* elfxx-mips.c (mips16_stub_symndx): Handle n64 compound relocs.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS_1(VAL) (0x41b9) /* lui t9,VAL */
310 #define LA25_LUI_MICROMIPS_2(VAL) (VAL)
311 #define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
312 #define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
313 #define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339) /* addiu t9,t9,VAL */
314 #define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
315
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319 struct mips_elf_hash_sort_data
320 {
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334 };
335
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339 struct mips_elf_link_hash_entry
340 {
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
364
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
372
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423 #if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427 #endif
428
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
431
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
434
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head;
438
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
441
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
450
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
453
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
462 asection *sstubs;
463 asection *sgot;
464
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
467
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
470
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
473
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
476
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499 };
500
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
502
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
509 {
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
516 };
517
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MIPS16_TLS_GD \
533 || r_type == R_MIPS16_TLS_LDM \
534 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
535 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
536 || r_type == R_MIPS16_TLS_GOTTPREL \
537 || r_type == R_MIPS16_TLS_TPREL_HI16 \
538 || r_type == R_MIPS16_TLS_TPREL_LO16 \
539 || r_type == R_MICROMIPS_TLS_GD \
540 || r_type == R_MICROMIPS_TLS_LDM \
541 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
542 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
543 || r_type == R_MICROMIPS_TLS_GOTTPREL \
544 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
545 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
546
547 /* Structure used to pass information to mips_elf_output_extsym. */
548
549 struct extsym_info
550 {
551 bfd *abfd;
552 struct bfd_link_info *info;
553 struct ecoff_debug_info *debug;
554 const struct ecoff_debug_swap *swap;
555 bfd_boolean failed;
556 };
557
558 /* The names of the runtime procedure table symbols used on IRIX5. */
559
560 static const char * const mips_elf_dynsym_rtproc_names[] =
561 {
562 "_procedure_table",
563 "_procedure_string_table",
564 "_procedure_table_size",
565 NULL
566 };
567
568 /* These structures are used to generate the .compact_rel section on
569 IRIX5. */
570
571 typedef struct
572 {
573 unsigned long id1; /* Always one? */
574 unsigned long num; /* Number of compact relocation entries. */
575 unsigned long id2; /* Always two? */
576 unsigned long offset; /* The file offset of the first relocation. */
577 unsigned long reserved0; /* Zero? */
578 unsigned long reserved1; /* Zero? */
579 } Elf32_compact_rel;
580
581 typedef struct
582 {
583 bfd_byte id1[4];
584 bfd_byte num[4];
585 bfd_byte id2[4];
586 bfd_byte offset[4];
587 bfd_byte reserved0[4];
588 bfd_byte reserved1[4];
589 } Elf32_External_compact_rel;
590
591 typedef struct
592 {
593 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
594 unsigned int rtype : 4; /* Relocation types. See below. */
595 unsigned int dist2to : 8;
596 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
597 unsigned long konst; /* KONST field. See below. */
598 unsigned long vaddr; /* VADDR to be relocated. */
599 } Elf32_crinfo;
600
601 typedef struct
602 {
603 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
604 unsigned int rtype : 4; /* Relocation types. See below. */
605 unsigned int dist2to : 8;
606 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
607 unsigned long konst; /* KONST field. See below. */
608 } Elf32_crinfo2;
609
610 typedef struct
611 {
612 bfd_byte info[4];
613 bfd_byte konst[4];
614 bfd_byte vaddr[4];
615 } Elf32_External_crinfo;
616
617 typedef struct
618 {
619 bfd_byte info[4];
620 bfd_byte konst[4];
621 } Elf32_External_crinfo2;
622
623 /* These are the constants used to swap the bitfields in a crinfo. */
624
625 #define CRINFO_CTYPE (0x1)
626 #define CRINFO_CTYPE_SH (31)
627 #define CRINFO_RTYPE (0xf)
628 #define CRINFO_RTYPE_SH (27)
629 #define CRINFO_DIST2TO (0xff)
630 #define CRINFO_DIST2TO_SH (19)
631 #define CRINFO_RELVADDR (0x7ffff)
632 #define CRINFO_RELVADDR_SH (0)
633
634 /* A compact relocation info has long (3 words) or short (2 words)
635 formats. A short format doesn't have VADDR field and relvaddr
636 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
637 #define CRF_MIPS_LONG 1
638 #define CRF_MIPS_SHORT 0
639
640 /* There are 4 types of compact relocation at least. The value KONST
641 has different meaning for each type:
642
643 (type) (konst)
644 CT_MIPS_REL32 Address in data
645 CT_MIPS_WORD Address in word (XXX)
646 CT_MIPS_GPHI_LO GP - vaddr
647 CT_MIPS_JMPAD Address to jump
648 */
649
650 #define CRT_MIPS_REL32 0xa
651 #define CRT_MIPS_WORD 0xb
652 #define CRT_MIPS_GPHI_LO 0xc
653 #define CRT_MIPS_JMPAD 0xd
654
655 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
656 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
657 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
658 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
659 \f
660 /* The structure of the runtime procedure descriptor created by the
661 loader for use by the static exception system. */
662
663 typedef struct runtime_pdr {
664 bfd_vma adr; /* Memory address of start of procedure. */
665 long regmask; /* Save register mask. */
666 long regoffset; /* Save register offset. */
667 long fregmask; /* Save floating point register mask. */
668 long fregoffset; /* Save floating point register offset. */
669 long frameoffset; /* Frame size. */
670 short framereg; /* Frame pointer register. */
671 short pcreg; /* Offset or reg of return pc. */
672 long irpss; /* Index into the runtime string table. */
673 long reserved;
674 struct exception_info *exception_info;/* Pointer to exception array. */
675 } RPDR, *pRPDR;
676 #define cbRPDR sizeof (RPDR)
677 #define rpdNil ((pRPDR) 0)
678 \f
679 static struct mips_got_entry *mips_elf_create_local_got_entry
680 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
681 struct mips_elf_link_hash_entry *, int);
682 static bfd_boolean mips_elf_sort_hash_table_f
683 (struct mips_elf_link_hash_entry *, void *);
684 static bfd_vma mips_elf_high
685 (bfd_vma);
686 static bfd_boolean mips_elf_create_dynamic_relocation
687 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
688 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
689 bfd_vma *, asection *);
690 static hashval_t mips_elf_got_entry_hash
691 (const void *);
692 static bfd_vma mips_elf_adjust_gp
693 (bfd *, struct mips_got_info *, bfd *);
694 static struct mips_got_info *mips_elf_got_for_ibfd
695 (struct mips_got_info *, bfd *);
696
697 /* This will be used when we sort the dynamic relocation records. */
698 static bfd *reldyn_sorting_bfd;
699
700 /* True if ABFD is for CPUs with load interlocking that include
701 non-MIPS1 CPUs and R3900. */
702 #define LOAD_INTERLOCKS_P(abfd) \
703 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
704 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
705
706 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
707 This should be safe for all architectures. We enable this predicate
708 for RM9000 for now. */
709 #define JAL_TO_BAL_P(abfd) \
710 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
711
712 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
713 This should be safe for all architectures. We enable this predicate for
714 all CPUs. */
715 #define JALR_TO_BAL_P(abfd) 1
716
717 /* True if ABFD is for CPUs that are faster if JR is converted to B.
718 This should be safe for all architectures. We enable this predicate for
719 all CPUs. */
720 #define JR_TO_B_P(abfd) 1
721
722 /* True if ABFD is a PIC object. */
723 #define PIC_OBJECT_P(abfd) \
724 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
725
726 /* Nonzero if ABFD is using the N32 ABI. */
727 #define ABI_N32_P(abfd) \
728 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
729
730 /* Nonzero if ABFD is using the N64 ABI. */
731 #define ABI_64_P(abfd) \
732 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
733
734 /* Nonzero if ABFD is using NewABI conventions. */
735 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
736
737 /* The IRIX compatibility level we are striving for. */
738 #define IRIX_COMPAT(abfd) \
739 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
740
741 /* Whether we are trying to be compatible with IRIX at all. */
742 #define SGI_COMPAT(abfd) \
743 (IRIX_COMPAT (abfd) != ict_none)
744
745 /* The name of the options section. */
746 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
747 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
748
749 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
750 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
751 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
752 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
753
754 /* Whether the section is readonly. */
755 #define MIPS_ELF_READONLY_SECTION(sec) \
756 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
757 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
758
759 /* The name of the stub section. */
760 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
761
762 /* The size of an external REL relocation. */
763 #define MIPS_ELF_REL_SIZE(abfd) \
764 (get_elf_backend_data (abfd)->s->sizeof_rel)
765
766 /* The size of an external RELA relocation. */
767 #define MIPS_ELF_RELA_SIZE(abfd) \
768 (get_elf_backend_data (abfd)->s->sizeof_rela)
769
770 /* The size of an external dynamic table entry. */
771 #define MIPS_ELF_DYN_SIZE(abfd) \
772 (get_elf_backend_data (abfd)->s->sizeof_dyn)
773
774 /* The size of a GOT entry. */
775 #define MIPS_ELF_GOT_SIZE(abfd) \
776 (get_elf_backend_data (abfd)->s->arch_size / 8)
777
778 /* The size of the .rld_map section. */
779 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->arch_size / 8)
781
782 /* The size of a symbol-table entry. */
783 #define MIPS_ELF_SYM_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_sym)
785
786 /* The default alignment for sections, as a power of two. */
787 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
788 (get_elf_backend_data (abfd)->s->log_file_align)
789
790 /* Get word-sized data. */
791 #define MIPS_ELF_GET_WORD(abfd, ptr) \
792 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
793
794 /* Put out word-sized data. */
795 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
796 (ABI_64_P (abfd) \
797 ? bfd_put_64 (abfd, val, ptr) \
798 : bfd_put_32 (abfd, val, ptr))
799
800 /* The opcode for word-sized loads (LW or LD). */
801 #define MIPS_ELF_LOAD_WORD(abfd) \
802 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
803
804 /* Add a dynamic symbol table-entry. */
805 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
806 _bfd_elf_add_dynamic_entry (info, tag, val)
807
808 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
810
811 /* The name of the dynamic relocation section. */
812 #define MIPS_ELF_REL_DYN_NAME(INFO) \
813 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
814
815 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
816 from smaller values. Start with zero, widen, *then* decrement. */
817 #define MINUS_ONE (((bfd_vma)0) - 1)
818 #define MINUS_TWO (((bfd_vma)0) - 2)
819
820 /* The value to write into got[1] for SVR4 targets, to identify it is
821 a GNU object. The dynamic linker can then use got[1] to store the
822 module pointer. */
823 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
824 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
825
826 /* The offset of $gp from the beginning of the .got section. */
827 #define ELF_MIPS_GP_OFFSET(INFO) \
828 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
829
830 /* The maximum size of the GOT for it to be addressable using 16-bit
831 offsets from $gp. */
832 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
833
834 /* Instructions which appear in a stub. */
835 #define STUB_LW(abfd) \
836 ((ABI_64_P (abfd) \
837 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
838 : 0x8f998010)) /* lw t9,0x8010(gp) */
839 #define STUB_MOVE(abfd) \
840 ((ABI_64_P (abfd) \
841 ? 0x03e0782d /* daddu t7,ra */ \
842 : 0x03e07821)) /* addu t7,ra */
843 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
844 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
845 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
846 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
847 #define STUB_LI16S(abfd, VAL) \
848 ((ABI_64_P (abfd) \
849 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
850 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
851
852 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
853 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
854
855 /* The name of the dynamic interpreter. This is put in the .interp
856 section. */
857
858 #define ELF_DYNAMIC_INTERPRETER(abfd) \
859 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
860 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
861 : "/usr/lib/libc.so.1")
862
863 #ifdef BFD64
864 #define MNAME(bfd,pre,pos) \
865 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
866 #define ELF_R_SYM(bfd, i) \
867 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
868 #define ELF_R_TYPE(bfd, i) \
869 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
870 #define ELF_R_INFO(bfd, s, t) \
871 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
872 #else
873 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
874 #define ELF_R_SYM(bfd, i) \
875 (ELF32_R_SYM (i))
876 #define ELF_R_TYPE(bfd, i) \
877 (ELF32_R_TYPE (i))
878 #define ELF_R_INFO(bfd, s, t) \
879 (ELF32_R_INFO (s, t))
880 #endif
881 \f
882 /* The mips16 compiler uses a couple of special sections to handle
883 floating point arguments.
884
885 Section names that look like .mips16.fn.FNNAME contain stubs that
886 copy floating point arguments from the fp regs to the gp regs and
887 then jump to FNNAME. If any 32 bit function calls FNNAME, the
888 call should be redirected to the stub instead. If no 32 bit
889 function calls FNNAME, the stub should be discarded. We need to
890 consider any reference to the function, not just a call, because
891 if the address of the function is taken we will need the stub,
892 since the address might be passed to a 32 bit function.
893
894 Section names that look like .mips16.call.FNNAME contain stubs
895 that copy floating point arguments from the gp regs to the fp
896 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
897 then any 16 bit function that calls FNNAME should be redirected
898 to the stub instead. If FNNAME is not a 32 bit function, the
899 stub should be discarded.
900
901 .mips16.call.fp.FNNAME sections are similar, but contain stubs
902 which call FNNAME and then copy the return value from the fp regs
903 to the gp regs. These stubs store the return value in $18 while
904 calling FNNAME; any function which might call one of these stubs
905 must arrange to save $18 around the call. (This case is not
906 needed for 32 bit functions that call 16 bit functions, because
907 16 bit functions always return floating point values in both
908 $f0/$f1 and $2/$3.)
909
910 Note that in all cases FNNAME might be defined statically.
911 Therefore, FNNAME is not used literally. Instead, the relocation
912 information will indicate which symbol the section is for.
913
914 We record any stubs that we find in the symbol table. */
915
916 #define FN_STUB ".mips16.fn."
917 #define CALL_STUB ".mips16.call."
918 #define CALL_FP_STUB ".mips16.call.fp."
919
920 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
921 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
922 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
923 \f
924 /* The format of the first PLT entry in an O32 executable. */
925 static const bfd_vma mips_o32_exec_plt0_entry[] =
926 {
927 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
928 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
929 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
930 0x031cc023, /* subu $24, $24, $28 */
931 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
932 0x0018c082, /* srl $24, $24, 2 */
933 0x0320f809, /* jalr $25 */
934 0x2718fffe /* subu $24, $24, 2 */
935 };
936
937 /* The format of the first PLT entry in an N32 executable. Different
938 because gp ($28) is not available; we use t2 ($14) instead. */
939 static const bfd_vma mips_n32_exec_plt0_entry[] =
940 {
941 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
942 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
943 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
944 0x030ec023, /* subu $24, $24, $14 */
945 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
946 0x0018c082, /* srl $24, $24, 2 */
947 0x0320f809, /* jalr $25 */
948 0x2718fffe /* subu $24, $24, 2 */
949 };
950
951 /* The format of the first PLT entry in an N64 executable. Different
952 from N32 because of the increased size of GOT entries. */
953 static const bfd_vma mips_n64_exec_plt0_entry[] =
954 {
955 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
956 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
957 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
958 0x030ec023, /* subu $24, $24, $14 */
959 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
960 0x0018c0c2, /* srl $24, $24, 3 */
961 0x0320f809, /* jalr $25 */
962 0x2718fffe /* subu $24, $24, 2 */
963 };
964
965 /* The format of subsequent PLT entries. */
966 static const bfd_vma mips_exec_plt_entry[] =
967 {
968 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
969 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
970 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
971 0x03200008 /* jr $25 */
972 };
973
974 /* The format of the first PLT entry in a VxWorks executable. */
975 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
976 {
977 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
978 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
979 0x8f390008, /* lw t9, 8(t9) */
980 0x00000000, /* nop */
981 0x03200008, /* jr t9 */
982 0x00000000 /* nop */
983 };
984
985 /* The format of subsequent PLT entries. */
986 static const bfd_vma mips_vxworks_exec_plt_entry[] =
987 {
988 0x10000000, /* b .PLT_resolver */
989 0x24180000, /* li t8, <pltindex> */
990 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
991 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
992 0x8f390000, /* lw t9, 0(t9) */
993 0x00000000, /* nop */
994 0x03200008, /* jr t9 */
995 0x00000000 /* nop */
996 };
997
998 /* The format of the first PLT entry in a VxWorks shared object. */
999 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1000 {
1001 0x8f990008, /* lw t9, 8(gp) */
1002 0x00000000, /* nop */
1003 0x03200008, /* jr t9 */
1004 0x00000000, /* nop */
1005 0x00000000, /* nop */
1006 0x00000000 /* nop */
1007 };
1008
1009 /* The format of subsequent PLT entries. */
1010 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1011 {
1012 0x10000000, /* b .PLT_resolver */
1013 0x24180000 /* li t8, <pltindex> */
1014 };
1015 \f
1016 /* Look up an entry in a MIPS ELF linker hash table. */
1017
1018 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1019 ((struct mips_elf_link_hash_entry *) \
1020 elf_link_hash_lookup (&(table)->root, (string), (create), \
1021 (copy), (follow)))
1022
1023 /* Traverse a MIPS ELF linker hash table. */
1024
1025 #define mips_elf_link_hash_traverse(table, func, info) \
1026 (elf_link_hash_traverse \
1027 (&(table)->root, \
1028 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1029 (info)))
1030
1031 /* Find the base offsets for thread-local storage in this object,
1032 for GD/LD and IE/LE respectively. */
1033
1034 #define TP_OFFSET 0x7000
1035 #define DTP_OFFSET 0x8000
1036
1037 static bfd_vma
1038 dtprel_base (struct bfd_link_info *info)
1039 {
1040 /* If tls_sec is NULL, we should have signalled an error already. */
1041 if (elf_hash_table (info)->tls_sec == NULL)
1042 return 0;
1043 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1044 }
1045
1046 static bfd_vma
1047 tprel_base (struct bfd_link_info *info)
1048 {
1049 /* If tls_sec is NULL, we should have signalled an error already. */
1050 if (elf_hash_table (info)->tls_sec == NULL)
1051 return 0;
1052 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1053 }
1054
1055 /* Create an entry in a MIPS ELF linker hash table. */
1056
1057 static struct bfd_hash_entry *
1058 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1059 struct bfd_hash_table *table, const char *string)
1060 {
1061 struct mips_elf_link_hash_entry *ret =
1062 (struct mips_elf_link_hash_entry *) entry;
1063
1064 /* Allocate the structure if it has not already been allocated by a
1065 subclass. */
1066 if (ret == NULL)
1067 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1068 if (ret == NULL)
1069 return (struct bfd_hash_entry *) ret;
1070
1071 /* Call the allocation method of the superclass. */
1072 ret = ((struct mips_elf_link_hash_entry *)
1073 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1074 table, string));
1075 if (ret != NULL)
1076 {
1077 /* Set local fields. */
1078 memset (&ret->esym, 0, sizeof (EXTR));
1079 /* We use -2 as a marker to indicate that the information has
1080 not been set. -1 means there is no associated ifd. */
1081 ret->esym.ifd = -2;
1082 ret->la25_stub = 0;
1083 ret->possibly_dynamic_relocs = 0;
1084 ret->fn_stub = NULL;
1085 ret->call_stub = NULL;
1086 ret->call_fp_stub = NULL;
1087 ret->tls_type = GOT_NORMAL;
1088 ret->global_got_area = GGA_NONE;
1089 ret->got_only_for_calls = TRUE;
1090 ret->readonly_reloc = FALSE;
1091 ret->has_static_relocs = FALSE;
1092 ret->no_fn_stub = FALSE;
1093 ret->need_fn_stub = FALSE;
1094 ret->has_nonpic_branches = FALSE;
1095 ret->needs_lazy_stub = FALSE;
1096 }
1097
1098 return (struct bfd_hash_entry *) ret;
1099 }
1100
1101 bfd_boolean
1102 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1103 {
1104 if (!sec->used_by_bfd)
1105 {
1106 struct _mips_elf_section_data *sdata;
1107 bfd_size_type amt = sizeof (*sdata);
1108
1109 sdata = bfd_zalloc (abfd, amt);
1110 if (sdata == NULL)
1111 return FALSE;
1112 sec->used_by_bfd = sdata;
1113 }
1114
1115 return _bfd_elf_new_section_hook (abfd, sec);
1116 }
1117 \f
1118 /* Read ECOFF debugging information from a .mdebug section into a
1119 ecoff_debug_info structure. */
1120
1121 bfd_boolean
1122 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1123 struct ecoff_debug_info *debug)
1124 {
1125 HDRR *symhdr;
1126 const struct ecoff_debug_swap *swap;
1127 char *ext_hdr;
1128
1129 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1130 memset (debug, 0, sizeof (*debug));
1131
1132 ext_hdr = bfd_malloc (swap->external_hdr_size);
1133 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1134 goto error_return;
1135
1136 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1137 swap->external_hdr_size))
1138 goto error_return;
1139
1140 symhdr = &debug->symbolic_header;
1141 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1142
1143 /* The symbolic header contains absolute file offsets and sizes to
1144 read. */
1145 #define READ(ptr, offset, count, size, type) \
1146 if (symhdr->count == 0) \
1147 debug->ptr = NULL; \
1148 else \
1149 { \
1150 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1151 debug->ptr = bfd_malloc (amt); \
1152 if (debug->ptr == NULL) \
1153 goto error_return; \
1154 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1155 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1156 goto error_return; \
1157 }
1158
1159 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1160 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1161 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1162 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1163 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1164 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1165 union aux_ext *);
1166 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1167 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1168 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1169 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1170 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1171 #undef READ
1172
1173 debug->fdr = NULL;
1174
1175 return TRUE;
1176
1177 error_return:
1178 if (ext_hdr != NULL)
1179 free (ext_hdr);
1180 if (debug->line != NULL)
1181 free (debug->line);
1182 if (debug->external_dnr != NULL)
1183 free (debug->external_dnr);
1184 if (debug->external_pdr != NULL)
1185 free (debug->external_pdr);
1186 if (debug->external_sym != NULL)
1187 free (debug->external_sym);
1188 if (debug->external_opt != NULL)
1189 free (debug->external_opt);
1190 if (debug->external_aux != NULL)
1191 free (debug->external_aux);
1192 if (debug->ss != NULL)
1193 free (debug->ss);
1194 if (debug->ssext != NULL)
1195 free (debug->ssext);
1196 if (debug->external_fdr != NULL)
1197 free (debug->external_fdr);
1198 if (debug->external_rfd != NULL)
1199 free (debug->external_rfd);
1200 if (debug->external_ext != NULL)
1201 free (debug->external_ext);
1202 return FALSE;
1203 }
1204 \f
1205 /* Swap RPDR (runtime procedure table entry) for output. */
1206
1207 static void
1208 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1209 {
1210 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1211 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1212 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1213 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1214 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1215 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1216
1217 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1218 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1219
1220 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1221 }
1222
1223 /* Create a runtime procedure table from the .mdebug section. */
1224
1225 static bfd_boolean
1226 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1227 struct bfd_link_info *info, asection *s,
1228 struct ecoff_debug_info *debug)
1229 {
1230 const struct ecoff_debug_swap *swap;
1231 HDRR *hdr = &debug->symbolic_header;
1232 RPDR *rpdr, *rp;
1233 struct rpdr_ext *erp;
1234 void *rtproc;
1235 struct pdr_ext *epdr;
1236 struct sym_ext *esym;
1237 char *ss, **sv;
1238 char *str;
1239 bfd_size_type size;
1240 bfd_size_type count;
1241 unsigned long sindex;
1242 unsigned long i;
1243 PDR pdr;
1244 SYMR sym;
1245 const char *no_name_func = _("static procedure (no name)");
1246
1247 epdr = NULL;
1248 rpdr = NULL;
1249 esym = NULL;
1250 ss = NULL;
1251 sv = NULL;
1252
1253 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1254
1255 sindex = strlen (no_name_func) + 1;
1256 count = hdr->ipdMax;
1257 if (count > 0)
1258 {
1259 size = swap->external_pdr_size;
1260
1261 epdr = bfd_malloc (size * count);
1262 if (epdr == NULL)
1263 goto error_return;
1264
1265 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1266 goto error_return;
1267
1268 size = sizeof (RPDR);
1269 rp = rpdr = bfd_malloc (size * count);
1270 if (rpdr == NULL)
1271 goto error_return;
1272
1273 size = sizeof (char *);
1274 sv = bfd_malloc (size * count);
1275 if (sv == NULL)
1276 goto error_return;
1277
1278 count = hdr->isymMax;
1279 size = swap->external_sym_size;
1280 esym = bfd_malloc (size * count);
1281 if (esym == NULL)
1282 goto error_return;
1283
1284 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1285 goto error_return;
1286
1287 count = hdr->issMax;
1288 ss = bfd_malloc (count);
1289 if (ss == NULL)
1290 goto error_return;
1291 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1292 goto error_return;
1293
1294 count = hdr->ipdMax;
1295 for (i = 0; i < (unsigned long) count; i++, rp++)
1296 {
1297 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1298 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1299 rp->adr = sym.value;
1300 rp->regmask = pdr.regmask;
1301 rp->regoffset = pdr.regoffset;
1302 rp->fregmask = pdr.fregmask;
1303 rp->fregoffset = pdr.fregoffset;
1304 rp->frameoffset = pdr.frameoffset;
1305 rp->framereg = pdr.framereg;
1306 rp->pcreg = pdr.pcreg;
1307 rp->irpss = sindex;
1308 sv[i] = ss + sym.iss;
1309 sindex += strlen (sv[i]) + 1;
1310 }
1311 }
1312
1313 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1314 size = BFD_ALIGN (size, 16);
1315 rtproc = bfd_alloc (abfd, size);
1316 if (rtproc == NULL)
1317 {
1318 mips_elf_hash_table (info)->procedure_count = 0;
1319 goto error_return;
1320 }
1321
1322 mips_elf_hash_table (info)->procedure_count = count + 2;
1323
1324 erp = rtproc;
1325 memset (erp, 0, sizeof (struct rpdr_ext));
1326 erp++;
1327 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1328 strcpy (str, no_name_func);
1329 str += strlen (no_name_func) + 1;
1330 for (i = 0; i < count; i++)
1331 {
1332 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1333 strcpy (str, sv[i]);
1334 str += strlen (sv[i]) + 1;
1335 }
1336 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1337
1338 /* Set the size and contents of .rtproc section. */
1339 s->size = size;
1340 s->contents = rtproc;
1341
1342 /* Skip this section later on (I don't think this currently
1343 matters, but someday it might). */
1344 s->map_head.link_order = NULL;
1345
1346 if (epdr != NULL)
1347 free (epdr);
1348 if (rpdr != NULL)
1349 free (rpdr);
1350 if (esym != NULL)
1351 free (esym);
1352 if (ss != NULL)
1353 free (ss);
1354 if (sv != NULL)
1355 free (sv);
1356
1357 return TRUE;
1358
1359 error_return:
1360 if (epdr != NULL)
1361 free (epdr);
1362 if (rpdr != NULL)
1363 free (rpdr);
1364 if (esym != NULL)
1365 free (esym);
1366 if (ss != NULL)
1367 free (ss);
1368 if (sv != NULL)
1369 free (sv);
1370 return FALSE;
1371 }
1372 \f
1373 /* We're going to create a stub for H. Create a symbol for the stub's
1374 value and size, to help make the disassembly easier to read. */
1375
1376 static bfd_boolean
1377 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1378 struct mips_elf_link_hash_entry *h,
1379 const char *prefix, asection *s, bfd_vma value,
1380 bfd_vma size)
1381 {
1382 struct bfd_link_hash_entry *bh;
1383 struct elf_link_hash_entry *elfh;
1384 const char *name;
1385
1386 if (ELF_ST_IS_MICROMIPS (h->root.other))
1387 value |= 1;
1388
1389 /* Create a new symbol. */
1390 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1391 bh = NULL;
1392 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1393 BSF_LOCAL, s, value, NULL,
1394 TRUE, FALSE, &bh))
1395 return FALSE;
1396
1397 /* Make it a local function. */
1398 elfh = (struct elf_link_hash_entry *) bh;
1399 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1400 elfh->size = size;
1401 elfh->forced_local = 1;
1402 return TRUE;
1403 }
1404
1405 /* We're about to redefine H. Create a symbol to represent H's
1406 current value and size, to help make the disassembly easier
1407 to read. */
1408
1409 static bfd_boolean
1410 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1411 struct mips_elf_link_hash_entry *h,
1412 const char *prefix)
1413 {
1414 struct bfd_link_hash_entry *bh;
1415 struct elf_link_hash_entry *elfh;
1416 const char *name;
1417 asection *s;
1418 bfd_vma value;
1419
1420 /* Read the symbol's value. */
1421 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1422 || h->root.root.type == bfd_link_hash_defweak);
1423 s = h->root.root.u.def.section;
1424 value = h->root.root.u.def.value;
1425
1426 /* Create a new symbol. */
1427 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1428 bh = NULL;
1429 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1430 BSF_LOCAL, s, value, NULL,
1431 TRUE, FALSE, &bh))
1432 return FALSE;
1433
1434 /* Make it local and copy the other attributes from H. */
1435 elfh = (struct elf_link_hash_entry *) bh;
1436 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1437 elfh->other = h->root.other;
1438 elfh->size = h->root.size;
1439 elfh->forced_local = 1;
1440 return TRUE;
1441 }
1442
1443 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1444 function rather than to a hard-float stub. */
1445
1446 static bfd_boolean
1447 section_allows_mips16_refs_p (asection *section)
1448 {
1449 const char *name;
1450
1451 name = bfd_get_section_name (section->owner, section);
1452 return (FN_STUB_P (name)
1453 || CALL_STUB_P (name)
1454 || CALL_FP_STUB_P (name)
1455 || strcmp (name, ".pdr") == 0);
1456 }
1457
1458 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1459 stub section of some kind. Return the R_SYMNDX of the target
1460 function, or 0 if we can't decide which function that is. */
1461
1462 static unsigned long
1463 mips16_stub_symndx (const struct elf_backend_data *bed,
1464 asection *sec ATTRIBUTE_UNUSED,
1465 const Elf_Internal_Rela *relocs,
1466 const Elf_Internal_Rela *relend)
1467 {
1468 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1469 const Elf_Internal_Rela *rel;
1470
1471 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1472 one in a compound relocation. */
1473 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1474 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1475 return ELF_R_SYM (sec->owner, rel->r_info);
1476
1477 /* Otherwise trust the first relocation, whatever its kind. This is
1478 the traditional behavior. */
1479 if (relocs < relend)
1480 return ELF_R_SYM (sec->owner, relocs->r_info);
1481
1482 return 0;
1483 }
1484
1485 /* Check the mips16 stubs for a particular symbol, and see if we can
1486 discard them. */
1487
1488 static void
1489 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1490 struct mips_elf_link_hash_entry *h)
1491 {
1492 /* Dynamic symbols must use the standard call interface, in case other
1493 objects try to call them. */
1494 if (h->fn_stub != NULL
1495 && h->root.dynindx != -1)
1496 {
1497 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1498 h->need_fn_stub = TRUE;
1499 }
1500
1501 if (h->fn_stub != NULL
1502 && ! h->need_fn_stub)
1503 {
1504 /* We don't need the fn_stub; the only references to this symbol
1505 are 16 bit calls. Clobber the size to 0 to prevent it from
1506 being included in the link. */
1507 h->fn_stub->size = 0;
1508 h->fn_stub->flags &= ~SEC_RELOC;
1509 h->fn_stub->reloc_count = 0;
1510 h->fn_stub->flags |= SEC_EXCLUDE;
1511 }
1512
1513 if (h->call_stub != NULL
1514 && ELF_ST_IS_MIPS16 (h->root.other))
1515 {
1516 /* We don't need the call_stub; this is a 16 bit function, so
1517 calls from other 16 bit functions are OK. Clobber the size
1518 to 0 to prevent it from being included in the link. */
1519 h->call_stub->size = 0;
1520 h->call_stub->flags &= ~SEC_RELOC;
1521 h->call_stub->reloc_count = 0;
1522 h->call_stub->flags |= SEC_EXCLUDE;
1523 }
1524
1525 if (h->call_fp_stub != NULL
1526 && ELF_ST_IS_MIPS16 (h->root.other))
1527 {
1528 /* We don't need the call_stub; this is a 16 bit function, so
1529 calls from other 16 bit functions are OK. Clobber the size
1530 to 0 to prevent it from being included in the link. */
1531 h->call_fp_stub->size = 0;
1532 h->call_fp_stub->flags &= ~SEC_RELOC;
1533 h->call_fp_stub->reloc_count = 0;
1534 h->call_fp_stub->flags |= SEC_EXCLUDE;
1535 }
1536 }
1537
1538 /* Hashtable callbacks for mips_elf_la25_stubs. */
1539
1540 static hashval_t
1541 mips_elf_la25_stub_hash (const void *entry_)
1542 {
1543 const struct mips_elf_la25_stub *entry;
1544
1545 entry = (struct mips_elf_la25_stub *) entry_;
1546 return entry->h->root.root.u.def.section->id
1547 + entry->h->root.root.u.def.value;
1548 }
1549
1550 static int
1551 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1552 {
1553 const struct mips_elf_la25_stub *entry1, *entry2;
1554
1555 entry1 = (struct mips_elf_la25_stub *) entry1_;
1556 entry2 = (struct mips_elf_la25_stub *) entry2_;
1557 return ((entry1->h->root.root.u.def.section
1558 == entry2->h->root.root.u.def.section)
1559 && (entry1->h->root.root.u.def.value
1560 == entry2->h->root.root.u.def.value));
1561 }
1562
1563 /* Called by the linker to set up the la25 stub-creation code. FN is
1564 the linker's implementation of add_stub_function. Return true on
1565 success. */
1566
1567 bfd_boolean
1568 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1569 asection *(*fn) (const char *, asection *,
1570 asection *))
1571 {
1572 struct mips_elf_link_hash_table *htab;
1573
1574 htab = mips_elf_hash_table (info);
1575 if (htab == NULL)
1576 return FALSE;
1577
1578 htab->add_stub_section = fn;
1579 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1580 mips_elf_la25_stub_eq, NULL);
1581 if (htab->la25_stubs == NULL)
1582 return FALSE;
1583
1584 return TRUE;
1585 }
1586
1587 /* Return true if H is a locally-defined PIC function, in the sense
1588 that it or its fn_stub might need $25 to be valid on entry.
1589 Note that MIPS16 functions set up $gp using PC-relative instructions,
1590 so they themselves never need $25 to be valid. Only non-MIPS16
1591 entry points are of interest here. */
1592
1593 static bfd_boolean
1594 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1595 {
1596 return ((h->root.root.type == bfd_link_hash_defined
1597 || h->root.root.type == bfd_link_hash_defweak)
1598 && h->root.def_regular
1599 && !bfd_is_abs_section (h->root.root.u.def.section)
1600 && (!ELF_ST_IS_MIPS16 (h->root.other)
1601 || (h->fn_stub && h->need_fn_stub))
1602 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1603 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1604 }
1605
1606 /* Set *SEC to the input section that contains the target of STUB.
1607 Return the offset of the target from the start of that section. */
1608
1609 static bfd_vma
1610 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1611 asection **sec)
1612 {
1613 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1614 {
1615 BFD_ASSERT (stub->h->need_fn_stub);
1616 *sec = stub->h->fn_stub;
1617 return 0;
1618 }
1619 else
1620 {
1621 *sec = stub->h->root.root.u.def.section;
1622 return stub->h->root.root.u.def.value;
1623 }
1624 }
1625
1626 /* STUB describes an la25 stub that we have decided to implement
1627 by inserting an LUI/ADDIU pair before the target function.
1628 Create the section and redirect the function symbol to it. */
1629
1630 static bfd_boolean
1631 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1632 struct bfd_link_info *info)
1633 {
1634 struct mips_elf_link_hash_table *htab;
1635 char *name;
1636 asection *s, *input_section;
1637 unsigned int align;
1638
1639 htab = mips_elf_hash_table (info);
1640 if (htab == NULL)
1641 return FALSE;
1642
1643 /* Create a unique name for the new section. */
1644 name = bfd_malloc (11 + sizeof (".text.stub."));
1645 if (name == NULL)
1646 return FALSE;
1647 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1648
1649 /* Create the section. */
1650 mips_elf_get_la25_target (stub, &input_section);
1651 s = htab->add_stub_section (name, input_section,
1652 input_section->output_section);
1653 if (s == NULL)
1654 return FALSE;
1655
1656 /* Make sure that any padding goes before the stub. */
1657 align = input_section->alignment_power;
1658 if (!bfd_set_section_alignment (s->owner, s, align))
1659 return FALSE;
1660 if (align > 3)
1661 s->size = (1 << align) - 8;
1662
1663 /* Create a symbol for the stub. */
1664 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1665 stub->stub_section = s;
1666 stub->offset = s->size;
1667
1668 /* Allocate room for it. */
1669 s->size += 8;
1670 return TRUE;
1671 }
1672
1673 /* STUB describes an la25 stub that we have decided to implement
1674 with a separate trampoline. Allocate room for it and redirect
1675 the function symbol to it. */
1676
1677 static bfd_boolean
1678 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1679 struct bfd_link_info *info)
1680 {
1681 struct mips_elf_link_hash_table *htab;
1682 asection *s;
1683
1684 htab = mips_elf_hash_table (info);
1685 if (htab == NULL)
1686 return FALSE;
1687
1688 /* Create a trampoline section, if we haven't already. */
1689 s = htab->strampoline;
1690 if (s == NULL)
1691 {
1692 asection *input_section = stub->h->root.root.u.def.section;
1693 s = htab->add_stub_section (".text", NULL,
1694 input_section->output_section);
1695 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1696 return FALSE;
1697 htab->strampoline = s;
1698 }
1699
1700 /* Create a symbol for the stub. */
1701 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1702 stub->stub_section = s;
1703 stub->offset = s->size;
1704
1705 /* Allocate room for it. */
1706 s->size += 16;
1707 return TRUE;
1708 }
1709
1710 /* H describes a symbol that needs an la25 stub. Make sure that an
1711 appropriate stub exists and point H at it. */
1712
1713 static bfd_boolean
1714 mips_elf_add_la25_stub (struct bfd_link_info *info,
1715 struct mips_elf_link_hash_entry *h)
1716 {
1717 struct mips_elf_link_hash_table *htab;
1718 struct mips_elf_la25_stub search, *stub;
1719 bfd_boolean use_trampoline_p;
1720 asection *s;
1721 bfd_vma value;
1722 void **slot;
1723
1724 /* Describe the stub we want. */
1725 search.stub_section = NULL;
1726 search.offset = 0;
1727 search.h = h;
1728
1729 /* See if we've already created an equivalent stub. */
1730 htab = mips_elf_hash_table (info);
1731 if (htab == NULL)
1732 return FALSE;
1733
1734 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1735 if (slot == NULL)
1736 return FALSE;
1737
1738 stub = (struct mips_elf_la25_stub *) *slot;
1739 if (stub != NULL)
1740 {
1741 /* We can reuse the existing stub. */
1742 h->la25_stub = stub;
1743 return TRUE;
1744 }
1745
1746 /* Create a permanent copy of ENTRY and add it to the hash table. */
1747 stub = bfd_malloc (sizeof (search));
1748 if (stub == NULL)
1749 return FALSE;
1750 *stub = search;
1751 *slot = stub;
1752
1753 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1754 of the section and if we would need no more than 2 nops. */
1755 value = mips_elf_get_la25_target (stub, &s);
1756 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1757
1758 h->la25_stub = stub;
1759 return (use_trampoline_p
1760 ? mips_elf_add_la25_trampoline (stub, info)
1761 : mips_elf_add_la25_intro (stub, info));
1762 }
1763
1764 /* A mips_elf_link_hash_traverse callback that is called before sizing
1765 sections. DATA points to a mips_htab_traverse_info structure. */
1766
1767 static bfd_boolean
1768 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1769 {
1770 struct mips_htab_traverse_info *hti;
1771
1772 hti = (struct mips_htab_traverse_info *) data;
1773 if (!hti->info->relocatable)
1774 mips_elf_check_mips16_stubs (hti->info, h);
1775
1776 if (mips_elf_local_pic_function_p (h))
1777 {
1778 /* PR 12845: If H is in a section that has been garbage
1779 collected it will have its output section set to *ABS*. */
1780 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1781 return TRUE;
1782
1783 /* H is a function that might need $25 to be valid on entry.
1784 If we're creating a non-PIC relocatable object, mark H as
1785 being PIC. If we're creating a non-relocatable object with
1786 non-PIC branches and jumps to H, make sure that H has an la25
1787 stub. */
1788 if (hti->info->relocatable)
1789 {
1790 if (!PIC_OBJECT_P (hti->output_bfd))
1791 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1792 }
1793 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1794 {
1795 hti->error = TRUE;
1796 return FALSE;
1797 }
1798 }
1799 return TRUE;
1800 }
1801 \f
1802 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1803 Most mips16 instructions are 16 bits, but these instructions
1804 are 32 bits.
1805
1806 The format of these instructions is:
1807
1808 +--------------+--------------------------------+
1809 | JALX | X| Imm 20:16 | Imm 25:21 |
1810 +--------------+--------------------------------+
1811 | Immediate 15:0 |
1812 +-----------------------------------------------+
1813
1814 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1815 Note that the immediate value in the first word is swapped.
1816
1817 When producing a relocatable object file, R_MIPS16_26 is
1818 handled mostly like R_MIPS_26. In particular, the addend is
1819 stored as a straight 26-bit value in a 32-bit instruction.
1820 (gas makes life simpler for itself by never adjusting a
1821 R_MIPS16_26 reloc to be against a section, so the addend is
1822 always zero). However, the 32 bit instruction is stored as 2
1823 16-bit values, rather than a single 32-bit value. In a
1824 big-endian file, the result is the same; in a little-endian
1825 file, the two 16-bit halves of the 32 bit value are swapped.
1826 This is so that a disassembler can recognize the jal
1827 instruction.
1828
1829 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1830 instruction stored as two 16-bit values. The addend A is the
1831 contents of the targ26 field. The calculation is the same as
1832 R_MIPS_26. When storing the calculated value, reorder the
1833 immediate value as shown above, and don't forget to store the
1834 value as two 16-bit values.
1835
1836 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1837 defined as
1838
1839 big-endian:
1840 +--------+----------------------+
1841 | | |
1842 | | targ26-16 |
1843 |31 26|25 0|
1844 +--------+----------------------+
1845
1846 little-endian:
1847 +----------+------+-------------+
1848 | | | |
1849 | sub1 | | sub2 |
1850 |0 9|10 15|16 31|
1851 +----------+--------------------+
1852 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1853 ((sub1 << 16) | sub2)).
1854
1855 When producing a relocatable object file, the calculation is
1856 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1857 When producing a fully linked file, the calculation is
1858 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1859 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1860
1861 The table below lists the other MIPS16 instruction relocations.
1862 Each one is calculated in the same way as the non-MIPS16 relocation
1863 given on the right, but using the extended MIPS16 layout of 16-bit
1864 immediate fields:
1865
1866 R_MIPS16_GPREL R_MIPS_GPREL16
1867 R_MIPS16_GOT16 R_MIPS_GOT16
1868 R_MIPS16_CALL16 R_MIPS_CALL16
1869 R_MIPS16_HI16 R_MIPS_HI16
1870 R_MIPS16_LO16 R_MIPS_LO16
1871
1872 A typical instruction will have a format like this:
1873
1874 +--------------+--------------------------------+
1875 | EXTEND | Imm 10:5 | Imm 15:11 |
1876 +--------------+--------------------------------+
1877 | Major | rx | ry | Imm 4:0 |
1878 +--------------+--------------------------------+
1879
1880 EXTEND is the five bit value 11110. Major is the instruction
1881 opcode.
1882
1883 All we need to do here is shuffle the bits appropriately.
1884 As above, the two 16-bit halves must be swapped on a
1885 little-endian system. */
1886
1887 static inline bfd_boolean
1888 mips16_reloc_p (int r_type)
1889 {
1890 switch (r_type)
1891 {
1892 case R_MIPS16_26:
1893 case R_MIPS16_GPREL:
1894 case R_MIPS16_GOT16:
1895 case R_MIPS16_CALL16:
1896 case R_MIPS16_HI16:
1897 case R_MIPS16_LO16:
1898 case R_MIPS16_TLS_GD:
1899 case R_MIPS16_TLS_LDM:
1900 case R_MIPS16_TLS_DTPREL_HI16:
1901 case R_MIPS16_TLS_DTPREL_LO16:
1902 case R_MIPS16_TLS_GOTTPREL:
1903 case R_MIPS16_TLS_TPREL_HI16:
1904 case R_MIPS16_TLS_TPREL_LO16:
1905 return TRUE;
1906
1907 default:
1908 return FALSE;
1909 }
1910 }
1911
1912 /* Check if a microMIPS reloc. */
1913
1914 static inline bfd_boolean
1915 micromips_reloc_p (unsigned int r_type)
1916 {
1917 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1918 }
1919
1920 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1921 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1922 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1923
1924 static inline bfd_boolean
1925 micromips_reloc_shuffle_p (unsigned int r_type)
1926 {
1927 return (micromips_reloc_p (r_type)
1928 && r_type != R_MICROMIPS_PC7_S1
1929 && r_type != R_MICROMIPS_PC10_S1);
1930 }
1931
1932 static inline bfd_boolean
1933 got16_reloc_p (int r_type)
1934 {
1935 return (r_type == R_MIPS_GOT16
1936 || r_type == R_MIPS16_GOT16
1937 || r_type == R_MICROMIPS_GOT16);
1938 }
1939
1940 static inline bfd_boolean
1941 call16_reloc_p (int r_type)
1942 {
1943 return (r_type == R_MIPS_CALL16
1944 || r_type == R_MIPS16_CALL16
1945 || r_type == R_MICROMIPS_CALL16);
1946 }
1947
1948 static inline bfd_boolean
1949 got_disp_reloc_p (unsigned int r_type)
1950 {
1951 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1952 }
1953
1954 static inline bfd_boolean
1955 got_page_reloc_p (unsigned int r_type)
1956 {
1957 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1958 }
1959
1960 static inline bfd_boolean
1961 got_ofst_reloc_p (unsigned int r_type)
1962 {
1963 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1964 }
1965
1966 static inline bfd_boolean
1967 got_hi16_reloc_p (unsigned int r_type)
1968 {
1969 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1970 }
1971
1972 static inline bfd_boolean
1973 got_lo16_reloc_p (unsigned int r_type)
1974 {
1975 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1976 }
1977
1978 static inline bfd_boolean
1979 call_hi16_reloc_p (unsigned int r_type)
1980 {
1981 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1982 }
1983
1984 static inline bfd_boolean
1985 call_lo16_reloc_p (unsigned int r_type)
1986 {
1987 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1988 }
1989
1990 static inline bfd_boolean
1991 hi16_reloc_p (int r_type)
1992 {
1993 return (r_type == R_MIPS_HI16
1994 || r_type == R_MIPS16_HI16
1995 || r_type == R_MICROMIPS_HI16);
1996 }
1997
1998 static inline bfd_boolean
1999 lo16_reloc_p (int r_type)
2000 {
2001 return (r_type == R_MIPS_LO16
2002 || r_type == R_MIPS16_LO16
2003 || r_type == R_MICROMIPS_LO16);
2004 }
2005
2006 static inline bfd_boolean
2007 mips16_call_reloc_p (int r_type)
2008 {
2009 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2010 }
2011
2012 static inline bfd_boolean
2013 jal_reloc_p (int r_type)
2014 {
2015 return (r_type == R_MIPS_26
2016 || r_type == R_MIPS16_26
2017 || r_type == R_MICROMIPS_26_S1);
2018 }
2019
2020 static inline bfd_boolean
2021 micromips_branch_reloc_p (int r_type)
2022 {
2023 return (r_type == R_MICROMIPS_26_S1
2024 || r_type == R_MICROMIPS_PC16_S1
2025 || r_type == R_MICROMIPS_PC10_S1
2026 || r_type == R_MICROMIPS_PC7_S1);
2027 }
2028
2029 static inline bfd_boolean
2030 tls_gd_reloc_p (unsigned int r_type)
2031 {
2032 return (r_type == R_MIPS_TLS_GD
2033 || r_type == R_MIPS16_TLS_GD
2034 || r_type == R_MICROMIPS_TLS_GD);
2035 }
2036
2037 static inline bfd_boolean
2038 tls_ldm_reloc_p (unsigned int r_type)
2039 {
2040 return (r_type == R_MIPS_TLS_LDM
2041 || r_type == R_MIPS16_TLS_LDM
2042 || r_type == R_MICROMIPS_TLS_LDM);
2043 }
2044
2045 static inline bfd_boolean
2046 tls_gottprel_reloc_p (unsigned int r_type)
2047 {
2048 return (r_type == R_MIPS_TLS_GOTTPREL
2049 || r_type == R_MIPS16_TLS_GOTTPREL
2050 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2051 }
2052
2053 void
2054 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2055 bfd_boolean jal_shuffle, bfd_byte *data)
2056 {
2057 bfd_vma first, second, val;
2058
2059 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2060 return;
2061
2062 /* Pick up the first and second halfwords of the instruction. */
2063 first = bfd_get_16 (abfd, data);
2064 second = bfd_get_16 (abfd, data + 2);
2065 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2066 val = first << 16 | second;
2067 else if (r_type != R_MIPS16_26)
2068 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2069 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2070 else
2071 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2072 | ((first & 0x1f) << 21) | second);
2073 bfd_put_32 (abfd, val, data);
2074 }
2075
2076 void
2077 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2078 bfd_boolean jal_shuffle, bfd_byte *data)
2079 {
2080 bfd_vma first, second, val;
2081
2082 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2083 return;
2084
2085 val = bfd_get_32 (abfd, data);
2086 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2087 {
2088 second = val & 0xffff;
2089 first = val >> 16;
2090 }
2091 else if (r_type != R_MIPS16_26)
2092 {
2093 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2094 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2095 }
2096 else
2097 {
2098 second = val & 0xffff;
2099 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2100 | ((val >> 21) & 0x1f);
2101 }
2102 bfd_put_16 (abfd, second, data + 2);
2103 bfd_put_16 (abfd, first, data);
2104 }
2105
2106 bfd_reloc_status_type
2107 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2108 arelent *reloc_entry, asection *input_section,
2109 bfd_boolean relocatable, void *data, bfd_vma gp)
2110 {
2111 bfd_vma relocation;
2112 bfd_signed_vma val;
2113 bfd_reloc_status_type status;
2114
2115 if (bfd_is_com_section (symbol->section))
2116 relocation = 0;
2117 else
2118 relocation = symbol->value;
2119
2120 relocation += symbol->section->output_section->vma;
2121 relocation += symbol->section->output_offset;
2122
2123 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2124 return bfd_reloc_outofrange;
2125
2126 /* Set val to the offset into the section or symbol. */
2127 val = reloc_entry->addend;
2128
2129 _bfd_mips_elf_sign_extend (val, 16);
2130
2131 /* Adjust val for the final section location and GP value. If we
2132 are producing relocatable output, we don't want to do this for
2133 an external symbol. */
2134 if (! relocatable
2135 || (symbol->flags & BSF_SECTION_SYM) != 0)
2136 val += relocation - gp;
2137
2138 if (reloc_entry->howto->partial_inplace)
2139 {
2140 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2141 (bfd_byte *) data
2142 + reloc_entry->address);
2143 if (status != bfd_reloc_ok)
2144 return status;
2145 }
2146 else
2147 reloc_entry->addend = val;
2148
2149 if (relocatable)
2150 reloc_entry->address += input_section->output_offset;
2151
2152 return bfd_reloc_ok;
2153 }
2154
2155 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2156 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2157 that contains the relocation field and DATA points to the start of
2158 INPUT_SECTION. */
2159
2160 struct mips_hi16
2161 {
2162 struct mips_hi16 *next;
2163 bfd_byte *data;
2164 asection *input_section;
2165 arelent rel;
2166 };
2167
2168 /* FIXME: This should not be a static variable. */
2169
2170 static struct mips_hi16 *mips_hi16_list;
2171
2172 /* A howto special_function for REL *HI16 relocations. We can only
2173 calculate the correct value once we've seen the partnering
2174 *LO16 relocation, so just save the information for later.
2175
2176 The ABI requires that the *LO16 immediately follow the *HI16.
2177 However, as a GNU extension, we permit an arbitrary number of
2178 *HI16s to be associated with a single *LO16. This significantly
2179 simplies the relocation handling in gcc. */
2180
2181 bfd_reloc_status_type
2182 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2183 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2184 asection *input_section, bfd *output_bfd,
2185 char **error_message ATTRIBUTE_UNUSED)
2186 {
2187 struct mips_hi16 *n;
2188
2189 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2190 return bfd_reloc_outofrange;
2191
2192 n = bfd_malloc (sizeof *n);
2193 if (n == NULL)
2194 return bfd_reloc_outofrange;
2195
2196 n->next = mips_hi16_list;
2197 n->data = data;
2198 n->input_section = input_section;
2199 n->rel = *reloc_entry;
2200 mips_hi16_list = n;
2201
2202 if (output_bfd != NULL)
2203 reloc_entry->address += input_section->output_offset;
2204
2205 return bfd_reloc_ok;
2206 }
2207
2208 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2209 like any other 16-bit relocation when applied to global symbols, but is
2210 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2211
2212 bfd_reloc_status_type
2213 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2214 void *data, asection *input_section,
2215 bfd *output_bfd, char **error_message)
2216 {
2217 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2218 || bfd_is_und_section (bfd_get_section (symbol))
2219 || bfd_is_com_section (bfd_get_section (symbol)))
2220 /* The relocation is against a global symbol. */
2221 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2222 input_section, output_bfd,
2223 error_message);
2224
2225 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2226 input_section, output_bfd, error_message);
2227 }
2228
2229 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2230 is a straightforward 16 bit inplace relocation, but we must deal with
2231 any partnering high-part relocations as well. */
2232
2233 bfd_reloc_status_type
2234 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2235 void *data, asection *input_section,
2236 bfd *output_bfd, char **error_message)
2237 {
2238 bfd_vma vallo;
2239 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2240
2241 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2242 return bfd_reloc_outofrange;
2243
2244 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2245 location);
2246 vallo = bfd_get_32 (abfd, location);
2247 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2248 location);
2249
2250 while (mips_hi16_list != NULL)
2251 {
2252 bfd_reloc_status_type ret;
2253 struct mips_hi16 *hi;
2254
2255 hi = mips_hi16_list;
2256
2257 /* R_MIPS*_GOT16 relocations are something of a special case. We
2258 want to install the addend in the same way as for a R_MIPS*_HI16
2259 relocation (with a rightshift of 16). However, since GOT16
2260 relocations can also be used with global symbols, their howto
2261 has a rightshift of 0. */
2262 if (hi->rel.howto->type == R_MIPS_GOT16)
2263 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2264 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2265 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2266 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2267 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2268
2269 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2270 carry or borrow will induce a change of +1 or -1 in the high part. */
2271 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2272
2273 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2274 hi->input_section, output_bfd,
2275 error_message);
2276 if (ret != bfd_reloc_ok)
2277 return ret;
2278
2279 mips_hi16_list = hi->next;
2280 free (hi);
2281 }
2282
2283 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2284 input_section, output_bfd,
2285 error_message);
2286 }
2287
2288 /* A generic howto special_function. This calculates and installs the
2289 relocation itself, thus avoiding the oft-discussed problems in
2290 bfd_perform_relocation and bfd_install_relocation. */
2291
2292 bfd_reloc_status_type
2293 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2294 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2295 asection *input_section, bfd *output_bfd,
2296 char **error_message ATTRIBUTE_UNUSED)
2297 {
2298 bfd_signed_vma val;
2299 bfd_reloc_status_type status;
2300 bfd_boolean relocatable;
2301
2302 relocatable = (output_bfd != NULL);
2303
2304 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2305 return bfd_reloc_outofrange;
2306
2307 /* Build up the field adjustment in VAL. */
2308 val = 0;
2309 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2310 {
2311 /* Either we're calculating the final field value or we have a
2312 relocation against a section symbol. Add in the section's
2313 offset or address. */
2314 val += symbol->section->output_section->vma;
2315 val += symbol->section->output_offset;
2316 }
2317
2318 if (!relocatable)
2319 {
2320 /* We're calculating the final field value. Add in the symbol's value
2321 and, if pc-relative, subtract the address of the field itself. */
2322 val += symbol->value;
2323 if (reloc_entry->howto->pc_relative)
2324 {
2325 val -= input_section->output_section->vma;
2326 val -= input_section->output_offset;
2327 val -= reloc_entry->address;
2328 }
2329 }
2330
2331 /* VAL is now the final adjustment. If we're keeping this relocation
2332 in the output file, and if the relocation uses a separate addend,
2333 we just need to add VAL to that addend. Otherwise we need to add
2334 VAL to the relocation field itself. */
2335 if (relocatable && !reloc_entry->howto->partial_inplace)
2336 reloc_entry->addend += val;
2337 else
2338 {
2339 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2340
2341 /* Add in the separate addend, if any. */
2342 val += reloc_entry->addend;
2343
2344 /* Add VAL to the relocation field. */
2345 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2346 location);
2347 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2348 location);
2349 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2350 location);
2351
2352 if (status != bfd_reloc_ok)
2353 return status;
2354 }
2355
2356 if (relocatable)
2357 reloc_entry->address += input_section->output_offset;
2358
2359 return bfd_reloc_ok;
2360 }
2361 \f
2362 /* Swap an entry in a .gptab section. Note that these routines rely
2363 on the equivalence of the two elements of the union. */
2364
2365 static void
2366 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2367 Elf32_gptab *in)
2368 {
2369 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2370 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2371 }
2372
2373 static void
2374 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2375 Elf32_External_gptab *ex)
2376 {
2377 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2378 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2379 }
2380
2381 static void
2382 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2383 Elf32_External_compact_rel *ex)
2384 {
2385 H_PUT_32 (abfd, in->id1, ex->id1);
2386 H_PUT_32 (abfd, in->num, ex->num);
2387 H_PUT_32 (abfd, in->id2, ex->id2);
2388 H_PUT_32 (abfd, in->offset, ex->offset);
2389 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2390 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2391 }
2392
2393 static void
2394 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2395 Elf32_External_crinfo *ex)
2396 {
2397 unsigned long l;
2398
2399 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2400 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2401 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2402 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2403 H_PUT_32 (abfd, l, ex->info);
2404 H_PUT_32 (abfd, in->konst, ex->konst);
2405 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2406 }
2407 \f
2408 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2409 routines swap this structure in and out. They are used outside of
2410 BFD, so they are globally visible. */
2411
2412 void
2413 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2414 Elf32_RegInfo *in)
2415 {
2416 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2417 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2418 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2419 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2420 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2421 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2422 }
2423
2424 void
2425 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2426 Elf32_External_RegInfo *ex)
2427 {
2428 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2429 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2430 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2431 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2432 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2433 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2434 }
2435
2436 /* In the 64 bit ABI, the .MIPS.options section holds register
2437 information in an Elf64_Reginfo structure. These routines swap
2438 them in and out. They are globally visible because they are used
2439 outside of BFD. These routines are here so that gas can call them
2440 without worrying about whether the 64 bit ABI has been included. */
2441
2442 void
2443 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2444 Elf64_Internal_RegInfo *in)
2445 {
2446 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2447 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2448 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2449 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2450 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2451 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2452 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2453 }
2454
2455 void
2456 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2457 Elf64_External_RegInfo *ex)
2458 {
2459 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2460 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2461 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2462 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2463 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2464 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2465 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2466 }
2467
2468 /* Swap in an options header. */
2469
2470 void
2471 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2472 Elf_Internal_Options *in)
2473 {
2474 in->kind = H_GET_8 (abfd, ex->kind);
2475 in->size = H_GET_8 (abfd, ex->size);
2476 in->section = H_GET_16 (abfd, ex->section);
2477 in->info = H_GET_32 (abfd, ex->info);
2478 }
2479
2480 /* Swap out an options header. */
2481
2482 void
2483 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2484 Elf_External_Options *ex)
2485 {
2486 H_PUT_8 (abfd, in->kind, ex->kind);
2487 H_PUT_8 (abfd, in->size, ex->size);
2488 H_PUT_16 (abfd, in->section, ex->section);
2489 H_PUT_32 (abfd, in->info, ex->info);
2490 }
2491 \f
2492 /* This function is called via qsort() to sort the dynamic relocation
2493 entries by increasing r_symndx value. */
2494
2495 static int
2496 sort_dynamic_relocs (const void *arg1, const void *arg2)
2497 {
2498 Elf_Internal_Rela int_reloc1;
2499 Elf_Internal_Rela int_reloc2;
2500 int diff;
2501
2502 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2503 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2504
2505 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2506 if (diff != 0)
2507 return diff;
2508
2509 if (int_reloc1.r_offset < int_reloc2.r_offset)
2510 return -1;
2511 if (int_reloc1.r_offset > int_reloc2.r_offset)
2512 return 1;
2513 return 0;
2514 }
2515
2516 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2517
2518 static int
2519 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2520 const void *arg2 ATTRIBUTE_UNUSED)
2521 {
2522 #ifdef BFD64
2523 Elf_Internal_Rela int_reloc1[3];
2524 Elf_Internal_Rela int_reloc2[3];
2525
2526 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2527 (reldyn_sorting_bfd, arg1, int_reloc1);
2528 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2529 (reldyn_sorting_bfd, arg2, int_reloc2);
2530
2531 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2532 return -1;
2533 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2534 return 1;
2535
2536 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2537 return -1;
2538 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2539 return 1;
2540 return 0;
2541 #else
2542 abort ();
2543 #endif
2544 }
2545
2546
2547 /* This routine is used to write out ECOFF debugging external symbol
2548 information. It is called via mips_elf_link_hash_traverse. The
2549 ECOFF external symbol information must match the ELF external
2550 symbol information. Unfortunately, at this point we don't know
2551 whether a symbol is required by reloc information, so the two
2552 tables may wind up being different. We must sort out the external
2553 symbol information before we can set the final size of the .mdebug
2554 section, and we must set the size of the .mdebug section before we
2555 can relocate any sections, and we can't know which symbols are
2556 required by relocation until we relocate the sections.
2557 Fortunately, it is relatively unlikely that any symbol will be
2558 stripped but required by a reloc. In particular, it can not happen
2559 when generating a final executable. */
2560
2561 static bfd_boolean
2562 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2563 {
2564 struct extsym_info *einfo = data;
2565 bfd_boolean strip;
2566 asection *sec, *output_section;
2567
2568 if (h->root.indx == -2)
2569 strip = FALSE;
2570 else if ((h->root.def_dynamic
2571 || h->root.ref_dynamic
2572 || h->root.type == bfd_link_hash_new)
2573 && !h->root.def_regular
2574 && !h->root.ref_regular)
2575 strip = TRUE;
2576 else if (einfo->info->strip == strip_all
2577 || (einfo->info->strip == strip_some
2578 && bfd_hash_lookup (einfo->info->keep_hash,
2579 h->root.root.root.string,
2580 FALSE, FALSE) == NULL))
2581 strip = TRUE;
2582 else
2583 strip = FALSE;
2584
2585 if (strip)
2586 return TRUE;
2587
2588 if (h->esym.ifd == -2)
2589 {
2590 h->esym.jmptbl = 0;
2591 h->esym.cobol_main = 0;
2592 h->esym.weakext = 0;
2593 h->esym.reserved = 0;
2594 h->esym.ifd = ifdNil;
2595 h->esym.asym.value = 0;
2596 h->esym.asym.st = stGlobal;
2597
2598 if (h->root.root.type == bfd_link_hash_undefined
2599 || h->root.root.type == bfd_link_hash_undefweak)
2600 {
2601 const char *name;
2602
2603 /* Use undefined class. Also, set class and type for some
2604 special symbols. */
2605 name = h->root.root.root.string;
2606 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2607 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2608 {
2609 h->esym.asym.sc = scData;
2610 h->esym.asym.st = stLabel;
2611 h->esym.asym.value = 0;
2612 }
2613 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2614 {
2615 h->esym.asym.sc = scAbs;
2616 h->esym.asym.st = stLabel;
2617 h->esym.asym.value =
2618 mips_elf_hash_table (einfo->info)->procedure_count;
2619 }
2620 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2621 {
2622 h->esym.asym.sc = scAbs;
2623 h->esym.asym.st = stLabel;
2624 h->esym.asym.value = elf_gp (einfo->abfd);
2625 }
2626 else
2627 h->esym.asym.sc = scUndefined;
2628 }
2629 else if (h->root.root.type != bfd_link_hash_defined
2630 && h->root.root.type != bfd_link_hash_defweak)
2631 h->esym.asym.sc = scAbs;
2632 else
2633 {
2634 const char *name;
2635
2636 sec = h->root.root.u.def.section;
2637 output_section = sec->output_section;
2638
2639 /* When making a shared library and symbol h is the one from
2640 the another shared library, OUTPUT_SECTION may be null. */
2641 if (output_section == NULL)
2642 h->esym.asym.sc = scUndefined;
2643 else
2644 {
2645 name = bfd_section_name (output_section->owner, output_section);
2646
2647 if (strcmp (name, ".text") == 0)
2648 h->esym.asym.sc = scText;
2649 else if (strcmp (name, ".data") == 0)
2650 h->esym.asym.sc = scData;
2651 else if (strcmp (name, ".sdata") == 0)
2652 h->esym.asym.sc = scSData;
2653 else if (strcmp (name, ".rodata") == 0
2654 || strcmp (name, ".rdata") == 0)
2655 h->esym.asym.sc = scRData;
2656 else if (strcmp (name, ".bss") == 0)
2657 h->esym.asym.sc = scBss;
2658 else if (strcmp (name, ".sbss") == 0)
2659 h->esym.asym.sc = scSBss;
2660 else if (strcmp (name, ".init") == 0)
2661 h->esym.asym.sc = scInit;
2662 else if (strcmp (name, ".fini") == 0)
2663 h->esym.asym.sc = scFini;
2664 else
2665 h->esym.asym.sc = scAbs;
2666 }
2667 }
2668
2669 h->esym.asym.reserved = 0;
2670 h->esym.asym.index = indexNil;
2671 }
2672
2673 if (h->root.root.type == bfd_link_hash_common)
2674 h->esym.asym.value = h->root.root.u.c.size;
2675 else if (h->root.root.type == bfd_link_hash_defined
2676 || h->root.root.type == bfd_link_hash_defweak)
2677 {
2678 if (h->esym.asym.sc == scCommon)
2679 h->esym.asym.sc = scBss;
2680 else if (h->esym.asym.sc == scSCommon)
2681 h->esym.asym.sc = scSBss;
2682
2683 sec = h->root.root.u.def.section;
2684 output_section = sec->output_section;
2685 if (output_section != NULL)
2686 h->esym.asym.value = (h->root.root.u.def.value
2687 + sec->output_offset
2688 + output_section->vma);
2689 else
2690 h->esym.asym.value = 0;
2691 }
2692 else
2693 {
2694 struct mips_elf_link_hash_entry *hd = h;
2695
2696 while (hd->root.root.type == bfd_link_hash_indirect)
2697 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2698
2699 if (hd->needs_lazy_stub)
2700 {
2701 /* Set type and value for a symbol with a function stub. */
2702 h->esym.asym.st = stProc;
2703 sec = hd->root.root.u.def.section;
2704 if (sec == NULL)
2705 h->esym.asym.value = 0;
2706 else
2707 {
2708 output_section = sec->output_section;
2709 if (output_section != NULL)
2710 h->esym.asym.value = (hd->root.plt.offset
2711 + sec->output_offset
2712 + output_section->vma);
2713 else
2714 h->esym.asym.value = 0;
2715 }
2716 }
2717 }
2718
2719 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2720 h->root.root.root.string,
2721 &h->esym))
2722 {
2723 einfo->failed = TRUE;
2724 return FALSE;
2725 }
2726
2727 return TRUE;
2728 }
2729
2730 /* A comparison routine used to sort .gptab entries. */
2731
2732 static int
2733 gptab_compare (const void *p1, const void *p2)
2734 {
2735 const Elf32_gptab *a1 = p1;
2736 const Elf32_gptab *a2 = p2;
2737
2738 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2739 }
2740 \f
2741 /* Functions to manage the got entry hash table. */
2742
2743 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2744 hash number. */
2745
2746 static INLINE hashval_t
2747 mips_elf_hash_bfd_vma (bfd_vma addr)
2748 {
2749 #ifdef BFD64
2750 return addr + (addr >> 32);
2751 #else
2752 return addr;
2753 #endif
2754 }
2755
2756 /* got_entries only match if they're identical, except for gotidx, so
2757 use all fields to compute the hash, and compare the appropriate
2758 union members. */
2759
2760 static hashval_t
2761 mips_elf_got_entry_hash (const void *entry_)
2762 {
2763 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2764
2765 return entry->symndx
2766 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2767 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2768 : entry->abfd->id
2769 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2770 : entry->d.h->root.root.root.hash));
2771 }
2772
2773 static int
2774 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2775 {
2776 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2777 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2778
2779 /* An LDM entry can only match another LDM entry. */
2780 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2781 return 0;
2782
2783 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2784 && (! e1->abfd ? e1->d.address == e2->d.address
2785 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2786 : e1->d.h == e2->d.h);
2787 }
2788
2789 /* multi_got_entries are still a match in the case of global objects,
2790 even if the input bfd in which they're referenced differs, so the
2791 hash computation and compare functions are adjusted
2792 accordingly. */
2793
2794 static hashval_t
2795 mips_elf_multi_got_entry_hash (const void *entry_)
2796 {
2797 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2798
2799 return entry->symndx
2800 + (! entry->abfd
2801 ? mips_elf_hash_bfd_vma (entry->d.address)
2802 : entry->symndx >= 0
2803 ? ((entry->tls_type & GOT_TLS_LDM)
2804 ? (GOT_TLS_LDM << 17)
2805 : (entry->abfd->id
2806 + mips_elf_hash_bfd_vma (entry->d.addend)))
2807 : entry->d.h->root.root.root.hash);
2808 }
2809
2810 static int
2811 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2812 {
2813 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2814 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2815
2816 /* Any two LDM entries match. */
2817 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2818 return 1;
2819
2820 /* Nothing else matches an LDM entry. */
2821 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2822 return 0;
2823
2824 return e1->symndx == e2->symndx
2825 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2826 : e1->abfd == NULL || e2->abfd == NULL
2827 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2828 : e1->d.h == e2->d.h);
2829 }
2830
2831 static hashval_t
2832 mips_got_page_entry_hash (const void *entry_)
2833 {
2834 const struct mips_got_page_entry *entry;
2835
2836 entry = (const struct mips_got_page_entry *) entry_;
2837 return entry->abfd->id + entry->symndx;
2838 }
2839
2840 static int
2841 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2842 {
2843 const struct mips_got_page_entry *entry1, *entry2;
2844
2845 entry1 = (const struct mips_got_page_entry *) entry1_;
2846 entry2 = (const struct mips_got_page_entry *) entry2_;
2847 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2848 }
2849 \f
2850 /* Return the dynamic relocation section. If it doesn't exist, try to
2851 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2852 if creation fails. */
2853
2854 static asection *
2855 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2856 {
2857 const char *dname;
2858 asection *sreloc;
2859 bfd *dynobj;
2860
2861 dname = MIPS_ELF_REL_DYN_NAME (info);
2862 dynobj = elf_hash_table (info)->dynobj;
2863 sreloc = bfd_get_section_by_name (dynobj, dname);
2864 if (sreloc == NULL && create_p)
2865 {
2866 sreloc = bfd_make_section_with_flags (dynobj, dname,
2867 (SEC_ALLOC
2868 | SEC_LOAD
2869 | SEC_HAS_CONTENTS
2870 | SEC_IN_MEMORY
2871 | SEC_LINKER_CREATED
2872 | SEC_READONLY));
2873 if (sreloc == NULL
2874 || ! bfd_set_section_alignment (dynobj, sreloc,
2875 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2876 return NULL;
2877 }
2878 return sreloc;
2879 }
2880
2881 /* Count the number of relocations needed for a TLS GOT entry, with
2882 access types from TLS_TYPE, and symbol H (or a local symbol if H
2883 is NULL). */
2884
2885 static int
2886 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2887 struct elf_link_hash_entry *h)
2888 {
2889 int indx = 0;
2890 int ret = 0;
2891 bfd_boolean need_relocs = FALSE;
2892 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2893
2894 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2895 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2896 indx = h->dynindx;
2897
2898 if ((info->shared || indx != 0)
2899 && (h == NULL
2900 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2901 || h->root.type != bfd_link_hash_undefweak))
2902 need_relocs = TRUE;
2903
2904 if (!need_relocs)
2905 return FALSE;
2906
2907 if (tls_type & GOT_TLS_GD)
2908 {
2909 ret++;
2910 if (indx != 0)
2911 ret++;
2912 }
2913
2914 if (tls_type & GOT_TLS_IE)
2915 ret++;
2916
2917 if ((tls_type & GOT_TLS_LDM) && info->shared)
2918 ret++;
2919
2920 return ret;
2921 }
2922
2923 /* Count the number of TLS relocations required for the GOT entry in
2924 ARG1, if it describes a local symbol. */
2925
2926 static int
2927 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2928 {
2929 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2930 struct mips_elf_count_tls_arg *arg = arg2;
2931
2932 if (entry->abfd != NULL && entry->symndx != -1)
2933 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2934
2935 return 1;
2936 }
2937
2938 /* Count the number of TLS GOT entries required for the global (or
2939 forced-local) symbol in ARG1. */
2940
2941 static int
2942 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2943 {
2944 struct mips_elf_link_hash_entry *hm
2945 = (struct mips_elf_link_hash_entry *) arg1;
2946 struct mips_elf_count_tls_arg *arg = arg2;
2947
2948 if (hm->tls_type & GOT_TLS_GD)
2949 arg->needed += 2;
2950 if (hm->tls_type & GOT_TLS_IE)
2951 arg->needed += 1;
2952
2953 return 1;
2954 }
2955
2956 /* Count the number of TLS relocations required for the global (or
2957 forced-local) symbol in ARG1. */
2958
2959 static int
2960 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2961 {
2962 struct mips_elf_link_hash_entry *hm
2963 = (struct mips_elf_link_hash_entry *) arg1;
2964 struct mips_elf_count_tls_arg *arg = arg2;
2965
2966 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2967
2968 return 1;
2969 }
2970
2971 /* Output a simple dynamic relocation into SRELOC. */
2972
2973 static void
2974 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2975 asection *sreloc,
2976 unsigned long reloc_index,
2977 unsigned long indx,
2978 int r_type,
2979 bfd_vma offset)
2980 {
2981 Elf_Internal_Rela rel[3];
2982
2983 memset (rel, 0, sizeof (rel));
2984
2985 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2986 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2987
2988 if (ABI_64_P (output_bfd))
2989 {
2990 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2991 (output_bfd, &rel[0],
2992 (sreloc->contents
2993 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2994 }
2995 else
2996 bfd_elf32_swap_reloc_out
2997 (output_bfd, &rel[0],
2998 (sreloc->contents
2999 + reloc_index * sizeof (Elf32_External_Rel)));
3000 }
3001
3002 /* Initialize a set of TLS GOT entries for one symbol. */
3003
3004 static void
3005 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3006 unsigned char *tls_type_p,
3007 struct bfd_link_info *info,
3008 struct mips_elf_link_hash_entry *h,
3009 bfd_vma value)
3010 {
3011 struct mips_elf_link_hash_table *htab;
3012 int indx;
3013 asection *sreloc, *sgot;
3014 bfd_vma offset, offset2;
3015 bfd_boolean need_relocs = FALSE;
3016
3017 htab = mips_elf_hash_table (info);
3018 if (htab == NULL)
3019 return;
3020
3021 sgot = htab->sgot;
3022
3023 indx = 0;
3024 if (h != NULL)
3025 {
3026 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3027
3028 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3029 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3030 indx = h->root.dynindx;
3031 }
3032
3033 if (*tls_type_p & GOT_TLS_DONE)
3034 return;
3035
3036 if ((info->shared || indx != 0)
3037 && (h == NULL
3038 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3039 || h->root.type != bfd_link_hash_undefweak))
3040 need_relocs = TRUE;
3041
3042 /* MINUS_ONE means the symbol is not defined in this object. It may not
3043 be defined at all; assume that the value doesn't matter in that
3044 case. Otherwise complain if we would use the value. */
3045 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3046 || h->root.root.type == bfd_link_hash_undefweak);
3047
3048 /* Emit necessary relocations. */
3049 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3050
3051 /* General Dynamic. */
3052 if (*tls_type_p & GOT_TLS_GD)
3053 {
3054 offset = got_offset;
3055 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3056
3057 if (need_relocs)
3058 {
3059 mips_elf_output_dynamic_relocation
3060 (abfd, sreloc, sreloc->reloc_count++, indx,
3061 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3062 sgot->output_offset + sgot->output_section->vma + offset);
3063
3064 if (indx)
3065 mips_elf_output_dynamic_relocation
3066 (abfd, sreloc, sreloc->reloc_count++, indx,
3067 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3068 sgot->output_offset + sgot->output_section->vma + offset2);
3069 else
3070 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3071 sgot->contents + offset2);
3072 }
3073 else
3074 {
3075 MIPS_ELF_PUT_WORD (abfd, 1,
3076 sgot->contents + offset);
3077 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3078 sgot->contents + offset2);
3079 }
3080
3081 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3082 }
3083
3084 /* Initial Exec model. */
3085 if (*tls_type_p & GOT_TLS_IE)
3086 {
3087 offset = got_offset;
3088
3089 if (need_relocs)
3090 {
3091 if (indx == 0)
3092 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3093 sgot->contents + offset);
3094 else
3095 MIPS_ELF_PUT_WORD (abfd, 0,
3096 sgot->contents + offset);
3097
3098 mips_elf_output_dynamic_relocation
3099 (abfd, sreloc, sreloc->reloc_count++, indx,
3100 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3101 sgot->output_offset + sgot->output_section->vma + offset);
3102 }
3103 else
3104 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3105 sgot->contents + offset);
3106 }
3107
3108 if (*tls_type_p & GOT_TLS_LDM)
3109 {
3110 /* The initial offset is zero, and the LD offsets will include the
3111 bias by DTP_OFFSET. */
3112 MIPS_ELF_PUT_WORD (abfd, 0,
3113 sgot->contents + got_offset
3114 + MIPS_ELF_GOT_SIZE (abfd));
3115
3116 if (!info->shared)
3117 MIPS_ELF_PUT_WORD (abfd, 1,
3118 sgot->contents + got_offset);
3119 else
3120 mips_elf_output_dynamic_relocation
3121 (abfd, sreloc, sreloc->reloc_count++, indx,
3122 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3123 sgot->output_offset + sgot->output_section->vma + got_offset);
3124 }
3125
3126 *tls_type_p |= GOT_TLS_DONE;
3127 }
3128
3129 /* Return the GOT index to use for a relocation of type R_TYPE against
3130 a symbol accessed using TLS_TYPE models. The GOT entries for this
3131 symbol in this GOT start at GOT_INDEX. This function initializes the
3132 GOT entries and corresponding relocations. */
3133
3134 static bfd_vma
3135 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3136 int r_type, struct bfd_link_info *info,
3137 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3138 {
3139 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3140 || tls_gd_reloc_p (r_type)
3141 || tls_ldm_reloc_p (r_type));
3142
3143 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3144
3145 if (tls_gottprel_reloc_p (r_type))
3146 {
3147 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3148 if (*tls_type & GOT_TLS_GD)
3149 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3150 else
3151 return got_index;
3152 }
3153
3154 if (tls_gd_reloc_p (r_type))
3155 {
3156 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3157 return got_index;
3158 }
3159
3160 if (tls_ldm_reloc_p (r_type))
3161 {
3162 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3163 return got_index;
3164 }
3165
3166 return got_index;
3167 }
3168
3169 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3170 for global symbol H. .got.plt comes before the GOT, so the offset
3171 will be negative. */
3172
3173 static bfd_vma
3174 mips_elf_gotplt_index (struct bfd_link_info *info,
3175 struct elf_link_hash_entry *h)
3176 {
3177 bfd_vma plt_index, got_address, got_value;
3178 struct mips_elf_link_hash_table *htab;
3179
3180 htab = mips_elf_hash_table (info);
3181 BFD_ASSERT (htab != NULL);
3182
3183 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3184
3185 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3186 section starts with reserved entries. */
3187 BFD_ASSERT (htab->is_vxworks);
3188
3189 /* Calculate the index of the symbol's PLT entry. */
3190 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3191
3192 /* Calculate the address of the associated .got.plt entry. */
3193 got_address = (htab->sgotplt->output_section->vma
3194 + htab->sgotplt->output_offset
3195 + plt_index * 4);
3196
3197 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3198 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3199 + htab->root.hgot->root.u.def.section->output_offset
3200 + htab->root.hgot->root.u.def.value);
3201
3202 return got_address - got_value;
3203 }
3204
3205 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3206 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3207 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3208 offset can be found. */
3209
3210 static bfd_vma
3211 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3212 bfd_vma value, unsigned long r_symndx,
3213 struct mips_elf_link_hash_entry *h, int r_type)
3214 {
3215 struct mips_elf_link_hash_table *htab;
3216 struct mips_got_entry *entry;
3217
3218 htab = mips_elf_hash_table (info);
3219 BFD_ASSERT (htab != NULL);
3220
3221 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3222 r_symndx, h, r_type);
3223 if (!entry)
3224 return MINUS_ONE;
3225
3226 if (TLS_RELOC_P (r_type))
3227 {
3228 if (entry->symndx == -1 && htab->got_info->next == NULL)
3229 /* A type (3) entry in the single-GOT case. We use the symbol's
3230 hash table entry to track the index. */
3231 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3232 r_type, info, h, value);
3233 else
3234 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3235 r_type, info, h, value);
3236 }
3237 else
3238 return entry->gotidx;
3239 }
3240
3241 /* Returns the GOT index for the global symbol indicated by H. */
3242
3243 static bfd_vma
3244 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3245 int r_type, struct bfd_link_info *info)
3246 {
3247 struct mips_elf_link_hash_table *htab;
3248 bfd_vma got_index;
3249 struct mips_got_info *g, *gg;
3250 long global_got_dynindx = 0;
3251
3252 htab = mips_elf_hash_table (info);
3253 BFD_ASSERT (htab != NULL);
3254
3255 gg = g = htab->got_info;
3256 if (g->bfd2got && ibfd)
3257 {
3258 struct mips_got_entry e, *p;
3259
3260 BFD_ASSERT (h->dynindx >= 0);
3261
3262 g = mips_elf_got_for_ibfd (g, ibfd);
3263 if (g->next != gg || TLS_RELOC_P (r_type))
3264 {
3265 e.abfd = ibfd;
3266 e.symndx = -1;
3267 e.d.h = (struct mips_elf_link_hash_entry *)h;
3268 e.tls_type = 0;
3269
3270 p = htab_find (g->got_entries, &e);
3271
3272 BFD_ASSERT (p->gotidx > 0);
3273
3274 if (TLS_RELOC_P (r_type))
3275 {
3276 bfd_vma value = MINUS_ONE;
3277 if ((h->root.type == bfd_link_hash_defined
3278 || h->root.type == bfd_link_hash_defweak)
3279 && h->root.u.def.section->output_section)
3280 value = (h->root.u.def.value
3281 + h->root.u.def.section->output_offset
3282 + h->root.u.def.section->output_section->vma);
3283
3284 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3285 info, e.d.h, value);
3286 }
3287 else
3288 return p->gotidx;
3289 }
3290 }
3291
3292 if (gg->global_gotsym != NULL)
3293 global_got_dynindx = gg->global_gotsym->dynindx;
3294
3295 if (TLS_RELOC_P (r_type))
3296 {
3297 struct mips_elf_link_hash_entry *hm
3298 = (struct mips_elf_link_hash_entry *) h;
3299 bfd_vma value = MINUS_ONE;
3300
3301 if ((h->root.type == bfd_link_hash_defined
3302 || h->root.type == bfd_link_hash_defweak)
3303 && h->root.u.def.section->output_section)
3304 value = (h->root.u.def.value
3305 + h->root.u.def.section->output_offset
3306 + h->root.u.def.section->output_section->vma);
3307
3308 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3309 r_type, info, hm, value);
3310 }
3311 else
3312 {
3313 /* Once we determine the global GOT entry with the lowest dynamic
3314 symbol table index, we must put all dynamic symbols with greater
3315 indices into the GOT. That makes it easy to calculate the GOT
3316 offset. */
3317 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3318 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3319 * MIPS_ELF_GOT_SIZE (abfd));
3320 }
3321 BFD_ASSERT (got_index < htab->sgot->size);
3322
3323 return got_index;
3324 }
3325
3326 /* Find a GOT page entry that points to within 32KB of VALUE. These
3327 entries are supposed to be placed at small offsets in the GOT, i.e.,
3328 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3329 entry could be created. If OFFSETP is nonnull, use it to return the
3330 offset of the GOT entry from VALUE. */
3331
3332 static bfd_vma
3333 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3334 bfd_vma value, bfd_vma *offsetp)
3335 {
3336 bfd_vma page, got_index;
3337 struct mips_got_entry *entry;
3338
3339 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3340 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3341 NULL, R_MIPS_GOT_PAGE);
3342
3343 if (!entry)
3344 return MINUS_ONE;
3345
3346 got_index = entry->gotidx;
3347
3348 if (offsetp)
3349 *offsetp = value - entry->d.address;
3350
3351 return got_index;
3352 }
3353
3354 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3355 EXTERNAL is true if the relocation was originally against a global
3356 symbol that binds locally. */
3357
3358 static bfd_vma
3359 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3360 bfd_vma value, bfd_boolean external)
3361 {
3362 struct mips_got_entry *entry;
3363
3364 /* GOT16 relocations against local symbols are followed by a LO16
3365 relocation; those against global symbols are not. Thus if the
3366 symbol was originally local, the GOT16 relocation should load the
3367 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3368 if (! external)
3369 value = mips_elf_high (value) << 16;
3370
3371 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3372 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3373 same in all cases. */
3374 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3375 NULL, R_MIPS_GOT16);
3376 if (entry)
3377 return entry->gotidx;
3378 else
3379 return MINUS_ONE;
3380 }
3381
3382 /* Returns the offset for the entry at the INDEXth position
3383 in the GOT. */
3384
3385 static bfd_vma
3386 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3387 bfd *input_bfd, bfd_vma got_index)
3388 {
3389 struct mips_elf_link_hash_table *htab;
3390 asection *sgot;
3391 bfd_vma gp;
3392
3393 htab = mips_elf_hash_table (info);
3394 BFD_ASSERT (htab != NULL);
3395
3396 sgot = htab->sgot;
3397 gp = _bfd_get_gp_value (output_bfd)
3398 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3399
3400 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3401 }
3402
3403 /* Create and return a local GOT entry for VALUE, which was calculated
3404 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3405 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3406 instead. */
3407
3408 static struct mips_got_entry *
3409 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3410 bfd *ibfd, bfd_vma value,
3411 unsigned long r_symndx,
3412 struct mips_elf_link_hash_entry *h,
3413 int r_type)
3414 {
3415 struct mips_got_entry entry, **loc;
3416 struct mips_got_info *g;
3417 struct mips_elf_link_hash_table *htab;
3418
3419 htab = mips_elf_hash_table (info);
3420 BFD_ASSERT (htab != NULL);
3421
3422 entry.abfd = NULL;
3423 entry.symndx = -1;
3424 entry.d.address = value;
3425 entry.tls_type = 0;
3426
3427 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3428 if (g == NULL)
3429 {
3430 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3431 BFD_ASSERT (g != NULL);
3432 }
3433
3434 /* This function shouldn't be called for symbols that live in the global
3435 area of the GOT. */
3436 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3437 if (TLS_RELOC_P (r_type))
3438 {
3439 struct mips_got_entry *p;
3440
3441 entry.abfd = ibfd;
3442 if (tls_ldm_reloc_p (r_type))
3443 {
3444 entry.tls_type = GOT_TLS_LDM;
3445 entry.symndx = 0;
3446 entry.d.addend = 0;
3447 }
3448 else if (h == NULL)
3449 {
3450 entry.symndx = r_symndx;
3451 entry.d.addend = 0;
3452 }
3453 else
3454 entry.d.h = h;
3455
3456 p = (struct mips_got_entry *)
3457 htab_find (g->got_entries, &entry);
3458
3459 BFD_ASSERT (p);
3460 return p;
3461 }
3462
3463 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3464 INSERT);
3465 if (*loc)
3466 return *loc;
3467
3468 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3469 entry.tls_type = 0;
3470
3471 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3472
3473 if (! *loc)
3474 return NULL;
3475
3476 memcpy (*loc, &entry, sizeof entry);
3477
3478 if (g->assigned_gotno > g->local_gotno)
3479 {
3480 (*loc)->gotidx = -1;
3481 /* We didn't allocate enough space in the GOT. */
3482 (*_bfd_error_handler)
3483 (_("not enough GOT space for local GOT entries"));
3484 bfd_set_error (bfd_error_bad_value);
3485 return NULL;
3486 }
3487
3488 MIPS_ELF_PUT_WORD (abfd, value,
3489 (htab->sgot->contents + entry.gotidx));
3490
3491 /* These GOT entries need a dynamic relocation on VxWorks. */
3492 if (htab->is_vxworks)
3493 {
3494 Elf_Internal_Rela outrel;
3495 asection *s;
3496 bfd_byte *rloc;
3497 bfd_vma got_address;
3498
3499 s = mips_elf_rel_dyn_section (info, FALSE);
3500 got_address = (htab->sgot->output_section->vma
3501 + htab->sgot->output_offset
3502 + entry.gotidx);
3503
3504 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3505 outrel.r_offset = got_address;
3506 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3507 outrel.r_addend = value;
3508 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3509 }
3510
3511 return *loc;
3512 }
3513
3514 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3515 The number might be exact or a worst-case estimate, depending on how
3516 much information is available to elf_backend_omit_section_dynsym at
3517 the current linking stage. */
3518
3519 static bfd_size_type
3520 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3521 {
3522 bfd_size_type count;
3523
3524 count = 0;
3525 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3526 {
3527 asection *p;
3528 const struct elf_backend_data *bed;
3529
3530 bed = get_elf_backend_data (output_bfd);
3531 for (p = output_bfd->sections; p ; p = p->next)
3532 if ((p->flags & SEC_EXCLUDE) == 0
3533 && (p->flags & SEC_ALLOC) != 0
3534 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3535 ++count;
3536 }
3537 return count;
3538 }
3539
3540 /* Sort the dynamic symbol table so that symbols that need GOT entries
3541 appear towards the end. */
3542
3543 static bfd_boolean
3544 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3545 {
3546 struct mips_elf_link_hash_table *htab;
3547 struct mips_elf_hash_sort_data hsd;
3548 struct mips_got_info *g;
3549
3550 if (elf_hash_table (info)->dynsymcount == 0)
3551 return TRUE;
3552
3553 htab = mips_elf_hash_table (info);
3554 BFD_ASSERT (htab != NULL);
3555
3556 g = htab->got_info;
3557 if (g == NULL)
3558 return TRUE;
3559
3560 hsd.low = NULL;
3561 hsd.max_unref_got_dynindx
3562 = hsd.min_got_dynindx
3563 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3564 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3565 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3566 elf_hash_table (info)),
3567 mips_elf_sort_hash_table_f,
3568 &hsd);
3569
3570 /* There should have been enough room in the symbol table to
3571 accommodate both the GOT and non-GOT symbols. */
3572 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3573 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3574 == elf_hash_table (info)->dynsymcount);
3575 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3576 == g->global_gotno);
3577
3578 /* Now we know which dynamic symbol has the lowest dynamic symbol
3579 table index in the GOT. */
3580 g->global_gotsym = hsd.low;
3581
3582 return TRUE;
3583 }
3584
3585 /* If H needs a GOT entry, assign it the highest available dynamic
3586 index. Otherwise, assign it the lowest available dynamic
3587 index. */
3588
3589 static bfd_boolean
3590 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3591 {
3592 struct mips_elf_hash_sort_data *hsd = data;
3593
3594 /* Symbols without dynamic symbol table entries aren't interesting
3595 at all. */
3596 if (h->root.dynindx == -1)
3597 return TRUE;
3598
3599 switch (h->global_got_area)
3600 {
3601 case GGA_NONE:
3602 h->root.dynindx = hsd->max_non_got_dynindx++;
3603 break;
3604
3605 case GGA_NORMAL:
3606 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3607
3608 h->root.dynindx = --hsd->min_got_dynindx;
3609 hsd->low = (struct elf_link_hash_entry *) h;
3610 break;
3611
3612 case GGA_RELOC_ONLY:
3613 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3614
3615 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3616 hsd->low = (struct elf_link_hash_entry *) h;
3617 h->root.dynindx = hsd->max_unref_got_dynindx++;
3618 break;
3619 }
3620
3621 return TRUE;
3622 }
3623
3624 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3625 symbol table index lower than any we've seen to date, record it for
3626 posterity. FOR_CALL is true if the caller is only interested in
3627 using the GOT entry for calls. */
3628
3629 static bfd_boolean
3630 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3631 bfd *abfd, struct bfd_link_info *info,
3632 bfd_boolean for_call,
3633 unsigned char tls_flag)
3634 {
3635 struct mips_elf_link_hash_table *htab;
3636 struct mips_elf_link_hash_entry *hmips;
3637 struct mips_got_entry entry, **loc;
3638 struct mips_got_info *g;
3639
3640 htab = mips_elf_hash_table (info);
3641 BFD_ASSERT (htab != NULL);
3642
3643 hmips = (struct mips_elf_link_hash_entry *) h;
3644 if (!for_call)
3645 hmips->got_only_for_calls = FALSE;
3646
3647 /* A global symbol in the GOT must also be in the dynamic symbol
3648 table. */
3649 if (h->dynindx == -1)
3650 {
3651 switch (ELF_ST_VISIBILITY (h->other))
3652 {
3653 case STV_INTERNAL:
3654 case STV_HIDDEN:
3655 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3656 break;
3657 }
3658 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3659 return FALSE;
3660 }
3661
3662 /* Make sure we have a GOT to put this entry into. */
3663 g = htab->got_info;
3664 BFD_ASSERT (g != NULL);
3665
3666 entry.abfd = abfd;
3667 entry.symndx = -1;
3668 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3669 entry.tls_type = 0;
3670
3671 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3672 INSERT);
3673
3674 /* If we've already marked this entry as needing GOT space, we don't
3675 need to do it again. */
3676 if (*loc)
3677 {
3678 (*loc)->tls_type |= tls_flag;
3679 return TRUE;
3680 }
3681
3682 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3683
3684 if (! *loc)
3685 return FALSE;
3686
3687 entry.gotidx = -1;
3688 entry.tls_type = tls_flag;
3689
3690 memcpy (*loc, &entry, sizeof entry);
3691
3692 if (tls_flag == 0)
3693 hmips->global_got_area = GGA_NORMAL;
3694
3695 return TRUE;
3696 }
3697
3698 /* Reserve space in G for a GOT entry containing the value of symbol
3699 SYMNDX in input bfd ABDF, plus ADDEND. */
3700
3701 static bfd_boolean
3702 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3703 struct bfd_link_info *info,
3704 unsigned char tls_flag)
3705 {
3706 struct mips_elf_link_hash_table *htab;
3707 struct mips_got_info *g;
3708 struct mips_got_entry entry, **loc;
3709
3710 htab = mips_elf_hash_table (info);
3711 BFD_ASSERT (htab != NULL);
3712
3713 g = htab->got_info;
3714 BFD_ASSERT (g != NULL);
3715
3716 entry.abfd = abfd;
3717 entry.symndx = symndx;
3718 entry.d.addend = addend;
3719 entry.tls_type = tls_flag;
3720 loc = (struct mips_got_entry **)
3721 htab_find_slot (g->got_entries, &entry, INSERT);
3722
3723 if (*loc)
3724 {
3725 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3726 {
3727 g->tls_gotno += 2;
3728 (*loc)->tls_type |= tls_flag;
3729 }
3730 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3731 {
3732 g->tls_gotno += 1;
3733 (*loc)->tls_type |= tls_flag;
3734 }
3735 return TRUE;
3736 }
3737
3738 if (tls_flag != 0)
3739 {
3740 entry.gotidx = -1;
3741 entry.tls_type = tls_flag;
3742 if (tls_flag == GOT_TLS_IE)
3743 g->tls_gotno += 1;
3744 else if (tls_flag == GOT_TLS_GD)
3745 g->tls_gotno += 2;
3746 else if (g->tls_ldm_offset == MINUS_ONE)
3747 {
3748 g->tls_ldm_offset = MINUS_TWO;
3749 g->tls_gotno += 2;
3750 }
3751 }
3752 else
3753 {
3754 entry.gotidx = g->local_gotno++;
3755 entry.tls_type = 0;
3756 }
3757
3758 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3759
3760 if (! *loc)
3761 return FALSE;
3762
3763 memcpy (*loc, &entry, sizeof entry);
3764
3765 return TRUE;
3766 }
3767
3768 /* Return the maximum number of GOT page entries required for RANGE. */
3769
3770 static bfd_vma
3771 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3772 {
3773 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3774 }
3775
3776 /* Record that ABFD has a page relocation against symbol SYMNDX and
3777 that ADDEND is the addend for that relocation.
3778
3779 This function creates an upper bound on the number of GOT slots
3780 required; no attempt is made to combine references to non-overridable
3781 global symbols across multiple input files. */
3782
3783 static bfd_boolean
3784 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3785 long symndx, bfd_signed_vma addend)
3786 {
3787 struct mips_elf_link_hash_table *htab;
3788 struct mips_got_info *g;
3789 struct mips_got_page_entry lookup, *entry;
3790 struct mips_got_page_range **range_ptr, *range;
3791 bfd_vma old_pages, new_pages;
3792 void **loc;
3793
3794 htab = mips_elf_hash_table (info);
3795 BFD_ASSERT (htab != NULL);
3796
3797 g = htab->got_info;
3798 BFD_ASSERT (g != NULL);
3799
3800 /* Find the mips_got_page_entry hash table entry for this symbol. */
3801 lookup.abfd = abfd;
3802 lookup.symndx = symndx;
3803 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3804 if (loc == NULL)
3805 return FALSE;
3806
3807 /* Create a mips_got_page_entry if this is the first time we've
3808 seen the symbol. */
3809 entry = (struct mips_got_page_entry *) *loc;
3810 if (!entry)
3811 {
3812 entry = bfd_alloc (abfd, sizeof (*entry));
3813 if (!entry)
3814 return FALSE;
3815
3816 entry->abfd = abfd;
3817 entry->symndx = symndx;
3818 entry->ranges = NULL;
3819 entry->num_pages = 0;
3820 *loc = entry;
3821 }
3822
3823 /* Skip over ranges whose maximum extent cannot share a page entry
3824 with ADDEND. */
3825 range_ptr = &entry->ranges;
3826 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3827 range_ptr = &(*range_ptr)->next;
3828
3829 /* If we scanned to the end of the list, or found a range whose
3830 minimum extent cannot share a page entry with ADDEND, create
3831 a new singleton range. */
3832 range = *range_ptr;
3833 if (!range || addend < range->min_addend - 0xffff)
3834 {
3835 range = bfd_alloc (abfd, sizeof (*range));
3836 if (!range)
3837 return FALSE;
3838
3839 range->next = *range_ptr;
3840 range->min_addend = addend;
3841 range->max_addend = addend;
3842
3843 *range_ptr = range;
3844 entry->num_pages++;
3845 g->page_gotno++;
3846 return TRUE;
3847 }
3848
3849 /* Remember how many pages the old range contributed. */
3850 old_pages = mips_elf_pages_for_range (range);
3851
3852 /* Update the ranges. */
3853 if (addend < range->min_addend)
3854 range->min_addend = addend;
3855 else if (addend > range->max_addend)
3856 {
3857 if (range->next && addend >= range->next->min_addend - 0xffff)
3858 {
3859 old_pages += mips_elf_pages_for_range (range->next);
3860 range->max_addend = range->next->max_addend;
3861 range->next = range->next->next;
3862 }
3863 else
3864 range->max_addend = addend;
3865 }
3866
3867 /* Record any change in the total estimate. */
3868 new_pages = mips_elf_pages_for_range (range);
3869 if (old_pages != new_pages)
3870 {
3871 entry->num_pages += new_pages - old_pages;
3872 g->page_gotno += new_pages - old_pages;
3873 }
3874
3875 return TRUE;
3876 }
3877
3878 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3879
3880 static void
3881 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3882 unsigned int n)
3883 {
3884 asection *s;
3885 struct mips_elf_link_hash_table *htab;
3886
3887 htab = mips_elf_hash_table (info);
3888 BFD_ASSERT (htab != NULL);
3889
3890 s = mips_elf_rel_dyn_section (info, FALSE);
3891 BFD_ASSERT (s != NULL);
3892
3893 if (htab->is_vxworks)
3894 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3895 else
3896 {
3897 if (s->size == 0)
3898 {
3899 /* Make room for a null element. */
3900 s->size += MIPS_ELF_REL_SIZE (abfd);
3901 ++s->reloc_count;
3902 }
3903 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3904 }
3905 }
3906 \f
3907 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3908 if the GOT entry is for an indirect or warning symbol. */
3909
3910 static int
3911 mips_elf_check_recreate_got (void **entryp, void *data)
3912 {
3913 struct mips_got_entry *entry;
3914 bfd_boolean *must_recreate;
3915
3916 entry = (struct mips_got_entry *) *entryp;
3917 must_recreate = (bfd_boolean *) data;
3918 if (entry->abfd != NULL && entry->symndx == -1)
3919 {
3920 struct mips_elf_link_hash_entry *h;
3921
3922 h = entry->d.h;
3923 if (h->root.root.type == bfd_link_hash_indirect
3924 || h->root.root.type == bfd_link_hash_warning)
3925 {
3926 *must_recreate = TRUE;
3927 return 0;
3928 }
3929 }
3930 return 1;
3931 }
3932
3933 /* A htab_traverse callback for GOT entries. Add all entries to
3934 hash table *DATA, converting entries for indirect and warning
3935 symbols into entries for the target symbol. Set *DATA to null
3936 on error. */
3937
3938 static int
3939 mips_elf_recreate_got (void **entryp, void *data)
3940 {
3941 htab_t *new_got;
3942 struct mips_got_entry *entry;
3943 void **slot;
3944
3945 new_got = (htab_t *) data;
3946 entry = (struct mips_got_entry *) *entryp;
3947 if (entry->abfd != NULL && entry->symndx == -1)
3948 {
3949 struct mips_elf_link_hash_entry *h;
3950
3951 h = entry->d.h;
3952 while (h->root.root.type == bfd_link_hash_indirect
3953 || h->root.root.type == bfd_link_hash_warning)
3954 {
3955 BFD_ASSERT (h->global_got_area == GGA_NONE);
3956 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3957 }
3958 entry->d.h = h;
3959 }
3960 slot = htab_find_slot (*new_got, entry, INSERT);
3961 if (slot == NULL)
3962 {
3963 *new_got = NULL;
3964 return 0;
3965 }
3966 if (*slot == NULL)
3967 *slot = entry;
3968 else
3969 free (entry);
3970 return 1;
3971 }
3972
3973 /* If any entries in G->got_entries are for indirect or warning symbols,
3974 replace them with entries for the target symbol. */
3975
3976 static bfd_boolean
3977 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3978 {
3979 bfd_boolean must_recreate;
3980 htab_t new_got;
3981
3982 must_recreate = FALSE;
3983 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3984 if (must_recreate)
3985 {
3986 new_got = htab_create (htab_size (g->got_entries),
3987 mips_elf_got_entry_hash,
3988 mips_elf_got_entry_eq, NULL);
3989 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3990 if (new_got == NULL)
3991 return FALSE;
3992
3993 /* Each entry in g->got_entries has either been copied to new_got
3994 or freed. Now delete the hash table itself. */
3995 htab_delete (g->got_entries);
3996 g->got_entries = new_got;
3997 }
3998 return TRUE;
3999 }
4000
4001 /* A mips_elf_link_hash_traverse callback for which DATA points
4002 to the link_info structure. Count the number of type (3) entries
4003 in the master GOT. */
4004
4005 static int
4006 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4007 {
4008 struct bfd_link_info *info;
4009 struct mips_elf_link_hash_table *htab;
4010 struct mips_got_info *g;
4011
4012 info = (struct bfd_link_info *) data;
4013 htab = mips_elf_hash_table (info);
4014 g = htab->got_info;
4015 if (h->global_got_area != GGA_NONE)
4016 {
4017 /* Make a final decision about whether the symbol belongs in the
4018 local or global GOT. Symbols that bind locally can (and in the
4019 case of forced-local symbols, must) live in the local GOT.
4020 Those that are aren't in the dynamic symbol table must also
4021 live in the local GOT.
4022
4023 Note that the former condition does not always imply the
4024 latter: symbols do not bind locally if they are completely
4025 undefined. We'll report undefined symbols later if appropriate. */
4026 if (h->root.dynindx == -1
4027 || (h->got_only_for_calls
4028 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4029 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4030 {
4031 /* The symbol belongs in the local GOT. We no longer need this
4032 entry if it was only used for relocations; those relocations
4033 will be against the null or section symbol instead of H. */
4034 if (h->global_got_area != GGA_RELOC_ONLY)
4035 g->local_gotno++;
4036 h->global_got_area = GGA_NONE;
4037 }
4038 else if (htab->is_vxworks
4039 && h->got_only_for_calls
4040 && h->root.plt.offset != MINUS_ONE)
4041 /* On VxWorks, calls can refer directly to the .got.plt entry;
4042 they don't need entries in the regular GOT. .got.plt entries
4043 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4044 h->global_got_area = GGA_NONE;
4045 else
4046 {
4047 g->global_gotno++;
4048 if (h->global_got_area == GGA_RELOC_ONLY)
4049 g->reloc_only_gotno++;
4050 }
4051 }
4052 return 1;
4053 }
4054 \f
4055 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4056
4057 static hashval_t
4058 mips_elf_bfd2got_entry_hash (const void *entry_)
4059 {
4060 const struct mips_elf_bfd2got_hash *entry
4061 = (struct mips_elf_bfd2got_hash *)entry_;
4062
4063 return entry->bfd->id;
4064 }
4065
4066 /* Check whether two hash entries have the same bfd. */
4067
4068 static int
4069 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4070 {
4071 const struct mips_elf_bfd2got_hash *e1
4072 = (const struct mips_elf_bfd2got_hash *)entry1;
4073 const struct mips_elf_bfd2got_hash *e2
4074 = (const struct mips_elf_bfd2got_hash *)entry2;
4075
4076 return e1->bfd == e2->bfd;
4077 }
4078
4079 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4080 be the master GOT data. */
4081
4082 static struct mips_got_info *
4083 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4084 {
4085 struct mips_elf_bfd2got_hash e, *p;
4086
4087 if (! g->bfd2got)
4088 return g;
4089
4090 e.bfd = ibfd;
4091 p = htab_find (g->bfd2got, &e);
4092 return p ? p->g : NULL;
4093 }
4094
4095 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4096 Return NULL if an error occured. */
4097
4098 static struct mips_got_info *
4099 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4100 bfd *input_bfd)
4101 {
4102 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4103 struct mips_got_info *g;
4104 void **bfdgotp;
4105
4106 bfdgot_entry.bfd = input_bfd;
4107 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4108 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4109
4110 if (bfdgot == NULL)
4111 {
4112 bfdgot = ((struct mips_elf_bfd2got_hash *)
4113 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4114 if (bfdgot == NULL)
4115 return NULL;
4116
4117 *bfdgotp = bfdgot;
4118
4119 g = ((struct mips_got_info *)
4120 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4121 if (g == NULL)
4122 return NULL;
4123
4124 bfdgot->bfd = input_bfd;
4125 bfdgot->g = g;
4126
4127 g->global_gotsym = NULL;
4128 g->global_gotno = 0;
4129 g->reloc_only_gotno = 0;
4130 g->local_gotno = 0;
4131 g->page_gotno = 0;
4132 g->assigned_gotno = -1;
4133 g->tls_gotno = 0;
4134 g->tls_assigned_gotno = 0;
4135 g->tls_ldm_offset = MINUS_ONE;
4136 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4137 mips_elf_multi_got_entry_eq, NULL);
4138 if (g->got_entries == NULL)
4139 return NULL;
4140
4141 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4142 mips_got_page_entry_eq, NULL);
4143 if (g->got_page_entries == NULL)
4144 return NULL;
4145
4146 g->bfd2got = NULL;
4147 g->next = NULL;
4148 }
4149
4150 return bfdgot->g;
4151 }
4152
4153 /* A htab_traverse callback for the entries in the master got.
4154 Create one separate got for each bfd that has entries in the global
4155 got, such that we can tell how many local and global entries each
4156 bfd requires. */
4157
4158 static int
4159 mips_elf_make_got_per_bfd (void **entryp, void *p)
4160 {
4161 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4162 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4163 struct mips_got_info *g;
4164
4165 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4166 if (g == NULL)
4167 {
4168 arg->obfd = NULL;
4169 return 0;
4170 }
4171
4172 /* Insert the GOT entry in the bfd's got entry hash table. */
4173 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4174 if (*entryp != NULL)
4175 return 1;
4176
4177 *entryp = entry;
4178
4179 if (entry->tls_type)
4180 {
4181 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4182 g->tls_gotno += 2;
4183 if (entry->tls_type & GOT_TLS_IE)
4184 g->tls_gotno += 1;
4185 }
4186 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4187 ++g->local_gotno;
4188 else
4189 ++g->global_gotno;
4190
4191 return 1;
4192 }
4193
4194 /* A htab_traverse callback for the page entries in the master got.
4195 Associate each page entry with the bfd's got. */
4196
4197 static int
4198 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4199 {
4200 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4201 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4202 struct mips_got_info *g;
4203
4204 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4205 if (g == NULL)
4206 {
4207 arg->obfd = NULL;
4208 return 0;
4209 }
4210
4211 /* Insert the GOT entry in the bfd's got entry hash table. */
4212 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4213 if (*entryp != NULL)
4214 return 1;
4215
4216 *entryp = entry;
4217 g->page_gotno += entry->num_pages;
4218 return 1;
4219 }
4220
4221 /* Consider merging the got described by BFD2GOT with TO, using the
4222 information given by ARG. Return -1 if this would lead to overflow,
4223 1 if they were merged successfully, and 0 if a merge failed due to
4224 lack of memory. (These values are chosen so that nonnegative return
4225 values can be returned by a htab_traverse callback.) */
4226
4227 static int
4228 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4229 struct mips_got_info *to,
4230 struct mips_elf_got_per_bfd_arg *arg)
4231 {
4232 struct mips_got_info *from = bfd2got->g;
4233 unsigned int estimate;
4234
4235 /* Work out how many page entries we would need for the combined GOT. */
4236 estimate = arg->max_pages;
4237 if (estimate >= from->page_gotno + to->page_gotno)
4238 estimate = from->page_gotno + to->page_gotno;
4239
4240 /* And conservatively estimate how many local and TLS entries
4241 would be needed. */
4242 estimate += from->local_gotno + to->local_gotno;
4243 estimate += from->tls_gotno + to->tls_gotno;
4244
4245 /* If we're merging with the primary got, we will always have
4246 the full set of global entries. Otherwise estimate those
4247 conservatively as well. */
4248 if (to == arg->primary)
4249 estimate += arg->global_count;
4250 else
4251 estimate += from->global_gotno + to->global_gotno;
4252
4253 /* Bail out if the combined GOT might be too big. */
4254 if (estimate > arg->max_count)
4255 return -1;
4256
4257 /* Commit to the merge. Record that TO is now the bfd for this got. */
4258 bfd2got->g = to;
4259
4260 /* Transfer the bfd's got information from FROM to TO. */
4261 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4262 if (arg->obfd == NULL)
4263 return 0;
4264
4265 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4266 if (arg->obfd == NULL)
4267 return 0;
4268
4269 /* We don't have to worry about releasing memory of the actual
4270 got entries, since they're all in the master got_entries hash
4271 table anyway. */
4272 htab_delete (from->got_entries);
4273 htab_delete (from->got_page_entries);
4274 return 1;
4275 }
4276
4277 /* Attempt to merge gots of different input bfds. Try to use as much
4278 as possible of the primary got, since it doesn't require explicit
4279 dynamic relocations, but don't use bfds that would reference global
4280 symbols out of the addressable range. Failing the primary got,
4281 attempt to merge with the current got, or finish the current got
4282 and then make make the new got current. */
4283
4284 static int
4285 mips_elf_merge_gots (void **bfd2got_, void *p)
4286 {
4287 struct mips_elf_bfd2got_hash *bfd2got
4288 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4289 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4290 struct mips_got_info *g;
4291 unsigned int estimate;
4292 int result;
4293
4294 g = bfd2got->g;
4295
4296 /* Work out the number of page, local and TLS entries. */
4297 estimate = arg->max_pages;
4298 if (estimate > g->page_gotno)
4299 estimate = g->page_gotno;
4300 estimate += g->local_gotno + g->tls_gotno;
4301
4302 /* We place TLS GOT entries after both locals and globals. The globals
4303 for the primary GOT may overflow the normal GOT size limit, so be
4304 sure not to merge a GOT which requires TLS with the primary GOT in that
4305 case. This doesn't affect non-primary GOTs. */
4306 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4307
4308 if (estimate <= arg->max_count)
4309 {
4310 /* If we don't have a primary GOT, use it as
4311 a starting point for the primary GOT. */
4312 if (!arg->primary)
4313 {
4314 arg->primary = bfd2got->g;
4315 return 1;
4316 }
4317
4318 /* Try merging with the primary GOT. */
4319 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4320 if (result >= 0)
4321 return result;
4322 }
4323
4324 /* If we can merge with the last-created got, do it. */
4325 if (arg->current)
4326 {
4327 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4328 if (result >= 0)
4329 return result;
4330 }
4331
4332 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4333 fits; if it turns out that it doesn't, we'll get relocation
4334 overflows anyway. */
4335 g->next = arg->current;
4336 arg->current = g;
4337
4338 return 1;
4339 }
4340
4341 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4342 is null iff there is just a single GOT. */
4343
4344 static int
4345 mips_elf_initialize_tls_index (void **entryp, void *p)
4346 {
4347 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4348 struct mips_got_info *g = p;
4349 bfd_vma next_index;
4350 unsigned char tls_type;
4351
4352 /* We're only interested in TLS symbols. */
4353 if (entry->tls_type == 0)
4354 return 1;
4355
4356 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4357
4358 if (entry->symndx == -1 && g->next == NULL)
4359 {
4360 /* A type (3) got entry in the single-GOT case. We use the symbol's
4361 hash table entry to track its index. */
4362 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4363 return 1;
4364 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4365 entry->d.h->tls_got_offset = next_index;
4366 tls_type = entry->d.h->tls_type;
4367 }
4368 else
4369 {
4370 if (entry->tls_type & GOT_TLS_LDM)
4371 {
4372 /* There are separate mips_got_entry objects for each input bfd
4373 that requires an LDM entry. Make sure that all LDM entries in
4374 a GOT resolve to the same index. */
4375 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4376 {
4377 entry->gotidx = g->tls_ldm_offset;
4378 return 1;
4379 }
4380 g->tls_ldm_offset = next_index;
4381 }
4382 entry->gotidx = next_index;
4383 tls_type = entry->tls_type;
4384 }
4385
4386 /* Account for the entries we've just allocated. */
4387 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4388 g->tls_assigned_gotno += 2;
4389 if (tls_type & GOT_TLS_IE)
4390 g->tls_assigned_gotno += 1;
4391
4392 return 1;
4393 }
4394
4395 /* If passed a NULL mips_got_info in the argument, set the marker used
4396 to tell whether a global symbol needs a got entry (in the primary
4397 got) to the given VALUE.
4398
4399 If passed a pointer G to a mips_got_info in the argument (it must
4400 not be the primary GOT), compute the offset from the beginning of
4401 the (primary) GOT section to the entry in G corresponding to the
4402 global symbol. G's assigned_gotno must contain the index of the
4403 first available global GOT entry in G. VALUE must contain the size
4404 of a GOT entry in bytes. For each global GOT entry that requires a
4405 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4406 marked as not eligible for lazy resolution through a function
4407 stub. */
4408 static int
4409 mips_elf_set_global_got_offset (void **entryp, void *p)
4410 {
4411 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4412 struct mips_elf_set_global_got_offset_arg *arg
4413 = (struct mips_elf_set_global_got_offset_arg *)p;
4414 struct mips_got_info *g = arg->g;
4415
4416 if (g && entry->tls_type != GOT_NORMAL)
4417 arg->needed_relocs +=
4418 mips_tls_got_relocs (arg->info, entry->tls_type,
4419 entry->symndx == -1 ? &entry->d.h->root : NULL);
4420
4421 if (entry->abfd != NULL
4422 && entry->symndx == -1
4423 && entry->d.h->global_got_area != GGA_NONE)
4424 {
4425 if (g)
4426 {
4427 BFD_ASSERT (g->global_gotsym == NULL);
4428
4429 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4430 if (arg->info->shared
4431 || (elf_hash_table (arg->info)->dynamic_sections_created
4432 && entry->d.h->root.def_dynamic
4433 && !entry->d.h->root.def_regular))
4434 ++arg->needed_relocs;
4435 }
4436 else
4437 entry->d.h->global_got_area = arg->value;
4438 }
4439
4440 return 1;
4441 }
4442
4443 /* A htab_traverse callback for GOT entries for which DATA is the
4444 bfd_link_info. Forbid any global symbols from having traditional
4445 lazy-binding stubs. */
4446
4447 static int
4448 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4449 {
4450 struct bfd_link_info *info;
4451 struct mips_elf_link_hash_table *htab;
4452 struct mips_got_entry *entry;
4453
4454 entry = (struct mips_got_entry *) *entryp;
4455 info = (struct bfd_link_info *) data;
4456 htab = mips_elf_hash_table (info);
4457 BFD_ASSERT (htab != NULL);
4458
4459 if (entry->abfd != NULL
4460 && entry->symndx == -1
4461 && entry->d.h->needs_lazy_stub)
4462 {
4463 entry->d.h->needs_lazy_stub = FALSE;
4464 htab->lazy_stub_count--;
4465 }
4466
4467 return 1;
4468 }
4469
4470 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4471 the primary GOT. */
4472 static bfd_vma
4473 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4474 {
4475 if (g->bfd2got == NULL)
4476 return 0;
4477
4478 g = mips_elf_got_for_ibfd (g, ibfd);
4479 if (! g)
4480 return 0;
4481
4482 BFD_ASSERT (g->next);
4483
4484 g = g->next;
4485
4486 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4487 * MIPS_ELF_GOT_SIZE (abfd);
4488 }
4489
4490 /* Turn a single GOT that is too big for 16-bit addressing into
4491 a sequence of GOTs, each one 16-bit addressable. */
4492
4493 static bfd_boolean
4494 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4495 asection *got, bfd_size_type pages)
4496 {
4497 struct mips_elf_link_hash_table *htab;
4498 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4499 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4500 struct mips_got_info *g, *gg;
4501 unsigned int assign, needed_relocs;
4502 bfd *dynobj;
4503
4504 dynobj = elf_hash_table (info)->dynobj;
4505 htab = mips_elf_hash_table (info);
4506 BFD_ASSERT (htab != NULL);
4507
4508 g = htab->got_info;
4509 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4510 mips_elf_bfd2got_entry_eq, NULL);
4511 if (g->bfd2got == NULL)
4512 return FALSE;
4513
4514 got_per_bfd_arg.bfd2got = g->bfd2got;
4515 got_per_bfd_arg.obfd = abfd;
4516 got_per_bfd_arg.info = info;
4517
4518 /* Count how many GOT entries each input bfd requires, creating a
4519 map from bfd to got info while at that. */
4520 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4521 if (got_per_bfd_arg.obfd == NULL)
4522 return FALSE;
4523
4524 /* Also count how many page entries each input bfd requires. */
4525 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4526 &got_per_bfd_arg);
4527 if (got_per_bfd_arg.obfd == NULL)
4528 return FALSE;
4529
4530 got_per_bfd_arg.current = NULL;
4531 got_per_bfd_arg.primary = NULL;
4532 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4533 / MIPS_ELF_GOT_SIZE (abfd))
4534 - htab->reserved_gotno);
4535 got_per_bfd_arg.max_pages = pages;
4536 /* The number of globals that will be included in the primary GOT.
4537 See the calls to mips_elf_set_global_got_offset below for more
4538 information. */
4539 got_per_bfd_arg.global_count = g->global_gotno;
4540
4541 /* Try to merge the GOTs of input bfds together, as long as they
4542 don't seem to exceed the maximum GOT size, choosing one of them
4543 to be the primary GOT. */
4544 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4545 if (got_per_bfd_arg.obfd == NULL)
4546 return FALSE;
4547
4548 /* If we do not find any suitable primary GOT, create an empty one. */
4549 if (got_per_bfd_arg.primary == NULL)
4550 {
4551 g->next = (struct mips_got_info *)
4552 bfd_alloc (abfd, sizeof (struct mips_got_info));
4553 if (g->next == NULL)
4554 return FALSE;
4555
4556 g->next->global_gotsym = NULL;
4557 g->next->global_gotno = 0;
4558 g->next->reloc_only_gotno = 0;
4559 g->next->local_gotno = 0;
4560 g->next->page_gotno = 0;
4561 g->next->tls_gotno = 0;
4562 g->next->assigned_gotno = 0;
4563 g->next->tls_assigned_gotno = 0;
4564 g->next->tls_ldm_offset = MINUS_ONE;
4565 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4566 mips_elf_multi_got_entry_eq,
4567 NULL);
4568 if (g->next->got_entries == NULL)
4569 return FALSE;
4570 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4571 mips_got_page_entry_eq,
4572 NULL);
4573 if (g->next->got_page_entries == NULL)
4574 return FALSE;
4575 g->next->bfd2got = NULL;
4576 }
4577 else
4578 g->next = got_per_bfd_arg.primary;
4579 g->next->next = got_per_bfd_arg.current;
4580
4581 /* GG is now the master GOT, and G is the primary GOT. */
4582 gg = g;
4583 g = g->next;
4584
4585 /* Map the output bfd to the primary got. That's what we're going
4586 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4587 didn't mark in check_relocs, and we want a quick way to find it.
4588 We can't just use gg->next because we're going to reverse the
4589 list. */
4590 {
4591 struct mips_elf_bfd2got_hash *bfdgot;
4592 void **bfdgotp;
4593
4594 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4595 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4596
4597 if (bfdgot == NULL)
4598 return FALSE;
4599
4600 bfdgot->bfd = abfd;
4601 bfdgot->g = g;
4602 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4603
4604 BFD_ASSERT (*bfdgotp == NULL);
4605 *bfdgotp = bfdgot;
4606 }
4607
4608 /* Every symbol that is referenced in a dynamic relocation must be
4609 present in the primary GOT, so arrange for them to appear after
4610 those that are actually referenced. */
4611 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4612 g->global_gotno = gg->global_gotno;
4613
4614 set_got_offset_arg.g = NULL;
4615 set_got_offset_arg.value = GGA_RELOC_ONLY;
4616 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4617 &set_got_offset_arg);
4618 set_got_offset_arg.value = GGA_NORMAL;
4619 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4620 &set_got_offset_arg);
4621
4622 /* Now go through the GOTs assigning them offset ranges.
4623 [assigned_gotno, local_gotno[ will be set to the range of local
4624 entries in each GOT. We can then compute the end of a GOT by
4625 adding local_gotno to global_gotno. We reverse the list and make
4626 it circular since then we'll be able to quickly compute the
4627 beginning of a GOT, by computing the end of its predecessor. To
4628 avoid special cases for the primary GOT, while still preserving
4629 assertions that are valid for both single- and multi-got links,
4630 we arrange for the main got struct to have the right number of
4631 global entries, but set its local_gotno such that the initial
4632 offset of the primary GOT is zero. Remember that the primary GOT
4633 will become the last item in the circular linked list, so it
4634 points back to the master GOT. */
4635 gg->local_gotno = -g->global_gotno;
4636 gg->global_gotno = g->global_gotno;
4637 gg->tls_gotno = 0;
4638 assign = 0;
4639 gg->next = gg;
4640
4641 do
4642 {
4643 struct mips_got_info *gn;
4644
4645 assign += htab->reserved_gotno;
4646 g->assigned_gotno = assign;
4647 g->local_gotno += assign;
4648 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4649 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4650
4651 /* Take g out of the direct list, and push it onto the reversed
4652 list that gg points to. g->next is guaranteed to be nonnull after
4653 this operation, as required by mips_elf_initialize_tls_index. */
4654 gn = g->next;
4655 g->next = gg->next;
4656 gg->next = g;
4657
4658 /* Set up any TLS entries. We always place the TLS entries after
4659 all non-TLS entries. */
4660 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4661 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4662
4663 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4664 g = gn;
4665
4666 /* Forbid global symbols in every non-primary GOT from having
4667 lazy-binding stubs. */
4668 if (g)
4669 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4670 }
4671 while (g);
4672
4673 got->size = (gg->next->local_gotno
4674 + gg->next->global_gotno
4675 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4676
4677 needed_relocs = 0;
4678 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4679 set_got_offset_arg.info = info;
4680 for (g = gg->next; g && g->next != gg; g = g->next)
4681 {
4682 unsigned int save_assign;
4683
4684 /* Assign offsets to global GOT entries. */
4685 save_assign = g->assigned_gotno;
4686 g->assigned_gotno = g->local_gotno;
4687 set_got_offset_arg.g = g;
4688 set_got_offset_arg.needed_relocs = 0;
4689 htab_traverse (g->got_entries,
4690 mips_elf_set_global_got_offset,
4691 &set_got_offset_arg);
4692 needed_relocs += set_got_offset_arg.needed_relocs;
4693 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4694
4695 g->assigned_gotno = save_assign;
4696 if (info->shared)
4697 {
4698 needed_relocs += g->local_gotno - g->assigned_gotno;
4699 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4700 + g->next->global_gotno
4701 + g->next->tls_gotno
4702 + htab->reserved_gotno);
4703 }
4704 }
4705
4706 if (needed_relocs)
4707 mips_elf_allocate_dynamic_relocations (dynobj, info,
4708 needed_relocs);
4709
4710 return TRUE;
4711 }
4712
4713 \f
4714 /* Returns the first relocation of type r_type found, beginning with
4715 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4716
4717 static const Elf_Internal_Rela *
4718 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4719 const Elf_Internal_Rela *relocation,
4720 const Elf_Internal_Rela *relend)
4721 {
4722 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4723
4724 while (relocation < relend)
4725 {
4726 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4727 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4728 return relocation;
4729
4730 ++relocation;
4731 }
4732
4733 /* We didn't find it. */
4734 return NULL;
4735 }
4736
4737 /* Return whether an input relocation is against a local symbol. */
4738
4739 static bfd_boolean
4740 mips_elf_local_relocation_p (bfd *input_bfd,
4741 const Elf_Internal_Rela *relocation,
4742 asection **local_sections)
4743 {
4744 unsigned long r_symndx;
4745 Elf_Internal_Shdr *symtab_hdr;
4746 size_t extsymoff;
4747
4748 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4749 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4750 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4751
4752 if (r_symndx < extsymoff)
4753 return TRUE;
4754 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4755 return TRUE;
4756
4757 return FALSE;
4758 }
4759 \f
4760 /* Sign-extend VALUE, which has the indicated number of BITS. */
4761
4762 bfd_vma
4763 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4764 {
4765 if (value & ((bfd_vma) 1 << (bits - 1)))
4766 /* VALUE is negative. */
4767 value |= ((bfd_vma) - 1) << bits;
4768
4769 return value;
4770 }
4771
4772 /* Return non-zero if the indicated VALUE has overflowed the maximum
4773 range expressible by a signed number with the indicated number of
4774 BITS. */
4775
4776 static bfd_boolean
4777 mips_elf_overflow_p (bfd_vma value, int bits)
4778 {
4779 bfd_signed_vma svalue = (bfd_signed_vma) value;
4780
4781 if (svalue > (1 << (bits - 1)) - 1)
4782 /* The value is too big. */
4783 return TRUE;
4784 else if (svalue < -(1 << (bits - 1)))
4785 /* The value is too small. */
4786 return TRUE;
4787
4788 /* All is well. */
4789 return FALSE;
4790 }
4791
4792 /* Calculate the %high function. */
4793
4794 static bfd_vma
4795 mips_elf_high (bfd_vma value)
4796 {
4797 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4798 }
4799
4800 /* Calculate the %higher function. */
4801
4802 static bfd_vma
4803 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4804 {
4805 #ifdef BFD64
4806 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4807 #else
4808 abort ();
4809 return MINUS_ONE;
4810 #endif
4811 }
4812
4813 /* Calculate the %highest function. */
4814
4815 static bfd_vma
4816 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4817 {
4818 #ifdef BFD64
4819 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4820 #else
4821 abort ();
4822 return MINUS_ONE;
4823 #endif
4824 }
4825 \f
4826 /* Create the .compact_rel section. */
4827
4828 static bfd_boolean
4829 mips_elf_create_compact_rel_section
4830 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4831 {
4832 flagword flags;
4833 register asection *s;
4834
4835 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4836 {
4837 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4838 | SEC_READONLY);
4839
4840 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4841 if (s == NULL
4842 || ! bfd_set_section_alignment (abfd, s,
4843 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4844 return FALSE;
4845
4846 s->size = sizeof (Elf32_External_compact_rel);
4847 }
4848
4849 return TRUE;
4850 }
4851
4852 /* Create the .got section to hold the global offset table. */
4853
4854 static bfd_boolean
4855 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4856 {
4857 flagword flags;
4858 register asection *s;
4859 struct elf_link_hash_entry *h;
4860 struct bfd_link_hash_entry *bh;
4861 struct mips_got_info *g;
4862 bfd_size_type amt;
4863 struct mips_elf_link_hash_table *htab;
4864
4865 htab = mips_elf_hash_table (info);
4866 BFD_ASSERT (htab != NULL);
4867
4868 /* This function may be called more than once. */
4869 if (htab->sgot)
4870 return TRUE;
4871
4872 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4873 | SEC_LINKER_CREATED);
4874
4875 /* We have to use an alignment of 2**4 here because this is hardcoded
4876 in the function stub generation and in the linker script. */
4877 s = bfd_make_section_with_flags (abfd, ".got", flags);
4878 if (s == NULL
4879 || ! bfd_set_section_alignment (abfd, s, 4))
4880 return FALSE;
4881 htab->sgot = s;
4882
4883 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4884 linker script because we don't want to define the symbol if we
4885 are not creating a global offset table. */
4886 bh = NULL;
4887 if (! (_bfd_generic_link_add_one_symbol
4888 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4889 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4890 return FALSE;
4891
4892 h = (struct elf_link_hash_entry *) bh;
4893 h->non_elf = 0;
4894 h->def_regular = 1;
4895 h->type = STT_OBJECT;
4896 elf_hash_table (info)->hgot = h;
4897
4898 if (info->shared
4899 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4900 return FALSE;
4901
4902 amt = sizeof (struct mips_got_info);
4903 g = bfd_alloc (abfd, amt);
4904 if (g == NULL)
4905 return FALSE;
4906 g->global_gotsym = NULL;
4907 g->global_gotno = 0;
4908 g->reloc_only_gotno = 0;
4909 g->tls_gotno = 0;
4910 g->local_gotno = 0;
4911 g->page_gotno = 0;
4912 g->assigned_gotno = 0;
4913 g->bfd2got = NULL;
4914 g->next = NULL;
4915 g->tls_ldm_offset = MINUS_ONE;
4916 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4917 mips_elf_got_entry_eq, NULL);
4918 if (g->got_entries == NULL)
4919 return FALSE;
4920 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4921 mips_got_page_entry_eq, NULL);
4922 if (g->got_page_entries == NULL)
4923 return FALSE;
4924 htab->got_info = g;
4925 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4926 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4927
4928 /* We also need a .got.plt section when generating PLTs. */
4929 s = bfd_make_section_with_flags (abfd, ".got.plt",
4930 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4931 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4932 if (s == NULL)
4933 return FALSE;
4934 htab->sgotplt = s;
4935
4936 return TRUE;
4937 }
4938 \f
4939 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4940 __GOTT_INDEX__ symbols. These symbols are only special for
4941 shared objects; they are not used in executables. */
4942
4943 static bfd_boolean
4944 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4945 {
4946 return (mips_elf_hash_table (info)->is_vxworks
4947 && info->shared
4948 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4949 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4950 }
4951
4952 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4953 require an la25 stub. See also mips_elf_local_pic_function_p,
4954 which determines whether the destination function ever requires a
4955 stub. */
4956
4957 static bfd_boolean
4958 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4959 bfd_boolean target_is_16_bit_code_p)
4960 {
4961 /* We specifically ignore branches and jumps from EF_PIC objects,
4962 where the onus is on the compiler or programmer to perform any
4963 necessary initialization of $25. Sometimes such initialization
4964 is unnecessary; for example, -mno-shared functions do not use
4965 the incoming value of $25, and may therefore be called directly. */
4966 if (PIC_OBJECT_P (input_bfd))
4967 return FALSE;
4968
4969 switch (r_type)
4970 {
4971 case R_MIPS_26:
4972 case R_MIPS_PC16:
4973 case R_MICROMIPS_26_S1:
4974 case R_MICROMIPS_PC7_S1:
4975 case R_MICROMIPS_PC10_S1:
4976 case R_MICROMIPS_PC16_S1:
4977 case R_MICROMIPS_PC23_S2:
4978 return TRUE;
4979
4980 case R_MIPS16_26:
4981 return !target_is_16_bit_code_p;
4982
4983 default:
4984 return FALSE;
4985 }
4986 }
4987 \f
4988 /* Calculate the value produced by the RELOCATION (which comes from
4989 the INPUT_BFD). The ADDEND is the addend to use for this
4990 RELOCATION; RELOCATION->R_ADDEND is ignored.
4991
4992 The result of the relocation calculation is stored in VALUEP.
4993 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4994 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4995
4996 This function returns bfd_reloc_continue if the caller need take no
4997 further action regarding this relocation, bfd_reloc_notsupported if
4998 something goes dramatically wrong, bfd_reloc_overflow if an
4999 overflow occurs, and bfd_reloc_ok to indicate success. */
5000
5001 static bfd_reloc_status_type
5002 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5003 asection *input_section,
5004 struct bfd_link_info *info,
5005 const Elf_Internal_Rela *relocation,
5006 bfd_vma addend, reloc_howto_type *howto,
5007 Elf_Internal_Sym *local_syms,
5008 asection **local_sections, bfd_vma *valuep,
5009 const char **namep,
5010 bfd_boolean *cross_mode_jump_p,
5011 bfd_boolean save_addend)
5012 {
5013 /* The eventual value we will return. */
5014 bfd_vma value;
5015 /* The address of the symbol against which the relocation is
5016 occurring. */
5017 bfd_vma symbol = 0;
5018 /* The final GP value to be used for the relocatable, executable, or
5019 shared object file being produced. */
5020 bfd_vma gp;
5021 /* The place (section offset or address) of the storage unit being
5022 relocated. */
5023 bfd_vma p;
5024 /* The value of GP used to create the relocatable object. */
5025 bfd_vma gp0;
5026 /* The offset into the global offset table at which the address of
5027 the relocation entry symbol, adjusted by the addend, resides
5028 during execution. */
5029 bfd_vma g = MINUS_ONE;
5030 /* The section in which the symbol referenced by the relocation is
5031 located. */
5032 asection *sec = NULL;
5033 struct mips_elf_link_hash_entry *h = NULL;
5034 /* TRUE if the symbol referred to by this relocation is a local
5035 symbol. */
5036 bfd_boolean local_p, was_local_p;
5037 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5038 bfd_boolean gp_disp_p = FALSE;
5039 /* TRUE if the symbol referred to by this relocation is
5040 "__gnu_local_gp". */
5041 bfd_boolean gnu_local_gp_p = FALSE;
5042 Elf_Internal_Shdr *symtab_hdr;
5043 size_t extsymoff;
5044 unsigned long r_symndx;
5045 int r_type;
5046 /* TRUE if overflow occurred during the calculation of the
5047 relocation value. */
5048 bfd_boolean overflowed_p;
5049 /* TRUE if this relocation refers to a MIPS16 function. */
5050 bfd_boolean target_is_16_bit_code_p = FALSE;
5051 bfd_boolean target_is_micromips_code_p = FALSE;
5052 struct mips_elf_link_hash_table *htab;
5053 bfd *dynobj;
5054
5055 dynobj = elf_hash_table (info)->dynobj;
5056 htab = mips_elf_hash_table (info);
5057 BFD_ASSERT (htab != NULL);
5058
5059 /* Parse the relocation. */
5060 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5061 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5062 p = (input_section->output_section->vma
5063 + input_section->output_offset
5064 + relocation->r_offset);
5065
5066 /* Assume that there will be no overflow. */
5067 overflowed_p = FALSE;
5068
5069 /* Figure out whether or not the symbol is local, and get the offset
5070 used in the array of hash table entries. */
5071 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5072 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5073 local_sections);
5074 was_local_p = local_p;
5075 if (! elf_bad_symtab (input_bfd))
5076 extsymoff = symtab_hdr->sh_info;
5077 else
5078 {
5079 /* The symbol table does not follow the rule that local symbols
5080 must come before globals. */
5081 extsymoff = 0;
5082 }
5083
5084 /* Figure out the value of the symbol. */
5085 if (local_p)
5086 {
5087 Elf_Internal_Sym *sym;
5088
5089 sym = local_syms + r_symndx;
5090 sec = local_sections[r_symndx];
5091
5092 symbol = sec->output_section->vma + sec->output_offset;
5093 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5094 || (sec->flags & SEC_MERGE))
5095 symbol += sym->st_value;
5096 if ((sec->flags & SEC_MERGE)
5097 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5098 {
5099 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5100 addend -= symbol;
5101 addend += sec->output_section->vma + sec->output_offset;
5102 }
5103
5104 /* MIPS16/microMIPS text labels should be treated as odd. */
5105 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5106 ++symbol;
5107
5108 /* Record the name of this symbol, for our caller. */
5109 *namep = bfd_elf_string_from_elf_section (input_bfd,
5110 symtab_hdr->sh_link,
5111 sym->st_name);
5112 if (*namep == '\0')
5113 *namep = bfd_section_name (input_bfd, sec);
5114
5115 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5116 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5117 }
5118 else
5119 {
5120 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5121
5122 /* For global symbols we look up the symbol in the hash-table. */
5123 h = ((struct mips_elf_link_hash_entry *)
5124 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5125 /* Find the real hash-table entry for this symbol. */
5126 while (h->root.root.type == bfd_link_hash_indirect
5127 || h->root.root.type == bfd_link_hash_warning)
5128 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5129
5130 /* Record the name of this symbol, for our caller. */
5131 *namep = h->root.root.root.string;
5132
5133 /* See if this is the special _gp_disp symbol. Note that such a
5134 symbol must always be a global symbol. */
5135 if (strcmp (*namep, "_gp_disp") == 0
5136 && ! NEWABI_P (input_bfd))
5137 {
5138 /* Relocations against _gp_disp are permitted only with
5139 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5140 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5141 return bfd_reloc_notsupported;
5142
5143 gp_disp_p = TRUE;
5144 }
5145 /* See if this is the special _gp symbol. Note that such a
5146 symbol must always be a global symbol. */
5147 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5148 gnu_local_gp_p = TRUE;
5149
5150
5151 /* If this symbol is defined, calculate its address. Note that
5152 _gp_disp is a magic symbol, always implicitly defined by the
5153 linker, so it's inappropriate to check to see whether or not
5154 its defined. */
5155 else if ((h->root.root.type == bfd_link_hash_defined
5156 || h->root.root.type == bfd_link_hash_defweak)
5157 && h->root.root.u.def.section)
5158 {
5159 sec = h->root.root.u.def.section;
5160 if (sec->output_section)
5161 symbol = (h->root.root.u.def.value
5162 + sec->output_section->vma
5163 + sec->output_offset);
5164 else
5165 symbol = h->root.root.u.def.value;
5166 }
5167 else if (h->root.root.type == bfd_link_hash_undefweak)
5168 /* We allow relocations against undefined weak symbols, giving
5169 it the value zero, so that you can undefined weak functions
5170 and check to see if they exist by looking at their
5171 addresses. */
5172 symbol = 0;
5173 else if (info->unresolved_syms_in_objects == RM_IGNORE
5174 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5175 symbol = 0;
5176 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5177 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5178 {
5179 /* If this is a dynamic link, we should have created a
5180 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5181 in in _bfd_mips_elf_create_dynamic_sections.
5182 Otherwise, we should define the symbol with a value of 0.
5183 FIXME: It should probably get into the symbol table
5184 somehow as well. */
5185 BFD_ASSERT (! info->shared);
5186 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5187 symbol = 0;
5188 }
5189 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5190 {
5191 /* This is an optional symbol - an Irix specific extension to the
5192 ELF spec. Ignore it for now.
5193 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5194 than simply ignoring them, but we do not handle this for now.
5195 For information see the "64-bit ELF Object File Specification"
5196 which is available from here:
5197 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5198 symbol = 0;
5199 }
5200 else if ((*info->callbacks->undefined_symbol)
5201 (info, h->root.root.root.string, input_bfd,
5202 input_section, relocation->r_offset,
5203 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5204 || ELF_ST_VISIBILITY (h->root.other)))
5205 {
5206 return bfd_reloc_undefined;
5207 }
5208 else
5209 {
5210 return bfd_reloc_notsupported;
5211 }
5212
5213 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5214 /* If the output section is the PLT section,
5215 then the target is not microMIPS. */
5216 target_is_micromips_code_p = (htab->splt != sec
5217 && ELF_ST_IS_MICROMIPS (h->root.other));
5218 }
5219
5220 /* If this is a reference to a 16-bit function with a stub, we need
5221 to redirect the relocation to the stub unless:
5222
5223 (a) the relocation is for a MIPS16 JAL;
5224
5225 (b) the relocation is for a MIPS16 PIC call, and there are no
5226 non-MIPS16 uses of the GOT slot; or
5227
5228 (c) the section allows direct references to MIPS16 functions. */
5229 if (r_type != R_MIPS16_26
5230 && !info->relocatable
5231 && ((h != NULL
5232 && h->fn_stub != NULL
5233 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5234 || (local_p
5235 && elf_tdata (input_bfd)->local_stubs != NULL
5236 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5237 && !section_allows_mips16_refs_p (input_section))
5238 {
5239 /* This is a 32- or 64-bit call to a 16-bit function. We should
5240 have already noticed that we were going to need the
5241 stub. */
5242 if (local_p)
5243 {
5244 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5245 value = 0;
5246 }
5247 else
5248 {
5249 BFD_ASSERT (h->need_fn_stub);
5250 if (h->la25_stub)
5251 {
5252 /* If a LA25 header for the stub itself exists, point to the
5253 prepended LUI/ADDIU sequence. */
5254 sec = h->la25_stub->stub_section;
5255 value = h->la25_stub->offset;
5256 }
5257 else
5258 {
5259 sec = h->fn_stub;
5260 value = 0;
5261 }
5262 }
5263
5264 symbol = sec->output_section->vma + sec->output_offset + value;
5265 /* The target is 16-bit, but the stub isn't. */
5266 target_is_16_bit_code_p = FALSE;
5267 }
5268 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5269 need to redirect the call to the stub. Note that we specifically
5270 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5271 use an indirect stub instead. */
5272 else if (r_type == R_MIPS16_26 && !info->relocatable
5273 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5274 || (local_p
5275 && elf_tdata (input_bfd)->local_call_stubs != NULL
5276 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5277 && !target_is_16_bit_code_p)
5278 {
5279 if (local_p)
5280 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5281 else
5282 {
5283 /* If both call_stub and call_fp_stub are defined, we can figure
5284 out which one to use by checking which one appears in the input
5285 file. */
5286 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5287 {
5288 asection *o;
5289
5290 sec = NULL;
5291 for (o = input_bfd->sections; o != NULL; o = o->next)
5292 {
5293 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5294 {
5295 sec = h->call_fp_stub;
5296 break;
5297 }
5298 }
5299 if (sec == NULL)
5300 sec = h->call_stub;
5301 }
5302 else if (h->call_stub != NULL)
5303 sec = h->call_stub;
5304 else
5305 sec = h->call_fp_stub;
5306 }
5307
5308 BFD_ASSERT (sec->size > 0);
5309 symbol = sec->output_section->vma + sec->output_offset;
5310 }
5311 /* If this is a direct call to a PIC function, redirect to the
5312 non-PIC stub. */
5313 else if (h != NULL && h->la25_stub
5314 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5315 target_is_16_bit_code_p))
5316 symbol = (h->la25_stub->stub_section->output_section->vma
5317 + h->la25_stub->stub_section->output_offset
5318 + h->la25_stub->offset);
5319
5320 /* Make sure MIPS16 and microMIPS are not used together. */
5321 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5322 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5323 {
5324 (*_bfd_error_handler)
5325 (_("MIPS16 and microMIPS functions cannot call each other"));
5326 return bfd_reloc_notsupported;
5327 }
5328
5329 /* Calls from 16-bit code to 32-bit code and vice versa require the
5330 mode change. However, we can ignore calls to undefined weak symbols,
5331 which should never be executed at runtime. This exception is important
5332 because the assembly writer may have "known" that any definition of the
5333 symbol would be 16-bit code, and that direct jumps were therefore
5334 acceptable. */
5335 *cross_mode_jump_p = (!info->relocatable
5336 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5337 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5338 || (r_type == R_MICROMIPS_26_S1
5339 && !target_is_micromips_code_p)
5340 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5341 && (target_is_16_bit_code_p
5342 || target_is_micromips_code_p))));
5343
5344 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5345
5346 gp0 = _bfd_get_gp_value (input_bfd);
5347 gp = _bfd_get_gp_value (abfd);
5348 if (htab->got_info)
5349 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5350
5351 if (gnu_local_gp_p)
5352 symbol = gp;
5353
5354 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5355 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5356 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5357 if (got_page_reloc_p (r_type) && !local_p)
5358 {
5359 r_type = (micromips_reloc_p (r_type)
5360 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5361 addend = 0;
5362 }
5363
5364 /* If we haven't already determined the GOT offset, and we're going
5365 to need it, get it now. */
5366 switch (r_type)
5367 {
5368 case R_MIPS16_CALL16:
5369 case R_MIPS16_GOT16:
5370 case R_MIPS_CALL16:
5371 case R_MIPS_GOT16:
5372 case R_MIPS_GOT_DISP:
5373 case R_MIPS_GOT_HI16:
5374 case R_MIPS_CALL_HI16:
5375 case R_MIPS_GOT_LO16:
5376 case R_MIPS_CALL_LO16:
5377 case R_MICROMIPS_CALL16:
5378 case R_MICROMIPS_GOT16:
5379 case R_MICROMIPS_GOT_DISP:
5380 case R_MICROMIPS_GOT_HI16:
5381 case R_MICROMIPS_CALL_HI16:
5382 case R_MICROMIPS_GOT_LO16:
5383 case R_MICROMIPS_CALL_LO16:
5384 case R_MIPS_TLS_GD:
5385 case R_MIPS_TLS_GOTTPREL:
5386 case R_MIPS_TLS_LDM:
5387 case R_MIPS16_TLS_GD:
5388 case R_MIPS16_TLS_GOTTPREL:
5389 case R_MIPS16_TLS_LDM:
5390 case R_MICROMIPS_TLS_GD:
5391 case R_MICROMIPS_TLS_GOTTPREL:
5392 case R_MICROMIPS_TLS_LDM:
5393 /* Find the index into the GOT where this value is located. */
5394 if (tls_ldm_reloc_p (r_type))
5395 {
5396 g = mips_elf_local_got_index (abfd, input_bfd, info,
5397 0, 0, NULL, r_type);
5398 if (g == MINUS_ONE)
5399 return bfd_reloc_outofrange;
5400 }
5401 else if (!local_p)
5402 {
5403 /* On VxWorks, CALL relocations should refer to the .got.plt
5404 entry, which is initialized to point at the PLT stub. */
5405 if (htab->is_vxworks
5406 && (call_hi16_reloc_p (r_type)
5407 || call_lo16_reloc_p (r_type)
5408 || call16_reloc_p (r_type)))
5409 {
5410 BFD_ASSERT (addend == 0);
5411 BFD_ASSERT (h->root.needs_plt);
5412 g = mips_elf_gotplt_index (info, &h->root);
5413 }
5414 else
5415 {
5416 BFD_ASSERT (addend == 0);
5417 g = mips_elf_global_got_index (dynobj, input_bfd,
5418 &h->root, r_type, info);
5419 if (h->tls_type == GOT_NORMAL
5420 && !elf_hash_table (info)->dynamic_sections_created)
5421 /* This is a static link. We must initialize the GOT entry. */
5422 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5423 }
5424 }
5425 else if (!htab->is_vxworks
5426 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5427 /* The calculation below does not involve "g". */
5428 break;
5429 else
5430 {
5431 g = mips_elf_local_got_index (abfd, input_bfd, info,
5432 symbol + addend, r_symndx, h, r_type);
5433 if (g == MINUS_ONE)
5434 return bfd_reloc_outofrange;
5435 }
5436
5437 /* Convert GOT indices to actual offsets. */
5438 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5439 break;
5440 }
5441
5442 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5443 symbols are resolved by the loader. Add them to .rela.dyn. */
5444 if (h != NULL && is_gott_symbol (info, &h->root))
5445 {
5446 Elf_Internal_Rela outrel;
5447 bfd_byte *loc;
5448 asection *s;
5449
5450 s = mips_elf_rel_dyn_section (info, FALSE);
5451 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5452
5453 outrel.r_offset = (input_section->output_section->vma
5454 + input_section->output_offset
5455 + relocation->r_offset);
5456 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5457 outrel.r_addend = addend;
5458 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5459
5460 /* If we've written this relocation for a readonly section,
5461 we need to set DF_TEXTREL again, so that we do not delete the
5462 DT_TEXTREL tag. */
5463 if (MIPS_ELF_READONLY_SECTION (input_section))
5464 info->flags |= DF_TEXTREL;
5465
5466 *valuep = 0;
5467 return bfd_reloc_ok;
5468 }
5469
5470 /* Figure out what kind of relocation is being performed. */
5471 switch (r_type)
5472 {
5473 case R_MIPS_NONE:
5474 return bfd_reloc_continue;
5475
5476 case R_MIPS_16:
5477 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5478 overflowed_p = mips_elf_overflow_p (value, 16);
5479 break;
5480
5481 case R_MIPS_32:
5482 case R_MIPS_REL32:
5483 case R_MIPS_64:
5484 if ((info->shared
5485 || (htab->root.dynamic_sections_created
5486 && h != NULL
5487 && h->root.def_dynamic
5488 && !h->root.def_regular
5489 && !h->has_static_relocs))
5490 && r_symndx != STN_UNDEF
5491 && (h == NULL
5492 || h->root.root.type != bfd_link_hash_undefweak
5493 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5494 && (input_section->flags & SEC_ALLOC) != 0)
5495 {
5496 /* If we're creating a shared library, then we can't know
5497 where the symbol will end up. So, we create a relocation
5498 record in the output, and leave the job up to the dynamic
5499 linker. We must do the same for executable references to
5500 shared library symbols, unless we've decided to use copy
5501 relocs or PLTs instead. */
5502 value = addend;
5503 if (!mips_elf_create_dynamic_relocation (abfd,
5504 info,
5505 relocation,
5506 h,
5507 sec,
5508 symbol,
5509 &value,
5510 input_section))
5511 return bfd_reloc_undefined;
5512 }
5513 else
5514 {
5515 if (r_type != R_MIPS_REL32)
5516 value = symbol + addend;
5517 else
5518 value = addend;
5519 }
5520 value &= howto->dst_mask;
5521 break;
5522
5523 case R_MIPS_PC32:
5524 value = symbol + addend - p;
5525 value &= howto->dst_mask;
5526 break;
5527
5528 case R_MIPS16_26:
5529 /* The calculation for R_MIPS16_26 is just the same as for an
5530 R_MIPS_26. It's only the storage of the relocated field into
5531 the output file that's different. That's handled in
5532 mips_elf_perform_relocation. So, we just fall through to the
5533 R_MIPS_26 case here. */
5534 case R_MIPS_26:
5535 case R_MICROMIPS_26_S1:
5536 {
5537 unsigned int shift;
5538
5539 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5540 the correct ISA mode selector and bit 1 must be 0. */
5541 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5542 return bfd_reloc_outofrange;
5543
5544 /* Shift is 2, unusually, for microMIPS JALX. */
5545 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5546
5547 if (was_local_p)
5548 value = addend | ((p + 4) & (0xfc000000 << shift));
5549 else
5550 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5551 value = (value + symbol) >> shift;
5552 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5553 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5554 value &= howto->dst_mask;
5555 }
5556 break;
5557
5558 case R_MIPS_TLS_DTPREL_HI16:
5559 case R_MIPS16_TLS_DTPREL_HI16:
5560 case R_MICROMIPS_TLS_DTPREL_HI16:
5561 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5562 & howto->dst_mask);
5563 break;
5564
5565 case R_MIPS_TLS_DTPREL_LO16:
5566 case R_MIPS_TLS_DTPREL32:
5567 case R_MIPS_TLS_DTPREL64:
5568 case R_MIPS16_TLS_DTPREL_LO16:
5569 case R_MICROMIPS_TLS_DTPREL_LO16:
5570 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5571 break;
5572
5573 case R_MIPS_TLS_TPREL_HI16:
5574 case R_MIPS16_TLS_TPREL_HI16:
5575 case R_MICROMIPS_TLS_TPREL_HI16:
5576 value = (mips_elf_high (addend + symbol - tprel_base (info))
5577 & howto->dst_mask);
5578 break;
5579
5580 case R_MIPS_TLS_TPREL_LO16:
5581 case R_MIPS_TLS_TPREL32:
5582 case R_MIPS_TLS_TPREL64:
5583 case R_MIPS16_TLS_TPREL_LO16:
5584 case R_MICROMIPS_TLS_TPREL_LO16:
5585 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5586 break;
5587
5588 case R_MIPS_HI16:
5589 case R_MIPS16_HI16:
5590 case R_MICROMIPS_HI16:
5591 if (!gp_disp_p)
5592 {
5593 value = mips_elf_high (addend + symbol);
5594 value &= howto->dst_mask;
5595 }
5596 else
5597 {
5598 /* For MIPS16 ABI code we generate this sequence
5599 0: li $v0,%hi(_gp_disp)
5600 4: addiupc $v1,%lo(_gp_disp)
5601 8: sll $v0,16
5602 12: addu $v0,$v1
5603 14: move $gp,$v0
5604 So the offsets of hi and lo relocs are the same, but the
5605 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5606 ADDIUPC clears the low two bits of the instruction address,
5607 so the base is ($t9 + 4) & ~3. */
5608 if (r_type == R_MIPS16_HI16)
5609 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5610 /* The microMIPS .cpload sequence uses the same assembly
5611 instructions as the traditional psABI version, but the
5612 incoming $t9 has the low bit set. */
5613 else if (r_type == R_MICROMIPS_HI16)
5614 value = mips_elf_high (addend + gp - p - 1);
5615 else
5616 value = mips_elf_high (addend + gp - p);
5617 overflowed_p = mips_elf_overflow_p (value, 16);
5618 }
5619 break;
5620
5621 case R_MIPS_LO16:
5622 case R_MIPS16_LO16:
5623 case R_MICROMIPS_LO16:
5624 case R_MICROMIPS_HI0_LO16:
5625 if (!gp_disp_p)
5626 value = (symbol + addend) & howto->dst_mask;
5627 else
5628 {
5629 /* See the comment for R_MIPS16_HI16 above for the reason
5630 for this conditional. */
5631 if (r_type == R_MIPS16_LO16)
5632 value = addend + gp - (p & ~(bfd_vma) 0x3);
5633 else if (r_type == R_MICROMIPS_LO16
5634 || r_type == R_MICROMIPS_HI0_LO16)
5635 value = addend + gp - p + 3;
5636 else
5637 value = addend + gp - p + 4;
5638 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5639 for overflow. But, on, say, IRIX5, relocations against
5640 _gp_disp are normally generated from the .cpload
5641 pseudo-op. It generates code that normally looks like
5642 this:
5643
5644 lui $gp,%hi(_gp_disp)
5645 addiu $gp,$gp,%lo(_gp_disp)
5646 addu $gp,$gp,$t9
5647
5648 Here $t9 holds the address of the function being called,
5649 as required by the MIPS ELF ABI. The R_MIPS_LO16
5650 relocation can easily overflow in this situation, but the
5651 R_MIPS_HI16 relocation will handle the overflow.
5652 Therefore, we consider this a bug in the MIPS ABI, and do
5653 not check for overflow here. */
5654 }
5655 break;
5656
5657 case R_MIPS_LITERAL:
5658 case R_MICROMIPS_LITERAL:
5659 /* Because we don't merge literal sections, we can handle this
5660 just like R_MIPS_GPREL16. In the long run, we should merge
5661 shared literals, and then we will need to additional work
5662 here. */
5663
5664 /* Fall through. */
5665
5666 case R_MIPS16_GPREL:
5667 /* The R_MIPS16_GPREL performs the same calculation as
5668 R_MIPS_GPREL16, but stores the relocated bits in a different
5669 order. We don't need to do anything special here; the
5670 differences are handled in mips_elf_perform_relocation. */
5671 case R_MIPS_GPREL16:
5672 case R_MICROMIPS_GPREL7_S2:
5673 case R_MICROMIPS_GPREL16:
5674 /* Only sign-extend the addend if it was extracted from the
5675 instruction. If the addend was separate, leave it alone,
5676 otherwise we may lose significant bits. */
5677 if (howto->partial_inplace)
5678 addend = _bfd_mips_elf_sign_extend (addend, 16);
5679 value = symbol + addend - gp;
5680 /* If the symbol was local, any earlier relocatable links will
5681 have adjusted its addend with the gp offset, so compensate
5682 for that now. Don't do it for symbols forced local in this
5683 link, though, since they won't have had the gp offset applied
5684 to them before. */
5685 if (was_local_p)
5686 value += gp0;
5687 overflowed_p = mips_elf_overflow_p (value, 16);
5688 break;
5689
5690 case R_MIPS16_GOT16:
5691 case R_MIPS16_CALL16:
5692 case R_MIPS_GOT16:
5693 case R_MIPS_CALL16:
5694 case R_MICROMIPS_GOT16:
5695 case R_MICROMIPS_CALL16:
5696 /* VxWorks does not have separate local and global semantics for
5697 R_MIPS*_GOT16; every relocation evaluates to "G". */
5698 if (!htab->is_vxworks && local_p)
5699 {
5700 value = mips_elf_got16_entry (abfd, input_bfd, info,
5701 symbol + addend, !was_local_p);
5702 if (value == MINUS_ONE)
5703 return bfd_reloc_outofrange;
5704 value
5705 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5706 overflowed_p = mips_elf_overflow_p (value, 16);
5707 break;
5708 }
5709
5710 /* Fall through. */
5711
5712 case R_MIPS_TLS_GD:
5713 case R_MIPS_TLS_GOTTPREL:
5714 case R_MIPS_TLS_LDM:
5715 case R_MIPS_GOT_DISP:
5716 case R_MIPS16_TLS_GD:
5717 case R_MIPS16_TLS_GOTTPREL:
5718 case R_MIPS16_TLS_LDM:
5719 case R_MICROMIPS_TLS_GD:
5720 case R_MICROMIPS_TLS_GOTTPREL:
5721 case R_MICROMIPS_TLS_LDM:
5722 case R_MICROMIPS_GOT_DISP:
5723 value = g;
5724 overflowed_p = mips_elf_overflow_p (value, 16);
5725 break;
5726
5727 case R_MIPS_GPREL32:
5728 value = (addend + symbol + gp0 - gp);
5729 if (!save_addend)
5730 value &= howto->dst_mask;
5731 break;
5732
5733 case R_MIPS_PC16:
5734 case R_MIPS_GNU_REL16_S2:
5735 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5736 overflowed_p = mips_elf_overflow_p (value, 18);
5737 value >>= howto->rightshift;
5738 value &= howto->dst_mask;
5739 break;
5740
5741 case R_MICROMIPS_PC7_S1:
5742 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5743 overflowed_p = mips_elf_overflow_p (value, 8);
5744 value >>= howto->rightshift;
5745 value &= howto->dst_mask;
5746 break;
5747
5748 case R_MICROMIPS_PC10_S1:
5749 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5750 overflowed_p = mips_elf_overflow_p (value, 11);
5751 value >>= howto->rightshift;
5752 value &= howto->dst_mask;
5753 break;
5754
5755 case R_MICROMIPS_PC16_S1:
5756 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5757 overflowed_p = mips_elf_overflow_p (value, 17);
5758 value >>= howto->rightshift;
5759 value &= howto->dst_mask;
5760 break;
5761
5762 case R_MICROMIPS_PC23_S2:
5763 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5764 overflowed_p = mips_elf_overflow_p (value, 25);
5765 value >>= howto->rightshift;
5766 value &= howto->dst_mask;
5767 break;
5768
5769 case R_MIPS_GOT_HI16:
5770 case R_MIPS_CALL_HI16:
5771 case R_MICROMIPS_GOT_HI16:
5772 case R_MICROMIPS_CALL_HI16:
5773 /* We're allowed to handle these two relocations identically.
5774 The dynamic linker is allowed to handle the CALL relocations
5775 differently by creating a lazy evaluation stub. */
5776 value = g;
5777 value = mips_elf_high (value);
5778 value &= howto->dst_mask;
5779 break;
5780
5781 case R_MIPS_GOT_LO16:
5782 case R_MIPS_CALL_LO16:
5783 case R_MICROMIPS_GOT_LO16:
5784 case R_MICROMIPS_CALL_LO16:
5785 value = g & howto->dst_mask;
5786 break;
5787
5788 case R_MIPS_GOT_PAGE:
5789 case R_MICROMIPS_GOT_PAGE:
5790 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5791 if (value == MINUS_ONE)
5792 return bfd_reloc_outofrange;
5793 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5794 overflowed_p = mips_elf_overflow_p (value, 16);
5795 break;
5796
5797 case R_MIPS_GOT_OFST:
5798 case R_MICROMIPS_GOT_OFST:
5799 if (local_p)
5800 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5801 else
5802 value = addend;
5803 overflowed_p = mips_elf_overflow_p (value, 16);
5804 break;
5805
5806 case R_MIPS_SUB:
5807 case R_MICROMIPS_SUB:
5808 value = symbol - addend;
5809 value &= howto->dst_mask;
5810 break;
5811
5812 case R_MIPS_HIGHER:
5813 case R_MICROMIPS_HIGHER:
5814 value = mips_elf_higher (addend + symbol);
5815 value &= howto->dst_mask;
5816 break;
5817
5818 case R_MIPS_HIGHEST:
5819 case R_MICROMIPS_HIGHEST:
5820 value = mips_elf_highest (addend + symbol);
5821 value &= howto->dst_mask;
5822 break;
5823
5824 case R_MIPS_SCN_DISP:
5825 case R_MICROMIPS_SCN_DISP:
5826 value = symbol + addend - sec->output_offset;
5827 value &= howto->dst_mask;
5828 break;
5829
5830 case R_MIPS_JALR:
5831 case R_MICROMIPS_JALR:
5832 /* This relocation is only a hint. In some cases, we optimize
5833 it into a bal instruction. But we don't try to optimize
5834 when the symbol does not resolve locally. */
5835 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5836 return bfd_reloc_continue;
5837 value = symbol + addend;
5838 break;
5839
5840 case R_MIPS_PJUMP:
5841 case R_MIPS_GNU_VTINHERIT:
5842 case R_MIPS_GNU_VTENTRY:
5843 /* We don't do anything with these at present. */
5844 return bfd_reloc_continue;
5845
5846 default:
5847 /* An unrecognized relocation type. */
5848 return bfd_reloc_notsupported;
5849 }
5850
5851 /* Store the VALUE for our caller. */
5852 *valuep = value;
5853 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5854 }
5855
5856 /* Obtain the field relocated by RELOCATION. */
5857
5858 static bfd_vma
5859 mips_elf_obtain_contents (reloc_howto_type *howto,
5860 const Elf_Internal_Rela *relocation,
5861 bfd *input_bfd, bfd_byte *contents)
5862 {
5863 bfd_vma x;
5864 bfd_byte *location = contents + relocation->r_offset;
5865
5866 /* Obtain the bytes. */
5867 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5868
5869 return x;
5870 }
5871
5872 /* It has been determined that the result of the RELOCATION is the
5873 VALUE. Use HOWTO to place VALUE into the output file at the
5874 appropriate position. The SECTION is the section to which the
5875 relocation applies.
5876 CROSS_MODE_JUMP_P is true if the relocation field
5877 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5878
5879 Returns FALSE if anything goes wrong. */
5880
5881 static bfd_boolean
5882 mips_elf_perform_relocation (struct bfd_link_info *info,
5883 reloc_howto_type *howto,
5884 const Elf_Internal_Rela *relocation,
5885 bfd_vma value, bfd *input_bfd,
5886 asection *input_section, bfd_byte *contents,
5887 bfd_boolean cross_mode_jump_p)
5888 {
5889 bfd_vma x;
5890 bfd_byte *location;
5891 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5892
5893 /* Figure out where the relocation is occurring. */
5894 location = contents + relocation->r_offset;
5895
5896 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5897
5898 /* Obtain the current value. */
5899 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5900
5901 /* Clear the field we are setting. */
5902 x &= ~howto->dst_mask;
5903
5904 /* Set the field. */
5905 x |= (value & howto->dst_mask);
5906
5907 /* If required, turn JAL into JALX. */
5908 if (cross_mode_jump_p && jal_reloc_p (r_type))
5909 {
5910 bfd_boolean ok;
5911 bfd_vma opcode = x >> 26;
5912 bfd_vma jalx_opcode;
5913
5914 /* Check to see if the opcode is already JAL or JALX. */
5915 if (r_type == R_MIPS16_26)
5916 {
5917 ok = ((opcode == 0x6) || (opcode == 0x7));
5918 jalx_opcode = 0x7;
5919 }
5920 else if (r_type == R_MICROMIPS_26_S1)
5921 {
5922 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5923 jalx_opcode = 0x3c;
5924 }
5925 else
5926 {
5927 ok = ((opcode == 0x3) || (opcode == 0x1d));
5928 jalx_opcode = 0x1d;
5929 }
5930
5931 /* If the opcode is not JAL or JALX, there's a problem. */
5932 if (!ok)
5933 {
5934 (*_bfd_error_handler)
5935 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5936 input_bfd,
5937 input_section,
5938 (unsigned long) relocation->r_offset);
5939 bfd_set_error (bfd_error_bad_value);
5940 return FALSE;
5941 }
5942
5943 /* Make this the JALX opcode. */
5944 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5945 }
5946
5947 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5948 range. */
5949 if (!info->relocatable
5950 && !cross_mode_jump_p
5951 && ((JAL_TO_BAL_P (input_bfd)
5952 && r_type == R_MIPS_26
5953 && (x >> 26) == 0x3) /* jal addr */
5954 || (JALR_TO_BAL_P (input_bfd)
5955 && r_type == R_MIPS_JALR
5956 && x == 0x0320f809) /* jalr t9 */
5957 || (JR_TO_B_P (input_bfd)
5958 && r_type == R_MIPS_JALR
5959 && x == 0x03200008))) /* jr t9 */
5960 {
5961 bfd_vma addr;
5962 bfd_vma dest;
5963 bfd_signed_vma off;
5964
5965 addr = (input_section->output_section->vma
5966 + input_section->output_offset
5967 + relocation->r_offset
5968 + 4);
5969 if (r_type == R_MIPS_26)
5970 dest = (value << 2) | ((addr >> 28) << 28);
5971 else
5972 dest = value;
5973 off = dest - addr;
5974 if (off <= 0x1ffff && off >= -0x20000)
5975 {
5976 if (x == 0x03200008) /* jr t9 */
5977 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5978 else
5979 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5980 }
5981 }
5982
5983 /* Put the value into the output. */
5984 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5985
5986 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5987 location);
5988
5989 return TRUE;
5990 }
5991 \f
5992 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5993 is the original relocation, which is now being transformed into a
5994 dynamic relocation. The ADDENDP is adjusted if necessary; the
5995 caller should store the result in place of the original addend. */
5996
5997 static bfd_boolean
5998 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5999 struct bfd_link_info *info,
6000 const Elf_Internal_Rela *rel,
6001 struct mips_elf_link_hash_entry *h,
6002 asection *sec, bfd_vma symbol,
6003 bfd_vma *addendp, asection *input_section)
6004 {
6005 Elf_Internal_Rela outrel[3];
6006 asection *sreloc;
6007 bfd *dynobj;
6008 int r_type;
6009 long indx;
6010 bfd_boolean defined_p;
6011 struct mips_elf_link_hash_table *htab;
6012
6013 htab = mips_elf_hash_table (info);
6014 BFD_ASSERT (htab != NULL);
6015
6016 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6017 dynobj = elf_hash_table (info)->dynobj;
6018 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6019 BFD_ASSERT (sreloc != NULL);
6020 BFD_ASSERT (sreloc->contents != NULL);
6021 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6022 < sreloc->size);
6023
6024 outrel[0].r_offset =
6025 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6026 if (ABI_64_P (output_bfd))
6027 {
6028 outrel[1].r_offset =
6029 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6030 outrel[2].r_offset =
6031 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6032 }
6033
6034 if (outrel[0].r_offset == MINUS_ONE)
6035 /* The relocation field has been deleted. */
6036 return TRUE;
6037
6038 if (outrel[0].r_offset == MINUS_TWO)
6039 {
6040 /* The relocation field has been converted into a relative value of
6041 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6042 the field to be fully relocated, so add in the symbol's value. */
6043 *addendp += symbol;
6044 return TRUE;
6045 }
6046
6047 /* We must now calculate the dynamic symbol table index to use
6048 in the relocation. */
6049 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6050 {
6051 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6052 indx = h->root.dynindx;
6053 if (SGI_COMPAT (output_bfd))
6054 defined_p = h->root.def_regular;
6055 else
6056 /* ??? glibc's ld.so just adds the final GOT entry to the
6057 relocation field. It therefore treats relocs against
6058 defined symbols in the same way as relocs against
6059 undefined symbols. */
6060 defined_p = FALSE;
6061 }
6062 else
6063 {
6064 if (sec != NULL && bfd_is_abs_section (sec))
6065 indx = 0;
6066 else if (sec == NULL || sec->owner == NULL)
6067 {
6068 bfd_set_error (bfd_error_bad_value);
6069 return FALSE;
6070 }
6071 else
6072 {
6073 indx = elf_section_data (sec->output_section)->dynindx;
6074 if (indx == 0)
6075 {
6076 asection *osec = htab->root.text_index_section;
6077 indx = elf_section_data (osec)->dynindx;
6078 }
6079 if (indx == 0)
6080 abort ();
6081 }
6082
6083 /* Instead of generating a relocation using the section
6084 symbol, we may as well make it a fully relative
6085 relocation. We want to avoid generating relocations to
6086 local symbols because we used to generate them
6087 incorrectly, without adding the original symbol value,
6088 which is mandated by the ABI for section symbols. In
6089 order to give dynamic loaders and applications time to
6090 phase out the incorrect use, we refrain from emitting
6091 section-relative relocations. It's not like they're
6092 useful, after all. This should be a bit more efficient
6093 as well. */
6094 /* ??? Although this behavior is compatible with glibc's ld.so,
6095 the ABI says that relocations against STN_UNDEF should have
6096 a symbol value of 0. Irix rld honors this, so relocations
6097 against STN_UNDEF have no effect. */
6098 if (!SGI_COMPAT (output_bfd))
6099 indx = 0;
6100 defined_p = TRUE;
6101 }
6102
6103 /* If the relocation was previously an absolute relocation and
6104 this symbol will not be referred to by the relocation, we must
6105 adjust it by the value we give it in the dynamic symbol table.
6106 Otherwise leave the job up to the dynamic linker. */
6107 if (defined_p && r_type != R_MIPS_REL32)
6108 *addendp += symbol;
6109
6110 if (htab->is_vxworks)
6111 /* VxWorks uses non-relative relocations for this. */
6112 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6113 else
6114 /* The relocation is always an REL32 relocation because we don't
6115 know where the shared library will wind up at load-time. */
6116 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6117 R_MIPS_REL32);
6118
6119 /* For strict adherence to the ABI specification, we should
6120 generate a R_MIPS_64 relocation record by itself before the
6121 _REL32/_64 record as well, such that the addend is read in as
6122 a 64-bit value (REL32 is a 32-bit relocation, after all).
6123 However, since none of the existing ELF64 MIPS dynamic
6124 loaders seems to care, we don't waste space with these
6125 artificial relocations. If this turns out to not be true,
6126 mips_elf_allocate_dynamic_relocation() should be tweaked so
6127 as to make room for a pair of dynamic relocations per
6128 invocation if ABI_64_P, and here we should generate an
6129 additional relocation record with R_MIPS_64 by itself for a
6130 NULL symbol before this relocation record. */
6131 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6132 ABI_64_P (output_bfd)
6133 ? R_MIPS_64
6134 : R_MIPS_NONE);
6135 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6136
6137 /* Adjust the output offset of the relocation to reference the
6138 correct location in the output file. */
6139 outrel[0].r_offset += (input_section->output_section->vma
6140 + input_section->output_offset);
6141 outrel[1].r_offset += (input_section->output_section->vma
6142 + input_section->output_offset);
6143 outrel[2].r_offset += (input_section->output_section->vma
6144 + input_section->output_offset);
6145
6146 /* Put the relocation back out. We have to use the special
6147 relocation outputter in the 64-bit case since the 64-bit
6148 relocation format is non-standard. */
6149 if (ABI_64_P (output_bfd))
6150 {
6151 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6152 (output_bfd, &outrel[0],
6153 (sreloc->contents
6154 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6155 }
6156 else if (htab->is_vxworks)
6157 {
6158 /* VxWorks uses RELA rather than REL dynamic relocations. */
6159 outrel[0].r_addend = *addendp;
6160 bfd_elf32_swap_reloca_out
6161 (output_bfd, &outrel[0],
6162 (sreloc->contents
6163 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6164 }
6165 else
6166 bfd_elf32_swap_reloc_out
6167 (output_bfd, &outrel[0],
6168 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6169
6170 /* We've now added another relocation. */
6171 ++sreloc->reloc_count;
6172
6173 /* Make sure the output section is writable. The dynamic linker
6174 will be writing to it. */
6175 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6176 |= SHF_WRITE;
6177
6178 /* On IRIX5, make an entry of compact relocation info. */
6179 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6180 {
6181 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
6182 bfd_byte *cr;
6183
6184 if (scpt)
6185 {
6186 Elf32_crinfo cptrel;
6187
6188 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6189 cptrel.vaddr = (rel->r_offset
6190 + input_section->output_section->vma
6191 + input_section->output_offset);
6192 if (r_type == R_MIPS_REL32)
6193 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6194 else
6195 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6196 mips_elf_set_cr_dist2to (cptrel, 0);
6197 cptrel.konst = *addendp;
6198
6199 cr = (scpt->contents
6200 + sizeof (Elf32_External_compact_rel));
6201 mips_elf_set_cr_relvaddr (cptrel, 0);
6202 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6203 ((Elf32_External_crinfo *) cr
6204 + scpt->reloc_count));
6205 ++scpt->reloc_count;
6206 }
6207 }
6208
6209 /* If we've written this relocation for a readonly section,
6210 we need to set DF_TEXTREL again, so that we do not delete the
6211 DT_TEXTREL tag. */
6212 if (MIPS_ELF_READONLY_SECTION (input_section))
6213 info->flags |= DF_TEXTREL;
6214
6215 return TRUE;
6216 }
6217 \f
6218 /* Return the MACH for a MIPS e_flags value. */
6219
6220 unsigned long
6221 _bfd_elf_mips_mach (flagword flags)
6222 {
6223 switch (flags & EF_MIPS_MACH)
6224 {
6225 case E_MIPS_MACH_3900:
6226 return bfd_mach_mips3900;
6227
6228 case E_MIPS_MACH_4010:
6229 return bfd_mach_mips4010;
6230
6231 case E_MIPS_MACH_4100:
6232 return bfd_mach_mips4100;
6233
6234 case E_MIPS_MACH_4111:
6235 return bfd_mach_mips4111;
6236
6237 case E_MIPS_MACH_4120:
6238 return bfd_mach_mips4120;
6239
6240 case E_MIPS_MACH_4650:
6241 return bfd_mach_mips4650;
6242
6243 case E_MIPS_MACH_5400:
6244 return bfd_mach_mips5400;
6245
6246 case E_MIPS_MACH_5500:
6247 return bfd_mach_mips5500;
6248
6249 case E_MIPS_MACH_9000:
6250 return bfd_mach_mips9000;
6251
6252 case E_MIPS_MACH_SB1:
6253 return bfd_mach_mips_sb1;
6254
6255 case E_MIPS_MACH_LS2E:
6256 return bfd_mach_mips_loongson_2e;
6257
6258 case E_MIPS_MACH_LS2F:
6259 return bfd_mach_mips_loongson_2f;
6260
6261 case E_MIPS_MACH_LS3A:
6262 return bfd_mach_mips_loongson_3a;
6263
6264 case E_MIPS_MACH_OCTEON2:
6265 return bfd_mach_mips_octeon2;
6266
6267 case E_MIPS_MACH_OCTEON:
6268 return bfd_mach_mips_octeon;
6269
6270 case E_MIPS_MACH_XLR:
6271 return bfd_mach_mips_xlr;
6272
6273 default:
6274 switch (flags & EF_MIPS_ARCH)
6275 {
6276 default:
6277 case E_MIPS_ARCH_1:
6278 return bfd_mach_mips3000;
6279
6280 case E_MIPS_ARCH_2:
6281 return bfd_mach_mips6000;
6282
6283 case E_MIPS_ARCH_3:
6284 return bfd_mach_mips4000;
6285
6286 case E_MIPS_ARCH_4:
6287 return bfd_mach_mips8000;
6288
6289 case E_MIPS_ARCH_5:
6290 return bfd_mach_mips5;
6291
6292 case E_MIPS_ARCH_32:
6293 return bfd_mach_mipsisa32;
6294
6295 case E_MIPS_ARCH_64:
6296 return bfd_mach_mipsisa64;
6297
6298 case E_MIPS_ARCH_32R2:
6299 return bfd_mach_mipsisa32r2;
6300
6301 case E_MIPS_ARCH_64R2:
6302 return bfd_mach_mipsisa64r2;
6303 }
6304 }
6305
6306 return 0;
6307 }
6308
6309 /* Return printable name for ABI. */
6310
6311 static INLINE char *
6312 elf_mips_abi_name (bfd *abfd)
6313 {
6314 flagword flags;
6315
6316 flags = elf_elfheader (abfd)->e_flags;
6317 switch (flags & EF_MIPS_ABI)
6318 {
6319 case 0:
6320 if (ABI_N32_P (abfd))
6321 return "N32";
6322 else if (ABI_64_P (abfd))
6323 return "64";
6324 else
6325 return "none";
6326 case E_MIPS_ABI_O32:
6327 return "O32";
6328 case E_MIPS_ABI_O64:
6329 return "O64";
6330 case E_MIPS_ABI_EABI32:
6331 return "EABI32";
6332 case E_MIPS_ABI_EABI64:
6333 return "EABI64";
6334 default:
6335 return "unknown abi";
6336 }
6337 }
6338 \f
6339 /* MIPS ELF uses two common sections. One is the usual one, and the
6340 other is for small objects. All the small objects are kept
6341 together, and then referenced via the gp pointer, which yields
6342 faster assembler code. This is what we use for the small common
6343 section. This approach is copied from ecoff.c. */
6344 static asection mips_elf_scom_section;
6345 static asymbol mips_elf_scom_symbol;
6346 static asymbol *mips_elf_scom_symbol_ptr;
6347
6348 /* MIPS ELF also uses an acommon section, which represents an
6349 allocated common symbol which may be overridden by a
6350 definition in a shared library. */
6351 static asection mips_elf_acom_section;
6352 static asymbol mips_elf_acom_symbol;
6353 static asymbol *mips_elf_acom_symbol_ptr;
6354
6355 /* This is used for both the 32-bit and the 64-bit ABI. */
6356
6357 void
6358 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6359 {
6360 elf_symbol_type *elfsym;
6361
6362 /* Handle the special MIPS section numbers that a symbol may use. */
6363 elfsym = (elf_symbol_type *) asym;
6364 switch (elfsym->internal_elf_sym.st_shndx)
6365 {
6366 case SHN_MIPS_ACOMMON:
6367 /* This section is used in a dynamically linked executable file.
6368 It is an allocated common section. The dynamic linker can
6369 either resolve these symbols to something in a shared
6370 library, or it can just leave them here. For our purposes,
6371 we can consider these symbols to be in a new section. */
6372 if (mips_elf_acom_section.name == NULL)
6373 {
6374 /* Initialize the acommon section. */
6375 mips_elf_acom_section.name = ".acommon";
6376 mips_elf_acom_section.flags = SEC_ALLOC;
6377 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6378 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6379 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6380 mips_elf_acom_symbol.name = ".acommon";
6381 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6382 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6383 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6384 }
6385 asym->section = &mips_elf_acom_section;
6386 break;
6387
6388 case SHN_COMMON:
6389 /* Common symbols less than the GP size are automatically
6390 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6391 if (asym->value > elf_gp_size (abfd)
6392 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6393 || IRIX_COMPAT (abfd) == ict_irix6)
6394 break;
6395 /* Fall through. */
6396 case SHN_MIPS_SCOMMON:
6397 if (mips_elf_scom_section.name == NULL)
6398 {
6399 /* Initialize the small common section. */
6400 mips_elf_scom_section.name = ".scommon";
6401 mips_elf_scom_section.flags = SEC_IS_COMMON;
6402 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6403 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6404 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6405 mips_elf_scom_symbol.name = ".scommon";
6406 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6407 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6408 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6409 }
6410 asym->section = &mips_elf_scom_section;
6411 asym->value = elfsym->internal_elf_sym.st_size;
6412 break;
6413
6414 case SHN_MIPS_SUNDEFINED:
6415 asym->section = bfd_und_section_ptr;
6416 break;
6417
6418 case SHN_MIPS_TEXT:
6419 {
6420 asection *section = bfd_get_section_by_name (abfd, ".text");
6421
6422 if (section != NULL)
6423 {
6424 asym->section = section;
6425 /* MIPS_TEXT is a bit special, the address is not an offset
6426 to the base of the .text section. So substract the section
6427 base address to make it an offset. */
6428 asym->value -= section->vma;
6429 }
6430 }
6431 break;
6432
6433 case SHN_MIPS_DATA:
6434 {
6435 asection *section = bfd_get_section_by_name (abfd, ".data");
6436
6437 if (section != NULL)
6438 {
6439 asym->section = section;
6440 /* MIPS_DATA is a bit special, the address is not an offset
6441 to the base of the .data section. So substract the section
6442 base address to make it an offset. */
6443 asym->value -= section->vma;
6444 }
6445 }
6446 break;
6447 }
6448
6449 /* If this is an odd-valued function symbol, assume it's a MIPS16
6450 or microMIPS one. */
6451 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6452 && (asym->value & 1) != 0)
6453 {
6454 asym->value--;
6455 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6456 elfsym->internal_elf_sym.st_other
6457 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6458 else
6459 elfsym->internal_elf_sym.st_other
6460 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6461 }
6462 }
6463 \f
6464 /* Implement elf_backend_eh_frame_address_size. This differs from
6465 the default in the way it handles EABI64.
6466
6467 EABI64 was originally specified as an LP64 ABI, and that is what
6468 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6469 historically accepted the combination of -mabi=eabi and -mlong32,
6470 and this ILP32 variation has become semi-official over time.
6471 Both forms use elf32 and have pointer-sized FDE addresses.
6472
6473 If an EABI object was generated by GCC 4.0 or above, it will have
6474 an empty .gcc_compiled_longXX section, where XX is the size of longs
6475 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6476 have no special marking to distinguish them from LP64 objects.
6477
6478 We don't want users of the official LP64 ABI to be punished for the
6479 existence of the ILP32 variant, but at the same time, we don't want
6480 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6481 We therefore take the following approach:
6482
6483 - If ABFD contains a .gcc_compiled_longXX section, use it to
6484 determine the pointer size.
6485
6486 - Otherwise check the type of the first relocation. Assume that
6487 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6488
6489 - Otherwise punt.
6490
6491 The second check is enough to detect LP64 objects generated by pre-4.0
6492 compilers because, in the kind of output generated by those compilers,
6493 the first relocation will be associated with either a CIE personality
6494 routine or an FDE start address. Furthermore, the compilers never
6495 used a special (non-pointer) encoding for this ABI.
6496
6497 Checking the relocation type should also be safe because there is no
6498 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6499 did so. */
6500
6501 unsigned int
6502 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6503 {
6504 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6505 return 8;
6506 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6507 {
6508 bfd_boolean long32_p, long64_p;
6509
6510 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6511 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6512 if (long32_p && long64_p)
6513 return 0;
6514 if (long32_p)
6515 return 4;
6516 if (long64_p)
6517 return 8;
6518
6519 if (sec->reloc_count > 0
6520 && elf_section_data (sec)->relocs != NULL
6521 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6522 == R_MIPS_64))
6523 return 8;
6524
6525 return 0;
6526 }
6527 return 4;
6528 }
6529 \f
6530 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6531 relocations against two unnamed section symbols to resolve to the
6532 same address. For example, if we have code like:
6533
6534 lw $4,%got_disp(.data)($gp)
6535 lw $25,%got_disp(.text)($gp)
6536 jalr $25
6537
6538 then the linker will resolve both relocations to .data and the program
6539 will jump there rather than to .text.
6540
6541 We can work around this problem by giving names to local section symbols.
6542 This is also what the MIPSpro tools do. */
6543
6544 bfd_boolean
6545 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6546 {
6547 return SGI_COMPAT (abfd);
6548 }
6549 \f
6550 /* Work over a section just before writing it out. This routine is
6551 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6552 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6553 a better way. */
6554
6555 bfd_boolean
6556 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6557 {
6558 if (hdr->sh_type == SHT_MIPS_REGINFO
6559 && hdr->sh_size > 0)
6560 {
6561 bfd_byte buf[4];
6562
6563 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6564 BFD_ASSERT (hdr->contents == NULL);
6565
6566 if (bfd_seek (abfd,
6567 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6568 SEEK_SET) != 0)
6569 return FALSE;
6570 H_PUT_32 (abfd, elf_gp (abfd), buf);
6571 if (bfd_bwrite (buf, 4, abfd) != 4)
6572 return FALSE;
6573 }
6574
6575 if (hdr->sh_type == SHT_MIPS_OPTIONS
6576 && hdr->bfd_section != NULL
6577 && mips_elf_section_data (hdr->bfd_section) != NULL
6578 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6579 {
6580 bfd_byte *contents, *l, *lend;
6581
6582 /* We stored the section contents in the tdata field in the
6583 set_section_contents routine. We save the section contents
6584 so that we don't have to read them again.
6585 At this point we know that elf_gp is set, so we can look
6586 through the section contents to see if there is an
6587 ODK_REGINFO structure. */
6588
6589 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6590 l = contents;
6591 lend = contents + hdr->sh_size;
6592 while (l + sizeof (Elf_External_Options) <= lend)
6593 {
6594 Elf_Internal_Options intopt;
6595
6596 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6597 &intopt);
6598 if (intopt.size < sizeof (Elf_External_Options))
6599 {
6600 (*_bfd_error_handler)
6601 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6602 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6603 break;
6604 }
6605 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6606 {
6607 bfd_byte buf[8];
6608
6609 if (bfd_seek (abfd,
6610 (hdr->sh_offset
6611 + (l - contents)
6612 + sizeof (Elf_External_Options)
6613 + (sizeof (Elf64_External_RegInfo) - 8)),
6614 SEEK_SET) != 0)
6615 return FALSE;
6616 H_PUT_64 (abfd, elf_gp (abfd), buf);
6617 if (bfd_bwrite (buf, 8, abfd) != 8)
6618 return FALSE;
6619 }
6620 else if (intopt.kind == ODK_REGINFO)
6621 {
6622 bfd_byte buf[4];
6623
6624 if (bfd_seek (abfd,
6625 (hdr->sh_offset
6626 + (l - contents)
6627 + sizeof (Elf_External_Options)
6628 + (sizeof (Elf32_External_RegInfo) - 4)),
6629 SEEK_SET) != 0)
6630 return FALSE;
6631 H_PUT_32 (abfd, elf_gp (abfd), buf);
6632 if (bfd_bwrite (buf, 4, abfd) != 4)
6633 return FALSE;
6634 }
6635 l += intopt.size;
6636 }
6637 }
6638
6639 if (hdr->bfd_section != NULL)
6640 {
6641 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6642
6643 /* .sbss is not handled specially here because the GNU/Linux
6644 prelinker can convert .sbss from NOBITS to PROGBITS and
6645 changing it back to NOBITS breaks the binary. The entry in
6646 _bfd_mips_elf_special_sections will ensure the correct flags
6647 are set on .sbss if BFD creates it without reading it from an
6648 input file, and without special handling here the flags set
6649 on it in an input file will be followed. */
6650 if (strcmp (name, ".sdata") == 0
6651 || strcmp (name, ".lit8") == 0
6652 || strcmp (name, ".lit4") == 0)
6653 {
6654 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6655 hdr->sh_type = SHT_PROGBITS;
6656 }
6657 else if (strcmp (name, ".srdata") == 0)
6658 {
6659 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6660 hdr->sh_type = SHT_PROGBITS;
6661 }
6662 else if (strcmp (name, ".compact_rel") == 0)
6663 {
6664 hdr->sh_flags = 0;
6665 hdr->sh_type = SHT_PROGBITS;
6666 }
6667 else if (strcmp (name, ".rtproc") == 0)
6668 {
6669 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6670 {
6671 unsigned int adjust;
6672
6673 adjust = hdr->sh_size % hdr->sh_addralign;
6674 if (adjust != 0)
6675 hdr->sh_size += hdr->sh_addralign - adjust;
6676 }
6677 }
6678 }
6679
6680 return TRUE;
6681 }
6682
6683 /* Handle a MIPS specific section when reading an object file. This
6684 is called when elfcode.h finds a section with an unknown type.
6685 This routine supports both the 32-bit and 64-bit ELF ABI.
6686
6687 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6688 how to. */
6689
6690 bfd_boolean
6691 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6692 Elf_Internal_Shdr *hdr,
6693 const char *name,
6694 int shindex)
6695 {
6696 flagword flags = 0;
6697
6698 /* There ought to be a place to keep ELF backend specific flags, but
6699 at the moment there isn't one. We just keep track of the
6700 sections by their name, instead. Fortunately, the ABI gives
6701 suggested names for all the MIPS specific sections, so we will
6702 probably get away with this. */
6703 switch (hdr->sh_type)
6704 {
6705 case SHT_MIPS_LIBLIST:
6706 if (strcmp (name, ".liblist") != 0)
6707 return FALSE;
6708 break;
6709 case SHT_MIPS_MSYM:
6710 if (strcmp (name, ".msym") != 0)
6711 return FALSE;
6712 break;
6713 case SHT_MIPS_CONFLICT:
6714 if (strcmp (name, ".conflict") != 0)
6715 return FALSE;
6716 break;
6717 case SHT_MIPS_GPTAB:
6718 if (! CONST_STRNEQ (name, ".gptab."))
6719 return FALSE;
6720 break;
6721 case SHT_MIPS_UCODE:
6722 if (strcmp (name, ".ucode") != 0)
6723 return FALSE;
6724 break;
6725 case SHT_MIPS_DEBUG:
6726 if (strcmp (name, ".mdebug") != 0)
6727 return FALSE;
6728 flags = SEC_DEBUGGING;
6729 break;
6730 case SHT_MIPS_REGINFO:
6731 if (strcmp (name, ".reginfo") != 0
6732 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6733 return FALSE;
6734 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6735 break;
6736 case SHT_MIPS_IFACE:
6737 if (strcmp (name, ".MIPS.interfaces") != 0)
6738 return FALSE;
6739 break;
6740 case SHT_MIPS_CONTENT:
6741 if (! CONST_STRNEQ (name, ".MIPS.content"))
6742 return FALSE;
6743 break;
6744 case SHT_MIPS_OPTIONS:
6745 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6746 return FALSE;
6747 break;
6748 case SHT_MIPS_DWARF:
6749 if (! CONST_STRNEQ (name, ".debug_")
6750 && ! CONST_STRNEQ (name, ".zdebug_"))
6751 return FALSE;
6752 break;
6753 case SHT_MIPS_SYMBOL_LIB:
6754 if (strcmp (name, ".MIPS.symlib") != 0)
6755 return FALSE;
6756 break;
6757 case SHT_MIPS_EVENTS:
6758 if (! CONST_STRNEQ (name, ".MIPS.events")
6759 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6760 return FALSE;
6761 break;
6762 default:
6763 break;
6764 }
6765
6766 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6767 return FALSE;
6768
6769 if (flags)
6770 {
6771 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6772 (bfd_get_section_flags (abfd,
6773 hdr->bfd_section)
6774 | flags)))
6775 return FALSE;
6776 }
6777
6778 /* FIXME: We should record sh_info for a .gptab section. */
6779
6780 /* For a .reginfo section, set the gp value in the tdata information
6781 from the contents of this section. We need the gp value while
6782 processing relocs, so we just get it now. The .reginfo section
6783 is not used in the 64-bit MIPS ELF ABI. */
6784 if (hdr->sh_type == SHT_MIPS_REGINFO)
6785 {
6786 Elf32_External_RegInfo ext;
6787 Elf32_RegInfo s;
6788
6789 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6790 &ext, 0, sizeof ext))
6791 return FALSE;
6792 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6793 elf_gp (abfd) = s.ri_gp_value;
6794 }
6795
6796 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6797 set the gp value based on what we find. We may see both
6798 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6799 they should agree. */
6800 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6801 {
6802 bfd_byte *contents, *l, *lend;
6803
6804 contents = bfd_malloc (hdr->sh_size);
6805 if (contents == NULL)
6806 return FALSE;
6807 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6808 0, hdr->sh_size))
6809 {
6810 free (contents);
6811 return FALSE;
6812 }
6813 l = contents;
6814 lend = contents + hdr->sh_size;
6815 while (l + sizeof (Elf_External_Options) <= lend)
6816 {
6817 Elf_Internal_Options intopt;
6818
6819 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6820 &intopt);
6821 if (intopt.size < sizeof (Elf_External_Options))
6822 {
6823 (*_bfd_error_handler)
6824 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6825 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6826 break;
6827 }
6828 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6829 {
6830 Elf64_Internal_RegInfo intreg;
6831
6832 bfd_mips_elf64_swap_reginfo_in
6833 (abfd,
6834 ((Elf64_External_RegInfo *)
6835 (l + sizeof (Elf_External_Options))),
6836 &intreg);
6837 elf_gp (abfd) = intreg.ri_gp_value;
6838 }
6839 else if (intopt.kind == ODK_REGINFO)
6840 {
6841 Elf32_RegInfo intreg;
6842
6843 bfd_mips_elf32_swap_reginfo_in
6844 (abfd,
6845 ((Elf32_External_RegInfo *)
6846 (l + sizeof (Elf_External_Options))),
6847 &intreg);
6848 elf_gp (abfd) = intreg.ri_gp_value;
6849 }
6850 l += intopt.size;
6851 }
6852 free (contents);
6853 }
6854
6855 return TRUE;
6856 }
6857
6858 /* Set the correct type for a MIPS ELF section. We do this by the
6859 section name, which is a hack, but ought to work. This routine is
6860 used by both the 32-bit and the 64-bit ABI. */
6861
6862 bfd_boolean
6863 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6864 {
6865 const char *name = bfd_get_section_name (abfd, sec);
6866
6867 if (strcmp (name, ".liblist") == 0)
6868 {
6869 hdr->sh_type = SHT_MIPS_LIBLIST;
6870 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6871 /* The sh_link field is set in final_write_processing. */
6872 }
6873 else if (strcmp (name, ".conflict") == 0)
6874 hdr->sh_type = SHT_MIPS_CONFLICT;
6875 else if (CONST_STRNEQ (name, ".gptab."))
6876 {
6877 hdr->sh_type = SHT_MIPS_GPTAB;
6878 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6879 /* The sh_info field is set in final_write_processing. */
6880 }
6881 else if (strcmp (name, ".ucode") == 0)
6882 hdr->sh_type = SHT_MIPS_UCODE;
6883 else if (strcmp (name, ".mdebug") == 0)
6884 {
6885 hdr->sh_type = SHT_MIPS_DEBUG;
6886 /* In a shared object on IRIX 5.3, the .mdebug section has an
6887 entsize of 0. FIXME: Does this matter? */
6888 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6889 hdr->sh_entsize = 0;
6890 else
6891 hdr->sh_entsize = 1;
6892 }
6893 else if (strcmp (name, ".reginfo") == 0)
6894 {
6895 hdr->sh_type = SHT_MIPS_REGINFO;
6896 /* In a shared object on IRIX 5.3, the .reginfo section has an
6897 entsize of 0x18. FIXME: Does this matter? */
6898 if (SGI_COMPAT (abfd))
6899 {
6900 if ((abfd->flags & DYNAMIC) != 0)
6901 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6902 else
6903 hdr->sh_entsize = 1;
6904 }
6905 else
6906 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6907 }
6908 else if (SGI_COMPAT (abfd)
6909 && (strcmp (name, ".hash") == 0
6910 || strcmp (name, ".dynamic") == 0
6911 || strcmp (name, ".dynstr") == 0))
6912 {
6913 if (SGI_COMPAT (abfd))
6914 hdr->sh_entsize = 0;
6915 #if 0
6916 /* This isn't how the IRIX6 linker behaves. */
6917 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6918 #endif
6919 }
6920 else if (strcmp (name, ".got") == 0
6921 || strcmp (name, ".srdata") == 0
6922 || strcmp (name, ".sdata") == 0
6923 || strcmp (name, ".sbss") == 0
6924 || strcmp (name, ".lit4") == 0
6925 || strcmp (name, ".lit8") == 0)
6926 hdr->sh_flags |= SHF_MIPS_GPREL;
6927 else if (strcmp (name, ".MIPS.interfaces") == 0)
6928 {
6929 hdr->sh_type = SHT_MIPS_IFACE;
6930 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6931 }
6932 else if (CONST_STRNEQ (name, ".MIPS.content"))
6933 {
6934 hdr->sh_type = SHT_MIPS_CONTENT;
6935 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6936 /* The sh_info field is set in final_write_processing. */
6937 }
6938 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6939 {
6940 hdr->sh_type = SHT_MIPS_OPTIONS;
6941 hdr->sh_entsize = 1;
6942 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6943 }
6944 else if (CONST_STRNEQ (name, ".debug_")
6945 || CONST_STRNEQ (name, ".zdebug_"))
6946 {
6947 hdr->sh_type = SHT_MIPS_DWARF;
6948
6949 /* Irix facilities such as libexc expect a single .debug_frame
6950 per executable, the system ones have NOSTRIP set and the linker
6951 doesn't merge sections with different flags so ... */
6952 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6953 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6954 }
6955 else if (strcmp (name, ".MIPS.symlib") == 0)
6956 {
6957 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6958 /* The sh_link and sh_info fields are set in
6959 final_write_processing. */
6960 }
6961 else if (CONST_STRNEQ (name, ".MIPS.events")
6962 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6963 {
6964 hdr->sh_type = SHT_MIPS_EVENTS;
6965 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6966 /* The sh_link field is set in final_write_processing. */
6967 }
6968 else if (strcmp (name, ".msym") == 0)
6969 {
6970 hdr->sh_type = SHT_MIPS_MSYM;
6971 hdr->sh_flags |= SHF_ALLOC;
6972 hdr->sh_entsize = 8;
6973 }
6974
6975 /* The generic elf_fake_sections will set up REL_HDR using the default
6976 kind of relocations. We used to set up a second header for the
6977 non-default kind of relocations here, but only NewABI would use
6978 these, and the IRIX ld doesn't like resulting empty RELA sections.
6979 Thus we create those header only on demand now. */
6980
6981 return TRUE;
6982 }
6983
6984 /* Given a BFD section, try to locate the corresponding ELF section
6985 index. This is used by both the 32-bit and the 64-bit ABI.
6986 Actually, it's not clear to me that the 64-bit ABI supports these,
6987 but for non-PIC objects we will certainly want support for at least
6988 the .scommon section. */
6989
6990 bfd_boolean
6991 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6992 asection *sec, int *retval)
6993 {
6994 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6995 {
6996 *retval = SHN_MIPS_SCOMMON;
6997 return TRUE;
6998 }
6999 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7000 {
7001 *retval = SHN_MIPS_ACOMMON;
7002 return TRUE;
7003 }
7004 return FALSE;
7005 }
7006 \f
7007 /* Hook called by the linker routine which adds symbols from an object
7008 file. We must handle the special MIPS section numbers here. */
7009
7010 bfd_boolean
7011 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7012 Elf_Internal_Sym *sym, const char **namep,
7013 flagword *flagsp ATTRIBUTE_UNUSED,
7014 asection **secp, bfd_vma *valp)
7015 {
7016 if (SGI_COMPAT (abfd)
7017 && (abfd->flags & DYNAMIC) != 0
7018 && strcmp (*namep, "_rld_new_interface") == 0)
7019 {
7020 /* Skip IRIX5 rld entry name. */
7021 *namep = NULL;
7022 return TRUE;
7023 }
7024
7025 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7026 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7027 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7028 a magic symbol resolved by the linker, we ignore this bogus definition
7029 of _gp_disp. New ABI objects do not suffer from this problem so this
7030 is not done for them. */
7031 if (!NEWABI_P(abfd)
7032 && (sym->st_shndx == SHN_ABS)
7033 && (strcmp (*namep, "_gp_disp") == 0))
7034 {
7035 *namep = NULL;
7036 return TRUE;
7037 }
7038
7039 switch (sym->st_shndx)
7040 {
7041 case SHN_COMMON:
7042 /* Common symbols less than the GP size are automatically
7043 treated as SHN_MIPS_SCOMMON symbols. */
7044 if (sym->st_size > elf_gp_size (abfd)
7045 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7046 || IRIX_COMPAT (abfd) == ict_irix6)
7047 break;
7048 /* Fall through. */
7049 case SHN_MIPS_SCOMMON:
7050 *secp = bfd_make_section_old_way (abfd, ".scommon");
7051 (*secp)->flags |= SEC_IS_COMMON;
7052 *valp = sym->st_size;
7053 break;
7054
7055 case SHN_MIPS_TEXT:
7056 /* This section is used in a shared object. */
7057 if (elf_tdata (abfd)->elf_text_section == NULL)
7058 {
7059 asymbol *elf_text_symbol;
7060 asection *elf_text_section;
7061 bfd_size_type amt = sizeof (asection);
7062
7063 elf_text_section = bfd_zalloc (abfd, amt);
7064 if (elf_text_section == NULL)
7065 return FALSE;
7066
7067 amt = sizeof (asymbol);
7068 elf_text_symbol = bfd_zalloc (abfd, amt);
7069 if (elf_text_symbol == NULL)
7070 return FALSE;
7071
7072 /* Initialize the section. */
7073
7074 elf_tdata (abfd)->elf_text_section = elf_text_section;
7075 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7076
7077 elf_text_section->symbol = elf_text_symbol;
7078 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7079
7080 elf_text_section->name = ".text";
7081 elf_text_section->flags = SEC_NO_FLAGS;
7082 elf_text_section->output_section = NULL;
7083 elf_text_section->owner = abfd;
7084 elf_text_symbol->name = ".text";
7085 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7086 elf_text_symbol->section = elf_text_section;
7087 }
7088 /* This code used to do *secp = bfd_und_section_ptr if
7089 info->shared. I don't know why, and that doesn't make sense,
7090 so I took it out. */
7091 *secp = elf_tdata (abfd)->elf_text_section;
7092 break;
7093
7094 case SHN_MIPS_ACOMMON:
7095 /* Fall through. XXX Can we treat this as allocated data? */
7096 case SHN_MIPS_DATA:
7097 /* This section is used in a shared object. */
7098 if (elf_tdata (abfd)->elf_data_section == NULL)
7099 {
7100 asymbol *elf_data_symbol;
7101 asection *elf_data_section;
7102 bfd_size_type amt = sizeof (asection);
7103
7104 elf_data_section = bfd_zalloc (abfd, amt);
7105 if (elf_data_section == NULL)
7106 return FALSE;
7107
7108 amt = sizeof (asymbol);
7109 elf_data_symbol = bfd_zalloc (abfd, amt);
7110 if (elf_data_symbol == NULL)
7111 return FALSE;
7112
7113 /* Initialize the section. */
7114
7115 elf_tdata (abfd)->elf_data_section = elf_data_section;
7116 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7117
7118 elf_data_section->symbol = elf_data_symbol;
7119 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7120
7121 elf_data_section->name = ".data";
7122 elf_data_section->flags = SEC_NO_FLAGS;
7123 elf_data_section->output_section = NULL;
7124 elf_data_section->owner = abfd;
7125 elf_data_symbol->name = ".data";
7126 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7127 elf_data_symbol->section = elf_data_section;
7128 }
7129 /* This code used to do *secp = bfd_und_section_ptr if
7130 info->shared. I don't know why, and that doesn't make sense,
7131 so I took it out. */
7132 *secp = elf_tdata (abfd)->elf_data_section;
7133 break;
7134
7135 case SHN_MIPS_SUNDEFINED:
7136 *secp = bfd_und_section_ptr;
7137 break;
7138 }
7139
7140 if (SGI_COMPAT (abfd)
7141 && ! info->shared
7142 && info->output_bfd->xvec == abfd->xvec
7143 && strcmp (*namep, "__rld_obj_head") == 0)
7144 {
7145 struct elf_link_hash_entry *h;
7146 struct bfd_link_hash_entry *bh;
7147
7148 /* Mark __rld_obj_head as dynamic. */
7149 bh = NULL;
7150 if (! (_bfd_generic_link_add_one_symbol
7151 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7152 get_elf_backend_data (abfd)->collect, &bh)))
7153 return FALSE;
7154
7155 h = (struct elf_link_hash_entry *) bh;
7156 h->non_elf = 0;
7157 h->def_regular = 1;
7158 h->type = STT_OBJECT;
7159
7160 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7161 return FALSE;
7162
7163 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7164 mips_elf_hash_table (info)->rld_symbol = h;
7165 }
7166
7167 /* If this is a mips16 text symbol, add 1 to the value to make it
7168 odd. This will cause something like .word SYM to come up with
7169 the right value when it is loaded into the PC. */
7170 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7171 ++*valp;
7172
7173 return TRUE;
7174 }
7175
7176 /* This hook function is called before the linker writes out a global
7177 symbol. We mark symbols as small common if appropriate. This is
7178 also where we undo the increment of the value for a mips16 symbol. */
7179
7180 int
7181 _bfd_mips_elf_link_output_symbol_hook
7182 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7183 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7184 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7185 {
7186 /* If we see a common symbol, which implies a relocatable link, then
7187 if a symbol was small common in an input file, mark it as small
7188 common in the output file. */
7189 if (sym->st_shndx == SHN_COMMON
7190 && strcmp (input_sec->name, ".scommon") == 0)
7191 sym->st_shndx = SHN_MIPS_SCOMMON;
7192
7193 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7194 sym->st_value &= ~1;
7195
7196 return 1;
7197 }
7198 \f
7199 /* Functions for the dynamic linker. */
7200
7201 /* Create dynamic sections when linking against a dynamic object. */
7202
7203 bfd_boolean
7204 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7205 {
7206 struct elf_link_hash_entry *h;
7207 struct bfd_link_hash_entry *bh;
7208 flagword flags;
7209 register asection *s;
7210 const char * const *namep;
7211 struct mips_elf_link_hash_table *htab;
7212
7213 htab = mips_elf_hash_table (info);
7214 BFD_ASSERT (htab != NULL);
7215
7216 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7217 | SEC_LINKER_CREATED | SEC_READONLY);
7218
7219 /* The psABI requires a read-only .dynamic section, but the VxWorks
7220 EABI doesn't. */
7221 if (!htab->is_vxworks)
7222 {
7223 s = bfd_get_section_by_name (abfd, ".dynamic");
7224 if (s != NULL)
7225 {
7226 if (! bfd_set_section_flags (abfd, s, flags))
7227 return FALSE;
7228 }
7229 }
7230
7231 /* We need to create .got section. */
7232 if (!mips_elf_create_got_section (abfd, info))
7233 return FALSE;
7234
7235 if (! mips_elf_rel_dyn_section (info, TRUE))
7236 return FALSE;
7237
7238 /* Create .stub section. */
7239 s = bfd_make_section_with_flags (abfd,
7240 MIPS_ELF_STUB_SECTION_NAME (abfd),
7241 flags | SEC_CODE);
7242 if (s == NULL
7243 || ! bfd_set_section_alignment (abfd, s,
7244 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7245 return FALSE;
7246 htab->sstubs = s;
7247
7248 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7249 && !info->shared
7250 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7251 {
7252 s = bfd_make_section_with_flags (abfd, ".rld_map",
7253 flags &~ (flagword) SEC_READONLY);
7254 if (s == NULL
7255 || ! bfd_set_section_alignment (abfd, s,
7256 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7257 return FALSE;
7258 }
7259
7260 /* On IRIX5, we adjust add some additional symbols and change the
7261 alignments of several sections. There is no ABI documentation
7262 indicating that this is necessary on IRIX6, nor any evidence that
7263 the linker takes such action. */
7264 if (IRIX_COMPAT (abfd) == ict_irix5)
7265 {
7266 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7267 {
7268 bh = NULL;
7269 if (! (_bfd_generic_link_add_one_symbol
7270 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7271 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7272 return FALSE;
7273
7274 h = (struct elf_link_hash_entry *) bh;
7275 h->non_elf = 0;
7276 h->def_regular = 1;
7277 h->type = STT_SECTION;
7278
7279 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7280 return FALSE;
7281 }
7282
7283 /* We need to create a .compact_rel section. */
7284 if (SGI_COMPAT (abfd))
7285 {
7286 if (!mips_elf_create_compact_rel_section (abfd, info))
7287 return FALSE;
7288 }
7289
7290 /* Change alignments of some sections. */
7291 s = bfd_get_section_by_name (abfd, ".hash");
7292 if (s != NULL)
7293 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7294 s = bfd_get_section_by_name (abfd, ".dynsym");
7295 if (s != NULL)
7296 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7297 s = bfd_get_section_by_name (abfd, ".dynstr");
7298 if (s != NULL)
7299 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7300 s = bfd_get_section_by_name (abfd, ".reginfo");
7301 if (s != NULL)
7302 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7303 s = bfd_get_section_by_name (abfd, ".dynamic");
7304 if (s != NULL)
7305 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7306 }
7307
7308 if (!info->shared)
7309 {
7310 const char *name;
7311
7312 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7313 bh = NULL;
7314 if (!(_bfd_generic_link_add_one_symbol
7315 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7316 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7317 return FALSE;
7318
7319 h = (struct elf_link_hash_entry *) bh;
7320 h->non_elf = 0;
7321 h->def_regular = 1;
7322 h->type = STT_SECTION;
7323
7324 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7325 return FALSE;
7326
7327 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7328 {
7329 /* __rld_map is a four byte word located in the .data section
7330 and is filled in by the rtld to contain a pointer to
7331 the _r_debug structure. Its symbol value will be set in
7332 _bfd_mips_elf_finish_dynamic_symbol. */
7333 s = bfd_get_section_by_name (abfd, ".rld_map");
7334 BFD_ASSERT (s != NULL);
7335
7336 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7337 bh = NULL;
7338 if (!(_bfd_generic_link_add_one_symbol
7339 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7340 get_elf_backend_data (abfd)->collect, &bh)))
7341 return FALSE;
7342
7343 h = (struct elf_link_hash_entry *) bh;
7344 h->non_elf = 0;
7345 h->def_regular = 1;
7346 h->type = STT_OBJECT;
7347
7348 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7349 return FALSE;
7350 mips_elf_hash_table (info)->rld_symbol = h;
7351 }
7352 }
7353
7354 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7355 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7356 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7357 return FALSE;
7358
7359 /* Cache the sections created above. */
7360 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7361 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7362 if (htab->is_vxworks)
7363 {
7364 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7365 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7366 }
7367 else
7368 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7369 if (!htab->sdynbss
7370 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7371 || !htab->srelplt
7372 || !htab->splt)
7373 abort ();
7374
7375 if (htab->is_vxworks)
7376 {
7377 /* Do the usual VxWorks handling. */
7378 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7379 return FALSE;
7380
7381 /* Work out the PLT sizes. */
7382 if (info->shared)
7383 {
7384 htab->plt_header_size
7385 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7386 htab->plt_entry_size
7387 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7388 }
7389 else
7390 {
7391 htab->plt_header_size
7392 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7393 htab->plt_entry_size
7394 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7395 }
7396 }
7397 else if (!info->shared)
7398 {
7399 /* All variants of the plt0 entry are the same size. */
7400 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7401 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7402 }
7403
7404 return TRUE;
7405 }
7406 \f
7407 /* Return true if relocation REL against section SEC is a REL rather than
7408 RELA relocation. RELOCS is the first relocation in the section and
7409 ABFD is the bfd that contains SEC. */
7410
7411 static bfd_boolean
7412 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7413 const Elf_Internal_Rela *relocs,
7414 const Elf_Internal_Rela *rel)
7415 {
7416 Elf_Internal_Shdr *rel_hdr;
7417 const struct elf_backend_data *bed;
7418
7419 /* To determine which flavor of relocation this is, we depend on the
7420 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7421 rel_hdr = elf_section_data (sec)->rel.hdr;
7422 if (rel_hdr == NULL)
7423 return FALSE;
7424 bed = get_elf_backend_data (abfd);
7425 return ((size_t) (rel - relocs)
7426 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7427 }
7428
7429 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7430 HOWTO is the relocation's howto and CONTENTS points to the contents
7431 of the section that REL is against. */
7432
7433 static bfd_vma
7434 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7435 reloc_howto_type *howto, bfd_byte *contents)
7436 {
7437 bfd_byte *location;
7438 unsigned int r_type;
7439 bfd_vma addend;
7440
7441 r_type = ELF_R_TYPE (abfd, rel->r_info);
7442 location = contents + rel->r_offset;
7443
7444 /* Get the addend, which is stored in the input file. */
7445 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7446 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7447 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7448
7449 return addend & howto->src_mask;
7450 }
7451
7452 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7453 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7454 and update *ADDEND with the final addend. Return true on success
7455 or false if the LO16 could not be found. RELEND is the exclusive
7456 upper bound on the relocations for REL's section. */
7457
7458 static bfd_boolean
7459 mips_elf_add_lo16_rel_addend (bfd *abfd,
7460 const Elf_Internal_Rela *rel,
7461 const Elf_Internal_Rela *relend,
7462 bfd_byte *contents, bfd_vma *addend)
7463 {
7464 unsigned int r_type, lo16_type;
7465 const Elf_Internal_Rela *lo16_relocation;
7466 reloc_howto_type *lo16_howto;
7467 bfd_vma l;
7468
7469 r_type = ELF_R_TYPE (abfd, rel->r_info);
7470 if (mips16_reloc_p (r_type))
7471 lo16_type = R_MIPS16_LO16;
7472 else if (micromips_reloc_p (r_type))
7473 lo16_type = R_MICROMIPS_LO16;
7474 else
7475 lo16_type = R_MIPS_LO16;
7476
7477 /* The combined value is the sum of the HI16 addend, left-shifted by
7478 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7479 code does a `lui' of the HI16 value, and then an `addiu' of the
7480 LO16 value.)
7481
7482 Scan ahead to find a matching LO16 relocation.
7483
7484 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7485 be immediately following. However, for the IRIX6 ABI, the next
7486 relocation may be a composed relocation consisting of several
7487 relocations for the same address. In that case, the R_MIPS_LO16
7488 relocation may occur as one of these. We permit a similar
7489 extension in general, as that is useful for GCC.
7490
7491 In some cases GCC dead code elimination removes the LO16 but keeps
7492 the corresponding HI16. This is strictly speaking a violation of
7493 the ABI but not immediately harmful. */
7494 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7495 if (lo16_relocation == NULL)
7496 return FALSE;
7497
7498 /* Obtain the addend kept there. */
7499 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7500 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7501
7502 l <<= lo16_howto->rightshift;
7503 l = _bfd_mips_elf_sign_extend (l, 16);
7504
7505 *addend <<= 16;
7506 *addend += l;
7507 return TRUE;
7508 }
7509
7510 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7511 store the contents in *CONTENTS on success. Assume that *CONTENTS
7512 already holds the contents if it is nonull on entry. */
7513
7514 static bfd_boolean
7515 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7516 {
7517 if (*contents)
7518 return TRUE;
7519
7520 /* Get cached copy if it exists. */
7521 if (elf_section_data (sec)->this_hdr.contents != NULL)
7522 {
7523 *contents = elf_section_data (sec)->this_hdr.contents;
7524 return TRUE;
7525 }
7526
7527 return bfd_malloc_and_get_section (abfd, sec, contents);
7528 }
7529
7530 /* Look through the relocs for a section during the first phase, and
7531 allocate space in the global offset table. */
7532
7533 bfd_boolean
7534 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7535 asection *sec, const Elf_Internal_Rela *relocs)
7536 {
7537 const char *name;
7538 bfd *dynobj;
7539 Elf_Internal_Shdr *symtab_hdr;
7540 struct elf_link_hash_entry **sym_hashes;
7541 size_t extsymoff;
7542 const Elf_Internal_Rela *rel;
7543 const Elf_Internal_Rela *rel_end;
7544 asection *sreloc;
7545 const struct elf_backend_data *bed;
7546 struct mips_elf_link_hash_table *htab;
7547 bfd_byte *contents;
7548 bfd_vma addend;
7549 reloc_howto_type *howto;
7550
7551 if (info->relocatable)
7552 return TRUE;
7553
7554 htab = mips_elf_hash_table (info);
7555 BFD_ASSERT (htab != NULL);
7556
7557 dynobj = elf_hash_table (info)->dynobj;
7558 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7559 sym_hashes = elf_sym_hashes (abfd);
7560 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7561
7562 bed = get_elf_backend_data (abfd);
7563 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7564
7565 /* Check for the mips16 stub sections. */
7566
7567 name = bfd_get_section_name (abfd, sec);
7568 if (FN_STUB_P (name))
7569 {
7570 unsigned long r_symndx;
7571
7572 /* Look at the relocation information to figure out which symbol
7573 this is for. */
7574
7575 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7576 if (r_symndx == 0)
7577 {
7578 (*_bfd_error_handler)
7579 (_("%B: Warning: cannot determine the target function for"
7580 " stub section `%s'"),
7581 abfd, name);
7582 bfd_set_error (bfd_error_bad_value);
7583 return FALSE;
7584 }
7585
7586 if (r_symndx < extsymoff
7587 || sym_hashes[r_symndx - extsymoff] == NULL)
7588 {
7589 asection *o;
7590
7591 /* This stub is for a local symbol. This stub will only be
7592 needed if there is some relocation in this BFD, other
7593 than a 16 bit function call, which refers to this symbol. */
7594 for (o = abfd->sections; o != NULL; o = o->next)
7595 {
7596 Elf_Internal_Rela *sec_relocs;
7597 const Elf_Internal_Rela *r, *rend;
7598
7599 /* We can ignore stub sections when looking for relocs. */
7600 if ((o->flags & SEC_RELOC) == 0
7601 || o->reloc_count == 0
7602 || section_allows_mips16_refs_p (o))
7603 continue;
7604
7605 sec_relocs
7606 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7607 info->keep_memory);
7608 if (sec_relocs == NULL)
7609 return FALSE;
7610
7611 rend = sec_relocs + o->reloc_count;
7612 for (r = sec_relocs; r < rend; r++)
7613 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7614 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7615 break;
7616
7617 if (elf_section_data (o)->relocs != sec_relocs)
7618 free (sec_relocs);
7619
7620 if (r < rend)
7621 break;
7622 }
7623
7624 if (o == NULL)
7625 {
7626 /* There is no non-call reloc for this stub, so we do
7627 not need it. Since this function is called before
7628 the linker maps input sections to output sections, we
7629 can easily discard it by setting the SEC_EXCLUDE
7630 flag. */
7631 sec->flags |= SEC_EXCLUDE;
7632 return TRUE;
7633 }
7634
7635 /* Record this stub in an array of local symbol stubs for
7636 this BFD. */
7637 if (elf_tdata (abfd)->local_stubs == NULL)
7638 {
7639 unsigned long symcount;
7640 asection **n;
7641 bfd_size_type amt;
7642
7643 if (elf_bad_symtab (abfd))
7644 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7645 else
7646 symcount = symtab_hdr->sh_info;
7647 amt = symcount * sizeof (asection *);
7648 n = bfd_zalloc (abfd, amt);
7649 if (n == NULL)
7650 return FALSE;
7651 elf_tdata (abfd)->local_stubs = n;
7652 }
7653
7654 sec->flags |= SEC_KEEP;
7655 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7656
7657 /* We don't need to set mips16_stubs_seen in this case.
7658 That flag is used to see whether we need to look through
7659 the global symbol table for stubs. We don't need to set
7660 it here, because we just have a local stub. */
7661 }
7662 else
7663 {
7664 struct mips_elf_link_hash_entry *h;
7665
7666 h = ((struct mips_elf_link_hash_entry *)
7667 sym_hashes[r_symndx - extsymoff]);
7668
7669 while (h->root.root.type == bfd_link_hash_indirect
7670 || h->root.root.type == bfd_link_hash_warning)
7671 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7672
7673 /* H is the symbol this stub is for. */
7674
7675 /* If we already have an appropriate stub for this function, we
7676 don't need another one, so we can discard this one. Since
7677 this function is called before the linker maps input sections
7678 to output sections, we can easily discard it by setting the
7679 SEC_EXCLUDE flag. */
7680 if (h->fn_stub != NULL)
7681 {
7682 sec->flags |= SEC_EXCLUDE;
7683 return TRUE;
7684 }
7685
7686 sec->flags |= SEC_KEEP;
7687 h->fn_stub = sec;
7688 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7689 }
7690 }
7691 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7692 {
7693 unsigned long r_symndx;
7694 struct mips_elf_link_hash_entry *h;
7695 asection **loc;
7696
7697 /* Look at the relocation information to figure out which symbol
7698 this is for. */
7699
7700 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7701 if (r_symndx == 0)
7702 {
7703 (*_bfd_error_handler)
7704 (_("%B: Warning: cannot determine the target function for"
7705 " stub section `%s'"),
7706 abfd, name);
7707 bfd_set_error (bfd_error_bad_value);
7708 return FALSE;
7709 }
7710
7711 if (r_symndx < extsymoff
7712 || sym_hashes[r_symndx - extsymoff] == NULL)
7713 {
7714 asection *o;
7715
7716 /* This stub is for a local symbol. This stub will only be
7717 needed if there is some relocation (R_MIPS16_26) in this BFD
7718 that refers to this symbol. */
7719 for (o = abfd->sections; o != NULL; o = o->next)
7720 {
7721 Elf_Internal_Rela *sec_relocs;
7722 const Elf_Internal_Rela *r, *rend;
7723
7724 /* We can ignore stub sections when looking for relocs. */
7725 if ((o->flags & SEC_RELOC) == 0
7726 || o->reloc_count == 0
7727 || section_allows_mips16_refs_p (o))
7728 continue;
7729
7730 sec_relocs
7731 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7732 info->keep_memory);
7733 if (sec_relocs == NULL)
7734 return FALSE;
7735
7736 rend = sec_relocs + o->reloc_count;
7737 for (r = sec_relocs; r < rend; r++)
7738 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7739 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7740 break;
7741
7742 if (elf_section_data (o)->relocs != sec_relocs)
7743 free (sec_relocs);
7744
7745 if (r < rend)
7746 break;
7747 }
7748
7749 if (o == NULL)
7750 {
7751 /* There is no non-call reloc for this stub, so we do
7752 not need it. Since this function is called before
7753 the linker maps input sections to output sections, we
7754 can easily discard it by setting the SEC_EXCLUDE
7755 flag. */
7756 sec->flags |= SEC_EXCLUDE;
7757 return TRUE;
7758 }
7759
7760 /* Record this stub in an array of local symbol call_stubs for
7761 this BFD. */
7762 if (elf_tdata (abfd)->local_call_stubs == NULL)
7763 {
7764 unsigned long symcount;
7765 asection **n;
7766 bfd_size_type amt;
7767
7768 if (elf_bad_symtab (abfd))
7769 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7770 else
7771 symcount = symtab_hdr->sh_info;
7772 amt = symcount * sizeof (asection *);
7773 n = bfd_zalloc (abfd, amt);
7774 if (n == NULL)
7775 return FALSE;
7776 elf_tdata (abfd)->local_call_stubs = n;
7777 }
7778
7779 sec->flags |= SEC_KEEP;
7780 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7781
7782 /* We don't need to set mips16_stubs_seen in this case.
7783 That flag is used to see whether we need to look through
7784 the global symbol table for stubs. We don't need to set
7785 it here, because we just have a local stub. */
7786 }
7787 else
7788 {
7789 h = ((struct mips_elf_link_hash_entry *)
7790 sym_hashes[r_symndx - extsymoff]);
7791
7792 /* H is the symbol this stub is for. */
7793
7794 if (CALL_FP_STUB_P (name))
7795 loc = &h->call_fp_stub;
7796 else
7797 loc = &h->call_stub;
7798
7799 /* If we already have an appropriate stub for this function, we
7800 don't need another one, so we can discard this one. Since
7801 this function is called before the linker maps input sections
7802 to output sections, we can easily discard it by setting the
7803 SEC_EXCLUDE flag. */
7804 if (*loc != NULL)
7805 {
7806 sec->flags |= SEC_EXCLUDE;
7807 return TRUE;
7808 }
7809
7810 sec->flags |= SEC_KEEP;
7811 *loc = sec;
7812 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7813 }
7814 }
7815
7816 sreloc = NULL;
7817 contents = NULL;
7818 for (rel = relocs; rel < rel_end; ++rel)
7819 {
7820 unsigned long r_symndx;
7821 unsigned int r_type;
7822 struct elf_link_hash_entry *h;
7823 bfd_boolean can_make_dynamic_p;
7824
7825 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7826 r_type = ELF_R_TYPE (abfd, rel->r_info);
7827
7828 if (r_symndx < extsymoff)
7829 h = NULL;
7830 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7831 {
7832 (*_bfd_error_handler)
7833 (_("%B: Malformed reloc detected for section %s"),
7834 abfd, name);
7835 bfd_set_error (bfd_error_bad_value);
7836 return FALSE;
7837 }
7838 else
7839 {
7840 h = sym_hashes[r_symndx - extsymoff];
7841 while (h != NULL
7842 && (h->root.type == bfd_link_hash_indirect
7843 || h->root.type == bfd_link_hash_warning))
7844 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7845 }
7846
7847 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7848 relocation into a dynamic one. */
7849 can_make_dynamic_p = FALSE;
7850 switch (r_type)
7851 {
7852 case R_MIPS_GOT16:
7853 case R_MIPS_CALL16:
7854 case R_MIPS_CALL_HI16:
7855 case R_MIPS_CALL_LO16:
7856 case R_MIPS_GOT_HI16:
7857 case R_MIPS_GOT_LO16:
7858 case R_MIPS_GOT_PAGE:
7859 case R_MIPS_GOT_OFST:
7860 case R_MIPS_GOT_DISP:
7861 case R_MIPS_TLS_GOTTPREL:
7862 case R_MIPS_TLS_GD:
7863 case R_MIPS_TLS_LDM:
7864 case R_MIPS16_GOT16:
7865 case R_MIPS16_CALL16:
7866 case R_MIPS16_TLS_GOTTPREL:
7867 case R_MIPS16_TLS_GD:
7868 case R_MIPS16_TLS_LDM:
7869 case R_MICROMIPS_GOT16:
7870 case R_MICROMIPS_CALL16:
7871 case R_MICROMIPS_CALL_HI16:
7872 case R_MICROMIPS_CALL_LO16:
7873 case R_MICROMIPS_GOT_HI16:
7874 case R_MICROMIPS_GOT_LO16:
7875 case R_MICROMIPS_GOT_PAGE:
7876 case R_MICROMIPS_GOT_OFST:
7877 case R_MICROMIPS_GOT_DISP:
7878 case R_MICROMIPS_TLS_GOTTPREL:
7879 case R_MICROMIPS_TLS_GD:
7880 case R_MICROMIPS_TLS_LDM:
7881 if (dynobj == NULL)
7882 elf_hash_table (info)->dynobj = dynobj = abfd;
7883 if (!mips_elf_create_got_section (dynobj, info))
7884 return FALSE;
7885 if (htab->is_vxworks && !info->shared)
7886 {
7887 (*_bfd_error_handler)
7888 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7889 abfd, (unsigned long) rel->r_offset);
7890 bfd_set_error (bfd_error_bad_value);
7891 return FALSE;
7892 }
7893 break;
7894
7895 /* This is just a hint; it can safely be ignored. Don't set
7896 has_static_relocs for the corresponding symbol. */
7897 case R_MIPS_JALR:
7898 case R_MICROMIPS_JALR:
7899 break;
7900
7901 case R_MIPS_32:
7902 case R_MIPS_REL32:
7903 case R_MIPS_64:
7904 /* In VxWorks executables, references to external symbols
7905 must be handled using copy relocs or PLT entries; it is not
7906 possible to convert this relocation into a dynamic one.
7907
7908 For executables that use PLTs and copy-relocs, we have a
7909 choice between converting the relocation into a dynamic
7910 one or using copy relocations or PLT entries. It is
7911 usually better to do the former, unless the relocation is
7912 against a read-only section. */
7913 if ((info->shared
7914 || (h != NULL
7915 && !htab->is_vxworks
7916 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7917 && !(!info->nocopyreloc
7918 && !PIC_OBJECT_P (abfd)
7919 && MIPS_ELF_READONLY_SECTION (sec))))
7920 && (sec->flags & SEC_ALLOC) != 0)
7921 {
7922 can_make_dynamic_p = TRUE;
7923 if (dynobj == NULL)
7924 elf_hash_table (info)->dynobj = dynobj = abfd;
7925 break;
7926 }
7927 /* For sections that are not SEC_ALLOC a copy reloc would be
7928 output if possible (implying questionable semantics for
7929 read-only data objects) or otherwise the final link would
7930 fail as ld.so will not process them and could not therefore
7931 handle any outstanding dynamic relocations.
7932
7933 For such sections that are also SEC_DEBUGGING, we can avoid
7934 these problems by simply ignoring any relocs as these
7935 sections have a predefined use and we know it is safe to do
7936 so.
7937
7938 This is needed in cases such as a global symbol definition
7939 in a shared library causing a common symbol from an object
7940 file to be converted to an undefined reference. If that
7941 happens, then all the relocations against this symbol from
7942 SEC_DEBUGGING sections in the object file will resolve to
7943 nil. */
7944 if ((sec->flags & SEC_DEBUGGING) != 0)
7945 break;
7946 /* Fall through. */
7947
7948 default:
7949 /* Most static relocations require pointer equality, except
7950 for branches. */
7951 if (h)
7952 h->pointer_equality_needed = TRUE;
7953 /* Fall through. */
7954
7955 case R_MIPS_26:
7956 case R_MIPS_PC16:
7957 case R_MIPS16_26:
7958 case R_MICROMIPS_26_S1:
7959 case R_MICROMIPS_PC7_S1:
7960 case R_MICROMIPS_PC10_S1:
7961 case R_MICROMIPS_PC16_S1:
7962 case R_MICROMIPS_PC23_S2:
7963 if (h)
7964 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7965 break;
7966 }
7967
7968 if (h)
7969 {
7970 /* Relocations against the special VxWorks __GOTT_BASE__ and
7971 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7972 room for them in .rela.dyn. */
7973 if (is_gott_symbol (info, h))
7974 {
7975 if (sreloc == NULL)
7976 {
7977 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7978 if (sreloc == NULL)
7979 return FALSE;
7980 }
7981 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7982 if (MIPS_ELF_READONLY_SECTION (sec))
7983 /* We tell the dynamic linker that there are
7984 relocations against the text segment. */
7985 info->flags |= DF_TEXTREL;
7986 }
7987 }
7988 else if (call_lo16_reloc_p (r_type)
7989 || got_lo16_reloc_p (r_type)
7990 || got_disp_reloc_p (r_type)
7991 || (got16_reloc_p (r_type) && htab->is_vxworks))
7992 {
7993 /* We may need a local GOT entry for this relocation. We
7994 don't count R_MIPS_GOT_PAGE because we can estimate the
7995 maximum number of pages needed by looking at the size of
7996 the segment. Similar comments apply to R_MIPS*_GOT16 and
7997 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7998 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7999 R_MIPS_CALL_HI16 because these are always followed by an
8000 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8001 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8002 rel->r_addend, info, 0))
8003 return FALSE;
8004 }
8005
8006 if (h != NULL
8007 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8008 ELF_ST_IS_MIPS16 (h->other)))
8009 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8010
8011 switch (r_type)
8012 {
8013 case R_MIPS_CALL16:
8014 case R_MIPS16_CALL16:
8015 case R_MICROMIPS_CALL16:
8016 if (h == NULL)
8017 {
8018 (*_bfd_error_handler)
8019 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8020 abfd, (unsigned long) rel->r_offset);
8021 bfd_set_error (bfd_error_bad_value);
8022 return FALSE;
8023 }
8024 /* Fall through. */
8025
8026 case R_MIPS_CALL_HI16:
8027 case R_MIPS_CALL_LO16:
8028 case R_MICROMIPS_CALL_HI16:
8029 case R_MICROMIPS_CALL_LO16:
8030 if (h != NULL)
8031 {
8032 /* Make sure there is room in the regular GOT to hold the
8033 function's address. We may eliminate it in favour of
8034 a .got.plt entry later; see mips_elf_count_got_symbols. */
8035 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
8036 return FALSE;
8037
8038 /* We need a stub, not a plt entry for the undefined
8039 function. But we record it as if it needs plt. See
8040 _bfd_elf_adjust_dynamic_symbol. */
8041 h->needs_plt = 1;
8042 h->type = STT_FUNC;
8043 }
8044 break;
8045
8046 case R_MIPS_GOT_PAGE:
8047 case R_MICROMIPS_GOT_PAGE:
8048 /* If this is a global, overridable symbol, GOT_PAGE will
8049 decay to GOT_DISP, so we'll need a GOT entry for it. */
8050 if (h)
8051 {
8052 struct mips_elf_link_hash_entry *hmips =
8053 (struct mips_elf_link_hash_entry *) h;
8054
8055 /* This symbol is definitely not overridable. */
8056 if (hmips->root.def_regular
8057 && ! (info->shared && ! info->symbolic
8058 && ! hmips->root.forced_local))
8059 h = NULL;
8060 }
8061 /* Fall through. */
8062
8063 case R_MIPS16_GOT16:
8064 case R_MIPS_GOT16:
8065 case R_MIPS_GOT_HI16:
8066 case R_MIPS_GOT_LO16:
8067 case R_MICROMIPS_GOT16:
8068 case R_MICROMIPS_GOT_HI16:
8069 case R_MICROMIPS_GOT_LO16:
8070 if (!h || got_page_reloc_p (r_type))
8071 {
8072 /* This relocation needs (or may need, if h != NULL) a
8073 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8074 know for sure until we know whether the symbol is
8075 preemptible. */
8076 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8077 {
8078 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8079 return FALSE;
8080 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8081 addend = mips_elf_read_rel_addend (abfd, rel,
8082 howto, contents);
8083 if (got16_reloc_p (r_type))
8084 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8085 contents, &addend);
8086 else
8087 addend <<= howto->rightshift;
8088 }
8089 else
8090 addend = rel->r_addend;
8091 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8092 addend))
8093 return FALSE;
8094 }
8095 /* Fall through. */
8096
8097 case R_MIPS_GOT_DISP:
8098 case R_MICROMIPS_GOT_DISP:
8099 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8100 FALSE, 0))
8101 return FALSE;
8102 break;
8103
8104 case R_MIPS_TLS_GOTTPREL:
8105 case R_MIPS16_TLS_GOTTPREL:
8106 case R_MICROMIPS_TLS_GOTTPREL:
8107 if (info->shared)
8108 info->flags |= DF_STATIC_TLS;
8109 /* Fall through */
8110
8111 case R_MIPS_TLS_LDM:
8112 case R_MIPS16_TLS_LDM:
8113 case R_MICROMIPS_TLS_LDM:
8114 if (tls_ldm_reloc_p (r_type))
8115 {
8116 r_symndx = STN_UNDEF;
8117 h = NULL;
8118 }
8119 /* Fall through */
8120
8121 case R_MIPS_TLS_GD:
8122 case R_MIPS16_TLS_GD:
8123 case R_MICROMIPS_TLS_GD:
8124 /* This symbol requires a global offset table entry, or two
8125 for TLS GD relocations. */
8126 {
8127 unsigned char flag;
8128
8129 flag = (tls_gd_reloc_p (r_type)
8130 ? GOT_TLS_GD
8131 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8132 if (h != NULL)
8133 {
8134 struct mips_elf_link_hash_entry *hmips =
8135 (struct mips_elf_link_hash_entry *) h;
8136 hmips->tls_type |= flag;
8137
8138 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8139 FALSE, flag))
8140 return FALSE;
8141 }
8142 else
8143 {
8144 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8145
8146 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8147 rel->r_addend,
8148 info, flag))
8149 return FALSE;
8150 }
8151 }
8152 break;
8153
8154 case R_MIPS_32:
8155 case R_MIPS_REL32:
8156 case R_MIPS_64:
8157 /* In VxWorks executables, references to external symbols
8158 are handled using copy relocs or PLT stubs, so there's
8159 no need to add a .rela.dyn entry for this relocation. */
8160 if (can_make_dynamic_p)
8161 {
8162 if (sreloc == NULL)
8163 {
8164 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8165 if (sreloc == NULL)
8166 return FALSE;
8167 }
8168 if (info->shared && h == NULL)
8169 {
8170 /* When creating a shared object, we must copy these
8171 reloc types into the output file as R_MIPS_REL32
8172 relocs. Make room for this reloc in .rel(a).dyn. */
8173 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8174 if (MIPS_ELF_READONLY_SECTION (sec))
8175 /* We tell the dynamic linker that there are
8176 relocations against the text segment. */
8177 info->flags |= DF_TEXTREL;
8178 }
8179 else
8180 {
8181 struct mips_elf_link_hash_entry *hmips;
8182
8183 /* For a shared object, we must copy this relocation
8184 unless the symbol turns out to be undefined and
8185 weak with non-default visibility, in which case
8186 it will be left as zero.
8187
8188 We could elide R_MIPS_REL32 for locally binding symbols
8189 in shared libraries, but do not yet do so.
8190
8191 For an executable, we only need to copy this
8192 reloc if the symbol is defined in a dynamic
8193 object. */
8194 hmips = (struct mips_elf_link_hash_entry *) h;
8195 ++hmips->possibly_dynamic_relocs;
8196 if (MIPS_ELF_READONLY_SECTION (sec))
8197 /* We need it to tell the dynamic linker if there
8198 are relocations against the text segment. */
8199 hmips->readonly_reloc = TRUE;
8200 }
8201 }
8202
8203 if (SGI_COMPAT (abfd))
8204 mips_elf_hash_table (info)->compact_rel_size +=
8205 sizeof (Elf32_External_crinfo);
8206 break;
8207
8208 case R_MIPS_26:
8209 case R_MIPS_GPREL16:
8210 case R_MIPS_LITERAL:
8211 case R_MIPS_GPREL32:
8212 case R_MICROMIPS_26_S1:
8213 case R_MICROMIPS_GPREL16:
8214 case R_MICROMIPS_LITERAL:
8215 case R_MICROMIPS_GPREL7_S2:
8216 if (SGI_COMPAT (abfd))
8217 mips_elf_hash_table (info)->compact_rel_size +=
8218 sizeof (Elf32_External_crinfo);
8219 break;
8220
8221 /* This relocation describes the C++ object vtable hierarchy.
8222 Reconstruct it for later use during GC. */
8223 case R_MIPS_GNU_VTINHERIT:
8224 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8225 return FALSE;
8226 break;
8227
8228 /* This relocation describes which C++ vtable entries are actually
8229 used. Record for later use during GC. */
8230 case R_MIPS_GNU_VTENTRY:
8231 BFD_ASSERT (h != NULL);
8232 if (h != NULL
8233 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8234 return FALSE;
8235 break;
8236
8237 default:
8238 break;
8239 }
8240
8241 /* We must not create a stub for a symbol that has relocations
8242 related to taking the function's address. This doesn't apply to
8243 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8244 a normal .got entry. */
8245 if (!htab->is_vxworks && h != NULL)
8246 switch (r_type)
8247 {
8248 default:
8249 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8250 break;
8251 case R_MIPS16_CALL16:
8252 case R_MIPS_CALL16:
8253 case R_MIPS_CALL_HI16:
8254 case R_MIPS_CALL_LO16:
8255 case R_MIPS_JALR:
8256 case R_MICROMIPS_CALL16:
8257 case R_MICROMIPS_CALL_HI16:
8258 case R_MICROMIPS_CALL_LO16:
8259 case R_MICROMIPS_JALR:
8260 break;
8261 }
8262
8263 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8264 if there is one. We only need to handle global symbols here;
8265 we decide whether to keep or delete stubs for local symbols
8266 when processing the stub's relocations. */
8267 if (h != NULL
8268 && !mips16_call_reloc_p (r_type)
8269 && !section_allows_mips16_refs_p (sec))
8270 {
8271 struct mips_elf_link_hash_entry *mh;
8272
8273 mh = (struct mips_elf_link_hash_entry *) h;
8274 mh->need_fn_stub = TRUE;
8275 }
8276
8277 /* Refuse some position-dependent relocations when creating a
8278 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8279 not PIC, but we can create dynamic relocations and the result
8280 will be fine. Also do not refuse R_MIPS_LO16, which can be
8281 combined with R_MIPS_GOT16. */
8282 if (info->shared)
8283 {
8284 switch (r_type)
8285 {
8286 case R_MIPS16_HI16:
8287 case R_MIPS_HI16:
8288 case R_MIPS_HIGHER:
8289 case R_MIPS_HIGHEST:
8290 case R_MICROMIPS_HI16:
8291 case R_MICROMIPS_HIGHER:
8292 case R_MICROMIPS_HIGHEST:
8293 /* Don't refuse a high part relocation if it's against
8294 no symbol (e.g. part of a compound relocation). */
8295 if (r_symndx == STN_UNDEF)
8296 break;
8297
8298 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8299 and has a special meaning. */
8300 if (!NEWABI_P (abfd) && h != NULL
8301 && strcmp (h->root.root.string, "_gp_disp") == 0)
8302 break;
8303
8304 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8305 if (is_gott_symbol (info, h))
8306 break;
8307
8308 /* FALLTHROUGH */
8309
8310 case R_MIPS16_26:
8311 case R_MIPS_26:
8312 case R_MICROMIPS_26_S1:
8313 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8314 (*_bfd_error_handler)
8315 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8316 abfd, howto->name,
8317 (h) ? h->root.root.string : "a local symbol");
8318 bfd_set_error (bfd_error_bad_value);
8319 return FALSE;
8320 default:
8321 break;
8322 }
8323 }
8324 }
8325
8326 return TRUE;
8327 }
8328 \f
8329 bfd_boolean
8330 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8331 struct bfd_link_info *link_info,
8332 bfd_boolean *again)
8333 {
8334 Elf_Internal_Rela *internal_relocs;
8335 Elf_Internal_Rela *irel, *irelend;
8336 Elf_Internal_Shdr *symtab_hdr;
8337 bfd_byte *contents = NULL;
8338 size_t extsymoff;
8339 bfd_boolean changed_contents = FALSE;
8340 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8341 Elf_Internal_Sym *isymbuf = NULL;
8342
8343 /* We are not currently changing any sizes, so only one pass. */
8344 *again = FALSE;
8345
8346 if (link_info->relocatable)
8347 return TRUE;
8348
8349 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8350 link_info->keep_memory);
8351 if (internal_relocs == NULL)
8352 return TRUE;
8353
8354 irelend = internal_relocs + sec->reloc_count
8355 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8356 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8357 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8358
8359 for (irel = internal_relocs; irel < irelend; irel++)
8360 {
8361 bfd_vma symval;
8362 bfd_signed_vma sym_offset;
8363 unsigned int r_type;
8364 unsigned long r_symndx;
8365 asection *sym_sec;
8366 unsigned long instruction;
8367
8368 /* Turn jalr into bgezal, and jr into beq, if they're marked
8369 with a JALR relocation, that indicate where they jump to.
8370 This saves some pipeline bubbles. */
8371 r_type = ELF_R_TYPE (abfd, irel->r_info);
8372 if (r_type != R_MIPS_JALR)
8373 continue;
8374
8375 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8376 /* Compute the address of the jump target. */
8377 if (r_symndx >= extsymoff)
8378 {
8379 struct mips_elf_link_hash_entry *h
8380 = ((struct mips_elf_link_hash_entry *)
8381 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8382
8383 while (h->root.root.type == bfd_link_hash_indirect
8384 || h->root.root.type == bfd_link_hash_warning)
8385 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8386
8387 /* If a symbol is undefined, or if it may be overridden,
8388 skip it. */
8389 if (! ((h->root.root.type == bfd_link_hash_defined
8390 || h->root.root.type == bfd_link_hash_defweak)
8391 && h->root.root.u.def.section)
8392 || (link_info->shared && ! link_info->symbolic
8393 && !h->root.forced_local))
8394 continue;
8395
8396 sym_sec = h->root.root.u.def.section;
8397 if (sym_sec->output_section)
8398 symval = (h->root.root.u.def.value
8399 + sym_sec->output_section->vma
8400 + sym_sec->output_offset);
8401 else
8402 symval = h->root.root.u.def.value;
8403 }
8404 else
8405 {
8406 Elf_Internal_Sym *isym;
8407
8408 /* Read this BFD's symbols if we haven't done so already. */
8409 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8410 {
8411 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8412 if (isymbuf == NULL)
8413 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8414 symtab_hdr->sh_info, 0,
8415 NULL, NULL, NULL);
8416 if (isymbuf == NULL)
8417 goto relax_return;
8418 }
8419
8420 isym = isymbuf + r_symndx;
8421 if (isym->st_shndx == SHN_UNDEF)
8422 continue;
8423 else if (isym->st_shndx == SHN_ABS)
8424 sym_sec = bfd_abs_section_ptr;
8425 else if (isym->st_shndx == SHN_COMMON)
8426 sym_sec = bfd_com_section_ptr;
8427 else
8428 sym_sec
8429 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8430 symval = isym->st_value
8431 + sym_sec->output_section->vma
8432 + sym_sec->output_offset;
8433 }
8434
8435 /* Compute branch offset, from delay slot of the jump to the
8436 branch target. */
8437 sym_offset = (symval + irel->r_addend)
8438 - (sec_start + irel->r_offset + 4);
8439
8440 /* Branch offset must be properly aligned. */
8441 if ((sym_offset & 3) != 0)
8442 continue;
8443
8444 sym_offset >>= 2;
8445
8446 /* Check that it's in range. */
8447 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8448 continue;
8449
8450 /* Get the section contents if we haven't done so already. */
8451 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8452 goto relax_return;
8453
8454 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8455
8456 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8457 if ((instruction & 0xfc1fffff) == 0x0000f809)
8458 instruction = 0x04110000;
8459 /* If it was jr <reg>, turn it into b <target>. */
8460 else if ((instruction & 0xfc1fffff) == 0x00000008)
8461 instruction = 0x10000000;
8462 else
8463 continue;
8464
8465 instruction |= (sym_offset & 0xffff);
8466 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8467 changed_contents = TRUE;
8468 }
8469
8470 if (contents != NULL
8471 && elf_section_data (sec)->this_hdr.contents != contents)
8472 {
8473 if (!changed_contents && !link_info->keep_memory)
8474 free (contents);
8475 else
8476 {
8477 /* Cache the section contents for elf_link_input_bfd. */
8478 elf_section_data (sec)->this_hdr.contents = contents;
8479 }
8480 }
8481 return TRUE;
8482
8483 relax_return:
8484 if (contents != NULL
8485 && elf_section_data (sec)->this_hdr.contents != contents)
8486 free (contents);
8487 return FALSE;
8488 }
8489 \f
8490 /* Allocate space for global sym dynamic relocs. */
8491
8492 static bfd_boolean
8493 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8494 {
8495 struct bfd_link_info *info = inf;
8496 bfd *dynobj;
8497 struct mips_elf_link_hash_entry *hmips;
8498 struct mips_elf_link_hash_table *htab;
8499
8500 htab = mips_elf_hash_table (info);
8501 BFD_ASSERT (htab != NULL);
8502
8503 dynobj = elf_hash_table (info)->dynobj;
8504 hmips = (struct mips_elf_link_hash_entry *) h;
8505
8506 /* VxWorks executables are handled elsewhere; we only need to
8507 allocate relocations in shared objects. */
8508 if (htab->is_vxworks && !info->shared)
8509 return TRUE;
8510
8511 /* Ignore indirect symbols. All relocations against such symbols
8512 will be redirected to the target symbol. */
8513 if (h->root.type == bfd_link_hash_indirect)
8514 return TRUE;
8515
8516 /* If this symbol is defined in a dynamic object, or we are creating
8517 a shared library, we will need to copy any R_MIPS_32 or
8518 R_MIPS_REL32 relocs against it into the output file. */
8519 if (! info->relocatable
8520 && hmips->possibly_dynamic_relocs != 0
8521 && (h->root.type == bfd_link_hash_defweak
8522 || !h->def_regular
8523 || info->shared))
8524 {
8525 bfd_boolean do_copy = TRUE;
8526
8527 if (h->root.type == bfd_link_hash_undefweak)
8528 {
8529 /* Do not copy relocations for undefined weak symbols with
8530 non-default visibility. */
8531 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8532 do_copy = FALSE;
8533
8534 /* Make sure undefined weak symbols are output as a dynamic
8535 symbol in PIEs. */
8536 else if (h->dynindx == -1 && !h->forced_local)
8537 {
8538 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8539 return FALSE;
8540 }
8541 }
8542
8543 if (do_copy)
8544 {
8545 /* Even though we don't directly need a GOT entry for this symbol,
8546 the SVR4 psABI requires it to have a dynamic symbol table
8547 index greater that DT_MIPS_GOTSYM if there are dynamic
8548 relocations against it.
8549
8550 VxWorks does not enforce the same mapping between the GOT
8551 and the symbol table, so the same requirement does not
8552 apply there. */
8553 if (!htab->is_vxworks)
8554 {
8555 if (hmips->global_got_area > GGA_RELOC_ONLY)
8556 hmips->global_got_area = GGA_RELOC_ONLY;
8557 hmips->got_only_for_calls = FALSE;
8558 }
8559
8560 mips_elf_allocate_dynamic_relocations
8561 (dynobj, info, hmips->possibly_dynamic_relocs);
8562 if (hmips->readonly_reloc)
8563 /* We tell the dynamic linker that there are relocations
8564 against the text segment. */
8565 info->flags |= DF_TEXTREL;
8566 }
8567 }
8568
8569 return TRUE;
8570 }
8571
8572 /* Adjust a symbol defined by a dynamic object and referenced by a
8573 regular object. The current definition is in some section of the
8574 dynamic object, but we're not including those sections. We have to
8575 change the definition to something the rest of the link can
8576 understand. */
8577
8578 bfd_boolean
8579 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8580 struct elf_link_hash_entry *h)
8581 {
8582 bfd *dynobj;
8583 struct mips_elf_link_hash_entry *hmips;
8584 struct mips_elf_link_hash_table *htab;
8585
8586 htab = mips_elf_hash_table (info);
8587 BFD_ASSERT (htab != NULL);
8588
8589 dynobj = elf_hash_table (info)->dynobj;
8590 hmips = (struct mips_elf_link_hash_entry *) h;
8591
8592 /* Make sure we know what is going on here. */
8593 BFD_ASSERT (dynobj != NULL
8594 && (h->needs_plt
8595 || h->u.weakdef != NULL
8596 || (h->def_dynamic
8597 && h->ref_regular
8598 && !h->def_regular)));
8599
8600 hmips = (struct mips_elf_link_hash_entry *) h;
8601
8602 /* If there are call relocations against an externally-defined symbol,
8603 see whether we can create a MIPS lazy-binding stub for it. We can
8604 only do this if all references to the function are through call
8605 relocations, and in that case, the traditional lazy-binding stubs
8606 are much more efficient than PLT entries.
8607
8608 Traditional stubs are only available on SVR4 psABI-based systems;
8609 VxWorks always uses PLTs instead. */
8610 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8611 {
8612 if (! elf_hash_table (info)->dynamic_sections_created)
8613 return TRUE;
8614
8615 /* If this symbol is not defined in a regular file, then set
8616 the symbol to the stub location. This is required to make
8617 function pointers compare as equal between the normal
8618 executable and the shared library. */
8619 if (!h->def_regular)
8620 {
8621 hmips->needs_lazy_stub = TRUE;
8622 htab->lazy_stub_count++;
8623 return TRUE;
8624 }
8625 }
8626 /* As above, VxWorks requires PLT entries for externally-defined
8627 functions that are only accessed through call relocations.
8628
8629 Both VxWorks and non-VxWorks targets also need PLT entries if there
8630 are static-only relocations against an externally-defined function.
8631 This can technically occur for shared libraries if there are
8632 branches to the symbol, although it is unlikely that this will be
8633 used in practice due to the short ranges involved. It can occur
8634 for any relative or absolute relocation in executables; in that
8635 case, the PLT entry becomes the function's canonical address. */
8636 else if (((h->needs_plt && !hmips->no_fn_stub)
8637 || (h->type == STT_FUNC && hmips->has_static_relocs))
8638 && htab->use_plts_and_copy_relocs
8639 && !SYMBOL_CALLS_LOCAL (info, h)
8640 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8641 && h->root.type == bfd_link_hash_undefweak))
8642 {
8643 /* If this is the first symbol to need a PLT entry, allocate room
8644 for the header. */
8645 if (htab->splt->size == 0)
8646 {
8647 BFD_ASSERT (htab->sgotplt->size == 0);
8648
8649 /* If we're using the PLT additions to the psABI, each PLT
8650 entry is 16 bytes and the PLT0 entry is 32 bytes.
8651 Encourage better cache usage by aligning. We do this
8652 lazily to avoid pessimizing traditional objects. */
8653 if (!htab->is_vxworks
8654 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8655 return FALSE;
8656
8657 /* Make sure that .got.plt is word-aligned. We do this lazily
8658 for the same reason as above. */
8659 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8660 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8661 return FALSE;
8662
8663 htab->splt->size += htab->plt_header_size;
8664
8665 /* On non-VxWorks targets, the first two entries in .got.plt
8666 are reserved. */
8667 if (!htab->is_vxworks)
8668 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8669
8670 /* On VxWorks, also allocate room for the header's
8671 .rela.plt.unloaded entries. */
8672 if (htab->is_vxworks && !info->shared)
8673 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8674 }
8675
8676 /* Assign the next .plt entry to this symbol. */
8677 h->plt.offset = htab->splt->size;
8678 htab->splt->size += htab->plt_entry_size;
8679
8680 /* If the output file has no definition of the symbol, set the
8681 symbol's value to the address of the stub. */
8682 if (!info->shared && !h->def_regular)
8683 {
8684 h->root.u.def.section = htab->splt;
8685 h->root.u.def.value = h->plt.offset;
8686 /* For VxWorks, point at the PLT load stub rather than the
8687 lazy resolution stub; this stub will become the canonical
8688 function address. */
8689 if (htab->is_vxworks)
8690 h->root.u.def.value += 8;
8691 }
8692
8693 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8694 relocation. */
8695 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8696 htab->srelplt->size += (htab->is_vxworks
8697 ? MIPS_ELF_RELA_SIZE (dynobj)
8698 : MIPS_ELF_REL_SIZE (dynobj));
8699
8700 /* Make room for the .rela.plt.unloaded relocations. */
8701 if (htab->is_vxworks && !info->shared)
8702 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8703
8704 /* All relocations against this symbol that could have been made
8705 dynamic will now refer to the PLT entry instead. */
8706 hmips->possibly_dynamic_relocs = 0;
8707
8708 return TRUE;
8709 }
8710
8711 /* If this is a weak symbol, and there is a real definition, the
8712 processor independent code will have arranged for us to see the
8713 real definition first, and we can just use the same value. */
8714 if (h->u.weakdef != NULL)
8715 {
8716 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8717 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8718 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8719 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8720 return TRUE;
8721 }
8722
8723 /* Otherwise, there is nothing further to do for symbols defined
8724 in regular objects. */
8725 if (h->def_regular)
8726 return TRUE;
8727
8728 /* There's also nothing more to do if we'll convert all relocations
8729 against this symbol into dynamic relocations. */
8730 if (!hmips->has_static_relocs)
8731 return TRUE;
8732
8733 /* We're now relying on copy relocations. Complain if we have
8734 some that we can't convert. */
8735 if (!htab->use_plts_and_copy_relocs || info->shared)
8736 {
8737 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8738 "dynamic symbol %s"),
8739 h->root.root.string);
8740 bfd_set_error (bfd_error_bad_value);
8741 return FALSE;
8742 }
8743
8744 /* We must allocate the symbol in our .dynbss section, which will
8745 become part of the .bss section of the executable. There will be
8746 an entry for this symbol in the .dynsym section. The dynamic
8747 object will contain position independent code, so all references
8748 from the dynamic object to this symbol will go through the global
8749 offset table. The dynamic linker will use the .dynsym entry to
8750 determine the address it must put in the global offset table, so
8751 both the dynamic object and the regular object will refer to the
8752 same memory location for the variable. */
8753
8754 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8755 {
8756 if (htab->is_vxworks)
8757 htab->srelbss->size += sizeof (Elf32_External_Rela);
8758 else
8759 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8760 h->needs_copy = 1;
8761 }
8762
8763 /* All relocations against this symbol that could have been made
8764 dynamic will now refer to the local copy instead. */
8765 hmips->possibly_dynamic_relocs = 0;
8766
8767 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8768 }
8769 \f
8770 /* This function is called after all the input files have been read,
8771 and the input sections have been assigned to output sections. We
8772 check for any mips16 stub sections that we can discard. */
8773
8774 bfd_boolean
8775 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8776 struct bfd_link_info *info)
8777 {
8778 asection *ri;
8779 struct mips_elf_link_hash_table *htab;
8780 struct mips_htab_traverse_info hti;
8781
8782 htab = mips_elf_hash_table (info);
8783 BFD_ASSERT (htab != NULL);
8784
8785 /* The .reginfo section has a fixed size. */
8786 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8787 if (ri != NULL)
8788 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8789
8790 hti.info = info;
8791 hti.output_bfd = output_bfd;
8792 hti.error = FALSE;
8793 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8794 mips_elf_check_symbols, &hti);
8795 if (hti.error)
8796 return FALSE;
8797
8798 return TRUE;
8799 }
8800
8801 /* If the link uses a GOT, lay it out and work out its size. */
8802
8803 static bfd_boolean
8804 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8805 {
8806 bfd *dynobj;
8807 asection *s;
8808 struct mips_got_info *g;
8809 bfd_size_type loadable_size = 0;
8810 bfd_size_type page_gotno;
8811 bfd *sub;
8812 struct mips_elf_count_tls_arg count_tls_arg;
8813 struct mips_elf_link_hash_table *htab;
8814
8815 htab = mips_elf_hash_table (info);
8816 BFD_ASSERT (htab != NULL);
8817
8818 s = htab->sgot;
8819 if (s == NULL)
8820 return TRUE;
8821
8822 dynobj = elf_hash_table (info)->dynobj;
8823 g = htab->got_info;
8824
8825 /* Allocate room for the reserved entries. VxWorks always reserves
8826 3 entries; other objects only reserve 2 entries. */
8827 BFD_ASSERT (g->assigned_gotno == 0);
8828 if (htab->is_vxworks)
8829 htab->reserved_gotno = 3;
8830 else
8831 htab->reserved_gotno = 2;
8832 g->local_gotno += htab->reserved_gotno;
8833 g->assigned_gotno = htab->reserved_gotno;
8834
8835 /* Replace entries for indirect and warning symbols with entries for
8836 the target symbol. */
8837 if (!mips_elf_resolve_final_got_entries (g))
8838 return FALSE;
8839
8840 /* Count the number of GOT symbols. */
8841 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8842
8843 /* Calculate the total loadable size of the output. That
8844 will give us the maximum number of GOT_PAGE entries
8845 required. */
8846 for (sub = info->input_bfds; sub; sub = sub->link_next)
8847 {
8848 asection *subsection;
8849
8850 for (subsection = sub->sections;
8851 subsection;
8852 subsection = subsection->next)
8853 {
8854 if ((subsection->flags & SEC_ALLOC) == 0)
8855 continue;
8856 loadable_size += ((subsection->size + 0xf)
8857 &~ (bfd_size_type) 0xf);
8858 }
8859 }
8860
8861 if (htab->is_vxworks)
8862 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8863 relocations against local symbols evaluate to "G", and the EABI does
8864 not include R_MIPS_GOT_PAGE. */
8865 page_gotno = 0;
8866 else
8867 /* Assume there are two loadable segments consisting of contiguous
8868 sections. Is 5 enough? */
8869 page_gotno = (loadable_size >> 16) + 5;
8870
8871 /* Choose the smaller of the two estimates; both are intended to be
8872 conservative. */
8873 if (page_gotno > g->page_gotno)
8874 page_gotno = g->page_gotno;
8875
8876 g->local_gotno += page_gotno;
8877 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8878 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8879
8880 /* We need to calculate tls_gotno for global symbols at this point
8881 instead of building it up earlier, to avoid doublecounting
8882 entries for one global symbol from multiple input files. */
8883 count_tls_arg.info = info;
8884 count_tls_arg.needed = 0;
8885 elf_link_hash_traverse (elf_hash_table (info),
8886 mips_elf_count_global_tls_entries,
8887 &count_tls_arg);
8888 g->tls_gotno += count_tls_arg.needed;
8889 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8890
8891 /* VxWorks does not support multiple GOTs. It initializes $gp to
8892 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8893 dynamic loader. */
8894 if (htab->is_vxworks)
8895 {
8896 /* VxWorks executables do not need a GOT. */
8897 if (info->shared)
8898 {
8899 /* Each VxWorks GOT entry needs an explicit relocation. */
8900 unsigned int count;
8901
8902 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8903 if (count)
8904 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8905 }
8906 }
8907 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8908 {
8909 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8910 return FALSE;
8911 }
8912 else
8913 {
8914 struct mips_elf_count_tls_arg arg;
8915
8916 /* Set up TLS entries. */
8917 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8918 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8919
8920 /* Allocate room for the TLS relocations. */
8921 arg.info = info;
8922 arg.needed = 0;
8923 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8924 elf_link_hash_traverse (elf_hash_table (info),
8925 mips_elf_count_global_tls_relocs,
8926 &arg);
8927 if (arg.needed)
8928 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8929 }
8930
8931 return TRUE;
8932 }
8933
8934 /* Estimate the size of the .MIPS.stubs section. */
8935
8936 static void
8937 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8938 {
8939 struct mips_elf_link_hash_table *htab;
8940 bfd_size_type dynsymcount;
8941
8942 htab = mips_elf_hash_table (info);
8943 BFD_ASSERT (htab != NULL);
8944
8945 if (htab->lazy_stub_count == 0)
8946 return;
8947
8948 /* IRIX rld assumes that a function stub isn't at the end of the .text
8949 section, so add a dummy entry to the end. */
8950 htab->lazy_stub_count++;
8951
8952 /* Get a worst-case estimate of the number of dynamic symbols needed.
8953 At this point, dynsymcount does not account for section symbols
8954 and count_section_dynsyms may overestimate the number that will
8955 be needed. */
8956 dynsymcount = (elf_hash_table (info)->dynsymcount
8957 + count_section_dynsyms (output_bfd, info));
8958
8959 /* Determine the size of one stub entry. */
8960 htab->function_stub_size = (dynsymcount > 0x10000
8961 ? MIPS_FUNCTION_STUB_BIG_SIZE
8962 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8963
8964 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8965 }
8966
8967 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8968 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8969 allocate an entry in the stubs section. */
8970
8971 static bfd_boolean
8972 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8973 {
8974 struct mips_elf_link_hash_table *htab;
8975
8976 htab = (struct mips_elf_link_hash_table *) data;
8977 if (h->needs_lazy_stub)
8978 {
8979 h->root.root.u.def.section = htab->sstubs;
8980 h->root.root.u.def.value = htab->sstubs->size;
8981 h->root.plt.offset = htab->sstubs->size;
8982 htab->sstubs->size += htab->function_stub_size;
8983 }
8984 return TRUE;
8985 }
8986
8987 /* Allocate offsets in the stubs section to each symbol that needs one.
8988 Set the final size of the .MIPS.stub section. */
8989
8990 static void
8991 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8992 {
8993 struct mips_elf_link_hash_table *htab;
8994
8995 htab = mips_elf_hash_table (info);
8996 BFD_ASSERT (htab != NULL);
8997
8998 if (htab->lazy_stub_count == 0)
8999 return;
9000
9001 htab->sstubs->size = 0;
9002 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
9003 htab->sstubs->size += htab->function_stub_size;
9004 BFD_ASSERT (htab->sstubs->size
9005 == htab->lazy_stub_count * htab->function_stub_size);
9006 }
9007
9008 /* Set the sizes of the dynamic sections. */
9009
9010 bfd_boolean
9011 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9012 struct bfd_link_info *info)
9013 {
9014 bfd *dynobj;
9015 asection *s, *sreldyn;
9016 bfd_boolean reltext;
9017 struct mips_elf_link_hash_table *htab;
9018
9019 htab = mips_elf_hash_table (info);
9020 BFD_ASSERT (htab != NULL);
9021 dynobj = elf_hash_table (info)->dynobj;
9022 BFD_ASSERT (dynobj != NULL);
9023
9024 if (elf_hash_table (info)->dynamic_sections_created)
9025 {
9026 /* Set the contents of the .interp section to the interpreter. */
9027 if (info->executable)
9028 {
9029 s = bfd_get_section_by_name (dynobj, ".interp");
9030 BFD_ASSERT (s != NULL);
9031 s->size
9032 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9033 s->contents
9034 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9035 }
9036
9037 /* Create a symbol for the PLT, if we know that we are using it. */
9038 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9039 {
9040 struct elf_link_hash_entry *h;
9041
9042 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9043
9044 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9045 "_PROCEDURE_LINKAGE_TABLE_");
9046 htab->root.hplt = h;
9047 if (h == NULL)
9048 return FALSE;
9049 h->type = STT_FUNC;
9050 }
9051 }
9052
9053 /* Allocate space for global sym dynamic relocs. */
9054 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
9055
9056 mips_elf_estimate_stub_size (output_bfd, info);
9057
9058 if (!mips_elf_lay_out_got (output_bfd, info))
9059 return FALSE;
9060
9061 mips_elf_lay_out_lazy_stubs (info);
9062
9063 /* The check_relocs and adjust_dynamic_symbol entry points have
9064 determined the sizes of the various dynamic sections. Allocate
9065 memory for them. */
9066 reltext = FALSE;
9067 for (s = dynobj->sections; s != NULL; s = s->next)
9068 {
9069 const char *name;
9070
9071 /* It's OK to base decisions on the section name, because none
9072 of the dynobj section names depend upon the input files. */
9073 name = bfd_get_section_name (dynobj, s);
9074
9075 if ((s->flags & SEC_LINKER_CREATED) == 0)
9076 continue;
9077
9078 if (CONST_STRNEQ (name, ".rel"))
9079 {
9080 if (s->size != 0)
9081 {
9082 const char *outname;
9083 asection *target;
9084
9085 /* If this relocation section applies to a read only
9086 section, then we probably need a DT_TEXTREL entry.
9087 If the relocation section is .rel(a).dyn, we always
9088 assert a DT_TEXTREL entry rather than testing whether
9089 there exists a relocation to a read only section or
9090 not. */
9091 outname = bfd_get_section_name (output_bfd,
9092 s->output_section);
9093 target = bfd_get_section_by_name (output_bfd, outname + 4);
9094 if ((target != NULL
9095 && (target->flags & SEC_READONLY) != 0
9096 && (target->flags & SEC_ALLOC) != 0)
9097 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9098 reltext = TRUE;
9099
9100 /* We use the reloc_count field as a counter if we need
9101 to copy relocs into the output file. */
9102 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9103 s->reloc_count = 0;
9104
9105 /* If combreloc is enabled, elf_link_sort_relocs() will
9106 sort relocations, but in a different way than we do,
9107 and before we're done creating relocations. Also, it
9108 will move them around between input sections'
9109 relocation's contents, so our sorting would be
9110 broken, so don't let it run. */
9111 info->combreloc = 0;
9112 }
9113 }
9114 else if (! info->shared
9115 && ! mips_elf_hash_table (info)->use_rld_obj_head
9116 && CONST_STRNEQ (name, ".rld_map"))
9117 {
9118 /* We add a room for __rld_map. It will be filled in by the
9119 rtld to contain a pointer to the _r_debug structure. */
9120 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9121 }
9122 else if (SGI_COMPAT (output_bfd)
9123 && CONST_STRNEQ (name, ".compact_rel"))
9124 s->size += mips_elf_hash_table (info)->compact_rel_size;
9125 else if (s == htab->splt)
9126 {
9127 /* If the last PLT entry has a branch delay slot, allocate
9128 room for an extra nop to fill the delay slot. This is
9129 for CPUs without load interlocking. */
9130 if (! LOAD_INTERLOCKS_P (output_bfd)
9131 && ! htab->is_vxworks && s->size > 0)
9132 s->size += 4;
9133 }
9134 else if (! CONST_STRNEQ (name, ".init")
9135 && s != htab->sgot
9136 && s != htab->sgotplt
9137 && s != htab->sstubs
9138 && s != htab->sdynbss)
9139 {
9140 /* It's not one of our sections, so don't allocate space. */
9141 continue;
9142 }
9143
9144 if (s->size == 0)
9145 {
9146 s->flags |= SEC_EXCLUDE;
9147 continue;
9148 }
9149
9150 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9151 continue;
9152
9153 /* Allocate memory for the section contents. */
9154 s->contents = bfd_zalloc (dynobj, s->size);
9155 if (s->contents == NULL)
9156 {
9157 bfd_set_error (bfd_error_no_memory);
9158 return FALSE;
9159 }
9160 }
9161
9162 if (elf_hash_table (info)->dynamic_sections_created)
9163 {
9164 /* Add some entries to the .dynamic section. We fill in the
9165 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9166 must add the entries now so that we get the correct size for
9167 the .dynamic section. */
9168
9169 /* SGI object has the equivalence of DT_DEBUG in the
9170 DT_MIPS_RLD_MAP entry. This must come first because glibc
9171 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
9172 looks at the first one it sees. */
9173 if (!info->shared
9174 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9175 return FALSE;
9176
9177 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9178 used by the debugger. */
9179 if (info->executable
9180 && !SGI_COMPAT (output_bfd)
9181 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9182 return FALSE;
9183
9184 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9185 info->flags |= DF_TEXTREL;
9186
9187 if ((info->flags & DF_TEXTREL) != 0)
9188 {
9189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9190 return FALSE;
9191
9192 /* Clear the DF_TEXTREL flag. It will be set again if we
9193 write out an actual text relocation; we may not, because
9194 at this point we do not know whether e.g. any .eh_frame
9195 absolute relocations have been converted to PC-relative. */
9196 info->flags &= ~DF_TEXTREL;
9197 }
9198
9199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9200 return FALSE;
9201
9202 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9203 if (htab->is_vxworks)
9204 {
9205 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9206 use any of the DT_MIPS_* tags. */
9207 if (sreldyn && sreldyn->size > 0)
9208 {
9209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9210 return FALSE;
9211
9212 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9213 return FALSE;
9214
9215 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9216 return FALSE;
9217 }
9218 }
9219 else
9220 {
9221 if (sreldyn && sreldyn->size > 0)
9222 {
9223 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9224 return FALSE;
9225
9226 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9227 return FALSE;
9228
9229 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9230 return FALSE;
9231 }
9232
9233 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9234 return FALSE;
9235
9236 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9237 return FALSE;
9238
9239 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9240 return FALSE;
9241
9242 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9243 return FALSE;
9244
9245 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9246 return FALSE;
9247
9248 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9249 return FALSE;
9250
9251 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9252 return FALSE;
9253
9254 if (IRIX_COMPAT (dynobj) == ict_irix5
9255 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9256 return FALSE;
9257
9258 if (IRIX_COMPAT (dynobj) == ict_irix6
9259 && (bfd_get_section_by_name
9260 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9261 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9262 return FALSE;
9263 }
9264 if (htab->splt->size > 0)
9265 {
9266 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9267 return FALSE;
9268
9269 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9270 return FALSE;
9271
9272 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9273 return FALSE;
9274
9275 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9276 return FALSE;
9277 }
9278 if (htab->is_vxworks
9279 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9280 return FALSE;
9281 }
9282
9283 return TRUE;
9284 }
9285 \f
9286 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9287 Adjust its R_ADDEND field so that it is correct for the output file.
9288 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9289 and sections respectively; both use symbol indexes. */
9290
9291 static void
9292 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9293 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9294 asection **local_sections, Elf_Internal_Rela *rel)
9295 {
9296 unsigned int r_type, r_symndx;
9297 Elf_Internal_Sym *sym;
9298 asection *sec;
9299
9300 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9301 {
9302 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9303 if (gprel16_reloc_p (r_type)
9304 || r_type == R_MIPS_GPREL32
9305 || literal_reloc_p (r_type))
9306 {
9307 rel->r_addend += _bfd_get_gp_value (input_bfd);
9308 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9309 }
9310
9311 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9312 sym = local_syms + r_symndx;
9313
9314 /* Adjust REL's addend to account for section merging. */
9315 if (!info->relocatable)
9316 {
9317 sec = local_sections[r_symndx];
9318 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9319 }
9320
9321 /* This would normally be done by the rela_normal code in elflink.c. */
9322 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9323 rel->r_addend += local_sections[r_symndx]->output_offset;
9324 }
9325 }
9326
9327 /* Relocate a MIPS ELF section. */
9328
9329 bfd_boolean
9330 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9331 bfd *input_bfd, asection *input_section,
9332 bfd_byte *contents, Elf_Internal_Rela *relocs,
9333 Elf_Internal_Sym *local_syms,
9334 asection **local_sections)
9335 {
9336 Elf_Internal_Rela *rel;
9337 const Elf_Internal_Rela *relend;
9338 bfd_vma addend = 0;
9339 bfd_boolean use_saved_addend_p = FALSE;
9340 const struct elf_backend_data *bed;
9341
9342 bed = get_elf_backend_data (output_bfd);
9343 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9344 for (rel = relocs; rel < relend; ++rel)
9345 {
9346 const char *name;
9347 bfd_vma value = 0;
9348 reloc_howto_type *howto;
9349 bfd_boolean cross_mode_jump_p;
9350 /* TRUE if the relocation is a RELA relocation, rather than a
9351 REL relocation. */
9352 bfd_boolean rela_relocation_p = TRUE;
9353 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9354 const char *msg;
9355 unsigned long r_symndx;
9356 asection *sec;
9357 Elf_Internal_Shdr *symtab_hdr;
9358 struct elf_link_hash_entry *h;
9359 bfd_boolean rel_reloc;
9360
9361 rel_reloc = (NEWABI_P (input_bfd)
9362 && mips_elf_rel_relocation_p (input_bfd, input_section,
9363 relocs, rel));
9364 /* Find the relocation howto for this relocation. */
9365 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9366
9367 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9368 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9369 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9370 {
9371 sec = local_sections[r_symndx];
9372 h = NULL;
9373 }
9374 else
9375 {
9376 unsigned long extsymoff;
9377
9378 extsymoff = 0;
9379 if (!elf_bad_symtab (input_bfd))
9380 extsymoff = symtab_hdr->sh_info;
9381 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9382 while (h->root.type == bfd_link_hash_indirect
9383 || h->root.type == bfd_link_hash_warning)
9384 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9385
9386 sec = NULL;
9387 if (h->root.type == bfd_link_hash_defined
9388 || h->root.type == bfd_link_hash_defweak)
9389 sec = h->root.u.def.section;
9390 }
9391
9392 if (sec != NULL && elf_discarded_section (sec))
9393 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9394 rel, relend, howto, contents);
9395
9396 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9397 {
9398 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9399 64-bit code, but make sure all their addresses are in the
9400 lowermost or uppermost 32-bit section of the 64-bit address
9401 space. Thus, when they use an R_MIPS_64 they mean what is
9402 usually meant by R_MIPS_32, with the exception that the
9403 stored value is sign-extended to 64 bits. */
9404 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9405
9406 /* On big-endian systems, we need to lie about the position
9407 of the reloc. */
9408 if (bfd_big_endian (input_bfd))
9409 rel->r_offset += 4;
9410 }
9411
9412 if (!use_saved_addend_p)
9413 {
9414 /* If these relocations were originally of the REL variety,
9415 we must pull the addend out of the field that will be
9416 relocated. Otherwise, we simply use the contents of the
9417 RELA relocation. */
9418 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9419 relocs, rel))
9420 {
9421 rela_relocation_p = FALSE;
9422 addend = mips_elf_read_rel_addend (input_bfd, rel,
9423 howto, contents);
9424 if (hi16_reloc_p (r_type)
9425 || (got16_reloc_p (r_type)
9426 && mips_elf_local_relocation_p (input_bfd, rel,
9427 local_sections)))
9428 {
9429 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9430 contents, &addend))
9431 {
9432 if (h)
9433 name = h->root.root.string;
9434 else
9435 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9436 local_syms + r_symndx,
9437 sec);
9438 (*_bfd_error_handler)
9439 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9440 input_bfd, input_section, name, howto->name,
9441 rel->r_offset);
9442 }
9443 }
9444 else
9445 addend <<= howto->rightshift;
9446 }
9447 else
9448 addend = rel->r_addend;
9449 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9450 local_syms, local_sections, rel);
9451 }
9452
9453 if (info->relocatable)
9454 {
9455 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9456 && bfd_big_endian (input_bfd))
9457 rel->r_offset -= 4;
9458
9459 if (!rela_relocation_p && rel->r_addend)
9460 {
9461 addend += rel->r_addend;
9462 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9463 addend = mips_elf_high (addend);
9464 else if (r_type == R_MIPS_HIGHER)
9465 addend = mips_elf_higher (addend);
9466 else if (r_type == R_MIPS_HIGHEST)
9467 addend = mips_elf_highest (addend);
9468 else
9469 addend >>= howto->rightshift;
9470
9471 /* We use the source mask, rather than the destination
9472 mask because the place to which we are writing will be
9473 source of the addend in the final link. */
9474 addend &= howto->src_mask;
9475
9476 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9477 /* See the comment above about using R_MIPS_64 in the 32-bit
9478 ABI. Here, we need to update the addend. It would be
9479 possible to get away with just using the R_MIPS_32 reloc
9480 but for endianness. */
9481 {
9482 bfd_vma sign_bits;
9483 bfd_vma low_bits;
9484 bfd_vma high_bits;
9485
9486 if (addend & ((bfd_vma) 1 << 31))
9487 #ifdef BFD64
9488 sign_bits = ((bfd_vma) 1 << 32) - 1;
9489 #else
9490 sign_bits = -1;
9491 #endif
9492 else
9493 sign_bits = 0;
9494
9495 /* If we don't know that we have a 64-bit type,
9496 do two separate stores. */
9497 if (bfd_big_endian (input_bfd))
9498 {
9499 /* Store the sign-bits (which are most significant)
9500 first. */
9501 low_bits = sign_bits;
9502 high_bits = addend;
9503 }
9504 else
9505 {
9506 low_bits = addend;
9507 high_bits = sign_bits;
9508 }
9509 bfd_put_32 (input_bfd, low_bits,
9510 contents + rel->r_offset);
9511 bfd_put_32 (input_bfd, high_bits,
9512 contents + rel->r_offset + 4);
9513 continue;
9514 }
9515
9516 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9517 input_bfd, input_section,
9518 contents, FALSE))
9519 return FALSE;
9520 }
9521
9522 /* Go on to the next relocation. */
9523 continue;
9524 }
9525
9526 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9527 relocations for the same offset. In that case we are
9528 supposed to treat the output of each relocation as the addend
9529 for the next. */
9530 if (rel + 1 < relend
9531 && rel->r_offset == rel[1].r_offset
9532 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9533 use_saved_addend_p = TRUE;
9534 else
9535 use_saved_addend_p = FALSE;
9536
9537 /* Figure out what value we are supposed to relocate. */
9538 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9539 input_section, info, rel,
9540 addend, howto, local_syms,
9541 local_sections, &value,
9542 &name, &cross_mode_jump_p,
9543 use_saved_addend_p))
9544 {
9545 case bfd_reloc_continue:
9546 /* There's nothing to do. */
9547 continue;
9548
9549 case bfd_reloc_undefined:
9550 /* mips_elf_calculate_relocation already called the
9551 undefined_symbol callback. There's no real point in
9552 trying to perform the relocation at this point, so we
9553 just skip ahead to the next relocation. */
9554 continue;
9555
9556 case bfd_reloc_notsupported:
9557 msg = _("internal error: unsupported relocation error");
9558 info->callbacks->warning
9559 (info, msg, name, input_bfd, input_section, rel->r_offset);
9560 return FALSE;
9561
9562 case bfd_reloc_overflow:
9563 if (use_saved_addend_p)
9564 /* Ignore overflow until we reach the last relocation for
9565 a given location. */
9566 ;
9567 else
9568 {
9569 struct mips_elf_link_hash_table *htab;
9570
9571 htab = mips_elf_hash_table (info);
9572 BFD_ASSERT (htab != NULL);
9573 BFD_ASSERT (name != NULL);
9574 if (!htab->small_data_overflow_reported
9575 && (gprel16_reloc_p (howto->type)
9576 || literal_reloc_p (howto->type)))
9577 {
9578 msg = _("small-data section exceeds 64KB;"
9579 " lower small-data size limit (see option -G)");
9580
9581 htab->small_data_overflow_reported = TRUE;
9582 (*info->callbacks->einfo) ("%P: %s\n", msg);
9583 }
9584 if (! ((*info->callbacks->reloc_overflow)
9585 (info, NULL, name, howto->name, (bfd_vma) 0,
9586 input_bfd, input_section, rel->r_offset)))
9587 return FALSE;
9588 }
9589 break;
9590
9591 case bfd_reloc_ok:
9592 break;
9593
9594 case bfd_reloc_outofrange:
9595 if (jal_reloc_p (howto->type))
9596 {
9597 msg = _("JALX to a non-word-aligned address");
9598 info->callbacks->warning
9599 (info, msg, name, input_bfd, input_section, rel->r_offset);
9600 return FALSE;
9601 }
9602 /* Fall through. */
9603
9604 default:
9605 abort ();
9606 break;
9607 }
9608
9609 /* If we've got another relocation for the address, keep going
9610 until we reach the last one. */
9611 if (use_saved_addend_p)
9612 {
9613 addend = value;
9614 continue;
9615 }
9616
9617 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9618 /* See the comment above about using R_MIPS_64 in the 32-bit
9619 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9620 that calculated the right value. Now, however, we
9621 sign-extend the 32-bit result to 64-bits, and store it as a
9622 64-bit value. We are especially generous here in that we
9623 go to extreme lengths to support this usage on systems with
9624 only a 32-bit VMA. */
9625 {
9626 bfd_vma sign_bits;
9627 bfd_vma low_bits;
9628 bfd_vma high_bits;
9629
9630 if (value & ((bfd_vma) 1 << 31))
9631 #ifdef BFD64
9632 sign_bits = ((bfd_vma) 1 << 32) - 1;
9633 #else
9634 sign_bits = -1;
9635 #endif
9636 else
9637 sign_bits = 0;
9638
9639 /* If we don't know that we have a 64-bit type,
9640 do two separate stores. */
9641 if (bfd_big_endian (input_bfd))
9642 {
9643 /* Undo what we did above. */
9644 rel->r_offset -= 4;
9645 /* Store the sign-bits (which are most significant)
9646 first. */
9647 low_bits = sign_bits;
9648 high_bits = value;
9649 }
9650 else
9651 {
9652 low_bits = value;
9653 high_bits = sign_bits;
9654 }
9655 bfd_put_32 (input_bfd, low_bits,
9656 contents + rel->r_offset);
9657 bfd_put_32 (input_bfd, high_bits,
9658 contents + rel->r_offset + 4);
9659 continue;
9660 }
9661
9662 /* Actually perform the relocation. */
9663 if (! mips_elf_perform_relocation (info, howto, rel, value,
9664 input_bfd, input_section,
9665 contents, cross_mode_jump_p))
9666 return FALSE;
9667 }
9668
9669 return TRUE;
9670 }
9671 \f
9672 /* A function that iterates over each entry in la25_stubs and fills
9673 in the code for each one. DATA points to a mips_htab_traverse_info. */
9674
9675 static int
9676 mips_elf_create_la25_stub (void **slot, void *data)
9677 {
9678 struct mips_htab_traverse_info *hti;
9679 struct mips_elf_link_hash_table *htab;
9680 struct mips_elf_la25_stub *stub;
9681 asection *s;
9682 bfd_byte *loc;
9683 bfd_vma offset, target, target_high, target_low;
9684
9685 stub = (struct mips_elf_la25_stub *) *slot;
9686 hti = (struct mips_htab_traverse_info *) data;
9687 htab = mips_elf_hash_table (hti->info);
9688 BFD_ASSERT (htab != NULL);
9689
9690 /* Create the section contents, if we haven't already. */
9691 s = stub->stub_section;
9692 loc = s->contents;
9693 if (loc == NULL)
9694 {
9695 loc = bfd_malloc (s->size);
9696 if (loc == NULL)
9697 {
9698 hti->error = TRUE;
9699 return FALSE;
9700 }
9701 s->contents = loc;
9702 }
9703
9704 /* Work out where in the section this stub should go. */
9705 offset = stub->offset;
9706
9707 /* Work out the target address. */
9708 target = mips_elf_get_la25_target (stub, &s);
9709 target += s->output_section->vma + s->output_offset;
9710
9711 target_high = ((target + 0x8000) >> 16) & 0xffff;
9712 target_low = (target & 0xffff);
9713
9714 if (stub->stub_section != htab->strampoline)
9715 {
9716 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9717 of the section and write the two instructions at the end. */
9718 memset (loc, 0, offset);
9719 loc += offset;
9720 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9721 {
9722 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9723 loc);
9724 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9725 loc + 2);
9726 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9727 loc + 4);
9728 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9729 loc + 6);
9730 }
9731 else
9732 {
9733 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9734 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9735 }
9736 }
9737 else
9738 {
9739 /* This is trampoline. */
9740 loc += offset;
9741 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9742 {
9743 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9744 loc);
9745 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9746 loc + 2);
9747 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
9748 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
9749 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9750 loc + 8);
9751 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9752 loc + 10);
9753 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9754 }
9755 else
9756 {
9757 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9758 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9759 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9760 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9761 }
9762 }
9763 return TRUE;
9764 }
9765
9766 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9767 adjust it appropriately now. */
9768
9769 static void
9770 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9771 const char *name, Elf_Internal_Sym *sym)
9772 {
9773 /* The linker script takes care of providing names and values for
9774 these, but we must place them into the right sections. */
9775 static const char* const text_section_symbols[] = {
9776 "_ftext",
9777 "_etext",
9778 "__dso_displacement",
9779 "__elf_header",
9780 "__program_header_table",
9781 NULL
9782 };
9783
9784 static const char* const data_section_symbols[] = {
9785 "_fdata",
9786 "_edata",
9787 "_end",
9788 "_fbss",
9789 NULL
9790 };
9791
9792 const char* const *p;
9793 int i;
9794
9795 for (i = 0; i < 2; ++i)
9796 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9797 *p;
9798 ++p)
9799 if (strcmp (*p, name) == 0)
9800 {
9801 /* All of these symbols are given type STT_SECTION by the
9802 IRIX6 linker. */
9803 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9804 sym->st_other = STO_PROTECTED;
9805
9806 /* The IRIX linker puts these symbols in special sections. */
9807 if (i == 0)
9808 sym->st_shndx = SHN_MIPS_TEXT;
9809 else
9810 sym->st_shndx = SHN_MIPS_DATA;
9811
9812 break;
9813 }
9814 }
9815
9816 /* Finish up dynamic symbol handling. We set the contents of various
9817 dynamic sections here. */
9818
9819 bfd_boolean
9820 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9821 struct bfd_link_info *info,
9822 struct elf_link_hash_entry *h,
9823 Elf_Internal_Sym *sym)
9824 {
9825 bfd *dynobj;
9826 asection *sgot;
9827 struct mips_got_info *g, *gg;
9828 const char *name;
9829 int idx;
9830 struct mips_elf_link_hash_table *htab;
9831 struct mips_elf_link_hash_entry *hmips;
9832
9833 htab = mips_elf_hash_table (info);
9834 BFD_ASSERT (htab != NULL);
9835 dynobj = elf_hash_table (info)->dynobj;
9836 hmips = (struct mips_elf_link_hash_entry *) h;
9837
9838 BFD_ASSERT (!htab->is_vxworks);
9839
9840 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9841 {
9842 /* We've decided to create a PLT entry for this symbol. */
9843 bfd_byte *loc;
9844 bfd_vma header_address, plt_index, got_address;
9845 bfd_vma got_address_high, got_address_low, load;
9846 const bfd_vma *plt_entry;
9847
9848 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9849 BFD_ASSERT (h->dynindx != -1);
9850 BFD_ASSERT (htab->splt != NULL);
9851 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9852 BFD_ASSERT (!h->def_regular);
9853
9854 /* Calculate the address of the PLT header. */
9855 header_address = (htab->splt->output_section->vma
9856 + htab->splt->output_offset);
9857
9858 /* Calculate the index of the entry. */
9859 plt_index = ((h->plt.offset - htab->plt_header_size)
9860 / htab->plt_entry_size);
9861
9862 /* Calculate the address of the .got.plt entry. */
9863 got_address = (htab->sgotplt->output_section->vma
9864 + htab->sgotplt->output_offset
9865 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9866 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9867 got_address_low = got_address & 0xffff;
9868
9869 /* Initially point the .got.plt entry at the PLT header. */
9870 loc = (htab->sgotplt->contents
9871 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9872 if (ABI_64_P (output_bfd))
9873 bfd_put_64 (output_bfd, header_address, loc);
9874 else
9875 bfd_put_32 (output_bfd, header_address, loc);
9876
9877 /* Find out where the .plt entry should go. */
9878 loc = htab->splt->contents + h->plt.offset;
9879
9880 /* Pick the load opcode. */
9881 load = MIPS_ELF_LOAD_WORD (output_bfd);
9882
9883 /* Fill in the PLT entry itself. */
9884 plt_entry = mips_exec_plt_entry;
9885 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9886 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9887
9888 if (! LOAD_INTERLOCKS_P (output_bfd))
9889 {
9890 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9891 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9892 }
9893 else
9894 {
9895 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9896 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9897 }
9898
9899 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9900 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9901 plt_index, h->dynindx,
9902 R_MIPS_JUMP_SLOT, got_address);
9903
9904 /* We distinguish between PLT entries and lazy-binding stubs by
9905 giving the former an st_other value of STO_MIPS_PLT. Set the
9906 flag and leave the value if there are any relocations in the
9907 binary where pointer equality matters. */
9908 sym->st_shndx = SHN_UNDEF;
9909 if (h->pointer_equality_needed)
9910 sym->st_other = STO_MIPS_PLT;
9911 else
9912 sym->st_value = 0;
9913 }
9914 else if (h->plt.offset != MINUS_ONE)
9915 {
9916 /* We've decided to create a lazy-binding stub. */
9917 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9918
9919 /* This symbol has a stub. Set it up. */
9920
9921 BFD_ASSERT (h->dynindx != -1);
9922
9923 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9924 || (h->dynindx <= 0xffff));
9925
9926 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9927 sign extension at runtime in the stub, resulting in a negative
9928 index value. */
9929 if (h->dynindx & ~0x7fffffff)
9930 return FALSE;
9931
9932 /* Fill the stub. */
9933 idx = 0;
9934 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9935 idx += 4;
9936 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9937 idx += 4;
9938 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9939 {
9940 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9941 stub + idx);
9942 idx += 4;
9943 }
9944 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9945 idx += 4;
9946
9947 /* If a large stub is not required and sign extension is not a
9948 problem, then use legacy code in the stub. */
9949 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9950 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9951 else if (h->dynindx & ~0x7fff)
9952 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9953 else
9954 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9955 stub + idx);
9956
9957 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9958 memcpy (htab->sstubs->contents + h->plt.offset,
9959 stub, htab->function_stub_size);
9960
9961 /* Mark the symbol as undefined. plt.offset != -1 occurs
9962 only for the referenced symbol. */
9963 sym->st_shndx = SHN_UNDEF;
9964
9965 /* The run-time linker uses the st_value field of the symbol
9966 to reset the global offset table entry for this external
9967 to its stub address when unlinking a shared object. */
9968 sym->st_value = (htab->sstubs->output_section->vma
9969 + htab->sstubs->output_offset
9970 + h->plt.offset);
9971 }
9972
9973 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9974 refer to the stub, since only the stub uses the standard calling
9975 conventions. */
9976 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9977 {
9978 BFD_ASSERT (hmips->need_fn_stub);
9979 sym->st_value = (hmips->fn_stub->output_section->vma
9980 + hmips->fn_stub->output_offset);
9981 sym->st_size = hmips->fn_stub->size;
9982 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9983 }
9984
9985 BFD_ASSERT (h->dynindx != -1
9986 || h->forced_local);
9987
9988 sgot = htab->sgot;
9989 g = htab->got_info;
9990 BFD_ASSERT (g != NULL);
9991
9992 /* Run through the global symbol table, creating GOT entries for all
9993 the symbols that need them. */
9994 if (hmips->global_got_area != GGA_NONE)
9995 {
9996 bfd_vma offset;
9997 bfd_vma value;
9998
9999 value = sym->st_value;
10000 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10001 R_MIPS_GOT16, info);
10002 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10003 }
10004
10005 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
10006 {
10007 struct mips_got_entry e, *p;
10008 bfd_vma entry;
10009 bfd_vma offset;
10010
10011 gg = g;
10012
10013 e.abfd = output_bfd;
10014 e.symndx = -1;
10015 e.d.h = hmips;
10016 e.tls_type = 0;
10017
10018 for (g = g->next; g->next != gg; g = g->next)
10019 {
10020 if (g->got_entries
10021 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10022 &e)))
10023 {
10024 offset = p->gotidx;
10025 if (info->shared
10026 || (elf_hash_table (info)->dynamic_sections_created
10027 && p->d.h != NULL
10028 && p->d.h->root.def_dynamic
10029 && !p->d.h->root.def_regular))
10030 {
10031 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10032 the various compatibility problems, it's easier to mock
10033 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10034 mips_elf_create_dynamic_relocation to calculate the
10035 appropriate addend. */
10036 Elf_Internal_Rela rel[3];
10037
10038 memset (rel, 0, sizeof (rel));
10039 if (ABI_64_P (output_bfd))
10040 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10041 else
10042 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10043 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10044
10045 entry = 0;
10046 if (! (mips_elf_create_dynamic_relocation
10047 (output_bfd, info, rel,
10048 e.d.h, NULL, sym->st_value, &entry, sgot)))
10049 return FALSE;
10050 }
10051 else
10052 entry = sym->st_value;
10053 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10054 }
10055 }
10056 }
10057
10058 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10059 name = h->root.root.string;
10060 if (strcmp (name, "_DYNAMIC") == 0
10061 || h == elf_hash_table (info)->hgot)
10062 sym->st_shndx = SHN_ABS;
10063 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10064 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10065 {
10066 sym->st_shndx = SHN_ABS;
10067 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10068 sym->st_value = 1;
10069 }
10070 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10071 {
10072 sym->st_shndx = SHN_ABS;
10073 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10074 sym->st_value = elf_gp (output_bfd);
10075 }
10076 else if (SGI_COMPAT (output_bfd))
10077 {
10078 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10079 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10080 {
10081 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10082 sym->st_other = STO_PROTECTED;
10083 sym->st_value = 0;
10084 sym->st_shndx = SHN_MIPS_DATA;
10085 }
10086 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10087 {
10088 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10089 sym->st_other = STO_PROTECTED;
10090 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10091 sym->st_shndx = SHN_ABS;
10092 }
10093 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10094 {
10095 if (h->type == STT_FUNC)
10096 sym->st_shndx = SHN_MIPS_TEXT;
10097 else if (h->type == STT_OBJECT)
10098 sym->st_shndx = SHN_MIPS_DATA;
10099 }
10100 }
10101
10102 /* Emit a copy reloc, if needed. */
10103 if (h->needs_copy)
10104 {
10105 asection *s;
10106 bfd_vma symval;
10107
10108 BFD_ASSERT (h->dynindx != -1);
10109 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10110
10111 s = mips_elf_rel_dyn_section (info, FALSE);
10112 symval = (h->root.u.def.section->output_section->vma
10113 + h->root.u.def.section->output_offset
10114 + h->root.u.def.value);
10115 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10116 h->dynindx, R_MIPS_COPY, symval);
10117 }
10118
10119 /* Handle the IRIX6-specific symbols. */
10120 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10121 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10122
10123 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10124 treat MIPS16 symbols like any other. */
10125 if (ELF_ST_IS_MIPS16 (sym->st_other))
10126 {
10127 BFD_ASSERT (sym->st_value & 1);
10128 sym->st_other -= STO_MIPS16;
10129 }
10130
10131 return TRUE;
10132 }
10133
10134 /* Likewise, for VxWorks. */
10135
10136 bfd_boolean
10137 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10138 struct bfd_link_info *info,
10139 struct elf_link_hash_entry *h,
10140 Elf_Internal_Sym *sym)
10141 {
10142 bfd *dynobj;
10143 asection *sgot;
10144 struct mips_got_info *g;
10145 struct mips_elf_link_hash_table *htab;
10146 struct mips_elf_link_hash_entry *hmips;
10147
10148 htab = mips_elf_hash_table (info);
10149 BFD_ASSERT (htab != NULL);
10150 dynobj = elf_hash_table (info)->dynobj;
10151 hmips = (struct mips_elf_link_hash_entry *) h;
10152
10153 if (h->plt.offset != (bfd_vma) -1)
10154 {
10155 bfd_byte *loc;
10156 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10157 Elf_Internal_Rela rel;
10158 static const bfd_vma *plt_entry;
10159
10160 BFD_ASSERT (h->dynindx != -1);
10161 BFD_ASSERT (htab->splt != NULL);
10162 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10163
10164 /* Calculate the address of the .plt entry. */
10165 plt_address = (htab->splt->output_section->vma
10166 + htab->splt->output_offset
10167 + h->plt.offset);
10168
10169 /* Calculate the index of the entry. */
10170 plt_index = ((h->plt.offset - htab->plt_header_size)
10171 / htab->plt_entry_size);
10172
10173 /* Calculate the address of the .got.plt entry. */
10174 got_address = (htab->sgotplt->output_section->vma
10175 + htab->sgotplt->output_offset
10176 + plt_index * 4);
10177
10178 /* Calculate the offset of the .got.plt entry from
10179 _GLOBAL_OFFSET_TABLE_. */
10180 got_offset = mips_elf_gotplt_index (info, h);
10181
10182 /* Calculate the offset for the branch at the start of the PLT
10183 entry. The branch jumps to the beginning of .plt. */
10184 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10185
10186 /* Fill in the initial value of the .got.plt entry. */
10187 bfd_put_32 (output_bfd, plt_address,
10188 htab->sgotplt->contents + plt_index * 4);
10189
10190 /* Find out where the .plt entry should go. */
10191 loc = htab->splt->contents + h->plt.offset;
10192
10193 if (info->shared)
10194 {
10195 plt_entry = mips_vxworks_shared_plt_entry;
10196 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10197 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10198 }
10199 else
10200 {
10201 bfd_vma got_address_high, got_address_low;
10202
10203 plt_entry = mips_vxworks_exec_plt_entry;
10204 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10205 got_address_low = got_address & 0xffff;
10206
10207 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10208 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10209 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10210 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10211 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10212 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10213 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10214 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10215
10216 loc = (htab->srelplt2->contents
10217 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10218
10219 /* Emit a relocation for the .got.plt entry. */
10220 rel.r_offset = got_address;
10221 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10222 rel.r_addend = h->plt.offset;
10223 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10224
10225 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10226 loc += sizeof (Elf32_External_Rela);
10227 rel.r_offset = plt_address + 8;
10228 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10229 rel.r_addend = got_offset;
10230 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10231
10232 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10233 loc += sizeof (Elf32_External_Rela);
10234 rel.r_offset += 4;
10235 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10236 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10237 }
10238
10239 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10240 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10241 rel.r_offset = got_address;
10242 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10243 rel.r_addend = 0;
10244 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10245
10246 if (!h->def_regular)
10247 sym->st_shndx = SHN_UNDEF;
10248 }
10249
10250 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10251
10252 sgot = htab->sgot;
10253 g = htab->got_info;
10254 BFD_ASSERT (g != NULL);
10255
10256 /* See if this symbol has an entry in the GOT. */
10257 if (hmips->global_got_area != GGA_NONE)
10258 {
10259 bfd_vma offset;
10260 Elf_Internal_Rela outrel;
10261 bfd_byte *loc;
10262 asection *s;
10263
10264 /* Install the symbol value in the GOT. */
10265 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10266 R_MIPS_GOT16, info);
10267 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10268
10269 /* Add a dynamic relocation for it. */
10270 s = mips_elf_rel_dyn_section (info, FALSE);
10271 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10272 outrel.r_offset = (sgot->output_section->vma
10273 + sgot->output_offset
10274 + offset);
10275 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10276 outrel.r_addend = 0;
10277 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10278 }
10279
10280 /* Emit a copy reloc, if needed. */
10281 if (h->needs_copy)
10282 {
10283 Elf_Internal_Rela rel;
10284
10285 BFD_ASSERT (h->dynindx != -1);
10286
10287 rel.r_offset = (h->root.u.def.section->output_section->vma
10288 + h->root.u.def.section->output_offset
10289 + h->root.u.def.value);
10290 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10291 rel.r_addend = 0;
10292 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10293 htab->srelbss->contents
10294 + (htab->srelbss->reloc_count
10295 * sizeof (Elf32_External_Rela)));
10296 ++htab->srelbss->reloc_count;
10297 }
10298
10299 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10300 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10301 sym->st_value &= ~1;
10302
10303 return TRUE;
10304 }
10305
10306 /* Write out a plt0 entry to the beginning of .plt. */
10307
10308 static void
10309 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10310 {
10311 bfd_byte *loc;
10312 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10313 static const bfd_vma *plt_entry;
10314 struct mips_elf_link_hash_table *htab;
10315
10316 htab = mips_elf_hash_table (info);
10317 BFD_ASSERT (htab != NULL);
10318
10319 if (ABI_64_P (output_bfd))
10320 plt_entry = mips_n64_exec_plt0_entry;
10321 else if (ABI_N32_P (output_bfd))
10322 plt_entry = mips_n32_exec_plt0_entry;
10323 else
10324 plt_entry = mips_o32_exec_plt0_entry;
10325
10326 /* Calculate the value of .got.plt. */
10327 gotplt_value = (htab->sgotplt->output_section->vma
10328 + htab->sgotplt->output_offset);
10329 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10330 gotplt_value_low = gotplt_value & 0xffff;
10331
10332 /* The PLT sequence is not safe for N64 if .got.plt's address can
10333 not be loaded in two instructions. */
10334 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10335 || ~(gotplt_value | 0x7fffffff) == 0);
10336
10337 /* Install the PLT header. */
10338 loc = htab->splt->contents;
10339 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10340 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10341 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10342 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10343 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10344 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10345 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10346 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10347 }
10348
10349 /* Install the PLT header for a VxWorks executable and finalize the
10350 contents of .rela.plt.unloaded. */
10351
10352 static void
10353 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10354 {
10355 Elf_Internal_Rela rela;
10356 bfd_byte *loc;
10357 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10358 static const bfd_vma *plt_entry;
10359 struct mips_elf_link_hash_table *htab;
10360
10361 htab = mips_elf_hash_table (info);
10362 BFD_ASSERT (htab != NULL);
10363
10364 plt_entry = mips_vxworks_exec_plt0_entry;
10365
10366 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10367 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10368 + htab->root.hgot->root.u.def.section->output_offset
10369 + htab->root.hgot->root.u.def.value);
10370
10371 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10372 got_value_low = got_value & 0xffff;
10373
10374 /* Calculate the address of the PLT header. */
10375 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10376
10377 /* Install the PLT header. */
10378 loc = htab->splt->contents;
10379 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10380 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10381 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10382 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10383 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10384 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10385
10386 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10387 loc = htab->srelplt2->contents;
10388 rela.r_offset = plt_address;
10389 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10390 rela.r_addend = 0;
10391 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10392 loc += sizeof (Elf32_External_Rela);
10393
10394 /* Output the relocation for the following addiu of
10395 %lo(_GLOBAL_OFFSET_TABLE_). */
10396 rela.r_offset += 4;
10397 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10398 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10399 loc += sizeof (Elf32_External_Rela);
10400
10401 /* Fix up the remaining relocations. They may have the wrong
10402 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10403 in which symbols were output. */
10404 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10405 {
10406 Elf_Internal_Rela rel;
10407
10408 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10409 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10410 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10411 loc += sizeof (Elf32_External_Rela);
10412
10413 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10414 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10415 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10416 loc += sizeof (Elf32_External_Rela);
10417
10418 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10419 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10420 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10421 loc += sizeof (Elf32_External_Rela);
10422 }
10423 }
10424
10425 /* Install the PLT header for a VxWorks shared library. */
10426
10427 static void
10428 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10429 {
10430 unsigned int i;
10431 struct mips_elf_link_hash_table *htab;
10432
10433 htab = mips_elf_hash_table (info);
10434 BFD_ASSERT (htab != NULL);
10435
10436 /* We just need to copy the entry byte-by-byte. */
10437 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10438 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10439 htab->splt->contents + i * 4);
10440 }
10441
10442 /* Finish up the dynamic sections. */
10443
10444 bfd_boolean
10445 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10446 struct bfd_link_info *info)
10447 {
10448 bfd *dynobj;
10449 asection *sdyn;
10450 asection *sgot;
10451 struct mips_got_info *gg, *g;
10452 struct mips_elf_link_hash_table *htab;
10453
10454 htab = mips_elf_hash_table (info);
10455 BFD_ASSERT (htab != NULL);
10456
10457 dynobj = elf_hash_table (info)->dynobj;
10458
10459 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10460
10461 sgot = htab->sgot;
10462 gg = htab->got_info;
10463
10464 if (elf_hash_table (info)->dynamic_sections_created)
10465 {
10466 bfd_byte *b;
10467 int dyn_to_skip = 0, dyn_skipped = 0;
10468
10469 BFD_ASSERT (sdyn != NULL);
10470 BFD_ASSERT (gg != NULL);
10471
10472 g = mips_elf_got_for_ibfd (gg, output_bfd);
10473 BFD_ASSERT (g != NULL);
10474
10475 for (b = sdyn->contents;
10476 b < sdyn->contents + sdyn->size;
10477 b += MIPS_ELF_DYN_SIZE (dynobj))
10478 {
10479 Elf_Internal_Dyn dyn;
10480 const char *name;
10481 size_t elemsize;
10482 asection *s;
10483 bfd_boolean swap_out_p;
10484
10485 /* Read in the current dynamic entry. */
10486 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10487
10488 /* Assume that we're going to modify it and write it out. */
10489 swap_out_p = TRUE;
10490
10491 switch (dyn.d_tag)
10492 {
10493 case DT_RELENT:
10494 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10495 break;
10496
10497 case DT_RELAENT:
10498 BFD_ASSERT (htab->is_vxworks);
10499 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10500 break;
10501
10502 case DT_STRSZ:
10503 /* Rewrite DT_STRSZ. */
10504 dyn.d_un.d_val =
10505 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10506 break;
10507
10508 case DT_PLTGOT:
10509 s = htab->sgot;
10510 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10511 break;
10512
10513 case DT_MIPS_PLTGOT:
10514 s = htab->sgotplt;
10515 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10516 break;
10517
10518 case DT_MIPS_RLD_VERSION:
10519 dyn.d_un.d_val = 1; /* XXX */
10520 break;
10521
10522 case DT_MIPS_FLAGS:
10523 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10524 break;
10525
10526 case DT_MIPS_TIME_STAMP:
10527 {
10528 time_t t;
10529 time (&t);
10530 dyn.d_un.d_val = t;
10531 }
10532 break;
10533
10534 case DT_MIPS_ICHECKSUM:
10535 /* XXX FIXME: */
10536 swap_out_p = FALSE;
10537 break;
10538
10539 case DT_MIPS_IVERSION:
10540 /* XXX FIXME: */
10541 swap_out_p = FALSE;
10542 break;
10543
10544 case DT_MIPS_BASE_ADDRESS:
10545 s = output_bfd->sections;
10546 BFD_ASSERT (s != NULL);
10547 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10548 break;
10549
10550 case DT_MIPS_LOCAL_GOTNO:
10551 dyn.d_un.d_val = g->local_gotno;
10552 break;
10553
10554 case DT_MIPS_UNREFEXTNO:
10555 /* The index into the dynamic symbol table which is the
10556 entry of the first external symbol that is not
10557 referenced within the same object. */
10558 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10559 break;
10560
10561 case DT_MIPS_GOTSYM:
10562 if (gg->global_gotsym)
10563 {
10564 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10565 break;
10566 }
10567 /* In case if we don't have global got symbols we default
10568 to setting DT_MIPS_GOTSYM to the same value as
10569 DT_MIPS_SYMTABNO, so we just fall through. */
10570
10571 case DT_MIPS_SYMTABNO:
10572 name = ".dynsym";
10573 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10574 s = bfd_get_section_by_name (output_bfd, name);
10575 BFD_ASSERT (s != NULL);
10576
10577 dyn.d_un.d_val = s->size / elemsize;
10578 break;
10579
10580 case DT_MIPS_HIPAGENO:
10581 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10582 break;
10583
10584 case DT_MIPS_RLD_MAP:
10585 {
10586 struct elf_link_hash_entry *h;
10587 h = mips_elf_hash_table (info)->rld_symbol;
10588 if (!h)
10589 {
10590 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10591 swap_out_p = FALSE;
10592 break;
10593 }
10594 s = h->root.u.def.section;
10595 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10596 + h->root.u.def.value);
10597 }
10598 break;
10599
10600 case DT_MIPS_OPTIONS:
10601 s = (bfd_get_section_by_name
10602 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10603 dyn.d_un.d_ptr = s->vma;
10604 break;
10605
10606 case DT_RELASZ:
10607 BFD_ASSERT (htab->is_vxworks);
10608 /* The count does not include the JUMP_SLOT relocations. */
10609 if (htab->srelplt)
10610 dyn.d_un.d_val -= htab->srelplt->size;
10611 break;
10612
10613 case DT_PLTREL:
10614 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10615 if (htab->is_vxworks)
10616 dyn.d_un.d_val = DT_RELA;
10617 else
10618 dyn.d_un.d_val = DT_REL;
10619 break;
10620
10621 case DT_PLTRELSZ:
10622 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10623 dyn.d_un.d_val = htab->srelplt->size;
10624 break;
10625
10626 case DT_JMPREL:
10627 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10628 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10629 + htab->srelplt->output_offset);
10630 break;
10631
10632 case DT_TEXTREL:
10633 /* If we didn't need any text relocations after all, delete
10634 the dynamic tag. */
10635 if (!(info->flags & DF_TEXTREL))
10636 {
10637 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10638 swap_out_p = FALSE;
10639 }
10640 break;
10641
10642 case DT_FLAGS:
10643 /* If we didn't need any text relocations after all, clear
10644 DF_TEXTREL from DT_FLAGS. */
10645 if (!(info->flags & DF_TEXTREL))
10646 dyn.d_un.d_val &= ~DF_TEXTREL;
10647 else
10648 swap_out_p = FALSE;
10649 break;
10650
10651 default:
10652 swap_out_p = FALSE;
10653 if (htab->is_vxworks
10654 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10655 swap_out_p = TRUE;
10656 break;
10657 }
10658
10659 if (swap_out_p || dyn_skipped)
10660 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10661 (dynobj, &dyn, b - dyn_skipped);
10662
10663 if (dyn_to_skip)
10664 {
10665 dyn_skipped += dyn_to_skip;
10666 dyn_to_skip = 0;
10667 }
10668 }
10669
10670 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10671 if (dyn_skipped > 0)
10672 memset (b - dyn_skipped, 0, dyn_skipped);
10673 }
10674
10675 if (sgot != NULL && sgot->size > 0
10676 && !bfd_is_abs_section (sgot->output_section))
10677 {
10678 if (htab->is_vxworks)
10679 {
10680 /* The first entry of the global offset table points to the
10681 ".dynamic" section. The second is initialized by the
10682 loader and contains the shared library identifier.
10683 The third is also initialized by the loader and points
10684 to the lazy resolution stub. */
10685 MIPS_ELF_PUT_WORD (output_bfd,
10686 sdyn->output_offset + sdyn->output_section->vma,
10687 sgot->contents);
10688 MIPS_ELF_PUT_WORD (output_bfd, 0,
10689 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10690 MIPS_ELF_PUT_WORD (output_bfd, 0,
10691 sgot->contents
10692 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10693 }
10694 else
10695 {
10696 /* The first entry of the global offset table will be filled at
10697 runtime. The second entry will be used by some runtime loaders.
10698 This isn't the case of IRIX rld. */
10699 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10700 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10701 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10702 }
10703
10704 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10705 = MIPS_ELF_GOT_SIZE (output_bfd);
10706 }
10707
10708 /* Generate dynamic relocations for the non-primary gots. */
10709 if (gg != NULL && gg->next)
10710 {
10711 Elf_Internal_Rela rel[3];
10712 bfd_vma addend = 0;
10713
10714 memset (rel, 0, sizeof (rel));
10715 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10716
10717 for (g = gg->next; g->next != gg; g = g->next)
10718 {
10719 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10720 + g->next->tls_gotno;
10721
10722 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10723 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10724 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10725 sgot->contents
10726 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10727
10728 if (! info->shared)
10729 continue;
10730
10731 while (got_index < g->assigned_gotno)
10732 {
10733 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10734 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10735 if (!(mips_elf_create_dynamic_relocation
10736 (output_bfd, info, rel, NULL,
10737 bfd_abs_section_ptr,
10738 0, &addend, sgot)))
10739 return FALSE;
10740 BFD_ASSERT (addend == 0);
10741 }
10742 }
10743 }
10744
10745 /* The generation of dynamic relocations for the non-primary gots
10746 adds more dynamic relocations. We cannot count them until
10747 here. */
10748
10749 if (elf_hash_table (info)->dynamic_sections_created)
10750 {
10751 bfd_byte *b;
10752 bfd_boolean swap_out_p;
10753
10754 BFD_ASSERT (sdyn != NULL);
10755
10756 for (b = sdyn->contents;
10757 b < sdyn->contents + sdyn->size;
10758 b += MIPS_ELF_DYN_SIZE (dynobj))
10759 {
10760 Elf_Internal_Dyn dyn;
10761 asection *s;
10762
10763 /* Read in the current dynamic entry. */
10764 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10765
10766 /* Assume that we're going to modify it and write it out. */
10767 swap_out_p = TRUE;
10768
10769 switch (dyn.d_tag)
10770 {
10771 case DT_RELSZ:
10772 /* Reduce DT_RELSZ to account for any relocations we
10773 decided not to make. This is for the n64 irix rld,
10774 which doesn't seem to apply any relocations if there
10775 are trailing null entries. */
10776 s = mips_elf_rel_dyn_section (info, FALSE);
10777 dyn.d_un.d_val = (s->reloc_count
10778 * (ABI_64_P (output_bfd)
10779 ? sizeof (Elf64_Mips_External_Rel)
10780 : sizeof (Elf32_External_Rel)));
10781 /* Adjust the section size too. Tools like the prelinker
10782 can reasonably expect the values to the same. */
10783 elf_section_data (s->output_section)->this_hdr.sh_size
10784 = dyn.d_un.d_val;
10785 break;
10786
10787 default:
10788 swap_out_p = FALSE;
10789 break;
10790 }
10791
10792 if (swap_out_p)
10793 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10794 (dynobj, &dyn, b);
10795 }
10796 }
10797
10798 {
10799 asection *s;
10800 Elf32_compact_rel cpt;
10801
10802 if (SGI_COMPAT (output_bfd))
10803 {
10804 /* Write .compact_rel section out. */
10805 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10806 if (s != NULL)
10807 {
10808 cpt.id1 = 1;
10809 cpt.num = s->reloc_count;
10810 cpt.id2 = 2;
10811 cpt.offset = (s->output_section->filepos
10812 + sizeof (Elf32_External_compact_rel));
10813 cpt.reserved0 = 0;
10814 cpt.reserved1 = 0;
10815 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10816 ((Elf32_External_compact_rel *)
10817 s->contents));
10818
10819 /* Clean up a dummy stub function entry in .text. */
10820 if (htab->sstubs != NULL)
10821 {
10822 file_ptr dummy_offset;
10823
10824 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10825 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10826 memset (htab->sstubs->contents + dummy_offset, 0,
10827 htab->function_stub_size);
10828 }
10829 }
10830 }
10831
10832 /* The psABI says that the dynamic relocations must be sorted in
10833 increasing order of r_symndx. The VxWorks EABI doesn't require
10834 this, and because the code below handles REL rather than RELA
10835 relocations, using it for VxWorks would be outright harmful. */
10836 if (!htab->is_vxworks)
10837 {
10838 s = mips_elf_rel_dyn_section (info, FALSE);
10839 if (s != NULL
10840 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10841 {
10842 reldyn_sorting_bfd = output_bfd;
10843
10844 if (ABI_64_P (output_bfd))
10845 qsort ((Elf64_External_Rel *) s->contents + 1,
10846 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10847 sort_dynamic_relocs_64);
10848 else
10849 qsort ((Elf32_External_Rel *) s->contents + 1,
10850 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10851 sort_dynamic_relocs);
10852 }
10853 }
10854 }
10855
10856 if (htab->splt && htab->splt->size > 0)
10857 {
10858 if (htab->is_vxworks)
10859 {
10860 if (info->shared)
10861 mips_vxworks_finish_shared_plt (output_bfd, info);
10862 else
10863 mips_vxworks_finish_exec_plt (output_bfd, info);
10864 }
10865 else
10866 {
10867 BFD_ASSERT (!info->shared);
10868 mips_finish_exec_plt (output_bfd, info);
10869 }
10870 }
10871 return TRUE;
10872 }
10873
10874
10875 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10876
10877 static void
10878 mips_set_isa_flags (bfd *abfd)
10879 {
10880 flagword val;
10881
10882 switch (bfd_get_mach (abfd))
10883 {
10884 default:
10885 case bfd_mach_mips3000:
10886 val = E_MIPS_ARCH_1;
10887 break;
10888
10889 case bfd_mach_mips3900:
10890 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10891 break;
10892
10893 case bfd_mach_mips6000:
10894 val = E_MIPS_ARCH_2;
10895 break;
10896
10897 case bfd_mach_mips4000:
10898 case bfd_mach_mips4300:
10899 case bfd_mach_mips4400:
10900 case bfd_mach_mips4600:
10901 val = E_MIPS_ARCH_3;
10902 break;
10903
10904 case bfd_mach_mips4010:
10905 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10906 break;
10907
10908 case bfd_mach_mips4100:
10909 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10910 break;
10911
10912 case bfd_mach_mips4111:
10913 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10914 break;
10915
10916 case bfd_mach_mips4120:
10917 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10918 break;
10919
10920 case bfd_mach_mips4650:
10921 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10922 break;
10923
10924 case bfd_mach_mips5400:
10925 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10926 break;
10927
10928 case bfd_mach_mips5500:
10929 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10930 break;
10931
10932 case bfd_mach_mips9000:
10933 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10934 break;
10935
10936 case bfd_mach_mips5000:
10937 case bfd_mach_mips7000:
10938 case bfd_mach_mips8000:
10939 case bfd_mach_mips10000:
10940 case bfd_mach_mips12000:
10941 case bfd_mach_mips14000:
10942 case bfd_mach_mips16000:
10943 val = E_MIPS_ARCH_4;
10944 break;
10945
10946 case bfd_mach_mips5:
10947 val = E_MIPS_ARCH_5;
10948 break;
10949
10950 case bfd_mach_mips_loongson_2e:
10951 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10952 break;
10953
10954 case bfd_mach_mips_loongson_2f:
10955 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10956 break;
10957
10958 case bfd_mach_mips_sb1:
10959 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10960 break;
10961
10962 case bfd_mach_mips_loongson_3a:
10963 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10964 break;
10965
10966 case bfd_mach_mips_octeon:
10967 case bfd_mach_mips_octeonp:
10968 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10969 break;
10970
10971 case bfd_mach_mips_xlr:
10972 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10973 break;
10974
10975 case bfd_mach_mips_octeon2:
10976 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10977 break;
10978
10979 case bfd_mach_mipsisa32:
10980 val = E_MIPS_ARCH_32;
10981 break;
10982
10983 case bfd_mach_mipsisa64:
10984 val = E_MIPS_ARCH_64;
10985 break;
10986
10987 case bfd_mach_mipsisa32r2:
10988 val = E_MIPS_ARCH_32R2;
10989 break;
10990
10991 case bfd_mach_mipsisa64r2:
10992 val = E_MIPS_ARCH_64R2;
10993 break;
10994 }
10995 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10996 elf_elfheader (abfd)->e_flags |= val;
10997
10998 }
10999
11000
11001 /* The final processing done just before writing out a MIPS ELF object
11002 file. This gets the MIPS architecture right based on the machine
11003 number. This is used by both the 32-bit and the 64-bit ABI. */
11004
11005 void
11006 _bfd_mips_elf_final_write_processing (bfd *abfd,
11007 bfd_boolean linker ATTRIBUTE_UNUSED)
11008 {
11009 unsigned int i;
11010 Elf_Internal_Shdr **hdrpp;
11011 const char *name;
11012 asection *sec;
11013
11014 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11015 is nonzero. This is for compatibility with old objects, which used
11016 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11017 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11018 mips_set_isa_flags (abfd);
11019
11020 /* Set the sh_info field for .gptab sections and other appropriate
11021 info for each special section. */
11022 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11023 i < elf_numsections (abfd);
11024 i++, hdrpp++)
11025 {
11026 switch ((*hdrpp)->sh_type)
11027 {
11028 case SHT_MIPS_MSYM:
11029 case SHT_MIPS_LIBLIST:
11030 sec = bfd_get_section_by_name (abfd, ".dynstr");
11031 if (sec != NULL)
11032 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11033 break;
11034
11035 case SHT_MIPS_GPTAB:
11036 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11037 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11038 BFD_ASSERT (name != NULL
11039 && CONST_STRNEQ (name, ".gptab."));
11040 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11041 BFD_ASSERT (sec != NULL);
11042 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11043 break;
11044
11045 case SHT_MIPS_CONTENT:
11046 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11047 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11048 BFD_ASSERT (name != NULL
11049 && CONST_STRNEQ (name, ".MIPS.content"));
11050 sec = bfd_get_section_by_name (abfd,
11051 name + sizeof ".MIPS.content" - 1);
11052 BFD_ASSERT (sec != NULL);
11053 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11054 break;
11055
11056 case SHT_MIPS_SYMBOL_LIB:
11057 sec = bfd_get_section_by_name (abfd, ".dynsym");
11058 if (sec != NULL)
11059 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11060 sec = bfd_get_section_by_name (abfd, ".liblist");
11061 if (sec != NULL)
11062 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11063 break;
11064
11065 case SHT_MIPS_EVENTS:
11066 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11067 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11068 BFD_ASSERT (name != NULL);
11069 if (CONST_STRNEQ (name, ".MIPS.events"))
11070 sec = bfd_get_section_by_name (abfd,
11071 name + sizeof ".MIPS.events" - 1);
11072 else
11073 {
11074 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11075 sec = bfd_get_section_by_name (abfd,
11076 (name
11077 + sizeof ".MIPS.post_rel" - 1));
11078 }
11079 BFD_ASSERT (sec != NULL);
11080 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11081 break;
11082
11083 }
11084 }
11085 }
11086 \f
11087 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11088 segments. */
11089
11090 int
11091 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11092 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11093 {
11094 asection *s;
11095 int ret = 0;
11096
11097 /* See if we need a PT_MIPS_REGINFO segment. */
11098 s = bfd_get_section_by_name (abfd, ".reginfo");
11099 if (s && (s->flags & SEC_LOAD))
11100 ++ret;
11101
11102 /* See if we need a PT_MIPS_OPTIONS segment. */
11103 if (IRIX_COMPAT (abfd) == ict_irix6
11104 && bfd_get_section_by_name (abfd,
11105 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11106 ++ret;
11107
11108 /* See if we need a PT_MIPS_RTPROC segment. */
11109 if (IRIX_COMPAT (abfd) == ict_irix5
11110 && bfd_get_section_by_name (abfd, ".dynamic")
11111 && bfd_get_section_by_name (abfd, ".mdebug"))
11112 ++ret;
11113
11114 /* Allocate a PT_NULL header in dynamic objects. See
11115 _bfd_mips_elf_modify_segment_map for details. */
11116 if (!SGI_COMPAT (abfd)
11117 && bfd_get_section_by_name (abfd, ".dynamic"))
11118 ++ret;
11119
11120 return ret;
11121 }
11122
11123 /* Modify the segment map for an IRIX5 executable. */
11124
11125 bfd_boolean
11126 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11127 struct bfd_link_info *info)
11128 {
11129 asection *s;
11130 struct elf_segment_map *m, **pm;
11131 bfd_size_type amt;
11132
11133 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11134 segment. */
11135 s = bfd_get_section_by_name (abfd, ".reginfo");
11136 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11137 {
11138 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11139 if (m->p_type == PT_MIPS_REGINFO)
11140 break;
11141 if (m == NULL)
11142 {
11143 amt = sizeof *m;
11144 m = bfd_zalloc (abfd, amt);
11145 if (m == NULL)
11146 return FALSE;
11147
11148 m->p_type = PT_MIPS_REGINFO;
11149 m->count = 1;
11150 m->sections[0] = s;
11151
11152 /* We want to put it after the PHDR and INTERP segments. */
11153 pm = &elf_tdata (abfd)->segment_map;
11154 while (*pm != NULL
11155 && ((*pm)->p_type == PT_PHDR
11156 || (*pm)->p_type == PT_INTERP))
11157 pm = &(*pm)->next;
11158
11159 m->next = *pm;
11160 *pm = m;
11161 }
11162 }
11163
11164 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11165 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11166 PT_MIPS_OPTIONS segment immediately following the program header
11167 table. */
11168 if (NEWABI_P (abfd)
11169 /* On non-IRIX6 new abi, we'll have already created a segment
11170 for this section, so don't create another. I'm not sure this
11171 is not also the case for IRIX 6, but I can't test it right
11172 now. */
11173 && IRIX_COMPAT (abfd) == ict_irix6)
11174 {
11175 for (s = abfd->sections; s; s = s->next)
11176 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11177 break;
11178
11179 if (s)
11180 {
11181 struct elf_segment_map *options_segment;
11182
11183 pm = &elf_tdata (abfd)->segment_map;
11184 while (*pm != NULL
11185 && ((*pm)->p_type == PT_PHDR
11186 || (*pm)->p_type == PT_INTERP))
11187 pm = &(*pm)->next;
11188
11189 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11190 {
11191 amt = sizeof (struct elf_segment_map);
11192 options_segment = bfd_zalloc (abfd, amt);
11193 options_segment->next = *pm;
11194 options_segment->p_type = PT_MIPS_OPTIONS;
11195 options_segment->p_flags = PF_R;
11196 options_segment->p_flags_valid = TRUE;
11197 options_segment->count = 1;
11198 options_segment->sections[0] = s;
11199 *pm = options_segment;
11200 }
11201 }
11202 }
11203 else
11204 {
11205 if (IRIX_COMPAT (abfd) == ict_irix5)
11206 {
11207 /* If there are .dynamic and .mdebug sections, we make a room
11208 for the RTPROC header. FIXME: Rewrite without section names. */
11209 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11210 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11211 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11212 {
11213 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11214 if (m->p_type == PT_MIPS_RTPROC)
11215 break;
11216 if (m == NULL)
11217 {
11218 amt = sizeof *m;
11219 m = bfd_zalloc (abfd, amt);
11220 if (m == NULL)
11221 return FALSE;
11222
11223 m->p_type = PT_MIPS_RTPROC;
11224
11225 s = bfd_get_section_by_name (abfd, ".rtproc");
11226 if (s == NULL)
11227 {
11228 m->count = 0;
11229 m->p_flags = 0;
11230 m->p_flags_valid = 1;
11231 }
11232 else
11233 {
11234 m->count = 1;
11235 m->sections[0] = s;
11236 }
11237
11238 /* We want to put it after the DYNAMIC segment. */
11239 pm = &elf_tdata (abfd)->segment_map;
11240 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11241 pm = &(*pm)->next;
11242 if (*pm != NULL)
11243 pm = &(*pm)->next;
11244
11245 m->next = *pm;
11246 *pm = m;
11247 }
11248 }
11249 }
11250 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11251 .dynstr, .dynsym, and .hash sections, and everything in
11252 between. */
11253 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11254 pm = &(*pm)->next)
11255 if ((*pm)->p_type == PT_DYNAMIC)
11256 break;
11257 m = *pm;
11258 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11259 {
11260 /* For a normal mips executable the permissions for the PT_DYNAMIC
11261 segment are read, write and execute. We do that here since
11262 the code in elf.c sets only the read permission. This matters
11263 sometimes for the dynamic linker. */
11264 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11265 {
11266 m->p_flags = PF_R | PF_W | PF_X;
11267 m->p_flags_valid = 1;
11268 }
11269 }
11270 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11271 glibc's dynamic linker has traditionally derived the number of
11272 tags from the p_filesz field, and sometimes allocates stack
11273 arrays of that size. An overly-big PT_DYNAMIC segment can
11274 be actively harmful in such cases. Making PT_DYNAMIC contain
11275 other sections can also make life hard for the prelinker,
11276 which might move one of the other sections to a different
11277 PT_LOAD segment. */
11278 if (SGI_COMPAT (abfd)
11279 && m != NULL
11280 && m->count == 1
11281 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11282 {
11283 static const char *sec_names[] =
11284 {
11285 ".dynamic", ".dynstr", ".dynsym", ".hash"
11286 };
11287 bfd_vma low, high;
11288 unsigned int i, c;
11289 struct elf_segment_map *n;
11290
11291 low = ~(bfd_vma) 0;
11292 high = 0;
11293 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11294 {
11295 s = bfd_get_section_by_name (abfd, sec_names[i]);
11296 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11297 {
11298 bfd_size_type sz;
11299
11300 if (low > s->vma)
11301 low = s->vma;
11302 sz = s->size;
11303 if (high < s->vma + sz)
11304 high = s->vma + sz;
11305 }
11306 }
11307
11308 c = 0;
11309 for (s = abfd->sections; s != NULL; s = s->next)
11310 if ((s->flags & SEC_LOAD) != 0
11311 && s->vma >= low
11312 && s->vma + s->size <= high)
11313 ++c;
11314
11315 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11316 n = bfd_zalloc (abfd, amt);
11317 if (n == NULL)
11318 return FALSE;
11319 *n = *m;
11320 n->count = c;
11321
11322 i = 0;
11323 for (s = abfd->sections; s != NULL; s = s->next)
11324 {
11325 if ((s->flags & SEC_LOAD) != 0
11326 && s->vma >= low
11327 && s->vma + s->size <= high)
11328 {
11329 n->sections[i] = s;
11330 ++i;
11331 }
11332 }
11333
11334 *pm = n;
11335 }
11336 }
11337
11338 /* Allocate a spare program header in dynamic objects so that tools
11339 like the prelinker can add an extra PT_LOAD entry.
11340
11341 If the prelinker needs to make room for a new PT_LOAD entry, its
11342 standard procedure is to move the first (read-only) sections into
11343 the new (writable) segment. However, the MIPS ABI requires
11344 .dynamic to be in a read-only segment, and the section will often
11345 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11346
11347 Although the prelinker could in principle move .dynamic to a
11348 writable segment, it seems better to allocate a spare program
11349 header instead, and avoid the need to move any sections.
11350 There is a long tradition of allocating spare dynamic tags,
11351 so allocating a spare program header seems like a natural
11352 extension.
11353
11354 If INFO is NULL, we may be copying an already prelinked binary
11355 with objcopy or strip, so do not add this header. */
11356 if (info != NULL
11357 && !SGI_COMPAT (abfd)
11358 && bfd_get_section_by_name (abfd, ".dynamic"))
11359 {
11360 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11361 if ((*pm)->p_type == PT_NULL)
11362 break;
11363 if (*pm == NULL)
11364 {
11365 m = bfd_zalloc (abfd, sizeof (*m));
11366 if (m == NULL)
11367 return FALSE;
11368
11369 m->p_type = PT_NULL;
11370 *pm = m;
11371 }
11372 }
11373
11374 return TRUE;
11375 }
11376 \f
11377 /* Return the section that should be marked against GC for a given
11378 relocation. */
11379
11380 asection *
11381 _bfd_mips_elf_gc_mark_hook (asection *sec,
11382 struct bfd_link_info *info,
11383 Elf_Internal_Rela *rel,
11384 struct elf_link_hash_entry *h,
11385 Elf_Internal_Sym *sym)
11386 {
11387 /* ??? Do mips16 stub sections need to be handled special? */
11388
11389 if (h != NULL)
11390 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11391 {
11392 case R_MIPS_GNU_VTINHERIT:
11393 case R_MIPS_GNU_VTENTRY:
11394 return NULL;
11395 }
11396
11397 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11398 }
11399
11400 /* Update the got entry reference counts for the section being removed. */
11401
11402 bfd_boolean
11403 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11404 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11405 asection *sec ATTRIBUTE_UNUSED,
11406 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11407 {
11408 #if 0
11409 Elf_Internal_Shdr *symtab_hdr;
11410 struct elf_link_hash_entry **sym_hashes;
11411 bfd_signed_vma *local_got_refcounts;
11412 const Elf_Internal_Rela *rel, *relend;
11413 unsigned long r_symndx;
11414 struct elf_link_hash_entry *h;
11415
11416 if (info->relocatable)
11417 return TRUE;
11418
11419 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11420 sym_hashes = elf_sym_hashes (abfd);
11421 local_got_refcounts = elf_local_got_refcounts (abfd);
11422
11423 relend = relocs + sec->reloc_count;
11424 for (rel = relocs; rel < relend; rel++)
11425 switch (ELF_R_TYPE (abfd, rel->r_info))
11426 {
11427 case R_MIPS16_GOT16:
11428 case R_MIPS16_CALL16:
11429 case R_MIPS_GOT16:
11430 case R_MIPS_CALL16:
11431 case R_MIPS_CALL_HI16:
11432 case R_MIPS_CALL_LO16:
11433 case R_MIPS_GOT_HI16:
11434 case R_MIPS_GOT_LO16:
11435 case R_MIPS_GOT_DISP:
11436 case R_MIPS_GOT_PAGE:
11437 case R_MIPS_GOT_OFST:
11438 case R_MICROMIPS_GOT16:
11439 case R_MICROMIPS_CALL16:
11440 case R_MICROMIPS_CALL_HI16:
11441 case R_MICROMIPS_CALL_LO16:
11442 case R_MICROMIPS_GOT_HI16:
11443 case R_MICROMIPS_GOT_LO16:
11444 case R_MICROMIPS_GOT_DISP:
11445 case R_MICROMIPS_GOT_PAGE:
11446 case R_MICROMIPS_GOT_OFST:
11447 /* ??? It would seem that the existing MIPS code does no sort
11448 of reference counting or whatnot on its GOT and PLT entries,
11449 so it is not possible to garbage collect them at this time. */
11450 break;
11451
11452 default:
11453 break;
11454 }
11455 #endif
11456
11457 return TRUE;
11458 }
11459 \f
11460 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11461 hiding the old indirect symbol. Process additional relocation
11462 information. Also called for weakdefs, in which case we just let
11463 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11464
11465 void
11466 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11467 struct elf_link_hash_entry *dir,
11468 struct elf_link_hash_entry *ind)
11469 {
11470 struct mips_elf_link_hash_entry *dirmips, *indmips;
11471
11472 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11473
11474 dirmips = (struct mips_elf_link_hash_entry *) dir;
11475 indmips = (struct mips_elf_link_hash_entry *) ind;
11476 /* Any absolute non-dynamic relocations against an indirect or weak
11477 definition will be against the target symbol. */
11478 if (indmips->has_static_relocs)
11479 dirmips->has_static_relocs = TRUE;
11480
11481 if (ind->root.type != bfd_link_hash_indirect)
11482 return;
11483
11484 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11485 if (indmips->readonly_reloc)
11486 dirmips->readonly_reloc = TRUE;
11487 if (indmips->no_fn_stub)
11488 dirmips->no_fn_stub = TRUE;
11489 if (indmips->fn_stub)
11490 {
11491 dirmips->fn_stub = indmips->fn_stub;
11492 indmips->fn_stub = NULL;
11493 }
11494 if (indmips->need_fn_stub)
11495 {
11496 dirmips->need_fn_stub = TRUE;
11497 indmips->need_fn_stub = FALSE;
11498 }
11499 if (indmips->call_stub)
11500 {
11501 dirmips->call_stub = indmips->call_stub;
11502 indmips->call_stub = NULL;
11503 }
11504 if (indmips->call_fp_stub)
11505 {
11506 dirmips->call_fp_stub = indmips->call_fp_stub;
11507 indmips->call_fp_stub = NULL;
11508 }
11509 if (indmips->global_got_area < dirmips->global_got_area)
11510 dirmips->global_got_area = indmips->global_got_area;
11511 if (indmips->global_got_area < GGA_NONE)
11512 indmips->global_got_area = GGA_NONE;
11513 if (indmips->has_nonpic_branches)
11514 dirmips->has_nonpic_branches = TRUE;
11515
11516 if (dirmips->tls_type == 0)
11517 dirmips->tls_type = indmips->tls_type;
11518 }
11519 \f
11520 #define PDR_SIZE 32
11521
11522 bfd_boolean
11523 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11524 struct bfd_link_info *info)
11525 {
11526 asection *o;
11527 bfd_boolean ret = FALSE;
11528 unsigned char *tdata;
11529 size_t i, skip;
11530
11531 o = bfd_get_section_by_name (abfd, ".pdr");
11532 if (! o)
11533 return FALSE;
11534 if (o->size == 0)
11535 return FALSE;
11536 if (o->size % PDR_SIZE != 0)
11537 return FALSE;
11538 if (o->output_section != NULL
11539 && bfd_is_abs_section (o->output_section))
11540 return FALSE;
11541
11542 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11543 if (! tdata)
11544 return FALSE;
11545
11546 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11547 info->keep_memory);
11548 if (!cookie->rels)
11549 {
11550 free (tdata);
11551 return FALSE;
11552 }
11553
11554 cookie->rel = cookie->rels;
11555 cookie->relend = cookie->rels + o->reloc_count;
11556
11557 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11558 {
11559 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11560 {
11561 tdata[i] = 1;
11562 skip ++;
11563 }
11564 }
11565
11566 if (skip != 0)
11567 {
11568 mips_elf_section_data (o)->u.tdata = tdata;
11569 o->size -= skip * PDR_SIZE;
11570 ret = TRUE;
11571 }
11572 else
11573 free (tdata);
11574
11575 if (! info->keep_memory)
11576 free (cookie->rels);
11577
11578 return ret;
11579 }
11580
11581 bfd_boolean
11582 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11583 {
11584 if (strcmp (sec->name, ".pdr") == 0)
11585 return TRUE;
11586 return FALSE;
11587 }
11588
11589 bfd_boolean
11590 _bfd_mips_elf_write_section (bfd *output_bfd,
11591 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11592 asection *sec, bfd_byte *contents)
11593 {
11594 bfd_byte *to, *from, *end;
11595 int i;
11596
11597 if (strcmp (sec->name, ".pdr") != 0)
11598 return FALSE;
11599
11600 if (mips_elf_section_data (sec)->u.tdata == NULL)
11601 return FALSE;
11602
11603 to = contents;
11604 end = contents + sec->size;
11605 for (from = contents, i = 0;
11606 from < end;
11607 from += PDR_SIZE, i++)
11608 {
11609 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11610 continue;
11611 if (to != from)
11612 memcpy (to, from, PDR_SIZE);
11613 to += PDR_SIZE;
11614 }
11615 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11616 sec->output_offset, sec->size);
11617 return TRUE;
11618 }
11619 \f
11620 /* microMIPS code retains local labels for linker relaxation. Omit them
11621 from output by default for clarity. */
11622
11623 bfd_boolean
11624 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11625 {
11626 return _bfd_elf_is_local_label_name (abfd, sym->name);
11627 }
11628
11629 /* MIPS ELF uses a special find_nearest_line routine in order the
11630 handle the ECOFF debugging information. */
11631
11632 struct mips_elf_find_line
11633 {
11634 struct ecoff_debug_info d;
11635 struct ecoff_find_line i;
11636 };
11637
11638 bfd_boolean
11639 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11640 asymbol **symbols, bfd_vma offset,
11641 const char **filename_ptr,
11642 const char **functionname_ptr,
11643 unsigned int *line_ptr)
11644 {
11645 asection *msec;
11646
11647 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11648 filename_ptr, functionname_ptr,
11649 line_ptr))
11650 return TRUE;
11651
11652 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11653 section, symbols, offset,
11654 filename_ptr, functionname_ptr,
11655 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11656 &elf_tdata (abfd)->dwarf2_find_line_info))
11657 return TRUE;
11658
11659 msec = bfd_get_section_by_name (abfd, ".mdebug");
11660 if (msec != NULL)
11661 {
11662 flagword origflags;
11663 struct mips_elf_find_line *fi;
11664 const struct ecoff_debug_swap * const swap =
11665 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11666
11667 /* If we are called during a link, mips_elf_final_link may have
11668 cleared the SEC_HAS_CONTENTS field. We force it back on here
11669 if appropriate (which it normally will be). */
11670 origflags = msec->flags;
11671 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11672 msec->flags |= SEC_HAS_CONTENTS;
11673
11674 fi = elf_tdata (abfd)->find_line_info;
11675 if (fi == NULL)
11676 {
11677 bfd_size_type external_fdr_size;
11678 char *fraw_src;
11679 char *fraw_end;
11680 struct fdr *fdr_ptr;
11681 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11682
11683 fi = bfd_zalloc (abfd, amt);
11684 if (fi == NULL)
11685 {
11686 msec->flags = origflags;
11687 return FALSE;
11688 }
11689
11690 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11691 {
11692 msec->flags = origflags;
11693 return FALSE;
11694 }
11695
11696 /* Swap in the FDR information. */
11697 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11698 fi->d.fdr = bfd_alloc (abfd, amt);
11699 if (fi->d.fdr == NULL)
11700 {
11701 msec->flags = origflags;
11702 return FALSE;
11703 }
11704 external_fdr_size = swap->external_fdr_size;
11705 fdr_ptr = fi->d.fdr;
11706 fraw_src = (char *) fi->d.external_fdr;
11707 fraw_end = (fraw_src
11708 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11709 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11710 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11711
11712 elf_tdata (abfd)->find_line_info = fi;
11713
11714 /* Note that we don't bother to ever free this information.
11715 find_nearest_line is either called all the time, as in
11716 objdump -l, so the information should be saved, or it is
11717 rarely called, as in ld error messages, so the memory
11718 wasted is unimportant. Still, it would probably be a
11719 good idea for free_cached_info to throw it away. */
11720 }
11721
11722 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11723 &fi->i, filename_ptr, functionname_ptr,
11724 line_ptr))
11725 {
11726 msec->flags = origflags;
11727 return TRUE;
11728 }
11729
11730 msec->flags = origflags;
11731 }
11732
11733 /* Fall back on the generic ELF find_nearest_line routine. */
11734
11735 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11736 filename_ptr, functionname_ptr,
11737 line_ptr);
11738 }
11739
11740 bfd_boolean
11741 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11742 const char **filename_ptr,
11743 const char **functionname_ptr,
11744 unsigned int *line_ptr)
11745 {
11746 bfd_boolean found;
11747 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11748 functionname_ptr, line_ptr,
11749 & elf_tdata (abfd)->dwarf2_find_line_info);
11750 return found;
11751 }
11752
11753 \f
11754 /* When are writing out the .options or .MIPS.options section,
11755 remember the bytes we are writing out, so that we can install the
11756 GP value in the section_processing routine. */
11757
11758 bfd_boolean
11759 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11760 const void *location,
11761 file_ptr offset, bfd_size_type count)
11762 {
11763 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11764 {
11765 bfd_byte *c;
11766
11767 if (elf_section_data (section) == NULL)
11768 {
11769 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11770 section->used_by_bfd = bfd_zalloc (abfd, amt);
11771 if (elf_section_data (section) == NULL)
11772 return FALSE;
11773 }
11774 c = mips_elf_section_data (section)->u.tdata;
11775 if (c == NULL)
11776 {
11777 c = bfd_zalloc (abfd, section->size);
11778 if (c == NULL)
11779 return FALSE;
11780 mips_elf_section_data (section)->u.tdata = c;
11781 }
11782
11783 memcpy (c + offset, location, count);
11784 }
11785
11786 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11787 count);
11788 }
11789
11790 /* This is almost identical to bfd_generic_get_... except that some
11791 MIPS relocations need to be handled specially. Sigh. */
11792
11793 bfd_byte *
11794 _bfd_elf_mips_get_relocated_section_contents
11795 (bfd *abfd,
11796 struct bfd_link_info *link_info,
11797 struct bfd_link_order *link_order,
11798 bfd_byte *data,
11799 bfd_boolean relocatable,
11800 asymbol **symbols)
11801 {
11802 /* Get enough memory to hold the stuff */
11803 bfd *input_bfd = link_order->u.indirect.section->owner;
11804 asection *input_section = link_order->u.indirect.section;
11805 bfd_size_type sz;
11806
11807 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11808 arelent **reloc_vector = NULL;
11809 long reloc_count;
11810
11811 if (reloc_size < 0)
11812 goto error_return;
11813
11814 reloc_vector = bfd_malloc (reloc_size);
11815 if (reloc_vector == NULL && reloc_size != 0)
11816 goto error_return;
11817
11818 /* read in the section */
11819 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11820 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11821 goto error_return;
11822
11823 reloc_count = bfd_canonicalize_reloc (input_bfd,
11824 input_section,
11825 reloc_vector,
11826 symbols);
11827 if (reloc_count < 0)
11828 goto error_return;
11829
11830 if (reloc_count > 0)
11831 {
11832 arelent **parent;
11833 /* for mips */
11834 int gp_found;
11835 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11836
11837 {
11838 struct bfd_hash_entry *h;
11839 struct bfd_link_hash_entry *lh;
11840 /* Skip all this stuff if we aren't mixing formats. */
11841 if (abfd && input_bfd
11842 && abfd->xvec == input_bfd->xvec)
11843 lh = 0;
11844 else
11845 {
11846 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11847 lh = (struct bfd_link_hash_entry *) h;
11848 }
11849 lookup:
11850 if (lh)
11851 {
11852 switch (lh->type)
11853 {
11854 case bfd_link_hash_undefined:
11855 case bfd_link_hash_undefweak:
11856 case bfd_link_hash_common:
11857 gp_found = 0;
11858 break;
11859 case bfd_link_hash_defined:
11860 case bfd_link_hash_defweak:
11861 gp_found = 1;
11862 gp = lh->u.def.value;
11863 break;
11864 case bfd_link_hash_indirect:
11865 case bfd_link_hash_warning:
11866 lh = lh->u.i.link;
11867 /* @@FIXME ignoring warning for now */
11868 goto lookup;
11869 case bfd_link_hash_new:
11870 default:
11871 abort ();
11872 }
11873 }
11874 else
11875 gp_found = 0;
11876 }
11877 /* end mips */
11878 for (parent = reloc_vector; *parent != NULL; parent++)
11879 {
11880 char *error_message = NULL;
11881 bfd_reloc_status_type r;
11882
11883 /* Specific to MIPS: Deal with relocation types that require
11884 knowing the gp of the output bfd. */
11885 asymbol *sym = *(*parent)->sym_ptr_ptr;
11886
11887 /* If we've managed to find the gp and have a special
11888 function for the relocation then go ahead, else default
11889 to the generic handling. */
11890 if (gp_found
11891 && (*parent)->howto->special_function
11892 == _bfd_mips_elf32_gprel16_reloc)
11893 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11894 input_section, relocatable,
11895 data, gp);
11896 else
11897 r = bfd_perform_relocation (input_bfd, *parent, data,
11898 input_section,
11899 relocatable ? abfd : NULL,
11900 &error_message);
11901
11902 if (relocatable)
11903 {
11904 asection *os = input_section->output_section;
11905
11906 /* A partial link, so keep the relocs */
11907 os->orelocation[os->reloc_count] = *parent;
11908 os->reloc_count++;
11909 }
11910
11911 if (r != bfd_reloc_ok)
11912 {
11913 switch (r)
11914 {
11915 case bfd_reloc_undefined:
11916 if (!((*link_info->callbacks->undefined_symbol)
11917 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11918 input_bfd, input_section, (*parent)->address, TRUE)))
11919 goto error_return;
11920 break;
11921 case bfd_reloc_dangerous:
11922 BFD_ASSERT (error_message != NULL);
11923 if (!((*link_info->callbacks->reloc_dangerous)
11924 (link_info, error_message, input_bfd, input_section,
11925 (*parent)->address)))
11926 goto error_return;
11927 break;
11928 case bfd_reloc_overflow:
11929 if (!((*link_info->callbacks->reloc_overflow)
11930 (link_info, NULL,
11931 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11932 (*parent)->howto->name, (*parent)->addend,
11933 input_bfd, input_section, (*parent)->address)))
11934 goto error_return;
11935 break;
11936 case bfd_reloc_outofrange:
11937 default:
11938 abort ();
11939 break;
11940 }
11941
11942 }
11943 }
11944 }
11945 if (reloc_vector != NULL)
11946 free (reloc_vector);
11947 return data;
11948
11949 error_return:
11950 if (reloc_vector != NULL)
11951 free (reloc_vector);
11952 return NULL;
11953 }
11954 \f
11955 static bfd_boolean
11956 mips_elf_relax_delete_bytes (bfd *abfd,
11957 asection *sec, bfd_vma addr, int count)
11958 {
11959 Elf_Internal_Shdr *symtab_hdr;
11960 unsigned int sec_shndx;
11961 bfd_byte *contents;
11962 Elf_Internal_Rela *irel, *irelend;
11963 Elf_Internal_Sym *isym;
11964 Elf_Internal_Sym *isymend;
11965 struct elf_link_hash_entry **sym_hashes;
11966 struct elf_link_hash_entry **end_hashes;
11967 struct elf_link_hash_entry **start_hashes;
11968 unsigned int symcount;
11969
11970 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11971 contents = elf_section_data (sec)->this_hdr.contents;
11972
11973 irel = elf_section_data (sec)->relocs;
11974 irelend = irel + sec->reloc_count;
11975
11976 /* Actually delete the bytes. */
11977 memmove (contents + addr, contents + addr + count,
11978 (size_t) (sec->size - addr - count));
11979 sec->size -= count;
11980
11981 /* Adjust all the relocs. */
11982 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11983 {
11984 /* Get the new reloc address. */
11985 if (irel->r_offset > addr)
11986 irel->r_offset -= count;
11987 }
11988
11989 BFD_ASSERT (addr % 2 == 0);
11990 BFD_ASSERT (count % 2 == 0);
11991
11992 /* Adjust the local symbols defined in this section. */
11993 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11994 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11995 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
11996 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
11997 isym->st_value -= count;
11998
11999 /* Now adjust the global symbols defined in this section. */
12000 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12001 - symtab_hdr->sh_info);
12002 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12003 end_hashes = sym_hashes + symcount;
12004
12005 for (; sym_hashes < end_hashes; sym_hashes++)
12006 {
12007 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12008
12009 if ((sym_hash->root.type == bfd_link_hash_defined
12010 || sym_hash->root.type == bfd_link_hash_defweak)
12011 && sym_hash->root.u.def.section == sec)
12012 {
12013 bfd_vma value = sym_hash->root.u.def.value;
12014
12015 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12016 value &= MINUS_TWO;
12017 if (value > addr)
12018 sym_hash->root.u.def.value -= count;
12019 }
12020 }
12021
12022 return TRUE;
12023 }
12024
12025
12026 /* Opcodes needed for microMIPS relaxation as found in
12027 opcodes/micromips-opc.c. */
12028
12029 struct opcode_descriptor {
12030 unsigned long match;
12031 unsigned long mask;
12032 };
12033
12034 /* The $ra register aka $31. */
12035
12036 #define RA 31
12037
12038 /* 32-bit instruction format register fields. */
12039
12040 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12041 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12042
12043 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12044
12045 #define OP16_VALID_REG(r) \
12046 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12047
12048
12049 /* 32-bit and 16-bit branches. */
12050
12051 static const struct opcode_descriptor b_insns_32[] = {
12052 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12053 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12054 { 0, 0 } /* End marker for find_match(). */
12055 };
12056
12057 static const struct opcode_descriptor bc_insn_32 =
12058 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12059
12060 static const struct opcode_descriptor bz_insn_32 =
12061 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12062
12063 static const struct opcode_descriptor bzal_insn_32 =
12064 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12065
12066 static const struct opcode_descriptor beq_insn_32 =
12067 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12068
12069 static const struct opcode_descriptor b_insn_16 =
12070 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12071
12072 static const struct opcode_descriptor bz_insn_16 =
12073 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12074
12075
12076 /* 32-bit and 16-bit branch EQ and NE zero. */
12077
12078 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12079 eq and second the ne. This convention is used when replacing a
12080 32-bit BEQ/BNE with the 16-bit version. */
12081
12082 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12083
12084 static const struct opcode_descriptor bz_rs_insns_32[] = {
12085 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12086 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12087 { 0, 0 } /* End marker for find_match(). */
12088 };
12089
12090 static const struct opcode_descriptor bz_rt_insns_32[] = {
12091 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12092 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12093 { 0, 0 } /* End marker for find_match(). */
12094 };
12095
12096 static const struct opcode_descriptor bzc_insns_32[] = {
12097 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12098 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12099 { 0, 0 } /* End marker for find_match(). */
12100 };
12101
12102 static const struct opcode_descriptor bz_insns_16[] = {
12103 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12104 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12105 { 0, 0 } /* End marker for find_match(). */
12106 };
12107
12108 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12109
12110 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12111 #define BZ16_REG_FIELD(r) \
12112 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12113
12114
12115 /* 32-bit instructions with a delay slot. */
12116
12117 static const struct opcode_descriptor jal_insn_32_bd16 =
12118 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12119
12120 static const struct opcode_descriptor jal_insn_32_bd32 =
12121 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12122
12123 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12124 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12125
12126 static const struct opcode_descriptor j_insn_32 =
12127 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12128
12129 static const struct opcode_descriptor jalr_insn_32 =
12130 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12131
12132 /* This table can be compacted, because no opcode replacement is made. */
12133
12134 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12135 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12136
12137 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12138 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12139
12140 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12141 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12142 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12143 { 0, 0 } /* End marker for find_match(). */
12144 };
12145
12146 /* This table can be compacted, because no opcode replacement is made. */
12147
12148 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12149 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12150
12151 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12152 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12153 { 0, 0 } /* End marker for find_match(). */
12154 };
12155
12156
12157 /* 16-bit instructions with a delay slot. */
12158
12159 static const struct opcode_descriptor jalr_insn_16_bd16 =
12160 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12161
12162 static const struct opcode_descriptor jalr_insn_16_bd32 =
12163 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12164
12165 static const struct opcode_descriptor jr_insn_16 =
12166 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12167
12168 #define JR16_REG(opcode) ((opcode) & 0x1f)
12169
12170 /* This table can be compacted, because no opcode replacement is made. */
12171
12172 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12173 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12174
12175 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12176 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12177 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12178 { 0, 0 } /* End marker for find_match(). */
12179 };
12180
12181
12182 /* LUI instruction. */
12183
12184 static const struct opcode_descriptor lui_insn =
12185 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12186
12187
12188 /* ADDIU instruction. */
12189
12190 static const struct opcode_descriptor addiu_insn =
12191 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12192
12193 static const struct opcode_descriptor addiupc_insn =
12194 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12195
12196 #define ADDIUPC_REG_FIELD(r) \
12197 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12198
12199
12200 /* Relaxable instructions in a JAL delay slot: MOVE. */
12201
12202 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12203 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12204 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12205 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12206
12207 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12208 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12209
12210 static const struct opcode_descriptor move_insns_32[] = {
12211 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12212 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12213 { 0, 0 } /* End marker for find_match(). */
12214 };
12215
12216 static const struct opcode_descriptor move_insn_16 =
12217 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12218
12219
12220 /* NOP instructions. */
12221
12222 static const struct opcode_descriptor nop_insn_32 =
12223 { /* "nop", "", */ 0x00000000, 0xffffffff };
12224
12225 static const struct opcode_descriptor nop_insn_16 =
12226 { /* "nop", "", */ 0x0c00, 0xffff };
12227
12228
12229 /* Instruction match support. */
12230
12231 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12232
12233 static int
12234 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12235 {
12236 unsigned long indx;
12237
12238 for (indx = 0; insn[indx].mask != 0; indx++)
12239 if (MATCH (opcode, insn[indx]))
12240 return indx;
12241
12242 return -1;
12243 }
12244
12245
12246 /* Branch and delay slot decoding support. */
12247
12248 /* If PTR points to what *might* be a 16-bit branch or jump, then
12249 return the minimum length of its delay slot, otherwise return 0.
12250 Non-zero results are not definitive as we might be checking against
12251 the second half of another instruction. */
12252
12253 static int
12254 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12255 {
12256 unsigned long opcode;
12257 int bdsize;
12258
12259 opcode = bfd_get_16 (abfd, ptr);
12260 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12261 /* 16-bit branch/jump with a 32-bit delay slot. */
12262 bdsize = 4;
12263 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12264 || find_match (opcode, ds_insns_16_bd16) >= 0)
12265 /* 16-bit branch/jump with a 16-bit delay slot. */
12266 bdsize = 2;
12267 else
12268 /* No delay slot. */
12269 bdsize = 0;
12270
12271 return bdsize;
12272 }
12273
12274 /* If PTR points to what *might* be a 32-bit branch or jump, then
12275 return the minimum length of its delay slot, otherwise return 0.
12276 Non-zero results are not definitive as we might be checking against
12277 the second half of another instruction. */
12278
12279 static int
12280 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12281 {
12282 unsigned long opcode;
12283 int bdsize;
12284
12285 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12286 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12287 /* 32-bit branch/jump with a 32-bit delay slot. */
12288 bdsize = 4;
12289 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12290 /* 32-bit branch/jump with a 16-bit delay slot. */
12291 bdsize = 2;
12292 else
12293 /* No delay slot. */
12294 bdsize = 0;
12295
12296 return bdsize;
12297 }
12298
12299 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12300 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12301
12302 static bfd_boolean
12303 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12304 {
12305 unsigned long opcode;
12306
12307 opcode = bfd_get_16 (abfd, ptr);
12308 if (MATCH (opcode, b_insn_16)
12309 /* B16 */
12310 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12311 /* JR16 */
12312 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12313 /* BEQZ16, BNEZ16 */
12314 || (MATCH (opcode, jalr_insn_16_bd32)
12315 /* JALR16 */
12316 && reg != JR16_REG (opcode) && reg != RA))
12317 return TRUE;
12318
12319 return FALSE;
12320 }
12321
12322 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12323 then return TRUE, otherwise FALSE. */
12324
12325 static bfd_boolean
12326 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12327 {
12328 unsigned long opcode;
12329
12330 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12331 if (MATCH (opcode, j_insn_32)
12332 /* J */
12333 || MATCH (opcode, bc_insn_32)
12334 /* BC1F, BC1T, BC2F, BC2T */
12335 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12336 /* JAL, JALX */
12337 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12338 /* BGEZ, BGTZ, BLEZ, BLTZ */
12339 || (MATCH (opcode, bzal_insn_32)
12340 /* BGEZAL, BLTZAL */
12341 && reg != OP32_SREG (opcode) && reg != RA)
12342 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12343 /* JALR, JALR.HB, BEQ, BNE */
12344 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12345 return TRUE;
12346
12347 return FALSE;
12348 }
12349
12350 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12351 IRELEND) at OFFSET indicate that there must be a compact branch there,
12352 then return TRUE, otherwise FALSE. */
12353
12354 static bfd_boolean
12355 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12356 const Elf_Internal_Rela *internal_relocs,
12357 const Elf_Internal_Rela *irelend)
12358 {
12359 const Elf_Internal_Rela *irel;
12360 unsigned long opcode;
12361
12362 opcode = bfd_get_16 (abfd, ptr);
12363 opcode <<= 16;
12364 opcode |= bfd_get_16 (abfd, ptr + 2);
12365 if (find_match (opcode, bzc_insns_32) < 0)
12366 return FALSE;
12367
12368 for (irel = internal_relocs; irel < irelend; irel++)
12369 if (irel->r_offset == offset
12370 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12371 return TRUE;
12372
12373 return FALSE;
12374 }
12375
12376 /* Bitsize checking. */
12377 #define IS_BITSIZE(val, N) \
12378 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12379 - (1ULL << ((N) - 1))) == (val))
12380
12381 \f
12382 bfd_boolean
12383 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12384 struct bfd_link_info *link_info,
12385 bfd_boolean *again)
12386 {
12387 Elf_Internal_Shdr *symtab_hdr;
12388 Elf_Internal_Rela *internal_relocs;
12389 Elf_Internal_Rela *irel, *irelend;
12390 bfd_byte *contents = NULL;
12391 Elf_Internal_Sym *isymbuf = NULL;
12392
12393 /* Assume nothing changes. */
12394 *again = FALSE;
12395
12396 /* We don't have to do anything for a relocatable link, if
12397 this section does not have relocs, or if this is not a
12398 code section. */
12399
12400 if (link_info->relocatable
12401 || (sec->flags & SEC_RELOC) == 0
12402 || sec->reloc_count == 0
12403 || (sec->flags & SEC_CODE) == 0)
12404 return TRUE;
12405
12406 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12407
12408 /* Get a copy of the native relocations. */
12409 internal_relocs = (_bfd_elf_link_read_relocs
12410 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
12411 link_info->keep_memory));
12412 if (internal_relocs == NULL)
12413 goto error_return;
12414
12415 /* Walk through them looking for relaxing opportunities. */
12416 irelend = internal_relocs + sec->reloc_count;
12417 for (irel = internal_relocs; irel < irelend; irel++)
12418 {
12419 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12420 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12421 bfd_boolean target_is_micromips_code_p;
12422 unsigned long opcode;
12423 bfd_vma symval;
12424 bfd_vma pcrval;
12425 bfd_byte *ptr;
12426 int fndopc;
12427
12428 /* The number of bytes to delete for relaxation and from where
12429 to delete these bytes starting at irel->r_offset. */
12430 int delcnt = 0;
12431 int deloff = 0;
12432
12433 /* If this isn't something that can be relaxed, then ignore
12434 this reloc. */
12435 if (r_type != R_MICROMIPS_HI16
12436 && r_type != R_MICROMIPS_PC16_S1
12437 && r_type != R_MICROMIPS_26_S1)
12438 continue;
12439
12440 /* Get the section contents if we haven't done so already. */
12441 if (contents == NULL)
12442 {
12443 /* Get cached copy if it exists. */
12444 if (elf_section_data (sec)->this_hdr.contents != NULL)
12445 contents = elf_section_data (sec)->this_hdr.contents;
12446 /* Go get them off disk. */
12447 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12448 goto error_return;
12449 }
12450 ptr = contents + irel->r_offset;
12451
12452 /* Read this BFD's local symbols if we haven't done so already. */
12453 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12454 {
12455 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12456 if (isymbuf == NULL)
12457 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12458 symtab_hdr->sh_info, 0,
12459 NULL, NULL, NULL);
12460 if (isymbuf == NULL)
12461 goto error_return;
12462 }
12463
12464 /* Get the value of the symbol referred to by the reloc. */
12465 if (r_symndx < symtab_hdr->sh_info)
12466 {
12467 /* A local symbol. */
12468 Elf_Internal_Sym *isym;
12469 asection *sym_sec;
12470
12471 isym = isymbuf + r_symndx;
12472 if (isym->st_shndx == SHN_UNDEF)
12473 sym_sec = bfd_und_section_ptr;
12474 else if (isym->st_shndx == SHN_ABS)
12475 sym_sec = bfd_abs_section_ptr;
12476 else if (isym->st_shndx == SHN_COMMON)
12477 sym_sec = bfd_com_section_ptr;
12478 else
12479 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12480 symval = (isym->st_value
12481 + sym_sec->output_section->vma
12482 + sym_sec->output_offset);
12483 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12484 }
12485 else
12486 {
12487 unsigned long indx;
12488 struct elf_link_hash_entry *h;
12489
12490 /* An external symbol. */
12491 indx = r_symndx - symtab_hdr->sh_info;
12492 h = elf_sym_hashes (abfd)[indx];
12493 BFD_ASSERT (h != NULL);
12494
12495 if (h->root.type != bfd_link_hash_defined
12496 && h->root.type != bfd_link_hash_defweak)
12497 /* This appears to be a reference to an undefined
12498 symbol. Just ignore it -- it will be caught by the
12499 regular reloc processing. */
12500 continue;
12501
12502 symval = (h->root.u.def.value
12503 + h->root.u.def.section->output_section->vma
12504 + h->root.u.def.section->output_offset);
12505 target_is_micromips_code_p = (!h->needs_plt
12506 && ELF_ST_IS_MICROMIPS (h->other));
12507 }
12508
12509
12510 /* For simplicity of coding, we are going to modify the
12511 section contents, the section relocs, and the BFD symbol
12512 table. We must tell the rest of the code not to free up this
12513 information. It would be possible to instead create a table
12514 of changes which have to be made, as is done in coff-mips.c;
12515 that would be more work, but would require less memory when
12516 the linker is run. */
12517
12518 /* Only 32-bit instructions relaxed. */
12519 if (irel->r_offset + 4 > sec->size)
12520 continue;
12521
12522 opcode = bfd_get_16 (abfd, ptr ) << 16;
12523 opcode |= bfd_get_16 (abfd, ptr + 2);
12524
12525 /* This is the pc-relative distance from the instruction the
12526 relocation is applied to, to the symbol referred. */
12527 pcrval = (symval
12528 - (sec->output_section->vma + sec->output_offset)
12529 - irel->r_offset);
12530
12531 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12532 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12533 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12534
12535 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12536
12537 where pcrval has first to be adjusted to apply against the LO16
12538 location (we make the adjustment later on, when we have figured
12539 out the offset). */
12540 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12541 {
12542 bfd_boolean bzc = FALSE;
12543 unsigned long nextopc;
12544 unsigned long reg;
12545 bfd_vma offset;
12546
12547 /* Give up if the previous reloc was a HI16 against this symbol
12548 too. */
12549 if (irel > internal_relocs
12550 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12551 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12552 continue;
12553
12554 /* Or if the next reloc is not a LO16 against this symbol. */
12555 if (irel + 1 >= irelend
12556 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12557 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12558 continue;
12559
12560 /* Or if the second next reloc is a LO16 against this symbol too. */
12561 if (irel + 2 >= irelend
12562 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12563 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12564 continue;
12565
12566 /* See if the LUI instruction *might* be in a branch delay slot.
12567 We check whether what looks like a 16-bit branch or jump is
12568 actually an immediate argument to a compact branch, and let
12569 it through if so. */
12570 if (irel->r_offset >= 2
12571 && check_br16_dslot (abfd, ptr - 2)
12572 && !(irel->r_offset >= 4
12573 && (bzc = check_relocated_bzc (abfd,
12574 ptr - 4, irel->r_offset - 4,
12575 internal_relocs, irelend))))
12576 continue;
12577 if (irel->r_offset >= 4
12578 && !bzc
12579 && check_br32_dslot (abfd, ptr - 4))
12580 continue;
12581
12582 reg = OP32_SREG (opcode);
12583
12584 /* We only relax adjacent instructions or ones separated with
12585 a branch or jump that has a delay slot. The branch or jump
12586 must not fiddle with the register used to hold the address.
12587 Subtract 4 for the LUI itself. */
12588 offset = irel[1].r_offset - irel[0].r_offset;
12589 switch (offset - 4)
12590 {
12591 case 0:
12592 break;
12593 case 2:
12594 if (check_br16 (abfd, ptr + 4, reg))
12595 break;
12596 continue;
12597 case 4:
12598 if (check_br32 (abfd, ptr + 4, reg))
12599 break;
12600 continue;
12601 default:
12602 continue;
12603 }
12604
12605 nextopc = bfd_get_16 (abfd, contents + irel[1].r_offset ) << 16;
12606 nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
12607
12608 /* Give up unless the same register is used with both
12609 relocations. */
12610 if (OP32_SREG (nextopc) != reg)
12611 continue;
12612
12613 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12614 and rounding up to take masking of the two LSBs into account. */
12615 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12616
12617 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12618 if (IS_BITSIZE (symval, 16))
12619 {
12620 /* Fix the relocation's type. */
12621 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12622
12623 /* Instructions using R_MICROMIPS_LO16 have the base or
12624 source register in bits 20:16. This register becomes $0
12625 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12626 nextopc &= ~0x001f0000;
12627 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12628 contents + irel[1].r_offset);
12629 }
12630
12631 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12632 We add 4 to take LUI deletion into account while checking
12633 the PC-relative distance. */
12634 else if (symval % 4 == 0
12635 && IS_BITSIZE (pcrval + 4, 25)
12636 && MATCH (nextopc, addiu_insn)
12637 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12638 && OP16_VALID_REG (OP32_TREG (nextopc)))
12639 {
12640 /* Fix the relocation's type. */
12641 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12642
12643 /* Replace ADDIU with the ADDIUPC version. */
12644 nextopc = (addiupc_insn.match
12645 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12646
12647 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12648 contents + irel[1].r_offset);
12649 bfd_put_16 (abfd, nextopc & 0xffff,
12650 contents + irel[1].r_offset + 2);
12651 }
12652
12653 /* Can't do anything, give up, sigh... */
12654 else
12655 continue;
12656
12657 /* Fix the relocation's type. */
12658 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12659
12660 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12661 delcnt = 4;
12662 deloff = 0;
12663 }
12664
12665 /* Compact branch relaxation -- due to the multitude of macros
12666 employed by the compiler/assembler, compact branches are not
12667 always generated. Obviously, this can/will be fixed elsewhere,
12668 but there is no drawback in double checking it here. */
12669 else if (r_type == R_MICROMIPS_PC16_S1
12670 && irel->r_offset + 5 < sec->size
12671 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12672 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12673 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12674 {
12675 unsigned long reg;
12676
12677 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12678
12679 /* Replace BEQZ/BNEZ with the compact version. */
12680 opcode = (bzc_insns_32[fndopc].match
12681 | BZC32_REG_FIELD (reg)
12682 | (opcode & 0xffff)); /* Addend value. */
12683
12684 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
12685 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
12686
12687 /* Delete the 16-bit delay slot NOP: two bytes from
12688 irel->offset + 4. */
12689 delcnt = 2;
12690 deloff = 4;
12691 }
12692
12693 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12694 to check the distance from the next instruction, so subtract 2. */
12695 else if (r_type == R_MICROMIPS_PC16_S1
12696 && IS_BITSIZE (pcrval - 2, 11)
12697 && find_match (opcode, b_insns_32) >= 0)
12698 {
12699 /* Fix the relocation's type. */
12700 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12701
12702 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12703 bfd_put_16 (abfd,
12704 (b_insn_16.match
12705 | (opcode & 0x3ff)), /* Addend value. */
12706 ptr);
12707
12708 /* Delete 2 bytes from irel->r_offset + 2. */
12709 delcnt = 2;
12710 deloff = 2;
12711 }
12712
12713 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12714 to check the distance from the next instruction, so subtract 2. */
12715 else if (r_type == R_MICROMIPS_PC16_S1
12716 && IS_BITSIZE (pcrval - 2, 8)
12717 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12718 && OP16_VALID_REG (OP32_SREG (opcode)))
12719 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12720 && OP16_VALID_REG (OP32_TREG (opcode)))))
12721 {
12722 unsigned long reg;
12723
12724 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12725
12726 /* Fix the relocation's type. */
12727 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12728
12729 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12730 bfd_put_16 (abfd,
12731 (bz_insns_16[fndopc].match
12732 | BZ16_REG_FIELD (reg)
12733 | (opcode & 0x7f)), /* Addend value. */
12734 ptr);
12735
12736 /* Delete 2 bytes from irel->r_offset + 2. */
12737 delcnt = 2;
12738 deloff = 2;
12739 }
12740
12741 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12742 else if (r_type == R_MICROMIPS_26_S1
12743 && target_is_micromips_code_p
12744 && irel->r_offset + 7 < sec->size
12745 && MATCH (opcode, jal_insn_32_bd32))
12746 {
12747 unsigned long n32opc;
12748 bfd_boolean relaxed = FALSE;
12749
12750 n32opc = bfd_get_16 (abfd, ptr + 4) << 16;
12751 n32opc |= bfd_get_16 (abfd, ptr + 6);
12752
12753 if (MATCH (n32opc, nop_insn_32))
12754 {
12755 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12756 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12757
12758 relaxed = TRUE;
12759 }
12760 else if (find_match (n32opc, move_insns_32) >= 0)
12761 {
12762 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12763 bfd_put_16 (abfd,
12764 (move_insn_16.match
12765 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12766 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12767 ptr + 4);
12768
12769 relaxed = TRUE;
12770 }
12771 /* Other 32-bit instructions relaxable to 16-bit
12772 instructions will be handled here later. */
12773
12774 if (relaxed)
12775 {
12776 /* JAL with 32-bit delay slot that is changed to a JALS
12777 with 16-bit delay slot. */
12778 bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
12779 ptr);
12780 bfd_put_16 (abfd, jal_insn_32_bd16.match & 0xffff,
12781 ptr + 2);
12782
12783 /* Delete 2 bytes from irel->r_offset + 6. */
12784 delcnt = 2;
12785 deloff = 6;
12786 }
12787 }
12788
12789 if (delcnt != 0)
12790 {
12791 /* Note that we've changed the relocs, section contents, etc. */
12792 elf_section_data (sec)->relocs = internal_relocs;
12793 elf_section_data (sec)->this_hdr.contents = contents;
12794 symtab_hdr->contents = (unsigned char *) isymbuf;
12795
12796 /* Delete bytes depending on the delcnt and deloff. */
12797 if (!mips_elf_relax_delete_bytes (abfd, sec,
12798 irel->r_offset + deloff, delcnt))
12799 goto error_return;
12800
12801 /* That will change things, so we should relax again.
12802 Note that this is not required, and it may be slow. */
12803 *again = TRUE;
12804 }
12805 }
12806
12807 if (isymbuf != NULL
12808 && symtab_hdr->contents != (unsigned char *) isymbuf)
12809 {
12810 if (! link_info->keep_memory)
12811 free (isymbuf);
12812 else
12813 {
12814 /* Cache the symbols for elf_link_input_bfd. */
12815 symtab_hdr->contents = (unsigned char *) isymbuf;
12816 }
12817 }
12818
12819 if (contents != NULL
12820 && elf_section_data (sec)->this_hdr.contents != contents)
12821 {
12822 if (! link_info->keep_memory)
12823 free (contents);
12824 else
12825 {
12826 /* Cache the section contents for elf_link_input_bfd. */
12827 elf_section_data (sec)->this_hdr.contents = contents;
12828 }
12829 }
12830
12831 if (internal_relocs != NULL
12832 && elf_section_data (sec)->relocs != internal_relocs)
12833 free (internal_relocs);
12834
12835 return TRUE;
12836
12837 error_return:
12838 if (isymbuf != NULL
12839 && symtab_hdr->contents != (unsigned char *) isymbuf)
12840 free (isymbuf);
12841 if (contents != NULL
12842 && elf_section_data (sec)->this_hdr.contents != contents)
12843 free (contents);
12844 if (internal_relocs != NULL
12845 && elf_section_data (sec)->relocs != internal_relocs)
12846 free (internal_relocs);
12847
12848 return FALSE;
12849 }
12850 \f
12851 /* Create a MIPS ELF linker hash table. */
12852
12853 struct bfd_link_hash_table *
12854 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12855 {
12856 struct mips_elf_link_hash_table *ret;
12857 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12858
12859 ret = bfd_malloc (amt);
12860 if (ret == NULL)
12861 return NULL;
12862
12863 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12864 mips_elf_link_hash_newfunc,
12865 sizeof (struct mips_elf_link_hash_entry),
12866 MIPS_ELF_DATA))
12867 {
12868 free (ret);
12869 return NULL;
12870 }
12871
12872 #if 0
12873 /* We no longer use this. */
12874 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12875 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12876 #endif
12877 ret->procedure_count = 0;
12878 ret->compact_rel_size = 0;
12879 ret->use_rld_obj_head = FALSE;
12880 ret->rld_symbol = NULL;
12881 ret->mips16_stubs_seen = FALSE;
12882 ret->use_plts_and_copy_relocs = FALSE;
12883 ret->is_vxworks = FALSE;
12884 ret->small_data_overflow_reported = FALSE;
12885 ret->srelbss = NULL;
12886 ret->sdynbss = NULL;
12887 ret->srelplt = NULL;
12888 ret->srelplt2 = NULL;
12889 ret->sgotplt = NULL;
12890 ret->splt = NULL;
12891 ret->sstubs = NULL;
12892 ret->sgot = NULL;
12893 ret->got_info = NULL;
12894 ret->plt_header_size = 0;
12895 ret->plt_entry_size = 0;
12896 ret->lazy_stub_count = 0;
12897 ret->function_stub_size = 0;
12898 ret->strampoline = NULL;
12899 ret->la25_stubs = NULL;
12900 ret->add_stub_section = NULL;
12901
12902 return &ret->root.root;
12903 }
12904
12905 /* Likewise, but indicate that the target is VxWorks. */
12906
12907 struct bfd_link_hash_table *
12908 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12909 {
12910 struct bfd_link_hash_table *ret;
12911
12912 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12913 if (ret)
12914 {
12915 struct mips_elf_link_hash_table *htab;
12916
12917 htab = (struct mips_elf_link_hash_table *) ret;
12918 htab->use_plts_and_copy_relocs = TRUE;
12919 htab->is_vxworks = TRUE;
12920 }
12921 return ret;
12922 }
12923
12924 /* A function that the linker calls if we are allowed to use PLTs
12925 and copy relocs. */
12926
12927 void
12928 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12929 {
12930 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12931 }
12932 \f
12933 /* We need to use a special link routine to handle the .reginfo and
12934 the .mdebug sections. We need to merge all instances of these
12935 sections together, not write them all out sequentially. */
12936
12937 bfd_boolean
12938 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12939 {
12940 asection *o;
12941 struct bfd_link_order *p;
12942 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12943 asection *rtproc_sec;
12944 Elf32_RegInfo reginfo;
12945 struct ecoff_debug_info debug;
12946 struct mips_htab_traverse_info hti;
12947 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12948 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12949 HDRR *symhdr = &debug.symbolic_header;
12950 void *mdebug_handle = NULL;
12951 asection *s;
12952 EXTR esym;
12953 unsigned int i;
12954 bfd_size_type amt;
12955 struct mips_elf_link_hash_table *htab;
12956
12957 static const char * const secname[] =
12958 {
12959 ".text", ".init", ".fini", ".data",
12960 ".rodata", ".sdata", ".sbss", ".bss"
12961 };
12962 static const int sc[] =
12963 {
12964 scText, scInit, scFini, scData,
12965 scRData, scSData, scSBss, scBss
12966 };
12967
12968 /* Sort the dynamic symbols so that those with GOT entries come after
12969 those without. */
12970 htab = mips_elf_hash_table (info);
12971 BFD_ASSERT (htab != NULL);
12972
12973 if (!mips_elf_sort_hash_table (abfd, info))
12974 return FALSE;
12975
12976 /* Create any scheduled LA25 stubs. */
12977 hti.info = info;
12978 hti.output_bfd = abfd;
12979 hti.error = FALSE;
12980 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12981 if (hti.error)
12982 return FALSE;
12983
12984 /* Get a value for the GP register. */
12985 if (elf_gp (abfd) == 0)
12986 {
12987 struct bfd_link_hash_entry *h;
12988
12989 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12990 if (h != NULL && h->type == bfd_link_hash_defined)
12991 elf_gp (abfd) = (h->u.def.value
12992 + h->u.def.section->output_section->vma
12993 + h->u.def.section->output_offset);
12994 else if (htab->is_vxworks
12995 && (h = bfd_link_hash_lookup (info->hash,
12996 "_GLOBAL_OFFSET_TABLE_",
12997 FALSE, FALSE, TRUE))
12998 && h->type == bfd_link_hash_defined)
12999 elf_gp (abfd) = (h->u.def.section->output_section->vma
13000 + h->u.def.section->output_offset
13001 + h->u.def.value);
13002 else if (info->relocatable)
13003 {
13004 bfd_vma lo = MINUS_ONE;
13005
13006 /* Find the GP-relative section with the lowest offset. */
13007 for (o = abfd->sections; o != NULL; o = o->next)
13008 if (o->vma < lo
13009 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13010 lo = o->vma;
13011
13012 /* And calculate GP relative to that. */
13013 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13014 }
13015 else
13016 {
13017 /* If the relocate_section function needs to do a reloc
13018 involving the GP value, it should make a reloc_dangerous
13019 callback to warn that GP is not defined. */
13020 }
13021 }
13022
13023 /* Go through the sections and collect the .reginfo and .mdebug
13024 information. */
13025 reginfo_sec = NULL;
13026 mdebug_sec = NULL;
13027 gptab_data_sec = NULL;
13028 gptab_bss_sec = NULL;
13029 for (o = abfd->sections; o != NULL; o = o->next)
13030 {
13031 if (strcmp (o->name, ".reginfo") == 0)
13032 {
13033 memset (&reginfo, 0, sizeof reginfo);
13034
13035 /* We have found the .reginfo section in the output file.
13036 Look through all the link_orders comprising it and merge
13037 the information together. */
13038 for (p = o->map_head.link_order; p != NULL; p = p->next)
13039 {
13040 asection *input_section;
13041 bfd *input_bfd;
13042 Elf32_External_RegInfo ext;
13043 Elf32_RegInfo sub;
13044
13045 if (p->type != bfd_indirect_link_order)
13046 {
13047 if (p->type == bfd_data_link_order)
13048 continue;
13049 abort ();
13050 }
13051
13052 input_section = p->u.indirect.section;
13053 input_bfd = input_section->owner;
13054
13055 if (! bfd_get_section_contents (input_bfd, input_section,
13056 &ext, 0, sizeof ext))
13057 return FALSE;
13058
13059 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13060
13061 reginfo.ri_gprmask |= sub.ri_gprmask;
13062 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13063 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13064 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13065 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13066
13067 /* ri_gp_value is set by the function
13068 mips_elf32_section_processing when the section is
13069 finally written out. */
13070
13071 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13072 elf_link_input_bfd ignores this section. */
13073 input_section->flags &= ~SEC_HAS_CONTENTS;
13074 }
13075
13076 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13077 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13078
13079 /* Skip this section later on (I don't think this currently
13080 matters, but someday it might). */
13081 o->map_head.link_order = NULL;
13082
13083 reginfo_sec = o;
13084 }
13085
13086 if (strcmp (o->name, ".mdebug") == 0)
13087 {
13088 struct extsym_info einfo;
13089 bfd_vma last;
13090
13091 /* We have found the .mdebug section in the output file.
13092 Look through all the link_orders comprising it and merge
13093 the information together. */
13094 symhdr->magic = swap->sym_magic;
13095 /* FIXME: What should the version stamp be? */
13096 symhdr->vstamp = 0;
13097 symhdr->ilineMax = 0;
13098 symhdr->cbLine = 0;
13099 symhdr->idnMax = 0;
13100 symhdr->ipdMax = 0;
13101 symhdr->isymMax = 0;
13102 symhdr->ioptMax = 0;
13103 symhdr->iauxMax = 0;
13104 symhdr->issMax = 0;
13105 symhdr->issExtMax = 0;
13106 symhdr->ifdMax = 0;
13107 symhdr->crfd = 0;
13108 symhdr->iextMax = 0;
13109
13110 /* We accumulate the debugging information itself in the
13111 debug_info structure. */
13112 debug.line = NULL;
13113 debug.external_dnr = NULL;
13114 debug.external_pdr = NULL;
13115 debug.external_sym = NULL;
13116 debug.external_opt = NULL;
13117 debug.external_aux = NULL;
13118 debug.ss = NULL;
13119 debug.ssext = debug.ssext_end = NULL;
13120 debug.external_fdr = NULL;
13121 debug.external_rfd = NULL;
13122 debug.external_ext = debug.external_ext_end = NULL;
13123
13124 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13125 if (mdebug_handle == NULL)
13126 return FALSE;
13127
13128 esym.jmptbl = 0;
13129 esym.cobol_main = 0;
13130 esym.weakext = 0;
13131 esym.reserved = 0;
13132 esym.ifd = ifdNil;
13133 esym.asym.iss = issNil;
13134 esym.asym.st = stLocal;
13135 esym.asym.reserved = 0;
13136 esym.asym.index = indexNil;
13137 last = 0;
13138 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13139 {
13140 esym.asym.sc = sc[i];
13141 s = bfd_get_section_by_name (abfd, secname[i]);
13142 if (s != NULL)
13143 {
13144 esym.asym.value = s->vma;
13145 last = s->vma + s->size;
13146 }
13147 else
13148 esym.asym.value = last;
13149 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13150 secname[i], &esym))
13151 return FALSE;
13152 }
13153
13154 for (p = o->map_head.link_order; p != NULL; p = p->next)
13155 {
13156 asection *input_section;
13157 bfd *input_bfd;
13158 const struct ecoff_debug_swap *input_swap;
13159 struct ecoff_debug_info input_debug;
13160 char *eraw_src;
13161 char *eraw_end;
13162
13163 if (p->type != bfd_indirect_link_order)
13164 {
13165 if (p->type == bfd_data_link_order)
13166 continue;
13167 abort ();
13168 }
13169
13170 input_section = p->u.indirect.section;
13171 input_bfd = input_section->owner;
13172
13173 if (!is_mips_elf (input_bfd))
13174 {
13175 /* I don't know what a non MIPS ELF bfd would be
13176 doing with a .mdebug section, but I don't really
13177 want to deal with it. */
13178 continue;
13179 }
13180
13181 input_swap = (get_elf_backend_data (input_bfd)
13182 ->elf_backend_ecoff_debug_swap);
13183
13184 BFD_ASSERT (p->size == input_section->size);
13185
13186 /* The ECOFF linking code expects that we have already
13187 read in the debugging information and set up an
13188 ecoff_debug_info structure, so we do that now. */
13189 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13190 &input_debug))
13191 return FALSE;
13192
13193 if (! (bfd_ecoff_debug_accumulate
13194 (mdebug_handle, abfd, &debug, swap, input_bfd,
13195 &input_debug, input_swap, info)))
13196 return FALSE;
13197
13198 /* Loop through the external symbols. For each one with
13199 interesting information, try to find the symbol in
13200 the linker global hash table and save the information
13201 for the output external symbols. */
13202 eraw_src = input_debug.external_ext;
13203 eraw_end = (eraw_src
13204 + (input_debug.symbolic_header.iextMax
13205 * input_swap->external_ext_size));
13206 for (;
13207 eraw_src < eraw_end;
13208 eraw_src += input_swap->external_ext_size)
13209 {
13210 EXTR ext;
13211 const char *name;
13212 struct mips_elf_link_hash_entry *h;
13213
13214 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13215 if (ext.asym.sc == scNil
13216 || ext.asym.sc == scUndefined
13217 || ext.asym.sc == scSUndefined)
13218 continue;
13219
13220 name = input_debug.ssext + ext.asym.iss;
13221 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13222 name, FALSE, FALSE, TRUE);
13223 if (h == NULL || h->esym.ifd != -2)
13224 continue;
13225
13226 if (ext.ifd != -1)
13227 {
13228 BFD_ASSERT (ext.ifd
13229 < input_debug.symbolic_header.ifdMax);
13230 ext.ifd = input_debug.ifdmap[ext.ifd];
13231 }
13232
13233 h->esym = ext;
13234 }
13235
13236 /* Free up the information we just read. */
13237 free (input_debug.line);
13238 free (input_debug.external_dnr);
13239 free (input_debug.external_pdr);
13240 free (input_debug.external_sym);
13241 free (input_debug.external_opt);
13242 free (input_debug.external_aux);
13243 free (input_debug.ss);
13244 free (input_debug.ssext);
13245 free (input_debug.external_fdr);
13246 free (input_debug.external_rfd);
13247 free (input_debug.external_ext);
13248
13249 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13250 elf_link_input_bfd ignores this section. */
13251 input_section->flags &= ~SEC_HAS_CONTENTS;
13252 }
13253
13254 if (SGI_COMPAT (abfd) && info->shared)
13255 {
13256 /* Create .rtproc section. */
13257 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13258 if (rtproc_sec == NULL)
13259 {
13260 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13261 | SEC_LINKER_CREATED | SEC_READONLY);
13262
13263 rtproc_sec = bfd_make_section_with_flags (abfd,
13264 ".rtproc",
13265 flags);
13266 if (rtproc_sec == NULL
13267 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13268 return FALSE;
13269 }
13270
13271 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13272 info, rtproc_sec,
13273 &debug))
13274 return FALSE;
13275 }
13276
13277 /* Build the external symbol information. */
13278 einfo.abfd = abfd;
13279 einfo.info = info;
13280 einfo.debug = &debug;
13281 einfo.swap = swap;
13282 einfo.failed = FALSE;
13283 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13284 mips_elf_output_extsym, &einfo);
13285 if (einfo.failed)
13286 return FALSE;
13287
13288 /* Set the size of the .mdebug section. */
13289 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13290
13291 /* Skip this section later on (I don't think this currently
13292 matters, but someday it might). */
13293 o->map_head.link_order = NULL;
13294
13295 mdebug_sec = o;
13296 }
13297
13298 if (CONST_STRNEQ (o->name, ".gptab."))
13299 {
13300 const char *subname;
13301 unsigned int c;
13302 Elf32_gptab *tab;
13303 Elf32_External_gptab *ext_tab;
13304 unsigned int j;
13305
13306 /* The .gptab.sdata and .gptab.sbss sections hold
13307 information describing how the small data area would
13308 change depending upon the -G switch. These sections
13309 not used in executables files. */
13310 if (! info->relocatable)
13311 {
13312 for (p = o->map_head.link_order; p != NULL; p = p->next)
13313 {
13314 asection *input_section;
13315
13316 if (p->type != bfd_indirect_link_order)
13317 {
13318 if (p->type == bfd_data_link_order)
13319 continue;
13320 abort ();
13321 }
13322
13323 input_section = p->u.indirect.section;
13324
13325 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13326 elf_link_input_bfd ignores this section. */
13327 input_section->flags &= ~SEC_HAS_CONTENTS;
13328 }
13329
13330 /* Skip this section later on (I don't think this
13331 currently matters, but someday it might). */
13332 o->map_head.link_order = NULL;
13333
13334 /* Really remove the section. */
13335 bfd_section_list_remove (abfd, o);
13336 --abfd->section_count;
13337
13338 continue;
13339 }
13340
13341 /* There is one gptab for initialized data, and one for
13342 uninitialized data. */
13343 if (strcmp (o->name, ".gptab.sdata") == 0)
13344 gptab_data_sec = o;
13345 else if (strcmp (o->name, ".gptab.sbss") == 0)
13346 gptab_bss_sec = o;
13347 else
13348 {
13349 (*_bfd_error_handler)
13350 (_("%s: illegal section name `%s'"),
13351 bfd_get_filename (abfd), o->name);
13352 bfd_set_error (bfd_error_nonrepresentable_section);
13353 return FALSE;
13354 }
13355
13356 /* The linker script always combines .gptab.data and
13357 .gptab.sdata into .gptab.sdata, and likewise for
13358 .gptab.bss and .gptab.sbss. It is possible that there is
13359 no .sdata or .sbss section in the output file, in which
13360 case we must change the name of the output section. */
13361 subname = o->name + sizeof ".gptab" - 1;
13362 if (bfd_get_section_by_name (abfd, subname) == NULL)
13363 {
13364 if (o == gptab_data_sec)
13365 o->name = ".gptab.data";
13366 else
13367 o->name = ".gptab.bss";
13368 subname = o->name + sizeof ".gptab" - 1;
13369 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13370 }
13371
13372 /* Set up the first entry. */
13373 c = 1;
13374 amt = c * sizeof (Elf32_gptab);
13375 tab = bfd_malloc (amt);
13376 if (tab == NULL)
13377 return FALSE;
13378 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13379 tab[0].gt_header.gt_unused = 0;
13380
13381 /* Combine the input sections. */
13382 for (p = o->map_head.link_order; p != NULL; p = p->next)
13383 {
13384 asection *input_section;
13385 bfd *input_bfd;
13386 bfd_size_type size;
13387 unsigned long last;
13388 bfd_size_type gpentry;
13389
13390 if (p->type != bfd_indirect_link_order)
13391 {
13392 if (p->type == bfd_data_link_order)
13393 continue;
13394 abort ();
13395 }
13396
13397 input_section = p->u.indirect.section;
13398 input_bfd = input_section->owner;
13399
13400 /* Combine the gptab entries for this input section one
13401 by one. We know that the input gptab entries are
13402 sorted by ascending -G value. */
13403 size = input_section->size;
13404 last = 0;
13405 for (gpentry = sizeof (Elf32_External_gptab);
13406 gpentry < size;
13407 gpentry += sizeof (Elf32_External_gptab))
13408 {
13409 Elf32_External_gptab ext_gptab;
13410 Elf32_gptab int_gptab;
13411 unsigned long val;
13412 unsigned long add;
13413 bfd_boolean exact;
13414 unsigned int look;
13415
13416 if (! (bfd_get_section_contents
13417 (input_bfd, input_section, &ext_gptab, gpentry,
13418 sizeof (Elf32_External_gptab))))
13419 {
13420 free (tab);
13421 return FALSE;
13422 }
13423
13424 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13425 &int_gptab);
13426 val = int_gptab.gt_entry.gt_g_value;
13427 add = int_gptab.gt_entry.gt_bytes - last;
13428
13429 exact = FALSE;
13430 for (look = 1; look < c; look++)
13431 {
13432 if (tab[look].gt_entry.gt_g_value >= val)
13433 tab[look].gt_entry.gt_bytes += add;
13434
13435 if (tab[look].gt_entry.gt_g_value == val)
13436 exact = TRUE;
13437 }
13438
13439 if (! exact)
13440 {
13441 Elf32_gptab *new_tab;
13442 unsigned int max;
13443
13444 /* We need a new table entry. */
13445 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13446 new_tab = bfd_realloc (tab, amt);
13447 if (new_tab == NULL)
13448 {
13449 free (tab);
13450 return FALSE;
13451 }
13452 tab = new_tab;
13453 tab[c].gt_entry.gt_g_value = val;
13454 tab[c].gt_entry.gt_bytes = add;
13455
13456 /* Merge in the size for the next smallest -G
13457 value, since that will be implied by this new
13458 value. */
13459 max = 0;
13460 for (look = 1; look < c; look++)
13461 {
13462 if (tab[look].gt_entry.gt_g_value < val
13463 && (max == 0
13464 || (tab[look].gt_entry.gt_g_value
13465 > tab[max].gt_entry.gt_g_value)))
13466 max = look;
13467 }
13468 if (max != 0)
13469 tab[c].gt_entry.gt_bytes +=
13470 tab[max].gt_entry.gt_bytes;
13471
13472 ++c;
13473 }
13474
13475 last = int_gptab.gt_entry.gt_bytes;
13476 }
13477
13478 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13479 elf_link_input_bfd ignores this section. */
13480 input_section->flags &= ~SEC_HAS_CONTENTS;
13481 }
13482
13483 /* The table must be sorted by -G value. */
13484 if (c > 2)
13485 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13486
13487 /* Swap out the table. */
13488 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13489 ext_tab = bfd_alloc (abfd, amt);
13490 if (ext_tab == NULL)
13491 {
13492 free (tab);
13493 return FALSE;
13494 }
13495
13496 for (j = 0; j < c; j++)
13497 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13498 free (tab);
13499
13500 o->size = c * sizeof (Elf32_External_gptab);
13501 o->contents = (bfd_byte *) ext_tab;
13502
13503 /* Skip this section later on (I don't think this currently
13504 matters, but someday it might). */
13505 o->map_head.link_order = NULL;
13506 }
13507 }
13508
13509 /* Invoke the regular ELF backend linker to do all the work. */
13510 if (!bfd_elf_final_link (abfd, info))
13511 return FALSE;
13512
13513 /* Now write out the computed sections. */
13514
13515 if (reginfo_sec != NULL)
13516 {
13517 Elf32_External_RegInfo ext;
13518
13519 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13520 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13521 return FALSE;
13522 }
13523
13524 if (mdebug_sec != NULL)
13525 {
13526 BFD_ASSERT (abfd->output_has_begun);
13527 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13528 swap, info,
13529 mdebug_sec->filepos))
13530 return FALSE;
13531
13532 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13533 }
13534
13535 if (gptab_data_sec != NULL)
13536 {
13537 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13538 gptab_data_sec->contents,
13539 0, gptab_data_sec->size))
13540 return FALSE;
13541 }
13542
13543 if (gptab_bss_sec != NULL)
13544 {
13545 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13546 gptab_bss_sec->contents,
13547 0, gptab_bss_sec->size))
13548 return FALSE;
13549 }
13550
13551 if (SGI_COMPAT (abfd))
13552 {
13553 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13554 if (rtproc_sec != NULL)
13555 {
13556 if (! bfd_set_section_contents (abfd, rtproc_sec,
13557 rtproc_sec->contents,
13558 0, rtproc_sec->size))
13559 return FALSE;
13560 }
13561 }
13562
13563 return TRUE;
13564 }
13565 \f
13566 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13567
13568 struct mips_mach_extension {
13569 unsigned long extension, base;
13570 };
13571
13572
13573 /* An array describing how BFD machines relate to one another. The entries
13574 are ordered topologically with MIPS I extensions listed last. */
13575
13576 static const struct mips_mach_extension mips_mach_extensions[] = {
13577 /* MIPS64r2 extensions. */
13578 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13579 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13580 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13581
13582 /* MIPS64 extensions. */
13583 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13584 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13585 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13586 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13587
13588 /* MIPS V extensions. */
13589 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13590
13591 /* R10000 extensions. */
13592 { bfd_mach_mips12000, bfd_mach_mips10000 },
13593 { bfd_mach_mips14000, bfd_mach_mips10000 },
13594 { bfd_mach_mips16000, bfd_mach_mips10000 },
13595
13596 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13597 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13598 better to allow vr5400 and vr5500 code to be merged anyway, since
13599 many libraries will just use the core ISA. Perhaps we could add
13600 some sort of ASE flag if this ever proves a problem. */
13601 { bfd_mach_mips5500, bfd_mach_mips5400 },
13602 { bfd_mach_mips5400, bfd_mach_mips5000 },
13603
13604 /* MIPS IV extensions. */
13605 { bfd_mach_mips5, bfd_mach_mips8000 },
13606 { bfd_mach_mips10000, bfd_mach_mips8000 },
13607 { bfd_mach_mips5000, bfd_mach_mips8000 },
13608 { bfd_mach_mips7000, bfd_mach_mips8000 },
13609 { bfd_mach_mips9000, bfd_mach_mips8000 },
13610
13611 /* VR4100 extensions. */
13612 { bfd_mach_mips4120, bfd_mach_mips4100 },
13613 { bfd_mach_mips4111, bfd_mach_mips4100 },
13614
13615 /* MIPS III extensions. */
13616 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13617 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13618 { bfd_mach_mips8000, bfd_mach_mips4000 },
13619 { bfd_mach_mips4650, bfd_mach_mips4000 },
13620 { bfd_mach_mips4600, bfd_mach_mips4000 },
13621 { bfd_mach_mips4400, bfd_mach_mips4000 },
13622 { bfd_mach_mips4300, bfd_mach_mips4000 },
13623 { bfd_mach_mips4100, bfd_mach_mips4000 },
13624 { bfd_mach_mips4010, bfd_mach_mips4000 },
13625
13626 /* MIPS32 extensions. */
13627 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13628
13629 /* MIPS II extensions. */
13630 { bfd_mach_mips4000, bfd_mach_mips6000 },
13631 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13632
13633 /* MIPS I extensions. */
13634 { bfd_mach_mips6000, bfd_mach_mips3000 },
13635 { bfd_mach_mips3900, bfd_mach_mips3000 }
13636 };
13637
13638
13639 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13640
13641 static bfd_boolean
13642 mips_mach_extends_p (unsigned long base, unsigned long extension)
13643 {
13644 size_t i;
13645
13646 if (extension == base)
13647 return TRUE;
13648
13649 if (base == bfd_mach_mipsisa32
13650 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13651 return TRUE;
13652
13653 if (base == bfd_mach_mipsisa32r2
13654 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13655 return TRUE;
13656
13657 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13658 if (extension == mips_mach_extensions[i].extension)
13659 {
13660 extension = mips_mach_extensions[i].base;
13661 if (extension == base)
13662 return TRUE;
13663 }
13664
13665 return FALSE;
13666 }
13667
13668
13669 /* Return true if the given ELF header flags describe a 32-bit binary. */
13670
13671 static bfd_boolean
13672 mips_32bit_flags_p (flagword flags)
13673 {
13674 return ((flags & EF_MIPS_32BITMODE) != 0
13675 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13676 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13677 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13678 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13679 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13680 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13681 }
13682
13683
13684 /* Merge object attributes from IBFD into OBFD. Raise an error if
13685 there are conflicting attributes. */
13686 static bfd_boolean
13687 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13688 {
13689 obj_attribute *in_attr;
13690 obj_attribute *out_attr;
13691
13692 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13693 {
13694 /* This is the first object. Copy the attributes. */
13695 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13696
13697 /* Use the Tag_null value to indicate the attributes have been
13698 initialized. */
13699 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13700
13701 return TRUE;
13702 }
13703
13704 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13705 non-conflicting ones. */
13706 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13707 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13708 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13709 {
13710 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13711 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13712 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13713 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13714 ;
13715 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13716 _bfd_error_handler
13717 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13718 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13719 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13720 _bfd_error_handler
13721 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13722 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13723 else
13724 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13725 {
13726 case 1:
13727 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13728 {
13729 case 2:
13730 _bfd_error_handler
13731 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13732 obfd, ibfd);
13733 break;
13734
13735 case 3:
13736 _bfd_error_handler
13737 (_("Warning: %B uses hard float, %B uses soft float"),
13738 obfd, ibfd);
13739 break;
13740
13741 case 4:
13742 _bfd_error_handler
13743 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13744 obfd, ibfd);
13745 break;
13746
13747 default:
13748 abort ();
13749 }
13750 break;
13751
13752 case 2:
13753 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13754 {
13755 case 1:
13756 _bfd_error_handler
13757 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13758 ibfd, obfd);
13759 break;
13760
13761 case 3:
13762 _bfd_error_handler
13763 (_("Warning: %B uses hard float, %B uses soft float"),
13764 obfd, ibfd);
13765 break;
13766
13767 case 4:
13768 _bfd_error_handler
13769 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13770 obfd, ibfd);
13771 break;
13772
13773 default:
13774 abort ();
13775 }
13776 break;
13777
13778 case 3:
13779 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13780 {
13781 case 1:
13782 case 2:
13783 case 4:
13784 _bfd_error_handler
13785 (_("Warning: %B uses hard float, %B uses soft float"),
13786 ibfd, obfd);
13787 break;
13788
13789 default:
13790 abort ();
13791 }
13792 break;
13793
13794 case 4:
13795 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13796 {
13797 case 1:
13798 _bfd_error_handler
13799 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13800 ibfd, obfd);
13801 break;
13802
13803 case 2:
13804 _bfd_error_handler
13805 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13806 ibfd, obfd);
13807 break;
13808
13809 case 3:
13810 _bfd_error_handler
13811 (_("Warning: %B uses hard float, %B uses soft float"),
13812 obfd, ibfd);
13813 break;
13814
13815 default:
13816 abort ();
13817 }
13818 break;
13819
13820 default:
13821 abort ();
13822 }
13823 }
13824
13825 /* Merge Tag_compatibility attributes and any common GNU ones. */
13826 _bfd_elf_merge_object_attributes (ibfd, obfd);
13827
13828 return TRUE;
13829 }
13830
13831 /* Merge backend specific data from an object file to the output
13832 object file when linking. */
13833
13834 bfd_boolean
13835 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13836 {
13837 flagword old_flags;
13838 flagword new_flags;
13839 bfd_boolean ok;
13840 bfd_boolean null_input_bfd = TRUE;
13841 asection *sec;
13842
13843 /* Check if we have the same endianness. */
13844 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13845 {
13846 (*_bfd_error_handler)
13847 (_("%B: endianness incompatible with that of the selected emulation"),
13848 ibfd);
13849 return FALSE;
13850 }
13851
13852 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13853 return TRUE;
13854
13855 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13856 {
13857 (*_bfd_error_handler)
13858 (_("%B: ABI is incompatible with that of the selected emulation"),
13859 ibfd);
13860 return FALSE;
13861 }
13862
13863 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13864 return FALSE;
13865
13866 new_flags = elf_elfheader (ibfd)->e_flags;
13867 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13868 old_flags = elf_elfheader (obfd)->e_flags;
13869
13870 if (! elf_flags_init (obfd))
13871 {
13872 elf_flags_init (obfd) = TRUE;
13873 elf_elfheader (obfd)->e_flags = new_flags;
13874 elf_elfheader (obfd)->e_ident[EI_CLASS]
13875 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13876
13877 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13878 && (bfd_get_arch_info (obfd)->the_default
13879 || mips_mach_extends_p (bfd_get_mach (obfd),
13880 bfd_get_mach (ibfd))))
13881 {
13882 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13883 bfd_get_mach (ibfd)))
13884 return FALSE;
13885 }
13886
13887 return TRUE;
13888 }
13889
13890 /* Check flag compatibility. */
13891
13892 new_flags &= ~EF_MIPS_NOREORDER;
13893 old_flags &= ~EF_MIPS_NOREORDER;
13894
13895 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13896 doesn't seem to matter. */
13897 new_flags &= ~EF_MIPS_XGOT;
13898 old_flags &= ~EF_MIPS_XGOT;
13899
13900 /* MIPSpro generates ucode info in n64 objects. Again, we should
13901 just be able to ignore this. */
13902 new_flags &= ~EF_MIPS_UCODE;
13903 old_flags &= ~EF_MIPS_UCODE;
13904
13905 /* DSOs should only be linked with CPIC code. */
13906 if ((ibfd->flags & DYNAMIC) != 0)
13907 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13908
13909 if (new_flags == old_flags)
13910 return TRUE;
13911
13912 /* Check to see if the input BFD actually contains any sections.
13913 If not, its flags may not have been initialised either, but it cannot
13914 actually cause any incompatibility. */
13915 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13916 {
13917 /* Ignore synthetic sections and empty .text, .data and .bss sections
13918 which are automatically generated by gas. Also ignore fake
13919 (s)common sections, since merely defining a common symbol does
13920 not affect compatibility. */
13921 if ((sec->flags & SEC_IS_COMMON) == 0
13922 && strcmp (sec->name, ".reginfo")
13923 && strcmp (sec->name, ".mdebug")
13924 && (sec->size != 0
13925 || (strcmp (sec->name, ".text")
13926 && strcmp (sec->name, ".data")
13927 && strcmp (sec->name, ".bss"))))
13928 {
13929 null_input_bfd = FALSE;
13930 break;
13931 }
13932 }
13933 if (null_input_bfd)
13934 return TRUE;
13935
13936 ok = TRUE;
13937
13938 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13939 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13940 {
13941 (*_bfd_error_handler)
13942 (_("%B: warning: linking abicalls files with non-abicalls files"),
13943 ibfd);
13944 ok = TRUE;
13945 }
13946
13947 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13948 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13949 if (! (new_flags & EF_MIPS_PIC))
13950 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13951
13952 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13953 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13954
13955 /* Compare the ISAs. */
13956 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13957 {
13958 (*_bfd_error_handler)
13959 (_("%B: linking 32-bit code with 64-bit code"),
13960 ibfd);
13961 ok = FALSE;
13962 }
13963 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13964 {
13965 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13966 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13967 {
13968 /* Copy the architecture info from IBFD to OBFD. Also copy
13969 the 32-bit flag (if set) so that we continue to recognise
13970 OBFD as a 32-bit binary. */
13971 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13972 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13973 elf_elfheader (obfd)->e_flags
13974 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13975
13976 /* Copy across the ABI flags if OBFD doesn't use them
13977 and if that was what caused us to treat IBFD as 32-bit. */
13978 if ((old_flags & EF_MIPS_ABI) == 0
13979 && mips_32bit_flags_p (new_flags)
13980 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
13981 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
13982 }
13983 else
13984 {
13985 /* The ISAs aren't compatible. */
13986 (*_bfd_error_handler)
13987 (_("%B: linking %s module with previous %s modules"),
13988 ibfd,
13989 bfd_printable_name (ibfd),
13990 bfd_printable_name (obfd));
13991 ok = FALSE;
13992 }
13993 }
13994
13995 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13996 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13997
13998 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
13999 does set EI_CLASS differently from any 32-bit ABI. */
14000 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14001 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14002 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14003 {
14004 /* Only error if both are set (to different values). */
14005 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14006 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14007 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14008 {
14009 (*_bfd_error_handler)
14010 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14011 ibfd,
14012 elf_mips_abi_name (ibfd),
14013 elf_mips_abi_name (obfd));
14014 ok = FALSE;
14015 }
14016 new_flags &= ~EF_MIPS_ABI;
14017 old_flags &= ~EF_MIPS_ABI;
14018 }
14019
14020 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14021 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14022 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14023 {
14024 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14025 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14026 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14027 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14028 int micro_mis = old_m16 && new_micro;
14029 int m16_mis = old_micro && new_m16;
14030
14031 if (m16_mis || micro_mis)
14032 {
14033 (*_bfd_error_handler)
14034 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14035 ibfd,
14036 m16_mis ? "MIPS16" : "microMIPS",
14037 m16_mis ? "microMIPS" : "MIPS16");
14038 ok = FALSE;
14039 }
14040
14041 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14042
14043 new_flags &= ~ EF_MIPS_ARCH_ASE;
14044 old_flags &= ~ EF_MIPS_ARCH_ASE;
14045 }
14046
14047 /* Warn about any other mismatches */
14048 if (new_flags != old_flags)
14049 {
14050 (*_bfd_error_handler)
14051 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14052 ibfd, (unsigned long) new_flags,
14053 (unsigned long) old_flags);
14054 ok = FALSE;
14055 }
14056
14057 if (! ok)
14058 {
14059 bfd_set_error (bfd_error_bad_value);
14060 return FALSE;
14061 }
14062
14063 return TRUE;
14064 }
14065
14066 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14067
14068 bfd_boolean
14069 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14070 {
14071 BFD_ASSERT (!elf_flags_init (abfd)
14072 || elf_elfheader (abfd)->e_flags == flags);
14073
14074 elf_elfheader (abfd)->e_flags = flags;
14075 elf_flags_init (abfd) = TRUE;
14076 return TRUE;
14077 }
14078
14079 char *
14080 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14081 {
14082 switch (dtag)
14083 {
14084 default: return "";
14085 case DT_MIPS_RLD_VERSION:
14086 return "MIPS_RLD_VERSION";
14087 case DT_MIPS_TIME_STAMP:
14088 return "MIPS_TIME_STAMP";
14089 case DT_MIPS_ICHECKSUM:
14090 return "MIPS_ICHECKSUM";
14091 case DT_MIPS_IVERSION:
14092 return "MIPS_IVERSION";
14093 case DT_MIPS_FLAGS:
14094 return "MIPS_FLAGS";
14095 case DT_MIPS_BASE_ADDRESS:
14096 return "MIPS_BASE_ADDRESS";
14097 case DT_MIPS_MSYM:
14098 return "MIPS_MSYM";
14099 case DT_MIPS_CONFLICT:
14100 return "MIPS_CONFLICT";
14101 case DT_MIPS_LIBLIST:
14102 return "MIPS_LIBLIST";
14103 case DT_MIPS_LOCAL_GOTNO:
14104 return "MIPS_LOCAL_GOTNO";
14105 case DT_MIPS_CONFLICTNO:
14106 return "MIPS_CONFLICTNO";
14107 case DT_MIPS_LIBLISTNO:
14108 return "MIPS_LIBLISTNO";
14109 case DT_MIPS_SYMTABNO:
14110 return "MIPS_SYMTABNO";
14111 case DT_MIPS_UNREFEXTNO:
14112 return "MIPS_UNREFEXTNO";
14113 case DT_MIPS_GOTSYM:
14114 return "MIPS_GOTSYM";
14115 case DT_MIPS_HIPAGENO:
14116 return "MIPS_HIPAGENO";
14117 case DT_MIPS_RLD_MAP:
14118 return "MIPS_RLD_MAP";
14119 case DT_MIPS_DELTA_CLASS:
14120 return "MIPS_DELTA_CLASS";
14121 case DT_MIPS_DELTA_CLASS_NO:
14122 return "MIPS_DELTA_CLASS_NO";
14123 case DT_MIPS_DELTA_INSTANCE:
14124 return "MIPS_DELTA_INSTANCE";
14125 case DT_MIPS_DELTA_INSTANCE_NO:
14126 return "MIPS_DELTA_INSTANCE_NO";
14127 case DT_MIPS_DELTA_RELOC:
14128 return "MIPS_DELTA_RELOC";
14129 case DT_MIPS_DELTA_RELOC_NO:
14130 return "MIPS_DELTA_RELOC_NO";
14131 case DT_MIPS_DELTA_SYM:
14132 return "MIPS_DELTA_SYM";
14133 case DT_MIPS_DELTA_SYM_NO:
14134 return "MIPS_DELTA_SYM_NO";
14135 case DT_MIPS_DELTA_CLASSSYM:
14136 return "MIPS_DELTA_CLASSSYM";
14137 case DT_MIPS_DELTA_CLASSSYM_NO:
14138 return "MIPS_DELTA_CLASSSYM_NO";
14139 case DT_MIPS_CXX_FLAGS:
14140 return "MIPS_CXX_FLAGS";
14141 case DT_MIPS_PIXIE_INIT:
14142 return "MIPS_PIXIE_INIT";
14143 case DT_MIPS_SYMBOL_LIB:
14144 return "MIPS_SYMBOL_LIB";
14145 case DT_MIPS_LOCALPAGE_GOTIDX:
14146 return "MIPS_LOCALPAGE_GOTIDX";
14147 case DT_MIPS_LOCAL_GOTIDX:
14148 return "MIPS_LOCAL_GOTIDX";
14149 case DT_MIPS_HIDDEN_GOTIDX:
14150 return "MIPS_HIDDEN_GOTIDX";
14151 case DT_MIPS_PROTECTED_GOTIDX:
14152 return "MIPS_PROTECTED_GOT_IDX";
14153 case DT_MIPS_OPTIONS:
14154 return "MIPS_OPTIONS";
14155 case DT_MIPS_INTERFACE:
14156 return "MIPS_INTERFACE";
14157 case DT_MIPS_DYNSTR_ALIGN:
14158 return "DT_MIPS_DYNSTR_ALIGN";
14159 case DT_MIPS_INTERFACE_SIZE:
14160 return "DT_MIPS_INTERFACE_SIZE";
14161 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14162 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14163 case DT_MIPS_PERF_SUFFIX:
14164 return "DT_MIPS_PERF_SUFFIX";
14165 case DT_MIPS_COMPACT_SIZE:
14166 return "DT_MIPS_COMPACT_SIZE";
14167 case DT_MIPS_GP_VALUE:
14168 return "DT_MIPS_GP_VALUE";
14169 case DT_MIPS_AUX_DYNAMIC:
14170 return "DT_MIPS_AUX_DYNAMIC";
14171 case DT_MIPS_PLTGOT:
14172 return "DT_MIPS_PLTGOT";
14173 case DT_MIPS_RWPLT:
14174 return "DT_MIPS_RWPLT";
14175 }
14176 }
14177
14178 bfd_boolean
14179 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14180 {
14181 FILE *file = ptr;
14182
14183 BFD_ASSERT (abfd != NULL && ptr != NULL);
14184
14185 /* Print normal ELF private data. */
14186 _bfd_elf_print_private_bfd_data (abfd, ptr);
14187
14188 /* xgettext:c-format */
14189 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14190
14191 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14192 fprintf (file, _(" [abi=O32]"));
14193 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14194 fprintf (file, _(" [abi=O64]"));
14195 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14196 fprintf (file, _(" [abi=EABI32]"));
14197 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14198 fprintf (file, _(" [abi=EABI64]"));
14199 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14200 fprintf (file, _(" [abi unknown]"));
14201 else if (ABI_N32_P (abfd))
14202 fprintf (file, _(" [abi=N32]"));
14203 else if (ABI_64_P (abfd))
14204 fprintf (file, _(" [abi=64]"));
14205 else
14206 fprintf (file, _(" [no abi set]"));
14207
14208 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14209 fprintf (file, " [mips1]");
14210 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14211 fprintf (file, " [mips2]");
14212 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14213 fprintf (file, " [mips3]");
14214 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14215 fprintf (file, " [mips4]");
14216 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14217 fprintf (file, " [mips5]");
14218 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14219 fprintf (file, " [mips32]");
14220 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14221 fprintf (file, " [mips64]");
14222 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14223 fprintf (file, " [mips32r2]");
14224 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14225 fprintf (file, " [mips64r2]");
14226 else
14227 fprintf (file, _(" [unknown ISA]"));
14228
14229 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14230 fprintf (file, " [mdmx]");
14231
14232 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14233 fprintf (file, " [mips16]");
14234
14235 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14236 fprintf (file, " [micromips]");
14237
14238 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14239 fprintf (file, " [32bitmode]");
14240 else
14241 fprintf (file, _(" [not 32bitmode]"));
14242
14243 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14244 fprintf (file, " [noreorder]");
14245
14246 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14247 fprintf (file, " [PIC]");
14248
14249 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14250 fprintf (file, " [CPIC]");
14251
14252 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14253 fprintf (file, " [XGOT]");
14254
14255 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14256 fprintf (file, " [UCODE]");
14257
14258 fputc ('\n', file);
14259
14260 return TRUE;
14261 }
14262
14263 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14264 {
14265 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14266 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14267 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14268 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14269 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14270 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14271 { NULL, 0, 0, 0, 0 }
14272 };
14273
14274 /* Merge non visibility st_other attributes. Ensure that the
14275 STO_OPTIONAL flag is copied into h->other, even if this is not a
14276 definiton of the symbol. */
14277 void
14278 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14279 const Elf_Internal_Sym *isym,
14280 bfd_boolean definition,
14281 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14282 {
14283 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14284 {
14285 unsigned char other;
14286
14287 other = (definition ? isym->st_other : h->other);
14288 other &= ~ELF_ST_VISIBILITY (-1);
14289 h->other = other | ELF_ST_VISIBILITY (h->other);
14290 }
14291
14292 if (!definition
14293 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14294 h->other |= STO_OPTIONAL;
14295 }
14296
14297 /* Decide whether an undefined symbol is special and can be ignored.
14298 This is the case for OPTIONAL symbols on IRIX. */
14299 bfd_boolean
14300 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14301 {
14302 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14303 }
14304
14305 bfd_boolean
14306 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14307 {
14308 return (sym->st_shndx == SHN_COMMON
14309 || sym->st_shndx == SHN_MIPS_ACOMMON
14310 || sym->st_shndx == SHN_MIPS_SCOMMON);
14311 }
14312
14313 /* Return address for Ith PLT stub in section PLT, for relocation REL
14314 or (bfd_vma) -1 if it should not be included. */
14315
14316 bfd_vma
14317 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14318 const arelent *rel ATTRIBUTE_UNUSED)
14319 {
14320 return (plt->vma
14321 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14322 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14323 }
14324
14325 void
14326 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14327 {
14328 struct mips_elf_link_hash_table *htab;
14329 Elf_Internal_Ehdr *i_ehdrp;
14330
14331 i_ehdrp = elf_elfheader (abfd);
14332 if (link_info)
14333 {
14334 htab = mips_elf_hash_table (link_info);
14335 BFD_ASSERT (htab != NULL);
14336
14337 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14338 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14339 }
14340 }
This page took 0.565314 seconds and 4 git commands to generate.