93baaf1ba1b0a47ed0fd36b6c280923e57c8bff1
[deliverable/binutils-gdb.git] / bfd / elfxx-ia64.c
1 /* IA-64 support for 64-bit ELF
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "opcode/ia64.h"
28 #include "elf/ia64.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31
32 #define ARCH_SIZE NN
33
34 #if ARCH_SIZE == 64
35 #define LOG_SECTION_ALIGN 3
36 #endif
37
38 #if ARCH_SIZE == 32
39 #define LOG_SECTION_ALIGN 2
40 #endif
41
42 /* THE RULES for all the stuff the linker creates --
43
44 GOT Entries created in response to LTOFF or LTOFF_FPTR
45 relocations. Dynamic relocs created for dynamic
46 symbols in an application; REL relocs for locals
47 in a shared library.
48
49 FPTR The canonical function descriptor. Created for local
50 symbols in applications. Descriptors for dynamic symbols
51 and local symbols in shared libraries are created by
52 ld.so. Thus there are no dynamic relocs against these
53 objects. The FPTR relocs for such _are_ passed through
54 to the dynamic relocation tables.
55
56 FULL_PLT Created for a PCREL21B relocation against a dynamic symbol.
57 Requires the creation of a PLTOFF entry. This does not
58 require any dynamic relocations.
59
60 PLTOFF Created by PLTOFF relocations. For local symbols, this
61 is an alternate function descriptor, and in shared libraries
62 requires two REL relocations. Note that this cannot be
63 transformed into an FPTR relocation, since it must be in
64 range of the GP. For dynamic symbols, this is a function
65 descriptor for a MIN_PLT entry, and requires one IPLT reloc.
66
67 MIN_PLT Created by PLTOFF entries against dynamic symbols. This
68 does not require dynamic relocations. */
69
70 /* Only add code for vms when the vms target is enabled. This is required
71 because it depends on vms-lib.c for its archive format and we don't want
72 to compile that code if it is not used. */
73 #if ARCH_SIZE == 64 && \
74 (defined (HAVE_bfd_elf64_ia64_vms_vec) || defined (HAVE_all_vecs))
75 #define INCLUDE_IA64_VMS
76 #endif
77
78
79 #define NELEMS(a) ((int) (sizeof (a) / sizeof ((a)[0])))
80
81 typedef struct bfd_hash_entry *(*new_hash_entry_func)
82 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
83
84 /* In dynamically (linker-) created sections, we generally need to keep track
85 of the place a symbol or expression got allocated to. This is done via hash
86 tables that store entries of the following type. */
87
88 struct elfNN_ia64_dyn_sym_info
89 {
90 /* The addend for which this entry is relevant. */
91 bfd_vma addend;
92
93 bfd_vma got_offset;
94 bfd_vma fptr_offset;
95 bfd_vma pltoff_offset;
96 bfd_vma plt_offset;
97 bfd_vma plt2_offset;
98 bfd_vma tprel_offset;
99 bfd_vma dtpmod_offset;
100 bfd_vma dtprel_offset;
101
102 /* The symbol table entry, if any, that this was derived from. */
103 struct elf_link_hash_entry *h;
104
105 /* Used to count non-got, non-plt relocations for delayed sizing
106 of relocation sections. */
107 struct elfNN_ia64_dyn_reloc_entry
108 {
109 struct elfNN_ia64_dyn_reloc_entry *next;
110 asection *srel;
111 int type;
112 int count;
113
114 /* Is this reloc against readonly section? */
115 bfd_boolean reltext;
116 } *reloc_entries;
117
118 /* TRUE when the section contents have been updated. */
119 unsigned got_done : 1;
120 unsigned fptr_done : 1;
121 unsigned pltoff_done : 1;
122 unsigned tprel_done : 1;
123 unsigned dtpmod_done : 1;
124 unsigned dtprel_done : 1;
125
126 /* TRUE for the different kinds of linker data we want created. */
127 unsigned want_got : 1;
128 unsigned want_gotx : 1;
129 unsigned want_fptr : 1;
130 unsigned want_ltoff_fptr : 1;
131 unsigned want_plt : 1;
132 unsigned want_plt2 : 1;
133 unsigned want_pltoff : 1;
134 unsigned want_tprel : 1;
135 unsigned want_dtpmod : 1;
136 unsigned want_dtprel : 1;
137 };
138
139 struct elfNN_ia64_local_hash_entry
140 {
141 int id;
142 unsigned int r_sym;
143 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
144 unsigned int count;
145 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
146 unsigned int sorted_count;
147 /* The size of elfNN_ia64_dyn_sym_info array. */
148 unsigned int size;
149 /* The array of elfNN_ia64_dyn_sym_info. */
150 struct elfNN_ia64_dyn_sym_info *info;
151
152 /* TRUE if this hash entry's addends was translated for
153 SHF_MERGE optimization. */
154 unsigned sec_merge_done : 1;
155 };
156
157 struct elfNN_ia64_link_hash_entry
158 {
159 struct elf_link_hash_entry root;
160 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
161 unsigned int count;
162 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
163 unsigned int sorted_count;
164 /* The size of elfNN_ia64_dyn_sym_info array. */
165 unsigned int size;
166 /* The array of elfNN_ia64_dyn_sym_info. */
167 struct elfNN_ia64_dyn_sym_info *info;
168 };
169
170 struct elfNN_ia64_link_hash_table
171 {
172 /* The main hash table. */
173 struct elf_link_hash_table root;
174
175 asection *fptr_sec; /* Function descriptor table (or NULL). */
176 asection *rel_fptr_sec; /* Dynamic relocation section for same. */
177 asection *pltoff_sec; /* Private descriptors for plt (or NULL). */
178 asection *rel_pltoff_sec; /* Dynamic relocation section for same. */
179
180 bfd_size_type minplt_entries; /* Number of minplt entries. */
181 unsigned reltext : 1; /* Are there relocs against readonly sections? */
182 unsigned self_dtpmod_done : 1;/* Has self DTPMOD entry been finished? */
183 bfd_vma self_dtpmod_offset; /* .got offset to self DTPMOD entry. */
184 /* There are maybe R_IA64_GPREL22 relocations, including those
185 optimized from R_IA64_LTOFF22X, against non-SHF_IA_64_SHORT
186 sections. We need to record those sections so that we can choose
187 a proper GP to cover all R_IA64_GPREL22 relocations. */
188 asection *max_short_sec; /* Maximum short output section. */
189 bfd_vma max_short_offset; /* Maximum short offset. */
190 asection *min_short_sec; /* Minimum short output section. */
191 bfd_vma min_short_offset; /* Minimum short offset. */
192
193 htab_t loc_hash_table;
194 void *loc_hash_memory;
195 };
196
197 struct elfNN_ia64_allocate_data
198 {
199 struct bfd_link_info *info;
200 bfd_size_type ofs;
201 bfd_boolean only_got;
202 };
203
204 #define elfNN_ia64_hash_table(p) \
205 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
206 == IA64_ELF_DATA ? ((struct elfNN_ia64_link_hash_table *) ((p)->hash)) : NULL)
207
208 static struct elfNN_ia64_dyn_sym_info * get_dyn_sym_info
209 (struct elfNN_ia64_link_hash_table *ia64_info,
210 struct elf_link_hash_entry *h,
211 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create);
212 static bfd_boolean elfNN_ia64_dynamic_symbol_p
213 (struct elf_link_hash_entry *h, struct bfd_link_info *info, int);
214 static bfd_reloc_status_type elfNN_ia64_install_value
215 (bfd_byte *hit_addr, bfd_vma val, unsigned int r_type);
216 static bfd_boolean elfNN_ia64_choose_gp
217 (bfd *abfd, struct bfd_link_info *info);
218 static void elfNN_ia64_relax_ldxmov
219 (bfd_byte *contents, bfd_vma off);
220 static void elfNN_ia64_dyn_sym_traverse
221 (struct elfNN_ia64_link_hash_table *ia64_info,
222 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
223 PTR info);
224 static bfd_boolean allocate_global_data_got
225 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
226 static bfd_boolean allocate_global_fptr_got
227 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
228 static bfd_boolean allocate_local_got
229 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
230 static bfd_boolean elfNN_ia64_hpux_vec
231 (const bfd_target *vec);
232 static bfd_boolean allocate_dynrel_entries
233 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
234 static asection *get_pltoff
235 (bfd *abfd, struct bfd_link_info *info,
236 struct elfNN_ia64_link_hash_table *ia64_info);
237 \f
238 /* ia64-specific relocation. */
239
240 /* Perform a relocation. Not much to do here as all the hard work is
241 done in elfNN_ia64_final_link_relocate. */
242 static bfd_reloc_status_type
243 elfNN_ia64_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc,
244 asymbol *sym ATTRIBUTE_UNUSED,
245 PTR data ATTRIBUTE_UNUSED, asection *input_section,
246 bfd *output_bfd, char **error_message)
247 {
248 if (output_bfd)
249 {
250 reloc->address += input_section->output_offset;
251 return bfd_reloc_ok;
252 }
253
254 if (input_section->flags & SEC_DEBUGGING)
255 return bfd_reloc_continue;
256
257 *error_message = "Unsupported call to elfNN_ia64_reloc";
258 return bfd_reloc_notsupported;
259 }
260
261 #define IA64_HOWTO(TYPE, NAME, SIZE, PCREL, IN) \
262 HOWTO (TYPE, 0, SIZE, 0, PCREL, 0, complain_overflow_signed, \
263 elfNN_ia64_reloc, NAME, FALSE, 0, -1, IN)
264
265 /* This table has to be sorted according to increasing number of the
266 TYPE field. */
267 static reloc_howto_type ia64_howto_table[] =
268 {
269 IA64_HOWTO (R_IA64_NONE, "NONE", 0, FALSE, TRUE),
270
271 IA64_HOWTO (R_IA64_IMM14, "IMM14", 0, FALSE, TRUE),
272 IA64_HOWTO (R_IA64_IMM22, "IMM22", 0, FALSE, TRUE),
273 IA64_HOWTO (R_IA64_IMM64, "IMM64", 0, FALSE, TRUE),
274 IA64_HOWTO (R_IA64_DIR32MSB, "DIR32MSB", 2, FALSE, TRUE),
275 IA64_HOWTO (R_IA64_DIR32LSB, "DIR32LSB", 2, FALSE, TRUE),
276 IA64_HOWTO (R_IA64_DIR64MSB, "DIR64MSB", 4, FALSE, TRUE),
277 IA64_HOWTO (R_IA64_DIR64LSB, "DIR64LSB", 4, FALSE, TRUE),
278
279 IA64_HOWTO (R_IA64_GPREL22, "GPREL22", 0, FALSE, TRUE),
280 IA64_HOWTO (R_IA64_GPREL64I, "GPREL64I", 0, FALSE, TRUE),
281 IA64_HOWTO (R_IA64_GPREL32MSB, "GPREL32MSB", 2, FALSE, TRUE),
282 IA64_HOWTO (R_IA64_GPREL32LSB, "GPREL32LSB", 2, FALSE, TRUE),
283 IA64_HOWTO (R_IA64_GPREL64MSB, "GPREL64MSB", 4, FALSE, TRUE),
284 IA64_HOWTO (R_IA64_GPREL64LSB, "GPREL64LSB", 4, FALSE, TRUE),
285
286 IA64_HOWTO (R_IA64_LTOFF22, "LTOFF22", 0, FALSE, TRUE),
287 IA64_HOWTO (R_IA64_LTOFF64I, "LTOFF64I", 0, FALSE, TRUE),
288
289 IA64_HOWTO (R_IA64_PLTOFF22, "PLTOFF22", 0, FALSE, TRUE),
290 IA64_HOWTO (R_IA64_PLTOFF64I, "PLTOFF64I", 0, FALSE, TRUE),
291 IA64_HOWTO (R_IA64_PLTOFF64MSB, "PLTOFF64MSB", 4, FALSE, TRUE),
292 IA64_HOWTO (R_IA64_PLTOFF64LSB, "PLTOFF64LSB", 4, FALSE, TRUE),
293
294 IA64_HOWTO (R_IA64_FPTR64I, "FPTR64I", 0, FALSE, TRUE),
295 IA64_HOWTO (R_IA64_FPTR32MSB, "FPTR32MSB", 2, FALSE, TRUE),
296 IA64_HOWTO (R_IA64_FPTR32LSB, "FPTR32LSB", 2, FALSE, TRUE),
297 IA64_HOWTO (R_IA64_FPTR64MSB, "FPTR64MSB", 4, FALSE, TRUE),
298 IA64_HOWTO (R_IA64_FPTR64LSB, "FPTR64LSB", 4, FALSE, TRUE),
299
300 IA64_HOWTO (R_IA64_PCREL60B, "PCREL60B", 0, TRUE, TRUE),
301 IA64_HOWTO (R_IA64_PCREL21B, "PCREL21B", 0, TRUE, TRUE),
302 IA64_HOWTO (R_IA64_PCREL21M, "PCREL21M", 0, TRUE, TRUE),
303 IA64_HOWTO (R_IA64_PCREL21F, "PCREL21F", 0, TRUE, TRUE),
304 IA64_HOWTO (R_IA64_PCREL32MSB, "PCREL32MSB", 2, TRUE, TRUE),
305 IA64_HOWTO (R_IA64_PCREL32LSB, "PCREL32LSB", 2, TRUE, TRUE),
306 IA64_HOWTO (R_IA64_PCREL64MSB, "PCREL64MSB", 4, TRUE, TRUE),
307 IA64_HOWTO (R_IA64_PCREL64LSB, "PCREL64LSB", 4, TRUE, TRUE),
308
309 IA64_HOWTO (R_IA64_LTOFF_FPTR22, "LTOFF_FPTR22", 0, FALSE, TRUE),
310 IA64_HOWTO (R_IA64_LTOFF_FPTR64I, "LTOFF_FPTR64I", 0, FALSE, TRUE),
311 IA64_HOWTO (R_IA64_LTOFF_FPTR32MSB, "LTOFF_FPTR32MSB", 2, FALSE, TRUE),
312 IA64_HOWTO (R_IA64_LTOFF_FPTR32LSB, "LTOFF_FPTR32LSB", 2, FALSE, TRUE),
313 IA64_HOWTO (R_IA64_LTOFF_FPTR64MSB, "LTOFF_FPTR64MSB", 4, FALSE, TRUE),
314 IA64_HOWTO (R_IA64_LTOFF_FPTR64LSB, "LTOFF_FPTR64LSB", 4, FALSE, TRUE),
315
316 IA64_HOWTO (R_IA64_SEGREL32MSB, "SEGREL32MSB", 2, FALSE, TRUE),
317 IA64_HOWTO (R_IA64_SEGREL32LSB, "SEGREL32LSB", 2, FALSE, TRUE),
318 IA64_HOWTO (R_IA64_SEGREL64MSB, "SEGREL64MSB", 4, FALSE, TRUE),
319 IA64_HOWTO (R_IA64_SEGREL64LSB, "SEGREL64LSB", 4, FALSE, TRUE),
320
321 IA64_HOWTO (R_IA64_SECREL32MSB, "SECREL32MSB", 2, FALSE, TRUE),
322 IA64_HOWTO (R_IA64_SECREL32LSB, "SECREL32LSB", 2, FALSE, TRUE),
323 IA64_HOWTO (R_IA64_SECREL64MSB, "SECREL64MSB", 4, FALSE, TRUE),
324 IA64_HOWTO (R_IA64_SECREL64LSB, "SECREL64LSB", 4, FALSE, TRUE),
325
326 IA64_HOWTO (R_IA64_REL32MSB, "REL32MSB", 2, FALSE, TRUE),
327 IA64_HOWTO (R_IA64_REL32LSB, "REL32LSB", 2, FALSE, TRUE),
328 IA64_HOWTO (R_IA64_REL64MSB, "REL64MSB", 4, FALSE, TRUE),
329 IA64_HOWTO (R_IA64_REL64LSB, "REL64LSB", 4, FALSE, TRUE),
330
331 IA64_HOWTO (R_IA64_LTV32MSB, "LTV32MSB", 2, FALSE, TRUE),
332 IA64_HOWTO (R_IA64_LTV32LSB, "LTV32LSB", 2, FALSE, TRUE),
333 IA64_HOWTO (R_IA64_LTV64MSB, "LTV64MSB", 4, FALSE, TRUE),
334 IA64_HOWTO (R_IA64_LTV64LSB, "LTV64LSB", 4, FALSE, TRUE),
335
336 IA64_HOWTO (R_IA64_PCREL21BI, "PCREL21BI", 0, TRUE, TRUE),
337 IA64_HOWTO (R_IA64_PCREL22, "PCREL22", 0, TRUE, TRUE),
338 IA64_HOWTO (R_IA64_PCREL64I, "PCREL64I", 0, TRUE, TRUE),
339
340 IA64_HOWTO (R_IA64_IPLTMSB, "IPLTMSB", 4, FALSE, TRUE),
341 IA64_HOWTO (R_IA64_IPLTLSB, "IPLTLSB", 4, FALSE, TRUE),
342 IA64_HOWTO (R_IA64_COPY, "COPY", 4, FALSE, TRUE),
343 IA64_HOWTO (R_IA64_LTOFF22X, "LTOFF22X", 0, FALSE, TRUE),
344 IA64_HOWTO (R_IA64_LDXMOV, "LDXMOV", 0, FALSE, TRUE),
345
346 IA64_HOWTO (R_IA64_TPREL14, "TPREL14", 0, FALSE, FALSE),
347 IA64_HOWTO (R_IA64_TPREL22, "TPREL22", 0, FALSE, FALSE),
348 IA64_HOWTO (R_IA64_TPREL64I, "TPREL64I", 0, FALSE, FALSE),
349 IA64_HOWTO (R_IA64_TPREL64MSB, "TPREL64MSB", 4, FALSE, FALSE),
350 IA64_HOWTO (R_IA64_TPREL64LSB, "TPREL64LSB", 4, FALSE, FALSE),
351 IA64_HOWTO (R_IA64_LTOFF_TPREL22, "LTOFF_TPREL22", 0, FALSE, FALSE),
352
353 IA64_HOWTO (R_IA64_DTPMOD64MSB, "DTPMOD64MSB", 4, FALSE, FALSE),
354 IA64_HOWTO (R_IA64_DTPMOD64LSB, "DTPMOD64LSB", 4, FALSE, FALSE),
355 IA64_HOWTO (R_IA64_LTOFF_DTPMOD22, "LTOFF_DTPMOD22", 0, FALSE, FALSE),
356
357 IA64_HOWTO (R_IA64_DTPREL14, "DTPREL14", 0, FALSE, FALSE),
358 IA64_HOWTO (R_IA64_DTPREL22, "DTPREL22", 0, FALSE, FALSE),
359 IA64_HOWTO (R_IA64_DTPREL64I, "DTPREL64I", 0, FALSE, FALSE),
360 IA64_HOWTO (R_IA64_DTPREL32MSB, "DTPREL32MSB", 2, FALSE, FALSE),
361 IA64_HOWTO (R_IA64_DTPREL32LSB, "DTPREL32LSB", 2, FALSE, FALSE),
362 IA64_HOWTO (R_IA64_DTPREL64MSB, "DTPREL64MSB", 4, FALSE, FALSE),
363 IA64_HOWTO (R_IA64_DTPREL64LSB, "DTPREL64LSB", 4, FALSE, FALSE),
364 IA64_HOWTO (R_IA64_LTOFF_DTPREL22, "LTOFF_DTPREL22", 0, FALSE, FALSE),
365 };
366
367 static unsigned char elf_code_to_howto_index[R_IA64_MAX_RELOC_CODE + 1];
368
369 /* Given a BFD reloc type, return the matching HOWTO structure. */
370
371 static reloc_howto_type *
372 lookup_howto (unsigned int rtype)
373 {
374 static int inited = 0;
375 int i;
376
377 if (!inited)
378 {
379 inited = 1;
380
381 memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index));
382 for (i = 0; i < NELEMS (ia64_howto_table); ++i)
383 elf_code_to_howto_index[ia64_howto_table[i].type] = i;
384 }
385
386 if (rtype > R_IA64_MAX_RELOC_CODE)
387 return 0;
388 i = elf_code_to_howto_index[rtype];
389 if (i >= NELEMS (ia64_howto_table))
390 return 0;
391 return ia64_howto_table + i;
392 }
393
394 static reloc_howto_type*
395 elfNN_ia64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
396 bfd_reloc_code_real_type bfd_code)
397 {
398 unsigned int rtype;
399
400 switch (bfd_code)
401 {
402 case BFD_RELOC_NONE: rtype = R_IA64_NONE; break;
403
404 case BFD_RELOC_IA64_IMM14: rtype = R_IA64_IMM14; break;
405 case BFD_RELOC_IA64_IMM22: rtype = R_IA64_IMM22; break;
406 case BFD_RELOC_IA64_IMM64: rtype = R_IA64_IMM64; break;
407
408 case BFD_RELOC_IA64_DIR32MSB: rtype = R_IA64_DIR32MSB; break;
409 case BFD_RELOC_IA64_DIR32LSB: rtype = R_IA64_DIR32LSB; break;
410 case BFD_RELOC_IA64_DIR64MSB: rtype = R_IA64_DIR64MSB; break;
411 case BFD_RELOC_IA64_DIR64LSB: rtype = R_IA64_DIR64LSB; break;
412
413 case BFD_RELOC_IA64_GPREL22: rtype = R_IA64_GPREL22; break;
414 case BFD_RELOC_IA64_GPREL64I: rtype = R_IA64_GPREL64I; break;
415 case BFD_RELOC_IA64_GPREL32MSB: rtype = R_IA64_GPREL32MSB; break;
416 case BFD_RELOC_IA64_GPREL32LSB: rtype = R_IA64_GPREL32LSB; break;
417 case BFD_RELOC_IA64_GPREL64MSB: rtype = R_IA64_GPREL64MSB; break;
418 case BFD_RELOC_IA64_GPREL64LSB: rtype = R_IA64_GPREL64LSB; break;
419
420 case BFD_RELOC_IA64_LTOFF22: rtype = R_IA64_LTOFF22; break;
421 case BFD_RELOC_IA64_LTOFF64I: rtype = R_IA64_LTOFF64I; break;
422
423 case BFD_RELOC_IA64_PLTOFF22: rtype = R_IA64_PLTOFF22; break;
424 case BFD_RELOC_IA64_PLTOFF64I: rtype = R_IA64_PLTOFF64I; break;
425 case BFD_RELOC_IA64_PLTOFF64MSB: rtype = R_IA64_PLTOFF64MSB; break;
426 case BFD_RELOC_IA64_PLTOFF64LSB: rtype = R_IA64_PLTOFF64LSB; break;
427 case BFD_RELOC_IA64_FPTR64I: rtype = R_IA64_FPTR64I; break;
428 case BFD_RELOC_IA64_FPTR32MSB: rtype = R_IA64_FPTR32MSB; break;
429 case BFD_RELOC_IA64_FPTR32LSB: rtype = R_IA64_FPTR32LSB; break;
430 case BFD_RELOC_IA64_FPTR64MSB: rtype = R_IA64_FPTR64MSB; break;
431 case BFD_RELOC_IA64_FPTR64LSB: rtype = R_IA64_FPTR64LSB; break;
432
433 case BFD_RELOC_IA64_PCREL21B: rtype = R_IA64_PCREL21B; break;
434 case BFD_RELOC_IA64_PCREL21BI: rtype = R_IA64_PCREL21BI; break;
435 case BFD_RELOC_IA64_PCREL21M: rtype = R_IA64_PCREL21M; break;
436 case BFD_RELOC_IA64_PCREL21F: rtype = R_IA64_PCREL21F; break;
437 case BFD_RELOC_IA64_PCREL22: rtype = R_IA64_PCREL22; break;
438 case BFD_RELOC_IA64_PCREL60B: rtype = R_IA64_PCREL60B; break;
439 case BFD_RELOC_IA64_PCREL64I: rtype = R_IA64_PCREL64I; break;
440 case BFD_RELOC_IA64_PCREL32MSB: rtype = R_IA64_PCREL32MSB; break;
441 case BFD_RELOC_IA64_PCREL32LSB: rtype = R_IA64_PCREL32LSB; break;
442 case BFD_RELOC_IA64_PCREL64MSB: rtype = R_IA64_PCREL64MSB; break;
443 case BFD_RELOC_IA64_PCREL64LSB: rtype = R_IA64_PCREL64LSB; break;
444
445 case BFD_RELOC_IA64_LTOFF_FPTR22: rtype = R_IA64_LTOFF_FPTR22; break;
446 case BFD_RELOC_IA64_LTOFF_FPTR64I: rtype = R_IA64_LTOFF_FPTR64I; break;
447 case BFD_RELOC_IA64_LTOFF_FPTR32MSB: rtype = R_IA64_LTOFF_FPTR32MSB; break;
448 case BFD_RELOC_IA64_LTOFF_FPTR32LSB: rtype = R_IA64_LTOFF_FPTR32LSB; break;
449 case BFD_RELOC_IA64_LTOFF_FPTR64MSB: rtype = R_IA64_LTOFF_FPTR64MSB; break;
450 case BFD_RELOC_IA64_LTOFF_FPTR64LSB: rtype = R_IA64_LTOFF_FPTR64LSB; break;
451
452 case BFD_RELOC_IA64_SEGREL32MSB: rtype = R_IA64_SEGREL32MSB; break;
453 case BFD_RELOC_IA64_SEGREL32LSB: rtype = R_IA64_SEGREL32LSB; break;
454 case BFD_RELOC_IA64_SEGREL64MSB: rtype = R_IA64_SEGREL64MSB; break;
455 case BFD_RELOC_IA64_SEGREL64LSB: rtype = R_IA64_SEGREL64LSB; break;
456
457 case BFD_RELOC_IA64_SECREL32MSB: rtype = R_IA64_SECREL32MSB; break;
458 case BFD_RELOC_IA64_SECREL32LSB: rtype = R_IA64_SECREL32LSB; break;
459 case BFD_RELOC_IA64_SECREL64MSB: rtype = R_IA64_SECREL64MSB; break;
460 case BFD_RELOC_IA64_SECREL64LSB: rtype = R_IA64_SECREL64LSB; break;
461
462 case BFD_RELOC_IA64_REL32MSB: rtype = R_IA64_REL32MSB; break;
463 case BFD_RELOC_IA64_REL32LSB: rtype = R_IA64_REL32LSB; break;
464 case BFD_RELOC_IA64_REL64MSB: rtype = R_IA64_REL64MSB; break;
465 case BFD_RELOC_IA64_REL64LSB: rtype = R_IA64_REL64LSB; break;
466
467 case BFD_RELOC_IA64_LTV32MSB: rtype = R_IA64_LTV32MSB; break;
468 case BFD_RELOC_IA64_LTV32LSB: rtype = R_IA64_LTV32LSB; break;
469 case BFD_RELOC_IA64_LTV64MSB: rtype = R_IA64_LTV64MSB; break;
470 case BFD_RELOC_IA64_LTV64LSB: rtype = R_IA64_LTV64LSB; break;
471
472 case BFD_RELOC_IA64_IPLTMSB: rtype = R_IA64_IPLTMSB; break;
473 case BFD_RELOC_IA64_IPLTLSB: rtype = R_IA64_IPLTLSB; break;
474 case BFD_RELOC_IA64_COPY: rtype = R_IA64_COPY; break;
475 case BFD_RELOC_IA64_LTOFF22X: rtype = R_IA64_LTOFF22X; break;
476 case BFD_RELOC_IA64_LDXMOV: rtype = R_IA64_LDXMOV; break;
477
478 case BFD_RELOC_IA64_TPREL14: rtype = R_IA64_TPREL14; break;
479 case BFD_RELOC_IA64_TPREL22: rtype = R_IA64_TPREL22; break;
480 case BFD_RELOC_IA64_TPREL64I: rtype = R_IA64_TPREL64I; break;
481 case BFD_RELOC_IA64_TPREL64MSB: rtype = R_IA64_TPREL64MSB; break;
482 case BFD_RELOC_IA64_TPREL64LSB: rtype = R_IA64_TPREL64LSB; break;
483 case BFD_RELOC_IA64_LTOFF_TPREL22: rtype = R_IA64_LTOFF_TPREL22; break;
484
485 case BFD_RELOC_IA64_DTPMOD64MSB: rtype = R_IA64_DTPMOD64MSB; break;
486 case BFD_RELOC_IA64_DTPMOD64LSB: rtype = R_IA64_DTPMOD64LSB; break;
487 case BFD_RELOC_IA64_LTOFF_DTPMOD22: rtype = R_IA64_LTOFF_DTPMOD22; break;
488
489 case BFD_RELOC_IA64_DTPREL14: rtype = R_IA64_DTPREL14; break;
490 case BFD_RELOC_IA64_DTPREL22: rtype = R_IA64_DTPREL22; break;
491 case BFD_RELOC_IA64_DTPREL64I: rtype = R_IA64_DTPREL64I; break;
492 case BFD_RELOC_IA64_DTPREL32MSB: rtype = R_IA64_DTPREL32MSB; break;
493 case BFD_RELOC_IA64_DTPREL32LSB: rtype = R_IA64_DTPREL32LSB; break;
494 case BFD_RELOC_IA64_DTPREL64MSB: rtype = R_IA64_DTPREL64MSB; break;
495 case BFD_RELOC_IA64_DTPREL64LSB: rtype = R_IA64_DTPREL64LSB; break;
496 case BFD_RELOC_IA64_LTOFF_DTPREL22: rtype = R_IA64_LTOFF_DTPREL22; break;
497
498 default: return 0;
499 }
500 return lookup_howto (rtype);
501 }
502
503 static reloc_howto_type *
504 elfNN_ia64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
505 const char *r_name)
506 {
507 unsigned int i;
508
509 for (i = 0;
510 i < sizeof (ia64_howto_table) / sizeof (ia64_howto_table[0]);
511 i++)
512 if (ia64_howto_table[i].name != NULL
513 && strcasecmp (ia64_howto_table[i].name, r_name) == 0)
514 return &ia64_howto_table[i];
515
516 return NULL;
517 }
518
519 /* Given a ELF reloc, return the matching HOWTO structure. */
520
521 static void
522 elfNN_ia64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
523 arelent *bfd_reloc,
524 Elf_Internal_Rela *elf_reloc)
525 {
526 bfd_reloc->howto
527 = lookup_howto ((unsigned int) ELFNN_R_TYPE (elf_reloc->r_info));
528 }
529 \f
530 #define PLT_HEADER_SIZE (3 * 16)
531 #define PLT_MIN_ENTRY_SIZE (1 * 16)
532 #define PLT_FULL_ENTRY_SIZE (2 * 16)
533 #define PLT_RESERVED_WORDS 3
534
535 static const bfd_byte plt_header[PLT_HEADER_SIZE] =
536 {
537 0x0b, 0x10, 0x00, 0x1c, 0x00, 0x21, /* [MMI] mov r2=r14;; */
538 0xe0, 0x00, 0x08, 0x00, 0x48, 0x00, /* addl r14=0,r2 */
539 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
540 0x0b, 0x80, 0x20, 0x1c, 0x18, 0x14, /* [MMI] ld8 r16=[r14],8;; */
541 0x10, 0x41, 0x38, 0x30, 0x28, 0x00, /* ld8 r17=[r14],8 */
542 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
543 0x11, 0x08, 0x00, 0x1c, 0x18, 0x10, /* [MIB] ld8 r1=[r14] */
544 0x60, 0x88, 0x04, 0x80, 0x03, 0x00, /* mov b6=r17 */
545 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
546 };
547
548 static const bfd_byte plt_min_entry[PLT_MIN_ENTRY_SIZE] =
549 {
550 0x11, 0x78, 0x00, 0x00, 0x00, 0x24, /* [MIB] mov r15=0 */
551 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, /* nop.i 0x0 */
552 0x00, 0x00, 0x00, 0x40 /* br.few 0 <PLT0>;; */
553 };
554
555 static const bfd_byte plt_full_entry[PLT_FULL_ENTRY_SIZE] =
556 {
557 0x0b, 0x78, 0x00, 0x02, 0x00, 0x24, /* [MMI] addl r15=0,r1;; */
558 0x00, 0x41, 0x3c, 0x70, 0x29, 0xc0, /* ld8.acq r16=[r15],8*/
559 0x01, 0x08, 0x00, 0x84, /* mov r14=r1;; */
560 0x11, 0x08, 0x00, 0x1e, 0x18, 0x10, /* [MIB] ld8 r1=[r15] */
561 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
562 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
563 };
564
565 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
566
567 static const bfd_byte oor_brl[16] =
568 {
569 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
570 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.sptk.few tgt;; */
571 0x00, 0x00, 0x00, 0xc0
572 };
573
574 static const bfd_byte oor_ip[48] =
575 {
576 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
577 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, /* movl r15=0 */
578 0x01, 0x00, 0x00, 0x60,
579 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MII] nop.m 0 */
580 0x00, 0x01, 0x00, 0x60, 0x00, 0x00, /* mov r16=ip;; */
581 0xf2, 0x80, 0x00, 0x80, /* add r16=r15,r16;; */
582 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */
583 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
584 0x60, 0x00, 0x80, 0x00 /* br b6;; */
585 };
586
587 static size_t oor_branch_size = sizeof (oor_brl);
588
589 void
590 bfd_elfNN_ia64_after_parse (int itanium)
591 {
592 oor_branch_size = itanium ? sizeof (oor_ip) : sizeof (oor_brl);
593 }
594
595 #define BTYPE_SHIFT 6
596 #define Y_SHIFT 26
597 #define X6_SHIFT 27
598 #define X4_SHIFT 27
599 #define X3_SHIFT 33
600 #define X2_SHIFT 31
601 #define X_SHIFT 33
602 #define OPCODE_SHIFT 37
603
604 #define OPCODE_BITS (0xfLL << OPCODE_SHIFT)
605 #define X6_BITS (0x3fLL << X6_SHIFT)
606 #define X4_BITS (0xfLL << X4_SHIFT)
607 #define X3_BITS (0x7LL << X3_SHIFT)
608 #define X2_BITS (0x3LL << X2_SHIFT)
609 #define X_BITS (0x1LL << X_SHIFT)
610 #define Y_BITS (0x1LL << Y_SHIFT)
611 #define BTYPE_BITS (0x7LL << BTYPE_SHIFT)
612 #define PREDICATE_BITS (0x3fLL)
613
614 #define IS_NOP_B(i) \
615 (((i) & (OPCODE_BITS | X6_BITS)) == (2LL << OPCODE_SHIFT))
616 #define IS_NOP_F(i) \
617 (((i) & (OPCODE_BITS | X_BITS | X6_BITS | Y_BITS)) \
618 == (0x1LL << X6_SHIFT))
619 #define IS_NOP_I(i) \
620 (((i) & (OPCODE_BITS | X3_BITS | X6_BITS | Y_BITS)) \
621 == (0x1LL << X6_SHIFT))
622 #define IS_NOP_M(i) \
623 (((i) & (OPCODE_BITS | X3_BITS | X2_BITS | X4_BITS | Y_BITS)) \
624 == (0x1LL << X4_SHIFT))
625 #define IS_BR_COND(i) \
626 (((i) & (OPCODE_BITS | BTYPE_BITS)) == (0x4LL << OPCODE_SHIFT))
627 #define IS_BR_CALL(i) \
628 (((i) & OPCODE_BITS) == (0x5LL << OPCODE_SHIFT))
629
630 static bfd_boolean
631 elfNN_ia64_relax_br (bfd_byte *contents, bfd_vma off)
632 {
633 unsigned int template_val, mlx;
634 bfd_vma t0, t1, s0, s1, s2, br_code;
635 long br_slot;
636 bfd_byte *hit_addr;
637
638 hit_addr = (bfd_byte *) (contents + off);
639 br_slot = (long) hit_addr & 0x3;
640 hit_addr -= br_slot;
641 t0 = bfd_getl64 (hit_addr + 0);
642 t1 = bfd_getl64 (hit_addr + 8);
643
644 /* Check if we can turn br into brl. A label is always at the start
645 of the bundle. Even if there are predicates on NOPs, we still
646 perform this optimization. */
647 template_val = t0 & 0x1e;
648 s0 = (t0 >> 5) & 0x1ffffffffffLL;
649 s1 = ((t0 >> 46) | (t1 << 18)) & 0x1ffffffffffLL;
650 s2 = (t1 >> 23) & 0x1ffffffffffLL;
651 switch (br_slot)
652 {
653 case 0:
654 /* Check if slot 1 and slot 2 are NOPs. Possible template is
655 BBB. We only need to check nop.b. */
656 if (!(IS_NOP_B (s1) && IS_NOP_B (s2)))
657 return FALSE;
658 br_code = s0;
659 break;
660 case 1:
661 /* Check if slot 2 is NOP. Possible templates are MBB and BBB.
662 For BBB, slot 0 also has to be nop.b. */
663 if (!((template_val == 0x12 /* MBB */
664 && IS_NOP_B (s2))
665 || (template_val == 0x16 /* BBB */
666 && IS_NOP_B (s0)
667 && IS_NOP_B (s2))))
668 return FALSE;
669 br_code = s1;
670 break;
671 case 2:
672 /* Check if slot 1 is NOP. Possible templates are MIB, MBB, BBB,
673 MMB and MFB. For BBB, slot 0 also has to be nop.b. */
674 if (!((template_val == 0x10 /* MIB */
675 && IS_NOP_I (s1))
676 || (template_val == 0x12 /* MBB */
677 && IS_NOP_B (s1))
678 || (template_val == 0x16 /* BBB */
679 && IS_NOP_B (s0)
680 && IS_NOP_B (s1))
681 || (template_val == 0x18 /* MMB */
682 && IS_NOP_M (s1))
683 || (template_val == 0x1c /* MFB */
684 && IS_NOP_F (s1))))
685 return FALSE;
686 br_code = s2;
687 break;
688 default:
689 /* It should never happen. */
690 abort ();
691 }
692
693 /* We can turn br.cond/br.call into brl.cond/brl.call. */
694 if (!(IS_BR_COND (br_code) || IS_BR_CALL (br_code)))
695 return FALSE;
696
697 /* Turn br into brl by setting bit 40. */
698 br_code |= 0x1LL << 40;
699
700 /* Turn the old bundle into a MLX bundle with the same stop-bit
701 variety. */
702 if (t0 & 0x1)
703 mlx = 0x5;
704 else
705 mlx = 0x4;
706
707 if (template_val == 0x16)
708 {
709 /* For BBB, we need to put nop.m in slot 0. We keep the original
710 predicate only if slot 0 isn't br. */
711 if (br_slot == 0)
712 t0 = 0LL;
713 else
714 t0 &= PREDICATE_BITS << 5;
715 t0 |= 0x1LL << (X4_SHIFT + 5);
716 }
717 else
718 {
719 /* Keep the original instruction in slot 0. */
720 t0 &= 0x1ffffffffffLL << 5;
721 }
722
723 t0 |= mlx;
724
725 /* Put brl in slot 1. */
726 t1 = br_code << 23;
727
728 bfd_putl64 (t0, hit_addr);
729 bfd_putl64 (t1, hit_addr + 8);
730 return TRUE;
731 }
732
733 static void
734 elfNN_ia64_relax_brl (bfd_byte *contents, bfd_vma off)
735 {
736 int template_val;
737 bfd_byte *hit_addr;
738 bfd_vma t0, t1, i0, i1, i2;
739
740 hit_addr = (bfd_byte *) (contents + off);
741 hit_addr -= (long) hit_addr & 0x3;
742 t0 = bfd_getl64 (hit_addr);
743 t1 = bfd_getl64 (hit_addr + 8);
744
745 /* Keep the instruction in slot 0. */
746 i0 = (t0 >> 5) & 0x1ffffffffffLL;
747 /* Use nop.b for slot 1. */
748 i1 = 0x4000000000LL;
749 /* For slot 2, turn brl into br by masking out bit 40. */
750 i2 = (t1 >> 23) & 0x0ffffffffffLL;
751
752 /* Turn a MLX bundle into a MBB bundle with the same stop-bit
753 variety. */
754 if (t0 & 0x1)
755 template_val = 0x13;
756 else
757 template_val = 0x12;
758 t0 = (i1 << 46) | (i0 << 5) | template_val;
759 t1 = (i2 << 23) | (i1 >> 18);
760
761 bfd_putl64 (t0, hit_addr);
762 bfd_putl64 (t1, hit_addr + 8);
763 }
764
765 /* Rename some of the generic section flags to better document how they
766 are used here. */
767 #define skip_relax_pass_0 sec_flg0
768 #define skip_relax_pass_1 sec_flg1
769
770 \f
771 /* These functions do relaxation for IA-64 ELF. */
772
773 static void
774 elfNN_ia64_update_short_info (asection *sec, bfd_vma offset,
775 struct elfNN_ia64_link_hash_table *ia64_info)
776 {
777 /* Skip ABS and SHF_IA_64_SHORT sections. */
778 if (sec == bfd_abs_section_ptr
779 || (sec->flags & SEC_SMALL_DATA) != 0)
780 return;
781
782 if (!ia64_info->min_short_sec)
783 {
784 ia64_info->max_short_sec = sec;
785 ia64_info->max_short_offset = offset;
786 ia64_info->min_short_sec = sec;
787 ia64_info->min_short_offset = offset;
788 }
789 else if (sec == ia64_info->max_short_sec
790 && offset > ia64_info->max_short_offset)
791 ia64_info->max_short_offset = offset;
792 else if (sec == ia64_info->min_short_sec
793 && offset < ia64_info->min_short_offset)
794 ia64_info->min_short_offset = offset;
795 else if (sec->output_section->vma
796 > ia64_info->max_short_sec->vma)
797 {
798 ia64_info->max_short_sec = sec;
799 ia64_info->max_short_offset = offset;
800 }
801 else if (sec->output_section->vma
802 < ia64_info->min_short_sec->vma)
803 {
804 ia64_info->min_short_sec = sec;
805 ia64_info->min_short_offset = offset;
806 }
807 }
808
809 static bfd_boolean
810 elfNN_ia64_relax_section (bfd *abfd, asection *sec,
811 struct bfd_link_info *link_info,
812 bfd_boolean *again)
813 {
814 struct one_fixup
815 {
816 struct one_fixup *next;
817 asection *tsec;
818 bfd_vma toff;
819 bfd_vma trampoff;
820 };
821
822 Elf_Internal_Shdr *symtab_hdr;
823 Elf_Internal_Rela *internal_relocs;
824 Elf_Internal_Rela *irel, *irelend;
825 bfd_byte *contents;
826 Elf_Internal_Sym *isymbuf = NULL;
827 struct elfNN_ia64_link_hash_table *ia64_info;
828 struct one_fixup *fixups = NULL;
829 bfd_boolean changed_contents = FALSE;
830 bfd_boolean changed_relocs = FALSE;
831 bfd_boolean changed_got = FALSE;
832 bfd_boolean skip_relax_pass_0 = TRUE;
833 bfd_boolean skip_relax_pass_1 = TRUE;
834 bfd_vma gp = 0;
835
836 /* Assume we're not going to change any sizes, and we'll only need
837 one pass. */
838 *again = FALSE;
839
840 if (link_info->relocatable)
841 (*link_info->callbacks->einfo)
842 (_("%P%F: --relax and -r may not be used together\n"));
843
844 /* Don't even try to relax for non-ELF outputs. */
845 if (!is_elf_hash_table (link_info->hash))
846 return FALSE;
847
848 /* Nothing to do if there are no relocations or there is no need for
849 the current pass. */
850 if ((sec->flags & SEC_RELOC) == 0
851 || sec->reloc_count == 0
852 || (link_info->relax_pass == 0 && sec->skip_relax_pass_0)
853 || (link_info->relax_pass == 1 && sec->skip_relax_pass_1))
854 return TRUE;
855
856 ia64_info = elfNN_ia64_hash_table (link_info);
857 if (ia64_info == NULL)
858 return FALSE;
859
860 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
861
862 /* Load the relocations for this section. */
863 internal_relocs = (_bfd_elf_link_read_relocs
864 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
865 link_info->keep_memory));
866 if (internal_relocs == NULL)
867 return FALSE;
868
869 irelend = internal_relocs + sec->reloc_count;
870
871 /* Get the section contents. */
872 if (elf_section_data (sec)->this_hdr.contents != NULL)
873 contents = elf_section_data (sec)->this_hdr.contents;
874 else
875 {
876 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
877 goto error_return;
878 }
879
880 for (irel = internal_relocs; irel < irelend; irel++)
881 {
882 unsigned long r_type = ELFNN_R_TYPE (irel->r_info);
883 bfd_vma symaddr, reladdr, trampoff, toff, roff;
884 asection *tsec;
885 struct one_fixup *f;
886 bfd_size_type amt;
887 bfd_boolean is_branch;
888 struct elfNN_ia64_dyn_sym_info *dyn_i;
889 char symtype;
890
891 switch (r_type)
892 {
893 case R_IA64_PCREL21B:
894 case R_IA64_PCREL21BI:
895 case R_IA64_PCREL21M:
896 case R_IA64_PCREL21F:
897 /* In pass 1, all br relaxations are done. We can skip it. */
898 if (link_info->relax_pass == 1)
899 continue;
900 skip_relax_pass_0 = FALSE;
901 is_branch = TRUE;
902 break;
903
904 case R_IA64_PCREL60B:
905 /* We can't optimize brl to br in pass 0 since br relaxations
906 will increase the code size. Defer it to pass 1. */
907 if (link_info->relax_pass == 0)
908 {
909 skip_relax_pass_1 = FALSE;
910 continue;
911 }
912 is_branch = TRUE;
913 break;
914
915 case R_IA64_GPREL22:
916 /* Update max_short_sec/min_short_sec. */
917
918 case R_IA64_LTOFF22X:
919 case R_IA64_LDXMOV:
920 /* We can't relax ldx/mov in pass 0 since br relaxations will
921 increase the code size. Defer it to pass 1. */
922 if (link_info->relax_pass == 0)
923 {
924 skip_relax_pass_1 = FALSE;
925 continue;
926 }
927 is_branch = FALSE;
928 break;
929
930 default:
931 continue;
932 }
933
934 /* Get the value of the symbol referred to by the reloc. */
935 if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info)
936 {
937 /* A local symbol. */
938 Elf_Internal_Sym *isym;
939
940 /* Read this BFD's local symbols. */
941 if (isymbuf == NULL)
942 {
943 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
944 if (isymbuf == NULL)
945 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
946 symtab_hdr->sh_info, 0,
947 NULL, NULL, NULL);
948 if (isymbuf == 0)
949 goto error_return;
950 }
951
952 isym = isymbuf + ELFNN_R_SYM (irel->r_info);
953 if (isym->st_shndx == SHN_UNDEF)
954 continue; /* We can't do anything with undefined symbols. */
955 else if (isym->st_shndx == SHN_ABS)
956 tsec = bfd_abs_section_ptr;
957 else if (isym->st_shndx == SHN_COMMON)
958 tsec = bfd_com_section_ptr;
959 else if (isym->st_shndx == SHN_IA_64_ANSI_COMMON)
960 tsec = bfd_com_section_ptr;
961 else
962 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
963
964 toff = isym->st_value;
965 dyn_i = get_dyn_sym_info (ia64_info, NULL, abfd, irel, FALSE);
966 symtype = ELF_ST_TYPE (isym->st_info);
967 }
968 else
969 {
970 unsigned long indx;
971 struct elf_link_hash_entry *h;
972
973 indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info;
974 h = elf_sym_hashes (abfd)[indx];
975 BFD_ASSERT (h != NULL);
976
977 while (h->root.type == bfd_link_hash_indirect
978 || h->root.type == bfd_link_hash_warning)
979 h = (struct elf_link_hash_entry *) h->root.u.i.link;
980
981 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, irel, FALSE);
982
983 /* For branches to dynamic symbols, we're interested instead
984 in a branch to the PLT entry. */
985 if (is_branch && dyn_i && dyn_i->want_plt2)
986 {
987 /* Internal branches shouldn't be sent to the PLT.
988 Leave this for now and we'll give an error later. */
989 if (r_type != R_IA64_PCREL21B)
990 continue;
991
992 tsec = ia64_info->root.splt;
993 toff = dyn_i->plt2_offset;
994 BFD_ASSERT (irel->r_addend == 0);
995 }
996
997 /* Can't do anything else with dynamic symbols. */
998 else if (elfNN_ia64_dynamic_symbol_p (h, link_info, r_type))
999 continue;
1000
1001 else
1002 {
1003 /* We can't do anything with undefined symbols. */
1004 if (h->root.type == bfd_link_hash_undefined
1005 || h->root.type == bfd_link_hash_undefweak)
1006 continue;
1007
1008 tsec = h->root.u.def.section;
1009 toff = h->root.u.def.value;
1010 }
1011
1012 symtype = h->type;
1013 }
1014
1015 if (tsec->sec_info_type == ELF_INFO_TYPE_MERGE)
1016 {
1017 /* At this stage in linking, no SEC_MERGE symbol has been
1018 adjusted, so all references to such symbols need to be
1019 passed through _bfd_merged_section_offset. (Later, in
1020 relocate_section, all SEC_MERGE symbols *except* for
1021 section symbols have been adjusted.)
1022
1023 gas may reduce relocations against symbols in SEC_MERGE
1024 sections to a relocation against the section symbol when
1025 the original addend was zero. When the reloc is against
1026 a section symbol we should include the addend in the
1027 offset passed to _bfd_merged_section_offset, since the
1028 location of interest is the original symbol. On the
1029 other hand, an access to "sym+addend" where "sym" is not
1030 a section symbol should not include the addend; Such an
1031 access is presumed to be an offset from "sym"; The
1032 location of interest is just "sym". */
1033 if (symtype == STT_SECTION)
1034 toff += irel->r_addend;
1035
1036 toff = _bfd_merged_section_offset (abfd, &tsec,
1037 elf_section_data (tsec)->sec_info,
1038 toff);
1039
1040 if (symtype != STT_SECTION)
1041 toff += irel->r_addend;
1042 }
1043 else
1044 toff += irel->r_addend;
1045
1046 symaddr = tsec->output_section->vma + tsec->output_offset + toff;
1047
1048 roff = irel->r_offset;
1049
1050 if (is_branch)
1051 {
1052 bfd_signed_vma offset;
1053
1054 reladdr = (sec->output_section->vma
1055 + sec->output_offset
1056 + roff) & (bfd_vma) -4;
1057
1058 /* The .plt section is aligned at 32byte and the .text section
1059 is aligned at 64byte. The .text section is right after the
1060 .plt section. After the first relaxation pass, linker may
1061 increase the gap between the .plt and .text sections up
1062 to 32byte. We assume linker will always insert 32byte
1063 between the .plt and .text sections after the the first
1064 relaxation pass. */
1065 if (tsec == ia64_info->root.splt)
1066 offset = -0x1000000 + 32;
1067 else
1068 offset = -0x1000000;
1069
1070 /* If the branch is in range, no need to do anything. */
1071 if ((bfd_signed_vma) (symaddr - reladdr) >= offset
1072 && (bfd_signed_vma) (symaddr - reladdr) <= 0x0FFFFF0)
1073 {
1074 /* If the 60-bit branch is in 21-bit range, optimize it. */
1075 if (r_type == R_IA64_PCREL60B)
1076 {
1077 elfNN_ia64_relax_brl (contents, roff);
1078
1079 irel->r_info
1080 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1081 R_IA64_PCREL21B);
1082
1083 /* If the original relocation offset points to slot
1084 1, change it to slot 2. */
1085 if ((irel->r_offset & 3) == 1)
1086 irel->r_offset += 1;
1087 }
1088
1089 continue;
1090 }
1091 else if (r_type == R_IA64_PCREL60B)
1092 continue;
1093 else if (elfNN_ia64_relax_br (contents, roff))
1094 {
1095 irel->r_info
1096 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1097 R_IA64_PCREL60B);
1098
1099 /* Make the relocation offset point to slot 1. */
1100 irel->r_offset = (irel->r_offset & ~((bfd_vma) 0x3)) + 1;
1101 continue;
1102 }
1103
1104 /* We can't put a trampoline in a .init/.fini section. Issue
1105 an error. */
1106 if (strcmp (sec->output_section->name, ".init") == 0
1107 || strcmp (sec->output_section->name, ".fini") == 0)
1108 {
1109 (*_bfd_error_handler)
1110 (_("%B: Can't relax br at 0x%lx in section `%A'. Please use brl or indirect branch."),
1111 sec->owner, sec, (unsigned long) roff);
1112 bfd_set_error (bfd_error_bad_value);
1113 goto error_return;
1114 }
1115
1116 /* If the branch and target are in the same section, you've
1117 got one honking big section and we can't help you unless
1118 you are branching backwards. You'll get an error message
1119 later. */
1120 if (tsec == sec && toff > roff)
1121 continue;
1122
1123 /* Look for an existing fixup to this address. */
1124 for (f = fixups; f ; f = f->next)
1125 if (f->tsec == tsec && f->toff == toff)
1126 break;
1127
1128 if (f == NULL)
1129 {
1130 /* Two alternatives: If it's a branch to a PLT entry, we can
1131 make a copy of the FULL_PLT entry. Otherwise, we'll have
1132 to use a `brl' insn to get where we're going. */
1133
1134 size_t size;
1135
1136 if (tsec == ia64_info->root.splt)
1137 size = sizeof (plt_full_entry);
1138 else
1139 size = oor_branch_size;
1140
1141 /* Resize the current section to make room for the new branch. */
1142 trampoff = (sec->size + 15) & (bfd_vma) -16;
1143
1144 /* If trampoline is out of range, there is nothing we
1145 can do. */
1146 offset = trampoff - (roff & (bfd_vma) -4);
1147 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1148 continue;
1149
1150 amt = trampoff + size;
1151 contents = (bfd_byte *) bfd_realloc (contents, amt);
1152 if (contents == NULL)
1153 goto error_return;
1154 sec->size = amt;
1155
1156 if (tsec == ia64_info->root.splt)
1157 {
1158 memcpy (contents + trampoff, plt_full_entry, size);
1159
1160 /* Hijack the old relocation for use as the PLTOFF reloc. */
1161 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1162 R_IA64_PLTOFF22);
1163 irel->r_offset = trampoff;
1164 }
1165 else
1166 {
1167 if (size == sizeof (oor_ip))
1168 {
1169 memcpy (contents + trampoff, oor_ip, size);
1170 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1171 R_IA64_PCREL64I);
1172 irel->r_addend -= 16;
1173 irel->r_offset = trampoff + 2;
1174 }
1175 else
1176 {
1177 memcpy (contents + trampoff, oor_brl, size);
1178 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1179 R_IA64_PCREL60B);
1180 irel->r_offset = trampoff + 2;
1181 }
1182
1183 }
1184
1185 /* Record the fixup so we don't do it again this section. */
1186 f = (struct one_fixup *)
1187 bfd_malloc ((bfd_size_type) sizeof (*f));
1188 f->next = fixups;
1189 f->tsec = tsec;
1190 f->toff = toff;
1191 f->trampoff = trampoff;
1192 fixups = f;
1193 }
1194 else
1195 {
1196 /* If trampoline is out of range, there is nothing we
1197 can do. */
1198 offset = f->trampoff - (roff & (bfd_vma) -4);
1199 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1200 continue;
1201
1202 /* Nop out the reloc, since we're finalizing things here. */
1203 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1204 }
1205
1206 /* Fix up the existing branch to hit the trampoline. */
1207 if (elfNN_ia64_install_value (contents + roff, offset, r_type)
1208 != bfd_reloc_ok)
1209 goto error_return;
1210
1211 changed_contents = TRUE;
1212 changed_relocs = TRUE;
1213 }
1214 else
1215 {
1216 /* Fetch the gp. */
1217 if (gp == 0)
1218 {
1219 bfd *obfd = sec->output_section->owner;
1220 gp = _bfd_get_gp_value (obfd);
1221 if (gp == 0)
1222 {
1223 if (!elfNN_ia64_choose_gp (obfd, link_info))
1224 goto error_return;
1225 gp = _bfd_get_gp_value (obfd);
1226 }
1227 }
1228
1229 /* If the data is out of range, do nothing. */
1230 if ((bfd_signed_vma) (symaddr - gp) >= 0x200000
1231 ||(bfd_signed_vma) (symaddr - gp) < -0x200000)
1232 continue;
1233
1234 if (r_type == R_IA64_GPREL22)
1235 elfNN_ia64_update_short_info (tsec->output_section,
1236 tsec->output_offset + toff,
1237 ia64_info);
1238 else if (r_type == R_IA64_LTOFF22X)
1239 {
1240 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1241 R_IA64_GPREL22);
1242 changed_relocs = TRUE;
1243 if (dyn_i->want_gotx)
1244 {
1245 dyn_i->want_gotx = 0;
1246 changed_got |= !dyn_i->want_got;
1247 }
1248
1249 elfNN_ia64_update_short_info (tsec->output_section,
1250 tsec->output_offset + toff,
1251 ia64_info);
1252 }
1253 else
1254 {
1255 elfNN_ia64_relax_ldxmov (contents, roff);
1256 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1257 changed_contents = TRUE;
1258 changed_relocs = TRUE;
1259 }
1260 }
1261 }
1262
1263 /* ??? If we created fixups, this may push the code segment large
1264 enough that the data segment moves, which will change the GP.
1265 Reset the GP so that we re-calculate next round. We need to
1266 do this at the _beginning_ of the next round; now will not do. */
1267
1268 /* Clean up and go home. */
1269 while (fixups)
1270 {
1271 struct one_fixup *f = fixups;
1272 fixups = fixups->next;
1273 free (f);
1274 }
1275
1276 if (isymbuf != NULL
1277 && symtab_hdr->contents != (unsigned char *) isymbuf)
1278 {
1279 if (! link_info->keep_memory)
1280 free (isymbuf);
1281 else
1282 {
1283 /* Cache the symbols for elf_link_input_bfd. */
1284 symtab_hdr->contents = (unsigned char *) isymbuf;
1285 }
1286 }
1287
1288 if (contents != NULL
1289 && elf_section_data (sec)->this_hdr.contents != contents)
1290 {
1291 if (!changed_contents && !link_info->keep_memory)
1292 free (contents);
1293 else
1294 {
1295 /* Cache the section contents for elf_link_input_bfd. */
1296 elf_section_data (sec)->this_hdr.contents = contents;
1297 }
1298 }
1299
1300 if (elf_section_data (sec)->relocs != internal_relocs)
1301 {
1302 if (!changed_relocs)
1303 free (internal_relocs);
1304 else
1305 elf_section_data (sec)->relocs = internal_relocs;
1306 }
1307
1308 if (changed_got)
1309 {
1310 struct elfNN_ia64_allocate_data data;
1311 data.info = link_info;
1312 data.ofs = 0;
1313 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
1314
1315 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
1316 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
1317 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
1318 ia64_info->root.sgot->size = data.ofs;
1319
1320 if (ia64_info->root.dynamic_sections_created
1321 && ia64_info->root.srelgot != NULL)
1322 {
1323 /* Resize .rela.got. */
1324 ia64_info->root.srelgot->size = 0;
1325 if (link_info->shared
1326 && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
1327 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
1328 data.only_got = TRUE;
1329 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries,
1330 &data);
1331 }
1332 }
1333
1334 if (link_info->relax_pass == 0)
1335 {
1336 /* Pass 0 is only needed to relax br. */
1337 sec->skip_relax_pass_0 = skip_relax_pass_0;
1338 sec->skip_relax_pass_1 = skip_relax_pass_1;
1339 }
1340
1341 *again = changed_contents || changed_relocs;
1342 return TRUE;
1343
1344 error_return:
1345 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
1346 free (isymbuf);
1347 if (contents != NULL
1348 && elf_section_data (sec)->this_hdr.contents != contents)
1349 free (contents);
1350 if (internal_relocs != NULL
1351 && elf_section_data (sec)->relocs != internal_relocs)
1352 free (internal_relocs);
1353 return FALSE;
1354 }
1355 #undef skip_relax_pass_0
1356 #undef skip_relax_pass_1
1357
1358 static void
1359 elfNN_ia64_relax_ldxmov (bfd_byte *contents, bfd_vma off)
1360 {
1361 int shift, r1, r3;
1362 bfd_vma dword, insn;
1363
1364 switch ((int)off & 0x3)
1365 {
1366 case 0: shift = 5; break;
1367 case 1: shift = 14; off += 3; break;
1368 case 2: shift = 23; off += 6; break;
1369 default:
1370 abort ();
1371 }
1372
1373 dword = bfd_getl64 (contents + off);
1374 insn = (dword >> shift) & 0x1ffffffffffLL;
1375
1376 r1 = (insn >> 6) & 127;
1377 r3 = (insn >> 20) & 127;
1378 if (r1 == r3)
1379 insn = 0x8000000; /* nop */
1380 else
1381 insn = (insn & 0x7f01fff) | 0x10800000000LL; /* (qp) mov r1 = r3 */
1382
1383 dword &= ~(0x1ffffffffffLL << shift);
1384 dword |= (insn << shift);
1385 bfd_putl64 (dword, contents + off);
1386 }
1387 \f
1388 /* Return TRUE if NAME is an unwind table section name. */
1389
1390 static inline bfd_boolean
1391 is_unwind_section_name (bfd *abfd, const char *name)
1392 {
1393 if (elfNN_ia64_hpux_vec (abfd->xvec)
1394 && !strcmp (name, ELF_STRING_ia64_unwind_hdr))
1395 return FALSE;
1396
1397 return ((CONST_STRNEQ (name, ELF_STRING_ia64_unwind)
1398 && ! CONST_STRNEQ (name, ELF_STRING_ia64_unwind_info))
1399 || CONST_STRNEQ (name, ELF_STRING_ia64_unwind_once));
1400 }
1401
1402 /* Handle an IA-64 specific section when reading an object file. This
1403 is called when bfd_section_from_shdr finds a section with an unknown
1404 type. */
1405
1406 static bfd_boolean
1407 elfNN_ia64_section_from_shdr (bfd *abfd,
1408 Elf_Internal_Shdr *hdr,
1409 const char *name,
1410 int shindex)
1411 {
1412 asection *newsect;
1413
1414 /* There ought to be a place to keep ELF backend specific flags, but
1415 at the moment there isn't one. We just keep track of the
1416 sections by their name, instead. Fortunately, the ABI gives
1417 suggested names for all the MIPS specific sections, so we will
1418 probably get away with this. */
1419 switch (hdr->sh_type)
1420 {
1421 case SHT_IA_64_UNWIND:
1422 case SHT_IA_64_HP_OPT_ANOT:
1423 break;
1424
1425 case SHT_IA_64_EXT:
1426 if (strcmp (name, ELF_STRING_ia64_archext) != 0)
1427 return FALSE;
1428 break;
1429
1430 default:
1431 return FALSE;
1432 }
1433
1434 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1435 return FALSE;
1436 newsect = hdr->bfd_section;
1437
1438 return TRUE;
1439 }
1440
1441 /* Convert IA-64 specific section flags to bfd internal section flags. */
1442
1443 /* ??? There is no bfd internal flag equivalent to the SHF_IA_64_NORECOV
1444 flag. */
1445
1446 static bfd_boolean
1447 elfNN_ia64_section_flags (flagword *flags,
1448 const Elf_Internal_Shdr *hdr)
1449 {
1450 if (hdr->sh_flags & SHF_IA_64_SHORT)
1451 *flags |= SEC_SMALL_DATA;
1452
1453 return TRUE;
1454 }
1455
1456 /* Set the correct type for an IA-64 ELF section. We do this by the
1457 section name, which is a hack, but ought to work. */
1458
1459 static bfd_boolean
1460 elfNN_ia64_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr,
1461 asection *sec)
1462 {
1463 const char *name;
1464
1465 name = bfd_get_section_name (abfd, sec);
1466
1467 if (is_unwind_section_name (abfd, name))
1468 {
1469 /* We don't have the sections numbered at this point, so sh_info
1470 is set later, in elfNN_ia64_final_write_processing. */
1471 hdr->sh_type = SHT_IA_64_UNWIND;
1472 hdr->sh_flags |= SHF_LINK_ORDER;
1473 }
1474 else if (strcmp (name, ELF_STRING_ia64_archext) == 0)
1475 hdr->sh_type = SHT_IA_64_EXT;
1476 else if (strcmp (name, ".HP.opt_annot") == 0)
1477 hdr->sh_type = SHT_IA_64_HP_OPT_ANOT;
1478 else if (strcmp (name, ".reloc") == 0)
1479 /* This is an ugly, but unfortunately necessary hack that is
1480 needed when producing EFI binaries on IA-64. It tells
1481 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1482 containing ELF relocation info. We need this hack in order to
1483 be able to generate ELF binaries that can be translated into
1484 EFI applications (which are essentially COFF objects). Those
1485 files contain a COFF ".reloc" section inside an ELFNN object,
1486 which would normally cause BFD to segfault because it would
1487 attempt to interpret this section as containing relocation
1488 entries for section "oc". With this hack enabled, ".reloc"
1489 will be treated as a normal data section, which will avoid the
1490 segfault. However, you won't be able to create an ELFNN binary
1491 with a section named "oc" that needs relocations, but that's
1492 the kind of ugly side-effects you get when detecting section
1493 types based on their names... In practice, this limitation is
1494 unlikely to bite. */
1495 hdr->sh_type = SHT_PROGBITS;
1496
1497 if (sec->flags & SEC_SMALL_DATA)
1498 hdr->sh_flags |= SHF_IA_64_SHORT;
1499
1500 /* Some HP linkers look for the SHF_IA_64_HP_TLS flag instead of SHF_TLS. */
1501
1502 if (elfNN_ia64_hpux_vec (abfd->xvec) && (sec->flags & SHF_TLS))
1503 hdr->sh_flags |= SHF_IA_64_HP_TLS;
1504
1505 return TRUE;
1506 }
1507
1508 /* The final processing done just before writing out an IA-64 ELF
1509 object file. */
1510
1511 static void
1512 elfNN_ia64_final_write_processing (bfd *abfd,
1513 bfd_boolean linker ATTRIBUTE_UNUSED)
1514 {
1515 Elf_Internal_Shdr *hdr;
1516 asection *s;
1517
1518 for (s = abfd->sections; s; s = s->next)
1519 {
1520 hdr = &elf_section_data (s)->this_hdr;
1521 switch (hdr->sh_type)
1522 {
1523 case SHT_IA_64_UNWIND:
1524 /* The IA-64 processor-specific ABI requires setting sh_link
1525 to the unwind section, whereas HP-UX requires sh_info to
1526 do so. For maximum compatibility, we'll set both for
1527 now... */
1528 hdr->sh_info = hdr->sh_link;
1529 break;
1530 }
1531 }
1532
1533 if (! elf_flags_init (abfd))
1534 {
1535 unsigned long flags = 0;
1536
1537 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
1538 flags |= EF_IA_64_BE;
1539 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
1540 flags |= EF_IA_64_ABI64;
1541
1542 elf_elfheader(abfd)->e_flags = flags;
1543 elf_flags_init (abfd) = TRUE;
1544 }
1545 }
1546
1547 /* Hook called by the linker routine which adds symbols from an object
1548 file. We use it to put .comm items in .sbss, and not .bss. */
1549
1550 static bfd_boolean
1551 elfNN_ia64_add_symbol_hook (bfd *abfd,
1552 struct bfd_link_info *info,
1553 Elf_Internal_Sym *sym,
1554 const char **namep ATTRIBUTE_UNUSED,
1555 flagword *flagsp ATTRIBUTE_UNUSED,
1556 asection **secp,
1557 bfd_vma *valp)
1558 {
1559 if (sym->st_shndx == SHN_COMMON
1560 && !info->relocatable
1561 && sym->st_size <= elf_gp_size (abfd))
1562 {
1563 /* Common symbols less than or equal to -G nn bytes are
1564 automatically put into .sbss. */
1565
1566 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1567
1568 if (scomm == NULL)
1569 {
1570 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1571 (SEC_ALLOC
1572 | SEC_IS_COMMON
1573 | SEC_LINKER_CREATED));
1574 if (scomm == NULL)
1575 return FALSE;
1576 }
1577
1578 *secp = scomm;
1579 *valp = sym->st_size;
1580 }
1581
1582 return TRUE;
1583 }
1584
1585 /* Return the number of additional phdrs we will need. */
1586
1587 static int
1588 elfNN_ia64_additional_program_headers (bfd *abfd,
1589 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1590 {
1591 asection *s;
1592 int ret = 0;
1593
1594 /* See if we need a PT_IA_64_ARCHEXT segment. */
1595 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1596 if (s && (s->flags & SEC_LOAD))
1597 ++ret;
1598
1599 /* Count how many PT_IA_64_UNWIND segments we need. */
1600 for (s = abfd->sections; s; s = s->next)
1601 if (is_unwind_section_name (abfd, s->name) && (s->flags & SEC_LOAD))
1602 ++ret;
1603
1604 return ret;
1605 }
1606
1607 static bfd_boolean
1608 elfNN_ia64_modify_segment_map (bfd *abfd,
1609 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1610 {
1611 struct elf_segment_map *m, **pm;
1612 Elf_Internal_Shdr *hdr;
1613 asection *s;
1614
1615 /* If we need a PT_IA_64_ARCHEXT segment, it must come before
1616 all PT_LOAD segments. */
1617 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1618 if (s && (s->flags & SEC_LOAD))
1619 {
1620 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1621 if (m->p_type == PT_IA_64_ARCHEXT)
1622 break;
1623 if (m == NULL)
1624 {
1625 m = ((struct elf_segment_map *)
1626 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1627 if (m == NULL)
1628 return FALSE;
1629
1630 m->p_type = PT_IA_64_ARCHEXT;
1631 m->count = 1;
1632 m->sections[0] = s;
1633
1634 /* We want to put it after the PHDR and INTERP segments. */
1635 pm = &elf_tdata (abfd)->segment_map;
1636 while (*pm != NULL
1637 && ((*pm)->p_type == PT_PHDR
1638 || (*pm)->p_type == PT_INTERP))
1639 pm = &(*pm)->next;
1640
1641 m->next = *pm;
1642 *pm = m;
1643 }
1644 }
1645
1646 /* Install PT_IA_64_UNWIND segments, if needed. */
1647 for (s = abfd->sections; s; s = s->next)
1648 {
1649 hdr = &elf_section_data (s)->this_hdr;
1650 if (hdr->sh_type != SHT_IA_64_UNWIND)
1651 continue;
1652
1653 if (s && (s->flags & SEC_LOAD))
1654 {
1655 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1656 if (m->p_type == PT_IA_64_UNWIND)
1657 {
1658 int i;
1659
1660 /* Look through all sections in the unwind segment
1661 for a match since there may be multiple sections
1662 to a segment. */
1663 for (i = m->count - 1; i >= 0; --i)
1664 if (m->sections[i] == s)
1665 break;
1666
1667 if (i >= 0)
1668 break;
1669 }
1670
1671 if (m == NULL)
1672 {
1673 m = ((struct elf_segment_map *)
1674 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1675 if (m == NULL)
1676 return FALSE;
1677
1678 m->p_type = PT_IA_64_UNWIND;
1679 m->count = 1;
1680 m->sections[0] = s;
1681 m->next = NULL;
1682
1683 /* We want to put it last. */
1684 pm = &elf_tdata (abfd)->segment_map;
1685 while (*pm != NULL)
1686 pm = &(*pm)->next;
1687 *pm = m;
1688 }
1689 }
1690 }
1691
1692 return TRUE;
1693 }
1694
1695 /* Turn on PF_IA_64_NORECOV if needed. This involves traversing all of
1696 the input sections for each output section in the segment and testing
1697 for SHF_IA_64_NORECOV on each. */
1698
1699 static bfd_boolean
1700 elfNN_ia64_modify_program_headers (bfd *abfd,
1701 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1702 {
1703 struct elf_obj_tdata *tdata = elf_tdata (abfd);
1704 struct elf_segment_map *m;
1705 Elf_Internal_Phdr *p;
1706
1707 for (p = tdata->phdr, m = tdata->segment_map; m != NULL; m = m->next, p++)
1708 if (m->p_type == PT_LOAD)
1709 {
1710 int i;
1711 for (i = m->count - 1; i >= 0; --i)
1712 {
1713 struct bfd_link_order *order = m->sections[i]->map_head.link_order;
1714
1715 while (order != NULL)
1716 {
1717 if (order->type == bfd_indirect_link_order)
1718 {
1719 asection *is = order->u.indirect.section;
1720 bfd_vma flags = elf_section_data(is)->this_hdr.sh_flags;
1721 if (flags & SHF_IA_64_NORECOV)
1722 {
1723 p->p_flags |= PF_IA_64_NORECOV;
1724 goto found;
1725 }
1726 }
1727 order = order->next;
1728 }
1729 }
1730 found:;
1731 }
1732
1733 return TRUE;
1734 }
1735
1736 /* According to the Tahoe assembler spec, all labels starting with a
1737 '.' are local. */
1738
1739 static bfd_boolean
1740 elfNN_ia64_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
1741 const char *name)
1742 {
1743 return name[0] == '.';
1744 }
1745
1746 /* Should we do dynamic things to this symbol? */
1747
1748 static bfd_boolean
1749 elfNN_ia64_dynamic_symbol_p (struct elf_link_hash_entry *h,
1750 struct bfd_link_info *info, int r_type)
1751 {
1752 bfd_boolean ignore_protected
1753 = ((r_type & 0xf8) == 0x40 /* FPTR relocs */
1754 || (r_type & 0xf8) == 0x50); /* LTOFF_FPTR relocs */
1755
1756 return _bfd_elf_dynamic_symbol_p (h, info, ignore_protected);
1757 }
1758 \f
1759 static struct bfd_hash_entry*
1760 elfNN_ia64_new_elf_hash_entry (struct bfd_hash_entry *entry,
1761 struct bfd_hash_table *table,
1762 const char *string)
1763 {
1764 struct elfNN_ia64_link_hash_entry *ret;
1765 ret = (struct elfNN_ia64_link_hash_entry *) entry;
1766
1767 /* Allocate the structure if it has not already been allocated by a
1768 subclass. */
1769 if (!ret)
1770 ret = bfd_hash_allocate (table, sizeof (*ret));
1771
1772 if (!ret)
1773 return 0;
1774
1775 /* Call the allocation method of the superclass. */
1776 ret = ((struct elfNN_ia64_link_hash_entry *)
1777 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1778 table, string));
1779
1780 ret->info = NULL;
1781 ret->count = 0;
1782 ret->sorted_count = 0;
1783 ret->size = 0;
1784 return (struct bfd_hash_entry *) ret;
1785 }
1786
1787 static void
1788 elfNN_ia64_hash_copy_indirect (struct bfd_link_info *info,
1789 struct elf_link_hash_entry *xdir,
1790 struct elf_link_hash_entry *xind)
1791 {
1792 struct elfNN_ia64_link_hash_entry *dir, *ind;
1793
1794 dir = (struct elfNN_ia64_link_hash_entry *) xdir;
1795 ind = (struct elfNN_ia64_link_hash_entry *) xind;
1796
1797 /* Copy down any references that we may have already seen to the
1798 symbol which just became indirect. */
1799
1800 dir->root.ref_dynamic |= ind->root.ref_dynamic;
1801 dir->root.ref_regular |= ind->root.ref_regular;
1802 dir->root.ref_regular_nonweak |= ind->root.ref_regular_nonweak;
1803 dir->root.needs_plt |= ind->root.needs_plt;
1804
1805 if (ind->root.root.type != bfd_link_hash_indirect)
1806 return;
1807
1808 /* Copy over the got and plt data. This would have been done
1809 by check_relocs. */
1810
1811 if (ind->info != NULL)
1812 {
1813 struct elfNN_ia64_dyn_sym_info *dyn_i;
1814 unsigned int count;
1815
1816 if (dir->info)
1817 free (dir->info);
1818
1819 dir->info = ind->info;
1820 dir->count = ind->count;
1821 dir->sorted_count = ind->sorted_count;
1822 dir->size = ind->size;
1823
1824 ind->info = NULL;
1825 ind->count = 0;
1826 ind->sorted_count = 0;
1827 ind->size = 0;
1828
1829 /* Fix up the dyn_sym_info pointers to the global symbol. */
1830 for (count = dir->count, dyn_i = dir->info;
1831 count != 0;
1832 count--, dyn_i++)
1833 dyn_i->h = &dir->root;
1834 }
1835
1836 /* Copy over the dynindx. */
1837
1838 if (ind->root.dynindx != -1)
1839 {
1840 if (dir->root.dynindx != -1)
1841 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1842 dir->root.dynstr_index);
1843 dir->root.dynindx = ind->root.dynindx;
1844 dir->root.dynstr_index = ind->root.dynstr_index;
1845 ind->root.dynindx = -1;
1846 ind->root.dynstr_index = 0;
1847 }
1848 }
1849
1850 static void
1851 elfNN_ia64_hash_hide_symbol (struct bfd_link_info *info,
1852 struct elf_link_hash_entry *xh,
1853 bfd_boolean force_local)
1854 {
1855 struct elfNN_ia64_link_hash_entry *h;
1856 struct elfNN_ia64_dyn_sym_info *dyn_i;
1857 unsigned int count;
1858
1859 h = (struct elfNN_ia64_link_hash_entry *)xh;
1860
1861 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
1862
1863 for (count = h->count, dyn_i = h->info;
1864 count != 0;
1865 count--, dyn_i++)
1866 {
1867 dyn_i->want_plt2 = 0;
1868 dyn_i->want_plt = 0;
1869 }
1870 }
1871
1872 /* Compute a hash of a local hash entry. */
1873
1874 static hashval_t
1875 elfNN_ia64_local_htab_hash (const void *ptr)
1876 {
1877 struct elfNN_ia64_local_hash_entry *entry
1878 = (struct elfNN_ia64_local_hash_entry *) ptr;
1879
1880 return ELF_LOCAL_SYMBOL_HASH (entry->id, entry->r_sym);
1881 }
1882
1883 /* Compare local hash entries. */
1884
1885 static int
1886 elfNN_ia64_local_htab_eq (const void *ptr1, const void *ptr2)
1887 {
1888 struct elfNN_ia64_local_hash_entry *entry1
1889 = (struct elfNN_ia64_local_hash_entry *) ptr1;
1890 struct elfNN_ia64_local_hash_entry *entry2
1891 = (struct elfNN_ia64_local_hash_entry *) ptr2;
1892
1893 return entry1->id == entry2->id && entry1->r_sym == entry2->r_sym;
1894 }
1895
1896 /* Create the derived linker hash table. The IA-64 ELF port uses this
1897 derived hash table to keep information specific to the IA-64 ElF
1898 linker (without using static variables). */
1899
1900 static struct bfd_link_hash_table *
1901 elfNN_ia64_hash_table_create (bfd *abfd)
1902 {
1903 struct elfNN_ia64_link_hash_table *ret;
1904
1905 ret = bfd_zmalloc ((bfd_size_type) sizeof (*ret));
1906 if (!ret)
1907 return NULL;
1908
1909 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
1910 elfNN_ia64_new_elf_hash_entry,
1911 sizeof (struct elfNN_ia64_link_hash_entry),
1912 IA64_ELF_DATA))
1913 {
1914 free (ret);
1915 return NULL;
1916 }
1917
1918 ret->loc_hash_table = htab_try_create (1024, elfNN_ia64_local_htab_hash,
1919 elfNN_ia64_local_htab_eq, NULL);
1920 ret->loc_hash_memory = objalloc_create ();
1921 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1922 {
1923 free (ret);
1924 return NULL;
1925 }
1926
1927 return &ret->root.root;
1928 }
1929
1930 /* Free the global elfNN_ia64_dyn_sym_info array. */
1931
1932 static bfd_boolean
1933 elfNN_ia64_global_dyn_info_free (void **xentry,
1934 PTR unused ATTRIBUTE_UNUSED)
1935 {
1936 struct elfNN_ia64_link_hash_entry *entry
1937 = (struct elfNN_ia64_link_hash_entry *) xentry;
1938
1939 if (entry->root.root.type == bfd_link_hash_warning)
1940 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1941
1942 if (entry->info)
1943 {
1944 free (entry->info);
1945 entry->info = NULL;
1946 entry->count = 0;
1947 entry->sorted_count = 0;
1948 entry->size = 0;
1949 }
1950
1951 return TRUE;
1952 }
1953
1954 /* Free the local elfNN_ia64_dyn_sym_info array. */
1955
1956 static bfd_boolean
1957 elfNN_ia64_local_dyn_info_free (void **slot,
1958 PTR unused ATTRIBUTE_UNUSED)
1959 {
1960 struct elfNN_ia64_local_hash_entry *entry
1961 = (struct elfNN_ia64_local_hash_entry *) *slot;
1962
1963 if (entry->info)
1964 {
1965 free (entry->info);
1966 entry->info = NULL;
1967 entry->count = 0;
1968 entry->sorted_count = 0;
1969 entry->size = 0;
1970 }
1971
1972 return TRUE;
1973 }
1974
1975 /* Destroy IA-64 linker hash table. */
1976
1977 static void
1978 elfNN_ia64_hash_table_free (struct bfd_link_hash_table *hash)
1979 {
1980 struct elfNN_ia64_link_hash_table *ia64_info
1981 = (struct elfNN_ia64_link_hash_table *) hash;
1982 if (ia64_info->loc_hash_table)
1983 {
1984 htab_traverse (ia64_info->loc_hash_table,
1985 elfNN_ia64_local_dyn_info_free, NULL);
1986 htab_delete (ia64_info->loc_hash_table);
1987 }
1988 if (ia64_info->loc_hash_memory)
1989 objalloc_free ((struct objalloc *) ia64_info->loc_hash_memory);
1990 elf_link_hash_traverse (&ia64_info->root,
1991 elfNN_ia64_global_dyn_info_free, NULL);
1992 _bfd_generic_link_hash_table_free (hash);
1993 }
1994
1995 /* Traverse both local and global hash tables. */
1996
1997 struct elfNN_ia64_dyn_sym_traverse_data
1998 {
1999 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR);
2000 PTR data;
2001 };
2002
2003 static bfd_boolean
2004 elfNN_ia64_global_dyn_sym_thunk (struct bfd_hash_entry *xentry,
2005 PTR xdata)
2006 {
2007 struct elfNN_ia64_link_hash_entry *entry
2008 = (struct elfNN_ia64_link_hash_entry *) xentry;
2009 struct elfNN_ia64_dyn_sym_traverse_data *data
2010 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
2011 struct elfNN_ia64_dyn_sym_info *dyn_i;
2012 unsigned int count;
2013
2014 if (entry->root.root.type == bfd_link_hash_warning)
2015 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
2016
2017 for (count = entry->count, dyn_i = entry->info;
2018 count != 0;
2019 count--, dyn_i++)
2020 if (! (*data->func) (dyn_i, data->data))
2021 return FALSE;
2022 return TRUE;
2023 }
2024
2025 static bfd_boolean
2026 elfNN_ia64_local_dyn_sym_thunk (void **slot, PTR xdata)
2027 {
2028 struct elfNN_ia64_local_hash_entry *entry
2029 = (struct elfNN_ia64_local_hash_entry *) *slot;
2030 struct elfNN_ia64_dyn_sym_traverse_data *data
2031 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
2032 struct elfNN_ia64_dyn_sym_info *dyn_i;
2033 unsigned int count;
2034
2035 for (count = entry->count, dyn_i = entry->info;
2036 count != 0;
2037 count--, dyn_i++)
2038 if (! (*data->func) (dyn_i, data->data))
2039 return FALSE;
2040 return TRUE;
2041 }
2042
2043 static void
2044 elfNN_ia64_dyn_sym_traverse (struct elfNN_ia64_link_hash_table *ia64_info,
2045 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
2046 PTR data)
2047 {
2048 struct elfNN_ia64_dyn_sym_traverse_data xdata;
2049
2050 xdata.func = func;
2051 xdata.data = data;
2052
2053 elf_link_hash_traverse (&ia64_info->root,
2054 elfNN_ia64_global_dyn_sym_thunk, &xdata);
2055 htab_traverse (ia64_info->loc_hash_table,
2056 elfNN_ia64_local_dyn_sym_thunk, &xdata);
2057 }
2058 \f
2059 static bfd_boolean
2060 elfNN_ia64_create_dynamic_sections (bfd *abfd,
2061 struct bfd_link_info *info)
2062 {
2063 struct elfNN_ia64_link_hash_table *ia64_info;
2064 asection *s;
2065
2066 if (! _bfd_elf_create_dynamic_sections (abfd, info))
2067 return FALSE;
2068
2069 ia64_info = elfNN_ia64_hash_table (info);
2070 if (ia64_info == NULL)
2071 return FALSE;
2072
2073 {
2074 flagword flags = bfd_get_section_flags (abfd, ia64_info->root.sgot);
2075 bfd_set_section_flags (abfd, ia64_info->root.sgot,
2076 SEC_SMALL_DATA | flags);
2077 /* The .got section is always aligned at 8 bytes. */
2078 bfd_set_section_alignment (abfd, ia64_info->root.sgot, 3);
2079 }
2080
2081 if (!get_pltoff (abfd, info, ia64_info))
2082 return FALSE;
2083
2084 s = bfd_make_section_with_flags (abfd, ".rela.IA_64.pltoff",
2085 (SEC_ALLOC | SEC_LOAD
2086 | SEC_HAS_CONTENTS
2087 | SEC_IN_MEMORY
2088 | SEC_LINKER_CREATED
2089 | SEC_READONLY));
2090 if (s == NULL
2091 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2092 return FALSE;
2093 ia64_info->rel_pltoff_sec = s;
2094
2095 return TRUE;
2096 }
2097
2098 /* Find and/or create a hash entry for local symbol. */
2099 static struct elfNN_ia64_local_hash_entry *
2100 get_local_sym_hash (struct elfNN_ia64_link_hash_table *ia64_info,
2101 bfd *abfd, const Elf_Internal_Rela *rel,
2102 bfd_boolean create)
2103 {
2104 struct elfNN_ia64_local_hash_entry e, *ret;
2105 asection *sec = abfd->sections;
2106 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2107 ELFNN_R_SYM (rel->r_info));
2108 void **slot;
2109
2110 e.id = sec->id;
2111 e.r_sym = ELFNN_R_SYM (rel->r_info);
2112 slot = htab_find_slot_with_hash (ia64_info->loc_hash_table, &e, h,
2113 create ? INSERT : NO_INSERT);
2114
2115 if (!slot)
2116 return NULL;
2117
2118 if (*slot)
2119 return (struct elfNN_ia64_local_hash_entry *) *slot;
2120
2121 ret = (struct elfNN_ia64_local_hash_entry *)
2122 objalloc_alloc ((struct objalloc *) ia64_info->loc_hash_memory,
2123 sizeof (struct elfNN_ia64_local_hash_entry));
2124 if (ret)
2125 {
2126 memset (ret, 0, sizeof (*ret));
2127 ret->id = sec->id;
2128 ret->r_sym = ELFNN_R_SYM (rel->r_info);
2129 *slot = ret;
2130 }
2131 return ret;
2132 }
2133
2134 /* Used to sort elfNN_ia64_dyn_sym_info array. */
2135
2136 static int
2137 addend_compare (const void *xp, const void *yp)
2138 {
2139 const struct elfNN_ia64_dyn_sym_info *x
2140 = (const struct elfNN_ia64_dyn_sym_info *) xp;
2141 const struct elfNN_ia64_dyn_sym_info *y
2142 = (const struct elfNN_ia64_dyn_sym_info *) yp;
2143
2144 return x->addend < y->addend ? -1 : x->addend > y->addend ? 1 : 0;
2145 }
2146
2147 /* Sort elfNN_ia64_dyn_sym_info array and remove duplicates. */
2148
2149 static unsigned int
2150 sort_dyn_sym_info (struct elfNN_ia64_dyn_sym_info *info,
2151 unsigned int count)
2152 {
2153 bfd_vma curr, prev, got_offset;
2154 unsigned int i, kept, dupes, diff, dest, src, len;
2155
2156 qsort (info, count, sizeof (*info), addend_compare);
2157
2158 /* Find the first duplicate. */
2159 prev = info [0].addend;
2160 got_offset = info [0].got_offset;
2161 for (i = 1; i < count; i++)
2162 {
2163 curr = info [i].addend;
2164 if (curr == prev)
2165 {
2166 /* For duplicates, make sure that GOT_OFFSET is valid. */
2167 if (got_offset == (bfd_vma) -1)
2168 got_offset = info [i].got_offset;
2169 break;
2170 }
2171 got_offset = info [i].got_offset;
2172 prev = curr;
2173 }
2174
2175 /* We may move a block of elements to here. */
2176 dest = i++;
2177
2178 /* Remove duplicates. */
2179 if (i < count)
2180 {
2181 while (i < count)
2182 {
2183 /* For duplicates, make sure that the kept one has a valid
2184 got_offset. */
2185 kept = dest - 1;
2186 if (got_offset != (bfd_vma) -1)
2187 info [kept].got_offset = got_offset;
2188
2189 curr = info [i].addend;
2190 got_offset = info [i].got_offset;
2191
2192 /* Move a block of elements whose first one is different from
2193 the previous. */
2194 if (curr == prev)
2195 {
2196 for (src = i + 1; src < count; src++)
2197 {
2198 if (info [src].addend != curr)
2199 break;
2200 /* For duplicates, make sure that GOT_OFFSET is
2201 valid. */
2202 if (got_offset == (bfd_vma) -1)
2203 got_offset = info [src].got_offset;
2204 }
2205
2206 /* Make sure that the kept one has a valid got_offset. */
2207 if (got_offset != (bfd_vma) -1)
2208 info [kept].got_offset = got_offset;
2209 }
2210 else
2211 src = i;
2212
2213 if (src >= count)
2214 break;
2215
2216 /* Find the next duplicate. SRC will be kept. */
2217 prev = info [src].addend;
2218 got_offset = info [src].got_offset;
2219 for (dupes = src + 1; dupes < count; dupes ++)
2220 {
2221 curr = info [dupes].addend;
2222 if (curr == prev)
2223 {
2224 /* Make sure that got_offset is valid. */
2225 if (got_offset == (bfd_vma) -1)
2226 got_offset = info [dupes].got_offset;
2227
2228 /* For duplicates, make sure that the kept one has
2229 a valid got_offset. */
2230 if (got_offset != (bfd_vma) -1)
2231 info [dupes - 1].got_offset = got_offset;
2232 break;
2233 }
2234 got_offset = info [dupes].got_offset;
2235 prev = curr;
2236 }
2237
2238 /* How much to move. */
2239 len = dupes - src;
2240 i = dupes + 1;
2241
2242 if (len == 1 && dupes < count)
2243 {
2244 /* If we only move 1 element, we combine it with the next
2245 one. There must be at least a duplicate. Find the
2246 next different one. */
2247 for (diff = dupes + 1, src++; diff < count; diff++, src++)
2248 {
2249 if (info [diff].addend != curr)
2250 break;
2251 /* Make sure that got_offset is valid. */
2252 if (got_offset == (bfd_vma) -1)
2253 got_offset = info [diff].got_offset;
2254 }
2255
2256 /* Makre sure that the last duplicated one has an valid
2257 offset. */
2258 BFD_ASSERT (curr == prev);
2259 if (got_offset != (bfd_vma) -1)
2260 info [diff - 1].got_offset = got_offset;
2261
2262 if (diff < count)
2263 {
2264 /* Find the next duplicate. Track the current valid
2265 offset. */
2266 prev = info [diff].addend;
2267 got_offset = info [diff].got_offset;
2268 for (dupes = diff + 1; dupes < count; dupes ++)
2269 {
2270 curr = info [dupes].addend;
2271 if (curr == prev)
2272 {
2273 /* For duplicates, make sure that GOT_OFFSET
2274 is valid. */
2275 if (got_offset == (bfd_vma) -1)
2276 got_offset = info [dupes].got_offset;
2277 break;
2278 }
2279 got_offset = info [dupes].got_offset;
2280 prev = curr;
2281 diff++;
2282 }
2283
2284 len = diff - src + 1;
2285 i = diff + 1;
2286 }
2287 }
2288
2289 memmove (&info [dest], &info [src], len * sizeof (*info));
2290
2291 dest += len;
2292 }
2293
2294 count = dest;
2295 }
2296 else
2297 {
2298 /* When we get here, either there is no duplicate at all or
2299 the only duplicate is the last element. */
2300 if (dest < count)
2301 {
2302 /* If the last element is a duplicate, make sure that the
2303 kept one has a valid got_offset. We also update count. */
2304 if (got_offset != (bfd_vma) -1)
2305 info [dest - 1].got_offset = got_offset;
2306 count = dest;
2307 }
2308 }
2309
2310 return count;
2311 }
2312
2313 /* Find and/or create a descriptor for dynamic symbol info. This will
2314 vary based on global or local symbol, and the addend to the reloc.
2315
2316 We don't sort when inserting. Also, we sort and eliminate
2317 duplicates if there is an unsorted section. Typically, this will
2318 only happen once, because we do all insertions before lookups. We
2319 then use bsearch to do a lookup. This also allows lookups to be
2320 fast. So we have fast insertion (O(log N) due to duplicate check),
2321 fast lookup (O(log N)) and one sort (O(N log N) expected time).
2322 Previously, all lookups were O(N) because of the use of the linked
2323 list and also all insertions were O(N) because of the check for
2324 duplicates. There are some complications here because the array
2325 size grows occasionally, which may add an O(N) factor, but this
2326 should be rare. Also, we free the excess array allocation, which
2327 requires a copy which is O(N), but this only happens once. */
2328
2329 static struct elfNN_ia64_dyn_sym_info *
2330 get_dyn_sym_info (struct elfNN_ia64_link_hash_table *ia64_info,
2331 struct elf_link_hash_entry *h, bfd *abfd,
2332 const Elf_Internal_Rela *rel, bfd_boolean create)
2333 {
2334 struct elfNN_ia64_dyn_sym_info **info_p, *info, *dyn_i, key;
2335 unsigned int *count_p, *sorted_count_p, *size_p;
2336 unsigned int count, sorted_count, size;
2337 bfd_vma addend = rel ? rel->r_addend : 0;
2338 bfd_size_type amt;
2339
2340 if (h)
2341 {
2342 struct elfNN_ia64_link_hash_entry *global_h;
2343
2344 global_h = (struct elfNN_ia64_link_hash_entry *) h;
2345 info_p = &global_h->info;
2346 count_p = &global_h->count;
2347 sorted_count_p = &global_h->sorted_count;
2348 size_p = &global_h->size;
2349 }
2350 else
2351 {
2352 struct elfNN_ia64_local_hash_entry *loc_h;
2353
2354 loc_h = get_local_sym_hash (ia64_info, abfd, rel, create);
2355 if (!loc_h)
2356 {
2357 BFD_ASSERT (!create);
2358 return NULL;
2359 }
2360
2361 info_p = &loc_h->info;
2362 count_p = &loc_h->count;
2363 sorted_count_p = &loc_h->sorted_count;
2364 size_p = &loc_h->size;
2365 }
2366
2367 count = *count_p;
2368 sorted_count = *sorted_count_p;
2369 size = *size_p;
2370 info = *info_p;
2371 if (create)
2372 {
2373 /* When we create the array, we don't check for duplicates,
2374 except in the previously sorted section if one exists, and
2375 against the last inserted entry. This allows insertions to
2376 be fast. */
2377 if (info)
2378 {
2379 if (sorted_count)
2380 {
2381 /* Try bsearch first on the sorted section. */
2382 key.addend = addend;
2383 dyn_i = bsearch (&key, info, sorted_count,
2384 sizeof (*info), addend_compare);
2385
2386 if (dyn_i)
2387 {
2388 return dyn_i;
2389 }
2390 }
2391
2392 /* Do a quick check for the last inserted entry. */
2393 dyn_i = info + count - 1;
2394 if (dyn_i->addend == addend)
2395 {
2396 return dyn_i;
2397 }
2398 }
2399
2400 if (size == 0)
2401 {
2402 /* It is the very first element. We create the array of size
2403 1. */
2404 size = 1;
2405 amt = size * sizeof (*info);
2406 info = bfd_malloc (amt);
2407 }
2408 else if (size <= count)
2409 {
2410 /* We double the array size every time when we reach the
2411 size limit. */
2412 size += size;
2413 amt = size * sizeof (*info);
2414 info = bfd_realloc (info, amt);
2415 }
2416 else
2417 goto has_space;
2418
2419 if (info == NULL)
2420 return NULL;
2421 *size_p = size;
2422 *info_p = info;
2423
2424 has_space:
2425 /* Append the new one to the array. */
2426 dyn_i = info + count;
2427 memset (dyn_i, 0, sizeof (*dyn_i));
2428 dyn_i->got_offset = (bfd_vma) -1;
2429 dyn_i->addend = addend;
2430
2431 /* We increment count only since the new ones are unsorted and
2432 may have duplicate. */
2433 (*count_p)++;
2434 }
2435 else
2436 {
2437 /* It is a lookup without insertion. Sort array if part of the
2438 array isn't sorted. */
2439 if (count != sorted_count)
2440 {
2441 count = sort_dyn_sym_info (info, count);
2442 *count_p = count;
2443 *sorted_count_p = count;
2444 }
2445
2446 /* Free unused memory. */
2447 if (size != count)
2448 {
2449 amt = count * sizeof (*info);
2450 info = bfd_malloc (amt);
2451 if (info != NULL)
2452 {
2453 memcpy (info, *info_p, amt);
2454 free (*info_p);
2455 *size_p = count;
2456 *info_p = info;
2457 }
2458 }
2459
2460 key.addend = addend;
2461 dyn_i = bsearch (&key, info, count,
2462 sizeof (*info), addend_compare);
2463 }
2464
2465 return dyn_i;
2466 }
2467
2468 static asection *
2469 get_got (bfd *abfd, struct bfd_link_info *info,
2470 struct elfNN_ia64_link_hash_table *ia64_info)
2471 {
2472 asection *got;
2473 bfd *dynobj;
2474
2475 got = ia64_info->root.sgot;
2476 if (!got)
2477 {
2478 flagword flags;
2479
2480 dynobj = ia64_info->root.dynobj;
2481 if (!dynobj)
2482 ia64_info->root.dynobj = dynobj = abfd;
2483 if (!_bfd_elf_create_got_section (dynobj, info))
2484 return 0;
2485
2486 got = ia64_info->root.sgot;
2487
2488 /* The .got section is always aligned at 8 bytes. */
2489 if (!bfd_set_section_alignment (abfd, got, 3))
2490 return 0;
2491
2492 flags = bfd_get_section_flags (abfd, got);
2493 bfd_set_section_flags (abfd, got, SEC_SMALL_DATA | flags);
2494 }
2495
2496 return got;
2497 }
2498
2499 /* Create function descriptor section (.opd). This section is called .opd
2500 because it contains "official procedure descriptors". The "official"
2501 refers to the fact that these descriptors are used when taking the address
2502 of a procedure, thus ensuring a unique address for each procedure. */
2503
2504 static asection *
2505 get_fptr (bfd *abfd, struct bfd_link_info *info,
2506 struct elfNN_ia64_link_hash_table *ia64_info)
2507 {
2508 asection *fptr;
2509 bfd *dynobj;
2510
2511 fptr = ia64_info->fptr_sec;
2512 if (!fptr)
2513 {
2514 dynobj = ia64_info->root.dynobj;
2515 if (!dynobj)
2516 ia64_info->root.dynobj = dynobj = abfd;
2517
2518 fptr = bfd_make_section_with_flags (dynobj, ".opd",
2519 (SEC_ALLOC
2520 | SEC_LOAD
2521 | SEC_HAS_CONTENTS
2522 | SEC_IN_MEMORY
2523 | (info->pie ? 0 : SEC_READONLY)
2524 | SEC_LINKER_CREATED));
2525 if (!fptr
2526 || !bfd_set_section_alignment (abfd, fptr, 4))
2527 {
2528 BFD_ASSERT (0);
2529 return NULL;
2530 }
2531
2532 ia64_info->fptr_sec = fptr;
2533
2534 if (info->pie)
2535 {
2536 asection *fptr_rel;
2537 fptr_rel = bfd_make_section_with_flags (dynobj, ".rela.opd",
2538 (SEC_ALLOC | SEC_LOAD
2539 | SEC_HAS_CONTENTS
2540 | SEC_IN_MEMORY
2541 | SEC_LINKER_CREATED
2542 | SEC_READONLY));
2543 if (fptr_rel == NULL
2544 || !bfd_set_section_alignment (abfd, fptr_rel,
2545 LOG_SECTION_ALIGN))
2546 {
2547 BFD_ASSERT (0);
2548 return NULL;
2549 }
2550
2551 ia64_info->rel_fptr_sec = fptr_rel;
2552 }
2553 }
2554
2555 return fptr;
2556 }
2557
2558 static asection *
2559 get_pltoff (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED,
2560 struct elfNN_ia64_link_hash_table *ia64_info)
2561 {
2562 asection *pltoff;
2563 bfd *dynobj;
2564
2565 pltoff = ia64_info->pltoff_sec;
2566 if (!pltoff)
2567 {
2568 dynobj = ia64_info->root.dynobj;
2569 if (!dynobj)
2570 ia64_info->root.dynobj = dynobj = abfd;
2571
2572 pltoff = bfd_make_section_with_flags (dynobj,
2573 ELF_STRING_ia64_pltoff,
2574 (SEC_ALLOC
2575 | SEC_LOAD
2576 | SEC_HAS_CONTENTS
2577 | SEC_IN_MEMORY
2578 | SEC_SMALL_DATA
2579 | SEC_LINKER_CREATED));
2580 if (!pltoff
2581 || !bfd_set_section_alignment (abfd, pltoff, 4))
2582 {
2583 BFD_ASSERT (0);
2584 return NULL;
2585 }
2586
2587 ia64_info->pltoff_sec = pltoff;
2588 }
2589
2590 return pltoff;
2591 }
2592
2593 static asection *
2594 get_reloc_section (bfd *abfd,
2595 struct elfNN_ia64_link_hash_table *ia64_info,
2596 asection *sec, bfd_boolean create)
2597 {
2598 const char *srel_name;
2599 asection *srel;
2600 bfd *dynobj;
2601
2602 srel_name = (bfd_elf_string_from_elf_section
2603 (abfd, elf_elfheader(abfd)->e_shstrndx,
2604 elf_section_data(sec)->rel_hdr.sh_name));
2605 if (srel_name == NULL)
2606 return NULL;
2607
2608 BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
2609 && strcmp (bfd_get_section_name (abfd, sec),
2610 srel_name+5) == 0)
2611 || (CONST_STRNEQ (srel_name, ".rel")
2612 && strcmp (bfd_get_section_name (abfd, sec),
2613 srel_name+4) == 0));
2614
2615 dynobj = ia64_info->root.dynobj;
2616 if (!dynobj)
2617 ia64_info->root.dynobj = dynobj = abfd;
2618
2619 srel = bfd_get_section_by_name (dynobj, srel_name);
2620 if (srel == NULL && create)
2621 {
2622 srel = bfd_make_section_with_flags (dynobj, srel_name,
2623 (SEC_ALLOC | SEC_LOAD
2624 | SEC_HAS_CONTENTS
2625 | SEC_IN_MEMORY
2626 | SEC_LINKER_CREATED
2627 | SEC_READONLY));
2628 if (srel == NULL
2629 || !bfd_set_section_alignment (dynobj, srel,
2630 LOG_SECTION_ALIGN))
2631 return NULL;
2632 }
2633
2634 return srel;
2635 }
2636
2637 static bfd_boolean
2638 count_dyn_reloc (bfd *abfd, struct elfNN_ia64_dyn_sym_info *dyn_i,
2639 asection *srel, int type, bfd_boolean reltext)
2640 {
2641 struct elfNN_ia64_dyn_reloc_entry *rent;
2642
2643 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2644 if (rent->srel == srel && rent->type == type)
2645 break;
2646
2647 if (!rent)
2648 {
2649 rent = ((struct elfNN_ia64_dyn_reloc_entry *)
2650 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)));
2651 if (!rent)
2652 return FALSE;
2653
2654 rent->next = dyn_i->reloc_entries;
2655 rent->srel = srel;
2656 rent->type = type;
2657 rent->count = 0;
2658 dyn_i->reloc_entries = rent;
2659 }
2660 rent->reltext = reltext;
2661 rent->count++;
2662
2663 return TRUE;
2664 }
2665
2666 static bfd_boolean
2667 elfNN_ia64_check_relocs (bfd *abfd, struct bfd_link_info *info,
2668 asection *sec,
2669 const Elf_Internal_Rela *relocs)
2670 {
2671 struct elfNN_ia64_link_hash_table *ia64_info;
2672 const Elf_Internal_Rela *relend;
2673 Elf_Internal_Shdr *symtab_hdr;
2674 const Elf_Internal_Rela *rel;
2675 asection *got, *fptr, *srel, *pltoff;
2676 enum {
2677 NEED_GOT = 1,
2678 NEED_GOTX = 2,
2679 NEED_FPTR = 4,
2680 NEED_PLTOFF = 8,
2681 NEED_MIN_PLT = 16,
2682 NEED_FULL_PLT = 32,
2683 NEED_DYNREL = 64,
2684 NEED_LTOFF_FPTR = 128,
2685 NEED_TPREL = 256,
2686 NEED_DTPMOD = 512,
2687 NEED_DTPREL = 1024
2688 };
2689 int need_entry;
2690 struct elf_link_hash_entry *h;
2691 unsigned long r_symndx;
2692 bfd_boolean maybe_dynamic;
2693
2694 if (info->relocatable)
2695 return TRUE;
2696
2697 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2698 ia64_info = elfNN_ia64_hash_table (info);
2699 if (ia64_info == NULL)
2700 return FALSE;
2701
2702 got = fptr = srel = pltoff = NULL;
2703
2704 relend = relocs + sec->reloc_count;
2705
2706 /* We scan relocations first to create dynamic relocation arrays. We
2707 modified get_dyn_sym_info to allow fast insertion and support fast
2708 lookup in the next loop. */
2709 for (rel = relocs; rel < relend; ++rel)
2710 {
2711 r_symndx = ELFNN_R_SYM (rel->r_info);
2712 if (r_symndx >= symtab_hdr->sh_info)
2713 {
2714 long indx = r_symndx - symtab_hdr->sh_info;
2715 h = elf_sym_hashes (abfd)[indx];
2716 while (h->root.type == bfd_link_hash_indirect
2717 || h->root.type == bfd_link_hash_warning)
2718 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2719 }
2720 else
2721 h = NULL;
2722
2723 /* We can only get preliminary data on whether a symbol is
2724 locally or externally defined, as not all of the input files
2725 have yet been processed. Do something with what we know, as
2726 this may help reduce memory usage and processing time later. */
2727 maybe_dynamic = (h && ((!info->executable
2728 && (!SYMBOLIC_BIND (info, h)
2729 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2730 || !h->def_regular
2731 || h->root.type == bfd_link_hash_defweak));
2732
2733 need_entry = 0;
2734 switch (ELFNN_R_TYPE (rel->r_info))
2735 {
2736 case R_IA64_TPREL64MSB:
2737 case R_IA64_TPREL64LSB:
2738 if (info->shared || maybe_dynamic)
2739 need_entry = NEED_DYNREL;
2740 break;
2741
2742 case R_IA64_LTOFF_TPREL22:
2743 need_entry = NEED_TPREL;
2744 if (info->shared)
2745 info->flags |= DF_STATIC_TLS;
2746 break;
2747
2748 case R_IA64_DTPREL32MSB:
2749 case R_IA64_DTPREL32LSB:
2750 case R_IA64_DTPREL64MSB:
2751 case R_IA64_DTPREL64LSB:
2752 if (info->shared || maybe_dynamic)
2753 need_entry = NEED_DYNREL;
2754 break;
2755
2756 case R_IA64_LTOFF_DTPREL22:
2757 need_entry = NEED_DTPREL;
2758 break;
2759
2760 case R_IA64_DTPMOD64MSB:
2761 case R_IA64_DTPMOD64LSB:
2762 if (info->shared || maybe_dynamic)
2763 need_entry = NEED_DYNREL;
2764 break;
2765
2766 case R_IA64_LTOFF_DTPMOD22:
2767 need_entry = NEED_DTPMOD;
2768 break;
2769
2770 case R_IA64_LTOFF_FPTR22:
2771 case R_IA64_LTOFF_FPTR64I:
2772 case R_IA64_LTOFF_FPTR32MSB:
2773 case R_IA64_LTOFF_FPTR32LSB:
2774 case R_IA64_LTOFF_FPTR64MSB:
2775 case R_IA64_LTOFF_FPTR64LSB:
2776 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2777 break;
2778
2779 case R_IA64_FPTR64I:
2780 case R_IA64_FPTR32MSB:
2781 case R_IA64_FPTR32LSB:
2782 case R_IA64_FPTR64MSB:
2783 case R_IA64_FPTR64LSB:
2784 if (info->shared || h)
2785 need_entry = NEED_FPTR | NEED_DYNREL;
2786 else
2787 need_entry = NEED_FPTR;
2788 break;
2789
2790 case R_IA64_LTOFF22:
2791 case R_IA64_LTOFF64I:
2792 need_entry = NEED_GOT;
2793 break;
2794
2795 case R_IA64_LTOFF22X:
2796 need_entry = NEED_GOTX;
2797 break;
2798
2799 case R_IA64_PLTOFF22:
2800 case R_IA64_PLTOFF64I:
2801 case R_IA64_PLTOFF64MSB:
2802 case R_IA64_PLTOFF64LSB:
2803 need_entry = NEED_PLTOFF;
2804 if (h)
2805 {
2806 if (maybe_dynamic)
2807 need_entry |= NEED_MIN_PLT;
2808 }
2809 else
2810 {
2811 (*info->callbacks->warning)
2812 (info, _("@pltoff reloc against local symbol"), 0,
2813 abfd, 0, (bfd_vma) 0);
2814 }
2815 break;
2816
2817 case R_IA64_PCREL21B:
2818 case R_IA64_PCREL60B:
2819 /* Depending on where this symbol is defined, we may or may not
2820 need a full plt entry. Only skip if we know we'll not need
2821 the entry -- static or symbolic, and the symbol definition
2822 has already been seen. */
2823 if (maybe_dynamic && rel->r_addend == 0)
2824 need_entry = NEED_FULL_PLT;
2825 break;
2826
2827 case R_IA64_IMM14:
2828 case R_IA64_IMM22:
2829 case R_IA64_IMM64:
2830 case R_IA64_DIR32MSB:
2831 case R_IA64_DIR32LSB:
2832 case R_IA64_DIR64MSB:
2833 case R_IA64_DIR64LSB:
2834 /* Shared objects will always need at least a REL relocation. */
2835 if (info->shared || maybe_dynamic)
2836 need_entry = NEED_DYNREL;
2837 break;
2838
2839 case R_IA64_IPLTMSB:
2840 case R_IA64_IPLTLSB:
2841 /* Shared objects will always need at least a REL relocation. */
2842 if (info->shared || maybe_dynamic)
2843 need_entry = NEED_DYNREL;
2844 break;
2845
2846 case R_IA64_PCREL22:
2847 case R_IA64_PCREL64I:
2848 case R_IA64_PCREL32MSB:
2849 case R_IA64_PCREL32LSB:
2850 case R_IA64_PCREL64MSB:
2851 case R_IA64_PCREL64LSB:
2852 if (maybe_dynamic)
2853 need_entry = NEED_DYNREL;
2854 break;
2855 }
2856
2857 if (!need_entry)
2858 continue;
2859
2860 if ((need_entry & NEED_FPTR) != 0
2861 && rel->r_addend)
2862 {
2863 (*info->callbacks->warning)
2864 (info, _("non-zero addend in @fptr reloc"), 0,
2865 abfd, 0, (bfd_vma) 0);
2866 }
2867
2868 if (get_dyn_sym_info (ia64_info, h, abfd, rel, TRUE) == NULL)
2869 return FALSE;
2870 }
2871
2872 /* Now, we only do lookup without insertion, which is very fast
2873 with the modified get_dyn_sym_info. */
2874 for (rel = relocs; rel < relend; ++rel)
2875 {
2876 struct elfNN_ia64_dyn_sym_info *dyn_i;
2877 int dynrel_type = R_IA64_NONE;
2878
2879 r_symndx = ELFNN_R_SYM (rel->r_info);
2880 if (r_symndx >= symtab_hdr->sh_info)
2881 {
2882 /* We're dealing with a global symbol -- find its hash entry
2883 and mark it as being referenced. */
2884 long indx = r_symndx - symtab_hdr->sh_info;
2885 h = elf_sym_hashes (abfd)[indx];
2886 while (h->root.type == bfd_link_hash_indirect
2887 || h->root.type == bfd_link_hash_warning)
2888 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2889
2890 h->ref_regular = 1;
2891 }
2892 else
2893 h = NULL;
2894
2895 /* We can only get preliminary data on whether a symbol is
2896 locally or externally defined, as not all of the input files
2897 have yet been processed. Do something with what we know, as
2898 this may help reduce memory usage and processing time later. */
2899 maybe_dynamic = (h && ((!info->executable
2900 && (!SYMBOLIC_BIND (info, h)
2901 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2902 || !h->def_regular
2903 || h->root.type == bfd_link_hash_defweak));
2904
2905 need_entry = 0;
2906 switch (ELFNN_R_TYPE (rel->r_info))
2907 {
2908 case R_IA64_TPREL64MSB:
2909 case R_IA64_TPREL64LSB:
2910 if (info->shared || maybe_dynamic)
2911 need_entry = NEED_DYNREL;
2912 dynrel_type = R_IA64_TPREL64LSB;
2913 if (info->shared)
2914 info->flags |= DF_STATIC_TLS;
2915 break;
2916
2917 case R_IA64_LTOFF_TPREL22:
2918 need_entry = NEED_TPREL;
2919 if (info->shared)
2920 info->flags |= DF_STATIC_TLS;
2921 break;
2922
2923 case R_IA64_DTPREL32MSB:
2924 case R_IA64_DTPREL32LSB:
2925 case R_IA64_DTPREL64MSB:
2926 case R_IA64_DTPREL64LSB:
2927 if (info->shared || maybe_dynamic)
2928 need_entry = NEED_DYNREL;
2929 dynrel_type = R_IA64_DTPRELNNLSB;
2930 break;
2931
2932 case R_IA64_LTOFF_DTPREL22:
2933 need_entry = NEED_DTPREL;
2934 break;
2935
2936 case R_IA64_DTPMOD64MSB:
2937 case R_IA64_DTPMOD64LSB:
2938 if (info->shared || maybe_dynamic)
2939 need_entry = NEED_DYNREL;
2940 dynrel_type = R_IA64_DTPMOD64LSB;
2941 break;
2942
2943 case R_IA64_LTOFF_DTPMOD22:
2944 need_entry = NEED_DTPMOD;
2945 break;
2946
2947 case R_IA64_LTOFF_FPTR22:
2948 case R_IA64_LTOFF_FPTR64I:
2949 case R_IA64_LTOFF_FPTR32MSB:
2950 case R_IA64_LTOFF_FPTR32LSB:
2951 case R_IA64_LTOFF_FPTR64MSB:
2952 case R_IA64_LTOFF_FPTR64LSB:
2953 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2954 break;
2955
2956 case R_IA64_FPTR64I:
2957 case R_IA64_FPTR32MSB:
2958 case R_IA64_FPTR32LSB:
2959 case R_IA64_FPTR64MSB:
2960 case R_IA64_FPTR64LSB:
2961 if (info->shared || h)
2962 need_entry = NEED_FPTR | NEED_DYNREL;
2963 else
2964 need_entry = NEED_FPTR;
2965 dynrel_type = R_IA64_FPTRNNLSB;
2966 break;
2967
2968 case R_IA64_LTOFF22:
2969 case R_IA64_LTOFF64I:
2970 need_entry = NEED_GOT;
2971 break;
2972
2973 case R_IA64_LTOFF22X:
2974 need_entry = NEED_GOTX;
2975 break;
2976
2977 case R_IA64_PLTOFF22:
2978 case R_IA64_PLTOFF64I:
2979 case R_IA64_PLTOFF64MSB:
2980 case R_IA64_PLTOFF64LSB:
2981 need_entry = NEED_PLTOFF;
2982 if (h)
2983 {
2984 if (maybe_dynamic)
2985 need_entry |= NEED_MIN_PLT;
2986 }
2987 break;
2988
2989 case R_IA64_PCREL21B:
2990 case R_IA64_PCREL60B:
2991 /* Depending on where this symbol is defined, we may or may not
2992 need a full plt entry. Only skip if we know we'll not need
2993 the entry -- static or symbolic, and the symbol definition
2994 has already been seen. */
2995 if (maybe_dynamic && rel->r_addend == 0)
2996 need_entry = NEED_FULL_PLT;
2997 break;
2998
2999 case R_IA64_IMM14:
3000 case R_IA64_IMM22:
3001 case R_IA64_IMM64:
3002 case R_IA64_DIR32MSB:
3003 case R_IA64_DIR32LSB:
3004 case R_IA64_DIR64MSB:
3005 case R_IA64_DIR64LSB:
3006 /* Shared objects will always need at least a REL relocation. */
3007 if (info->shared || maybe_dynamic)
3008 need_entry = NEED_DYNREL;
3009 dynrel_type = R_IA64_DIRNNLSB;
3010 break;
3011
3012 case R_IA64_IPLTMSB:
3013 case R_IA64_IPLTLSB:
3014 /* Shared objects will always need at least a REL relocation. */
3015 if (info->shared || maybe_dynamic)
3016 need_entry = NEED_DYNREL;
3017 dynrel_type = R_IA64_IPLTLSB;
3018 break;
3019
3020 case R_IA64_PCREL22:
3021 case R_IA64_PCREL64I:
3022 case R_IA64_PCREL32MSB:
3023 case R_IA64_PCREL32LSB:
3024 case R_IA64_PCREL64MSB:
3025 case R_IA64_PCREL64LSB:
3026 if (maybe_dynamic)
3027 need_entry = NEED_DYNREL;
3028 dynrel_type = R_IA64_PCRELNNLSB;
3029 break;
3030 }
3031
3032 if (!need_entry)
3033 continue;
3034
3035 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, rel, FALSE);
3036
3037 /* Record whether or not this is a local symbol. */
3038 dyn_i->h = h;
3039
3040 /* Create what's needed. */
3041 if (need_entry & (NEED_GOT | NEED_GOTX | NEED_TPREL
3042 | NEED_DTPMOD | NEED_DTPREL))
3043 {
3044 if (!got)
3045 {
3046 got = get_got (abfd, info, ia64_info);
3047 if (!got)
3048 return FALSE;
3049 }
3050 if (need_entry & NEED_GOT)
3051 dyn_i->want_got = 1;
3052 if (need_entry & NEED_GOTX)
3053 dyn_i->want_gotx = 1;
3054 if (need_entry & NEED_TPREL)
3055 dyn_i->want_tprel = 1;
3056 if (need_entry & NEED_DTPMOD)
3057 dyn_i->want_dtpmod = 1;
3058 if (need_entry & NEED_DTPREL)
3059 dyn_i->want_dtprel = 1;
3060 }
3061 if (need_entry & NEED_FPTR)
3062 {
3063 if (!fptr)
3064 {
3065 fptr = get_fptr (abfd, info, ia64_info);
3066 if (!fptr)
3067 return FALSE;
3068 }
3069
3070 /* FPTRs for shared libraries are allocated by the dynamic
3071 linker. Make sure this local symbol will appear in the
3072 dynamic symbol table. */
3073 if (!h && info->shared)
3074 {
3075 if (! (bfd_elf_link_record_local_dynamic_symbol
3076 (info, abfd, (long) r_symndx)))
3077 return FALSE;
3078 }
3079
3080 dyn_i->want_fptr = 1;
3081 }
3082 if (need_entry & NEED_LTOFF_FPTR)
3083 dyn_i->want_ltoff_fptr = 1;
3084 if (need_entry & (NEED_MIN_PLT | NEED_FULL_PLT))
3085 {
3086 if (!ia64_info->root.dynobj)
3087 ia64_info->root.dynobj = abfd;
3088 h->needs_plt = 1;
3089 dyn_i->want_plt = 1;
3090 }
3091 if (need_entry & NEED_FULL_PLT)
3092 dyn_i->want_plt2 = 1;
3093 if (need_entry & NEED_PLTOFF)
3094 {
3095 /* This is needed here, in case @pltoff is used in a non-shared
3096 link. */
3097 if (!pltoff)
3098 {
3099 pltoff = get_pltoff (abfd, info, ia64_info);
3100 if (!pltoff)
3101 return FALSE;
3102 }
3103
3104 dyn_i->want_pltoff = 1;
3105 }
3106 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
3107 {
3108 if (!srel)
3109 {
3110 srel = get_reloc_section (abfd, ia64_info, sec, TRUE);
3111 if (!srel)
3112 return FALSE;
3113 }
3114 if (!count_dyn_reloc (abfd, dyn_i, srel, dynrel_type,
3115 (sec->flags & SEC_READONLY) != 0))
3116 return FALSE;
3117 }
3118 }
3119
3120 return TRUE;
3121 }
3122
3123 /* For cleanliness, and potentially faster dynamic loading, allocate
3124 external GOT entries first. */
3125
3126 static bfd_boolean
3127 allocate_global_data_got (struct elfNN_ia64_dyn_sym_info *dyn_i,
3128 void * data)
3129 {
3130 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3131
3132 if ((dyn_i->want_got || dyn_i->want_gotx)
3133 && ! dyn_i->want_fptr
3134 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3135 {
3136 dyn_i->got_offset = x->ofs;
3137 x->ofs += 8;
3138 }
3139 if (dyn_i->want_tprel)
3140 {
3141 dyn_i->tprel_offset = x->ofs;
3142 x->ofs += 8;
3143 }
3144 if (dyn_i->want_dtpmod)
3145 {
3146 if (elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3147 {
3148 dyn_i->dtpmod_offset = x->ofs;
3149 x->ofs += 8;
3150 }
3151 else
3152 {
3153 struct elfNN_ia64_link_hash_table *ia64_info;
3154
3155 ia64_info = elfNN_ia64_hash_table (x->info);
3156 if (ia64_info == NULL)
3157 return FALSE;
3158
3159 if (ia64_info->self_dtpmod_offset == (bfd_vma) -1)
3160 {
3161 ia64_info->self_dtpmod_offset = x->ofs;
3162 x->ofs += 8;
3163 }
3164 dyn_i->dtpmod_offset = ia64_info->self_dtpmod_offset;
3165 }
3166 }
3167 if (dyn_i->want_dtprel)
3168 {
3169 dyn_i->dtprel_offset = x->ofs;
3170 x->ofs += 8;
3171 }
3172 return TRUE;
3173 }
3174
3175 /* Next, allocate all the GOT entries used by LTOFF_FPTR relocs. */
3176
3177 static bfd_boolean
3178 allocate_global_fptr_got (struct elfNN_ia64_dyn_sym_info *dyn_i,
3179 void * data)
3180 {
3181 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3182
3183 if (dyn_i->want_got
3184 && dyn_i->want_fptr
3185 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, R_IA64_FPTRNNLSB))
3186 {
3187 dyn_i->got_offset = x->ofs;
3188 x->ofs += 8;
3189 }
3190 return TRUE;
3191 }
3192
3193 /* Lastly, allocate all the GOT entries for local data. */
3194
3195 static bfd_boolean
3196 allocate_local_got (struct elfNN_ia64_dyn_sym_info *dyn_i,
3197 PTR data)
3198 {
3199 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3200
3201 if ((dyn_i->want_got || dyn_i->want_gotx)
3202 && !elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3203 {
3204 dyn_i->got_offset = x->ofs;
3205 x->ofs += 8;
3206 }
3207 return TRUE;
3208 }
3209
3210 /* Search for the index of a global symbol in it's defining object file. */
3211
3212 static long
3213 global_sym_index (struct elf_link_hash_entry *h)
3214 {
3215 struct elf_link_hash_entry **p;
3216 bfd *obj;
3217
3218 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3219 || h->root.type == bfd_link_hash_defweak);
3220
3221 obj = h->root.u.def.section->owner;
3222 for (p = elf_sym_hashes (obj); *p != h; ++p)
3223 continue;
3224
3225 return p - elf_sym_hashes (obj) + elf_tdata (obj)->symtab_hdr.sh_info;
3226 }
3227
3228 /* Allocate function descriptors. We can do these for every function
3229 in a main executable that is not exported. */
3230
3231 static bfd_boolean
3232 allocate_fptr (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data)
3233 {
3234 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3235
3236 if (dyn_i->want_fptr)
3237 {
3238 struct elf_link_hash_entry *h = dyn_i->h;
3239
3240 if (h)
3241 while (h->root.type == bfd_link_hash_indirect
3242 || h->root.type == bfd_link_hash_warning)
3243 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3244
3245 if (!x->info->executable
3246 && (!h
3247 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3248 || (h->root.type != bfd_link_hash_undefweak
3249 && h->root.type != bfd_link_hash_undefined)))
3250 {
3251 if (h && h->dynindx == -1)
3252 {
3253 BFD_ASSERT ((h->root.type == bfd_link_hash_defined)
3254 || (h->root.type == bfd_link_hash_defweak));
3255
3256 if (!bfd_elf_link_record_local_dynamic_symbol
3257 (x->info, h->root.u.def.section->owner,
3258 global_sym_index (h)))
3259 return FALSE;
3260 }
3261
3262 dyn_i->want_fptr = 0;
3263 }
3264 else if (h == NULL || h->dynindx == -1)
3265 {
3266 dyn_i->fptr_offset = x->ofs;
3267 x->ofs += 16;
3268 }
3269 else
3270 dyn_i->want_fptr = 0;
3271 }
3272 return TRUE;
3273 }
3274
3275 /* Allocate all the minimal PLT entries. */
3276
3277 static bfd_boolean
3278 allocate_plt_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3279 PTR data)
3280 {
3281 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3282
3283 if (dyn_i->want_plt)
3284 {
3285 struct elf_link_hash_entry *h = dyn_i->h;
3286
3287 if (h)
3288 while (h->root.type == bfd_link_hash_indirect
3289 || h->root.type == bfd_link_hash_warning)
3290 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3291
3292 /* ??? Versioned symbols seem to lose NEEDS_PLT. */
3293 if (elfNN_ia64_dynamic_symbol_p (h, x->info, 0))
3294 {
3295 bfd_size_type offset = x->ofs;
3296 if (offset == 0)
3297 offset = PLT_HEADER_SIZE;
3298 dyn_i->plt_offset = offset;
3299 x->ofs = offset + PLT_MIN_ENTRY_SIZE;
3300
3301 dyn_i->want_pltoff = 1;
3302 }
3303 else
3304 {
3305 dyn_i->want_plt = 0;
3306 dyn_i->want_plt2 = 0;
3307 }
3308 }
3309 return TRUE;
3310 }
3311
3312 /* Allocate all the full PLT entries. */
3313
3314 static bfd_boolean
3315 allocate_plt2_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3316 PTR data)
3317 {
3318 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3319
3320 if (dyn_i->want_plt2)
3321 {
3322 struct elf_link_hash_entry *h = dyn_i->h;
3323 bfd_size_type ofs = x->ofs;
3324
3325 dyn_i->plt2_offset = ofs;
3326 x->ofs = ofs + PLT_FULL_ENTRY_SIZE;
3327
3328 while (h->root.type == bfd_link_hash_indirect
3329 || h->root.type == bfd_link_hash_warning)
3330 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3331 dyn_i->h->plt.offset = ofs;
3332 }
3333 return TRUE;
3334 }
3335
3336 /* Allocate all the PLTOFF entries requested by relocations and
3337 plt entries. We can't share space with allocated FPTR entries,
3338 because the latter are not necessarily addressable by the GP.
3339 ??? Relaxation might be able to determine that they are. */
3340
3341 static bfd_boolean
3342 allocate_pltoff_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3343 PTR data)
3344 {
3345 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3346
3347 if (dyn_i->want_pltoff)
3348 {
3349 dyn_i->pltoff_offset = x->ofs;
3350 x->ofs += 16;
3351 }
3352 return TRUE;
3353 }
3354
3355 /* Allocate dynamic relocations for those symbols that turned out
3356 to be dynamic. */
3357
3358 static bfd_boolean
3359 allocate_dynrel_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3360 PTR data)
3361 {
3362 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3363 struct elfNN_ia64_link_hash_table *ia64_info;
3364 struct elfNN_ia64_dyn_reloc_entry *rent;
3365 bfd_boolean dynamic_symbol, shared, resolved_zero;
3366
3367 ia64_info = elfNN_ia64_hash_table (x->info);
3368 if (ia64_info == NULL)
3369 return FALSE;
3370
3371 /* Note that this can't be used in relation to FPTR relocs below. */
3372 dynamic_symbol = elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0);
3373
3374 shared = x->info->shared;
3375 resolved_zero = (dyn_i->h
3376 && ELF_ST_VISIBILITY (dyn_i->h->other)
3377 && dyn_i->h->root.type == bfd_link_hash_undefweak);
3378
3379 /* Take care of the GOT and PLT relocations. */
3380
3381 if ((!resolved_zero
3382 && (dynamic_symbol || shared)
3383 && (dyn_i->want_got || dyn_i->want_gotx))
3384 || (dyn_i->want_ltoff_fptr
3385 && dyn_i->h
3386 && dyn_i->h->dynindx != -1))
3387 {
3388 if (!dyn_i->want_ltoff_fptr
3389 || !x->info->pie
3390 || dyn_i->h == NULL
3391 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3392 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
3393 }
3394 if ((dynamic_symbol || shared) && dyn_i->want_tprel)
3395 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
3396 if (dynamic_symbol && dyn_i->want_dtpmod)
3397 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
3398 if (dynamic_symbol && dyn_i->want_dtprel)
3399 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
3400
3401 if (x->only_got)
3402 return TRUE;
3403
3404 if (ia64_info->rel_fptr_sec && dyn_i->want_fptr)
3405 {
3406 if (dyn_i->h == NULL || dyn_i->h->root.type != bfd_link_hash_undefweak)
3407 ia64_info->rel_fptr_sec->size += sizeof (ElfNN_External_Rela);
3408 }
3409
3410 if (!resolved_zero && dyn_i->want_pltoff)
3411 {
3412 bfd_size_type t = 0;
3413
3414 /* Dynamic symbols get one IPLT relocation. Local symbols in
3415 shared libraries get two REL relocations. Local symbols in
3416 main applications get nothing. */
3417 if (dynamic_symbol)
3418 t = sizeof (ElfNN_External_Rela);
3419 else if (shared)
3420 t = 2 * sizeof (ElfNN_External_Rela);
3421
3422 ia64_info->rel_pltoff_sec->size += t;
3423 }
3424
3425 /* Take care of the normal data relocations. */
3426
3427 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
3428 {
3429 int count = rent->count;
3430
3431 switch (rent->type)
3432 {
3433 case R_IA64_FPTR32LSB:
3434 case R_IA64_FPTR64LSB:
3435 /* Allocate one iff !want_fptr and not PIE, which by this point
3436 will be true only if we're actually allocating one statically
3437 in the main executable. Position independent executables
3438 need a relative reloc. */
3439 if (dyn_i->want_fptr && !x->info->pie)
3440 continue;
3441 break;
3442 case R_IA64_PCREL32LSB:
3443 case R_IA64_PCREL64LSB:
3444 if (!dynamic_symbol)
3445 continue;
3446 break;
3447 case R_IA64_DIR32LSB:
3448 case R_IA64_DIR64LSB:
3449 if (!dynamic_symbol && !shared)
3450 continue;
3451 break;
3452 case R_IA64_IPLTLSB:
3453 if (!dynamic_symbol && !shared)
3454 continue;
3455 /* Use two REL relocations for IPLT relocations
3456 against local symbols. */
3457 if (!dynamic_symbol)
3458 count *= 2;
3459 break;
3460 case R_IA64_DTPREL32LSB:
3461 case R_IA64_TPREL64LSB:
3462 case R_IA64_DTPREL64LSB:
3463 case R_IA64_DTPMOD64LSB:
3464 break;
3465 default:
3466 abort ();
3467 }
3468 if (rent->reltext)
3469 ia64_info->reltext = 1;
3470 rent->srel->size += sizeof (ElfNN_External_Rela) * count;
3471 }
3472
3473 return TRUE;
3474 }
3475
3476 static bfd_boolean
3477 elfNN_ia64_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3478 struct elf_link_hash_entry *h)
3479 {
3480 /* ??? Undefined symbols with PLT entries should be re-defined
3481 to be the PLT entry. */
3482
3483 /* If this is a weak symbol, and there is a real definition, the
3484 processor independent code will have arranged for us to see the
3485 real definition first, and we can just use the same value. */
3486 if (h->u.weakdef != NULL)
3487 {
3488 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3489 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3490 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3491 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3492 return TRUE;
3493 }
3494
3495 /* If this is a reference to a symbol defined by a dynamic object which
3496 is not a function, we might allocate the symbol in our .dynbss section
3497 and allocate a COPY dynamic relocation.
3498
3499 But IA-64 code is canonically PIC, so as a rule we can avoid this sort
3500 of hackery. */
3501
3502 return TRUE;
3503 }
3504
3505 static bfd_boolean
3506 elfNN_ia64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3507 struct bfd_link_info *info)
3508 {
3509 struct elfNN_ia64_allocate_data data;
3510 struct elfNN_ia64_link_hash_table *ia64_info;
3511 asection *sec;
3512 bfd *dynobj;
3513 bfd_boolean relplt = FALSE;
3514
3515 dynobj = elf_hash_table(info)->dynobj;
3516 ia64_info = elfNN_ia64_hash_table (info);
3517 if (ia64_info == NULL)
3518 return FALSE;
3519 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
3520 BFD_ASSERT(dynobj != NULL);
3521 data.info = info;
3522
3523 /* Set the contents of the .interp section to the interpreter. */
3524 if (ia64_info->root.dynamic_sections_created
3525 && info->executable)
3526 {
3527 sec = bfd_get_section_by_name (dynobj, ".interp");
3528 BFD_ASSERT (sec != NULL);
3529 sec->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
3530 sec->size = strlen (ELF_DYNAMIC_INTERPRETER) + 1;
3531 }
3532
3533 /* Allocate the GOT entries. */
3534
3535 if (ia64_info->root.sgot)
3536 {
3537 data.ofs = 0;
3538 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
3539 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
3540 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
3541 ia64_info->root.sgot->size = data.ofs;
3542 }
3543
3544 /* Allocate the FPTR entries. */
3545
3546 if (ia64_info->fptr_sec)
3547 {
3548 data.ofs = 0;
3549 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_fptr, &data);
3550 ia64_info->fptr_sec->size = data.ofs;
3551 }
3552
3553 /* Now that we've seen all of the input files, we can decide which
3554 symbols need plt entries. Allocate the minimal PLT entries first.
3555 We do this even though dynamic_sections_created may be FALSE, because
3556 this has the side-effect of clearing want_plt and want_plt2. */
3557
3558 data.ofs = 0;
3559 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt_entries, &data);
3560
3561 ia64_info->minplt_entries = 0;
3562 if (data.ofs)
3563 {
3564 ia64_info->minplt_entries
3565 = (data.ofs - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
3566 }
3567
3568 /* Align the pointer for the plt2 entries. */
3569 data.ofs = (data.ofs + 31) & (bfd_vma) -32;
3570
3571 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt2_entries, &data);
3572 if (data.ofs != 0 || ia64_info->root.dynamic_sections_created)
3573 {
3574 /* FIXME: we always reserve the memory for dynamic linker even if
3575 there are no PLT entries since dynamic linker may assume the
3576 reserved memory always exists. */
3577
3578 BFD_ASSERT (ia64_info->root.dynamic_sections_created);
3579
3580 ia64_info->root.splt->size = data.ofs;
3581
3582 /* If we've got a .plt, we need some extra memory for the dynamic
3583 linker. We stuff these in .got.plt. */
3584 sec = bfd_get_section_by_name (dynobj, ".got.plt");
3585 sec->size = 8 * PLT_RESERVED_WORDS;
3586 }
3587
3588 /* Allocate the PLTOFF entries. */
3589
3590 if (ia64_info->pltoff_sec)
3591 {
3592 data.ofs = 0;
3593 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_pltoff_entries, &data);
3594 ia64_info->pltoff_sec->size = data.ofs;
3595 }
3596
3597 if (ia64_info->root.dynamic_sections_created)
3598 {
3599 /* Allocate space for the dynamic relocations that turned out to be
3600 required. */
3601
3602 if (info->shared && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
3603 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
3604 data.only_got = FALSE;
3605 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, &data);
3606 }
3607
3608 /* We have now determined the sizes of the various dynamic sections.
3609 Allocate memory for them. */
3610 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
3611 {
3612 bfd_boolean strip;
3613
3614 if (!(sec->flags & SEC_LINKER_CREATED))
3615 continue;
3616
3617 /* If we don't need this section, strip it from the output file.
3618 There were several sections primarily related to dynamic
3619 linking that must be create before the linker maps input
3620 sections to output sections. The linker does that before
3621 bfd_elf_size_dynamic_sections is called, and it is that
3622 function which decides whether anything needs to go into
3623 these sections. */
3624
3625 strip = (sec->size == 0);
3626
3627 if (sec == ia64_info->root.sgot)
3628 strip = FALSE;
3629 else if (sec == ia64_info->root.srelgot)
3630 {
3631 if (strip)
3632 ia64_info->root.srelgot = NULL;
3633 else
3634 /* We use the reloc_count field as a counter if we need to
3635 copy relocs into the output file. */
3636 sec->reloc_count = 0;
3637 }
3638 else if (sec == ia64_info->fptr_sec)
3639 {
3640 if (strip)
3641 ia64_info->fptr_sec = NULL;
3642 }
3643 else if (sec == ia64_info->rel_fptr_sec)
3644 {
3645 if (strip)
3646 ia64_info->rel_fptr_sec = NULL;
3647 else
3648 /* We use the reloc_count field as a counter if we need to
3649 copy relocs into the output file. */
3650 sec->reloc_count = 0;
3651 }
3652 else if (sec == ia64_info->root.splt)
3653 {
3654 if (strip)
3655 ia64_info->root.splt = NULL;
3656 }
3657 else if (sec == ia64_info->pltoff_sec)
3658 {
3659 if (strip)
3660 ia64_info->pltoff_sec = NULL;
3661 }
3662 else if (sec == ia64_info->rel_pltoff_sec)
3663 {
3664 if (strip)
3665 ia64_info->rel_pltoff_sec = NULL;
3666 else
3667 {
3668 relplt = TRUE;
3669 /* We use the reloc_count field as a counter if we need to
3670 copy relocs into the output file. */
3671 sec->reloc_count = 0;
3672 }
3673 }
3674 else
3675 {
3676 const char *name;
3677
3678 /* It's OK to base decisions on the section name, because none
3679 of the dynobj section names depend upon the input files. */
3680 name = bfd_get_section_name (dynobj, sec);
3681
3682 if (strcmp (name, ".got.plt") == 0)
3683 strip = FALSE;
3684 else if (CONST_STRNEQ (name, ".rel"))
3685 {
3686 if (!strip)
3687 {
3688 /* We use the reloc_count field as a counter if we need to
3689 copy relocs into the output file. */
3690 sec->reloc_count = 0;
3691 }
3692 }
3693 else
3694 continue;
3695 }
3696
3697 if (strip)
3698 sec->flags |= SEC_EXCLUDE;
3699 else
3700 {
3701 /* Allocate memory for the section contents. */
3702 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
3703 if (sec->contents == NULL && sec->size != 0)
3704 return FALSE;
3705 }
3706 }
3707
3708 if (elf_hash_table (info)->dynamic_sections_created)
3709 {
3710 /* Add some entries to the .dynamic section. We fill in the values
3711 later (in finish_dynamic_sections) but we must add the entries now
3712 so that we get the correct size for the .dynamic section. */
3713
3714 if (info->executable)
3715 {
3716 /* The DT_DEBUG entry is filled in by the dynamic linker and used
3717 by the debugger. */
3718 #define add_dynamic_entry(TAG, VAL) \
3719 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3720
3721 if (!add_dynamic_entry (DT_DEBUG, 0))
3722 return FALSE;
3723 }
3724
3725 if (!add_dynamic_entry (DT_IA_64_PLT_RESERVE, 0))
3726 return FALSE;
3727 if (!add_dynamic_entry (DT_PLTGOT, 0))
3728 return FALSE;
3729
3730 if (relplt)
3731 {
3732 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3733 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3734 || !add_dynamic_entry (DT_JMPREL, 0))
3735 return FALSE;
3736 }
3737
3738 if (!add_dynamic_entry (DT_RELA, 0)
3739 || !add_dynamic_entry (DT_RELASZ, 0)
3740 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
3741 return FALSE;
3742
3743 if (ia64_info->reltext)
3744 {
3745 if (!add_dynamic_entry (DT_TEXTREL, 0))
3746 return FALSE;
3747 info->flags |= DF_TEXTREL;
3748 }
3749 }
3750
3751 /* ??? Perhaps force __gp local. */
3752
3753 return TRUE;
3754 }
3755
3756 static bfd_reloc_status_type
3757 elfNN_ia64_install_value (bfd_byte *hit_addr, bfd_vma v,
3758 unsigned int r_type)
3759 {
3760 const struct ia64_operand *op;
3761 int bigendian = 0, shift = 0;
3762 bfd_vma t0, t1, dword;
3763 ia64_insn insn;
3764 enum ia64_opnd opnd;
3765 const char *err;
3766 size_t size = 8;
3767 #ifdef BFD_HOST_U_64_BIT
3768 BFD_HOST_U_64_BIT val = (BFD_HOST_U_64_BIT) v;
3769 #else
3770 bfd_vma val = v;
3771 #endif
3772
3773 opnd = IA64_OPND_NIL;
3774 switch (r_type)
3775 {
3776 case R_IA64_NONE:
3777 case R_IA64_LDXMOV:
3778 return bfd_reloc_ok;
3779
3780 /* Instruction relocations. */
3781
3782 case R_IA64_IMM14:
3783 case R_IA64_TPREL14:
3784 case R_IA64_DTPREL14:
3785 opnd = IA64_OPND_IMM14;
3786 break;
3787
3788 case R_IA64_PCREL21F: opnd = IA64_OPND_TGT25; break;
3789 case R_IA64_PCREL21M: opnd = IA64_OPND_TGT25b; break;
3790 case R_IA64_PCREL60B: opnd = IA64_OPND_TGT64; break;
3791 case R_IA64_PCREL21B:
3792 case R_IA64_PCREL21BI:
3793 opnd = IA64_OPND_TGT25c;
3794 break;
3795
3796 case R_IA64_IMM22:
3797 case R_IA64_GPREL22:
3798 case R_IA64_LTOFF22:
3799 case R_IA64_LTOFF22X:
3800 case R_IA64_PLTOFF22:
3801 case R_IA64_PCREL22:
3802 case R_IA64_LTOFF_FPTR22:
3803 case R_IA64_TPREL22:
3804 case R_IA64_DTPREL22:
3805 case R_IA64_LTOFF_TPREL22:
3806 case R_IA64_LTOFF_DTPMOD22:
3807 case R_IA64_LTOFF_DTPREL22:
3808 opnd = IA64_OPND_IMM22;
3809 break;
3810
3811 case R_IA64_IMM64:
3812 case R_IA64_GPREL64I:
3813 case R_IA64_LTOFF64I:
3814 case R_IA64_PLTOFF64I:
3815 case R_IA64_PCREL64I:
3816 case R_IA64_FPTR64I:
3817 case R_IA64_LTOFF_FPTR64I:
3818 case R_IA64_TPREL64I:
3819 case R_IA64_DTPREL64I:
3820 opnd = IA64_OPND_IMMU64;
3821 break;
3822
3823 /* Data relocations. */
3824
3825 case R_IA64_DIR32MSB:
3826 case R_IA64_GPREL32MSB:
3827 case R_IA64_FPTR32MSB:
3828 case R_IA64_PCREL32MSB:
3829 case R_IA64_LTOFF_FPTR32MSB:
3830 case R_IA64_SEGREL32MSB:
3831 case R_IA64_SECREL32MSB:
3832 case R_IA64_LTV32MSB:
3833 case R_IA64_DTPREL32MSB:
3834 size = 4; bigendian = 1;
3835 break;
3836
3837 case R_IA64_DIR32LSB:
3838 case R_IA64_GPREL32LSB:
3839 case R_IA64_FPTR32LSB:
3840 case R_IA64_PCREL32LSB:
3841 case R_IA64_LTOFF_FPTR32LSB:
3842 case R_IA64_SEGREL32LSB:
3843 case R_IA64_SECREL32LSB:
3844 case R_IA64_LTV32LSB:
3845 case R_IA64_DTPREL32LSB:
3846 size = 4; bigendian = 0;
3847 break;
3848
3849 case R_IA64_DIR64MSB:
3850 case R_IA64_GPREL64MSB:
3851 case R_IA64_PLTOFF64MSB:
3852 case R_IA64_FPTR64MSB:
3853 case R_IA64_PCREL64MSB:
3854 case R_IA64_LTOFF_FPTR64MSB:
3855 case R_IA64_SEGREL64MSB:
3856 case R_IA64_SECREL64MSB:
3857 case R_IA64_LTV64MSB:
3858 case R_IA64_TPREL64MSB:
3859 case R_IA64_DTPMOD64MSB:
3860 case R_IA64_DTPREL64MSB:
3861 size = 8; bigendian = 1;
3862 break;
3863
3864 case R_IA64_DIR64LSB:
3865 case R_IA64_GPREL64LSB:
3866 case R_IA64_PLTOFF64LSB:
3867 case R_IA64_FPTR64LSB:
3868 case R_IA64_PCREL64LSB:
3869 case R_IA64_LTOFF_FPTR64LSB:
3870 case R_IA64_SEGREL64LSB:
3871 case R_IA64_SECREL64LSB:
3872 case R_IA64_LTV64LSB:
3873 case R_IA64_TPREL64LSB:
3874 case R_IA64_DTPMOD64LSB:
3875 case R_IA64_DTPREL64LSB:
3876 size = 8; bigendian = 0;
3877 break;
3878
3879 /* Unsupported / Dynamic relocations. */
3880 default:
3881 return bfd_reloc_notsupported;
3882 }
3883
3884 switch (opnd)
3885 {
3886 case IA64_OPND_IMMU64:
3887 hit_addr -= (long) hit_addr & 0x3;
3888 t0 = bfd_getl64 (hit_addr);
3889 t1 = bfd_getl64 (hit_addr + 8);
3890
3891 /* tmpl/s: bits 0.. 5 in t0
3892 slot 0: bits 5..45 in t0
3893 slot 1: bits 46..63 in t0, bits 0..22 in t1
3894 slot 2: bits 23..63 in t1 */
3895
3896 /* First, clear the bits that form the 64 bit constant. */
3897 t0 &= ~(0x3ffffLL << 46);
3898 t1 &= ~(0x7fffffLL
3899 | (( (0x07fLL << 13) | (0x1ffLL << 27)
3900 | (0x01fLL << 22) | (0x001LL << 21)
3901 | (0x001LL << 36)) << 23));
3902
3903 t0 |= ((val >> 22) & 0x03ffffLL) << 46; /* 18 lsbs of imm41 */
3904 t1 |= ((val >> 40) & 0x7fffffLL) << 0; /* 23 msbs of imm41 */
3905 t1 |= ( (((val >> 0) & 0x07f) << 13) /* imm7b */
3906 | (((val >> 7) & 0x1ff) << 27) /* imm9d */
3907 | (((val >> 16) & 0x01f) << 22) /* imm5c */
3908 | (((val >> 21) & 0x001) << 21) /* ic */
3909 | (((val >> 63) & 0x001) << 36)) << 23; /* i */
3910
3911 bfd_putl64 (t0, hit_addr);
3912 bfd_putl64 (t1, hit_addr + 8);
3913 break;
3914
3915 case IA64_OPND_TGT64:
3916 hit_addr -= (long) hit_addr & 0x3;
3917 t0 = bfd_getl64 (hit_addr);
3918 t1 = bfd_getl64 (hit_addr + 8);
3919
3920 /* tmpl/s: bits 0.. 5 in t0
3921 slot 0: bits 5..45 in t0
3922 slot 1: bits 46..63 in t0, bits 0..22 in t1
3923 slot 2: bits 23..63 in t1 */
3924
3925 /* First, clear the bits that form the 64 bit constant. */
3926 t0 &= ~(0x3ffffLL << 46);
3927 t1 &= ~(0x7fffffLL
3928 | ((1LL << 36 | 0xfffffLL << 13) << 23));
3929
3930 val >>= 4;
3931 t0 |= ((val >> 20) & 0xffffLL) << 2 << 46; /* 16 lsbs of imm39 */
3932 t1 |= ((val >> 36) & 0x7fffffLL) << 0; /* 23 msbs of imm39 */
3933 t1 |= ((((val >> 0) & 0xfffffLL) << 13) /* imm20b */
3934 | (((val >> 59) & 0x1LL) << 36)) << 23; /* i */
3935
3936 bfd_putl64 (t0, hit_addr);
3937 bfd_putl64 (t1, hit_addr + 8);
3938 break;
3939
3940 default:
3941 switch ((long) hit_addr & 0x3)
3942 {
3943 case 0: shift = 5; break;
3944 case 1: shift = 14; hit_addr += 3; break;
3945 case 2: shift = 23; hit_addr += 6; break;
3946 case 3: return bfd_reloc_notsupported; /* shouldn't happen... */
3947 }
3948 dword = bfd_getl64 (hit_addr);
3949 insn = (dword >> shift) & 0x1ffffffffffLL;
3950
3951 op = elf64_ia64_operands + opnd;
3952 err = (*op->insert) (op, val, &insn);
3953 if (err)
3954 return bfd_reloc_overflow;
3955
3956 dword &= ~(0x1ffffffffffLL << shift);
3957 dword |= (insn << shift);
3958 bfd_putl64 (dword, hit_addr);
3959 break;
3960
3961 case IA64_OPND_NIL:
3962 /* A data relocation. */
3963 if (bigendian)
3964 if (size == 4)
3965 bfd_putb32 (val, hit_addr);
3966 else
3967 bfd_putb64 (val, hit_addr);
3968 else
3969 if (size == 4)
3970 bfd_putl32 (val, hit_addr);
3971 else
3972 bfd_putl64 (val, hit_addr);
3973 break;
3974 }
3975
3976 return bfd_reloc_ok;
3977 }
3978
3979 static void
3980 elfNN_ia64_install_dyn_reloc (bfd *abfd, struct bfd_link_info *info,
3981 asection *sec, asection *srel,
3982 bfd_vma offset, unsigned int type,
3983 long dynindx, bfd_vma addend)
3984 {
3985 Elf_Internal_Rela outrel;
3986 bfd_byte *loc;
3987
3988 BFD_ASSERT (dynindx != -1);
3989 outrel.r_info = ELFNN_R_INFO (dynindx, type);
3990 outrel.r_addend = addend;
3991 outrel.r_offset = _bfd_elf_section_offset (abfd, info, sec, offset);
3992 if (outrel.r_offset >= (bfd_vma) -2)
3993 {
3994 /* Run for the hills. We shouldn't be outputting a relocation
3995 for this. So do what everyone else does and output a no-op. */
3996 outrel.r_info = ELFNN_R_INFO (0, R_IA64_NONE);
3997 outrel.r_addend = 0;
3998 outrel.r_offset = 0;
3999 }
4000 else
4001 outrel.r_offset += sec->output_section->vma + sec->output_offset;
4002
4003 loc = srel->contents;
4004 loc += srel->reloc_count++ * sizeof (ElfNN_External_Rela);
4005 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
4006 BFD_ASSERT (sizeof (ElfNN_External_Rela) * srel->reloc_count <= srel->size);
4007 }
4008
4009 /* Store an entry for target address TARGET_ADDR in the linkage table
4010 and return the gp-relative address of the linkage table entry. */
4011
4012 static bfd_vma
4013 set_got_entry (bfd *abfd, struct bfd_link_info *info,
4014 struct elfNN_ia64_dyn_sym_info *dyn_i,
4015 long dynindx, bfd_vma addend, bfd_vma value,
4016 unsigned int dyn_r_type)
4017 {
4018 struct elfNN_ia64_link_hash_table *ia64_info;
4019 asection *got_sec;
4020 bfd_boolean done;
4021 bfd_vma got_offset;
4022
4023 ia64_info = elfNN_ia64_hash_table (info);
4024 if (ia64_info == NULL)
4025 return 0;
4026
4027 got_sec = ia64_info->root.sgot;
4028
4029 switch (dyn_r_type)
4030 {
4031 case R_IA64_TPREL64LSB:
4032 done = dyn_i->tprel_done;
4033 dyn_i->tprel_done = TRUE;
4034 got_offset = dyn_i->tprel_offset;
4035 break;
4036 case R_IA64_DTPMOD64LSB:
4037 if (dyn_i->dtpmod_offset != ia64_info->self_dtpmod_offset)
4038 {
4039 done = dyn_i->dtpmod_done;
4040 dyn_i->dtpmod_done = TRUE;
4041 }
4042 else
4043 {
4044 done = ia64_info->self_dtpmod_done;
4045 ia64_info->self_dtpmod_done = TRUE;
4046 dynindx = 0;
4047 }
4048 got_offset = dyn_i->dtpmod_offset;
4049 break;
4050 case R_IA64_DTPREL32LSB:
4051 case R_IA64_DTPREL64LSB:
4052 done = dyn_i->dtprel_done;
4053 dyn_i->dtprel_done = TRUE;
4054 got_offset = dyn_i->dtprel_offset;
4055 break;
4056 default:
4057 done = dyn_i->got_done;
4058 dyn_i->got_done = TRUE;
4059 got_offset = dyn_i->got_offset;
4060 break;
4061 }
4062
4063 BFD_ASSERT ((got_offset & 7) == 0);
4064
4065 if (! done)
4066 {
4067 /* Store the target address in the linkage table entry. */
4068 bfd_put_64 (abfd, value, got_sec->contents + got_offset);
4069
4070 /* Install a dynamic relocation if needed. */
4071 if (((info->shared
4072 && (!dyn_i->h
4073 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
4074 || dyn_i->h->root.type != bfd_link_hash_undefweak)
4075 && dyn_r_type != R_IA64_DTPREL32LSB
4076 && dyn_r_type != R_IA64_DTPREL64LSB)
4077 || elfNN_ia64_dynamic_symbol_p (dyn_i->h, info, dyn_r_type)
4078 || (dynindx != -1
4079 && (dyn_r_type == R_IA64_FPTR32LSB
4080 || dyn_r_type == R_IA64_FPTR64LSB)))
4081 && (!dyn_i->want_ltoff_fptr
4082 || !info->pie
4083 || !dyn_i->h
4084 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4085 {
4086 if (dynindx == -1
4087 && dyn_r_type != R_IA64_TPREL64LSB
4088 && dyn_r_type != R_IA64_DTPMOD64LSB
4089 && dyn_r_type != R_IA64_DTPREL32LSB
4090 && dyn_r_type != R_IA64_DTPREL64LSB)
4091 {
4092 dyn_r_type = R_IA64_RELNNLSB;
4093 dynindx = 0;
4094 addend = value;
4095 }
4096
4097 if (bfd_big_endian (abfd))
4098 {
4099 switch (dyn_r_type)
4100 {
4101 case R_IA64_REL32LSB:
4102 dyn_r_type = R_IA64_REL32MSB;
4103 break;
4104 case R_IA64_DIR32LSB:
4105 dyn_r_type = R_IA64_DIR32MSB;
4106 break;
4107 case R_IA64_FPTR32LSB:
4108 dyn_r_type = R_IA64_FPTR32MSB;
4109 break;
4110 case R_IA64_DTPREL32LSB:
4111 dyn_r_type = R_IA64_DTPREL32MSB;
4112 break;
4113 case R_IA64_REL64LSB:
4114 dyn_r_type = R_IA64_REL64MSB;
4115 break;
4116 case R_IA64_DIR64LSB:
4117 dyn_r_type = R_IA64_DIR64MSB;
4118 break;
4119 case R_IA64_FPTR64LSB:
4120 dyn_r_type = R_IA64_FPTR64MSB;
4121 break;
4122 case R_IA64_TPREL64LSB:
4123 dyn_r_type = R_IA64_TPREL64MSB;
4124 break;
4125 case R_IA64_DTPMOD64LSB:
4126 dyn_r_type = R_IA64_DTPMOD64MSB;
4127 break;
4128 case R_IA64_DTPREL64LSB:
4129 dyn_r_type = R_IA64_DTPREL64MSB;
4130 break;
4131 default:
4132 BFD_ASSERT (FALSE);
4133 break;
4134 }
4135 }
4136
4137 elfNN_ia64_install_dyn_reloc (abfd, NULL, got_sec,
4138 ia64_info->root.srelgot,
4139 got_offset, dyn_r_type,
4140 dynindx, addend);
4141 }
4142 }
4143
4144 /* Return the address of the linkage table entry. */
4145 value = (got_sec->output_section->vma
4146 + got_sec->output_offset
4147 + got_offset);
4148
4149 return value;
4150 }
4151
4152 /* Fill in a function descriptor consisting of the function's code
4153 address and its global pointer. Return the descriptor's address. */
4154
4155 static bfd_vma
4156 set_fptr_entry (bfd *abfd, struct bfd_link_info *info,
4157 struct elfNN_ia64_dyn_sym_info *dyn_i,
4158 bfd_vma value)
4159 {
4160 struct elfNN_ia64_link_hash_table *ia64_info;
4161 asection *fptr_sec;
4162
4163 ia64_info = elfNN_ia64_hash_table (info);
4164 if (ia64_info == NULL)
4165 return 0;
4166
4167 fptr_sec = ia64_info->fptr_sec;
4168
4169 if (!dyn_i->fptr_done)
4170 {
4171 dyn_i->fptr_done = 1;
4172
4173 /* Fill in the function descriptor. */
4174 bfd_put_64 (abfd, value, fptr_sec->contents + dyn_i->fptr_offset);
4175 bfd_put_64 (abfd, _bfd_get_gp_value (abfd),
4176 fptr_sec->contents + dyn_i->fptr_offset + 8);
4177 if (ia64_info->rel_fptr_sec)
4178 {
4179 Elf_Internal_Rela outrel;
4180 bfd_byte *loc;
4181
4182 if (bfd_little_endian (abfd))
4183 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTLSB);
4184 else
4185 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTMSB);
4186 outrel.r_addend = value;
4187 outrel.r_offset = (fptr_sec->output_section->vma
4188 + fptr_sec->output_offset
4189 + dyn_i->fptr_offset);
4190 loc = ia64_info->rel_fptr_sec->contents;
4191 loc += ia64_info->rel_fptr_sec->reloc_count++
4192 * sizeof (ElfNN_External_Rela);
4193 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
4194 }
4195 }
4196
4197 /* Return the descriptor's address. */
4198 value = (fptr_sec->output_section->vma
4199 + fptr_sec->output_offset
4200 + dyn_i->fptr_offset);
4201
4202 return value;
4203 }
4204
4205 /* Fill in a PLTOFF entry consisting of the function's code address
4206 and its global pointer. Return the descriptor's address. */
4207
4208 static bfd_vma
4209 set_pltoff_entry (bfd *abfd, struct bfd_link_info *info,
4210 struct elfNN_ia64_dyn_sym_info *dyn_i,
4211 bfd_vma value, bfd_boolean is_plt)
4212 {
4213 struct elfNN_ia64_link_hash_table *ia64_info;
4214 asection *pltoff_sec;
4215
4216 ia64_info = elfNN_ia64_hash_table (info);
4217 if (ia64_info == NULL)
4218 return 0;
4219
4220 pltoff_sec = ia64_info->pltoff_sec;
4221
4222 /* Don't do anything if this symbol uses a real PLT entry. In
4223 that case, we'll fill this in during finish_dynamic_symbol. */
4224 if ((! dyn_i->want_plt || is_plt)
4225 && !dyn_i->pltoff_done)
4226 {
4227 bfd_vma gp = _bfd_get_gp_value (abfd);
4228
4229 /* Fill in the function descriptor. */
4230 bfd_put_64 (abfd, value, pltoff_sec->contents + dyn_i->pltoff_offset);
4231 bfd_put_64 (abfd, gp, pltoff_sec->contents + dyn_i->pltoff_offset + 8);
4232
4233 /* Install dynamic relocations if needed. */
4234 if (!is_plt
4235 && info->shared
4236 && (!dyn_i->h
4237 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
4238 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4239 {
4240 unsigned int dyn_r_type;
4241
4242 if (bfd_big_endian (abfd))
4243 dyn_r_type = R_IA64_RELNNMSB;
4244 else
4245 dyn_r_type = R_IA64_RELNNLSB;
4246
4247 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4248 ia64_info->rel_pltoff_sec,
4249 dyn_i->pltoff_offset,
4250 dyn_r_type, 0, value);
4251 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4252 ia64_info->rel_pltoff_sec,
4253 dyn_i->pltoff_offset + ARCH_SIZE / 8,
4254 dyn_r_type, 0, gp);
4255 }
4256
4257 dyn_i->pltoff_done = 1;
4258 }
4259
4260 /* Return the descriptor's address. */
4261 value = (pltoff_sec->output_section->vma
4262 + pltoff_sec->output_offset
4263 + dyn_i->pltoff_offset);
4264
4265 return value;
4266 }
4267
4268 /* Return the base VMA address which should be subtracted from real addresses
4269 when resolving @tprel() relocation.
4270 Main program TLS (whose template starts at PT_TLS p_vaddr)
4271 is assigned offset round(2 * size of pointer, PT_TLS p_align). */
4272
4273 static bfd_vma
4274 elfNN_ia64_tprel_base (struct bfd_link_info *info)
4275 {
4276 asection *tls_sec = elf_hash_table (info)->tls_sec;
4277 return tls_sec->vma - align_power ((bfd_vma) ARCH_SIZE / 4,
4278 tls_sec->alignment_power);
4279 }
4280
4281 /* Return the base VMA address which should be subtracted from real addresses
4282 when resolving @dtprel() relocation.
4283 This is PT_TLS segment p_vaddr. */
4284
4285 static bfd_vma
4286 elfNN_ia64_dtprel_base (struct bfd_link_info *info)
4287 {
4288 return elf_hash_table (info)->tls_sec->vma;
4289 }
4290
4291 /* Called through qsort to sort the .IA_64.unwind section during a
4292 non-relocatable link. Set elfNN_ia64_unwind_entry_compare_bfd
4293 to the output bfd so we can do proper endianness frobbing. */
4294
4295 static bfd *elfNN_ia64_unwind_entry_compare_bfd;
4296
4297 static int
4298 elfNN_ia64_unwind_entry_compare (const PTR a, const PTR b)
4299 {
4300 bfd_vma av, bv;
4301
4302 av = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, a);
4303 bv = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, b);
4304
4305 return (av < bv ? -1 : av > bv ? 1 : 0);
4306 }
4307
4308 /* Make sure we've got ourselves a nice fat __gp value. */
4309 static bfd_boolean
4310 elfNN_ia64_choose_gp (bfd *abfd, struct bfd_link_info *info)
4311 {
4312 bfd_vma min_vma = (bfd_vma) -1, max_vma = 0;
4313 bfd_vma min_short_vma = min_vma, max_short_vma = 0;
4314 struct elf_link_hash_entry *gp;
4315 bfd_vma gp_val;
4316 asection *os;
4317 struct elfNN_ia64_link_hash_table *ia64_info;
4318
4319 ia64_info = elfNN_ia64_hash_table (info);
4320 if (ia64_info == NULL)
4321 return FALSE;
4322
4323 /* Find the min and max vma of all sections marked short. Also collect
4324 min and max vma of any type, for use in selecting a nice gp. */
4325 for (os = abfd->sections; os ; os = os->next)
4326 {
4327 bfd_vma lo, hi;
4328
4329 if ((os->flags & SEC_ALLOC) == 0)
4330 continue;
4331
4332 lo = os->vma;
4333 hi = os->vma + (os->rawsize ? os->rawsize : os->size);
4334 if (hi < lo)
4335 hi = (bfd_vma) -1;
4336
4337 if (min_vma > lo)
4338 min_vma = lo;
4339 if (max_vma < hi)
4340 max_vma = hi;
4341 if (os->flags & SEC_SMALL_DATA)
4342 {
4343 if (min_short_vma > lo)
4344 min_short_vma = lo;
4345 if (max_short_vma < hi)
4346 max_short_vma = hi;
4347 }
4348 }
4349
4350 if (ia64_info->min_short_sec)
4351 {
4352 if (min_short_vma
4353 > (ia64_info->min_short_sec->vma
4354 + ia64_info->min_short_offset))
4355 min_short_vma = (ia64_info->min_short_sec->vma
4356 + ia64_info->min_short_offset);
4357 if (max_short_vma
4358 < (ia64_info->max_short_sec->vma
4359 + ia64_info->max_short_offset))
4360 max_short_vma = (ia64_info->max_short_sec->vma
4361 + ia64_info->max_short_offset);
4362 }
4363
4364 /* See if the user wants to force a value. */
4365 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4366 FALSE, FALSE);
4367
4368 if (gp
4369 && (gp->root.type == bfd_link_hash_defined
4370 || gp->root.type == bfd_link_hash_defweak))
4371 {
4372 asection *gp_sec = gp->root.u.def.section;
4373 gp_val = (gp->root.u.def.value
4374 + gp_sec->output_section->vma
4375 + gp_sec->output_offset);
4376 }
4377 else
4378 {
4379 /* Pick a sensible value. */
4380
4381 if (ia64_info->min_short_sec)
4382 {
4383 bfd_vma short_range = max_short_vma - min_short_vma;
4384
4385 /* If min_short_sec is set, pick one in the middle bewteen
4386 min_short_vma and max_short_vma. */
4387 if (short_range >= 0x400000)
4388 goto overflow;
4389 gp_val = min_short_vma + short_range / 2;
4390 }
4391 else
4392 {
4393 asection *got_sec = ia64_info->root.sgot;
4394
4395 /* Start with just the address of the .got. */
4396 if (got_sec)
4397 gp_val = got_sec->output_section->vma;
4398 else if (max_short_vma != 0)
4399 gp_val = min_short_vma;
4400 else if (max_vma - min_vma < 0x200000)
4401 gp_val = min_vma;
4402 else
4403 gp_val = max_vma - 0x200000 + 8;
4404 }
4405
4406 /* If it is possible to address the entire image, but we
4407 don't with the choice above, adjust. */
4408 if (max_vma - min_vma < 0x400000
4409 && (max_vma - gp_val >= 0x200000
4410 || gp_val - min_vma > 0x200000))
4411 gp_val = min_vma + 0x200000;
4412 else if (max_short_vma != 0)
4413 {
4414 /* If we don't cover all the short data, adjust. */
4415 if (max_short_vma - gp_val >= 0x200000)
4416 gp_val = min_short_vma + 0x200000;
4417
4418 /* If we're addressing stuff past the end, adjust back. */
4419 if (gp_val > max_vma)
4420 gp_val = max_vma - 0x200000 + 8;
4421 }
4422 }
4423
4424 /* Validate whether all SHF_IA_64_SHORT sections are within
4425 range of the chosen GP. */
4426
4427 if (max_short_vma != 0)
4428 {
4429 if (max_short_vma - min_short_vma >= 0x400000)
4430 {
4431 overflow:
4432 (*_bfd_error_handler)
4433 (_("%s: short data segment overflowed (0x%lx >= 0x400000)"),
4434 bfd_get_filename (abfd),
4435 (unsigned long) (max_short_vma - min_short_vma));
4436 return FALSE;
4437 }
4438 else if ((gp_val > min_short_vma
4439 && gp_val - min_short_vma > 0x200000)
4440 || (gp_val < max_short_vma
4441 && max_short_vma - gp_val >= 0x200000))
4442 {
4443 (*_bfd_error_handler)
4444 (_("%s: __gp does not cover short data segment"),
4445 bfd_get_filename (abfd));
4446 return FALSE;
4447 }
4448 }
4449
4450 _bfd_set_gp_value (abfd, gp_val);
4451
4452 return TRUE;
4453 }
4454
4455 static bfd_boolean
4456 elfNN_ia64_final_link (bfd *abfd, struct bfd_link_info *info)
4457 {
4458 struct elfNN_ia64_link_hash_table *ia64_info;
4459 asection *unwind_output_sec;
4460
4461 ia64_info = elfNN_ia64_hash_table (info);
4462 if (ia64_info == NULL)
4463 return FALSE;
4464
4465 /* Make sure we've got ourselves a nice fat __gp value. */
4466 if (!info->relocatable)
4467 {
4468 bfd_vma gp_val;
4469 struct elf_link_hash_entry *gp;
4470
4471 /* We assume after gp is set, section size will only decrease. We
4472 need to adjust gp for it. */
4473 _bfd_set_gp_value (abfd, 0);
4474 if (! elfNN_ia64_choose_gp (abfd, info))
4475 return FALSE;
4476 gp_val = _bfd_get_gp_value (abfd);
4477
4478 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4479 FALSE, FALSE);
4480 if (gp)
4481 {
4482 gp->root.type = bfd_link_hash_defined;
4483 gp->root.u.def.value = gp_val;
4484 gp->root.u.def.section = bfd_abs_section_ptr;
4485 }
4486 }
4487
4488 /* If we're producing a final executable, we need to sort the contents
4489 of the .IA_64.unwind section. Force this section to be relocated
4490 into memory rather than written immediately to the output file. */
4491 unwind_output_sec = NULL;
4492 if (!info->relocatable)
4493 {
4494 asection *s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_unwind);
4495 if (s)
4496 {
4497 unwind_output_sec = s->output_section;
4498 unwind_output_sec->contents
4499 = bfd_malloc (unwind_output_sec->size);
4500 if (unwind_output_sec->contents == NULL)
4501 return FALSE;
4502 }
4503 }
4504
4505 /* Invoke the regular ELF backend linker to do all the work. */
4506 if (!bfd_elf_final_link (abfd, info))
4507 return FALSE;
4508
4509 if (unwind_output_sec)
4510 {
4511 elfNN_ia64_unwind_entry_compare_bfd = abfd;
4512 qsort (unwind_output_sec->contents,
4513 (size_t) (unwind_output_sec->size / 24),
4514 24,
4515 elfNN_ia64_unwind_entry_compare);
4516
4517 if (! bfd_set_section_contents (abfd, unwind_output_sec,
4518 unwind_output_sec->contents, (bfd_vma) 0,
4519 unwind_output_sec->size))
4520 return FALSE;
4521 }
4522
4523 return TRUE;
4524 }
4525
4526 static bfd_boolean
4527 elfNN_ia64_relocate_section (bfd *output_bfd,
4528 struct bfd_link_info *info,
4529 bfd *input_bfd,
4530 asection *input_section,
4531 bfd_byte *contents,
4532 Elf_Internal_Rela *relocs,
4533 Elf_Internal_Sym *local_syms,
4534 asection **local_sections)
4535 {
4536 struct elfNN_ia64_link_hash_table *ia64_info;
4537 Elf_Internal_Shdr *symtab_hdr;
4538 Elf_Internal_Rela *rel;
4539 Elf_Internal_Rela *relend;
4540 asection *srel;
4541 bfd_boolean ret_val = TRUE; /* for non-fatal errors */
4542 bfd_vma gp_val;
4543
4544 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4545 ia64_info = elfNN_ia64_hash_table (info);
4546 if (ia64_info == NULL)
4547 return FALSE;
4548
4549 /* Infect various flags from the input section to the output section. */
4550 if (info->relocatable)
4551 {
4552 bfd_vma flags;
4553
4554 flags = elf_section_data(input_section)->this_hdr.sh_flags;
4555 flags &= SHF_IA_64_NORECOV;
4556
4557 elf_section_data(input_section->output_section)
4558 ->this_hdr.sh_flags |= flags;
4559 }
4560
4561 gp_val = _bfd_get_gp_value (output_bfd);
4562 srel = get_reloc_section (input_bfd, ia64_info, input_section, FALSE);
4563
4564 rel = relocs;
4565 relend = relocs + input_section->reloc_count;
4566 for (; rel < relend; ++rel)
4567 {
4568 struct elf_link_hash_entry *h;
4569 struct elfNN_ia64_dyn_sym_info *dyn_i;
4570 bfd_reloc_status_type r;
4571 reloc_howto_type *howto;
4572 unsigned long r_symndx;
4573 Elf_Internal_Sym *sym;
4574 unsigned int r_type;
4575 bfd_vma value;
4576 asection *sym_sec;
4577 bfd_byte *hit_addr;
4578 bfd_boolean dynamic_symbol_p;
4579 bfd_boolean undef_weak_ref;
4580
4581 r_type = ELFNN_R_TYPE (rel->r_info);
4582 if (r_type > R_IA64_MAX_RELOC_CODE)
4583 {
4584 (*_bfd_error_handler)
4585 (_("%B: unknown relocation type %d"),
4586 input_bfd, (int) r_type);
4587 bfd_set_error (bfd_error_bad_value);
4588 ret_val = FALSE;
4589 continue;
4590 }
4591
4592 howto = lookup_howto (r_type);
4593 r_symndx = ELFNN_R_SYM (rel->r_info);
4594 h = NULL;
4595 sym = NULL;
4596 sym_sec = NULL;
4597 undef_weak_ref = FALSE;
4598
4599 if (r_symndx < symtab_hdr->sh_info)
4600 {
4601 /* Reloc against local symbol. */
4602 asection *msec;
4603 sym = local_syms + r_symndx;
4604 sym_sec = local_sections[r_symndx];
4605 msec = sym_sec;
4606 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4607 if (!info->relocatable
4608 && (sym_sec->flags & SEC_MERGE) != 0
4609 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4610 && sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE)
4611 {
4612 struct elfNN_ia64_local_hash_entry *loc_h;
4613
4614 loc_h = get_local_sym_hash (ia64_info, input_bfd, rel, FALSE);
4615 if (loc_h && ! loc_h->sec_merge_done)
4616 {
4617 struct elfNN_ia64_dyn_sym_info *dynent;
4618 unsigned int count;
4619
4620 for (count = loc_h->count, dynent = loc_h->info;
4621 count != 0;
4622 count--, dynent++)
4623 {
4624 msec = sym_sec;
4625 dynent->addend =
4626 _bfd_merged_section_offset (output_bfd, &msec,
4627 elf_section_data (msec)->
4628 sec_info,
4629 sym->st_value
4630 + dynent->addend);
4631 dynent->addend -= sym->st_value;
4632 dynent->addend += msec->output_section->vma
4633 + msec->output_offset
4634 - sym_sec->output_section->vma
4635 - sym_sec->output_offset;
4636 }
4637
4638 /* We may have introduced duplicated entries. We need
4639 to remove them properly. */
4640 count = sort_dyn_sym_info (loc_h->info, loc_h->count);
4641 if (count != loc_h->count)
4642 {
4643 loc_h->count = count;
4644 loc_h->sorted_count = count;
4645 }
4646
4647 loc_h->sec_merge_done = 1;
4648 }
4649 }
4650 }
4651 else
4652 {
4653 bfd_boolean unresolved_reloc;
4654 bfd_boolean warned;
4655 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4656
4657 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4658 r_symndx, symtab_hdr, sym_hashes,
4659 h, sym_sec, value,
4660 unresolved_reloc, warned);
4661
4662 if (h->root.type == bfd_link_hash_undefweak)
4663 undef_weak_ref = TRUE;
4664 else if (warned)
4665 continue;
4666 }
4667
4668 /* For relocs against symbols from removed linkonce sections,
4669 or sections discarded by a linker script, we just want the
4670 section contents zeroed. Avoid any special processing. */
4671 if (sym_sec != NULL && elf_discarded_section (sym_sec))
4672 {
4673 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
4674 rel->r_info = 0;
4675 rel->r_addend = 0;
4676 continue;
4677 }
4678
4679 if (info->relocatable)
4680 continue;
4681
4682 hit_addr = contents + rel->r_offset;
4683 value += rel->r_addend;
4684 dynamic_symbol_p = elfNN_ia64_dynamic_symbol_p (h, info, r_type);
4685
4686 switch (r_type)
4687 {
4688 case R_IA64_NONE:
4689 case R_IA64_LDXMOV:
4690 continue;
4691
4692 case R_IA64_IMM14:
4693 case R_IA64_IMM22:
4694 case R_IA64_IMM64:
4695 case R_IA64_DIR32MSB:
4696 case R_IA64_DIR32LSB:
4697 case R_IA64_DIR64MSB:
4698 case R_IA64_DIR64LSB:
4699 /* Install a dynamic relocation for this reloc. */
4700 if ((dynamic_symbol_p || info->shared)
4701 && r_symndx != 0
4702 && (input_section->flags & SEC_ALLOC) != 0)
4703 {
4704 unsigned int dyn_r_type;
4705 long dynindx;
4706 bfd_vma addend;
4707
4708 BFD_ASSERT (srel != NULL);
4709
4710 switch (r_type)
4711 {
4712 case R_IA64_IMM14:
4713 case R_IA64_IMM22:
4714 case R_IA64_IMM64:
4715 /* ??? People shouldn't be doing non-pic code in
4716 shared libraries nor dynamic executables. */
4717 (*_bfd_error_handler)
4718 (_("%B: non-pic code with imm relocation against dynamic symbol `%s'"),
4719 input_bfd,
4720 h ? h->root.root.string
4721 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4722 sym_sec));
4723 ret_val = FALSE;
4724 continue;
4725
4726 default:
4727 break;
4728 }
4729
4730 /* If we don't need dynamic symbol lookup, find a
4731 matching RELATIVE relocation. */
4732 dyn_r_type = r_type;
4733 if (dynamic_symbol_p)
4734 {
4735 dynindx = h->dynindx;
4736 addend = rel->r_addend;
4737 value = 0;
4738 }
4739 else
4740 {
4741 switch (r_type)
4742 {
4743 case R_IA64_DIR32MSB:
4744 dyn_r_type = R_IA64_REL32MSB;
4745 break;
4746 case R_IA64_DIR32LSB:
4747 dyn_r_type = R_IA64_REL32LSB;
4748 break;
4749 case R_IA64_DIR64MSB:
4750 dyn_r_type = R_IA64_REL64MSB;
4751 break;
4752 case R_IA64_DIR64LSB:
4753 dyn_r_type = R_IA64_REL64LSB;
4754 break;
4755
4756 default:
4757 break;
4758 }
4759 dynindx = 0;
4760 addend = value;
4761 }
4762
4763 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4764 srel, rel->r_offset, dyn_r_type,
4765 dynindx, addend);
4766 }
4767 /* Fall through. */
4768
4769 case R_IA64_LTV32MSB:
4770 case R_IA64_LTV32LSB:
4771 case R_IA64_LTV64MSB:
4772 case R_IA64_LTV64LSB:
4773 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4774 break;
4775
4776 case R_IA64_GPREL22:
4777 case R_IA64_GPREL64I:
4778 case R_IA64_GPREL32MSB:
4779 case R_IA64_GPREL32LSB:
4780 case R_IA64_GPREL64MSB:
4781 case R_IA64_GPREL64LSB:
4782 if (dynamic_symbol_p)
4783 {
4784 (*_bfd_error_handler)
4785 (_("%B: @gprel relocation against dynamic symbol %s"),
4786 input_bfd,
4787 h ? h->root.root.string
4788 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4789 sym_sec));
4790 ret_val = FALSE;
4791 continue;
4792 }
4793 value -= gp_val;
4794 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4795 break;
4796
4797 case R_IA64_LTOFF22:
4798 case R_IA64_LTOFF22X:
4799 case R_IA64_LTOFF64I:
4800 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4801 value = set_got_entry (input_bfd, info, dyn_i, (h ? h->dynindx : -1),
4802 rel->r_addend, value, R_IA64_DIRNNLSB);
4803 value -= gp_val;
4804 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4805 break;
4806
4807 case R_IA64_PLTOFF22:
4808 case R_IA64_PLTOFF64I:
4809 case R_IA64_PLTOFF64MSB:
4810 case R_IA64_PLTOFF64LSB:
4811 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4812 value = set_pltoff_entry (output_bfd, info, dyn_i, value, FALSE);
4813 value -= gp_val;
4814 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4815 break;
4816
4817 case R_IA64_FPTR64I:
4818 case R_IA64_FPTR32MSB:
4819 case R_IA64_FPTR32LSB:
4820 case R_IA64_FPTR64MSB:
4821 case R_IA64_FPTR64LSB:
4822 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4823 if (dyn_i->want_fptr)
4824 {
4825 if (!undef_weak_ref)
4826 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4827 }
4828 if (!dyn_i->want_fptr || info->pie)
4829 {
4830 long dynindx;
4831 unsigned int dyn_r_type = r_type;
4832 bfd_vma addend = rel->r_addend;
4833
4834 /* Otherwise, we expect the dynamic linker to create
4835 the entry. */
4836
4837 if (dyn_i->want_fptr)
4838 {
4839 if (r_type == R_IA64_FPTR64I)
4840 {
4841 /* We can't represent this without a dynamic symbol.
4842 Adjust the relocation to be against an output
4843 section symbol, which are always present in the
4844 dynamic symbol table. */
4845 /* ??? People shouldn't be doing non-pic code in
4846 shared libraries. Hork. */
4847 (*_bfd_error_handler)
4848 (_("%B: linking non-pic code in a position independent executable"),
4849 input_bfd);
4850 ret_val = FALSE;
4851 continue;
4852 }
4853 dynindx = 0;
4854 addend = value;
4855 dyn_r_type = r_type + R_IA64_RELNNLSB - R_IA64_FPTRNNLSB;
4856 }
4857 else if (h)
4858 {
4859 if (h->dynindx != -1)
4860 dynindx = h->dynindx;
4861 else
4862 dynindx = (_bfd_elf_link_lookup_local_dynindx
4863 (info, h->root.u.def.section->owner,
4864 global_sym_index (h)));
4865 value = 0;
4866 }
4867 else
4868 {
4869 dynindx = (_bfd_elf_link_lookup_local_dynindx
4870 (info, input_bfd, (long) r_symndx));
4871 value = 0;
4872 }
4873
4874 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4875 srel, rel->r_offset, dyn_r_type,
4876 dynindx, addend);
4877 }
4878
4879 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4880 break;
4881
4882 case R_IA64_LTOFF_FPTR22:
4883 case R_IA64_LTOFF_FPTR64I:
4884 case R_IA64_LTOFF_FPTR32MSB:
4885 case R_IA64_LTOFF_FPTR32LSB:
4886 case R_IA64_LTOFF_FPTR64MSB:
4887 case R_IA64_LTOFF_FPTR64LSB:
4888 {
4889 long dynindx;
4890
4891 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4892 if (dyn_i->want_fptr)
4893 {
4894 BFD_ASSERT (h == NULL || h->dynindx == -1);
4895 if (!undef_weak_ref)
4896 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4897 dynindx = -1;
4898 }
4899 else
4900 {
4901 /* Otherwise, we expect the dynamic linker to create
4902 the entry. */
4903 if (h)
4904 {
4905 if (h->dynindx != -1)
4906 dynindx = h->dynindx;
4907 else
4908 dynindx = (_bfd_elf_link_lookup_local_dynindx
4909 (info, h->root.u.def.section->owner,
4910 global_sym_index (h)));
4911 }
4912 else
4913 dynindx = (_bfd_elf_link_lookup_local_dynindx
4914 (info, input_bfd, (long) r_symndx));
4915 value = 0;
4916 }
4917
4918 value = set_got_entry (output_bfd, info, dyn_i, dynindx,
4919 rel->r_addend, value, R_IA64_FPTRNNLSB);
4920 value -= gp_val;
4921 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4922 }
4923 break;
4924
4925 case R_IA64_PCREL32MSB:
4926 case R_IA64_PCREL32LSB:
4927 case R_IA64_PCREL64MSB:
4928 case R_IA64_PCREL64LSB:
4929 /* Install a dynamic relocation for this reloc. */
4930 if (dynamic_symbol_p && r_symndx != 0)
4931 {
4932 BFD_ASSERT (srel != NULL);
4933
4934 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4935 srel, rel->r_offset, r_type,
4936 h->dynindx, rel->r_addend);
4937 }
4938 goto finish_pcrel;
4939
4940 case R_IA64_PCREL21B:
4941 case R_IA64_PCREL60B:
4942 /* We should have created a PLT entry for any dynamic symbol. */
4943 dyn_i = NULL;
4944 if (h)
4945 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4946
4947 if (dyn_i && dyn_i->want_plt2)
4948 {
4949 /* Should have caught this earlier. */
4950 BFD_ASSERT (rel->r_addend == 0);
4951
4952 value = (ia64_info->root.splt->output_section->vma
4953 + ia64_info->root.splt->output_offset
4954 + dyn_i->plt2_offset);
4955 }
4956 else
4957 {
4958 /* Since there's no PLT entry, Validate that this is
4959 locally defined. */
4960 BFD_ASSERT (undef_weak_ref || sym_sec->output_section != NULL);
4961
4962 /* If the symbol is undef_weak, we shouldn't be trying
4963 to call it. There's every chance that we'd wind up
4964 with an out-of-range fixup here. Don't bother setting
4965 any value at all. */
4966 if (undef_weak_ref)
4967 continue;
4968 }
4969 goto finish_pcrel;
4970
4971 case R_IA64_PCREL21BI:
4972 case R_IA64_PCREL21F:
4973 case R_IA64_PCREL21M:
4974 case R_IA64_PCREL22:
4975 case R_IA64_PCREL64I:
4976 /* The PCREL21BI reloc is specifically not intended for use with
4977 dynamic relocs. PCREL21F and PCREL21M are used for speculation
4978 fixup code, and thus probably ought not be dynamic. The
4979 PCREL22 and PCREL64I relocs aren't emitted as dynamic relocs. */
4980 if (dynamic_symbol_p)
4981 {
4982 const char *msg;
4983
4984 if (r_type == R_IA64_PCREL21BI)
4985 msg = _("%B: @internal branch to dynamic symbol %s");
4986 else if (r_type == R_IA64_PCREL21F || r_type == R_IA64_PCREL21M)
4987 msg = _("%B: speculation fixup to dynamic symbol %s");
4988 else
4989 msg = _("%B: @pcrel relocation against dynamic symbol %s");
4990 (*_bfd_error_handler) (msg, input_bfd,
4991 h ? h->root.root.string
4992 : bfd_elf_sym_name (input_bfd,
4993 symtab_hdr,
4994 sym,
4995 sym_sec));
4996 ret_val = FALSE;
4997 continue;
4998 }
4999 goto finish_pcrel;
5000
5001 finish_pcrel:
5002 /* Make pc-relative. */
5003 value -= (input_section->output_section->vma
5004 + input_section->output_offset
5005 + rel->r_offset) & ~ (bfd_vma) 0x3;
5006 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5007 break;
5008
5009 case R_IA64_SEGREL32MSB:
5010 case R_IA64_SEGREL32LSB:
5011 case R_IA64_SEGREL64MSB:
5012 case R_IA64_SEGREL64LSB:
5013 {
5014 /* Find the segment that contains the output_section. */
5015 Elf_Internal_Phdr *p = _bfd_elf_find_segment_containing_section
5016 (output_bfd, input_section->output_section);
5017
5018 if (p == NULL)
5019 {
5020 r = bfd_reloc_notsupported;
5021 }
5022 else
5023 {
5024 /* The VMA of the segment is the vaddr of the associated
5025 program header. */
5026 if (value > p->p_vaddr)
5027 value -= p->p_vaddr;
5028 else
5029 value = 0;
5030 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5031 }
5032 break;
5033 }
5034
5035 case R_IA64_SECREL32MSB:
5036 case R_IA64_SECREL32LSB:
5037 case R_IA64_SECREL64MSB:
5038 case R_IA64_SECREL64LSB:
5039 /* Make output-section relative to section where the symbol
5040 is defined. PR 475 */
5041 if (sym_sec)
5042 value -= sym_sec->output_section->vma;
5043 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5044 break;
5045
5046 case R_IA64_IPLTMSB:
5047 case R_IA64_IPLTLSB:
5048 /* Install a dynamic relocation for this reloc. */
5049 if ((dynamic_symbol_p || info->shared)
5050 && (input_section->flags & SEC_ALLOC) != 0)
5051 {
5052 BFD_ASSERT (srel != NULL);
5053
5054 /* If we don't need dynamic symbol lookup, install two
5055 RELATIVE relocations. */
5056 if (!dynamic_symbol_p)
5057 {
5058 unsigned int dyn_r_type;
5059
5060 if (r_type == R_IA64_IPLTMSB)
5061 dyn_r_type = R_IA64_REL64MSB;
5062 else
5063 dyn_r_type = R_IA64_REL64LSB;
5064
5065 elfNN_ia64_install_dyn_reloc (output_bfd, info,
5066 input_section,
5067 srel, rel->r_offset,
5068 dyn_r_type, 0, value);
5069 elfNN_ia64_install_dyn_reloc (output_bfd, info,
5070 input_section,
5071 srel, rel->r_offset + 8,
5072 dyn_r_type, 0, gp_val);
5073 }
5074 else
5075 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
5076 srel, rel->r_offset, r_type,
5077 h->dynindx, rel->r_addend);
5078 }
5079
5080 if (r_type == R_IA64_IPLTMSB)
5081 r_type = R_IA64_DIR64MSB;
5082 else
5083 r_type = R_IA64_DIR64LSB;
5084 elfNN_ia64_install_value (hit_addr, value, r_type);
5085 r = elfNN_ia64_install_value (hit_addr + 8, gp_val, r_type);
5086 break;
5087
5088 case R_IA64_TPREL14:
5089 case R_IA64_TPREL22:
5090 case R_IA64_TPREL64I:
5091 if (elf_hash_table (info)->tls_sec == NULL)
5092 goto missing_tls_sec;
5093 value -= elfNN_ia64_tprel_base (info);
5094 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5095 break;
5096
5097 case R_IA64_DTPREL14:
5098 case R_IA64_DTPREL22:
5099 case R_IA64_DTPREL64I:
5100 case R_IA64_DTPREL32LSB:
5101 case R_IA64_DTPREL32MSB:
5102 case R_IA64_DTPREL64LSB:
5103 case R_IA64_DTPREL64MSB:
5104 if (elf_hash_table (info)->tls_sec == NULL)
5105 goto missing_tls_sec;
5106 value -= elfNN_ia64_dtprel_base (info);
5107 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5108 break;
5109
5110 case R_IA64_LTOFF_TPREL22:
5111 case R_IA64_LTOFF_DTPMOD22:
5112 case R_IA64_LTOFF_DTPREL22:
5113 {
5114 int got_r_type;
5115 long dynindx = h ? h->dynindx : -1;
5116 bfd_vma r_addend = rel->r_addend;
5117
5118 switch (r_type)
5119 {
5120 default:
5121 case R_IA64_LTOFF_TPREL22:
5122 if (!dynamic_symbol_p)
5123 {
5124 if (elf_hash_table (info)->tls_sec == NULL)
5125 goto missing_tls_sec;
5126 if (!info->shared)
5127 value -= elfNN_ia64_tprel_base (info);
5128 else
5129 {
5130 r_addend += value - elfNN_ia64_dtprel_base (info);
5131 dynindx = 0;
5132 }
5133 }
5134 got_r_type = R_IA64_TPREL64LSB;
5135 break;
5136 case R_IA64_LTOFF_DTPMOD22:
5137 if (!dynamic_symbol_p && !info->shared)
5138 value = 1;
5139 got_r_type = R_IA64_DTPMOD64LSB;
5140 break;
5141 case R_IA64_LTOFF_DTPREL22:
5142 if (!dynamic_symbol_p)
5143 {
5144 if (elf_hash_table (info)->tls_sec == NULL)
5145 goto missing_tls_sec;
5146 value -= elfNN_ia64_dtprel_base (info);
5147 }
5148 got_r_type = R_IA64_DTPRELNNLSB;
5149 break;
5150 }
5151 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
5152 value = set_got_entry (input_bfd, info, dyn_i, dynindx, r_addend,
5153 value, got_r_type);
5154 value -= gp_val;
5155 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5156 }
5157 break;
5158
5159 default:
5160 r = bfd_reloc_notsupported;
5161 break;
5162 }
5163
5164 switch (r)
5165 {
5166 case bfd_reloc_ok:
5167 break;
5168
5169 case bfd_reloc_undefined:
5170 /* This can happen for global table relative relocs if
5171 __gp is undefined. This is a panic situation so we
5172 don't try to continue. */
5173 (*info->callbacks->undefined_symbol)
5174 (info, "__gp", input_bfd, input_section, rel->r_offset, 1);
5175 return FALSE;
5176
5177 case bfd_reloc_notsupported:
5178 {
5179 const char *name;
5180
5181 if (h)
5182 name = h->root.root.string;
5183 else
5184 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5185 sym_sec);
5186 if (!(*info->callbacks->warning) (info, _("unsupported reloc"),
5187 name, input_bfd,
5188 input_section, rel->r_offset))
5189 return FALSE;
5190 ret_val = FALSE;
5191 }
5192 break;
5193
5194 case bfd_reloc_dangerous:
5195 case bfd_reloc_outofrange:
5196 case bfd_reloc_overflow:
5197 default:
5198 missing_tls_sec:
5199 {
5200 const char *name;
5201
5202 if (h)
5203 name = h->root.root.string;
5204 else
5205 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5206 sym_sec);
5207
5208 switch (r_type)
5209 {
5210 case R_IA64_TPREL14:
5211 case R_IA64_TPREL22:
5212 case R_IA64_TPREL64I:
5213 case R_IA64_DTPREL14:
5214 case R_IA64_DTPREL22:
5215 case R_IA64_DTPREL64I:
5216 case R_IA64_DTPREL32LSB:
5217 case R_IA64_DTPREL32MSB:
5218 case R_IA64_DTPREL64LSB:
5219 case R_IA64_DTPREL64MSB:
5220 case R_IA64_LTOFF_TPREL22:
5221 case R_IA64_LTOFF_DTPMOD22:
5222 case R_IA64_LTOFF_DTPREL22:
5223 (*_bfd_error_handler)
5224 (_("%B: missing TLS section for relocation %s against `%s' at 0x%lx in section `%A'."),
5225 input_bfd, input_section, howto->name, name,
5226 rel->r_offset);
5227 break;
5228
5229 case R_IA64_PCREL21B:
5230 case R_IA64_PCREL21BI:
5231 case R_IA64_PCREL21M:
5232 case R_IA64_PCREL21F:
5233 if (is_elf_hash_table (info->hash))
5234 {
5235 /* Relaxtion is always performed for ELF output.
5236 Overflow failures for those relocations mean
5237 that the section is too big to relax. */
5238 (*_bfd_error_handler)
5239 (_("%B: Can't relax br (%s) to `%s' at 0x%lx in section `%A' with size 0x%lx (> 0x1000000)."),
5240 input_bfd, input_section, howto->name, name,
5241 rel->r_offset, input_section->size);
5242 break;
5243 }
5244 default:
5245 if (!(*info->callbacks->reloc_overflow) (info,
5246 &h->root,
5247 name,
5248 howto->name,
5249 (bfd_vma) 0,
5250 input_bfd,
5251 input_section,
5252 rel->r_offset))
5253 return FALSE;
5254 break;
5255 }
5256
5257 ret_val = FALSE;
5258 }
5259 break;
5260 }
5261 }
5262
5263 return ret_val;
5264 }
5265
5266 static bfd_boolean
5267 elfNN_ia64_finish_dynamic_symbol (bfd *output_bfd,
5268 struct bfd_link_info *info,
5269 struct elf_link_hash_entry *h,
5270 Elf_Internal_Sym *sym)
5271 {
5272 struct elfNN_ia64_link_hash_table *ia64_info;
5273 struct elfNN_ia64_dyn_sym_info *dyn_i;
5274
5275 ia64_info = elfNN_ia64_hash_table (info);
5276 if (ia64_info == NULL)
5277 return FALSE;
5278
5279 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
5280
5281 /* Fill in the PLT data, if required. */
5282 if (dyn_i && dyn_i->want_plt)
5283 {
5284 Elf_Internal_Rela outrel;
5285 bfd_byte *loc;
5286 asection *plt_sec;
5287 bfd_vma plt_addr, pltoff_addr, gp_val, plt_index;
5288
5289 gp_val = _bfd_get_gp_value (output_bfd);
5290
5291 /* Initialize the minimal PLT entry. */
5292
5293 plt_index = (dyn_i->plt_offset - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
5294 plt_sec = ia64_info->root.splt;
5295 loc = plt_sec->contents + dyn_i->plt_offset;
5296
5297 memcpy (loc, plt_min_entry, PLT_MIN_ENTRY_SIZE);
5298 elfNN_ia64_install_value (loc, plt_index, R_IA64_IMM22);
5299 elfNN_ia64_install_value (loc+2, -dyn_i->plt_offset, R_IA64_PCREL21B);
5300
5301 plt_addr = (plt_sec->output_section->vma
5302 + plt_sec->output_offset
5303 + dyn_i->plt_offset);
5304 pltoff_addr = set_pltoff_entry (output_bfd, info, dyn_i, plt_addr, TRUE);
5305
5306 /* Initialize the FULL PLT entry, if needed. */
5307 if (dyn_i->want_plt2)
5308 {
5309 loc = plt_sec->contents + dyn_i->plt2_offset;
5310
5311 memcpy (loc, plt_full_entry, PLT_FULL_ENTRY_SIZE);
5312 elfNN_ia64_install_value (loc, pltoff_addr - gp_val, R_IA64_IMM22);
5313
5314 /* Mark the symbol as undefined, rather than as defined in the
5315 plt section. Leave the value alone. */
5316 /* ??? We didn't redefine it in adjust_dynamic_symbol in the
5317 first place. But perhaps elflink.c did some for us. */
5318 if (!h->def_regular)
5319 sym->st_shndx = SHN_UNDEF;
5320 }
5321
5322 /* Create the dynamic relocation. */
5323 outrel.r_offset = pltoff_addr;
5324 if (bfd_little_endian (output_bfd))
5325 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTLSB);
5326 else
5327 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTMSB);
5328 outrel.r_addend = 0;
5329
5330 /* This is fun. In the .IA_64.pltoff section, we've got entries
5331 that correspond both to real PLT entries, and those that
5332 happened to resolve to local symbols but need to be created
5333 to satisfy @pltoff relocations. The .rela.IA_64.pltoff
5334 relocations for the real PLT should come at the end of the
5335 section, so that they can be indexed by plt entry at runtime.
5336
5337 We emitted all of the relocations for the non-PLT @pltoff
5338 entries during relocate_section. So we can consider the
5339 existing sec->reloc_count to be the base of the array of
5340 PLT relocations. */
5341
5342 loc = ia64_info->rel_pltoff_sec->contents;
5343 loc += ((ia64_info->rel_pltoff_sec->reloc_count + plt_index)
5344 * sizeof (ElfNN_External_Rela));
5345 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5346 }
5347
5348 /* Mark some specially defined symbols as absolute. */
5349 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
5350 || h == ia64_info->root.hgot
5351 || h == ia64_info->root.hplt)
5352 sym->st_shndx = SHN_ABS;
5353
5354 return TRUE;
5355 }
5356
5357 static bfd_boolean
5358 elfNN_ia64_finish_dynamic_sections (bfd *abfd,
5359 struct bfd_link_info *info)
5360 {
5361 struct elfNN_ia64_link_hash_table *ia64_info;
5362 bfd *dynobj;
5363
5364 ia64_info = elfNN_ia64_hash_table (info);
5365 if (ia64_info == NULL)
5366 return FALSE;
5367
5368 dynobj = ia64_info->root.dynobj;
5369
5370 if (elf_hash_table (info)->dynamic_sections_created)
5371 {
5372 ElfNN_External_Dyn *dyncon, *dynconend;
5373 asection *sdyn, *sgotplt;
5374 bfd_vma gp_val;
5375
5376 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
5377 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
5378 BFD_ASSERT (sdyn != NULL);
5379 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
5380 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
5381
5382 gp_val = _bfd_get_gp_value (abfd);
5383
5384 for (; dyncon < dynconend; dyncon++)
5385 {
5386 Elf_Internal_Dyn dyn;
5387
5388 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
5389
5390 switch (dyn.d_tag)
5391 {
5392 case DT_PLTGOT:
5393 dyn.d_un.d_ptr = gp_val;
5394 break;
5395
5396 case DT_PLTRELSZ:
5397 dyn.d_un.d_val = (ia64_info->minplt_entries
5398 * sizeof (ElfNN_External_Rela));
5399 break;
5400
5401 case DT_JMPREL:
5402 /* See the comment above in finish_dynamic_symbol. */
5403 dyn.d_un.d_ptr = (ia64_info->rel_pltoff_sec->output_section->vma
5404 + ia64_info->rel_pltoff_sec->output_offset
5405 + (ia64_info->rel_pltoff_sec->reloc_count
5406 * sizeof (ElfNN_External_Rela)));
5407 break;
5408
5409 case DT_IA_64_PLT_RESERVE:
5410 dyn.d_un.d_ptr = (sgotplt->output_section->vma
5411 + sgotplt->output_offset);
5412 break;
5413
5414 case DT_RELASZ:
5415 /* Do not have RELASZ include JMPREL. This makes things
5416 easier on ld.so. This is not what the rest of BFD set up. */
5417 dyn.d_un.d_val -= (ia64_info->minplt_entries
5418 * sizeof (ElfNN_External_Rela));
5419 break;
5420 }
5421
5422 bfd_elfNN_swap_dyn_out (abfd, &dyn, dyncon);
5423 }
5424
5425 /* Initialize the PLT0 entry. */
5426 if (ia64_info->root.splt)
5427 {
5428 bfd_byte *loc = ia64_info->root.splt->contents;
5429 bfd_vma pltres;
5430
5431 memcpy (loc, plt_header, PLT_HEADER_SIZE);
5432
5433 pltres = (sgotplt->output_section->vma
5434 + sgotplt->output_offset
5435 - gp_val);
5436
5437 elfNN_ia64_install_value (loc+1, pltres, R_IA64_GPREL22);
5438 }
5439 }
5440
5441 return TRUE;
5442 }
5443 \f
5444 /* ELF file flag handling: */
5445
5446 /* Function to keep IA-64 specific file flags. */
5447 static bfd_boolean
5448 elfNN_ia64_set_private_flags (bfd *abfd, flagword flags)
5449 {
5450 BFD_ASSERT (!elf_flags_init (abfd)
5451 || elf_elfheader (abfd)->e_flags == flags);
5452
5453 elf_elfheader (abfd)->e_flags = flags;
5454 elf_flags_init (abfd) = TRUE;
5455 return TRUE;
5456 }
5457
5458 /* Merge backend specific data from an object file to the output
5459 object file when linking. */
5460 static bfd_boolean
5461 elfNN_ia64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5462 {
5463 flagword out_flags;
5464 flagword in_flags;
5465 bfd_boolean ok = TRUE;
5466
5467 /* Don't even pretend to support mixed-format linking. */
5468 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5469 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5470 return FALSE;
5471
5472 in_flags = elf_elfheader (ibfd)->e_flags;
5473 out_flags = elf_elfheader (obfd)->e_flags;
5474
5475 if (! elf_flags_init (obfd))
5476 {
5477 elf_flags_init (obfd) = TRUE;
5478 elf_elfheader (obfd)->e_flags = in_flags;
5479
5480 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
5481 && bfd_get_arch_info (obfd)->the_default)
5482 {
5483 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
5484 bfd_get_mach (ibfd));
5485 }
5486
5487 return TRUE;
5488 }
5489
5490 /* Check flag compatibility. */
5491 if (in_flags == out_flags)
5492 return TRUE;
5493
5494 /* Output has EF_IA_64_REDUCEDFP set only if all inputs have it set. */
5495 if (!(in_flags & EF_IA_64_REDUCEDFP) && (out_flags & EF_IA_64_REDUCEDFP))
5496 elf_elfheader (obfd)->e_flags &= ~EF_IA_64_REDUCEDFP;
5497
5498 if ((in_flags & EF_IA_64_TRAPNIL) != (out_flags & EF_IA_64_TRAPNIL))
5499 {
5500 (*_bfd_error_handler)
5501 (_("%B: linking trap-on-NULL-dereference with non-trapping files"),
5502 ibfd);
5503
5504 bfd_set_error (bfd_error_bad_value);
5505 ok = FALSE;
5506 }
5507 if ((in_flags & EF_IA_64_BE) != (out_flags & EF_IA_64_BE))
5508 {
5509 (*_bfd_error_handler)
5510 (_("%B: linking big-endian files with little-endian files"),
5511 ibfd);
5512
5513 bfd_set_error (bfd_error_bad_value);
5514 ok = FALSE;
5515 }
5516 if ((in_flags & EF_IA_64_ABI64) != (out_flags & EF_IA_64_ABI64))
5517 {
5518 (*_bfd_error_handler)
5519 (_("%B: linking 64-bit files with 32-bit files"),
5520 ibfd);
5521
5522 bfd_set_error (bfd_error_bad_value);
5523 ok = FALSE;
5524 }
5525 if ((in_flags & EF_IA_64_CONS_GP) != (out_flags & EF_IA_64_CONS_GP))
5526 {
5527 (*_bfd_error_handler)
5528 (_("%B: linking constant-gp files with non-constant-gp files"),
5529 ibfd);
5530
5531 bfd_set_error (bfd_error_bad_value);
5532 ok = FALSE;
5533 }
5534 if ((in_flags & EF_IA_64_NOFUNCDESC_CONS_GP)
5535 != (out_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
5536 {
5537 (*_bfd_error_handler)
5538 (_("%B: linking auto-pic files with non-auto-pic files"),
5539 ibfd);
5540
5541 bfd_set_error (bfd_error_bad_value);
5542 ok = FALSE;
5543 }
5544
5545 return ok;
5546 }
5547
5548 static bfd_boolean
5549 elfNN_ia64_print_private_bfd_data (bfd *abfd, PTR ptr)
5550 {
5551 FILE *file = (FILE *) ptr;
5552 flagword flags = elf_elfheader (abfd)->e_flags;
5553
5554 BFD_ASSERT (abfd != NULL && ptr != NULL);
5555
5556 fprintf (file, "private flags = %s%s%s%s%s%s%s%s\n",
5557 (flags & EF_IA_64_TRAPNIL) ? "TRAPNIL, " : "",
5558 (flags & EF_IA_64_EXT) ? "EXT, " : "",
5559 (flags & EF_IA_64_BE) ? "BE, " : "LE, ",
5560 (flags & EF_IA_64_REDUCEDFP) ? "REDUCEDFP, " : "",
5561 (flags & EF_IA_64_CONS_GP) ? "CONS_GP, " : "",
5562 (flags & EF_IA_64_NOFUNCDESC_CONS_GP) ? "NOFUNCDESC_CONS_GP, " : "",
5563 (flags & EF_IA_64_ABSOLUTE) ? "ABSOLUTE, " : "",
5564 (flags & EF_IA_64_ABI64) ? "ABI64" : "ABI32");
5565
5566 _bfd_elf_print_private_bfd_data (abfd, ptr);
5567 return TRUE;
5568 }
5569
5570 static enum elf_reloc_type_class
5571 elfNN_ia64_reloc_type_class (const Elf_Internal_Rela *rela)
5572 {
5573 switch ((int) ELFNN_R_TYPE (rela->r_info))
5574 {
5575 case R_IA64_REL32MSB:
5576 case R_IA64_REL32LSB:
5577 case R_IA64_REL64MSB:
5578 case R_IA64_REL64LSB:
5579 return reloc_class_relative;
5580 case R_IA64_IPLTMSB:
5581 case R_IA64_IPLTLSB:
5582 return reloc_class_plt;
5583 case R_IA64_COPY:
5584 return reloc_class_copy;
5585 default:
5586 return reloc_class_normal;
5587 }
5588 }
5589
5590 static const struct bfd_elf_special_section elfNN_ia64_special_sections[] =
5591 {
5592 { STRING_COMMA_LEN (".sbss"), -1, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5593 { STRING_COMMA_LEN (".sdata"), -1, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5594 { NULL, 0, 0, 0, 0 }
5595 };
5596
5597 static bfd_boolean
5598 elfNN_ia64_object_p (bfd *abfd)
5599 {
5600 asection *sec;
5601 asection *group, *unwi, *unw;
5602 flagword flags;
5603 const char *name;
5604 char *unwi_name, *unw_name;
5605 bfd_size_type amt;
5606
5607 if (abfd->flags & DYNAMIC)
5608 return TRUE;
5609
5610 /* Flags for fake group section. */
5611 flags = (SEC_LINKER_CREATED | SEC_GROUP | SEC_LINK_ONCE
5612 | SEC_EXCLUDE);
5613
5614 /* We add a fake section group for each .gnu.linkonce.t.* section,
5615 which isn't in a section group, and its unwind sections. */
5616 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5617 {
5618 if (elf_sec_group (sec) == NULL
5619 && ((sec->flags & (SEC_LINK_ONCE | SEC_CODE | SEC_GROUP))
5620 == (SEC_LINK_ONCE | SEC_CODE))
5621 && CONST_STRNEQ (sec->name, ".gnu.linkonce.t."))
5622 {
5623 name = sec->name + 16;
5624
5625 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unwi.");
5626 unwi_name = bfd_alloc (abfd, amt);
5627 if (!unwi_name)
5628 return FALSE;
5629
5630 strcpy (stpcpy (unwi_name, ".gnu.linkonce.ia64unwi."), name);
5631 unwi = bfd_get_section_by_name (abfd, unwi_name);
5632
5633 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unw.");
5634 unw_name = bfd_alloc (abfd, amt);
5635 if (!unw_name)
5636 return FALSE;
5637
5638 strcpy (stpcpy (unw_name, ".gnu.linkonce.ia64unw."), name);
5639 unw = bfd_get_section_by_name (abfd, unw_name);
5640
5641 /* We need to create a fake group section for it and its
5642 unwind sections. */
5643 group = bfd_make_section_anyway_with_flags (abfd, name,
5644 flags);
5645 if (group == NULL)
5646 return FALSE;
5647
5648 /* Move the fake group section to the beginning. */
5649 bfd_section_list_remove (abfd, group);
5650 bfd_section_list_prepend (abfd, group);
5651
5652 elf_next_in_group (group) = sec;
5653
5654 elf_group_name (sec) = name;
5655 elf_next_in_group (sec) = sec;
5656 elf_sec_group (sec) = group;
5657
5658 if (unwi)
5659 {
5660 elf_group_name (unwi) = name;
5661 elf_next_in_group (unwi) = sec;
5662 elf_next_in_group (sec) = unwi;
5663 elf_sec_group (unwi) = group;
5664 }
5665
5666 if (unw)
5667 {
5668 elf_group_name (unw) = name;
5669 if (unwi)
5670 {
5671 elf_next_in_group (unw) = elf_next_in_group (unwi);
5672 elf_next_in_group (unwi) = unw;
5673 }
5674 else
5675 {
5676 elf_next_in_group (unw) = sec;
5677 elf_next_in_group (sec) = unw;
5678 }
5679 elf_sec_group (unw) = group;
5680 }
5681
5682 /* Fake SHT_GROUP section header. */
5683 elf_section_data (group)->this_hdr.bfd_section = group;
5684 elf_section_data (group)->this_hdr.sh_type = SHT_GROUP;
5685 }
5686 }
5687 return TRUE;
5688 }
5689
5690 static bfd_boolean
5691 elfNN_ia64_hpux_vec (const bfd_target *vec)
5692 {
5693 extern const bfd_target bfd_elfNN_ia64_hpux_big_vec;
5694 return (vec == & bfd_elfNN_ia64_hpux_big_vec);
5695 }
5696
5697 static void
5698 elfNN_hpux_post_process_headers (bfd *abfd,
5699 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5700 {
5701 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5702
5703 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
5704 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
5705 }
5706
5707 static bfd_boolean
5708 elfNN_hpux_backend_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5709 asection *sec, int *retval)
5710 {
5711 if (bfd_is_com_section (sec))
5712 {
5713 *retval = SHN_IA_64_ANSI_COMMON;
5714 return TRUE;
5715 }
5716 return FALSE;
5717 }
5718
5719 static void
5720 elfNN_hpux_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5721 asymbol *asym)
5722 {
5723 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5724
5725 switch (elfsym->internal_elf_sym.st_shndx)
5726 {
5727 case SHN_IA_64_ANSI_COMMON:
5728 asym->section = bfd_com_section_ptr;
5729 asym->value = elfsym->internal_elf_sym.st_size;
5730 asym->flags &= ~BSF_GLOBAL;
5731 break;
5732 }
5733 }
5734
5735 #ifdef INCLUDE_IA64_VMS
5736
5737 static bfd_boolean
5738 elfNN_vms_section_from_shdr (bfd *abfd,
5739 Elf_Internal_Shdr *hdr,
5740 const char *name,
5741 int shindex)
5742 {
5743 asection *newsect;
5744
5745 switch (hdr->sh_type)
5746 {
5747 case SHT_IA_64_VMS_TRACE:
5748 case SHT_IA_64_VMS_DEBUG:
5749 case SHT_IA_64_VMS_DEBUG_STR:
5750 break;
5751
5752 default:
5753 return elfNN_ia64_section_from_shdr (abfd, hdr, name, shindex);
5754 }
5755
5756 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5757 return FALSE;
5758 newsect = hdr->bfd_section;
5759
5760 return TRUE;
5761 }
5762
5763 static bfd_boolean
5764 elfNN_vms_object_p (bfd *abfd)
5765 {
5766 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5767 Elf_Internal_Phdr *i_phdr = elf_tdata (abfd)->phdr;
5768 unsigned int i;
5769 unsigned int num_text = 0;
5770 unsigned int num_data = 0;
5771 unsigned int num_rodata = 0;
5772 char name[16];
5773
5774 if (!elfNN_ia64_object_p (abfd))
5775 return FALSE;
5776
5777 for (i = 0; i < i_ehdrp->e_phnum; i++, i_phdr++)
5778 {
5779 /* Is there a section for this segment? */
5780 bfd_vma base_vma = i_phdr->p_vaddr;
5781 bfd_vma limit_vma = base_vma + i_phdr->p_filesz;
5782
5783 if (i_phdr->p_type != PT_LOAD)
5784 continue;
5785
5786 again:
5787 while (base_vma < limit_vma)
5788 {
5789 bfd_vma next_vma = limit_vma;
5790 asection *nsec;
5791 asection *sec;
5792 flagword flags;
5793 char *nname = NULL;
5794
5795 /* Find a section covering base_vma. */
5796 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5797 {
5798 if ((sec->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
5799 continue;
5800 if (sec->vma <= base_vma && sec->vma + sec->size > base_vma)
5801 {
5802 base_vma = sec->vma + sec->size;
5803 goto again;
5804 }
5805 if (sec->vma < next_vma && sec->vma + sec->size >= base_vma)
5806 next_vma = sec->vma;
5807 }
5808
5809 /* No section covering [base_vma; next_vma). Create a fake one. */
5810 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS;
5811 if (i_phdr->p_flags & PF_X)
5812 {
5813 flags |= SEC_CODE;
5814 if (num_text++ == 0)
5815 nname = ".text";
5816 else
5817 sprintf (name, ".text$%u", num_text);
5818 }
5819 else if ((i_phdr->p_flags & (PF_R | PF_W)) == PF_R)
5820 {
5821 flags |= SEC_READONLY;
5822 sprintf (name, ".rodata$%u", num_rodata++);
5823 }
5824 else
5825 {
5826 flags |= SEC_DATA;
5827 sprintf (name, ".data$%u", num_data++);
5828 }
5829
5830 /* Allocate name. */
5831 if (nname == NULL)
5832 {
5833 size_t name_len = strlen (name) + 1;
5834 nname = bfd_alloc (abfd, name_len);
5835 if (nname == NULL)
5836 return FALSE;
5837 memcpy (nname, name, name_len);
5838 }
5839
5840 /* Create and fill new section. */
5841 nsec = bfd_make_section_anyway_with_flags (abfd, nname, flags);
5842 if (nsec == NULL)
5843 return FALSE;
5844 nsec->vma = base_vma;
5845 nsec->size = next_vma - base_vma;
5846 nsec->filepos = i_phdr->p_offset + (base_vma - i_phdr->p_vaddr);
5847
5848 base_vma = next_vma;
5849 }
5850 }
5851 return TRUE;
5852 }
5853
5854 static void
5855 elfNN_vms_post_process_headers (bfd *abfd,
5856 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5857 {
5858 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5859
5860 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_OPENVMS;
5861 i_ehdrp->e_ident[EI_ABIVERSION] = 2;
5862 }
5863
5864 static bfd_boolean
5865 elfNN_vms_section_processing (bfd *abfd ATTRIBUTE_UNUSED,
5866 Elf_Internal_Shdr *hdr)
5867 {
5868 if (hdr->bfd_section != NULL)
5869 {
5870 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5871
5872 if (strcmp (name, ".text") == 0)
5873 hdr->sh_flags |= SHF_IA_64_VMS_SHARED;
5874 else if ((strcmp (name, ".debug") == 0)
5875 || (strcmp (name, ".debug_abbrev") == 0)
5876 || (strcmp (name, ".debug_aranges") == 0)
5877 || (strcmp (name, ".debug_frame") == 0)
5878 || (strcmp (name, ".debug_info") == 0)
5879 || (strcmp (name, ".debug_loc") == 0)
5880 || (strcmp (name, ".debug_macinfo") == 0)
5881 || (strcmp (name, ".debug_pubnames") == 0)
5882 || (strcmp (name, ".debug_pubtypes") == 0))
5883 hdr->sh_type = SHT_IA_64_VMS_DEBUG;
5884 else if ((strcmp (name, ".debug_line") == 0)
5885 || (strcmp (name, ".debug_ranges") == 0))
5886 hdr->sh_type = SHT_IA_64_VMS_TRACE;
5887 else if (strcmp (name, ".debug_str") == 0)
5888 hdr->sh_type = SHT_IA_64_VMS_DEBUG_STR;
5889 else if (strcmp (name, ".vms_display_name_info") == 0)
5890 {
5891 int idx, symcount;
5892 asymbol **syms;
5893 struct elf_obj_tdata *t = elf_tdata (abfd);
5894 int buf[2];
5895 int demangler_sym_idx = -1;
5896
5897 symcount = bfd_get_symcount (abfd);
5898 syms = bfd_get_outsymbols (abfd);
5899 for (idx = 0; idx < symcount; idx++)
5900 {
5901 asymbol *sym;
5902 sym = syms[idx];
5903 if ((sym->flags & (BSF_DEBUGGING | BSF_DYNAMIC))
5904 && strchr (sym->name, '@')
5905 && (strcmp (sym->section->name, BFD_ABS_SECTION_NAME) == 0))
5906 {
5907 demangler_sym_idx = sym->udata.i;
5908 break;
5909 }
5910 }
5911
5912 hdr->sh_type = SHT_IA_64_VMS_DISPLAY_NAME_INFO;
5913 hdr->sh_entsize = 4;
5914 hdr->sh_addralign = 0;
5915 hdr->sh_link = t->symtab_section;
5916
5917 /* Find symtab index of demangler routine and stuff it in
5918 the second long word of section data. */
5919
5920 if (demangler_sym_idx > -1)
5921 {
5922 bfd_seek (abfd, hdr->sh_offset, SEEK_SET);
5923 bfd_bread (buf, hdr->sh_size, abfd);
5924 buf [1] = demangler_sym_idx;
5925 bfd_seek (abfd, hdr->sh_offset, SEEK_SET);
5926 bfd_bwrite (buf, hdr->sh_size, abfd);
5927 }
5928 }
5929 }
5930
5931 return TRUE;
5932 }
5933
5934 /* The final processing done just before writing out a VMS IA-64 ELF
5935 object file. */
5936
5937 static void
5938 elfNN_vms_final_write_processing (bfd *abfd,
5939 bfd_boolean linker ATTRIBUTE_UNUSED)
5940 {
5941 Elf_Internal_Shdr *hdr;
5942 asection *s;
5943 int unwind_info_sect_idx = 0;
5944
5945 for (s = abfd->sections; s; s = s->next)
5946 {
5947 hdr = &elf_section_data (s)->this_hdr;
5948
5949 if (strcmp (bfd_get_section_name (abfd, hdr->bfd_section),
5950 ".IA_64.unwind_info") == 0)
5951 unwind_info_sect_idx = elf_section_data (s)->this_idx;
5952
5953 switch (hdr->sh_type)
5954 {
5955 case SHT_IA_64_UNWIND:
5956 /* VMS requires sh_info to point to the unwind info section. */
5957 hdr->sh_info = unwind_info_sect_idx;
5958 break;
5959 }
5960 }
5961
5962 if (! elf_flags_init (abfd))
5963 {
5964 unsigned long flags = 0;
5965
5966 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
5967 flags |= EF_IA_64_BE;
5968 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
5969 flags |= EF_IA_64_ABI64;
5970
5971 elf_elfheader(abfd)->e_flags = flags;
5972 elf_flags_init (abfd) = TRUE;
5973 }
5974 }
5975
5976 static bfd_boolean
5977 elfNN_vms_close_and_cleanup (bfd *abfd)
5978 {
5979 if (bfd_get_format (abfd) == bfd_object)
5980 {
5981 long isize, irsize;
5982
5983 if (elf_shstrtab (abfd) != NULL)
5984 _bfd_elf_strtab_free (elf_shstrtab (abfd));
5985
5986 /* Pad to 8 byte boundary for IPF/VMS. */
5987 isize = bfd_get_size (abfd);
5988 if ((irsize = isize/8*8) < isize)
5989 {
5990 int ishort = (irsize + 8) - isize;
5991 bfd_seek (abfd, isize, SEEK_SET);
5992 bfd_bwrite (bfd_zmalloc (ishort), ishort, abfd);
5993 }
5994 }
5995
5996 return _bfd_generic_close_and_cleanup (abfd);
5997 }
5998 #endif /* INCLUDE_IA64_VMS */
5999 \f
6000 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_little_vec
6001 #define TARGET_LITTLE_NAME "elfNN-ia64-little"
6002 #define TARGET_BIG_SYM bfd_elfNN_ia64_big_vec
6003 #define TARGET_BIG_NAME "elfNN-ia64-big"
6004 #define ELF_ARCH bfd_arch_ia64
6005 #define ELF_MACHINE_CODE EM_IA_64
6006 #define ELF_MACHINE_ALT1 1999 /* EAS2.3 */
6007 #define ELF_MACHINE_ALT2 1998 /* EAS2.2 */
6008 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
6009 #define ELF_COMMONPAGESIZE 0x4000 /* 16KB */
6010
6011 #define elf_backend_section_from_shdr \
6012 elfNN_ia64_section_from_shdr
6013 #define elf_backend_section_flags \
6014 elfNN_ia64_section_flags
6015 #define elf_backend_fake_sections \
6016 elfNN_ia64_fake_sections
6017 #define elf_backend_final_write_processing \
6018 elfNN_ia64_final_write_processing
6019 #define elf_backend_add_symbol_hook \
6020 elfNN_ia64_add_symbol_hook
6021 #define elf_backend_additional_program_headers \
6022 elfNN_ia64_additional_program_headers
6023 #define elf_backend_modify_segment_map \
6024 elfNN_ia64_modify_segment_map
6025 #define elf_backend_modify_program_headers \
6026 elfNN_ia64_modify_program_headers
6027 #define elf_info_to_howto \
6028 elfNN_ia64_info_to_howto
6029
6030 #define bfd_elfNN_bfd_reloc_type_lookup \
6031 elfNN_ia64_reloc_type_lookup
6032 #define bfd_elfNN_bfd_reloc_name_lookup \
6033 elfNN_ia64_reloc_name_lookup
6034 #define bfd_elfNN_bfd_is_local_label_name \
6035 elfNN_ia64_is_local_label_name
6036 #define bfd_elfNN_bfd_relax_section \
6037 elfNN_ia64_relax_section
6038
6039 #define elf_backend_object_p \
6040 elfNN_ia64_object_p
6041
6042 /* Stuff for the BFD linker: */
6043 #define bfd_elfNN_bfd_link_hash_table_create \
6044 elfNN_ia64_hash_table_create
6045 #define bfd_elfNN_bfd_link_hash_table_free \
6046 elfNN_ia64_hash_table_free
6047 #define elf_backend_create_dynamic_sections \
6048 elfNN_ia64_create_dynamic_sections
6049 #define elf_backend_check_relocs \
6050 elfNN_ia64_check_relocs
6051 #define elf_backend_adjust_dynamic_symbol \
6052 elfNN_ia64_adjust_dynamic_symbol
6053 #define elf_backend_size_dynamic_sections \
6054 elfNN_ia64_size_dynamic_sections
6055 #define elf_backend_omit_section_dynsym \
6056 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
6057 #define elf_backend_relocate_section \
6058 elfNN_ia64_relocate_section
6059 #define elf_backend_finish_dynamic_symbol \
6060 elfNN_ia64_finish_dynamic_symbol
6061 #define elf_backend_finish_dynamic_sections \
6062 elfNN_ia64_finish_dynamic_sections
6063 #define bfd_elfNN_bfd_final_link \
6064 elfNN_ia64_final_link
6065
6066 #define bfd_elfNN_bfd_merge_private_bfd_data \
6067 elfNN_ia64_merge_private_bfd_data
6068 #define bfd_elfNN_bfd_set_private_flags \
6069 elfNN_ia64_set_private_flags
6070 #define bfd_elfNN_bfd_print_private_bfd_data \
6071 elfNN_ia64_print_private_bfd_data
6072
6073 #define elf_backend_plt_readonly 1
6074 #define elf_backend_want_plt_sym 0
6075 #define elf_backend_plt_alignment 5
6076 #define elf_backend_got_header_size 0
6077 #define elf_backend_want_got_plt 1
6078 #define elf_backend_may_use_rel_p 1
6079 #define elf_backend_may_use_rela_p 1
6080 #define elf_backend_default_use_rela_p 1
6081 #define elf_backend_want_dynbss 0
6082 #define elf_backend_copy_indirect_symbol elfNN_ia64_hash_copy_indirect
6083 #define elf_backend_hide_symbol elfNN_ia64_hash_hide_symbol
6084 #define elf_backend_fixup_symbol _bfd_elf_link_hash_fixup_symbol
6085 #define elf_backend_reloc_type_class elfNN_ia64_reloc_type_class
6086 #define elf_backend_rela_normal 1
6087 #define elf_backend_special_sections elfNN_ia64_special_sections
6088 #define elf_backend_default_execstack 0
6089
6090 /* FIXME: PR 290: The Intel C compiler generates SHT_IA_64_UNWIND with
6091 SHF_LINK_ORDER. But it doesn't set the sh_link or sh_info fields.
6092 We don't want to flood users with so many error messages. We turn
6093 off the warning for now. It will be turned on later when the Intel
6094 compiler is fixed. */
6095 #define elf_backend_link_order_error_handler NULL
6096
6097 #include "elfNN-target.h"
6098
6099 /* HPUX-specific vectors. */
6100
6101 #undef TARGET_LITTLE_SYM
6102 #undef TARGET_LITTLE_NAME
6103 #undef TARGET_BIG_SYM
6104 #define TARGET_BIG_SYM bfd_elfNN_ia64_hpux_big_vec
6105 #undef TARGET_BIG_NAME
6106 #define TARGET_BIG_NAME "elfNN-ia64-hpux-big"
6107
6108 /* These are HP-UX specific functions. */
6109
6110 #undef elf_backend_post_process_headers
6111 #define elf_backend_post_process_headers elfNN_hpux_post_process_headers
6112
6113 #undef elf_backend_section_from_bfd_section
6114 #define elf_backend_section_from_bfd_section elfNN_hpux_backend_section_from_bfd_section
6115
6116 #undef elf_backend_symbol_processing
6117 #define elf_backend_symbol_processing elfNN_hpux_backend_symbol_processing
6118
6119 #undef elf_backend_want_p_paddr_set_to_zero
6120 #define elf_backend_want_p_paddr_set_to_zero 1
6121
6122 #undef ELF_COMMONPAGESIZE
6123 #undef ELF_OSABI
6124 #define ELF_OSABI ELFOSABI_HPUX
6125
6126 #undef elfNN_bed
6127 #define elfNN_bed elfNN_ia64_hpux_bed
6128
6129 #include "elfNN-target.h"
6130
6131 /* VMS-specific vectors. */
6132 #ifdef INCLUDE_IA64_VMS
6133
6134 #undef TARGET_LITTLE_SYM
6135 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_vms_vec
6136 #undef TARGET_LITTLE_NAME
6137 #define TARGET_LITTLE_NAME "elfNN-ia64-vms"
6138 #undef TARGET_BIG_SYM
6139 #undef TARGET_BIG_NAME
6140
6141 /* These are VMS specific functions. */
6142
6143 #undef elf_backend_object_p
6144 #define elf_backend_object_p elfNN_vms_object_p
6145
6146 #undef elf_backend_section_from_shdr
6147 #define elf_backend_section_from_shdr elfNN_vms_section_from_shdr
6148
6149 #undef elf_backend_post_process_headers
6150 #define elf_backend_post_process_headers elfNN_vms_post_process_headers
6151
6152 #undef elf_backend_section_processing
6153 #define elf_backend_section_processing elfNN_vms_section_processing
6154
6155 #undef elf_backend_final_write_processing
6156 #define elf_backend_final_write_processing elfNN_vms_final_write_processing
6157
6158 #undef bfd_elfNN_close_and_cleanup
6159 #define bfd_elfNN_close_and_cleanup elfNN_vms_close_and_cleanup
6160
6161 #undef elf_backend_section_from_bfd_section
6162
6163 #undef elf_backend_symbol_processing
6164
6165 #undef elf_backend_want_p_paddr_set_to_zero
6166
6167 #undef ELF_OSABI
6168 #define ELF_OSABI ELFOSABI_OPENVMS
6169
6170 #undef ELF_MAXPAGESIZE
6171 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
6172
6173 #undef elfNN_bed
6174 #define elfNN_bed elfNN_ia64_vms_bed
6175
6176 /* Use VMS-style archives (in particular, don't use the standard coff
6177 archive format). */
6178 #define bfd_elfNN_archive_functions
6179
6180 #undef bfd_elfNN_archive_p
6181 #define bfd_elfNN_archive_p _bfd_vms_lib_ia64_archive_p
6182
6183 #define bfd_elfNN_archive_slurp_armap \
6184 _bfd_vms_lib_slurp_armap
6185 #define bfd_elfNN_archive_slurp_extended_name_table \
6186 _bfd_vms_lib_slurp_extended_name_table
6187 #define bfd_elfNN_archive_construct_extended_name_table \
6188 _bfd_vms_lib_construct_extended_name_table
6189 #define bfd_elfNN_archive_truncate_arname \
6190 _bfd_vms_lib_truncate_arname
6191 #define bfd_elfNN_archive_write_armap \
6192 _bfd_vms_lib_write_armap
6193 #define bfd_elfNN_archive_read_ar_hdr \
6194 _bfd_vms_lib_read_ar_hdr
6195 #define bfd_elfNN_archive_write_ar_hdr \
6196 _bfd_vms_lib_write_ar_hdr
6197 #define bfd_elfNN_archive_openr_next_archived_file \
6198 _bfd_vms_lib_openr_next_archived_file
6199 #define bfd_elfNN_archive_get_elt_at_index \
6200 _bfd_vms_lib_get_elt_at_index
6201 #define bfd_elfNN_archive_generic_stat_arch_elt \
6202 _bfd_vms_lib_generic_stat_arch_elt
6203 #define bfd_elfNN_archive_update_armap_timestamp \
6204 _bfd_vms_lib_update_armap_timestamp
6205
6206 #include "elfNN-target.h"
6207
6208 #endif /* INCLUDE_IA64_VMS */
This page took 0.213798 seconds and 4 git commands to generate.