF_STATIC_TLS;
2923 break;
2924
2925 case R_IA64_LTOFF_TPREL22:
2926 need_entry = NEED_TPREL;
2927 if (info->shared)
2928 info->flags |= DF_STATIC_TLS;
2929 break;
2930
2931 case R_IA64_DTPREL32MSB:
2932 case R_IA64_DTPREL32LSB:
2933 case R_IA64_DTPREL64MSB:
2934 case R_IA64_DTPREL64LSB:
2935 if (info->shared || maybe_dynamic)
2936 need_entry = NEED_DYNREL;
2937 dynrel_type = R_IA64_DTPRELNNLSB;
2938 break;
2939
2940 case R_IA64_LTOFF_DTPREL22:
2941 need_entry = NEED_DTPREL;
2942 break;
2943
2944 case R_IA64_DTPMOD64MSB:
2945 case R_IA64_DTPMOD64LSB:
2946 if (info->shared || maybe_dynamic)
2947 need_entry = NEED_DYNREL;
2948 dynrel_type = R_IA64_DTPMOD64LSB;
2949 break;
2950
2951 case R_IA64_LTOFF_DTPMOD22:
2952 need_entry = NEED_DTPMOD;
2953 break;
2954
2955 case R_IA64_LTOFF_FPTR22:
2956 case R_IA64_LTOFF_FPTR64I:
2957 case R_IA64_LTOFF_FPTR32MSB:
2958 case R_IA64_LTOFF_FPTR32LSB:
2959 case R_IA64_LTOFF_FPTR64MSB:
2960 case R_IA64_LTOFF_FPTR64LSB:
2961 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2962 break;
2963
2964 case R_IA64_FPTR64I:
2965 case R_IA64_FPTR32MSB:
2966 case R_IA64_FPTR32LSB:
2967 case R_IA64_FPTR64MSB:
2968 case R_IA64_FPTR64LSB:
2969 if (info->shared || h)
2970 need_entry = NEED_FPTR | NEED_DYNREL;
2971 else
2972 need_entry = NEED_FPTR;
2973 dynrel_type = R_IA64_FPTRNNLSB;
2974 break;
2975
2976 case R_IA64_LTOFF22:
2977 case R_IA64_LTOFF64I:
2978 need_entry = NEED_GOT;
2979 break;
2980
2981 case R_IA64_LTOFF22X:
2982 need_entry = NEED_GOTX;
2983 break;
2984
2985 case R_IA64_PLTOFF22:
2986 case R_IA64_PLTOFF64I:
2987 case R_IA64_PLTOFF64MSB:
2988 case R_IA64_PLTOFF64LSB:
2989 need_entry = NEED_PLTOFF;
2990 if (h)
2991 {
2992 if (maybe_dynamic)
2993 need_entry |= NEED_MIN_PLT;
2994 }
2995 break;
2996
2997 case R_IA64_PCREL21B:
2998 case R_IA64_PCREL60B:
2999 /* Depending on where this symbol is defined, we may or may not
3000 need a full plt entry. Only skip if we know we'll not need
3001 the entry -- static or symbolic, and the symbol definition
3002 has already been seen. */
3003 if (maybe_dynamic && rel->r_addend == 0)
3004 need_entry = NEED_FULL_PLT;
3005 break;
3006
3007 case R_IA64_IMM14:
3008 case R_IA64_IMM22:
3009 case R_IA64_IMM64:
3010 case R_IA64_DIR32MSB:
3011 case R_IA64_DIR32LSB:
3012 case R_IA64_DIR64MSB:
3013 case R_IA64_DIR64LSB:
3014 /* Shared objects will always need at least a REL relocation. */
3015 if (info->shared || maybe_dynamic)
3016 need_entry = NEED_DYNREL;
3017 dynrel_type = R_IA64_DIRNNLSB;
3018 break;
3019
3020 case R_IA64_IPLTMSB:
3021 case R_IA64_IPLTLSB:
3022 /* Shared objects will always need at least a REL relocation. */
3023 if (info->shared || maybe_dynamic)
3024 need_entry = NEED_DYNREL;
3025 dynrel_type = R_IA64_IPLTLSB;
3026 break;
3027
3028 case R_IA64_PCREL22:
3029 case R_IA64_PCREL64I:
3030 case R_IA64_PCREL32MSB:
3031 case R_IA64_PCREL32LSB:
3032 case R_IA64_PCREL64MSB:
3033 case R_IA64_PCREL64LSB:
3034 if (maybe_dynamic)
3035 need_entry = NEED_DYNREL;
3036 dynrel_type = R_IA64_PCRELNNLSB;
3037 break;
3038 }
3039
3040 if (!need_entry)
3041 continue;
3042
3043 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, rel, FALSE);
3044
3045 /* Record whether or not this is a local symbol. */
3046 dyn_i->h = h;
3047
3048 /* Create what's needed. */
3049 if (need_entry & (NEED_GOT | NEED_GOTX | NEED_TPREL
3050 | NEED_DTPMOD | NEED_DTPREL))
3051 {
3052 if (!got)
3053 {
3054 got = get_got (abfd, info, ia64_info);
3055 if (!got)
3056 return FALSE;
3057 }
3058 if (need_entry & NEED_GOT)
3059 dyn_i->want_got = 1;
3060 if (need_entry & NEED_GOTX)
3061 dyn_i->want_gotx = 1;
3062 if (need_entry & NEED_TPREL)
3063 dyn_i->want_tprel = 1;
3064 if (need_entry & NEED_DTPMOD)
3065 dyn_i->want_dtpmod = 1;
3066 if (need_entry & NEED_DTPREL)
3067 dyn_i->want_dtprel = 1;
3068 }
3069 if (need_entry & NEED_FPTR)
3070 {
3071 if (!fptr)
3072 {
3073 fptr = get_fptr (abfd, info, ia64_info);
3074 if (!fptr)
3075 return FALSE;
3076 }
3077
3078 /* FPTRs for shared libraries are allocated by the dynamic
3079 linker. Make sure this local symbol will appear in the
3080 dynamic symbol table. */
3081 if (!h && info->shared)
3082 {
3083 if (! (bfd_elf_link_record_local_dynamic_symbol
3084 (info, abfd, (long) r_symndx)))
3085 return FALSE;
3086 }
3087
3088 dyn_i->want_fptr = 1;
3089 }
3090 if (need_entry & NEED_LTOFF_FPTR)
3091 dyn_i->want_ltoff_fptr = 1;
3092 if (need_entry & (NEED_MIN_PLT | NEED_FULL_PLT))
3093 {
3094 if (!ia64_info->root.dynobj)
3095 ia64_info->root.dynobj = abfd;
3096 h->needs_plt = 1;
3097 dyn_i->want_plt = 1;
3098 }
3099 if (need_entry & NEED_FULL_PLT)
3100 dyn_i->want_plt2 = 1;
3101 if (need_entry & NEED_PLTOFF)
3102 {
3103 /* This is needed here, in case @pltoff is used in a non-shared
3104 link. */
3105 if (!pltoff)
3106 {
3107 pltoff = get_pltoff (abfd, info, ia64_info);
3108 if (!pltoff)
3109 return FALSE;
3110 }
3111
3112 dyn_i->want_pltoff = 1;
3113 }
3114 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
3115 {
3116 if (!srel)
3117 {
3118 srel = get_reloc_section (abfd, ia64_info, sec, TRUE);
3119 if (!srel)
3120 return FALSE;
3121 }
3122 if (!count_dyn_reloc (abfd, dyn_i, srel, dynrel_type,
3123 (sec->flags & SEC_READONLY) != 0))
3124 return FALSE;
3125 }
3126 }
3127
3128 return TRUE;
3129 }
3130
3131 /* For cleanliness, and potentially faster dynamic loading, allocate
3132 external GOT entries first. */
3133
3134 static bfd_boolean
3135 allocate_global_data_got (dyn_i, data)
3136 struct elfNN_ia64_dyn_sym_info *dyn_i;
3137 PTR data;
3138 {
3139 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3140
3141 if ((dyn_i->want_got || dyn_i->want_gotx)
3142 && ! dyn_i->want_fptr
3143 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3144 {
3145 dyn_i->got_offset = x->ofs;
3146 x->ofs += 8;
3147 }
3148 if (dyn_i->want_tprel)
3149 {
3150 dyn_i->tprel_offset = x->ofs;
3151 x->ofs += 8;
3152 }
3153 if (dyn_i->want_dtpmod)
3154 {
3155 if (elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3156 {
3157 dyn_i->dtpmod_offset = x->ofs;
3158 x->ofs += 8;
3159 }
3160 else
3161 {
3162 struct elfNN_ia64_link_hash_table *ia64_info;
3163
3164 ia64_info = elfNN_ia64_hash_table (x->info);
3165 if (ia64_info->self_dtpmod_offset == (bfd_vma) -1)
3166 {
3167 ia64_info->self_dtpmod_offset = x->ofs;
3168 x->ofs += 8;
3169 }
3170 dyn_i->dtpmod_offset = ia64_info->self_dtpmod_offset;
3171 }
3172 }
3173 if (dyn_i->want_dtprel)
3174 {
3175 dyn_i->dtprel_offset = x->ofs;
3176 x->ofs += 8;
3177 }
3178 return TRUE;
3179 }
3180
3181 /* Next, allocate all the GOT entries used by LTOFF_FPTR relocs. */
3182
3183 static bfd_boolean
3184 allocate_global_fptr_got (dyn_i, data)
3185 struct elfNN_ia64_dyn_sym_info *dyn_i;
3186 PTR data;
3187 {
3188 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3189
3190 if (dyn_i->want_got
3191 && dyn_i->want_fptr
3192 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, R_IA64_FPTRNNLSB))
3193 {
3194 dyn_i->got_offset = x->ofs;
3195 x->ofs += 8;
3196 }
3197 return TRUE;
3198 }
3199
3200 /* Lastly, allocate all the GOT entries for local data. */
3201
3202 static bfd_boolean
3203 allocate_local_got (dyn_i, data)
3204 struct elfNN_ia64_dyn_sym_info *dyn_i;
3205 PTR data;
3206 {
3207 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3208
3209 if ((dyn_i->want_got || dyn_i->want_gotx)
3210 && !elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3211 {
3212 dyn_i->got_offset = x->ofs;
3213 x->ofs += 8;
3214 }
3215 return TRUE;
3216 }
3217
3218 /* Search for the index of a global symbol in it's defining object file. */
3219
3220 static long
3221 global_sym_index (h)
3222 struct elf_link_hash_entry *h;
3223 {
3224 struct elf_link_hash_entry **p;
3225 bfd *obj;
3226
3227 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3228 || h->root.type == bfd_link_hash_defweak);
3229
3230 obj = h->root.u.def.section->owner;
3231 for (p = elf_sym_hashes (obj); *p != h; ++p)
3232 continue;
3233
3234 return p - elf_sym_hashes (obj) + elf_tdata (obj)->symtab_hdr.sh_info;
3235 }
3236
3237 /* Allocate function descriptors. We can do these for every function
3238 in a main executable that is not exported. */
3239
3240 static bfd_boolean
3241 allocate_fptr (dyn_i, data)
3242 struct elfNN_ia64_dyn_sym_info *dyn_i;
3243 PTR data;
3244 {
3245 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3246
3247 if (dyn_i->want_fptr)
3248 {
3249 struct elf_link_hash_entry *h = dyn_i->h;
3250
3251 if (h)
3252 while (h->root.type == bfd_link_hash_indirect
3253 || h->root.type == bfd_link_hash_warning)
3254 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3255
3256 if (!x->info->executable
3257 && (!h
3258 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3259 || (h->root.type != bfd_link_hash_undefweak
3260 && h->root.type != bfd_link_hash_undefined)))
3261 {
3262 if (h && h->dynindx == -1)
3263 {
3264 BFD_ASSERT ((h->root.type == bfd_link_hash_defined)
3265 || (h->root.type == bfd_link_hash_defweak));
3266
3267 if (!bfd_elf_link_record_local_dynamic_symbol
3268 (x->info, h->root.u.def.section->owner,
3269 global_sym_index (h)))
3270 return FALSE;
3271 }
3272
3273 dyn_i->want_fptr = 0;
3274 }
3275 else if (h == NULL || h->dynindx == -1)
3276 {
3277 dyn_i->fptr_offset = x->ofs;
3278 x->ofs += 16;
3279 }
3280 else
3281 dyn_i->want_fptr = 0;
3282 }
3283 return TRUE;
3284 }
3285
3286 /* Allocate all the minimal PLT entries. */
3287
3288 static bfd_boolean
3289 allocate_plt_entries (dyn_i, data)
3290 struct elfNN_ia64_dyn_sym_info *dyn_i;
3291 PTR data;
3292 {
3293 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3294
3295 if (dyn_i->want_plt)
3296 {
3297 struct elf_link_hash_entry *h = dyn_i->h;
3298
3299 if (h)
3300 while (h->root.type == bfd_link_hash_indirect
3301 || h->root.type == bfd_link_hash_warning)
3302 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3303
3304 /* ??? Versioned symbols seem to lose NEEDS_PLT. */
3305 if (elfNN_ia64_dynamic_symbol_p (h, x->info, 0))
3306 {
3307 bfd_size_type offset = x->ofs;
3308 if (offset == 0)
3309 offset = PLT_HEADER_SIZE;
3310 dyn_i->plt_offset = offset;
3311 x->ofs = offset + PLT_MIN_ENTRY_SIZE;
3312
3313 dyn_i->want_pltoff = 1;
3314 }
3315 else
3316 {
3317 dyn_i->want_plt = 0;
3318 dyn_i->want_plt2 = 0;
3319 }
3320 }
3321 return TRUE;
3322 }
3323
3324 /* Allocate all the full PLT entries. */
3325
3326 static bfd_boolean
3327 allocate_plt2_entries (dyn_i, data)
3328 struct elfNN_ia64_dyn_sym_info *dyn_i;
3329 PTR data;
3330 {
3331 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3332
3333 if (dyn_i->want_plt2)
3334 {
3335 struct elf_link_hash_entry *h = dyn_i->h;
3336 bfd_size_type ofs = x->ofs;
3337
3338 dyn_i->plt2_offset = ofs;
3339 x->ofs = ofs + PLT_FULL_ENTRY_SIZE;
3340
3341 while (h->root.type == bfd_link_hash_indirect
3342 || h->root.type == bfd_link_hash_warning)
3343 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3344 dyn_i->h->plt.offset = ofs;
3345 }
3346 return TRUE;
3347 }
3348
3349 /* Allocate all the PLTOFF entries requested by relocations and
3350 plt entries. We can't share space with allocated FPTR entries,
3351 because the latter are not necessarily addressable by the GP.
3352 ??? Relaxation might be able to determine that they are. */
3353
3354 static bfd_boolean
3355 allocate_pltoff_entries (dyn_i, data)
3356 struct elfNN_ia64_dyn_sym_info *dyn_i;
3357 PTR data;
3358 {
3359 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3360
3361 if (dyn_i->want_pltoff)
3362 {
3363 dyn_i->pltoff_offset = x->ofs;
3364 x->ofs += 16;
3365 }
3366 return TRUE;
3367 }
3368
3369 /* Allocate dynamic relocations for those symbols that turned out
3370 to be dynamic. */
3371
3372 static bfd_boolean
3373 allocate_dynrel_entries (dyn_i, data)
3374 struct elfNN_ia64_dyn_sym_info *dyn_i;
3375 PTR data;
3376 {
3377 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3378 struct elfNN_ia64_link_hash_table *ia64_info;
3379 struct elfNN_ia64_dyn_reloc_entry *rent;
3380 bfd_boolean dynamic_symbol, shared, resolved_zero;
3381
3382 ia64_info = elfNN_ia64_hash_table (x->info);
3383
3384 /* Note that this can't be used in relation to FPTR relocs below. */
3385 dynamic_symbol = elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0);
3386
3387 shared = x->info->shared;
3388 resolved_zero = (dyn_i->h
3389 && ELF_ST_VISIBILITY (dyn_i->h->other)
3390 && dyn_i->h->root.type == bfd_link_hash_undefweak);
3391
3392 /* Take care of the GOT and PLT relocations. */
3393
3394 if ((!resolved_zero
3395 && (dynamic_symbol || shared)
3396 && (dyn_i->want_got || dyn_i->want_gotx))
3397 || (dyn_i->want_ltoff_fptr
3398 && dyn_i->h
3399 && dyn_i->h->dynindx != -1))
3400 {
3401 if (!dyn_i->want_ltoff_fptr
3402 || !x->info->pie
3403 || dyn_i->h == NULL
3404 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3405 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3406 }
3407 if ((dynamic_symbol || shared) && dyn_i->want_tprel)
3408 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3409 if (dynamic_symbol && dyn_i->want_dtpmod)
3410 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3411 if (dynamic_symbol && dyn_i->want_dtprel)
3412 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3413
3414 if (x->only_got)
3415 return TRUE;
3416
3417 if (ia64_info->rel_fptr_sec && dyn_i->want_fptr)
3418 {
3419 if (dyn_i->h == NULL || dyn_i->h->root.type != bfd_link_hash_undefweak)
3420 ia64_info->rel_fptr_sec->size += sizeof (ElfNN_External_Rela);
3421 }
3422
3423 if (!resolved_zero && dyn_i->want_pltoff)
3424 {
3425 bfd_size_type t = 0;
3426
3427 /* Dynamic symbols get one IPLT relocation. Local symbols in
3428 shared libraries get two REL relocations. Local symbols in
3429 main applications get nothing. */
3430 if (dynamic_symbol)
3431 t = sizeof (ElfNN_External_Rela);
3432 else if (shared)
3433 t = 2 * sizeof (ElfNN_External_Rela);
3434
3435 ia64_info->rel_pltoff_sec->size += t;
3436 }
3437
3438 /* Take care of the normal data relocations. */
3439
3440 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
3441 {
3442 int count = rent->count;
3443
3444 switch (rent->type)
3445 {
3446 case R_IA64_FPTR32LSB:
3447 case R_IA64_FPTR64LSB:
3448 /* Allocate one iff !want_fptr and not PIE, which by this point
3449 will be true only if we're actually allocating one statically
3450 in the main executable. Position independent executables
3451 need a relative reloc. */
3452 if (dyn_i->want_fptr && !x->info->pie)
3453 continue;
3454 break;
3455 case R_IA64_PCREL32LSB:
3456 case R_IA64_PCREL64LSB:
3457 if (!dynamic_symbol)
3458 continue;
3459 break;
3460 case R_IA64_DIR32LSB:
3461 case R_IA64_DIR64LSB:
3462 if (!dynamic_symbol && !shared)
3463 continue;
3464 break;
3465 case R_IA64_IPLTLSB:
3466 if (!dynamic_symbol && !shared)
3467 continue;
3468 /* Use two REL relocations for IPLT relocations
3469 against local symbols. */
3470 if (!dynamic_symbol)
3471 count *= 2;
3472 break;
3473 case R_IA64_DTPREL32LSB:
3474 case R_IA64_TPREL64LSB:
3475 case R_IA64_DTPREL64LSB:
3476 case R_IA64_DTPMOD64LSB:
3477 break;
3478 default:
3479 abort ();
3480 }
3481 if (rent->reltext)
3482 ia64_info->reltext = 1;
3483 rent->srel->size += sizeof (ElfNN_External_Rela) * count;
3484 }
3485
3486 return TRUE;
3487 }
3488
3489 static bfd_boolean
3490 elfNN_ia64_adjust_dynamic_symbol (info, h)
3491 struct bfd_link_info *info ATTRIBUTE_UNUSED;
3492 struct elf_link_hash_entry *h;
3493 {
3494 /* ??? Undefined symbols with PLT entries should be re-defined
3495 to be the PLT entry. */
3496
3497 /* If this is a weak symbol, and there is a real definition, the
3498 processor independent code will have arranged for us to see the
3499 real definition first, and we can just use the same value. */
3500 if (h->u.weakdef != NULL)
3501 {
3502 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3503 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3504 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3505 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3506 return TRUE;
3507 }
3508
3509 /* If this is a reference to a symbol defined by a dynamic object which
3510 is not a function, we might allocate the symbol in our .dynbss section
3511 and allocate a COPY dynamic relocation.
3512
3513 But IA-64 code is canonically PIC, so as a rule we can avoid this sort
3514 of hackery. */
3515
3516 return TRUE;
3517 }
3518
3519 static bfd_boolean
3520 elfNN_ia64_size_dynamic_sections (output_bfd, info)
3521 bfd *output_bfd ATTRIBUTE_UNUSED;
3522 struct bfd_link_info *info;
3523 {
3524 struct elfNN_ia64_allocate_data data;
3525 struct elfNN_ia64_link_hash_table *ia64_info;
3526 asection *sec;
3527 bfd *dynobj;
3528 bfd_boolean relplt = FALSE;
3529
3530 dynobj = elf_hash_table(info)->dynobj;
3531 ia64_info = elfNN_ia64_hash_table (info);
3532 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
3533 BFD_ASSERT(dynobj != NULL);
3534 data.info = info;
3535
3536 /* Set the contents of the .interp section to the interpreter. */
3537 if (ia64_info->root.dynamic_sections_created
3538 && info->executable)
3539 {
3540 sec = bfd_get_section_by_name (dynobj, ".interp");
3541 BFD_ASSERT (sec != NULL);
3542 sec->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
3543 sec->size = strlen (ELF_DYNAMIC_INTERPRETER) + 1;
3544 }
3545
3546 /* Allocate the GOT entries. */
3547
3548 if (ia64_info->got_sec)
3549 {
3550 data.ofs = 0;
3551 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
3552 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
3553 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
3554 ia64_info->got_sec->size = data.ofs;
3555 }
3556
3557 /* Allocate the FPTR entries. */
3558
3559 if (ia64_info->fptr_sec)
3560 {
3561 data.ofs = 0;
3562 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_fptr, &data);
3563 ia64_info->fptr_sec->size = data.ofs;
3564 }
3565
3566 /* Now that we've seen all of the input files, we can decide which
3567 symbols need plt entries. Allocate the minimal PLT entries first.
3568 We do this even though dynamic_sections_created may be FALSE, because
3569 this has the side-effect of clearing want_plt and want_plt2. */
3570
3571 data.ofs = 0;
3572 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt_entries, &data);
3573
3574 ia64_info->minplt_entries = 0;
3575 if (data.ofs)
3576 {
3577 ia64_info->minplt_entries
3578 = (data.ofs - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
3579 }
3580
3581 /* Align the pointer for the plt2 entries. */
3582 data.ofs = (data.ofs + 31) & (bfd_vma) -32;
3583
3584 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt2_entries, &data);
3585 if (data.ofs != 0 || ia64_info->root.dynamic_sections_created)
3586 {
3587 /* FIXME: we always reserve the memory for dynamic linker even if
3588 there are no PLT entries since dynamic linker may assume the
3589 reserved memory always exists. */
3590
3591 BFD_ASSERT (ia64_info->root.dynamic_sections_created);
3592
3593 ia64_info->plt_sec->size = data.ofs;
3594
3595 /* If we've got a .plt, we need some extra memory for the dynamic
3596 linker. We stuff these in .got.plt. */
3597 sec = bfd_get_section_by_name (dynobj, ".got.plt");
3598 sec->size = 8 * PLT_RESERVED_WORDS;
3599 }
3600
3601 /* Allocate the PLTOFF entries. */
3602
3603 if (ia64_info->pltoff_sec)
3604 {
3605 data.ofs = 0;
3606 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_pltoff_entries, &data);
3607 ia64_info->pltoff_sec->size = data.ofs;
3608 }
3609
3610 if (ia64_info->root.dynamic_sections_created)
3611 {
3612 /* Allocate space for the dynamic relocations that turned out to be
3613 required. */
3614
3615 if (info->shared && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
3616 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3617 data.only_got = FALSE;
3618 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, &data);
3619 }
3620
3621 /* We have now determined the sizes of the various dynamic sections.
3622 Allocate memory for them. */
3623 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
3624 {
3625 bfd_boolean strip;
3626
3627 if (!(sec->flags & SEC_LINKER_CREATED))
3628 continue;
3629
3630 /* If we don't need this section, strip it from the output file.
3631 There were several sections primarily related to dynamic
3632 linking that must be create before the linker maps input
3633 sections to output sections. The linker does that before
3634 bfd_elf_size_dynamic_sections is called, and it is that
3635 function which decides whether anything needs to go into
3636 these sections. */
3637
3638 strip = (sec->size == 0);
3639
3640 if (sec == ia64_info->got_sec)
3641 strip = FALSE;
3642 else if (sec == ia64_info->rel_got_sec)
3643 {
3644 if (strip)
3645 ia64_info->rel_got_sec = NULL;
3646 else
3647 /* We use the reloc_count field as a counter if we need to
3648 copy relocs into the output file. */
3649 sec->reloc_count = 0;
3650 }
3651 else if (sec == ia64_info->fptr_sec)
3652 {
3653 if (strip)
3654 ia64_info->fptr_sec = NULL;
3655 }
3656 else if (sec == ia64_info->rel_fptr_sec)
3657 {
3658 if (strip)
3659 ia64_info->rel_fptr_sec = NULL;
3660 else
3661 /* We use the reloc_count field as a counter if we need to
3662 copy relocs into the output file. */
3663 sec->reloc_count = 0;
3664 }
3665 else if (sec == ia64_info->plt_sec)
3666 {
3667 if (strip)
3668 ia64_info->plt_sec = NULL;
3669 }
3670 else if (sec == ia64_info->pltoff_sec)
3671 {
3672 if (strip)
3673 ia64_info->pltoff_sec = NULL;
3674 }
3675 else if (sec == ia64_info->rel_pltoff_sec)
3676 {
3677 if (strip)
3678 ia64_info->rel_pltoff_sec = NULL;
3679 else
3680 {
3681 relplt = TRUE;
3682 /* We use the reloc_count field as a counter if we need to
3683 copy relocs into the output file. */
3684 sec->reloc_count = 0;
3685 }
3686 }
3687 else
3688 {
3689 const char *name;
3690
3691 /* It's OK to base decisions on the section name, because none
3692 of the dynobj section names depend upon the input files. */
3693 name = bfd_get_section_name (dynobj, sec);
3694
3695 if (strcmp (name, ".got.plt") == 0)
3696 strip = FALSE;
3697 else if (strncmp (name, ".rel", 4) == 0)
3698 {
3699 if (!strip)
3700 {
3701 /* We use the reloc_count field as a counter if we need to
3702 copy relocs into the output file. */
3703 sec->reloc_count = 0;
3704 }
3705 }
3706 else
3707 continue;
3708 }
3709
3710 if (strip)
3711 sec->flags |= SEC_EXCLUDE;
3712 else
3713 {
3714 /* Allocate memory for the section contents. */
3715 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
3716 if (sec->contents == NULL && sec->size != 0)
3717 return FALSE;
3718 }
3719 }
3720
3721 if (elf_hash_table (info)->dynamic_sections_created)
3722 {
3723 /* Add some entries to the .dynamic section. We fill in the values
3724 later (in finish_dynamic_sections) but we must add the entries now
3725 so that we get the correct size for the .dynamic section. */
3726
3727 if (info->executable)
3728 {
3729 /* The DT_DEBUG entry is filled in by the dynamic linker and used
3730 by the debugger. */
3731 #define add_dynamic_entry(TAG, VAL) \
3732 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3733
3734 if (!add_dynamic_entry (DT_DEBUG, 0))
3735 return FALSE;
3736 }
3737
3738 if (!add_dynamic_entry (DT_IA_64_PLT_RESERVE, 0))
3739 return FALSE;
3740 if (!add_dynamic_entry (DT_PLTGOT, 0))
3741 return FALSE;
3742
3743 if (relplt)
3744 {
3745 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3746 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3747 || !add_dynamic_entry (DT_JMPREL, 0))
3748 return FALSE;
3749 }
3750
3751 if (!add_dynamic_entry (DT_RELA, 0)
3752 || !add_dynamic_entry (DT_RELASZ, 0)
3753 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
3754 return FALSE;
3755
3756 if (ia64_info->reltext)
3757 {
3758 if (!add_dynamic_entry (DT_TEXTREL, 0))
3759 return FALSE;
3760 info->flags |= DF_TEXTREL;
3761 }
3762 }
3763
3764 /* ??? Perhaps force __gp local. */
3765
3766 return TRUE;
3767 }
3768
3769 static bfd_reloc_status_type
3770 elfNN_ia64_install_value (hit_addr, v, r_type)
3771 bfd_byte *hit_addr;
3772 bfd_vma v;
3773 unsigned int r_type;
3774 {
3775 const struct ia64_operand *op;
3776 int bigendian = 0, shift = 0;
3777 bfd_vma t0, t1, dword;
3778 ia64_insn insn;
3779 enum ia64_opnd opnd;
3780 const char *err;
3781 size_t size = 8;
3782 #ifdef BFD_HOST_U_64_BIT
3783 BFD_HOST_U_64_BIT val = (BFD_HOST_U_64_BIT) v;
3784 #else
3785 bfd_vma val = v;
3786 #endif
3787
3788 opnd = IA64_OPND_NIL;
3789 switch (r_type)
3790 {
3791 case R_IA64_NONE:
3792 case R_IA64_LDXMOV:
3793 return bfd_reloc_ok;
3794
3795 /* Instruction relocations. */
3796
3797 case R_IA64_IMM14:
3798 case R_IA64_TPREL14:
3799 case R_IA64_DTPREL14:
3800 opnd = IA64_OPND_IMM14;
3801 break;
3802
3803 case R_IA64_PCREL21F: opnd = IA64_OPND_TGT25; break;
3804 case R_IA64_PCREL21M: opnd = IA64_OPND_TGT25b; break;
3805 case R_IA64_PCREL60B: opnd = IA64_OPND_TGT64; break;
3806 case R_IA64_PCREL21B:
3807 case R_IA64_PCREL21BI:
3808 opnd = IA64_OPND_TGT25c;
3809 break;
3810
3811 case R_IA64_IMM22:
3812 case R_IA64_GPREL22:
3813 case R_IA64_LTOFF22:
3814 case R_IA64_LTOFF22X:
3815 case R_IA64_PLTOFF22:
3816 case R_IA64_PCREL22:
3817 case R_IA64_LTOFF_FPTR22:
3818 case R_IA64_TPREL22:
3819 case R_IA64_DTPREL22:
3820 case R_IA64_LTOFF_TPREL22:
3821 case R_IA64_LTOFF_DTPMOD22:
3822 case R_IA64_LTOFF_DTPREL22:
3823 opnd = IA64_OPND_IMM22;
3824 break;
3825
3826 case R_IA64_IMM64:
3827 case R_IA64_GPREL64I:
3828 case R_IA64_LTOFF64I:
3829 case R_IA64_PLTOFF64I:
3830 case R_IA64_PCREL64I:
3831 case R_IA64_FPTR64I:
3832 case R_IA64_LTOFF_FPTR64I:
3833 case R_IA64_TPREL64I:
3834 case R_IA64_DTPREL64I:
3835 opnd = IA64_OPND_IMMU64;
3836 break;
3837
3838 /* Data relocations. */
3839
3840 case R_IA64_DIR32MSB:
3841 case R_IA64_GPREL32MSB:
3842 case R_IA64_FPTR32MSB:
3843 case R_IA64_PCREL32MSB:
3844 case R_IA64_LTOFF_FPTR32MSB:
3845 case R_IA64_SEGREL32MSB:
3846 case R_IA64_SECREL32MSB:
3847 case R_IA64_LTV32MSB:
3848 case R_IA64_DTPREL32MSB:
3849 size = 4; bigendian = 1;
3850 break;
3851
3852 case R_IA64_DIR32LSB:
3853 case R_IA64_GPREL32LSB:
3854 case R_IA64_FPTR32LSB:
3855 case R_IA64_PCREL32LSB:
3856 case R_IA64_LTOFF_FPTR32LSB:
3857 case R_IA64_SEGREL32LSB:
3858 case R_IA64_SECREL32LSB:
3859 case R_IA64_LTV32LSB:
3860 case R_IA64_DTPREL32LSB:
3861 size = 4; bigendian = 0;
3862 break;
3863
3864 case R_IA64_DIR64MSB:
3865 case R_IA64_GPREL64MSB:
3866 case R_IA64_PLTOFF64MSB:
3867 case R_IA64_FPTR64MSB:
3868 case R_IA64_PCREL64MSB:
3869 case R_IA64_LTOFF_FPTR64MSB:
3870 case R_IA64_SEGREL64MSB:
3871 case R_IA64_SECREL64MSB:
3872 case R_IA64_LTV64MSB:
3873 case R_IA64_TPREL64MSB:
3874 case R_IA64_DTPMOD64MSB:
3875 case R_IA64_DTPREL64MSB:
3876 size = 8; bigendian = 1;
3877 break;
3878
3879 case R_IA64_DIR64LSB:
3880 case R_IA64_GPREL64LSB:
3881 case R_IA64_PLTOFF64LSB:
3882 case R_IA64_FPTR64LSB:
3883 case R_IA64_PCREL64LSB:
3884 case R_IA64_LTOFF_FPTR64LSB:
3885 case R_IA64_SEGREL64LSB:
3886 case R_IA64_SECREL64LSB:
3887 case R_IA64_LTV64LSB:
3888 case R_IA64_TPREL64LSB:
3889 case R_IA64_DTPMOD64LSB:
3890 case R_IA64_DTPREL64LSB:
3891 size = 8; bigendian = 0;
3892 break;
3893
3894 /* Unsupported / Dynamic relocations. */
3895 default:
3896 return bfd_reloc_notsupported;
3897 }
3898
3899 switch (opnd)
3900 {
3901 case IA64_OPND_IMMU64:
3902 hit_addr -= (long) hit_addr & 0x3;
3903 t0 = bfd_getl64 (hit_addr);
3904 t1 = bfd_getl64 (hit_addr + 8);
3905
3906 /* tmpl/s: bits 0.. 5 in t0
3907 slot 0: bits 5..45 in t0
3908 slot 1: bits 46..63 in t0, bits 0..22 in t1
3909 slot 2: bits 23..63 in t1 */
3910
3911 /* First, clear the bits that form the 64 bit constant. */
3912 t0 &= ~(0x3ffffLL << 46);
3913 t1 &= ~(0x7fffffLL
3914 | (( (0x07fLL << 13) | (0x1ffLL << 27)
3915 | (0x01fLL << 22) | (0x001LL << 21)
3916 | (0x001LL << 36)) << 23));
3917
3918 t0 |= ((val >> 22) & 0x03ffffLL) << 46; /* 18 lsbs of imm41 */
3919 t1 |= ((val >> 40) & 0x7fffffLL) << 0; /* 23 msbs of imm41 */
3920 t1 |= ( (((val >> 0) & 0x07f) << 13) /* imm7b */
3921 | (((val >> 7) & 0x1ff) << 27) /* imm9d */
3922 | (((val >> 16) & 0x01f) << 22) /* imm5c */
3923 | (((val >> 21) & 0x001) << 21) /* ic */
3924 | (((val >> 63) & 0x001) << 36)) << 23; /* i */
3925
3926 bfd_putl64 (t0, hit_addr);
3927 bfd_putl64 (t1, hit_addr + 8);
3928 break;
3929
3930 case IA64_OPND_TGT64:
3931 hit_addr -= (long) hit_addr & 0x3;
3932 t0 = bfd_getl64 (hit_addr);
3933 t1 = bfd_getl64 (hit_addr + 8);
3934
3935 /* tmpl/s: bits 0.. 5 in t0
3936 slot 0: bits 5..45 in t0
3937 slot 1: bits 46..63 in t0, bits 0..22 in t1
3938 slot 2: bits 23..63 in t1 */
3939
3940 /* First, clear the bits that form the 64 bit constant. */
3941 t0 &= ~(0x3ffffLL << 46);
3942 t1 &= ~(0x7fffffLL
3943 | ((1LL << 36 | 0xfffffLL << 13) << 23));
3944
3945 val >>= 4;
3946 t0 |= ((val >> 20) & 0xffffLL) << 2 << 46; /* 16 lsbs of imm39 */
3947 t1 |= ((val >> 36) & 0x7fffffLL) << 0; /* 23 msbs of imm39 */
3948 t1 |= ((((val >> 0) & 0xfffffLL) << 13) /* imm20b */
3949 | (((val >> 59) & 0x1LL) << 36)) << 23; /* i */
3950
3951 bfd_putl64 (t0, hit_addr);
3952 bfd_putl64 (t1, hit_addr + 8);
3953 break;
3954
3955 default:
3956 switch ((long) hit_addr & 0x3)
3957 {
3958 case 0: shift = 5; break;
3959 case 1: shift = 14; hit_addr += 3; break;
3960 case 2: shift = 23; hit_addr += 6; break;
3961 case 3: return bfd_reloc_notsupported; /* shouldn't happen... */
3962 }
3963 dword = bfd_getl64 (hit_addr);
3964 insn = (dword >> shift) & 0x1ffffffffffLL;
3965
3966 op = elf64_ia64_operands + opnd;
3967 err = (*op->insert) (op, val, &insn);
3968 if (err)
3969 return bfd_reloc_overflow;
3970
3971 dword &= ~(0x1ffffffffffLL << shift);
3972 dword |= (insn << shift);
3973 bfd_putl64 (dword, hit_addr);
3974 break;
3975
3976 case IA64_OPND_NIL:
3977 /* A data relocation. */
3978 if (bigendian)
3979 if (size == 4)
3980 bfd_putb32 (val, hit_addr);
3981 else
3982 bfd_putb64 (val, hit_addr);
3983 else
3984 if (size == 4)
3985 bfd_putl32 (val, hit_addr);
3986 else
3987 bfd_putl64 (val, hit_addr);
3988 break;
3989 }
3990
3991 return bfd_reloc_ok;
3992 }
3993
3994 static void
3995 elfNN_ia64_install_dyn_reloc (abfd, info, sec, srel, offset, type,
3996 dynindx, addend)
3997 bfd *abfd;
3998 struct bfd_link_info *info;
3999 asection *sec;
4000 asection *srel;
4001 bfd_vma offset;
4002 unsigned int type;
4003 long dynindx;
4004 bfd_vma addend;
4005 {
4006 Elf_Internal_Rela outrel;
4007 bfd_byte *loc;
4008
4009 BFD_ASSERT (dynindx != -1);
4010 outrel.r_info = ELFNN_R_INFO (dynindx, type);
4011 outrel.r_addend = addend;
4012 outrel.r_offset = _bfd_elf_section_offset (abfd, info, sec, offset);
4013 if (outrel.r_offset >= (bfd_vma) -2)
4014 {
4015 /* Run for the hills. We shouldn't be outputting a relocation
4016 for this. So do what everyone else does and output a no-op. */
4017 outrel.r_info = ELFNN_R_INFO (0, R_IA64_NONE);
4018 outrel.r_addend = 0;
4019 outrel.r_offset = 0;
4020 }
4021 else
4022 outrel.r_offset += sec->output_section->vma + sec->output_offset;
4023
4024 loc = srel->contents;
4025 loc += srel->reloc_count++ * sizeof (ElfNN_External_Rela);
4026 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
4027 BFD_ASSERT (sizeof (ElfNN_External_Rela) * srel->reloc_count <= srel->size);
4028 }
4029
4030 /* Store an entry for target address TARGET_ADDR in the linkage table
4031 and return the gp-relative address of the linkage table entry. */
4032
4033 static bfd_vma
4034 set_got_entry (abfd, info, dyn_i, dynindx, addend, value, dyn_r_type)
4035 bfd *abfd;
4036 struct bfd_link_info *info;
4037 struct elfNN_ia64_dyn_sym_info *dyn_i;
4038 long dynindx;
4039 bfd_vma addend;
4040 bfd_vma value;
4041 unsigned int dyn_r_type;
4042 {
4043 struct elfNN_ia64_link_hash_table *ia64_info;
4044 asection *got_sec;
4045 bfd_boolean done;
4046 bfd_vma got_offset;
4047
4048 ia64_info = elfNN_ia64_hash_table (info);
4049 got_sec = ia64_info->got_sec;
4050
4051 switch (dyn_r_type)
4052 {
4053 case R_IA64_TPREL64LSB:
4054 done = dyn_i->tprel_done;
4055 dyn_i->tprel_done = TRUE;
4056 got_offset = dyn_i->tprel_offset;
4057 break;
4058 case R_IA64_DTPMOD64LSB:
4059 if (dyn_i->dtpmod_offset != ia64_info->self_dtpmod_offset)
4060 {
4061 done = dyn_i->dtpmod_done;
4062 dyn_i->dtpmod_done = TRUE;
4063 }
4064 else
4065 {
4066 done = ia64_info->self_dtpmod_done;
4067 ia64_info->self_dtpmod_done = TRUE;
4068 dynindx = 0;
4069 }
4070 got_offset = dyn_i->dtpmod_offset;
4071 break;
4072 case R_IA64_DTPREL32LSB:
4073 case R_IA64_DTPREL64LSB:
4074 done = dyn_i->dtprel_done;
4075 dyn_i->dtprel_done = TRUE;
4076 got_offset = dyn_i->dtprel_offset;
4077 break;
4078 default:
4079 done = dyn_i->got_done;
4080 dyn_i->got_done = TRUE;
4081 got_offset = dyn_i->got_offset;
4082 break;
4083 }
4084
4085 BFD_ASSERT ((got_offset & 7) == 0);
4086
4087 if (! done)
4088 {
4089 /* Store the target address in the linkage table entry. */
4090 bfd_put_64 (abfd, value, got_sec->contents + got_offset);
4091
4092 /* Install a dynamic relocation if needed. */
4093 if (((info->shared
4094 && (!dyn_i->h
4095 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
4096 || dyn_i->h->root.type != bfd_link_hash_undefweak)
4097 && dyn_r_type != R_IA64_DTPREL32LSB
4098 && dyn_r_type != R_IA64_DTPREL64LSB)
4099 || elfNN_ia64_dynamic_symbol_p (dyn_i->h, info, dyn_r_type)
4100 || (dynindx != -1
4101 && (dyn_r_type == R_IA64_FPTR32LSB
4102 || dyn_r_type == R_IA64_FPTR64LSB)))
4103 && (!dyn_i->want_ltoff_fptr
4104 || !info->pie
4105 || !dyn_i->h
4106 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4107 {
4108 if (dynindx == -1
4109 && dyn_r_type != R_IA64_TPREL64LSB
4110 && dyn_r_type != R_IA64_DTPMOD64LSB
4111 && dyn_r_type != R_IA64_DTPREL32LSB
4112 && dyn_r_type != R_IA64_DTPREL64LSB)
4113 {
4114 dyn_r_type = R_IA64_RELNNLSB;
4115 dynindx = 0;
4116 addend = value;
4117 }
4118
4119 if (bfd_big_endian (abfd))
4120 {
4121 switch (dyn_r_type)
4122 {
4123 case R_IA64_REL32LSB:
4124 dyn_r_type = R_IA64_REL32MSB;
4125 break;
4126 case R_IA64_DIR32LSB:
4127 dyn_r_type = R_IA64_DIR32MSB;
4128 break;
4129 case R_IA64_FPTR32LSB:
4130 dyn_r_type = R_IA64_FPTR32MSB;
4131 break;
4132 case R_IA64_DTPREL32LSB:
4133 dyn_r_type = R_IA64_DTPREL32MSB;
4134 break;
4135 case R_IA64_REL64LSB:
4136 dyn_r_type = R_IA64_REL64MSB;
4137 break;
4138 case R_IA64_DIR64LSB:
4139 dyn_r_type = R_IA64_DIR64MSB;
4140 break;
4141 case R_IA64_FPTR64LSB:
4142 dyn_r_type = R_IA64_FPTR64MSB;
4143 break;
4144 case R_IA64_TPREL64LSB:
4145 dyn_r_type = R_IA64_TPREL64MSB;
4146 break;
4147 case R_IA64_DTPMOD64LSB:
4148 dyn_r_type = R_IA64_DTPMOD64MSB;
4149 break;
4150 case R_IA64_DTPREL64LSB:
4151 dyn_r_type = R_IA64_DTPREL64MSB;
4152 break;
4153 default:
4154 BFD_ASSERT (FALSE);
4155 break;
4156 }
4157 }
4158
4159 elfNN_ia64_install_dyn_reloc (abfd, NULL, got_sec,
4160 ia64_info->rel_got_sec,
4161 got_offset, dyn_r_type,
4162 dynindx, addend);
4163 }
4164 }
4165
4166 /* Return the address of the linkage table entry. */
4167 value = (got_sec->output_section->vma
4168 + got_sec->output_offset
4169 + got_offset);
4170
4171 return value;
4172 }
4173
4174 /* Fill in a function descriptor consisting of the function's code
4175 address and its global pointer. Return the descriptor's address. */
4176
4177 static bfd_vma
4178 set_fptr_entry (abfd, info, dyn_i, value)
4179 bfd *abfd;
4180 struct bfd_link_info *info;
4181 struct elfNN_ia64_dyn_sym_info *dyn_i;
4182 bfd_vma value;
4183 {
4184 struct elfNN_ia64_link_hash_table *ia64_info;
4185 asection *fptr_sec;
4186
4187 ia64_info = elfNN_ia64_hash_table (info);
4188 fptr_sec = ia64_info->fptr_sec;
4189
4190 if (!dyn_i->fptr_done)
4191 {
4192 dyn_i->fptr_done = 1;
4193
4194 /* Fill in the function descriptor. */
4195 bfd_put_64 (abfd, value, fptr_sec->contents + dyn_i->fptr_offset);
4196 bfd_put_64 (abfd, _bfd_get_gp_value (abfd),
4197 fptr_sec->contents + dyn_i->fptr_offset + 8);
4198 if (ia64_info->rel_fptr_sec)
4199 {
4200 Elf_Internal_Rela outrel;
4201 bfd_byte *loc;
4202
4203 if (bfd_little_endian (abfd))
4204 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTLSB);
4205 else
4206 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTMSB);
4207 outrel.r_addend = value;
4208 outrel.r_offset = (fptr_sec->output_section->vma
4209 + fptr_sec->output_offset
4210 + dyn_i->fptr_offset);
4211 loc = ia64_info->rel_fptr_sec->contents;
4212 loc += ia64_info->rel_fptr_sec->reloc_count++
4213 * sizeof (ElfNN_External_Rela);
4214 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
4215 }
4216 }
4217
4218 /* Return the descriptor's address. */
4219 value = (fptr_sec->output_section->vma
4220 + fptr_sec->output_offset
4221 + dyn_i->fptr_offset);
4222
4223 return value;
4224 }
4225
4226 /* Fill in a PLTOFF entry consisting of the function's code address
4227 and its global pointer. Return the descriptor's address. */
4228
4229 static bfd_vma
4230 set_pltoff_entry (abfd, info, dyn_i, value, is_plt)
4231 bfd *abfd;
4232 struct bfd_link_info *info;
4233 struct elfNN_ia64_dyn_sym_info *dyn_i;
4234 bfd_vma value;
4235 bfd_boolean is_plt;
4236 {
4237 struct elfNN_ia64_link_hash_table *ia64_info;
4238 asection *pltoff_sec;
4239
4240 ia64_info = elfNN_ia64_hash_table (info);
4241 pltoff_sec = ia64_info->pltoff_sec;
4242
4243 /* Don't do anything if this symbol uses a real PLT entry. In
4244 that case, we'll fill this in during finish_dynamic_symbol. */
4245 if ((! dyn_i->want_plt || is_plt)
4246 && !dyn_i->pltoff_done)
4247 {
4248 bfd_vma gp = _bfd_get_gp_value (abfd);
4249
4250 /* Fill in the function descriptor. */
4251 bfd_put_64 (abfd, value, pltoff_sec->contents + dyn_i->pltoff_offset);
4252 bfd_put_64 (abfd, gp, pltoff_sec->contents + dyn_i->pltoff_offset + 8);
4253
4254 /* Install dynamic relocations if needed. */
4255 if (!is_plt
4256 && info->shared
4257 && (!dyn_i->h
4258 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
4259 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4260 {
4261 unsigned int dyn_r_type;
4262
4263 if (bfd_big_endian (abfd))
4264 dyn_r_type = R_IA64_RELNNMSB;
4265 else
4266 dyn_r_type = R_IA64_RELNNLSB;
4267
4268 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4269 ia64_info->rel_pltoff_sec,
4270 dyn_i->pltoff_offset,
4271 dyn_r_type, 0, value);
4272 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4273 ia64_info->rel_pltoff_sec,
4274 dyn_i->pltoff_offset + ARCH_SIZE / 8,
4275 dyn_r_type, 0, gp);
4276 }
4277
4278 dyn_i->pltoff_done = 1;
4279 }
4280
4281 /* Return the descriptor's address. */
4282 value = (pltoff_sec->output_section->vma
4283 + pltoff_sec->output_offset
4284 + dyn_i->pltoff_offset);
4285
4286 return value;
4287 }
4288
4289 /* Return the base VMA address which should be subtracted from real addresses
4290 when resolving @tprel() relocation.
4291 Main program TLS (whose template starts at PT_TLS p_vaddr)
4292 is assigned offset round(2 * size of pointer, PT_TLS p_align). */
4293
4294 static bfd_vma
4295 elfNN_ia64_tprel_base (info)
4296 struct bfd_link_info *info;
4297 {
4298 asection *tls_sec = elf_hash_table (info)->tls_sec;
4299
4300 BFD_ASSERT (tls_sec != NULL);
4301 return tls_sec->vma - align_power ((bfd_vma) ARCH_SIZE / 4,
4302 tls_sec->alignment_power);
4303 }
4304
4305 /* Return the base VMA address which should be subtracted from real addresses
4306 when resolving @dtprel() relocation.
4307 This is PT_TLS segment p_vaddr. */
4308
4309 static bfd_vma
4310 elfNN_ia64_dtprel_base (info)
4311 struct bfd_link_info *info;
4312 {
4313 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4314 return elf_hash_table (info)->tls_sec->vma;
4315 }
4316
4317 /* Called through qsort to sort the .IA_64.unwind section during a
4318 non-relocatable link. Set elfNN_ia64_unwind_entry_compare_bfd
4319 to the output bfd so we can do proper endianness frobbing. */
4320
4321 static bfd *elfNN_ia64_unwind_entry_compare_bfd;
4322
4323 static int
4324 elfNN_ia64_unwind_entry_compare (a, b)
4325 const PTR a;
4326 const PTR b;
4327 {
4328 bfd_vma av, bv;
4329
4330 av = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, a);
4331 bv = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, b);
4332
4333 return (av < bv ? -1 : av > bv ? 1 : 0);
4334 }
4335
4336 /* Make sure we've got ourselves a nice fat __gp value. */
4337 static bfd_boolean
4338 elfNN_ia64_choose_gp (abfd, info)
4339 bfd *abfd;
4340 struct bfd_link_info *info;
4341 {
4342 bfd_vma min_vma = (bfd_vma) -1, max_vma = 0;
4343 bfd_vma min_short_vma = min_vma, max_short_vma = 0;
4344 struct elf_link_hash_entry *gp;
4345 bfd_vma gp_val;
4346 asection *os;
4347 struct elfNN_ia64_link_hash_table *ia64_info;
4348
4349 ia64_info = elfNN_ia64_hash_table (info);
4350
4351 /* Find the min and max vma of all sections marked short. Also collect
4352 min and max vma of any type, for use in selecting a nice gp. */
4353 for (os = abfd->sections; os ; os = os->next)
4354 {
4355 bfd_vma lo, hi;
4356
4357 if ((os->flags & SEC_ALLOC) == 0)
4358 continue;
4359
4360 lo = os->vma;
4361 hi = os->vma + os->size;
4362 if (hi < lo)
4363 hi = (bfd_vma) -1;
4364
4365 if (min_vma > lo)
4366 min_vma = lo;
4367 if (max_vma < hi)
4368 max_vma = hi;
4369 if (os->flags & SEC_SMALL_DATA)
4370 {
4371 if (min_short_vma > lo)
4372 min_short_vma = lo;
4373 if (max_short_vma < hi)
4374 max_short_vma = hi;
4375 }
4376 }
4377
4378 /* See if the user wants to force a value. */
4379 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4380 FALSE, FALSE);
4381
4382 if (gp
4383 && (gp->root.type == bfd_link_hash_defined
4384 || gp->root.type == bfd_link_hash_defweak))
4385 {
4386 asection *gp_sec = gp->root.u.def.section;
4387 gp_val = (gp->root.u.def.value
4388 + gp_sec->output_section->vma
4389 + gp_sec->output_offset);
4390 }
4391 else
4392 {
4393 /* Pick a sensible value. */
4394
4395 asection *got_sec = ia64_info->got_sec;
4396
4397 /* Start with just the address of the .got. */
4398 if (got_sec)
4399 gp_val = got_sec->output_section->vma;
4400 else if (max_short_vma != 0)
4401 gp_val = min_short_vma;
4402 else if (max_vma - min_vma < 0x200000)
4403 gp_val = min_vma;
4404 else
4405 gp_val = max_vma - 0x200000 + 8;
4406
4407 /* If it is possible to address the entire image, but we
4408 don't with the choice above, adjust. */
4409 if (max_vma - min_vma < 0x400000
4410 && (max_vma - gp_val >= 0x200000
4411 || gp_val - min_vma > 0x200000))
4412 gp_val = min_vma + 0x200000;
4413 else if (max_short_vma != 0)
4414 {
4415 /* If we don't cover all the short data, adjust. */
4416 if (max_short_vma - gp_val >= 0x200000)
4417 gp_val = min_short_vma + 0x200000;
4418
4419 /* If we're addressing stuff past the end, adjust back. */
4420 if (gp_val > max_vma)
4421 gp_val = max_vma - 0x200000 + 8;
4422 }
4423 }
4424
4425 /* Validate whether all SHF_IA_64_SHORT sections are within
4426 range of the chosen GP. */
4427
4428 if (max_short_vma != 0)
4429 {
4430 if (max_short_vma - min_short_vma >= 0x400000)
4431 {
4432 (*_bfd_error_handler)
4433 (_("%s: short data segment overflowed (0x%lx >= 0x400000)"),
4434 bfd_get_filename (abfd),
4435 (unsigned long) (max_short_vma - min_short_vma));
4436 return FALSE;
4437 }
4438 else if ((gp_val > min_short_vma
4439 && gp_val - min_short_vma > 0x200000)
4440 || (gp_val < max_short_vma
4441 && max_short_vma - gp_val >= 0x200000))
4442 {
4443 (*_bfd_error_handler)
4444 (_("%s: __gp does not cover short data segment"),
4445 bfd_get_filename (abfd));
4446 return FALSE;
4447 }
4448 }
4449
4450 _bfd_set_gp_value (abfd, gp_val);
4451
4452 return TRUE;
4453 }
4454
4455 static bfd_boolean
4456 elfNN_ia64_final_link (abfd, info)
4457 bfd *abfd;
4458 struct bfd_link_info *info;
4459 {
4460 struct elfNN_ia64_link_hash_table *ia64_info;
4461 asection *unwind_output_sec;
4462
4463 ia64_info = elfNN_ia64_hash_table (info);
4464
4465 /* Make sure we've got ourselves a nice fat __gp value. */
4466 if (!info->relocatable)
4467 {
4468 bfd_vma gp_val;
4469 struct elf_link_hash_entry *gp;
4470
4471 /* We assume after gp is set, section size will only decrease. We
4472 need to adjust gp for it. */
4473 _bfd_set_gp_value (abfd, 0);
4474 if (! elfNN_ia64_choose_gp (abfd, info))
4475 return FALSE;
4476 gp_val = _bfd_get_gp_value (abfd);
4477
4478 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4479 FALSE, FALSE);
4480 if (gp)
4481 {
4482 gp->root.type = bfd_link_hash_defined;
4483 gp->root.u.def.value = gp_val;
4484 gp->root.u.def.section = bfd_abs_section_ptr;
4485 }
4486 }
4487
4488 /* If we're producing a final executable, we need to sort the contents
4489 of the .IA_64.unwind section. Force this section to be relocated
4490 into memory rather than written immediately to the output file. */
4491 unwind_output_sec = NULL;
4492 if (!info->relocatable)
4493 {
4494 asection *s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_unwind);
4495 if (s)
4496 {
4497 unwind_output_sec = s->output_section;
4498 unwind_output_sec->contents
4499 = bfd_malloc (unwind_output_sec->size);
4500 if (unwind_output_sec->contents == NULL)
4501 return FALSE;
4502 }
4503 }
4504
4505 /* Invoke the regular ELF backend linker to do all the work. */
4506 if (!bfd_elf_final_link (abfd, info))
4507 return FALSE;
4508
4509 if (unwind_output_sec)
4510 {
4511 elfNN_ia64_unwind_entry_compare_bfd = abfd;
4512 qsort (unwind_output_sec->contents,
4513 (size_t) (unwind_output_sec->size / 24),
4514 24,
4515 elfNN_ia64_unwind_entry_compare);
4516
4517 if (! bfd_set_section_contents (abfd, unwind_output_sec,
4518 unwind_output_sec->contents, (bfd_vma) 0,
4519 unwind_output_sec->size))
4520 return FALSE;
4521 }
4522
4523 return TRUE;
4524 }
4525
4526 static bfd_boolean
4527 elfNN_ia64_relocate_section (output_bfd, info, input_bfd, input_section,
4528 contents, relocs, local_syms, local_sections)
4529 bfd *output_bfd;
4530 struct bfd_link_info *info;
4531 bfd *input_bfd;
4532 asection *input_section;
4533 bfd_byte *contents;
4534 Elf_Internal_Rela *relocs;
4535 Elf_Internal_Sym *local_syms;
4536 asection **local_sections;
4537 {
4538 struct elfNN_ia64_link_hash_table *ia64_info;
4539 Elf_Internal_Shdr *symtab_hdr;
4540 Elf_Internal_Rela *rel;
4541 Elf_Internal_Rela *relend;
4542 asection *srel;
4543 bfd_boolean ret_val = TRUE; /* for non-fatal errors */
4544 bfd_vma gp_val;
4545
4546 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4547 ia64_info = elfNN_ia64_hash_table (info);
4548
4549 /* Infect various flags from the input section to the output section. */
4550 if (info->relocatable)
4551 {
4552 bfd_vma flags;
4553
4554 flags = elf_section_data(input_section)->this_hdr.sh_flags;
4555 flags &= SHF_IA_64_NORECOV;
4556
4557 elf_section_data(input_section->output_section)
4558 ->this_hdr.sh_flags |= flags;
4559 return TRUE;
4560 }
4561
4562 gp_val = _bfd_get_gp_value (output_bfd);
4563 srel = get_reloc_section (input_bfd, ia64_info, input_section, FALSE);
4564
4565 rel = relocs;
4566 relend = relocs + input_section->reloc_count;
4567 for (; rel < relend; ++rel)
4568 {
4569 struct elf_link_hash_entry *h;
4570 struct elfNN_ia64_dyn_sym_info *dyn_i;
4571 bfd_reloc_status_type r;
4572 reloc_howto_type *howto;
4573 unsigned long r_symndx;
4574 Elf_Internal_Sym *sym;
4575 unsigned int r_type;
4576 bfd_vma value;
4577 asection *sym_sec;
4578 bfd_byte *hit_addr;
4579 bfd_boolean dynamic_symbol_p;
4580 bfd_boolean undef_weak_ref;
4581
4582 r_type = ELFNN_R_TYPE (rel->r_info);
4583 if (r_type > R_IA64_MAX_RELOC_CODE)
4584 {
4585 (*_bfd_error_handler)
4586 (_("%B: unknown relocation type %d"),
4587 input_bfd, (int) r_type);
4588 bfd_set_error (bfd_error_bad_value);
4589 ret_val = FALSE;
4590 continue;
4591 }
4592
4593 howto = lookup_howto (r_type);
4594 r_symndx = ELFNN_R_SYM (rel->r_info);
4595 h = NULL;
4596 sym = NULL;
4597 sym_sec = NULL;
4598 undef_weak_ref = FALSE;
4599
4600 if (r_symndx < symtab_hdr->sh_info)
4601 {
4602 /* Reloc against local symbol. */
4603 asection *msec;
4604 sym = local_syms + r_symndx;
4605 sym_sec = local_sections[r_symndx];
4606 msec = sym_sec;
4607 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4608 if ((sym_sec->flags & SEC_MERGE)
4609 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4610 && sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE)
4611 {
4612 struct elfNN_ia64_local_hash_entry *loc_h;
4613
4614 loc_h = get_local_sym_hash (ia64_info, input_bfd, rel, FALSE);
4615 if (loc_h && ! loc_h->sec_merge_done)
4616 {
4617 struct elfNN_ia64_dyn_sym_info *dynent;
4618 unsigned int count;
4619
4620 for (count = loc_h->count, dynent = loc_h->info;
4621 count != 0;
4622 count--, dynent++)
4623 {
4624 msec = sym_sec;
4625 dynent->addend =
4626 _bfd_merged_section_offset (output_bfd, &msec,
4627 elf_section_data (msec)->
4628 sec_info,
4629 sym->st_value
4630 + dynent->addend);
4631 dynent->addend -= sym->st_value;
4632 dynent->addend += msec->output_section->vma
4633 + msec->output_offset
4634 - sym_sec->output_section->vma
4635 - sym_sec->output_offset;
4636 }
4637
4638 qsort (loc_h->info, loc_h->count,
4639 sizeof (*loc_h->info), addend_compare);
4640
4641 loc_h->sec_merge_done = 1;
4642 }
4643 }
4644 }
4645 else
4646 {
4647 bfd_boolean unresolved_reloc;
4648 bfd_boolean warned;
4649 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4650
4651 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4652 r_symndx, symtab_hdr, sym_hashes,
4653 h, sym_sec, value,
4654 unresolved_reloc, warned);
4655
4656 if (h->root.type == bfd_link_hash_undefweak)
4657 undef_weak_ref = TRUE;
4658 else if (warned)
4659 continue;
4660 }
4661
4662 hit_addr = contents + rel->r_offset;
4663 value += rel->r_addend;
4664 dynamic_symbol_p = elfNN_ia64_dynamic_symbol_p (h, info, r_type);
4665
4666 switch (r_type)
4667 {
4668 case R_IA64_NONE:
4669 case R_IA64_LDXMOV:
4670 continue;
4671
4672 case R_IA64_IMM14:
4673 case R_IA64_IMM22:
4674 case R_IA64_IMM64:
4675 case R_IA64_DIR32MSB:
4676 case R_IA64_DIR32LSB:
4677 case R_IA64_DIR64MSB:
4678 case R_IA64_DIR64LSB:
4679 /* Install a dynamic relocation for this reloc. */
4680 if ((dynamic_symbol_p || info->shared)
4681 && r_symndx != 0
4682 && (input_section->flags & SEC_ALLOC) != 0)
4683 {
4684 unsigned int dyn_r_type;
4685 long dynindx;
4686 bfd_vma addend;
4687
4688 BFD_ASSERT (srel != NULL);
4689
4690 switch (r_type)
4691 {
4692 case R_IA64_IMM14:
4693 case R_IA64_IMM22:
4694 case R_IA64_IMM64:
4695 /* ??? People shouldn't be doing non-pic code in
4696 shared libraries nor dynamic executables. */
4697 (*_bfd_error_handler)
4698 (_("%B: non-pic code with imm relocation against dynamic symbol `%s'"),
4699 input_bfd,
4700 h ? h->root.root.string
4701 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4702 sym_sec));
4703 ret_val = FALSE;
4704 continue;
4705
4706 default:
4707 break;
4708 }
4709
4710 /* If we don't need dynamic symbol lookup, find a
4711 matching RELATIVE relocation. */
4712 dyn_r_type = r_type;
4713 if (dynamic_symbol_p)
4714 {
4715 dynindx = h->dynindx;
4716 addend = rel->r_addend;
4717 value = 0;
4718 }
4719 else
4720 {
4721 switch (r_type)
4722 {
4723 case R_IA64_DIR32MSB:
4724 dyn_r_type = R_IA64_REL32MSB;
4725 break;
4726 case R_IA64_DIR32LSB:
4727 dyn_r_type = R_IA64_REL32LSB;
4728 break;
4729 case R_IA64_DIR64MSB:
4730 dyn_r_type = R_IA64_REL64MSB;
4731 break;
4732 case R_IA64_DIR64LSB:
4733 dyn_r_type = R_IA64_REL64LSB;
4734 break;
4735
4736 default:
4737 break;
4738 }
4739 dynindx = 0;
4740 addend = value;
4741 }
4742
4743 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4744 srel, rel->r_offset, dyn_r_type,
4745 dynindx, addend);
4746 }
4747 /* Fall through. */
4748
4749 case R_IA64_LTV32MSB:
4750 case R_IA64_LTV32LSB:
4751 case R_IA64_LTV64MSB:
4752 case R_IA64_LTV64LSB:
4753 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4754 break;
4755
4756 case R_IA64_GPREL22:
4757 case R_IA64_GPREL64I:
4758 case R_IA64_GPREL32MSB:
4759 case R_IA64_GPREL32LSB:
4760 case R_IA64_GPREL64MSB:
4761 case R_IA64_GPREL64LSB:
4762 if (dynamic_symbol_p)
4763 {
4764 (*_bfd_error_handler)
4765 (_("%B: @gprel relocation against dynamic symbol %s"),
4766 input_bfd,
4767 h ? h->root.root.string
4768 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4769 sym_sec));
4770 ret_val = FALSE;
4771 continue;
4772 }
4773 value -= gp_val;
4774 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4775 break;
4776
4777 case R_IA64_LTOFF22:
4778 case R_IA64_LTOFF22X:
4779 case R_IA64_LTOFF64I:
4780 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4781 value = set_got_entry (input_bfd, info, dyn_i, (h ? h->dynindx : -1),
4782 rel->r_addend, value, R_IA64_DIRNNLSB);
4783 value -= gp_val;
4784 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4785 break;
4786
4787 case R_IA64_PLTOFF22:
4788 case R_IA64_PLTOFF64I:
4789 case R_IA64_PLTOFF64MSB:
4790 case R_IA64_PLTOFF64LSB:
4791 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4792 value = set_pltoff_entry (output_bfd, info, dyn_i, value, FALSE);
4793 value -= gp_val;
4794 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4795 break;
4796
4797 case R_IA64_FPTR64I:
4798 case R_IA64_FPTR32MSB:
4799 case R_IA64_FPTR32LSB:
4800 case R_IA64_FPTR64MSB:
4801 case R_IA64_FPTR64LSB:
4802 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4803 if (dyn_i->want_fptr)
4804 {
4805 if (!undef_weak_ref)
4806 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4807 }
4808 if (!dyn_i->want_fptr || info->pie)
4809 {
4810 long dynindx;
4811 unsigned int dyn_r_type = r_type;
4812 bfd_vma addend = rel->r_addend;
4813
4814 /* Otherwise, we expect the dynamic linker to create
4815 the entry. */
4816
4817 if (dyn_i->want_fptr)
4818 {
4819 if (r_type == R_IA64_FPTR64I)
4820 {
4821 /* We can't represent this without a dynamic symbol.
4822 Adjust the relocation to be against an output
4823 section symbol, which are always present in the
4824 dynamic symbol table. */
4825 /* ??? People shouldn't be doing non-pic code in
4826 shared libraries. Hork. */
4827 (*_bfd_error_handler)
4828 (_("%B: linking non-pic code in a position independent executable"),
4829 input_bfd);
4830 ret_val = FALSE;
4831 continue;
4832 }
4833 dynindx = 0;
4834 addend = value;
4835 dyn_r_type = r_type + R_IA64_RELNNLSB - R_IA64_FPTRNNLSB;
4836 }
4837 else if (h)
4838 {
4839 if (h->dynindx != -1)
4840 dynindx = h->dynindx;
4841 else
4842 dynindx = (_bfd_elf_link_lookup_local_dynindx
4843 (info, h->root.u.def.section->owner,
4844 global_sym_index (h)));
4845 value = 0;
4846 }
4847 else
4848 {
4849 dynindx = (_bfd_elf_link_lookup_local_dynindx
4850 (info, input_bfd, (long) r_symndx));
4851 value = 0;
4852 }
4853
4854 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4855 srel, rel->r_offset, dyn_r_type,
4856 dynindx, addend);
4857 }
4858
4859 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4860 break;
4861
4862 case R_IA64_LTOFF_FPTR22:
4863 case R_IA64_LTOFF_FPTR64I:
4864 case R_IA64_LTOFF_FPTR32MSB:
4865 case R_IA64_LTOFF_FPTR32LSB:
4866 case R_IA64_LTOFF_FPTR64MSB:
4867 case R_IA64_LTOFF_FPTR64LSB:
4868 {
4869 long dynindx;
4870
4871 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4872 if (dyn_i->want_fptr)
4873 {
4874 BFD_ASSERT (h == NULL || h->dynindx == -1);
4875 if (!undef_weak_ref)
4876 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4877 dynindx = -1;
4878 }
4879 else
4880 {
4881 /* Otherwise, we expect the dynamic linker to create
4882 the entry. */
4883 if (h)
4884 {
4885 if (h->dynindx != -1)
4886 dynindx = h->dynindx;
4887 else
4888 dynindx = (_bfd_elf_link_lookup_local_dynindx
4889 (info, h->root.u.def.section->owner,
4890 global_sym_index (h)));
4891 }
4892 else
4893 dynindx = (_bfd_elf_link_lookup_local_dynindx
4894 (info, input_bfd, (long) r_symndx));
4895 value = 0;
4896 }
4897
4898 value = set_got_entry (output_bfd, info, dyn_i, dynindx,
4899 rel->r_addend, value, R_IA64_FPTRNNLSB);
4900 value -= gp_val;
4901 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4902 }
4903 break;
4904
4905 case R_IA64_PCREL32MSB:
4906 case R_IA64_PCREL32LSB:
4907 case R_IA64_PCREL64MSB:
4908 case R_IA64_PCREL64LSB:
4909 /* Install a dynamic relocation for this reloc. */
4910 if (dynamic_symbol_p && r_symndx != 0)
4911 {
4912 BFD_ASSERT (srel != NULL);
4913
4914 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4915 srel, rel->r_offset, r_type,
4916 h->dynindx, rel->r_addend);
4917 }
4918 goto finish_pcrel;
4919
4920 case R_IA64_PCREL21B:
4921 case R_IA64_PCREL60B:
4922 /* We should have created a PLT entry for any dynamic symbol. */
4923 dyn_i = NULL;
4924 if (h)
4925 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4926
4927 if (dyn_i && dyn_i->want_plt2)
4928 {
4929 /* Should have caught this earlier. */
4930 BFD_ASSERT (rel->r_addend == 0);
4931
4932 value = (ia64_info->plt_sec->output_section->vma
4933 + ia64_info->plt_sec->output_offset
4934 + dyn_i->plt2_offset);
4935 }
4936 else
4937 {
4938 /* Since there's no PLT entry, Validate that this is
4939 locally defined. */
4940 BFD_ASSERT (undef_weak_ref || sym_sec->output_section != NULL);
4941
4942 /* If the symbol is undef_weak, we shouldn't be trying
4943 to call it. There's every chance that we'd wind up
4944 with an out-of-range fixup here. Don't bother setting
4945 any value at all. */
4946 if (undef_weak_ref)
4947 continue;
4948 }
4949 goto finish_pcrel;
4950
4951 case R_IA64_PCREL21BI:
4952 case R_IA64_PCREL21F:
4953 case R_IA64_PCREL21M:
4954 case R_IA64_PCREL22:
4955 case R_IA64_PCREL64I:
4956 /* The PCREL21BI reloc is specifically not intended for use with
4957 dynamic relocs. PCREL21F and PCREL21M are used for speculation
4958 fixup code, and thus probably ought not be dynamic. The
4959 PCREL22 and PCREL64I relocs aren't emitted as dynamic relocs. */
4960 if (dynamic_symbol_p)
4961 {
4962 const char *msg;
4963
4964 if (r_type == R_IA64_PCREL21BI)
4965 msg = _("%B: @internal branch to dynamic symbol %s");
4966 else if (r_type == R_IA64_PCREL21F || r_type == R_IA64_PCREL21M)
4967 msg = _("%B: speculation fixup to dynamic symbol %s");
4968 else
4969 msg = _("%B: @pcrel relocation against dynamic symbol %s");
4970 (*_bfd_error_handler) (msg, input_bfd,
4971 h ? h->root.root.string
4972 : bfd_elf_sym_name (input_bfd,
4973 symtab_hdr,
4974 sym,
4975 sym_sec));
4976 ret_val = FALSE;
4977 continue;
4978 }
4979 goto finish_pcrel;
4980
4981 finish_pcrel:
4982 /* Make pc-relative. */
4983 value -= (input_section->output_section->vma
4984 + input_section->output_offset
4985 + rel->r_offset) & ~ (bfd_vma) 0x3;
4986 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4987 break;
4988
4989 case R_IA64_SEGREL32MSB:
4990 case R_IA64_SEGREL32LSB:
4991 case R_IA64_SEGREL64MSB:
4992 case R_IA64_SEGREL64LSB:
4993 if (r_symndx == 0)
4994 {
4995 /* If the input section was discarded from the output, then
4996 do nothing. */
4997 r = bfd_reloc_ok;
4998 }
4999 else
5000 {
5001 struct elf_segment_map *m;
5002 Elf_Internal_Phdr *p;
5003
5004 /* Find the segment that contains the output_section. */
5005 for (m = elf_tdata (output_bfd)->segment_map,
5006 p = elf_tdata (output_bfd)->phdr;
5007 m != NULL;
5008 m = m->next, p++)
5009 {
5010 int i;
5011 for (i = m->count - 1; i >= 0; i--)
5012 if (m->sections[i] == input_section->output_section)
5013 break;
5014 if (i >= 0)
5015 break;
5016 }
5017
5018 if (m == NULL)
5019 {
5020 r = bfd_reloc_notsupported;
5021 }
5022 else
5023 {
5024 /* The VMA of the segment is the vaddr of the associated
5025 program header. */
5026 if (value > p->p_vaddr)
5027 value -= p->p_vaddr;
5028 else
5029 value = 0;
5030 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5031 }
5032 break;
5033 }
5034
5035 case R_IA64_SECREL32MSB:
5036 case R_IA64_SECREL32LSB:
5037 case R_IA64_SECREL64MSB:
5038 case R_IA64_SECREL64LSB:
5039 /* Make output-section relative to section where the symbol
5040 is defined. PR 475 */
5041 if (sym_sec)
5042 value -= sym_sec->output_section->vma;
5043 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5044 break;
5045
5046 case R_IA64_IPLTMSB:
5047 case R_IA64_IPLTLSB:
5048 /* Install a dynamic relocation for this reloc. */
5049 if ((dynamic_symbol_p || info->shared)
5050 && (input_section->flags & SEC_ALLOC) != 0)
5051 {
5052 BFD_ASSERT (srel != NULL);
5053
5054 /* If we don't need dynamic symbol lookup, install two
5055 RELATIVE relocations. */
5056 if (!dynamic_symbol_p)
5057 {
5058 unsigned int dyn_r_type;
5059
5060 if (r_type == R_IA64_IPLTMSB)
5061 dyn_r_type = R_IA64_REL64MSB;
5062 else
5063 dyn_r_type = R_IA64_REL64LSB;
5064
5065 elfNN_ia64_install_dyn_reloc (output_bfd, info,
5066 input_section,
5067 srel, rel->r_offset,
5068 dyn_r_type, 0, value);
5069 elfNN_ia64_install_dyn_reloc (output_bfd, info,
5070 input_section,
5071 srel, rel->r_offset + 8,
5072 dyn_r_type, 0, gp_val);
5073 }
5074 else
5075 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
5076 srel, rel->r_offset, r_type,
5077 h->dynindx, rel->r_addend);
5078 }
5079
5080 if (r_type == R_IA64_IPLTMSB)
5081 r_type = R_IA64_DIR64MSB;
5082 else
5083 r_type = R_IA64_DIR64LSB;
5084 elfNN_ia64_install_value (hit_addr, value, r_type);
5085 r = elfNN_ia64_install_value (hit_addr + 8, gp_val, r_type);
5086 break;
5087
5088 case R_IA64_TPREL14:
5089 case R_IA64_TPREL22:
5090 case R_IA64_TPREL64I:
5091 value -= elfNN_ia64_tprel_base (info);
5092 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5093 break;
5094
5095 case R_IA64_DTPREL14:
5096 case R_IA64_DTPREL22:
5097 case R_IA64_DTPREL64I:
5098 case R_IA64_DTPREL32LSB:
5099 case R_IA64_DTPREL32MSB:
5100 case R_IA64_DTPREL64LSB:
5101 case R_IA64_DTPREL64MSB:
5102 value -= elfNN_ia64_dtprel_base (info);
5103 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5104 break;
5105
5106 case R_IA64_LTOFF_TPREL22:
5107 case R_IA64_LTOFF_DTPMOD22:
5108 case R_IA64_LTOFF_DTPREL22:
5109 {
5110 int got_r_type;
5111 long dynindx = h ? h->dynindx : -1;
5112 bfd_vma r_addend = rel->r_addend;
5113
5114 switch (r_type)
5115 {
5116 default:
5117 case R_IA64_LTOFF_TPREL22:
5118 if (!dynamic_symbol_p)
5119 {
5120 if (!info->shared)
5121 value -= elfNN_ia64_tprel_base (info);
5122 else
5123 {
5124 r_addend += value - elfNN_ia64_dtprel_base (info);
5125 dynindx = 0;
5126 }
5127 }
5128 got_r_type = R_IA64_TPREL64LSB;
5129 break;
5130 case R_IA64_LTOFF_DTPMOD22:
5131 if (!dynamic_symbol_p && !info->shared)
5132 value = 1;
5133 got_r_type = R_IA64_DTPMOD64LSB;
5134 break;
5135 case R_IA64_LTOFF_DTPREL22:
5136 if (!dynamic_symbol_p)
5137 value -= elfNN_ia64_dtprel_base (info);
5138 got_r_type = R_IA64_DTPRELNNLSB;
5139 break;
5140 }
5141 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
5142 value = set_got_entry (input_bfd, info, dyn_i, dynindx, r_addend,
5143 value, got_r_type);
5144 value -= gp_val;
5145 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5146 }
5147 break;
5148
5149 default:
5150 r = bfd_reloc_notsupported;
5151 break;
5152 }
5153
5154 switch (r)
5155 {
5156 case bfd_reloc_ok:
5157 break;
5158
5159 case bfd_reloc_undefined:
5160 /* This can happen for global table relative relocs if
5161 __gp is undefined. This is a panic situation so we
5162 don't try to continue. */
5163 (*info->callbacks->undefined_symbol)
5164 (info, "__gp", input_bfd, input_section, rel->r_offset, 1);
5165 return FALSE;
5166
5167 case bfd_reloc_notsupported:
5168 {
5169 const char *name;
5170
5171 if (h)
5172 name = h->root.root.string;
5173 else
5174 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5175 sym_sec);
5176 if (!(*info->callbacks->warning) (info, _("unsupported reloc"),
5177 name, input_bfd,
5178 input_section, rel->r_offset))
5179 return FALSE;
5180 ret_val = FALSE;
5181 }
5182 break;
5183
5184 case bfd_reloc_dangerous:
5185 case bfd_reloc_outofrange:
5186 case bfd_reloc_overflow:
5187 default:
5188 {
5189 const char *name;
5190
5191 if (h)
5192 name = h->root.root.string;
5193 else
5194 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5195 sym_sec);
5196
5197 switch (r_type)
5198 {
5199 case R_IA64_PCREL21B:
5200 case R_IA64_PCREL21BI:
5201 case R_IA64_PCREL21M:
5202 case R_IA64_PCREL21F:
5203 if (is_elf_hash_table (info->hash))
5204 {
5205 /* Relaxtion is always performed for ELF output.
5206 Overflow failures for those relocations mean
5207 that the section is too big to relax. */
5208 (*_bfd_error_handler)
5209 (_("%B: Can't relax br (%s) to `%s' at 0x%lx in section `%A' with size 0x%lx (> 0x1000000)."),
5210 input_bfd, input_section, howto->name, name,
5211 rel->r_offset, input_section->size);
5212 break;
5213 }
5214 default:
5215 if (!(*info->callbacks->reloc_overflow) (info,
5216 &h->root,
5217 name,
5218 howto->name,
5219 (bfd_vma) 0,
5220 input_bfd,
5221 input_section,
5222 rel->r_offset))
5223 return FALSE;
5224 break;
5225 }
5226
5227 ret_val = FALSE;
5228 }
5229 break;
5230 }
5231 }
5232
5233 return ret_val;
5234 }
5235
5236 static bfd_boolean
5237 elfNN_ia64_finish_dynamic_symbol (output_bfd, info, h, sym)
5238 bfd *output_bfd;
5239 struct bfd_link_info *info;
5240 struct elf_link_hash_entry *h;
5241 Elf_Internal_Sym *sym;
5242 {
5243 struct elfNN_ia64_link_hash_table *ia64_info;
5244 struct elfNN_ia64_dyn_sym_info *dyn_i;
5245
5246 ia64_info = elfNN_ia64_hash_table (info);
5247 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
5248
5249 /* Fill in the PLT data, if required. */
5250 if (dyn_i && dyn_i->want_plt)
5251 {
5252 Elf_Internal_Rela outrel;
5253 bfd_byte *loc;
5254 asection *plt_sec;
5255 bfd_vma plt_addr, pltoff_addr, gp_val, index;
5256
5257 gp_val = _bfd_get_gp_value (output_bfd);
5258
5259 /* Initialize the minimal PLT entry. */
5260
5261 index = (dyn_i->plt_offset - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
5262 plt_sec = ia64_info->plt_sec;
5263 loc = plt_sec->contents + dyn_i->plt_offset;
5264
5265 memcpy (loc, plt_min_entry, PLT_MIN_ENTRY_SIZE);
5266 elfNN_ia64_install_value (loc, index, R_IA64_IMM22);
5267 elfNN_ia64_install_value (loc+2, -dyn_i->plt_offset, R_IA64_PCREL21B);
5268
5269 plt_addr = (plt_sec->output_section->vma
5270 + plt_sec->output_offset
5271 + dyn_i->plt_offset);
5272 pltoff_addr = set_pltoff_entry (output_bfd, info, dyn_i, plt_addr, TRUE);
5273
5274 /* Initialize the FULL PLT entry, if needed. */
5275 if (dyn_i->want_plt2)
5276 {
5277 loc = plt_sec->contents + dyn_i->plt2_offset;
5278
5279 memcpy (loc, plt_full_entry, PLT_FULL_ENTRY_SIZE);
5280 elfNN_ia64_install_value (loc, pltoff_addr - gp_val, R_IA64_IMM22);
5281
5282 /* Mark the symbol as undefined, rather than as defined in the
5283 plt section. Leave the value alone. */
5284 /* ??? We didn't redefine it in adjust_dynamic_symbol in the
5285 first place. But perhaps elflink.c did some for us. */
5286 if (!h->def_regular)
5287 sym->st_shndx = SHN_UNDEF;
5288 }
5289
5290 /* Create the dynamic relocation. */
5291 outrel.r_offset = pltoff_addr;
5292 if (bfd_little_endian (output_bfd))
5293 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTLSB);
5294 else
5295 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTMSB);
5296 outrel.r_addend = 0;
5297
5298 /* This is fun. In the .IA_64.pltoff section, we've got entries
5299 that correspond both to real PLT entries, and those that
5300 happened to resolve to local symbols but need to be created
5301 to satisfy @pltoff relocations. The .rela.IA_64.pltoff
5302 relocations for the real PLT should come at the end of the
5303 section, so that they can be indexed by plt entry at runtime.
5304
5305 We emitted all of the relocations for the non-PLT @pltoff
5306 entries during relocate_section. So we can consider the
5307 existing sec->reloc_count to be the base of the array of
5308 PLT relocations. */
5309
5310 loc = ia64_info->rel_pltoff_sec->contents;
5311 loc += ((ia64_info->rel_pltoff_sec->reloc_count + index)
5312 * sizeof (ElfNN_External_Rela));
5313 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5314 }
5315
5316 /* Mark some specially defined symbols as absolute. */
5317 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
5318 || h == ia64_info->root.hgot
5319 || h == ia64_info->root.hplt)
5320 sym->st_shndx = SHN_ABS;
5321
5322 return TRUE;
5323 }
5324
5325 static bfd_boolean
5326 elfNN_ia64_finish_dynamic_sections (abfd, info)
5327 bfd *abfd;
5328 struct bfd_link_info *info;
5329 {
5330 struct elfNN_ia64_link_hash_table *ia64_info;
5331 bfd *dynobj;
5332
5333 ia64_info = elfNN_ia64_hash_table (info);
5334 dynobj = ia64_info->root.dynobj;
5335
5336 if (elf_hash_table (info)->dynamic_sections_created)
5337 {
5338 ElfNN_External_Dyn *dyncon, *dynconend;
5339 asection *sdyn, *sgotplt;
5340 bfd_vma gp_val;
5341
5342 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
5343 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
5344 BFD_ASSERT (sdyn != NULL);
5345 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
5346 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
5347
5348 gp_val = _bfd_get_gp_value (abfd);
5349
5350 for (; dyncon < dynconend; dyncon++)
5351 {
5352 Elf_Internal_Dyn dyn;
5353
5354 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
5355
5356 switch (dyn.d_tag)
5357 {
5358 case DT_PLTGOT:
5359 dyn.d_un.d_ptr = gp_val;
5360 break;
5361
5362 case DT_PLTRELSZ:
5363 dyn.d_un.d_val = (ia64_info->minplt_entries
5364 * sizeof (ElfNN_External_Rela));
5365 break;
5366
5367 case DT_JMPREL:
5368 /* See the comment above in finish_dynamic_symbol. */
5369 dyn.d_un.d_ptr = (ia64_info->rel_pltoff_sec->output_section->vma
5370 + ia64_info->rel_pltoff_sec->output_offset
5371 + (ia64_info->rel_pltoff_sec->reloc_count
5372 * sizeof (ElfNN_External_Rela)));
5373 break;
5374
5375 case DT_IA_64_PLT_RESERVE:
5376 dyn.d_un.d_ptr = (sgotplt->output_section->vma
5377 + sgotplt->output_offset);
5378 break;
5379
5380 case DT_RELASZ:
5381 /* Do not have RELASZ include JMPREL. This makes things
5382 easier on ld.so. This is not what the rest of BFD set up. */
5383 dyn.d_un.d_val -= (ia64_info->minplt_entries
5384 * sizeof (ElfNN_External_Rela));
5385 break;
5386 }
5387
5388 bfd_elfNN_swap_dyn_out (abfd, &dyn, dyncon);
5389 }
5390
5391 /* Initialize the PLT0 entry. */
5392 if (ia64_info->plt_sec)
5393 {
5394 bfd_byte *loc = ia64_info->plt_sec->contents;
5395 bfd_vma pltres;
5396
5397 memcpy (loc, plt_header, PLT_HEADER_SIZE);
5398
5399 pltres = (sgotplt->output_section->vma
5400 + sgotplt->output_offset
5401 - gp_val);
5402
5403 elfNN_ia64_install_value (loc+1, pltres, R_IA64_GPREL22);
5404 }
5405 }
5406
5407 return TRUE;
5408 }
5409 \f
5410 /* ELF file flag handling: */
5411
5412 /* Function to keep IA-64 specific file flags. */
5413 static bfd_boolean
5414 elfNN_ia64_set_private_flags (abfd, flags)
5415 bfd *abfd;
5416 flagword flags;
5417 {
5418 BFD_ASSERT (!elf_flags_init (abfd)
5419 || elf_elfheader (abfd)->e_flags == flags);
5420
5421 elf_elfheader (abfd)->e_flags = flags;
5422 elf_flags_init (abfd) = TRUE;
5423 return TRUE;
5424 }
5425
5426 /* Merge backend specific data from an object file to the output
5427 object file when linking. */
5428 static bfd_boolean
5429 elfNN_ia64_merge_private_bfd_data (ibfd, obfd)
5430 bfd *ibfd, *obfd;
5431 {
5432 flagword out_flags;
5433 flagword in_flags;
5434 bfd_boolean ok = TRUE;
5435
5436 /* Don't even pretend to support mixed-format linking. */
5437 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5438 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5439 return FALSE;
5440
5441 in_flags = elf_elfheader (ibfd)->e_flags;
5442 out_flags = elf_elfheader (obfd)->e_flags;
5443
5444 if (! elf_flags_init (obfd))
5445 {
5446 elf_flags_init (obfd) = TRUE;
5447 elf_elfheader (obfd)->e_flags = in_flags;
5448
5449 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
5450 && bfd_get_arch_info (obfd)->the_default)
5451 {
5452 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
5453 bfd_get_mach (ibfd));
5454 }
5455
5456 return TRUE;
5457 }
5458
5459 /* Check flag compatibility. */
5460 if (in_flags == out_flags)
5461 return TRUE;
5462
5463 /* Output has EF_IA_64_REDUCEDFP set only if all inputs have it set. */
5464 if (!(in_flags & EF_IA_64_REDUCEDFP) && (out_flags & EF_IA_64_REDUCEDFP))
5465 elf_elfheader (obfd)->e_flags &= ~EF_IA_64_REDUCEDFP;
5466
5467 if ((in_flags & EF_IA_64_TRAPNIL) != (out_flags & EF_IA_64_TRAPNIL))
5468 {
5469 (*_bfd_error_handler)
5470 (_("%B: linking trap-on-NULL-dereference with non-trapping files"),
5471 ibfd);
5472
5473 bfd_set_error (bfd_error_bad_value);
5474 ok = FALSE;
5475 }
5476 if ((in_flags & EF_IA_64_BE) != (out_flags & EF_IA_64_BE))
5477 {
5478 (*_bfd_error_handler)
5479 (_("%B: linking big-endian files with little-endian files"),
5480 ibfd);
5481
5482 bfd_set_error (bfd_error_bad_value);
5483 ok = FALSE;
5484 }
5485 if ((in_flags & EF_IA_64_ABI64) != (out_flags & EF_IA_64_ABI64))
5486 {
5487 (*_bfd_error_handler)
5488 (_("%B: linking 64-bit files with 32-bit files"),
5489 ibfd);
5490
5491 bfd_set_error (bfd_error_bad_value);
5492 ok = FALSE;
5493 }
5494 if ((in_flags & EF_IA_64_CONS_GP) != (out_flags & EF_IA_64_CONS_GP))
5495 {
5496 (*_bfd_error_handler)
5497 (_("%B: linking constant-gp files with non-constant-gp files"),
5498 ibfd);
5499
5500 bfd_set_error (bfd_error_bad_value);
5501 ok = FALSE;
5502 }
5503 if ((in_flags & EF_IA_64_NOFUNCDESC_CONS_GP)
5504 != (out_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
5505 {
5506 (*_bfd_error_handler)
5507 (_("%B: linking auto-pic files with non-auto-pic files"),
5508 ibfd);
5509
5510 bfd_set_error (bfd_error_bad_value);
5511 ok = FALSE;
5512 }
5513
5514 return ok;
5515 }
5516
5517 static bfd_boolean
5518 elfNN_ia64_print_private_bfd_data (abfd, ptr)
5519 bfd *abfd;
5520 PTR ptr;
5521 {
5522 FILE *file = (FILE *) ptr;
5523 flagword flags = elf_elfheader (abfd)->e_flags;
5524
5525 BFD_ASSERT (abfd != NULL && ptr != NULL);
5526
5527 fprintf (file, "private flags = %s%s%s%s%s%s%s%s\n",
5528 (flags & EF_IA_64_TRAPNIL) ? "TRAPNIL, " : "",
5529 (flags & EF_IA_64_EXT) ? "EXT, " : "",
5530 (flags & EF_IA_64_BE) ? "BE, " : "LE, ",
5531 (flags & EF_IA_64_REDUCEDFP) ? "REDUCEDFP, " : "",
5532 (flags & EF_IA_64_CONS_GP) ? "CONS_GP, " : "",
5533 (flags & EF_IA_64_NOFUNCDESC_CONS_GP) ? "NOFUNCDESC_CONS_GP, " : "",
5534 (flags & EF_IA_64_ABSOLUTE) ? "ABSOLUTE, " : "",
5535 (flags & EF_IA_64_ABI64) ? "ABI64" : "ABI32");
5536
5537 _bfd_elf_print_private_bfd_data (abfd, ptr);
5538 return TRUE;
5539 }
5540
5541 static enum elf_reloc_type_class
5542 elfNN_ia64_reloc_type_class (rela)
5543 const Elf_Internal_Rela *rela;
5544 {
5545 switch ((int) ELFNN_R_TYPE (rela->r_info))
5546 {
5547 case R_IA64_REL32MSB:
5548 case R_IA64_REL32LSB:
5549 case R_IA64_REL64MSB:
5550 case R_IA64_REL64LSB:
5551 return reloc_class_relative;
5552 case R_IA64_IPLTMSB:
5553 case R_IA64_IPLTLSB:
5554 return reloc_class_plt;
5555 case R_IA64_COPY:
5556 return reloc_class_copy;
5557 default:
5558 return reloc_class_normal;
5559 }
5560 }
5561
5562 static const struct bfd_elf_special_section elfNN_ia64_special_sections[] =
5563 {
5564 { ".sbss", 5, -1, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5565 { ".sdata", 6, -1, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5566 { NULL, 0, 0, 0, 0 }
5567 };
5568
5569 static bfd_boolean
5570 elfNN_ia64_object_p (bfd *abfd)
5571 {
5572 asection *sec;
5573 asection *group, *unwi, *unw;
5574 flagword flags;
5575 const char *name;
5576 char *unwi_name, *unw_name;
5577 bfd_size_type amt;
5578
5579 if (abfd->flags & DYNAMIC)
5580 return TRUE;
5581
5582 /* Flags for fake group section. */
5583 flags = (SEC_LINKER_CREATED | SEC_GROUP | SEC_LINK_ONCE
5584 | SEC_EXCLUDE);
5585
5586 /* We add a fake section group for each .gnu.linkonce.t.* section,
5587 which isn't in a section group, and its unwind sections. */
5588 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5589 {
5590 if (elf_sec_group (sec) == NULL
5591 && ((sec->flags & (SEC_LINK_ONCE | SEC_CODE | SEC_GROUP))
5592 == (SEC_LINK_ONCE | SEC_CODE))
5593 && strncmp (sec->name, ".gnu.linkonce.t.", 16) == 0)
5594 {
5595 name = sec->name + 16;
5596
5597 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unwi.");
5598 unwi_name = bfd_alloc (abfd, amt);
5599 if (!unwi_name)
5600 return FALSE;
5601
5602 strcpy (stpcpy (unwi_name, ".gnu.linkonce.ia64unwi."), name);
5603 unwi = bfd_get_section_by_name (abfd, unwi_name);
5604
5605 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unw.");
5606 unw_name = bfd_alloc (abfd, amt);
5607 if (!unw_name)
5608 return FALSE;
5609
5610 strcpy (stpcpy (unw_name, ".gnu.linkonce.ia64unw."), name);
5611 unw = bfd_get_section_by_name (abfd, unw_name);
5612
5613 /* We need to create a fake group section for it and its
5614 unwind sections. */
5615 group = bfd_make_section_anyway_with_flags (abfd, name,
5616 flags);
5617 if (group == NULL)
5618 return FALSE;
5619
5620 /* Move the fake group section to the beginning. */
5621 bfd_section_list_remove (abfd, group);
5622 bfd_section_list_prepend (abfd, group);
5623
5624 elf_next_in_group (group) = sec;
5625
5626 elf_group_name (sec) = name;
5627 elf_next_in_group (sec) = sec;
5628 elf_sec_group (sec) = group;
5629
5630 if (unwi)
5631 {
5632 elf_group_name (unwi) = name;
5633 elf_next_in_group (unwi) = sec;
5634 elf_next_in_group (sec) = unwi;
5635 elf_sec_group (unwi) = group;
5636 }
5637
5638 if (unw)
5639 {
5640 elf_group_name (unw) = name;
5641 if (unwi)
5642 {
5643 elf_next_in_group (unw) = elf_next_in_group (unwi);
5644 elf_next_in_group (unwi) = unw;
5645 }
5646 else
5647 {
5648 elf_next_in_group (unw) = sec;
5649 elf_next_in_group (sec) = unw;
5650 }
5651 elf_sec_group (unw) = group;
5652 }
5653
5654 /* Fake SHT_GROUP section header. */
5655 elf_section_data (group)->this_hdr.bfd_section = group;
5656 elf_section_data (group)->this_hdr.sh_type = SHT_GROUP;
5657 }
5658 }
5659 return TRUE;
5660 }
5661
5662 static bfd_boolean
5663 elfNN_ia64_hpux_vec (const bfd_target *vec)
5664 {
5665 extern const bfd_target bfd_elfNN_ia64_hpux_big_vec;
5666 return (vec == & bfd_elfNN_ia64_hpux_big_vec);
5667 }
5668
5669 static void
5670 elfNN_hpux_post_process_headers (abfd, info)
5671 bfd *abfd;
5672 struct bfd_link_info *info ATTRIBUTE_UNUSED;
5673 {
5674 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5675
5676 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
5677 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
5678 }
5679
5680 bfd_boolean
5681 elfNN_hpux_backend_section_from_bfd_section (abfd, sec, retval)
5682 bfd *abfd ATTRIBUTE_UNUSED;
5683 asection *sec;
5684 int *retval;
5685 {
5686 if (bfd_is_com_section (sec))
5687 {
5688 *retval = SHN_IA_64_ANSI_COMMON;
5689 return TRUE;
5690 }
5691 return FALSE;
5692 }
5693
5694 static void
5695 elfNN_hpux_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5696 asymbol *asym)
5697 {
5698 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5699
5700 switch (elfsym->internal_elf_sym.st_shndx)
5701 {
5702 case SHN_IA_64_ANSI_COMMON:
5703 asym->section = bfd_com_section_ptr;
5704 asym->value = elfsym->internal_elf_sym.st_size;
5705 asym->flags &= ~BSF_GLOBAL;
5706 break;
5707 }
5708 }
5709
5710 \f
5711 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_little_vec
5712 #define TARGET_LITTLE_NAME "elfNN-ia64-little"
5713 #define TARGET_BIG_SYM bfd_elfNN_ia64_big_vec
5714 #define TARGET_BIG_NAME "elfNN-ia64-big"
5715 #define ELF_ARCH bfd_arch_ia64
5716 #define ELF_MACHINE_CODE EM_IA_64
5717 #define ELF_MACHINE_ALT1 1999 /* EAS2.3 */
5718 #define ELF_MACHINE_ALT2 1998 /* EAS2.2 */
5719 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
5720
5721 #define elf_backend_section_from_shdr \
5722 elfNN_ia64_section_from_shdr
5723 #define elf_backend_section_flags \
5724 elfNN_ia64_section_flags
5725 #define elf_backend_fake_sections \
5726 elfNN_ia64_fake_sections
5727 #define elf_backend_final_write_processing \
5728 elfNN_ia64_final_write_processing
5729 #define elf_backend_add_symbol_hook \
5730 elfNN_ia64_add_symbol_hook
5731 #define elf_backend_additional_program_headers \
5732 elfNN_ia64_additional_program_headers
5733 #define elf_backend_modify_segment_map \
5734 elfNN_ia64_modify_segment_map
5735 #define elf_info_to_howto \
5736 elfNN_ia64_info_to_howto
5737
5738 #define bfd_elfNN_bfd_reloc_type_lookup \
5739 elfNN_ia64_reloc_type_lookup
5740 #define bfd_elfNN_bfd_is_local_label_name \
5741 elfNN_ia64_is_local_label_name
5742 #define bfd_elfNN_bfd_relax_section \
5743 elfNN_ia64_relax_section
5744
5745 #define elf_backend_object_p \
5746 elfNN_ia64_object_p
5747
5748 /* Stuff for the BFD linker: */
5749 #define bfd_elfNN_bfd_link_hash_table_create \
5750 elfNN_ia64_hash_table_create
5751 #define bfd_elfNN_bfd_link_hash_table_free \
5752 elfNN_ia64_hash_table_free
5753 #define elf_backend_create_dynamic_sections \
5754 elfNN_ia64_create_dynamic_sections
5755 #define elf_backend_check_relocs \
5756 elfNN_ia64_check_relocs
5757 #define elf_backend_adjust_dynamic_symbol \
5758 elfNN_ia64_adjust_dynamic_symbol
5759 #define elf_backend_size_dynamic_sections \
5760 elfNN_ia64_size_dynamic_sections
5761 #define elf_backend_relocate_section \
5762 elfNN_ia64_relocate_section
5763 #define elf_backend_finish_dynamic_symbol \
5764 elfNN_ia64_finish_dynamic_symbol
5765 #define elf_backend_finish_dynamic_sections \
5766 elfNN_ia64_finish_dynamic_sections
5767 #define bfd_elfNN_bfd_final_link \
5768 elfNN_ia64_final_link
5769
5770 #define bfd_elfNN_bfd_merge_private_bfd_data \
5771 elfNN_ia64_merge_private_bfd_data
5772 #define bfd_elfNN_bfd_set_private_flags \
5773 elfNN_ia64_set_private_flags
5774 #define bfd_elfNN_bfd_print_private_bfd_data \
5775 elfNN_ia64_print_private_bfd_data
5776
5777 #define elf_backend_plt_readonly 1
5778 #define elf_backend_want_plt_sym 0
5779 #define elf_backend_plt_alignment 5
5780 #define elf_backend_got_header_size 0
5781 #define elf_backend_want_got_plt 1
5782 #define elf_backend_may_use_rel_p 1
5783 #define elf_backend_may_use_rela_p 1
5784 #define elf_backend_default_use_rela_p 1
5785 #define elf_backend_want_dynbss 0
5786 #define elf_backend_copy_indirect_symbol elfNN_ia64_hash_copy_indirect
5787 #define elf_backend_hide_symbol elfNN_ia64_hash_hide_symbol
5788 #define elf_backend_fixup_symbol _bfd_elf_link_hash_fixup_symbol
5789 #define elf_backend_reloc_type_class elfNN_ia64_reloc_type_class
5790 #define elf_backend_rela_normal 1
5791 #define elf_backend_special_sections elfNN_ia64_special_sections
5792
5793 /* FIXME: PR 290: The Intel C compiler generates SHT_IA_64_UNWIND with
5794 SHF_LINK_ORDER. But it doesn't set the sh_link or sh_info fields.
5795 We don't want to flood users with so many error messages. We turn
5796 off the warning for now. It will be turned on later when the Intel
5797 compiler is fixed. */
5798 #define elf_backend_link_order_error_handler NULL
5799
5800 #include "elfNN-target.h"
5801
5802 /* HPUX-specific vectors. */
5803
5804 #undef TARGET_LITTLE_SYM
5805 #undef TARGET_LITTLE_NAME
5806 #undef TARGET_BIG_SYM
5807 #define TARGET_BIG_SYM bfd_elfNN_ia64_hpux_big_vec
5808 #undef TARGET_BIG_NAME
5809 #define TARGET_BIG_NAME "elfNN-ia64-hpux-big"
5810
5811 /* These are HP-UX specific functions. */
5812
5813 #undef elf_backend_post_process_headers
5814 #define elf_backend_post_process_headers elfNN_hpux_post_process_headers
5815
5816 #undef elf_backend_section_from_bfd_section
5817 #define elf_backend_section_from_bfd_section elfNN_hpux_backend_section_from_bfd_section
5818
5819 #undef elf_backend_symbol_processing
5820 #define elf_backend_symbol_processing elfNN_hpux_backend_symbol_processing
5821
5822 #undef elf_backend_want_p_paddr_set_to_zero
5823 #define elf_backend_want_p_paddr_set_to_zero 1
5824
5825 #undef ELF_MAXPAGESIZE
5826 #define ELF_MAXPAGESIZE 0x1000 /* 1K */
5827
5828 #undef elfNN_bed
5829 #define elfNN_bed elfNN_ia64_hpux_bed
5830
5831 #include "elfNN-target.h"
5832
5833 #undef elf_backend_want_p_paddr_set_to_zero
This page took 0.156364 seconds and 4 git commands to generate.