Check if __start/__stop symbols are referenced by shared objects
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2907 {
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
2978 else
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984
2985 if (hd->needs_lazy_stub)
2986 {
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
3011 einfo->failed = TRUE;
3012 return FALSE;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 /* A comparison routine used to sort .gptab entries. */
3019
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3022 {
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027 }
3028 \f
3029 /* Functions to manage the got entry hash table. */
3030
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3036 {
3037 #ifdef BFD64
3038 return addr + (addr >> 32);
3039 #else
3040 return addr;
3041 #endif
3042 }
3043
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3046 {
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3056 }
3057
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060 {
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3071 }
3072
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3075 {
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083 }
3084
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087 {
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097 }
3098
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3106 }
3107
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110 {
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3116 }
3117 \f
3118 /* Create and return a new mips_got_info structure. */
3119
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3122 {
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3138
3139 return g;
3140 }
3141
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147 {
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3157 }
3158
3159 /* Record that ABFD should use output GOT G. */
3160
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163 {
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3176 }
3177 tdata->got = g;
3178 }
3179
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3183
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186 {
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3190
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3195 {
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3207 }
3208 return sreloc;
3209 }
3210
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3215 {
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
3225 return GOT_TLS_NONE;
3226 }
3227
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3232 {
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
3242 case GOT_TLS_NONE:
3243 return 0;
3244 }
3245 abort ();
3246 }
3247
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255 {
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3262 indx = h->dynindx;
3263
3264 if ((bfd_link_pic (info) || indx != 0)
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3269
3270 if (!need_relocs)
3271 return 0;
3272
3273 switch (tls_type)
3274 {
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
3277
3278 case GOT_TLS_IE:
3279 return 1;
3280
3281 case GOT_TLS_LDM:
3282 return bfd_link_pic (info) ? 1 : 0;
3283
3284 default:
3285 return 0;
3286 }
3287 }
3288
3289 /* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
3291
3292 static void
3293 mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
3296 {
3297 if (entry->tls_type)
3298 {
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3303 }
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
3308 }
3309
3310 /* Output a simple dynamic relocation into SRELOC. */
3311
3312 static void
3313 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
3315 unsigned long reloc_index,
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3319 {
3320 Elf_Internal_Rela rel[3];
3321
3322 memset (rel, 0, sizeof (rel));
3323
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326
3327 if (ABI_64_P (output_bfd))
3328 {
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3333 }
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
3338 + reloc_index * sizeof (Elf32_External_Rel)));
3339 }
3340
3341 /* Initialize a set of TLS GOT entries for one symbol. */
3342
3343 static void
3344 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3348 {
3349 struct mips_elf_link_hash_table *htab;
3350 int indx;
3351 asection *sreloc, *sgot;
3352 bfd_vma got_offset, got_offset2;
3353 bfd_boolean need_relocs = FALSE;
3354
3355 htab = mips_elf_hash_table (info);
3356 if (htab == NULL)
3357 return;
3358
3359 sgot = htab->root.sgot;
3360
3361 indx = 0;
3362 if (h != NULL)
3363 {
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3370 indx = h->root.dynindx;
3371 }
3372
3373 if (entry->tls_initialized)
3374 return;
3375
3376 if ((bfd_link_pic (info) || indx != 0)
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3381
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3387
3388 /* Emit necessary relocations. */
3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3390 got_offset = entry->gotidx;
3391
3392 switch (entry->tls_type)
3393 {
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3397
3398 if (need_relocs)
3399 {
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset);
3404
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
3407 (abfd, sreloc, sreloc->reloc_count++, indx,
3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3412 sgot->contents + got_offset2);
3413 }
3414 else
3415 {
3416 MIPS_ELF_PUT_WORD (abfd, 1,
3417 sgot->contents + got_offset);
3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3419 sgot->contents + got_offset2);
3420 }
3421 break;
3422
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
3425 if (need_relocs)
3426 {
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3429 sgot->contents + got_offset);
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
3432 sgot->contents + got_offset);
3433
3434 mips_elf_output_dynamic_relocation
3435 (abfd, sreloc, sreloc->reloc_count++, indx,
3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3437 sgot->output_offset + sgot->output_section->vma + got_offset);
3438 }
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3441 sgot->contents + got_offset);
3442 break;
3443
3444 case GOT_TLS_LDM:
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3450
3451 if (!bfd_link_pic (info))
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
3456 (abfd, sreloc, sreloc->reloc_count++, indx,
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
3459 break;
3460
3461 default:
3462 abort ();
3463 }
3464
3465 entry->tls_initialized = TRUE;
3466 }
3467
3468 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3471
3472 static bfd_vma
3473 mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3475 {
3476 bfd_vma got_address, got_value;
3477 struct mips_elf_link_hash_table *htab;
3478
3479 htab = mips_elf_hash_table (info);
3480 BFD_ASSERT (htab != NULL);
3481
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3484
3485 /* Calculate the address of the associated .got.plt entry. */
3486 got_address = (htab->root.sgotplt->output_section->vma
3487 + htab->root.sgotplt->output_offset
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3490
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3495
3496 return got_address - got_value;
3497 }
3498
3499 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
3503
3504 static bfd_vma
3505 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3506 bfd_vma value, unsigned long r_symndx,
3507 struct mips_elf_link_hash_entry *h, int r_type)
3508 {
3509 struct mips_elf_link_hash_table *htab;
3510 struct mips_got_entry *entry;
3511
3512 htab = mips_elf_hash_table (info);
3513 BFD_ASSERT (htab != NULL);
3514
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
3517 if (!entry)
3518 return MINUS_ONE;
3519
3520 if (entry->tls_type)
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
3523 }
3524
3525 /* Return the GOT index of global symbol H in the primary GOT. */
3526
3527 static bfd_vma
3528 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3530 {
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3542
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
3551 BFD_ASSERT (got_index < htab->root.sgot->size);
3552
3553 return got_index;
3554 }
3555
3556 /* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3558
3559 static bfd_vma
3560 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
3562 {
3563 struct mips_elf_link_hash_table *htab;
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
3567
3568 htab = mips_elf_hash_table (info);
3569 BFD_ASSERT (htab != NULL);
3570
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
3573
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
3577
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
3583
3584 gotidx = entry->gotidx;
3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3586
3587 if (lookup.tls_type)
3588 {
3589 bfd_vma value = MINUS_ONE;
3590
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3597
3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3599 }
3600 return gotidx;
3601 }
3602
3603 /* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
3607 offset of the GOT entry from VALUE. */
3608
3609 static bfd_vma
3610 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3611 bfd_vma value, bfd_vma *offsetp)
3612 {
3613 bfd_vma page, got_index;
3614 struct mips_got_entry *entry;
3615
3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
3619
3620 if (!entry)
3621 return MINUS_ONE;
3622
3623 got_index = entry->gotidx;
3624
3625 if (offsetp)
3626 *offsetp = value - entry->d.address;
3627
3628 return got_index;
3629 }
3630
3631 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
3634
3635 static bfd_vma
3636 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3637 bfd_vma value, bfd_boolean external)
3638 {
3639 struct mips_got_entry *entry;
3640
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3645 if (! external)
3646 value = mips_elf_high (value) << 16;
3647
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
3657 }
3658
3659 /* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3661
3662 static bfd_vma
3663 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3664 bfd *input_bfd, bfd_vma got_index)
3665 {
3666 struct mips_elf_link_hash_table *htab;
3667 asection *sgot;
3668 bfd_vma gp;
3669
3670 htab = mips_elf_hash_table (info);
3671 BFD_ASSERT (htab != NULL);
3672
3673 sgot = htab->root.sgot;
3674 gp = _bfd_get_gp_value (output_bfd)
3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3676
3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3678 }
3679
3680 /* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
3684
3685 static struct mips_got_entry *
3686 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3687 bfd *ibfd, bfd_vma value,
3688 unsigned long r_symndx,
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
3691 {
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
3694 struct mips_got_info *g;
3695 struct mips_elf_link_hash_table *htab;
3696 bfd_vma gotidx;
3697
3698 htab = mips_elf_hash_table (info);
3699 BFD_ASSERT (htab != NULL);
3700
3701 g = mips_elf_bfd_got (ibfd, FALSE);
3702 if (g == NULL)
3703 {
3704 g = mips_elf_bfd_got (abfd, FALSE);
3705 BFD_ASSERT (g != NULL);
3706 }
3707
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3711
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3714 {
3715 lookup.abfd = ibfd;
3716 if (tls_ldm_reloc_p (r_type))
3717 {
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
3720 }
3721 else if (h == NULL)
3722 {
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
3725 }
3726 else
3727 {
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3730 }
3731
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
3734
3735 gotidx = entry->gotidx;
3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3737
3738 return entry;
3739 }
3740
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
3746 return NULL;
3747
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
3751
3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
3753 {
3754 /* We didn't allocate enough space in the GOT. */
3755 _bfd_error_handler
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
3758 return NULL;
3759 }
3760
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3764
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772
3773 *entry = lookup;
3774 *loc = entry;
3775
3776 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3777
3778 /* These GOT entries need a dynamic relocation on VxWorks. */
3779 if (htab->is_vxworks)
3780 {
3781 Elf_Internal_Rela outrel;
3782 asection *s;
3783 bfd_byte *rloc;
3784 bfd_vma got_address;
3785
3786 s = mips_elf_rel_dyn_section (info, FALSE);
3787 got_address = (htab->root.sgot->output_section->vma
3788 + htab->root.sgot->output_offset
3789 + entry->gotidx);
3790
3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3792 outrel.r_offset = got_address;
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3796 }
3797
3798 return entry;
3799 }
3800
3801 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3805
3806 static bfd_size_type
3807 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808 {
3809 bfd_size_type count;
3810
3811 count = 0;
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
3814 {
3815 asection *p;
3816 const struct elf_backend_data *bed;
3817
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3824 }
3825 return count;
3826 }
3827
3828 /* Sort the dynamic symbol table so that symbols that need GOT entries
3829 appear towards the end. */
3830
3831 static bfd_boolean
3832 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3833 {
3834 struct mips_elf_link_hash_table *htab;
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
3837
3838 htab = mips_elf_hash_table (info);
3839 BFD_ASSERT (htab != NULL);
3840
3841 if (htab->root.dynsymcount == 0)
3842 return TRUE;
3843
3844 g = htab->got_info;
3845 if (g == NULL)
3846 return TRUE;
3847
3848 hsd.low = NULL;
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
3851 = (htab->root.dynsymcount - g->reloc_only_gotno);
3852 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3853 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3854 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3855 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3856 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3857
3858 /* There should have been enough room in the symbol table to
3859 accommodate both the GOT and non-GOT symbols. */
3860 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3861 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3862 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3863 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3864
3865 /* Now we know which dynamic symbol has the lowest dynamic symbol
3866 table index in the GOT. */
3867 htab->global_gotsym = hsd.low;
3868
3869 return TRUE;
3870 }
3871
3872 /* If H needs a GOT entry, assign it the highest available dynamic
3873 index. Otherwise, assign it the lowest available dynamic
3874 index. */
3875
3876 static bfd_boolean
3877 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3878 {
3879 struct mips_elf_hash_sort_data *hsd = data;
3880
3881 /* Symbols without dynamic symbol table entries aren't interesting
3882 at all. */
3883 if (h->root.dynindx == -1)
3884 return TRUE;
3885
3886 switch (h->global_got_area)
3887 {
3888 case GGA_NONE:
3889 if (h->root.forced_local)
3890 h->root.dynindx = hsd->max_local_dynindx++;
3891 else
3892 h->root.dynindx = hsd->max_non_got_dynindx++;
3893 break;
3894
3895 case GGA_NORMAL:
3896 h->root.dynindx = --hsd->min_got_dynindx;
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 break;
3899
3900 case GGA_RELOC_ONLY:
3901 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3902 hsd->low = (struct elf_link_hash_entry *) h;
3903 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 break;
3905 }
3906
3907 return TRUE;
3908 }
3909
3910 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3911 (which is owned by the caller and shouldn't be added to the
3912 hash table directly). */
3913
3914 static bfd_boolean
3915 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3916 struct mips_got_entry *lookup)
3917 {
3918 struct mips_elf_link_hash_table *htab;
3919 struct mips_got_entry *entry;
3920 struct mips_got_info *g;
3921 void **loc, **bfd_loc;
3922
3923 /* Make sure there's a slot for this entry in the master GOT. */
3924 htab = mips_elf_hash_table (info);
3925 g = htab->got_info;
3926 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3927 if (!loc)
3928 return FALSE;
3929
3930 /* Populate the entry if it isn't already. */
3931 entry = (struct mips_got_entry *) *loc;
3932 if (!entry)
3933 {
3934 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3935 if (!entry)
3936 return FALSE;
3937
3938 lookup->tls_initialized = FALSE;
3939 lookup->gotidx = -1;
3940 *entry = *lookup;
3941 *loc = entry;
3942 }
3943
3944 /* Reuse the same GOT entry for the BFD's GOT. */
3945 g = mips_elf_bfd_got (abfd, TRUE);
3946 if (!g)
3947 return FALSE;
3948
3949 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950 if (!bfd_loc)
3951 return FALSE;
3952
3953 if (!*bfd_loc)
3954 *bfd_loc = entry;
3955 return TRUE;
3956 }
3957
3958 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3959 entry for it. FOR_CALL is true if the caller is only interested in
3960 using the GOT entry for calls. */
3961
3962 static bfd_boolean
3963 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3964 bfd *abfd, struct bfd_link_info *info,
3965 bfd_boolean for_call, int r_type)
3966 {
3967 struct mips_elf_link_hash_table *htab;
3968 struct mips_elf_link_hash_entry *hmips;
3969 struct mips_got_entry entry;
3970 unsigned char tls_type;
3971
3972 htab = mips_elf_hash_table (info);
3973 BFD_ASSERT (htab != NULL);
3974
3975 hmips = (struct mips_elf_link_hash_entry *) h;
3976 if (!for_call)
3977 hmips->got_only_for_calls = FALSE;
3978
3979 /* A global symbol in the GOT must also be in the dynamic symbol
3980 table. */
3981 if (h->dynindx == -1)
3982 {
3983 switch (ELF_ST_VISIBILITY (h->other))
3984 {
3985 case STV_INTERNAL:
3986 case STV_HIDDEN:
3987 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3988 break;
3989 }
3990 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3991 return FALSE;
3992 }
3993
3994 tls_type = mips_elf_reloc_tls_type (r_type);
3995 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3996 hmips->global_got_area = GGA_NORMAL;
3997
3998 entry.abfd = abfd;
3999 entry.symndx = -1;
4000 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4001 entry.tls_type = tls_type;
4002 return mips_elf_record_got_entry (info, abfd, &entry);
4003 }
4004
4005 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4006 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4007
4008 static bfd_boolean
4009 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4010 struct bfd_link_info *info, int r_type)
4011 {
4012 struct mips_elf_link_hash_table *htab;
4013 struct mips_got_info *g;
4014 struct mips_got_entry entry;
4015
4016 htab = mips_elf_hash_table (info);
4017 BFD_ASSERT (htab != NULL);
4018
4019 g = htab->got_info;
4020 BFD_ASSERT (g != NULL);
4021
4022 entry.abfd = abfd;
4023 entry.symndx = symndx;
4024 entry.d.addend = addend;
4025 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4026 return mips_elf_record_got_entry (info, abfd, &entry);
4027 }
4028
4029 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4030 H is the symbol's hash table entry, or null if SYMNDX is local
4031 to ABFD. */
4032
4033 static bfd_boolean
4034 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4035 long symndx, struct elf_link_hash_entry *h,
4036 bfd_signed_vma addend)
4037 {
4038 struct mips_elf_link_hash_table *htab;
4039 struct mips_got_info *g1, *g2;
4040 struct mips_got_page_ref lookup, *entry;
4041 void **loc, **bfd_loc;
4042
4043 htab = mips_elf_hash_table (info);
4044 BFD_ASSERT (htab != NULL);
4045
4046 g1 = htab->got_info;
4047 BFD_ASSERT (g1 != NULL);
4048
4049 if (h)
4050 {
4051 lookup.symndx = -1;
4052 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4053 }
4054 else
4055 {
4056 lookup.symndx = symndx;
4057 lookup.u.abfd = abfd;
4058 }
4059 lookup.addend = addend;
4060 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4061 if (loc == NULL)
4062 return FALSE;
4063
4064 entry = (struct mips_got_page_ref *) *loc;
4065 if (!entry)
4066 {
4067 entry = bfd_alloc (abfd, sizeof (*entry));
4068 if (!entry)
4069 return FALSE;
4070
4071 *entry = lookup;
4072 *loc = entry;
4073 }
4074
4075 /* Add the same entry to the BFD's GOT. */
4076 g2 = mips_elf_bfd_got (abfd, TRUE);
4077 if (!g2)
4078 return FALSE;
4079
4080 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4081 if (!bfd_loc)
4082 return FALSE;
4083
4084 if (!*bfd_loc)
4085 *bfd_loc = entry;
4086
4087 return TRUE;
4088 }
4089
4090 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4091
4092 static void
4093 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4094 unsigned int n)
4095 {
4096 asection *s;
4097 struct mips_elf_link_hash_table *htab;
4098
4099 htab = mips_elf_hash_table (info);
4100 BFD_ASSERT (htab != NULL);
4101
4102 s = mips_elf_rel_dyn_section (info, FALSE);
4103 BFD_ASSERT (s != NULL);
4104
4105 if (htab->is_vxworks)
4106 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4107 else
4108 {
4109 if (s->size == 0)
4110 {
4111 /* Make room for a null element. */
4112 s->size += MIPS_ELF_REL_SIZE (abfd);
4113 ++s->reloc_count;
4114 }
4115 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4116 }
4117 }
4118 \f
4119 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4120 mips_elf_traverse_got_arg structure. Count the number of GOT
4121 entries and TLS relocs. Set DATA->value to true if we need
4122 to resolve indirect or warning symbols and then recreate the GOT. */
4123
4124 static int
4125 mips_elf_check_recreate_got (void **entryp, void *data)
4126 {
4127 struct mips_got_entry *entry;
4128 struct mips_elf_traverse_got_arg *arg;
4129
4130 entry = (struct mips_got_entry *) *entryp;
4131 arg = (struct mips_elf_traverse_got_arg *) data;
4132 if (entry->abfd != NULL && entry->symndx == -1)
4133 {
4134 struct mips_elf_link_hash_entry *h;
4135
4136 h = entry->d.h;
4137 if (h->root.root.type == bfd_link_hash_indirect
4138 || h->root.root.type == bfd_link_hash_warning)
4139 {
4140 arg->value = TRUE;
4141 return 0;
4142 }
4143 }
4144 mips_elf_count_got_entry (arg->info, arg->g, entry);
4145 return 1;
4146 }
4147
4148 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4149 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4150 converting entries for indirect and warning symbols into entries
4151 for the target symbol. Set DATA->g to null on error. */
4152
4153 static int
4154 mips_elf_recreate_got (void **entryp, void *data)
4155 {
4156 struct mips_got_entry new_entry, *entry;
4157 struct mips_elf_traverse_got_arg *arg;
4158 void **slot;
4159
4160 entry = (struct mips_got_entry *) *entryp;
4161 arg = (struct mips_elf_traverse_got_arg *) data;
4162 if (entry->abfd != NULL
4163 && entry->symndx == -1
4164 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4165 || entry->d.h->root.root.type == bfd_link_hash_warning))
4166 {
4167 struct mips_elf_link_hash_entry *h;
4168
4169 new_entry = *entry;
4170 entry = &new_entry;
4171 h = entry->d.h;
4172 do
4173 {
4174 BFD_ASSERT (h->global_got_area == GGA_NONE);
4175 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4176 }
4177 while (h->root.root.type == bfd_link_hash_indirect
4178 || h->root.root.type == bfd_link_hash_warning);
4179 entry->d.h = h;
4180 }
4181 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4182 if (slot == NULL)
4183 {
4184 arg->g = NULL;
4185 return 0;
4186 }
4187 if (*slot == NULL)
4188 {
4189 if (entry == &new_entry)
4190 {
4191 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 if (!entry)
4193 {
4194 arg->g = NULL;
4195 return 0;
4196 }
4197 *entry = new_entry;
4198 }
4199 *slot = entry;
4200 mips_elf_count_got_entry (arg->info, arg->g, entry);
4201 }
4202 return 1;
4203 }
4204
4205 /* Return the maximum number of GOT page entries required for RANGE. */
4206
4207 static bfd_vma
4208 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4209 {
4210 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4211 }
4212
4213 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4214
4215 static bfd_boolean
4216 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4217 asection *sec, bfd_signed_vma addend)
4218 {
4219 struct mips_got_info *g = arg->g;
4220 struct mips_got_page_entry lookup, *entry;
4221 struct mips_got_page_range **range_ptr, *range;
4222 bfd_vma old_pages, new_pages;
4223 void **loc;
4224
4225 /* Find the mips_got_page_entry hash table entry for this section. */
4226 lookup.sec = sec;
4227 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4228 if (loc == NULL)
4229 return FALSE;
4230
4231 /* Create a mips_got_page_entry if this is the first time we've
4232 seen the section. */
4233 entry = (struct mips_got_page_entry *) *loc;
4234 if (!entry)
4235 {
4236 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4237 if (!entry)
4238 return FALSE;
4239
4240 entry->sec = sec;
4241 *loc = entry;
4242 }
4243
4244 /* Skip over ranges whose maximum extent cannot share a page entry
4245 with ADDEND. */
4246 range_ptr = &entry->ranges;
4247 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4248 range_ptr = &(*range_ptr)->next;
4249
4250 /* If we scanned to the end of the list, or found a range whose
4251 minimum extent cannot share a page entry with ADDEND, create
4252 a new singleton range. */
4253 range = *range_ptr;
4254 if (!range || addend < range->min_addend - 0xffff)
4255 {
4256 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4257 if (!range)
4258 return FALSE;
4259
4260 range->next = *range_ptr;
4261 range->min_addend = addend;
4262 range->max_addend = addend;
4263
4264 *range_ptr = range;
4265 entry->num_pages++;
4266 g->page_gotno++;
4267 return TRUE;
4268 }
4269
4270 /* Remember how many pages the old range contributed. */
4271 old_pages = mips_elf_pages_for_range (range);
4272
4273 /* Update the ranges. */
4274 if (addend < range->min_addend)
4275 range->min_addend = addend;
4276 else if (addend > range->max_addend)
4277 {
4278 if (range->next && addend >= range->next->min_addend - 0xffff)
4279 {
4280 old_pages += mips_elf_pages_for_range (range->next);
4281 range->max_addend = range->next->max_addend;
4282 range->next = range->next->next;
4283 }
4284 else
4285 range->max_addend = addend;
4286 }
4287
4288 /* Record any change in the total estimate. */
4289 new_pages = mips_elf_pages_for_range (range);
4290 if (old_pages != new_pages)
4291 {
4292 entry->num_pages += new_pages - old_pages;
4293 g->page_gotno += new_pages - old_pages;
4294 }
4295
4296 return TRUE;
4297 }
4298
4299 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4300 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4301 whether the page reference described by *REFP needs a GOT page entry,
4302 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4303
4304 static bfd_boolean
4305 mips_elf_resolve_got_page_ref (void **refp, void *data)
4306 {
4307 struct mips_got_page_ref *ref;
4308 struct mips_elf_traverse_got_arg *arg;
4309 struct mips_elf_link_hash_table *htab;
4310 asection *sec;
4311 bfd_vma addend;
4312
4313 ref = (struct mips_got_page_ref *) *refp;
4314 arg = (struct mips_elf_traverse_got_arg *) data;
4315 htab = mips_elf_hash_table (arg->info);
4316
4317 if (ref->symndx < 0)
4318 {
4319 struct mips_elf_link_hash_entry *h;
4320
4321 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4322 h = ref->u.h;
4323 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4324 return 1;
4325
4326 /* Ignore undefined symbols; we'll issue an error later if
4327 appropriate. */
4328 if (!((h->root.root.type == bfd_link_hash_defined
4329 || h->root.root.type == bfd_link_hash_defweak)
4330 && h->root.root.u.def.section))
4331 return 1;
4332
4333 sec = h->root.root.u.def.section;
4334 addend = h->root.root.u.def.value + ref->addend;
4335 }
4336 else
4337 {
4338 Elf_Internal_Sym *isym;
4339
4340 /* Read in the symbol. */
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4342 ref->symndx);
4343 if (isym == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* Get the associated input section. */
4350 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 if (sec == NULL)
4352 {
4353 arg->g = NULL;
4354 return 0;
4355 }
4356
4357 /* If this is a mergable section, work out the section and offset
4358 of the merged data. For section symbols, the addend specifies
4359 of the offset _of_ the first byte in the data, otherwise it
4360 specifies the offset _from_ the first byte. */
4361 if (sec->flags & SEC_MERGE)
4362 {
4363 void *secinfo;
4364
4365 secinfo = elf_section_data (sec)->sec_info;
4366 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4367 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4368 isym->st_value + ref->addend);
4369 else
4370 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4371 isym->st_value) + ref->addend;
4372 }
4373 else
4374 addend = isym->st_value + ref->addend;
4375 }
4376 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4377 {
4378 arg->g = NULL;
4379 return 0;
4380 }
4381 return 1;
4382 }
4383
4384 /* If any entries in G->got_entries are for indirect or warning symbols,
4385 replace them with entries for the target symbol. Convert g->got_page_refs
4386 into got_page_entry structures and estimate the number of page entries
4387 that they require. */
4388
4389 static bfd_boolean
4390 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4391 struct mips_got_info *g)
4392 {
4393 struct mips_elf_traverse_got_arg tga;
4394 struct mips_got_info oldg;
4395
4396 oldg = *g;
4397
4398 tga.info = info;
4399 tga.g = g;
4400 tga.value = FALSE;
4401 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4402 if (tga.value)
4403 {
4404 *g = oldg;
4405 g->got_entries = htab_create (htab_size (oldg.got_entries),
4406 mips_elf_got_entry_hash,
4407 mips_elf_got_entry_eq, NULL);
4408 if (!g->got_entries)
4409 return FALSE;
4410
4411 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4412 if (!tga.g)
4413 return FALSE;
4414
4415 htab_delete (oldg.got_entries);
4416 }
4417
4418 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4419 mips_got_page_entry_eq, NULL);
4420 if (g->got_page_entries == NULL)
4421 return FALSE;
4422
4423 tga.info = info;
4424 tga.g = g;
4425 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4426
4427 return TRUE;
4428 }
4429
4430 /* Return true if a GOT entry for H should live in the local rather than
4431 global GOT area. */
4432
4433 static bfd_boolean
4434 mips_use_local_got_p (struct bfd_link_info *info,
4435 struct mips_elf_link_hash_entry *h)
4436 {
4437 /* Symbols that aren't in the dynamic symbol table must live in the
4438 local GOT. This includes symbols that are completely undefined
4439 and which therefore don't bind locally. We'll report undefined
4440 symbols later if appropriate. */
4441 if (h->root.dynindx == -1)
4442 return TRUE;
4443
4444 /* Symbols that bind locally can (and in the case of forced-local
4445 symbols, must) live in the local GOT. */
4446 if (h->got_only_for_calls
4447 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4448 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4449 return TRUE;
4450
4451 /* If this is an executable that must provide a definition of the symbol,
4452 either though PLTs or copy relocations, then that address should go in
4453 the local rather than global GOT. */
4454 if (bfd_link_executable (info) && h->has_static_relocs)
4455 return TRUE;
4456
4457 return FALSE;
4458 }
4459
4460 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4461 link_info structure. Decide whether the hash entry needs an entry in
4462 the global part of the primary GOT, setting global_got_area accordingly.
4463 Count the number of global symbols that are in the primary GOT only
4464 because they have relocations against them (reloc_only_gotno). */
4465
4466 static int
4467 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4468 {
4469 struct bfd_link_info *info;
4470 struct mips_elf_link_hash_table *htab;
4471 struct mips_got_info *g;
4472
4473 info = (struct bfd_link_info *) data;
4474 htab = mips_elf_hash_table (info);
4475 g = htab->got_info;
4476 if (h->global_got_area != GGA_NONE)
4477 {
4478 /* Make a final decision about whether the symbol belongs in the
4479 local or global GOT. */
4480 if (mips_use_local_got_p (info, h))
4481 /* The symbol belongs in the local GOT. We no longer need this
4482 entry if it was only used for relocations; those relocations
4483 will be against the null or section symbol instead of H. */
4484 h->global_got_area = GGA_NONE;
4485 else if (htab->is_vxworks
4486 && h->got_only_for_calls
4487 && h->root.plt.plist->mips_offset != MINUS_ONE)
4488 /* On VxWorks, calls can refer directly to the .got.plt entry;
4489 they don't need entries in the regular GOT. .got.plt entries
4490 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4491 h->global_got_area = GGA_NONE;
4492 else if (h->global_got_area == GGA_RELOC_ONLY)
4493 {
4494 g->reloc_only_gotno++;
4495 g->global_gotno++;
4496 }
4497 }
4498 return 1;
4499 }
4500 \f
4501 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4502 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4503
4504 static int
4505 mips_elf_add_got_entry (void **entryp, void *data)
4506 {
4507 struct mips_got_entry *entry;
4508 struct mips_elf_traverse_got_arg *arg;
4509 void **slot;
4510
4511 entry = (struct mips_got_entry *) *entryp;
4512 arg = (struct mips_elf_traverse_got_arg *) data;
4513 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514 if (!slot)
4515 {
4516 arg->g = NULL;
4517 return 0;
4518 }
4519 if (!*slot)
4520 {
4521 *slot = entry;
4522 mips_elf_count_got_entry (arg->info, arg->g, entry);
4523 }
4524 return 1;
4525 }
4526
4527 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4528 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4529
4530 static int
4531 mips_elf_add_got_page_entry (void **entryp, void *data)
4532 {
4533 struct mips_got_page_entry *entry;
4534 struct mips_elf_traverse_got_arg *arg;
4535 void **slot;
4536
4537 entry = (struct mips_got_page_entry *) *entryp;
4538 arg = (struct mips_elf_traverse_got_arg *) data;
4539 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540 if (!slot)
4541 {
4542 arg->g = NULL;
4543 return 0;
4544 }
4545 if (!*slot)
4546 {
4547 *slot = entry;
4548 arg->g->page_gotno += entry->num_pages;
4549 }
4550 return 1;
4551 }
4552
4553 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4554 this would lead to overflow, 1 if they were merged successfully,
4555 and 0 if a merge failed due to lack of memory. (These values are chosen
4556 so that nonnegative return values can be returned by a htab_traverse
4557 callback.) */
4558
4559 static int
4560 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4561 struct mips_got_info *to,
4562 struct mips_elf_got_per_bfd_arg *arg)
4563 {
4564 struct mips_elf_traverse_got_arg tga;
4565 unsigned int estimate;
4566
4567 /* Work out how many page entries we would need for the combined GOT. */
4568 estimate = arg->max_pages;
4569 if (estimate >= from->page_gotno + to->page_gotno)
4570 estimate = from->page_gotno + to->page_gotno;
4571
4572 /* And conservatively estimate how many local and TLS entries
4573 would be needed. */
4574 estimate += from->local_gotno + to->local_gotno;
4575 estimate += from->tls_gotno + to->tls_gotno;
4576
4577 /* If we're merging with the primary got, any TLS relocations will
4578 come after the full set of global entries. Otherwise estimate those
4579 conservatively as well. */
4580 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4581 estimate += arg->global_count;
4582 else
4583 estimate += from->global_gotno + to->global_gotno;
4584
4585 /* Bail out if the combined GOT might be too big. */
4586 if (estimate > arg->max_count)
4587 return -1;
4588
4589 /* Transfer the bfd's got information from FROM to TO. */
4590 tga.info = arg->info;
4591 tga.g = to;
4592 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4593 if (!tga.g)
4594 return 0;
4595
4596 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4597 if (!tga.g)
4598 return 0;
4599
4600 mips_elf_replace_bfd_got (abfd, to);
4601 return 1;
4602 }
4603
4604 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4605 as possible of the primary got, since it doesn't require explicit
4606 dynamic relocations, but don't use bfds that would reference global
4607 symbols out of the addressable range. Failing the primary got,
4608 attempt to merge with the current got, or finish the current got
4609 and then make make the new got current. */
4610
4611 static bfd_boolean
4612 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4613 struct mips_elf_got_per_bfd_arg *arg)
4614 {
4615 unsigned int estimate;
4616 int result;
4617
4618 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4619 return FALSE;
4620
4621 /* Work out the number of page, local and TLS entries. */
4622 estimate = arg->max_pages;
4623 if (estimate > g->page_gotno)
4624 estimate = g->page_gotno;
4625 estimate += g->local_gotno + g->tls_gotno;
4626
4627 /* We place TLS GOT entries after both locals and globals. The globals
4628 for the primary GOT may overflow the normal GOT size limit, so be
4629 sure not to merge a GOT which requires TLS with the primary GOT in that
4630 case. This doesn't affect non-primary GOTs. */
4631 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4632
4633 if (estimate <= arg->max_count)
4634 {
4635 /* If we don't have a primary GOT, use it as
4636 a starting point for the primary GOT. */
4637 if (!arg->primary)
4638 {
4639 arg->primary = g;
4640 return TRUE;
4641 }
4642
4643 /* Try merging with the primary GOT. */
4644 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4645 if (result >= 0)
4646 return result;
4647 }
4648
4649 /* If we can merge with the last-created got, do it. */
4650 if (arg->current)
4651 {
4652 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4653 if (result >= 0)
4654 return result;
4655 }
4656
4657 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4658 fits; if it turns out that it doesn't, we'll get relocation
4659 overflows anyway. */
4660 g->next = arg->current;
4661 arg->current = g;
4662
4663 return TRUE;
4664 }
4665
4666 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4667 to GOTIDX, duplicating the entry if it has already been assigned
4668 an index in a different GOT. */
4669
4670 static bfd_boolean
4671 mips_elf_set_gotidx (void **entryp, long gotidx)
4672 {
4673 struct mips_got_entry *entry;
4674
4675 entry = (struct mips_got_entry *) *entryp;
4676 if (entry->gotidx > 0)
4677 {
4678 struct mips_got_entry *new_entry;
4679
4680 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4681 if (!new_entry)
4682 return FALSE;
4683
4684 *new_entry = *entry;
4685 *entryp = new_entry;
4686 entry = new_entry;
4687 }
4688 entry->gotidx = gotidx;
4689 return TRUE;
4690 }
4691
4692 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4693 mips_elf_traverse_got_arg in which DATA->value is the size of one
4694 GOT entry. Set DATA->g to null on failure. */
4695
4696 static int
4697 mips_elf_initialize_tls_index (void **entryp, void *data)
4698 {
4699 struct mips_got_entry *entry;
4700 struct mips_elf_traverse_got_arg *arg;
4701
4702 /* We're only interested in TLS symbols. */
4703 entry = (struct mips_got_entry *) *entryp;
4704 if (entry->tls_type == GOT_TLS_NONE)
4705 return 1;
4706
4707 arg = (struct mips_elf_traverse_got_arg *) data;
4708 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4709 {
4710 arg->g = NULL;
4711 return 0;
4712 }
4713
4714 /* Account for the entries we've just allocated. */
4715 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4716 return 1;
4717 }
4718
4719 /* A htab_traverse callback for GOT entries, where DATA points to a
4720 mips_elf_traverse_got_arg. Set the global_got_area of each global
4721 symbol to DATA->value. */
4722
4723 static int
4724 mips_elf_set_global_got_area (void **entryp, void *data)
4725 {
4726 struct mips_got_entry *entry;
4727 struct mips_elf_traverse_got_arg *arg;
4728
4729 entry = (struct mips_got_entry *) *entryp;
4730 arg = (struct mips_elf_traverse_got_arg *) data;
4731 if (entry->abfd != NULL
4732 && entry->symndx == -1
4733 && entry->d.h->global_got_area != GGA_NONE)
4734 entry->d.h->global_got_area = arg->value;
4735 return 1;
4736 }
4737
4738 /* A htab_traverse callback for secondary GOT entries, where DATA points
4739 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4740 and record the number of relocations they require. DATA->value is
4741 the size of one GOT entry. Set DATA->g to null on failure. */
4742
4743 static int
4744 mips_elf_set_global_gotidx (void **entryp, void *data)
4745 {
4746 struct mips_got_entry *entry;
4747 struct mips_elf_traverse_got_arg *arg;
4748
4749 entry = (struct mips_got_entry *) *entryp;
4750 arg = (struct mips_elf_traverse_got_arg *) data;
4751 if (entry->abfd != NULL
4752 && entry->symndx == -1
4753 && entry->d.h->global_got_area != GGA_NONE)
4754 {
4755 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4756 {
4757 arg->g = NULL;
4758 return 0;
4759 }
4760 arg->g->assigned_low_gotno += 1;
4761
4762 if (bfd_link_pic (arg->info)
4763 || (elf_hash_table (arg->info)->dynamic_sections_created
4764 && entry->d.h->root.def_dynamic
4765 && !entry->d.h->root.def_regular))
4766 arg->g->relocs += 1;
4767 }
4768
4769 return 1;
4770 }
4771
4772 /* A htab_traverse callback for GOT entries for which DATA is the
4773 bfd_link_info. Forbid any global symbols from having traditional
4774 lazy-binding stubs. */
4775
4776 static int
4777 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4778 {
4779 struct bfd_link_info *info;
4780 struct mips_elf_link_hash_table *htab;
4781 struct mips_got_entry *entry;
4782
4783 entry = (struct mips_got_entry *) *entryp;
4784 info = (struct bfd_link_info *) data;
4785 htab = mips_elf_hash_table (info);
4786 BFD_ASSERT (htab != NULL);
4787
4788 if (entry->abfd != NULL
4789 && entry->symndx == -1
4790 && entry->d.h->needs_lazy_stub)
4791 {
4792 entry->d.h->needs_lazy_stub = FALSE;
4793 htab->lazy_stub_count--;
4794 }
4795
4796 return 1;
4797 }
4798
4799 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4800 the primary GOT. */
4801 static bfd_vma
4802 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4803 {
4804 if (!g->next)
4805 return 0;
4806
4807 g = mips_elf_bfd_got (ibfd, FALSE);
4808 if (! g)
4809 return 0;
4810
4811 BFD_ASSERT (g->next);
4812
4813 g = g->next;
4814
4815 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4816 * MIPS_ELF_GOT_SIZE (abfd);
4817 }
4818
4819 /* Turn a single GOT that is too big for 16-bit addressing into
4820 a sequence of GOTs, each one 16-bit addressable. */
4821
4822 static bfd_boolean
4823 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4824 asection *got, bfd_size_type pages)
4825 {
4826 struct mips_elf_link_hash_table *htab;
4827 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4828 struct mips_elf_traverse_got_arg tga;
4829 struct mips_got_info *g, *gg;
4830 unsigned int assign, needed_relocs;
4831 bfd *dynobj, *ibfd;
4832
4833 dynobj = elf_hash_table (info)->dynobj;
4834 htab = mips_elf_hash_table (info);
4835 BFD_ASSERT (htab != NULL);
4836
4837 g = htab->got_info;
4838
4839 got_per_bfd_arg.obfd = abfd;
4840 got_per_bfd_arg.info = info;
4841 got_per_bfd_arg.current = NULL;
4842 got_per_bfd_arg.primary = NULL;
4843 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4844 / MIPS_ELF_GOT_SIZE (abfd))
4845 - htab->reserved_gotno);
4846 got_per_bfd_arg.max_pages = pages;
4847 /* The number of globals that will be included in the primary GOT.
4848 See the calls to mips_elf_set_global_got_area below for more
4849 information. */
4850 got_per_bfd_arg.global_count = g->global_gotno;
4851
4852 /* Try to merge the GOTs of input bfds together, as long as they
4853 don't seem to exceed the maximum GOT size, choosing one of them
4854 to be the primary GOT. */
4855 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4856 {
4857 gg = mips_elf_bfd_got (ibfd, FALSE);
4858 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4859 return FALSE;
4860 }
4861
4862 /* If we do not find any suitable primary GOT, create an empty one. */
4863 if (got_per_bfd_arg.primary == NULL)
4864 g->next = mips_elf_create_got_info (abfd);
4865 else
4866 g->next = got_per_bfd_arg.primary;
4867 g->next->next = got_per_bfd_arg.current;
4868
4869 /* GG is now the master GOT, and G is the primary GOT. */
4870 gg = g;
4871 g = g->next;
4872
4873 /* Map the output bfd to the primary got. That's what we're going
4874 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4875 didn't mark in check_relocs, and we want a quick way to find it.
4876 We can't just use gg->next because we're going to reverse the
4877 list. */
4878 mips_elf_replace_bfd_got (abfd, g);
4879
4880 /* Every symbol that is referenced in a dynamic relocation must be
4881 present in the primary GOT, so arrange for them to appear after
4882 those that are actually referenced. */
4883 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4884 g->global_gotno = gg->global_gotno;
4885
4886 tga.info = info;
4887 tga.value = GGA_RELOC_ONLY;
4888 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4889 tga.value = GGA_NORMAL;
4890 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4891
4892 /* Now go through the GOTs assigning them offset ranges.
4893 [assigned_low_gotno, local_gotno[ will be set to the range of local
4894 entries in each GOT. We can then compute the end of a GOT by
4895 adding local_gotno to global_gotno. We reverse the list and make
4896 it circular since then we'll be able to quickly compute the
4897 beginning of a GOT, by computing the end of its predecessor. To
4898 avoid special cases for the primary GOT, while still preserving
4899 assertions that are valid for both single- and multi-got links,
4900 we arrange for the main got struct to have the right number of
4901 global entries, but set its local_gotno such that the initial
4902 offset of the primary GOT is zero. Remember that the primary GOT
4903 will become the last item in the circular linked list, so it
4904 points back to the master GOT. */
4905 gg->local_gotno = -g->global_gotno;
4906 gg->global_gotno = g->global_gotno;
4907 gg->tls_gotno = 0;
4908 assign = 0;
4909 gg->next = gg;
4910
4911 do
4912 {
4913 struct mips_got_info *gn;
4914
4915 assign += htab->reserved_gotno;
4916 g->assigned_low_gotno = assign;
4917 g->local_gotno += assign;
4918 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4919 g->assigned_high_gotno = g->local_gotno - 1;
4920 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4921
4922 /* Take g out of the direct list, and push it onto the reversed
4923 list that gg points to. g->next is guaranteed to be nonnull after
4924 this operation, as required by mips_elf_initialize_tls_index. */
4925 gn = g->next;
4926 g->next = gg->next;
4927 gg->next = g;
4928
4929 /* Set up any TLS entries. We always place the TLS entries after
4930 all non-TLS entries. */
4931 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4932 tga.g = g;
4933 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4934 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4935 if (!tga.g)
4936 return FALSE;
4937 BFD_ASSERT (g->tls_assigned_gotno == assign);
4938
4939 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4940 g = gn;
4941
4942 /* Forbid global symbols in every non-primary GOT from having
4943 lazy-binding stubs. */
4944 if (g)
4945 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4946 }
4947 while (g);
4948
4949 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4950
4951 needed_relocs = 0;
4952 for (g = gg->next; g && g->next != gg; g = g->next)
4953 {
4954 unsigned int save_assign;
4955
4956 /* Assign offsets to global GOT entries and count how many
4957 relocations they need. */
4958 save_assign = g->assigned_low_gotno;
4959 g->assigned_low_gotno = g->local_gotno;
4960 tga.info = info;
4961 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4962 tga.g = g;
4963 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4964 if (!tga.g)
4965 return FALSE;
4966 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4967 g->assigned_low_gotno = save_assign;
4968
4969 if (bfd_link_pic (info))
4970 {
4971 g->relocs += g->local_gotno - g->assigned_low_gotno;
4972 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4973 + g->next->global_gotno
4974 + g->next->tls_gotno
4975 + htab->reserved_gotno);
4976 }
4977 needed_relocs += g->relocs;
4978 }
4979 needed_relocs += g->relocs;
4980
4981 if (needed_relocs)
4982 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 needed_relocs);
4984
4985 return TRUE;
4986 }
4987
4988 \f
4989 /* Returns the first relocation of type r_type found, beginning with
4990 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4991
4992 static const Elf_Internal_Rela *
4993 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4994 const Elf_Internal_Rela *relocation,
4995 const Elf_Internal_Rela *relend)
4996 {
4997 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4998
4999 while (relocation < relend)
5000 {
5001 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5002 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5003 return relocation;
5004
5005 ++relocation;
5006 }
5007
5008 /* We didn't find it. */
5009 return NULL;
5010 }
5011
5012 /* Return whether an input relocation is against a local symbol. */
5013
5014 static bfd_boolean
5015 mips_elf_local_relocation_p (bfd *input_bfd,
5016 const Elf_Internal_Rela *relocation,
5017 asection **local_sections)
5018 {
5019 unsigned long r_symndx;
5020 Elf_Internal_Shdr *symtab_hdr;
5021 size_t extsymoff;
5022
5023 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5026
5027 if (r_symndx < extsymoff)
5028 return TRUE;
5029 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5030 return TRUE;
5031
5032 return FALSE;
5033 }
5034 \f
5035 /* Sign-extend VALUE, which has the indicated number of BITS. */
5036
5037 bfd_vma
5038 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5039 {
5040 if (value & ((bfd_vma) 1 << (bits - 1)))
5041 /* VALUE is negative. */
5042 value |= ((bfd_vma) - 1) << bits;
5043
5044 return value;
5045 }
5046
5047 /* Return non-zero if the indicated VALUE has overflowed the maximum
5048 range expressible by a signed number with the indicated number of
5049 BITS. */
5050
5051 static bfd_boolean
5052 mips_elf_overflow_p (bfd_vma value, int bits)
5053 {
5054 bfd_signed_vma svalue = (bfd_signed_vma) value;
5055
5056 if (svalue > (1 << (bits - 1)) - 1)
5057 /* The value is too big. */
5058 return TRUE;
5059 else if (svalue < -(1 << (bits - 1)))
5060 /* The value is too small. */
5061 return TRUE;
5062
5063 /* All is well. */
5064 return FALSE;
5065 }
5066
5067 /* Calculate the %high function. */
5068
5069 static bfd_vma
5070 mips_elf_high (bfd_vma value)
5071 {
5072 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5073 }
5074
5075 /* Calculate the %higher function. */
5076
5077 static bfd_vma
5078 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5079 {
5080 #ifdef BFD64
5081 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082 #else
5083 abort ();
5084 return MINUS_ONE;
5085 #endif
5086 }
5087
5088 /* Calculate the %highest function. */
5089
5090 static bfd_vma
5091 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5092 {
5093 #ifdef BFD64
5094 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5095 #else
5096 abort ();
5097 return MINUS_ONE;
5098 #endif
5099 }
5100 \f
5101 /* Create the .compact_rel section. */
5102
5103 static bfd_boolean
5104 mips_elf_create_compact_rel_section
5105 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5106 {
5107 flagword flags;
5108 register asection *s;
5109
5110 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5111 {
5112 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5113 | SEC_READONLY);
5114
5115 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5116 if (s == NULL
5117 || ! bfd_set_section_alignment (abfd, s,
5118 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5119 return FALSE;
5120
5121 s->size = sizeof (Elf32_External_compact_rel);
5122 }
5123
5124 return TRUE;
5125 }
5126
5127 /* Create the .got section to hold the global offset table. */
5128
5129 static bfd_boolean
5130 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5131 {
5132 flagword flags;
5133 register asection *s;
5134 struct elf_link_hash_entry *h;
5135 struct bfd_link_hash_entry *bh;
5136 struct mips_elf_link_hash_table *htab;
5137
5138 htab = mips_elf_hash_table (info);
5139 BFD_ASSERT (htab != NULL);
5140
5141 /* This function may be called more than once. */
5142 if (htab->root.sgot)
5143 return TRUE;
5144
5145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5146 | SEC_LINKER_CREATED);
5147
5148 /* We have to use an alignment of 2**4 here because this is hardcoded
5149 in the function stub generation and in the linker script. */
5150 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5151 if (s == NULL
5152 || ! bfd_set_section_alignment (abfd, s, 4))
5153 return FALSE;
5154 htab->root.sgot = s;
5155
5156 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5157 linker script because we don't want to define the symbol if we
5158 are not creating a global offset table. */
5159 bh = NULL;
5160 if (! (_bfd_generic_link_add_one_symbol
5161 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5162 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5163 return FALSE;
5164
5165 h = (struct elf_link_hash_entry *) bh;
5166 h->non_elf = 0;
5167 h->def_regular = 1;
5168 h->type = STT_OBJECT;
5169 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5170 elf_hash_table (info)->hgot = h;
5171
5172 if (bfd_link_pic (info)
5173 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5174 return FALSE;
5175
5176 htab->got_info = mips_elf_create_got_info (abfd);
5177 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5178 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5179
5180 /* We also need a .got.plt section when generating PLTs. */
5181 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5182 SEC_ALLOC | SEC_LOAD
5183 | SEC_HAS_CONTENTS
5184 | SEC_IN_MEMORY
5185 | SEC_LINKER_CREATED);
5186 if (s == NULL)
5187 return FALSE;
5188 htab->root.sgotplt = s;
5189
5190 return TRUE;
5191 }
5192 \f
5193 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5194 __GOTT_INDEX__ symbols. These symbols are only special for
5195 shared objects; they are not used in executables. */
5196
5197 static bfd_boolean
5198 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5199 {
5200 return (mips_elf_hash_table (info)->is_vxworks
5201 && bfd_link_pic (info)
5202 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5203 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5204 }
5205
5206 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5207 require an la25 stub. See also mips_elf_local_pic_function_p,
5208 which determines whether the destination function ever requires a
5209 stub. */
5210
5211 static bfd_boolean
5212 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5213 bfd_boolean target_is_16_bit_code_p)
5214 {
5215 /* We specifically ignore branches and jumps from EF_PIC objects,
5216 where the onus is on the compiler or programmer to perform any
5217 necessary initialization of $25. Sometimes such initialization
5218 is unnecessary; for example, -mno-shared functions do not use
5219 the incoming value of $25, and may therefore be called directly. */
5220 if (PIC_OBJECT_P (input_bfd))
5221 return FALSE;
5222
5223 switch (r_type)
5224 {
5225 case R_MIPS_26:
5226 case R_MIPS_PC16:
5227 case R_MIPS_PC21_S2:
5228 case R_MIPS_PC26_S2:
5229 case R_MICROMIPS_26_S1:
5230 case R_MICROMIPS_PC7_S1:
5231 case R_MICROMIPS_PC10_S1:
5232 case R_MICROMIPS_PC16_S1:
5233 case R_MICROMIPS_PC23_S2:
5234 return TRUE;
5235
5236 case R_MIPS16_26:
5237 return !target_is_16_bit_code_p;
5238
5239 default:
5240 return FALSE;
5241 }
5242 }
5243 \f
5244 /* Calculate the value produced by the RELOCATION (which comes from
5245 the INPUT_BFD). The ADDEND is the addend to use for this
5246 RELOCATION; RELOCATION->R_ADDEND is ignored.
5247
5248 The result of the relocation calculation is stored in VALUEP.
5249 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5250 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5251
5252 This function returns bfd_reloc_continue if the caller need take no
5253 further action regarding this relocation, bfd_reloc_notsupported if
5254 something goes dramatically wrong, bfd_reloc_overflow if an
5255 overflow occurs, and bfd_reloc_ok to indicate success. */
5256
5257 static bfd_reloc_status_type
5258 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5259 asection *input_section,
5260 struct bfd_link_info *info,
5261 const Elf_Internal_Rela *relocation,
5262 bfd_vma addend, reloc_howto_type *howto,
5263 Elf_Internal_Sym *local_syms,
5264 asection **local_sections, bfd_vma *valuep,
5265 const char **namep,
5266 bfd_boolean *cross_mode_jump_p,
5267 bfd_boolean save_addend)
5268 {
5269 /* The eventual value we will return. */
5270 bfd_vma value;
5271 /* The address of the symbol against which the relocation is
5272 occurring. */
5273 bfd_vma symbol = 0;
5274 /* The final GP value to be used for the relocatable, executable, or
5275 shared object file being produced. */
5276 bfd_vma gp;
5277 /* The place (section offset or address) of the storage unit being
5278 relocated. */
5279 bfd_vma p;
5280 /* The value of GP used to create the relocatable object. */
5281 bfd_vma gp0;
5282 /* The offset into the global offset table at which the address of
5283 the relocation entry symbol, adjusted by the addend, resides
5284 during execution. */
5285 bfd_vma g = MINUS_ONE;
5286 /* The section in which the symbol referenced by the relocation is
5287 located. */
5288 asection *sec = NULL;
5289 struct mips_elf_link_hash_entry *h = NULL;
5290 /* TRUE if the symbol referred to by this relocation is a local
5291 symbol. */
5292 bfd_boolean local_p, was_local_p;
5293 /* TRUE if the symbol referred to by this relocation is a section
5294 symbol. */
5295 bfd_boolean section_p = FALSE;
5296 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5297 bfd_boolean gp_disp_p = FALSE;
5298 /* TRUE if the symbol referred to by this relocation is
5299 "__gnu_local_gp". */
5300 bfd_boolean gnu_local_gp_p = FALSE;
5301 Elf_Internal_Shdr *symtab_hdr;
5302 size_t extsymoff;
5303 unsigned long r_symndx;
5304 int r_type;
5305 /* TRUE if overflow occurred during the calculation of the
5306 relocation value. */
5307 bfd_boolean overflowed_p;
5308 /* TRUE if this relocation refers to a MIPS16 function. */
5309 bfd_boolean target_is_16_bit_code_p = FALSE;
5310 bfd_boolean target_is_micromips_code_p = FALSE;
5311 struct mips_elf_link_hash_table *htab;
5312 bfd *dynobj;
5313 bfd_boolean resolved_to_zero;
5314
5315 dynobj = elf_hash_table (info)->dynobj;
5316 htab = mips_elf_hash_table (info);
5317 BFD_ASSERT (htab != NULL);
5318
5319 /* Parse the relocation. */
5320 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5321 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5322 p = (input_section->output_section->vma
5323 + input_section->output_offset
5324 + relocation->r_offset);
5325
5326 /* Assume that there will be no overflow. */
5327 overflowed_p = FALSE;
5328
5329 /* Figure out whether or not the symbol is local, and get the offset
5330 used in the array of hash table entries. */
5331 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5332 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5333 local_sections);
5334 was_local_p = local_p;
5335 if (! elf_bad_symtab (input_bfd))
5336 extsymoff = symtab_hdr->sh_info;
5337 else
5338 {
5339 /* The symbol table does not follow the rule that local symbols
5340 must come before globals. */
5341 extsymoff = 0;
5342 }
5343
5344 /* Figure out the value of the symbol. */
5345 if (local_p)
5346 {
5347 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5348 Elf_Internal_Sym *sym;
5349
5350 sym = local_syms + r_symndx;
5351 sec = local_sections[r_symndx];
5352
5353 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5354
5355 symbol = sec->output_section->vma + sec->output_offset;
5356 if (!section_p || (sec->flags & SEC_MERGE))
5357 symbol += sym->st_value;
5358 if ((sec->flags & SEC_MERGE) && section_p)
5359 {
5360 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5361 addend -= symbol;
5362 addend += sec->output_section->vma + sec->output_offset;
5363 }
5364
5365 /* MIPS16/microMIPS text labels should be treated as odd. */
5366 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5367 ++symbol;
5368
5369 /* Record the name of this symbol, for our caller. */
5370 *namep = bfd_elf_string_from_elf_section (input_bfd,
5371 symtab_hdr->sh_link,
5372 sym->st_name);
5373 if (*namep == NULL || **namep == '\0')
5374 *namep = bfd_section_name (input_bfd, sec);
5375
5376 /* For relocations against a section symbol and ones against no
5377 symbol (absolute relocations) infer the ISA mode from the addend. */
5378 if (section_p || r_symndx == STN_UNDEF)
5379 {
5380 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5381 target_is_micromips_code_p = (addend & 1) && micromips_p;
5382 }
5383 /* For relocations against an absolute symbol infer the ISA mode
5384 from the value of the symbol plus addend. */
5385 else if (bfd_is_abs_section (sec))
5386 {
5387 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5388 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5389 }
5390 /* Otherwise just use the regular symbol annotation available. */
5391 else
5392 {
5393 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5394 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5395 }
5396 }
5397 else
5398 {
5399 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5400
5401 /* For global symbols we look up the symbol in the hash-table. */
5402 h = ((struct mips_elf_link_hash_entry *)
5403 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5404 /* Find the real hash-table entry for this symbol. */
5405 while (h->root.root.type == bfd_link_hash_indirect
5406 || h->root.root.type == bfd_link_hash_warning)
5407 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5408
5409 /* Record the name of this symbol, for our caller. */
5410 *namep = h->root.root.root.string;
5411
5412 /* See if this is the special _gp_disp symbol. Note that such a
5413 symbol must always be a global symbol. */
5414 if (strcmp (*namep, "_gp_disp") == 0
5415 && ! NEWABI_P (input_bfd))
5416 {
5417 /* Relocations against _gp_disp are permitted only with
5418 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5419 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5420 return bfd_reloc_notsupported;
5421
5422 gp_disp_p = TRUE;
5423 }
5424 /* See if this is the special _gp symbol. Note that such a
5425 symbol must always be a global symbol. */
5426 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5427 gnu_local_gp_p = TRUE;
5428
5429
5430 /* If this symbol is defined, calculate its address. Note that
5431 _gp_disp is a magic symbol, always implicitly defined by the
5432 linker, so it's inappropriate to check to see whether or not
5433 its defined. */
5434 else if ((h->root.root.type == bfd_link_hash_defined
5435 || h->root.root.type == bfd_link_hash_defweak)
5436 && h->root.root.u.def.section)
5437 {
5438 sec = h->root.root.u.def.section;
5439 if (sec->output_section)
5440 symbol = (h->root.root.u.def.value
5441 + sec->output_section->vma
5442 + sec->output_offset);
5443 else
5444 symbol = h->root.root.u.def.value;
5445 }
5446 else if (h->root.root.type == bfd_link_hash_undefweak)
5447 /* We allow relocations against undefined weak symbols, giving
5448 it the value zero, so that you can undefined weak functions
5449 and check to see if they exist by looking at their
5450 addresses. */
5451 symbol = 0;
5452 else if (info->unresolved_syms_in_objects == RM_IGNORE
5453 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5454 symbol = 0;
5455 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5456 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5457 {
5458 /* If this is a dynamic link, we should have created a
5459 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5460 in _bfd_mips_elf_create_dynamic_sections.
5461 Otherwise, we should define the symbol with a value of 0.
5462 FIXME: It should probably get into the symbol table
5463 somehow as well. */
5464 BFD_ASSERT (! bfd_link_pic (info));
5465 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5466 symbol = 0;
5467 }
5468 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5469 {
5470 /* This is an optional symbol - an Irix specific extension to the
5471 ELF spec. Ignore it for now.
5472 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5473 than simply ignoring them, but we do not handle this for now.
5474 For information see the "64-bit ELF Object File Specification"
5475 which is available from here:
5476 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5477 symbol = 0;
5478 }
5479 else
5480 {
5481 (*info->callbacks->undefined_symbol)
5482 (info, h->root.root.root.string, input_bfd,
5483 input_section, relocation->r_offset,
5484 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5485 || ELF_ST_VISIBILITY (h->root.other));
5486 return bfd_reloc_undefined;
5487 }
5488
5489 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5490 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5491 }
5492
5493 /* If this is a reference to a 16-bit function with a stub, we need
5494 to redirect the relocation to the stub unless:
5495
5496 (a) the relocation is for a MIPS16 JAL;
5497
5498 (b) the relocation is for a MIPS16 PIC call, and there are no
5499 non-MIPS16 uses of the GOT slot; or
5500
5501 (c) the section allows direct references to MIPS16 functions. */
5502 if (r_type != R_MIPS16_26
5503 && !bfd_link_relocatable (info)
5504 && ((h != NULL
5505 && h->fn_stub != NULL
5506 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5507 || (local_p
5508 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5509 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5510 && !section_allows_mips16_refs_p (input_section))
5511 {
5512 /* This is a 32- or 64-bit call to a 16-bit function. We should
5513 have already noticed that we were going to need the
5514 stub. */
5515 if (local_p)
5516 {
5517 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5518 value = 0;
5519 }
5520 else
5521 {
5522 BFD_ASSERT (h->need_fn_stub);
5523 if (h->la25_stub)
5524 {
5525 /* If a LA25 header for the stub itself exists, point to the
5526 prepended LUI/ADDIU sequence. */
5527 sec = h->la25_stub->stub_section;
5528 value = h->la25_stub->offset;
5529 }
5530 else
5531 {
5532 sec = h->fn_stub;
5533 value = 0;
5534 }
5535 }
5536
5537 symbol = sec->output_section->vma + sec->output_offset + value;
5538 /* The target is 16-bit, but the stub isn't. */
5539 target_is_16_bit_code_p = FALSE;
5540 }
5541 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5542 to a standard MIPS function, we need to redirect the call to the stub.
5543 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5544 indirect calls should use an indirect stub instead. */
5545 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5546 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5547 || (local_p
5548 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5549 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5550 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5551 {
5552 if (local_p)
5553 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5554 else
5555 {
5556 /* If both call_stub and call_fp_stub are defined, we can figure
5557 out which one to use by checking which one appears in the input
5558 file. */
5559 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5560 {
5561 asection *o;
5562
5563 sec = NULL;
5564 for (o = input_bfd->sections; o != NULL; o = o->next)
5565 {
5566 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5567 {
5568 sec = h->call_fp_stub;
5569 break;
5570 }
5571 }
5572 if (sec == NULL)
5573 sec = h->call_stub;
5574 }
5575 else if (h->call_stub != NULL)
5576 sec = h->call_stub;
5577 else
5578 sec = h->call_fp_stub;
5579 }
5580
5581 BFD_ASSERT (sec->size > 0);
5582 symbol = sec->output_section->vma + sec->output_offset;
5583 }
5584 /* If this is a direct call to a PIC function, redirect to the
5585 non-PIC stub. */
5586 else if (h != NULL && h->la25_stub
5587 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5588 target_is_16_bit_code_p))
5589 {
5590 symbol = (h->la25_stub->stub_section->output_section->vma
5591 + h->la25_stub->stub_section->output_offset
5592 + h->la25_stub->offset);
5593 if (ELF_ST_IS_MICROMIPS (h->root.other))
5594 symbol |= 1;
5595 }
5596 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5597 entry is used if a standard PLT entry has also been made. In this
5598 case the symbol will have been set by mips_elf_set_plt_sym_value
5599 to point to the standard PLT entry, so redirect to the compressed
5600 one. */
5601 else if ((mips16_branch_reloc_p (r_type)
5602 || micromips_branch_reloc_p (r_type))
5603 && !bfd_link_relocatable (info)
5604 && h != NULL
5605 && h->use_plt_entry
5606 && h->root.plt.plist->comp_offset != MINUS_ONE
5607 && h->root.plt.plist->mips_offset != MINUS_ONE)
5608 {
5609 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5610
5611 sec = htab->root.splt;
5612 symbol = (sec->output_section->vma
5613 + sec->output_offset
5614 + htab->plt_header_size
5615 + htab->plt_mips_offset
5616 + h->root.plt.plist->comp_offset
5617 + 1);
5618
5619 target_is_16_bit_code_p = !micromips_p;
5620 target_is_micromips_code_p = micromips_p;
5621 }
5622
5623 /* Make sure MIPS16 and microMIPS are not used together. */
5624 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5625 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5626 {
5627 _bfd_error_handler
5628 (_("MIPS16 and microMIPS functions cannot call each other"));
5629 return bfd_reloc_notsupported;
5630 }
5631
5632 /* Calls from 16-bit code to 32-bit code and vice versa require the
5633 mode change. However, we can ignore calls to undefined weak symbols,
5634 which should never be executed at runtime. This exception is important
5635 because the assembly writer may have "known" that any definition of the
5636 symbol would be 16-bit code, and that direct jumps were therefore
5637 acceptable. */
5638 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5639 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5640 && ((mips16_branch_reloc_p (r_type)
5641 && !target_is_16_bit_code_p)
5642 || (micromips_branch_reloc_p (r_type)
5643 && !target_is_micromips_code_p)
5644 || ((branch_reloc_p (r_type)
5645 || r_type == R_MIPS_JALR)
5646 && (target_is_16_bit_code_p
5647 || target_is_micromips_code_p))));
5648
5649 local_p = (h == NULL || mips_use_local_got_p (info, h));
5650
5651 gp0 = _bfd_get_gp_value (input_bfd);
5652 gp = _bfd_get_gp_value (abfd);
5653 if (htab->got_info)
5654 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5655
5656 if (gnu_local_gp_p)
5657 symbol = gp;
5658
5659 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5660 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5661 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5662 if (got_page_reloc_p (r_type) && !local_p)
5663 {
5664 r_type = (micromips_reloc_p (r_type)
5665 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5666 addend = 0;
5667 }
5668
5669 resolved_to_zero = (h != NULL
5670 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5671 &h->root));
5672
5673 /* If we haven't already determined the GOT offset, and we're going
5674 to need it, get it now. */
5675 switch (r_type)
5676 {
5677 case R_MIPS16_CALL16:
5678 case R_MIPS16_GOT16:
5679 case R_MIPS_CALL16:
5680 case R_MIPS_GOT16:
5681 case R_MIPS_GOT_DISP:
5682 case R_MIPS_GOT_HI16:
5683 case R_MIPS_CALL_HI16:
5684 case R_MIPS_GOT_LO16:
5685 case R_MIPS_CALL_LO16:
5686 case R_MICROMIPS_CALL16:
5687 case R_MICROMIPS_GOT16:
5688 case R_MICROMIPS_GOT_DISP:
5689 case R_MICROMIPS_GOT_HI16:
5690 case R_MICROMIPS_CALL_HI16:
5691 case R_MICROMIPS_GOT_LO16:
5692 case R_MICROMIPS_CALL_LO16:
5693 case R_MIPS_TLS_GD:
5694 case R_MIPS_TLS_GOTTPREL:
5695 case R_MIPS_TLS_LDM:
5696 case R_MIPS16_TLS_GD:
5697 case R_MIPS16_TLS_GOTTPREL:
5698 case R_MIPS16_TLS_LDM:
5699 case R_MICROMIPS_TLS_GD:
5700 case R_MICROMIPS_TLS_GOTTPREL:
5701 case R_MICROMIPS_TLS_LDM:
5702 /* Find the index into the GOT where this value is located. */
5703 if (tls_ldm_reloc_p (r_type))
5704 {
5705 g = mips_elf_local_got_index (abfd, input_bfd, info,
5706 0, 0, NULL, r_type);
5707 if (g == MINUS_ONE)
5708 return bfd_reloc_outofrange;
5709 }
5710 else if (!local_p)
5711 {
5712 /* On VxWorks, CALL relocations should refer to the .got.plt
5713 entry, which is initialized to point at the PLT stub. */
5714 if (htab->is_vxworks
5715 && (call_hi16_reloc_p (r_type)
5716 || call_lo16_reloc_p (r_type)
5717 || call16_reloc_p (r_type)))
5718 {
5719 BFD_ASSERT (addend == 0);
5720 BFD_ASSERT (h->root.needs_plt);
5721 g = mips_elf_gotplt_index (info, &h->root);
5722 }
5723 else
5724 {
5725 BFD_ASSERT (addend == 0);
5726 g = mips_elf_global_got_index (abfd, info, input_bfd,
5727 &h->root, r_type);
5728 if (!TLS_RELOC_P (r_type)
5729 && !elf_hash_table (info)->dynamic_sections_created)
5730 /* This is a static link. We must initialize the GOT entry. */
5731 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5732 }
5733 }
5734 else if (!htab->is_vxworks
5735 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5736 /* The calculation below does not involve "g". */
5737 break;
5738 else
5739 {
5740 g = mips_elf_local_got_index (abfd, input_bfd, info,
5741 symbol + addend, r_symndx, h, r_type);
5742 if (g == MINUS_ONE)
5743 return bfd_reloc_outofrange;
5744 }
5745
5746 /* Convert GOT indices to actual offsets. */
5747 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5748 break;
5749 }
5750
5751 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5752 symbols are resolved by the loader. Add them to .rela.dyn. */
5753 if (h != NULL && is_gott_symbol (info, &h->root))
5754 {
5755 Elf_Internal_Rela outrel;
5756 bfd_byte *loc;
5757 asection *s;
5758
5759 s = mips_elf_rel_dyn_section (info, FALSE);
5760 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5761
5762 outrel.r_offset = (input_section->output_section->vma
5763 + input_section->output_offset
5764 + relocation->r_offset);
5765 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5766 outrel.r_addend = addend;
5767 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5768
5769 /* If we've written this relocation for a readonly section,
5770 we need to set DF_TEXTREL again, so that we do not delete the
5771 DT_TEXTREL tag. */
5772 if (MIPS_ELF_READONLY_SECTION (input_section))
5773 info->flags |= DF_TEXTREL;
5774
5775 *valuep = 0;
5776 return bfd_reloc_ok;
5777 }
5778
5779 /* Figure out what kind of relocation is being performed. */
5780 switch (r_type)
5781 {
5782 case R_MIPS_NONE:
5783 return bfd_reloc_continue;
5784
5785 case R_MIPS_16:
5786 if (howto->partial_inplace)
5787 addend = _bfd_mips_elf_sign_extend (addend, 16);
5788 value = symbol + addend;
5789 overflowed_p = mips_elf_overflow_p (value, 16);
5790 break;
5791
5792 case R_MIPS_32:
5793 case R_MIPS_REL32:
5794 case R_MIPS_64:
5795 if ((bfd_link_pic (info)
5796 || (htab->root.dynamic_sections_created
5797 && h != NULL
5798 && h->root.def_dynamic
5799 && !h->root.def_regular
5800 && !h->has_static_relocs))
5801 && r_symndx != STN_UNDEF
5802 && (h == NULL
5803 || h->root.root.type != bfd_link_hash_undefweak
5804 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5805 && !resolved_to_zero))
5806 && (input_section->flags & SEC_ALLOC) != 0)
5807 {
5808 /* If we're creating a shared library, then we can't know
5809 where the symbol will end up. So, we create a relocation
5810 record in the output, and leave the job up to the dynamic
5811 linker. We must do the same for executable references to
5812 shared library symbols, unless we've decided to use copy
5813 relocs or PLTs instead. */
5814 value = addend;
5815 if (!mips_elf_create_dynamic_relocation (abfd,
5816 info,
5817 relocation,
5818 h,
5819 sec,
5820 symbol,
5821 &value,
5822 input_section))
5823 return bfd_reloc_undefined;
5824 }
5825 else
5826 {
5827 if (r_type != R_MIPS_REL32)
5828 value = symbol + addend;
5829 else
5830 value = addend;
5831 }
5832 value &= howto->dst_mask;
5833 break;
5834
5835 case R_MIPS_PC32:
5836 value = symbol + addend - p;
5837 value &= howto->dst_mask;
5838 break;
5839
5840 case R_MIPS16_26:
5841 /* The calculation for R_MIPS16_26 is just the same as for an
5842 R_MIPS_26. It's only the storage of the relocated field into
5843 the output file that's different. That's handled in
5844 mips_elf_perform_relocation. So, we just fall through to the
5845 R_MIPS_26 case here. */
5846 case R_MIPS_26:
5847 case R_MICROMIPS_26_S1:
5848 {
5849 unsigned int shift;
5850
5851 /* Shift is 2, unusually, for microMIPS JALX. */
5852 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5853
5854 if (howto->partial_inplace && !section_p)
5855 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5856 else
5857 value = addend;
5858 value += symbol;
5859
5860 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5861 be the correct ISA mode selector except for weak undefined
5862 symbols. */
5863 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5864 && (*cross_mode_jump_p
5865 ? (value & 3) != (r_type == R_MIPS_26)
5866 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5867 return bfd_reloc_outofrange;
5868
5869 value >>= shift;
5870 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5871 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5872 value &= howto->dst_mask;
5873 }
5874 break;
5875
5876 case R_MIPS_TLS_DTPREL_HI16:
5877 case R_MIPS16_TLS_DTPREL_HI16:
5878 case R_MICROMIPS_TLS_DTPREL_HI16:
5879 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5880 & howto->dst_mask);
5881 break;
5882
5883 case R_MIPS_TLS_DTPREL_LO16:
5884 case R_MIPS_TLS_DTPREL32:
5885 case R_MIPS_TLS_DTPREL64:
5886 case R_MIPS16_TLS_DTPREL_LO16:
5887 case R_MICROMIPS_TLS_DTPREL_LO16:
5888 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5889 break;
5890
5891 case R_MIPS_TLS_TPREL_HI16:
5892 case R_MIPS16_TLS_TPREL_HI16:
5893 case R_MICROMIPS_TLS_TPREL_HI16:
5894 value = (mips_elf_high (addend + symbol - tprel_base (info))
5895 & howto->dst_mask);
5896 break;
5897
5898 case R_MIPS_TLS_TPREL_LO16:
5899 case R_MIPS_TLS_TPREL32:
5900 case R_MIPS_TLS_TPREL64:
5901 case R_MIPS16_TLS_TPREL_LO16:
5902 case R_MICROMIPS_TLS_TPREL_LO16:
5903 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5904 break;
5905
5906 case R_MIPS_HI16:
5907 case R_MIPS16_HI16:
5908 case R_MICROMIPS_HI16:
5909 if (!gp_disp_p)
5910 {
5911 value = mips_elf_high (addend + symbol);
5912 value &= howto->dst_mask;
5913 }
5914 else
5915 {
5916 /* For MIPS16 ABI code we generate this sequence
5917 0: li $v0,%hi(_gp_disp)
5918 4: addiupc $v1,%lo(_gp_disp)
5919 8: sll $v0,16
5920 12: addu $v0,$v1
5921 14: move $gp,$v0
5922 So the offsets of hi and lo relocs are the same, but the
5923 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5924 ADDIUPC clears the low two bits of the instruction address,
5925 so the base is ($t9 + 4) & ~3. */
5926 if (r_type == R_MIPS16_HI16)
5927 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5928 /* The microMIPS .cpload sequence uses the same assembly
5929 instructions as the traditional psABI version, but the
5930 incoming $t9 has the low bit set. */
5931 else if (r_type == R_MICROMIPS_HI16)
5932 value = mips_elf_high (addend + gp - p - 1);
5933 else
5934 value = mips_elf_high (addend + gp - p);
5935 }
5936 break;
5937
5938 case R_MIPS_LO16:
5939 case R_MIPS16_LO16:
5940 case R_MICROMIPS_LO16:
5941 case R_MICROMIPS_HI0_LO16:
5942 if (!gp_disp_p)
5943 value = (symbol + addend) & howto->dst_mask;
5944 else
5945 {
5946 /* See the comment for R_MIPS16_HI16 above for the reason
5947 for this conditional. */
5948 if (r_type == R_MIPS16_LO16)
5949 value = addend + gp - (p & ~(bfd_vma) 0x3);
5950 else if (r_type == R_MICROMIPS_LO16
5951 || r_type == R_MICROMIPS_HI0_LO16)
5952 value = addend + gp - p + 3;
5953 else
5954 value = addend + gp - p + 4;
5955 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5956 for overflow. But, on, say, IRIX5, relocations against
5957 _gp_disp are normally generated from the .cpload
5958 pseudo-op. It generates code that normally looks like
5959 this:
5960
5961 lui $gp,%hi(_gp_disp)
5962 addiu $gp,$gp,%lo(_gp_disp)
5963 addu $gp,$gp,$t9
5964
5965 Here $t9 holds the address of the function being called,
5966 as required by the MIPS ELF ABI. The R_MIPS_LO16
5967 relocation can easily overflow in this situation, but the
5968 R_MIPS_HI16 relocation will handle the overflow.
5969 Therefore, we consider this a bug in the MIPS ABI, and do
5970 not check for overflow here. */
5971 }
5972 break;
5973
5974 case R_MIPS_LITERAL:
5975 case R_MICROMIPS_LITERAL:
5976 /* Because we don't merge literal sections, we can handle this
5977 just like R_MIPS_GPREL16. In the long run, we should merge
5978 shared literals, and then we will need to additional work
5979 here. */
5980
5981 /* Fall through. */
5982
5983 case R_MIPS16_GPREL:
5984 /* The R_MIPS16_GPREL performs the same calculation as
5985 R_MIPS_GPREL16, but stores the relocated bits in a different
5986 order. We don't need to do anything special here; the
5987 differences are handled in mips_elf_perform_relocation. */
5988 case R_MIPS_GPREL16:
5989 case R_MICROMIPS_GPREL7_S2:
5990 case R_MICROMIPS_GPREL16:
5991 /* Only sign-extend the addend if it was extracted from the
5992 instruction. If the addend was separate, leave it alone,
5993 otherwise we may lose significant bits. */
5994 if (howto->partial_inplace)
5995 addend = _bfd_mips_elf_sign_extend (addend, 16);
5996 value = symbol + addend - gp;
5997 /* If the symbol was local, any earlier relocatable links will
5998 have adjusted its addend with the gp offset, so compensate
5999 for that now. Don't do it for symbols forced local in this
6000 link, though, since they won't have had the gp offset applied
6001 to them before. */
6002 if (was_local_p)
6003 value += gp0;
6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6005 overflowed_p = mips_elf_overflow_p (value, 16);
6006 break;
6007
6008 case R_MIPS16_GOT16:
6009 case R_MIPS16_CALL16:
6010 case R_MIPS_GOT16:
6011 case R_MIPS_CALL16:
6012 case R_MICROMIPS_GOT16:
6013 case R_MICROMIPS_CALL16:
6014 /* VxWorks does not have separate local and global semantics for
6015 R_MIPS*_GOT16; every relocation evaluates to "G". */
6016 if (!htab->is_vxworks && local_p)
6017 {
6018 value = mips_elf_got16_entry (abfd, input_bfd, info,
6019 symbol + addend, !was_local_p);
6020 if (value == MINUS_ONE)
6021 return bfd_reloc_outofrange;
6022 value
6023 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6024 overflowed_p = mips_elf_overflow_p (value, 16);
6025 break;
6026 }
6027
6028 /* Fall through. */
6029
6030 case R_MIPS_TLS_GD:
6031 case R_MIPS_TLS_GOTTPREL:
6032 case R_MIPS_TLS_LDM:
6033 case R_MIPS_GOT_DISP:
6034 case R_MIPS16_TLS_GD:
6035 case R_MIPS16_TLS_GOTTPREL:
6036 case R_MIPS16_TLS_LDM:
6037 case R_MICROMIPS_TLS_GD:
6038 case R_MICROMIPS_TLS_GOTTPREL:
6039 case R_MICROMIPS_TLS_LDM:
6040 case R_MICROMIPS_GOT_DISP:
6041 value = g;
6042 overflowed_p = mips_elf_overflow_p (value, 16);
6043 break;
6044
6045 case R_MIPS_GPREL32:
6046 value = (addend + symbol + gp0 - gp);
6047 if (!save_addend)
6048 value &= howto->dst_mask;
6049 break;
6050
6051 case R_MIPS_PC16:
6052 case R_MIPS_GNU_REL16_S2:
6053 if (howto->partial_inplace)
6054 addend = _bfd_mips_elf_sign_extend (addend, 18);
6055
6056 /* No need to exclude weak undefined symbols here as they resolve
6057 to 0 and never set `*cross_mode_jump_p', so this alignment check
6058 will never trigger for them. */
6059 if (*cross_mode_jump_p
6060 ? ((symbol + addend) & 3) != 1
6061 : ((symbol + addend) & 3) != 0)
6062 return bfd_reloc_outofrange;
6063
6064 value = symbol + addend - p;
6065 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6066 overflowed_p = mips_elf_overflow_p (value, 18);
6067 value >>= howto->rightshift;
6068 value &= howto->dst_mask;
6069 break;
6070
6071 case R_MIPS16_PC16_S1:
6072 if (howto->partial_inplace)
6073 addend = _bfd_mips_elf_sign_extend (addend, 17);
6074
6075 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6076 && (*cross_mode_jump_p
6077 ? ((symbol + addend) & 3) != 0
6078 : ((symbol + addend) & 1) == 0))
6079 return bfd_reloc_outofrange;
6080
6081 value = symbol + addend - p;
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 17);
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6086 break;
6087
6088 case R_MIPS_PC21_S2:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 23);
6091
6092 if ((symbol + addend) & 3)
6093 return bfd_reloc_outofrange;
6094
6095 value = symbol + addend - p;
6096 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6097 overflowed_p = mips_elf_overflow_p (value, 23);
6098 value >>= howto->rightshift;
6099 value &= howto->dst_mask;
6100 break;
6101
6102 case R_MIPS_PC26_S2:
6103 if (howto->partial_inplace)
6104 addend = _bfd_mips_elf_sign_extend (addend, 28);
6105
6106 if ((symbol + addend) & 3)
6107 return bfd_reloc_outofrange;
6108
6109 value = symbol + addend - p;
6110 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6111 overflowed_p = mips_elf_overflow_p (value, 28);
6112 value >>= howto->rightshift;
6113 value &= howto->dst_mask;
6114 break;
6115
6116 case R_MIPS_PC18_S3:
6117 if (howto->partial_inplace)
6118 addend = _bfd_mips_elf_sign_extend (addend, 21);
6119
6120 if ((symbol + addend) & 7)
6121 return bfd_reloc_outofrange;
6122
6123 value = symbol + addend - ((p | 7) ^ 7);
6124 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6125 overflowed_p = mips_elf_overflow_p (value, 21);
6126 value >>= howto->rightshift;
6127 value &= howto->dst_mask;
6128 break;
6129
6130 case R_MIPS_PC19_S2:
6131 if (howto->partial_inplace)
6132 addend = _bfd_mips_elf_sign_extend (addend, 21);
6133
6134 if ((symbol + addend) & 3)
6135 return bfd_reloc_outofrange;
6136
6137 value = symbol + addend - p;
6138 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6139 overflowed_p = mips_elf_overflow_p (value, 21);
6140 value >>= howto->rightshift;
6141 value &= howto->dst_mask;
6142 break;
6143
6144 case R_MIPS_PCHI16:
6145 value = mips_elf_high (symbol + addend - p);
6146 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6147 overflowed_p = mips_elf_overflow_p (value, 16);
6148 value &= howto->dst_mask;
6149 break;
6150
6151 case R_MIPS_PCLO16:
6152 if (howto->partial_inplace)
6153 addend = _bfd_mips_elf_sign_extend (addend, 16);
6154 value = symbol + addend - p;
6155 value &= howto->dst_mask;
6156 break;
6157
6158 case R_MICROMIPS_PC7_S1:
6159 if (howto->partial_inplace)
6160 addend = _bfd_mips_elf_sign_extend (addend, 8);
6161
6162 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6163 && (*cross_mode_jump_p
6164 ? ((symbol + addend + 2) & 3) != 0
6165 : ((symbol + addend + 2) & 1) == 0))
6166 return bfd_reloc_outofrange;
6167
6168 value = symbol + addend - p;
6169 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6170 overflowed_p = mips_elf_overflow_p (value, 8);
6171 value >>= howto->rightshift;
6172 value &= howto->dst_mask;
6173 break;
6174
6175 case R_MICROMIPS_PC10_S1:
6176 if (howto->partial_inplace)
6177 addend = _bfd_mips_elf_sign_extend (addend, 11);
6178
6179 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6180 && (*cross_mode_jump_p
6181 ? ((symbol + addend + 2) & 3) != 0
6182 : ((symbol + addend + 2) & 1) == 0))
6183 return bfd_reloc_outofrange;
6184
6185 value = symbol + addend - p;
6186 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6187 overflowed_p = mips_elf_overflow_p (value, 11);
6188 value >>= howto->rightshift;
6189 value &= howto->dst_mask;
6190 break;
6191
6192 case R_MICROMIPS_PC16_S1:
6193 if (howto->partial_inplace)
6194 addend = _bfd_mips_elf_sign_extend (addend, 17);
6195
6196 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6197 && (*cross_mode_jump_p
6198 ? ((symbol + addend) & 3) != 0
6199 : ((symbol + addend) & 1) == 0))
6200 return bfd_reloc_outofrange;
6201
6202 value = symbol + addend - p;
6203 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6204 overflowed_p = mips_elf_overflow_p (value, 17);
6205 value >>= howto->rightshift;
6206 value &= howto->dst_mask;
6207 break;
6208
6209 case R_MICROMIPS_PC23_S2:
6210 if (howto->partial_inplace)
6211 addend = _bfd_mips_elf_sign_extend (addend, 25);
6212 value = symbol + addend - ((p | 3) ^ 3);
6213 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6214 overflowed_p = mips_elf_overflow_p (value, 25);
6215 value >>= howto->rightshift;
6216 value &= howto->dst_mask;
6217 break;
6218
6219 case R_MIPS_GOT_HI16:
6220 case R_MIPS_CALL_HI16:
6221 case R_MICROMIPS_GOT_HI16:
6222 case R_MICROMIPS_CALL_HI16:
6223 /* We're allowed to handle these two relocations identically.
6224 The dynamic linker is allowed to handle the CALL relocations
6225 differently by creating a lazy evaluation stub. */
6226 value = g;
6227 value = mips_elf_high (value);
6228 value &= howto->dst_mask;
6229 break;
6230
6231 case R_MIPS_GOT_LO16:
6232 case R_MIPS_CALL_LO16:
6233 case R_MICROMIPS_GOT_LO16:
6234 case R_MICROMIPS_CALL_LO16:
6235 value = g & howto->dst_mask;
6236 break;
6237
6238 case R_MIPS_GOT_PAGE:
6239 case R_MICROMIPS_GOT_PAGE:
6240 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6241 if (value == MINUS_ONE)
6242 return bfd_reloc_outofrange;
6243 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6244 overflowed_p = mips_elf_overflow_p (value, 16);
6245 break;
6246
6247 case R_MIPS_GOT_OFST:
6248 case R_MICROMIPS_GOT_OFST:
6249 if (local_p)
6250 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6251 else
6252 value = addend;
6253 overflowed_p = mips_elf_overflow_p (value, 16);
6254 break;
6255
6256 case R_MIPS_SUB:
6257 case R_MICROMIPS_SUB:
6258 value = symbol - addend;
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_HIGHER:
6263 case R_MICROMIPS_HIGHER:
6264 value = mips_elf_higher (addend + symbol);
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_HIGHEST:
6269 case R_MICROMIPS_HIGHEST:
6270 value = mips_elf_highest (addend + symbol);
6271 value &= howto->dst_mask;
6272 break;
6273
6274 case R_MIPS_SCN_DISP:
6275 case R_MICROMIPS_SCN_DISP:
6276 value = symbol + addend - sec->output_offset;
6277 value &= howto->dst_mask;
6278 break;
6279
6280 case R_MIPS_JALR:
6281 case R_MICROMIPS_JALR:
6282 /* This relocation is only a hint. In some cases, we optimize
6283 it into a bal instruction. But we don't try to optimize
6284 when the symbol does not resolve locally. */
6285 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6286 return bfd_reloc_continue;
6287 /* We can't optimize cross-mode jumps either. */
6288 if (*cross_mode_jump_p)
6289 return bfd_reloc_continue;
6290 value = symbol + addend;
6291 /* Neither we can non-instruction-aligned targets. */
6292 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6293 return bfd_reloc_continue;
6294 break;
6295
6296 case R_MIPS_PJUMP:
6297 case R_MIPS_GNU_VTINHERIT:
6298 case R_MIPS_GNU_VTENTRY:
6299 /* We don't do anything with these at present. */
6300 return bfd_reloc_continue;
6301
6302 default:
6303 /* An unrecognized relocation type. */
6304 return bfd_reloc_notsupported;
6305 }
6306
6307 /* Store the VALUE for our caller. */
6308 *valuep = value;
6309 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6310 }
6311
6312 /* Obtain the field relocated by RELOCATION. */
6313
6314 static bfd_vma
6315 mips_elf_obtain_contents (reloc_howto_type *howto,
6316 const Elf_Internal_Rela *relocation,
6317 bfd *input_bfd, bfd_byte *contents)
6318 {
6319 bfd_vma x = 0;
6320 bfd_byte *location = contents + relocation->r_offset;
6321 unsigned int size = bfd_get_reloc_size (howto);
6322
6323 /* Obtain the bytes. */
6324 if (size != 0)
6325 x = bfd_get (8 * size, input_bfd, location);
6326
6327 return x;
6328 }
6329
6330 /* It has been determined that the result of the RELOCATION is the
6331 VALUE. Use HOWTO to place VALUE into the output file at the
6332 appropriate position. The SECTION is the section to which the
6333 relocation applies.
6334 CROSS_MODE_JUMP_P is true if the relocation field
6335 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6336
6337 Returns FALSE if anything goes wrong. */
6338
6339 static bfd_boolean
6340 mips_elf_perform_relocation (struct bfd_link_info *info,
6341 reloc_howto_type *howto,
6342 const Elf_Internal_Rela *relocation,
6343 bfd_vma value, bfd *input_bfd,
6344 asection *input_section, bfd_byte *contents,
6345 bfd_boolean cross_mode_jump_p)
6346 {
6347 bfd_vma x;
6348 bfd_byte *location;
6349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6350 unsigned int size;
6351
6352 /* Figure out where the relocation is occurring. */
6353 location = contents + relocation->r_offset;
6354
6355 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6356
6357 /* Obtain the current value. */
6358 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6359
6360 /* Clear the field we are setting. */
6361 x &= ~howto->dst_mask;
6362
6363 /* Set the field. */
6364 x |= (value & howto->dst_mask);
6365
6366 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6367 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6368 {
6369 bfd_vma opcode = x >> 26;
6370
6371 if (r_type == R_MIPS16_26 ? opcode == 0x7
6372 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6373 : opcode == 0x1d)
6374 {
6375 info->callbacks->einfo
6376 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6377 input_bfd, input_section, relocation->r_offset);
6378 return TRUE;
6379 }
6380 }
6381 if (cross_mode_jump_p && jal_reloc_p (r_type))
6382 {
6383 bfd_boolean ok;
6384 bfd_vma opcode = x >> 26;
6385 bfd_vma jalx_opcode;
6386
6387 /* Check to see if the opcode is already JAL or JALX. */
6388 if (r_type == R_MIPS16_26)
6389 {
6390 ok = ((opcode == 0x6) || (opcode == 0x7));
6391 jalx_opcode = 0x7;
6392 }
6393 else if (r_type == R_MICROMIPS_26_S1)
6394 {
6395 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6396 jalx_opcode = 0x3c;
6397 }
6398 else
6399 {
6400 ok = ((opcode == 0x3) || (opcode == 0x1d));
6401 jalx_opcode = 0x1d;
6402 }
6403
6404 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6405 convert J or JALS to JALX. */
6406 if (!ok)
6407 {
6408 info->callbacks->einfo
6409 (_("%X%H: Unsupported jump between ISA modes; "
6410 "consider recompiling with interlinking enabled\n"),
6411 input_bfd, input_section, relocation->r_offset);
6412 return TRUE;
6413 }
6414
6415 /* Make this the JALX opcode. */
6416 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6417 }
6418 else if (cross_mode_jump_p && b_reloc_p (r_type))
6419 {
6420 bfd_boolean ok = FALSE;
6421 bfd_vma opcode = x >> 16;
6422 bfd_vma jalx_opcode = 0;
6423 bfd_vma sign_bit = 0;
6424 bfd_vma addr;
6425 bfd_vma dest;
6426
6427 if (r_type == R_MICROMIPS_PC16_S1)
6428 {
6429 ok = opcode == 0x4060;
6430 jalx_opcode = 0x3c;
6431 sign_bit = 0x10000;
6432 value <<= 1;
6433 }
6434 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6435 {
6436 ok = opcode == 0x411;
6437 jalx_opcode = 0x1d;
6438 sign_bit = 0x20000;
6439 value <<= 2;
6440 }
6441
6442 if (ok && !bfd_link_pic (info))
6443 {
6444 addr = (input_section->output_section->vma
6445 + input_section->output_offset
6446 + relocation->r_offset
6447 + 4);
6448 dest = (addr
6449 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6450
6451 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6452 {
6453 info->callbacks->einfo
6454 (_("%X%H: Cannot convert branch between ISA modes "
6455 "to JALX: relocation out of range\n"),
6456 input_bfd, input_section, relocation->r_offset);
6457 return TRUE;
6458 }
6459
6460 /* Make this the JALX opcode. */
6461 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6462 }
6463 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6464 {
6465 info->callbacks->einfo
6466 (_("%X%H: Unsupported branch between ISA modes\n"),
6467 input_bfd, input_section, relocation->r_offset);
6468 return TRUE;
6469 }
6470 }
6471
6472 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6473 range. */
6474 if (!bfd_link_relocatable (info)
6475 && !cross_mode_jump_p
6476 && ((JAL_TO_BAL_P (input_bfd)
6477 && r_type == R_MIPS_26
6478 && (x >> 26) == 0x3) /* jal addr */
6479 || (JALR_TO_BAL_P (input_bfd)
6480 && r_type == R_MIPS_JALR
6481 && x == 0x0320f809) /* jalr t9 */
6482 || (JR_TO_B_P (input_bfd)
6483 && r_type == R_MIPS_JALR
6484 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6485 {
6486 bfd_vma addr;
6487 bfd_vma dest;
6488 bfd_signed_vma off;
6489
6490 addr = (input_section->output_section->vma
6491 + input_section->output_offset
6492 + relocation->r_offset
6493 + 4);
6494 if (r_type == R_MIPS_26)
6495 dest = (value << 2) | ((addr >> 28) << 28);
6496 else
6497 dest = value;
6498 off = dest - addr;
6499 if (off <= 0x1ffff && off >= -0x20000)
6500 {
6501 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6502 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6503 else
6504 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6505 }
6506 }
6507
6508 /* Put the value into the output. */
6509 size = bfd_get_reloc_size (howto);
6510 if (size != 0)
6511 bfd_put (8 * size, input_bfd, x, location);
6512
6513 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6514 location);
6515
6516 return TRUE;
6517 }
6518 \f
6519 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6520 is the original relocation, which is now being transformed into a
6521 dynamic relocation. The ADDENDP is adjusted if necessary; the
6522 caller should store the result in place of the original addend. */
6523
6524 static bfd_boolean
6525 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6526 struct bfd_link_info *info,
6527 const Elf_Internal_Rela *rel,
6528 struct mips_elf_link_hash_entry *h,
6529 asection *sec, bfd_vma symbol,
6530 bfd_vma *addendp, asection *input_section)
6531 {
6532 Elf_Internal_Rela outrel[3];
6533 asection *sreloc;
6534 bfd *dynobj;
6535 int r_type;
6536 long indx;
6537 bfd_boolean defined_p;
6538 struct mips_elf_link_hash_table *htab;
6539
6540 htab = mips_elf_hash_table (info);
6541 BFD_ASSERT (htab != NULL);
6542
6543 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6544 dynobj = elf_hash_table (info)->dynobj;
6545 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6546 BFD_ASSERT (sreloc != NULL);
6547 BFD_ASSERT (sreloc->contents != NULL);
6548 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6549 < sreloc->size);
6550
6551 outrel[0].r_offset =
6552 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6553 if (ABI_64_P (output_bfd))
6554 {
6555 outrel[1].r_offset =
6556 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6557 outrel[2].r_offset =
6558 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6559 }
6560
6561 if (outrel[0].r_offset == MINUS_ONE)
6562 /* The relocation field has been deleted. */
6563 return TRUE;
6564
6565 if (outrel[0].r_offset == MINUS_TWO)
6566 {
6567 /* The relocation field has been converted into a relative value of
6568 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6569 the field to be fully relocated, so add in the symbol's value. */
6570 *addendp += symbol;
6571 return TRUE;
6572 }
6573
6574 /* We must now calculate the dynamic symbol table index to use
6575 in the relocation. */
6576 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6577 {
6578 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6579 indx = h->root.dynindx;
6580 if (SGI_COMPAT (output_bfd))
6581 defined_p = h->root.def_regular;
6582 else
6583 /* ??? glibc's ld.so just adds the final GOT entry to the
6584 relocation field. It therefore treats relocs against
6585 defined symbols in the same way as relocs against
6586 undefined symbols. */
6587 defined_p = FALSE;
6588 }
6589 else
6590 {
6591 if (sec != NULL && bfd_is_abs_section (sec))
6592 indx = 0;
6593 else if (sec == NULL || sec->owner == NULL)
6594 {
6595 bfd_set_error (bfd_error_bad_value);
6596 return FALSE;
6597 }
6598 else
6599 {
6600 indx = elf_section_data (sec->output_section)->dynindx;
6601 if (indx == 0)
6602 {
6603 asection *osec = htab->root.text_index_section;
6604 indx = elf_section_data (osec)->dynindx;
6605 }
6606 if (indx == 0)
6607 abort ();
6608 }
6609
6610 /* Instead of generating a relocation using the section
6611 symbol, we may as well make it a fully relative
6612 relocation. We want to avoid generating relocations to
6613 local symbols because we used to generate them
6614 incorrectly, without adding the original symbol value,
6615 which is mandated by the ABI for section symbols. In
6616 order to give dynamic loaders and applications time to
6617 phase out the incorrect use, we refrain from emitting
6618 section-relative relocations. It's not like they're
6619 useful, after all. This should be a bit more efficient
6620 as well. */
6621 /* ??? Although this behavior is compatible with glibc's ld.so,
6622 the ABI says that relocations against STN_UNDEF should have
6623 a symbol value of 0. Irix rld honors this, so relocations
6624 against STN_UNDEF have no effect. */
6625 if (!SGI_COMPAT (output_bfd))
6626 indx = 0;
6627 defined_p = TRUE;
6628 }
6629
6630 /* If the relocation was previously an absolute relocation and
6631 this symbol will not be referred to by the relocation, we must
6632 adjust it by the value we give it in the dynamic symbol table.
6633 Otherwise leave the job up to the dynamic linker. */
6634 if (defined_p && r_type != R_MIPS_REL32)
6635 *addendp += symbol;
6636
6637 if (htab->is_vxworks)
6638 /* VxWorks uses non-relative relocations for this. */
6639 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6640 else
6641 /* The relocation is always an REL32 relocation because we don't
6642 know where the shared library will wind up at load-time. */
6643 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6644 R_MIPS_REL32);
6645
6646 /* For strict adherence to the ABI specification, we should
6647 generate a R_MIPS_64 relocation record by itself before the
6648 _REL32/_64 record as well, such that the addend is read in as
6649 a 64-bit value (REL32 is a 32-bit relocation, after all).
6650 However, since none of the existing ELF64 MIPS dynamic
6651 loaders seems to care, we don't waste space with these
6652 artificial relocations. If this turns out to not be true,
6653 mips_elf_allocate_dynamic_relocation() should be tweaked so
6654 as to make room for a pair of dynamic relocations per
6655 invocation if ABI_64_P, and here we should generate an
6656 additional relocation record with R_MIPS_64 by itself for a
6657 NULL symbol before this relocation record. */
6658 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6659 ABI_64_P (output_bfd)
6660 ? R_MIPS_64
6661 : R_MIPS_NONE);
6662 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6663
6664 /* Adjust the output offset of the relocation to reference the
6665 correct location in the output file. */
6666 outrel[0].r_offset += (input_section->output_section->vma
6667 + input_section->output_offset);
6668 outrel[1].r_offset += (input_section->output_section->vma
6669 + input_section->output_offset);
6670 outrel[2].r_offset += (input_section->output_section->vma
6671 + input_section->output_offset);
6672
6673 /* Put the relocation back out. We have to use the special
6674 relocation outputter in the 64-bit case since the 64-bit
6675 relocation format is non-standard. */
6676 if (ABI_64_P (output_bfd))
6677 {
6678 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6679 (output_bfd, &outrel[0],
6680 (sreloc->contents
6681 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6682 }
6683 else if (htab->is_vxworks)
6684 {
6685 /* VxWorks uses RELA rather than REL dynamic relocations. */
6686 outrel[0].r_addend = *addendp;
6687 bfd_elf32_swap_reloca_out
6688 (output_bfd, &outrel[0],
6689 (sreloc->contents
6690 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6691 }
6692 else
6693 bfd_elf32_swap_reloc_out
6694 (output_bfd, &outrel[0],
6695 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6696
6697 /* We've now added another relocation. */
6698 ++sreloc->reloc_count;
6699
6700 /* Make sure the output section is writable. The dynamic linker
6701 will be writing to it. */
6702 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6703 |= SHF_WRITE;
6704
6705 /* On IRIX5, make an entry of compact relocation info. */
6706 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6707 {
6708 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6709 bfd_byte *cr;
6710
6711 if (scpt)
6712 {
6713 Elf32_crinfo cptrel;
6714
6715 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6716 cptrel.vaddr = (rel->r_offset
6717 + input_section->output_section->vma
6718 + input_section->output_offset);
6719 if (r_type == R_MIPS_REL32)
6720 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6721 else
6722 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6723 mips_elf_set_cr_dist2to (cptrel, 0);
6724 cptrel.konst = *addendp;
6725
6726 cr = (scpt->contents
6727 + sizeof (Elf32_External_compact_rel));
6728 mips_elf_set_cr_relvaddr (cptrel, 0);
6729 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6730 ((Elf32_External_crinfo *) cr
6731 + scpt->reloc_count));
6732 ++scpt->reloc_count;
6733 }
6734 }
6735
6736 /* If we've written this relocation for a readonly section,
6737 we need to set DF_TEXTREL again, so that we do not delete the
6738 DT_TEXTREL tag. */
6739 if (MIPS_ELF_READONLY_SECTION (input_section))
6740 info->flags |= DF_TEXTREL;
6741
6742 return TRUE;
6743 }
6744 \f
6745 /* Return the MACH for a MIPS e_flags value. */
6746
6747 unsigned long
6748 _bfd_elf_mips_mach (flagword flags)
6749 {
6750 switch (flags & EF_MIPS_MACH)
6751 {
6752 case E_MIPS_MACH_3900:
6753 return bfd_mach_mips3900;
6754
6755 case E_MIPS_MACH_4010:
6756 return bfd_mach_mips4010;
6757
6758 case E_MIPS_MACH_4100:
6759 return bfd_mach_mips4100;
6760
6761 case E_MIPS_MACH_4111:
6762 return bfd_mach_mips4111;
6763
6764 case E_MIPS_MACH_4120:
6765 return bfd_mach_mips4120;
6766
6767 case E_MIPS_MACH_4650:
6768 return bfd_mach_mips4650;
6769
6770 case E_MIPS_MACH_5400:
6771 return bfd_mach_mips5400;
6772
6773 case E_MIPS_MACH_5500:
6774 return bfd_mach_mips5500;
6775
6776 case E_MIPS_MACH_5900:
6777 return bfd_mach_mips5900;
6778
6779 case E_MIPS_MACH_9000:
6780 return bfd_mach_mips9000;
6781
6782 case E_MIPS_MACH_SB1:
6783 return bfd_mach_mips_sb1;
6784
6785 case E_MIPS_MACH_LS2E:
6786 return bfd_mach_mips_loongson_2e;
6787
6788 case E_MIPS_MACH_LS2F:
6789 return bfd_mach_mips_loongson_2f;
6790
6791 case E_MIPS_MACH_LS3A:
6792 return bfd_mach_mips_loongson_3a;
6793
6794 case E_MIPS_MACH_OCTEON3:
6795 return bfd_mach_mips_octeon3;
6796
6797 case E_MIPS_MACH_OCTEON2:
6798 return bfd_mach_mips_octeon2;
6799
6800 case E_MIPS_MACH_OCTEON:
6801 return bfd_mach_mips_octeon;
6802
6803 case E_MIPS_MACH_XLR:
6804 return bfd_mach_mips_xlr;
6805
6806 case E_MIPS_MACH_IAMR2:
6807 return bfd_mach_mips_interaptiv_mr2;
6808
6809 default:
6810 switch (flags & EF_MIPS_ARCH)
6811 {
6812 default:
6813 case E_MIPS_ARCH_1:
6814 return bfd_mach_mips3000;
6815
6816 case E_MIPS_ARCH_2:
6817 return bfd_mach_mips6000;
6818
6819 case E_MIPS_ARCH_3:
6820 return bfd_mach_mips4000;
6821
6822 case E_MIPS_ARCH_4:
6823 return bfd_mach_mips8000;
6824
6825 case E_MIPS_ARCH_5:
6826 return bfd_mach_mips5;
6827
6828 case E_MIPS_ARCH_32:
6829 return bfd_mach_mipsisa32;
6830
6831 case E_MIPS_ARCH_64:
6832 return bfd_mach_mipsisa64;
6833
6834 case E_MIPS_ARCH_32R2:
6835 return bfd_mach_mipsisa32r2;
6836
6837 case E_MIPS_ARCH_64R2:
6838 return bfd_mach_mipsisa64r2;
6839
6840 case E_MIPS_ARCH_32R6:
6841 return bfd_mach_mipsisa32r6;
6842
6843 case E_MIPS_ARCH_64R6:
6844 return bfd_mach_mipsisa64r6;
6845 }
6846 }
6847
6848 return 0;
6849 }
6850
6851 /* Return printable name for ABI. */
6852
6853 static INLINE char *
6854 elf_mips_abi_name (bfd *abfd)
6855 {
6856 flagword flags;
6857
6858 flags = elf_elfheader (abfd)->e_flags;
6859 switch (flags & EF_MIPS_ABI)
6860 {
6861 case 0:
6862 if (ABI_N32_P (abfd))
6863 return "N32";
6864 else if (ABI_64_P (abfd))
6865 return "64";
6866 else
6867 return "none";
6868 case E_MIPS_ABI_O32:
6869 return "O32";
6870 case E_MIPS_ABI_O64:
6871 return "O64";
6872 case E_MIPS_ABI_EABI32:
6873 return "EABI32";
6874 case E_MIPS_ABI_EABI64:
6875 return "EABI64";
6876 default:
6877 return "unknown abi";
6878 }
6879 }
6880 \f
6881 /* MIPS ELF uses two common sections. One is the usual one, and the
6882 other is for small objects. All the small objects are kept
6883 together, and then referenced via the gp pointer, which yields
6884 faster assembler code. This is what we use for the small common
6885 section. This approach is copied from ecoff.c. */
6886 static asection mips_elf_scom_section;
6887 static asymbol mips_elf_scom_symbol;
6888 static asymbol *mips_elf_scom_symbol_ptr;
6889
6890 /* MIPS ELF also uses an acommon section, which represents an
6891 allocated common symbol which may be overridden by a
6892 definition in a shared library. */
6893 static asection mips_elf_acom_section;
6894 static asymbol mips_elf_acom_symbol;
6895 static asymbol *mips_elf_acom_symbol_ptr;
6896
6897 /* This is used for both the 32-bit and the 64-bit ABI. */
6898
6899 void
6900 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6901 {
6902 elf_symbol_type *elfsym;
6903
6904 /* Handle the special MIPS section numbers that a symbol may use. */
6905 elfsym = (elf_symbol_type *) asym;
6906 switch (elfsym->internal_elf_sym.st_shndx)
6907 {
6908 case SHN_MIPS_ACOMMON:
6909 /* This section is used in a dynamically linked executable file.
6910 It is an allocated common section. The dynamic linker can
6911 either resolve these symbols to something in a shared
6912 library, or it can just leave them here. For our purposes,
6913 we can consider these symbols to be in a new section. */
6914 if (mips_elf_acom_section.name == NULL)
6915 {
6916 /* Initialize the acommon section. */
6917 mips_elf_acom_section.name = ".acommon";
6918 mips_elf_acom_section.flags = SEC_ALLOC;
6919 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6920 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6921 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6922 mips_elf_acom_symbol.name = ".acommon";
6923 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6924 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6925 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6926 }
6927 asym->section = &mips_elf_acom_section;
6928 break;
6929
6930 case SHN_COMMON:
6931 /* Common symbols less than the GP size are automatically
6932 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6933 if (asym->value > elf_gp_size (abfd)
6934 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6935 || IRIX_COMPAT (abfd) == ict_irix6)
6936 break;
6937 /* Fall through. */
6938 case SHN_MIPS_SCOMMON:
6939 if (mips_elf_scom_section.name == NULL)
6940 {
6941 /* Initialize the small common section. */
6942 mips_elf_scom_section.name = ".scommon";
6943 mips_elf_scom_section.flags = SEC_IS_COMMON;
6944 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6945 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6946 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6947 mips_elf_scom_symbol.name = ".scommon";
6948 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6949 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6950 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6951 }
6952 asym->section = &mips_elf_scom_section;
6953 asym->value = elfsym->internal_elf_sym.st_size;
6954 break;
6955
6956 case SHN_MIPS_SUNDEFINED:
6957 asym->section = bfd_und_section_ptr;
6958 break;
6959
6960 case SHN_MIPS_TEXT:
6961 {
6962 asection *section = bfd_get_section_by_name (abfd, ".text");
6963
6964 if (section != NULL)
6965 {
6966 asym->section = section;
6967 /* MIPS_TEXT is a bit special, the address is not an offset
6968 to the base of the .text section. So subtract the section
6969 base address to make it an offset. */
6970 asym->value -= section->vma;
6971 }
6972 }
6973 break;
6974
6975 case SHN_MIPS_DATA:
6976 {
6977 asection *section = bfd_get_section_by_name (abfd, ".data");
6978
6979 if (section != NULL)
6980 {
6981 asym->section = section;
6982 /* MIPS_DATA is a bit special, the address is not an offset
6983 to the base of the .data section. So subtract the section
6984 base address to make it an offset. */
6985 asym->value -= section->vma;
6986 }
6987 }
6988 break;
6989 }
6990
6991 /* If this is an odd-valued function symbol, assume it's a MIPS16
6992 or microMIPS one. */
6993 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6994 && (asym->value & 1) != 0)
6995 {
6996 asym->value--;
6997 if (MICROMIPS_P (abfd))
6998 elfsym->internal_elf_sym.st_other
6999 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7000 else
7001 elfsym->internal_elf_sym.st_other
7002 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7003 }
7004 }
7005 \f
7006 /* Implement elf_backend_eh_frame_address_size. This differs from
7007 the default in the way it handles EABI64.
7008
7009 EABI64 was originally specified as an LP64 ABI, and that is what
7010 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7011 historically accepted the combination of -mabi=eabi and -mlong32,
7012 and this ILP32 variation has become semi-official over time.
7013 Both forms use elf32 and have pointer-sized FDE addresses.
7014
7015 If an EABI object was generated by GCC 4.0 or above, it will have
7016 an empty .gcc_compiled_longXX section, where XX is the size of longs
7017 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7018 have no special marking to distinguish them from LP64 objects.
7019
7020 We don't want users of the official LP64 ABI to be punished for the
7021 existence of the ILP32 variant, but at the same time, we don't want
7022 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7023 We therefore take the following approach:
7024
7025 - If ABFD contains a .gcc_compiled_longXX section, use it to
7026 determine the pointer size.
7027
7028 - Otherwise check the type of the first relocation. Assume that
7029 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7030
7031 - Otherwise punt.
7032
7033 The second check is enough to detect LP64 objects generated by pre-4.0
7034 compilers because, in the kind of output generated by those compilers,
7035 the first relocation will be associated with either a CIE personality
7036 routine or an FDE start address. Furthermore, the compilers never
7037 used a special (non-pointer) encoding for this ABI.
7038
7039 Checking the relocation type should also be safe because there is no
7040 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7041 did so. */
7042
7043 unsigned int
7044 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7045 {
7046 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7047 return 8;
7048 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7049 {
7050 bfd_boolean long32_p, long64_p;
7051
7052 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7053 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7054 if (long32_p && long64_p)
7055 return 0;
7056 if (long32_p)
7057 return 4;
7058 if (long64_p)
7059 return 8;
7060
7061 if (sec->reloc_count > 0
7062 && elf_section_data (sec)->relocs != NULL
7063 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7064 == R_MIPS_64))
7065 return 8;
7066
7067 return 0;
7068 }
7069 return 4;
7070 }
7071 \f
7072 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7073 relocations against two unnamed section symbols to resolve to the
7074 same address. For example, if we have code like:
7075
7076 lw $4,%got_disp(.data)($gp)
7077 lw $25,%got_disp(.text)($gp)
7078 jalr $25
7079
7080 then the linker will resolve both relocations to .data and the program
7081 will jump there rather than to .text.
7082
7083 We can work around this problem by giving names to local section symbols.
7084 This is also what the MIPSpro tools do. */
7085
7086 bfd_boolean
7087 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7088 {
7089 return SGI_COMPAT (abfd);
7090 }
7091 \f
7092 /* Work over a section just before writing it out. This routine is
7093 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7094 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7095 a better way. */
7096
7097 bfd_boolean
7098 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7099 {
7100 if (hdr->sh_type == SHT_MIPS_REGINFO
7101 && hdr->sh_size > 0)
7102 {
7103 bfd_byte buf[4];
7104
7105 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7106 BFD_ASSERT (hdr->contents == NULL);
7107
7108 if (bfd_seek (abfd,
7109 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7110 SEEK_SET) != 0)
7111 return FALSE;
7112 H_PUT_32 (abfd, elf_gp (abfd), buf);
7113 if (bfd_bwrite (buf, 4, abfd) != 4)
7114 return FALSE;
7115 }
7116
7117 if (hdr->sh_type == SHT_MIPS_OPTIONS
7118 && hdr->bfd_section != NULL
7119 && mips_elf_section_data (hdr->bfd_section) != NULL
7120 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7121 {
7122 bfd_byte *contents, *l, *lend;
7123
7124 /* We stored the section contents in the tdata field in the
7125 set_section_contents routine. We save the section contents
7126 so that we don't have to read them again.
7127 At this point we know that elf_gp is set, so we can look
7128 through the section contents to see if there is an
7129 ODK_REGINFO structure. */
7130
7131 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7132 l = contents;
7133 lend = contents + hdr->sh_size;
7134 while (l + sizeof (Elf_External_Options) <= lend)
7135 {
7136 Elf_Internal_Options intopt;
7137
7138 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7139 &intopt);
7140 if (intopt.size < sizeof (Elf_External_Options))
7141 {
7142 _bfd_error_handler
7143 /* xgettext:c-format */
7144 (_("%B: Warning: bad `%s' option size %u smaller than"
7145 " its header"),
7146 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7147 break;
7148 }
7149 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7150 {
7151 bfd_byte buf[8];
7152
7153 if (bfd_seek (abfd,
7154 (hdr->sh_offset
7155 + (l - contents)
7156 + sizeof (Elf_External_Options)
7157 + (sizeof (Elf64_External_RegInfo) - 8)),
7158 SEEK_SET) != 0)
7159 return FALSE;
7160 H_PUT_64 (abfd, elf_gp (abfd), buf);
7161 if (bfd_bwrite (buf, 8, abfd) != 8)
7162 return FALSE;
7163 }
7164 else if (intopt.kind == ODK_REGINFO)
7165 {
7166 bfd_byte buf[4];
7167
7168 if (bfd_seek (abfd,
7169 (hdr->sh_offset
7170 + (l - contents)
7171 + sizeof (Elf_External_Options)
7172 + (sizeof (Elf32_External_RegInfo) - 4)),
7173 SEEK_SET) != 0)
7174 return FALSE;
7175 H_PUT_32 (abfd, elf_gp (abfd), buf);
7176 if (bfd_bwrite (buf, 4, abfd) != 4)
7177 return FALSE;
7178 }
7179 l += intopt.size;
7180 }
7181 }
7182
7183 if (hdr->bfd_section != NULL)
7184 {
7185 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7186
7187 /* .sbss is not handled specially here because the GNU/Linux
7188 prelinker can convert .sbss from NOBITS to PROGBITS and
7189 changing it back to NOBITS breaks the binary. The entry in
7190 _bfd_mips_elf_special_sections will ensure the correct flags
7191 are set on .sbss if BFD creates it without reading it from an
7192 input file, and without special handling here the flags set
7193 on it in an input file will be followed. */
7194 if (strcmp (name, ".sdata") == 0
7195 || strcmp (name, ".lit8") == 0
7196 || strcmp (name, ".lit4") == 0)
7197 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7198 else if (strcmp (name, ".srdata") == 0)
7199 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7200 else if (strcmp (name, ".compact_rel") == 0)
7201 hdr->sh_flags = 0;
7202 else if (strcmp (name, ".rtproc") == 0)
7203 {
7204 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7205 {
7206 unsigned int adjust;
7207
7208 adjust = hdr->sh_size % hdr->sh_addralign;
7209 if (adjust != 0)
7210 hdr->sh_size += hdr->sh_addralign - adjust;
7211 }
7212 }
7213 }
7214
7215 return TRUE;
7216 }
7217
7218 /* Handle a MIPS specific section when reading an object file. This
7219 is called when elfcode.h finds a section with an unknown type.
7220 This routine supports both the 32-bit and 64-bit ELF ABI.
7221
7222 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7223 how to. */
7224
7225 bfd_boolean
7226 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7227 Elf_Internal_Shdr *hdr,
7228 const char *name,
7229 int shindex)
7230 {
7231 flagword flags = 0;
7232
7233 /* There ought to be a place to keep ELF backend specific flags, but
7234 at the moment there isn't one. We just keep track of the
7235 sections by their name, instead. Fortunately, the ABI gives
7236 suggested names for all the MIPS specific sections, so we will
7237 probably get away with this. */
7238 switch (hdr->sh_type)
7239 {
7240 case SHT_MIPS_LIBLIST:
7241 if (strcmp (name, ".liblist") != 0)
7242 return FALSE;
7243 break;
7244 case SHT_MIPS_MSYM:
7245 if (strcmp (name, ".msym") != 0)
7246 return FALSE;
7247 break;
7248 case SHT_MIPS_CONFLICT:
7249 if (strcmp (name, ".conflict") != 0)
7250 return FALSE;
7251 break;
7252 case SHT_MIPS_GPTAB:
7253 if (! CONST_STRNEQ (name, ".gptab."))
7254 return FALSE;
7255 break;
7256 case SHT_MIPS_UCODE:
7257 if (strcmp (name, ".ucode") != 0)
7258 return FALSE;
7259 break;
7260 case SHT_MIPS_DEBUG:
7261 if (strcmp (name, ".mdebug") != 0)
7262 return FALSE;
7263 flags = SEC_DEBUGGING;
7264 break;
7265 case SHT_MIPS_REGINFO:
7266 if (strcmp (name, ".reginfo") != 0
7267 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7268 return FALSE;
7269 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7270 break;
7271 case SHT_MIPS_IFACE:
7272 if (strcmp (name, ".MIPS.interfaces") != 0)
7273 return FALSE;
7274 break;
7275 case SHT_MIPS_CONTENT:
7276 if (! CONST_STRNEQ (name, ".MIPS.content"))
7277 return FALSE;
7278 break;
7279 case SHT_MIPS_OPTIONS:
7280 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7281 return FALSE;
7282 break;
7283 case SHT_MIPS_ABIFLAGS:
7284 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7285 return FALSE;
7286 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7287 break;
7288 case SHT_MIPS_DWARF:
7289 if (! CONST_STRNEQ (name, ".debug_")
7290 && ! CONST_STRNEQ (name, ".zdebug_"))
7291 return FALSE;
7292 break;
7293 case SHT_MIPS_SYMBOL_LIB:
7294 if (strcmp (name, ".MIPS.symlib") != 0)
7295 return FALSE;
7296 break;
7297 case SHT_MIPS_EVENTS:
7298 if (! CONST_STRNEQ (name, ".MIPS.events")
7299 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7300 return FALSE;
7301 break;
7302 default:
7303 break;
7304 }
7305
7306 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7307 return FALSE;
7308
7309 if (flags)
7310 {
7311 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7312 (bfd_get_section_flags (abfd,
7313 hdr->bfd_section)
7314 | flags)))
7315 return FALSE;
7316 }
7317
7318 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7319 {
7320 Elf_External_ABIFlags_v0 ext;
7321
7322 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7323 &ext, 0, sizeof ext))
7324 return FALSE;
7325 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7326 &mips_elf_tdata (abfd)->abiflags);
7327 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7328 return FALSE;
7329 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7330 }
7331
7332 /* FIXME: We should record sh_info for a .gptab section. */
7333
7334 /* For a .reginfo section, set the gp value in the tdata information
7335 from the contents of this section. We need the gp value while
7336 processing relocs, so we just get it now. The .reginfo section
7337 is not used in the 64-bit MIPS ELF ABI. */
7338 if (hdr->sh_type == SHT_MIPS_REGINFO)
7339 {
7340 Elf32_External_RegInfo ext;
7341 Elf32_RegInfo s;
7342
7343 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7344 &ext, 0, sizeof ext))
7345 return FALSE;
7346 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7347 elf_gp (abfd) = s.ri_gp_value;
7348 }
7349
7350 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7351 set the gp value based on what we find. We may see both
7352 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7353 they should agree. */
7354 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7355 {
7356 bfd_byte *contents, *l, *lend;
7357
7358 contents = bfd_malloc (hdr->sh_size);
7359 if (contents == NULL)
7360 return FALSE;
7361 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7362 0, hdr->sh_size))
7363 {
7364 free (contents);
7365 return FALSE;
7366 }
7367 l = contents;
7368 lend = contents + hdr->sh_size;
7369 while (l + sizeof (Elf_External_Options) <= lend)
7370 {
7371 Elf_Internal_Options intopt;
7372
7373 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7374 &intopt);
7375 if (intopt.size < sizeof (Elf_External_Options))
7376 {
7377 _bfd_error_handler
7378 /* xgettext:c-format */
7379 (_("%B: Warning: bad `%s' option size %u smaller than"
7380 " its header"),
7381 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7382 break;
7383 }
7384 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7385 {
7386 Elf64_Internal_RegInfo intreg;
7387
7388 bfd_mips_elf64_swap_reginfo_in
7389 (abfd,
7390 ((Elf64_External_RegInfo *)
7391 (l + sizeof (Elf_External_Options))),
7392 &intreg);
7393 elf_gp (abfd) = intreg.ri_gp_value;
7394 }
7395 else if (intopt.kind == ODK_REGINFO)
7396 {
7397 Elf32_RegInfo intreg;
7398
7399 bfd_mips_elf32_swap_reginfo_in
7400 (abfd,
7401 ((Elf32_External_RegInfo *)
7402 (l + sizeof (Elf_External_Options))),
7403 &intreg);
7404 elf_gp (abfd) = intreg.ri_gp_value;
7405 }
7406 l += intopt.size;
7407 }
7408 free (contents);
7409 }
7410
7411 return TRUE;
7412 }
7413
7414 /* Set the correct type for a MIPS ELF section. We do this by the
7415 section name, which is a hack, but ought to work. This routine is
7416 used by both the 32-bit and the 64-bit ABI. */
7417
7418 bfd_boolean
7419 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7420 {
7421 const char *name = bfd_get_section_name (abfd, sec);
7422
7423 if (strcmp (name, ".liblist") == 0)
7424 {
7425 hdr->sh_type = SHT_MIPS_LIBLIST;
7426 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7427 /* The sh_link field is set in final_write_processing. */
7428 }
7429 else if (strcmp (name, ".conflict") == 0)
7430 hdr->sh_type = SHT_MIPS_CONFLICT;
7431 else if (CONST_STRNEQ (name, ".gptab."))
7432 {
7433 hdr->sh_type = SHT_MIPS_GPTAB;
7434 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7435 /* The sh_info field is set in final_write_processing. */
7436 }
7437 else if (strcmp (name, ".ucode") == 0)
7438 hdr->sh_type = SHT_MIPS_UCODE;
7439 else if (strcmp (name, ".mdebug") == 0)
7440 {
7441 hdr->sh_type = SHT_MIPS_DEBUG;
7442 /* In a shared object on IRIX 5.3, the .mdebug section has an
7443 entsize of 0. FIXME: Does this matter? */
7444 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7445 hdr->sh_entsize = 0;
7446 else
7447 hdr->sh_entsize = 1;
7448 }
7449 else if (strcmp (name, ".reginfo") == 0)
7450 {
7451 hdr->sh_type = SHT_MIPS_REGINFO;
7452 /* In a shared object on IRIX 5.3, the .reginfo section has an
7453 entsize of 0x18. FIXME: Does this matter? */
7454 if (SGI_COMPAT (abfd))
7455 {
7456 if ((abfd->flags & DYNAMIC) != 0)
7457 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7458 else
7459 hdr->sh_entsize = 1;
7460 }
7461 else
7462 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7463 }
7464 else if (SGI_COMPAT (abfd)
7465 && (strcmp (name, ".hash") == 0
7466 || strcmp (name, ".dynamic") == 0
7467 || strcmp (name, ".dynstr") == 0))
7468 {
7469 if (SGI_COMPAT (abfd))
7470 hdr->sh_entsize = 0;
7471 #if 0
7472 /* This isn't how the IRIX6 linker behaves. */
7473 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7474 #endif
7475 }
7476 else if (strcmp (name, ".got") == 0
7477 || strcmp (name, ".srdata") == 0
7478 || strcmp (name, ".sdata") == 0
7479 || strcmp (name, ".sbss") == 0
7480 || strcmp (name, ".lit4") == 0
7481 || strcmp (name, ".lit8") == 0)
7482 hdr->sh_flags |= SHF_MIPS_GPREL;
7483 else if (strcmp (name, ".MIPS.interfaces") == 0)
7484 {
7485 hdr->sh_type = SHT_MIPS_IFACE;
7486 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7487 }
7488 else if (CONST_STRNEQ (name, ".MIPS.content"))
7489 {
7490 hdr->sh_type = SHT_MIPS_CONTENT;
7491 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7492 /* The sh_info field is set in final_write_processing. */
7493 }
7494 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7495 {
7496 hdr->sh_type = SHT_MIPS_OPTIONS;
7497 hdr->sh_entsize = 1;
7498 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7499 }
7500 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7501 {
7502 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7503 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7504 }
7505 else if (CONST_STRNEQ (name, ".debug_")
7506 || CONST_STRNEQ (name, ".zdebug_"))
7507 {
7508 hdr->sh_type = SHT_MIPS_DWARF;
7509
7510 /* Irix facilities such as libexc expect a single .debug_frame
7511 per executable, the system ones have NOSTRIP set and the linker
7512 doesn't merge sections with different flags so ... */
7513 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7514 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7515 }
7516 else if (strcmp (name, ".MIPS.symlib") == 0)
7517 {
7518 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7519 /* The sh_link and sh_info fields are set in
7520 final_write_processing. */
7521 }
7522 else if (CONST_STRNEQ (name, ".MIPS.events")
7523 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7524 {
7525 hdr->sh_type = SHT_MIPS_EVENTS;
7526 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7527 /* The sh_link field is set in final_write_processing. */
7528 }
7529 else if (strcmp (name, ".msym") == 0)
7530 {
7531 hdr->sh_type = SHT_MIPS_MSYM;
7532 hdr->sh_flags |= SHF_ALLOC;
7533 hdr->sh_entsize = 8;
7534 }
7535
7536 /* The generic elf_fake_sections will set up REL_HDR using the default
7537 kind of relocations. We used to set up a second header for the
7538 non-default kind of relocations here, but only NewABI would use
7539 these, and the IRIX ld doesn't like resulting empty RELA sections.
7540 Thus we create those header only on demand now. */
7541
7542 return TRUE;
7543 }
7544
7545 /* Given a BFD section, try to locate the corresponding ELF section
7546 index. This is used by both the 32-bit and the 64-bit ABI.
7547 Actually, it's not clear to me that the 64-bit ABI supports these,
7548 but for non-PIC objects we will certainly want support for at least
7549 the .scommon section. */
7550
7551 bfd_boolean
7552 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7553 asection *sec, int *retval)
7554 {
7555 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7556 {
7557 *retval = SHN_MIPS_SCOMMON;
7558 return TRUE;
7559 }
7560 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7561 {
7562 *retval = SHN_MIPS_ACOMMON;
7563 return TRUE;
7564 }
7565 return FALSE;
7566 }
7567 \f
7568 /* Hook called by the linker routine which adds symbols from an object
7569 file. We must handle the special MIPS section numbers here. */
7570
7571 bfd_boolean
7572 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7573 Elf_Internal_Sym *sym, const char **namep,
7574 flagword *flagsp ATTRIBUTE_UNUSED,
7575 asection **secp, bfd_vma *valp)
7576 {
7577 if (SGI_COMPAT (abfd)
7578 && (abfd->flags & DYNAMIC) != 0
7579 && strcmp (*namep, "_rld_new_interface") == 0)
7580 {
7581 /* Skip IRIX5 rld entry name. */
7582 *namep = NULL;
7583 return TRUE;
7584 }
7585
7586 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7587 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7588 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7589 a magic symbol resolved by the linker, we ignore this bogus definition
7590 of _gp_disp. New ABI objects do not suffer from this problem so this
7591 is not done for them. */
7592 if (!NEWABI_P(abfd)
7593 && (sym->st_shndx == SHN_ABS)
7594 && (strcmp (*namep, "_gp_disp") == 0))
7595 {
7596 *namep = NULL;
7597 return TRUE;
7598 }
7599
7600 switch (sym->st_shndx)
7601 {
7602 case SHN_COMMON:
7603 /* Common symbols less than the GP size are automatically
7604 treated as SHN_MIPS_SCOMMON symbols. */
7605 if (sym->st_size > elf_gp_size (abfd)
7606 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7607 || IRIX_COMPAT (abfd) == ict_irix6)
7608 break;
7609 /* Fall through. */
7610 case SHN_MIPS_SCOMMON:
7611 *secp = bfd_make_section_old_way (abfd, ".scommon");
7612 (*secp)->flags |= SEC_IS_COMMON;
7613 *valp = sym->st_size;
7614 break;
7615
7616 case SHN_MIPS_TEXT:
7617 /* This section is used in a shared object. */
7618 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7619 {
7620 asymbol *elf_text_symbol;
7621 asection *elf_text_section;
7622 bfd_size_type amt = sizeof (asection);
7623
7624 elf_text_section = bfd_zalloc (abfd, amt);
7625 if (elf_text_section == NULL)
7626 return FALSE;
7627
7628 amt = sizeof (asymbol);
7629 elf_text_symbol = bfd_zalloc (abfd, amt);
7630 if (elf_text_symbol == NULL)
7631 return FALSE;
7632
7633 /* Initialize the section. */
7634
7635 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7636 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7637
7638 elf_text_section->symbol = elf_text_symbol;
7639 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7640
7641 elf_text_section->name = ".text";
7642 elf_text_section->flags = SEC_NO_FLAGS;
7643 elf_text_section->output_section = NULL;
7644 elf_text_section->owner = abfd;
7645 elf_text_symbol->name = ".text";
7646 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7647 elf_text_symbol->section = elf_text_section;
7648 }
7649 /* This code used to do *secp = bfd_und_section_ptr if
7650 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7651 so I took it out. */
7652 *secp = mips_elf_tdata (abfd)->elf_text_section;
7653 break;
7654
7655 case SHN_MIPS_ACOMMON:
7656 /* Fall through. XXX Can we treat this as allocated data? */
7657 case SHN_MIPS_DATA:
7658 /* This section is used in a shared object. */
7659 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7660 {
7661 asymbol *elf_data_symbol;
7662 asection *elf_data_section;
7663 bfd_size_type amt = sizeof (asection);
7664
7665 elf_data_section = bfd_zalloc (abfd, amt);
7666 if (elf_data_section == NULL)
7667 return FALSE;
7668
7669 amt = sizeof (asymbol);
7670 elf_data_symbol = bfd_zalloc (abfd, amt);
7671 if (elf_data_symbol == NULL)
7672 return FALSE;
7673
7674 /* Initialize the section. */
7675
7676 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7677 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7678
7679 elf_data_section->symbol = elf_data_symbol;
7680 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7681
7682 elf_data_section->name = ".data";
7683 elf_data_section->flags = SEC_NO_FLAGS;
7684 elf_data_section->output_section = NULL;
7685 elf_data_section->owner = abfd;
7686 elf_data_symbol->name = ".data";
7687 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7688 elf_data_symbol->section = elf_data_section;
7689 }
7690 /* This code used to do *secp = bfd_und_section_ptr if
7691 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7692 so I took it out. */
7693 *secp = mips_elf_tdata (abfd)->elf_data_section;
7694 break;
7695
7696 case SHN_MIPS_SUNDEFINED:
7697 *secp = bfd_und_section_ptr;
7698 break;
7699 }
7700
7701 if (SGI_COMPAT (abfd)
7702 && ! bfd_link_pic (info)
7703 && info->output_bfd->xvec == abfd->xvec
7704 && strcmp (*namep, "__rld_obj_head") == 0)
7705 {
7706 struct elf_link_hash_entry *h;
7707 struct bfd_link_hash_entry *bh;
7708
7709 /* Mark __rld_obj_head as dynamic. */
7710 bh = NULL;
7711 if (! (_bfd_generic_link_add_one_symbol
7712 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7713 get_elf_backend_data (abfd)->collect, &bh)))
7714 return FALSE;
7715
7716 h = (struct elf_link_hash_entry *) bh;
7717 h->non_elf = 0;
7718 h->def_regular = 1;
7719 h->type = STT_OBJECT;
7720
7721 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7722 return FALSE;
7723
7724 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7725 mips_elf_hash_table (info)->rld_symbol = h;
7726 }
7727
7728 /* If this is a mips16 text symbol, add 1 to the value to make it
7729 odd. This will cause something like .word SYM to come up with
7730 the right value when it is loaded into the PC. */
7731 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7732 ++*valp;
7733
7734 return TRUE;
7735 }
7736
7737 /* This hook function is called before the linker writes out a global
7738 symbol. We mark symbols as small common if appropriate. This is
7739 also where we undo the increment of the value for a mips16 symbol. */
7740
7741 int
7742 _bfd_mips_elf_link_output_symbol_hook
7743 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7744 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7745 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7746 {
7747 /* If we see a common symbol, which implies a relocatable link, then
7748 if a symbol was small common in an input file, mark it as small
7749 common in the output file. */
7750 if (sym->st_shndx == SHN_COMMON
7751 && strcmp (input_sec->name, ".scommon") == 0)
7752 sym->st_shndx = SHN_MIPS_SCOMMON;
7753
7754 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7755 sym->st_value &= ~1;
7756
7757 return 1;
7758 }
7759 \f
7760 /* Functions for the dynamic linker. */
7761
7762 /* Create dynamic sections when linking against a dynamic object. */
7763
7764 bfd_boolean
7765 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7766 {
7767 struct elf_link_hash_entry *h;
7768 struct bfd_link_hash_entry *bh;
7769 flagword flags;
7770 register asection *s;
7771 const char * const *namep;
7772 struct mips_elf_link_hash_table *htab;
7773
7774 htab = mips_elf_hash_table (info);
7775 BFD_ASSERT (htab != NULL);
7776
7777 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7778 | SEC_LINKER_CREATED | SEC_READONLY);
7779
7780 /* The psABI requires a read-only .dynamic section, but the VxWorks
7781 EABI doesn't. */
7782 if (!htab->is_vxworks)
7783 {
7784 s = bfd_get_linker_section (abfd, ".dynamic");
7785 if (s != NULL)
7786 {
7787 if (! bfd_set_section_flags (abfd, s, flags))
7788 return FALSE;
7789 }
7790 }
7791
7792 /* We need to create .got section. */
7793 if (!mips_elf_create_got_section (abfd, info))
7794 return FALSE;
7795
7796 if (! mips_elf_rel_dyn_section (info, TRUE))
7797 return FALSE;
7798
7799 /* Create .stub section. */
7800 s = bfd_make_section_anyway_with_flags (abfd,
7801 MIPS_ELF_STUB_SECTION_NAME (abfd),
7802 flags | SEC_CODE);
7803 if (s == NULL
7804 || ! bfd_set_section_alignment (abfd, s,
7805 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7806 return FALSE;
7807 htab->sstubs = s;
7808
7809 if (!mips_elf_hash_table (info)->use_rld_obj_head
7810 && bfd_link_executable (info)
7811 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7812 {
7813 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7814 flags &~ (flagword) SEC_READONLY);
7815 if (s == NULL
7816 || ! bfd_set_section_alignment (abfd, s,
7817 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7818 return FALSE;
7819 }
7820
7821 /* On IRIX5, we adjust add some additional symbols and change the
7822 alignments of several sections. There is no ABI documentation
7823 indicating that this is necessary on IRIX6, nor any evidence that
7824 the linker takes such action. */
7825 if (IRIX_COMPAT (abfd) == ict_irix5)
7826 {
7827 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7828 {
7829 bh = NULL;
7830 if (! (_bfd_generic_link_add_one_symbol
7831 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7832 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7833 return FALSE;
7834
7835 h = (struct elf_link_hash_entry *) bh;
7836 h->non_elf = 0;
7837 h->def_regular = 1;
7838 h->type = STT_SECTION;
7839
7840 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7841 return FALSE;
7842 }
7843
7844 /* We need to create a .compact_rel section. */
7845 if (SGI_COMPAT (abfd))
7846 {
7847 if (!mips_elf_create_compact_rel_section (abfd, info))
7848 return FALSE;
7849 }
7850
7851 /* Change alignments of some sections. */
7852 s = bfd_get_linker_section (abfd, ".hash");
7853 if (s != NULL)
7854 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7855
7856 s = bfd_get_linker_section (abfd, ".dynsym");
7857 if (s != NULL)
7858 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7859
7860 s = bfd_get_linker_section (abfd, ".dynstr");
7861 if (s != NULL)
7862 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7863
7864 /* ??? */
7865 s = bfd_get_section_by_name (abfd, ".reginfo");
7866 if (s != NULL)
7867 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7868
7869 s = bfd_get_linker_section (abfd, ".dynamic");
7870 if (s != NULL)
7871 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7872 }
7873
7874 if (bfd_link_executable (info))
7875 {
7876 const char *name;
7877
7878 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7879 bh = NULL;
7880 if (!(_bfd_generic_link_add_one_symbol
7881 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7882 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7883 return FALSE;
7884
7885 h = (struct elf_link_hash_entry *) bh;
7886 h->non_elf = 0;
7887 h->def_regular = 1;
7888 h->type = STT_SECTION;
7889
7890 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7891 return FALSE;
7892
7893 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7894 {
7895 /* __rld_map is a four byte word located in the .data section
7896 and is filled in by the rtld to contain a pointer to
7897 the _r_debug structure. Its symbol value will be set in
7898 _bfd_mips_elf_finish_dynamic_symbol. */
7899 s = bfd_get_linker_section (abfd, ".rld_map");
7900 BFD_ASSERT (s != NULL);
7901
7902 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7903 bh = NULL;
7904 if (!(_bfd_generic_link_add_one_symbol
7905 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7906 get_elf_backend_data (abfd)->collect, &bh)))
7907 return FALSE;
7908
7909 h = (struct elf_link_hash_entry *) bh;
7910 h->non_elf = 0;
7911 h->def_regular = 1;
7912 h->type = STT_OBJECT;
7913
7914 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7915 return FALSE;
7916 mips_elf_hash_table (info)->rld_symbol = h;
7917 }
7918 }
7919
7920 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7921 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7922 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7923 return FALSE;
7924
7925 /* Do the usual VxWorks handling. */
7926 if (htab->is_vxworks
7927 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7928 return FALSE;
7929
7930 return TRUE;
7931 }
7932 \f
7933 /* Return true if relocation REL against section SEC is a REL rather than
7934 RELA relocation. RELOCS is the first relocation in the section and
7935 ABFD is the bfd that contains SEC. */
7936
7937 static bfd_boolean
7938 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7939 const Elf_Internal_Rela *relocs,
7940 const Elf_Internal_Rela *rel)
7941 {
7942 Elf_Internal_Shdr *rel_hdr;
7943 const struct elf_backend_data *bed;
7944
7945 /* To determine which flavor of relocation this is, we depend on the
7946 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7947 rel_hdr = elf_section_data (sec)->rel.hdr;
7948 if (rel_hdr == NULL)
7949 return FALSE;
7950 bed = get_elf_backend_data (abfd);
7951 return ((size_t) (rel - relocs)
7952 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7953 }
7954
7955 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7956 HOWTO is the relocation's howto and CONTENTS points to the contents
7957 of the section that REL is against. */
7958
7959 static bfd_vma
7960 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7961 reloc_howto_type *howto, bfd_byte *contents)
7962 {
7963 bfd_byte *location;
7964 unsigned int r_type;
7965 bfd_vma addend;
7966 bfd_vma bytes;
7967
7968 r_type = ELF_R_TYPE (abfd, rel->r_info);
7969 location = contents + rel->r_offset;
7970
7971 /* Get the addend, which is stored in the input file. */
7972 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7973 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7974 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7975
7976 addend = bytes & howto->src_mask;
7977
7978 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7979 accordingly. */
7980 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7981 addend <<= 1;
7982
7983 return addend;
7984 }
7985
7986 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7987 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7988 and update *ADDEND with the final addend. Return true on success
7989 or false if the LO16 could not be found. RELEND is the exclusive
7990 upper bound on the relocations for REL's section. */
7991
7992 static bfd_boolean
7993 mips_elf_add_lo16_rel_addend (bfd *abfd,
7994 const Elf_Internal_Rela *rel,
7995 const Elf_Internal_Rela *relend,
7996 bfd_byte *contents, bfd_vma *addend)
7997 {
7998 unsigned int r_type, lo16_type;
7999 const Elf_Internal_Rela *lo16_relocation;
8000 reloc_howto_type *lo16_howto;
8001 bfd_vma l;
8002
8003 r_type = ELF_R_TYPE (abfd, rel->r_info);
8004 if (mips16_reloc_p (r_type))
8005 lo16_type = R_MIPS16_LO16;
8006 else if (micromips_reloc_p (r_type))
8007 lo16_type = R_MICROMIPS_LO16;
8008 else if (r_type == R_MIPS_PCHI16)
8009 lo16_type = R_MIPS_PCLO16;
8010 else
8011 lo16_type = R_MIPS_LO16;
8012
8013 /* The combined value is the sum of the HI16 addend, left-shifted by
8014 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8015 code does a `lui' of the HI16 value, and then an `addiu' of the
8016 LO16 value.)
8017
8018 Scan ahead to find a matching LO16 relocation.
8019
8020 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8021 be immediately following. However, for the IRIX6 ABI, the next
8022 relocation may be a composed relocation consisting of several
8023 relocations for the same address. In that case, the R_MIPS_LO16
8024 relocation may occur as one of these. We permit a similar
8025 extension in general, as that is useful for GCC.
8026
8027 In some cases GCC dead code elimination removes the LO16 but keeps
8028 the corresponding HI16. This is strictly speaking a violation of
8029 the ABI but not immediately harmful. */
8030 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8031 if (lo16_relocation == NULL)
8032 return FALSE;
8033
8034 /* Obtain the addend kept there. */
8035 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8036 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8037
8038 l <<= lo16_howto->rightshift;
8039 l = _bfd_mips_elf_sign_extend (l, 16);
8040
8041 *addend <<= 16;
8042 *addend += l;
8043 return TRUE;
8044 }
8045
8046 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8047 store the contents in *CONTENTS on success. Assume that *CONTENTS
8048 already holds the contents if it is nonull on entry. */
8049
8050 static bfd_boolean
8051 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8052 {
8053 if (*contents)
8054 return TRUE;
8055
8056 /* Get cached copy if it exists. */
8057 if (elf_section_data (sec)->this_hdr.contents != NULL)
8058 {
8059 *contents = elf_section_data (sec)->this_hdr.contents;
8060 return TRUE;
8061 }
8062
8063 return bfd_malloc_and_get_section (abfd, sec, contents);
8064 }
8065
8066 /* Make a new PLT record to keep internal data. */
8067
8068 static struct plt_entry *
8069 mips_elf_make_plt_record (bfd *abfd)
8070 {
8071 struct plt_entry *entry;
8072
8073 entry = bfd_zalloc (abfd, sizeof (*entry));
8074 if (entry == NULL)
8075 return NULL;
8076
8077 entry->stub_offset = MINUS_ONE;
8078 entry->mips_offset = MINUS_ONE;
8079 entry->comp_offset = MINUS_ONE;
8080 entry->gotplt_index = MINUS_ONE;
8081 return entry;
8082 }
8083
8084 /* Look through the relocs for a section during the first phase, and
8085 allocate space in the global offset table and record the need for
8086 standard MIPS and compressed procedure linkage table entries. */
8087
8088 bfd_boolean
8089 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8090 asection *sec, const Elf_Internal_Rela *relocs)
8091 {
8092 const char *name;
8093 bfd *dynobj;
8094 Elf_Internal_Shdr *symtab_hdr;
8095 struct elf_link_hash_entry **sym_hashes;
8096 size_t extsymoff;
8097 const Elf_Internal_Rela *rel;
8098 const Elf_Internal_Rela *rel_end;
8099 asection *sreloc;
8100 const struct elf_backend_data *bed;
8101 struct mips_elf_link_hash_table *htab;
8102 bfd_byte *contents;
8103 bfd_vma addend;
8104 reloc_howto_type *howto;
8105
8106 if (bfd_link_relocatable (info))
8107 return TRUE;
8108
8109 htab = mips_elf_hash_table (info);
8110 BFD_ASSERT (htab != NULL);
8111
8112 dynobj = elf_hash_table (info)->dynobj;
8113 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8114 sym_hashes = elf_sym_hashes (abfd);
8115 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8116
8117 bed = get_elf_backend_data (abfd);
8118 rel_end = relocs + sec->reloc_count;
8119
8120 /* Check for the mips16 stub sections. */
8121
8122 name = bfd_get_section_name (abfd, sec);
8123 if (FN_STUB_P (name))
8124 {
8125 unsigned long r_symndx;
8126
8127 /* Look at the relocation information to figure out which symbol
8128 this is for. */
8129
8130 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8131 if (r_symndx == 0)
8132 {
8133 _bfd_error_handler
8134 /* xgettext:c-format */
8135 (_("%B: Warning: cannot determine the target function for"
8136 " stub section `%s'"),
8137 abfd, name);
8138 bfd_set_error (bfd_error_bad_value);
8139 return FALSE;
8140 }
8141
8142 if (r_symndx < extsymoff
8143 || sym_hashes[r_symndx - extsymoff] == NULL)
8144 {
8145 asection *o;
8146
8147 /* This stub is for a local symbol. This stub will only be
8148 needed if there is some relocation in this BFD, other
8149 than a 16 bit function call, which refers to this symbol. */
8150 for (o = abfd->sections; o != NULL; o = o->next)
8151 {
8152 Elf_Internal_Rela *sec_relocs;
8153 const Elf_Internal_Rela *r, *rend;
8154
8155 /* We can ignore stub sections when looking for relocs. */
8156 if ((o->flags & SEC_RELOC) == 0
8157 || o->reloc_count == 0
8158 || section_allows_mips16_refs_p (o))
8159 continue;
8160
8161 sec_relocs
8162 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8163 info->keep_memory);
8164 if (sec_relocs == NULL)
8165 return FALSE;
8166
8167 rend = sec_relocs + o->reloc_count;
8168 for (r = sec_relocs; r < rend; r++)
8169 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8170 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8171 break;
8172
8173 if (elf_section_data (o)->relocs != sec_relocs)
8174 free (sec_relocs);
8175
8176 if (r < rend)
8177 break;
8178 }
8179
8180 if (o == NULL)
8181 {
8182 /* There is no non-call reloc for this stub, so we do
8183 not need it. Since this function is called before
8184 the linker maps input sections to output sections, we
8185 can easily discard it by setting the SEC_EXCLUDE
8186 flag. */
8187 sec->flags |= SEC_EXCLUDE;
8188 return TRUE;
8189 }
8190
8191 /* Record this stub in an array of local symbol stubs for
8192 this BFD. */
8193 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8194 {
8195 unsigned long symcount;
8196 asection **n;
8197 bfd_size_type amt;
8198
8199 if (elf_bad_symtab (abfd))
8200 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8201 else
8202 symcount = symtab_hdr->sh_info;
8203 amt = symcount * sizeof (asection *);
8204 n = bfd_zalloc (abfd, amt);
8205 if (n == NULL)
8206 return FALSE;
8207 mips_elf_tdata (abfd)->local_stubs = n;
8208 }
8209
8210 sec->flags |= SEC_KEEP;
8211 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8212
8213 /* We don't need to set mips16_stubs_seen in this case.
8214 That flag is used to see whether we need to look through
8215 the global symbol table for stubs. We don't need to set
8216 it here, because we just have a local stub. */
8217 }
8218 else
8219 {
8220 struct mips_elf_link_hash_entry *h;
8221
8222 h = ((struct mips_elf_link_hash_entry *)
8223 sym_hashes[r_symndx - extsymoff]);
8224
8225 while (h->root.root.type == bfd_link_hash_indirect
8226 || h->root.root.type == bfd_link_hash_warning)
8227 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8228
8229 /* H is the symbol this stub is for. */
8230
8231 /* If we already have an appropriate stub for this function, we
8232 don't need another one, so we can discard this one. Since
8233 this function is called before the linker maps input sections
8234 to output sections, we can easily discard it by setting the
8235 SEC_EXCLUDE flag. */
8236 if (h->fn_stub != NULL)
8237 {
8238 sec->flags |= SEC_EXCLUDE;
8239 return TRUE;
8240 }
8241
8242 sec->flags |= SEC_KEEP;
8243 h->fn_stub = sec;
8244 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8245 }
8246 }
8247 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8248 {
8249 unsigned long r_symndx;
8250 struct mips_elf_link_hash_entry *h;
8251 asection **loc;
8252
8253 /* Look at the relocation information to figure out which symbol
8254 this is for. */
8255
8256 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8257 if (r_symndx == 0)
8258 {
8259 _bfd_error_handler
8260 /* xgettext:c-format */
8261 (_("%B: Warning: cannot determine the target function for"
8262 " stub section `%s'"),
8263 abfd, name);
8264 bfd_set_error (bfd_error_bad_value);
8265 return FALSE;
8266 }
8267
8268 if (r_symndx < extsymoff
8269 || sym_hashes[r_symndx - extsymoff] == NULL)
8270 {
8271 asection *o;
8272
8273 /* This stub is for a local symbol. This stub will only be
8274 needed if there is some relocation (R_MIPS16_26) in this BFD
8275 that refers to this symbol. */
8276 for (o = abfd->sections; o != NULL; o = o->next)
8277 {
8278 Elf_Internal_Rela *sec_relocs;
8279 const Elf_Internal_Rela *r, *rend;
8280
8281 /* We can ignore stub sections when looking for relocs. */
8282 if ((o->flags & SEC_RELOC) == 0
8283 || o->reloc_count == 0
8284 || section_allows_mips16_refs_p (o))
8285 continue;
8286
8287 sec_relocs
8288 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8289 info->keep_memory);
8290 if (sec_relocs == NULL)
8291 return FALSE;
8292
8293 rend = sec_relocs + o->reloc_count;
8294 for (r = sec_relocs; r < rend; r++)
8295 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8296 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8297 break;
8298
8299 if (elf_section_data (o)->relocs != sec_relocs)
8300 free (sec_relocs);
8301
8302 if (r < rend)
8303 break;
8304 }
8305
8306 if (o == NULL)
8307 {
8308 /* There is no non-call reloc for this stub, so we do
8309 not need it. Since this function is called before
8310 the linker maps input sections to output sections, we
8311 can easily discard it by setting the SEC_EXCLUDE
8312 flag. */
8313 sec->flags |= SEC_EXCLUDE;
8314 return TRUE;
8315 }
8316
8317 /* Record this stub in an array of local symbol call_stubs for
8318 this BFD. */
8319 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8320 {
8321 unsigned long symcount;
8322 asection **n;
8323 bfd_size_type amt;
8324
8325 if (elf_bad_symtab (abfd))
8326 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8327 else
8328 symcount = symtab_hdr->sh_info;
8329 amt = symcount * sizeof (asection *);
8330 n = bfd_zalloc (abfd, amt);
8331 if (n == NULL)
8332 return FALSE;
8333 mips_elf_tdata (abfd)->local_call_stubs = n;
8334 }
8335
8336 sec->flags |= SEC_KEEP;
8337 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8338
8339 /* We don't need to set mips16_stubs_seen in this case.
8340 That flag is used to see whether we need to look through
8341 the global symbol table for stubs. We don't need to set
8342 it here, because we just have a local stub. */
8343 }
8344 else
8345 {
8346 h = ((struct mips_elf_link_hash_entry *)
8347 sym_hashes[r_symndx - extsymoff]);
8348
8349 /* H is the symbol this stub is for. */
8350
8351 if (CALL_FP_STUB_P (name))
8352 loc = &h->call_fp_stub;
8353 else
8354 loc = &h->call_stub;
8355
8356 /* If we already have an appropriate stub for this function, we
8357 don't need another one, so we can discard this one. Since
8358 this function is called before the linker maps input sections
8359 to output sections, we can easily discard it by setting the
8360 SEC_EXCLUDE flag. */
8361 if (*loc != NULL)
8362 {
8363 sec->flags |= SEC_EXCLUDE;
8364 return TRUE;
8365 }
8366
8367 sec->flags |= SEC_KEEP;
8368 *loc = sec;
8369 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8370 }
8371 }
8372
8373 sreloc = NULL;
8374 contents = NULL;
8375 for (rel = relocs; rel < rel_end; ++rel)
8376 {
8377 unsigned long r_symndx;
8378 unsigned int r_type;
8379 struct elf_link_hash_entry *h;
8380 bfd_boolean can_make_dynamic_p;
8381 bfd_boolean call_reloc_p;
8382 bfd_boolean constrain_symbol_p;
8383
8384 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8385 r_type = ELF_R_TYPE (abfd, rel->r_info);
8386
8387 if (r_symndx < extsymoff)
8388 h = NULL;
8389 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8390 {
8391 _bfd_error_handler
8392 /* xgettext:c-format */
8393 (_("%B: Malformed reloc detected for section %s"),
8394 abfd, name);
8395 bfd_set_error (bfd_error_bad_value);
8396 return FALSE;
8397 }
8398 else
8399 {
8400 h = sym_hashes[r_symndx - extsymoff];
8401 if (h != NULL)
8402 {
8403 while (h->root.type == bfd_link_hash_indirect
8404 || h->root.type == bfd_link_hash_warning)
8405 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8406 }
8407 }
8408
8409 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8410 relocation into a dynamic one. */
8411 can_make_dynamic_p = FALSE;
8412
8413 /* Set CALL_RELOC_P to true if the relocation is for a call,
8414 and if pointer equality therefore doesn't matter. */
8415 call_reloc_p = FALSE;
8416
8417 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8418 into account when deciding how to define the symbol.
8419 Relocations in nonallocatable sections such as .pdr and
8420 .debug* should have no effect. */
8421 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8422
8423 switch (r_type)
8424 {
8425 case R_MIPS_CALL16:
8426 case R_MIPS_CALL_HI16:
8427 case R_MIPS_CALL_LO16:
8428 case R_MIPS16_CALL16:
8429 case R_MICROMIPS_CALL16:
8430 case R_MICROMIPS_CALL_HI16:
8431 case R_MICROMIPS_CALL_LO16:
8432 call_reloc_p = TRUE;
8433 /* Fall through. */
8434
8435 case R_MIPS_GOT16:
8436 case R_MIPS_GOT_HI16:
8437 case R_MIPS_GOT_LO16:
8438 case R_MIPS_GOT_PAGE:
8439 case R_MIPS_GOT_OFST:
8440 case R_MIPS_GOT_DISP:
8441 case R_MIPS_TLS_GOTTPREL:
8442 case R_MIPS_TLS_GD:
8443 case R_MIPS_TLS_LDM:
8444 case R_MIPS16_GOT16:
8445 case R_MIPS16_TLS_GOTTPREL:
8446 case R_MIPS16_TLS_GD:
8447 case R_MIPS16_TLS_LDM:
8448 case R_MICROMIPS_GOT16:
8449 case R_MICROMIPS_GOT_HI16:
8450 case R_MICROMIPS_GOT_LO16:
8451 case R_MICROMIPS_GOT_PAGE:
8452 case R_MICROMIPS_GOT_OFST:
8453 case R_MICROMIPS_GOT_DISP:
8454 case R_MICROMIPS_TLS_GOTTPREL:
8455 case R_MICROMIPS_TLS_GD:
8456 case R_MICROMIPS_TLS_LDM:
8457 if (dynobj == NULL)
8458 elf_hash_table (info)->dynobj = dynobj = abfd;
8459 if (!mips_elf_create_got_section (dynobj, info))
8460 return FALSE;
8461 if (htab->is_vxworks && !bfd_link_pic (info))
8462 {
8463 _bfd_error_handler
8464 /* xgettext:c-format */
8465 (_("%B: GOT reloc at %#Lx not expected in executables"),
8466 abfd, rel->r_offset);
8467 bfd_set_error (bfd_error_bad_value);
8468 return FALSE;
8469 }
8470 can_make_dynamic_p = TRUE;
8471 break;
8472
8473 case R_MIPS_NONE:
8474 case R_MIPS_JALR:
8475 case R_MICROMIPS_JALR:
8476 /* These relocations have empty fields and are purely there to
8477 provide link information. The symbol value doesn't matter. */
8478 constrain_symbol_p = FALSE;
8479 break;
8480
8481 case R_MIPS_GPREL16:
8482 case R_MIPS_GPREL32:
8483 case R_MIPS16_GPREL:
8484 case R_MICROMIPS_GPREL16:
8485 /* GP-relative relocations always resolve to a definition in a
8486 regular input file, ignoring the one-definition rule. This is
8487 important for the GP setup sequence in NewABI code, which
8488 always resolves to a local function even if other relocations
8489 against the symbol wouldn't. */
8490 constrain_symbol_p = FALSE;
8491 break;
8492
8493 case R_MIPS_32:
8494 case R_MIPS_REL32:
8495 case R_MIPS_64:
8496 /* In VxWorks executables, references to external symbols
8497 must be handled using copy relocs or PLT entries; it is not
8498 possible to convert this relocation into a dynamic one.
8499
8500 For executables that use PLTs and copy-relocs, we have a
8501 choice between converting the relocation into a dynamic
8502 one or using copy relocations or PLT entries. It is
8503 usually better to do the former, unless the relocation is
8504 against a read-only section. */
8505 if ((bfd_link_pic (info)
8506 || (h != NULL
8507 && !htab->is_vxworks
8508 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8509 && !(!info->nocopyreloc
8510 && !PIC_OBJECT_P (abfd)
8511 && MIPS_ELF_READONLY_SECTION (sec))))
8512 && (sec->flags & SEC_ALLOC) != 0)
8513 {
8514 can_make_dynamic_p = TRUE;
8515 if (dynobj == NULL)
8516 elf_hash_table (info)->dynobj = dynobj = abfd;
8517 }
8518 break;
8519
8520 case R_MIPS_26:
8521 case R_MIPS_PC16:
8522 case R_MIPS_PC21_S2:
8523 case R_MIPS_PC26_S2:
8524 case R_MIPS16_26:
8525 case R_MIPS16_PC16_S1:
8526 case R_MICROMIPS_26_S1:
8527 case R_MICROMIPS_PC7_S1:
8528 case R_MICROMIPS_PC10_S1:
8529 case R_MICROMIPS_PC16_S1:
8530 case R_MICROMIPS_PC23_S2:
8531 call_reloc_p = TRUE;
8532 break;
8533 }
8534
8535 if (h)
8536 {
8537 if (constrain_symbol_p)
8538 {
8539 if (!can_make_dynamic_p)
8540 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8541
8542 if (!call_reloc_p)
8543 h->pointer_equality_needed = 1;
8544
8545 /* We must not create a stub for a symbol that has
8546 relocations related to taking the function's address.
8547 This doesn't apply to VxWorks, where CALL relocs refer
8548 to a .got.plt entry instead of a normal .got entry. */
8549 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8550 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8551 }
8552
8553 /* Relocations against the special VxWorks __GOTT_BASE__ and
8554 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8555 room for them in .rela.dyn. */
8556 if (is_gott_symbol (info, h))
8557 {
8558 if (sreloc == NULL)
8559 {
8560 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8561 if (sreloc == NULL)
8562 return FALSE;
8563 }
8564 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8565 if (MIPS_ELF_READONLY_SECTION (sec))
8566 /* We tell the dynamic linker that there are
8567 relocations against the text segment. */
8568 info->flags |= DF_TEXTREL;
8569 }
8570 }
8571 else if (call_lo16_reloc_p (r_type)
8572 || got_lo16_reloc_p (r_type)
8573 || got_disp_reloc_p (r_type)
8574 || (got16_reloc_p (r_type) && htab->is_vxworks))
8575 {
8576 /* We may need a local GOT entry for this relocation. We
8577 don't count R_MIPS_GOT_PAGE because we can estimate the
8578 maximum number of pages needed by looking at the size of
8579 the segment. Similar comments apply to R_MIPS*_GOT16 and
8580 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8581 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8582 R_MIPS_CALL_HI16 because these are always followed by an
8583 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8584 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8585 rel->r_addend, info, r_type))
8586 return FALSE;
8587 }
8588
8589 if (h != NULL
8590 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8591 ELF_ST_IS_MIPS16 (h->other)))
8592 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8593
8594 switch (r_type)
8595 {
8596 case R_MIPS_CALL16:
8597 case R_MIPS16_CALL16:
8598 case R_MICROMIPS_CALL16:
8599 if (h == NULL)
8600 {
8601 _bfd_error_handler
8602 /* xgettext:c-format */
8603 (_("%B: CALL16 reloc at %#Lx not against global symbol"),
8604 abfd, rel->r_offset);
8605 bfd_set_error (bfd_error_bad_value);
8606 return FALSE;
8607 }
8608 /* Fall through. */
8609
8610 case R_MIPS_CALL_HI16:
8611 case R_MIPS_CALL_LO16:
8612 case R_MICROMIPS_CALL_HI16:
8613 case R_MICROMIPS_CALL_LO16:
8614 if (h != NULL)
8615 {
8616 /* Make sure there is room in the regular GOT to hold the
8617 function's address. We may eliminate it in favour of
8618 a .got.plt entry later; see mips_elf_count_got_symbols. */
8619 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8620 r_type))
8621 return FALSE;
8622
8623 /* We need a stub, not a plt entry for the undefined
8624 function. But we record it as if it needs plt. See
8625 _bfd_elf_adjust_dynamic_symbol. */
8626 h->needs_plt = 1;
8627 h->type = STT_FUNC;
8628 }
8629 break;
8630
8631 case R_MIPS_GOT_PAGE:
8632 case R_MICROMIPS_GOT_PAGE:
8633 case R_MIPS16_GOT16:
8634 case R_MIPS_GOT16:
8635 case R_MIPS_GOT_HI16:
8636 case R_MIPS_GOT_LO16:
8637 case R_MICROMIPS_GOT16:
8638 case R_MICROMIPS_GOT_HI16:
8639 case R_MICROMIPS_GOT_LO16:
8640 if (!h || got_page_reloc_p (r_type))
8641 {
8642 /* This relocation needs (or may need, if h != NULL) a
8643 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8644 know for sure until we know whether the symbol is
8645 preemptible. */
8646 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8647 {
8648 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8649 return FALSE;
8650 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8651 addend = mips_elf_read_rel_addend (abfd, rel,
8652 howto, contents);
8653 if (got16_reloc_p (r_type))
8654 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8655 contents, &addend);
8656 else
8657 addend <<= howto->rightshift;
8658 }
8659 else
8660 addend = rel->r_addend;
8661 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8662 h, addend))
8663 return FALSE;
8664
8665 if (h)
8666 {
8667 struct mips_elf_link_hash_entry *hmips =
8668 (struct mips_elf_link_hash_entry *) h;
8669
8670 /* This symbol is definitely not overridable. */
8671 if (hmips->root.def_regular
8672 && ! (bfd_link_pic (info) && ! info->symbolic
8673 && ! hmips->root.forced_local))
8674 h = NULL;
8675 }
8676 }
8677 /* If this is a global, overridable symbol, GOT_PAGE will
8678 decay to GOT_DISP, so we'll need a GOT entry for it. */
8679 /* Fall through. */
8680
8681 case R_MIPS_GOT_DISP:
8682 case R_MICROMIPS_GOT_DISP:
8683 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8684 FALSE, r_type))
8685 return FALSE;
8686 break;
8687
8688 case R_MIPS_TLS_GOTTPREL:
8689 case R_MIPS16_TLS_GOTTPREL:
8690 case R_MICROMIPS_TLS_GOTTPREL:
8691 if (bfd_link_pic (info))
8692 info->flags |= DF_STATIC_TLS;
8693 /* Fall through */
8694
8695 case R_MIPS_TLS_LDM:
8696 case R_MIPS16_TLS_LDM:
8697 case R_MICROMIPS_TLS_LDM:
8698 if (tls_ldm_reloc_p (r_type))
8699 {
8700 r_symndx = STN_UNDEF;
8701 h = NULL;
8702 }
8703 /* Fall through */
8704
8705 case R_MIPS_TLS_GD:
8706 case R_MIPS16_TLS_GD:
8707 case R_MICROMIPS_TLS_GD:
8708 /* This symbol requires a global offset table entry, or two
8709 for TLS GD relocations. */
8710 if (h != NULL)
8711 {
8712 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8713 FALSE, r_type))
8714 return FALSE;
8715 }
8716 else
8717 {
8718 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8719 rel->r_addend,
8720 info, r_type))
8721 return FALSE;
8722 }
8723 break;
8724
8725 case R_MIPS_32:
8726 case R_MIPS_REL32:
8727 case R_MIPS_64:
8728 /* In VxWorks executables, references to external symbols
8729 are handled using copy relocs or PLT stubs, so there's
8730 no need to add a .rela.dyn entry for this relocation. */
8731 if (can_make_dynamic_p)
8732 {
8733 if (sreloc == NULL)
8734 {
8735 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8736 if (sreloc == NULL)
8737 return FALSE;
8738 }
8739 if (bfd_link_pic (info) && h == NULL)
8740 {
8741 /* When creating a shared object, we must copy these
8742 reloc types into the output file as R_MIPS_REL32
8743 relocs. Make room for this reloc in .rel(a).dyn. */
8744 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8745 if (MIPS_ELF_READONLY_SECTION (sec))
8746 /* We tell the dynamic linker that there are
8747 relocations against the text segment. */
8748 info->flags |= DF_TEXTREL;
8749 }
8750 else
8751 {
8752 struct mips_elf_link_hash_entry *hmips;
8753
8754 /* For a shared object, we must copy this relocation
8755 unless the symbol turns out to be undefined and
8756 weak with non-default visibility, in which case
8757 it will be left as zero.
8758
8759 We could elide R_MIPS_REL32 for locally binding symbols
8760 in shared libraries, but do not yet do so.
8761
8762 For an executable, we only need to copy this
8763 reloc if the symbol is defined in a dynamic
8764 object. */
8765 hmips = (struct mips_elf_link_hash_entry *) h;
8766 ++hmips->possibly_dynamic_relocs;
8767 if (MIPS_ELF_READONLY_SECTION (sec))
8768 /* We need it to tell the dynamic linker if there
8769 are relocations against the text segment. */
8770 hmips->readonly_reloc = TRUE;
8771 }
8772 }
8773
8774 if (SGI_COMPAT (abfd))
8775 mips_elf_hash_table (info)->compact_rel_size +=
8776 sizeof (Elf32_External_crinfo);
8777 break;
8778
8779 case R_MIPS_26:
8780 case R_MIPS_GPREL16:
8781 case R_MIPS_LITERAL:
8782 case R_MIPS_GPREL32:
8783 case R_MICROMIPS_26_S1:
8784 case R_MICROMIPS_GPREL16:
8785 case R_MICROMIPS_LITERAL:
8786 case R_MICROMIPS_GPREL7_S2:
8787 if (SGI_COMPAT (abfd))
8788 mips_elf_hash_table (info)->compact_rel_size +=
8789 sizeof (Elf32_External_crinfo);
8790 break;
8791
8792 /* This relocation describes the C++ object vtable hierarchy.
8793 Reconstruct it for later use during GC. */
8794 case R_MIPS_GNU_VTINHERIT:
8795 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8796 return FALSE;
8797 break;
8798
8799 /* This relocation describes which C++ vtable entries are actually
8800 used. Record for later use during GC. */
8801 case R_MIPS_GNU_VTENTRY:
8802 BFD_ASSERT (h != NULL);
8803 if (h != NULL
8804 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8805 return FALSE;
8806 break;
8807
8808 default:
8809 break;
8810 }
8811
8812 /* Record the need for a PLT entry. At this point we don't know
8813 yet if we are going to create a PLT in the first place, but
8814 we only record whether the relocation requires a standard MIPS
8815 or a compressed code entry anyway. If we don't make a PLT after
8816 all, then we'll just ignore these arrangements. Likewise if
8817 a PLT entry is not created because the symbol is satisfied
8818 locally. */
8819 if (h != NULL
8820 && (branch_reloc_p (r_type)
8821 || mips16_branch_reloc_p (r_type)
8822 || micromips_branch_reloc_p (r_type))
8823 && !SYMBOL_CALLS_LOCAL (info, h))
8824 {
8825 if (h->plt.plist == NULL)
8826 h->plt.plist = mips_elf_make_plt_record (abfd);
8827 if (h->plt.plist == NULL)
8828 return FALSE;
8829
8830 if (branch_reloc_p (r_type))
8831 h->plt.plist->need_mips = TRUE;
8832 else
8833 h->plt.plist->need_comp = TRUE;
8834 }
8835
8836 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8837 if there is one. We only need to handle global symbols here;
8838 we decide whether to keep or delete stubs for local symbols
8839 when processing the stub's relocations. */
8840 if (h != NULL
8841 && !mips16_call_reloc_p (r_type)
8842 && !section_allows_mips16_refs_p (sec))
8843 {
8844 struct mips_elf_link_hash_entry *mh;
8845
8846 mh = (struct mips_elf_link_hash_entry *) h;
8847 mh->need_fn_stub = TRUE;
8848 }
8849
8850 /* Refuse some position-dependent relocations when creating a
8851 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8852 not PIC, but we can create dynamic relocations and the result
8853 will be fine. Also do not refuse R_MIPS_LO16, which can be
8854 combined with R_MIPS_GOT16. */
8855 if (bfd_link_pic (info))
8856 {
8857 switch (r_type)
8858 {
8859 case R_MIPS16_HI16:
8860 case R_MIPS_HI16:
8861 case R_MIPS_HIGHER:
8862 case R_MIPS_HIGHEST:
8863 case R_MICROMIPS_HI16:
8864 case R_MICROMIPS_HIGHER:
8865 case R_MICROMIPS_HIGHEST:
8866 /* Don't refuse a high part relocation if it's against
8867 no symbol (e.g. part of a compound relocation). */
8868 if (r_symndx == STN_UNDEF)
8869 break;
8870
8871 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8872 and has a special meaning. */
8873 if (!NEWABI_P (abfd) && h != NULL
8874 && strcmp (h->root.root.string, "_gp_disp") == 0)
8875 break;
8876
8877 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8878 if (is_gott_symbol (info, h))
8879 break;
8880
8881 /* FALLTHROUGH */
8882
8883 case R_MIPS16_26:
8884 case R_MIPS_26:
8885 case R_MICROMIPS_26_S1:
8886 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8887 _bfd_error_handler
8888 /* xgettext:c-format */
8889 (_("%B: relocation %s against `%s' can not be used"
8890 " when making a shared object; recompile with -fPIC"),
8891 abfd, howto->name,
8892 (h) ? h->root.root.string : "a local symbol");
8893 bfd_set_error (bfd_error_bad_value);
8894 return FALSE;
8895 default:
8896 break;
8897 }
8898 }
8899 }
8900
8901 return TRUE;
8902 }
8903 \f
8904 /* Allocate space for global sym dynamic relocs. */
8905
8906 static bfd_boolean
8907 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8908 {
8909 struct bfd_link_info *info = inf;
8910 bfd *dynobj;
8911 struct mips_elf_link_hash_entry *hmips;
8912 struct mips_elf_link_hash_table *htab;
8913
8914 htab = mips_elf_hash_table (info);
8915 BFD_ASSERT (htab != NULL);
8916
8917 dynobj = elf_hash_table (info)->dynobj;
8918 hmips = (struct mips_elf_link_hash_entry *) h;
8919
8920 /* VxWorks executables are handled elsewhere; we only need to
8921 allocate relocations in shared objects. */
8922 if (htab->is_vxworks && !bfd_link_pic (info))
8923 return TRUE;
8924
8925 /* Ignore indirect symbols. All relocations against such symbols
8926 will be redirected to the target symbol. */
8927 if (h->root.type == bfd_link_hash_indirect)
8928 return TRUE;
8929
8930 /* If this symbol is defined in a dynamic object, or we are creating
8931 a shared library, we will need to copy any R_MIPS_32 or
8932 R_MIPS_REL32 relocs against it into the output file. */
8933 if (! bfd_link_relocatable (info)
8934 && hmips->possibly_dynamic_relocs != 0
8935 && (h->root.type == bfd_link_hash_defweak
8936 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8937 || bfd_link_pic (info)))
8938 {
8939 bfd_boolean do_copy = TRUE;
8940
8941 if (h->root.type == bfd_link_hash_undefweak)
8942 {
8943 /* Do not copy relocations for undefined weak symbols with
8944 non-default visibility. */
8945 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8946 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8947 do_copy = FALSE;
8948
8949 /* Make sure undefined weak symbols are output as a dynamic
8950 symbol in PIEs. */
8951 else if (h->dynindx == -1 && !h->forced_local)
8952 {
8953 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8954 return FALSE;
8955 }
8956 }
8957
8958 if (do_copy)
8959 {
8960 /* Even though we don't directly need a GOT entry for this symbol,
8961 the SVR4 psABI requires it to have a dynamic symbol table
8962 index greater that DT_MIPS_GOTSYM if there are dynamic
8963 relocations against it.
8964
8965 VxWorks does not enforce the same mapping between the GOT
8966 and the symbol table, so the same requirement does not
8967 apply there. */
8968 if (!htab->is_vxworks)
8969 {
8970 if (hmips->global_got_area > GGA_RELOC_ONLY)
8971 hmips->global_got_area = GGA_RELOC_ONLY;
8972 hmips->got_only_for_calls = FALSE;
8973 }
8974
8975 mips_elf_allocate_dynamic_relocations
8976 (dynobj, info, hmips->possibly_dynamic_relocs);
8977 if (hmips->readonly_reloc)
8978 /* We tell the dynamic linker that there are relocations
8979 against the text segment. */
8980 info->flags |= DF_TEXTREL;
8981 }
8982 }
8983
8984 return TRUE;
8985 }
8986
8987 /* Adjust a symbol defined by a dynamic object and referenced by a
8988 regular object. The current definition is in some section of the
8989 dynamic object, but we're not including those sections. We have to
8990 change the definition to something the rest of the link can
8991 understand. */
8992
8993 bfd_boolean
8994 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8995 struct elf_link_hash_entry *h)
8996 {
8997 bfd *dynobj;
8998 struct mips_elf_link_hash_entry *hmips;
8999 struct mips_elf_link_hash_table *htab;
9000 asection *s, *srel;
9001
9002 htab = mips_elf_hash_table (info);
9003 BFD_ASSERT (htab != NULL);
9004
9005 dynobj = elf_hash_table (info)->dynobj;
9006 hmips = (struct mips_elf_link_hash_entry *) h;
9007
9008 /* Make sure we know what is going on here. */
9009 BFD_ASSERT (dynobj != NULL
9010 && (h->needs_plt
9011 || h->is_weakalias
9012 || (h->def_dynamic
9013 && h->ref_regular
9014 && !h->def_regular)));
9015
9016 hmips = (struct mips_elf_link_hash_entry *) h;
9017
9018 /* If there are call relocations against an externally-defined symbol,
9019 see whether we can create a MIPS lazy-binding stub for it. We can
9020 only do this if all references to the function are through call
9021 relocations, and in that case, the traditional lazy-binding stubs
9022 are much more efficient than PLT entries.
9023
9024 Traditional stubs are only available on SVR4 psABI-based systems;
9025 VxWorks always uses PLTs instead. */
9026 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9027 {
9028 if (! elf_hash_table (info)->dynamic_sections_created)
9029 return TRUE;
9030
9031 /* If this symbol is not defined in a regular file, then set
9032 the symbol to the stub location. This is required to make
9033 function pointers compare as equal between the normal
9034 executable and the shared library. */
9035 if (!h->def_regular)
9036 {
9037 hmips->needs_lazy_stub = TRUE;
9038 htab->lazy_stub_count++;
9039 return TRUE;
9040 }
9041 }
9042 /* As above, VxWorks requires PLT entries for externally-defined
9043 functions that are only accessed through call relocations.
9044
9045 Both VxWorks and non-VxWorks targets also need PLT entries if there
9046 are static-only relocations against an externally-defined function.
9047 This can technically occur for shared libraries if there are
9048 branches to the symbol, although it is unlikely that this will be
9049 used in practice due to the short ranges involved. It can occur
9050 for any relative or absolute relocation in executables; in that
9051 case, the PLT entry becomes the function's canonical address. */
9052 else if (((h->needs_plt && !hmips->no_fn_stub)
9053 || (h->type == STT_FUNC && hmips->has_static_relocs))
9054 && htab->use_plts_and_copy_relocs
9055 && !SYMBOL_CALLS_LOCAL (info, h)
9056 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9057 && h->root.type == bfd_link_hash_undefweak))
9058 {
9059 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9060 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9061
9062 /* If this is the first symbol to need a PLT entry, then make some
9063 basic setup. Also work out PLT entry sizes. We'll need them
9064 for PLT offset calculations. */
9065 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9066 {
9067 BFD_ASSERT (htab->root.sgotplt->size == 0);
9068 BFD_ASSERT (htab->plt_got_index == 0);
9069
9070 /* If we're using the PLT additions to the psABI, each PLT
9071 entry is 16 bytes and the PLT0 entry is 32 bytes.
9072 Encourage better cache usage by aligning. We do this
9073 lazily to avoid pessimizing traditional objects. */
9074 if (!htab->is_vxworks
9075 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9076 return FALSE;
9077
9078 /* Make sure that .got.plt is word-aligned. We do this lazily
9079 for the same reason as above. */
9080 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9081 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9082 return FALSE;
9083
9084 /* On non-VxWorks targets, the first two entries in .got.plt
9085 are reserved. */
9086 if (!htab->is_vxworks)
9087 htab->plt_got_index
9088 += (get_elf_backend_data (dynobj)->got_header_size
9089 / MIPS_ELF_GOT_SIZE (dynobj));
9090
9091 /* On VxWorks, also allocate room for the header's
9092 .rela.plt.unloaded entries. */
9093 if (htab->is_vxworks && !bfd_link_pic (info))
9094 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9095
9096 /* Now work out the sizes of individual PLT entries. */
9097 if (htab->is_vxworks && bfd_link_pic (info))
9098 htab->plt_mips_entry_size
9099 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9100 else if (htab->is_vxworks)
9101 htab->plt_mips_entry_size
9102 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9103 else if (newabi_p)
9104 htab->plt_mips_entry_size
9105 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9106 else if (!micromips_p)
9107 {
9108 htab->plt_mips_entry_size
9109 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9110 htab->plt_comp_entry_size
9111 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9112 }
9113 else if (htab->insn32)
9114 {
9115 htab->plt_mips_entry_size
9116 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9117 htab->plt_comp_entry_size
9118 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9119 }
9120 else
9121 {
9122 htab->plt_mips_entry_size
9123 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9124 htab->plt_comp_entry_size
9125 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9126 }
9127 }
9128
9129 if (h->plt.plist == NULL)
9130 h->plt.plist = mips_elf_make_plt_record (dynobj);
9131 if (h->plt.plist == NULL)
9132 return FALSE;
9133
9134 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9135 n32 or n64, so always use a standard entry there.
9136
9137 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9138 all MIPS16 calls will go via that stub, and there is no benefit
9139 to having a MIPS16 entry. And in the case of call_stub a
9140 standard entry actually has to be used as the stub ends with a J
9141 instruction. */
9142 if (newabi_p
9143 || htab->is_vxworks
9144 || hmips->call_stub
9145 || hmips->call_fp_stub)
9146 {
9147 h->plt.plist->need_mips = TRUE;
9148 h->plt.plist->need_comp = FALSE;
9149 }
9150
9151 /* Otherwise, if there are no direct calls to the function, we
9152 have a free choice of whether to use standard or compressed
9153 entries. Prefer microMIPS entries if the object is known to
9154 contain microMIPS code, so that it becomes possible to create
9155 pure microMIPS binaries. Prefer standard entries otherwise,
9156 because MIPS16 ones are no smaller and are usually slower. */
9157 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9158 {
9159 if (micromips_p)
9160 h->plt.plist->need_comp = TRUE;
9161 else
9162 h->plt.plist->need_mips = TRUE;
9163 }
9164
9165 if (h->plt.plist->need_mips)
9166 {
9167 h->plt.plist->mips_offset = htab->plt_mips_offset;
9168 htab->plt_mips_offset += htab->plt_mips_entry_size;
9169 }
9170 if (h->plt.plist->need_comp)
9171 {
9172 h->plt.plist->comp_offset = htab->plt_comp_offset;
9173 htab->plt_comp_offset += htab->plt_comp_entry_size;
9174 }
9175
9176 /* Reserve the corresponding .got.plt entry now too. */
9177 h->plt.plist->gotplt_index = htab->plt_got_index++;
9178
9179 /* If the output file has no definition of the symbol, set the
9180 symbol's value to the address of the stub. */
9181 if (!bfd_link_pic (info) && !h->def_regular)
9182 hmips->use_plt_entry = TRUE;
9183
9184 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9185 htab->root.srelplt->size += (htab->is_vxworks
9186 ? MIPS_ELF_RELA_SIZE (dynobj)
9187 : MIPS_ELF_REL_SIZE (dynobj));
9188
9189 /* Make room for the .rela.plt.unloaded relocations. */
9190 if (htab->is_vxworks && !bfd_link_pic (info))
9191 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9192
9193 /* All relocations against this symbol that could have been made
9194 dynamic will now refer to the PLT entry instead. */
9195 hmips->possibly_dynamic_relocs = 0;
9196
9197 return TRUE;
9198 }
9199
9200 /* If this is a weak symbol, and there is a real definition, the
9201 processor independent code will have arranged for us to see the
9202 real definition first, and we can just use the same value. */
9203 if (h->is_weakalias)
9204 {
9205 struct elf_link_hash_entry *def = weakdef (h);
9206 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9207 h->root.u.def.section = def->root.u.def.section;
9208 h->root.u.def.value = def->root.u.def.value;
9209 return TRUE;
9210 }
9211
9212 /* Otherwise, there is nothing further to do for symbols defined
9213 in regular objects. */
9214 if (h->def_regular)
9215 return TRUE;
9216
9217 /* There's also nothing more to do if we'll convert all relocations
9218 against this symbol into dynamic relocations. */
9219 if (!hmips->has_static_relocs)
9220 return TRUE;
9221
9222 /* We're now relying on copy relocations. Complain if we have
9223 some that we can't convert. */
9224 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9225 {
9226 _bfd_error_handler (_("non-dynamic relocations refer to "
9227 "dynamic symbol %s"),
9228 h->root.root.string);
9229 bfd_set_error (bfd_error_bad_value);
9230 return FALSE;
9231 }
9232
9233 /* We must allocate the symbol in our .dynbss section, which will
9234 become part of the .bss section of the executable. There will be
9235 an entry for this symbol in the .dynsym section. The dynamic
9236 object will contain position independent code, so all references
9237 from the dynamic object to this symbol will go through the global
9238 offset table. The dynamic linker will use the .dynsym entry to
9239 determine the address it must put in the global offset table, so
9240 both the dynamic object and the regular object will refer to the
9241 same memory location for the variable. */
9242
9243 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9244 {
9245 s = htab->root.sdynrelro;
9246 srel = htab->root.sreldynrelro;
9247 }
9248 else
9249 {
9250 s = htab->root.sdynbss;
9251 srel = htab->root.srelbss;
9252 }
9253 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9254 {
9255 if (htab->is_vxworks)
9256 srel->size += sizeof (Elf32_External_Rela);
9257 else
9258 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9259 h->needs_copy = 1;
9260 }
9261
9262 /* All relocations against this symbol that could have been made
9263 dynamic will now refer to the local copy instead. */
9264 hmips->possibly_dynamic_relocs = 0;
9265
9266 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9267 }
9268 \f
9269 /* This function is called after all the input files have been read,
9270 and the input sections have been assigned to output sections. We
9271 check for any mips16 stub sections that we can discard. */
9272
9273 bfd_boolean
9274 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9275 struct bfd_link_info *info)
9276 {
9277 asection *sect;
9278 struct mips_elf_link_hash_table *htab;
9279 struct mips_htab_traverse_info hti;
9280
9281 htab = mips_elf_hash_table (info);
9282 BFD_ASSERT (htab != NULL);
9283
9284 /* The .reginfo section has a fixed size. */
9285 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9286 if (sect != NULL)
9287 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9288
9289 /* The .MIPS.abiflags section has a fixed size. */
9290 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9291 if (sect != NULL)
9292 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9293
9294 hti.info = info;
9295 hti.output_bfd = output_bfd;
9296 hti.error = FALSE;
9297 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9298 mips_elf_check_symbols, &hti);
9299 if (hti.error)
9300 return FALSE;
9301
9302 return TRUE;
9303 }
9304
9305 /* If the link uses a GOT, lay it out and work out its size. */
9306
9307 static bfd_boolean
9308 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9309 {
9310 bfd *dynobj;
9311 asection *s;
9312 struct mips_got_info *g;
9313 bfd_size_type loadable_size = 0;
9314 bfd_size_type page_gotno;
9315 bfd *ibfd;
9316 struct mips_elf_traverse_got_arg tga;
9317 struct mips_elf_link_hash_table *htab;
9318
9319 htab = mips_elf_hash_table (info);
9320 BFD_ASSERT (htab != NULL);
9321
9322 s = htab->root.sgot;
9323 if (s == NULL)
9324 return TRUE;
9325
9326 dynobj = elf_hash_table (info)->dynobj;
9327 g = htab->got_info;
9328
9329 /* Allocate room for the reserved entries. VxWorks always reserves
9330 3 entries; other objects only reserve 2 entries. */
9331 BFD_ASSERT (g->assigned_low_gotno == 0);
9332 if (htab->is_vxworks)
9333 htab->reserved_gotno = 3;
9334 else
9335 htab->reserved_gotno = 2;
9336 g->local_gotno += htab->reserved_gotno;
9337 g->assigned_low_gotno = htab->reserved_gotno;
9338
9339 /* Decide which symbols need to go in the global part of the GOT and
9340 count the number of reloc-only GOT symbols. */
9341 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9342
9343 if (!mips_elf_resolve_final_got_entries (info, g))
9344 return FALSE;
9345
9346 /* Calculate the total loadable size of the output. That
9347 will give us the maximum number of GOT_PAGE entries
9348 required. */
9349 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9350 {
9351 asection *subsection;
9352
9353 for (subsection = ibfd->sections;
9354 subsection;
9355 subsection = subsection->next)
9356 {
9357 if ((subsection->flags & SEC_ALLOC) == 0)
9358 continue;
9359 loadable_size += ((subsection->size + 0xf)
9360 &~ (bfd_size_type) 0xf);
9361 }
9362 }
9363
9364 if (htab->is_vxworks)
9365 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9366 relocations against local symbols evaluate to "G", and the EABI does
9367 not include R_MIPS_GOT_PAGE. */
9368 page_gotno = 0;
9369 else
9370 /* Assume there are two loadable segments consisting of contiguous
9371 sections. Is 5 enough? */
9372 page_gotno = (loadable_size >> 16) + 5;
9373
9374 /* Choose the smaller of the two page estimates; both are intended to be
9375 conservative. */
9376 if (page_gotno > g->page_gotno)
9377 page_gotno = g->page_gotno;
9378
9379 g->local_gotno += page_gotno;
9380 g->assigned_high_gotno = g->local_gotno - 1;
9381
9382 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9383 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9384 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9385
9386 /* VxWorks does not support multiple GOTs. It initializes $gp to
9387 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9388 dynamic loader. */
9389 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9390 {
9391 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9392 return FALSE;
9393 }
9394 else
9395 {
9396 /* Record that all bfds use G. This also has the effect of freeing
9397 the per-bfd GOTs, which we no longer need. */
9398 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9399 if (mips_elf_bfd_got (ibfd, FALSE))
9400 mips_elf_replace_bfd_got (ibfd, g);
9401 mips_elf_replace_bfd_got (output_bfd, g);
9402
9403 /* Set up TLS entries. */
9404 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9405 tga.info = info;
9406 tga.g = g;
9407 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9408 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9409 if (!tga.g)
9410 return FALSE;
9411 BFD_ASSERT (g->tls_assigned_gotno
9412 == g->global_gotno + g->local_gotno + g->tls_gotno);
9413
9414 /* Each VxWorks GOT entry needs an explicit relocation. */
9415 if (htab->is_vxworks && bfd_link_pic (info))
9416 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9417
9418 /* Allocate room for the TLS relocations. */
9419 if (g->relocs)
9420 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9421 }
9422
9423 return TRUE;
9424 }
9425
9426 /* Estimate the size of the .MIPS.stubs section. */
9427
9428 static void
9429 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9430 {
9431 struct mips_elf_link_hash_table *htab;
9432 bfd_size_type dynsymcount;
9433
9434 htab = mips_elf_hash_table (info);
9435 BFD_ASSERT (htab != NULL);
9436
9437 if (htab->lazy_stub_count == 0)
9438 return;
9439
9440 /* IRIX rld assumes that a function stub isn't at the end of the .text
9441 section, so add a dummy entry to the end. */
9442 htab->lazy_stub_count++;
9443
9444 /* Get a worst-case estimate of the number of dynamic symbols needed.
9445 At this point, dynsymcount does not account for section symbols
9446 and count_section_dynsyms may overestimate the number that will
9447 be needed. */
9448 dynsymcount = (elf_hash_table (info)->dynsymcount
9449 + count_section_dynsyms (output_bfd, info));
9450
9451 /* Determine the size of one stub entry. There's no disadvantage
9452 from using microMIPS code here, so for the sake of pure-microMIPS
9453 binaries we prefer it whenever there's any microMIPS code in
9454 output produced at all. This has a benefit of stubs being
9455 shorter by 4 bytes each too, unless in the insn32 mode. */
9456 if (!MICROMIPS_P (output_bfd))
9457 htab->function_stub_size = (dynsymcount > 0x10000
9458 ? MIPS_FUNCTION_STUB_BIG_SIZE
9459 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9460 else if (htab->insn32)
9461 htab->function_stub_size = (dynsymcount > 0x10000
9462 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9463 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9464 else
9465 htab->function_stub_size = (dynsymcount > 0x10000
9466 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9467 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9468
9469 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9470 }
9471
9472 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9473 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9474 stub, allocate an entry in the stubs section. */
9475
9476 static bfd_boolean
9477 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9478 {
9479 struct mips_htab_traverse_info *hti = data;
9480 struct mips_elf_link_hash_table *htab;
9481 struct bfd_link_info *info;
9482 bfd *output_bfd;
9483
9484 info = hti->info;
9485 output_bfd = hti->output_bfd;
9486 htab = mips_elf_hash_table (info);
9487 BFD_ASSERT (htab != NULL);
9488
9489 if (h->needs_lazy_stub)
9490 {
9491 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9492 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9493 bfd_vma isa_bit = micromips_p;
9494
9495 BFD_ASSERT (htab->root.dynobj != NULL);
9496 if (h->root.plt.plist == NULL)
9497 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9498 if (h->root.plt.plist == NULL)
9499 {
9500 hti->error = TRUE;
9501 return FALSE;
9502 }
9503 h->root.root.u.def.section = htab->sstubs;
9504 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9505 h->root.plt.plist->stub_offset = htab->sstubs->size;
9506 h->root.other = other;
9507 htab->sstubs->size += htab->function_stub_size;
9508 }
9509 return TRUE;
9510 }
9511
9512 /* Allocate offsets in the stubs section to each symbol that needs one.
9513 Set the final size of the .MIPS.stub section. */
9514
9515 static bfd_boolean
9516 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9517 {
9518 bfd *output_bfd = info->output_bfd;
9519 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9520 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9521 bfd_vma isa_bit = micromips_p;
9522 struct mips_elf_link_hash_table *htab;
9523 struct mips_htab_traverse_info hti;
9524 struct elf_link_hash_entry *h;
9525 bfd *dynobj;
9526
9527 htab = mips_elf_hash_table (info);
9528 BFD_ASSERT (htab != NULL);
9529
9530 if (htab->lazy_stub_count == 0)
9531 return TRUE;
9532
9533 htab->sstubs->size = 0;
9534 hti.info = info;
9535 hti.output_bfd = output_bfd;
9536 hti.error = FALSE;
9537 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9538 if (hti.error)
9539 return FALSE;
9540 htab->sstubs->size += htab->function_stub_size;
9541 BFD_ASSERT (htab->sstubs->size
9542 == htab->lazy_stub_count * htab->function_stub_size);
9543
9544 dynobj = elf_hash_table (info)->dynobj;
9545 BFD_ASSERT (dynobj != NULL);
9546 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9547 if (h == NULL)
9548 return FALSE;
9549 h->root.u.def.value = isa_bit;
9550 h->other = other;
9551 h->type = STT_FUNC;
9552
9553 return TRUE;
9554 }
9555
9556 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9557 bfd_link_info. If H uses the address of a PLT entry as the value
9558 of the symbol, then set the entry in the symbol table now. Prefer
9559 a standard MIPS PLT entry. */
9560
9561 static bfd_boolean
9562 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9563 {
9564 struct bfd_link_info *info = data;
9565 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9566 struct mips_elf_link_hash_table *htab;
9567 unsigned int other;
9568 bfd_vma isa_bit;
9569 bfd_vma val;
9570
9571 htab = mips_elf_hash_table (info);
9572 BFD_ASSERT (htab != NULL);
9573
9574 if (h->use_plt_entry)
9575 {
9576 BFD_ASSERT (h->root.plt.plist != NULL);
9577 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9578 || h->root.plt.plist->comp_offset != MINUS_ONE);
9579
9580 val = htab->plt_header_size;
9581 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9582 {
9583 isa_bit = 0;
9584 val += h->root.plt.plist->mips_offset;
9585 other = 0;
9586 }
9587 else
9588 {
9589 isa_bit = 1;
9590 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9591 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9592 }
9593 val += isa_bit;
9594 /* For VxWorks, point at the PLT load stub rather than the lazy
9595 resolution stub; this stub will become the canonical function
9596 address. */
9597 if (htab->is_vxworks)
9598 val += 8;
9599
9600 h->root.root.u.def.section = htab->root.splt;
9601 h->root.root.u.def.value = val;
9602 h->root.other = other;
9603 }
9604
9605 return TRUE;
9606 }
9607
9608 /* Set the sizes of the dynamic sections. */
9609
9610 bfd_boolean
9611 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9612 struct bfd_link_info *info)
9613 {
9614 bfd *dynobj;
9615 asection *s, *sreldyn;
9616 bfd_boolean reltext;
9617 struct mips_elf_link_hash_table *htab;
9618
9619 htab = mips_elf_hash_table (info);
9620 BFD_ASSERT (htab != NULL);
9621 dynobj = elf_hash_table (info)->dynobj;
9622 BFD_ASSERT (dynobj != NULL);
9623
9624 if (elf_hash_table (info)->dynamic_sections_created)
9625 {
9626 /* Set the contents of the .interp section to the interpreter. */
9627 if (bfd_link_executable (info) && !info->nointerp)
9628 {
9629 s = bfd_get_linker_section (dynobj, ".interp");
9630 BFD_ASSERT (s != NULL);
9631 s->size
9632 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9633 s->contents
9634 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9635 }
9636
9637 /* Figure out the size of the PLT header if we know that we
9638 are using it. For the sake of cache alignment always use
9639 a standard header whenever any standard entries are present
9640 even if microMIPS entries are present as well. This also
9641 lets the microMIPS header rely on the value of $v0 only set
9642 by microMIPS entries, for a small size reduction.
9643
9644 Set symbol table entry values for symbols that use the
9645 address of their PLT entry now that we can calculate it.
9646
9647 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9648 haven't already in _bfd_elf_create_dynamic_sections. */
9649 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9650 {
9651 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9652 && !htab->plt_mips_offset);
9653 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9654 bfd_vma isa_bit = micromips_p;
9655 struct elf_link_hash_entry *h;
9656 bfd_vma size;
9657
9658 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9659 BFD_ASSERT (htab->root.sgotplt->size == 0);
9660 BFD_ASSERT (htab->root.splt->size == 0);
9661
9662 if (htab->is_vxworks && bfd_link_pic (info))
9663 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9664 else if (htab->is_vxworks)
9665 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9666 else if (ABI_64_P (output_bfd))
9667 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9668 else if (ABI_N32_P (output_bfd))
9669 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9670 else if (!micromips_p)
9671 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9672 else if (htab->insn32)
9673 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9674 else
9675 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9676
9677 htab->plt_header_is_comp = micromips_p;
9678 htab->plt_header_size = size;
9679 htab->root.splt->size = (size
9680 + htab->plt_mips_offset
9681 + htab->plt_comp_offset);
9682 htab->root.sgotplt->size = (htab->plt_got_index
9683 * MIPS_ELF_GOT_SIZE (dynobj));
9684
9685 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9686
9687 if (htab->root.hplt == NULL)
9688 {
9689 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9690 "_PROCEDURE_LINKAGE_TABLE_");
9691 htab->root.hplt = h;
9692 if (h == NULL)
9693 return FALSE;
9694 }
9695
9696 h = htab->root.hplt;
9697 h->root.u.def.value = isa_bit;
9698 h->other = other;
9699 h->type = STT_FUNC;
9700 }
9701 }
9702
9703 /* Allocate space for global sym dynamic relocs. */
9704 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9705
9706 mips_elf_estimate_stub_size (output_bfd, info);
9707
9708 if (!mips_elf_lay_out_got (output_bfd, info))
9709 return FALSE;
9710
9711 mips_elf_lay_out_lazy_stubs (info);
9712
9713 /* The check_relocs and adjust_dynamic_symbol entry points have
9714 determined the sizes of the various dynamic sections. Allocate
9715 memory for them. */
9716 reltext = FALSE;
9717 for (s = dynobj->sections; s != NULL; s = s->next)
9718 {
9719 const char *name;
9720
9721 /* It's OK to base decisions on the section name, because none
9722 of the dynobj section names depend upon the input files. */
9723 name = bfd_get_section_name (dynobj, s);
9724
9725 if ((s->flags & SEC_LINKER_CREATED) == 0)
9726 continue;
9727
9728 if (CONST_STRNEQ (name, ".rel"))
9729 {
9730 if (s->size != 0)
9731 {
9732 const char *outname;
9733 asection *target;
9734
9735 /* If this relocation section applies to a read only
9736 section, then we probably need a DT_TEXTREL entry.
9737 If the relocation section is .rel(a).dyn, we always
9738 assert a DT_TEXTREL entry rather than testing whether
9739 there exists a relocation to a read only section or
9740 not. */
9741 outname = bfd_get_section_name (output_bfd,
9742 s->output_section);
9743 target = bfd_get_section_by_name (output_bfd, outname + 4);
9744 if ((target != NULL
9745 && (target->flags & SEC_READONLY) != 0
9746 && (target->flags & SEC_ALLOC) != 0)
9747 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9748 reltext = TRUE;
9749
9750 /* We use the reloc_count field as a counter if we need
9751 to copy relocs into the output file. */
9752 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9753 s->reloc_count = 0;
9754
9755 /* If combreloc is enabled, elf_link_sort_relocs() will
9756 sort relocations, but in a different way than we do,
9757 and before we're done creating relocations. Also, it
9758 will move them around between input sections'
9759 relocation's contents, so our sorting would be
9760 broken, so don't let it run. */
9761 info->combreloc = 0;
9762 }
9763 }
9764 else if (bfd_link_executable (info)
9765 && ! mips_elf_hash_table (info)->use_rld_obj_head
9766 && CONST_STRNEQ (name, ".rld_map"))
9767 {
9768 /* We add a room for __rld_map. It will be filled in by the
9769 rtld to contain a pointer to the _r_debug structure. */
9770 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9771 }
9772 else if (SGI_COMPAT (output_bfd)
9773 && CONST_STRNEQ (name, ".compact_rel"))
9774 s->size += mips_elf_hash_table (info)->compact_rel_size;
9775 else if (s == htab->root.splt)
9776 {
9777 /* If the last PLT entry has a branch delay slot, allocate
9778 room for an extra nop to fill the delay slot. This is
9779 for CPUs without load interlocking. */
9780 if (! LOAD_INTERLOCKS_P (output_bfd)
9781 && ! htab->is_vxworks && s->size > 0)
9782 s->size += 4;
9783 }
9784 else if (! CONST_STRNEQ (name, ".init")
9785 && s != htab->root.sgot
9786 && s != htab->root.sgotplt
9787 && s != htab->sstubs
9788 && s != htab->root.sdynbss
9789 && s != htab->root.sdynrelro)
9790 {
9791 /* It's not one of our sections, so don't allocate space. */
9792 continue;
9793 }
9794
9795 if (s->size == 0)
9796 {
9797 s->flags |= SEC_EXCLUDE;
9798 continue;
9799 }
9800
9801 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9802 continue;
9803
9804 /* Allocate memory for the section contents. */
9805 s->contents = bfd_zalloc (dynobj, s->size);
9806 if (s->contents == NULL)
9807 {
9808 bfd_set_error (bfd_error_no_memory);
9809 return FALSE;
9810 }
9811 }
9812
9813 if (elf_hash_table (info)->dynamic_sections_created)
9814 {
9815 /* Add some entries to the .dynamic section. We fill in the
9816 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9817 must add the entries now so that we get the correct size for
9818 the .dynamic section. */
9819
9820 /* SGI object has the equivalence of DT_DEBUG in the
9821 DT_MIPS_RLD_MAP entry. This must come first because glibc
9822 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9823 may only look at the first one they see. */
9824 if (!bfd_link_pic (info)
9825 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9826 return FALSE;
9827
9828 if (bfd_link_executable (info)
9829 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9830 return FALSE;
9831
9832 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9833 used by the debugger. */
9834 if (bfd_link_executable (info)
9835 && !SGI_COMPAT (output_bfd)
9836 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9837 return FALSE;
9838
9839 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9840 info->flags |= DF_TEXTREL;
9841
9842 if ((info->flags & DF_TEXTREL) != 0)
9843 {
9844 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9845 return FALSE;
9846
9847 /* Clear the DF_TEXTREL flag. It will be set again if we
9848 write out an actual text relocation; we may not, because
9849 at this point we do not know whether e.g. any .eh_frame
9850 absolute relocations have been converted to PC-relative. */
9851 info->flags &= ~DF_TEXTREL;
9852 }
9853
9854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9855 return FALSE;
9856
9857 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9858 if (htab->is_vxworks)
9859 {
9860 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9861 use any of the DT_MIPS_* tags. */
9862 if (sreldyn && sreldyn->size > 0)
9863 {
9864 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9865 return FALSE;
9866
9867 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9868 return FALSE;
9869
9870 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9871 return FALSE;
9872 }
9873 }
9874 else
9875 {
9876 if (sreldyn && sreldyn->size > 0)
9877 {
9878 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9879 return FALSE;
9880
9881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9882 return FALSE;
9883
9884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9885 return FALSE;
9886 }
9887
9888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9889 return FALSE;
9890
9891 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9892 return FALSE;
9893
9894 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9895 return FALSE;
9896
9897 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9898 return FALSE;
9899
9900 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9901 return FALSE;
9902
9903 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9904 return FALSE;
9905
9906 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9907 return FALSE;
9908
9909 if (IRIX_COMPAT (dynobj) == ict_irix5
9910 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9911 return FALSE;
9912
9913 if (IRIX_COMPAT (dynobj) == ict_irix6
9914 && (bfd_get_section_by_name
9915 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9916 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9917 return FALSE;
9918 }
9919 if (htab->root.splt->size > 0)
9920 {
9921 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9922 return FALSE;
9923
9924 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9925 return FALSE;
9926
9927 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9928 return FALSE;
9929
9930 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9931 return FALSE;
9932 }
9933 if (htab->is_vxworks
9934 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9935 return FALSE;
9936 }
9937
9938 return TRUE;
9939 }
9940 \f
9941 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9942 Adjust its R_ADDEND field so that it is correct for the output file.
9943 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9944 and sections respectively; both use symbol indexes. */
9945
9946 static void
9947 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9948 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9949 asection **local_sections, Elf_Internal_Rela *rel)
9950 {
9951 unsigned int r_type, r_symndx;
9952 Elf_Internal_Sym *sym;
9953 asection *sec;
9954
9955 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9956 {
9957 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9958 if (gprel16_reloc_p (r_type)
9959 || r_type == R_MIPS_GPREL32
9960 || literal_reloc_p (r_type))
9961 {
9962 rel->r_addend += _bfd_get_gp_value (input_bfd);
9963 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9964 }
9965
9966 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9967 sym = local_syms + r_symndx;
9968
9969 /* Adjust REL's addend to account for section merging. */
9970 if (!bfd_link_relocatable (info))
9971 {
9972 sec = local_sections[r_symndx];
9973 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9974 }
9975
9976 /* This would normally be done by the rela_normal code in elflink.c. */
9977 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9978 rel->r_addend += local_sections[r_symndx]->output_offset;
9979 }
9980 }
9981
9982 /* Handle relocations against symbols from removed linkonce sections,
9983 or sections discarded by a linker script. We use this wrapper around
9984 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9985 on 64-bit ELF targets. In this case for any relocation handled, which
9986 always be the first in a triplet, the remaining two have to be processed
9987 together with the first, even if they are R_MIPS_NONE. It is the symbol
9988 index referred by the first reloc that applies to all the three and the
9989 remaining two never refer to an object symbol. And it is the final
9990 relocation (the last non-null one) that determines the output field of
9991 the whole relocation so retrieve the corresponding howto structure for
9992 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9993
9994 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9995 and therefore requires to be pasted in a loop. It also defines a block
9996 and does not protect any of its arguments, hence the extra brackets. */
9997
9998 static void
9999 mips_reloc_against_discarded_section (bfd *output_bfd,
10000 struct bfd_link_info *info,
10001 bfd *input_bfd, asection *input_section,
10002 Elf_Internal_Rela **rel,
10003 const Elf_Internal_Rela **relend,
10004 bfd_boolean rel_reloc,
10005 reloc_howto_type *howto,
10006 bfd_byte *contents)
10007 {
10008 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10009 int count = bed->s->int_rels_per_ext_rel;
10010 unsigned int r_type;
10011 int i;
10012
10013 for (i = count - 1; i > 0; i--)
10014 {
10015 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10016 if (r_type != R_MIPS_NONE)
10017 {
10018 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10019 break;
10020 }
10021 }
10022 do
10023 {
10024 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10025 (*rel), count, (*relend),
10026 howto, i, contents);
10027 }
10028 while (0);
10029 }
10030
10031 /* Relocate a MIPS ELF section. */
10032
10033 bfd_boolean
10034 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10035 bfd *input_bfd, asection *input_section,
10036 bfd_byte *contents, Elf_Internal_Rela *relocs,
10037 Elf_Internal_Sym *local_syms,
10038 asection **local_sections)
10039 {
10040 Elf_Internal_Rela *rel;
10041 const Elf_Internal_Rela *relend;
10042 bfd_vma addend = 0;
10043 bfd_boolean use_saved_addend_p = FALSE;
10044
10045 relend = relocs + input_section->reloc_count;
10046 for (rel = relocs; rel < relend; ++rel)
10047 {
10048 const char *name;
10049 bfd_vma value = 0;
10050 reloc_howto_type *howto;
10051 bfd_boolean cross_mode_jump_p = FALSE;
10052 /* TRUE if the relocation is a RELA relocation, rather than a
10053 REL relocation. */
10054 bfd_boolean rela_relocation_p = TRUE;
10055 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10056 const char *msg;
10057 unsigned long r_symndx;
10058 asection *sec;
10059 Elf_Internal_Shdr *symtab_hdr;
10060 struct elf_link_hash_entry *h;
10061 bfd_boolean rel_reloc;
10062
10063 rel_reloc = (NEWABI_P (input_bfd)
10064 && mips_elf_rel_relocation_p (input_bfd, input_section,
10065 relocs, rel));
10066 /* Find the relocation howto for this relocation. */
10067 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10068
10069 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10070 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10071 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10072 {
10073 sec = local_sections[r_symndx];
10074 h = NULL;
10075 }
10076 else
10077 {
10078 unsigned long extsymoff;
10079
10080 extsymoff = 0;
10081 if (!elf_bad_symtab (input_bfd))
10082 extsymoff = symtab_hdr->sh_info;
10083 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10084 while (h->root.type == bfd_link_hash_indirect
10085 || h->root.type == bfd_link_hash_warning)
10086 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10087
10088 sec = NULL;
10089 if (h->root.type == bfd_link_hash_defined
10090 || h->root.type == bfd_link_hash_defweak)
10091 sec = h->root.u.def.section;
10092 }
10093
10094 if (sec != NULL && discarded_section (sec))
10095 {
10096 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10097 input_section, &rel, &relend,
10098 rel_reloc, howto, contents);
10099 continue;
10100 }
10101
10102 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10103 {
10104 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10105 64-bit code, but make sure all their addresses are in the
10106 lowermost or uppermost 32-bit section of the 64-bit address
10107 space. Thus, when they use an R_MIPS_64 they mean what is
10108 usually meant by R_MIPS_32, with the exception that the
10109 stored value is sign-extended to 64 bits. */
10110 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10111
10112 /* On big-endian systems, we need to lie about the position
10113 of the reloc. */
10114 if (bfd_big_endian (input_bfd))
10115 rel->r_offset += 4;
10116 }
10117
10118 if (!use_saved_addend_p)
10119 {
10120 /* If these relocations were originally of the REL variety,
10121 we must pull the addend out of the field that will be
10122 relocated. Otherwise, we simply use the contents of the
10123 RELA relocation. */
10124 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10125 relocs, rel))
10126 {
10127 rela_relocation_p = FALSE;
10128 addend = mips_elf_read_rel_addend (input_bfd, rel,
10129 howto, contents);
10130 if (hi16_reloc_p (r_type)
10131 || (got16_reloc_p (r_type)
10132 && mips_elf_local_relocation_p (input_bfd, rel,
10133 local_sections)))
10134 {
10135 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10136 contents, &addend))
10137 {
10138 if (h)
10139 name = h->root.root.string;
10140 else
10141 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10142 local_syms + r_symndx,
10143 sec);
10144 _bfd_error_handler
10145 /* xgettext:c-format */
10146 (_("%B: Can't find matching LO16 reloc against `%s'"
10147 " for %s at %#Lx in section `%A'"),
10148 input_bfd, name,
10149 howto->name, rel->r_offset, input_section);
10150 }
10151 }
10152 else
10153 addend <<= howto->rightshift;
10154 }
10155 else
10156 addend = rel->r_addend;
10157 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10158 local_syms, local_sections, rel);
10159 }
10160
10161 if (bfd_link_relocatable (info))
10162 {
10163 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10164 && bfd_big_endian (input_bfd))
10165 rel->r_offset -= 4;
10166
10167 if (!rela_relocation_p && rel->r_addend)
10168 {
10169 addend += rel->r_addend;
10170 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10171 addend = mips_elf_high (addend);
10172 else if (r_type == R_MIPS_HIGHER)
10173 addend = mips_elf_higher (addend);
10174 else if (r_type == R_MIPS_HIGHEST)
10175 addend = mips_elf_highest (addend);
10176 else
10177 addend >>= howto->rightshift;
10178
10179 /* We use the source mask, rather than the destination
10180 mask because the place to which we are writing will be
10181 source of the addend in the final link. */
10182 addend &= howto->src_mask;
10183
10184 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10185 /* See the comment above about using R_MIPS_64 in the 32-bit
10186 ABI. Here, we need to update the addend. It would be
10187 possible to get away with just using the R_MIPS_32 reloc
10188 but for endianness. */
10189 {
10190 bfd_vma sign_bits;
10191 bfd_vma low_bits;
10192 bfd_vma high_bits;
10193
10194 if (addend & ((bfd_vma) 1 << 31))
10195 #ifdef BFD64
10196 sign_bits = ((bfd_vma) 1 << 32) - 1;
10197 #else
10198 sign_bits = -1;
10199 #endif
10200 else
10201 sign_bits = 0;
10202
10203 /* If we don't know that we have a 64-bit type,
10204 do two separate stores. */
10205 if (bfd_big_endian (input_bfd))
10206 {
10207 /* Store the sign-bits (which are most significant)
10208 first. */
10209 low_bits = sign_bits;
10210 high_bits = addend;
10211 }
10212 else
10213 {
10214 low_bits = addend;
10215 high_bits = sign_bits;
10216 }
10217 bfd_put_32 (input_bfd, low_bits,
10218 contents + rel->r_offset);
10219 bfd_put_32 (input_bfd, high_bits,
10220 contents + rel->r_offset + 4);
10221 continue;
10222 }
10223
10224 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10225 input_bfd, input_section,
10226 contents, FALSE))
10227 return FALSE;
10228 }
10229
10230 /* Go on to the next relocation. */
10231 continue;
10232 }
10233
10234 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10235 relocations for the same offset. In that case we are
10236 supposed to treat the output of each relocation as the addend
10237 for the next. */
10238 if (rel + 1 < relend
10239 && rel->r_offset == rel[1].r_offset
10240 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10241 use_saved_addend_p = TRUE;
10242 else
10243 use_saved_addend_p = FALSE;
10244
10245 /* Figure out what value we are supposed to relocate. */
10246 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10247 input_section, info, rel,
10248 addend, howto, local_syms,
10249 local_sections, &value,
10250 &name, &cross_mode_jump_p,
10251 use_saved_addend_p))
10252 {
10253 case bfd_reloc_continue:
10254 /* There's nothing to do. */
10255 continue;
10256
10257 case bfd_reloc_undefined:
10258 /* mips_elf_calculate_relocation already called the
10259 undefined_symbol callback. There's no real point in
10260 trying to perform the relocation at this point, so we
10261 just skip ahead to the next relocation. */
10262 continue;
10263
10264 case bfd_reloc_notsupported:
10265 msg = _("internal error: unsupported relocation error");
10266 info->callbacks->warning
10267 (info, msg, name, input_bfd, input_section, rel->r_offset);
10268 return FALSE;
10269
10270 case bfd_reloc_overflow:
10271 if (use_saved_addend_p)
10272 /* Ignore overflow until we reach the last relocation for
10273 a given location. */
10274 ;
10275 else
10276 {
10277 struct mips_elf_link_hash_table *htab;
10278
10279 htab = mips_elf_hash_table (info);
10280 BFD_ASSERT (htab != NULL);
10281 BFD_ASSERT (name != NULL);
10282 if (!htab->small_data_overflow_reported
10283 && (gprel16_reloc_p (howto->type)
10284 || literal_reloc_p (howto->type)))
10285 {
10286 msg = _("small-data section exceeds 64KB;"
10287 " lower small-data size limit (see option -G)");
10288
10289 htab->small_data_overflow_reported = TRUE;
10290 (*info->callbacks->einfo) ("%P: %s\n", msg);
10291 }
10292 (*info->callbacks->reloc_overflow)
10293 (info, NULL, name, howto->name, (bfd_vma) 0,
10294 input_bfd, input_section, rel->r_offset);
10295 }
10296 break;
10297
10298 case bfd_reloc_ok:
10299 break;
10300
10301 case bfd_reloc_outofrange:
10302 msg = NULL;
10303 if (jal_reloc_p (howto->type))
10304 msg = (cross_mode_jump_p
10305 ? _("Cannot convert a jump to JALX "
10306 "for a non-word-aligned address")
10307 : (howto->type == R_MIPS16_26
10308 ? _("Jump to a non-word-aligned address")
10309 : _("Jump to a non-instruction-aligned address")));
10310 else if (b_reloc_p (howto->type))
10311 msg = (cross_mode_jump_p
10312 ? _("Cannot convert a branch to JALX "
10313 "for a non-word-aligned address")
10314 : _("Branch to a non-instruction-aligned address"));
10315 else if (aligned_pcrel_reloc_p (howto->type))
10316 msg = _("PC-relative load from unaligned address");
10317 if (msg)
10318 {
10319 info->callbacks->einfo
10320 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10321 break;
10322 }
10323 /* Fall through. */
10324
10325 default:
10326 abort ();
10327 break;
10328 }
10329
10330 /* If we've got another relocation for the address, keep going
10331 until we reach the last one. */
10332 if (use_saved_addend_p)
10333 {
10334 addend = value;
10335 continue;
10336 }
10337
10338 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10339 /* See the comment above about using R_MIPS_64 in the 32-bit
10340 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10341 that calculated the right value. Now, however, we
10342 sign-extend the 32-bit result to 64-bits, and store it as a
10343 64-bit value. We are especially generous here in that we
10344 go to extreme lengths to support this usage on systems with
10345 only a 32-bit VMA. */
10346 {
10347 bfd_vma sign_bits;
10348 bfd_vma low_bits;
10349 bfd_vma high_bits;
10350
10351 if (value & ((bfd_vma) 1 << 31))
10352 #ifdef BFD64
10353 sign_bits = ((bfd_vma) 1 << 32) - 1;
10354 #else
10355 sign_bits = -1;
10356 #endif
10357 else
10358 sign_bits = 0;
10359
10360 /* If we don't know that we have a 64-bit type,
10361 do two separate stores. */
10362 if (bfd_big_endian (input_bfd))
10363 {
10364 /* Undo what we did above. */
10365 rel->r_offset -= 4;
10366 /* Store the sign-bits (which are most significant)
10367 first. */
10368 low_bits = sign_bits;
10369 high_bits = value;
10370 }
10371 else
10372 {
10373 low_bits = value;
10374 high_bits = sign_bits;
10375 }
10376 bfd_put_32 (input_bfd, low_bits,
10377 contents + rel->r_offset);
10378 bfd_put_32 (input_bfd, high_bits,
10379 contents + rel->r_offset + 4);
10380 continue;
10381 }
10382
10383 /* Actually perform the relocation. */
10384 if (! mips_elf_perform_relocation (info, howto, rel, value,
10385 input_bfd, input_section,
10386 contents, cross_mode_jump_p))
10387 return FALSE;
10388 }
10389
10390 return TRUE;
10391 }
10392 \f
10393 /* A function that iterates over each entry in la25_stubs and fills
10394 in the code for each one. DATA points to a mips_htab_traverse_info. */
10395
10396 static int
10397 mips_elf_create_la25_stub (void **slot, void *data)
10398 {
10399 struct mips_htab_traverse_info *hti;
10400 struct mips_elf_link_hash_table *htab;
10401 struct mips_elf_la25_stub *stub;
10402 asection *s;
10403 bfd_byte *loc;
10404 bfd_vma offset, target, target_high, target_low;
10405
10406 stub = (struct mips_elf_la25_stub *) *slot;
10407 hti = (struct mips_htab_traverse_info *) data;
10408 htab = mips_elf_hash_table (hti->info);
10409 BFD_ASSERT (htab != NULL);
10410
10411 /* Create the section contents, if we haven't already. */
10412 s = stub->stub_section;
10413 loc = s->contents;
10414 if (loc == NULL)
10415 {
10416 loc = bfd_malloc (s->size);
10417 if (loc == NULL)
10418 {
10419 hti->error = TRUE;
10420 return FALSE;
10421 }
10422 s->contents = loc;
10423 }
10424
10425 /* Work out where in the section this stub should go. */
10426 offset = stub->offset;
10427
10428 /* Work out the target address. */
10429 target = mips_elf_get_la25_target (stub, &s);
10430 target += s->output_section->vma + s->output_offset;
10431
10432 target_high = ((target + 0x8000) >> 16) & 0xffff;
10433 target_low = (target & 0xffff);
10434
10435 if (stub->stub_section != htab->strampoline)
10436 {
10437 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10438 of the section and write the two instructions at the end. */
10439 memset (loc, 0, offset);
10440 loc += offset;
10441 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10442 {
10443 bfd_put_micromips_32 (hti->output_bfd,
10444 LA25_LUI_MICROMIPS (target_high),
10445 loc);
10446 bfd_put_micromips_32 (hti->output_bfd,
10447 LA25_ADDIU_MICROMIPS (target_low),
10448 loc + 4);
10449 }
10450 else
10451 {
10452 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10453 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10454 }
10455 }
10456 else
10457 {
10458 /* This is trampoline. */
10459 loc += offset;
10460 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10461 {
10462 bfd_put_micromips_32 (hti->output_bfd,
10463 LA25_LUI_MICROMIPS (target_high), loc);
10464 bfd_put_micromips_32 (hti->output_bfd,
10465 LA25_J_MICROMIPS (target), loc + 4);
10466 bfd_put_micromips_32 (hti->output_bfd,
10467 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10468 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10469 }
10470 else
10471 {
10472 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10473 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10474 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10475 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10476 }
10477 }
10478 return TRUE;
10479 }
10480
10481 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10482 adjust it appropriately now. */
10483
10484 static void
10485 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10486 const char *name, Elf_Internal_Sym *sym)
10487 {
10488 /* The linker script takes care of providing names and values for
10489 these, but we must place them into the right sections. */
10490 static const char* const text_section_symbols[] = {
10491 "_ftext",
10492 "_etext",
10493 "__dso_displacement",
10494 "__elf_header",
10495 "__program_header_table",
10496 NULL
10497 };
10498
10499 static const char* const data_section_symbols[] = {
10500 "_fdata",
10501 "_edata",
10502 "_end",
10503 "_fbss",
10504 NULL
10505 };
10506
10507 const char* const *p;
10508 int i;
10509
10510 for (i = 0; i < 2; ++i)
10511 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10512 *p;
10513 ++p)
10514 if (strcmp (*p, name) == 0)
10515 {
10516 /* All of these symbols are given type STT_SECTION by the
10517 IRIX6 linker. */
10518 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10519 sym->st_other = STO_PROTECTED;
10520
10521 /* The IRIX linker puts these symbols in special sections. */
10522 if (i == 0)
10523 sym->st_shndx = SHN_MIPS_TEXT;
10524 else
10525 sym->st_shndx = SHN_MIPS_DATA;
10526
10527 break;
10528 }
10529 }
10530
10531 /* Finish up dynamic symbol handling. We set the contents of various
10532 dynamic sections here. */
10533
10534 bfd_boolean
10535 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10536 struct bfd_link_info *info,
10537 struct elf_link_hash_entry *h,
10538 Elf_Internal_Sym *sym)
10539 {
10540 bfd *dynobj;
10541 asection *sgot;
10542 struct mips_got_info *g, *gg;
10543 const char *name;
10544 int idx;
10545 struct mips_elf_link_hash_table *htab;
10546 struct mips_elf_link_hash_entry *hmips;
10547
10548 htab = mips_elf_hash_table (info);
10549 BFD_ASSERT (htab != NULL);
10550 dynobj = elf_hash_table (info)->dynobj;
10551 hmips = (struct mips_elf_link_hash_entry *) h;
10552
10553 BFD_ASSERT (!htab->is_vxworks);
10554
10555 if (h->plt.plist != NULL
10556 && (h->plt.plist->mips_offset != MINUS_ONE
10557 || h->plt.plist->comp_offset != MINUS_ONE))
10558 {
10559 /* We've decided to create a PLT entry for this symbol. */
10560 bfd_byte *loc;
10561 bfd_vma header_address, got_address;
10562 bfd_vma got_address_high, got_address_low, load;
10563 bfd_vma got_index;
10564 bfd_vma isa_bit;
10565
10566 got_index = h->plt.plist->gotplt_index;
10567
10568 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10569 BFD_ASSERT (h->dynindx != -1);
10570 BFD_ASSERT (htab->root.splt != NULL);
10571 BFD_ASSERT (got_index != MINUS_ONE);
10572 BFD_ASSERT (!h->def_regular);
10573
10574 /* Calculate the address of the PLT header. */
10575 isa_bit = htab->plt_header_is_comp;
10576 header_address = (htab->root.splt->output_section->vma
10577 + htab->root.splt->output_offset + isa_bit);
10578
10579 /* Calculate the address of the .got.plt entry. */
10580 got_address = (htab->root.sgotplt->output_section->vma
10581 + htab->root.sgotplt->output_offset
10582 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10583
10584 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10585 got_address_low = got_address & 0xffff;
10586
10587 /* Initially point the .got.plt entry at the PLT header. */
10588 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10589 if (ABI_64_P (output_bfd))
10590 bfd_put_64 (output_bfd, header_address, loc);
10591 else
10592 bfd_put_32 (output_bfd, header_address, loc);
10593
10594 /* Now handle the PLT itself. First the standard entry (the order
10595 does not matter, we just have to pick one). */
10596 if (h->plt.plist->mips_offset != MINUS_ONE)
10597 {
10598 const bfd_vma *plt_entry;
10599 bfd_vma plt_offset;
10600
10601 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10602
10603 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10604
10605 /* Find out where the .plt entry should go. */
10606 loc = htab->root.splt->contents + plt_offset;
10607
10608 /* Pick the load opcode. */
10609 load = MIPS_ELF_LOAD_WORD (output_bfd);
10610
10611 /* Fill in the PLT entry itself. */
10612
10613 if (MIPSR6_P (output_bfd))
10614 plt_entry = mipsr6_exec_plt_entry;
10615 else
10616 plt_entry = mips_exec_plt_entry;
10617 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10618 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10619 loc + 4);
10620
10621 if (! LOAD_INTERLOCKS_P (output_bfd))
10622 {
10623 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10624 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10625 }
10626 else
10627 {
10628 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10629 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10630 loc + 12);
10631 }
10632 }
10633
10634 /* Now the compressed entry. They come after any standard ones. */
10635 if (h->plt.plist->comp_offset != MINUS_ONE)
10636 {
10637 bfd_vma plt_offset;
10638
10639 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10640 + h->plt.plist->comp_offset);
10641
10642 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10643
10644 /* Find out where the .plt entry should go. */
10645 loc = htab->root.splt->contents + plt_offset;
10646
10647 /* Fill in the PLT entry itself. */
10648 if (!MICROMIPS_P (output_bfd))
10649 {
10650 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10651
10652 bfd_put_16 (output_bfd, plt_entry[0], loc);
10653 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10654 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10655 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10656 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10657 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10658 bfd_put_32 (output_bfd, got_address, loc + 12);
10659 }
10660 else if (htab->insn32)
10661 {
10662 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10663
10664 bfd_put_16 (output_bfd, plt_entry[0], loc);
10665 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10666 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10667 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10668 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10669 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10670 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10671 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10672 }
10673 else
10674 {
10675 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10676 bfd_signed_vma gotpc_offset;
10677 bfd_vma loc_address;
10678
10679 BFD_ASSERT (got_address % 4 == 0);
10680
10681 loc_address = (htab->root.splt->output_section->vma
10682 + htab->root.splt->output_offset + plt_offset);
10683 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10684
10685 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10686 if (gotpc_offset + 0x1000000 >= 0x2000000)
10687 {
10688 _bfd_error_handler
10689 /* xgettext:c-format */
10690 (_("%B: `%A' offset of %Ld from `%A' "
10691 "beyond the range of ADDIUPC"),
10692 output_bfd,
10693 htab->root.sgotplt->output_section,
10694 gotpc_offset,
10695 htab->root.splt->output_section);
10696 bfd_set_error (bfd_error_no_error);
10697 return FALSE;
10698 }
10699 bfd_put_16 (output_bfd,
10700 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10701 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10702 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10703 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10704 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10705 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10706 }
10707 }
10708
10709 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10710 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10711 got_index - 2, h->dynindx,
10712 R_MIPS_JUMP_SLOT, got_address);
10713
10714 /* We distinguish between PLT entries and lazy-binding stubs by
10715 giving the former an st_other value of STO_MIPS_PLT. Set the
10716 flag and leave the value if there are any relocations in the
10717 binary where pointer equality matters. */
10718 sym->st_shndx = SHN_UNDEF;
10719 if (h->pointer_equality_needed)
10720 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10721 else
10722 {
10723 sym->st_value = 0;
10724 sym->st_other = 0;
10725 }
10726 }
10727
10728 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10729 {
10730 /* We've decided to create a lazy-binding stub. */
10731 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10732 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10733 bfd_vma stub_size = htab->function_stub_size;
10734 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10735 bfd_vma isa_bit = micromips_p;
10736 bfd_vma stub_big_size;
10737
10738 if (!micromips_p)
10739 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10740 else if (htab->insn32)
10741 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10742 else
10743 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10744
10745 /* This symbol has a stub. Set it up. */
10746
10747 BFD_ASSERT (h->dynindx != -1);
10748
10749 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10750
10751 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10752 sign extension at runtime in the stub, resulting in a negative
10753 index value. */
10754 if (h->dynindx & ~0x7fffffff)
10755 return FALSE;
10756
10757 /* Fill the stub. */
10758 if (micromips_p)
10759 {
10760 idx = 0;
10761 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10762 stub + idx);
10763 idx += 4;
10764 if (htab->insn32)
10765 {
10766 bfd_put_micromips_32 (output_bfd,
10767 STUB_MOVE32_MICROMIPS, stub + idx);
10768 idx += 4;
10769 }
10770 else
10771 {
10772 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10773 idx += 2;
10774 }
10775 if (stub_size == stub_big_size)
10776 {
10777 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10778
10779 bfd_put_micromips_32 (output_bfd,
10780 STUB_LUI_MICROMIPS (dynindx_hi),
10781 stub + idx);
10782 idx += 4;
10783 }
10784 if (htab->insn32)
10785 {
10786 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10787 stub + idx);
10788 idx += 4;
10789 }
10790 else
10791 {
10792 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10793 idx += 2;
10794 }
10795
10796 /* If a large stub is not required and sign extension is not a
10797 problem, then use legacy code in the stub. */
10798 if (stub_size == stub_big_size)
10799 bfd_put_micromips_32 (output_bfd,
10800 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10801 stub + idx);
10802 else if (h->dynindx & ~0x7fff)
10803 bfd_put_micromips_32 (output_bfd,
10804 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10805 stub + idx);
10806 else
10807 bfd_put_micromips_32 (output_bfd,
10808 STUB_LI16S_MICROMIPS (output_bfd,
10809 h->dynindx),
10810 stub + idx);
10811 }
10812 else
10813 {
10814 idx = 0;
10815 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10816 idx += 4;
10817 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10818 idx += 4;
10819 if (stub_size == stub_big_size)
10820 {
10821 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10822 stub + idx);
10823 idx += 4;
10824 }
10825 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10826 idx += 4;
10827
10828 /* If a large stub is not required and sign extension is not a
10829 problem, then use legacy code in the stub. */
10830 if (stub_size == stub_big_size)
10831 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10832 stub + idx);
10833 else if (h->dynindx & ~0x7fff)
10834 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10835 stub + idx);
10836 else
10837 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10838 stub + idx);
10839 }
10840
10841 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10842 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10843 stub, stub_size);
10844
10845 /* Mark the symbol as undefined. stub_offset != -1 occurs
10846 only for the referenced symbol. */
10847 sym->st_shndx = SHN_UNDEF;
10848
10849 /* The run-time linker uses the st_value field of the symbol
10850 to reset the global offset table entry for this external
10851 to its stub address when unlinking a shared object. */
10852 sym->st_value = (htab->sstubs->output_section->vma
10853 + htab->sstubs->output_offset
10854 + h->plt.plist->stub_offset
10855 + isa_bit);
10856 sym->st_other = other;
10857 }
10858
10859 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10860 refer to the stub, since only the stub uses the standard calling
10861 conventions. */
10862 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10863 {
10864 BFD_ASSERT (hmips->need_fn_stub);
10865 sym->st_value = (hmips->fn_stub->output_section->vma
10866 + hmips->fn_stub->output_offset);
10867 sym->st_size = hmips->fn_stub->size;
10868 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10869 }
10870
10871 BFD_ASSERT (h->dynindx != -1
10872 || h->forced_local);
10873
10874 sgot = htab->root.sgot;
10875 g = htab->got_info;
10876 BFD_ASSERT (g != NULL);
10877
10878 /* Run through the global symbol table, creating GOT entries for all
10879 the symbols that need them. */
10880 if (hmips->global_got_area != GGA_NONE)
10881 {
10882 bfd_vma offset;
10883 bfd_vma value;
10884
10885 value = sym->st_value;
10886 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10887 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10888 }
10889
10890 if (hmips->global_got_area != GGA_NONE && g->next)
10891 {
10892 struct mips_got_entry e, *p;
10893 bfd_vma entry;
10894 bfd_vma offset;
10895
10896 gg = g;
10897
10898 e.abfd = output_bfd;
10899 e.symndx = -1;
10900 e.d.h = hmips;
10901 e.tls_type = GOT_TLS_NONE;
10902
10903 for (g = g->next; g->next != gg; g = g->next)
10904 {
10905 if (g->got_entries
10906 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10907 &e)))
10908 {
10909 offset = p->gotidx;
10910 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10911 if (bfd_link_pic (info)
10912 || (elf_hash_table (info)->dynamic_sections_created
10913 && p->d.h != NULL
10914 && p->d.h->root.def_dynamic
10915 && !p->d.h->root.def_regular))
10916 {
10917 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10918 the various compatibility problems, it's easier to mock
10919 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10920 mips_elf_create_dynamic_relocation to calculate the
10921 appropriate addend. */
10922 Elf_Internal_Rela rel[3];
10923
10924 memset (rel, 0, sizeof (rel));
10925 if (ABI_64_P (output_bfd))
10926 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10927 else
10928 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10929 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10930
10931 entry = 0;
10932 if (! (mips_elf_create_dynamic_relocation
10933 (output_bfd, info, rel,
10934 e.d.h, NULL, sym->st_value, &entry, sgot)))
10935 return FALSE;
10936 }
10937 else
10938 entry = sym->st_value;
10939 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10940 }
10941 }
10942 }
10943
10944 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10945 name = h->root.root.string;
10946 if (h == elf_hash_table (info)->hdynamic
10947 || h == elf_hash_table (info)->hgot)
10948 sym->st_shndx = SHN_ABS;
10949 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10950 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10951 {
10952 sym->st_shndx = SHN_ABS;
10953 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10954 sym->st_value = 1;
10955 }
10956 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10957 {
10958 sym->st_shndx = SHN_ABS;
10959 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10960 sym->st_value = elf_gp (output_bfd);
10961 }
10962 else if (SGI_COMPAT (output_bfd))
10963 {
10964 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10965 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10966 {
10967 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10968 sym->st_other = STO_PROTECTED;
10969 sym->st_value = 0;
10970 sym->st_shndx = SHN_MIPS_DATA;
10971 }
10972 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10973 {
10974 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10975 sym->st_other = STO_PROTECTED;
10976 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10977 sym->st_shndx = SHN_ABS;
10978 }
10979 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10980 {
10981 if (h->type == STT_FUNC)
10982 sym->st_shndx = SHN_MIPS_TEXT;
10983 else if (h->type == STT_OBJECT)
10984 sym->st_shndx = SHN_MIPS_DATA;
10985 }
10986 }
10987
10988 /* Emit a copy reloc, if needed. */
10989 if (h->needs_copy)
10990 {
10991 asection *s;
10992 bfd_vma symval;
10993
10994 BFD_ASSERT (h->dynindx != -1);
10995 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10996
10997 s = mips_elf_rel_dyn_section (info, FALSE);
10998 symval = (h->root.u.def.section->output_section->vma
10999 + h->root.u.def.section->output_offset
11000 + h->root.u.def.value);
11001 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11002 h->dynindx, R_MIPS_COPY, symval);
11003 }
11004
11005 /* Handle the IRIX6-specific symbols. */
11006 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11007 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11008
11009 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11010 to treat compressed symbols like any other. */
11011 if (ELF_ST_IS_MIPS16 (sym->st_other))
11012 {
11013 BFD_ASSERT (sym->st_value & 1);
11014 sym->st_other -= STO_MIPS16;
11015 }
11016 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11017 {
11018 BFD_ASSERT (sym->st_value & 1);
11019 sym->st_other -= STO_MICROMIPS;
11020 }
11021
11022 return TRUE;
11023 }
11024
11025 /* Likewise, for VxWorks. */
11026
11027 bfd_boolean
11028 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11029 struct bfd_link_info *info,
11030 struct elf_link_hash_entry *h,
11031 Elf_Internal_Sym *sym)
11032 {
11033 bfd *dynobj;
11034 asection *sgot;
11035 struct mips_got_info *g;
11036 struct mips_elf_link_hash_table *htab;
11037 struct mips_elf_link_hash_entry *hmips;
11038
11039 htab = mips_elf_hash_table (info);
11040 BFD_ASSERT (htab != NULL);
11041 dynobj = elf_hash_table (info)->dynobj;
11042 hmips = (struct mips_elf_link_hash_entry *) h;
11043
11044 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11045 {
11046 bfd_byte *loc;
11047 bfd_vma plt_address, got_address, got_offset, branch_offset;
11048 Elf_Internal_Rela rel;
11049 static const bfd_vma *plt_entry;
11050 bfd_vma gotplt_index;
11051 bfd_vma plt_offset;
11052
11053 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11054 gotplt_index = h->plt.plist->gotplt_index;
11055
11056 BFD_ASSERT (h->dynindx != -1);
11057 BFD_ASSERT (htab->root.splt != NULL);
11058 BFD_ASSERT (gotplt_index != MINUS_ONE);
11059 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11060
11061 /* Calculate the address of the .plt entry. */
11062 plt_address = (htab->root.splt->output_section->vma
11063 + htab->root.splt->output_offset
11064 + plt_offset);
11065
11066 /* Calculate the address of the .got.plt entry. */
11067 got_address = (htab->root.sgotplt->output_section->vma
11068 + htab->root.sgotplt->output_offset
11069 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11070
11071 /* Calculate the offset of the .got.plt entry from
11072 _GLOBAL_OFFSET_TABLE_. */
11073 got_offset = mips_elf_gotplt_index (info, h);
11074
11075 /* Calculate the offset for the branch at the start of the PLT
11076 entry. The branch jumps to the beginning of .plt. */
11077 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11078
11079 /* Fill in the initial value of the .got.plt entry. */
11080 bfd_put_32 (output_bfd, plt_address,
11081 (htab->root.sgotplt->contents
11082 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11083
11084 /* Find out where the .plt entry should go. */
11085 loc = htab->root.splt->contents + plt_offset;
11086
11087 if (bfd_link_pic (info))
11088 {
11089 plt_entry = mips_vxworks_shared_plt_entry;
11090 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11091 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11092 }
11093 else
11094 {
11095 bfd_vma got_address_high, got_address_low;
11096
11097 plt_entry = mips_vxworks_exec_plt_entry;
11098 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11099 got_address_low = got_address & 0xffff;
11100
11101 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11102 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11103 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11104 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11105 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11106 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11107 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11108 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11109
11110 loc = (htab->srelplt2->contents
11111 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11112
11113 /* Emit a relocation for the .got.plt entry. */
11114 rel.r_offset = got_address;
11115 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11116 rel.r_addend = plt_offset;
11117 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11118
11119 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11120 loc += sizeof (Elf32_External_Rela);
11121 rel.r_offset = plt_address + 8;
11122 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11123 rel.r_addend = got_offset;
11124 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11125
11126 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11127 loc += sizeof (Elf32_External_Rela);
11128 rel.r_offset += 4;
11129 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11130 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11131 }
11132
11133 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11134 loc = (htab->root.srelplt->contents
11135 + gotplt_index * sizeof (Elf32_External_Rela));
11136 rel.r_offset = got_address;
11137 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11138 rel.r_addend = 0;
11139 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11140
11141 if (!h->def_regular)
11142 sym->st_shndx = SHN_UNDEF;
11143 }
11144
11145 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11146
11147 sgot = htab->root.sgot;
11148 g = htab->got_info;
11149 BFD_ASSERT (g != NULL);
11150
11151 /* See if this symbol has an entry in the GOT. */
11152 if (hmips->global_got_area != GGA_NONE)
11153 {
11154 bfd_vma offset;
11155 Elf_Internal_Rela outrel;
11156 bfd_byte *loc;
11157 asection *s;
11158
11159 /* Install the symbol value in the GOT. */
11160 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11161 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11162
11163 /* Add a dynamic relocation for it. */
11164 s = mips_elf_rel_dyn_section (info, FALSE);
11165 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11166 outrel.r_offset = (sgot->output_section->vma
11167 + sgot->output_offset
11168 + offset);
11169 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11170 outrel.r_addend = 0;
11171 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11172 }
11173
11174 /* Emit a copy reloc, if needed. */
11175 if (h->needs_copy)
11176 {
11177 Elf_Internal_Rela rel;
11178 asection *srel;
11179 bfd_byte *loc;
11180
11181 BFD_ASSERT (h->dynindx != -1);
11182
11183 rel.r_offset = (h->root.u.def.section->output_section->vma
11184 + h->root.u.def.section->output_offset
11185 + h->root.u.def.value);
11186 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11187 rel.r_addend = 0;
11188 if (h->root.u.def.section == htab->root.sdynrelro)
11189 srel = htab->root.sreldynrelro;
11190 else
11191 srel = htab->root.srelbss;
11192 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11193 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11194 ++srel->reloc_count;
11195 }
11196
11197 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11198 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11199 sym->st_value &= ~1;
11200
11201 return TRUE;
11202 }
11203
11204 /* Write out a plt0 entry to the beginning of .plt. */
11205
11206 static bfd_boolean
11207 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11208 {
11209 bfd_byte *loc;
11210 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11211 static const bfd_vma *plt_entry;
11212 struct mips_elf_link_hash_table *htab;
11213
11214 htab = mips_elf_hash_table (info);
11215 BFD_ASSERT (htab != NULL);
11216
11217 if (ABI_64_P (output_bfd))
11218 plt_entry = mips_n64_exec_plt0_entry;
11219 else if (ABI_N32_P (output_bfd))
11220 plt_entry = mips_n32_exec_plt0_entry;
11221 else if (!htab->plt_header_is_comp)
11222 plt_entry = mips_o32_exec_plt0_entry;
11223 else if (htab->insn32)
11224 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11225 else
11226 plt_entry = micromips_o32_exec_plt0_entry;
11227
11228 /* Calculate the value of .got.plt. */
11229 gotplt_value = (htab->root.sgotplt->output_section->vma
11230 + htab->root.sgotplt->output_offset);
11231 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11232 gotplt_value_low = gotplt_value & 0xffff;
11233
11234 /* The PLT sequence is not safe for N64 if .got.plt's address can
11235 not be loaded in two instructions. */
11236 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11237 || ~(gotplt_value | 0x7fffffff) == 0);
11238
11239 /* Install the PLT header. */
11240 loc = htab->root.splt->contents;
11241 if (plt_entry == micromips_o32_exec_plt0_entry)
11242 {
11243 bfd_vma gotpc_offset;
11244 bfd_vma loc_address;
11245 size_t i;
11246
11247 BFD_ASSERT (gotplt_value % 4 == 0);
11248
11249 loc_address = (htab->root.splt->output_section->vma
11250 + htab->root.splt->output_offset);
11251 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11252
11253 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11254 if (gotpc_offset + 0x1000000 >= 0x2000000)
11255 {
11256 _bfd_error_handler
11257 /* xgettext:c-format */
11258 (_("%B: `%A' offset of %Ld from `%A' beyond the range of ADDIUPC"),
11259 output_bfd,
11260 htab->root.sgotplt->output_section,
11261 gotpc_offset,
11262 htab->root.splt->output_section);
11263 bfd_set_error (bfd_error_no_error);
11264 return FALSE;
11265 }
11266 bfd_put_16 (output_bfd,
11267 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11268 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11269 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11270 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11271 }
11272 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11273 {
11274 size_t i;
11275
11276 bfd_put_16 (output_bfd, plt_entry[0], loc);
11277 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11278 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11279 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11280 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11281 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11282 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11283 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11284 }
11285 else
11286 {
11287 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11288 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11289 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11290 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11291 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11292 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11293 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11294 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11295 }
11296
11297 return TRUE;
11298 }
11299
11300 /* Install the PLT header for a VxWorks executable and finalize the
11301 contents of .rela.plt.unloaded. */
11302
11303 static void
11304 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11305 {
11306 Elf_Internal_Rela rela;
11307 bfd_byte *loc;
11308 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11309 static const bfd_vma *plt_entry;
11310 struct mips_elf_link_hash_table *htab;
11311
11312 htab = mips_elf_hash_table (info);
11313 BFD_ASSERT (htab != NULL);
11314
11315 plt_entry = mips_vxworks_exec_plt0_entry;
11316
11317 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11318 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11319 + htab->root.hgot->root.u.def.section->output_offset
11320 + htab->root.hgot->root.u.def.value);
11321
11322 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11323 got_value_low = got_value & 0xffff;
11324
11325 /* Calculate the address of the PLT header. */
11326 plt_address = (htab->root.splt->output_section->vma
11327 + htab->root.splt->output_offset);
11328
11329 /* Install the PLT header. */
11330 loc = htab->root.splt->contents;
11331 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11332 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11333 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11334 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11335 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11336 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11337
11338 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11339 loc = htab->srelplt2->contents;
11340 rela.r_offset = plt_address;
11341 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11342 rela.r_addend = 0;
11343 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11344 loc += sizeof (Elf32_External_Rela);
11345
11346 /* Output the relocation for the following addiu of
11347 %lo(_GLOBAL_OFFSET_TABLE_). */
11348 rela.r_offset += 4;
11349 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11350 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11351 loc += sizeof (Elf32_External_Rela);
11352
11353 /* Fix up the remaining relocations. They may have the wrong
11354 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11355 in which symbols were output. */
11356 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11357 {
11358 Elf_Internal_Rela rel;
11359
11360 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11361 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11362 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11363 loc += sizeof (Elf32_External_Rela);
11364
11365 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11366 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11367 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11368 loc += sizeof (Elf32_External_Rela);
11369
11370 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11371 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11372 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11373 loc += sizeof (Elf32_External_Rela);
11374 }
11375 }
11376
11377 /* Install the PLT header for a VxWorks shared library. */
11378
11379 static void
11380 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11381 {
11382 unsigned int i;
11383 struct mips_elf_link_hash_table *htab;
11384
11385 htab = mips_elf_hash_table (info);
11386 BFD_ASSERT (htab != NULL);
11387
11388 /* We just need to copy the entry byte-by-byte. */
11389 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11390 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11391 htab->root.splt->contents + i * 4);
11392 }
11393
11394 /* Finish up the dynamic sections. */
11395
11396 bfd_boolean
11397 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11398 struct bfd_link_info *info)
11399 {
11400 bfd *dynobj;
11401 asection *sdyn;
11402 asection *sgot;
11403 struct mips_got_info *gg, *g;
11404 struct mips_elf_link_hash_table *htab;
11405
11406 htab = mips_elf_hash_table (info);
11407 BFD_ASSERT (htab != NULL);
11408
11409 dynobj = elf_hash_table (info)->dynobj;
11410
11411 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11412
11413 sgot = htab->root.sgot;
11414 gg = htab->got_info;
11415
11416 if (elf_hash_table (info)->dynamic_sections_created)
11417 {
11418 bfd_byte *b;
11419 int dyn_to_skip = 0, dyn_skipped = 0;
11420
11421 BFD_ASSERT (sdyn != NULL);
11422 BFD_ASSERT (gg != NULL);
11423
11424 g = mips_elf_bfd_got (output_bfd, FALSE);
11425 BFD_ASSERT (g != NULL);
11426
11427 for (b = sdyn->contents;
11428 b < sdyn->contents + sdyn->size;
11429 b += MIPS_ELF_DYN_SIZE (dynobj))
11430 {
11431 Elf_Internal_Dyn dyn;
11432 const char *name;
11433 size_t elemsize;
11434 asection *s;
11435 bfd_boolean swap_out_p;
11436
11437 /* Read in the current dynamic entry. */
11438 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11439
11440 /* Assume that we're going to modify it and write it out. */
11441 swap_out_p = TRUE;
11442
11443 switch (dyn.d_tag)
11444 {
11445 case DT_RELENT:
11446 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11447 break;
11448
11449 case DT_RELAENT:
11450 BFD_ASSERT (htab->is_vxworks);
11451 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11452 break;
11453
11454 case DT_STRSZ:
11455 /* Rewrite DT_STRSZ. */
11456 dyn.d_un.d_val =
11457 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11458 break;
11459
11460 case DT_PLTGOT:
11461 s = htab->root.sgot;
11462 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11463 break;
11464
11465 case DT_MIPS_PLTGOT:
11466 s = htab->root.sgotplt;
11467 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11468 break;
11469
11470 case DT_MIPS_RLD_VERSION:
11471 dyn.d_un.d_val = 1; /* XXX */
11472 break;
11473
11474 case DT_MIPS_FLAGS:
11475 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11476 break;
11477
11478 case DT_MIPS_TIME_STAMP:
11479 {
11480 time_t t;
11481 time (&t);
11482 dyn.d_un.d_val = t;
11483 }
11484 break;
11485
11486 case DT_MIPS_ICHECKSUM:
11487 /* XXX FIXME: */
11488 swap_out_p = FALSE;
11489 break;
11490
11491 case DT_MIPS_IVERSION:
11492 /* XXX FIXME: */
11493 swap_out_p = FALSE;
11494 break;
11495
11496 case DT_MIPS_BASE_ADDRESS:
11497 s = output_bfd->sections;
11498 BFD_ASSERT (s != NULL);
11499 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11500 break;
11501
11502 case DT_MIPS_LOCAL_GOTNO:
11503 dyn.d_un.d_val = g->local_gotno;
11504 break;
11505
11506 case DT_MIPS_UNREFEXTNO:
11507 /* The index into the dynamic symbol table which is the
11508 entry of the first external symbol that is not
11509 referenced within the same object. */
11510 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11511 break;
11512
11513 case DT_MIPS_GOTSYM:
11514 if (htab->global_gotsym)
11515 {
11516 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11517 break;
11518 }
11519 /* In case if we don't have global got symbols we default
11520 to setting DT_MIPS_GOTSYM to the same value as
11521 DT_MIPS_SYMTABNO. */
11522 /* Fall through. */
11523
11524 case DT_MIPS_SYMTABNO:
11525 name = ".dynsym";
11526 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11527 s = bfd_get_linker_section (dynobj, name);
11528
11529 if (s != NULL)
11530 dyn.d_un.d_val = s->size / elemsize;
11531 else
11532 dyn.d_un.d_val = 0;
11533 break;
11534
11535 case DT_MIPS_HIPAGENO:
11536 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11537 break;
11538
11539 case DT_MIPS_RLD_MAP:
11540 {
11541 struct elf_link_hash_entry *h;
11542 h = mips_elf_hash_table (info)->rld_symbol;
11543 if (!h)
11544 {
11545 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11546 swap_out_p = FALSE;
11547 break;
11548 }
11549 s = h->root.u.def.section;
11550
11551 /* The MIPS_RLD_MAP tag stores the absolute address of the
11552 debug pointer. */
11553 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11554 + h->root.u.def.value);
11555 }
11556 break;
11557
11558 case DT_MIPS_RLD_MAP_REL:
11559 {
11560 struct elf_link_hash_entry *h;
11561 bfd_vma dt_addr, rld_addr;
11562 h = mips_elf_hash_table (info)->rld_symbol;
11563 if (!h)
11564 {
11565 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11566 swap_out_p = FALSE;
11567 break;
11568 }
11569 s = h->root.u.def.section;
11570
11571 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11572 pointer, relative to the address of the tag. */
11573 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11574 + (b - sdyn->contents));
11575 rld_addr = (s->output_section->vma + s->output_offset
11576 + h->root.u.def.value);
11577 dyn.d_un.d_ptr = rld_addr - dt_addr;
11578 }
11579 break;
11580
11581 case DT_MIPS_OPTIONS:
11582 s = (bfd_get_section_by_name
11583 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11584 dyn.d_un.d_ptr = s->vma;
11585 break;
11586
11587 case DT_PLTREL:
11588 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11589 if (htab->is_vxworks)
11590 dyn.d_un.d_val = DT_RELA;
11591 else
11592 dyn.d_un.d_val = DT_REL;
11593 break;
11594
11595 case DT_PLTRELSZ:
11596 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11597 dyn.d_un.d_val = htab->root.srelplt->size;
11598 break;
11599
11600 case DT_JMPREL:
11601 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11602 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11603 + htab->root.srelplt->output_offset);
11604 break;
11605
11606 case DT_TEXTREL:
11607 /* If we didn't need any text relocations after all, delete
11608 the dynamic tag. */
11609 if (!(info->flags & DF_TEXTREL))
11610 {
11611 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11612 swap_out_p = FALSE;
11613 }
11614 break;
11615
11616 case DT_FLAGS:
11617 /* If we didn't need any text relocations after all, clear
11618 DF_TEXTREL from DT_FLAGS. */
11619 if (!(info->flags & DF_TEXTREL))
11620 dyn.d_un.d_val &= ~DF_TEXTREL;
11621 else
11622 swap_out_p = FALSE;
11623 break;
11624
11625 default:
11626 swap_out_p = FALSE;
11627 if (htab->is_vxworks
11628 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11629 swap_out_p = TRUE;
11630 break;
11631 }
11632
11633 if (swap_out_p || dyn_skipped)
11634 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11635 (dynobj, &dyn, b - dyn_skipped);
11636
11637 if (dyn_to_skip)
11638 {
11639 dyn_skipped += dyn_to_skip;
11640 dyn_to_skip = 0;
11641 }
11642 }
11643
11644 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11645 if (dyn_skipped > 0)
11646 memset (b - dyn_skipped, 0, dyn_skipped);
11647 }
11648
11649 if (sgot != NULL && sgot->size > 0
11650 && !bfd_is_abs_section (sgot->output_section))
11651 {
11652 if (htab->is_vxworks)
11653 {
11654 /* The first entry of the global offset table points to the
11655 ".dynamic" section. The second is initialized by the
11656 loader and contains the shared library identifier.
11657 The third is also initialized by the loader and points
11658 to the lazy resolution stub. */
11659 MIPS_ELF_PUT_WORD (output_bfd,
11660 sdyn->output_offset + sdyn->output_section->vma,
11661 sgot->contents);
11662 MIPS_ELF_PUT_WORD (output_bfd, 0,
11663 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11664 MIPS_ELF_PUT_WORD (output_bfd, 0,
11665 sgot->contents
11666 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11667 }
11668 else
11669 {
11670 /* The first entry of the global offset table will be filled at
11671 runtime. The second entry will be used by some runtime loaders.
11672 This isn't the case of IRIX rld. */
11673 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11674 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11675 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11676 }
11677
11678 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11679 = MIPS_ELF_GOT_SIZE (output_bfd);
11680 }
11681
11682 /* Generate dynamic relocations for the non-primary gots. */
11683 if (gg != NULL && gg->next)
11684 {
11685 Elf_Internal_Rela rel[3];
11686 bfd_vma addend = 0;
11687
11688 memset (rel, 0, sizeof (rel));
11689 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11690
11691 for (g = gg->next; g->next != gg; g = g->next)
11692 {
11693 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11694 + g->next->tls_gotno;
11695
11696 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11697 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11698 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11699 sgot->contents
11700 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11701
11702 if (! bfd_link_pic (info))
11703 continue;
11704
11705 for (; got_index < g->local_gotno; got_index++)
11706 {
11707 if (got_index >= g->assigned_low_gotno
11708 && got_index <= g->assigned_high_gotno)
11709 continue;
11710
11711 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11712 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11713 if (!(mips_elf_create_dynamic_relocation
11714 (output_bfd, info, rel, NULL,
11715 bfd_abs_section_ptr,
11716 0, &addend, sgot)))
11717 return FALSE;
11718 BFD_ASSERT (addend == 0);
11719 }
11720 }
11721 }
11722
11723 /* The generation of dynamic relocations for the non-primary gots
11724 adds more dynamic relocations. We cannot count them until
11725 here. */
11726
11727 if (elf_hash_table (info)->dynamic_sections_created)
11728 {
11729 bfd_byte *b;
11730 bfd_boolean swap_out_p;
11731
11732 BFD_ASSERT (sdyn != NULL);
11733
11734 for (b = sdyn->contents;
11735 b < sdyn->contents + sdyn->size;
11736 b += MIPS_ELF_DYN_SIZE (dynobj))
11737 {
11738 Elf_Internal_Dyn dyn;
11739 asection *s;
11740
11741 /* Read in the current dynamic entry. */
11742 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11743
11744 /* Assume that we're going to modify it and write it out. */
11745 swap_out_p = TRUE;
11746
11747 switch (dyn.d_tag)
11748 {
11749 case DT_RELSZ:
11750 /* Reduce DT_RELSZ to account for any relocations we
11751 decided not to make. This is for the n64 irix rld,
11752 which doesn't seem to apply any relocations if there
11753 are trailing null entries. */
11754 s = mips_elf_rel_dyn_section (info, FALSE);
11755 dyn.d_un.d_val = (s->reloc_count
11756 * (ABI_64_P (output_bfd)
11757 ? sizeof (Elf64_Mips_External_Rel)
11758 : sizeof (Elf32_External_Rel)));
11759 /* Adjust the section size too. Tools like the prelinker
11760 can reasonably expect the values to the same. */
11761 elf_section_data (s->output_section)->this_hdr.sh_size
11762 = dyn.d_un.d_val;
11763 break;
11764
11765 default:
11766 swap_out_p = FALSE;
11767 break;
11768 }
11769
11770 if (swap_out_p)
11771 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11772 (dynobj, &dyn, b);
11773 }
11774 }
11775
11776 {
11777 asection *s;
11778 Elf32_compact_rel cpt;
11779
11780 if (SGI_COMPAT (output_bfd))
11781 {
11782 /* Write .compact_rel section out. */
11783 s = bfd_get_linker_section (dynobj, ".compact_rel");
11784 if (s != NULL)
11785 {
11786 cpt.id1 = 1;
11787 cpt.num = s->reloc_count;
11788 cpt.id2 = 2;
11789 cpt.offset = (s->output_section->filepos
11790 + sizeof (Elf32_External_compact_rel));
11791 cpt.reserved0 = 0;
11792 cpt.reserved1 = 0;
11793 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11794 ((Elf32_External_compact_rel *)
11795 s->contents));
11796
11797 /* Clean up a dummy stub function entry in .text. */
11798 if (htab->sstubs != NULL)
11799 {
11800 file_ptr dummy_offset;
11801
11802 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11803 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11804 memset (htab->sstubs->contents + dummy_offset, 0,
11805 htab->function_stub_size);
11806 }
11807 }
11808 }
11809
11810 /* The psABI says that the dynamic relocations must be sorted in
11811 increasing order of r_symndx. The VxWorks EABI doesn't require
11812 this, and because the code below handles REL rather than RELA
11813 relocations, using it for VxWorks would be outright harmful. */
11814 if (!htab->is_vxworks)
11815 {
11816 s = mips_elf_rel_dyn_section (info, FALSE);
11817 if (s != NULL
11818 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11819 {
11820 reldyn_sorting_bfd = output_bfd;
11821
11822 if (ABI_64_P (output_bfd))
11823 qsort ((Elf64_External_Rel *) s->contents + 1,
11824 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11825 sort_dynamic_relocs_64);
11826 else
11827 qsort ((Elf32_External_Rel *) s->contents + 1,
11828 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11829 sort_dynamic_relocs);
11830 }
11831 }
11832 }
11833
11834 if (htab->root.splt && htab->root.splt->size > 0)
11835 {
11836 if (htab->is_vxworks)
11837 {
11838 if (bfd_link_pic (info))
11839 mips_vxworks_finish_shared_plt (output_bfd, info);
11840 else
11841 mips_vxworks_finish_exec_plt (output_bfd, info);
11842 }
11843 else
11844 {
11845 BFD_ASSERT (!bfd_link_pic (info));
11846 if (!mips_finish_exec_plt (output_bfd, info))
11847 return FALSE;
11848 }
11849 }
11850 return TRUE;
11851 }
11852
11853
11854 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11855
11856 static void
11857 mips_set_isa_flags (bfd *abfd)
11858 {
11859 flagword val;
11860
11861 switch (bfd_get_mach (abfd))
11862 {
11863 default:
11864 case bfd_mach_mips3000:
11865 val = E_MIPS_ARCH_1;
11866 break;
11867
11868 case bfd_mach_mips3900:
11869 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11870 break;
11871
11872 case bfd_mach_mips6000:
11873 val = E_MIPS_ARCH_2;
11874 break;
11875
11876 case bfd_mach_mips4010:
11877 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11878 break;
11879
11880 case bfd_mach_mips4000:
11881 case bfd_mach_mips4300:
11882 case bfd_mach_mips4400:
11883 case bfd_mach_mips4600:
11884 val = E_MIPS_ARCH_3;
11885 break;
11886
11887 case bfd_mach_mips4100:
11888 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11889 break;
11890
11891 case bfd_mach_mips4111:
11892 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11893 break;
11894
11895 case bfd_mach_mips4120:
11896 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11897 break;
11898
11899 case bfd_mach_mips4650:
11900 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11901 break;
11902
11903 case bfd_mach_mips5400:
11904 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11905 break;
11906
11907 case bfd_mach_mips5500:
11908 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11909 break;
11910
11911 case bfd_mach_mips5900:
11912 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11913 break;
11914
11915 case bfd_mach_mips9000:
11916 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11917 break;
11918
11919 case bfd_mach_mips5000:
11920 case bfd_mach_mips7000:
11921 case bfd_mach_mips8000:
11922 case bfd_mach_mips10000:
11923 case bfd_mach_mips12000:
11924 case bfd_mach_mips14000:
11925 case bfd_mach_mips16000:
11926 val = E_MIPS_ARCH_4;
11927 break;
11928
11929 case bfd_mach_mips5:
11930 val = E_MIPS_ARCH_5;
11931 break;
11932
11933 case bfd_mach_mips_loongson_2e:
11934 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11935 break;
11936
11937 case bfd_mach_mips_loongson_2f:
11938 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11939 break;
11940
11941 case bfd_mach_mips_sb1:
11942 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11943 break;
11944
11945 case bfd_mach_mips_loongson_3a:
11946 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11947 break;
11948
11949 case bfd_mach_mips_octeon:
11950 case bfd_mach_mips_octeonp:
11951 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11952 break;
11953
11954 case bfd_mach_mips_octeon3:
11955 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11956 break;
11957
11958 case bfd_mach_mips_xlr:
11959 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11960 break;
11961
11962 case bfd_mach_mips_octeon2:
11963 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11964 break;
11965
11966 case bfd_mach_mipsisa32:
11967 val = E_MIPS_ARCH_32;
11968 break;
11969
11970 case bfd_mach_mipsisa64:
11971 val = E_MIPS_ARCH_64;
11972 break;
11973
11974 case bfd_mach_mipsisa32r2:
11975 case bfd_mach_mipsisa32r3:
11976 case bfd_mach_mipsisa32r5:
11977 val = E_MIPS_ARCH_32R2;
11978 break;
11979
11980 case bfd_mach_mips_interaptiv_mr2:
11981 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
11982 break;
11983
11984 case bfd_mach_mipsisa64r2:
11985 case bfd_mach_mipsisa64r3:
11986 case bfd_mach_mipsisa64r5:
11987 val = E_MIPS_ARCH_64R2;
11988 break;
11989
11990 case bfd_mach_mipsisa32r6:
11991 val = E_MIPS_ARCH_32R6;
11992 break;
11993
11994 case bfd_mach_mipsisa64r6:
11995 val = E_MIPS_ARCH_64R6;
11996 break;
11997 }
11998 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11999 elf_elfheader (abfd)->e_flags |= val;
12000
12001 }
12002
12003
12004 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12005 Don't do so for code sections. We want to keep ordering of HI16/LO16
12006 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12007 relocs to be sorted. */
12008
12009 bfd_boolean
12010 _bfd_mips_elf_sort_relocs_p (asection *sec)
12011 {
12012 return (sec->flags & SEC_CODE) == 0;
12013 }
12014
12015
12016 /* The final processing done just before writing out a MIPS ELF object
12017 file. This gets the MIPS architecture right based on the machine
12018 number. This is used by both the 32-bit and the 64-bit ABI. */
12019
12020 void
12021 _bfd_mips_elf_final_write_processing (bfd *abfd,
12022 bfd_boolean linker ATTRIBUTE_UNUSED)
12023 {
12024 unsigned int i;
12025 Elf_Internal_Shdr **hdrpp;
12026 const char *name;
12027 asection *sec;
12028
12029 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12030 is nonzero. This is for compatibility with old objects, which used
12031 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12032 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12033 mips_set_isa_flags (abfd);
12034
12035 /* Set the sh_info field for .gptab sections and other appropriate
12036 info for each special section. */
12037 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12038 i < elf_numsections (abfd);
12039 i++, hdrpp++)
12040 {
12041 switch ((*hdrpp)->sh_type)
12042 {
12043 case SHT_MIPS_MSYM:
12044 case SHT_MIPS_LIBLIST:
12045 sec = bfd_get_section_by_name (abfd, ".dynstr");
12046 if (sec != NULL)
12047 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12048 break;
12049
12050 case SHT_MIPS_GPTAB:
12051 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12052 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12053 BFD_ASSERT (name != NULL
12054 && CONST_STRNEQ (name, ".gptab."));
12055 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12056 BFD_ASSERT (sec != NULL);
12057 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12058 break;
12059
12060 case SHT_MIPS_CONTENT:
12061 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12062 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12063 BFD_ASSERT (name != NULL
12064 && CONST_STRNEQ (name, ".MIPS.content"));
12065 sec = bfd_get_section_by_name (abfd,
12066 name + sizeof ".MIPS.content" - 1);
12067 BFD_ASSERT (sec != NULL);
12068 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12069 break;
12070
12071 case SHT_MIPS_SYMBOL_LIB:
12072 sec = bfd_get_section_by_name (abfd, ".dynsym");
12073 if (sec != NULL)
12074 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12075 sec = bfd_get_section_by_name (abfd, ".liblist");
12076 if (sec != NULL)
12077 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12078 break;
12079
12080 case SHT_MIPS_EVENTS:
12081 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12082 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12083 BFD_ASSERT (name != NULL);
12084 if (CONST_STRNEQ (name, ".MIPS.events"))
12085 sec = bfd_get_section_by_name (abfd,
12086 name + sizeof ".MIPS.events" - 1);
12087 else
12088 {
12089 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12090 sec = bfd_get_section_by_name (abfd,
12091 (name
12092 + sizeof ".MIPS.post_rel" - 1));
12093 }
12094 BFD_ASSERT (sec != NULL);
12095 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12096 break;
12097
12098 }
12099 }
12100 }
12101 \f
12102 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12103 segments. */
12104
12105 int
12106 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12107 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12108 {
12109 asection *s;
12110 int ret = 0;
12111
12112 /* See if we need a PT_MIPS_REGINFO segment. */
12113 s = bfd_get_section_by_name (abfd, ".reginfo");
12114 if (s && (s->flags & SEC_LOAD))
12115 ++ret;
12116
12117 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12118 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12119 ++ret;
12120
12121 /* See if we need a PT_MIPS_OPTIONS segment. */
12122 if (IRIX_COMPAT (abfd) == ict_irix6
12123 && bfd_get_section_by_name (abfd,
12124 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12125 ++ret;
12126
12127 /* See if we need a PT_MIPS_RTPROC segment. */
12128 if (IRIX_COMPAT (abfd) == ict_irix5
12129 && bfd_get_section_by_name (abfd, ".dynamic")
12130 && bfd_get_section_by_name (abfd, ".mdebug"))
12131 ++ret;
12132
12133 /* Allocate a PT_NULL header in dynamic objects. See
12134 _bfd_mips_elf_modify_segment_map for details. */
12135 if (!SGI_COMPAT (abfd)
12136 && bfd_get_section_by_name (abfd, ".dynamic"))
12137 ++ret;
12138
12139 return ret;
12140 }
12141
12142 /* Modify the segment map for an IRIX5 executable. */
12143
12144 bfd_boolean
12145 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12146 struct bfd_link_info *info)
12147 {
12148 asection *s;
12149 struct elf_segment_map *m, **pm;
12150 bfd_size_type amt;
12151
12152 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12153 segment. */
12154 s = bfd_get_section_by_name (abfd, ".reginfo");
12155 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12156 {
12157 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12158 if (m->p_type == PT_MIPS_REGINFO)
12159 break;
12160 if (m == NULL)
12161 {
12162 amt = sizeof *m;
12163 m = bfd_zalloc (abfd, amt);
12164 if (m == NULL)
12165 return FALSE;
12166
12167 m->p_type = PT_MIPS_REGINFO;
12168 m->count = 1;
12169 m->sections[0] = s;
12170
12171 /* We want to put it after the PHDR and INTERP segments. */
12172 pm = &elf_seg_map (abfd);
12173 while (*pm != NULL
12174 && ((*pm)->p_type == PT_PHDR
12175 || (*pm)->p_type == PT_INTERP))
12176 pm = &(*pm)->next;
12177
12178 m->next = *pm;
12179 *pm = m;
12180 }
12181 }
12182
12183 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12184 segment. */
12185 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12186 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12187 {
12188 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12189 if (m->p_type == PT_MIPS_ABIFLAGS)
12190 break;
12191 if (m == NULL)
12192 {
12193 amt = sizeof *m;
12194 m = bfd_zalloc (abfd, amt);
12195 if (m == NULL)
12196 return FALSE;
12197
12198 m->p_type = PT_MIPS_ABIFLAGS;
12199 m->count = 1;
12200 m->sections[0] = s;
12201
12202 /* We want to put it after the PHDR and INTERP segments. */
12203 pm = &elf_seg_map (abfd);
12204 while (*pm != NULL
12205 && ((*pm)->p_type == PT_PHDR
12206 || (*pm)->p_type == PT_INTERP))
12207 pm = &(*pm)->next;
12208
12209 m->next = *pm;
12210 *pm = m;
12211 }
12212 }
12213
12214 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12215 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12216 PT_MIPS_OPTIONS segment immediately following the program header
12217 table. */
12218 if (NEWABI_P (abfd)
12219 /* On non-IRIX6 new abi, we'll have already created a segment
12220 for this section, so don't create another. I'm not sure this
12221 is not also the case for IRIX 6, but I can't test it right
12222 now. */
12223 && IRIX_COMPAT (abfd) == ict_irix6)
12224 {
12225 for (s = abfd->sections; s; s = s->next)
12226 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12227 break;
12228
12229 if (s)
12230 {
12231 struct elf_segment_map *options_segment;
12232
12233 pm = &elf_seg_map (abfd);
12234 while (*pm != NULL
12235 && ((*pm)->p_type == PT_PHDR
12236 || (*pm)->p_type == PT_INTERP))
12237 pm = &(*pm)->next;
12238
12239 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12240 {
12241 amt = sizeof (struct elf_segment_map);
12242 options_segment = bfd_zalloc (abfd, amt);
12243 options_segment->next = *pm;
12244 options_segment->p_type = PT_MIPS_OPTIONS;
12245 options_segment->p_flags = PF_R;
12246 options_segment->p_flags_valid = TRUE;
12247 options_segment->count = 1;
12248 options_segment->sections[0] = s;
12249 *pm = options_segment;
12250 }
12251 }
12252 }
12253 else
12254 {
12255 if (IRIX_COMPAT (abfd) == ict_irix5)
12256 {
12257 /* If there are .dynamic and .mdebug sections, we make a room
12258 for the RTPROC header. FIXME: Rewrite without section names. */
12259 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12260 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12261 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12262 {
12263 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12264 if (m->p_type == PT_MIPS_RTPROC)
12265 break;
12266 if (m == NULL)
12267 {
12268 amt = sizeof *m;
12269 m = bfd_zalloc (abfd, amt);
12270 if (m == NULL)
12271 return FALSE;
12272
12273 m->p_type = PT_MIPS_RTPROC;
12274
12275 s = bfd_get_section_by_name (abfd, ".rtproc");
12276 if (s == NULL)
12277 {
12278 m->count = 0;
12279 m->p_flags = 0;
12280 m->p_flags_valid = 1;
12281 }
12282 else
12283 {
12284 m->count = 1;
12285 m->sections[0] = s;
12286 }
12287
12288 /* We want to put it after the DYNAMIC segment. */
12289 pm = &elf_seg_map (abfd);
12290 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12291 pm = &(*pm)->next;
12292 if (*pm != NULL)
12293 pm = &(*pm)->next;
12294
12295 m->next = *pm;
12296 *pm = m;
12297 }
12298 }
12299 }
12300 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12301 .dynstr, .dynsym, and .hash sections, and everything in
12302 between. */
12303 for (pm = &elf_seg_map (abfd); *pm != NULL;
12304 pm = &(*pm)->next)
12305 if ((*pm)->p_type == PT_DYNAMIC)
12306 break;
12307 m = *pm;
12308 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12309 glibc's dynamic linker has traditionally derived the number of
12310 tags from the p_filesz field, and sometimes allocates stack
12311 arrays of that size. An overly-big PT_DYNAMIC segment can
12312 be actively harmful in such cases. Making PT_DYNAMIC contain
12313 other sections can also make life hard for the prelinker,
12314 which might move one of the other sections to a different
12315 PT_LOAD segment. */
12316 if (SGI_COMPAT (abfd)
12317 && m != NULL
12318 && m->count == 1
12319 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12320 {
12321 static const char *sec_names[] =
12322 {
12323 ".dynamic", ".dynstr", ".dynsym", ".hash"
12324 };
12325 bfd_vma low, high;
12326 unsigned int i, c;
12327 struct elf_segment_map *n;
12328
12329 low = ~(bfd_vma) 0;
12330 high = 0;
12331 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12332 {
12333 s = bfd_get_section_by_name (abfd, sec_names[i]);
12334 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12335 {
12336 bfd_size_type sz;
12337
12338 if (low > s->vma)
12339 low = s->vma;
12340 sz = s->size;
12341 if (high < s->vma + sz)
12342 high = s->vma + sz;
12343 }
12344 }
12345
12346 c = 0;
12347 for (s = abfd->sections; s != NULL; s = s->next)
12348 if ((s->flags & SEC_LOAD) != 0
12349 && s->vma >= low
12350 && s->vma + s->size <= high)
12351 ++c;
12352
12353 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12354 n = bfd_zalloc (abfd, amt);
12355 if (n == NULL)
12356 return FALSE;
12357 *n = *m;
12358 n->count = c;
12359
12360 i = 0;
12361 for (s = abfd->sections; s != NULL; s = s->next)
12362 {
12363 if ((s->flags & SEC_LOAD) != 0
12364 && s->vma >= low
12365 && s->vma + s->size <= high)
12366 {
12367 n->sections[i] = s;
12368 ++i;
12369 }
12370 }
12371
12372 *pm = n;
12373 }
12374 }
12375
12376 /* Allocate a spare program header in dynamic objects so that tools
12377 like the prelinker can add an extra PT_LOAD entry.
12378
12379 If the prelinker needs to make room for a new PT_LOAD entry, its
12380 standard procedure is to move the first (read-only) sections into
12381 the new (writable) segment. However, the MIPS ABI requires
12382 .dynamic to be in a read-only segment, and the section will often
12383 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12384
12385 Although the prelinker could in principle move .dynamic to a
12386 writable segment, it seems better to allocate a spare program
12387 header instead, and avoid the need to move any sections.
12388 There is a long tradition of allocating spare dynamic tags,
12389 so allocating a spare program header seems like a natural
12390 extension.
12391
12392 If INFO is NULL, we may be copying an already prelinked binary
12393 with objcopy or strip, so do not add this header. */
12394 if (info != NULL
12395 && !SGI_COMPAT (abfd)
12396 && bfd_get_section_by_name (abfd, ".dynamic"))
12397 {
12398 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12399 if ((*pm)->p_type == PT_NULL)
12400 break;
12401 if (*pm == NULL)
12402 {
12403 m = bfd_zalloc (abfd, sizeof (*m));
12404 if (m == NULL)
12405 return FALSE;
12406
12407 m->p_type = PT_NULL;
12408 *pm = m;
12409 }
12410 }
12411
12412 return TRUE;
12413 }
12414 \f
12415 /* Return the section that should be marked against GC for a given
12416 relocation. */
12417
12418 asection *
12419 _bfd_mips_elf_gc_mark_hook (asection *sec,
12420 struct bfd_link_info *info,
12421 Elf_Internal_Rela *rel,
12422 struct elf_link_hash_entry *h,
12423 Elf_Internal_Sym *sym)
12424 {
12425 /* ??? Do mips16 stub sections need to be handled special? */
12426
12427 if (h != NULL)
12428 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12429 {
12430 case R_MIPS_GNU_VTINHERIT:
12431 case R_MIPS_GNU_VTENTRY:
12432 return NULL;
12433 }
12434
12435 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12436 }
12437
12438 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12439
12440 bfd_boolean
12441 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12442 elf_gc_mark_hook_fn gc_mark_hook)
12443 {
12444 bfd *sub;
12445
12446 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12447
12448 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12449 {
12450 asection *o;
12451
12452 if (! is_mips_elf (sub))
12453 continue;
12454
12455 for (o = sub->sections; o != NULL; o = o->next)
12456 if (!o->gc_mark
12457 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12458 (bfd_get_section_name (sub, o)))
12459 {
12460 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12461 return FALSE;
12462 }
12463 }
12464
12465 return TRUE;
12466 }
12467 \f
12468 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12469 hiding the old indirect symbol. Process additional relocation
12470 information. Also called for weakdefs, in which case we just let
12471 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12472
12473 void
12474 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12475 struct elf_link_hash_entry *dir,
12476 struct elf_link_hash_entry *ind)
12477 {
12478 struct mips_elf_link_hash_entry *dirmips, *indmips;
12479
12480 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12481
12482 dirmips = (struct mips_elf_link_hash_entry *) dir;
12483 indmips = (struct mips_elf_link_hash_entry *) ind;
12484 /* Any absolute non-dynamic relocations against an indirect or weak
12485 definition will be against the target symbol. */
12486 if (indmips->has_static_relocs)
12487 dirmips->has_static_relocs = TRUE;
12488
12489 if (ind->root.type != bfd_link_hash_indirect)
12490 return;
12491
12492 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12493 if (indmips->readonly_reloc)
12494 dirmips->readonly_reloc = TRUE;
12495 if (indmips->no_fn_stub)
12496 dirmips->no_fn_stub = TRUE;
12497 if (indmips->fn_stub)
12498 {
12499 dirmips->fn_stub = indmips->fn_stub;
12500 indmips->fn_stub = NULL;
12501 }
12502 if (indmips->need_fn_stub)
12503 {
12504 dirmips->need_fn_stub = TRUE;
12505 indmips->need_fn_stub = FALSE;
12506 }
12507 if (indmips->call_stub)
12508 {
12509 dirmips->call_stub = indmips->call_stub;
12510 indmips->call_stub = NULL;
12511 }
12512 if (indmips->call_fp_stub)
12513 {
12514 dirmips->call_fp_stub = indmips->call_fp_stub;
12515 indmips->call_fp_stub = NULL;
12516 }
12517 if (indmips->global_got_area < dirmips->global_got_area)
12518 dirmips->global_got_area = indmips->global_got_area;
12519 if (indmips->global_got_area < GGA_NONE)
12520 indmips->global_got_area = GGA_NONE;
12521 if (indmips->has_nonpic_branches)
12522 dirmips->has_nonpic_branches = TRUE;
12523 }
12524 \f
12525 #define PDR_SIZE 32
12526
12527 bfd_boolean
12528 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12529 struct bfd_link_info *info)
12530 {
12531 asection *o;
12532 bfd_boolean ret = FALSE;
12533 unsigned char *tdata;
12534 size_t i, skip;
12535
12536 o = bfd_get_section_by_name (abfd, ".pdr");
12537 if (! o)
12538 return FALSE;
12539 if (o->size == 0)
12540 return FALSE;
12541 if (o->size % PDR_SIZE != 0)
12542 return FALSE;
12543 if (o->output_section != NULL
12544 && bfd_is_abs_section (o->output_section))
12545 return FALSE;
12546
12547 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12548 if (! tdata)
12549 return FALSE;
12550
12551 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12552 info->keep_memory);
12553 if (!cookie->rels)
12554 {
12555 free (tdata);
12556 return FALSE;
12557 }
12558
12559 cookie->rel = cookie->rels;
12560 cookie->relend = cookie->rels + o->reloc_count;
12561
12562 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12563 {
12564 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12565 {
12566 tdata[i] = 1;
12567 skip ++;
12568 }
12569 }
12570
12571 if (skip != 0)
12572 {
12573 mips_elf_section_data (o)->u.tdata = tdata;
12574 if (o->rawsize == 0)
12575 o->rawsize = o->size;
12576 o->size -= skip * PDR_SIZE;
12577 ret = TRUE;
12578 }
12579 else
12580 free (tdata);
12581
12582 if (! info->keep_memory)
12583 free (cookie->rels);
12584
12585 return ret;
12586 }
12587
12588 bfd_boolean
12589 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12590 {
12591 if (strcmp (sec->name, ".pdr") == 0)
12592 return TRUE;
12593 return FALSE;
12594 }
12595
12596 bfd_boolean
12597 _bfd_mips_elf_write_section (bfd *output_bfd,
12598 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12599 asection *sec, bfd_byte *contents)
12600 {
12601 bfd_byte *to, *from, *end;
12602 int i;
12603
12604 if (strcmp (sec->name, ".pdr") != 0)
12605 return FALSE;
12606
12607 if (mips_elf_section_data (sec)->u.tdata == NULL)
12608 return FALSE;
12609
12610 to = contents;
12611 end = contents + sec->size;
12612 for (from = contents, i = 0;
12613 from < end;
12614 from += PDR_SIZE, i++)
12615 {
12616 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12617 continue;
12618 if (to != from)
12619 memcpy (to, from, PDR_SIZE);
12620 to += PDR_SIZE;
12621 }
12622 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12623 sec->output_offset, sec->size);
12624 return TRUE;
12625 }
12626 \f
12627 /* microMIPS code retains local labels for linker relaxation. Omit them
12628 from output by default for clarity. */
12629
12630 bfd_boolean
12631 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12632 {
12633 return _bfd_elf_is_local_label_name (abfd, sym->name);
12634 }
12635
12636 /* MIPS ELF uses a special find_nearest_line routine in order the
12637 handle the ECOFF debugging information. */
12638
12639 struct mips_elf_find_line
12640 {
12641 struct ecoff_debug_info d;
12642 struct ecoff_find_line i;
12643 };
12644
12645 bfd_boolean
12646 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12647 asection *section, bfd_vma offset,
12648 const char **filename_ptr,
12649 const char **functionname_ptr,
12650 unsigned int *line_ptr,
12651 unsigned int *discriminator_ptr)
12652 {
12653 asection *msec;
12654
12655 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12656 filename_ptr, functionname_ptr,
12657 line_ptr, discriminator_ptr,
12658 dwarf_debug_sections,
12659 ABI_64_P (abfd) ? 8 : 0,
12660 &elf_tdata (abfd)->dwarf2_find_line_info))
12661 return TRUE;
12662
12663 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12664 filename_ptr, functionname_ptr,
12665 line_ptr))
12666 return TRUE;
12667
12668 msec = bfd_get_section_by_name (abfd, ".mdebug");
12669 if (msec != NULL)
12670 {
12671 flagword origflags;
12672 struct mips_elf_find_line *fi;
12673 const struct ecoff_debug_swap * const swap =
12674 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12675
12676 /* If we are called during a link, mips_elf_final_link may have
12677 cleared the SEC_HAS_CONTENTS field. We force it back on here
12678 if appropriate (which it normally will be). */
12679 origflags = msec->flags;
12680 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12681 msec->flags |= SEC_HAS_CONTENTS;
12682
12683 fi = mips_elf_tdata (abfd)->find_line_info;
12684 if (fi == NULL)
12685 {
12686 bfd_size_type external_fdr_size;
12687 char *fraw_src;
12688 char *fraw_end;
12689 struct fdr *fdr_ptr;
12690 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12691
12692 fi = bfd_zalloc (abfd, amt);
12693 if (fi == NULL)
12694 {
12695 msec->flags = origflags;
12696 return FALSE;
12697 }
12698
12699 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12700 {
12701 msec->flags = origflags;
12702 return FALSE;
12703 }
12704
12705 /* Swap in the FDR information. */
12706 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12707 fi->d.fdr = bfd_alloc (abfd, amt);
12708 if (fi->d.fdr == NULL)
12709 {
12710 msec->flags = origflags;
12711 return FALSE;
12712 }
12713 external_fdr_size = swap->external_fdr_size;
12714 fdr_ptr = fi->d.fdr;
12715 fraw_src = (char *) fi->d.external_fdr;
12716 fraw_end = (fraw_src
12717 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12718 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12719 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12720
12721 mips_elf_tdata (abfd)->find_line_info = fi;
12722
12723 /* Note that we don't bother to ever free this information.
12724 find_nearest_line is either called all the time, as in
12725 objdump -l, so the information should be saved, or it is
12726 rarely called, as in ld error messages, so the memory
12727 wasted is unimportant. Still, it would probably be a
12728 good idea for free_cached_info to throw it away. */
12729 }
12730
12731 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12732 &fi->i, filename_ptr, functionname_ptr,
12733 line_ptr))
12734 {
12735 msec->flags = origflags;
12736 return TRUE;
12737 }
12738
12739 msec->flags = origflags;
12740 }
12741
12742 /* Fall back on the generic ELF find_nearest_line routine. */
12743
12744 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12745 filename_ptr, functionname_ptr,
12746 line_ptr, discriminator_ptr);
12747 }
12748
12749 bfd_boolean
12750 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12751 const char **filename_ptr,
12752 const char **functionname_ptr,
12753 unsigned int *line_ptr)
12754 {
12755 bfd_boolean found;
12756 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12757 functionname_ptr, line_ptr,
12758 & elf_tdata (abfd)->dwarf2_find_line_info);
12759 return found;
12760 }
12761
12762 \f
12763 /* When are writing out the .options or .MIPS.options section,
12764 remember the bytes we are writing out, so that we can install the
12765 GP value in the section_processing routine. */
12766
12767 bfd_boolean
12768 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12769 const void *location,
12770 file_ptr offset, bfd_size_type count)
12771 {
12772 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12773 {
12774 bfd_byte *c;
12775
12776 if (elf_section_data (section) == NULL)
12777 {
12778 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12779 section->used_by_bfd = bfd_zalloc (abfd, amt);
12780 if (elf_section_data (section) == NULL)
12781 return FALSE;
12782 }
12783 c = mips_elf_section_data (section)->u.tdata;
12784 if (c == NULL)
12785 {
12786 c = bfd_zalloc (abfd, section->size);
12787 if (c == NULL)
12788 return FALSE;
12789 mips_elf_section_data (section)->u.tdata = c;
12790 }
12791
12792 memcpy (c + offset, location, count);
12793 }
12794
12795 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12796 count);
12797 }
12798
12799 /* This is almost identical to bfd_generic_get_... except that some
12800 MIPS relocations need to be handled specially. Sigh. */
12801
12802 bfd_byte *
12803 _bfd_elf_mips_get_relocated_section_contents
12804 (bfd *abfd,
12805 struct bfd_link_info *link_info,
12806 struct bfd_link_order *link_order,
12807 bfd_byte *data,
12808 bfd_boolean relocatable,
12809 asymbol **symbols)
12810 {
12811 /* Get enough memory to hold the stuff */
12812 bfd *input_bfd = link_order->u.indirect.section->owner;
12813 asection *input_section = link_order->u.indirect.section;
12814 bfd_size_type sz;
12815
12816 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12817 arelent **reloc_vector = NULL;
12818 long reloc_count;
12819
12820 if (reloc_size < 0)
12821 goto error_return;
12822
12823 reloc_vector = bfd_malloc (reloc_size);
12824 if (reloc_vector == NULL && reloc_size != 0)
12825 goto error_return;
12826
12827 /* read in the section */
12828 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12829 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12830 goto error_return;
12831
12832 reloc_count = bfd_canonicalize_reloc (input_bfd,
12833 input_section,
12834 reloc_vector,
12835 symbols);
12836 if (reloc_count < 0)
12837 goto error_return;
12838
12839 if (reloc_count > 0)
12840 {
12841 arelent **parent;
12842 /* for mips */
12843 int gp_found;
12844 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12845
12846 {
12847 struct bfd_hash_entry *h;
12848 struct bfd_link_hash_entry *lh;
12849 /* Skip all this stuff if we aren't mixing formats. */
12850 if (abfd && input_bfd
12851 && abfd->xvec == input_bfd->xvec)
12852 lh = 0;
12853 else
12854 {
12855 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12856 lh = (struct bfd_link_hash_entry *) h;
12857 }
12858 lookup:
12859 if (lh)
12860 {
12861 switch (lh->type)
12862 {
12863 case bfd_link_hash_undefined:
12864 case bfd_link_hash_undefweak:
12865 case bfd_link_hash_common:
12866 gp_found = 0;
12867 break;
12868 case bfd_link_hash_defined:
12869 case bfd_link_hash_defweak:
12870 gp_found = 1;
12871 gp = lh->u.def.value;
12872 break;
12873 case bfd_link_hash_indirect:
12874 case bfd_link_hash_warning:
12875 lh = lh->u.i.link;
12876 /* @@FIXME ignoring warning for now */
12877 goto lookup;
12878 case bfd_link_hash_new:
12879 default:
12880 abort ();
12881 }
12882 }
12883 else
12884 gp_found = 0;
12885 }
12886 /* end mips */
12887 for (parent = reloc_vector; *parent != NULL; parent++)
12888 {
12889 char *error_message = NULL;
12890 bfd_reloc_status_type r;
12891
12892 /* Specific to MIPS: Deal with relocation types that require
12893 knowing the gp of the output bfd. */
12894 asymbol *sym = *(*parent)->sym_ptr_ptr;
12895
12896 /* If we've managed to find the gp and have a special
12897 function for the relocation then go ahead, else default
12898 to the generic handling. */
12899 if (gp_found
12900 && (*parent)->howto->special_function
12901 == _bfd_mips_elf32_gprel16_reloc)
12902 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12903 input_section, relocatable,
12904 data, gp);
12905 else
12906 r = bfd_perform_relocation (input_bfd, *parent, data,
12907 input_section,
12908 relocatable ? abfd : NULL,
12909 &error_message);
12910
12911 if (relocatable)
12912 {
12913 asection *os = input_section->output_section;
12914
12915 /* A partial link, so keep the relocs */
12916 os->orelocation[os->reloc_count] = *parent;
12917 os->reloc_count++;
12918 }
12919
12920 if (r != bfd_reloc_ok)
12921 {
12922 switch (r)
12923 {
12924 case bfd_reloc_undefined:
12925 (*link_info->callbacks->undefined_symbol)
12926 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12927 input_bfd, input_section, (*parent)->address, TRUE);
12928 break;
12929 case bfd_reloc_dangerous:
12930 BFD_ASSERT (error_message != NULL);
12931 (*link_info->callbacks->reloc_dangerous)
12932 (link_info, error_message,
12933 input_bfd, input_section, (*parent)->address);
12934 break;
12935 case bfd_reloc_overflow:
12936 (*link_info->callbacks->reloc_overflow)
12937 (link_info, NULL,
12938 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12939 (*parent)->howto->name, (*parent)->addend,
12940 input_bfd, input_section, (*parent)->address);
12941 break;
12942 case bfd_reloc_outofrange:
12943 default:
12944 abort ();
12945 break;
12946 }
12947
12948 }
12949 }
12950 }
12951 if (reloc_vector != NULL)
12952 free (reloc_vector);
12953 return data;
12954
12955 error_return:
12956 if (reloc_vector != NULL)
12957 free (reloc_vector);
12958 return NULL;
12959 }
12960 \f
12961 static bfd_boolean
12962 mips_elf_relax_delete_bytes (bfd *abfd,
12963 asection *sec, bfd_vma addr, int count)
12964 {
12965 Elf_Internal_Shdr *symtab_hdr;
12966 unsigned int sec_shndx;
12967 bfd_byte *contents;
12968 Elf_Internal_Rela *irel, *irelend;
12969 Elf_Internal_Sym *isym;
12970 Elf_Internal_Sym *isymend;
12971 struct elf_link_hash_entry **sym_hashes;
12972 struct elf_link_hash_entry **end_hashes;
12973 struct elf_link_hash_entry **start_hashes;
12974 unsigned int symcount;
12975
12976 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12977 contents = elf_section_data (sec)->this_hdr.contents;
12978
12979 irel = elf_section_data (sec)->relocs;
12980 irelend = irel + sec->reloc_count;
12981
12982 /* Actually delete the bytes. */
12983 memmove (contents + addr, contents + addr + count,
12984 (size_t) (sec->size - addr - count));
12985 sec->size -= count;
12986
12987 /* Adjust all the relocs. */
12988 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12989 {
12990 /* Get the new reloc address. */
12991 if (irel->r_offset > addr)
12992 irel->r_offset -= count;
12993 }
12994
12995 BFD_ASSERT (addr % 2 == 0);
12996 BFD_ASSERT (count % 2 == 0);
12997
12998 /* Adjust the local symbols defined in this section. */
12999 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13000 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13001 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13002 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13003 isym->st_value -= count;
13004
13005 /* Now adjust the global symbols defined in this section. */
13006 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13007 - symtab_hdr->sh_info);
13008 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13009 end_hashes = sym_hashes + symcount;
13010
13011 for (; sym_hashes < end_hashes; sym_hashes++)
13012 {
13013 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13014
13015 if ((sym_hash->root.type == bfd_link_hash_defined
13016 || sym_hash->root.type == bfd_link_hash_defweak)
13017 && sym_hash->root.u.def.section == sec)
13018 {
13019 bfd_vma value = sym_hash->root.u.def.value;
13020
13021 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13022 value &= MINUS_TWO;
13023 if (value > addr)
13024 sym_hash->root.u.def.value -= count;
13025 }
13026 }
13027
13028 return TRUE;
13029 }
13030
13031
13032 /* Opcodes needed for microMIPS relaxation as found in
13033 opcodes/micromips-opc.c. */
13034
13035 struct opcode_descriptor {
13036 unsigned long match;
13037 unsigned long mask;
13038 };
13039
13040 /* The $ra register aka $31. */
13041
13042 #define RA 31
13043
13044 /* 32-bit instruction format register fields. */
13045
13046 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13047 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13048
13049 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13050
13051 #define OP16_VALID_REG(r) \
13052 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13053
13054
13055 /* 32-bit and 16-bit branches. */
13056
13057 static const struct opcode_descriptor b_insns_32[] = {
13058 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13059 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13060 { 0, 0 } /* End marker for find_match(). */
13061 };
13062
13063 static const struct opcode_descriptor bc_insn_32 =
13064 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13065
13066 static const struct opcode_descriptor bz_insn_32 =
13067 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13068
13069 static const struct opcode_descriptor bzal_insn_32 =
13070 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13071
13072 static const struct opcode_descriptor beq_insn_32 =
13073 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13074
13075 static const struct opcode_descriptor b_insn_16 =
13076 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13077
13078 static const struct opcode_descriptor bz_insn_16 =
13079 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13080
13081
13082 /* 32-bit and 16-bit branch EQ and NE zero. */
13083
13084 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13085 eq and second the ne. This convention is used when replacing a
13086 32-bit BEQ/BNE with the 16-bit version. */
13087
13088 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13089
13090 static const struct opcode_descriptor bz_rs_insns_32[] = {
13091 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13092 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13093 { 0, 0 } /* End marker for find_match(). */
13094 };
13095
13096 static const struct opcode_descriptor bz_rt_insns_32[] = {
13097 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13098 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13099 { 0, 0 } /* End marker for find_match(). */
13100 };
13101
13102 static const struct opcode_descriptor bzc_insns_32[] = {
13103 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13104 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13105 { 0, 0 } /* End marker for find_match(). */
13106 };
13107
13108 static const struct opcode_descriptor bz_insns_16[] = {
13109 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13110 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13111 { 0, 0 } /* End marker for find_match(). */
13112 };
13113
13114 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13115
13116 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13117 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13118
13119
13120 /* 32-bit instructions with a delay slot. */
13121
13122 static const struct opcode_descriptor jal_insn_32_bd16 =
13123 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13124
13125 static const struct opcode_descriptor jal_insn_32_bd32 =
13126 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13127
13128 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13129 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13130
13131 static const struct opcode_descriptor j_insn_32 =
13132 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13133
13134 static const struct opcode_descriptor jalr_insn_32 =
13135 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13136
13137 /* This table can be compacted, because no opcode replacement is made. */
13138
13139 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13140 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13141
13142 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13143 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13144
13145 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13146 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13147 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13148 { 0, 0 } /* End marker for find_match(). */
13149 };
13150
13151 /* This table can be compacted, because no opcode replacement is made. */
13152
13153 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13154 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13155
13156 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13157 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13158 { 0, 0 } /* End marker for find_match(). */
13159 };
13160
13161
13162 /* 16-bit instructions with a delay slot. */
13163
13164 static const struct opcode_descriptor jalr_insn_16_bd16 =
13165 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13166
13167 static const struct opcode_descriptor jalr_insn_16_bd32 =
13168 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13169
13170 static const struct opcode_descriptor jr_insn_16 =
13171 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13172
13173 #define JR16_REG(opcode) ((opcode) & 0x1f)
13174
13175 /* This table can be compacted, because no opcode replacement is made. */
13176
13177 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13178 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13179
13180 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13181 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13182 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13183 { 0, 0 } /* End marker for find_match(). */
13184 };
13185
13186
13187 /* LUI instruction. */
13188
13189 static const struct opcode_descriptor lui_insn =
13190 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13191
13192
13193 /* ADDIU instruction. */
13194
13195 static const struct opcode_descriptor addiu_insn =
13196 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13197
13198 static const struct opcode_descriptor addiupc_insn =
13199 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13200
13201 #define ADDIUPC_REG_FIELD(r) \
13202 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13203
13204
13205 /* Relaxable instructions in a JAL delay slot: MOVE. */
13206
13207 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13208 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13209 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13210 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13211
13212 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13213 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13214
13215 static const struct opcode_descriptor move_insns_32[] = {
13216 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13217 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13218 { 0, 0 } /* End marker for find_match(). */
13219 };
13220
13221 static const struct opcode_descriptor move_insn_16 =
13222 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13223
13224
13225 /* NOP instructions. */
13226
13227 static const struct opcode_descriptor nop_insn_32 =
13228 { /* "nop", "", */ 0x00000000, 0xffffffff };
13229
13230 static const struct opcode_descriptor nop_insn_16 =
13231 { /* "nop", "", */ 0x0c00, 0xffff };
13232
13233
13234 /* Instruction match support. */
13235
13236 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13237
13238 static int
13239 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13240 {
13241 unsigned long indx;
13242
13243 for (indx = 0; insn[indx].mask != 0; indx++)
13244 if (MATCH (opcode, insn[indx]))
13245 return indx;
13246
13247 return -1;
13248 }
13249
13250
13251 /* Branch and delay slot decoding support. */
13252
13253 /* If PTR points to what *might* be a 16-bit branch or jump, then
13254 return the minimum length of its delay slot, otherwise return 0.
13255 Non-zero results are not definitive as we might be checking against
13256 the second half of another instruction. */
13257
13258 static int
13259 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13260 {
13261 unsigned long opcode;
13262 int bdsize;
13263
13264 opcode = bfd_get_16 (abfd, ptr);
13265 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13266 /* 16-bit branch/jump with a 32-bit delay slot. */
13267 bdsize = 4;
13268 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13269 || find_match (opcode, ds_insns_16_bd16) >= 0)
13270 /* 16-bit branch/jump with a 16-bit delay slot. */
13271 bdsize = 2;
13272 else
13273 /* No delay slot. */
13274 bdsize = 0;
13275
13276 return bdsize;
13277 }
13278
13279 /* If PTR points to what *might* be a 32-bit branch or jump, then
13280 return the minimum length of its delay slot, otherwise return 0.
13281 Non-zero results are not definitive as we might be checking against
13282 the second half of another instruction. */
13283
13284 static int
13285 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13286 {
13287 unsigned long opcode;
13288 int bdsize;
13289
13290 opcode = bfd_get_micromips_32 (abfd, ptr);
13291 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13292 /* 32-bit branch/jump with a 32-bit delay slot. */
13293 bdsize = 4;
13294 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13295 /* 32-bit branch/jump with a 16-bit delay slot. */
13296 bdsize = 2;
13297 else
13298 /* No delay slot. */
13299 bdsize = 0;
13300
13301 return bdsize;
13302 }
13303
13304 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13305 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13306
13307 static bfd_boolean
13308 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13309 {
13310 unsigned long opcode;
13311
13312 opcode = bfd_get_16 (abfd, ptr);
13313 if (MATCH (opcode, b_insn_16)
13314 /* B16 */
13315 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13316 /* JR16 */
13317 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13318 /* BEQZ16, BNEZ16 */
13319 || (MATCH (opcode, jalr_insn_16_bd32)
13320 /* JALR16 */
13321 && reg != JR16_REG (opcode) && reg != RA))
13322 return TRUE;
13323
13324 return FALSE;
13325 }
13326
13327 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13328 then return TRUE, otherwise FALSE. */
13329
13330 static bfd_boolean
13331 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13332 {
13333 unsigned long opcode;
13334
13335 opcode = bfd_get_micromips_32 (abfd, ptr);
13336 if (MATCH (opcode, j_insn_32)
13337 /* J */
13338 || MATCH (opcode, bc_insn_32)
13339 /* BC1F, BC1T, BC2F, BC2T */
13340 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13341 /* JAL, JALX */
13342 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13343 /* BGEZ, BGTZ, BLEZ, BLTZ */
13344 || (MATCH (opcode, bzal_insn_32)
13345 /* BGEZAL, BLTZAL */
13346 && reg != OP32_SREG (opcode) && reg != RA)
13347 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13348 /* JALR, JALR.HB, BEQ, BNE */
13349 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13350 return TRUE;
13351
13352 return FALSE;
13353 }
13354
13355 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13356 IRELEND) at OFFSET indicate that there must be a compact branch there,
13357 then return TRUE, otherwise FALSE. */
13358
13359 static bfd_boolean
13360 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13361 const Elf_Internal_Rela *internal_relocs,
13362 const Elf_Internal_Rela *irelend)
13363 {
13364 const Elf_Internal_Rela *irel;
13365 unsigned long opcode;
13366
13367 opcode = bfd_get_micromips_32 (abfd, ptr);
13368 if (find_match (opcode, bzc_insns_32) < 0)
13369 return FALSE;
13370
13371 for (irel = internal_relocs; irel < irelend; irel++)
13372 if (irel->r_offset == offset
13373 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13374 return TRUE;
13375
13376 return FALSE;
13377 }
13378
13379 /* Bitsize checking. */
13380 #define IS_BITSIZE(val, N) \
13381 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13382 - (1ULL << ((N) - 1))) == (val))
13383
13384 \f
13385 bfd_boolean
13386 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13387 struct bfd_link_info *link_info,
13388 bfd_boolean *again)
13389 {
13390 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13391 Elf_Internal_Shdr *symtab_hdr;
13392 Elf_Internal_Rela *internal_relocs;
13393 Elf_Internal_Rela *irel, *irelend;
13394 bfd_byte *contents = NULL;
13395 Elf_Internal_Sym *isymbuf = NULL;
13396
13397 /* Assume nothing changes. */
13398 *again = FALSE;
13399
13400 /* We don't have to do anything for a relocatable link, if
13401 this section does not have relocs, or if this is not a
13402 code section. */
13403
13404 if (bfd_link_relocatable (link_info)
13405 || (sec->flags & SEC_RELOC) == 0
13406 || sec->reloc_count == 0
13407 || (sec->flags & SEC_CODE) == 0)
13408 return TRUE;
13409
13410 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13411
13412 /* Get a copy of the native relocations. */
13413 internal_relocs = (_bfd_elf_link_read_relocs
13414 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13415 link_info->keep_memory));
13416 if (internal_relocs == NULL)
13417 goto error_return;
13418
13419 /* Walk through them looking for relaxing opportunities. */
13420 irelend = internal_relocs + sec->reloc_count;
13421 for (irel = internal_relocs; irel < irelend; irel++)
13422 {
13423 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13424 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13425 bfd_boolean target_is_micromips_code_p;
13426 unsigned long opcode;
13427 bfd_vma symval;
13428 bfd_vma pcrval;
13429 bfd_byte *ptr;
13430 int fndopc;
13431
13432 /* The number of bytes to delete for relaxation and from where
13433 to delete these bytes starting at irel->r_offset. */
13434 int delcnt = 0;
13435 int deloff = 0;
13436
13437 /* If this isn't something that can be relaxed, then ignore
13438 this reloc. */
13439 if (r_type != R_MICROMIPS_HI16
13440 && r_type != R_MICROMIPS_PC16_S1
13441 && r_type != R_MICROMIPS_26_S1)
13442 continue;
13443
13444 /* Get the section contents if we haven't done so already. */
13445 if (contents == NULL)
13446 {
13447 /* Get cached copy if it exists. */
13448 if (elf_section_data (sec)->this_hdr.contents != NULL)
13449 contents = elf_section_data (sec)->this_hdr.contents;
13450 /* Go get them off disk. */
13451 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13452 goto error_return;
13453 }
13454 ptr = contents + irel->r_offset;
13455
13456 /* Read this BFD's local symbols if we haven't done so already. */
13457 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13458 {
13459 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13460 if (isymbuf == NULL)
13461 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13462 symtab_hdr->sh_info, 0,
13463 NULL, NULL, NULL);
13464 if (isymbuf == NULL)
13465 goto error_return;
13466 }
13467
13468 /* Get the value of the symbol referred to by the reloc. */
13469 if (r_symndx < symtab_hdr->sh_info)
13470 {
13471 /* A local symbol. */
13472 Elf_Internal_Sym *isym;
13473 asection *sym_sec;
13474
13475 isym = isymbuf + r_symndx;
13476 if (isym->st_shndx == SHN_UNDEF)
13477 sym_sec = bfd_und_section_ptr;
13478 else if (isym->st_shndx == SHN_ABS)
13479 sym_sec = bfd_abs_section_ptr;
13480 else if (isym->st_shndx == SHN_COMMON)
13481 sym_sec = bfd_com_section_ptr;
13482 else
13483 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13484 symval = (isym->st_value
13485 + sym_sec->output_section->vma
13486 + sym_sec->output_offset);
13487 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13488 }
13489 else
13490 {
13491 unsigned long indx;
13492 struct elf_link_hash_entry *h;
13493
13494 /* An external symbol. */
13495 indx = r_symndx - symtab_hdr->sh_info;
13496 h = elf_sym_hashes (abfd)[indx];
13497 BFD_ASSERT (h != NULL);
13498
13499 if (h->root.type != bfd_link_hash_defined
13500 && h->root.type != bfd_link_hash_defweak)
13501 /* This appears to be a reference to an undefined
13502 symbol. Just ignore it -- it will be caught by the
13503 regular reloc processing. */
13504 continue;
13505
13506 symval = (h->root.u.def.value
13507 + h->root.u.def.section->output_section->vma
13508 + h->root.u.def.section->output_offset);
13509 target_is_micromips_code_p = (!h->needs_plt
13510 && ELF_ST_IS_MICROMIPS (h->other));
13511 }
13512
13513
13514 /* For simplicity of coding, we are going to modify the
13515 section contents, the section relocs, and the BFD symbol
13516 table. We must tell the rest of the code not to free up this
13517 information. It would be possible to instead create a table
13518 of changes which have to be made, as is done in coff-mips.c;
13519 that would be more work, but would require less memory when
13520 the linker is run. */
13521
13522 /* Only 32-bit instructions relaxed. */
13523 if (irel->r_offset + 4 > sec->size)
13524 continue;
13525
13526 opcode = bfd_get_micromips_32 (abfd, ptr);
13527
13528 /* This is the pc-relative distance from the instruction the
13529 relocation is applied to, to the symbol referred. */
13530 pcrval = (symval
13531 - (sec->output_section->vma + sec->output_offset)
13532 - irel->r_offset);
13533
13534 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13535 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13536 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13537
13538 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13539
13540 where pcrval has first to be adjusted to apply against the LO16
13541 location (we make the adjustment later on, when we have figured
13542 out the offset). */
13543 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13544 {
13545 bfd_boolean bzc = FALSE;
13546 unsigned long nextopc;
13547 unsigned long reg;
13548 bfd_vma offset;
13549
13550 /* Give up if the previous reloc was a HI16 against this symbol
13551 too. */
13552 if (irel > internal_relocs
13553 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13554 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13555 continue;
13556
13557 /* Or if the next reloc is not a LO16 against this symbol. */
13558 if (irel + 1 >= irelend
13559 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13560 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13561 continue;
13562
13563 /* Or if the second next reloc is a LO16 against this symbol too. */
13564 if (irel + 2 >= irelend
13565 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13566 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13567 continue;
13568
13569 /* See if the LUI instruction *might* be in a branch delay slot.
13570 We check whether what looks like a 16-bit branch or jump is
13571 actually an immediate argument to a compact branch, and let
13572 it through if so. */
13573 if (irel->r_offset >= 2
13574 && check_br16_dslot (abfd, ptr - 2)
13575 && !(irel->r_offset >= 4
13576 && (bzc = check_relocated_bzc (abfd,
13577 ptr - 4, irel->r_offset - 4,
13578 internal_relocs, irelend))))
13579 continue;
13580 if (irel->r_offset >= 4
13581 && !bzc
13582 && check_br32_dslot (abfd, ptr - 4))
13583 continue;
13584
13585 reg = OP32_SREG (opcode);
13586
13587 /* We only relax adjacent instructions or ones separated with
13588 a branch or jump that has a delay slot. The branch or jump
13589 must not fiddle with the register used to hold the address.
13590 Subtract 4 for the LUI itself. */
13591 offset = irel[1].r_offset - irel[0].r_offset;
13592 switch (offset - 4)
13593 {
13594 case 0:
13595 break;
13596 case 2:
13597 if (check_br16 (abfd, ptr + 4, reg))
13598 break;
13599 continue;
13600 case 4:
13601 if (check_br32 (abfd, ptr + 4, reg))
13602 break;
13603 continue;
13604 default:
13605 continue;
13606 }
13607
13608 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13609
13610 /* Give up unless the same register is used with both
13611 relocations. */
13612 if (OP32_SREG (nextopc) != reg)
13613 continue;
13614
13615 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13616 and rounding up to take masking of the two LSBs into account. */
13617 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13618
13619 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13620 if (IS_BITSIZE (symval, 16))
13621 {
13622 /* Fix the relocation's type. */
13623 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13624
13625 /* Instructions using R_MICROMIPS_LO16 have the base or
13626 source register in bits 20:16. This register becomes $0
13627 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13628 nextopc &= ~0x001f0000;
13629 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13630 contents + irel[1].r_offset);
13631 }
13632
13633 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13634 We add 4 to take LUI deletion into account while checking
13635 the PC-relative distance. */
13636 else if (symval % 4 == 0
13637 && IS_BITSIZE (pcrval + 4, 25)
13638 && MATCH (nextopc, addiu_insn)
13639 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13640 && OP16_VALID_REG (OP32_TREG (nextopc)))
13641 {
13642 /* Fix the relocation's type. */
13643 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13644
13645 /* Replace ADDIU with the ADDIUPC version. */
13646 nextopc = (addiupc_insn.match
13647 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13648
13649 bfd_put_micromips_32 (abfd, nextopc,
13650 contents + irel[1].r_offset);
13651 }
13652
13653 /* Can't do anything, give up, sigh... */
13654 else
13655 continue;
13656
13657 /* Fix the relocation's type. */
13658 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13659
13660 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13661 delcnt = 4;
13662 deloff = 0;
13663 }
13664
13665 /* Compact branch relaxation -- due to the multitude of macros
13666 employed by the compiler/assembler, compact branches are not
13667 always generated. Obviously, this can/will be fixed elsewhere,
13668 but there is no drawback in double checking it here. */
13669 else if (r_type == R_MICROMIPS_PC16_S1
13670 && irel->r_offset + 5 < sec->size
13671 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13672 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13673 && ((!insn32
13674 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13675 nop_insn_16) ? 2 : 0))
13676 || (irel->r_offset + 7 < sec->size
13677 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13678 ptr + 4),
13679 nop_insn_32) ? 4 : 0))))
13680 {
13681 unsigned long reg;
13682
13683 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13684
13685 /* Replace BEQZ/BNEZ with the compact version. */
13686 opcode = (bzc_insns_32[fndopc].match
13687 | BZC32_REG_FIELD (reg)
13688 | (opcode & 0xffff)); /* Addend value. */
13689
13690 bfd_put_micromips_32 (abfd, opcode, ptr);
13691
13692 /* Delete the delay slot NOP: two or four bytes from
13693 irel->offset + 4; delcnt has already been set above. */
13694 deloff = 4;
13695 }
13696
13697 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13698 to check the distance from the next instruction, so subtract 2. */
13699 else if (!insn32
13700 && r_type == R_MICROMIPS_PC16_S1
13701 && IS_BITSIZE (pcrval - 2, 11)
13702 && find_match (opcode, b_insns_32) >= 0)
13703 {
13704 /* Fix the relocation's type. */
13705 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13706
13707 /* Replace the 32-bit opcode with a 16-bit opcode. */
13708 bfd_put_16 (abfd,
13709 (b_insn_16.match
13710 | (opcode & 0x3ff)), /* Addend value. */
13711 ptr);
13712
13713 /* Delete 2 bytes from irel->r_offset + 2. */
13714 delcnt = 2;
13715 deloff = 2;
13716 }
13717
13718 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13719 to check the distance from the next instruction, so subtract 2. */
13720 else if (!insn32
13721 && r_type == R_MICROMIPS_PC16_S1
13722 && IS_BITSIZE (pcrval - 2, 8)
13723 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13724 && OP16_VALID_REG (OP32_SREG (opcode)))
13725 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13726 && OP16_VALID_REG (OP32_TREG (opcode)))))
13727 {
13728 unsigned long reg;
13729
13730 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13731
13732 /* Fix the relocation's type. */
13733 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13734
13735 /* Replace the 32-bit opcode with a 16-bit opcode. */
13736 bfd_put_16 (abfd,
13737 (bz_insns_16[fndopc].match
13738 | BZ16_REG_FIELD (reg)
13739 | (opcode & 0x7f)), /* Addend value. */
13740 ptr);
13741
13742 /* Delete 2 bytes from irel->r_offset + 2. */
13743 delcnt = 2;
13744 deloff = 2;
13745 }
13746
13747 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13748 else if (!insn32
13749 && r_type == R_MICROMIPS_26_S1
13750 && target_is_micromips_code_p
13751 && irel->r_offset + 7 < sec->size
13752 && MATCH (opcode, jal_insn_32_bd32))
13753 {
13754 unsigned long n32opc;
13755 bfd_boolean relaxed = FALSE;
13756
13757 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13758
13759 if (MATCH (n32opc, nop_insn_32))
13760 {
13761 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13762 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13763
13764 relaxed = TRUE;
13765 }
13766 else if (find_match (n32opc, move_insns_32) >= 0)
13767 {
13768 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13769 bfd_put_16 (abfd,
13770 (move_insn_16.match
13771 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13772 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13773 ptr + 4);
13774
13775 relaxed = TRUE;
13776 }
13777 /* Other 32-bit instructions relaxable to 16-bit
13778 instructions will be handled here later. */
13779
13780 if (relaxed)
13781 {
13782 /* JAL with 32-bit delay slot that is changed to a JALS
13783 with 16-bit delay slot. */
13784 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13785
13786 /* Delete 2 bytes from irel->r_offset + 6. */
13787 delcnt = 2;
13788 deloff = 6;
13789 }
13790 }
13791
13792 if (delcnt != 0)
13793 {
13794 /* Note that we've changed the relocs, section contents, etc. */
13795 elf_section_data (sec)->relocs = internal_relocs;
13796 elf_section_data (sec)->this_hdr.contents = contents;
13797 symtab_hdr->contents = (unsigned char *) isymbuf;
13798
13799 /* Delete bytes depending on the delcnt and deloff. */
13800 if (!mips_elf_relax_delete_bytes (abfd, sec,
13801 irel->r_offset + deloff, delcnt))
13802 goto error_return;
13803
13804 /* That will change things, so we should relax again.
13805 Note that this is not required, and it may be slow. */
13806 *again = TRUE;
13807 }
13808 }
13809
13810 if (isymbuf != NULL
13811 && symtab_hdr->contents != (unsigned char *) isymbuf)
13812 {
13813 if (! link_info->keep_memory)
13814 free (isymbuf);
13815 else
13816 {
13817 /* Cache the symbols for elf_link_input_bfd. */
13818 symtab_hdr->contents = (unsigned char *) isymbuf;
13819 }
13820 }
13821
13822 if (contents != NULL
13823 && elf_section_data (sec)->this_hdr.contents != contents)
13824 {
13825 if (! link_info->keep_memory)
13826 free (contents);
13827 else
13828 {
13829 /* Cache the section contents for elf_link_input_bfd. */
13830 elf_section_data (sec)->this_hdr.contents = contents;
13831 }
13832 }
13833
13834 if (internal_relocs != NULL
13835 && elf_section_data (sec)->relocs != internal_relocs)
13836 free (internal_relocs);
13837
13838 return TRUE;
13839
13840 error_return:
13841 if (isymbuf != NULL
13842 && symtab_hdr->contents != (unsigned char *) isymbuf)
13843 free (isymbuf);
13844 if (contents != NULL
13845 && elf_section_data (sec)->this_hdr.contents != contents)
13846 free (contents);
13847 if (internal_relocs != NULL
13848 && elf_section_data (sec)->relocs != internal_relocs)
13849 free (internal_relocs);
13850
13851 return FALSE;
13852 }
13853 \f
13854 /* Create a MIPS ELF linker hash table. */
13855
13856 struct bfd_link_hash_table *
13857 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13858 {
13859 struct mips_elf_link_hash_table *ret;
13860 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13861
13862 ret = bfd_zmalloc (amt);
13863 if (ret == NULL)
13864 return NULL;
13865
13866 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13867 mips_elf_link_hash_newfunc,
13868 sizeof (struct mips_elf_link_hash_entry),
13869 MIPS_ELF_DATA))
13870 {
13871 free (ret);
13872 return NULL;
13873 }
13874 ret->root.init_plt_refcount.plist = NULL;
13875 ret->root.init_plt_offset.plist = NULL;
13876
13877 return &ret->root.root;
13878 }
13879
13880 /* Likewise, but indicate that the target is VxWorks. */
13881
13882 struct bfd_link_hash_table *
13883 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13884 {
13885 struct bfd_link_hash_table *ret;
13886
13887 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13888 if (ret)
13889 {
13890 struct mips_elf_link_hash_table *htab;
13891
13892 htab = (struct mips_elf_link_hash_table *) ret;
13893 htab->use_plts_and_copy_relocs = TRUE;
13894 htab->is_vxworks = TRUE;
13895 }
13896 return ret;
13897 }
13898
13899 /* A function that the linker calls if we are allowed to use PLTs
13900 and copy relocs. */
13901
13902 void
13903 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13904 {
13905 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13906 }
13907
13908 /* A function that the linker calls to select between all or only
13909 32-bit microMIPS instructions, and between making or ignoring
13910 branch relocation checks for invalid transitions between ISA modes. */
13911
13912 void
13913 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13914 bfd_boolean ignore_branch_isa)
13915 {
13916 mips_elf_hash_table (info)->insn32 = insn32;
13917 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13918 }
13919 \f
13920 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13921
13922 struct mips_mach_extension
13923 {
13924 unsigned long extension, base;
13925 };
13926
13927
13928 /* An array describing how BFD machines relate to one another. The entries
13929 are ordered topologically with MIPS I extensions listed last. */
13930
13931 static const struct mips_mach_extension mips_mach_extensions[] =
13932 {
13933 /* MIPS64r2 extensions. */
13934 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13935 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13936 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13937 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13938 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13939
13940 /* MIPS64 extensions. */
13941 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13942 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13943 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13944
13945 /* MIPS V extensions. */
13946 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13947
13948 /* R10000 extensions. */
13949 { bfd_mach_mips12000, bfd_mach_mips10000 },
13950 { bfd_mach_mips14000, bfd_mach_mips10000 },
13951 { bfd_mach_mips16000, bfd_mach_mips10000 },
13952
13953 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13954 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13955 better to allow vr5400 and vr5500 code to be merged anyway, since
13956 many libraries will just use the core ISA. Perhaps we could add
13957 some sort of ASE flag if this ever proves a problem. */
13958 { bfd_mach_mips5500, bfd_mach_mips5400 },
13959 { bfd_mach_mips5400, bfd_mach_mips5000 },
13960
13961 /* MIPS IV extensions. */
13962 { bfd_mach_mips5, bfd_mach_mips8000 },
13963 { bfd_mach_mips10000, bfd_mach_mips8000 },
13964 { bfd_mach_mips5000, bfd_mach_mips8000 },
13965 { bfd_mach_mips7000, bfd_mach_mips8000 },
13966 { bfd_mach_mips9000, bfd_mach_mips8000 },
13967
13968 /* VR4100 extensions. */
13969 { bfd_mach_mips4120, bfd_mach_mips4100 },
13970 { bfd_mach_mips4111, bfd_mach_mips4100 },
13971
13972 /* MIPS III extensions. */
13973 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13974 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13975 { bfd_mach_mips8000, bfd_mach_mips4000 },
13976 { bfd_mach_mips4650, bfd_mach_mips4000 },
13977 { bfd_mach_mips4600, bfd_mach_mips4000 },
13978 { bfd_mach_mips4400, bfd_mach_mips4000 },
13979 { bfd_mach_mips4300, bfd_mach_mips4000 },
13980 { bfd_mach_mips4100, bfd_mach_mips4000 },
13981 { bfd_mach_mips5900, bfd_mach_mips4000 },
13982
13983 /* MIPS32r3 extensions. */
13984 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
13985
13986 /* MIPS32r2 extensions. */
13987 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
13988
13989 /* MIPS32 extensions. */
13990 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13991
13992 /* MIPS II extensions. */
13993 { bfd_mach_mips4000, bfd_mach_mips6000 },
13994 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13995 { bfd_mach_mips4010, bfd_mach_mips6000 },
13996
13997 /* MIPS I extensions. */
13998 { bfd_mach_mips6000, bfd_mach_mips3000 },
13999 { bfd_mach_mips3900, bfd_mach_mips3000 }
14000 };
14001
14002 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14003
14004 static bfd_boolean
14005 mips_mach_extends_p (unsigned long base, unsigned long extension)
14006 {
14007 size_t i;
14008
14009 if (extension == base)
14010 return TRUE;
14011
14012 if (base == bfd_mach_mipsisa32
14013 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14014 return TRUE;
14015
14016 if (base == bfd_mach_mipsisa32r2
14017 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14018 return TRUE;
14019
14020 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14021 if (extension == mips_mach_extensions[i].extension)
14022 {
14023 extension = mips_mach_extensions[i].base;
14024 if (extension == base)
14025 return TRUE;
14026 }
14027
14028 return FALSE;
14029 }
14030
14031 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14032
14033 static unsigned long
14034 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14035 {
14036 switch (isa_ext)
14037 {
14038 case AFL_EXT_3900: return bfd_mach_mips3900;
14039 case AFL_EXT_4010: return bfd_mach_mips4010;
14040 case AFL_EXT_4100: return bfd_mach_mips4100;
14041 case AFL_EXT_4111: return bfd_mach_mips4111;
14042 case AFL_EXT_4120: return bfd_mach_mips4120;
14043 case AFL_EXT_4650: return bfd_mach_mips4650;
14044 case AFL_EXT_5400: return bfd_mach_mips5400;
14045 case AFL_EXT_5500: return bfd_mach_mips5500;
14046 case AFL_EXT_5900: return bfd_mach_mips5900;
14047 case AFL_EXT_10000: return bfd_mach_mips10000;
14048 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14049 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14050 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14051 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14052 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14053 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14054 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14055 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14056 default: return bfd_mach_mips3000;
14057 }
14058 }
14059
14060 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14061
14062 unsigned int
14063 bfd_mips_isa_ext (bfd *abfd)
14064 {
14065 switch (bfd_get_mach (abfd))
14066 {
14067 case bfd_mach_mips3900: return AFL_EXT_3900;
14068 case bfd_mach_mips4010: return AFL_EXT_4010;
14069 case bfd_mach_mips4100: return AFL_EXT_4100;
14070 case bfd_mach_mips4111: return AFL_EXT_4111;
14071 case bfd_mach_mips4120: return AFL_EXT_4120;
14072 case bfd_mach_mips4650: return AFL_EXT_4650;
14073 case bfd_mach_mips5400: return AFL_EXT_5400;
14074 case bfd_mach_mips5500: return AFL_EXT_5500;
14075 case bfd_mach_mips5900: return AFL_EXT_5900;
14076 case bfd_mach_mips10000: return AFL_EXT_10000;
14077 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14078 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14079 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14080 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14081 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14082 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14083 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14084 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14085 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14086 case bfd_mach_mips_interaptiv_mr2:
14087 return AFL_EXT_INTERAPTIV_MR2;
14088 default: return 0;
14089 }
14090 }
14091
14092 /* Encode ISA level and revision as a single value. */
14093 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14094
14095 /* Decode a single value into level and revision. */
14096 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14097 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14098
14099 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14100
14101 static void
14102 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14103 {
14104 int new_isa = 0;
14105 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14106 {
14107 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14108 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14109 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14110 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14111 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14112 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14113 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14114 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14115 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14116 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14117 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14118 default:
14119 _bfd_error_handler
14120 /* xgettext:c-format */
14121 (_("%B: Unknown architecture %s"),
14122 abfd, bfd_printable_name (abfd));
14123 }
14124
14125 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14126 {
14127 abiflags->isa_level = ISA_LEVEL (new_isa);
14128 abiflags->isa_rev = ISA_REV (new_isa);
14129 }
14130
14131 /* Update the isa_ext if ABFD describes a further extension. */
14132 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14133 bfd_get_mach (abfd)))
14134 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14135 }
14136
14137 /* Return true if the given ELF header flags describe a 32-bit binary. */
14138
14139 static bfd_boolean
14140 mips_32bit_flags_p (flagword flags)
14141 {
14142 return ((flags & EF_MIPS_32BITMODE) != 0
14143 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14144 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14145 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14146 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14147 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14148 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14149 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14150 }
14151
14152 /* Infer the content of the ABI flags based on the elf header. */
14153
14154 static void
14155 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14156 {
14157 obj_attribute *in_attr;
14158
14159 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14160 update_mips_abiflags_isa (abfd, abiflags);
14161
14162 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14163 abiflags->gpr_size = AFL_REG_32;
14164 else
14165 abiflags->gpr_size = AFL_REG_64;
14166
14167 abiflags->cpr1_size = AFL_REG_NONE;
14168
14169 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14170 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14171
14172 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14173 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14174 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14175 && abiflags->gpr_size == AFL_REG_32))
14176 abiflags->cpr1_size = AFL_REG_32;
14177 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14178 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14179 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14180 abiflags->cpr1_size = AFL_REG_64;
14181
14182 abiflags->cpr2_size = AFL_REG_NONE;
14183
14184 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14185 abiflags->ases |= AFL_ASE_MDMX;
14186 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14187 abiflags->ases |= AFL_ASE_MIPS16;
14188 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14189 abiflags->ases |= AFL_ASE_MICROMIPS;
14190
14191 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14192 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14193 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14194 && abiflags->isa_level >= 32
14195 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14196 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14197 }
14198
14199 /* We need to use a special link routine to handle the .reginfo and
14200 the .mdebug sections. We need to merge all instances of these
14201 sections together, not write them all out sequentially. */
14202
14203 bfd_boolean
14204 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14205 {
14206 asection *o;
14207 struct bfd_link_order *p;
14208 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14209 asection *rtproc_sec, *abiflags_sec;
14210 Elf32_RegInfo reginfo;
14211 struct ecoff_debug_info debug;
14212 struct mips_htab_traverse_info hti;
14213 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14214 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14215 HDRR *symhdr = &debug.symbolic_header;
14216 void *mdebug_handle = NULL;
14217 asection *s;
14218 EXTR esym;
14219 unsigned int i;
14220 bfd_size_type amt;
14221 struct mips_elf_link_hash_table *htab;
14222
14223 static const char * const secname[] =
14224 {
14225 ".text", ".init", ".fini", ".data",
14226 ".rodata", ".sdata", ".sbss", ".bss"
14227 };
14228 static const int sc[] =
14229 {
14230 scText, scInit, scFini, scData,
14231 scRData, scSData, scSBss, scBss
14232 };
14233
14234 htab = mips_elf_hash_table (info);
14235 BFD_ASSERT (htab != NULL);
14236
14237 /* Sort the dynamic symbols so that those with GOT entries come after
14238 those without. */
14239 if (!mips_elf_sort_hash_table (abfd, info))
14240 return FALSE;
14241
14242 /* Create any scheduled LA25 stubs. */
14243 hti.info = info;
14244 hti.output_bfd = abfd;
14245 hti.error = FALSE;
14246 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14247 if (hti.error)
14248 return FALSE;
14249
14250 /* Get a value for the GP register. */
14251 if (elf_gp (abfd) == 0)
14252 {
14253 struct bfd_link_hash_entry *h;
14254
14255 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14256 if (h != NULL && h->type == bfd_link_hash_defined)
14257 elf_gp (abfd) = (h->u.def.value
14258 + h->u.def.section->output_section->vma
14259 + h->u.def.section->output_offset);
14260 else if (htab->is_vxworks
14261 && (h = bfd_link_hash_lookup (info->hash,
14262 "_GLOBAL_OFFSET_TABLE_",
14263 FALSE, FALSE, TRUE))
14264 && h->type == bfd_link_hash_defined)
14265 elf_gp (abfd) = (h->u.def.section->output_section->vma
14266 + h->u.def.section->output_offset
14267 + h->u.def.value);
14268 else if (bfd_link_relocatable (info))
14269 {
14270 bfd_vma lo = MINUS_ONE;
14271
14272 /* Find the GP-relative section with the lowest offset. */
14273 for (o = abfd->sections; o != NULL; o = o->next)
14274 if (o->vma < lo
14275 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14276 lo = o->vma;
14277
14278 /* And calculate GP relative to that. */
14279 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14280 }
14281 else
14282 {
14283 /* If the relocate_section function needs to do a reloc
14284 involving the GP value, it should make a reloc_dangerous
14285 callback to warn that GP is not defined. */
14286 }
14287 }
14288
14289 /* Go through the sections and collect the .reginfo and .mdebug
14290 information. */
14291 abiflags_sec = NULL;
14292 reginfo_sec = NULL;
14293 mdebug_sec = NULL;
14294 gptab_data_sec = NULL;
14295 gptab_bss_sec = NULL;
14296 for (o = abfd->sections; o != NULL; o = o->next)
14297 {
14298 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14299 {
14300 /* We have found the .MIPS.abiflags section in the output file.
14301 Look through all the link_orders comprising it and remove them.
14302 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14303 for (p = o->map_head.link_order; p != NULL; p = p->next)
14304 {
14305 asection *input_section;
14306
14307 if (p->type != bfd_indirect_link_order)
14308 {
14309 if (p->type == bfd_data_link_order)
14310 continue;
14311 abort ();
14312 }
14313
14314 input_section = p->u.indirect.section;
14315
14316 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14317 elf_link_input_bfd ignores this section. */
14318 input_section->flags &= ~SEC_HAS_CONTENTS;
14319 }
14320
14321 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14322 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14323
14324 /* Skip this section later on (I don't think this currently
14325 matters, but someday it might). */
14326 o->map_head.link_order = NULL;
14327
14328 abiflags_sec = o;
14329 }
14330
14331 if (strcmp (o->name, ".reginfo") == 0)
14332 {
14333 memset (&reginfo, 0, sizeof reginfo);
14334
14335 /* We have found the .reginfo section in the output file.
14336 Look through all the link_orders comprising it and merge
14337 the information together. */
14338 for (p = o->map_head.link_order; p != NULL; p = p->next)
14339 {
14340 asection *input_section;
14341 bfd *input_bfd;
14342 Elf32_External_RegInfo ext;
14343 Elf32_RegInfo sub;
14344
14345 if (p->type != bfd_indirect_link_order)
14346 {
14347 if (p->type == bfd_data_link_order)
14348 continue;
14349 abort ();
14350 }
14351
14352 input_section = p->u.indirect.section;
14353 input_bfd = input_section->owner;
14354
14355 if (! bfd_get_section_contents (input_bfd, input_section,
14356 &ext, 0, sizeof ext))
14357 return FALSE;
14358
14359 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14360
14361 reginfo.ri_gprmask |= sub.ri_gprmask;
14362 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14363 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14364 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14365 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14366
14367 /* ri_gp_value is set by the function
14368 `_bfd_mips_elf_section_processing' when the section is
14369 finally written out. */
14370
14371 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14372 elf_link_input_bfd ignores this section. */
14373 input_section->flags &= ~SEC_HAS_CONTENTS;
14374 }
14375
14376 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14377 if (o->size != sizeof (Elf32_External_RegInfo))
14378 {
14379 _bfd_error_handler
14380 (_("%B: .reginfo section size should be %d bytes, "
14381 "actual size is %d"),
14382 abfd, sizeof (Elf32_External_RegInfo), o->size);
14383
14384 return FALSE;
14385 }
14386
14387 /* Skip this section later on (I don't think this currently
14388 matters, but someday it might). */
14389 o->map_head.link_order = NULL;
14390
14391 reginfo_sec = o;
14392 }
14393
14394 if (strcmp (o->name, ".mdebug") == 0)
14395 {
14396 struct extsym_info einfo;
14397 bfd_vma last;
14398
14399 /* We have found the .mdebug section in the output file.
14400 Look through all the link_orders comprising it and merge
14401 the information together. */
14402 symhdr->magic = swap->sym_magic;
14403 /* FIXME: What should the version stamp be? */
14404 symhdr->vstamp = 0;
14405 symhdr->ilineMax = 0;
14406 symhdr->cbLine = 0;
14407 symhdr->idnMax = 0;
14408 symhdr->ipdMax = 0;
14409 symhdr->isymMax = 0;
14410 symhdr->ioptMax = 0;
14411 symhdr->iauxMax = 0;
14412 symhdr->issMax = 0;
14413 symhdr->issExtMax = 0;
14414 symhdr->ifdMax = 0;
14415 symhdr->crfd = 0;
14416 symhdr->iextMax = 0;
14417
14418 /* We accumulate the debugging information itself in the
14419 debug_info structure. */
14420 debug.line = NULL;
14421 debug.external_dnr = NULL;
14422 debug.external_pdr = NULL;
14423 debug.external_sym = NULL;
14424 debug.external_opt = NULL;
14425 debug.external_aux = NULL;
14426 debug.ss = NULL;
14427 debug.ssext = debug.ssext_end = NULL;
14428 debug.external_fdr = NULL;
14429 debug.external_rfd = NULL;
14430 debug.external_ext = debug.external_ext_end = NULL;
14431
14432 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14433 if (mdebug_handle == NULL)
14434 return FALSE;
14435
14436 esym.jmptbl = 0;
14437 esym.cobol_main = 0;
14438 esym.weakext = 0;
14439 esym.reserved = 0;
14440 esym.ifd = ifdNil;
14441 esym.asym.iss = issNil;
14442 esym.asym.st = stLocal;
14443 esym.asym.reserved = 0;
14444 esym.asym.index = indexNil;
14445 last = 0;
14446 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14447 {
14448 esym.asym.sc = sc[i];
14449 s = bfd_get_section_by_name (abfd, secname[i]);
14450 if (s != NULL)
14451 {
14452 esym.asym.value = s->vma;
14453 last = s->vma + s->size;
14454 }
14455 else
14456 esym.asym.value = last;
14457 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14458 secname[i], &esym))
14459 return FALSE;
14460 }
14461
14462 for (p = o->map_head.link_order; p != NULL; p = p->next)
14463 {
14464 asection *input_section;
14465 bfd *input_bfd;
14466 const struct ecoff_debug_swap *input_swap;
14467 struct ecoff_debug_info input_debug;
14468 char *eraw_src;
14469 char *eraw_end;
14470
14471 if (p->type != bfd_indirect_link_order)
14472 {
14473 if (p->type == bfd_data_link_order)
14474 continue;
14475 abort ();
14476 }
14477
14478 input_section = p->u.indirect.section;
14479 input_bfd = input_section->owner;
14480
14481 if (!is_mips_elf (input_bfd))
14482 {
14483 /* I don't know what a non MIPS ELF bfd would be
14484 doing with a .mdebug section, but I don't really
14485 want to deal with it. */
14486 continue;
14487 }
14488
14489 input_swap = (get_elf_backend_data (input_bfd)
14490 ->elf_backend_ecoff_debug_swap);
14491
14492 BFD_ASSERT (p->size == input_section->size);
14493
14494 /* The ECOFF linking code expects that we have already
14495 read in the debugging information and set up an
14496 ecoff_debug_info structure, so we do that now. */
14497 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14498 &input_debug))
14499 return FALSE;
14500
14501 if (! (bfd_ecoff_debug_accumulate
14502 (mdebug_handle, abfd, &debug, swap, input_bfd,
14503 &input_debug, input_swap, info)))
14504 return FALSE;
14505
14506 /* Loop through the external symbols. For each one with
14507 interesting information, try to find the symbol in
14508 the linker global hash table and save the information
14509 for the output external symbols. */
14510 eraw_src = input_debug.external_ext;
14511 eraw_end = (eraw_src
14512 + (input_debug.symbolic_header.iextMax
14513 * input_swap->external_ext_size));
14514 for (;
14515 eraw_src < eraw_end;
14516 eraw_src += input_swap->external_ext_size)
14517 {
14518 EXTR ext;
14519 const char *name;
14520 struct mips_elf_link_hash_entry *h;
14521
14522 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14523 if (ext.asym.sc == scNil
14524 || ext.asym.sc == scUndefined
14525 || ext.asym.sc == scSUndefined)
14526 continue;
14527
14528 name = input_debug.ssext + ext.asym.iss;
14529 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14530 name, FALSE, FALSE, TRUE);
14531 if (h == NULL || h->esym.ifd != -2)
14532 continue;
14533
14534 if (ext.ifd != -1)
14535 {
14536 BFD_ASSERT (ext.ifd
14537 < input_debug.symbolic_header.ifdMax);
14538 ext.ifd = input_debug.ifdmap[ext.ifd];
14539 }
14540
14541 h->esym = ext;
14542 }
14543
14544 /* Free up the information we just read. */
14545 free (input_debug.line);
14546 free (input_debug.external_dnr);
14547 free (input_debug.external_pdr);
14548 free (input_debug.external_sym);
14549 free (input_debug.external_opt);
14550 free (input_debug.external_aux);
14551 free (input_debug.ss);
14552 free (input_debug.ssext);
14553 free (input_debug.external_fdr);
14554 free (input_debug.external_rfd);
14555 free (input_debug.external_ext);
14556
14557 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14558 elf_link_input_bfd ignores this section. */
14559 input_section->flags &= ~SEC_HAS_CONTENTS;
14560 }
14561
14562 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14563 {
14564 /* Create .rtproc section. */
14565 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14566 if (rtproc_sec == NULL)
14567 {
14568 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14569 | SEC_LINKER_CREATED | SEC_READONLY);
14570
14571 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14572 ".rtproc",
14573 flags);
14574 if (rtproc_sec == NULL
14575 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14576 return FALSE;
14577 }
14578
14579 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14580 info, rtproc_sec,
14581 &debug))
14582 return FALSE;
14583 }
14584
14585 /* Build the external symbol information. */
14586 einfo.abfd = abfd;
14587 einfo.info = info;
14588 einfo.debug = &debug;
14589 einfo.swap = swap;
14590 einfo.failed = FALSE;
14591 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14592 mips_elf_output_extsym, &einfo);
14593 if (einfo.failed)
14594 return FALSE;
14595
14596 /* Set the size of the .mdebug section. */
14597 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14598
14599 /* Skip this section later on (I don't think this currently
14600 matters, but someday it might). */
14601 o->map_head.link_order = NULL;
14602
14603 mdebug_sec = o;
14604 }
14605
14606 if (CONST_STRNEQ (o->name, ".gptab."))
14607 {
14608 const char *subname;
14609 unsigned int c;
14610 Elf32_gptab *tab;
14611 Elf32_External_gptab *ext_tab;
14612 unsigned int j;
14613
14614 /* The .gptab.sdata and .gptab.sbss sections hold
14615 information describing how the small data area would
14616 change depending upon the -G switch. These sections
14617 not used in executables files. */
14618 if (! bfd_link_relocatable (info))
14619 {
14620 for (p = o->map_head.link_order; p != NULL; p = p->next)
14621 {
14622 asection *input_section;
14623
14624 if (p->type != bfd_indirect_link_order)
14625 {
14626 if (p->type == bfd_data_link_order)
14627 continue;
14628 abort ();
14629 }
14630
14631 input_section = p->u.indirect.section;
14632
14633 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14634 elf_link_input_bfd ignores this section. */
14635 input_section->flags &= ~SEC_HAS_CONTENTS;
14636 }
14637
14638 /* Skip this section later on (I don't think this
14639 currently matters, but someday it might). */
14640 o->map_head.link_order = NULL;
14641
14642 /* Really remove the section. */
14643 bfd_section_list_remove (abfd, o);
14644 --abfd->section_count;
14645
14646 continue;
14647 }
14648
14649 /* There is one gptab for initialized data, and one for
14650 uninitialized data. */
14651 if (strcmp (o->name, ".gptab.sdata") == 0)
14652 gptab_data_sec = o;
14653 else if (strcmp (o->name, ".gptab.sbss") == 0)
14654 gptab_bss_sec = o;
14655 else
14656 {
14657 _bfd_error_handler
14658 /* xgettext:c-format */
14659 (_("%B: illegal section name `%A'"), abfd, o);
14660 bfd_set_error (bfd_error_nonrepresentable_section);
14661 return FALSE;
14662 }
14663
14664 /* The linker script always combines .gptab.data and
14665 .gptab.sdata into .gptab.sdata, and likewise for
14666 .gptab.bss and .gptab.sbss. It is possible that there is
14667 no .sdata or .sbss section in the output file, in which
14668 case we must change the name of the output section. */
14669 subname = o->name + sizeof ".gptab" - 1;
14670 if (bfd_get_section_by_name (abfd, subname) == NULL)
14671 {
14672 if (o == gptab_data_sec)
14673 o->name = ".gptab.data";
14674 else
14675 o->name = ".gptab.bss";
14676 subname = o->name + sizeof ".gptab" - 1;
14677 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14678 }
14679
14680 /* Set up the first entry. */
14681 c = 1;
14682 amt = c * sizeof (Elf32_gptab);
14683 tab = bfd_malloc (amt);
14684 if (tab == NULL)
14685 return FALSE;
14686 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14687 tab[0].gt_header.gt_unused = 0;
14688
14689 /* Combine the input sections. */
14690 for (p = o->map_head.link_order; p != NULL; p = p->next)
14691 {
14692 asection *input_section;
14693 bfd *input_bfd;
14694 bfd_size_type size;
14695 unsigned long last;
14696 bfd_size_type gpentry;
14697
14698 if (p->type != bfd_indirect_link_order)
14699 {
14700 if (p->type == bfd_data_link_order)
14701 continue;
14702 abort ();
14703 }
14704
14705 input_section = p->u.indirect.section;
14706 input_bfd = input_section->owner;
14707
14708 /* Combine the gptab entries for this input section one
14709 by one. We know that the input gptab entries are
14710 sorted by ascending -G value. */
14711 size = input_section->size;
14712 last = 0;
14713 for (gpentry = sizeof (Elf32_External_gptab);
14714 gpentry < size;
14715 gpentry += sizeof (Elf32_External_gptab))
14716 {
14717 Elf32_External_gptab ext_gptab;
14718 Elf32_gptab int_gptab;
14719 unsigned long val;
14720 unsigned long add;
14721 bfd_boolean exact;
14722 unsigned int look;
14723
14724 if (! (bfd_get_section_contents
14725 (input_bfd, input_section, &ext_gptab, gpentry,
14726 sizeof (Elf32_External_gptab))))
14727 {
14728 free (tab);
14729 return FALSE;
14730 }
14731
14732 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14733 &int_gptab);
14734 val = int_gptab.gt_entry.gt_g_value;
14735 add = int_gptab.gt_entry.gt_bytes - last;
14736
14737 exact = FALSE;
14738 for (look = 1; look < c; look++)
14739 {
14740 if (tab[look].gt_entry.gt_g_value >= val)
14741 tab[look].gt_entry.gt_bytes += add;
14742
14743 if (tab[look].gt_entry.gt_g_value == val)
14744 exact = TRUE;
14745 }
14746
14747 if (! exact)
14748 {
14749 Elf32_gptab *new_tab;
14750 unsigned int max;
14751
14752 /* We need a new table entry. */
14753 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14754 new_tab = bfd_realloc (tab, amt);
14755 if (new_tab == NULL)
14756 {
14757 free (tab);
14758 return FALSE;
14759 }
14760 tab = new_tab;
14761 tab[c].gt_entry.gt_g_value = val;
14762 tab[c].gt_entry.gt_bytes = add;
14763
14764 /* Merge in the size for the next smallest -G
14765 value, since that will be implied by this new
14766 value. */
14767 max = 0;
14768 for (look = 1; look < c; look++)
14769 {
14770 if (tab[look].gt_entry.gt_g_value < val
14771 && (max == 0
14772 || (tab[look].gt_entry.gt_g_value
14773 > tab[max].gt_entry.gt_g_value)))
14774 max = look;
14775 }
14776 if (max != 0)
14777 tab[c].gt_entry.gt_bytes +=
14778 tab[max].gt_entry.gt_bytes;
14779
14780 ++c;
14781 }
14782
14783 last = int_gptab.gt_entry.gt_bytes;
14784 }
14785
14786 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14787 elf_link_input_bfd ignores this section. */
14788 input_section->flags &= ~SEC_HAS_CONTENTS;
14789 }
14790
14791 /* The table must be sorted by -G value. */
14792 if (c > 2)
14793 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14794
14795 /* Swap out the table. */
14796 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14797 ext_tab = bfd_alloc (abfd, amt);
14798 if (ext_tab == NULL)
14799 {
14800 free (tab);
14801 return FALSE;
14802 }
14803
14804 for (j = 0; j < c; j++)
14805 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14806 free (tab);
14807
14808 o->size = c * sizeof (Elf32_External_gptab);
14809 o->contents = (bfd_byte *) ext_tab;
14810
14811 /* Skip this section later on (I don't think this currently
14812 matters, but someday it might). */
14813 o->map_head.link_order = NULL;
14814 }
14815 }
14816
14817 /* Invoke the regular ELF backend linker to do all the work. */
14818 if (!bfd_elf_final_link (abfd, info))
14819 return FALSE;
14820
14821 /* Now write out the computed sections. */
14822
14823 if (abiflags_sec != NULL)
14824 {
14825 Elf_External_ABIFlags_v0 ext;
14826 Elf_Internal_ABIFlags_v0 *abiflags;
14827
14828 abiflags = &mips_elf_tdata (abfd)->abiflags;
14829
14830 /* Set up the abiflags if no valid input sections were found. */
14831 if (!mips_elf_tdata (abfd)->abiflags_valid)
14832 {
14833 infer_mips_abiflags (abfd, abiflags);
14834 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14835 }
14836 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14837 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14838 return FALSE;
14839 }
14840
14841 if (reginfo_sec != NULL)
14842 {
14843 Elf32_External_RegInfo ext;
14844
14845 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14846 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14847 return FALSE;
14848 }
14849
14850 if (mdebug_sec != NULL)
14851 {
14852 BFD_ASSERT (abfd->output_has_begun);
14853 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14854 swap, info,
14855 mdebug_sec->filepos))
14856 return FALSE;
14857
14858 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14859 }
14860
14861 if (gptab_data_sec != NULL)
14862 {
14863 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14864 gptab_data_sec->contents,
14865 0, gptab_data_sec->size))
14866 return FALSE;
14867 }
14868
14869 if (gptab_bss_sec != NULL)
14870 {
14871 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14872 gptab_bss_sec->contents,
14873 0, gptab_bss_sec->size))
14874 return FALSE;
14875 }
14876
14877 if (SGI_COMPAT (abfd))
14878 {
14879 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14880 if (rtproc_sec != NULL)
14881 {
14882 if (! bfd_set_section_contents (abfd, rtproc_sec,
14883 rtproc_sec->contents,
14884 0, rtproc_sec->size))
14885 return FALSE;
14886 }
14887 }
14888
14889 return TRUE;
14890 }
14891 \f
14892 /* Merge object file header flags from IBFD into OBFD. Raise an error
14893 if there are conflicting settings. */
14894
14895 static bfd_boolean
14896 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14897 {
14898 bfd *obfd = info->output_bfd;
14899 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14900 flagword old_flags;
14901 flagword new_flags;
14902 bfd_boolean ok;
14903
14904 new_flags = elf_elfheader (ibfd)->e_flags;
14905 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14906 old_flags = elf_elfheader (obfd)->e_flags;
14907
14908 /* Check flag compatibility. */
14909
14910 new_flags &= ~EF_MIPS_NOREORDER;
14911 old_flags &= ~EF_MIPS_NOREORDER;
14912
14913 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14914 doesn't seem to matter. */
14915 new_flags &= ~EF_MIPS_XGOT;
14916 old_flags &= ~EF_MIPS_XGOT;
14917
14918 /* MIPSpro generates ucode info in n64 objects. Again, we should
14919 just be able to ignore this. */
14920 new_flags &= ~EF_MIPS_UCODE;
14921 old_flags &= ~EF_MIPS_UCODE;
14922
14923 /* DSOs should only be linked with CPIC code. */
14924 if ((ibfd->flags & DYNAMIC) != 0)
14925 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14926
14927 if (new_flags == old_flags)
14928 return TRUE;
14929
14930 ok = TRUE;
14931
14932 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14933 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14934 {
14935 _bfd_error_handler
14936 (_("%B: warning: linking abicalls files with non-abicalls files"),
14937 ibfd);
14938 ok = TRUE;
14939 }
14940
14941 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14942 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14943 if (! (new_flags & EF_MIPS_PIC))
14944 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14945
14946 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14947 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14948
14949 /* Compare the ISAs. */
14950 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14951 {
14952 _bfd_error_handler
14953 (_("%B: linking 32-bit code with 64-bit code"),
14954 ibfd);
14955 ok = FALSE;
14956 }
14957 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14958 {
14959 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14960 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14961 {
14962 /* Copy the architecture info from IBFD to OBFD. Also copy
14963 the 32-bit flag (if set) so that we continue to recognise
14964 OBFD as a 32-bit binary. */
14965 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14966 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14967 elf_elfheader (obfd)->e_flags
14968 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14969
14970 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14971 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14972
14973 /* Copy across the ABI flags if OBFD doesn't use them
14974 and if that was what caused us to treat IBFD as 32-bit. */
14975 if ((old_flags & EF_MIPS_ABI) == 0
14976 && mips_32bit_flags_p (new_flags)
14977 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14978 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14979 }
14980 else
14981 {
14982 /* The ISAs aren't compatible. */
14983 _bfd_error_handler
14984 /* xgettext:c-format */
14985 (_("%B: linking %s module with previous %s modules"),
14986 ibfd,
14987 bfd_printable_name (ibfd),
14988 bfd_printable_name (obfd));
14989 ok = FALSE;
14990 }
14991 }
14992
14993 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14994 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14995
14996 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14997 does set EI_CLASS differently from any 32-bit ABI. */
14998 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14999 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15000 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15001 {
15002 /* Only error if both are set (to different values). */
15003 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15004 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15005 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15006 {
15007 _bfd_error_handler
15008 /* xgettext:c-format */
15009 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15010 ibfd,
15011 elf_mips_abi_name (ibfd),
15012 elf_mips_abi_name (obfd));
15013 ok = FALSE;
15014 }
15015 new_flags &= ~EF_MIPS_ABI;
15016 old_flags &= ~EF_MIPS_ABI;
15017 }
15018
15019 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15020 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15021 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15022 {
15023 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15024 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15025 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15026 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15027 int micro_mis = old_m16 && new_micro;
15028 int m16_mis = old_micro && new_m16;
15029
15030 if (m16_mis || micro_mis)
15031 {
15032 _bfd_error_handler
15033 /* xgettext:c-format */
15034 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15035 ibfd,
15036 m16_mis ? "MIPS16" : "microMIPS",
15037 m16_mis ? "microMIPS" : "MIPS16");
15038 ok = FALSE;
15039 }
15040
15041 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15042
15043 new_flags &= ~ EF_MIPS_ARCH_ASE;
15044 old_flags &= ~ EF_MIPS_ARCH_ASE;
15045 }
15046
15047 /* Compare NaN encodings. */
15048 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15049 {
15050 /* xgettext:c-format */
15051 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15052 ibfd,
15053 (new_flags & EF_MIPS_NAN2008
15054 ? "-mnan=2008" : "-mnan=legacy"),
15055 (old_flags & EF_MIPS_NAN2008
15056 ? "-mnan=2008" : "-mnan=legacy"));
15057 ok = FALSE;
15058 new_flags &= ~EF_MIPS_NAN2008;
15059 old_flags &= ~EF_MIPS_NAN2008;
15060 }
15061
15062 /* Compare FP64 state. */
15063 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15064 {
15065 /* xgettext:c-format */
15066 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15067 ibfd,
15068 (new_flags & EF_MIPS_FP64
15069 ? "-mfp64" : "-mfp32"),
15070 (old_flags & EF_MIPS_FP64
15071 ? "-mfp64" : "-mfp32"));
15072 ok = FALSE;
15073 new_flags &= ~EF_MIPS_FP64;
15074 old_flags &= ~EF_MIPS_FP64;
15075 }
15076
15077 /* Warn about any other mismatches */
15078 if (new_flags != old_flags)
15079 {
15080 /* xgettext:c-format */
15081 _bfd_error_handler
15082 (_("%B: uses different e_flags (%#x) fields than previous modules "
15083 "(%#x)"),
15084 ibfd, new_flags, old_flags);
15085 ok = FALSE;
15086 }
15087
15088 return ok;
15089 }
15090
15091 /* Merge object attributes from IBFD into OBFD. Raise an error if
15092 there are conflicting attributes. */
15093 static bfd_boolean
15094 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15095 {
15096 bfd *obfd = info->output_bfd;
15097 obj_attribute *in_attr;
15098 obj_attribute *out_attr;
15099 bfd *abi_fp_bfd;
15100 bfd *abi_msa_bfd;
15101
15102 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15103 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15104 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15105 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15106
15107 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15108 if (!abi_msa_bfd
15109 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15110 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15111
15112 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15113 {
15114 /* This is the first object. Copy the attributes. */
15115 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15116
15117 /* Use the Tag_null value to indicate the attributes have been
15118 initialized. */
15119 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15120
15121 return TRUE;
15122 }
15123
15124 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15125 non-conflicting ones. */
15126 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15127 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15128 {
15129 int out_fp, in_fp;
15130
15131 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15132 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15133 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15134 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15135 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15136 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15137 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15138 || in_fp == Val_GNU_MIPS_ABI_FP_64
15139 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15140 {
15141 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15142 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15143 }
15144 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15145 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15146 || out_fp == Val_GNU_MIPS_ABI_FP_64
15147 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15148 /* Keep the current setting. */;
15149 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15150 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15151 {
15152 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15153 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15154 }
15155 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15156 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15157 /* Keep the current setting. */;
15158 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15159 {
15160 const char *out_string, *in_string;
15161
15162 out_string = _bfd_mips_fp_abi_string (out_fp);
15163 in_string = _bfd_mips_fp_abi_string (in_fp);
15164 /* First warn about cases involving unrecognised ABIs. */
15165 if (!out_string && !in_string)
15166 /* xgettext:c-format */
15167 _bfd_error_handler
15168 (_("Warning: %B uses unknown floating point ABI %d "
15169 "(set by %B), %B uses unknown floating point ABI %d"),
15170 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15171 else if (!out_string)
15172 _bfd_error_handler
15173 /* xgettext:c-format */
15174 (_("Warning: %B uses unknown floating point ABI %d "
15175 "(set by %B), %B uses %s"),
15176 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15177 else if (!in_string)
15178 _bfd_error_handler
15179 /* xgettext:c-format */
15180 (_("Warning: %B uses %s (set by %B), "
15181 "%B uses unknown floating point ABI %d"),
15182 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15183 else
15184 {
15185 /* If one of the bfds is soft-float, the other must be
15186 hard-float. The exact choice of hard-float ABI isn't
15187 really relevant to the error message. */
15188 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15189 out_string = "-mhard-float";
15190 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15191 in_string = "-mhard-float";
15192 _bfd_error_handler
15193 /* xgettext:c-format */
15194 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15195 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15196 }
15197 }
15198 }
15199
15200 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15201 non-conflicting ones. */
15202 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15203 {
15204 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15205 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15206 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15207 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15208 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15209 {
15210 case Val_GNU_MIPS_ABI_MSA_128:
15211 _bfd_error_handler
15212 /* xgettext:c-format */
15213 (_("Warning: %B uses %s (set by %B), "
15214 "%B uses unknown MSA ABI %d"),
15215 obfd, "-mmsa", abi_msa_bfd,
15216 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15217 break;
15218
15219 default:
15220 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15221 {
15222 case Val_GNU_MIPS_ABI_MSA_128:
15223 _bfd_error_handler
15224 /* xgettext:c-format */
15225 (_("Warning: %B uses unknown MSA ABI %d "
15226 "(set by %B), %B uses %s"),
15227 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15228 abi_msa_bfd, ibfd, "-mmsa");
15229 break;
15230
15231 default:
15232 _bfd_error_handler
15233 /* xgettext:c-format */
15234 (_("Warning: %B uses unknown MSA ABI %d "
15235 "(set by %B), %B uses unknown MSA ABI %d"),
15236 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15237 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15238 break;
15239 }
15240 }
15241 }
15242
15243 /* Merge Tag_compatibility attributes and any common GNU ones. */
15244 return _bfd_elf_merge_object_attributes (ibfd, info);
15245 }
15246
15247 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15248 there are conflicting settings. */
15249
15250 static bfd_boolean
15251 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15252 {
15253 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15254 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15255 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15256
15257 /* Update the output abiflags fp_abi using the computed fp_abi. */
15258 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15259
15260 #define max(a, b) ((a) > (b) ? (a) : (b))
15261 /* Merge abiflags. */
15262 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15263 in_tdata->abiflags.isa_level);
15264 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15265 in_tdata->abiflags.isa_rev);
15266 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15267 in_tdata->abiflags.gpr_size);
15268 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15269 in_tdata->abiflags.cpr1_size);
15270 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15271 in_tdata->abiflags.cpr2_size);
15272 #undef max
15273 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15274 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15275
15276 return TRUE;
15277 }
15278
15279 /* Merge backend specific data from an object file to the output
15280 object file when linking. */
15281
15282 bfd_boolean
15283 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15284 {
15285 bfd *obfd = info->output_bfd;
15286 struct mips_elf_obj_tdata *out_tdata;
15287 struct mips_elf_obj_tdata *in_tdata;
15288 bfd_boolean null_input_bfd = TRUE;
15289 asection *sec;
15290 bfd_boolean ok;
15291
15292 /* Check if we have the same endianness. */
15293 if (! _bfd_generic_verify_endian_match (ibfd, info))
15294 {
15295 _bfd_error_handler
15296 (_("%B: endianness incompatible with that of the selected emulation"),
15297 ibfd);
15298 return FALSE;
15299 }
15300
15301 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15302 return TRUE;
15303
15304 in_tdata = mips_elf_tdata (ibfd);
15305 out_tdata = mips_elf_tdata (obfd);
15306
15307 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15308 {
15309 _bfd_error_handler
15310 (_("%B: ABI is incompatible with that of the selected emulation"),
15311 ibfd);
15312 return FALSE;
15313 }
15314
15315 /* Check to see if the input BFD actually contains any sections. If not,
15316 then it has no attributes, and its flags may not have been initialized
15317 either, but it cannot actually cause any incompatibility. */
15318 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15319 {
15320 /* Ignore synthetic sections and empty .text, .data and .bss sections
15321 which are automatically generated by gas. Also ignore fake
15322 (s)common sections, since merely defining a common symbol does
15323 not affect compatibility. */
15324 if ((sec->flags & SEC_IS_COMMON) == 0
15325 && strcmp (sec->name, ".reginfo")
15326 && strcmp (sec->name, ".mdebug")
15327 && (sec->size != 0
15328 || (strcmp (sec->name, ".text")
15329 && strcmp (sec->name, ".data")
15330 && strcmp (sec->name, ".bss"))))
15331 {
15332 null_input_bfd = FALSE;
15333 break;
15334 }
15335 }
15336 if (null_input_bfd)
15337 return TRUE;
15338
15339 /* Populate abiflags using existing information. */
15340 if (in_tdata->abiflags_valid)
15341 {
15342 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15343 Elf_Internal_ABIFlags_v0 in_abiflags;
15344 Elf_Internal_ABIFlags_v0 abiflags;
15345
15346 /* Set up the FP ABI attribute from the abiflags if it is not already
15347 set. */
15348 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15349 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15350
15351 infer_mips_abiflags (ibfd, &abiflags);
15352 in_abiflags = in_tdata->abiflags;
15353
15354 /* It is not possible to infer the correct ISA revision
15355 for R3 or R5 so drop down to R2 for the checks. */
15356 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15357 in_abiflags.isa_rev = 2;
15358
15359 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15360 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15361 _bfd_error_handler
15362 (_("%B: warning: Inconsistent ISA between e_flags and "
15363 ".MIPS.abiflags"), ibfd);
15364 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15365 && in_abiflags.fp_abi != abiflags.fp_abi)
15366 _bfd_error_handler
15367 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15368 ".MIPS.abiflags"), ibfd);
15369 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15370 _bfd_error_handler
15371 (_("%B: warning: Inconsistent ASEs between e_flags and "
15372 ".MIPS.abiflags"), ibfd);
15373 /* The isa_ext is allowed to be an extension of what can be inferred
15374 from e_flags. */
15375 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15376 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15377 _bfd_error_handler
15378 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15379 ".MIPS.abiflags"), ibfd);
15380 if (in_abiflags.flags2 != 0)
15381 _bfd_error_handler
15382 (_("%B: warning: Unexpected flag in the flags2 field of "
15383 ".MIPS.abiflags (0x%lx)"), ibfd,
15384 in_abiflags.flags2);
15385 }
15386 else
15387 {
15388 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15389 in_tdata->abiflags_valid = TRUE;
15390 }
15391
15392 if (!out_tdata->abiflags_valid)
15393 {
15394 /* Copy input abiflags if output abiflags are not already valid. */
15395 out_tdata->abiflags = in_tdata->abiflags;
15396 out_tdata->abiflags_valid = TRUE;
15397 }
15398
15399 if (! elf_flags_init (obfd))
15400 {
15401 elf_flags_init (obfd) = TRUE;
15402 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15403 elf_elfheader (obfd)->e_ident[EI_CLASS]
15404 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15405
15406 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15407 && (bfd_get_arch_info (obfd)->the_default
15408 || mips_mach_extends_p (bfd_get_mach (obfd),
15409 bfd_get_mach (ibfd))))
15410 {
15411 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15412 bfd_get_mach (ibfd)))
15413 return FALSE;
15414
15415 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15416 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15417 }
15418
15419 ok = TRUE;
15420 }
15421 else
15422 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15423
15424 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15425
15426 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15427
15428 if (!ok)
15429 {
15430 bfd_set_error (bfd_error_bad_value);
15431 return FALSE;
15432 }
15433
15434 return TRUE;
15435 }
15436
15437 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15438
15439 bfd_boolean
15440 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15441 {
15442 BFD_ASSERT (!elf_flags_init (abfd)
15443 || elf_elfheader (abfd)->e_flags == flags);
15444
15445 elf_elfheader (abfd)->e_flags = flags;
15446 elf_flags_init (abfd) = TRUE;
15447 return TRUE;
15448 }
15449
15450 char *
15451 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15452 {
15453 switch (dtag)
15454 {
15455 default: return "";
15456 case DT_MIPS_RLD_VERSION:
15457 return "MIPS_RLD_VERSION";
15458 case DT_MIPS_TIME_STAMP:
15459 return "MIPS_TIME_STAMP";
15460 case DT_MIPS_ICHECKSUM:
15461 return "MIPS_ICHECKSUM";
15462 case DT_MIPS_IVERSION:
15463 return "MIPS_IVERSION";
15464 case DT_MIPS_FLAGS:
15465 return "MIPS_FLAGS";
15466 case DT_MIPS_BASE_ADDRESS:
15467 return "MIPS_BASE_ADDRESS";
15468 case DT_MIPS_MSYM:
15469 return "MIPS_MSYM";
15470 case DT_MIPS_CONFLICT:
15471 return "MIPS_CONFLICT";
15472 case DT_MIPS_LIBLIST:
15473 return "MIPS_LIBLIST";
15474 case DT_MIPS_LOCAL_GOTNO:
15475 return "MIPS_LOCAL_GOTNO";
15476 case DT_MIPS_CONFLICTNO:
15477 return "MIPS_CONFLICTNO";
15478 case DT_MIPS_LIBLISTNO:
15479 return "MIPS_LIBLISTNO";
15480 case DT_MIPS_SYMTABNO:
15481 return "MIPS_SYMTABNO";
15482 case DT_MIPS_UNREFEXTNO:
15483 return "MIPS_UNREFEXTNO";
15484 case DT_MIPS_GOTSYM:
15485 return "MIPS_GOTSYM";
15486 case DT_MIPS_HIPAGENO:
15487 return "MIPS_HIPAGENO";
15488 case DT_MIPS_RLD_MAP:
15489 return "MIPS_RLD_MAP";
15490 case DT_MIPS_RLD_MAP_REL:
15491 return "MIPS_RLD_MAP_REL";
15492 case DT_MIPS_DELTA_CLASS:
15493 return "MIPS_DELTA_CLASS";
15494 case DT_MIPS_DELTA_CLASS_NO:
15495 return "MIPS_DELTA_CLASS_NO";
15496 case DT_MIPS_DELTA_INSTANCE:
15497 return "MIPS_DELTA_INSTANCE";
15498 case DT_MIPS_DELTA_INSTANCE_NO:
15499 return "MIPS_DELTA_INSTANCE_NO";
15500 case DT_MIPS_DELTA_RELOC:
15501 return "MIPS_DELTA_RELOC";
15502 case DT_MIPS_DELTA_RELOC_NO:
15503 return "MIPS_DELTA_RELOC_NO";
15504 case DT_MIPS_DELTA_SYM:
15505 return "MIPS_DELTA_SYM";
15506 case DT_MIPS_DELTA_SYM_NO:
15507 return "MIPS_DELTA_SYM_NO";
15508 case DT_MIPS_DELTA_CLASSSYM:
15509 return "MIPS_DELTA_CLASSSYM";
15510 case DT_MIPS_DELTA_CLASSSYM_NO:
15511 return "MIPS_DELTA_CLASSSYM_NO";
15512 case DT_MIPS_CXX_FLAGS:
15513 return "MIPS_CXX_FLAGS";
15514 case DT_MIPS_PIXIE_INIT:
15515 return "MIPS_PIXIE_INIT";
15516 case DT_MIPS_SYMBOL_LIB:
15517 return "MIPS_SYMBOL_LIB";
15518 case DT_MIPS_LOCALPAGE_GOTIDX:
15519 return "MIPS_LOCALPAGE_GOTIDX";
15520 case DT_MIPS_LOCAL_GOTIDX:
15521 return "MIPS_LOCAL_GOTIDX";
15522 case DT_MIPS_HIDDEN_GOTIDX:
15523 return "MIPS_HIDDEN_GOTIDX";
15524 case DT_MIPS_PROTECTED_GOTIDX:
15525 return "MIPS_PROTECTED_GOT_IDX";
15526 case DT_MIPS_OPTIONS:
15527 return "MIPS_OPTIONS";
15528 case DT_MIPS_INTERFACE:
15529 return "MIPS_INTERFACE";
15530 case DT_MIPS_DYNSTR_ALIGN:
15531 return "DT_MIPS_DYNSTR_ALIGN";
15532 case DT_MIPS_INTERFACE_SIZE:
15533 return "DT_MIPS_INTERFACE_SIZE";
15534 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15535 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15536 case DT_MIPS_PERF_SUFFIX:
15537 return "DT_MIPS_PERF_SUFFIX";
15538 case DT_MIPS_COMPACT_SIZE:
15539 return "DT_MIPS_COMPACT_SIZE";
15540 case DT_MIPS_GP_VALUE:
15541 return "DT_MIPS_GP_VALUE";
15542 case DT_MIPS_AUX_DYNAMIC:
15543 return "DT_MIPS_AUX_DYNAMIC";
15544 case DT_MIPS_PLTGOT:
15545 return "DT_MIPS_PLTGOT";
15546 case DT_MIPS_RWPLT:
15547 return "DT_MIPS_RWPLT";
15548 }
15549 }
15550
15551 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15552 not known. */
15553
15554 const char *
15555 _bfd_mips_fp_abi_string (int fp)
15556 {
15557 switch (fp)
15558 {
15559 /* These strings aren't translated because they're simply
15560 option lists. */
15561 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15562 return "-mdouble-float";
15563
15564 case Val_GNU_MIPS_ABI_FP_SINGLE:
15565 return "-msingle-float";
15566
15567 case Val_GNU_MIPS_ABI_FP_SOFT:
15568 return "-msoft-float";
15569
15570 case Val_GNU_MIPS_ABI_FP_OLD_64:
15571 return _("-mips32r2 -mfp64 (12 callee-saved)");
15572
15573 case Val_GNU_MIPS_ABI_FP_XX:
15574 return "-mfpxx";
15575
15576 case Val_GNU_MIPS_ABI_FP_64:
15577 return "-mgp32 -mfp64";
15578
15579 case Val_GNU_MIPS_ABI_FP_64A:
15580 return "-mgp32 -mfp64 -mno-odd-spreg";
15581
15582 default:
15583 return 0;
15584 }
15585 }
15586
15587 static void
15588 print_mips_ases (FILE *file, unsigned int mask)
15589 {
15590 if (mask & AFL_ASE_DSP)
15591 fputs ("\n\tDSP ASE", file);
15592 if (mask & AFL_ASE_DSPR2)
15593 fputs ("\n\tDSP R2 ASE", file);
15594 if (mask & AFL_ASE_DSPR3)
15595 fputs ("\n\tDSP R3 ASE", file);
15596 if (mask & AFL_ASE_EVA)
15597 fputs ("\n\tEnhanced VA Scheme", file);
15598 if (mask & AFL_ASE_MCU)
15599 fputs ("\n\tMCU (MicroController) ASE", file);
15600 if (mask & AFL_ASE_MDMX)
15601 fputs ("\n\tMDMX ASE", file);
15602 if (mask & AFL_ASE_MIPS3D)
15603 fputs ("\n\tMIPS-3D ASE", file);
15604 if (mask & AFL_ASE_MT)
15605 fputs ("\n\tMT ASE", file);
15606 if (mask & AFL_ASE_SMARTMIPS)
15607 fputs ("\n\tSmartMIPS ASE", file);
15608 if (mask & AFL_ASE_VIRT)
15609 fputs ("\n\tVZ ASE", file);
15610 if (mask & AFL_ASE_MSA)
15611 fputs ("\n\tMSA ASE", file);
15612 if (mask & AFL_ASE_MIPS16)
15613 fputs ("\n\tMIPS16 ASE", file);
15614 if (mask & AFL_ASE_MICROMIPS)
15615 fputs ("\n\tMICROMIPS ASE", file);
15616 if (mask & AFL_ASE_XPA)
15617 fputs ("\n\tXPA ASE", file);
15618 if (mask & AFL_ASE_MIPS16E2)
15619 fputs ("\n\tMIPS16e2 ASE", file);
15620 if (mask == 0)
15621 fprintf (file, "\n\t%s", _("None"));
15622 else if ((mask & ~AFL_ASE_MASK) != 0)
15623 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15624 }
15625
15626 static void
15627 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15628 {
15629 switch (isa_ext)
15630 {
15631 case 0:
15632 fputs (_("None"), file);
15633 break;
15634 case AFL_EXT_XLR:
15635 fputs ("RMI XLR", file);
15636 break;
15637 case AFL_EXT_OCTEON3:
15638 fputs ("Cavium Networks Octeon3", file);
15639 break;
15640 case AFL_EXT_OCTEON2:
15641 fputs ("Cavium Networks Octeon2", file);
15642 break;
15643 case AFL_EXT_OCTEONP:
15644 fputs ("Cavium Networks OcteonP", file);
15645 break;
15646 case AFL_EXT_LOONGSON_3A:
15647 fputs ("Loongson 3A", file);
15648 break;
15649 case AFL_EXT_OCTEON:
15650 fputs ("Cavium Networks Octeon", file);
15651 break;
15652 case AFL_EXT_5900:
15653 fputs ("Toshiba R5900", file);
15654 break;
15655 case AFL_EXT_4650:
15656 fputs ("MIPS R4650", file);
15657 break;
15658 case AFL_EXT_4010:
15659 fputs ("LSI R4010", file);
15660 break;
15661 case AFL_EXT_4100:
15662 fputs ("NEC VR4100", file);
15663 break;
15664 case AFL_EXT_3900:
15665 fputs ("Toshiba R3900", file);
15666 break;
15667 case AFL_EXT_10000:
15668 fputs ("MIPS R10000", file);
15669 break;
15670 case AFL_EXT_SB1:
15671 fputs ("Broadcom SB-1", file);
15672 break;
15673 case AFL_EXT_4111:
15674 fputs ("NEC VR4111/VR4181", file);
15675 break;
15676 case AFL_EXT_4120:
15677 fputs ("NEC VR4120", file);
15678 break;
15679 case AFL_EXT_5400:
15680 fputs ("NEC VR5400", file);
15681 break;
15682 case AFL_EXT_5500:
15683 fputs ("NEC VR5500", file);
15684 break;
15685 case AFL_EXT_LOONGSON_2E:
15686 fputs ("ST Microelectronics Loongson 2E", file);
15687 break;
15688 case AFL_EXT_LOONGSON_2F:
15689 fputs ("ST Microelectronics Loongson 2F", file);
15690 break;
15691 case AFL_EXT_INTERAPTIV_MR2:
15692 fputs ("Imagination interAptiv MR2", file);
15693 break;
15694 default:
15695 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15696 break;
15697 }
15698 }
15699
15700 static void
15701 print_mips_fp_abi_value (FILE *file, int val)
15702 {
15703 switch (val)
15704 {
15705 case Val_GNU_MIPS_ABI_FP_ANY:
15706 fprintf (file, _("Hard or soft float\n"));
15707 break;
15708 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15709 fprintf (file, _("Hard float (double precision)\n"));
15710 break;
15711 case Val_GNU_MIPS_ABI_FP_SINGLE:
15712 fprintf (file, _("Hard float (single precision)\n"));
15713 break;
15714 case Val_GNU_MIPS_ABI_FP_SOFT:
15715 fprintf (file, _("Soft float\n"));
15716 break;
15717 case Val_GNU_MIPS_ABI_FP_OLD_64:
15718 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15719 break;
15720 case Val_GNU_MIPS_ABI_FP_XX:
15721 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15722 break;
15723 case Val_GNU_MIPS_ABI_FP_64:
15724 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15725 break;
15726 case Val_GNU_MIPS_ABI_FP_64A:
15727 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15728 break;
15729 default:
15730 fprintf (file, "??? (%d)\n", val);
15731 break;
15732 }
15733 }
15734
15735 static int
15736 get_mips_reg_size (int reg_size)
15737 {
15738 return (reg_size == AFL_REG_NONE) ? 0
15739 : (reg_size == AFL_REG_32) ? 32
15740 : (reg_size == AFL_REG_64) ? 64
15741 : (reg_size == AFL_REG_128) ? 128
15742 : -1;
15743 }
15744
15745 bfd_boolean
15746 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15747 {
15748 FILE *file = ptr;
15749
15750 BFD_ASSERT (abfd != NULL && ptr != NULL);
15751
15752 /* Print normal ELF private data. */
15753 _bfd_elf_print_private_bfd_data (abfd, ptr);
15754
15755 /* xgettext:c-format */
15756 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15757
15758 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15759 fprintf (file, _(" [abi=O32]"));
15760 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15761 fprintf (file, _(" [abi=O64]"));
15762 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15763 fprintf (file, _(" [abi=EABI32]"));
15764 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15765 fprintf (file, _(" [abi=EABI64]"));
15766 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15767 fprintf (file, _(" [abi unknown]"));
15768 else if (ABI_N32_P (abfd))
15769 fprintf (file, _(" [abi=N32]"));
15770 else if (ABI_64_P (abfd))
15771 fprintf (file, _(" [abi=64]"));
15772 else
15773 fprintf (file, _(" [no abi set]"));
15774
15775 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15776 fprintf (file, " [mips1]");
15777 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15778 fprintf (file, " [mips2]");
15779 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15780 fprintf (file, " [mips3]");
15781 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15782 fprintf (file, " [mips4]");
15783 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15784 fprintf (file, " [mips5]");
15785 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15786 fprintf (file, " [mips32]");
15787 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15788 fprintf (file, " [mips64]");
15789 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15790 fprintf (file, " [mips32r2]");
15791 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15792 fprintf (file, " [mips64r2]");
15793 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15794 fprintf (file, " [mips32r6]");
15795 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15796 fprintf (file, " [mips64r6]");
15797 else
15798 fprintf (file, _(" [unknown ISA]"));
15799
15800 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15801 fprintf (file, " [mdmx]");
15802
15803 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15804 fprintf (file, " [mips16]");
15805
15806 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15807 fprintf (file, " [micromips]");
15808
15809 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15810 fprintf (file, " [nan2008]");
15811
15812 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15813 fprintf (file, " [old fp64]");
15814
15815 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15816 fprintf (file, " [32bitmode]");
15817 else
15818 fprintf (file, _(" [not 32bitmode]"));
15819
15820 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15821 fprintf (file, " [noreorder]");
15822
15823 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15824 fprintf (file, " [PIC]");
15825
15826 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15827 fprintf (file, " [CPIC]");
15828
15829 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15830 fprintf (file, " [XGOT]");
15831
15832 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15833 fprintf (file, " [UCODE]");
15834
15835 fputc ('\n', file);
15836
15837 if (mips_elf_tdata (abfd)->abiflags_valid)
15838 {
15839 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15840 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15841 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15842 if (abiflags->isa_rev > 1)
15843 fprintf (file, "r%d", abiflags->isa_rev);
15844 fprintf (file, "\nGPR size: %d",
15845 get_mips_reg_size (abiflags->gpr_size));
15846 fprintf (file, "\nCPR1 size: %d",
15847 get_mips_reg_size (abiflags->cpr1_size));
15848 fprintf (file, "\nCPR2 size: %d",
15849 get_mips_reg_size (abiflags->cpr2_size));
15850 fputs ("\nFP ABI: ", file);
15851 print_mips_fp_abi_value (file, abiflags->fp_abi);
15852 fputs ("ISA Extension: ", file);
15853 print_mips_isa_ext (file, abiflags->isa_ext);
15854 fputs ("\nASEs:", file);
15855 print_mips_ases (file, abiflags->ases);
15856 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15857 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15858 fputc ('\n', file);
15859 }
15860
15861 return TRUE;
15862 }
15863
15864 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15865 {
15866 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15867 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15868 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15869 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15870 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15871 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15872 { NULL, 0, 0, 0, 0 }
15873 };
15874
15875 /* Merge non visibility st_other attributes. Ensure that the
15876 STO_OPTIONAL flag is copied into h->other, even if this is not a
15877 definiton of the symbol. */
15878 void
15879 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15880 const Elf_Internal_Sym *isym,
15881 bfd_boolean definition,
15882 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15883 {
15884 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15885 {
15886 unsigned char other;
15887
15888 other = (definition ? isym->st_other : h->other);
15889 other &= ~ELF_ST_VISIBILITY (-1);
15890 h->other = other | ELF_ST_VISIBILITY (h->other);
15891 }
15892
15893 if (!definition
15894 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15895 h->other |= STO_OPTIONAL;
15896 }
15897
15898 /* Decide whether an undefined symbol is special and can be ignored.
15899 This is the case for OPTIONAL symbols on IRIX. */
15900 bfd_boolean
15901 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15902 {
15903 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15904 }
15905
15906 bfd_boolean
15907 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15908 {
15909 return (sym->st_shndx == SHN_COMMON
15910 || sym->st_shndx == SHN_MIPS_ACOMMON
15911 || sym->st_shndx == SHN_MIPS_SCOMMON);
15912 }
15913
15914 /* Return address for Ith PLT stub in section PLT, for relocation REL
15915 or (bfd_vma) -1 if it should not be included. */
15916
15917 bfd_vma
15918 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15919 const arelent *rel ATTRIBUTE_UNUSED)
15920 {
15921 return (plt->vma
15922 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15923 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15924 }
15925
15926 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15927 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15928 and .got.plt and also the slots may be of a different size each we walk
15929 the PLT manually fetching instructions and matching them against known
15930 patterns. To make things easier standard MIPS slots, if any, always come
15931 first. As we don't create proper ELF symbols we use the UDATA.I member
15932 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15933 with the ST_OTHER member of the ELF symbol. */
15934
15935 long
15936 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15937 long symcount ATTRIBUTE_UNUSED,
15938 asymbol **syms ATTRIBUTE_UNUSED,
15939 long dynsymcount, asymbol **dynsyms,
15940 asymbol **ret)
15941 {
15942 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15943 static const char microsuffix[] = "@micromipsplt";
15944 static const char m16suffix[] = "@mips16plt";
15945 static const char mipssuffix[] = "@plt";
15946
15947 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15948 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15949 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15950 Elf_Internal_Shdr *hdr;
15951 bfd_byte *plt_data;
15952 bfd_vma plt_offset;
15953 unsigned int other;
15954 bfd_vma entry_size;
15955 bfd_vma plt0_size;
15956 asection *relplt;
15957 bfd_vma opcode;
15958 asection *plt;
15959 asymbol *send;
15960 size_t size;
15961 char *names;
15962 long counti;
15963 arelent *p;
15964 asymbol *s;
15965 char *nend;
15966 long count;
15967 long pi;
15968 long i;
15969 long n;
15970
15971 *ret = NULL;
15972
15973 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15974 return 0;
15975
15976 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15977 if (relplt == NULL)
15978 return 0;
15979
15980 hdr = &elf_section_data (relplt)->this_hdr;
15981 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15982 return 0;
15983
15984 plt = bfd_get_section_by_name (abfd, ".plt");
15985 if (plt == NULL)
15986 return 0;
15987
15988 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15989 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15990 return -1;
15991 p = relplt->relocation;
15992
15993 /* Calculating the exact amount of space required for symbols would
15994 require two passes over the PLT, so just pessimise assuming two
15995 PLT slots per relocation. */
15996 count = relplt->size / hdr->sh_entsize;
15997 counti = count * bed->s->int_rels_per_ext_rel;
15998 size = 2 * count * sizeof (asymbol);
15999 size += count * (sizeof (mipssuffix) +
16000 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16001 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16002 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16003
16004 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16005 size += sizeof (asymbol) + sizeof (pltname);
16006
16007 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16008 return -1;
16009
16010 if (plt->size < 16)
16011 return -1;
16012
16013 s = *ret = bfd_malloc (size);
16014 if (s == NULL)
16015 return -1;
16016 send = s + 2 * count + 1;
16017
16018 names = (char *) send;
16019 nend = (char *) s + size;
16020 n = 0;
16021
16022 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16023 if (opcode == 0x3302fffe)
16024 {
16025 if (!micromips_p)
16026 return -1;
16027 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16028 other = STO_MICROMIPS;
16029 }
16030 else if (opcode == 0x0398c1d0)
16031 {
16032 if (!micromips_p)
16033 return -1;
16034 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16035 other = STO_MICROMIPS;
16036 }
16037 else
16038 {
16039 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16040 other = 0;
16041 }
16042
16043 s->the_bfd = abfd;
16044 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16045 s->section = plt;
16046 s->value = 0;
16047 s->name = names;
16048 s->udata.i = other;
16049 memcpy (names, pltname, sizeof (pltname));
16050 names += sizeof (pltname);
16051 ++s, ++n;
16052
16053 pi = 0;
16054 for (plt_offset = plt0_size;
16055 plt_offset + 8 <= plt->size && s < send;
16056 plt_offset += entry_size)
16057 {
16058 bfd_vma gotplt_addr;
16059 const char *suffix;
16060 bfd_vma gotplt_hi;
16061 bfd_vma gotplt_lo;
16062 size_t suffixlen;
16063
16064 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16065
16066 /* Check if the second word matches the expected MIPS16 instruction. */
16067 if (opcode == 0x651aeb00)
16068 {
16069 if (micromips_p)
16070 return -1;
16071 /* Truncated table??? */
16072 if (plt_offset + 16 > plt->size)
16073 break;
16074 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16075 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16076 suffixlen = sizeof (m16suffix);
16077 suffix = m16suffix;
16078 other = STO_MIPS16;
16079 }
16080 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16081 else if (opcode == 0xff220000)
16082 {
16083 if (!micromips_p)
16084 return -1;
16085 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16086 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16087 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16088 gotplt_lo <<= 2;
16089 gotplt_addr = gotplt_hi + gotplt_lo;
16090 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16091 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16092 suffixlen = sizeof (microsuffix);
16093 suffix = microsuffix;
16094 other = STO_MICROMIPS;
16095 }
16096 /* Likewise the expected microMIPS instruction (insn32 mode). */
16097 else if ((opcode & 0xffff0000) == 0xff2f0000)
16098 {
16099 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16100 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16101 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16102 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16103 gotplt_addr = gotplt_hi + gotplt_lo;
16104 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16105 suffixlen = sizeof (microsuffix);
16106 suffix = microsuffix;
16107 other = STO_MICROMIPS;
16108 }
16109 /* Otherwise assume standard MIPS code. */
16110 else
16111 {
16112 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16113 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16114 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16115 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16116 gotplt_addr = gotplt_hi + gotplt_lo;
16117 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16118 suffixlen = sizeof (mipssuffix);
16119 suffix = mipssuffix;
16120 other = 0;
16121 }
16122 /* Truncated table??? */
16123 if (plt_offset + entry_size > plt->size)
16124 break;
16125
16126 for (i = 0;
16127 i < count && p[pi].address != gotplt_addr;
16128 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16129
16130 if (i < count)
16131 {
16132 size_t namelen;
16133 size_t len;
16134
16135 *s = **p[pi].sym_ptr_ptr;
16136 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16137 we are defining a symbol, ensure one of them is set. */
16138 if ((s->flags & BSF_LOCAL) == 0)
16139 s->flags |= BSF_GLOBAL;
16140 s->flags |= BSF_SYNTHETIC;
16141 s->section = plt;
16142 s->value = plt_offset;
16143 s->name = names;
16144 s->udata.i = other;
16145
16146 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16147 namelen = len + suffixlen;
16148 if (names + namelen > nend)
16149 break;
16150
16151 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16152 names += len;
16153 memcpy (names, suffix, suffixlen);
16154 names += suffixlen;
16155
16156 ++s, ++n;
16157 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16158 }
16159 }
16160
16161 free (plt_data);
16162
16163 return n;
16164 }
16165
16166 /* Return the ABI flags associated with ABFD if available. */
16167
16168 Elf_Internal_ABIFlags_v0 *
16169 bfd_mips_elf_get_abiflags (bfd *abfd)
16170 {
16171 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16172
16173 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16174 }
16175
16176 void
16177 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16178 {
16179 struct mips_elf_link_hash_table *htab;
16180 Elf_Internal_Ehdr *i_ehdrp;
16181
16182 i_ehdrp = elf_elfheader (abfd);
16183 if (link_info)
16184 {
16185 htab = mips_elf_hash_table (link_info);
16186 BFD_ASSERT (htab != NULL);
16187
16188 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16189 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16190 }
16191
16192 _bfd_elf_post_process_headers (abfd, link_info);
16193
16194 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16195 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16196 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16197 }
16198
16199 int
16200 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16201 {
16202 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16203 }
16204
16205 /* Return the opcode for can't unwind. */
16206
16207 int
16208 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16209 {
16210 return COMPACT_EH_CANT_UNWIND_OPCODE;
16211 }
This page took 0.409681 seconds and 4 git commands to generate.