21748f24f691684d923170207f4ee7f69800ac35
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171 };
172
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176 struct mips_elf_link_hash_entry
177 {
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
195 bfd_boolean no_fn_stub;
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
203 bfd_boolean need_fn_stub;
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
212
213 /* Are we forced local? .*/
214 bfd_boolean forced_local;
215 };
216
217 /* MIPS ELF linker hash table. */
218
219 struct mips_elf_link_hash_table
220 {
221 struct elf_link_hash_table root;
222 #if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226 #endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
232 entry is set to the address of __rld_obj_head as in IRIX5. */
233 bfd_boolean use_rld_obj_head;
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
237 bfd_boolean mips16_stubs_seen;
238 };
239
240 /* Structure used to pass information to mips_elf_output_extsym. */
241
242 struct extsym_info
243 {
244 bfd *abfd;
245 struct bfd_link_info *info;
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
248 bfd_boolean failed;
249 };
250
251 /* The names of the runtime procedure table symbols used on IRIX5. */
252
253 static const char * const mips_elf_dynsym_rtproc_names[] =
254 {
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259 };
260
261 /* These structures are used to generate the .compact_rel section on
262 IRIX5. */
263
264 typedef struct
265 {
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272 } Elf32_compact_rel;
273
274 typedef struct
275 {
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282 } Elf32_External_compact_rel;
283
284 typedef struct
285 {
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292 } Elf32_crinfo;
293
294 typedef struct
295 {
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301 } Elf32_crinfo2;
302
303 typedef struct
304 {
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308 } Elf32_External_crinfo;
309
310 typedef struct
311 {
312 bfd_byte info[4];
313 bfd_byte konst[4];
314 } Elf32_External_crinfo2;
315
316 /* These are the constants used to swap the bitfields in a crinfo. */
317
318 #define CRINFO_CTYPE (0x1)
319 #define CRINFO_CTYPE_SH (31)
320 #define CRINFO_RTYPE (0xf)
321 #define CRINFO_RTYPE_SH (27)
322 #define CRINFO_DIST2TO (0xff)
323 #define CRINFO_DIST2TO_SH (19)
324 #define CRINFO_RELVADDR (0x7ffff)
325 #define CRINFO_RELVADDR_SH (0)
326
327 /* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330 #define CRF_MIPS_LONG 1
331 #define CRF_MIPS_SHORT 0
332
333 /* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343 #define CRT_MIPS_REL32 0xa
344 #define CRT_MIPS_WORD 0xb
345 #define CRT_MIPS_GPHI_LO 0xc
346 #define CRT_MIPS_JMPAD 0xd
347
348 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352 \f
353 /* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356 typedef struct runtime_pdr {
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
366 long reserved;
367 struct exception_info *exception_info;/* Pointer to exception array. */
368 } RPDR, *pRPDR;
369 #define cbRPDR sizeof (RPDR)
370 #define rpdNil ((pRPDR) 0)
371 \f
372 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
374 static void ecoff_swap_rpdr_out
375 (bfd *, const RPDR *, struct rpdr_ext *);
376 static bfd_boolean mips_elf_create_procedure_table
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
379 static bfd_boolean mips_elf_check_mips16_stubs
380 (struct mips_elf_link_hash_entry *, void *);
381 static void bfd_mips_elf32_swap_gptab_in
382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
383 static void bfd_mips_elf32_swap_gptab_out
384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
385 static void bfd_elf32_swap_compact_rel_out
386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
387 static void bfd_elf32_swap_crinfo_out
388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
389 static int sort_dynamic_relocs
390 (const void *, const void *);
391 static int sort_dynamic_relocs_64
392 (const void *, const void *);
393 static bfd_boolean mips_elf_output_extsym
394 (struct mips_elf_link_hash_entry *, void *);
395 static int gptab_compare
396 (const void *, const void *);
397 static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399 static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
401 static struct mips_got_info *mips_elf_got_info
402 (bfd *, asection **);
403 static bfd_vma mips_elf_local_got_index
404 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
405 static bfd_vma mips_elf_global_got_index
406 (bfd *, bfd *, struct elf_link_hash_entry *);
407 static bfd_vma mips_elf_got_page
408 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
409 static bfd_vma mips_elf_got16_entry
410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
411 static bfd_vma mips_elf_got_offset_from_index
412 (bfd *, bfd *, bfd *, bfd_vma);
413 static struct mips_got_entry *mips_elf_create_local_got_entry
414 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
415 static bfd_boolean mips_elf_sort_hash_table
416 (struct bfd_link_info *, unsigned long);
417 static bfd_boolean mips_elf_sort_hash_table_f
418 (struct mips_elf_link_hash_entry *, void *);
419 static bfd_boolean mips_elf_record_local_got_symbol
420 (bfd *, long, bfd_vma, struct mips_got_info *);
421 static bfd_boolean mips_elf_record_global_got_symbol
422 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
423 struct mips_got_info *);
424 static const Elf_Internal_Rela *mips_elf_next_relocation
425 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
426 static bfd_boolean mips_elf_local_relocation_p
427 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
428 static bfd_boolean mips_elf_overflow_p
429 (bfd_vma, int);
430 static bfd_vma mips_elf_high
431 (bfd_vma);
432 static bfd_vma mips_elf_higher
433 (bfd_vma);
434 static bfd_vma mips_elf_highest
435 (bfd_vma);
436 static bfd_boolean mips_elf_create_compact_rel_section
437 (bfd *, struct bfd_link_info *);
438 static bfd_boolean mips_elf_create_got_section
439 (bfd *, struct bfd_link_info *, bfd_boolean);
440 static bfd_reloc_status_type mips_elf_calculate_relocation
441 (bfd *, bfd *, asection *, struct bfd_link_info *,
442 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
443 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
444 bfd_boolean *, bfd_boolean);
445 static bfd_vma mips_elf_obtain_contents
446 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
447 static bfd_boolean mips_elf_perform_relocation
448 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
449 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
450 static bfd_boolean mips_elf_stub_section_p
451 (bfd *, asection *);
452 static void mips_elf_allocate_dynamic_relocations
453 (bfd *, unsigned int);
454 static bfd_boolean mips_elf_create_dynamic_relocation
455 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
456 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
457 bfd_vma *, asection *);
458 static void mips_set_isa_flags
459 (bfd *);
460 static INLINE char *elf_mips_abi_name
461 (bfd *);
462 static void mips_elf_irix6_finish_dynamic_symbol
463 (bfd *, const char *, Elf_Internal_Sym *);
464 static bfd_boolean mips_mach_extends_p
465 (unsigned long, unsigned long);
466 static bfd_boolean mips_32bit_flags_p
467 (flagword);
468 static INLINE hashval_t mips_elf_hash_bfd_vma
469 (bfd_vma);
470 static hashval_t mips_elf_got_entry_hash
471 (const void *);
472 static int mips_elf_got_entry_eq
473 (const void *, const void *);
474
475 static bfd_boolean mips_elf_multi_got
476 (bfd *, struct bfd_link_info *, struct mips_got_info *,
477 asection *, bfd_size_type);
478 static hashval_t mips_elf_multi_got_entry_hash
479 (const void *);
480 static int mips_elf_multi_got_entry_eq
481 (const void *, const void *);
482 static hashval_t mips_elf_bfd2got_entry_hash
483 (const void *);
484 static int mips_elf_bfd2got_entry_eq
485 (const void *, const void *);
486 static int mips_elf_make_got_per_bfd
487 (void **, void *);
488 static int mips_elf_merge_gots
489 (void **, void *);
490 static int mips_elf_set_global_got_offset
491 (void **, void *);
492 static int mips_elf_set_no_stub
493 (void **, void *);
494 static int mips_elf_resolve_final_got_entry
495 (void **, void *);
496 static void mips_elf_resolve_final_got_entries
497 (struct mips_got_info *);
498 static bfd_vma mips_elf_adjust_gp
499 (bfd *, struct mips_got_info *, bfd *);
500 static struct mips_got_info *mips_elf_got_for_ibfd
501 (struct mips_got_info *, bfd *);
502
503 /* This will be used when we sort the dynamic relocation records. */
504 static bfd *reldyn_sorting_bfd;
505
506 /* Nonzero if ABFD is using the N32 ABI. */
507
508 #define ABI_N32_P(abfd) \
509 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
510
511 /* Nonzero if ABFD is using the N64 ABI. */
512 #define ABI_64_P(abfd) \
513 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
514
515 /* Nonzero if ABFD is using NewABI conventions. */
516 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
517
518 /* The IRIX compatibility level we are striving for. */
519 #define IRIX_COMPAT(abfd) \
520 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
521
522 /* Whether we are trying to be compatible with IRIX at all. */
523 #define SGI_COMPAT(abfd) \
524 (IRIX_COMPAT (abfd) != ict_none)
525
526 /* The name of the options section. */
527 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
528 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
529
530 /* The name of the stub section. */
531 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
532
533 /* The size of an external REL relocation. */
534 #define MIPS_ELF_REL_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->sizeof_rel)
536
537 /* The size of an external dynamic table entry. */
538 #define MIPS_ELF_DYN_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_dyn)
540
541 /* The size of a GOT entry. */
542 #define MIPS_ELF_GOT_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->arch_size / 8)
544
545 /* The size of a symbol-table entry. */
546 #define MIPS_ELF_SYM_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_sym)
548
549 /* The default alignment for sections, as a power of two. */
550 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
551 (get_elf_backend_data (abfd)->s->log_file_align)
552
553 /* Get word-sized data. */
554 #define MIPS_ELF_GET_WORD(abfd, ptr) \
555 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
556
557 /* Put out word-sized data. */
558 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
559 (ABI_64_P (abfd) \
560 ? bfd_put_64 (abfd, val, ptr) \
561 : bfd_put_32 (abfd, val, ptr))
562
563 /* Add a dynamic symbol table-entry. */
564 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
565 _bfd_elf_add_dynamic_entry (info, tag, val)
566
567 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
568 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
569
570 /* Determine whether the internal relocation of index REL_IDX is REL
571 (zero) or RELA (non-zero). The assumption is that, if there are
572 two relocation sections for this section, one of them is REL and
573 the other is RELA. If the index of the relocation we're testing is
574 in range for the first relocation section, check that the external
575 relocation size is that for RELA. It is also assumed that, if
576 rel_idx is not in range for the first section, and this first
577 section contains REL relocs, then the relocation is in the second
578 section, that is RELA. */
579 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
580 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
581 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
582 > (bfd_vma)(rel_idx)) \
583 == (elf_section_data (sec)->rel_hdr.sh_entsize \
584 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
585 : sizeof (Elf32_External_Rela))))
586
587 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
588 from smaller values. Start with zero, widen, *then* decrement. */
589 #define MINUS_ONE (((bfd_vma)0) - 1)
590 #define MINUS_TWO (((bfd_vma)0) - 2)
591
592 /* The number of local .got entries we reserve. */
593 #define MIPS_RESERVED_GOTNO (2)
594
595 /* The offset of $gp from the beginning of the .got section. */
596 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598 /* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
602 /* Instructions which appear in a stub. */
603 #define STUB_LW(abfd) \
604 ((ABI_64_P (abfd) \
605 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
606 : 0x8f998010)) /* lw t9,0x8010(gp) */
607 #define STUB_MOVE(abfd) \
608 ((ABI_64_P (abfd) \
609 ? 0x03e0782d /* daddu t7,ra */ \
610 : 0x03e07821)) /* addu t7,ra */
611 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
612 #define STUB_LI16(abfd) \
613 ((ABI_64_P (abfd) \
614 ? 0x64180000 /* daddiu t8,zero,0 */ \
615 : 0x24180000)) /* addiu t8,zero,0 */
616 #define MIPS_FUNCTION_STUB_SIZE (16)
617
618 /* The name of the dynamic interpreter. This is put in the .interp
619 section. */
620
621 #define ELF_DYNAMIC_INTERPRETER(abfd) \
622 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
623 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
624 : "/usr/lib/libc.so.1")
625
626 #ifdef BFD64
627 #define MNAME(bfd,pre,pos) \
628 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
629 #define ELF_R_SYM(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
631 #define ELF_R_TYPE(bfd, i) \
632 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
633 #define ELF_R_INFO(bfd, s, t) \
634 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
635 #else
636 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
637 #define ELF_R_SYM(bfd, i) \
638 (ELF32_R_SYM (i))
639 #define ELF_R_TYPE(bfd, i) \
640 (ELF32_R_TYPE (i))
641 #define ELF_R_INFO(bfd, s, t) \
642 (ELF32_R_INFO (s, t))
643 #endif
644 \f
645 /* The mips16 compiler uses a couple of special sections to handle
646 floating point arguments.
647
648 Section names that look like .mips16.fn.FNNAME contain stubs that
649 copy floating point arguments from the fp regs to the gp regs and
650 then jump to FNNAME. If any 32 bit function calls FNNAME, the
651 call should be redirected to the stub instead. If no 32 bit
652 function calls FNNAME, the stub should be discarded. We need to
653 consider any reference to the function, not just a call, because
654 if the address of the function is taken we will need the stub,
655 since the address might be passed to a 32 bit function.
656
657 Section names that look like .mips16.call.FNNAME contain stubs
658 that copy floating point arguments from the gp regs to the fp
659 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
660 then any 16 bit function that calls FNNAME should be redirected
661 to the stub instead. If FNNAME is not a 32 bit function, the
662 stub should be discarded.
663
664 .mips16.call.fp.FNNAME sections are similar, but contain stubs
665 which call FNNAME and then copy the return value from the fp regs
666 to the gp regs. These stubs store the return value in $18 while
667 calling FNNAME; any function which might call one of these stubs
668 must arrange to save $18 around the call. (This case is not
669 needed for 32 bit functions that call 16 bit functions, because
670 16 bit functions always return floating point values in both
671 $f0/$f1 and $2/$3.)
672
673 Note that in all cases FNNAME might be defined statically.
674 Therefore, FNNAME is not used literally. Instead, the relocation
675 information will indicate which symbol the section is for.
676
677 We record any stubs that we find in the symbol table. */
678
679 #define FN_STUB ".mips16.fn."
680 #define CALL_STUB ".mips16.call."
681 #define CALL_FP_STUB ".mips16.call.fp."
682 \f
683 /* Look up an entry in a MIPS ELF linker hash table. */
684
685 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
686 ((struct mips_elf_link_hash_entry *) \
687 elf_link_hash_lookup (&(table)->root, (string), (create), \
688 (copy), (follow)))
689
690 /* Traverse a MIPS ELF linker hash table. */
691
692 #define mips_elf_link_hash_traverse(table, func, info) \
693 (elf_link_hash_traverse \
694 (&(table)->root, \
695 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
696 (info)))
697
698 /* Get the MIPS ELF linker hash table from a link_info structure. */
699
700 #define mips_elf_hash_table(p) \
701 ((struct mips_elf_link_hash_table *) ((p)->hash))
702
703 /* Create an entry in a MIPS ELF linker hash table. */
704
705 static struct bfd_hash_entry *
706 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
707 struct bfd_hash_table *table, const char *string)
708 {
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
714 if (ret == NULL)
715 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
716 if (ret == NULL)
717 return (struct bfd_hash_entry *) ret;
718
719 /* Call the allocation method of the superclass. */
720 ret = ((struct mips_elf_link_hash_entry *)
721 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
722 table, string));
723 if (ret != NULL)
724 {
725 /* Set local fields. */
726 memset (&ret->esym, 0, sizeof (EXTR));
727 /* We use -2 as a marker to indicate that the information has
728 not been set. -1 means there is no associated ifd. */
729 ret->esym.ifd = -2;
730 ret->possibly_dynamic_relocs = 0;
731 ret->readonly_reloc = FALSE;
732 ret->no_fn_stub = FALSE;
733 ret->fn_stub = NULL;
734 ret->need_fn_stub = FALSE;
735 ret->call_stub = NULL;
736 ret->call_fp_stub = NULL;
737 ret->forced_local = FALSE;
738 }
739
740 return (struct bfd_hash_entry *) ret;
741 }
742
743 bfd_boolean
744 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
745 {
746 struct _mips_elf_section_data *sdata;
747 bfd_size_type amt = sizeof (*sdata);
748
749 sdata = bfd_zalloc (abfd, amt);
750 if (sdata == NULL)
751 return FALSE;
752 sec->used_by_bfd = sdata;
753
754 return _bfd_elf_new_section_hook (abfd, sec);
755 }
756 \f
757 /* Read ECOFF debugging information from a .mdebug section into a
758 ecoff_debug_info structure. */
759
760 bfd_boolean
761 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
762 struct ecoff_debug_info *debug)
763 {
764 HDRR *symhdr;
765 const struct ecoff_debug_swap *swap;
766 char *ext_hdr;
767
768 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
769 memset (debug, 0, sizeof (*debug));
770
771 ext_hdr = bfd_malloc (swap->external_hdr_size);
772 if (ext_hdr == NULL && swap->external_hdr_size != 0)
773 goto error_return;
774
775 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
776 swap->external_hdr_size))
777 goto error_return;
778
779 symhdr = &debug->symbolic_header;
780 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
781
782 /* The symbolic header contains absolute file offsets and sizes to
783 read. */
784 #define READ(ptr, offset, count, size, type) \
785 if (symhdr->count == 0) \
786 debug->ptr = NULL; \
787 else \
788 { \
789 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
790 debug->ptr = bfd_malloc (amt); \
791 if (debug->ptr == NULL) \
792 goto error_return; \
793 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
794 || bfd_bread (debug->ptr, amt, abfd) != amt) \
795 goto error_return; \
796 }
797
798 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
799 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
800 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
801 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
802 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
803 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
804 union aux_ext *);
805 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
806 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
807 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
808 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
809 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
810 #undef READ
811
812 debug->fdr = NULL;
813
814 return TRUE;
815
816 error_return:
817 if (ext_hdr != NULL)
818 free (ext_hdr);
819 if (debug->line != NULL)
820 free (debug->line);
821 if (debug->external_dnr != NULL)
822 free (debug->external_dnr);
823 if (debug->external_pdr != NULL)
824 free (debug->external_pdr);
825 if (debug->external_sym != NULL)
826 free (debug->external_sym);
827 if (debug->external_opt != NULL)
828 free (debug->external_opt);
829 if (debug->external_aux != NULL)
830 free (debug->external_aux);
831 if (debug->ss != NULL)
832 free (debug->ss);
833 if (debug->ssext != NULL)
834 free (debug->ssext);
835 if (debug->external_fdr != NULL)
836 free (debug->external_fdr);
837 if (debug->external_rfd != NULL)
838 free (debug->external_rfd);
839 if (debug->external_ext != NULL)
840 free (debug->external_ext);
841 return FALSE;
842 }
843 \f
844 /* Swap RPDR (runtime procedure table entry) for output. */
845
846 static void
847 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
848 {
849 H_PUT_S32 (abfd, in->adr, ex->p_adr);
850 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
851 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
852 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
853 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
854 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
855
856 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
857 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
858
859 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
860 #if 0 /* FIXME */
861 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
862 #endif
863 }
864
865 /* Create a runtime procedure table from the .mdebug section. */
866
867 static bfd_boolean
868 mips_elf_create_procedure_table (void *handle, bfd *abfd,
869 struct bfd_link_info *info, asection *s,
870 struct ecoff_debug_info *debug)
871 {
872 const struct ecoff_debug_swap *swap;
873 HDRR *hdr = &debug->symbolic_header;
874 RPDR *rpdr, *rp;
875 struct rpdr_ext *erp;
876 void *rtproc;
877 struct pdr_ext *epdr;
878 struct sym_ext *esym;
879 char *ss, **sv;
880 char *str;
881 bfd_size_type size;
882 bfd_size_type count;
883 unsigned long sindex;
884 unsigned long i;
885 PDR pdr;
886 SYMR sym;
887 const char *no_name_func = _("static procedure (no name)");
888
889 epdr = NULL;
890 rpdr = NULL;
891 esym = NULL;
892 ss = NULL;
893 sv = NULL;
894
895 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
896
897 sindex = strlen (no_name_func) + 1;
898 count = hdr->ipdMax;
899 if (count > 0)
900 {
901 size = swap->external_pdr_size;
902
903 epdr = bfd_malloc (size * count);
904 if (epdr == NULL)
905 goto error_return;
906
907 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
908 goto error_return;
909
910 size = sizeof (RPDR);
911 rp = rpdr = bfd_malloc (size * count);
912 if (rpdr == NULL)
913 goto error_return;
914
915 size = sizeof (char *);
916 sv = bfd_malloc (size * count);
917 if (sv == NULL)
918 goto error_return;
919
920 count = hdr->isymMax;
921 size = swap->external_sym_size;
922 esym = bfd_malloc (size * count);
923 if (esym == NULL)
924 goto error_return;
925
926 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
927 goto error_return;
928
929 count = hdr->issMax;
930 ss = bfd_malloc (count);
931 if (ss == NULL)
932 goto error_return;
933 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
934 goto error_return;
935
936 count = hdr->ipdMax;
937 for (i = 0; i < (unsigned long) count; i++, rp++)
938 {
939 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
940 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
941 rp->adr = sym.value;
942 rp->regmask = pdr.regmask;
943 rp->regoffset = pdr.regoffset;
944 rp->fregmask = pdr.fregmask;
945 rp->fregoffset = pdr.fregoffset;
946 rp->frameoffset = pdr.frameoffset;
947 rp->framereg = pdr.framereg;
948 rp->pcreg = pdr.pcreg;
949 rp->irpss = sindex;
950 sv[i] = ss + sym.iss;
951 sindex += strlen (sv[i]) + 1;
952 }
953 }
954
955 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
956 size = BFD_ALIGN (size, 16);
957 rtproc = bfd_alloc (abfd, size);
958 if (rtproc == NULL)
959 {
960 mips_elf_hash_table (info)->procedure_count = 0;
961 goto error_return;
962 }
963
964 mips_elf_hash_table (info)->procedure_count = count + 2;
965
966 erp = rtproc;
967 memset (erp, 0, sizeof (struct rpdr_ext));
968 erp++;
969 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
970 strcpy (str, no_name_func);
971 str += strlen (no_name_func) + 1;
972 for (i = 0; i < count; i++)
973 {
974 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
975 strcpy (str, sv[i]);
976 str += strlen (sv[i]) + 1;
977 }
978 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
979
980 /* Set the size and contents of .rtproc section. */
981 s->_raw_size = size;
982 s->contents = rtproc;
983
984 /* Skip this section later on (I don't think this currently
985 matters, but someday it might). */
986 s->link_order_head = NULL;
987
988 if (epdr != NULL)
989 free (epdr);
990 if (rpdr != NULL)
991 free (rpdr);
992 if (esym != NULL)
993 free (esym);
994 if (ss != NULL)
995 free (ss);
996 if (sv != NULL)
997 free (sv);
998
999 return TRUE;
1000
1001 error_return:
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
1012 return FALSE;
1013 }
1014
1015 /* Check the mips16 stubs for a particular symbol, and see if we can
1016 discard them. */
1017
1018 static bfd_boolean
1019 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1020 void *data ATTRIBUTE_UNUSED)
1021 {
1022 if (h->root.root.type == bfd_link_hash_warning)
1023 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1024
1025 if (h->fn_stub != NULL
1026 && ! h->need_fn_stub)
1027 {
1028 /* We don't need the fn_stub; the only references to this symbol
1029 are 16 bit calls. Clobber the size to 0 to prevent it from
1030 being included in the link. */
1031 h->fn_stub->_raw_size = 0;
1032 h->fn_stub->_cooked_size = 0;
1033 h->fn_stub->flags &= ~SEC_RELOC;
1034 h->fn_stub->reloc_count = 0;
1035 h->fn_stub->flags |= SEC_EXCLUDE;
1036 }
1037
1038 if (h->call_stub != NULL
1039 && h->root.other == STO_MIPS16)
1040 {
1041 /* We don't need the call_stub; this is a 16 bit function, so
1042 calls from other 16 bit functions are OK. Clobber the size
1043 to 0 to prevent it from being included in the link. */
1044 h->call_stub->_raw_size = 0;
1045 h->call_stub->_cooked_size = 0;
1046 h->call_stub->flags &= ~SEC_RELOC;
1047 h->call_stub->reloc_count = 0;
1048 h->call_stub->flags |= SEC_EXCLUDE;
1049 }
1050
1051 if (h->call_fp_stub != NULL
1052 && h->root.other == STO_MIPS16)
1053 {
1054 /* We don't need the call_stub; this is a 16 bit function, so
1055 calls from other 16 bit functions are OK. Clobber the size
1056 to 0 to prevent it from being included in the link. */
1057 h->call_fp_stub->_raw_size = 0;
1058 h->call_fp_stub->_cooked_size = 0;
1059 h->call_fp_stub->flags &= ~SEC_RELOC;
1060 h->call_fp_stub->reloc_count = 0;
1061 h->call_fp_stub->flags |= SEC_EXCLUDE;
1062 }
1063
1064 return TRUE;
1065 }
1066 \f
1067 bfd_reloc_status_type
1068 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1069 arelent *reloc_entry, asection *input_section,
1070 bfd_boolean relocatable, void *data, bfd_vma gp)
1071 {
1072 bfd_vma relocation;
1073 bfd_signed_vma val;
1074 bfd_reloc_status_type status;
1075
1076 if (bfd_is_com_section (symbol->section))
1077 relocation = 0;
1078 else
1079 relocation = symbol->value;
1080
1081 relocation += symbol->section->output_section->vma;
1082 relocation += symbol->section->output_offset;
1083
1084 if (reloc_entry->address > input_section->_cooked_size)
1085 return bfd_reloc_outofrange;
1086
1087 /* Set val to the offset into the section or symbol. */
1088 val = reloc_entry->addend;
1089
1090 _bfd_mips_elf_sign_extend (val, 16);
1091
1092 /* Adjust val for the final section location and GP value. If we
1093 are producing relocatable output, we don't want to do this for
1094 an external symbol. */
1095 if (! relocatable
1096 || (symbol->flags & BSF_SECTION_SYM) != 0)
1097 val += relocation - gp;
1098
1099 if (reloc_entry->howto->partial_inplace)
1100 {
1101 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1102 (bfd_byte *) data
1103 + reloc_entry->address);
1104 if (status != bfd_reloc_ok)
1105 return status;
1106 }
1107 else
1108 reloc_entry->addend = val;
1109
1110 if (relocatable)
1111 reloc_entry->address += input_section->output_offset;
1112
1113 return bfd_reloc_ok;
1114 }
1115
1116 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1117 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1118 that contains the relocation field and DATA points to the start of
1119 INPUT_SECTION. */
1120
1121 struct mips_hi16
1122 {
1123 struct mips_hi16 *next;
1124 bfd_byte *data;
1125 asection *input_section;
1126 arelent rel;
1127 };
1128
1129 /* FIXME: This should not be a static variable. */
1130
1131 static struct mips_hi16 *mips_hi16_list;
1132
1133 /* A howto special_function for REL *HI16 relocations. We can only
1134 calculate the correct value once we've seen the partnering
1135 *LO16 relocation, so just save the information for later.
1136
1137 The ABI requires that the *LO16 immediately follow the *HI16.
1138 However, as a GNU extension, we permit an arbitrary number of
1139 *HI16s to be associated with a single *LO16. This significantly
1140 simplies the relocation handling in gcc. */
1141
1142 bfd_reloc_status_type
1143 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1144 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1145 asection *input_section, bfd *output_bfd,
1146 char **error_message ATTRIBUTE_UNUSED)
1147 {
1148 struct mips_hi16 *n;
1149
1150 if (reloc_entry->address > input_section->_cooked_size)
1151 return bfd_reloc_outofrange;
1152
1153 n = bfd_malloc (sizeof *n);
1154 if (n == NULL)
1155 return bfd_reloc_outofrange;
1156
1157 n->next = mips_hi16_list;
1158 n->data = data;
1159 n->input_section = input_section;
1160 n->rel = *reloc_entry;
1161 mips_hi16_list = n;
1162
1163 if (output_bfd != NULL)
1164 reloc_entry->address += input_section->output_offset;
1165
1166 return bfd_reloc_ok;
1167 }
1168
1169 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1170 like any other 16-bit relocation when applied to global symbols, but is
1171 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1172
1173 bfd_reloc_status_type
1174 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1175 void *data, asection *input_section,
1176 bfd *output_bfd, char **error_message)
1177 {
1178 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1179 || bfd_is_und_section (bfd_get_section (symbol))
1180 || bfd_is_com_section (bfd_get_section (symbol)))
1181 /* The relocation is against a global symbol. */
1182 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1183 input_section, output_bfd,
1184 error_message);
1185
1186 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1187 input_section, output_bfd, error_message);
1188 }
1189
1190 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1191 is a straightforward 16 bit inplace relocation, but we must deal with
1192 any partnering high-part relocations as well. */
1193
1194 bfd_reloc_status_type
1195 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1196 void *data, asection *input_section,
1197 bfd *output_bfd, char **error_message)
1198 {
1199 bfd_vma vallo;
1200
1201 if (reloc_entry->address > input_section->_cooked_size)
1202 return bfd_reloc_outofrange;
1203
1204 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1205 while (mips_hi16_list != NULL)
1206 {
1207 bfd_reloc_status_type ret;
1208 struct mips_hi16 *hi;
1209
1210 hi = mips_hi16_list;
1211
1212 /* R_MIPS_GOT16 relocations are something of a special case. We
1213 want to install the addend in the same way as for a R_MIPS_HI16
1214 relocation (with a rightshift of 16). However, since GOT16
1215 relocations can also be used with global symbols, their howto
1216 has a rightshift of 0. */
1217 if (hi->rel.howto->type == R_MIPS_GOT16)
1218 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1219
1220 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1221 carry or borrow will induce a change of +1 or -1 in the high part. */
1222 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1223
1224 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1225 hi->input_section, output_bfd,
1226 error_message);
1227 if (ret != bfd_reloc_ok)
1228 return ret;
1229
1230 mips_hi16_list = hi->next;
1231 free (hi);
1232 }
1233
1234 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1235 input_section, output_bfd,
1236 error_message);
1237 }
1238
1239 /* A generic howto special_function. This calculates and installs the
1240 relocation itself, thus avoiding the oft-discussed problems in
1241 bfd_perform_relocation and bfd_install_relocation. */
1242
1243 bfd_reloc_status_type
1244 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1245 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1246 asection *input_section, bfd *output_bfd,
1247 char **error_message ATTRIBUTE_UNUSED)
1248 {
1249 bfd_signed_vma val;
1250 bfd_reloc_status_type status;
1251 bfd_boolean relocatable;
1252
1253 relocatable = (output_bfd != NULL);
1254
1255 if (reloc_entry->address > input_section->_cooked_size)
1256 return bfd_reloc_outofrange;
1257
1258 /* Build up the field adjustment in VAL. */
1259 val = 0;
1260 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1261 {
1262 /* Either we're calculating the final field value or we have a
1263 relocation against a section symbol. Add in the section's
1264 offset or address. */
1265 val += symbol->section->output_section->vma;
1266 val += symbol->section->output_offset;
1267 }
1268
1269 if (!relocatable)
1270 {
1271 /* We're calculating the final field value. Add in the symbol's value
1272 and, if pc-relative, subtract the address of the field itself. */
1273 val += symbol->value;
1274 if (reloc_entry->howto->pc_relative)
1275 {
1276 val -= input_section->output_section->vma;
1277 val -= input_section->output_offset;
1278 val -= reloc_entry->address;
1279 }
1280 }
1281
1282 /* VAL is now the final adjustment. If we're keeping this relocation
1283 in the output file, and if the relocation uses a separate addend,
1284 we just need to add VAL to that addend. Otherwise we need to add
1285 VAL to the relocation field itself. */
1286 if (relocatable && !reloc_entry->howto->partial_inplace)
1287 reloc_entry->addend += val;
1288 else
1289 {
1290 /* Add in the separate addend, if any. */
1291 val += reloc_entry->addend;
1292
1293 /* Add VAL to the relocation field. */
1294 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1295 (bfd_byte *) data
1296 + reloc_entry->address);
1297 if (status != bfd_reloc_ok)
1298 return status;
1299 }
1300
1301 if (relocatable)
1302 reloc_entry->address += input_section->output_offset;
1303
1304 return bfd_reloc_ok;
1305 }
1306 \f
1307 /* Swap an entry in a .gptab section. Note that these routines rely
1308 on the equivalence of the two elements of the union. */
1309
1310 static void
1311 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1312 Elf32_gptab *in)
1313 {
1314 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1315 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1316 }
1317
1318 static void
1319 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1320 Elf32_External_gptab *ex)
1321 {
1322 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1323 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1324 }
1325
1326 static void
1327 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1328 Elf32_External_compact_rel *ex)
1329 {
1330 H_PUT_32 (abfd, in->id1, ex->id1);
1331 H_PUT_32 (abfd, in->num, ex->num);
1332 H_PUT_32 (abfd, in->id2, ex->id2);
1333 H_PUT_32 (abfd, in->offset, ex->offset);
1334 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1335 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1336 }
1337
1338 static void
1339 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1340 Elf32_External_crinfo *ex)
1341 {
1342 unsigned long l;
1343
1344 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1345 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1346 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1347 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1348 H_PUT_32 (abfd, l, ex->info);
1349 H_PUT_32 (abfd, in->konst, ex->konst);
1350 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1351 }
1352 \f
1353 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1354 routines swap this structure in and out. They are used outside of
1355 BFD, so they are globally visible. */
1356
1357 void
1358 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1359 Elf32_RegInfo *in)
1360 {
1361 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1362 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1363 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1364 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1365 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1366 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1367 }
1368
1369 void
1370 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1371 Elf32_External_RegInfo *ex)
1372 {
1373 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1374 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1375 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1376 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1377 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1378 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1379 }
1380
1381 /* In the 64 bit ABI, the .MIPS.options section holds register
1382 information in an Elf64_Reginfo structure. These routines swap
1383 them in and out. They are globally visible because they are used
1384 outside of BFD. These routines are here so that gas can call them
1385 without worrying about whether the 64 bit ABI has been included. */
1386
1387 void
1388 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1389 Elf64_Internal_RegInfo *in)
1390 {
1391 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1392 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1393 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1394 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1395 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1396 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1397 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1398 }
1399
1400 void
1401 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1402 Elf64_External_RegInfo *ex)
1403 {
1404 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1405 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1406 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1407 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1408 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1409 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1410 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1411 }
1412
1413 /* Swap in an options header. */
1414
1415 void
1416 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1417 Elf_Internal_Options *in)
1418 {
1419 in->kind = H_GET_8 (abfd, ex->kind);
1420 in->size = H_GET_8 (abfd, ex->size);
1421 in->section = H_GET_16 (abfd, ex->section);
1422 in->info = H_GET_32 (abfd, ex->info);
1423 }
1424
1425 /* Swap out an options header. */
1426
1427 void
1428 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1429 Elf_External_Options *ex)
1430 {
1431 H_PUT_8 (abfd, in->kind, ex->kind);
1432 H_PUT_8 (abfd, in->size, ex->size);
1433 H_PUT_16 (abfd, in->section, ex->section);
1434 H_PUT_32 (abfd, in->info, ex->info);
1435 }
1436 \f
1437 /* This function is called via qsort() to sort the dynamic relocation
1438 entries by increasing r_symndx value. */
1439
1440 static int
1441 sort_dynamic_relocs (const void *arg1, const void *arg2)
1442 {
1443 Elf_Internal_Rela int_reloc1;
1444 Elf_Internal_Rela int_reloc2;
1445
1446 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1447 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1448
1449 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1450 }
1451
1452 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1453
1454 static int
1455 sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
1456 {
1457 Elf_Internal_Rela int_reloc1[3];
1458 Elf_Internal_Rela int_reloc2[3];
1459
1460 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1461 (reldyn_sorting_bfd, arg1, int_reloc1);
1462 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1463 (reldyn_sorting_bfd, arg2, int_reloc2);
1464
1465 return (ELF64_R_SYM (int_reloc1[0].r_info)
1466 - ELF64_R_SYM (int_reloc2[0].r_info));
1467 }
1468
1469
1470 /* This routine is used to write out ECOFF debugging external symbol
1471 information. It is called via mips_elf_link_hash_traverse. The
1472 ECOFF external symbol information must match the ELF external
1473 symbol information. Unfortunately, at this point we don't know
1474 whether a symbol is required by reloc information, so the two
1475 tables may wind up being different. We must sort out the external
1476 symbol information before we can set the final size of the .mdebug
1477 section, and we must set the size of the .mdebug section before we
1478 can relocate any sections, and we can't know which symbols are
1479 required by relocation until we relocate the sections.
1480 Fortunately, it is relatively unlikely that any symbol will be
1481 stripped but required by a reloc. In particular, it can not happen
1482 when generating a final executable. */
1483
1484 static bfd_boolean
1485 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1486 {
1487 struct extsym_info *einfo = data;
1488 bfd_boolean strip;
1489 asection *sec, *output_section;
1490
1491 if (h->root.root.type == bfd_link_hash_warning)
1492 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1493
1494 if (h->root.indx == -2)
1495 strip = FALSE;
1496 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1497 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1498 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1499 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1500 strip = TRUE;
1501 else if (einfo->info->strip == strip_all
1502 || (einfo->info->strip == strip_some
1503 && bfd_hash_lookup (einfo->info->keep_hash,
1504 h->root.root.root.string,
1505 FALSE, FALSE) == NULL))
1506 strip = TRUE;
1507 else
1508 strip = FALSE;
1509
1510 if (strip)
1511 return TRUE;
1512
1513 if (h->esym.ifd == -2)
1514 {
1515 h->esym.jmptbl = 0;
1516 h->esym.cobol_main = 0;
1517 h->esym.weakext = 0;
1518 h->esym.reserved = 0;
1519 h->esym.ifd = ifdNil;
1520 h->esym.asym.value = 0;
1521 h->esym.asym.st = stGlobal;
1522
1523 if (h->root.root.type == bfd_link_hash_undefined
1524 || h->root.root.type == bfd_link_hash_undefweak)
1525 {
1526 const char *name;
1527
1528 /* Use undefined class. Also, set class and type for some
1529 special symbols. */
1530 name = h->root.root.root.string;
1531 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1532 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1533 {
1534 h->esym.asym.sc = scData;
1535 h->esym.asym.st = stLabel;
1536 h->esym.asym.value = 0;
1537 }
1538 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1539 {
1540 h->esym.asym.sc = scAbs;
1541 h->esym.asym.st = stLabel;
1542 h->esym.asym.value =
1543 mips_elf_hash_table (einfo->info)->procedure_count;
1544 }
1545 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1546 {
1547 h->esym.asym.sc = scAbs;
1548 h->esym.asym.st = stLabel;
1549 h->esym.asym.value = elf_gp (einfo->abfd);
1550 }
1551 else
1552 h->esym.asym.sc = scUndefined;
1553 }
1554 else if (h->root.root.type != bfd_link_hash_defined
1555 && h->root.root.type != bfd_link_hash_defweak)
1556 h->esym.asym.sc = scAbs;
1557 else
1558 {
1559 const char *name;
1560
1561 sec = h->root.root.u.def.section;
1562 output_section = sec->output_section;
1563
1564 /* When making a shared library and symbol h is the one from
1565 the another shared library, OUTPUT_SECTION may be null. */
1566 if (output_section == NULL)
1567 h->esym.asym.sc = scUndefined;
1568 else
1569 {
1570 name = bfd_section_name (output_section->owner, output_section);
1571
1572 if (strcmp (name, ".text") == 0)
1573 h->esym.asym.sc = scText;
1574 else if (strcmp (name, ".data") == 0)
1575 h->esym.asym.sc = scData;
1576 else if (strcmp (name, ".sdata") == 0)
1577 h->esym.asym.sc = scSData;
1578 else if (strcmp (name, ".rodata") == 0
1579 || strcmp (name, ".rdata") == 0)
1580 h->esym.asym.sc = scRData;
1581 else if (strcmp (name, ".bss") == 0)
1582 h->esym.asym.sc = scBss;
1583 else if (strcmp (name, ".sbss") == 0)
1584 h->esym.asym.sc = scSBss;
1585 else if (strcmp (name, ".init") == 0)
1586 h->esym.asym.sc = scInit;
1587 else if (strcmp (name, ".fini") == 0)
1588 h->esym.asym.sc = scFini;
1589 else
1590 h->esym.asym.sc = scAbs;
1591 }
1592 }
1593
1594 h->esym.asym.reserved = 0;
1595 h->esym.asym.index = indexNil;
1596 }
1597
1598 if (h->root.root.type == bfd_link_hash_common)
1599 h->esym.asym.value = h->root.root.u.c.size;
1600 else if (h->root.root.type == bfd_link_hash_defined
1601 || h->root.root.type == bfd_link_hash_defweak)
1602 {
1603 if (h->esym.asym.sc == scCommon)
1604 h->esym.asym.sc = scBss;
1605 else if (h->esym.asym.sc == scSCommon)
1606 h->esym.asym.sc = scSBss;
1607
1608 sec = h->root.root.u.def.section;
1609 output_section = sec->output_section;
1610 if (output_section != NULL)
1611 h->esym.asym.value = (h->root.root.u.def.value
1612 + sec->output_offset
1613 + output_section->vma);
1614 else
1615 h->esym.asym.value = 0;
1616 }
1617 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1618 {
1619 struct mips_elf_link_hash_entry *hd = h;
1620 bfd_boolean no_fn_stub = h->no_fn_stub;
1621
1622 while (hd->root.root.type == bfd_link_hash_indirect)
1623 {
1624 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1625 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1626 }
1627
1628 if (!no_fn_stub)
1629 {
1630 /* Set type and value for a symbol with a function stub. */
1631 h->esym.asym.st = stProc;
1632 sec = hd->root.root.u.def.section;
1633 if (sec == NULL)
1634 h->esym.asym.value = 0;
1635 else
1636 {
1637 output_section = sec->output_section;
1638 if (output_section != NULL)
1639 h->esym.asym.value = (hd->root.plt.offset
1640 + sec->output_offset
1641 + output_section->vma);
1642 else
1643 h->esym.asym.value = 0;
1644 }
1645 #if 0 /* FIXME? */
1646 h->esym.ifd = 0;
1647 #endif
1648 }
1649 }
1650
1651 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1652 h->root.root.root.string,
1653 &h->esym))
1654 {
1655 einfo->failed = TRUE;
1656 return FALSE;
1657 }
1658
1659 return TRUE;
1660 }
1661
1662 /* A comparison routine used to sort .gptab entries. */
1663
1664 static int
1665 gptab_compare (const void *p1, const void *p2)
1666 {
1667 const Elf32_gptab *a1 = p1;
1668 const Elf32_gptab *a2 = p2;
1669
1670 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1671 }
1672 \f
1673 /* Functions to manage the got entry hash table. */
1674
1675 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1676 hash number. */
1677
1678 static INLINE hashval_t
1679 mips_elf_hash_bfd_vma (bfd_vma addr)
1680 {
1681 #ifdef BFD64
1682 return addr + (addr >> 32);
1683 #else
1684 return addr;
1685 #endif
1686 }
1687
1688 /* got_entries only match if they're identical, except for gotidx, so
1689 use all fields to compute the hash, and compare the appropriate
1690 union members. */
1691
1692 static hashval_t
1693 mips_elf_got_entry_hash (const void *entry_)
1694 {
1695 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1696
1697 return entry->symndx
1698 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1699 : entry->abfd->id
1700 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1701 : entry->d.h->root.root.root.hash));
1702 }
1703
1704 static int
1705 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1706 {
1707 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1708 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1709
1710 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1711 && (! e1->abfd ? e1->d.address == e2->d.address
1712 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1713 : e1->d.h == e2->d.h);
1714 }
1715
1716 /* multi_got_entries are still a match in the case of global objects,
1717 even if the input bfd in which they're referenced differs, so the
1718 hash computation and compare functions are adjusted
1719 accordingly. */
1720
1721 static hashval_t
1722 mips_elf_multi_got_entry_hash (const void *entry_)
1723 {
1724 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1725
1726 return entry->symndx
1727 + (! entry->abfd
1728 ? mips_elf_hash_bfd_vma (entry->d.address)
1729 : entry->symndx >= 0
1730 ? (entry->abfd->id
1731 + mips_elf_hash_bfd_vma (entry->d.addend))
1732 : entry->d.h->root.root.root.hash);
1733 }
1734
1735 static int
1736 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1737 {
1738 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1739 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1740
1741 return e1->symndx == e2->symndx
1742 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1743 : e1->abfd == NULL || e2->abfd == NULL
1744 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1745 : e1->d.h == e2->d.h);
1746 }
1747 \f
1748 /* Returns the dynamic relocation section for DYNOBJ. */
1749
1750 static asection *
1751 mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
1752 {
1753 static const char dname[] = ".rel.dyn";
1754 asection *sreloc;
1755
1756 sreloc = bfd_get_section_by_name (dynobj, dname);
1757 if (sreloc == NULL && create_p)
1758 {
1759 sreloc = bfd_make_section (dynobj, dname);
1760 if (sreloc == NULL
1761 || ! bfd_set_section_flags (dynobj, sreloc,
1762 (SEC_ALLOC
1763 | SEC_LOAD
1764 | SEC_HAS_CONTENTS
1765 | SEC_IN_MEMORY
1766 | SEC_LINKER_CREATED
1767 | SEC_READONLY))
1768 || ! bfd_set_section_alignment (dynobj, sreloc,
1769 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1770 return NULL;
1771 }
1772 return sreloc;
1773 }
1774
1775 /* Returns the GOT section for ABFD. */
1776
1777 static asection *
1778 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
1779 {
1780 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1781 if (sgot == NULL
1782 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1783 return NULL;
1784 return sgot;
1785 }
1786
1787 /* Returns the GOT information associated with the link indicated by
1788 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1789 section. */
1790
1791 static struct mips_got_info *
1792 mips_elf_got_info (bfd *abfd, asection **sgotp)
1793 {
1794 asection *sgot;
1795 struct mips_got_info *g;
1796
1797 sgot = mips_elf_got_section (abfd, TRUE);
1798 BFD_ASSERT (sgot != NULL);
1799 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1800 g = mips_elf_section_data (sgot)->u.got_info;
1801 BFD_ASSERT (g != NULL);
1802
1803 if (sgotp)
1804 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1805
1806 return g;
1807 }
1808
1809 /* Returns the GOT offset at which the indicated address can be found.
1810 If there is not yet a GOT entry for this value, create one. Returns
1811 -1 if no satisfactory GOT offset can be found. */
1812
1813 static bfd_vma
1814 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1815 bfd_vma value)
1816 {
1817 asection *sgot;
1818 struct mips_got_info *g;
1819 struct mips_got_entry *entry;
1820
1821 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1822
1823 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1824 if (entry)
1825 return entry->gotidx;
1826 else
1827 return MINUS_ONE;
1828 }
1829
1830 /* Returns the GOT index for the global symbol indicated by H. */
1831
1832 static bfd_vma
1833 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
1834 {
1835 bfd_vma index;
1836 asection *sgot;
1837 struct mips_got_info *g, *gg;
1838 long global_got_dynindx = 0;
1839
1840 gg = g = mips_elf_got_info (abfd, &sgot);
1841 if (g->bfd2got && ibfd)
1842 {
1843 struct mips_got_entry e, *p;
1844
1845 BFD_ASSERT (h->dynindx >= 0);
1846
1847 g = mips_elf_got_for_ibfd (g, ibfd);
1848 if (g->next != gg)
1849 {
1850 e.abfd = ibfd;
1851 e.symndx = -1;
1852 e.d.h = (struct mips_elf_link_hash_entry *)h;
1853
1854 p = htab_find (g->got_entries, &e);
1855
1856 BFD_ASSERT (p->gotidx > 0);
1857 return p->gotidx;
1858 }
1859 }
1860
1861 if (gg->global_gotsym != NULL)
1862 global_got_dynindx = gg->global_gotsym->dynindx;
1863
1864 /* Once we determine the global GOT entry with the lowest dynamic
1865 symbol table index, we must put all dynamic symbols with greater
1866 indices into the GOT. That makes it easy to calculate the GOT
1867 offset. */
1868 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1869 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1870 * MIPS_ELF_GOT_SIZE (abfd));
1871 BFD_ASSERT (index < sgot->_raw_size);
1872
1873 return index;
1874 }
1875
1876 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1877 are supposed to be placed at small offsets in the GOT, i.e.,
1878 within 32KB of GP. Return the index into the GOT for this page,
1879 and store the offset from this entry to the desired address in
1880 OFFSETP, if it is non-NULL. */
1881
1882 static bfd_vma
1883 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1884 bfd_vma value, bfd_vma *offsetp)
1885 {
1886 asection *sgot;
1887 struct mips_got_info *g;
1888 bfd_vma index;
1889 struct mips_got_entry *entry;
1890
1891 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1892
1893 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1894 (value + 0x8000)
1895 & (~(bfd_vma)0xffff));
1896
1897 if (!entry)
1898 return MINUS_ONE;
1899
1900 index = entry->gotidx;
1901
1902 if (offsetp)
1903 *offsetp = value - entry->d.address;
1904
1905 return index;
1906 }
1907
1908 /* Find a GOT entry whose higher-order 16 bits are the same as those
1909 for value. Return the index into the GOT for this entry. */
1910
1911 static bfd_vma
1912 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1913 bfd_vma value, bfd_boolean external)
1914 {
1915 asection *sgot;
1916 struct mips_got_info *g;
1917 struct mips_got_entry *entry;
1918
1919 if (! external)
1920 {
1921 /* Although the ABI says that it is "the high-order 16 bits" that we
1922 want, it is really the %high value. The complete value is
1923 calculated with a `addiu' of a LO16 relocation, just as with a
1924 HI16/LO16 pair. */
1925 value = mips_elf_high (value) << 16;
1926 }
1927
1928 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1929
1930 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1931 if (entry)
1932 return entry->gotidx;
1933 else
1934 return MINUS_ONE;
1935 }
1936
1937 /* Returns the offset for the entry at the INDEXth position
1938 in the GOT. */
1939
1940 static bfd_vma
1941 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1942 bfd *input_bfd, bfd_vma index)
1943 {
1944 asection *sgot;
1945 bfd_vma gp;
1946 struct mips_got_info *g;
1947
1948 g = mips_elf_got_info (dynobj, &sgot);
1949 gp = _bfd_get_gp_value (output_bfd)
1950 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1951
1952 return sgot->output_section->vma + sgot->output_offset + index - gp;
1953 }
1954
1955 /* Create a local GOT entry for VALUE. Return the index of the entry,
1956 or -1 if it could not be created. */
1957
1958 static struct mips_got_entry *
1959 mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
1960 struct mips_got_info *gg,
1961 asection *sgot, bfd_vma value)
1962 {
1963 struct mips_got_entry entry, **loc;
1964 struct mips_got_info *g;
1965
1966 entry.abfd = NULL;
1967 entry.symndx = -1;
1968 entry.d.address = value;
1969
1970 g = mips_elf_got_for_ibfd (gg, ibfd);
1971 if (g == NULL)
1972 {
1973 g = mips_elf_got_for_ibfd (gg, abfd);
1974 BFD_ASSERT (g != NULL);
1975 }
1976
1977 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1978 INSERT);
1979 if (*loc)
1980 return *loc;
1981
1982 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1983
1984 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1985
1986 if (! *loc)
1987 return NULL;
1988
1989 memcpy (*loc, &entry, sizeof entry);
1990
1991 if (g->assigned_gotno >= g->local_gotno)
1992 {
1993 (*loc)->gotidx = -1;
1994 /* We didn't allocate enough space in the GOT. */
1995 (*_bfd_error_handler)
1996 (_("not enough GOT space for local GOT entries"));
1997 bfd_set_error (bfd_error_bad_value);
1998 return NULL;
1999 }
2000
2001 MIPS_ELF_PUT_WORD (abfd, value,
2002 (sgot->contents + entry.gotidx));
2003
2004 return *loc;
2005 }
2006
2007 /* Sort the dynamic symbol table so that symbols that need GOT entries
2008 appear towards the end. This reduces the amount of GOT space
2009 required. MAX_LOCAL is used to set the number of local symbols
2010 known to be in the dynamic symbol table. During
2011 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2012 section symbols are added and the count is higher. */
2013
2014 static bfd_boolean
2015 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2016 {
2017 struct mips_elf_hash_sort_data hsd;
2018 struct mips_got_info *g;
2019 bfd *dynobj;
2020
2021 dynobj = elf_hash_table (info)->dynobj;
2022
2023 g = mips_elf_got_info (dynobj, NULL);
2024
2025 hsd.low = NULL;
2026 hsd.max_unref_got_dynindx =
2027 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2028 /* In the multi-got case, assigned_gotno of the master got_info
2029 indicate the number of entries that aren't referenced in the
2030 primary GOT, but that must have entries because there are
2031 dynamic relocations that reference it. Since they aren't
2032 referenced, we move them to the end of the GOT, so that they
2033 don't prevent other entries that are referenced from getting
2034 too large offsets. */
2035 - (g->next ? g->assigned_gotno : 0);
2036 hsd.max_non_got_dynindx = max_local;
2037 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2038 elf_hash_table (info)),
2039 mips_elf_sort_hash_table_f,
2040 &hsd);
2041
2042 /* There should have been enough room in the symbol table to
2043 accommodate both the GOT and non-GOT symbols. */
2044 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2045 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2046 <= elf_hash_table (info)->dynsymcount);
2047
2048 /* Now we know which dynamic symbol has the lowest dynamic symbol
2049 table index in the GOT. */
2050 g->global_gotsym = hsd.low;
2051
2052 return TRUE;
2053 }
2054
2055 /* If H needs a GOT entry, assign it the highest available dynamic
2056 index. Otherwise, assign it the lowest available dynamic
2057 index. */
2058
2059 static bfd_boolean
2060 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2061 {
2062 struct mips_elf_hash_sort_data *hsd = data;
2063
2064 if (h->root.root.type == bfd_link_hash_warning)
2065 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2066
2067 /* Symbols without dynamic symbol table entries aren't interesting
2068 at all. */
2069 if (h->root.dynindx == -1)
2070 return TRUE;
2071
2072 /* Global symbols that need GOT entries that are not explicitly
2073 referenced are marked with got offset 2. Those that are
2074 referenced get a 1, and those that don't need GOT entries get
2075 -1. */
2076 if (h->root.got.offset == 2)
2077 {
2078 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2079 hsd->low = (struct elf_link_hash_entry *) h;
2080 h->root.dynindx = hsd->max_unref_got_dynindx++;
2081 }
2082 else if (h->root.got.offset != 1)
2083 h->root.dynindx = hsd->max_non_got_dynindx++;
2084 else
2085 {
2086 h->root.dynindx = --hsd->min_got_dynindx;
2087 hsd->low = (struct elf_link_hash_entry *) h;
2088 }
2089
2090 return TRUE;
2091 }
2092
2093 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2094 symbol table index lower than any we've seen to date, record it for
2095 posterity. */
2096
2097 static bfd_boolean
2098 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2099 bfd *abfd, struct bfd_link_info *info,
2100 struct mips_got_info *g)
2101 {
2102 struct mips_got_entry entry, **loc;
2103
2104 /* A global symbol in the GOT must also be in the dynamic symbol
2105 table. */
2106 if (h->dynindx == -1)
2107 {
2108 switch (ELF_ST_VISIBILITY (h->other))
2109 {
2110 case STV_INTERNAL:
2111 case STV_HIDDEN:
2112 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2113 break;
2114 }
2115 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2116 return FALSE;
2117 }
2118
2119 entry.abfd = abfd;
2120 entry.symndx = -1;
2121 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2122
2123 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2124 INSERT);
2125
2126 /* If we've already marked this entry as needing GOT space, we don't
2127 need to do it again. */
2128 if (*loc)
2129 return TRUE;
2130
2131 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2132
2133 if (! *loc)
2134 return FALSE;
2135
2136 entry.gotidx = -1;
2137 memcpy (*loc, &entry, sizeof entry);
2138
2139 if (h->got.offset != MINUS_ONE)
2140 return TRUE;
2141
2142 /* By setting this to a value other than -1, we are indicating that
2143 there needs to be a GOT entry for H. Avoid using zero, as the
2144 generic ELF copy_indirect_symbol tests for <= 0. */
2145 h->got.offset = 1;
2146
2147 return TRUE;
2148 }
2149
2150 /* Reserve space in G for a GOT entry containing the value of symbol
2151 SYMNDX in input bfd ABDF, plus ADDEND. */
2152
2153 static bfd_boolean
2154 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2155 struct mips_got_info *g)
2156 {
2157 struct mips_got_entry entry, **loc;
2158
2159 entry.abfd = abfd;
2160 entry.symndx = symndx;
2161 entry.d.addend = addend;
2162 loc = (struct mips_got_entry **)
2163 htab_find_slot (g->got_entries, &entry, INSERT);
2164
2165 if (*loc)
2166 return TRUE;
2167
2168 entry.gotidx = g->local_gotno++;
2169
2170 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2171
2172 if (! *loc)
2173 return FALSE;
2174
2175 memcpy (*loc, &entry, sizeof entry);
2176
2177 return TRUE;
2178 }
2179 \f
2180 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2181
2182 static hashval_t
2183 mips_elf_bfd2got_entry_hash (const void *entry_)
2184 {
2185 const struct mips_elf_bfd2got_hash *entry
2186 = (struct mips_elf_bfd2got_hash *)entry_;
2187
2188 return entry->bfd->id;
2189 }
2190
2191 /* Check whether two hash entries have the same bfd. */
2192
2193 static int
2194 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2195 {
2196 const struct mips_elf_bfd2got_hash *e1
2197 = (const struct mips_elf_bfd2got_hash *)entry1;
2198 const struct mips_elf_bfd2got_hash *e2
2199 = (const struct mips_elf_bfd2got_hash *)entry2;
2200
2201 return e1->bfd == e2->bfd;
2202 }
2203
2204 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2205 be the master GOT data. */
2206
2207 static struct mips_got_info *
2208 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2209 {
2210 struct mips_elf_bfd2got_hash e, *p;
2211
2212 if (! g->bfd2got)
2213 return g;
2214
2215 e.bfd = ibfd;
2216 p = htab_find (g->bfd2got, &e);
2217 return p ? p->g : NULL;
2218 }
2219
2220 /* Create one separate got for each bfd that has entries in the global
2221 got, such that we can tell how many local and global entries each
2222 bfd requires. */
2223
2224 static int
2225 mips_elf_make_got_per_bfd (void **entryp, void *p)
2226 {
2227 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2228 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2229 htab_t bfd2got = arg->bfd2got;
2230 struct mips_got_info *g;
2231 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2232 void **bfdgotp;
2233
2234 /* Find the got_info for this GOT entry's input bfd. Create one if
2235 none exists. */
2236 bfdgot_entry.bfd = entry->abfd;
2237 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2238 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2239
2240 if (bfdgot != NULL)
2241 g = bfdgot->g;
2242 else
2243 {
2244 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2245 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2246
2247 if (bfdgot == NULL)
2248 {
2249 arg->obfd = 0;
2250 return 0;
2251 }
2252
2253 *bfdgotp = bfdgot;
2254
2255 bfdgot->bfd = entry->abfd;
2256 bfdgot->g = g = (struct mips_got_info *)
2257 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2258 if (g == NULL)
2259 {
2260 arg->obfd = 0;
2261 return 0;
2262 }
2263
2264 g->global_gotsym = NULL;
2265 g->global_gotno = 0;
2266 g->local_gotno = 0;
2267 g->assigned_gotno = -1;
2268 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2269 mips_elf_multi_got_entry_eq, NULL);
2270 if (g->got_entries == NULL)
2271 {
2272 arg->obfd = 0;
2273 return 0;
2274 }
2275
2276 g->bfd2got = NULL;
2277 g->next = NULL;
2278 }
2279
2280 /* Insert the GOT entry in the bfd's got entry hash table. */
2281 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2282 if (*entryp != NULL)
2283 return 1;
2284
2285 *entryp = entry;
2286
2287 if (entry->symndx >= 0 || entry->d.h->forced_local)
2288 ++g->local_gotno;
2289 else
2290 ++g->global_gotno;
2291
2292 return 1;
2293 }
2294
2295 /* Attempt to merge gots of different input bfds. Try to use as much
2296 as possible of the primary got, since it doesn't require explicit
2297 dynamic relocations, but don't use bfds that would reference global
2298 symbols out of the addressable range. Failing the primary got,
2299 attempt to merge with the current got, or finish the current got
2300 and then make make the new got current. */
2301
2302 static int
2303 mips_elf_merge_gots (void **bfd2got_, void *p)
2304 {
2305 struct mips_elf_bfd2got_hash *bfd2got
2306 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2307 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2308 unsigned int lcount = bfd2got->g->local_gotno;
2309 unsigned int gcount = bfd2got->g->global_gotno;
2310 unsigned int maxcnt = arg->max_count;
2311
2312 /* If we don't have a primary GOT and this is not too big, use it as
2313 a starting point for the primary GOT. */
2314 if (! arg->primary && lcount + gcount <= maxcnt)
2315 {
2316 arg->primary = bfd2got->g;
2317 arg->primary_count = lcount + gcount;
2318 }
2319 /* If it looks like we can merge this bfd's entries with those of
2320 the primary, merge them. The heuristics is conservative, but we
2321 don't have to squeeze it too hard. */
2322 else if (arg->primary
2323 && (arg->primary_count + lcount + gcount) <= maxcnt)
2324 {
2325 struct mips_got_info *g = bfd2got->g;
2326 int old_lcount = arg->primary->local_gotno;
2327 int old_gcount = arg->primary->global_gotno;
2328
2329 bfd2got->g = arg->primary;
2330
2331 htab_traverse (g->got_entries,
2332 mips_elf_make_got_per_bfd,
2333 arg);
2334 if (arg->obfd == NULL)
2335 return 0;
2336
2337 htab_delete (g->got_entries);
2338 /* We don't have to worry about releasing memory of the actual
2339 got entries, since they're all in the master got_entries hash
2340 table anyway. */
2341
2342 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
2343 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2344
2345 arg->primary_count = arg->primary->local_gotno
2346 + arg->primary->global_gotno;
2347 }
2348 /* If we can merge with the last-created got, do it. */
2349 else if (arg->current
2350 && arg->current_count + lcount + gcount <= maxcnt)
2351 {
2352 struct mips_got_info *g = bfd2got->g;
2353 int old_lcount = arg->current->local_gotno;
2354 int old_gcount = arg->current->global_gotno;
2355
2356 bfd2got->g = arg->current;
2357
2358 htab_traverse (g->got_entries,
2359 mips_elf_make_got_per_bfd,
2360 arg);
2361 if (arg->obfd == NULL)
2362 return 0;
2363
2364 htab_delete (g->got_entries);
2365
2366 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
2367 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2368
2369 arg->current_count = arg->current->local_gotno
2370 + arg->current->global_gotno;
2371 }
2372 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2373 fits; if it turns out that it doesn't, we'll get relocation
2374 overflows anyway. */
2375 else
2376 {
2377 bfd2got->g->next = arg->current;
2378 arg->current = bfd2got->g;
2379
2380 arg->current_count = lcount + gcount;
2381 }
2382
2383 return 1;
2384 }
2385
2386 /* If passed a NULL mips_got_info in the argument, set the marker used
2387 to tell whether a global symbol needs a got entry (in the primary
2388 got) to the given VALUE.
2389
2390 If passed a pointer G to a mips_got_info in the argument (it must
2391 not be the primary GOT), compute the offset from the beginning of
2392 the (primary) GOT section to the entry in G corresponding to the
2393 global symbol. G's assigned_gotno must contain the index of the
2394 first available global GOT entry in G. VALUE must contain the size
2395 of a GOT entry in bytes. For each global GOT entry that requires a
2396 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2397 marked as not eligible for lazy resolution through a function
2398 stub. */
2399 static int
2400 mips_elf_set_global_got_offset (void **entryp, void *p)
2401 {
2402 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2403 struct mips_elf_set_global_got_offset_arg *arg
2404 = (struct mips_elf_set_global_got_offset_arg *)p;
2405 struct mips_got_info *g = arg->g;
2406
2407 if (entry->abfd != NULL && entry->symndx == -1
2408 && entry->d.h->root.dynindx != -1)
2409 {
2410 if (g)
2411 {
2412 BFD_ASSERT (g->global_gotsym == NULL);
2413
2414 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2415 if (arg->info->shared
2416 || (elf_hash_table (arg->info)->dynamic_sections_created
2417 && ((entry->d.h->root.elf_link_hash_flags
2418 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2419 && ((entry->d.h->root.elf_link_hash_flags
2420 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2421 ++arg->needed_relocs;
2422 }
2423 else
2424 entry->d.h->root.got.offset = arg->value;
2425 }
2426
2427 return 1;
2428 }
2429
2430 /* Mark any global symbols referenced in the GOT we are iterating over
2431 as inelligible for lazy resolution stubs. */
2432 static int
2433 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
2434 {
2435 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2436
2437 if (entry->abfd != NULL
2438 && entry->symndx == -1
2439 && entry->d.h->root.dynindx != -1)
2440 entry->d.h->no_fn_stub = TRUE;
2441
2442 return 1;
2443 }
2444
2445 /* Follow indirect and warning hash entries so that each got entry
2446 points to the final symbol definition. P must point to a pointer
2447 to the hash table we're traversing. Since this traversal may
2448 modify the hash table, we set this pointer to NULL to indicate
2449 we've made a potentially-destructive change to the hash table, so
2450 the traversal must be restarted. */
2451 static int
2452 mips_elf_resolve_final_got_entry (void **entryp, void *p)
2453 {
2454 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2455 htab_t got_entries = *(htab_t *)p;
2456
2457 if (entry->abfd != NULL && entry->symndx == -1)
2458 {
2459 struct mips_elf_link_hash_entry *h = entry->d.h;
2460
2461 while (h->root.root.type == bfd_link_hash_indirect
2462 || h->root.root.type == bfd_link_hash_warning)
2463 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2464
2465 if (entry->d.h == h)
2466 return 1;
2467
2468 entry->d.h = h;
2469
2470 /* If we can't find this entry with the new bfd hash, re-insert
2471 it, and get the traversal restarted. */
2472 if (! htab_find (got_entries, entry))
2473 {
2474 htab_clear_slot (got_entries, entryp);
2475 entryp = htab_find_slot (got_entries, entry, INSERT);
2476 if (! *entryp)
2477 *entryp = entry;
2478 /* Abort the traversal, since the whole table may have
2479 moved, and leave it up to the parent to restart the
2480 process. */
2481 *(htab_t *)p = NULL;
2482 return 0;
2483 }
2484 /* We might want to decrement the global_gotno count, but it's
2485 either too early or too late for that at this point. */
2486 }
2487
2488 return 1;
2489 }
2490
2491 /* Turn indirect got entries in a got_entries table into their final
2492 locations. */
2493 static void
2494 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
2495 {
2496 htab_t got_entries;
2497
2498 do
2499 {
2500 got_entries = g->got_entries;
2501
2502 htab_traverse (got_entries,
2503 mips_elf_resolve_final_got_entry,
2504 &got_entries);
2505 }
2506 while (got_entries == NULL);
2507 }
2508
2509 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2510 the primary GOT. */
2511 static bfd_vma
2512 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
2513 {
2514 if (g->bfd2got == NULL)
2515 return 0;
2516
2517 g = mips_elf_got_for_ibfd (g, ibfd);
2518 if (! g)
2519 return 0;
2520
2521 BFD_ASSERT (g->next);
2522
2523 g = g->next;
2524
2525 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2526 }
2527
2528 /* Turn a single GOT that is too big for 16-bit addressing into
2529 a sequence of GOTs, each one 16-bit addressable. */
2530
2531 static bfd_boolean
2532 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2533 struct mips_got_info *g, asection *got,
2534 bfd_size_type pages)
2535 {
2536 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2537 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2538 struct mips_got_info *gg;
2539 unsigned int assign;
2540
2541 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2542 mips_elf_bfd2got_entry_eq, NULL);
2543 if (g->bfd2got == NULL)
2544 return FALSE;
2545
2546 got_per_bfd_arg.bfd2got = g->bfd2got;
2547 got_per_bfd_arg.obfd = abfd;
2548 got_per_bfd_arg.info = info;
2549
2550 /* Count how many GOT entries each input bfd requires, creating a
2551 map from bfd to got info while at that. */
2552 mips_elf_resolve_final_got_entries (g);
2553 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2554 if (got_per_bfd_arg.obfd == NULL)
2555 return FALSE;
2556
2557 got_per_bfd_arg.current = NULL;
2558 got_per_bfd_arg.primary = NULL;
2559 /* Taking out PAGES entries is a worst-case estimate. We could
2560 compute the maximum number of pages that each separate input bfd
2561 uses, but it's probably not worth it. */
2562 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2563 / MIPS_ELF_GOT_SIZE (abfd))
2564 - MIPS_RESERVED_GOTNO - pages);
2565
2566 /* Try to merge the GOTs of input bfds together, as long as they
2567 don't seem to exceed the maximum GOT size, choosing one of them
2568 to be the primary GOT. */
2569 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2570 if (got_per_bfd_arg.obfd == NULL)
2571 return FALSE;
2572
2573 /* If we find any suitable primary GOT, create an empty one. */
2574 if (got_per_bfd_arg.primary == NULL)
2575 {
2576 g->next = (struct mips_got_info *)
2577 bfd_alloc (abfd, sizeof (struct mips_got_info));
2578 if (g->next == NULL)
2579 return FALSE;
2580
2581 g->next->global_gotsym = NULL;
2582 g->next->global_gotno = 0;
2583 g->next->local_gotno = 0;
2584 g->next->assigned_gotno = 0;
2585 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2586 mips_elf_multi_got_entry_eq,
2587 NULL);
2588 if (g->next->got_entries == NULL)
2589 return FALSE;
2590 g->next->bfd2got = NULL;
2591 }
2592 else
2593 g->next = got_per_bfd_arg.primary;
2594 g->next->next = got_per_bfd_arg.current;
2595
2596 /* GG is now the master GOT, and G is the primary GOT. */
2597 gg = g;
2598 g = g->next;
2599
2600 /* Map the output bfd to the primary got. That's what we're going
2601 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2602 didn't mark in check_relocs, and we want a quick way to find it.
2603 We can't just use gg->next because we're going to reverse the
2604 list. */
2605 {
2606 struct mips_elf_bfd2got_hash *bfdgot;
2607 void **bfdgotp;
2608
2609 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2610 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2611
2612 if (bfdgot == NULL)
2613 return FALSE;
2614
2615 bfdgot->bfd = abfd;
2616 bfdgot->g = g;
2617 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2618
2619 BFD_ASSERT (*bfdgotp == NULL);
2620 *bfdgotp = bfdgot;
2621 }
2622
2623 /* The IRIX dynamic linker requires every symbol that is referenced
2624 in a dynamic relocation to be present in the primary GOT, so
2625 arrange for them to appear after those that are actually
2626 referenced.
2627
2628 GNU/Linux could very well do without it, but it would slow down
2629 the dynamic linker, since it would have to resolve every dynamic
2630 symbol referenced in other GOTs more than once, without help from
2631 the cache. Also, knowing that every external symbol has a GOT
2632 helps speed up the resolution of local symbols too, so GNU/Linux
2633 follows IRIX's practice.
2634
2635 The number 2 is used by mips_elf_sort_hash_table_f to count
2636 global GOT symbols that are unreferenced in the primary GOT, with
2637 an initial dynamic index computed from gg->assigned_gotno, where
2638 the number of unreferenced global entries in the primary GOT is
2639 preserved. */
2640 if (1)
2641 {
2642 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2643 g->global_gotno = gg->global_gotno;
2644 set_got_offset_arg.value = 2;
2645 }
2646 else
2647 {
2648 /* This could be used for dynamic linkers that don't optimize
2649 symbol resolution while applying relocations so as to use
2650 primary GOT entries or assuming the symbol is locally-defined.
2651 With this code, we assign lower dynamic indices to global
2652 symbols that are not referenced in the primary GOT, so that
2653 their entries can be omitted. */
2654 gg->assigned_gotno = 0;
2655 set_got_offset_arg.value = -1;
2656 }
2657
2658 /* Reorder dynamic symbols as described above (which behavior
2659 depends on the setting of VALUE). */
2660 set_got_offset_arg.g = NULL;
2661 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2662 &set_got_offset_arg);
2663 set_got_offset_arg.value = 1;
2664 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2665 &set_got_offset_arg);
2666 if (! mips_elf_sort_hash_table (info, 1))
2667 return FALSE;
2668
2669 /* Now go through the GOTs assigning them offset ranges.
2670 [assigned_gotno, local_gotno[ will be set to the range of local
2671 entries in each GOT. We can then compute the end of a GOT by
2672 adding local_gotno to global_gotno. We reverse the list and make
2673 it circular since then we'll be able to quickly compute the
2674 beginning of a GOT, by computing the end of its predecessor. To
2675 avoid special cases for the primary GOT, while still preserving
2676 assertions that are valid for both single- and multi-got links,
2677 we arrange for the main got struct to have the right number of
2678 global entries, but set its local_gotno such that the initial
2679 offset of the primary GOT is zero. Remember that the primary GOT
2680 will become the last item in the circular linked list, so it
2681 points back to the master GOT. */
2682 gg->local_gotno = -g->global_gotno;
2683 gg->global_gotno = g->global_gotno;
2684 assign = 0;
2685 gg->next = gg;
2686
2687 do
2688 {
2689 struct mips_got_info *gn;
2690
2691 assign += MIPS_RESERVED_GOTNO;
2692 g->assigned_gotno = assign;
2693 g->local_gotno += assign + pages;
2694 assign = g->local_gotno + g->global_gotno;
2695
2696 /* Take g out of the direct list, and push it onto the reversed
2697 list that gg points to. */
2698 gn = g->next;
2699 g->next = gg->next;
2700 gg->next = g;
2701 g = gn;
2702
2703 /* Mark global symbols in every non-primary GOT as ineligible for
2704 stubs. */
2705 if (g)
2706 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
2707 }
2708 while (g);
2709
2710 got->_raw_size = (gg->next->local_gotno
2711 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2712
2713 return TRUE;
2714 }
2715
2716 \f
2717 /* Returns the first relocation of type r_type found, beginning with
2718 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2719
2720 static const Elf_Internal_Rela *
2721 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2722 const Elf_Internal_Rela *relocation,
2723 const Elf_Internal_Rela *relend)
2724 {
2725 while (relocation < relend)
2726 {
2727 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2728 return relocation;
2729
2730 ++relocation;
2731 }
2732
2733 /* We didn't find it. */
2734 bfd_set_error (bfd_error_bad_value);
2735 return NULL;
2736 }
2737
2738 /* Return whether a relocation is against a local symbol. */
2739
2740 static bfd_boolean
2741 mips_elf_local_relocation_p (bfd *input_bfd,
2742 const Elf_Internal_Rela *relocation,
2743 asection **local_sections,
2744 bfd_boolean check_forced)
2745 {
2746 unsigned long r_symndx;
2747 Elf_Internal_Shdr *symtab_hdr;
2748 struct mips_elf_link_hash_entry *h;
2749 size_t extsymoff;
2750
2751 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2752 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2753 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2754
2755 if (r_symndx < extsymoff)
2756 return TRUE;
2757 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2758 return TRUE;
2759
2760 if (check_forced)
2761 {
2762 /* Look up the hash table to check whether the symbol
2763 was forced local. */
2764 h = (struct mips_elf_link_hash_entry *)
2765 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2766 /* Find the real hash-table entry for this symbol. */
2767 while (h->root.root.type == bfd_link_hash_indirect
2768 || h->root.root.type == bfd_link_hash_warning)
2769 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2770 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2771 return TRUE;
2772 }
2773
2774 return FALSE;
2775 }
2776 \f
2777 /* Sign-extend VALUE, which has the indicated number of BITS. */
2778
2779 bfd_vma
2780 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
2781 {
2782 if (value & ((bfd_vma) 1 << (bits - 1)))
2783 /* VALUE is negative. */
2784 value |= ((bfd_vma) - 1) << bits;
2785
2786 return value;
2787 }
2788
2789 /* Return non-zero if the indicated VALUE has overflowed the maximum
2790 range expressible by a signed number with the indicated number of
2791 BITS. */
2792
2793 static bfd_boolean
2794 mips_elf_overflow_p (bfd_vma value, int bits)
2795 {
2796 bfd_signed_vma svalue = (bfd_signed_vma) value;
2797
2798 if (svalue > (1 << (bits - 1)) - 1)
2799 /* The value is too big. */
2800 return TRUE;
2801 else if (svalue < -(1 << (bits - 1)))
2802 /* The value is too small. */
2803 return TRUE;
2804
2805 /* All is well. */
2806 return FALSE;
2807 }
2808
2809 /* Calculate the %high function. */
2810
2811 static bfd_vma
2812 mips_elf_high (bfd_vma value)
2813 {
2814 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2815 }
2816
2817 /* Calculate the %higher function. */
2818
2819 static bfd_vma
2820 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
2821 {
2822 #ifdef BFD64
2823 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2824 #else
2825 abort ();
2826 return MINUS_ONE;
2827 #endif
2828 }
2829
2830 /* Calculate the %highest function. */
2831
2832 static bfd_vma
2833 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
2834 {
2835 #ifdef BFD64
2836 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2837 #else
2838 abort ();
2839 return MINUS_ONE;
2840 #endif
2841 }
2842 \f
2843 /* Create the .compact_rel section. */
2844
2845 static bfd_boolean
2846 mips_elf_create_compact_rel_section
2847 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
2848 {
2849 flagword flags;
2850 register asection *s;
2851
2852 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2853 {
2854 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2855 | SEC_READONLY);
2856
2857 s = bfd_make_section (abfd, ".compact_rel");
2858 if (s == NULL
2859 || ! bfd_set_section_flags (abfd, s, flags)
2860 || ! bfd_set_section_alignment (abfd, s,
2861 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2862 return FALSE;
2863
2864 s->_raw_size = sizeof (Elf32_External_compact_rel);
2865 }
2866
2867 return TRUE;
2868 }
2869
2870 /* Create the .got section to hold the global offset table. */
2871
2872 static bfd_boolean
2873 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2874 bfd_boolean maybe_exclude)
2875 {
2876 flagword flags;
2877 register asection *s;
2878 struct elf_link_hash_entry *h;
2879 struct bfd_link_hash_entry *bh;
2880 struct mips_got_info *g;
2881 bfd_size_type amt;
2882
2883 /* This function may be called more than once. */
2884 s = mips_elf_got_section (abfd, TRUE);
2885 if (s)
2886 {
2887 if (! maybe_exclude)
2888 s->flags &= ~SEC_EXCLUDE;
2889 return TRUE;
2890 }
2891
2892 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2893 | SEC_LINKER_CREATED);
2894
2895 if (maybe_exclude)
2896 flags |= SEC_EXCLUDE;
2897
2898 /* We have to use an alignment of 2**4 here because this is hardcoded
2899 in the function stub generation and in the linker script. */
2900 s = bfd_make_section (abfd, ".got");
2901 if (s == NULL
2902 || ! bfd_set_section_flags (abfd, s, flags)
2903 || ! bfd_set_section_alignment (abfd, s, 4))
2904 return FALSE;
2905
2906 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2907 linker script because we don't want to define the symbol if we
2908 are not creating a global offset table. */
2909 bh = NULL;
2910 if (! (_bfd_generic_link_add_one_symbol
2911 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2912 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
2913 return FALSE;
2914
2915 h = (struct elf_link_hash_entry *) bh;
2916 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2917 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2918 h->type = STT_OBJECT;
2919
2920 if (info->shared
2921 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2922 return FALSE;
2923
2924 amt = sizeof (struct mips_got_info);
2925 g = bfd_alloc (abfd, amt);
2926 if (g == NULL)
2927 return FALSE;
2928 g->global_gotsym = NULL;
2929 g->global_gotno = 0;
2930 g->local_gotno = MIPS_RESERVED_GOTNO;
2931 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2932 g->bfd2got = NULL;
2933 g->next = NULL;
2934 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2935 mips_elf_got_entry_eq, NULL);
2936 if (g->got_entries == NULL)
2937 return FALSE;
2938 mips_elf_section_data (s)->u.got_info = g;
2939 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2940 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2941
2942 return TRUE;
2943 }
2944 \f
2945 /* Calculate the value produced by the RELOCATION (which comes from
2946 the INPUT_BFD). The ADDEND is the addend to use for this
2947 RELOCATION; RELOCATION->R_ADDEND is ignored.
2948
2949 The result of the relocation calculation is stored in VALUEP.
2950 REQUIRE_JALXP indicates whether or not the opcode used with this
2951 relocation must be JALX.
2952
2953 This function returns bfd_reloc_continue if the caller need take no
2954 further action regarding this relocation, bfd_reloc_notsupported if
2955 something goes dramatically wrong, bfd_reloc_overflow if an
2956 overflow occurs, and bfd_reloc_ok to indicate success. */
2957
2958 static bfd_reloc_status_type
2959 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
2960 asection *input_section,
2961 struct bfd_link_info *info,
2962 const Elf_Internal_Rela *relocation,
2963 bfd_vma addend, reloc_howto_type *howto,
2964 Elf_Internal_Sym *local_syms,
2965 asection **local_sections, bfd_vma *valuep,
2966 const char **namep, bfd_boolean *require_jalxp,
2967 bfd_boolean save_addend)
2968 {
2969 /* The eventual value we will return. */
2970 bfd_vma value;
2971 /* The address of the symbol against which the relocation is
2972 occurring. */
2973 bfd_vma symbol = 0;
2974 /* The final GP value to be used for the relocatable, executable, or
2975 shared object file being produced. */
2976 bfd_vma gp = MINUS_ONE;
2977 /* The place (section offset or address) of the storage unit being
2978 relocated. */
2979 bfd_vma p;
2980 /* The value of GP used to create the relocatable object. */
2981 bfd_vma gp0 = MINUS_ONE;
2982 /* The offset into the global offset table at which the address of
2983 the relocation entry symbol, adjusted by the addend, resides
2984 during execution. */
2985 bfd_vma g = MINUS_ONE;
2986 /* The section in which the symbol referenced by the relocation is
2987 located. */
2988 asection *sec = NULL;
2989 struct mips_elf_link_hash_entry *h = NULL;
2990 /* TRUE if the symbol referred to by this relocation is a local
2991 symbol. */
2992 bfd_boolean local_p, was_local_p;
2993 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2994 bfd_boolean gp_disp_p = FALSE;
2995 Elf_Internal_Shdr *symtab_hdr;
2996 size_t extsymoff;
2997 unsigned long r_symndx;
2998 int r_type;
2999 /* TRUE if overflow occurred during the calculation of the
3000 relocation value. */
3001 bfd_boolean overflowed_p;
3002 /* TRUE if this relocation refers to a MIPS16 function. */
3003 bfd_boolean target_is_16_bit_code_p = FALSE;
3004
3005 /* Parse the relocation. */
3006 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3007 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3008 p = (input_section->output_section->vma
3009 + input_section->output_offset
3010 + relocation->r_offset);
3011
3012 /* Assume that there will be no overflow. */
3013 overflowed_p = FALSE;
3014
3015 /* Figure out whether or not the symbol is local, and get the offset
3016 used in the array of hash table entries. */
3017 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3018 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3019 local_sections, FALSE);
3020 was_local_p = local_p;
3021 if (! elf_bad_symtab (input_bfd))
3022 extsymoff = symtab_hdr->sh_info;
3023 else
3024 {
3025 /* The symbol table does not follow the rule that local symbols
3026 must come before globals. */
3027 extsymoff = 0;
3028 }
3029
3030 /* Figure out the value of the symbol. */
3031 if (local_p)
3032 {
3033 Elf_Internal_Sym *sym;
3034
3035 sym = local_syms + r_symndx;
3036 sec = local_sections[r_symndx];
3037
3038 symbol = sec->output_section->vma + sec->output_offset;
3039 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3040 || (sec->flags & SEC_MERGE))
3041 symbol += sym->st_value;
3042 if ((sec->flags & SEC_MERGE)
3043 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3044 {
3045 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3046 addend -= symbol;
3047 addend += sec->output_section->vma + sec->output_offset;
3048 }
3049
3050 /* MIPS16 text labels should be treated as odd. */
3051 if (sym->st_other == STO_MIPS16)
3052 ++symbol;
3053
3054 /* Record the name of this symbol, for our caller. */
3055 *namep = bfd_elf_string_from_elf_section (input_bfd,
3056 symtab_hdr->sh_link,
3057 sym->st_name);
3058 if (*namep == '\0')
3059 *namep = bfd_section_name (input_bfd, sec);
3060
3061 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3062 }
3063 else
3064 {
3065 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3066
3067 /* For global symbols we look up the symbol in the hash-table. */
3068 h = ((struct mips_elf_link_hash_entry *)
3069 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3070 /* Find the real hash-table entry for this symbol. */
3071 while (h->root.root.type == bfd_link_hash_indirect
3072 || h->root.root.type == bfd_link_hash_warning)
3073 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3074
3075 /* Record the name of this symbol, for our caller. */
3076 *namep = h->root.root.root.string;
3077
3078 /* See if this is the special _gp_disp symbol. Note that such a
3079 symbol must always be a global symbol. */
3080 if (strcmp (*namep, "_gp_disp") == 0
3081 && ! NEWABI_P (input_bfd))
3082 {
3083 /* Relocations against _gp_disp are permitted only with
3084 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3085 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3086 return bfd_reloc_notsupported;
3087
3088 gp_disp_p = TRUE;
3089 }
3090 /* If this symbol is defined, calculate its address. Note that
3091 _gp_disp is a magic symbol, always implicitly defined by the
3092 linker, so it's inappropriate to check to see whether or not
3093 its defined. */
3094 else if ((h->root.root.type == bfd_link_hash_defined
3095 || h->root.root.type == bfd_link_hash_defweak)
3096 && h->root.root.u.def.section)
3097 {
3098 sec = h->root.root.u.def.section;
3099 if (sec->output_section)
3100 symbol = (h->root.root.u.def.value
3101 + sec->output_section->vma
3102 + sec->output_offset);
3103 else
3104 symbol = h->root.root.u.def.value;
3105 }
3106 else if (h->root.root.type == bfd_link_hash_undefweak)
3107 /* We allow relocations against undefined weak symbols, giving
3108 it the value zero, so that you can undefined weak functions
3109 and check to see if they exist by looking at their
3110 addresses. */
3111 symbol = 0;
3112 else if (info->unresolved_syms_in_objects == RM_IGNORE
3113 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3114 symbol = 0;
3115 else if (strcmp (*namep, "_DYNAMIC_LINK") == 0 ||
3116 strcmp (*namep, "_DYNAMIC_LINKING") == 0)
3117 {
3118 /* If this is a dynamic link, we should have created a
3119 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3120 in in _bfd_mips_elf_create_dynamic_sections.
3121 Otherwise, we should define the symbol with a value of 0.
3122 FIXME: It should probably get into the symbol table
3123 somehow as well. */
3124 BFD_ASSERT (! info->shared);
3125 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3126 symbol = 0;
3127 }
3128 else
3129 {
3130 if (! ((*info->callbacks->undefined_symbol)
3131 (info, h->root.root.root.string, input_bfd,
3132 input_section, relocation->r_offset,
3133 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3134 || ELF_ST_VISIBILITY (h->root.other))))
3135 return bfd_reloc_undefined;
3136 symbol = 0;
3137 }
3138
3139 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3140 }
3141
3142 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3143 need to redirect the call to the stub, unless we're already *in*
3144 a stub. */
3145 if (r_type != R_MIPS16_26 && !info->relocatable
3146 && ((h != NULL && h->fn_stub != NULL)
3147 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3148 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3149 && !mips_elf_stub_section_p (input_bfd, input_section))
3150 {
3151 /* This is a 32- or 64-bit call to a 16-bit function. We should
3152 have already noticed that we were going to need the
3153 stub. */
3154 if (local_p)
3155 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3156 else
3157 {
3158 BFD_ASSERT (h->need_fn_stub);
3159 sec = h->fn_stub;
3160 }
3161
3162 symbol = sec->output_section->vma + sec->output_offset;
3163 }
3164 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3165 need to redirect the call to the stub. */
3166 else if (r_type == R_MIPS16_26 && !info->relocatable
3167 && h != NULL
3168 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3169 && !target_is_16_bit_code_p)
3170 {
3171 /* If both call_stub and call_fp_stub are defined, we can figure
3172 out which one to use by seeing which one appears in the input
3173 file. */
3174 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3175 {
3176 asection *o;
3177
3178 sec = NULL;
3179 for (o = input_bfd->sections; o != NULL; o = o->next)
3180 {
3181 if (strncmp (bfd_get_section_name (input_bfd, o),
3182 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3183 {
3184 sec = h->call_fp_stub;
3185 break;
3186 }
3187 }
3188 if (sec == NULL)
3189 sec = h->call_stub;
3190 }
3191 else if (h->call_stub != NULL)
3192 sec = h->call_stub;
3193 else
3194 sec = h->call_fp_stub;
3195
3196 BFD_ASSERT (sec->_raw_size > 0);
3197 symbol = sec->output_section->vma + sec->output_offset;
3198 }
3199
3200 /* Calls from 16-bit code to 32-bit code and vice versa require the
3201 special jalx instruction. */
3202 *require_jalxp = (!info->relocatable
3203 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3204 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3205
3206 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3207 local_sections, TRUE);
3208
3209 /* If we haven't already determined the GOT offset, or the GP value,
3210 and we're going to need it, get it now. */
3211 switch (r_type)
3212 {
3213 case R_MIPS_GOT_PAGE:
3214 case R_MIPS_GOT_OFST:
3215 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3216 bind locally. */
3217 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
3218 if (local_p || r_type == R_MIPS_GOT_OFST)
3219 break;
3220 /* Fall through. */
3221
3222 case R_MIPS_CALL16:
3223 case R_MIPS_GOT16:
3224 case R_MIPS_GOT_DISP:
3225 case R_MIPS_GOT_HI16:
3226 case R_MIPS_CALL_HI16:
3227 case R_MIPS_GOT_LO16:
3228 case R_MIPS_CALL_LO16:
3229 /* Find the index into the GOT where this value is located. */
3230 if (!local_p)
3231 {
3232 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3233 GOT_PAGE relocation that decays to GOT_DISP because the
3234 symbol turns out to be global. The addend is then added
3235 as GOT_OFST. */
3236 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3237 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3238 input_bfd,
3239 (struct elf_link_hash_entry *) h);
3240 if (! elf_hash_table(info)->dynamic_sections_created
3241 || (info->shared
3242 && (info->symbolic || h->root.dynindx == -1)
3243 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3244 {
3245 /* This is a static link or a -Bsymbolic link. The
3246 symbol is defined locally, or was forced to be local.
3247 We must initialize this entry in the GOT. */
3248 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3249 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3250 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3251 }
3252 }
3253 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3254 /* There's no need to create a local GOT entry here; the
3255 calculation for a local GOT16 entry does not involve G. */
3256 break;
3257 else
3258 {
3259 g = mips_elf_local_got_index (abfd, input_bfd,
3260 info, symbol + addend);
3261 if (g == MINUS_ONE)
3262 return bfd_reloc_outofrange;
3263 }
3264
3265 /* Convert GOT indices to actual offsets. */
3266 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3267 abfd, input_bfd, g);
3268 break;
3269
3270 case R_MIPS_HI16:
3271 case R_MIPS_LO16:
3272 case R_MIPS16_GPREL:
3273 case R_MIPS_GPREL16:
3274 case R_MIPS_GPREL32:
3275 case R_MIPS_LITERAL:
3276 gp0 = _bfd_get_gp_value (input_bfd);
3277 gp = _bfd_get_gp_value (abfd);
3278 if (elf_hash_table (info)->dynobj)
3279 gp += mips_elf_adjust_gp (abfd,
3280 mips_elf_got_info
3281 (elf_hash_table (info)->dynobj, NULL),
3282 input_bfd);
3283 break;
3284
3285 default:
3286 break;
3287 }
3288
3289 /* Figure out what kind of relocation is being performed. */
3290 switch (r_type)
3291 {
3292 case R_MIPS_NONE:
3293 return bfd_reloc_continue;
3294
3295 case R_MIPS_16:
3296 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3297 overflowed_p = mips_elf_overflow_p (value, 16);
3298 break;
3299
3300 case R_MIPS_32:
3301 case R_MIPS_REL32:
3302 case R_MIPS_64:
3303 if ((info->shared
3304 || (elf_hash_table (info)->dynamic_sections_created
3305 && h != NULL
3306 && ((h->root.elf_link_hash_flags
3307 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3308 && ((h->root.elf_link_hash_flags
3309 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3310 && r_symndx != 0
3311 && (input_section->flags & SEC_ALLOC) != 0)
3312 {
3313 /* If we're creating a shared library, or this relocation is
3314 against a symbol in a shared library, then we can't know
3315 where the symbol will end up. So, we create a relocation
3316 record in the output, and leave the job up to the dynamic
3317 linker. */
3318 value = addend;
3319 if (!mips_elf_create_dynamic_relocation (abfd,
3320 info,
3321 relocation,
3322 h,
3323 sec,
3324 symbol,
3325 &value,
3326 input_section))
3327 return bfd_reloc_undefined;
3328 }
3329 else
3330 {
3331 if (r_type != R_MIPS_REL32)
3332 value = symbol + addend;
3333 else
3334 value = addend;
3335 }
3336 value &= howto->dst_mask;
3337 break;
3338
3339 case R_MIPS_GNU_REL16_S2:
3340 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
3341 overflowed_p = mips_elf_overflow_p (value, 18);
3342 value = (value >> 2) & howto->dst_mask;
3343 break;
3344
3345 case R_MIPS16_26:
3346 /* The calculation for R_MIPS16_26 is just the same as for an
3347 R_MIPS_26. It's only the storage of the relocated field into
3348 the output file that's different. That's handled in
3349 mips_elf_perform_relocation. So, we just fall through to the
3350 R_MIPS_26 case here. */
3351 case R_MIPS_26:
3352 if (local_p)
3353 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3354 else
3355 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
3356 value &= howto->dst_mask;
3357 break;
3358
3359 case R_MIPS_HI16:
3360 if (!gp_disp_p)
3361 {
3362 value = mips_elf_high (addend + symbol);
3363 value &= howto->dst_mask;
3364 }
3365 else
3366 {
3367 value = mips_elf_high (addend + gp - p);
3368 overflowed_p = mips_elf_overflow_p (value, 16);
3369 }
3370 break;
3371
3372 case R_MIPS_LO16:
3373 if (!gp_disp_p)
3374 value = (symbol + addend) & howto->dst_mask;
3375 else
3376 {
3377 value = addend + gp - p + 4;
3378 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3379 for overflow. But, on, say, IRIX5, relocations against
3380 _gp_disp are normally generated from the .cpload
3381 pseudo-op. It generates code that normally looks like
3382 this:
3383
3384 lui $gp,%hi(_gp_disp)
3385 addiu $gp,$gp,%lo(_gp_disp)
3386 addu $gp,$gp,$t9
3387
3388 Here $t9 holds the address of the function being called,
3389 as required by the MIPS ELF ABI. The R_MIPS_LO16
3390 relocation can easily overflow in this situation, but the
3391 R_MIPS_HI16 relocation will handle the overflow.
3392 Therefore, we consider this a bug in the MIPS ABI, and do
3393 not check for overflow here. */
3394 }
3395 break;
3396
3397 case R_MIPS_LITERAL:
3398 /* Because we don't merge literal sections, we can handle this
3399 just like R_MIPS_GPREL16. In the long run, we should merge
3400 shared literals, and then we will need to additional work
3401 here. */
3402
3403 /* Fall through. */
3404
3405 case R_MIPS16_GPREL:
3406 /* The R_MIPS16_GPREL performs the same calculation as
3407 R_MIPS_GPREL16, but stores the relocated bits in a different
3408 order. We don't need to do anything special here; the
3409 differences are handled in mips_elf_perform_relocation. */
3410 case R_MIPS_GPREL16:
3411 /* Only sign-extend the addend if it was extracted from the
3412 instruction. If the addend was separate, leave it alone,
3413 otherwise we may lose significant bits. */
3414 if (howto->partial_inplace)
3415 addend = _bfd_mips_elf_sign_extend (addend, 16);
3416 value = symbol + addend - gp;
3417 /* If the symbol was local, any earlier relocatable links will
3418 have adjusted its addend with the gp offset, so compensate
3419 for that now. Don't do it for symbols forced local in this
3420 link, though, since they won't have had the gp offset applied
3421 to them before. */
3422 if (was_local_p)
3423 value += gp0;
3424 overflowed_p = mips_elf_overflow_p (value, 16);
3425 break;
3426
3427 case R_MIPS_GOT16:
3428 case R_MIPS_CALL16:
3429 if (local_p)
3430 {
3431 bfd_boolean forced;
3432
3433 /* The special case is when the symbol is forced to be local. We
3434 need the full address in the GOT since no R_MIPS_LO16 relocation
3435 follows. */
3436 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3437 local_sections, FALSE);
3438 value = mips_elf_got16_entry (abfd, input_bfd, info,
3439 symbol + addend, forced);
3440 if (value == MINUS_ONE)
3441 return bfd_reloc_outofrange;
3442 value
3443 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3444 abfd, input_bfd, value);
3445 overflowed_p = mips_elf_overflow_p (value, 16);
3446 break;
3447 }
3448
3449 /* Fall through. */
3450
3451 case R_MIPS_GOT_DISP:
3452 got_disp:
3453 value = g;
3454 overflowed_p = mips_elf_overflow_p (value, 16);
3455 break;
3456
3457 case R_MIPS_GPREL32:
3458 value = (addend + symbol + gp0 - gp);
3459 if (!save_addend)
3460 value &= howto->dst_mask;
3461 break;
3462
3463 case R_MIPS_PC16:
3464 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3465 overflowed_p = mips_elf_overflow_p (value, 16);
3466 break;
3467
3468 case R_MIPS_GOT_HI16:
3469 case R_MIPS_CALL_HI16:
3470 /* We're allowed to handle these two relocations identically.
3471 The dynamic linker is allowed to handle the CALL relocations
3472 differently by creating a lazy evaluation stub. */
3473 value = g;
3474 value = mips_elf_high (value);
3475 value &= howto->dst_mask;
3476 break;
3477
3478 case R_MIPS_GOT_LO16:
3479 case R_MIPS_CALL_LO16:
3480 value = g & howto->dst_mask;
3481 break;
3482
3483 case R_MIPS_GOT_PAGE:
3484 /* GOT_PAGE relocations that reference non-local symbols decay
3485 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3486 0. */
3487 if (! local_p)
3488 goto got_disp;
3489 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3490 if (value == MINUS_ONE)
3491 return bfd_reloc_outofrange;
3492 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3493 abfd, input_bfd, value);
3494 overflowed_p = mips_elf_overflow_p (value, 16);
3495 break;
3496
3497 case R_MIPS_GOT_OFST:
3498 if (local_p)
3499 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3500 else
3501 value = addend;
3502 overflowed_p = mips_elf_overflow_p (value, 16);
3503 break;
3504
3505 case R_MIPS_SUB:
3506 value = symbol - addend;
3507 value &= howto->dst_mask;
3508 break;
3509
3510 case R_MIPS_HIGHER:
3511 value = mips_elf_higher (addend + symbol);
3512 value &= howto->dst_mask;
3513 break;
3514
3515 case R_MIPS_HIGHEST:
3516 value = mips_elf_highest (addend + symbol);
3517 value &= howto->dst_mask;
3518 break;
3519
3520 case R_MIPS_SCN_DISP:
3521 value = symbol + addend - sec->output_offset;
3522 value &= howto->dst_mask;
3523 break;
3524
3525 case R_MIPS_PJUMP:
3526 case R_MIPS_JALR:
3527 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3528 hint; we could improve performance by honoring that hint. */
3529 return bfd_reloc_continue;
3530
3531 case R_MIPS_GNU_VTINHERIT:
3532 case R_MIPS_GNU_VTENTRY:
3533 /* We don't do anything with these at present. */
3534 return bfd_reloc_continue;
3535
3536 default:
3537 /* An unrecognized relocation type. */
3538 return bfd_reloc_notsupported;
3539 }
3540
3541 /* Store the VALUE for our caller. */
3542 *valuep = value;
3543 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3544 }
3545
3546 /* Obtain the field relocated by RELOCATION. */
3547
3548 static bfd_vma
3549 mips_elf_obtain_contents (reloc_howto_type *howto,
3550 const Elf_Internal_Rela *relocation,
3551 bfd *input_bfd, bfd_byte *contents)
3552 {
3553 bfd_vma x;
3554 bfd_byte *location = contents + relocation->r_offset;
3555
3556 /* Obtain the bytes. */
3557 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3558
3559 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3560 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3561 && bfd_little_endian (input_bfd))
3562 /* The two 16-bit words will be reversed on a little-endian system.
3563 See mips_elf_perform_relocation for more details. */
3564 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3565
3566 return x;
3567 }
3568
3569 /* It has been determined that the result of the RELOCATION is the
3570 VALUE. Use HOWTO to place VALUE into the output file at the
3571 appropriate position. The SECTION is the section to which the
3572 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3573 for the relocation must be either JAL or JALX, and it is
3574 unconditionally converted to JALX.
3575
3576 Returns FALSE if anything goes wrong. */
3577
3578 static bfd_boolean
3579 mips_elf_perform_relocation (struct bfd_link_info *info,
3580 reloc_howto_type *howto,
3581 const Elf_Internal_Rela *relocation,
3582 bfd_vma value, bfd *input_bfd,
3583 asection *input_section, bfd_byte *contents,
3584 bfd_boolean require_jalx)
3585 {
3586 bfd_vma x;
3587 bfd_byte *location;
3588 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3589
3590 /* Figure out where the relocation is occurring. */
3591 location = contents + relocation->r_offset;
3592
3593 /* Obtain the current value. */
3594 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3595
3596 /* Clear the field we are setting. */
3597 x &= ~howto->dst_mask;
3598
3599 /* If this is the R_MIPS16_26 relocation, we must store the
3600 value in a funny way. */
3601 if (r_type == R_MIPS16_26)
3602 {
3603 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3604 Most mips16 instructions are 16 bits, but these instructions
3605 are 32 bits.
3606
3607 The format of these instructions is:
3608
3609 +--------------+--------------------------------+
3610 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3611 +--------------+--------------------------------+
3612 ! Immediate 15:0 !
3613 +-----------------------------------------------+
3614
3615 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3616 Note that the immediate value in the first word is swapped.
3617
3618 When producing a relocatable object file, R_MIPS16_26 is
3619 handled mostly like R_MIPS_26. In particular, the addend is
3620 stored as a straight 26-bit value in a 32-bit instruction.
3621 (gas makes life simpler for itself by never adjusting a
3622 R_MIPS16_26 reloc to be against a section, so the addend is
3623 always zero). However, the 32 bit instruction is stored as 2
3624 16-bit values, rather than a single 32-bit value. In a
3625 big-endian file, the result is the same; in a little-endian
3626 file, the two 16-bit halves of the 32 bit value are swapped.
3627 This is so that a disassembler can recognize the jal
3628 instruction.
3629
3630 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3631 instruction stored as two 16-bit values. The addend A is the
3632 contents of the targ26 field. The calculation is the same as
3633 R_MIPS_26. When storing the calculated value, reorder the
3634 immediate value as shown above, and don't forget to store the
3635 value as two 16-bit values.
3636
3637 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3638 defined as
3639
3640 big-endian:
3641 +--------+----------------------+
3642 | | |
3643 | | targ26-16 |
3644 |31 26|25 0|
3645 +--------+----------------------+
3646
3647 little-endian:
3648 +----------+------+-------------+
3649 | | | |
3650 | sub1 | | sub2 |
3651 |0 9|10 15|16 31|
3652 +----------+--------------------+
3653 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3654 ((sub1 << 16) | sub2)).
3655
3656 When producing a relocatable object file, the calculation is
3657 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3658 When producing a fully linked file, the calculation is
3659 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3660 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3661
3662 if (!info->relocatable)
3663 /* Shuffle the bits according to the formula above. */
3664 value = (((value & 0x1f0000) << 5)
3665 | ((value & 0x3e00000) >> 5)
3666 | (value & 0xffff));
3667 }
3668 else if (r_type == R_MIPS16_GPREL)
3669 {
3670 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3671 mode. A typical instruction will have a format like this:
3672
3673 +--------------+--------------------------------+
3674 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3675 +--------------+--------------------------------+
3676 ! Major ! rx ! ry ! Imm 4:0 !
3677 +--------------+--------------------------------+
3678
3679 EXTEND is the five bit value 11110. Major is the instruction
3680 opcode.
3681
3682 This is handled exactly like R_MIPS_GPREL16, except that the
3683 addend is retrieved and stored as shown in this diagram; that
3684 is, the Imm fields above replace the V-rel16 field.
3685
3686 All we need to do here is shuffle the bits appropriately. As
3687 above, the two 16-bit halves must be swapped on a
3688 little-endian system. */
3689 value = (((value & 0x7e0) << 16)
3690 | ((value & 0xf800) << 5)
3691 | (value & 0x1f));
3692 }
3693
3694 /* Set the field. */
3695 x |= (value & howto->dst_mask);
3696
3697 /* If required, turn JAL into JALX. */
3698 if (require_jalx)
3699 {
3700 bfd_boolean ok;
3701 bfd_vma opcode = x >> 26;
3702 bfd_vma jalx_opcode;
3703
3704 /* Check to see if the opcode is already JAL or JALX. */
3705 if (r_type == R_MIPS16_26)
3706 {
3707 ok = ((opcode == 0x6) || (opcode == 0x7));
3708 jalx_opcode = 0x7;
3709 }
3710 else
3711 {
3712 ok = ((opcode == 0x3) || (opcode == 0x1d));
3713 jalx_opcode = 0x1d;
3714 }
3715
3716 /* If the opcode is not JAL or JALX, there's a problem. */
3717 if (!ok)
3718 {
3719 (*_bfd_error_handler)
3720 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3721 bfd_archive_filename (input_bfd),
3722 input_section->name,
3723 (unsigned long) relocation->r_offset);
3724 bfd_set_error (bfd_error_bad_value);
3725 return FALSE;
3726 }
3727
3728 /* Make this the JALX opcode. */
3729 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3730 }
3731
3732 /* Swap the high- and low-order 16 bits on little-endian systems
3733 when doing a MIPS16 relocation. */
3734 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3735 && bfd_little_endian (input_bfd))
3736 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3737
3738 /* Put the value into the output. */
3739 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3740 return TRUE;
3741 }
3742
3743 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3744
3745 static bfd_boolean
3746 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
3747 {
3748 const char *name = bfd_get_section_name (abfd, section);
3749
3750 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3751 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3752 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3753 }
3754 \f
3755 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3756
3757 static void
3758 mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
3759 {
3760 asection *s;
3761
3762 s = mips_elf_rel_dyn_section (abfd, FALSE);
3763 BFD_ASSERT (s != NULL);
3764
3765 if (s->_raw_size == 0)
3766 {
3767 /* Make room for a null element. */
3768 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3769 ++s->reloc_count;
3770 }
3771 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3772 }
3773
3774 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3775 is the original relocation, which is now being transformed into a
3776 dynamic relocation. The ADDENDP is adjusted if necessary; the
3777 caller should store the result in place of the original addend. */
3778
3779 static bfd_boolean
3780 mips_elf_create_dynamic_relocation (bfd *output_bfd,
3781 struct bfd_link_info *info,
3782 const Elf_Internal_Rela *rel,
3783 struct mips_elf_link_hash_entry *h,
3784 asection *sec, bfd_vma symbol,
3785 bfd_vma *addendp, asection *input_section)
3786 {
3787 Elf_Internal_Rela outrel[3];
3788 bfd_boolean skip;
3789 asection *sreloc;
3790 bfd *dynobj;
3791 int r_type;
3792
3793 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3794 dynobj = elf_hash_table (info)->dynobj;
3795 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3796 BFD_ASSERT (sreloc != NULL);
3797 BFD_ASSERT (sreloc->contents != NULL);
3798 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3799 < sreloc->_raw_size);
3800
3801 skip = FALSE;
3802 outrel[0].r_offset =
3803 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3804 outrel[1].r_offset =
3805 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3806 outrel[2].r_offset =
3807 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3808
3809 #if 0
3810 /* We begin by assuming that the offset for the dynamic relocation
3811 is the same as for the original relocation. We'll adjust this
3812 later to reflect the correct output offsets. */
3813 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3814 {
3815 outrel[1].r_offset = rel[1].r_offset;
3816 outrel[2].r_offset = rel[2].r_offset;
3817 }
3818 else
3819 {
3820 /* Except that in a stab section things are more complex.
3821 Because we compress stab information, the offset given in the
3822 relocation may not be the one we want; we must let the stabs
3823 machinery tell us the offset. */
3824 outrel[1].r_offset = outrel[0].r_offset;
3825 outrel[2].r_offset = outrel[0].r_offset;
3826 /* If we didn't need the relocation at all, this value will be
3827 -1. */
3828 if (outrel[0].r_offset == MINUS_ONE)
3829 skip = TRUE;
3830 }
3831 #endif
3832
3833 if (outrel[0].r_offset == MINUS_ONE)
3834 /* The relocation field has been deleted. */
3835 skip = TRUE;
3836 else if (outrel[0].r_offset == MINUS_TWO)
3837 {
3838 /* The relocation field has been converted into a relative value of
3839 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3840 the field to be fully relocated, so add in the symbol's value. */
3841 skip = TRUE;
3842 *addendp += symbol;
3843 }
3844
3845 /* If we've decided to skip this relocation, just output an empty
3846 record. Note that R_MIPS_NONE == 0, so that this call to memset
3847 is a way of setting R_TYPE to R_MIPS_NONE. */
3848 if (skip)
3849 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3850 else
3851 {
3852 long indx;
3853 bfd_boolean defined_p;
3854
3855 /* We must now calculate the dynamic symbol table index to use
3856 in the relocation. */
3857 if (h != NULL
3858 && (! info->symbolic || (h->root.elf_link_hash_flags
3859 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3860 /* h->root.dynindx may be -1 if this symbol was marked to
3861 become local. */
3862 && h->root.dynindx != -1)
3863 {
3864 indx = h->root.dynindx;
3865 if (SGI_COMPAT (output_bfd))
3866 defined_p = ((h->root.elf_link_hash_flags
3867 & ELF_LINK_HASH_DEF_REGULAR) != 0);
3868 else
3869 /* ??? glibc's ld.so just adds the final GOT entry to the
3870 relocation field. It therefore treats relocs against
3871 defined symbols in the same way as relocs against
3872 undefined symbols. */
3873 defined_p = FALSE;
3874 }
3875 else
3876 {
3877 if (sec != NULL && bfd_is_abs_section (sec))
3878 indx = 0;
3879 else if (sec == NULL || sec->owner == NULL)
3880 {
3881 bfd_set_error (bfd_error_bad_value);
3882 return FALSE;
3883 }
3884 else
3885 {
3886 indx = elf_section_data (sec->output_section)->dynindx;
3887 if (indx == 0)
3888 abort ();
3889 }
3890
3891 /* Instead of generating a relocation using the section
3892 symbol, we may as well make it a fully relative
3893 relocation. We want to avoid generating relocations to
3894 local symbols because we used to generate them
3895 incorrectly, without adding the original symbol value,
3896 which is mandated by the ABI for section symbols. In
3897 order to give dynamic loaders and applications time to
3898 phase out the incorrect use, we refrain from emitting
3899 section-relative relocations. It's not like they're
3900 useful, after all. This should be a bit more efficient
3901 as well. */
3902 /* ??? Although this behavior is compatible with glibc's ld.so,
3903 the ABI says that relocations against STN_UNDEF should have
3904 a symbol value of 0. Irix rld honors this, so relocations
3905 against STN_UNDEF have no effect. */
3906 if (!SGI_COMPAT (output_bfd))
3907 indx = 0;
3908 defined_p = TRUE;
3909 }
3910
3911 /* If the relocation was previously an absolute relocation and
3912 this symbol will not be referred to by the relocation, we must
3913 adjust it by the value we give it in the dynamic symbol table.
3914 Otherwise leave the job up to the dynamic linker. */
3915 if (defined_p && r_type != R_MIPS_REL32)
3916 *addendp += symbol;
3917
3918 /* The relocation is always an REL32 relocation because we don't
3919 know where the shared library will wind up at load-time. */
3920 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3921 R_MIPS_REL32);
3922 /* For strict adherence to the ABI specification, we should
3923 generate a R_MIPS_64 relocation record by itself before the
3924 _REL32/_64 record as well, such that the addend is read in as
3925 a 64-bit value (REL32 is a 32-bit relocation, after all).
3926 However, since none of the existing ELF64 MIPS dynamic
3927 loaders seems to care, we don't waste space with these
3928 artificial relocations. If this turns out to not be true,
3929 mips_elf_allocate_dynamic_relocation() should be tweaked so
3930 as to make room for a pair of dynamic relocations per
3931 invocation if ABI_64_P, and here we should generate an
3932 additional relocation record with R_MIPS_64 by itself for a
3933 NULL symbol before this relocation record. */
3934 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3935 ABI_64_P (output_bfd)
3936 ? R_MIPS_64
3937 : R_MIPS_NONE);
3938 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3939
3940 /* Adjust the output offset of the relocation to reference the
3941 correct location in the output file. */
3942 outrel[0].r_offset += (input_section->output_section->vma
3943 + input_section->output_offset);
3944 outrel[1].r_offset += (input_section->output_section->vma
3945 + input_section->output_offset);
3946 outrel[2].r_offset += (input_section->output_section->vma
3947 + input_section->output_offset);
3948 }
3949
3950 /* Put the relocation back out. We have to use the special
3951 relocation outputter in the 64-bit case since the 64-bit
3952 relocation format is non-standard. */
3953 if (ABI_64_P (output_bfd))
3954 {
3955 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3956 (output_bfd, &outrel[0],
3957 (sreloc->contents
3958 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3959 }
3960 else
3961 bfd_elf32_swap_reloc_out
3962 (output_bfd, &outrel[0],
3963 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3964
3965 /* We've now added another relocation. */
3966 ++sreloc->reloc_count;
3967
3968 /* Make sure the output section is writable. The dynamic linker
3969 will be writing to it. */
3970 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3971 |= SHF_WRITE;
3972
3973 /* On IRIX5, make an entry of compact relocation info. */
3974 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
3975 {
3976 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3977 bfd_byte *cr;
3978
3979 if (scpt)
3980 {
3981 Elf32_crinfo cptrel;
3982
3983 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3984 cptrel.vaddr = (rel->r_offset
3985 + input_section->output_section->vma
3986 + input_section->output_offset);
3987 if (r_type == R_MIPS_REL32)
3988 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3989 else
3990 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3991 mips_elf_set_cr_dist2to (cptrel, 0);
3992 cptrel.konst = *addendp;
3993
3994 cr = (scpt->contents
3995 + sizeof (Elf32_External_compact_rel));
3996 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3997 ((Elf32_External_crinfo *) cr
3998 + scpt->reloc_count));
3999 ++scpt->reloc_count;
4000 }
4001 }
4002
4003 return TRUE;
4004 }
4005 \f
4006 /* Return the MACH for a MIPS e_flags value. */
4007
4008 unsigned long
4009 _bfd_elf_mips_mach (flagword flags)
4010 {
4011 switch (flags & EF_MIPS_MACH)
4012 {
4013 case E_MIPS_MACH_3900:
4014 return bfd_mach_mips3900;
4015
4016 case E_MIPS_MACH_4010:
4017 return bfd_mach_mips4010;
4018
4019 case E_MIPS_MACH_4100:
4020 return bfd_mach_mips4100;
4021
4022 case E_MIPS_MACH_4111:
4023 return bfd_mach_mips4111;
4024
4025 case E_MIPS_MACH_4120:
4026 return bfd_mach_mips4120;
4027
4028 case E_MIPS_MACH_4650:
4029 return bfd_mach_mips4650;
4030
4031 case E_MIPS_MACH_5400:
4032 return bfd_mach_mips5400;
4033
4034 case E_MIPS_MACH_5500:
4035 return bfd_mach_mips5500;
4036
4037 case E_MIPS_MACH_SB1:
4038 return bfd_mach_mips_sb1;
4039
4040 default:
4041 switch (flags & EF_MIPS_ARCH)
4042 {
4043 default:
4044 case E_MIPS_ARCH_1:
4045 return bfd_mach_mips3000;
4046 break;
4047
4048 case E_MIPS_ARCH_2:
4049 return bfd_mach_mips6000;
4050 break;
4051
4052 case E_MIPS_ARCH_3:
4053 return bfd_mach_mips4000;
4054 break;
4055
4056 case E_MIPS_ARCH_4:
4057 return bfd_mach_mips8000;
4058 break;
4059
4060 case E_MIPS_ARCH_5:
4061 return bfd_mach_mips5;
4062 break;
4063
4064 case E_MIPS_ARCH_32:
4065 return bfd_mach_mipsisa32;
4066 break;
4067
4068 case E_MIPS_ARCH_64:
4069 return bfd_mach_mipsisa64;
4070 break;
4071
4072 case E_MIPS_ARCH_32R2:
4073 return bfd_mach_mipsisa32r2;
4074 break;
4075
4076 case E_MIPS_ARCH_64R2:
4077 return bfd_mach_mipsisa64r2;
4078 break;
4079 }
4080 }
4081
4082 return 0;
4083 }
4084
4085 /* Return printable name for ABI. */
4086
4087 static INLINE char *
4088 elf_mips_abi_name (bfd *abfd)
4089 {
4090 flagword flags;
4091
4092 flags = elf_elfheader (abfd)->e_flags;
4093 switch (flags & EF_MIPS_ABI)
4094 {
4095 case 0:
4096 if (ABI_N32_P (abfd))
4097 return "N32";
4098 else if (ABI_64_P (abfd))
4099 return "64";
4100 else
4101 return "none";
4102 case E_MIPS_ABI_O32:
4103 return "O32";
4104 case E_MIPS_ABI_O64:
4105 return "O64";
4106 case E_MIPS_ABI_EABI32:
4107 return "EABI32";
4108 case E_MIPS_ABI_EABI64:
4109 return "EABI64";
4110 default:
4111 return "unknown abi";
4112 }
4113 }
4114 \f
4115 /* MIPS ELF uses two common sections. One is the usual one, and the
4116 other is for small objects. All the small objects are kept
4117 together, and then referenced via the gp pointer, which yields
4118 faster assembler code. This is what we use for the small common
4119 section. This approach is copied from ecoff.c. */
4120 static asection mips_elf_scom_section;
4121 static asymbol mips_elf_scom_symbol;
4122 static asymbol *mips_elf_scom_symbol_ptr;
4123
4124 /* MIPS ELF also uses an acommon section, which represents an
4125 allocated common symbol which may be overridden by a
4126 definition in a shared library. */
4127 static asection mips_elf_acom_section;
4128 static asymbol mips_elf_acom_symbol;
4129 static asymbol *mips_elf_acom_symbol_ptr;
4130
4131 /* Handle the special MIPS section numbers that a symbol may use.
4132 This is used for both the 32-bit and the 64-bit ABI. */
4133
4134 void
4135 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
4136 {
4137 elf_symbol_type *elfsym;
4138
4139 elfsym = (elf_symbol_type *) asym;
4140 switch (elfsym->internal_elf_sym.st_shndx)
4141 {
4142 case SHN_MIPS_ACOMMON:
4143 /* This section is used in a dynamically linked executable file.
4144 It is an allocated common section. The dynamic linker can
4145 either resolve these symbols to something in a shared
4146 library, or it can just leave them here. For our purposes,
4147 we can consider these symbols to be in a new section. */
4148 if (mips_elf_acom_section.name == NULL)
4149 {
4150 /* Initialize the acommon section. */
4151 mips_elf_acom_section.name = ".acommon";
4152 mips_elf_acom_section.flags = SEC_ALLOC;
4153 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4154 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4155 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4156 mips_elf_acom_symbol.name = ".acommon";
4157 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4158 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4159 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4160 }
4161 asym->section = &mips_elf_acom_section;
4162 break;
4163
4164 case SHN_COMMON:
4165 /* Common symbols less than the GP size are automatically
4166 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4167 if (asym->value > elf_gp_size (abfd)
4168 || IRIX_COMPAT (abfd) == ict_irix6)
4169 break;
4170 /* Fall through. */
4171 case SHN_MIPS_SCOMMON:
4172 if (mips_elf_scom_section.name == NULL)
4173 {
4174 /* Initialize the small common section. */
4175 mips_elf_scom_section.name = ".scommon";
4176 mips_elf_scom_section.flags = SEC_IS_COMMON;
4177 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4178 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4179 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4180 mips_elf_scom_symbol.name = ".scommon";
4181 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4182 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4183 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4184 }
4185 asym->section = &mips_elf_scom_section;
4186 asym->value = elfsym->internal_elf_sym.st_size;
4187 break;
4188
4189 case SHN_MIPS_SUNDEFINED:
4190 asym->section = bfd_und_section_ptr;
4191 break;
4192
4193 #if 0 /* for SGI_COMPAT */
4194 case SHN_MIPS_TEXT:
4195 asym->section = mips_elf_text_section_ptr;
4196 break;
4197
4198 case SHN_MIPS_DATA:
4199 asym->section = mips_elf_data_section_ptr;
4200 break;
4201 #endif
4202 }
4203 }
4204 \f
4205 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4206 relocations against two unnamed section symbols to resolve to the
4207 same address. For example, if we have code like:
4208
4209 lw $4,%got_disp(.data)($gp)
4210 lw $25,%got_disp(.text)($gp)
4211 jalr $25
4212
4213 then the linker will resolve both relocations to .data and the program
4214 will jump there rather than to .text.
4215
4216 We can work around this problem by giving names to local section symbols.
4217 This is also what the MIPSpro tools do. */
4218
4219 bfd_boolean
4220 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4221 {
4222 return SGI_COMPAT (abfd);
4223 }
4224 \f
4225 /* Work over a section just before writing it out. This routine is
4226 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4227 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4228 a better way. */
4229
4230 bfd_boolean
4231 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
4232 {
4233 if (hdr->sh_type == SHT_MIPS_REGINFO
4234 && hdr->sh_size > 0)
4235 {
4236 bfd_byte buf[4];
4237
4238 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4239 BFD_ASSERT (hdr->contents == NULL);
4240
4241 if (bfd_seek (abfd,
4242 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4243 SEEK_SET) != 0)
4244 return FALSE;
4245 H_PUT_32 (abfd, elf_gp (abfd), buf);
4246 if (bfd_bwrite (buf, 4, abfd) != 4)
4247 return FALSE;
4248 }
4249
4250 if (hdr->sh_type == SHT_MIPS_OPTIONS
4251 && hdr->bfd_section != NULL
4252 && mips_elf_section_data (hdr->bfd_section) != NULL
4253 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4254 {
4255 bfd_byte *contents, *l, *lend;
4256
4257 /* We stored the section contents in the tdata field in the
4258 set_section_contents routine. We save the section contents
4259 so that we don't have to read them again.
4260 At this point we know that elf_gp is set, so we can look
4261 through the section contents to see if there is an
4262 ODK_REGINFO structure. */
4263
4264 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4265 l = contents;
4266 lend = contents + hdr->sh_size;
4267 while (l + sizeof (Elf_External_Options) <= lend)
4268 {
4269 Elf_Internal_Options intopt;
4270
4271 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4272 &intopt);
4273 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4274 {
4275 bfd_byte buf[8];
4276
4277 if (bfd_seek (abfd,
4278 (hdr->sh_offset
4279 + (l - contents)
4280 + sizeof (Elf_External_Options)
4281 + (sizeof (Elf64_External_RegInfo) - 8)),
4282 SEEK_SET) != 0)
4283 return FALSE;
4284 H_PUT_64 (abfd, elf_gp (abfd), buf);
4285 if (bfd_bwrite (buf, 8, abfd) != 8)
4286 return FALSE;
4287 }
4288 else if (intopt.kind == ODK_REGINFO)
4289 {
4290 bfd_byte buf[4];
4291
4292 if (bfd_seek (abfd,
4293 (hdr->sh_offset
4294 + (l - contents)
4295 + sizeof (Elf_External_Options)
4296 + (sizeof (Elf32_External_RegInfo) - 4)),
4297 SEEK_SET) != 0)
4298 return FALSE;
4299 H_PUT_32 (abfd, elf_gp (abfd), buf);
4300 if (bfd_bwrite (buf, 4, abfd) != 4)
4301 return FALSE;
4302 }
4303 l += intopt.size;
4304 }
4305 }
4306
4307 if (hdr->bfd_section != NULL)
4308 {
4309 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4310
4311 if (strcmp (name, ".sdata") == 0
4312 || strcmp (name, ".lit8") == 0
4313 || strcmp (name, ".lit4") == 0)
4314 {
4315 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4316 hdr->sh_type = SHT_PROGBITS;
4317 }
4318 else if (strcmp (name, ".sbss") == 0)
4319 {
4320 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4321 hdr->sh_type = SHT_NOBITS;
4322 }
4323 else if (strcmp (name, ".srdata") == 0)
4324 {
4325 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4326 hdr->sh_type = SHT_PROGBITS;
4327 }
4328 else if (strcmp (name, ".compact_rel") == 0)
4329 {
4330 hdr->sh_flags = 0;
4331 hdr->sh_type = SHT_PROGBITS;
4332 }
4333 else if (strcmp (name, ".rtproc") == 0)
4334 {
4335 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4336 {
4337 unsigned int adjust;
4338
4339 adjust = hdr->sh_size % hdr->sh_addralign;
4340 if (adjust != 0)
4341 hdr->sh_size += hdr->sh_addralign - adjust;
4342 }
4343 }
4344 }
4345
4346 return TRUE;
4347 }
4348
4349 /* Handle a MIPS specific section when reading an object file. This
4350 is called when elfcode.h finds a section with an unknown type.
4351 This routine supports both the 32-bit and 64-bit ELF ABI.
4352
4353 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4354 how to. */
4355
4356 bfd_boolean
4357 _bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4358 const char *name)
4359 {
4360 flagword flags = 0;
4361
4362 /* There ought to be a place to keep ELF backend specific flags, but
4363 at the moment there isn't one. We just keep track of the
4364 sections by their name, instead. Fortunately, the ABI gives
4365 suggested names for all the MIPS specific sections, so we will
4366 probably get away with this. */
4367 switch (hdr->sh_type)
4368 {
4369 case SHT_MIPS_LIBLIST:
4370 if (strcmp (name, ".liblist") != 0)
4371 return FALSE;
4372 break;
4373 case SHT_MIPS_MSYM:
4374 if (strcmp (name, ".msym") != 0)
4375 return FALSE;
4376 break;
4377 case SHT_MIPS_CONFLICT:
4378 if (strcmp (name, ".conflict") != 0)
4379 return FALSE;
4380 break;
4381 case SHT_MIPS_GPTAB:
4382 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4383 return FALSE;
4384 break;
4385 case SHT_MIPS_UCODE:
4386 if (strcmp (name, ".ucode") != 0)
4387 return FALSE;
4388 break;
4389 case SHT_MIPS_DEBUG:
4390 if (strcmp (name, ".mdebug") != 0)
4391 return FALSE;
4392 flags = SEC_DEBUGGING;
4393 break;
4394 case SHT_MIPS_REGINFO:
4395 if (strcmp (name, ".reginfo") != 0
4396 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4397 return FALSE;
4398 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4399 break;
4400 case SHT_MIPS_IFACE:
4401 if (strcmp (name, ".MIPS.interfaces") != 0)
4402 return FALSE;
4403 break;
4404 case SHT_MIPS_CONTENT:
4405 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4406 return FALSE;
4407 break;
4408 case SHT_MIPS_OPTIONS:
4409 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4410 return FALSE;
4411 break;
4412 case SHT_MIPS_DWARF:
4413 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4414 return FALSE;
4415 break;
4416 case SHT_MIPS_SYMBOL_LIB:
4417 if (strcmp (name, ".MIPS.symlib") != 0)
4418 return FALSE;
4419 break;
4420 case SHT_MIPS_EVENTS:
4421 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4422 && strncmp (name, ".MIPS.post_rel",
4423 sizeof ".MIPS.post_rel" - 1) != 0)
4424 return FALSE;
4425 break;
4426 default:
4427 return FALSE;
4428 }
4429
4430 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4431 return FALSE;
4432
4433 if (flags)
4434 {
4435 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4436 (bfd_get_section_flags (abfd,
4437 hdr->bfd_section)
4438 | flags)))
4439 return FALSE;
4440 }
4441
4442 /* FIXME: We should record sh_info for a .gptab section. */
4443
4444 /* For a .reginfo section, set the gp value in the tdata information
4445 from the contents of this section. We need the gp value while
4446 processing relocs, so we just get it now. The .reginfo section
4447 is not used in the 64-bit MIPS ELF ABI. */
4448 if (hdr->sh_type == SHT_MIPS_REGINFO)
4449 {
4450 Elf32_External_RegInfo ext;
4451 Elf32_RegInfo s;
4452
4453 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4454 &ext, 0, sizeof ext))
4455 return FALSE;
4456 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4457 elf_gp (abfd) = s.ri_gp_value;
4458 }
4459
4460 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4461 set the gp value based on what we find. We may see both
4462 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4463 they should agree. */
4464 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4465 {
4466 bfd_byte *contents, *l, *lend;
4467
4468 contents = bfd_malloc (hdr->sh_size);
4469 if (contents == NULL)
4470 return FALSE;
4471 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4472 0, hdr->sh_size))
4473 {
4474 free (contents);
4475 return FALSE;
4476 }
4477 l = contents;
4478 lend = contents + hdr->sh_size;
4479 while (l + sizeof (Elf_External_Options) <= lend)
4480 {
4481 Elf_Internal_Options intopt;
4482
4483 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4484 &intopt);
4485 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4486 {
4487 Elf64_Internal_RegInfo intreg;
4488
4489 bfd_mips_elf64_swap_reginfo_in
4490 (abfd,
4491 ((Elf64_External_RegInfo *)
4492 (l + sizeof (Elf_External_Options))),
4493 &intreg);
4494 elf_gp (abfd) = intreg.ri_gp_value;
4495 }
4496 else if (intopt.kind == ODK_REGINFO)
4497 {
4498 Elf32_RegInfo intreg;
4499
4500 bfd_mips_elf32_swap_reginfo_in
4501 (abfd,
4502 ((Elf32_External_RegInfo *)
4503 (l + sizeof (Elf_External_Options))),
4504 &intreg);
4505 elf_gp (abfd) = intreg.ri_gp_value;
4506 }
4507 l += intopt.size;
4508 }
4509 free (contents);
4510 }
4511
4512 return TRUE;
4513 }
4514
4515 /* Set the correct type for a MIPS ELF section. We do this by the
4516 section name, which is a hack, but ought to work. This routine is
4517 used by both the 32-bit and the 64-bit ABI. */
4518
4519 bfd_boolean
4520 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
4521 {
4522 register const char *name;
4523
4524 name = bfd_get_section_name (abfd, sec);
4525
4526 if (strcmp (name, ".liblist") == 0)
4527 {
4528 hdr->sh_type = SHT_MIPS_LIBLIST;
4529 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4530 /* The sh_link field is set in final_write_processing. */
4531 }
4532 else if (strcmp (name, ".conflict") == 0)
4533 hdr->sh_type = SHT_MIPS_CONFLICT;
4534 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4535 {
4536 hdr->sh_type = SHT_MIPS_GPTAB;
4537 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4538 /* The sh_info field is set in final_write_processing. */
4539 }
4540 else if (strcmp (name, ".ucode") == 0)
4541 hdr->sh_type = SHT_MIPS_UCODE;
4542 else if (strcmp (name, ".mdebug") == 0)
4543 {
4544 hdr->sh_type = SHT_MIPS_DEBUG;
4545 /* In a shared object on IRIX 5.3, the .mdebug section has an
4546 entsize of 0. FIXME: Does this matter? */
4547 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4548 hdr->sh_entsize = 0;
4549 else
4550 hdr->sh_entsize = 1;
4551 }
4552 else if (strcmp (name, ".reginfo") == 0)
4553 {
4554 hdr->sh_type = SHT_MIPS_REGINFO;
4555 /* In a shared object on IRIX 5.3, the .reginfo section has an
4556 entsize of 0x18. FIXME: Does this matter? */
4557 if (SGI_COMPAT (abfd))
4558 {
4559 if ((abfd->flags & DYNAMIC) != 0)
4560 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4561 else
4562 hdr->sh_entsize = 1;
4563 }
4564 else
4565 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4566 }
4567 else if (SGI_COMPAT (abfd)
4568 && (strcmp (name, ".hash") == 0
4569 || strcmp (name, ".dynamic") == 0
4570 || strcmp (name, ".dynstr") == 0))
4571 {
4572 if (SGI_COMPAT (abfd))
4573 hdr->sh_entsize = 0;
4574 #if 0
4575 /* This isn't how the IRIX6 linker behaves. */
4576 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4577 #endif
4578 }
4579 else if (strcmp (name, ".got") == 0
4580 || strcmp (name, ".srdata") == 0
4581 || strcmp (name, ".sdata") == 0
4582 || strcmp (name, ".sbss") == 0
4583 || strcmp (name, ".lit4") == 0
4584 || strcmp (name, ".lit8") == 0)
4585 hdr->sh_flags |= SHF_MIPS_GPREL;
4586 else if (strcmp (name, ".MIPS.interfaces") == 0)
4587 {
4588 hdr->sh_type = SHT_MIPS_IFACE;
4589 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4590 }
4591 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4592 {
4593 hdr->sh_type = SHT_MIPS_CONTENT;
4594 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4595 /* The sh_info field is set in final_write_processing. */
4596 }
4597 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4598 {
4599 hdr->sh_type = SHT_MIPS_OPTIONS;
4600 hdr->sh_entsize = 1;
4601 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4602 }
4603 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4604 hdr->sh_type = SHT_MIPS_DWARF;
4605 else if (strcmp (name, ".MIPS.symlib") == 0)
4606 {
4607 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4608 /* The sh_link and sh_info fields are set in
4609 final_write_processing. */
4610 }
4611 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4612 || strncmp (name, ".MIPS.post_rel",
4613 sizeof ".MIPS.post_rel" - 1) == 0)
4614 {
4615 hdr->sh_type = SHT_MIPS_EVENTS;
4616 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4617 /* The sh_link field is set in final_write_processing. */
4618 }
4619 else if (strcmp (name, ".msym") == 0)
4620 {
4621 hdr->sh_type = SHT_MIPS_MSYM;
4622 hdr->sh_flags |= SHF_ALLOC;
4623 hdr->sh_entsize = 8;
4624 }
4625
4626 /* The generic elf_fake_sections will set up REL_HDR using the default
4627 kind of relocations. We used to set up a second header for the
4628 non-default kind of relocations here, but only NewABI would use
4629 these, and the IRIX ld doesn't like resulting empty RELA sections.
4630 Thus we create those header only on demand now. */
4631
4632 return TRUE;
4633 }
4634
4635 /* Given a BFD section, try to locate the corresponding ELF section
4636 index. This is used by both the 32-bit and the 64-bit ABI.
4637 Actually, it's not clear to me that the 64-bit ABI supports these,
4638 but for non-PIC objects we will certainly want support for at least
4639 the .scommon section. */
4640
4641 bfd_boolean
4642 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4643 asection *sec, int *retval)
4644 {
4645 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4646 {
4647 *retval = SHN_MIPS_SCOMMON;
4648 return TRUE;
4649 }
4650 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4651 {
4652 *retval = SHN_MIPS_ACOMMON;
4653 return TRUE;
4654 }
4655 return FALSE;
4656 }
4657 \f
4658 /* Hook called by the linker routine which adds symbols from an object
4659 file. We must handle the special MIPS section numbers here. */
4660
4661 bfd_boolean
4662 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
4663 Elf_Internal_Sym *sym, const char **namep,
4664 flagword *flagsp ATTRIBUTE_UNUSED,
4665 asection **secp, bfd_vma *valp)
4666 {
4667 if (SGI_COMPAT (abfd)
4668 && (abfd->flags & DYNAMIC) != 0
4669 && strcmp (*namep, "_rld_new_interface") == 0)
4670 {
4671 /* Skip IRIX5 rld entry name. */
4672 *namep = NULL;
4673 return TRUE;
4674 }
4675
4676 switch (sym->st_shndx)
4677 {
4678 case SHN_COMMON:
4679 /* Common symbols less than the GP size are automatically
4680 treated as SHN_MIPS_SCOMMON symbols. */
4681 if (sym->st_size > elf_gp_size (abfd)
4682 || IRIX_COMPAT (abfd) == ict_irix6)
4683 break;
4684 /* Fall through. */
4685 case SHN_MIPS_SCOMMON:
4686 *secp = bfd_make_section_old_way (abfd, ".scommon");
4687 (*secp)->flags |= SEC_IS_COMMON;
4688 *valp = sym->st_size;
4689 break;
4690
4691 case SHN_MIPS_TEXT:
4692 /* This section is used in a shared object. */
4693 if (elf_tdata (abfd)->elf_text_section == NULL)
4694 {
4695 asymbol *elf_text_symbol;
4696 asection *elf_text_section;
4697 bfd_size_type amt = sizeof (asection);
4698
4699 elf_text_section = bfd_zalloc (abfd, amt);
4700 if (elf_text_section == NULL)
4701 return FALSE;
4702
4703 amt = sizeof (asymbol);
4704 elf_text_symbol = bfd_zalloc (abfd, amt);
4705 if (elf_text_symbol == NULL)
4706 return FALSE;
4707
4708 /* Initialize the section. */
4709
4710 elf_tdata (abfd)->elf_text_section = elf_text_section;
4711 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4712
4713 elf_text_section->symbol = elf_text_symbol;
4714 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4715
4716 elf_text_section->name = ".text";
4717 elf_text_section->flags = SEC_NO_FLAGS;
4718 elf_text_section->output_section = NULL;
4719 elf_text_section->owner = abfd;
4720 elf_text_symbol->name = ".text";
4721 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4722 elf_text_symbol->section = elf_text_section;
4723 }
4724 /* This code used to do *secp = bfd_und_section_ptr if
4725 info->shared. I don't know why, and that doesn't make sense,
4726 so I took it out. */
4727 *secp = elf_tdata (abfd)->elf_text_section;
4728 break;
4729
4730 case SHN_MIPS_ACOMMON:
4731 /* Fall through. XXX Can we treat this as allocated data? */
4732 case SHN_MIPS_DATA:
4733 /* This section is used in a shared object. */
4734 if (elf_tdata (abfd)->elf_data_section == NULL)
4735 {
4736 asymbol *elf_data_symbol;
4737 asection *elf_data_section;
4738 bfd_size_type amt = sizeof (asection);
4739
4740 elf_data_section = bfd_zalloc (abfd, amt);
4741 if (elf_data_section == NULL)
4742 return FALSE;
4743
4744 amt = sizeof (asymbol);
4745 elf_data_symbol = bfd_zalloc (abfd, amt);
4746 if (elf_data_symbol == NULL)
4747 return FALSE;
4748
4749 /* Initialize the section. */
4750
4751 elf_tdata (abfd)->elf_data_section = elf_data_section;
4752 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4753
4754 elf_data_section->symbol = elf_data_symbol;
4755 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4756
4757 elf_data_section->name = ".data";
4758 elf_data_section->flags = SEC_NO_FLAGS;
4759 elf_data_section->output_section = NULL;
4760 elf_data_section->owner = abfd;
4761 elf_data_symbol->name = ".data";
4762 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4763 elf_data_symbol->section = elf_data_section;
4764 }
4765 /* This code used to do *secp = bfd_und_section_ptr if
4766 info->shared. I don't know why, and that doesn't make sense,
4767 so I took it out. */
4768 *secp = elf_tdata (abfd)->elf_data_section;
4769 break;
4770
4771 case SHN_MIPS_SUNDEFINED:
4772 *secp = bfd_und_section_ptr;
4773 break;
4774 }
4775
4776 if (SGI_COMPAT (abfd)
4777 && ! info->shared
4778 && info->hash->creator == abfd->xvec
4779 && strcmp (*namep, "__rld_obj_head") == 0)
4780 {
4781 struct elf_link_hash_entry *h;
4782 struct bfd_link_hash_entry *bh;
4783
4784 /* Mark __rld_obj_head as dynamic. */
4785 bh = NULL;
4786 if (! (_bfd_generic_link_add_one_symbol
4787 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
4788 get_elf_backend_data (abfd)->collect, &bh)))
4789 return FALSE;
4790
4791 h = (struct elf_link_hash_entry *) bh;
4792 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4793 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4794 h->type = STT_OBJECT;
4795
4796 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4797 return FALSE;
4798
4799 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4800 }
4801
4802 /* If this is a mips16 text symbol, add 1 to the value to make it
4803 odd. This will cause something like .word SYM to come up with
4804 the right value when it is loaded into the PC. */
4805 if (sym->st_other == STO_MIPS16)
4806 ++*valp;
4807
4808 return TRUE;
4809 }
4810
4811 /* This hook function is called before the linker writes out a global
4812 symbol. We mark symbols as small common if appropriate. This is
4813 also where we undo the increment of the value for a mips16 symbol. */
4814
4815 bfd_boolean
4816 _bfd_mips_elf_link_output_symbol_hook
4817 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4818 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4819 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
4820 {
4821 /* If we see a common symbol, which implies a relocatable link, then
4822 if a symbol was small common in an input file, mark it as small
4823 common in the output file. */
4824 if (sym->st_shndx == SHN_COMMON
4825 && strcmp (input_sec->name, ".scommon") == 0)
4826 sym->st_shndx = SHN_MIPS_SCOMMON;
4827
4828 if (sym->st_other == STO_MIPS16)
4829 sym->st_value &= ~1;
4830
4831 return TRUE;
4832 }
4833 \f
4834 /* Functions for the dynamic linker. */
4835
4836 /* Create dynamic sections when linking against a dynamic object. */
4837
4838 bfd_boolean
4839 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
4840 {
4841 struct elf_link_hash_entry *h;
4842 struct bfd_link_hash_entry *bh;
4843 flagword flags;
4844 register asection *s;
4845 const char * const *namep;
4846
4847 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4848 | SEC_LINKER_CREATED | SEC_READONLY);
4849
4850 /* Mips ABI requests the .dynamic section to be read only. */
4851 s = bfd_get_section_by_name (abfd, ".dynamic");
4852 if (s != NULL)
4853 {
4854 if (! bfd_set_section_flags (abfd, s, flags))
4855 return FALSE;
4856 }
4857
4858 /* We need to create .got section. */
4859 if (! mips_elf_create_got_section (abfd, info, FALSE))
4860 return FALSE;
4861
4862 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4863 return FALSE;
4864
4865 /* Create .stub section. */
4866 if (bfd_get_section_by_name (abfd,
4867 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4868 {
4869 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4870 if (s == NULL
4871 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4872 || ! bfd_set_section_alignment (abfd, s,
4873 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4874 return FALSE;
4875 }
4876
4877 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4878 && !info->shared
4879 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4880 {
4881 s = bfd_make_section (abfd, ".rld_map");
4882 if (s == NULL
4883 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4884 || ! bfd_set_section_alignment (abfd, s,
4885 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4886 return FALSE;
4887 }
4888
4889 /* On IRIX5, we adjust add some additional symbols and change the
4890 alignments of several sections. There is no ABI documentation
4891 indicating that this is necessary on IRIX6, nor any evidence that
4892 the linker takes such action. */
4893 if (IRIX_COMPAT (abfd) == ict_irix5)
4894 {
4895 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4896 {
4897 bh = NULL;
4898 if (! (_bfd_generic_link_add_one_symbol
4899 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4900 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4901 return FALSE;
4902
4903 h = (struct elf_link_hash_entry *) bh;
4904 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4905 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4906 h->type = STT_SECTION;
4907
4908 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4909 return FALSE;
4910 }
4911
4912 /* We need to create a .compact_rel section. */
4913 if (SGI_COMPAT (abfd))
4914 {
4915 if (!mips_elf_create_compact_rel_section (abfd, info))
4916 return FALSE;
4917 }
4918
4919 /* Change alignments of some sections. */
4920 s = bfd_get_section_by_name (abfd, ".hash");
4921 if (s != NULL)
4922 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4923 s = bfd_get_section_by_name (abfd, ".dynsym");
4924 if (s != NULL)
4925 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4926 s = bfd_get_section_by_name (abfd, ".dynstr");
4927 if (s != NULL)
4928 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4929 s = bfd_get_section_by_name (abfd, ".reginfo");
4930 if (s != NULL)
4931 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4932 s = bfd_get_section_by_name (abfd, ".dynamic");
4933 if (s != NULL)
4934 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4935 }
4936
4937 if (!info->shared)
4938 {
4939 const char *name;
4940
4941 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4942 bh = NULL;
4943 if (!(_bfd_generic_link_add_one_symbol
4944 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4945 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4946 return FALSE;
4947
4948 h = (struct elf_link_hash_entry *) bh;
4949 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4950 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4951 h->type = STT_SECTION;
4952
4953 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4954 return FALSE;
4955
4956 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4957 {
4958 /* __rld_map is a four byte word located in the .data section
4959 and is filled in by the rtld to contain a pointer to
4960 the _r_debug structure. Its symbol value will be set in
4961 _bfd_mips_elf_finish_dynamic_symbol. */
4962 s = bfd_get_section_by_name (abfd, ".rld_map");
4963 BFD_ASSERT (s != NULL);
4964
4965 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4966 bh = NULL;
4967 if (!(_bfd_generic_link_add_one_symbol
4968 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
4969 get_elf_backend_data (abfd)->collect, &bh)))
4970 return FALSE;
4971
4972 h = (struct elf_link_hash_entry *) bh;
4973 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4974 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4975 h->type = STT_OBJECT;
4976
4977 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4978 return FALSE;
4979 }
4980 }
4981
4982 return TRUE;
4983 }
4984 \f
4985 /* Look through the relocs for a section during the first phase, and
4986 allocate space in the global offset table. */
4987
4988 bfd_boolean
4989 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4990 asection *sec, const Elf_Internal_Rela *relocs)
4991 {
4992 const char *name;
4993 bfd *dynobj;
4994 Elf_Internal_Shdr *symtab_hdr;
4995 struct elf_link_hash_entry **sym_hashes;
4996 struct mips_got_info *g;
4997 size_t extsymoff;
4998 const Elf_Internal_Rela *rel;
4999 const Elf_Internal_Rela *rel_end;
5000 asection *sgot;
5001 asection *sreloc;
5002 const struct elf_backend_data *bed;
5003
5004 if (info->relocatable)
5005 return TRUE;
5006
5007 dynobj = elf_hash_table (info)->dynobj;
5008 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5009 sym_hashes = elf_sym_hashes (abfd);
5010 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5011
5012 /* Check for the mips16 stub sections. */
5013
5014 name = bfd_get_section_name (abfd, sec);
5015 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5016 {
5017 unsigned long r_symndx;
5018
5019 /* Look at the relocation information to figure out which symbol
5020 this is for. */
5021
5022 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5023
5024 if (r_symndx < extsymoff
5025 || sym_hashes[r_symndx - extsymoff] == NULL)
5026 {
5027 asection *o;
5028
5029 /* This stub is for a local symbol. This stub will only be
5030 needed if there is some relocation in this BFD, other
5031 than a 16 bit function call, which refers to this symbol. */
5032 for (o = abfd->sections; o != NULL; o = o->next)
5033 {
5034 Elf_Internal_Rela *sec_relocs;
5035 const Elf_Internal_Rela *r, *rend;
5036
5037 /* We can ignore stub sections when looking for relocs. */
5038 if ((o->flags & SEC_RELOC) == 0
5039 || o->reloc_count == 0
5040 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5041 sizeof FN_STUB - 1) == 0
5042 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5043 sizeof CALL_STUB - 1) == 0
5044 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5045 sizeof CALL_FP_STUB - 1) == 0)
5046 continue;
5047
5048 sec_relocs
5049 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
5050 info->keep_memory);
5051 if (sec_relocs == NULL)
5052 return FALSE;
5053
5054 rend = sec_relocs + o->reloc_count;
5055 for (r = sec_relocs; r < rend; r++)
5056 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5057 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5058 break;
5059
5060 if (elf_section_data (o)->relocs != sec_relocs)
5061 free (sec_relocs);
5062
5063 if (r < rend)
5064 break;
5065 }
5066
5067 if (o == NULL)
5068 {
5069 /* There is no non-call reloc for this stub, so we do
5070 not need it. Since this function is called before
5071 the linker maps input sections to output sections, we
5072 can easily discard it by setting the SEC_EXCLUDE
5073 flag. */
5074 sec->flags |= SEC_EXCLUDE;
5075 return TRUE;
5076 }
5077
5078 /* Record this stub in an array of local symbol stubs for
5079 this BFD. */
5080 if (elf_tdata (abfd)->local_stubs == NULL)
5081 {
5082 unsigned long symcount;
5083 asection **n;
5084 bfd_size_type amt;
5085
5086 if (elf_bad_symtab (abfd))
5087 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5088 else
5089 symcount = symtab_hdr->sh_info;
5090 amt = symcount * sizeof (asection *);
5091 n = bfd_zalloc (abfd, amt);
5092 if (n == NULL)
5093 return FALSE;
5094 elf_tdata (abfd)->local_stubs = n;
5095 }
5096
5097 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5098
5099 /* We don't need to set mips16_stubs_seen in this case.
5100 That flag is used to see whether we need to look through
5101 the global symbol table for stubs. We don't need to set
5102 it here, because we just have a local stub. */
5103 }
5104 else
5105 {
5106 struct mips_elf_link_hash_entry *h;
5107
5108 h = ((struct mips_elf_link_hash_entry *)
5109 sym_hashes[r_symndx - extsymoff]);
5110
5111 /* H is the symbol this stub is for. */
5112
5113 h->fn_stub = sec;
5114 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5115 }
5116 }
5117 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5118 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5119 {
5120 unsigned long r_symndx;
5121 struct mips_elf_link_hash_entry *h;
5122 asection **loc;
5123
5124 /* Look at the relocation information to figure out which symbol
5125 this is for. */
5126
5127 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5128
5129 if (r_symndx < extsymoff
5130 || sym_hashes[r_symndx - extsymoff] == NULL)
5131 {
5132 /* This stub was actually built for a static symbol defined
5133 in the same file. We assume that all static symbols in
5134 mips16 code are themselves mips16, so we can simply
5135 discard this stub. Since this function is called before
5136 the linker maps input sections to output sections, we can
5137 easily discard it by setting the SEC_EXCLUDE flag. */
5138 sec->flags |= SEC_EXCLUDE;
5139 return TRUE;
5140 }
5141
5142 h = ((struct mips_elf_link_hash_entry *)
5143 sym_hashes[r_symndx - extsymoff]);
5144
5145 /* H is the symbol this stub is for. */
5146
5147 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5148 loc = &h->call_fp_stub;
5149 else
5150 loc = &h->call_stub;
5151
5152 /* If we already have an appropriate stub for this function, we
5153 don't need another one, so we can discard this one. Since
5154 this function is called before the linker maps input sections
5155 to output sections, we can easily discard it by setting the
5156 SEC_EXCLUDE flag. We can also discard this section if we
5157 happen to already know that this is a mips16 function; it is
5158 not necessary to check this here, as it is checked later, but
5159 it is slightly faster to check now. */
5160 if (*loc != NULL || h->root.other == STO_MIPS16)
5161 {
5162 sec->flags |= SEC_EXCLUDE;
5163 return TRUE;
5164 }
5165
5166 *loc = sec;
5167 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5168 }
5169
5170 if (dynobj == NULL)
5171 {
5172 sgot = NULL;
5173 g = NULL;
5174 }
5175 else
5176 {
5177 sgot = mips_elf_got_section (dynobj, FALSE);
5178 if (sgot == NULL)
5179 g = NULL;
5180 else
5181 {
5182 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5183 g = mips_elf_section_data (sgot)->u.got_info;
5184 BFD_ASSERT (g != NULL);
5185 }
5186 }
5187
5188 sreloc = NULL;
5189 bed = get_elf_backend_data (abfd);
5190 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5191 for (rel = relocs; rel < rel_end; ++rel)
5192 {
5193 unsigned long r_symndx;
5194 unsigned int r_type;
5195 struct elf_link_hash_entry *h;
5196
5197 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5198 r_type = ELF_R_TYPE (abfd, rel->r_info);
5199
5200 if (r_symndx < extsymoff)
5201 h = NULL;
5202 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5203 {
5204 (*_bfd_error_handler)
5205 (_("%s: Malformed reloc detected for section %s"),
5206 bfd_archive_filename (abfd), name);
5207 bfd_set_error (bfd_error_bad_value);
5208 return FALSE;
5209 }
5210 else
5211 {
5212 h = sym_hashes[r_symndx - extsymoff];
5213
5214 /* This may be an indirect symbol created because of a version. */
5215 if (h != NULL)
5216 {
5217 while (h->root.type == bfd_link_hash_indirect)
5218 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5219 }
5220 }
5221
5222 /* Some relocs require a global offset table. */
5223 if (dynobj == NULL || sgot == NULL)
5224 {
5225 switch (r_type)
5226 {
5227 case R_MIPS_GOT16:
5228 case R_MIPS_CALL16:
5229 case R_MIPS_CALL_HI16:
5230 case R_MIPS_CALL_LO16:
5231 case R_MIPS_GOT_HI16:
5232 case R_MIPS_GOT_LO16:
5233 case R_MIPS_GOT_PAGE:
5234 case R_MIPS_GOT_OFST:
5235 case R_MIPS_GOT_DISP:
5236 if (dynobj == NULL)
5237 elf_hash_table (info)->dynobj = dynobj = abfd;
5238 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5239 return FALSE;
5240 g = mips_elf_got_info (dynobj, &sgot);
5241 break;
5242
5243 case R_MIPS_32:
5244 case R_MIPS_REL32:
5245 case R_MIPS_64:
5246 if (dynobj == NULL
5247 && (info->shared || h != NULL)
5248 && (sec->flags & SEC_ALLOC) != 0)
5249 elf_hash_table (info)->dynobj = dynobj = abfd;
5250 break;
5251
5252 default:
5253 break;
5254 }
5255 }
5256
5257 if (!h && (r_type == R_MIPS_CALL_LO16
5258 || r_type == R_MIPS_GOT_LO16
5259 || r_type == R_MIPS_GOT_DISP))
5260 {
5261 /* We may need a local GOT entry for this relocation. We
5262 don't count R_MIPS_GOT_PAGE because we can estimate the
5263 maximum number of pages needed by looking at the size of
5264 the segment. Similar comments apply to R_MIPS_GOT16 and
5265 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5266 R_MIPS_CALL_HI16 because these are always followed by an
5267 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5268 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5269 rel->r_addend, g))
5270 return FALSE;
5271 }
5272
5273 switch (r_type)
5274 {
5275 case R_MIPS_CALL16:
5276 if (h == NULL)
5277 {
5278 (*_bfd_error_handler)
5279 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5280 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5281 bfd_set_error (bfd_error_bad_value);
5282 return FALSE;
5283 }
5284 /* Fall through. */
5285
5286 case R_MIPS_CALL_HI16:
5287 case R_MIPS_CALL_LO16:
5288 if (h != NULL)
5289 {
5290 /* This symbol requires a global offset table entry. */
5291 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5292 return FALSE;
5293
5294 /* We need a stub, not a plt entry for the undefined
5295 function. But we record it as if it needs plt. See
5296 _bfd_elf_adjust_dynamic_symbol. */
5297 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5298 h->type = STT_FUNC;
5299 }
5300 break;
5301
5302 case R_MIPS_GOT_PAGE:
5303 /* If this is a global, overridable symbol, GOT_PAGE will
5304 decay to GOT_DISP, so we'll need a GOT entry for it. */
5305 if (h == NULL)
5306 break;
5307 else
5308 {
5309 struct mips_elf_link_hash_entry *hmips =
5310 (struct mips_elf_link_hash_entry *) h;
5311
5312 while (hmips->root.root.type == bfd_link_hash_indirect
5313 || hmips->root.root.type == bfd_link_hash_warning)
5314 hmips = (struct mips_elf_link_hash_entry *)
5315 hmips->root.root.u.i.link;
5316
5317 if ((hmips->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
5318 && ! (info->shared && ! info->symbolic
5319 && ! (hmips->root.elf_link_hash_flags
5320 & ELF_LINK_FORCED_LOCAL)))
5321 break;
5322 }
5323 /* Fall through. */
5324
5325 case R_MIPS_GOT16:
5326 case R_MIPS_GOT_HI16:
5327 case R_MIPS_GOT_LO16:
5328 case R_MIPS_GOT_DISP:
5329 /* This symbol requires a global offset table entry. */
5330 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5331 return FALSE;
5332 break;
5333
5334 case R_MIPS_32:
5335 case R_MIPS_REL32:
5336 case R_MIPS_64:
5337 if ((info->shared || h != NULL)
5338 && (sec->flags & SEC_ALLOC) != 0)
5339 {
5340 if (sreloc == NULL)
5341 {
5342 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5343 if (sreloc == NULL)
5344 return FALSE;
5345 }
5346 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5347 if (info->shared)
5348 {
5349 /* When creating a shared object, we must copy these
5350 reloc types into the output file as R_MIPS_REL32
5351 relocs. We make room for this reloc in the
5352 .rel.dyn reloc section. */
5353 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5354 if ((sec->flags & MIPS_READONLY_SECTION)
5355 == MIPS_READONLY_SECTION)
5356 /* We tell the dynamic linker that there are
5357 relocations against the text segment. */
5358 info->flags |= DF_TEXTREL;
5359 }
5360 else
5361 {
5362 struct mips_elf_link_hash_entry *hmips;
5363
5364 /* We only need to copy this reloc if the symbol is
5365 defined in a dynamic object. */
5366 hmips = (struct mips_elf_link_hash_entry *) h;
5367 ++hmips->possibly_dynamic_relocs;
5368 if ((sec->flags & MIPS_READONLY_SECTION)
5369 == MIPS_READONLY_SECTION)
5370 /* We need it to tell the dynamic linker if there
5371 are relocations against the text segment. */
5372 hmips->readonly_reloc = TRUE;
5373 }
5374
5375 /* Even though we don't directly need a GOT entry for
5376 this symbol, a symbol must have a dynamic symbol
5377 table index greater that DT_MIPS_GOTSYM if there are
5378 dynamic relocations against it. */
5379 if (h != NULL)
5380 {
5381 if (dynobj == NULL)
5382 elf_hash_table (info)->dynobj = dynobj = abfd;
5383 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5384 return FALSE;
5385 g = mips_elf_got_info (dynobj, &sgot);
5386 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5387 return FALSE;
5388 }
5389 }
5390
5391 if (SGI_COMPAT (abfd))
5392 mips_elf_hash_table (info)->compact_rel_size +=
5393 sizeof (Elf32_External_crinfo);
5394 break;
5395
5396 case R_MIPS_26:
5397 case R_MIPS_GPREL16:
5398 case R_MIPS_LITERAL:
5399 case R_MIPS_GPREL32:
5400 if (SGI_COMPAT (abfd))
5401 mips_elf_hash_table (info)->compact_rel_size +=
5402 sizeof (Elf32_External_crinfo);
5403 break;
5404
5405 /* This relocation describes the C++ object vtable hierarchy.
5406 Reconstruct it for later use during GC. */
5407 case R_MIPS_GNU_VTINHERIT:
5408 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5409 return FALSE;
5410 break;
5411
5412 /* This relocation describes which C++ vtable entries are actually
5413 used. Record for later use during GC. */
5414 case R_MIPS_GNU_VTENTRY:
5415 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5416 return FALSE;
5417 break;
5418
5419 default:
5420 break;
5421 }
5422
5423 /* We must not create a stub for a symbol that has relocations
5424 related to taking the function's address. */
5425 switch (r_type)
5426 {
5427 default:
5428 if (h != NULL)
5429 {
5430 struct mips_elf_link_hash_entry *mh;
5431
5432 mh = (struct mips_elf_link_hash_entry *) h;
5433 mh->no_fn_stub = TRUE;
5434 }
5435 break;
5436 case R_MIPS_CALL16:
5437 case R_MIPS_CALL_HI16:
5438 case R_MIPS_CALL_LO16:
5439 case R_MIPS_JALR:
5440 break;
5441 }
5442
5443 /* If this reloc is not a 16 bit call, and it has a global
5444 symbol, then we will need the fn_stub if there is one.
5445 References from a stub section do not count. */
5446 if (h != NULL
5447 && r_type != R_MIPS16_26
5448 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5449 sizeof FN_STUB - 1) != 0
5450 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5451 sizeof CALL_STUB - 1) != 0
5452 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5453 sizeof CALL_FP_STUB - 1) != 0)
5454 {
5455 struct mips_elf_link_hash_entry *mh;
5456
5457 mh = (struct mips_elf_link_hash_entry *) h;
5458 mh->need_fn_stub = TRUE;
5459 }
5460 }
5461
5462 return TRUE;
5463 }
5464 \f
5465 bfd_boolean
5466 _bfd_mips_relax_section (bfd *abfd, asection *sec,
5467 struct bfd_link_info *link_info,
5468 bfd_boolean *again)
5469 {
5470 Elf_Internal_Rela *internal_relocs;
5471 Elf_Internal_Rela *irel, *irelend;
5472 Elf_Internal_Shdr *symtab_hdr;
5473 bfd_byte *contents = NULL;
5474 bfd_byte *free_contents = NULL;
5475 size_t extsymoff;
5476 bfd_boolean changed_contents = FALSE;
5477 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5478 Elf_Internal_Sym *isymbuf = NULL;
5479
5480 /* We are not currently changing any sizes, so only one pass. */
5481 *again = FALSE;
5482
5483 if (link_info->relocatable)
5484 return TRUE;
5485
5486 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
5487 link_info->keep_memory);
5488 if (internal_relocs == NULL)
5489 return TRUE;
5490
5491 irelend = internal_relocs + sec->reloc_count
5492 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5493 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5494 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5495
5496 for (irel = internal_relocs; irel < irelend; irel++)
5497 {
5498 bfd_vma symval;
5499 bfd_signed_vma sym_offset;
5500 unsigned int r_type;
5501 unsigned long r_symndx;
5502 asection *sym_sec;
5503 unsigned long instruction;
5504
5505 /* Turn jalr into bgezal, and jr into beq, if they're marked
5506 with a JALR relocation, that indicate where they jump to.
5507 This saves some pipeline bubbles. */
5508 r_type = ELF_R_TYPE (abfd, irel->r_info);
5509 if (r_type != R_MIPS_JALR)
5510 continue;
5511
5512 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5513 /* Compute the address of the jump target. */
5514 if (r_symndx >= extsymoff)
5515 {
5516 struct mips_elf_link_hash_entry *h
5517 = ((struct mips_elf_link_hash_entry *)
5518 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5519
5520 while (h->root.root.type == bfd_link_hash_indirect
5521 || h->root.root.type == bfd_link_hash_warning)
5522 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5523
5524 /* If a symbol is undefined, or if it may be overridden,
5525 skip it. */
5526 if (! ((h->root.root.type == bfd_link_hash_defined
5527 || h->root.root.type == bfd_link_hash_defweak)
5528 && h->root.root.u.def.section)
5529 || (link_info->shared && ! link_info->symbolic
5530 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5531 continue;
5532
5533 sym_sec = h->root.root.u.def.section;
5534 if (sym_sec->output_section)
5535 symval = (h->root.root.u.def.value
5536 + sym_sec->output_section->vma
5537 + sym_sec->output_offset);
5538 else
5539 symval = h->root.root.u.def.value;
5540 }
5541 else
5542 {
5543 Elf_Internal_Sym *isym;
5544
5545 /* Read this BFD's symbols if we haven't done so already. */
5546 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5547 {
5548 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5549 if (isymbuf == NULL)
5550 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5551 symtab_hdr->sh_info, 0,
5552 NULL, NULL, NULL);
5553 if (isymbuf == NULL)
5554 goto relax_return;
5555 }
5556
5557 isym = isymbuf + r_symndx;
5558 if (isym->st_shndx == SHN_UNDEF)
5559 continue;
5560 else if (isym->st_shndx == SHN_ABS)
5561 sym_sec = bfd_abs_section_ptr;
5562 else if (isym->st_shndx == SHN_COMMON)
5563 sym_sec = bfd_com_section_ptr;
5564 else
5565 sym_sec
5566 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5567 symval = isym->st_value
5568 + sym_sec->output_section->vma
5569 + sym_sec->output_offset;
5570 }
5571
5572 /* Compute branch offset, from delay slot of the jump to the
5573 branch target. */
5574 sym_offset = (symval + irel->r_addend)
5575 - (sec_start + irel->r_offset + 4);
5576
5577 /* Branch offset must be properly aligned. */
5578 if ((sym_offset & 3) != 0)
5579 continue;
5580
5581 sym_offset >>= 2;
5582
5583 /* Check that it's in range. */
5584 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5585 continue;
5586
5587 /* Get the section contents if we haven't done so already. */
5588 if (contents == NULL)
5589 {
5590 /* Get cached copy if it exists. */
5591 if (elf_section_data (sec)->this_hdr.contents != NULL)
5592 contents = elf_section_data (sec)->this_hdr.contents;
5593 else
5594 {
5595 contents = bfd_malloc (sec->_raw_size);
5596 if (contents == NULL)
5597 goto relax_return;
5598
5599 free_contents = contents;
5600 if (! bfd_get_section_contents (abfd, sec, contents,
5601 0, sec->_raw_size))
5602 goto relax_return;
5603 }
5604 }
5605
5606 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5607
5608 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5609 if ((instruction & 0xfc1fffff) == 0x0000f809)
5610 instruction = 0x04110000;
5611 /* If it was jr <reg>, turn it into b <target>. */
5612 else if ((instruction & 0xfc1fffff) == 0x00000008)
5613 instruction = 0x10000000;
5614 else
5615 continue;
5616
5617 instruction |= (sym_offset & 0xffff);
5618 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5619 changed_contents = TRUE;
5620 }
5621
5622 if (contents != NULL
5623 && elf_section_data (sec)->this_hdr.contents != contents)
5624 {
5625 if (!changed_contents && !link_info->keep_memory)
5626 free (contents);
5627 else
5628 {
5629 /* Cache the section contents for elf_link_input_bfd. */
5630 elf_section_data (sec)->this_hdr.contents = contents;
5631 }
5632 }
5633 return TRUE;
5634
5635 relax_return:
5636 if (free_contents != NULL)
5637 free (free_contents);
5638 return FALSE;
5639 }
5640 \f
5641 /* Adjust a symbol defined by a dynamic object and referenced by a
5642 regular object. The current definition is in some section of the
5643 dynamic object, but we're not including those sections. We have to
5644 change the definition to something the rest of the link can
5645 understand. */
5646
5647 bfd_boolean
5648 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5649 struct elf_link_hash_entry *h)
5650 {
5651 bfd *dynobj;
5652 struct mips_elf_link_hash_entry *hmips;
5653 asection *s;
5654
5655 dynobj = elf_hash_table (info)->dynobj;
5656
5657 /* Make sure we know what is going on here. */
5658 BFD_ASSERT (dynobj != NULL
5659 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5660 || h->weakdef != NULL
5661 || ((h->elf_link_hash_flags
5662 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5663 && (h->elf_link_hash_flags
5664 & ELF_LINK_HASH_REF_REGULAR) != 0
5665 && (h->elf_link_hash_flags
5666 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5667
5668 /* If this symbol is defined in a dynamic object, we need to copy
5669 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5670 file. */
5671 hmips = (struct mips_elf_link_hash_entry *) h;
5672 if (! info->relocatable
5673 && hmips->possibly_dynamic_relocs != 0
5674 && (h->root.type == bfd_link_hash_defweak
5675 || (h->elf_link_hash_flags
5676 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5677 {
5678 mips_elf_allocate_dynamic_relocations (dynobj,
5679 hmips->possibly_dynamic_relocs);
5680 if (hmips->readonly_reloc)
5681 /* We tell the dynamic linker that there are relocations
5682 against the text segment. */
5683 info->flags |= DF_TEXTREL;
5684 }
5685
5686 /* For a function, create a stub, if allowed. */
5687 if (! hmips->no_fn_stub
5688 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5689 {
5690 if (! elf_hash_table (info)->dynamic_sections_created)
5691 return TRUE;
5692
5693 /* If this symbol is not defined in a regular file, then set
5694 the symbol to the stub location. This is required to make
5695 function pointers compare as equal between the normal
5696 executable and the shared library. */
5697 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5698 {
5699 /* We need .stub section. */
5700 s = bfd_get_section_by_name (dynobj,
5701 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5702 BFD_ASSERT (s != NULL);
5703
5704 h->root.u.def.section = s;
5705 h->root.u.def.value = s->_raw_size;
5706
5707 /* XXX Write this stub address somewhere. */
5708 h->plt.offset = s->_raw_size;
5709
5710 /* Make room for this stub code. */
5711 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5712
5713 /* The last half word of the stub will be filled with the index
5714 of this symbol in .dynsym section. */
5715 return TRUE;
5716 }
5717 }
5718 else if ((h->type == STT_FUNC)
5719 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5720 {
5721 /* This will set the entry for this symbol in the GOT to 0, and
5722 the dynamic linker will take care of this. */
5723 h->root.u.def.value = 0;
5724 return TRUE;
5725 }
5726
5727 /* If this is a weak symbol, and there is a real definition, the
5728 processor independent code will have arranged for us to see the
5729 real definition first, and we can just use the same value. */
5730 if (h->weakdef != NULL)
5731 {
5732 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5733 || h->weakdef->root.type == bfd_link_hash_defweak);
5734 h->root.u.def.section = h->weakdef->root.u.def.section;
5735 h->root.u.def.value = h->weakdef->root.u.def.value;
5736 return TRUE;
5737 }
5738
5739 /* This is a reference to a symbol defined by a dynamic object which
5740 is not a function. */
5741
5742 return TRUE;
5743 }
5744 \f
5745 /* This function is called after all the input files have been read,
5746 and the input sections have been assigned to output sections. We
5747 check for any mips16 stub sections that we can discard. */
5748
5749 bfd_boolean
5750 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
5751 struct bfd_link_info *info)
5752 {
5753 asection *ri;
5754
5755 bfd *dynobj;
5756 asection *s;
5757 struct mips_got_info *g;
5758 int i;
5759 bfd_size_type loadable_size = 0;
5760 bfd_size_type local_gotno;
5761 bfd *sub;
5762
5763 /* The .reginfo section has a fixed size. */
5764 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5765 if (ri != NULL)
5766 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
5767
5768 if (! (info->relocatable
5769 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5770 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5771 mips_elf_check_mips16_stubs, NULL);
5772
5773 dynobj = elf_hash_table (info)->dynobj;
5774 if (dynobj == NULL)
5775 /* Relocatable links don't have it. */
5776 return TRUE;
5777
5778 g = mips_elf_got_info (dynobj, &s);
5779 if (s == NULL)
5780 return TRUE;
5781
5782 /* Calculate the total loadable size of the output. That
5783 will give us the maximum number of GOT_PAGE entries
5784 required. */
5785 for (sub = info->input_bfds; sub; sub = sub->link_next)
5786 {
5787 asection *subsection;
5788
5789 for (subsection = sub->sections;
5790 subsection;
5791 subsection = subsection->next)
5792 {
5793 if ((subsection->flags & SEC_ALLOC) == 0)
5794 continue;
5795 loadable_size += ((subsection->_raw_size + 0xf)
5796 &~ (bfd_size_type) 0xf);
5797 }
5798 }
5799
5800 /* There has to be a global GOT entry for every symbol with
5801 a dynamic symbol table index of DT_MIPS_GOTSYM or
5802 higher. Therefore, it make sense to put those symbols
5803 that need GOT entries at the end of the symbol table. We
5804 do that here. */
5805 if (! mips_elf_sort_hash_table (info, 1))
5806 return FALSE;
5807
5808 if (g->global_gotsym != NULL)
5809 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5810 else
5811 /* If there are no global symbols, or none requiring
5812 relocations, then GLOBAL_GOTSYM will be NULL. */
5813 i = 0;
5814
5815 /* In the worst case, we'll get one stub per dynamic symbol, plus
5816 one to account for the dummy entry at the end required by IRIX
5817 rld. */
5818 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5819
5820 /* Assume there are two loadable segments consisting of
5821 contiguous sections. Is 5 enough? */
5822 local_gotno = (loadable_size >> 16) + 5;
5823
5824 g->local_gotno += local_gotno;
5825 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5826
5827 g->global_gotno = i;
5828 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5829
5830 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5831 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5832 return FALSE;
5833
5834 return TRUE;
5835 }
5836
5837 /* Set the sizes of the dynamic sections. */
5838
5839 bfd_boolean
5840 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5841 struct bfd_link_info *info)
5842 {
5843 bfd *dynobj;
5844 asection *s;
5845 bfd_boolean reltext;
5846
5847 dynobj = elf_hash_table (info)->dynobj;
5848 BFD_ASSERT (dynobj != NULL);
5849
5850 if (elf_hash_table (info)->dynamic_sections_created)
5851 {
5852 /* Set the contents of the .interp section to the interpreter. */
5853 if (info->executable)
5854 {
5855 s = bfd_get_section_by_name (dynobj, ".interp");
5856 BFD_ASSERT (s != NULL);
5857 s->_raw_size
5858 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5859 s->contents
5860 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5861 }
5862 }
5863
5864 /* The check_relocs and adjust_dynamic_symbol entry points have
5865 determined the sizes of the various dynamic sections. Allocate
5866 memory for them. */
5867 reltext = FALSE;
5868 for (s = dynobj->sections; s != NULL; s = s->next)
5869 {
5870 const char *name;
5871 bfd_boolean strip;
5872
5873 /* It's OK to base decisions on the section name, because none
5874 of the dynobj section names depend upon the input files. */
5875 name = bfd_get_section_name (dynobj, s);
5876
5877 if ((s->flags & SEC_LINKER_CREATED) == 0)
5878 continue;
5879
5880 strip = FALSE;
5881
5882 if (strncmp (name, ".rel", 4) == 0)
5883 {
5884 if (s->_raw_size == 0)
5885 {
5886 /* We only strip the section if the output section name
5887 has the same name. Otherwise, there might be several
5888 input sections for this output section. FIXME: This
5889 code is probably not needed these days anyhow, since
5890 the linker now does not create empty output sections. */
5891 if (s->output_section != NULL
5892 && strcmp (name,
5893 bfd_get_section_name (s->output_section->owner,
5894 s->output_section)) == 0)
5895 strip = TRUE;
5896 }
5897 else
5898 {
5899 const char *outname;
5900 asection *target;
5901
5902 /* If this relocation section applies to a read only
5903 section, then we probably need a DT_TEXTREL entry.
5904 If the relocation section is .rel.dyn, we always
5905 assert a DT_TEXTREL entry rather than testing whether
5906 there exists a relocation to a read only section or
5907 not. */
5908 outname = bfd_get_section_name (output_bfd,
5909 s->output_section);
5910 target = bfd_get_section_by_name (output_bfd, outname + 4);
5911 if ((target != NULL
5912 && (target->flags & SEC_READONLY) != 0
5913 && (target->flags & SEC_ALLOC) != 0)
5914 || strcmp (outname, ".rel.dyn") == 0)
5915 reltext = TRUE;
5916
5917 /* We use the reloc_count field as a counter if we need
5918 to copy relocs into the output file. */
5919 if (strcmp (name, ".rel.dyn") != 0)
5920 s->reloc_count = 0;
5921
5922 /* If combreloc is enabled, elf_link_sort_relocs() will
5923 sort relocations, but in a different way than we do,
5924 and before we're done creating relocations. Also, it
5925 will move them around between input sections'
5926 relocation's contents, so our sorting would be
5927 broken, so don't let it run. */
5928 info->combreloc = 0;
5929 }
5930 }
5931 else if (strncmp (name, ".got", 4) == 0)
5932 {
5933 /* _bfd_mips_elf_always_size_sections() has already done
5934 most of the work, but some symbols may have been mapped
5935 to versions that we must now resolve in the got_entries
5936 hash tables. */
5937 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5938 struct mips_got_info *g = gg;
5939 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5940 unsigned int needed_relocs = 0;
5941
5942 if (gg->next)
5943 {
5944 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5945 set_got_offset_arg.info = info;
5946
5947 mips_elf_resolve_final_got_entries (gg);
5948 for (g = gg->next; g && g->next != gg; g = g->next)
5949 {
5950 unsigned int save_assign;
5951
5952 mips_elf_resolve_final_got_entries (g);
5953
5954 /* Assign offsets to global GOT entries. */
5955 save_assign = g->assigned_gotno;
5956 g->assigned_gotno = g->local_gotno;
5957 set_got_offset_arg.g = g;
5958 set_got_offset_arg.needed_relocs = 0;
5959 htab_traverse (g->got_entries,
5960 mips_elf_set_global_got_offset,
5961 &set_got_offset_arg);
5962 needed_relocs += set_got_offset_arg.needed_relocs;
5963 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5964 <= g->global_gotno);
5965
5966 g->assigned_gotno = save_assign;
5967 if (info->shared)
5968 {
5969 needed_relocs += g->local_gotno - g->assigned_gotno;
5970 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5971 + g->next->global_gotno
5972 + MIPS_RESERVED_GOTNO);
5973 }
5974 }
5975
5976 if (needed_relocs)
5977 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5978 }
5979 }
5980 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5981 {
5982 /* IRIX rld assumes that the function stub isn't at the end
5983 of .text section. So put a dummy. XXX */
5984 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5985 }
5986 else if (! info->shared
5987 && ! mips_elf_hash_table (info)->use_rld_obj_head
5988 && strncmp (name, ".rld_map", 8) == 0)
5989 {
5990 /* We add a room for __rld_map. It will be filled in by the
5991 rtld to contain a pointer to the _r_debug structure. */
5992 s->_raw_size += 4;
5993 }
5994 else if (SGI_COMPAT (output_bfd)
5995 && strncmp (name, ".compact_rel", 12) == 0)
5996 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
5997 else if (strncmp (name, ".init", 5) != 0)
5998 {
5999 /* It's not one of our sections, so don't allocate space. */
6000 continue;
6001 }
6002
6003 if (strip)
6004 {
6005 _bfd_strip_section_from_output (info, s);
6006 continue;
6007 }
6008
6009 /* Allocate memory for the section contents. */
6010 s->contents = bfd_zalloc (dynobj, s->_raw_size);
6011 if (s->contents == NULL && s->_raw_size != 0)
6012 {
6013 bfd_set_error (bfd_error_no_memory);
6014 return FALSE;
6015 }
6016 }
6017
6018 if (elf_hash_table (info)->dynamic_sections_created)
6019 {
6020 /* Add some entries to the .dynamic section. We fill in the
6021 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6022 must add the entries now so that we get the correct size for
6023 the .dynamic section. The DT_DEBUG entry is filled in by the
6024 dynamic linker and used by the debugger. */
6025 if (! info->shared)
6026 {
6027 /* SGI object has the equivalence of DT_DEBUG in the
6028 DT_MIPS_RLD_MAP entry. */
6029 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6030 return FALSE;
6031 if (!SGI_COMPAT (output_bfd))
6032 {
6033 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6034 return FALSE;
6035 }
6036 }
6037 else
6038 {
6039 /* Shared libraries on traditional mips have DT_DEBUG. */
6040 if (!SGI_COMPAT (output_bfd))
6041 {
6042 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6043 return FALSE;
6044 }
6045 }
6046
6047 if (reltext && SGI_COMPAT (output_bfd))
6048 info->flags |= DF_TEXTREL;
6049
6050 if ((info->flags & DF_TEXTREL) != 0)
6051 {
6052 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6053 return FALSE;
6054 }
6055
6056 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6057 return FALSE;
6058
6059 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6060 {
6061 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6062 return FALSE;
6063
6064 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6065 return FALSE;
6066
6067 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6068 return FALSE;
6069 }
6070
6071 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6072 return FALSE;
6073
6074 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6075 return FALSE;
6076
6077 #if 0
6078 /* Time stamps in executable files are a bad idea. */
6079 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6080 return FALSE;
6081 #endif
6082
6083 #if 0 /* FIXME */
6084 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6085 return FALSE;
6086 #endif
6087
6088 #if 0 /* FIXME */
6089 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6090 return FALSE;
6091 #endif
6092
6093 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6094 return FALSE;
6095
6096 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6097 return FALSE;
6098
6099 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6100 return FALSE;
6101
6102 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6103 return FALSE;
6104
6105 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6106 return FALSE;
6107
6108 if (IRIX_COMPAT (dynobj) == ict_irix5
6109 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6110 return FALSE;
6111
6112 if (IRIX_COMPAT (dynobj) == ict_irix6
6113 && (bfd_get_section_by_name
6114 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6115 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6116 return FALSE;
6117 }
6118
6119 return TRUE;
6120 }
6121 \f
6122 /* Relocate a MIPS ELF section. */
6123
6124 bfd_boolean
6125 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6126 bfd *input_bfd, asection *input_section,
6127 bfd_byte *contents, Elf_Internal_Rela *relocs,
6128 Elf_Internal_Sym *local_syms,
6129 asection **local_sections)
6130 {
6131 Elf_Internal_Rela *rel;
6132 const Elf_Internal_Rela *relend;
6133 bfd_vma addend = 0;
6134 bfd_boolean use_saved_addend_p = FALSE;
6135 const struct elf_backend_data *bed;
6136
6137 bed = get_elf_backend_data (output_bfd);
6138 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6139 for (rel = relocs; rel < relend; ++rel)
6140 {
6141 const char *name;
6142 bfd_vma value;
6143 reloc_howto_type *howto;
6144 bfd_boolean require_jalx;
6145 /* TRUE if the relocation is a RELA relocation, rather than a
6146 REL relocation. */
6147 bfd_boolean rela_relocation_p = TRUE;
6148 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6149 const char *msg;
6150
6151 /* Find the relocation howto for this relocation. */
6152 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6153 {
6154 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6155 64-bit code, but make sure all their addresses are in the
6156 lowermost or uppermost 32-bit section of the 64-bit address
6157 space. Thus, when they use an R_MIPS_64 they mean what is
6158 usually meant by R_MIPS_32, with the exception that the
6159 stored value is sign-extended to 64 bits. */
6160 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6161
6162 /* On big-endian systems, we need to lie about the position
6163 of the reloc. */
6164 if (bfd_big_endian (input_bfd))
6165 rel->r_offset += 4;
6166 }
6167 else
6168 /* NewABI defaults to RELA relocations. */
6169 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6170 NEWABI_P (input_bfd)
6171 && (MIPS_RELOC_RELA_P
6172 (input_bfd, input_section,
6173 rel - relocs)));
6174
6175 if (!use_saved_addend_p)
6176 {
6177 Elf_Internal_Shdr *rel_hdr;
6178
6179 /* If these relocations were originally of the REL variety,
6180 we must pull the addend out of the field that will be
6181 relocated. Otherwise, we simply use the contents of the
6182 RELA relocation. To determine which flavor or relocation
6183 this is, we depend on the fact that the INPUT_SECTION's
6184 REL_HDR is read before its REL_HDR2. */
6185 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6186 if ((size_t) (rel - relocs)
6187 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6188 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6189 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6190 {
6191 /* Note that this is a REL relocation. */
6192 rela_relocation_p = FALSE;
6193
6194 /* Get the addend, which is stored in the input file. */
6195 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6196 contents);
6197 addend &= howto->src_mask;
6198
6199 /* For some kinds of relocations, the ADDEND is a
6200 combination of the addend stored in two different
6201 relocations. */
6202 if (r_type == R_MIPS_HI16
6203 || (r_type == R_MIPS_GOT16
6204 && mips_elf_local_relocation_p (input_bfd, rel,
6205 local_sections, FALSE)))
6206 {
6207 bfd_vma l;
6208 const Elf_Internal_Rela *lo16_relocation;
6209 reloc_howto_type *lo16_howto;
6210
6211 /* The combined value is the sum of the HI16 addend,
6212 left-shifted by sixteen bits, and the LO16
6213 addend, sign extended. (Usually, the code does
6214 a `lui' of the HI16 value, and then an `addiu' of
6215 the LO16 value.)
6216
6217 Scan ahead to find a matching LO16 relocation.
6218
6219 According to the MIPS ELF ABI, the R_MIPS_LO16
6220 relocation must be immediately following.
6221 However, for the IRIX6 ABI, the next relocation
6222 may be a composed relocation consisting of
6223 several relocations for the same address. In
6224 that case, the R_MIPS_LO16 relocation may occur
6225 as one of these. We permit a similar extension
6226 in general, as that is useful for GCC. */
6227 lo16_relocation = mips_elf_next_relocation (input_bfd,
6228 R_MIPS_LO16,
6229 rel, relend);
6230 if (lo16_relocation == NULL)
6231 return FALSE;
6232
6233 /* Obtain the addend kept there. */
6234 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6235 R_MIPS_LO16, FALSE);
6236 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6237 input_bfd, contents);
6238 l &= lo16_howto->src_mask;
6239 l <<= lo16_howto->rightshift;
6240 l = _bfd_mips_elf_sign_extend (l, 16);
6241
6242 addend <<= 16;
6243
6244 /* Compute the combined addend. */
6245 addend += l;
6246 }
6247 else if (r_type == R_MIPS16_GPREL)
6248 {
6249 /* The addend is scrambled in the object file. See
6250 mips_elf_perform_relocation for details on the
6251 format. */
6252 addend = (((addend & 0x1f0000) >> 5)
6253 | ((addend & 0x7e00000) >> 16)
6254 | (addend & 0x1f));
6255 }
6256 else
6257 addend <<= howto->rightshift;
6258 }
6259 else
6260 addend = rel->r_addend;
6261 }
6262
6263 if (info->relocatable)
6264 {
6265 Elf_Internal_Sym *sym;
6266 unsigned long r_symndx;
6267
6268 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6269 && bfd_big_endian (input_bfd))
6270 rel->r_offset -= 4;
6271
6272 /* Since we're just relocating, all we need to do is copy
6273 the relocations back out to the object file, unless
6274 they're against a section symbol, in which case we need
6275 to adjust by the section offset, or unless they're GP
6276 relative in which case we need to adjust by the amount
6277 that we're adjusting GP in this relocatable object. */
6278
6279 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6280 FALSE))
6281 /* There's nothing to do for non-local relocations. */
6282 continue;
6283
6284 if (r_type == R_MIPS16_GPREL
6285 || r_type == R_MIPS_GPREL16
6286 || r_type == R_MIPS_GPREL32
6287 || r_type == R_MIPS_LITERAL)
6288 addend -= (_bfd_get_gp_value (output_bfd)
6289 - _bfd_get_gp_value (input_bfd));
6290
6291 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6292 sym = local_syms + r_symndx;
6293 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6294 /* Adjust the addend appropriately. */
6295 addend += local_sections[r_symndx]->output_offset;
6296
6297 if (rela_relocation_p)
6298 /* If this is a RELA relocation, just update the addend. */
6299 rel->r_addend = addend;
6300 else
6301 {
6302 if (r_type == R_MIPS_HI16
6303 || r_type == R_MIPS_GOT16)
6304 addend = mips_elf_high (addend);
6305 else if (r_type == R_MIPS_HIGHER)
6306 addend = mips_elf_higher (addend);
6307 else if (r_type == R_MIPS_HIGHEST)
6308 addend = mips_elf_highest (addend);
6309 else
6310 addend >>= howto->rightshift;
6311
6312 /* We use the source mask, rather than the destination
6313 mask because the place to which we are writing will be
6314 source of the addend in the final link. */
6315 addend &= howto->src_mask;
6316
6317 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6318 /* See the comment above about using R_MIPS_64 in the 32-bit
6319 ABI. Here, we need to update the addend. It would be
6320 possible to get away with just using the R_MIPS_32 reloc
6321 but for endianness. */
6322 {
6323 bfd_vma sign_bits;
6324 bfd_vma low_bits;
6325 bfd_vma high_bits;
6326
6327 if (addend & ((bfd_vma) 1 << 31))
6328 #ifdef BFD64
6329 sign_bits = ((bfd_vma) 1 << 32) - 1;
6330 #else
6331 sign_bits = -1;
6332 #endif
6333 else
6334 sign_bits = 0;
6335
6336 /* If we don't know that we have a 64-bit type,
6337 do two separate stores. */
6338 if (bfd_big_endian (input_bfd))
6339 {
6340 /* Store the sign-bits (which are most significant)
6341 first. */
6342 low_bits = sign_bits;
6343 high_bits = addend;
6344 }
6345 else
6346 {
6347 low_bits = addend;
6348 high_bits = sign_bits;
6349 }
6350 bfd_put_32 (input_bfd, low_bits,
6351 contents + rel->r_offset);
6352 bfd_put_32 (input_bfd, high_bits,
6353 contents + rel->r_offset + 4);
6354 continue;
6355 }
6356
6357 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6358 input_bfd, input_section,
6359 contents, FALSE))
6360 return FALSE;
6361 }
6362
6363 /* Go on to the next relocation. */
6364 continue;
6365 }
6366
6367 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6368 relocations for the same offset. In that case we are
6369 supposed to treat the output of each relocation as the addend
6370 for the next. */
6371 if (rel + 1 < relend
6372 && rel->r_offset == rel[1].r_offset
6373 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6374 use_saved_addend_p = TRUE;
6375 else
6376 use_saved_addend_p = FALSE;
6377
6378 /* Figure out what value we are supposed to relocate. */
6379 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6380 input_section, info, rel,
6381 addend, howto, local_syms,
6382 local_sections, &value,
6383 &name, &require_jalx,
6384 use_saved_addend_p))
6385 {
6386 case bfd_reloc_continue:
6387 /* There's nothing to do. */
6388 continue;
6389
6390 case bfd_reloc_undefined:
6391 /* mips_elf_calculate_relocation already called the
6392 undefined_symbol callback. There's no real point in
6393 trying to perform the relocation at this point, so we
6394 just skip ahead to the next relocation. */
6395 continue;
6396
6397 case bfd_reloc_notsupported:
6398 msg = _("internal error: unsupported relocation error");
6399 info->callbacks->warning
6400 (info, msg, name, input_bfd, input_section, rel->r_offset);
6401 return FALSE;
6402
6403 case bfd_reloc_overflow:
6404 if (use_saved_addend_p)
6405 /* Ignore overflow until we reach the last relocation for
6406 a given location. */
6407 ;
6408 else
6409 {
6410 BFD_ASSERT (name != NULL);
6411 if (! ((*info->callbacks->reloc_overflow)
6412 (info, name, howto->name, 0,
6413 input_bfd, input_section, rel->r_offset)))
6414 return FALSE;
6415 }
6416 break;
6417
6418 case bfd_reloc_ok:
6419 break;
6420
6421 default:
6422 abort ();
6423 break;
6424 }
6425
6426 /* If we've got another relocation for the address, keep going
6427 until we reach the last one. */
6428 if (use_saved_addend_p)
6429 {
6430 addend = value;
6431 continue;
6432 }
6433
6434 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6435 /* See the comment above about using R_MIPS_64 in the 32-bit
6436 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6437 that calculated the right value. Now, however, we
6438 sign-extend the 32-bit result to 64-bits, and store it as a
6439 64-bit value. We are especially generous here in that we
6440 go to extreme lengths to support this usage on systems with
6441 only a 32-bit VMA. */
6442 {
6443 bfd_vma sign_bits;
6444 bfd_vma low_bits;
6445 bfd_vma high_bits;
6446
6447 if (value & ((bfd_vma) 1 << 31))
6448 #ifdef BFD64
6449 sign_bits = ((bfd_vma) 1 << 32) - 1;
6450 #else
6451 sign_bits = -1;
6452 #endif
6453 else
6454 sign_bits = 0;
6455
6456 /* If we don't know that we have a 64-bit type,
6457 do two separate stores. */
6458 if (bfd_big_endian (input_bfd))
6459 {
6460 /* Undo what we did above. */
6461 rel->r_offset -= 4;
6462 /* Store the sign-bits (which are most significant)
6463 first. */
6464 low_bits = sign_bits;
6465 high_bits = value;
6466 }
6467 else
6468 {
6469 low_bits = value;
6470 high_bits = sign_bits;
6471 }
6472 bfd_put_32 (input_bfd, low_bits,
6473 contents + rel->r_offset);
6474 bfd_put_32 (input_bfd, high_bits,
6475 contents + rel->r_offset + 4);
6476 continue;
6477 }
6478
6479 /* Actually perform the relocation. */
6480 if (! mips_elf_perform_relocation (info, howto, rel, value,
6481 input_bfd, input_section,
6482 contents, require_jalx))
6483 return FALSE;
6484 }
6485
6486 return TRUE;
6487 }
6488 \f
6489 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6490 adjust it appropriately now. */
6491
6492 static void
6493 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6494 const char *name, Elf_Internal_Sym *sym)
6495 {
6496 /* The linker script takes care of providing names and values for
6497 these, but we must place them into the right sections. */
6498 static const char* const text_section_symbols[] = {
6499 "_ftext",
6500 "_etext",
6501 "__dso_displacement",
6502 "__elf_header",
6503 "__program_header_table",
6504 NULL
6505 };
6506
6507 static const char* const data_section_symbols[] = {
6508 "_fdata",
6509 "_edata",
6510 "_end",
6511 "_fbss",
6512 NULL
6513 };
6514
6515 const char* const *p;
6516 int i;
6517
6518 for (i = 0; i < 2; ++i)
6519 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6520 *p;
6521 ++p)
6522 if (strcmp (*p, name) == 0)
6523 {
6524 /* All of these symbols are given type STT_SECTION by the
6525 IRIX6 linker. */
6526 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6527 sym->st_other = STO_PROTECTED;
6528
6529 /* The IRIX linker puts these symbols in special sections. */
6530 if (i == 0)
6531 sym->st_shndx = SHN_MIPS_TEXT;
6532 else
6533 sym->st_shndx = SHN_MIPS_DATA;
6534
6535 break;
6536 }
6537 }
6538
6539 /* Finish up dynamic symbol handling. We set the contents of various
6540 dynamic sections here. */
6541
6542 bfd_boolean
6543 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6544 struct bfd_link_info *info,
6545 struct elf_link_hash_entry *h,
6546 Elf_Internal_Sym *sym)
6547 {
6548 bfd *dynobj;
6549 asection *sgot;
6550 struct mips_got_info *g, *gg;
6551 const char *name;
6552
6553 dynobj = elf_hash_table (info)->dynobj;
6554
6555 if (h->plt.offset != MINUS_ONE)
6556 {
6557 asection *s;
6558 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6559
6560 /* This symbol has a stub. Set it up. */
6561
6562 BFD_ASSERT (h->dynindx != -1);
6563
6564 s = bfd_get_section_by_name (dynobj,
6565 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6566 BFD_ASSERT (s != NULL);
6567
6568 /* FIXME: Can h->dynindex be more than 64K? */
6569 if (h->dynindx & 0xffff0000)
6570 return FALSE;
6571
6572 /* Fill the stub. */
6573 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6574 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6575 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6576 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6577
6578 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6579 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6580
6581 /* Mark the symbol as undefined. plt.offset != -1 occurs
6582 only for the referenced symbol. */
6583 sym->st_shndx = SHN_UNDEF;
6584
6585 /* The run-time linker uses the st_value field of the symbol
6586 to reset the global offset table entry for this external
6587 to its stub address when unlinking a shared object. */
6588 sym->st_value = (s->output_section->vma + s->output_offset
6589 + h->plt.offset);
6590 }
6591
6592 BFD_ASSERT (h->dynindx != -1
6593 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6594
6595 sgot = mips_elf_got_section (dynobj, FALSE);
6596 BFD_ASSERT (sgot != NULL);
6597 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6598 g = mips_elf_section_data (sgot)->u.got_info;
6599 BFD_ASSERT (g != NULL);
6600
6601 /* Run through the global symbol table, creating GOT entries for all
6602 the symbols that need them. */
6603 if (g->global_gotsym != NULL
6604 && h->dynindx >= g->global_gotsym->dynindx)
6605 {
6606 bfd_vma offset;
6607 bfd_vma value;
6608
6609 value = sym->st_value;
6610 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6611 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6612 }
6613
6614 if (g->next && h->dynindx != -1)
6615 {
6616 struct mips_got_entry e, *p;
6617 bfd_vma entry;
6618 bfd_vma offset;
6619
6620 gg = g;
6621
6622 e.abfd = output_bfd;
6623 e.symndx = -1;
6624 e.d.h = (struct mips_elf_link_hash_entry *)h;
6625
6626 for (g = g->next; g->next != gg; g = g->next)
6627 {
6628 if (g->got_entries
6629 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6630 &e)))
6631 {
6632 offset = p->gotidx;
6633 if (info->shared
6634 || (elf_hash_table (info)->dynamic_sections_created
6635 && p->d.h != NULL
6636 && ((p->d.h->root.elf_link_hash_flags
6637 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6638 && ((p->d.h->root.elf_link_hash_flags
6639 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6640 {
6641 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6642 the various compatibility problems, it's easier to mock
6643 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6644 mips_elf_create_dynamic_relocation to calculate the
6645 appropriate addend. */
6646 Elf_Internal_Rela rel[3];
6647
6648 memset (rel, 0, sizeof (rel));
6649 if (ABI_64_P (output_bfd))
6650 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6651 else
6652 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6653 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6654
6655 entry = 0;
6656 if (! (mips_elf_create_dynamic_relocation
6657 (output_bfd, info, rel,
6658 e.d.h, NULL, sym->st_value, &entry, sgot)))
6659 return FALSE;
6660 }
6661 else
6662 entry = sym->st_value;
6663 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
6664 }
6665 }
6666 }
6667
6668 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6669 name = h->root.root.string;
6670 if (strcmp (name, "_DYNAMIC") == 0
6671 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6672 sym->st_shndx = SHN_ABS;
6673 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6674 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6675 {
6676 sym->st_shndx = SHN_ABS;
6677 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6678 sym->st_value = 1;
6679 }
6680 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6681 {
6682 sym->st_shndx = SHN_ABS;
6683 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6684 sym->st_value = elf_gp (output_bfd);
6685 }
6686 else if (SGI_COMPAT (output_bfd))
6687 {
6688 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6689 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6690 {
6691 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6692 sym->st_other = STO_PROTECTED;
6693 sym->st_value = 0;
6694 sym->st_shndx = SHN_MIPS_DATA;
6695 }
6696 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6697 {
6698 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6699 sym->st_other = STO_PROTECTED;
6700 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6701 sym->st_shndx = SHN_ABS;
6702 }
6703 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6704 {
6705 if (h->type == STT_FUNC)
6706 sym->st_shndx = SHN_MIPS_TEXT;
6707 else if (h->type == STT_OBJECT)
6708 sym->st_shndx = SHN_MIPS_DATA;
6709 }
6710 }
6711
6712 /* Handle the IRIX6-specific symbols. */
6713 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6714 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6715
6716 if (! info->shared)
6717 {
6718 if (! mips_elf_hash_table (info)->use_rld_obj_head
6719 && (strcmp (name, "__rld_map") == 0
6720 || strcmp (name, "__RLD_MAP") == 0))
6721 {
6722 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6723 BFD_ASSERT (s != NULL);
6724 sym->st_value = s->output_section->vma + s->output_offset;
6725 bfd_put_32 (output_bfd, 0, s->contents);
6726 if (mips_elf_hash_table (info)->rld_value == 0)
6727 mips_elf_hash_table (info)->rld_value = sym->st_value;
6728 }
6729 else if (mips_elf_hash_table (info)->use_rld_obj_head
6730 && strcmp (name, "__rld_obj_head") == 0)
6731 {
6732 /* IRIX6 does not use a .rld_map section. */
6733 if (IRIX_COMPAT (output_bfd) == ict_irix5
6734 || IRIX_COMPAT (output_bfd) == ict_none)
6735 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6736 != NULL);
6737 mips_elf_hash_table (info)->rld_value = sym->st_value;
6738 }
6739 }
6740
6741 /* If this is a mips16 symbol, force the value to be even. */
6742 if (sym->st_other == STO_MIPS16)
6743 sym->st_value &= ~1;
6744
6745 return TRUE;
6746 }
6747
6748 /* Finish up the dynamic sections. */
6749
6750 bfd_boolean
6751 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6752 struct bfd_link_info *info)
6753 {
6754 bfd *dynobj;
6755 asection *sdyn;
6756 asection *sgot;
6757 struct mips_got_info *gg, *g;
6758
6759 dynobj = elf_hash_table (info)->dynobj;
6760
6761 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6762
6763 sgot = mips_elf_got_section (dynobj, FALSE);
6764 if (sgot == NULL)
6765 gg = g = NULL;
6766 else
6767 {
6768 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6769 gg = mips_elf_section_data (sgot)->u.got_info;
6770 BFD_ASSERT (gg != NULL);
6771 g = mips_elf_got_for_ibfd (gg, output_bfd);
6772 BFD_ASSERT (g != NULL);
6773 }
6774
6775 if (elf_hash_table (info)->dynamic_sections_created)
6776 {
6777 bfd_byte *b;
6778
6779 BFD_ASSERT (sdyn != NULL);
6780 BFD_ASSERT (g != NULL);
6781
6782 for (b = sdyn->contents;
6783 b < sdyn->contents + sdyn->_raw_size;
6784 b += MIPS_ELF_DYN_SIZE (dynobj))
6785 {
6786 Elf_Internal_Dyn dyn;
6787 const char *name;
6788 size_t elemsize;
6789 asection *s;
6790 bfd_boolean swap_out_p;
6791
6792 /* Read in the current dynamic entry. */
6793 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6794
6795 /* Assume that we're going to modify it and write it out. */
6796 swap_out_p = TRUE;
6797
6798 switch (dyn.d_tag)
6799 {
6800 case DT_RELENT:
6801 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6802 BFD_ASSERT (s != NULL);
6803 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6804 break;
6805
6806 case DT_STRSZ:
6807 /* Rewrite DT_STRSZ. */
6808 dyn.d_un.d_val =
6809 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6810 break;
6811
6812 case DT_PLTGOT:
6813 name = ".got";
6814 s = bfd_get_section_by_name (output_bfd, name);
6815 BFD_ASSERT (s != NULL);
6816 dyn.d_un.d_ptr = s->vma;
6817 break;
6818
6819 case DT_MIPS_RLD_VERSION:
6820 dyn.d_un.d_val = 1; /* XXX */
6821 break;
6822
6823 case DT_MIPS_FLAGS:
6824 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6825 break;
6826
6827 case DT_MIPS_TIME_STAMP:
6828 time ((time_t *) &dyn.d_un.d_val);
6829 break;
6830
6831 case DT_MIPS_ICHECKSUM:
6832 /* XXX FIXME: */
6833 swap_out_p = FALSE;
6834 break;
6835
6836 case DT_MIPS_IVERSION:
6837 /* XXX FIXME: */
6838 swap_out_p = FALSE;
6839 break;
6840
6841 case DT_MIPS_BASE_ADDRESS:
6842 s = output_bfd->sections;
6843 BFD_ASSERT (s != NULL);
6844 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6845 break;
6846
6847 case DT_MIPS_LOCAL_GOTNO:
6848 dyn.d_un.d_val = g->local_gotno;
6849 break;
6850
6851 case DT_MIPS_UNREFEXTNO:
6852 /* The index into the dynamic symbol table which is the
6853 entry of the first external symbol that is not
6854 referenced within the same object. */
6855 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6856 break;
6857
6858 case DT_MIPS_GOTSYM:
6859 if (gg->global_gotsym)
6860 {
6861 dyn.d_un.d_val = gg->global_gotsym->dynindx;
6862 break;
6863 }
6864 /* In case if we don't have global got symbols we default
6865 to setting DT_MIPS_GOTSYM to the same value as
6866 DT_MIPS_SYMTABNO, so we just fall through. */
6867
6868 case DT_MIPS_SYMTABNO:
6869 name = ".dynsym";
6870 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6871 s = bfd_get_section_by_name (output_bfd, name);
6872 BFD_ASSERT (s != NULL);
6873
6874 if (s->_cooked_size != 0)
6875 dyn.d_un.d_val = s->_cooked_size / elemsize;
6876 else
6877 dyn.d_un.d_val = s->_raw_size / elemsize;
6878 break;
6879
6880 case DT_MIPS_HIPAGENO:
6881 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6882 break;
6883
6884 case DT_MIPS_RLD_MAP:
6885 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6886 break;
6887
6888 case DT_MIPS_OPTIONS:
6889 s = (bfd_get_section_by_name
6890 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6891 dyn.d_un.d_ptr = s->vma;
6892 break;
6893
6894 case DT_RELSZ:
6895 /* Reduce DT_RELSZ to account for any relocations we
6896 decided not to make. This is for the n64 irix rld,
6897 which doesn't seem to apply any relocations if there
6898 are trailing null entries. */
6899 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6900 dyn.d_un.d_val = (s->reloc_count
6901 * (ABI_64_P (output_bfd)
6902 ? sizeof (Elf64_Mips_External_Rel)
6903 : sizeof (Elf32_External_Rel)));
6904 break;
6905
6906 default:
6907 swap_out_p = FALSE;
6908 break;
6909 }
6910
6911 if (swap_out_p)
6912 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6913 (dynobj, &dyn, b);
6914 }
6915 }
6916
6917 /* The first entry of the global offset table will be filled at
6918 runtime. The second entry will be used by some runtime loaders.
6919 This isn't the case of IRIX rld. */
6920 if (sgot != NULL && sgot->_raw_size > 0)
6921 {
6922 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6923 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
6924 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6925 }
6926
6927 if (sgot != NULL)
6928 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6929 = MIPS_ELF_GOT_SIZE (output_bfd);
6930
6931 /* Generate dynamic relocations for the non-primary gots. */
6932 if (gg != NULL && gg->next)
6933 {
6934 Elf_Internal_Rela rel[3];
6935 bfd_vma addend = 0;
6936
6937 memset (rel, 0, sizeof (rel));
6938 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6939
6940 for (g = gg->next; g->next != gg; g = g->next)
6941 {
6942 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6943
6944 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
6945 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6946 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
6947 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6948
6949 if (! info->shared)
6950 continue;
6951
6952 while (index < g->assigned_gotno)
6953 {
6954 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6955 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6956 if (!(mips_elf_create_dynamic_relocation
6957 (output_bfd, info, rel, NULL,
6958 bfd_abs_section_ptr,
6959 0, &addend, sgot)))
6960 return FALSE;
6961 BFD_ASSERT (addend == 0);
6962 }
6963 }
6964 }
6965
6966 {
6967 asection *s;
6968 Elf32_compact_rel cpt;
6969
6970 if (SGI_COMPAT (output_bfd))
6971 {
6972 /* Write .compact_rel section out. */
6973 s = bfd_get_section_by_name (dynobj, ".compact_rel");
6974 if (s != NULL)
6975 {
6976 cpt.id1 = 1;
6977 cpt.num = s->reloc_count;
6978 cpt.id2 = 2;
6979 cpt.offset = (s->output_section->filepos
6980 + sizeof (Elf32_External_compact_rel));
6981 cpt.reserved0 = 0;
6982 cpt.reserved1 = 0;
6983 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
6984 ((Elf32_External_compact_rel *)
6985 s->contents));
6986
6987 /* Clean up a dummy stub function entry in .text. */
6988 s = bfd_get_section_by_name (dynobj,
6989 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6990 if (s != NULL)
6991 {
6992 file_ptr dummy_offset;
6993
6994 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
6995 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
6996 memset (s->contents + dummy_offset, 0,
6997 MIPS_FUNCTION_STUB_SIZE);
6998 }
6999 }
7000 }
7001
7002 /* We need to sort the entries of the dynamic relocation section. */
7003
7004 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7005
7006 if (s != NULL
7007 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7008 {
7009 reldyn_sorting_bfd = output_bfd;
7010
7011 if (ABI_64_P (output_bfd))
7012 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
7013 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7014 else
7015 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
7016 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7017 }
7018 }
7019
7020 return TRUE;
7021 }
7022
7023
7024 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7025
7026 static void
7027 mips_set_isa_flags (bfd *abfd)
7028 {
7029 flagword val;
7030
7031 switch (bfd_get_mach (abfd))
7032 {
7033 default:
7034 case bfd_mach_mips3000:
7035 val = E_MIPS_ARCH_1;
7036 break;
7037
7038 case bfd_mach_mips3900:
7039 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7040 break;
7041
7042 case bfd_mach_mips6000:
7043 val = E_MIPS_ARCH_2;
7044 break;
7045
7046 case bfd_mach_mips4000:
7047 case bfd_mach_mips4300:
7048 case bfd_mach_mips4400:
7049 case bfd_mach_mips4600:
7050 val = E_MIPS_ARCH_3;
7051 break;
7052
7053 case bfd_mach_mips4010:
7054 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7055 break;
7056
7057 case bfd_mach_mips4100:
7058 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7059 break;
7060
7061 case bfd_mach_mips4111:
7062 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7063 break;
7064
7065 case bfd_mach_mips4120:
7066 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7067 break;
7068
7069 case bfd_mach_mips4650:
7070 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7071 break;
7072
7073 case bfd_mach_mips5400:
7074 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7075 break;
7076
7077 case bfd_mach_mips5500:
7078 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7079 break;
7080
7081 case bfd_mach_mips5000:
7082 case bfd_mach_mips7000:
7083 case bfd_mach_mips8000:
7084 case bfd_mach_mips10000:
7085 case bfd_mach_mips12000:
7086 val = E_MIPS_ARCH_4;
7087 break;
7088
7089 case bfd_mach_mips5:
7090 val = E_MIPS_ARCH_5;
7091 break;
7092
7093 case bfd_mach_mips_sb1:
7094 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7095 break;
7096
7097 case bfd_mach_mipsisa32:
7098 val = E_MIPS_ARCH_32;
7099 break;
7100
7101 case bfd_mach_mipsisa64:
7102 val = E_MIPS_ARCH_64;
7103 break;
7104
7105 case bfd_mach_mipsisa32r2:
7106 val = E_MIPS_ARCH_32R2;
7107 break;
7108
7109 case bfd_mach_mipsisa64r2:
7110 val = E_MIPS_ARCH_64R2;
7111 break;
7112 }
7113 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7114 elf_elfheader (abfd)->e_flags |= val;
7115
7116 }
7117
7118
7119 /* The final processing done just before writing out a MIPS ELF object
7120 file. This gets the MIPS architecture right based on the machine
7121 number. This is used by both the 32-bit and the 64-bit ABI. */
7122
7123 void
7124 _bfd_mips_elf_final_write_processing (bfd *abfd,
7125 bfd_boolean linker ATTRIBUTE_UNUSED)
7126 {
7127 unsigned int i;
7128 Elf_Internal_Shdr **hdrpp;
7129 const char *name;
7130 asection *sec;
7131
7132 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7133 is nonzero. This is for compatibility with old objects, which used
7134 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7135 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7136 mips_set_isa_flags (abfd);
7137
7138 /* Set the sh_info field for .gptab sections and other appropriate
7139 info for each special section. */
7140 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7141 i < elf_numsections (abfd);
7142 i++, hdrpp++)
7143 {
7144 switch ((*hdrpp)->sh_type)
7145 {
7146 case SHT_MIPS_MSYM:
7147 case SHT_MIPS_LIBLIST:
7148 sec = bfd_get_section_by_name (abfd, ".dynstr");
7149 if (sec != NULL)
7150 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7151 break;
7152
7153 case SHT_MIPS_GPTAB:
7154 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7155 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7156 BFD_ASSERT (name != NULL
7157 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7158 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7159 BFD_ASSERT (sec != NULL);
7160 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7161 break;
7162
7163 case SHT_MIPS_CONTENT:
7164 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7165 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7166 BFD_ASSERT (name != NULL
7167 && strncmp (name, ".MIPS.content",
7168 sizeof ".MIPS.content" - 1) == 0);
7169 sec = bfd_get_section_by_name (abfd,
7170 name + sizeof ".MIPS.content" - 1);
7171 BFD_ASSERT (sec != NULL);
7172 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7173 break;
7174
7175 case SHT_MIPS_SYMBOL_LIB:
7176 sec = bfd_get_section_by_name (abfd, ".dynsym");
7177 if (sec != NULL)
7178 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7179 sec = bfd_get_section_by_name (abfd, ".liblist");
7180 if (sec != NULL)
7181 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7182 break;
7183
7184 case SHT_MIPS_EVENTS:
7185 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7186 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7187 BFD_ASSERT (name != NULL);
7188 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7189 sec = bfd_get_section_by_name (abfd,
7190 name + sizeof ".MIPS.events" - 1);
7191 else
7192 {
7193 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7194 sizeof ".MIPS.post_rel" - 1) == 0);
7195 sec = bfd_get_section_by_name (abfd,
7196 (name
7197 + sizeof ".MIPS.post_rel" - 1));
7198 }
7199 BFD_ASSERT (sec != NULL);
7200 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7201 break;
7202
7203 }
7204 }
7205 }
7206 \f
7207 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7208 segments. */
7209
7210 int
7211 _bfd_mips_elf_additional_program_headers (bfd *abfd)
7212 {
7213 asection *s;
7214 int ret = 0;
7215
7216 /* See if we need a PT_MIPS_REGINFO segment. */
7217 s = bfd_get_section_by_name (abfd, ".reginfo");
7218 if (s && (s->flags & SEC_LOAD))
7219 ++ret;
7220
7221 /* See if we need a PT_MIPS_OPTIONS segment. */
7222 if (IRIX_COMPAT (abfd) == ict_irix6
7223 && bfd_get_section_by_name (abfd,
7224 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7225 ++ret;
7226
7227 /* See if we need a PT_MIPS_RTPROC segment. */
7228 if (IRIX_COMPAT (abfd) == ict_irix5
7229 && bfd_get_section_by_name (abfd, ".dynamic")
7230 && bfd_get_section_by_name (abfd, ".mdebug"))
7231 ++ret;
7232
7233 return ret;
7234 }
7235
7236 /* Modify the segment map for an IRIX5 executable. */
7237
7238 bfd_boolean
7239 _bfd_mips_elf_modify_segment_map (bfd *abfd,
7240 struct bfd_link_info *info ATTRIBUTE_UNUSED)
7241 {
7242 asection *s;
7243 struct elf_segment_map *m, **pm;
7244 bfd_size_type amt;
7245
7246 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7247 segment. */
7248 s = bfd_get_section_by_name (abfd, ".reginfo");
7249 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7250 {
7251 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7252 if (m->p_type == PT_MIPS_REGINFO)
7253 break;
7254 if (m == NULL)
7255 {
7256 amt = sizeof *m;
7257 m = bfd_zalloc (abfd, amt);
7258 if (m == NULL)
7259 return FALSE;
7260
7261 m->p_type = PT_MIPS_REGINFO;
7262 m->count = 1;
7263 m->sections[0] = s;
7264
7265 /* We want to put it after the PHDR and INTERP segments. */
7266 pm = &elf_tdata (abfd)->segment_map;
7267 while (*pm != NULL
7268 && ((*pm)->p_type == PT_PHDR
7269 || (*pm)->p_type == PT_INTERP))
7270 pm = &(*pm)->next;
7271
7272 m->next = *pm;
7273 *pm = m;
7274 }
7275 }
7276
7277 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7278 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7279 PT_MIPS_OPTIONS segment immediately following the program header
7280 table. */
7281 if (NEWABI_P (abfd)
7282 /* On non-IRIX6 new abi, we'll have already created a segment
7283 for this section, so don't create another. I'm not sure this
7284 is not also the case for IRIX 6, but I can't test it right
7285 now. */
7286 && IRIX_COMPAT (abfd) == ict_irix6)
7287 {
7288 for (s = abfd->sections; s; s = s->next)
7289 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7290 break;
7291
7292 if (s)
7293 {
7294 struct elf_segment_map *options_segment;
7295
7296 pm = &elf_tdata (abfd)->segment_map;
7297 while (*pm != NULL
7298 && ((*pm)->p_type == PT_PHDR
7299 || (*pm)->p_type == PT_INTERP))
7300 pm = &(*pm)->next;
7301
7302 amt = sizeof (struct elf_segment_map);
7303 options_segment = bfd_zalloc (abfd, amt);
7304 options_segment->next = *pm;
7305 options_segment->p_type = PT_MIPS_OPTIONS;
7306 options_segment->p_flags = PF_R;
7307 options_segment->p_flags_valid = TRUE;
7308 options_segment->count = 1;
7309 options_segment->sections[0] = s;
7310 *pm = options_segment;
7311 }
7312 }
7313 else
7314 {
7315 if (IRIX_COMPAT (abfd) == ict_irix5)
7316 {
7317 /* If there are .dynamic and .mdebug sections, we make a room
7318 for the RTPROC header. FIXME: Rewrite without section names. */
7319 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7320 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7321 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7322 {
7323 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7324 if (m->p_type == PT_MIPS_RTPROC)
7325 break;
7326 if (m == NULL)
7327 {
7328 amt = sizeof *m;
7329 m = bfd_zalloc (abfd, amt);
7330 if (m == NULL)
7331 return FALSE;
7332
7333 m->p_type = PT_MIPS_RTPROC;
7334
7335 s = bfd_get_section_by_name (abfd, ".rtproc");
7336 if (s == NULL)
7337 {
7338 m->count = 0;
7339 m->p_flags = 0;
7340 m->p_flags_valid = 1;
7341 }
7342 else
7343 {
7344 m->count = 1;
7345 m->sections[0] = s;
7346 }
7347
7348 /* We want to put it after the DYNAMIC segment. */
7349 pm = &elf_tdata (abfd)->segment_map;
7350 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7351 pm = &(*pm)->next;
7352 if (*pm != NULL)
7353 pm = &(*pm)->next;
7354
7355 m->next = *pm;
7356 *pm = m;
7357 }
7358 }
7359 }
7360 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7361 .dynstr, .dynsym, and .hash sections, and everything in
7362 between. */
7363 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7364 pm = &(*pm)->next)
7365 if ((*pm)->p_type == PT_DYNAMIC)
7366 break;
7367 m = *pm;
7368 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7369 {
7370 /* For a normal mips executable the permissions for the PT_DYNAMIC
7371 segment are read, write and execute. We do that here since
7372 the code in elf.c sets only the read permission. This matters
7373 sometimes for the dynamic linker. */
7374 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7375 {
7376 m->p_flags = PF_R | PF_W | PF_X;
7377 m->p_flags_valid = 1;
7378 }
7379 }
7380 if (m != NULL
7381 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7382 {
7383 static const char *sec_names[] =
7384 {
7385 ".dynamic", ".dynstr", ".dynsym", ".hash"
7386 };
7387 bfd_vma low, high;
7388 unsigned int i, c;
7389 struct elf_segment_map *n;
7390
7391 low = ~(bfd_vma) 0;
7392 high = 0;
7393 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7394 {
7395 s = bfd_get_section_by_name (abfd, sec_names[i]);
7396 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7397 {
7398 bfd_size_type sz;
7399
7400 if (low > s->vma)
7401 low = s->vma;
7402 sz = s->_cooked_size;
7403 if (sz == 0)
7404 sz = s->_raw_size;
7405 if (high < s->vma + sz)
7406 high = s->vma + sz;
7407 }
7408 }
7409
7410 c = 0;
7411 for (s = abfd->sections; s != NULL; s = s->next)
7412 if ((s->flags & SEC_LOAD) != 0
7413 && s->vma >= low
7414 && ((s->vma
7415 + (s->_cooked_size !=
7416 0 ? s->_cooked_size : s->_raw_size)) <= high))
7417 ++c;
7418
7419 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7420 n = bfd_zalloc (abfd, amt);
7421 if (n == NULL)
7422 return FALSE;
7423 *n = *m;
7424 n->count = c;
7425
7426 i = 0;
7427 for (s = abfd->sections; s != NULL; s = s->next)
7428 {
7429 if ((s->flags & SEC_LOAD) != 0
7430 && s->vma >= low
7431 && ((s->vma
7432 + (s->_cooked_size != 0 ?
7433 s->_cooked_size : s->_raw_size)) <= high))
7434 {
7435 n->sections[i] = s;
7436 ++i;
7437 }
7438 }
7439
7440 *pm = n;
7441 }
7442 }
7443
7444 return TRUE;
7445 }
7446 \f
7447 /* Return the section that should be marked against GC for a given
7448 relocation. */
7449
7450 asection *
7451 _bfd_mips_elf_gc_mark_hook (asection *sec,
7452 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7453 Elf_Internal_Rela *rel,
7454 struct elf_link_hash_entry *h,
7455 Elf_Internal_Sym *sym)
7456 {
7457 /* ??? Do mips16 stub sections need to be handled special? */
7458
7459 if (h != NULL)
7460 {
7461 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7462 {
7463 case R_MIPS_GNU_VTINHERIT:
7464 case R_MIPS_GNU_VTENTRY:
7465 break;
7466
7467 default:
7468 switch (h->root.type)
7469 {
7470 case bfd_link_hash_defined:
7471 case bfd_link_hash_defweak:
7472 return h->root.u.def.section;
7473
7474 case bfd_link_hash_common:
7475 return h->root.u.c.p->section;
7476
7477 default:
7478 break;
7479 }
7480 }
7481 }
7482 else
7483 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7484
7485 return NULL;
7486 }
7487
7488 /* Update the got entry reference counts for the section being removed. */
7489
7490 bfd_boolean
7491 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7492 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7493 asection *sec ATTRIBUTE_UNUSED,
7494 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
7495 {
7496 #if 0
7497 Elf_Internal_Shdr *symtab_hdr;
7498 struct elf_link_hash_entry **sym_hashes;
7499 bfd_signed_vma *local_got_refcounts;
7500 const Elf_Internal_Rela *rel, *relend;
7501 unsigned long r_symndx;
7502 struct elf_link_hash_entry *h;
7503
7504 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7505 sym_hashes = elf_sym_hashes (abfd);
7506 local_got_refcounts = elf_local_got_refcounts (abfd);
7507
7508 relend = relocs + sec->reloc_count;
7509 for (rel = relocs; rel < relend; rel++)
7510 switch (ELF_R_TYPE (abfd, rel->r_info))
7511 {
7512 case R_MIPS_GOT16:
7513 case R_MIPS_CALL16:
7514 case R_MIPS_CALL_HI16:
7515 case R_MIPS_CALL_LO16:
7516 case R_MIPS_GOT_HI16:
7517 case R_MIPS_GOT_LO16:
7518 case R_MIPS_GOT_DISP:
7519 case R_MIPS_GOT_PAGE:
7520 case R_MIPS_GOT_OFST:
7521 /* ??? It would seem that the existing MIPS code does no sort
7522 of reference counting or whatnot on its GOT and PLT entries,
7523 so it is not possible to garbage collect them at this time. */
7524 break;
7525
7526 default:
7527 break;
7528 }
7529 #endif
7530
7531 return TRUE;
7532 }
7533 \f
7534 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7535 hiding the old indirect symbol. Process additional relocation
7536 information. Also called for weakdefs, in which case we just let
7537 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7538
7539 void
7540 _bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7541 struct elf_link_hash_entry *dir,
7542 struct elf_link_hash_entry *ind)
7543 {
7544 struct mips_elf_link_hash_entry *dirmips, *indmips;
7545
7546 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7547
7548 if (ind->root.type != bfd_link_hash_indirect)
7549 return;
7550
7551 dirmips = (struct mips_elf_link_hash_entry *) dir;
7552 indmips = (struct mips_elf_link_hash_entry *) ind;
7553 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7554 if (indmips->readonly_reloc)
7555 dirmips->readonly_reloc = TRUE;
7556 if (indmips->no_fn_stub)
7557 dirmips->no_fn_stub = TRUE;
7558 }
7559
7560 void
7561 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7562 struct elf_link_hash_entry *entry,
7563 bfd_boolean force_local)
7564 {
7565 bfd *dynobj;
7566 asection *got;
7567 struct mips_got_info *g;
7568 struct mips_elf_link_hash_entry *h;
7569
7570 h = (struct mips_elf_link_hash_entry *) entry;
7571 if (h->forced_local)
7572 return;
7573 h->forced_local = force_local;
7574
7575 dynobj = elf_hash_table (info)->dynobj;
7576 if (dynobj != NULL && force_local)
7577 {
7578 got = mips_elf_got_section (dynobj, FALSE);
7579 g = mips_elf_section_data (got)->u.got_info;
7580
7581 if (g->next)
7582 {
7583 struct mips_got_entry e;
7584 struct mips_got_info *gg = g;
7585
7586 /* Since we're turning what used to be a global symbol into a
7587 local one, bump up the number of local entries of each GOT
7588 that had an entry for it. This will automatically decrease
7589 the number of global entries, since global_gotno is actually
7590 the upper limit of global entries. */
7591 e.abfd = dynobj;
7592 e.symndx = -1;
7593 e.d.h = h;
7594
7595 for (g = g->next; g != gg; g = g->next)
7596 if (htab_find (g->got_entries, &e))
7597 {
7598 BFD_ASSERT (g->global_gotno > 0);
7599 g->local_gotno++;
7600 g->global_gotno--;
7601 }
7602
7603 /* If this was a global symbol forced into the primary GOT, we
7604 no longer need an entry for it. We can't release the entry
7605 at this point, but we must at least stop counting it as one
7606 of the symbols that required a forced got entry. */
7607 if (h->root.got.offset == 2)
7608 {
7609 BFD_ASSERT (gg->assigned_gotno > 0);
7610 gg->assigned_gotno--;
7611 }
7612 }
7613 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7614 /* If we haven't got through GOT allocation yet, just bump up the
7615 number of local entries, as this symbol won't be counted as
7616 global. */
7617 g->local_gotno++;
7618 else if (h->root.got.offset == 1)
7619 {
7620 /* If we're past non-multi-GOT allocation and this symbol had
7621 been marked for a global got entry, give it a local entry
7622 instead. */
7623 BFD_ASSERT (g->global_gotno > 0);
7624 g->local_gotno++;
7625 g->global_gotno--;
7626 }
7627 }
7628
7629 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7630 }
7631 \f
7632 #define PDR_SIZE 32
7633
7634 bfd_boolean
7635 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7636 struct bfd_link_info *info)
7637 {
7638 asection *o;
7639 bfd_boolean ret = FALSE;
7640 unsigned char *tdata;
7641 size_t i, skip;
7642
7643 o = bfd_get_section_by_name (abfd, ".pdr");
7644 if (! o)
7645 return FALSE;
7646 if (o->_raw_size == 0)
7647 return FALSE;
7648 if (o->_raw_size % PDR_SIZE != 0)
7649 return FALSE;
7650 if (o->output_section != NULL
7651 && bfd_is_abs_section (o->output_section))
7652 return FALSE;
7653
7654 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7655 if (! tdata)
7656 return FALSE;
7657
7658 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7659 info->keep_memory);
7660 if (!cookie->rels)
7661 {
7662 free (tdata);
7663 return FALSE;
7664 }
7665
7666 cookie->rel = cookie->rels;
7667 cookie->relend = cookie->rels + o->reloc_count;
7668
7669 for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++)
7670 {
7671 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
7672 {
7673 tdata[i] = 1;
7674 skip ++;
7675 }
7676 }
7677
7678 if (skip != 0)
7679 {
7680 mips_elf_section_data (o)->u.tdata = tdata;
7681 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
7682 ret = TRUE;
7683 }
7684 else
7685 free (tdata);
7686
7687 if (! info->keep_memory)
7688 free (cookie->rels);
7689
7690 return ret;
7691 }
7692
7693 bfd_boolean
7694 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
7695 {
7696 if (strcmp (sec->name, ".pdr") == 0)
7697 return TRUE;
7698 return FALSE;
7699 }
7700
7701 bfd_boolean
7702 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7703 bfd_byte *contents)
7704 {
7705 bfd_byte *to, *from, *end;
7706 int i;
7707
7708 if (strcmp (sec->name, ".pdr") != 0)
7709 return FALSE;
7710
7711 if (mips_elf_section_data (sec)->u.tdata == NULL)
7712 return FALSE;
7713
7714 to = contents;
7715 end = contents + sec->_raw_size;
7716 for (from = contents, i = 0;
7717 from < end;
7718 from += PDR_SIZE, i++)
7719 {
7720 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7721 continue;
7722 if (to != from)
7723 memcpy (to, from, PDR_SIZE);
7724 to += PDR_SIZE;
7725 }
7726 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7727 sec->output_offset, sec->_cooked_size);
7728 return TRUE;
7729 }
7730 \f
7731 /* MIPS ELF uses a special find_nearest_line routine in order the
7732 handle the ECOFF debugging information. */
7733
7734 struct mips_elf_find_line
7735 {
7736 struct ecoff_debug_info d;
7737 struct ecoff_find_line i;
7738 };
7739
7740 bfd_boolean
7741 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7742 asymbol **symbols, bfd_vma offset,
7743 const char **filename_ptr,
7744 const char **functionname_ptr,
7745 unsigned int *line_ptr)
7746 {
7747 asection *msec;
7748
7749 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7750 filename_ptr, functionname_ptr,
7751 line_ptr))
7752 return TRUE;
7753
7754 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7755 filename_ptr, functionname_ptr,
7756 line_ptr, ABI_64_P (abfd) ? 8 : 0,
7757 &elf_tdata (abfd)->dwarf2_find_line_info))
7758 return TRUE;
7759
7760 msec = bfd_get_section_by_name (abfd, ".mdebug");
7761 if (msec != NULL)
7762 {
7763 flagword origflags;
7764 struct mips_elf_find_line *fi;
7765 const struct ecoff_debug_swap * const swap =
7766 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7767
7768 /* If we are called during a link, mips_elf_final_link may have
7769 cleared the SEC_HAS_CONTENTS field. We force it back on here
7770 if appropriate (which it normally will be). */
7771 origflags = msec->flags;
7772 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7773 msec->flags |= SEC_HAS_CONTENTS;
7774
7775 fi = elf_tdata (abfd)->find_line_info;
7776 if (fi == NULL)
7777 {
7778 bfd_size_type external_fdr_size;
7779 char *fraw_src;
7780 char *fraw_end;
7781 struct fdr *fdr_ptr;
7782 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7783
7784 fi = bfd_zalloc (abfd, amt);
7785 if (fi == NULL)
7786 {
7787 msec->flags = origflags;
7788 return FALSE;
7789 }
7790
7791 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7792 {
7793 msec->flags = origflags;
7794 return FALSE;
7795 }
7796
7797 /* Swap in the FDR information. */
7798 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7799 fi->d.fdr = bfd_alloc (abfd, amt);
7800 if (fi->d.fdr == NULL)
7801 {
7802 msec->flags = origflags;
7803 return FALSE;
7804 }
7805 external_fdr_size = swap->external_fdr_size;
7806 fdr_ptr = fi->d.fdr;
7807 fraw_src = (char *) fi->d.external_fdr;
7808 fraw_end = (fraw_src
7809 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7810 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7811 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
7812
7813 elf_tdata (abfd)->find_line_info = fi;
7814
7815 /* Note that we don't bother to ever free this information.
7816 find_nearest_line is either called all the time, as in
7817 objdump -l, so the information should be saved, or it is
7818 rarely called, as in ld error messages, so the memory
7819 wasted is unimportant. Still, it would probably be a
7820 good idea for free_cached_info to throw it away. */
7821 }
7822
7823 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7824 &fi->i, filename_ptr, functionname_ptr,
7825 line_ptr))
7826 {
7827 msec->flags = origflags;
7828 return TRUE;
7829 }
7830
7831 msec->flags = origflags;
7832 }
7833
7834 /* Fall back on the generic ELF find_nearest_line routine. */
7835
7836 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7837 filename_ptr, functionname_ptr,
7838 line_ptr);
7839 }
7840 \f
7841 /* When are writing out the .options or .MIPS.options section,
7842 remember the bytes we are writing out, so that we can install the
7843 GP value in the section_processing routine. */
7844
7845 bfd_boolean
7846 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7847 const void *location,
7848 file_ptr offset, bfd_size_type count)
7849 {
7850 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7851 {
7852 bfd_byte *c;
7853
7854 if (elf_section_data (section) == NULL)
7855 {
7856 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7857 section->used_by_bfd = bfd_zalloc (abfd, amt);
7858 if (elf_section_data (section) == NULL)
7859 return FALSE;
7860 }
7861 c = mips_elf_section_data (section)->u.tdata;
7862 if (c == NULL)
7863 {
7864 bfd_size_type size;
7865
7866 if (section->_cooked_size != 0)
7867 size = section->_cooked_size;
7868 else
7869 size = section->_raw_size;
7870 c = bfd_zalloc (abfd, size);
7871 if (c == NULL)
7872 return FALSE;
7873 mips_elf_section_data (section)->u.tdata = c;
7874 }
7875
7876 memcpy (c + offset, location, count);
7877 }
7878
7879 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7880 count);
7881 }
7882
7883 /* This is almost identical to bfd_generic_get_... except that some
7884 MIPS relocations need to be handled specially. Sigh. */
7885
7886 bfd_byte *
7887 _bfd_elf_mips_get_relocated_section_contents
7888 (bfd *abfd,
7889 struct bfd_link_info *link_info,
7890 struct bfd_link_order *link_order,
7891 bfd_byte *data,
7892 bfd_boolean relocatable,
7893 asymbol **symbols)
7894 {
7895 /* Get enough memory to hold the stuff */
7896 bfd *input_bfd = link_order->u.indirect.section->owner;
7897 asection *input_section = link_order->u.indirect.section;
7898
7899 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7900 arelent **reloc_vector = NULL;
7901 long reloc_count;
7902
7903 if (reloc_size < 0)
7904 goto error_return;
7905
7906 reloc_vector = bfd_malloc (reloc_size);
7907 if (reloc_vector == NULL && reloc_size != 0)
7908 goto error_return;
7909
7910 /* read in the section */
7911 if (!bfd_get_section_contents (input_bfd, input_section, data, 0,
7912 input_section->_raw_size))
7913 goto error_return;
7914
7915 /* We're not relaxing the section, so just copy the size info */
7916 input_section->_cooked_size = input_section->_raw_size;
7917 input_section->reloc_done = TRUE;
7918
7919 reloc_count = bfd_canonicalize_reloc (input_bfd,
7920 input_section,
7921 reloc_vector,
7922 symbols);
7923 if (reloc_count < 0)
7924 goto error_return;
7925
7926 if (reloc_count > 0)
7927 {
7928 arelent **parent;
7929 /* for mips */
7930 int gp_found;
7931 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7932
7933 {
7934 struct bfd_hash_entry *h;
7935 struct bfd_link_hash_entry *lh;
7936 /* Skip all this stuff if we aren't mixing formats. */
7937 if (abfd && input_bfd
7938 && abfd->xvec == input_bfd->xvec)
7939 lh = 0;
7940 else
7941 {
7942 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
7943 lh = (struct bfd_link_hash_entry *) h;
7944 }
7945 lookup:
7946 if (lh)
7947 {
7948 switch (lh->type)
7949 {
7950 case bfd_link_hash_undefined:
7951 case bfd_link_hash_undefweak:
7952 case bfd_link_hash_common:
7953 gp_found = 0;
7954 break;
7955 case bfd_link_hash_defined:
7956 case bfd_link_hash_defweak:
7957 gp_found = 1;
7958 gp = lh->u.def.value;
7959 break;
7960 case bfd_link_hash_indirect:
7961 case bfd_link_hash_warning:
7962 lh = lh->u.i.link;
7963 /* @@FIXME ignoring warning for now */
7964 goto lookup;
7965 case bfd_link_hash_new:
7966 default:
7967 abort ();
7968 }
7969 }
7970 else
7971 gp_found = 0;
7972 }
7973 /* end mips */
7974 for (parent = reloc_vector; *parent != NULL; parent++)
7975 {
7976 char *error_message = NULL;
7977 bfd_reloc_status_type r;
7978
7979 /* Specific to MIPS: Deal with relocation types that require
7980 knowing the gp of the output bfd. */
7981 asymbol *sym = *(*parent)->sym_ptr_ptr;
7982 if (bfd_is_abs_section (sym->section) && abfd)
7983 {
7984 /* The special_function wouldn't get called anyway. */
7985 }
7986 else if (!gp_found)
7987 {
7988 /* The gp isn't there; let the special function code
7989 fall over on its own. */
7990 }
7991 else if ((*parent)->howto->special_function
7992 == _bfd_mips_elf32_gprel16_reloc)
7993 {
7994 /* bypass special_function call */
7995 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
7996 input_section, relocatable,
7997 data, gp);
7998 goto skip_bfd_perform_relocation;
7999 }
8000 /* end mips specific stuff */
8001
8002 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
8003 relocatable ? abfd : NULL,
8004 &error_message);
8005 skip_bfd_perform_relocation:
8006
8007 if (relocatable)
8008 {
8009 asection *os = input_section->output_section;
8010
8011 /* A partial link, so keep the relocs */
8012 os->orelocation[os->reloc_count] = *parent;
8013 os->reloc_count++;
8014 }
8015
8016 if (r != bfd_reloc_ok)
8017 {
8018 switch (r)
8019 {
8020 case bfd_reloc_undefined:
8021 if (!((*link_info->callbacks->undefined_symbol)
8022 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8023 input_bfd, input_section, (*parent)->address,
8024 TRUE)))
8025 goto error_return;
8026 break;
8027 case bfd_reloc_dangerous:
8028 BFD_ASSERT (error_message != NULL);
8029 if (!((*link_info->callbacks->reloc_dangerous)
8030 (link_info, error_message, input_bfd, input_section,
8031 (*parent)->address)))
8032 goto error_return;
8033 break;
8034 case bfd_reloc_overflow:
8035 if (!((*link_info->callbacks->reloc_overflow)
8036 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8037 (*parent)->howto->name, (*parent)->addend,
8038 input_bfd, input_section, (*parent)->address)))
8039 goto error_return;
8040 break;
8041 case bfd_reloc_outofrange:
8042 default:
8043 abort ();
8044 break;
8045 }
8046
8047 }
8048 }
8049 }
8050 if (reloc_vector != NULL)
8051 free (reloc_vector);
8052 return data;
8053
8054 error_return:
8055 if (reloc_vector != NULL)
8056 free (reloc_vector);
8057 return NULL;
8058 }
8059 \f
8060 /* Create a MIPS ELF linker hash table. */
8061
8062 struct bfd_link_hash_table *
8063 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
8064 {
8065 struct mips_elf_link_hash_table *ret;
8066 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8067
8068 ret = bfd_malloc (amt);
8069 if (ret == NULL)
8070 return NULL;
8071
8072 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8073 mips_elf_link_hash_newfunc))
8074 {
8075 free (ret);
8076 return NULL;
8077 }
8078
8079 #if 0
8080 /* We no longer use this. */
8081 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8082 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8083 #endif
8084 ret->procedure_count = 0;
8085 ret->compact_rel_size = 0;
8086 ret->use_rld_obj_head = FALSE;
8087 ret->rld_value = 0;
8088 ret->mips16_stubs_seen = FALSE;
8089
8090 return &ret->root.root;
8091 }
8092 \f
8093 /* We need to use a special link routine to handle the .reginfo and
8094 the .mdebug sections. We need to merge all instances of these
8095 sections together, not write them all out sequentially. */
8096
8097 bfd_boolean
8098 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
8099 {
8100 asection **secpp;
8101 asection *o;
8102 struct bfd_link_order *p;
8103 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8104 asection *rtproc_sec;
8105 Elf32_RegInfo reginfo;
8106 struct ecoff_debug_info debug;
8107 const struct ecoff_debug_swap *swap
8108 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8109 HDRR *symhdr = &debug.symbolic_header;
8110 void *mdebug_handle = NULL;
8111 asection *s;
8112 EXTR esym;
8113 unsigned int i;
8114 bfd_size_type amt;
8115
8116 static const char * const secname[] =
8117 {
8118 ".text", ".init", ".fini", ".data",
8119 ".rodata", ".sdata", ".sbss", ".bss"
8120 };
8121 static const int sc[] =
8122 {
8123 scText, scInit, scFini, scData,
8124 scRData, scSData, scSBss, scBss
8125 };
8126
8127 /* We'd carefully arranged the dynamic symbol indices, and then the
8128 generic size_dynamic_sections renumbered them out from under us.
8129 Rather than trying somehow to prevent the renumbering, just do
8130 the sort again. */
8131 if (elf_hash_table (info)->dynamic_sections_created)
8132 {
8133 bfd *dynobj;
8134 asection *got;
8135 struct mips_got_info *g;
8136
8137 /* When we resort, we must tell mips_elf_sort_hash_table what
8138 the lowest index it may use is. That's the number of section
8139 symbols we're going to add. The generic ELF linker only
8140 adds these symbols when building a shared object. Note that
8141 we count the sections after (possibly) removing the .options
8142 section above. */
8143 if (! mips_elf_sort_hash_table (info, (info->shared
8144 ? bfd_count_sections (abfd) + 1
8145 : 1)))
8146 return FALSE;
8147
8148 /* Make sure we didn't grow the global .got region. */
8149 dynobj = elf_hash_table (info)->dynobj;
8150 got = mips_elf_got_section (dynobj, FALSE);
8151 g = mips_elf_section_data (got)->u.got_info;
8152
8153 if (g->global_gotsym != NULL)
8154 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8155 - g->global_gotsym->dynindx)
8156 <= g->global_gotno);
8157 }
8158
8159 #if 0
8160 /* We want to set the GP value for ld -r. */
8161 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8162 include it, even though we don't process it quite right. (Some
8163 entries are supposed to be merged.) Empirically, we seem to be
8164 better off including it then not. */
8165 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8166 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8167 {
8168 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8169 {
8170 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8171 if (p->type == bfd_indirect_link_order)
8172 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8173 (*secpp)->link_order_head = NULL;
8174 bfd_section_list_remove (abfd, secpp);
8175 --abfd->section_count;
8176
8177 break;
8178 }
8179 }
8180
8181 /* We include .MIPS.options, even though we don't process it quite right.
8182 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8183 to be better off including it than not. */
8184 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8185 {
8186 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8187 {
8188 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8189 if (p->type == bfd_indirect_link_order)
8190 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8191 (*secpp)->link_order_head = NULL;
8192 bfd_section_list_remove (abfd, secpp);
8193 --abfd->section_count;
8194
8195 break;
8196 }
8197 }
8198 #endif
8199
8200 /* Get a value for the GP register. */
8201 if (elf_gp (abfd) == 0)
8202 {
8203 struct bfd_link_hash_entry *h;
8204
8205 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8206 if (h != NULL && h->type == bfd_link_hash_defined)
8207 elf_gp (abfd) = (h->u.def.value
8208 + h->u.def.section->output_section->vma
8209 + h->u.def.section->output_offset);
8210 else if (info->relocatable)
8211 {
8212 bfd_vma lo = MINUS_ONE;
8213
8214 /* Find the GP-relative section with the lowest offset. */
8215 for (o = abfd->sections; o != NULL; o = o->next)
8216 if (o->vma < lo
8217 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8218 lo = o->vma;
8219
8220 /* And calculate GP relative to that. */
8221 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8222 }
8223 else
8224 {
8225 /* If the relocate_section function needs to do a reloc
8226 involving the GP value, it should make a reloc_dangerous
8227 callback to warn that GP is not defined. */
8228 }
8229 }
8230
8231 /* Go through the sections and collect the .reginfo and .mdebug
8232 information. */
8233 reginfo_sec = NULL;
8234 mdebug_sec = NULL;
8235 gptab_data_sec = NULL;
8236 gptab_bss_sec = NULL;
8237 for (o = abfd->sections; o != NULL; o = o->next)
8238 {
8239 if (strcmp (o->name, ".reginfo") == 0)
8240 {
8241 memset (&reginfo, 0, sizeof reginfo);
8242
8243 /* We have found the .reginfo section in the output file.
8244 Look through all the link_orders comprising it and merge
8245 the information together. */
8246 for (p = o->link_order_head; p != NULL; p = p->next)
8247 {
8248 asection *input_section;
8249 bfd *input_bfd;
8250 Elf32_External_RegInfo ext;
8251 Elf32_RegInfo sub;
8252
8253 if (p->type != bfd_indirect_link_order)
8254 {
8255 if (p->type == bfd_data_link_order)
8256 continue;
8257 abort ();
8258 }
8259
8260 input_section = p->u.indirect.section;
8261 input_bfd = input_section->owner;
8262
8263 /* The linker emulation code has probably clobbered the
8264 size to be zero bytes. */
8265 if (input_section->_raw_size == 0)
8266 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8267
8268 if (! bfd_get_section_contents (input_bfd, input_section,
8269 &ext, 0, sizeof ext))
8270 return FALSE;
8271
8272 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8273
8274 reginfo.ri_gprmask |= sub.ri_gprmask;
8275 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8276 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8277 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8278 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8279
8280 /* ri_gp_value is set by the function
8281 mips_elf32_section_processing when the section is
8282 finally written out. */
8283
8284 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8285 elf_link_input_bfd ignores this section. */
8286 input_section->flags &= ~SEC_HAS_CONTENTS;
8287 }
8288
8289 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8290 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8291
8292 /* Skip this section later on (I don't think this currently
8293 matters, but someday it might). */
8294 o->link_order_head = NULL;
8295
8296 reginfo_sec = o;
8297 }
8298
8299 if (strcmp (o->name, ".mdebug") == 0)
8300 {
8301 struct extsym_info einfo;
8302 bfd_vma last;
8303
8304 /* We have found the .mdebug section in the output file.
8305 Look through all the link_orders comprising it and merge
8306 the information together. */
8307 symhdr->magic = swap->sym_magic;
8308 /* FIXME: What should the version stamp be? */
8309 symhdr->vstamp = 0;
8310 symhdr->ilineMax = 0;
8311 symhdr->cbLine = 0;
8312 symhdr->idnMax = 0;
8313 symhdr->ipdMax = 0;
8314 symhdr->isymMax = 0;
8315 symhdr->ioptMax = 0;
8316 symhdr->iauxMax = 0;
8317 symhdr->issMax = 0;
8318 symhdr->issExtMax = 0;
8319 symhdr->ifdMax = 0;
8320 symhdr->crfd = 0;
8321 symhdr->iextMax = 0;
8322
8323 /* We accumulate the debugging information itself in the
8324 debug_info structure. */
8325 debug.line = NULL;
8326 debug.external_dnr = NULL;
8327 debug.external_pdr = NULL;
8328 debug.external_sym = NULL;
8329 debug.external_opt = NULL;
8330 debug.external_aux = NULL;
8331 debug.ss = NULL;
8332 debug.ssext = debug.ssext_end = NULL;
8333 debug.external_fdr = NULL;
8334 debug.external_rfd = NULL;
8335 debug.external_ext = debug.external_ext_end = NULL;
8336
8337 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8338 if (mdebug_handle == NULL)
8339 return FALSE;
8340
8341 esym.jmptbl = 0;
8342 esym.cobol_main = 0;
8343 esym.weakext = 0;
8344 esym.reserved = 0;
8345 esym.ifd = ifdNil;
8346 esym.asym.iss = issNil;
8347 esym.asym.st = stLocal;
8348 esym.asym.reserved = 0;
8349 esym.asym.index = indexNil;
8350 last = 0;
8351 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8352 {
8353 esym.asym.sc = sc[i];
8354 s = bfd_get_section_by_name (abfd, secname[i]);
8355 if (s != NULL)
8356 {
8357 esym.asym.value = s->vma;
8358 last = s->vma + s->_raw_size;
8359 }
8360 else
8361 esym.asym.value = last;
8362 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8363 secname[i], &esym))
8364 return FALSE;
8365 }
8366
8367 for (p = o->link_order_head; p != NULL; p = p->next)
8368 {
8369 asection *input_section;
8370 bfd *input_bfd;
8371 const struct ecoff_debug_swap *input_swap;
8372 struct ecoff_debug_info input_debug;
8373 char *eraw_src;
8374 char *eraw_end;
8375
8376 if (p->type != bfd_indirect_link_order)
8377 {
8378 if (p->type == bfd_data_link_order)
8379 continue;
8380 abort ();
8381 }
8382
8383 input_section = p->u.indirect.section;
8384 input_bfd = input_section->owner;
8385
8386 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8387 || (get_elf_backend_data (input_bfd)
8388 ->elf_backend_ecoff_debug_swap) == NULL)
8389 {
8390 /* I don't know what a non MIPS ELF bfd would be
8391 doing with a .mdebug section, but I don't really
8392 want to deal with it. */
8393 continue;
8394 }
8395
8396 input_swap = (get_elf_backend_data (input_bfd)
8397 ->elf_backend_ecoff_debug_swap);
8398
8399 BFD_ASSERT (p->size == input_section->_raw_size);
8400
8401 /* The ECOFF linking code expects that we have already
8402 read in the debugging information and set up an
8403 ecoff_debug_info structure, so we do that now. */
8404 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8405 &input_debug))
8406 return FALSE;
8407
8408 if (! (bfd_ecoff_debug_accumulate
8409 (mdebug_handle, abfd, &debug, swap, input_bfd,
8410 &input_debug, input_swap, info)))
8411 return FALSE;
8412
8413 /* Loop through the external symbols. For each one with
8414 interesting information, try to find the symbol in
8415 the linker global hash table and save the information
8416 for the output external symbols. */
8417 eraw_src = input_debug.external_ext;
8418 eraw_end = (eraw_src
8419 + (input_debug.symbolic_header.iextMax
8420 * input_swap->external_ext_size));
8421 for (;
8422 eraw_src < eraw_end;
8423 eraw_src += input_swap->external_ext_size)
8424 {
8425 EXTR ext;
8426 const char *name;
8427 struct mips_elf_link_hash_entry *h;
8428
8429 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
8430 if (ext.asym.sc == scNil
8431 || ext.asym.sc == scUndefined
8432 || ext.asym.sc == scSUndefined)
8433 continue;
8434
8435 name = input_debug.ssext + ext.asym.iss;
8436 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8437 name, FALSE, FALSE, TRUE);
8438 if (h == NULL || h->esym.ifd != -2)
8439 continue;
8440
8441 if (ext.ifd != -1)
8442 {
8443 BFD_ASSERT (ext.ifd
8444 < input_debug.symbolic_header.ifdMax);
8445 ext.ifd = input_debug.ifdmap[ext.ifd];
8446 }
8447
8448 h->esym = ext;
8449 }
8450
8451 /* Free up the information we just read. */
8452 free (input_debug.line);
8453 free (input_debug.external_dnr);
8454 free (input_debug.external_pdr);
8455 free (input_debug.external_sym);
8456 free (input_debug.external_opt);
8457 free (input_debug.external_aux);
8458 free (input_debug.ss);
8459 free (input_debug.ssext);
8460 free (input_debug.external_fdr);
8461 free (input_debug.external_rfd);
8462 free (input_debug.external_ext);
8463
8464 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8465 elf_link_input_bfd ignores this section. */
8466 input_section->flags &= ~SEC_HAS_CONTENTS;
8467 }
8468
8469 if (SGI_COMPAT (abfd) && info->shared)
8470 {
8471 /* Create .rtproc section. */
8472 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8473 if (rtproc_sec == NULL)
8474 {
8475 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8476 | SEC_LINKER_CREATED | SEC_READONLY);
8477
8478 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8479 if (rtproc_sec == NULL
8480 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8481 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8482 return FALSE;
8483 }
8484
8485 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8486 info, rtproc_sec,
8487 &debug))
8488 return FALSE;
8489 }
8490
8491 /* Build the external symbol information. */
8492 einfo.abfd = abfd;
8493 einfo.info = info;
8494 einfo.debug = &debug;
8495 einfo.swap = swap;
8496 einfo.failed = FALSE;
8497 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8498 mips_elf_output_extsym, &einfo);
8499 if (einfo.failed)
8500 return FALSE;
8501
8502 /* Set the size of the .mdebug section. */
8503 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8504
8505 /* Skip this section later on (I don't think this currently
8506 matters, but someday it might). */
8507 o->link_order_head = NULL;
8508
8509 mdebug_sec = o;
8510 }
8511
8512 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8513 {
8514 const char *subname;
8515 unsigned int c;
8516 Elf32_gptab *tab;
8517 Elf32_External_gptab *ext_tab;
8518 unsigned int j;
8519
8520 /* The .gptab.sdata and .gptab.sbss sections hold
8521 information describing how the small data area would
8522 change depending upon the -G switch. These sections
8523 not used in executables files. */
8524 if (! info->relocatable)
8525 {
8526 for (p = o->link_order_head; p != NULL; p = p->next)
8527 {
8528 asection *input_section;
8529
8530 if (p->type != bfd_indirect_link_order)
8531 {
8532 if (p->type == bfd_data_link_order)
8533 continue;
8534 abort ();
8535 }
8536
8537 input_section = p->u.indirect.section;
8538
8539 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8540 elf_link_input_bfd ignores this section. */
8541 input_section->flags &= ~SEC_HAS_CONTENTS;
8542 }
8543
8544 /* Skip this section later on (I don't think this
8545 currently matters, but someday it might). */
8546 o->link_order_head = NULL;
8547
8548 /* Really remove the section. */
8549 for (secpp = &abfd->sections;
8550 *secpp != o;
8551 secpp = &(*secpp)->next)
8552 ;
8553 bfd_section_list_remove (abfd, secpp);
8554 --abfd->section_count;
8555
8556 continue;
8557 }
8558
8559 /* There is one gptab for initialized data, and one for
8560 uninitialized data. */
8561 if (strcmp (o->name, ".gptab.sdata") == 0)
8562 gptab_data_sec = o;
8563 else if (strcmp (o->name, ".gptab.sbss") == 0)
8564 gptab_bss_sec = o;
8565 else
8566 {
8567 (*_bfd_error_handler)
8568 (_("%s: illegal section name `%s'"),
8569 bfd_get_filename (abfd), o->name);
8570 bfd_set_error (bfd_error_nonrepresentable_section);
8571 return FALSE;
8572 }
8573
8574 /* The linker script always combines .gptab.data and
8575 .gptab.sdata into .gptab.sdata, and likewise for
8576 .gptab.bss and .gptab.sbss. It is possible that there is
8577 no .sdata or .sbss section in the output file, in which
8578 case we must change the name of the output section. */
8579 subname = o->name + sizeof ".gptab" - 1;
8580 if (bfd_get_section_by_name (abfd, subname) == NULL)
8581 {
8582 if (o == gptab_data_sec)
8583 o->name = ".gptab.data";
8584 else
8585 o->name = ".gptab.bss";
8586 subname = o->name + sizeof ".gptab" - 1;
8587 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8588 }
8589
8590 /* Set up the first entry. */
8591 c = 1;
8592 amt = c * sizeof (Elf32_gptab);
8593 tab = bfd_malloc (amt);
8594 if (tab == NULL)
8595 return FALSE;
8596 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8597 tab[0].gt_header.gt_unused = 0;
8598
8599 /* Combine the input sections. */
8600 for (p = o->link_order_head; p != NULL; p = p->next)
8601 {
8602 asection *input_section;
8603 bfd *input_bfd;
8604 bfd_size_type size;
8605 unsigned long last;
8606 bfd_size_type gpentry;
8607
8608 if (p->type != bfd_indirect_link_order)
8609 {
8610 if (p->type == bfd_data_link_order)
8611 continue;
8612 abort ();
8613 }
8614
8615 input_section = p->u.indirect.section;
8616 input_bfd = input_section->owner;
8617
8618 /* Combine the gptab entries for this input section one
8619 by one. We know that the input gptab entries are
8620 sorted by ascending -G value. */
8621 size = bfd_section_size (input_bfd, input_section);
8622 last = 0;
8623 for (gpentry = sizeof (Elf32_External_gptab);
8624 gpentry < size;
8625 gpentry += sizeof (Elf32_External_gptab))
8626 {
8627 Elf32_External_gptab ext_gptab;
8628 Elf32_gptab int_gptab;
8629 unsigned long val;
8630 unsigned long add;
8631 bfd_boolean exact;
8632 unsigned int look;
8633
8634 if (! (bfd_get_section_contents
8635 (input_bfd, input_section, &ext_gptab, gpentry,
8636 sizeof (Elf32_External_gptab))))
8637 {
8638 free (tab);
8639 return FALSE;
8640 }
8641
8642 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8643 &int_gptab);
8644 val = int_gptab.gt_entry.gt_g_value;
8645 add = int_gptab.gt_entry.gt_bytes - last;
8646
8647 exact = FALSE;
8648 for (look = 1; look < c; look++)
8649 {
8650 if (tab[look].gt_entry.gt_g_value >= val)
8651 tab[look].gt_entry.gt_bytes += add;
8652
8653 if (tab[look].gt_entry.gt_g_value == val)
8654 exact = TRUE;
8655 }
8656
8657 if (! exact)
8658 {
8659 Elf32_gptab *new_tab;
8660 unsigned int max;
8661
8662 /* We need a new table entry. */
8663 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8664 new_tab = bfd_realloc (tab, amt);
8665 if (new_tab == NULL)
8666 {
8667 free (tab);
8668 return FALSE;
8669 }
8670 tab = new_tab;
8671 tab[c].gt_entry.gt_g_value = val;
8672 tab[c].gt_entry.gt_bytes = add;
8673
8674 /* Merge in the size for the next smallest -G
8675 value, since that will be implied by this new
8676 value. */
8677 max = 0;
8678 for (look = 1; look < c; look++)
8679 {
8680 if (tab[look].gt_entry.gt_g_value < val
8681 && (max == 0
8682 || (tab[look].gt_entry.gt_g_value
8683 > tab[max].gt_entry.gt_g_value)))
8684 max = look;
8685 }
8686 if (max != 0)
8687 tab[c].gt_entry.gt_bytes +=
8688 tab[max].gt_entry.gt_bytes;
8689
8690 ++c;
8691 }
8692
8693 last = int_gptab.gt_entry.gt_bytes;
8694 }
8695
8696 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8697 elf_link_input_bfd ignores this section. */
8698 input_section->flags &= ~SEC_HAS_CONTENTS;
8699 }
8700
8701 /* The table must be sorted by -G value. */
8702 if (c > 2)
8703 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8704
8705 /* Swap out the table. */
8706 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8707 ext_tab = bfd_alloc (abfd, amt);
8708 if (ext_tab == NULL)
8709 {
8710 free (tab);
8711 return FALSE;
8712 }
8713
8714 for (j = 0; j < c; j++)
8715 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8716 free (tab);
8717
8718 o->_raw_size = c * sizeof (Elf32_External_gptab);
8719 o->contents = (bfd_byte *) ext_tab;
8720
8721 /* Skip this section later on (I don't think this currently
8722 matters, but someday it might). */
8723 o->link_order_head = NULL;
8724 }
8725 }
8726
8727 /* Invoke the regular ELF backend linker to do all the work. */
8728 if (!bfd_elf_final_link (abfd, info))
8729 return FALSE;
8730
8731 /* Now write out the computed sections. */
8732
8733 if (reginfo_sec != NULL)
8734 {
8735 Elf32_External_RegInfo ext;
8736
8737 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8738 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
8739 return FALSE;
8740 }
8741
8742 if (mdebug_sec != NULL)
8743 {
8744 BFD_ASSERT (abfd->output_has_begun);
8745 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8746 swap, info,
8747 mdebug_sec->filepos))
8748 return FALSE;
8749
8750 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8751 }
8752
8753 if (gptab_data_sec != NULL)
8754 {
8755 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8756 gptab_data_sec->contents,
8757 0, gptab_data_sec->_raw_size))
8758 return FALSE;
8759 }
8760
8761 if (gptab_bss_sec != NULL)
8762 {
8763 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8764 gptab_bss_sec->contents,
8765 0, gptab_bss_sec->_raw_size))
8766 return FALSE;
8767 }
8768
8769 if (SGI_COMPAT (abfd))
8770 {
8771 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8772 if (rtproc_sec != NULL)
8773 {
8774 if (! bfd_set_section_contents (abfd, rtproc_sec,
8775 rtproc_sec->contents,
8776 0, rtproc_sec->_raw_size))
8777 return FALSE;
8778 }
8779 }
8780
8781 return TRUE;
8782 }
8783 \f
8784 /* Structure for saying that BFD machine EXTENSION extends BASE. */
8785
8786 struct mips_mach_extension {
8787 unsigned long extension, base;
8788 };
8789
8790
8791 /* An array describing how BFD machines relate to one another. The entries
8792 are ordered topologically with MIPS I extensions listed last. */
8793
8794 static const struct mips_mach_extension mips_mach_extensions[] = {
8795 /* MIPS64 extensions. */
8796 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
8797 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8798
8799 /* MIPS V extensions. */
8800 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8801
8802 /* R10000 extensions. */
8803 { bfd_mach_mips12000, bfd_mach_mips10000 },
8804
8805 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8806 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8807 better to allow vr5400 and vr5500 code to be merged anyway, since
8808 many libraries will just use the core ISA. Perhaps we could add
8809 some sort of ASE flag if this ever proves a problem. */
8810 { bfd_mach_mips5500, bfd_mach_mips5400 },
8811 { bfd_mach_mips5400, bfd_mach_mips5000 },
8812
8813 /* MIPS IV extensions. */
8814 { bfd_mach_mips5, bfd_mach_mips8000 },
8815 { bfd_mach_mips10000, bfd_mach_mips8000 },
8816 { bfd_mach_mips5000, bfd_mach_mips8000 },
8817 { bfd_mach_mips7000, bfd_mach_mips8000 },
8818
8819 /* VR4100 extensions. */
8820 { bfd_mach_mips4120, bfd_mach_mips4100 },
8821 { bfd_mach_mips4111, bfd_mach_mips4100 },
8822
8823 /* MIPS III extensions. */
8824 { bfd_mach_mips8000, bfd_mach_mips4000 },
8825 { bfd_mach_mips4650, bfd_mach_mips4000 },
8826 { bfd_mach_mips4600, bfd_mach_mips4000 },
8827 { bfd_mach_mips4400, bfd_mach_mips4000 },
8828 { bfd_mach_mips4300, bfd_mach_mips4000 },
8829 { bfd_mach_mips4100, bfd_mach_mips4000 },
8830 { bfd_mach_mips4010, bfd_mach_mips4000 },
8831
8832 /* MIPS32 extensions. */
8833 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8834
8835 /* MIPS II extensions. */
8836 { bfd_mach_mips4000, bfd_mach_mips6000 },
8837 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8838
8839 /* MIPS I extensions. */
8840 { bfd_mach_mips6000, bfd_mach_mips3000 },
8841 { bfd_mach_mips3900, bfd_mach_mips3000 }
8842 };
8843
8844
8845 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8846
8847 static bfd_boolean
8848 mips_mach_extends_p (unsigned long base, unsigned long extension)
8849 {
8850 size_t i;
8851
8852 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8853 if (extension == mips_mach_extensions[i].extension)
8854 extension = mips_mach_extensions[i].base;
8855
8856 return extension == base;
8857 }
8858
8859
8860 /* Return true if the given ELF header flags describe a 32-bit binary. */
8861
8862 static bfd_boolean
8863 mips_32bit_flags_p (flagword flags)
8864 {
8865 return ((flags & EF_MIPS_32BITMODE) != 0
8866 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8867 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8868 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8869 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8870 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8871 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
8872 }
8873
8874
8875 /* Merge backend specific data from an object file to the output
8876 object file when linking. */
8877
8878 bfd_boolean
8879 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
8880 {
8881 flagword old_flags;
8882 flagword new_flags;
8883 bfd_boolean ok;
8884 bfd_boolean null_input_bfd = TRUE;
8885 asection *sec;
8886
8887 /* Check if we have the same endianess */
8888 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8889 {
8890 (*_bfd_error_handler)
8891 (_("%s: endianness incompatible with that of the selected emulation"),
8892 bfd_archive_filename (ibfd));
8893 return FALSE;
8894 }
8895
8896 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8897 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8898 return TRUE;
8899
8900 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8901 {
8902 (*_bfd_error_handler)
8903 (_("%s: ABI is incompatible with that of the selected emulation"),
8904 bfd_archive_filename (ibfd));
8905 return FALSE;
8906 }
8907
8908 new_flags = elf_elfheader (ibfd)->e_flags;
8909 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8910 old_flags = elf_elfheader (obfd)->e_flags;
8911
8912 if (! elf_flags_init (obfd))
8913 {
8914 elf_flags_init (obfd) = TRUE;
8915 elf_elfheader (obfd)->e_flags = new_flags;
8916 elf_elfheader (obfd)->e_ident[EI_CLASS]
8917 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8918
8919 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8920 && bfd_get_arch_info (obfd)->the_default)
8921 {
8922 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8923 bfd_get_mach (ibfd)))
8924 return FALSE;
8925 }
8926
8927 return TRUE;
8928 }
8929
8930 /* Check flag compatibility. */
8931
8932 new_flags &= ~EF_MIPS_NOREORDER;
8933 old_flags &= ~EF_MIPS_NOREORDER;
8934
8935 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8936 doesn't seem to matter. */
8937 new_flags &= ~EF_MIPS_XGOT;
8938 old_flags &= ~EF_MIPS_XGOT;
8939
8940 /* MIPSpro generates ucode info in n64 objects. Again, we should
8941 just be able to ignore this. */
8942 new_flags &= ~EF_MIPS_UCODE;
8943 old_flags &= ~EF_MIPS_UCODE;
8944
8945 if (new_flags == old_flags)
8946 return TRUE;
8947
8948 /* Check to see if the input BFD actually contains any sections.
8949 If not, its flags may not have been initialised either, but it cannot
8950 actually cause any incompatibility. */
8951 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8952 {
8953 /* Ignore synthetic sections and empty .text, .data and .bss sections
8954 which are automatically generated by gas. */
8955 if (strcmp (sec->name, ".reginfo")
8956 && strcmp (sec->name, ".mdebug")
8957 && (sec->_raw_size != 0
8958 || (strcmp (sec->name, ".text")
8959 && strcmp (sec->name, ".data")
8960 && strcmp (sec->name, ".bss"))))
8961 {
8962 null_input_bfd = FALSE;
8963 break;
8964 }
8965 }
8966 if (null_input_bfd)
8967 return TRUE;
8968
8969 ok = TRUE;
8970
8971 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
8972 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
8973 {
8974 (*_bfd_error_handler)
8975 (_("%s: warning: linking PIC files with non-PIC files"),
8976 bfd_archive_filename (ibfd));
8977 ok = TRUE;
8978 }
8979
8980 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
8981 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
8982 if (! (new_flags & EF_MIPS_PIC))
8983 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
8984
8985 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8986 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8987
8988 /* Compare the ISAs. */
8989 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
8990 {
8991 (*_bfd_error_handler)
8992 (_("%s: linking 32-bit code with 64-bit code"),
8993 bfd_archive_filename (ibfd));
8994 ok = FALSE;
8995 }
8996 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
8997 {
8998 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
8999 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9000 {
9001 /* Copy the architecture info from IBFD to OBFD. Also copy
9002 the 32-bit flag (if set) so that we continue to recognise
9003 OBFD as a 32-bit binary. */
9004 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9005 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9006 elf_elfheader (obfd)->e_flags
9007 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9008
9009 /* Copy across the ABI flags if OBFD doesn't use them
9010 and if that was what caused us to treat IBFD as 32-bit. */
9011 if ((old_flags & EF_MIPS_ABI) == 0
9012 && mips_32bit_flags_p (new_flags)
9013 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9014 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9015 }
9016 else
9017 {
9018 /* The ISAs aren't compatible. */
9019 (*_bfd_error_handler)
9020 (_("%s: linking %s module with previous %s modules"),
9021 bfd_archive_filename (ibfd),
9022 bfd_printable_name (ibfd),
9023 bfd_printable_name (obfd));
9024 ok = FALSE;
9025 }
9026 }
9027
9028 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9029 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9030
9031 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9032 does set EI_CLASS differently from any 32-bit ABI. */
9033 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9034 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9035 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9036 {
9037 /* Only error if both are set (to different values). */
9038 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9039 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9040 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9041 {
9042 (*_bfd_error_handler)
9043 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9044 bfd_archive_filename (ibfd),
9045 elf_mips_abi_name (ibfd),
9046 elf_mips_abi_name (obfd));
9047 ok = FALSE;
9048 }
9049 new_flags &= ~EF_MIPS_ABI;
9050 old_flags &= ~EF_MIPS_ABI;
9051 }
9052
9053 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9054 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9055 {
9056 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9057
9058 new_flags &= ~ EF_MIPS_ARCH_ASE;
9059 old_flags &= ~ EF_MIPS_ARCH_ASE;
9060 }
9061
9062 /* Warn about any other mismatches */
9063 if (new_flags != old_flags)
9064 {
9065 (*_bfd_error_handler)
9066 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9067 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9068 (unsigned long) old_flags);
9069 ok = FALSE;
9070 }
9071
9072 if (! ok)
9073 {
9074 bfd_set_error (bfd_error_bad_value);
9075 return FALSE;
9076 }
9077
9078 return TRUE;
9079 }
9080
9081 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9082
9083 bfd_boolean
9084 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
9085 {
9086 BFD_ASSERT (!elf_flags_init (abfd)
9087 || elf_elfheader (abfd)->e_flags == flags);
9088
9089 elf_elfheader (abfd)->e_flags = flags;
9090 elf_flags_init (abfd) = TRUE;
9091 return TRUE;
9092 }
9093
9094 bfd_boolean
9095 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
9096 {
9097 FILE *file = ptr;
9098
9099 BFD_ASSERT (abfd != NULL && ptr != NULL);
9100
9101 /* Print normal ELF private data. */
9102 _bfd_elf_print_private_bfd_data (abfd, ptr);
9103
9104 /* xgettext:c-format */
9105 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9106
9107 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9108 fprintf (file, _(" [abi=O32]"));
9109 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9110 fprintf (file, _(" [abi=O64]"));
9111 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9112 fprintf (file, _(" [abi=EABI32]"));
9113 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9114 fprintf (file, _(" [abi=EABI64]"));
9115 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9116 fprintf (file, _(" [abi unknown]"));
9117 else if (ABI_N32_P (abfd))
9118 fprintf (file, _(" [abi=N32]"));
9119 else if (ABI_64_P (abfd))
9120 fprintf (file, _(" [abi=64]"));
9121 else
9122 fprintf (file, _(" [no abi set]"));
9123
9124 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9125 fprintf (file, _(" [mips1]"));
9126 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9127 fprintf (file, _(" [mips2]"));
9128 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9129 fprintf (file, _(" [mips3]"));
9130 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9131 fprintf (file, _(" [mips4]"));
9132 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9133 fprintf (file, _(" [mips5]"));
9134 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9135 fprintf (file, _(" [mips32]"));
9136 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9137 fprintf (file, _(" [mips64]"));
9138 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9139 fprintf (file, _(" [mips32r2]"));
9140 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9141 fprintf (file, _(" [mips64r2]"));
9142 else
9143 fprintf (file, _(" [unknown ISA]"));
9144
9145 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9146 fprintf (file, _(" [mdmx]"));
9147
9148 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9149 fprintf (file, _(" [mips16]"));
9150
9151 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9152 fprintf (file, _(" [32bitmode]"));
9153 else
9154 fprintf (file, _(" [not 32bitmode]"));
9155
9156 fputc ('\n', file);
9157
9158 return TRUE;
9159 }
9160
9161 struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9162 {
9163 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9164 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9165 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9166 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9167 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9168 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9169 { NULL, 0, 0, 0, 0 }
9170 };
This page took 0.22332 seconds and 4 git commands to generate.