NDS32/opcodes: Add audio ISA extension and modify the disassemble implemnt.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/ecoff.h"
44 #include "coff/mips.h"
45
46 #include "hashtab.h"
47
48 /* Types of TLS GOT entry. */
49 enum mips_got_tls_type {
50 GOT_TLS_NONE,
51 GOT_TLS_GD,
52 GOT_TLS_LDM,
53 GOT_TLS_IE
54 };
55
56 /* This structure is used to hold information about one GOT entry.
57 There are four types of entry:
58
59 (1) an absolute address
60 requires: abfd == NULL
61 fields: d.address
62
63 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
64 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
65 fields: abfd, symndx, d.addend, tls_type
66
67 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
68 requires: abfd != NULL, symndx == -1
69 fields: d.h, tls_type
70
71 (4) a TLS LDM slot
72 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
73 fields: none; there's only one of these per GOT. */
74 struct mips_got_entry
75 {
76 /* One input bfd that needs the GOT entry. */
77 bfd *abfd;
78 /* The index of the symbol, as stored in the relocation r_info, if
79 we have a local symbol; -1 otherwise. */
80 long symndx;
81 union
82 {
83 /* If abfd == NULL, an address that must be stored in the got. */
84 bfd_vma address;
85 /* If abfd != NULL && symndx != -1, the addend of the relocation
86 that should be added to the symbol value. */
87 bfd_vma addend;
88 /* If abfd != NULL && symndx == -1, the hash table entry
89 corresponding to a symbol in the GOT. The symbol's entry
90 is in the local area if h->global_got_area is GGA_NONE,
91 otherwise it is in the global area. */
92 struct mips_elf_link_hash_entry *h;
93 } d;
94
95 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
96 symbol entry with r_symndx == 0. */
97 unsigned char tls_type;
98
99 /* True if we have filled in the GOT contents for a TLS entry,
100 and created the associated relocations. */
101 unsigned char tls_initialized;
102
103 /* The offset from the beginning of the .got section to the entry
104 corresponding to this symbol+addend. If it's a global symbol
105 whose offset is yet to be decided, it's going to be -1. */
106 long gotidx;
107 };
108
109 /* This structure represents a GOT page reference from an input bfd.
110 Each instance represents a symbol + ADDEND, where the representation
111 of the symbol depends on whether it is local to the input bfd.
112 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
113 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
114
115 Page references with SYMNDX >= 0 always become page references
116 in the output. Page references with SYMNDX < 0 only become page
117 references if the symbol binds locally; in other cases, the page
118 reference decays to a global GOT reference. */
119 struct mips_got_page_ref
120 {
121 long symndx;
122 union
123 {
124 struct mips_elf_link_hash_entry *h;
125 bfd *abfd;
126 } u;
127 bfd_vma addend;
128 };
129
130 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
131 The structures form a non-overlapping list that is sorted by increasing
132 MIN_ADDEND. */
133 struct mips_got_page_range
134 {
135 struct mips_got_page_range *next;
136 bfd_signed_vma min_addend;
137 bfd_signed_vma max_addend;
138 };
139
140 /* This structure describes the range of addends that are applied to page
141 relocations against a given section. */
142 struct mips_got_page_entry
143 {
144 /* The section that these entries are based on. */
145 asection *sec;
146 /* The ranges for this page entry. */
147 struct mips_got_page_range *ranges;
148 /* The maximum number of page entries needed for RANGES. */
149 bfd_vma num_pages;
150 };
151
152 /* This structure is used to hold .got information when linking. */
153
154 struct mips_got_info
155 {
156 /* The number of global .got entries. */
157 unsigned int global_gotno;
158 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
159 unsigned int reloc_only_gotno;
160 /* The number of .got slots used for TLS. */
161 unsigned int tls_gotno;
162 /* The first unused TLS .got entry. Used only during
163 mips_elf_initialize_tls_index. */
164 unsigned int tls_assigned_gotno;
165 /* The number of local .got entries, eventually including page entries. */
166 unsigned int local_gotno;
167 /* The maximum number of page entries needed. */
168 unsigned int page_gotno;
169 /* The number of relocations needed for the GOT entries. */
170 unsigned int relocs;
171 /* The first unused local .got entry. */
172 unsigned int assigned_low_gotno;
173 /* The last unused local .got entry. */
174 unsigned int assigned_high_gotno;
175 /* A hash table holding members of the got. */
176 struct htab *got_entries;
177 /* A hash table holding mips_got_page_ref structures. */
178 struct htab *got_page_refs;
179 /* A hash table of mips_got_page_entry structures. */
180 struct htab *got_page_entries;
181 /* In multi-got links, a pointer to the next got (err, rather, most
182 of the time, it points to the previous got). */
183 struct mips_got_info *next;
184 };
185
186 /* Structure passed when merging bfds' gots. */
187
188 struct mips_elf_got_per_bfd_arg
189 {
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
211 };
212
213 /* A structure used to pass information to htab_traverse callbacks
214 when laying out the GOT. */
215
216 struct mips_elf_traverse_got_arg
217 {
218 struct bfd_link_info *info;
219 struct mips_got_info *g;
220 int value;
221 };
222
223 struct _mips_elf_section_data
224 {
225 struct bfd_elf_section_data elf;
226 union
227 {
228 bfd_byte *tdata;
229 } u;
230 };
231
232 #define mips_elf_section_data(sec) \
233 ((struct _mips_elf_section_data *) elf_section_data (sec))
234
235 #define is_mips_elf(bfd) \
236 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
237 && elf_tdata (bfd) != NULL \
238 && elf_object_id (bfd) == MIPS_ELF_DATA)
239
240 /* The ABI says that every symbol used by dynamic relocations must have
241 a global GOT entry. Among other things, this provides the dynamic
242 linker with a free, directly-indexed cache. The GOT can therefore
243 contain symbols that are not referenced by GOT relocations themselves
244 (in other words, it may have symbols that are not referenced by things
245 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
246
247 GOT relocations are less likely to overflow if we put the associated
248 GOT entries towards the beginning. We therefore divide the global
249 GOT entries into two areas: "normal" and "reloc-only". Entries in
250 the first area can be used for both dynamic relocations and GP-relative
251 accesses, while those in the "reloc-only" area are for dynamic
252 relocations only.
253
254 These GGA_* ("Global GOT Area") values are organised so that lower
255 values are more general than higher values. Also, non-GGA_NONE
256 values are ordered by the position of the area in the GOT. */
257 #define GGA_NORMAL 0
258 #define GGA_RELOC_ONLY 1
259 #define GGA_NONE 2
260
261 /* Information about a non-PIC interface to a PIC function. There are
262 two ways of creating these interfaces. The first is to add:
263
264 lui $25,%hi(func)
265 addiu $25,$25,%lo(func)
266
267 immediately before a PIC function "func". The second is to add:
268
269 lui $25,%hi(func)
270 j func
271 addiu $25,$25,%lo(func)
272
273 to a separate trampoline section.
274
275 Stubs of the first kind go in a new section immediately before the
276 target function. Stubs of the second kind go in a single section
277 pointed to by the hash table's "strampoline" field. */
278 struct mips_elf_la25_stub {
279 /* The generated section that contains this stub. */
280 asection *stub_section;
281
282 /* The offset of the stub from the start of STUB_SECTION. */
283 bfd_vma offset;
284
285 /* One symbol for the original function. Its location is available
286 in H->root.root.u.def. */
287 struct mips_elf_link_hash_entry *h;
288 };
289
290 /* Macros for populating a mips_elf_la25_stub. */
291
292 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
293 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
294 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
295 #define LA25_LUI_MICROMIPS(VAL) \
296 (0x41b90000 | (VAL)) /* lui t9,VAL */
297 #define LA25_J_MICROMIPS(VAL) \
298 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
299 #define LA25_ADDIU_MICROMIPS(VAL) \
300 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
301
302 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
303 the dynamic symbols. */
304
305 struct mips_elf_hash_sort_data
306 {
307 /* The symbol in the global GOT with the lowest dynamic symbol table
308 index. */
309 struct elf_link_hash_entry *low;
310 /* The least dynamic symbol table index corresponding to a non-TLS
311 symbol with a GOT entry. */
312 long min_got_dynindx;
313 /* The greatest dynamic symbol table index corresponding to a symbol
314 with a GOT entry that is not referenced (e.g., a dynamic symbol
315 with dynamic relocations pointing to it from non-primary GOTs). */
316 long max_unref_got_dynindx;
317 /* The greatest dynamic symbol table index not corresponding to a
318 symbol without a GOT entry. */
319 long max_non_got_dynindx;
320 };
321
322 /* We make up to two PLT entries if needed, one for standard MIPS code
323 and one for compressed code, either a MIPS16 or microMIPS one. We
324 keep a separate record of traditional lazy-binding stubs, for easier
325 processing. */
326
327 struct plt_entry
328 {
329 /* Traditional SVR4 stub offset, or -1 if none. */
330 bfd_vma stub_offset;
331
332 /* Standard PLT entry offset, or -1 if none. */
333 bfd_vma mips_offset;
334
335 /* Compressed PLT entry offset, or -1 if none. */
336 bfd_vma comp_offset;
337
338 /* The corresponding .got.plt index, or -1 if none. */
339 bfd_vma gotplt_index;
340
341 /* Whether we need a standard PLT entry. */
342 unsigned int need_mips : 1;
343
344 /* Whether we need a compressed PLT entry. */
345 unsigned int need_comp : 1;
346 };
347
348 /* The MIPS ELF linker needs additional information for each symbol in
349 the global hash table. */
350
351 struct mips_elf_link_hash_entry
352 {
353 struct elf_link_hash_entry root;
354
355 /* External symbol information. */
356 EXTR esym;
357
358 /* The la25 stub we have created for ths symbol, if any. */
359 struct mips_elf_la25_stub *la25_stub;
360
361 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
362 this symbol. */
363 unsigned int possibly_dynamic_relocs;
364
365 /* If there is a stub that 32 bit functions should use to call this
366 16 bit function, this points to the section containing the stub. */
367 asection *fn_stub;
368
369 /* If there is a stub that 16 bit functions should use to call this
370 32 bit function, this points to the section containing the stub. */
371 asection *call_stub;
372
373 /* This is like the call_stub field, but it is used if the function
374 being called returns a floating point value. */
375 asection *call_fp_stub;
376
377 /* The highest GGA_* value that satisfies all references to this symbol. */
378 unsigned int global_got_area : 2;
379
380 /* True if all GOT relocations against this symbol are for calls. This is
381 a looser condition than no_fn_stub below, because there may be other
382 non-call non-GOT relocations against the symbol. */
383 unsigned int got_only_for_calls : 1;
384
385 /* True if one of the relocations described by possibly_dynamic_relocs
386 is against a readonly section. */
387 unsigned int readonly_reloc : 1;
388
389 /* True if there is a relocation against this symbol that must be
390 resolved by the static linker (in other words, if the relocation
391 cannot possibly be made dynamic). */
392 unsigned int has_static_relocs : 1;
393
394 /* True if we must not create a .MIPS.stubs entry for this symbol.
395 This is set, for example, if there are relocations related to
396 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
397 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
398 unsigned int no_fn_stub : 1;
399
400 /* Whether we need the fn_stub; this is true if this symbol appears
401 in any relocs other than a 16 bit call. */
402 unsigned int need_fn_stub : 1;
403
404 /* True if this symbol is referenced by branch relocations from
405 any non-PIC input file. This is used to determine whether an
406 la25 stub is required. */
407 unsigned int has_nonpic_branches : 1;
408
409 /* Does this symbol need a traditional MIPS lazy-binding stub
410 (as opposed to a PLT entry)? */
411 unsigned int needs_lazy_stub : 1;
412
413 /* Does this symbol resolve to a PLT entry? */
414 unsigned int use_plt_entry : 1;
415 };
416
417 /* MIPS ELF linker hash table. */
418
419 struct mips_elf_link_hash_table
420 {
421 struct elf_link_hash_table root;
422
423 /* The number of .rtproc entries. */
424 bfd_size_type procedure_count;
425
426 /* The size of the .compact_rel section (if SGI_COMPAT). */
427 bfd_size_type compact_rel_size;
428
429 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
430 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
431 bfd_boolean use_rld_obj_head;
432
433 /* The __rld_map or __rld_obj_head symbol. */
434 struct elf_link_hash_entry *rld_symbol;
435
436 /* This is set if we see any mips16 stub sections. */
437 bfd_boolean mips16_stubs_seen;
438
439 /* True if we can generate copy relocs and PLTs. */
440 bfd_boolean use_plts_and_copy_relocs;
441
442 /* True if we can only use 32-bit microMIPS instructions. */
443 bfd_boolean insn32;
444
445 /* True if we're generating code for VxWorks. */
446 bfd_boolean is_vxworks;
447
448 /* True if we already reported the small-data section overflow. */
449 bfd_boolean small_data_overflow_reported;
450
451 /* Shortcuts to some dynamic sections, or NULL if they are not
452 being used. */
453 asection *srelbss;
454 asection *sdynbss;
455 asection *srelplt;
456 asection *srelplt2;
457 asection *sgotplt;
458 asection *splt;
459 asection *sstubs;
460 asection *sgot;
461
462 /* The master GOT information. */
463 struct mips_got_info *got_info;
464
465 /* The global symbol in the GOT with the lowest index in the dynamic
466 symbol table. */
467 struct elf_link_hash_entry *global_gotsym;
468
469 /* The size of the PLT header in bytes. */
470 bfd_vma plt_header_size;
471
472 /* The size of a standard PLT entry in bytes. */
473 bfd_vma plt_mips_entry_size;
474
475 /* The size of a compressed PLT entry in bytes. */
476 bfd_vma plt_comp_entry_size;
477
478 /* The offset of the next standard PLT entry to create. */
479 bfd_vma plt_mips_offset;
480
481 /* The offset of the next compressed PLT entry to create. */
482 bfd_vma plt_comp_offset;
483
484 /* The index of the next .got.plt entry to create. */
485 bfd_vma plt_got_index;
486
487 /* The number of functions that need a lazy-binding stub. */
488 bfd_vma lazy_stub_count;
489
490 /* The size of a function stub entry in bytes. */
491 bfd_vma function_stub_size;
492
493 /* The number of reserved entries at the beginning of the GOT. */
494 unsigned int reserved_gotno;
495
496 /* The section used for mips_elf_la25_stub trampolines.
497 See the comment above that structure for details. */
498 asection *strampoline;
499
500 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
501 pairs. */
502 htab_t la25_stubs;
503
504 /* A function FN (NAME, IS, OS) that creates a new input section
505 called NAME and links it to output section OS. If IS is nonnull,
506 the new section should go immediately before it, otherwise it
507 should go at the (current) beginning of OS.
508
509 The function returns the new section on success, otherwise it
510 returns null. */
511 asection *(*add_stub_section) (const char *, asection *, asection *);
512
513 /* Small local sym cache. */
514 struct sym_cache sym_cache;
515
516 /* Is the PLT header compressed? */
517 unsigned int plt_header_is_comp : 1;
518 };
519
520 /* Get the MIPS ELF linker hash table from a link_info structure. */
521
522 #define mips_elf_hash_table(p) \
523 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
524 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
525
526 /* A structure used to communicate with htab_traverse callbacks. */
527 struct mips_htab_traverse_info
528 {
529 /* The usual link-wide information. */
530 struct bfd_link_info *info;
531 bfd *output_bfd;
532
533 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
534 bfd_boolean error;
535 };
536
537 /* MIPS ELF private object data. */
538
539 struct mips_elf_obj_tdata
540 {
541 /* Generic ELF private object data. */
542 struct elf_obj_tdata root;
543
544 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
545 bfd *abi_fp_bfd;
546
547 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
548 bfd *abi_msa_bfd;
549
550 /* The abiflags for this object. */
551 Elf_Internal_ABIFlags_v0 abiflags;
552 bfd_boolean abiflags_valid;
553
554 /* The GOT requirements of input bfds. */
555 struct mips_got_info *got;
556
557 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
558 included directly in this one, but there's no point to wasting
559 the memory just for the infrequently called find_nearest_line. */
560 struct mips_elf_find_line *find_line_info;
561
562 /* An array of stub sections indexed by symbol number. */
563 asection **local_stubs;
564 asection **local_call_stubs;
565
566 /* The Irix 5 support uses two virtual sections, which represent
567 text/data symbols defined in dynamic objects. */
568 asymbol *elf_data_symbol;
569 asymbol *elf_text_symbol;
570 asection *elf_data_section;
571 asection *elf_text_section;
572 };
573
574 /* Get MIPS ELF private object data from BFD's tdata. */
575
576 #define mips_elf_tdata(bfd) \
577 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
578
579 #define TLS_RELOC_P(r_type) \
580 (r_type == R_MIPS_TLS_DTPMOD32 \
581 || r_type == R_MIPS_TLS_DTPMOD64 \
582 || r_type == R_MIPS_TLS_DTPREL32 \
583 || r_type == R_MIPS_TLS_DTPREL64 \
584 || r_type == R_MIPS_TLS_GD \
585 || r_type == R_MIPS_TLS_LDM \
586 || r_type == R_MIPS_TLS_DTPREL_HI16 \
587 || r_type == R_MIPS_TLS_DTPREL_LO16 \
588 || r_type == R_MIPS_TLS_GOTTPREL \
589 || r_type == R_MIPS_TLS_TPREL32 \
590 || r_type == R_MIPS_TLS_TPREL64 \
591 || r_type == R_MIPS_TLS_TPREL_HI16 \
592 || r_type == R_MIPS_TLS_TPREL_LO16 \
593 || r_type == R_MIPS16_TLS_GD \
594 || r_type == R_MIPS16_TLS_LDM \
595 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
596 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
597 || r_type == R_MIPS16_TLS_GOTTPREL \
598 || r_type == R_MIPS16_TLS_TPREL_HI16 \
599 || r_type == R_MIPS16_TLS_TPREL_LO16 \
600 || r_type == R_MICROMIPS_TLS_GD \
601 || r_type == R_MICROMIPS_TLS_LDM \
602 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
603 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
604 || r_type == R_MICROMIPS_TLS_GOTTPREL \
605 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
606 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
607
608 /* Structure used to pass information to mips_elf_output_extsym. */
609
610 struct extsym_info
611 {
612 bfd *abfd;
613 struct bfd_link_info *info;
614 struct ecoff_debug_info *debug;
615 const struct ecoff_debug_swap *swap;
616 bfd_boolean failed;
617 };
618
619 /* The names of the runtime procedure table symbols used on IRIX5. */
620
621 static const char * const mips_elf_dynsym_rtproc_names[] =
622 {
623 "_procedure_table",
624 "_procedure_string_table",
625 "_procedure_table_size",
626 NULL
627 };
628
629 /* These structures are used to generate the .compact_rel section on
630 IRIX5. */
631
632 typedef struct
633 {
634 unsigned long id1; /* Always one? */
635 unsigned long num; /* Number of compact relocation entries. */
636 unsigned long id2; /* Always two? */
637 unsigned long offset; /* The file offset of the first relocation. */
638 unsigned long reserved0; /* Zero? */
639 unsigned long reserved1; /* Zero? */
640 } Elf32_compact_rel;
641
642 typedef struct
643 {
644 bfd_byte id1[4];
645 bfd_byte num[4];
646 bfd_byte id2[4];
647 bfd_byte offset[4];
648 bfd_byte reserved0[4];
649 bfd_byte reserved1[4];
650 } Elf32_External_compact_rel;
651
652 typedef struct
653 {
654 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
655 unsigned int rtype : 4; /* Relocation types. See below. */
656 unsigned int dist2to : 8;
657 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
658 unsigned long konst; /* KONST field. See below. */
659 unsigned long vaddr; /* VADDR to be relocated. */
660 } Elf32_crinfo;
661
662 typedef struct
663 {
664 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
665 unsigned int rtype : 4; /* Relocation types. See below. */
666 unsigned int dist2to : 8;
667 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
668 unsigned long konst; /* KONST field. See below. */
669 } Elf32_crinfo2;
670
671 typedef struct
672 {
673 bfd_byte info[4];
674 bfd_byte konst[4];
675 bfd_byte vaddr[4];
676 } Elf32_External_crinfo;
677
678 typedef struct
679 {
680 bfd_byte info[4];
681 bfd_byte konst[4];
682 } Elf32_External_crinfo2;
683
684 /* These are the constants used to swap the bitfields in a crinfo. */
685
686 #define CRINFO_CTYPE (0x1)
687 #define CRINFO_CTYPE_SH (31)
688 #define CRINFO_RTYPE (0xf)
689 #define CRINFO_RTYPE_SH (27)
690 #define CRINFO_DIST2TO (0xff)
691 #define CRINFO_DIST2TO_SH (19)
692 #define CRINFO_RELVADDR (0x7ffff)
693 #define CRINFO_RELVADDR_SH (0)
694
695 /* A compact relocation info has long (3 words) or short (2 words)
696 formats. A short format doesn't have VADDR field and relvaddr
697 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
698 #define CRF_MIPS_LONG 1
699 #define CRF_MIPS_SHORT 0
700
701 /* There are 4 types of compact relocation at least. The value KONST
702 has different meaning for each type:
703
704 (type) (konst)
705 CT_MIPS_REL32 Address in data
706 CT_MIPS_WORD Address in word (XXX)
707 CT_MIPS_GPHI_LO GP - vaddr
708 CT_MIPS_JMPAD Address to jump
709 */
710
711 #define CRT_MIPS_REL32 0xa
712 #define CRT_MIPS_WORD 0xb
713 #define CRT_MIPS_GPHI_LO 0xc
714 #define CRT_MIPS_JMPAD 0xd
715
716 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
717 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
718 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
719 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
720 \f
721 /* The structure of the runtime procedure descriptor created by the
722 loader for use by the static exception system. */
723
724 typedef struct runtime_pdr {
725 bfd_vma adr; /* Memory address of start of procedure. */
726 long regmask; /* Save register mask. */
727 long regoffset; /* Save register offset. */
728 long fregmask; /* Save floating point register mask. */
729 long fregoffset; /* Save floating point register offset. */
730 long frameoffset; /* Frame size. */
731 short framereg; /* Frame pointer register. */
732 short pcreg; /* Offset or reg of return pc. */
733 long irpss; /* Index into the runtime string table. */
734 long reserved;
735 struct exception_info *exception_info;/* Pointer to exception array. */
736 } RPDR, *pRPDR;
737 #define cbRPDR sizeof (RPDR)
738 #define rpdNil ((pRPDR) 0)
739 \f
740 static struct mips_got_entry *mips_elf_create_local_got_entry
741 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
742 struct mips_elf_link_hash_entry *, int);
743 static bfd_boolean mips_elf_sort_hash_table_f
744 (struct mips_elf_link_hash_entry *, void *);
745 static bfd_vma mips_elf_high
746 (bfd_vma);
747 static bfd_boolean mips_elf_create_dynamic_relocation
748 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
749 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
750 bfd_vma *, asection *);
751 static bfd_vma mips_elf_adjust_gp
752 (bfd *, struct mips_got_info *, bfd *);
753
754 /* This will be used when we sort the dynamic relocation records. */
755 static bfd *reldyn_sorting_bfd;
756
757 /* True if ABFD is for CPUs with load interlocking that include
758 non-MIPS1 CPUs and R3900. */
759 #define LOAD_INTERLOCKS_P(abfd) \
760 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
761 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
762
763 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
764 This should be safe for all architectures. We enable this predicate
765 for RM9000 for now. */
766 #define JAL_TO_BAL_P(abfd) \
767 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
768
769 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
770 This should be safe for all architectures. We enable this predicate for
771 all CPUs. */
772 #define JALR_TO_BAL_P(abfd) 1
773
774 /* True if ABFD is for CPUs that are faster if JR is converted to B.
775 This should be safe for all architectures. We enable this predicate for
776 all CPUs. */
777 #define JR_TO_B_P(abfd) 1
778
779 /* True if ABFD is a PIC object. */
780 #define PIC_OBJECT_P(abfd) \
781 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
782
783 /* Nonzero if ABFD is using the O32 ABI. */
784 #define ABI_O32_P(abfd) \
785 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
786
787 /* Nonzero if ABFD is using the N32 ABI. */
788 #define ABI_N32_P(abfd) \
789 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
790
791 /* Nonzero if ABFD is using the N64 ABI. */
792 #define ABI_64_P(abfd) \
793 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
794
795 /* Nonzero if ABFD is using NewABI conventions. */
796 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
797
798 /* Nonzero if ABFD has microMIPS code. */
799 #define MICROMIPS_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
801
802 /* Nonzero if ABFD is MIPS R6. */
803 #define MIPSR6_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
805 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
806
807 /* The IRIX compatibility level we are striving for. */
808 #define IRIX_COMPAT(abfd) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
810
811 /* Whether we are trying to be compatible with IRIX at all. */
812 #define SGI_COMPAT(abfd) \
813 (IRIX_COMPAT (abfd) != ict_none)
814
815 /* The name of the options section. */
816 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
817 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
818
819 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
820 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
821 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
822 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
823
824 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
825 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
826 (strcmp (NAME, ".MIPS.abiflags") == 0)
827
828 /* Whether the section is readonly. */
829 #define MIPS_ELF_READONLY_SECTION(sec) \
830 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
831 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
832
833 /* The name of the stub section. */
834 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
835
836 /* The size of an external REL relocation. */
837 #define MIPS_ELF_REL_SIZE(abfd) \
838 (get_elf_backend_data (abfd)->s->sizeof_rel)
839
840 /* The size of an external RELA relocation. */
841 #define MIPS_ELF_RELA_SIZE(abfd) \
842 (get_elf_backend_data (abfd)->s->sizeof_rela)
843
844 /* The size of an external dynamic table entry. */
845 #define MIPS_ELF_DYN_SIZE(abfd) \
846 (get_elf_backend_data (abfd)->s->sizeof_dyn)
847
848 /* The size of a GOT entry. */
849 #define MIPS_ELF_GOT_SIZE(abfd) \
850 (get_elf_backend_data (abfd)->s->arch_size / 8)
851
852 /* The size of the .rld_map section. */
853 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
854 (get_elf_backend_data (abfd)->s->arch_size / 8)
855
856 /* The size of a symbol-table entry. */
857 #define MIPS_ELF_SYM_SIZE(abfd) \
858 (get_elf_backend_data (abfd)->s->sizeof_sym)
859
860 /* The default alignment for sections, as a power of two. */
861 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
862 (get_elf_backend_data (abfd)->s->log_file_align)
863
864 /* Get word-sized data. */
865 #define MIPS_ELF_GET_WORD(abfd, ptr) \
866 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
867
868 /* Put out word-sized data. */
869 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
870 (ABI_64_P (abfd) \
871 ? bfd_put_64 (abfd, val, ptr) \
872 : bfd_put_32 (abfd, val, ptr))
873
874 /* The opcode for word-sized loads (LW or LD). */
875 #define MIPS_ELF_LOAD_WORD(abfd) \
876 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
877
878 /* Add a dynamic symbol table-entry. */
879 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
880 _bfd_elf_add_dynamic_entry (info, tag, val)
881
882 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
883 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
884
885 /* The name of the dynamic relocation section. */
886 #define MIPS_ELF_REL_DYN_NAME(INFO) \
887 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
888
889 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
890 from smaller values. Start with zero, widen, *then* decrement. */
891 #define MINUS_ONE (((bfd_vma)0) - 1)
892 #define MINUS_TWO (((bfd_vma)0) - 2)
893
894 /* The value to write into got[1] for SVR4 targets, to identify it is
895 a GNU object. The dynamic linker can then use got[1] to store the
896 module pointer. */
897 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
898 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
899
900 /* The offset of $gp from the beginning of the .got section. */
901 #define ELF_MIPS_GP_OFFSET(INFO) \
902 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
903
904 /* The maximum size of the GOT for it to be addressable using 16-bit
905 offsets from $gp. */
906 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
907
908 /* Instructions which appear in a stub. */
909 #define STUB_LW(abfd) \
910 ((ABI_64_P (abfd) \
911 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
912 : 0x8f998010)) /* lw t9,0x8010(gp) */
913 #define STUB_MOVE(abfd) \
914 ((ABI_64_P (abfd) \
915 ? 0x03e0782d /* daddu t7,ra */ \
916 : 0x03e07821)) /* addu t7,ra */
917 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
918 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
919 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
920 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
921 #define STUB_LI16S(abfd, VAL) \
922 ((ABI_64_P (abfd) \
923 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
924 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
925
926 /* Likewise for the microMIPS ASE. */
927 #define STUB_LW_MICROMIPS(abfd) \
928 (ABI_64_P (abfd) \
929 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
930 : 0xff3c8010) /* lw t9,0x8010(gp) */
931 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
932 #define STUB_MOVE32_MICROMIPS(abfd) \
933 (ABI_64_P (abfd) \
934 ? 0x581f7950 /* daddu t7,ra,zero */ \
935 : 0x001f7950) /* addu t7,ra,zero */
936 #define STUB_LUI_MICROMIPS(VAL) \
937 (0x41b80000 + (VAL)) /* lui t8,VAL */
938 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
939 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
940 #define STUB_ORI_MICROMIPS(VAL) \
941 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
942 #define STUB_LI16U_MICROMIPS(VAL) \
943 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
944 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
945 (ABI_64_P (abfd) \
946 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
947 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
948
949 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
950 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
951 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
952 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
953 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
954 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
955
956 /* The name of the dynamic interpreter. This is put in the .interp
957 section. */
958
959 #define ELF_DYNAMIC_INTERPRETER(abfd) \
960 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
961 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
962 : "/usr/lib/libc.so.1")
963
964 #ifdef BFD64
965 #define MNAME(bfd,pre,pos) \
966 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
967 #define ELF_R_SYM(bfd, i) \
968 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
969 #define ELF_R_TYPE(bfd, i) \
970 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
971 #define ELF_R_INFO(bfd, s, t) \
972 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
973 #else
974 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
975 #define ELF_R_SYM(bfd, i) \
976 (ELF32_R_SYM (i))
977 #define ELF_R_TYPE(bfd, i) \
978 (ELF32_R_TYPE (i))
979 #define ELF_R_INFO(bfd, s, t) \
980 (ELF32_R_INFO (s, t))
981 #endif
982 \f
983 /* The mips16 compiler uses a couple of special sections to handle
984 floating point arguments.
985
986 Section names that look like .mips16.fn.FNNAME contain stubs that
987 copy floating point arguments from the fp regs to the gp regs and
988 then jump to FNNAME. If any 32 bit function calls FNNAME, the
989 call should be redirected to the stub instead. If no 32 bit
990 function calls FNNAME, the stub should be discarded. We need to
991 consider any reference to the function, not just a call, because
992 if the address of the function is taken we will need the stub,
993 since the address might be passed to a 32 bit function.
994
995 Section names that look like .mips16.call.FNNAME contain stubs
996 that copy floating point arguments from the gp regs to the fp
997 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
998 then any 16 bit function that calls FNNAME should be redirected
999 to the stub instead. If FNNAME is not a 32 bit function, the
1000 stub should be discarded.
1001
1002 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1003 which call FNNAME and then copy the return value from the fp regs
1004 to the gp regs. These stubs store the return value in $18 while
1005 calling FNNAME; any function which might call one of these stubs
1006 must arrange to save $18 around the call. (This case is not
1007 needed for 32 bit functions that call 16 bit functions, because
1008 16 bit functions always return floating point values in both
1009 $f0/$f1 and $2/$3.)
1010
1011 Note that in all cases FNNAME might be defined statically.
1012 Therefore, FNNAME is not used literally. Instead, the relocation
1013 information will indicate which symbol the section is for.
1014
1015 We record any stubs that we find in the symbol table. */
1016
1017 #define FN_STUB ".mips16.fn."
1018 #define CALL_STUB ".mips16.call."
1019 #define CALL_FP_STUB ".mips16.call.fp."
1020
1021 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1022 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1023 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1024 \f
1025 /* The format of the first PLT entry in an O32 executable. */
1026 static const bfd_vma mips_o32_exec_plt0_entry[] =
1027 {
1028 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1029 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1030 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1031 0x031cc023, /* subu $24, $24, $28 */
1032 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1033 0x0018c082, /* srl $24, $24, 2 */
1034 0x0320f809, /* jalr $25 */
1035 0x2718fffe /* subu $24, $24, 2 */
1036 };
1037
1038 /* The format of the first PLT entry in an N32 executable. Different
1039 because gp ($28) is not available; we use t2 ($14) instead. */
1040 static const bfd_vma mips_n32_exec_plt0_entry[] =
1041 {
1042 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1043 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1044 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1045 0x030ec023, /* subu $24, $24, $14 */
1046 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1047 0x0018c082, /* srl $24, $24, 2 */
1048 0x0320f809, /* jalr $25 */
1049 0x2718fffe /* subu $24, $24, 2 */
1050 };
1051
1052 /* The format of the first PLT entry in an N64 executable. Different
1053 from N32 because of the increased size of GOT entries. */
1054 static const bfd_vma mips_n64_exec_plt0_entry[] =
1055 {
1056 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1057 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1058 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1059 0x030ec023, /* subu $24, $24, $14 */
1060 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1061 0x0018c0c2, /* srl $24, $24, 3 */
1062 0x0320f809, /* jalr $25 */
1063 0x2718fffe /* subu $24, $24, 2 */
1064 };
1065
1066 /* The format of the microMIPS first PLT entry in an O32 executable.
1067 We rely on v0 ($2) rather than t8 ($24) to contain the address
1068 of the GOTPLT entry handled, so this stub may only be used when
1069 all the subsequent PLT entries are microMIPS code too.
1070
1071 The trailing NOP is for alignment and correct disassembly only. */
1072 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1073 {
1074 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1075 0xff23, 0x0000, /* lw $25, 0($3) */
1076 0x0535, /* subu $2, $2, $3 */
1077 0x2525, /* srl $2, $2, 2 */
1078 0x3302, 0xfffe, /* subu $24, $2, 2 */
1079 0x0dff, /* move $15, $31 */
1080 0x45f9, /* jalrs $25 */
1081 0x0f83, /* move $28, $3 */
1082 0x0c00 /* nop */
1083 };
1084
1085 /* The format of the microMIPS first PLT entry in an O32 executable
1086 in the insn32 mode. */
1087 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1088 {
1089 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1090 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1091 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1092 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1093 0x001f, 0x7950, /* move $15, $31 */
1094 0x0318, 0x1040, /* srl $24, $24, 2 */
1095 0x03f9, 0x0f3c, /* jalr $25 */
1096 0x3318, 0xfffe /* subu $24, $24, 2 */
1097 };
1098
1099 /* The format of subsequent standard PLT entries. */
1100 static const bfd_vma mips_exec_plt_entry[] =
1101 {
1102 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1103 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1104 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1105 0x03200008 /* jr $25 */
1106 };
1107
1108 /* In the following PLT entry the JR and ADDIU instructions will
1109 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1110 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1111 static const bfd_vma mipsr6_exec_plt_entry[] =
1112 {
1113 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1114 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1115 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1116 0x03200009 /* jr $25 */
1117 };
1118
1119 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1120 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1121 directly addressable. */
1122 static const bfd_vma mips16_o32_exec_plt_entry[] =
1123 {
1124 0xb203, /* lw $2, 12($pc) */
1125 0x9a60, /* lw $3, 0($2) */
1126 0x651a, /* move $24, $2 */
1127 0xeb00, /* jr $3 */
1128 0x653b, /* move $25, $3 */
1129 0x6500, /* nop */
1130 0x0000, 0x0000 /* .word (.got.plt entry) */
1131 };
1132
1133 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1134 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1135 static const bfd_vma micromips_o32_exec_plt_entry[] =
1136 {
1137 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1138 0xff22, 0x0000, /* lw $25, 0($2) */
1139 0x4599, /* jr $25 */
1140 0x0f02 /* move $24, $2 */
1141 };
1142
1143 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1144 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1145 {
1146 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1147 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1148 0x0019, 0x0f3c, /* jr $25 */
1149 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1150 };
1151
1152 /* The format of the first PLT entry in a VxWorks executable. */
1153 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1154 {
1155 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1156 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1157 0x8f390008, /* lw t9, 8(t9) */
1158 0x00000000, /* nop */
1159 0x03200008, /* jr t9 */
1160 0x00000000 /* nop */
1161 };
1162
1163 /* The format of subsequent PLT entries. */
1164 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1165 {
1166 0x10000000, /* b .PLT_resolver */
1167 0x24180000, /* li t8, <pltindex> */
1168 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1169 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1170 0x8f390000, /* lw t9, 0(t9) */
1171 0x00000000, /* nop */
1172 0x03200008, /* jr t9 */
1173 0x00000000 /* nop */
1174 };
1175
1176 /* The format of the first PLT entry in a VxWorks shared object. */
1177 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1178 {
1179 0x8f990008, /* lw t9, 8(gp) */
1180 0x00000000, /* nop */
1181 0x03200008, /* jr t9 */
1182 0x00000000, /* nop */
1183 0x00000000, /* nop */
1184 0x00000000 /* nop */
1185 };
1186
1187 /* The format of subsequent PLT entries. */
1188 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1189 {
1190 0x10000000, /* b .PLT_resolver */
1191 0x24180000 /* li t8, <pltindex> */
1192 };
1193 \f
1194 /* microMIPS 32-bit opcode helper installer. */
1195
1196 static void
1197 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1198 {
1199 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1200 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1201 }
1202
1203 /* microMIPS 32-bit opcode helper retriever. */
1204
1205 static bfd_vma
1206 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1207 {
1208 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1209 }
1210 \f
1211 /* Look up an entry in a MIPS ELF linker hash table. */
1212
1213 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1214 ((struct mips_elf_link_hash_entry *) \
1215 elf_link_hash_lookup (&(table)->root, (string), (create), \
1216 (copy), (follow)))
1217
1218 /* Traverse a MIPS ELF linker hash table. */
1219
1220 #define mips_elf_link_hash_traverse(table, func, info) \
1221 (elf_link_hash_traverse \
1222 (&(table)->root, \
1223 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1224 (info)))
1225
1226 /* Find the base offsets for thread-local storage in this object,
1227 for GD/LD and IE/LE respectively. */
1228
1229 #define TP_OFFSET 0x7000
1230 #define DTP_OFFSET 0x8000
1231
1232 static bfd_vma
1233 dtprel_base (struct bfd_link_info *info)
1234 {
1235 /* If tls_sec is NULL, we should have signalled an error already. */
1236 if (elf_hash_table (info)->tls_sec == NULL)
1237 return 0;
1238 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1239 }
1240
1241 static bfd_vma
1242 tprel_base (struct bfd_link_info *info)
1243 {
1244 /* If tls_sec is NULL, we should have signalled an error already. */
1245 if (elf_hash_table (info)->tls_sec == NULL)
1246 return 0;
1247 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1248 }
1249
1250 /* Create an entry in a MIPS ELF linker hash table. */
1251
1252 static struct bfd_hash_entry *
1253 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1254 struct bfd_hash_table *table, const char *string)
1255 {
1256 struct mips_elf_link_hash_entry *ret =
1257 (struct mips_elf_link_hash_entry *) entry;
1258
1259 /* Allocate the structure if it has not already been allocated by a
1260 subclass. */
1261 if (ret == NULL)
1262 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1263 if (ret == NULL)
1264 return (struct bfd_hash_entry *) ret;
1265
1266 /* Call the allocation method of the superclass. */
1267 ret = ((struct mips_elf_link_hash_entry *)
1268 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1269 table, string));
1270 if (ret != NULL)
1271 {
1272 /* Set local fields. */
1273 memset (&ret->esym, 0, sizeof (EXTR));
1274 /* We use -2 as a marker to indicate that the information has
1275 not been set. -1 means there is no associated ifd. */
1276 ret->esym.ifd = -2;
1277 ret->la25_stub = 0;
1278 ret->possibly_dynamic_relocs = 0;
1279 ret->fn_stub = NULL;
1280 ret->call_stub = NULL;
1281 ret->call_fp_stub = NULL;
1282 ret->global_got_area = GGA_NONE;
1283 ret->got_only_for_calls = TRUE;
1284 ret->readonly_reloc = FALSE;
1285 ret->has_static_relocs = FALSE;
1286 ret->no_fn_stub = FALSE;
1287 ret->need_fn_stub = FALSE;
1288 ret->has_nonpic_branches = FALSE;
1289 ret->needs_lazy_stub = FALSE;
1290 ret->use_plt_entry = FALSE;
1291 }
1292
1293 return (struct bfd_hash_entry *) ret;
1294 }
1295
1296 /* Allocate MIPS ELF private object data. */
1297
1298 bfd_boolean
1299 _bfd_mips_elf_mkobject (bfd *abfd)
1300 {
1301 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1302 MIPS_ELF_DATA);
1303 }
1304
1305 bfd_boolean
1306 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1307 {
1308 if (!sec->used_by_bfd)
1309 {
1310 struct _mips_elf_section_data *sdata;
1311 bfd_size_type amt = sizeof (*sdata);
1312
1313 sdata = bfd_zalloc (abfd, amt);
1314 if (sdata == NULL)
1315 return FALSE;
1316 sec->used_by_bfd = sdata;
1317 }
1318
1319 return _bfd_elf_new_section_hook (abfd, sec);
1320 }
1321 \f
1322 /* Read ECOFF debugging information from a .mdebug section into a
1323 ecoff_debug_info structure. */
1324
1325 bfd_boolean
1326 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1327 struct ecoff_debug_info *debug)
1328 {
1329 HDRR *symhdr;
1330 const struct ecoff_debug_swap *swap;
1331 char *ext_hdr;
1332
1333 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1334 memset (debug, 0, sizeof (*debug));
1335
1336 ext_hdr = bfd_malloc (swap->external_hdr_size);
1337 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1338 goto error_return;
1339
1340 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1341 swap->external_hdr_size))
1342 goto error_return;
1343
1344 symhdr = &debug->symbolic_header;
1345 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1346
1347 /* The symbolic header contains absolute file offsets and sizes to
1348 read. */
1349 #define READ(ptr, offset, count, size, type) \
1350 if (symhdr->count == 0) \
1351 debug->ptr = NULL; \
1352 else \
1353 { \
1354 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1355 debug->ptr = bfd_malloc (amt); \
1356 if (debug->ptr == NULL) \
1357 goto error_return; \
1358 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1359 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1360 goto error_return; \
1361 }
1362
1363 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1364 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1365 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1366 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1367 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1368 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1369 union aux_ext *);
1370 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1371 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1372 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1373 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1374 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1375 #undef READ
1376
1377 debug->fdr = NULL;
1378
1379 return TRUE;
1380
1381 error_return:
1382 if (ext_hdr != NULL)
1383 free (ext_hdr);
1384 if (debug->line != NULL)
1385 free (debug->line);
1386 if (debug->external_dnr != NULL)
1387 free (debug->external_dnr);
1388 if (debug->external_pdr != NULL)
1389 free (debug->external_pdr);
1390 if (debug->external_sym != NULL)
1391 free (debug->external_sym);
1392 if (debug->external_opt != NULL)
1393 free (debug->external_opt);
1394 if (debug->external_aux != NULL)
1395 free (debug->external_aux);
1396 if (debug->ss != NULL)
1397 free (debug->ss);
1398 if (debug->ssext != NULL)
1399 free (debug->ssext);
1400 if (debug->external_fdr != NULL)
1401 free (debug->external_fdr);
1402 if (debug->external_rfd != NULL)
1403 free (debug->external_rfd);
1404 if (debug->external_ext != NULL)
1405 free (debug->external_ext);
1406 return FALSE;
1407 }
1408 \f
1409 /* Swap RPDR (runtime procedure table entry) for output. */
1410
1411 static void
1412 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1413 {
1414 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1415 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1416 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1417 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1418 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1419 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1420
1421 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1422 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1423
1424 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1425 }
1426
1427 /* Create a runtime procedure table from the .mdebug section. */
1428
1429 static bfd_boolean
1430 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1431 struct bfd_link_info *info, asection *s,
1432 struct ecoff_debug_info *debug)
1433 {
1434 const struct ecoff_debug_swap *swap;
1435 HDRR *hdr = &debug->symbolic_header;
1436 RPDR *rpdr, *rp;
1437 struct rpdr_ext *erp;
1438 void *rtproc;
1439 struct pdr_ext *epdr;
1440 struct sym_ext *esym;
1441 char *ss, **sv;
1442 char *str;
1443 bfd_size_type size;
1444 bfd_size_type count;
1445 unsigned long sindex;
1446 unsigned long i;
1447 PDR pdr;
1448 SYMR sym;
1449 const char *no_name_func = _("static procedure (no name)");
1450
1451 epdr = NULL;
1452 rpdr = NULL;
1453 esym = NULL;
1454 ss = NULL;
1455 sv = NULL;
1456
1457 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1458
1459 sindex = strlen (no_name_func) + 1;
1460 count = hdr->ipdMax;
1461 if (count > 0)
1462 {
1463 size = swap->external_pdr_size;
1464
1465 epdr = bfd_malloc (size * count);
1466 if (epdr == NULL)
1467 goto error_return;
1468
1469 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1470 goto error_return;
1471
1472 size = sizeof (RPDR);
1473 rp = rpdr = bfd_malloc (size * count);
1474 if (rpdr == NULL)
1475 goto error_return;
1476
1477 size = sizeof (char *);
1478 sv = bfd_malloc (size * count);
1479 if (sv == NULL)
1480 goto error_return;
1481
1482 count = hdr->isymMax;
1483 size = swap->external_sym_size;
1484 esym = bfd_malloc (size * count);
1485 if (esym == NULL)
1486 goto error_return;
1487
1488 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1489 goto error_return;
1490
1491 count = hdr->issMax;
1492 ss = bfd_malloc (count);
1493 if (ss == NULL)
1494 goto error_return;
1495 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1496 goto error_return;
1497
1498 count = hdr->ipdMax;
1499 for (i = 0; i < (unsigned long) count; i++, rp++)
1500 {
1501 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1502 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1503 rp->adr = sym.value;
1504 rp->regmask = pdr.regmask;
1505 rp->regoffset = pdr.regoffset;
1506 rp->fregmask = pdr.fregmask;
1507 rp->fregoffset = pdr.fregoffset;
1508 rp->frameoffset = pdr.frameoffset;
1509 rp->framereg = pdr.framereg;
1510 rp->pcreg = pdr.pcreg;
1511 rp->irpss = sindex;
1512 sv[i] = ss + sym.iss;
1513 sindex += strlen (sv[i]) + 1;
1514 }
1515 }
1516
1517 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1518 size = BFD_ALIGN (size, 16);
1519 rtproc = bfd_alloc (abfd, size);
1520 if (rtproc == NULL)
1521 {
1522 mips_elf_hash_table (info)->procedure_count = 0;
1523 goto error_return;
1524 }
1525
1526 mips_elf_hash_table (info)->procedure_count = count + 2;
1527
1528 erp = rtproc;
1529 memset (erp, 0, sizeof (struct rpdr_ext));
1530 erp++;
1531 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1532 strcpy (str, no_name_func);
1533 str += strlen (no_name_func) + 1;
1534 for (i = 0; i < count; i++)
1535 {
1536 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1537 strcpy (str, sv[i]);
1538 str += strlen (sv[i]) + 1;
1539 }
1540 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1541
1542 /* Set the size and contents of .rtproc section. */
1543 s->size = size;
1544 s->contents = rtproc;
1545
1546 /* Skip this section later on (I don't think this currently
1547 matters, but someday it might). */
1548 s->map_head.link_order = NULL;
1549
1550 if (epdr != NULL)
1551 free (epdr);
1552 if (rpdr != NULL)
1553 free (rpdr);
1554 if (esym != NULL)
1555 free (esym);
1556 if (ss != NULL)
1557 free (ss);
1558 if (sv != NULL)
1559 free (sv);
1560
1561 return TRUE;
1562
1563 error_return:
1564 if (epdr != NULL)
1565 free (epdr);
1566 if (rpdr != NULL)
1567 free (rpdr);
1568 if (esym != NULL)
1569 free (esym);
1570 if (ss != NULL)
1571 free (ss);
1572 if (sv != NULL)
1573 free (sv);
1574 return FALSE;
1575 }
1576 \f
1577 /* We're going to create a stub for H. Create a symbol for the stub's
1578 value and size, to help make the disassembly easier to read. */
1579
1580 static bfd_boolean
1581 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1582 struct mips_elf_link_hash_entry *h,
1583 const char *prefix, asection *s, bfd_vma value,
1584 bfd_vma size)
1585 {
1586 struct bfd_link_hash_entry *bh;
1587 struct elf_link_hash_entry *elfh;
1588 const char *name;
1589
1590 if (ELF_ST_IS_MICROMIPS (h->root.other))
1591 value |= 1;
1592
1593 /* Create a new symbol. */
1594 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1595 bh = NULL;
1596 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1597 BSF_LOCAL, s, value, NULL,
1598 TRUE, FALSE, &bh))
1599 return FALSE;
1600
1601 /* Make it a local function. */
1602 elfh = (struct elf_link_hash_entry *) bh;
1603 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1604 elfh->size = size;
1605 elfh->forced_local = 1;
1606 return TRUE;
1607 }
1608
1609 /* We're about to redefine H. Create a symbol to represent H's
1610 current value and size, to help make the disassembly easier
1611 to read. */
1612
1613 static bfd_boolean
1614 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1615 struct mips_elf_link_hash_entry *h,
1616 const char *prefix)
1617 {
1618 struct bfd_link_hash_entry *bh;
1619 struct elf_link_hash_entry *elfh;
1620 const char *name;
1621 asection *s;
1622 bfd_vma value;
1623
1624 /* Read the symbol's value. */
1625 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1626 || h->root.root.type == bfd_link_hash_defweak);
1627 s = h->root.root.u.def.section;
1628 value = h->root.root.u.def.value;
1629
1630 /* Create a new symbol. */
1631 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1632 bh = NULL;
1633 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1634 BSF_LOCAL, s, value, NULL,
1635 TRUE, FALSE, &bh))
1636 return FALSE;
1637
1638 /* Make it local and copy the other attributes from H. */
1639 elfh = (struct elf_link_hash_entry *) bh;
1640 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1641 elfh->other = h->root.other;
1642 elfh->size = h->root.size;
1643 elfh->forced_local = 1;
1644 return TRUE;
1645 }
1646
1647 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1648 function rather than to a hard-float stub. */
1649
1650 static bfd_boolean
1651 section_allows_mips16_refs_p (asection *section)
1652 {
1653 const char *name;
1654
1655 name = bfd_get_section_name (section->owner, section);
1656 return (FN_STUB_P (name)
1657 || CALL_STUB_P (name)
1658 || CALL_FP_STUB_P (name)
1659 || strcmp (name, ".pdr") == 0);
1660 }
1661
1662 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1663 stub section of some kind. Return the R_SYMNDX of the target
1664 function, or 0 if we can't decide which function that is. */
1665
1666 static unsigned long
1667 mips16_stub_symndx (const struct elf_backend_data *bed,
1668 asection *sec ATTRIBUTE_UNUSED,
1669 const Elf_Internal_Rela *relocs,
1670 const Elf_Internal_Rela *relend)
1671 {
1672 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1673 const Elf_Internal_Rela *rel;
1674
1675 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1676 one in a compound relocation. */
1677 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1678 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1679 return ELF_R_SYM (sec->owner, rel->r_info);
1680
1681 /* Otherwise trust the first relocation, whatever its kind. This is
1682 the traditional behavior. */
1683 if (relocs < relend)
1684 return ELF_R_SYM (sec->owner, relocs->r_info);
1685
1686 return 0;
1687 }
1688
1689 /* Check the mips16 stubs for a particular symbol, and see if we can
1690 discard them. */
1691
1692 static void
1693 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1694 struct mips_elf_link_hash_entry *h)
1695 {
1696 /* Dynamic symbols must use the standard call interface, in case other
1697 objects try to call them. */
1698 if (h->fn_stub != NULL
1699 && h->root.dynindx != -1)
1700 {
1701 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1702 h->need_fn_stub = TRUE;
1703 }
1704
1705 if (h->fn_stub != NULL
1706 && ! h->need_fn_stub)
1707 {
1708 /* We don't need the fn_stub; the only references to this symbol
1709 are 16 bit calls. Clobber the size to 0 to prevent it from
1710 being included in the link. */
1711 h->fn_stub->size = 0;
1712 h->fn_stub->flags &= ~SEC_RELOC;
1713 h->fn_stub->reloc_count = 0;
1714 h->fn_stub->flags |= SEC_EXCLUDE;
1715 }
1716
1717 if (h->call_stub != NULL
1718 && ELF_ST_IS_MIPS16 (h->root.other))
1719 {
1720 /* We don't need the call_stub; this is a 16 bit function, so
1721 calls from other 16 bit functions are OK. Clobber the size
1722 to 0 to prevent it from being included in the link. */
1723 h->call_stub->size = 0;
1724 h->call_stub->flags &= ~SEC_RELOC;
1725 h->call_stub->reloc_count = 0;
1726 h->call_stub->flags |= SEC_EXCLUDE;
1727 }
1728
1729 if (h->call_fp_stub != NULL
1730 && ELF_ST_IS_MIPS16 (h->root.other))
1731 {
1732 /* We don't need the call_stub; this is a 16 bit function, so
1733 calls from other 16 bit functions are OK. Clobber the size
1734 to 0 to prevent it from being included in the link. */
1735 h->call_fp_stub->size = 0;
1736 h->call_fp_stub->flags &= ~SEC_RELOC;
1737 h->call_fp_stub->reloc_count = 0;
1738 h->call_fp_stub->flags |= SEC_EXCLUDE;
1739 }
1740 }
1741
1742 /* Hashtable callbacks for mips_elf_la25_stubs. */
1743
1744 static hashval_t
1745 mips_elf_la25_stub_hash (const void *entry_)
1746 {
1747 const struct mips_elf_la25_stub *entry;
1748
1749 entry = (struct mips_elf_la25_stub *) entry_;
1750 return entry->h->root.root.u.def.section->id
1751 + entry->h->root.root.u.def.value;
1752 }
1753
1754 static int
1755 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1756 {
1757 const struct mips_elf_la25_stub *entry1, *entry2;
1758
1759 entry1 = (struct mips_elf_la25_stub *) entry1_;
1760 entry2 = (struct mips_elf_la25_stub *) entry2_;
1761 return ((entry1->h->root.root.u.def.section
1762 == entry2->h->root.root.u.def.section)
1763 && (entry1->h->root.root.u.def.value
1764 == entry2->h->root.root.u.def.value));
1765 }
1766
1767 /* Called by the linker to set up the la25 stub-creation code. FN is
1768 the linker's implementation of add_stub_function. Return true on
1769 success. */
1770
1771 bfd_boolean
1772 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1773 asection *(*fn) (const char *, asection *,
1774 asection *))
1775 {
1776 struct mips_elf_link_hash_table *htab;
1777
1778 htab = mips_elf_hash_table (info);
1779 if (htab == NULL)
1780 return FALSE;
1781
1782 htab->add_stub_section = fn;
1783 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1784 mips_elf_la25_stub_eq, NULL);
1785 if (htab->la25_stubs == NULL)
1786 return FALSE;
1787
1788 return TRUE;
1789 }
1790
1791 /* Return true if H is a locally-defined PIC function, in the sense
1792 that it or its fn_stub might need $25 to be valid on entry.
1793 Note that MIPS16 functions set up $gp using PC-relative instructions,
1794 so they themselves never need $25 to be valid. Only non-MIPS16
1795 entry points are of interest here. */
1796
1797 static bfd_boolean
1798 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1799 {
1800 return ((h->root.root.type == bfd_link_hash_defined
1801 || h->root.root.type == bfd_link_hash_defweak)
1802 && h->root.def_regular
1803 && !bfd_is_abs_section (h->root.root.u.def.section)
1804 && (!ELF_ST_IS_MIPS16 (h->root.other)
1805 || (h->fn_stub && h->need_fn_stub))
1806 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1807 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1808 }
1809
1810 /* Set *SEC to the input section that contains the target of STUB.
1811 Return the offset of the target from the start of that section. */
1812
1813 static bfd_vma
1814 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1815 asection **sec)
1816 {
1817 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1818 {
1819 BFD_ASSERT (stub->h->need_fn_stub);
1820 *sec = stub->h->fn_stub;
1821 return 0;
1822 }
1823 else
1824 {
1825 *sec = stub->h->root.root.u.def.section;
1826 return stub->h->root.root.u.def.value;
1827 }
1828 }
1829
1830 /* STUB describes an la25 stub that we have decided to implement
1831 by inserting an LUI/ADDIU pair before the target function.
1832 Create the section and redirect the function symbol to it. */
1833
1834 static bfd_boolean
1835 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1836 struct bfd_link_info *info)
1837 {
1838 struct mips_elf_link_hash_table *htab;
1839 char *name;
1840 asection *s, *input_section;
1841 unsigned int align;
1842
1843 htab = mips_elf_hash_table (info);
1844 if (htab == NULL)
1845 return FALSE;
1846
1847 /* Create a unique name for the new section. */
1848 name = bfd_malloc (11 + sizeof (".text.stub."));
1849 if (name == NULL)
1850 return FALSE;
1851 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1852
1853 /* Create the section. */
1854 mips_elf_get_la25_target (stub, &input_section);
1855 s = htab->add_stub_section (name, input_section,
1856 input_section->output_section);
1857 if (s == NULL)
1858 return FALSE;
1859
1860 /* Make sure that any padding goes before the stub. */
1861 align = input_section->alignment_power;
1862 if (!bfd_set_section_alignment (s->owner, s, align))
1863 return FALSE;
1864 if (align > 3)
1865 s->size = (1 << align) - 8;
1866
1867 /* Create a symbol for the stub. */
1868 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1869 stub->stub_section = s;
1870 stub->offset = s->size;
1871
1872 /* Allocate room for it. */
1873 s->size += 8;
1874 return TRUE;
1875 }
1876
1877 /* STUB describes an la25 stub that we have decided to implement
1878 with a separate trampoline. Allocate room for it and redirect
1879 the function symbol to it. */
1880
1881 static bfd_boolean
1882 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1883 struct bfd_link_info *info)
1884 {
1885 struct mips_elf_link_hash_table *htab;
1886 asection *s;
1887
1888 htab = mips_elf_hash_table (info);
1889 if (htab == NULL)
1890 return FALSE;
1891
1892 /* Create a trampoline section, if we haven't already. */
1893 s = htab->strampoline;
1894 if (s == NULL)
1895 {
1896 asection *input_section = stub->h->root.root.u.def.section;
1897 s = htab->add_stub_section (".text", NULL,
1898 input_section->output_section);
1899 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1900 return FALSE;
1901 htab->strampoline = s;
1902 }
1903
1904 /* Create a symbol for the stub. */
1905 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1906 stub->stub_section = s;
1907 stub->offset = s->size;
1908
1909 /* Allocate room for it. */
1910 s->size += 16;
1911 return TRUE;
1912 }
1913
1914 /* H describes a symbol that needs an la25 stub. Make sure that an
1915 appropriate stub exists and point H at it. */
1916
1917 static bfd_boolean
1918 mips_elf_add_la25_stub (struct bfd_link_info *info,
1919 struct mips_elf_link_hash_entry *h)
1920 {
1921 struct mips_elf_link_hash_table *htab;
1922 struct mips_elf_la25_stub search, *stub;
1923 bfd_boolean use_trampoline_p;
1924 asection *s;
1925 bfd_vma value;
1926 void **slot;
1927
1928 /* Describe the stub we want. */
1929 search.stub_section = NULL;
1930 search.offset = 0;
1931 search.h = h;
1932
1933 /* See if we've already created an equivalent stub. */
1934 htab = mips_elf_hash_table (info);
1935 if (htab == NULL)
1936 return FALSE;
1937
1938 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1939 if (slot == NULL)
1940 return FALSE;
1941
1942 stub = (struct mips_elf_la25_stub *) *slot;
1943 if (stub != NULL)
1944 {
1945 /* We can reuse the existing stub. */
1946 h->la25_stub = stub;
1947 return TRUE;
1948 }
1949
1950 /* Create a permanent copy of ENTRY and add it to the hash table. */
1951 stub = bfd_malloc (sizeof (search));
1952 if (stub == NULL)
1953 return FALSE;
1954 *stub = search;
1955 *slot = stub;
1956
1957 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1958 of the section and if we would need no more than 2 nops. */
1959 value = mips_elf_get_la25_target (stub, &s);
1960 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1961
1962 h->la25_stub = stub;
1963 return (use_trampoline_p
1964 ? mips_elf_add_la25_trampoline (stub, info)
1965 : mips_elf_add_la25_intro (stub, info));
1966 }
1967
1968 /* A mips_elf_link_hash_traverse callback that is called before sizing
1969 sections. DATA points to a mips_htab_traverse_info structure. */
1970
1971 static bfd_boolean
1972 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1973 {
1974 struct mips_htab_traverse_info *hti;
1975
1976 hti = (struct mips_htab_traverse_info *) data;
1977 if (!hti->info->relocatable)
1978 mips_elf_check_mips16_stubs (hti->info, h);
1979
1980 if (mips_elf_local_pic_function_p (h))
1981 {
1982 /* PR 12845: If H is in a section that has been garbage
1983 collected it will have its output section set to *ABS*. */
1984 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1985 return TRUE;
1986
1987 /* H is a function that might need $25 to be valid on entry.
1988 If we're creating a non-PIC relocatable object, mark H as
1989 being PIC. If we're creating a non-relocatable object with
1990 non-PIC branches and jumps to H, make sure that H has an la25
1991 stub. */
1992 if (hti->info->relocatable)
1993 {
1994 if (!PIC_OBJECT_P (hti->output_bfd))
1995 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1996 }
1997 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1998 {
1999 hti->error = TRUE;
2000 return FALSE;
2001 }
2002 }
2003 return TRUE;
2004 }
2005 \f
2006 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2007 Most mips16 instructions are 16 bits, but these instructions
2008 are 32 bits.
2009
2010 The format of these instructions is:
2011
2012 +--------------+--------------------------------+
2013 | JALX | X| Imm 20:16 | Imm 25:21 |
2014 +--------------+--------------------------------+
2015 | Immediate 15:0 |
2016 +-----------------------------------------------+
2017
2018 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2019 Note that the immediate value in the first word is swapped.
2020
2021 When producing a relocatable object file, R_MIPS16_26 is
2022 handled mostly like R_MIPS_26. In particular, the addend is
2023 stored as a straight 26-bit value in a 32-bit instruction.
2024 (gas makes life simpler for itself by never adjusting a
2025 R_MIPS16_26 reloc to be against a section, so the addend is
2026 always zero). However, the 32 bit instruction is stored as 2
2027 16-bit values, rather than a single 32-bit value. In a
2028 big-endian file, the result is the same; in a little-endian
2029 file, the two 16-bit halves of the 32 bit value are swapped.
2030 This is so that a disassembler can recognize the jal
2031 instruction.
2032
2033 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2034 instruction stored as two 16-bit values. The addend A is the
2035 contents of the targ26 field. The calculation is the same as
2036 R_MIPS_26. When storing the calculated value, reorder the
2037 immediate value as shown above, and don't forget to store the
2038 value as two 16-bit values.
2039
2040 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2041 defined as
2042
2043 big-endian:
2044 +--------+----------------------+
2045 | | |
2046 | | targ26-16 |
2047 |31 26|25 0|
2048 +--------+----------------------+
2049
2050 little-endian:
2051 +----------+------+-------------+
2052 | | | |
2053 | sub1 | | sub2 |
2054 |0 9|10 15|16 31|
2055 +----------+--------------------+
2056 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2057 ((sub1 << 16) | sub2)).
2058
2059 When producing a relocatable object file, the calculation is
2060 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2061 When producing a fully linked file, the calculation is
2062 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2063 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2064
2065 The table below lists the other MIPS16 instruction relocations.
2066 Each one is calculated in the same way as the non-MIPS16 relocation
2067 given on the right, but using the extended MIPS16 layout of 16-bit
2068 immediate fields:
2069
2070 R_MIPS16_GPREL R_MIPS_GPREL16
2071 R_MIPS16_GOT16 R_MIPS_GOT16
2072 R_MIPS16_CALL16 R_MIPS_CALL16
2073 R_MIPS16_HI16 R_MIPS_HI16
2074 R_MIPS16_LO16 R_MIPS_LO16
2075
2076 A typical instruction will have a format like this:
2077
2078 +--------------+--------------------------------+
2079 | EXTEND | Imm 10:5 | Imm 15:11 |
2080 +--------------+--------------------------------+
2081 | Major | rx | ry | Imm 4:0 |
2082 +--------------+--------------------------------+
2083
2084 EXTEND is the five bit value 11110. Major is the instruction
2085 opcode.
2086
2087 All we need to do here is shuffle the bits appropriately.
2088 As above, the two 16-bit halves must be swapped on a
2089 little-endian system. */
2090
2091 static inline bfd_boolean
2092 mips16_reloc_p (int r_type)
2093 {
2094 switch (r_type)
2095 {
2096 case R_MIPS16_26:
2097 case R_MIPS16_GPREL:
2098 case R_MIPS16_GOT16:
2099 case R_MIPS16_CALL16:
2100 case R_MIPS16_HI16:
2101 case R_MIPS16_LO16:
2102 case R_MIPS16_TLS_GD:
2103 case R_MIPS16_TLS_LDM:
2104 case R_MIPS16_TLS_DTPREL_HI16:
2105 case R_MIPS16_TLS_DTPREL_LO16:
2106 case R_MIPS16_TLS_GOTTPREL:
2107 case R_MIPS16_TLS_TPREL_HI16:
2108 case R_MIPS16_TLS_TPREL_LO16:
2109 return TRUE;
2110
2111 default:
2112 return FALSE;
2113 }
2114 }
2115
2116 /* Check if a microMIPS reloc. */
2117
2118 static inline bfd_boolean
2119 micromips_reloc_p (unsigned int r_type)
2120 {
2121 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2122 }
2123
2124 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2125 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2126 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2127
2128 static inline bfd_boolean
2129 micromips_reloc_shuffle_p (unsigned int r_type)
2130 {
2131 return (micromips_reloc_p (r_type)
2132 && r_type != R_MICROMIPS_PC7_S1
2133 && r_type != R_MICROMIPS_PC10_S1);
2134 }
2135
2136 static inline bfd_boolean
2137 got16_reloc_p (int r_type)
2138 {
2139 return (r_type == R_MIPS_GOT16
2140 || r_type == R_MIPS16_GOT16
2141 || r_type == R_MICROMIPS_GOT16);
2142 }
2143
2144 static inline bfd_boolean
2145 call16_reloc_p (int r_type)
2146 {
2147 return (r_type == R_MIPS_CALL16
2148 || r_type == R_MIPS16_CALL16
2149 || r_type == R_MICROMIPS_CALL16);
2150 }
2151
2152 static inline bfd_boolean
2153 got_disp_reloc_p (unsigned int r_type)
2154 {
2155 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2156 }
2157
2158 static inline bfd_boolean
2159 got_page_reloc_p (unsigned int r_type)
2160 {
2161 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2162 }
2163
2164 static inline bfd_boolean
2165 got_ofst_reloc_p (unsigned int r_type)
2166 {
2167 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2168 }
2169
2170 static inline bfd_boolean
2171 got_hi16_reloc_p (unsigned int r_type)
2172 {
2173 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2174 }
2175
2176 static inline bfd_boolean
2177 got_lo16_reloc_p (unsigned int r_type)
2178 {
2179 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2180 }
2181
2182 static inline bfd_boolean
2183 call_hi16_reloc_p (unsigned int r_type)
2184 {
2185 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2186 }
2187
2188 static inline bfd_boolean
2189 call_lo16_reloc_p (unsigned int r_type)
2190 {
2191 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2192 }
2193
2194 static inline bfd_boolean
2195 hi16_reloc_p (int r_type)
2196 {
2197 return (r_type == R_MIPS_HI16
2198 || r_type == R_MIPS16_HI16
2199 || r_type == R_MICROMIPS_HI16
2200 || r_type == R_MIPS_PCHI16);
2201 }
2202
2203 static inline bfd_boolean
2204 lo16_reloc_p (int r_type)
2205 {
2206 return (r_type == R_MIPS_LO16
2207 || r_type == R_MIPS16_LO16
2208 || r_type == R_MICROMIPS_LO16
2209 || r_type == R_MIPS_PCLO16);
2210 }
2211
2212 static inline bfd_boolean
2213 mips16_call_reloc_p (int r_type)
2214 {
2215 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2216 }
2217
2218 static inline bfd_boolean
2219 jal_reloc_p (int r_type)
2220 {
2221 return (r_type == R_MIPS_26
2222 || r_type == R_MIPS16_26
2223 || r_type == R_MICROMIPS_26_S1);
2224 }
2225
2226 static inline bfd_boolean
2227 aligned_pcrel_reloc_p (int r_type)
2228 {
2229 return (r_type == R_MIPS_PC18_S3
2230 || r_type == R_MIPS_PC19_S2);
2231 }
2232
2233 static inline bfd_boolean
2234 micromips_branch_reloc_p (int r_type)
2235 {
2236 return (r_type == R_MICROMIPS_26_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 tls_gd_reloc_p (unsigned int r_type)
2244 {
2245 return (r_type == R_MIPS_TLS_GD
2246 || r_type == R_MIPS16_TLS_GD
2247 || r_type == R_MICROMIPS_TLS_GD);
2248 }
2249
2250 static inline bfd_boolean
2251 tls_ldm_reloc_p (unsigned int r_type)
2252 {
2253 return (r_type == R_MIPS_TLS_LDM
2254 || r_type == R_MIPS16_TLS_LDM
2255 || r_type == R_MICROMIPS_TLS_LDM);
2256 }
2257
2258 static inline bfd_boolean
2259 tls_gottprel_reloc_p (unsigned int r_type)
2260 {
2261 return (r_type == R_MIPS_TLS_GOTTPREL
2262 || r_type == R_MIPS16_TLS_GOTTPREL
2263 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2264 }
2265
2266 void
2267 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2268 bfd_boolean jal_shuffle, bfd_byte *data)
2269 {
2270 bfd_vma first, second, val;
2271
2272 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2273 return;
2274
2275 /* Pick up the first and second halfwords of the instruction. */
2276 first = bfd_get_16 (abfd, data);
2277 second = bfd_get_16 (abfd, data + 2);
2278 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2279 val = first << 16 | second;
2280 else if (r_type != R_MIPS16_26)
2281 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2282 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2283 else
2284 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2285 | ((first & 0x1f) << 21) | second);
2286 bfd_put_32 (abfd, val, data);
2287 }
2288
2289 void
2290 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2291 bfd_boolean jal_shuffle, bfd_byte *data)
2292 {
2293 bfd_vma first, second, val;
2294
2295 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2296 return;
2297
2298 val = bfd_get_32 (abfd, data);
2299 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2300 {
2301 second = val & 0xffff;
2302 first = val >> 16;
2303 }
2304 else if (r_type != R_MIPS16_26)
2305 {
2306 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2307 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2308 }
2309 else
2310 {
2311 second = val & 0xffff;
2312 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2313 | ((val >> 21) & 0x1f);
2314 }
2315 bfd_put_16 (abfd, second, data + 2);
2316 bfd_put_16 (abfd, first, data);
2317 }
2318
2319 bfd_reloc_status_type
2320 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2321 arelent *reloc_entry, asection *input_section,
2322 bfd_boolean relocatable, void *data, bfd_vma gp)
2323 {
2324 bfd_vma relocation;
2325 bfd_signed_vma val;
2326 bfd_reloc_status_type status;
2327
2328 if (bfd_is_com_section (symbol->section))
2329 relocation = 0;
2330 else
2331 relocation = symbol->value;
2332
2333 relocation += symbol->section->output_section->vma;
2334 relocation += symbol->section->output_offset;
2335
2336 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2337 return bfd_reloc_outofrange;
2338
2339 /* Set val to the offset into the section or symbol. */
2340 val = reloc_entry->addend;
2341
2342 _bfd_mips_elf_sign_extend (val, 16);
2343
2344 /* Adjust val for the final section location and GP value. If we
2345 are producing relocatable output, we don't want to do this for
2346 an external symbol. */
2347 if (! relocatable
2348 || (symbol->flags & BSF_SECTION_SYM) != 0)
2349 val += relocation - gp;
2350
2351 if (reloc_entry->howto->partial_inplace)
2352 {
2353 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2354 (bfd_byte *) data
2355 + reloc_entry->address);
2356 if (status != bfd_reloc_ok)
2357 return status;
2358 }
2359 else
2360 reloc_entry->addend = val;
2361
2362 if (relocatable)
2363 reloc_entry->address += input_section->output_offset;
2364
2365 return bfd_reloc_ok;
2366 }
2367
2368 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2369 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2370 that contains the relocation field and DATA points to the start of
2371 INPUT_SECTION. */
2372
2373 struct mips_hi16
2374 {
2375 struct mips_hi16 *next;
2376 bfd_byte *data;
2377 asection *input_section;
2378 arelent rel;
2379 };
2380
2381 /* FIXME: This should not be a static variable. */
2382
2383 static struct mips_hi16 *mips_hi16_list;
2384
2385 /* A howto special_function for REL *HI16 relocations. We can only
2386 calculate the correct value once we've seen the partnering
2387 *LO16 relocation, so just save the information for later.
2388
2389 The ABI requires that the *LO16 immediately follow the *HI16.
2390 However, as a GNU extension, we permit an arbitrary number of
2391 *HI16s to be associated with a single *LO16. This significantly
2392 simplies the relocation handling in gcc. */
2393
2394 bfd_reloc_status_type
2395 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2396 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2397 asection *input_section, bfd *output_bfd,
2398 char **error_message ATTRIBUTE_UNUSED)
2399 {
2400 struct mips_hi16 *n;
2401
2402 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2403 return bfd_reloc_outofrange;
2404
2405 n = bfd_malloc (sizeof *n);
2406 if (n == NULL)
2407 return bfd_reloc_outofrange;
2408
2409 n->next = mips_hi16_list;
2410 n->data = data;
2411 n->input_section = input_section;
2412 n->rel = *reloc_entry;
2413 mips_hi16_list = n;
2414
2415 if (output_bfd != NULL)
2416 reloc_entry->address += input_section->output_offset;
2417
2418 return bfd_reloc_ok;
2419 }
2420
2421 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2422 like any other 16-bit relocation when applied to global symbols, but is
2423 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2424
2425 bfd_reloc_status_type
2426 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2427 void *data, asection *input_section,
2428 bfd *output_bfd, char **error_message)
2429 {
2430 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2431 || bfd_is_und_section (bfd_get_section (symbol))
2432 || bfd_is_com_section (bfd_get_section (symbol)))
2433 /* The relocation is against a global symbol. */
2434 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2435 input_section, output_bfd,
2436 error_message);
2437
2438 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2439 input_section, output_bfd, error_message);
2440 }
2441
2442 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2443 is a straightforward 16 bit inplace relocation, but we must deal with
2444 any partnering high-part relocations as well. */
2445
2446 bfd_reloc_status_type
2447 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2448 void *data, asection *input_section,
2449 bfd *output_bfd, char **error_message)
2450 {
2451 bfd_vma vallo;
2452 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2453
2454 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2455 return bfd_reloc_outofrange;
2456
2457 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2458 location);
2459 vallo = bfd_get_32 (abfd, location);
2460 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2461 location);
2462
2463 while (mips_hi16_list != NULL)
2464 {
2465 bfd_reloc_status_type ret;
2466 struct mips_hi16 *hi;
2467
2468 hi = mips_hi16_list;
2469
2470 /* R_MIPS*_GOT16 relocations are something of a special case. We
2471 want to install the addend in the same way as for a R_MIPS*_HI16
2472 relocation (with a rightshift of 16). However, since GOT16
2473 relocations can also be used with global symbols, their howto
2474 has a rightshift of 0. */
2475 if (hi->rel.howto->type == R_MIPS_GOT16)
2476 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2477 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2478 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2479 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2480 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2481
2482 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2483 carry or borrow will induce a change of +1 or -1 in the high part. */
2484 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2485
2486 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2487 hi->input_section, output_bfd,
2488 error_message);
2489 if (ret != bfd_reloc_ok)
2490 return ret;
2491
2492 mips_hi16_list = hi->next;
2493 free (hi);
2494 }
2495
2496 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2497 input_section, output_bfd,
2498 error_message);
2499 }
2500
2501 /* A generic howto special_function. This calculates and installs the
2502 relocation itself, thus avoiding the oft-discussed problems in
2503 bfd_perform_relocation and bfd_install_relocation. */
2504
2505 bfd_reloc_status_type
2506 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2507 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2508 asection *input_section, bfd *output_bfd,
2509 char **error_message ATTRIBUTE_UNUSED)
2510 {
2511 bfd_signed_vma val;
2512 bfd_reloc_status_type status;
2513 bfd_boolean relocatable;
2514
2515 relocatable = (output_bfd != NULL);
2516
2517 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2518 return bfd_reloc_outofrange;
2519
2520 /* Build up the field adjustment in VAL. */
2521 val = 0;
2522 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2523 {
2524 /* Either we're calculating the final field value or we have a
2525 relocation against a section symbol. Add in the section's
2526 offset or address. */
2527 val += symbol->section->output_section->vma;
2528 val += symbol->section->output_offset;
2529 }
2530
2531 if (!relocatable)
2532 {
2533 /* We're calculating the final field value. Add in the symbol's value
2534 and, if pc-relative, subtract the address of the field itself. */
2535 val += symbol->value;
2536 if (reloc_entry->howto->pc_relative)
2537 {
2538 val -= input_section->output_section->vma;
2539 val -= input_section->output_offset;
2540 val -= reloc_entry->address;
2541 }
2542 }
2543
2544 /* VAL is now the final adjustment. If we're keeping this relocation
2545 in the output file, and if the relocation uses a separate addend,
2546 we just need to add VAL to that addend. Otherwise we need to add
2547 VAL to the relocation field itself. */
2548 if (relocatable && !reloc_entry->howto->partial_inplace)
2549 reloc_entry->addend += val;
2550 else
2551 {
2552 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2553
2554 /* Add in the separate addend, if any. */
2555 val += reloc_entry->addend;
2556
2557 /* Add VAL to the relocation field. */
2558 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2559 location);
2560 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2561 location);
2562 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2563 location);
2564
2565 if (status != bfd_reloc_ok)
2566 return status;
2567 }
2568
2569 if (relocatable)
2570 reloc_entry->address += input_section->output_offset;
2571
2572 return bfd_reloc_ok;
2573 }
2574 \f
2575 /* Swap an entry in a .gptab section. Note that these routines rely
2576 on the equivalence of the two elements of the union. */
2577
2578 static void
2579 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2580 Elf32_gptab *in)
2581 {
2582 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2583 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2584 }
2585
2586 static void
2587 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2588 Elf32_External_gptab *ex)
2589 {
2590 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2591 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2592 }
2593
2594 static void
2595 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2596 Elf32_External_compact_rel *ex)
2597 {
2598 H_PUT_32 (abfd, in->id1, ex->id1);
2599 H_PUT_32 (abfd, in->num, ex->num);
2600 H_PUT_32 (abfd, in->id2, ex->id2);
2601 H_PUT_32 (abfd, in->offset, ex->offset);
2602 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2603 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2604 }
2605
2606 static void
2607 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2608 Elf32_External_crinfo *ex)
2609 {
2610 unsigned long l;
2611
2612 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2613 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2614 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2615 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2616 H_PUT_32 (abfd, l, ex->info);
2617 H_PUT_32 (abfd, in->konst, ex->konst);
2618 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2619 }
2620 \f
2621 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2622 routines swap this structure in and out. They are used outside of
2623 BFD, so they are globally visible. */
2624
2625 void
2626 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2627 Elf32_RegInfo *in)
2628 {
2629 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2630 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2631 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2632 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2633 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2634 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2635 }
2636
2637 void
2638 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2639 Elf32_External_RegInfo *ex)
2640 {
2641 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2642 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2643 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2644 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2645 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2646 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2647 }
2648
2649 /* In the 64 bit ABI, the .MIPS.options section holds register
2650 information in an Elf64_Reginfo structure. These routines swap
2651 them in and out. They are globally visible because they are used
2652 outside of BFD. These routines are here so that gas can call them
2653 without worrying about whether the 64 bit ABI has been included. */
2654
2655 void
2656 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2657 Elf64_Internal_RegInfo *in)
2658 {
2659 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2660 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2661 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2662 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2663 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2664 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2665 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2666 }
2667
2668 void
2669 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2670 Elf64_External_RegInfo *ex)
2671 {
2672 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2673 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2674 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2675 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2676 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2677 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2678 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2679 }
2680
2681 /* Swap in an options header. */
2682
2683 void
2684 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2685 Elf_Internal_Options *in)
2686 {
2687 in->kind = H_GET_8 (abfd, ex->kind);
2688 in->size = H_GET_8 (abfd, ex->size);
2689 in->section = H_GET_16 (abfd, ex->section);
2690 in->info = H_GET_32 (abfd, ex->info);
2691 }
2692
2693 /* Swap out an options header. */
2694
2695 void
2696 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2697 Elf_External_Options *ex)
2698 {
2699 H_PUT_8 (abfd, in->kind, ex->kind);
2700 H_PUT_8 (abfd, in->size, ex->size);
2701 H_PUT_16 (abfd, in->section, ex->section);
2702 H_PUT_32 (abfd, in->info, ex->info);
2703 }
2704
2705 /* Swap in an abiflags structure. */
2706
2707 void
2708 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2709 const Elf_External_ABIFlags_v0 *ex,
2710 Elf_Internal_ABIFlags_v0 *in)
2711 {
2712 in->version = H_GET_16 (abfd, ex->version);
2713 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2714 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2715 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2716 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2717 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2718 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2719 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2720 in->ases = H_GET_32 (abfd, ex->ases);
2721 in->flags1 = H_GET_32 (abfd, ex->flags1);
2722 in->flags2 = H_GET_32 (abfd, ex->flags2);
2723 }
2724
2725 /* Swap out an abiflags structure. */
2726
2727 void
2728 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2729 const Elf_Internal_ABIFlags_v0 *in,
2730 Elf_External_ABIFlags_v0 *ex)
2731 {
2732 H_PUT_16 (abfd, in->version, ex->version);
2733 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2734 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2735 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2736 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2737 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2738 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2739 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2740 H_PUT_32 (abfd, in->ases, ex->ases);
2741 H_PUT_32 (abfd, in->flags1, ex->flags1);
2742 H_PUT_32 (abfd, in->flags2, ex->flags2);
2743 }
2744 \f
2745 /* This function is called via qsort() to sort the dynamic relocation
2746 entries by increasing r_symndx value. */
2747
2748 static int
2749 sort_dynamic_relocs (const void *arg1, const void *arg2)
2750 {
2751 Elf_Internal_Rela int_reloc1;
2752 Elf_Internal_Rela int_reloc2;
2753 int diff;
2754
2755 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2756 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2757
2758 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2759 if (diff != 0)
2760 return diff;
2761
2762 if (int_reloc1.r_offset < int_reloc2.r_offset)
2763 return -1;
2764 if (int_reloc1.r_offset > int_reloc2.r_offset)
2765 return 1;
2766 return 0;
2767 }
2768
2769 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2770
2771 static int
2772 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2773 const void *arg2 ATTRIBUTE_UNUSED)
2774 {
2775 #ifdef BFD64
2776 Elf_Internal_Rela int_reloc1[3];
2777 Elf_Internal_Rela int_reloc2[3];
2778
2779 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2780 (reldyn_sorting_bfd, arg1, int_reloc1);
2781 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2782 (reldyn_sorting_bfd, arg2, int_reloc2);
2783
2784 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2785 return -1;
2786 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2787 return 1;
2788
2789 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2790 return -1;
2791 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2792 return 1;
2793 return 0;
2794 #else
2795 abort ();
2796 #endif
2797 }
2798
2799
2800 /* This routine is used to write out ECOFF debugging external symbol
2801 information. It is called via mips_elf_link_hash_traverse. The
2802 ECOFF external symbol information must match the ELF external
2803 symbol information. Unfortunately, at this point we don't know
2804 whether a symbol is required by reloc information, so the two
2805 tables may wind up being different. We must sort out the external
2806 symbol information before we can set the final size of the .mdebug
2807 section, and we must set the size of the .mdebug section before we
2808 can relocate any sections, and we can't know which symbols are
2809 required by relocation until we relocate the sections.
2810 Fortunately, it is relatively unlikely that any symbol will be
2811 stripped but required by a reloc. In particular, it can not happen
2812 when generating a final executable. */
2813
2814 static bfd_boolean
2815 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2816 {
2817 struct extsym_info *einfo = data;
2818 bfd_boolean strip;
2819 asection *sec, *output_section;
2820
2821 if (h->root.indx == -2)
2822 strip = FALSE;
2823 else if ((h->root.def_dynamic
2824 || h->root.ref_dynamic
2825 || h->root.type == bfd_link_hash_new)
2826 && !h->root.def_regular
2827 && !h->root.ref_regular)
2828 strip = TRUE;
2829 else if (einfo->info->strip == strip_all
2830 || (einfo->info->strip == strip_some
2831 && bfd_hash_lookup (einfo->info->keep_hash,
2832 h->root.root.root.string,
2833 FALSE, FALSE) == NULL))
2834 strip = TRUE;
2835 else
2836 strip = FALSE;
2837
2838 if (strip)
2839 return TRUE;
2840
2841 if (h->esym.ifd == -2)
2842 {
2843 h->esym.jmptbl = 0;
2844 h->esym.cobol_main = 0;
2845 h->esym.weakext = 0;
2846 h->esym.reserved = 0;
2847 h->esym.ifd = ifdNil;
2848 h->esym.asym.value = 0;
2849 h->esym.asym.st = stGlobal;
2850
2851 if (h->root.root.type == bfd_link_hash_undefined
2852 || h->root.root.type == bfd_link_hash_undefweak)
2853 {
2854 const char *name;
2855
2856 /* Use undefined class. Also, set class and type for some
2857 special symbols. */
2858 name = h->root.root.root.string;
2859 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2860 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2861 {
2862 h->esym.asym.sc = scData;
2863 h->esym.asym.st = stLabel;
2864 h->esym.asym.value = 0;
2865 }
2866 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2867 {
2868 h->esym.asym.sc = scAbs;
2869 h->esym.asym.st = stLabel;
2870 h->esym.asym.value =
2871 mips_elf_hash_table (einfo->info)->procedure_count;
2872 }
2873 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2874 {
2875 h->esym.asym.sc = scAbs;
2876 h->esym.asym.st = stLabel;
2877 h->esym.asym.value = elf_gp (einfo->abfd);
2878 }
2879 else
2880 h->esym.asym.sc = scUndefined;
2881 }
2882 else if (h->root.root.type != bfd_link_hash_defined
2883 && h->root.root.type != bfd_link_hash_defweak)
2884 h->esym.asym.sc = scAbs;
2885 else
2886 {
2887 const char *name;
2888
2889 sec = h->root.root.u.def.section;
2890 output_section = sec->output_section;
2891
2892 /* When making a shared library and symbol h is the one from
2893 the another shared library, OUTPUT_SECTION may be null. */
2894 if (output_section == NULL)
2895 h->esym.asym.sc = scUndefined;
2896 else
2897 {
2898 name = bfd_section_name (output_section->owner, output_section);
2899
2900 if (strcmp (name, ".text") == 0)
2901 h->esym.asym.sc = scText;
2902 else if (strcmp (name, ".data") == 0)
2903 h->esym.asym.sc = scData;
2904 else if (strcmp (name, ".sdata") == 0)
2905 h->esym.asym.sc = scSData;
2906 else if (strcmp (name, ".rodata") == 0
2907 || strcmp (name, ".rdata") == 0)
2908 h->esym.asym.sc = scRData;
2909 else if (strcmp (name, ".bss") == 0)
2910 h->esym.asym.sc = scBss;
2911 else if (strcmp (name, ".sbss") == 0)
2912 h->esym.asym.sc = scSBss;
2913 else if (strcmp (name, ".init") == 0)
2914 h->esym.asym.sc = scInit;
2915 else if (strcmp (name, ".fini") == 0)
2916 h->esym.asym.sc = scFini;
2917 else
2918 h->esym.asym.sc = scAbs;
2919 }
2920 }
2921
2922 h->esym.asym.reserved = 0;
2923 h->esym.asym.index = indexNil;
2924 }
2925
2926 if (h->root.root.type == bfd_link_hash_common)
2927 h->esym.asym.value = h->root.root.u.c.size;
2928 else if (h->root.root.type == bfd_link_hash_defined
2929 || h->root.root.type == bfd_link_hash_defweak)
2930 {
2931 if (h->esym.asym.sc == scCommon)
2932 h->esym.asym.sc = scBss;
2933 else if (h->esym.asym.sc == scSCommon)
2934 h->esym.asym.sc = scSBss;
2935
2936 sec = h->root.root.u.def.section;
2937 output_section = sec->output_section;
2938 if (output_section != NULL)
2939 h->esym.asym.value = (h->root.root.u.def.value
2940 + sec->output_offset
2941 + output_section->vma);
2942 else
2943 h->esym.asym.value = 0;
2944 }
2945 else
2946 {
2947 struct mips_elf_link_hash_entry *hd = h;
2948
2949 while (hd->root.root.type == bfd_link_hash_indirect)
2950 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2951
2952 if (hd->needs_lazy_stub)
2953 {
2954 BFD_ASSERT (hd->root.plt.plist != NULL);
2955 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2956 /* Set type and value for a symbol with a function stub. */
2957 h->esym.asym.st = stProc;
2958 sec = hd->root.root.u.def.section;
2959 if (sec == NULL)
2960 h->esym.asym.value = 0;
2961 else
2962 {
2963 output_section = sec->output_section;
2964 if (output_section != NULL)
2965 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2966 + sec->output_offset
2967 + output_section->vma);
2968 else
2969 h->esym.asym.value = 0;
2970 }
2971 }
2972 }
2973
2974 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2975 h->root.root.root.string,
2976 &h->esym))
2977 {
2978 einfo->failed = TRUE;
2979 return FALSE;
2980 }
2981
2982 return TRUE;
2983 }
2984
2985 /* A comparison routine used to sort .gptab entries. */
2986
2987 static int
2988 gptab_compare (const void *p1, const void *p2)
2989 {
2990 const Elf32_gptab *a1 = p1;
2991 const Elf32_gptab *a2 = p2;
2992
2993 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2994 }
2995 \f
2996 /* Functions to manage the got entry hash table. */
2997
2998 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2999 hash number. */
3000
3001 static INLINE hashval_t
3002 mips_elf_hash_bfd_vma (bfd_vma addr)
3003 {
3004 #ifdef BFD64
3005 return addr + (addr >> 32);
3006 #else
3007 return addr;
3008 #endif
3009 }
3010
3011 static hashval_t
3012 mips_elf_got_entry_hash (const void *entry_)
3013 {
3014 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3015
3016 return (entry->symndx
3017 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3018 + (entry->tls_type == GOT_TLS_LDM ? 0
3019 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3020 : entry->symndx >= 0 ? (entry->abfd->id
3021 + mips_elf_hash_bfd_vma (entry->d.addend))
3022 : entry->d.h->root.root.root.hash));
3023 }
3024
3025 static int
3026 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3027 {
3028 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3029 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3030
3031 return (e1->symndx == e2->symndx
3032 && e1->tls_type == e2->tls_type
3033 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3034 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3035 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3036 && e1->d.addend == e2->d.addend)
3037 : e2->abfd && e1->d.h == e2->d.h));
3038 }
3039
3040 static hashval_t
3041 mips_got_page_ref_hash (const void *ref_)
3042 {
3043 const struct mips_got_page_ref *ref;
3044
3045 ref = (const struct mips_got_page_ref *) ref_;
3046 return ((ref->symndx >= 0
3047 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3048 : ref->u.h->root.root.root.hash)
3049 + mips_elf_hash_bfd_vma (ref->addend));
3050 }
3051
3052 static int
3053 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3054 {
3055 const struct mips_got_page_ref *ref1, *ref2;
3056
3057 ref1 = (const struct mips_got_page_ref *) ref1_;
3058 ref2 = (const struct mips_got_page_ref *) ref2_;
3059 return (ref1->symndx == ref2->symndx
3060 && (ref1->symndx < 0
3061 ? ref1->u.h == ref2->u.h
3062 : ref1->u.abfd == ref2->u.abfd)
3063 && ref1->addend == ref2->addend);
3064 }
3065
3066 static hashval_t
3067 mips_got_page_entry_hash (const void *entry_)
3068 {
3069 const struct mips_got_page_entry *entry;
3070
3071 entry = (const struct mips_got_page_entry *) entry_;
3072 return entry->sec->id;
3073 }
3074
3075 static int
3076 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3077 {
3078 const struct mips_got_page_entry *entry1, *entry2;
3079
3080 entry1 = (const struct mips_got_page_entry *) entry1_;
3081 entry2 = (const struct mips_got_page_entry *) entry2_;
3082 return entry1->sec == entry2->sec;
3083 }
3084 \f
3085 /* Create and return a new mips_got_info structure. */
3086
3087 static struct mips_got_info *
3088 mips_elf_create_got_info (bfd *abfd)
3089 {
3090 struct mips_got_info *g;
3091
3092 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3093 if (g == NULL)
3094 return NULL;
3095
3096 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3097 mips_elf_got_entry_eq, NULL);
3098 if (g->got_entries == NULL)
3099 return NULL;
3100
3101 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3102 mips_got_page_ref_eq, NULL);
3103 if (g->got_page_refs == NULL)
3104 return NULL;
3105
3106 return g;
3107 }
3108
3109 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3110 CREATE_P and if ABFD doesn't already have a GOT. */
3111
3112 static struct mips_got_info *
3113 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3114 {
3115 struct mips_elf_obj_tdata *tdata;
3116
3117 if (!is_mips_elf (abfd))
3118 return NULL;
3119
3120 tdata = mips_elf_tdata (abfd);
3121 if (!tdata->got && create_p)
3122 tdata->got = mips_elf_create_got_info (abfd);
3123 return tdata->got;
3124 }
3125
3126 /* Record that ABFD should use output GOT G. */
3127
3128 static void
3129 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3130 {
3131 struct mips_elf_obj_tdata *tdata;
3132
3133 BFD_ASSERT (is_mips_elf (abfd));
3134 tdata = mips_elf_tdata (abfd);
3135 if (tdata->got)
3136 {
3137 /* The GOT structure itself and the hash table entries are
3138 allocated to a bfd, but the hash tables aren't. */
3139 htab_delete (tdata->got->got_entries);
3140 htab_delete (tdata->got->got_page_refs);
3141 if (tdata->got->got_page_entries)
3142 htab_delete (tdata->got->got_page_entries);
3143 }
3144 tdata->got = g;
3145 }
3146
3147 /* Return the dynamic relocation section. If it doesn't exist, try to
3148 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3149 if creation fails. */
3150
3151 static asection *
3152 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3153 {
3154 const char *dname;
3155 asection *sreloc;
3156 bfd *dynobj;
3157
3158 dname = MIPS_ELF_REL_DYN_NAME (info);
3159 dynobj = elf_hash_table (info)->dynobj;
3160 sreloc = bfd_get_linker_section (dynobj, dname);
3161 if (sreloc == NULL && create_p)
3162 {
3163 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3164 (SEC_ALLOC
3165 | SEC_LOAD
3166 | SEC_HAS_CONTENTS
3167 | SEC_IN_MEMORY
3168 | SEC_LINKER_CREATED
3169 | SEC_READONLY));
3170 if (sreloc == NULL
3171 || ! bfd_set_section_alignment (dynobj, sreloc,
3172 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3173 return NULL;
3174 }
3175 return sreloc;
3176 }
3177
3178 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3179
3180 static int
3181 mips_elf_reloc_tls_type (unsigned int r_type)
3182 {
3183 if (tls_gd_reloc_p (r_type))
3184 return GOT_TLS_GD;
3185
3186 if (tls_ldm_reloc_p (r_type))
3187 return GOT_TLS_LDM;
3188
3189 if (tls_gottprel_reloc_p (r_type))
3190 return GOT_TLS_IE;
3191
3192 return GOT_TLS_NONE;
3193 }
3194
3195 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3196
3197 static int
3198 mips_tls_got_entries (unsigned int type)
3199 {
3200 switch (type)
3201 {
3202 case GOT_TLS_GD:
3203 case GOT_TLS_LDM:
3204 return 2;
3205
3206 case GOT_TLS_IE:
3207 return 1;
3208
3209 case GOT_TLS_NONE:
3210 return 0;
3211 }
3212 abort ();
3213 }
3214
3215 /* Count the number of relocations needed for a TLS GOT entry, with
3216 access types from TLS_TYPE, and symbol H (or a local symbol if H
3217 is NULL). */
3218
3219 static int
3220 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3221 struct elf_link_hash_entry *h)
3222 {
3223 int indx = 0;
3224 bfd_boolean need_relocs = FALSE;
3225 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3226
3227 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3228 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3229 indx = h->dynindx;
3230
3231 if ((info->shared || indx != 0)
3232 && (h == NULL
3233 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3234 || h->root.type != bfd_link_hash_undefweak))
3235 need_relocs = TRUE;
3236
3237 if (!need_relocs)
3238 return 0;
3239
3240 switch (tls_type)
3241 {
3242 case GOT_TLS_GD:
3243 return indx != 0 ? 2 : 1;
3244
3245 case GOT_TLS_IE:
3246 return 1;
3247
3248 case GOT_TLS_LDM:
3249 return info->shared ? 1 : 0;
3250
3251 default:
3252 return 0;
3253 }
3254 }
3255
3256 /* Add the number of GOT entries and TLS relocations required by ENTRY
3257 to G. */
3258
3259 static void
3260 mips_elf_count_got_entry (struct bfd_link_info *info,
3261 struct mips_got_info *g,
3262 struct mips_got_entry *entry)
3263 {
3264 if (entry->tls_type)
3265 {
3266 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3267 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3268 entry->symndx < 0
3269 ? &entry->d.h->root : NULL);
3270 }
3271 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3272 g->local_gotno += 1;
3273 else
3274 g->global_gotno += 1;
3275 }
3276
3277 /* Output a simple dynamic relocation into SRELOC. */
3278
3279 static void
3280 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3281 asection *sreloc,
3282 unsigned long reloc_index,
3283 unsigned long indx,
3284 int r_type,
3285 bfd_vma offset)
3286 {
3287 Elf_Internal_Rela rel[3];
3288
3289 memset (rel, 0, sizeof (rel));
3290
3291 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3292 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3293
3294 if (ABI_64_P (output_bfd))
3295 {
3296 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3297 (output_bfd, &rel[0],
3298 (sreloc->contents
3299 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3300 }
3301 else
3302 bfd_elf32_swap_reloc_out
3303 (output_bfd, &rel[0],
3304 (sreloc->contents
3305 + reloc_index * sizeof (Elf32_External_Rel)));
3306 }
3307
3308 /* Initialize a set of TLS GOT entries for one symbol. */
3309
3310 static void
3311 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3312 struct mips_got_entry *entry,
3313 struct mips_elf_link_hash_entry *h,
3314 bfd_vma value)
3315 {
3316 struct mips_elf_link_hash_table *htab;
3317 int indx;
3318 asection *sreloc, *sgot;
3319 bfd_vma got_offset, got_offset2;
3320 bfd_boolean need_relocs = FALSE;
3321
3322 htab = mips_elf_hash_table (info);
3323 if (htab == NULL)
3324 return;
3325
3326 sgot = htab->sgot;
3327
3328 indx = 0;
3329 if (h != NULL)
3330 {
3331 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3332
3333 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3334 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3335 indx = h->root.dynindx;
3336 }
3337
3338 if (entry->tls_initialized)
3339 return;
3340
3341 if ((info->shared || indx != 0)
3342 && (h == NULL
3343 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3344 || h->root.type != bfd_link_hash_undefweak))
3345 need_relocs = TRUE;
3346
3347 /* MINUS_ONE means the symbol is not defined in this object. It may not
3348 be defined at all; assume that the value doesn't matter in that
3349 case. Otherwise complain if we would use the value. */
3350 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3351 || h->root.root.type == bfd_link_hash_undefweak);
3352
3353 /* Emit necessary relocations. */
3354 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3355 got_offset = entry->gotidx;
3356
3357 switch (entry->tls_type)
3358 {
3359 case GOT_TLS_GD:
3360 /* General Dynamic. */
3361 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3362
3363 if (need_relocs)
3364 {
3365 mips_elf_output_dynamic_relocation
3366 (abfd, sreloc, sreloc->reloc_count++, indx,
3367 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3368 sgot->output_offset + sgot->output_section->vma + got_offset);
3369
3370 if (indx)
3371 mips_elf_output_dynamic_relocation
3372 (abfd, sreloc, sreloc->reloc_count++, indx,
3373 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3374 sgot->output_offset + sgot->output_section->vma + got_offset2);
3375 else
3376 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3377 sgot->contents + got_offset2);
3378 }
3379 else
3380 {
3381 MIPS_ELF_PUT_WORD (abfd, 1,
3382 sgot->contents + got_offset);
3383 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3384 sgot->contents + got_offset2);
3385 }
3386 break;
3387
3388 case GOT_TLS_IE:
3389 /* Initial Exec model. */
3390 if (need_relocs)
3391 {
3392 if (indx == 0)
3393 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3394 sgot->contents + got_offset);
3395 else
3396 MIPS_ELF_PUT_WORD (abfd, 0,
3397 sgot->contents + got_offset);
3398
3399 mips_elf_output_dynamic_relocation
3400 (abfd, sreloc, sreloc->reloc_count++, indx,
3401 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3402 sgot->output_offset + sgot->output_section->vma + got_offset);
3403 }
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3406 sgot->contents + got_offset);
3407 break;
3408
3409 case GOT_TLS_LDM:
3410 /* The initial offset is zero, and the LD offsets will include the
3411 bias by DTP_OFFSET. */
3412 MIPS_ELF_PUT_WORD (abfd, 0,
3413 sgot->contents + got_offset
3414 + MIPS_ELF_GOT_SIZE (abfd));
3415
3416 if (!info->shared)
3417 MIPS_ELF_PUT_WORD (abfd, 1,
3418 sgot->contents + got_offset);
3419 else
3420 mips_elf_output_dynamic_relocation
3421 (abfd, sreloc, sreloc->reloc_count++, indx,
3422 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3423 sgot->output_offset + sgot->output_section->vma + got_offset);
3424 break;
3425
3426 default:
3427 abort ();
3428 }
3429
3430 entry->tls_initialized = TRUE;
3431 }
3432
3433 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3434 for global symbol H. .got.plt comes before the GOT, so the offset
3435 will be negative. */
3436
3437 static bfd_vma
3438 mips_elf_gotplt_index (struct bfd_link_info *info,
3439 struct elf_link_hash_entry *h)
3440 {
3441 bfd_vma got_address, got_value;
3442 struct mips_elf_link_hash_table *htab;
3443
3444 htab = mips_elf_hash_table (info);
3445 BFD_ASSERT (htab != NULL);
3446
3447 BFD_ASSERT (h->plt.plist != NULL);
3448 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3449
3450 /* Calculate the address of the associated .got.plt entry. */
3451 got_address = (htab->sgotplt->output_section->vma
3452 + htab->sgotplt->output_offset
3453 + (h->plt.plist->gotplt_index
3454 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3455
3456 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3457 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3458 + htab->root.hgot->root.u.def.section->output_offset
3459 + htab->root.hgot->root.u.def.value);
3460
3461 return got_address - got_value;
3462 }
3463
3464 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3465 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3466 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3467 offset can be found. */
3468
3469 static bfd_vma
3470 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3471 bfd_vma value, unsigned long r_symndx,
3472 struct mips_elf_link_hash_entry *h, int r_type)
3473 {
3474 struct mips_elf_link_hash_table *htab;
3475 struct mips_got_entry *entry;
3476
3477 htab = mips_elf_hash_table (info);
3478 BFD_ASSERT (htab != NULL);
3479
3480 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3481 r_symndx, h, r_type);
3482 if (!entry)
3483 return MINUS_ONE;
3484
3485 if (entry->tls_type)
3486 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3487 return entry->gotidx;
3488 }
3489
3490 /* Return the GOT index of global symbol H in the primary GOT. */
3491
3492 static bfd_vma
3493 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3494 struct elf_link_hash_entry *h)
3495 {
3496 struct mips_elf_link_hash_table *htab;
3497 long global_got_dynindx;
3498 struct mips_got_info *g;
3499 bfd_vma got_index;
3500
3501 htab = mips_elf_hash_table (info);
3502 BFD_ASSERT (htab != NULL);
3503
3504 global_got_dynindx = 0;
3505 if (htab->global_gotsym != NULL)
3506 global_got_dynindx = htab->global_gotsym->dynindx;
3507
3508 /* Once we determine the global GOT entry with the lowest dynamic
3509 symbol table index, we must put all dynamic symbols with greater
3510 indices into the primary GOT. That makes it easy to calculate the
3511 GOT offset. */
3512 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3513 g = mips_elf_bfd_got (obfd, FALSE);
3514 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3515 * MIPS_ELF_GOT_SIZE (obfd));
3516 BFD_ASSERT (got_index < htab->sgot->size);
3517
3518 return got_index;
3519 }
3520
3521 /* Return the GOT index for the global symbol indicated by H, which is
3522 referenced by a relocation of type R_TYPE in IBFD. */
3523
3524 static bfd_vma
3525 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3526 struct elf_link_hash_entry *h, int r_type)
3527 {
3528 struct mips_elf_link_hash_table *htab;
3529 struct mips_got_info *g;
3530 struct mips_got_entry lookup, *entry;
3531 bfd_vma gotidx;
3532
3533 htab = mips_elf_hash_table (info);
3534 BFD_ASSERT (htab != NULL);
3535
3536 g = mips_elf_bfd_got (ibfd, FALSE);
3537 BFD_ASSERT (g);
3538
3539 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3540 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3541 return mips_elf_primary_global_got_index (obfd, info, h);
3542
3543 lookup.abfd = ibfd;
3544 lookup.symndx = -1;
3545 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3546 entry = htab_find (g->got_entries, &lookup);
3547 BFD_ASSERT (entry);
3548
3549 gotidx = entry->gotidx;
3550 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3551
3552 if (lookup.tls_type)
3553 {
3554 bfd_vma value = MINUS_ONE;
3555
3556 if ((h->root.type == bfd_link_hash_defined
3557 || h->root.type == bfd_link_hash_defweak)
3558 && h->root.u.def.section->output_section)
3559 value = (h->root.u.def.value
3560 + h->root.u.def.section->output_offset
3561 + h->root.u.def.section->output_section->vma);
3562
3563 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3564 }
3565 return gotidx;
3566 }
3567
3568 /* Find a GOT page entry that points to within 32KB of VALUE. These
3569 entries are supposed to be placed at small offsets in the GOT, i.e.,
3570 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3571 entry could be created. If OFFSETP is nonnull, use it to return the
3572 offset of the GOT entry from VALUE. */
3573
3574 static bfd_vma
3575 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3576 bfd_vma value, bfd_vma *offsetp)
3577 {
3578 bfd_vma page, got_index;
3579 struct mips_got_entry *entry;
3580
3581 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3582 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3583 NULL, R_MIPS_GOT_PAGE);
3584
3585 if (!entry)
3586 return MINUS_ONE;
3587
3588 got_index = entry->gotidx;
3589
3590 if (offsetp)
3591 *offsetp = value - entry->d.address;
3592
3593 return got_index;
3594 }
3595
3596 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3597 EXTERNAL is true if the relocation was originally against a global
3598 symbol that binds locally. */
3599
3600 static bfd_vma
3601 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3602 bfd_vma value, bfd_boolean external)
3603 {
3604 struct mips_got_entry *entry;
3605
3606 /* GOT16 relocations against local symbols are followed by a LO16
3607 relocation; those against global symbols are not. Thus if the
3608 symbol was originally local, the GOT16 relocation should load the
3609 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3610 if (! external)
3611 value = mips_elf_high (value) << 16;
3612
3613 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3614 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3615 same in all cases. */
3616 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3617 NULL, R_MIPS_GOT16);
3618 if (entry)
3619 return entry->gotidx;
3620 else
3621 return MINUS_ONE;
3622 }
3623
3624 /* Returns the offset for the entry at the INDEXth position
3625 in the GOT. */
3626
3627 static bfd_vma
3628 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3629 bfd *input_bfd, bfd_vma got_index)
3630 {
3631 struct mips_elf_link_hash_table *htab;
3632 asection *sgot;
3633 bfd_vma gp;
3634
3635 htab = mips_elf_hash_table (info);
3636 BFD_ASSERT (htab != NULL);
3637
3638 sgot = htab->sgot;
3639 gp = _bfd_get_gp_value (output_bfd)
3640 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3641
3642 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3643 }
3644
3645 /* Create and return a local GOT entry for VALUE, which was calculated
3646 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3647 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3648 instead. */
3649
3650 static struct mips_got_entry *
3651 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3652 bfd *ibfd, bfd_vma value,
3653 unsigned long r_symndx,
3654 struct mips_elf_link_hash_entry *h,
3655 int r_type)
3656 {
3657 struct mips_got_entry lookup, *entry;
3658 void **loc;
3659 struct mips_got_info *g;
3660 struct mips_elf_link_hash_table *htab;
3661 bfd_vma gotidx;
3662
3663 htab = mips_elf_hash_table (info);
3664 BFD_ASSERT (htab != NULL);
3665
3666 g = mips_elf_bfd_got (ibfd, FALSE);
3667 if (g == NULL)
3668 {
3669 g = mips_elf_bfd_got (abfd, FALSE);
3670 BFD_ASSERT (g != NULL);
3671 }
3672
3673 /* This function shouldn't be called for symbols that live in the global
3674 area of the GOT. */
3675 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3676
3677 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3678 if (lookup.tls_type)
3679 {
3680 lookup.abfd = ibfd;
3681 if (tls_ldm_reloc_p (r_type))
3682 {
3683 lookup.symndx = 0;
3684 lookup.d.addend = 0;
3685 }
3686 else if (h == NULL)
3687 {
3688 lookup.symndx = r_symndx;
3689 lookup.d.addend = 0;
3690 }
3691 else
3692 {
3693 lookup.symndx = -1;
3694 lookup.d.h = h;
3695 }
3696
3697 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3698 BFD_ASSERT (entry);
3699
3700 gotidx = entry->gotidx;
3701 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3702
3703 return entry;
3704 }
3705
3706 lookup.abfd = NULL;
3707 lookup.symndx = -1;
3708 lookup.d.address = value;
3709 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3710 if (!loc)
3711 return NULL;
3712
3713 entry = (struct mips_got_entry *) *loc;
3714 if (entry)
3715 return entry;
3716
3717 if (g->assigned_low_gotno > g->assigned_high_gotno)
3718 {
3719 /* We didn't allocate enough space in the GOT. */
3720 (*_bfd_error_handler)
3721 (_("not enough GOT space for local GOT entries"));
3722 bfd_set_error (bfd_error_bad_value);
3723 return NULL;
3724 }
3725
3726 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3727 if (!entry)
3728 return NULL;
3729
3730 if (got16_reloc_p (r_type)
3731 || call16_reloc_p (r_type)
3732 || got_page_reloc_p (r_type)
3733 || got_disp_reloc_p (r_type))
3734 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3735 else
3736 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3737
3738 *entry = lookup;
3739 *loc = entry;
3740
3741 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3742
3743 /* These GOT entries need a dynamic relocation on VxWorks. */
3744 if (htab->is_vxworks)
3745 {
3746 Elf_Internal_Rela outrel;
3747 asection *s;
3748 bfd_byte *rloc;
3749 bfd_vma got_address;
3750
3751 s = mips_elf_rel_dyn_section (info, FALSE);
3752 got_address = (htab->sgot->output_section->vma
3753 + htab->sgot->output_offset
3754 + entry->gotidx);
3755
3756 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3757 outrel.r_offset = got_address;
3758 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3759 outrel.r_addend = value;
3760 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3761 }
3762
3763 return entry;
3764 }
3765
3766 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3767 The number might be exact or a worst-case estimate, depending on how
3768 much information is available to elf_backend_omit_section_dynsym at
3769 the current linking stage. */
3770
3771 static bfd_size_type
3772 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3773 {
3774 bfd_size_type count;
3775
3776 count = 0;
3777 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3778 {
3779 asection *p;
3780 const struct elf_backend_data *bed;
3781
3782 bed = get_elf_backend_data (output_bfd);
3783 for (p = output_bfd->sections; p ; p = p->next)
3784 if ((p->flags & SEC_EXCLUDE) == 0
3785 && (p->flags & SEC_ALLOC) != 0
3786 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3787 ++count;
3788 }
3789 return count;
3790 }
3791
3792 /* Sort the dynamic symbol table so that symbols that need GOT entries
3793 appear towards the end. */
3794
3795 static bfd_boolean
3796 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3797 {
3798 struct mips_elf_link_hash_table *htab;
3799 struct mips_elf_hash_sort_data hsd;
3800 struct mips_got_info *g;
3801
3802 if (elf_hash_table (info)->dynsymcount == 0)
3803 return TRUE;
3804
3805 htab = mips_elf_hash_table (info);
3806 BFD_ASSERT (htab != NULL);
3807
3808 g = htab->got_info;
3809 if (g == NULL)
3810 return TRUE;
3811
3812 hsd.low = NULL;
3813 hsd.max_unref_got_dynindx
3814 = hsd.min_got_dynindx
3815 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3816 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3817 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3818 elf_hash_table (info)),
3819 mips_elf_sort_hash_table_f,
3820 &hsd);
3821
3822 /* There should have been enough room in the symbol table to
3823 accommodate both the GOT and non-GOT symbols. */
3824 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3825 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3826 == elf_hash_table (info)->dynsymcount);
3827 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3828 == g->global_gotno);
3829
3830 /* Now we know which dynamic symbol has the lowest dynamic symbol
3831 table index in the GOT. */
3832 htab->global_gotsym = hsd.low;
3833
3834 return TRUE;
3835 }
3836
3837 /* If H needs a GOT entry, assign it the highest available dynamic
3838 index. Otherwise, assign it the lowest available dynamic
3839 index. */
3840
3841 static bfd_boolean
3842 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3843 {
3844 struct mips_elf_hash_sort_data *hsd = data;
3845
3846 /* Symbols without dynamic symbol table entries aren't interesting
3847 at all. */
3848 if (h->root.dynindx == -1)
3849 return TRUE;
3850
3851 switch (h->global_got_area)
3852 {
3853 case GGA_NONE:
3854 h->root.dynindx = hsd->max_non_got_dynindx++;
3855 break;
3856
3857 case GGA_NORMAL:
3858 h->root.dynindx = --hsd->min_got_dynindx;
3859 hsd->low = (struct elf_link_hash_entry *) h;
3860 break;
3861
3862 case GGA_RELOC_ONLY:
3863 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3864 hsd->low = (struct elf_link_hash_entry *) h;
3865 h->root.dynindx = hsd->max_unref_got_dynindx++;
3866 break;
3867 }
3868
3869 return TRUE;
3870 }
3871
3872 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3873 (which is owned by the caller and shouldn't be added to the
3874 hash table directly). */
3875
3876 static bfd_boolean
3877 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3878 struct mips_got_entry *lookup)
3879 {
3880 struct mips_elf_link_hash_table *htab;
3881 struct mips_got_entry *entry;
3882 struct mips_got_info *g;
3883 void **loc, **bfd_loc;
3884
3885 /* Make sure there's a slot for this entry in the master GOT. */
3886 htab = mips_elf_hash_table (info);
3887 g = htab->got_info;
3888 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3889 if (!loc)
3890 return FALSE;
3891
3892 /* Populate the entry if it isn't already. */
3893 entry = (struct mips_got_entry *) *loc;
3894 if (!entry)
3895 {
3896 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3897 if (!entry)
3898 return FALSE;
3899
3900 lookup->tls_initialized = FALSE;
3901 lookup->gotidx = -1;
3902 *entry = *lookup;
3903 *loc = entry;
3904 }
3905
3906 /* Reuse the same GOT entry for the BFD's GOT. */
3907 g = mips_elf_bfd_got (abfd, TRUE);
3908 if (!g)
3909 return FALSE;
3910
3911 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3912 if (!bfd_loc)
3913 return FALSE;
3914
3915 if (!*bfd_loc)
3916 *bfd_loc = entry;
3917 return TRUE;
3918 }
3919
3920 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3921 entry for it. FOR_CALL is true if the caller is only interested in
3922 using the GOT entry for calls. */
3923
3924 static bfd_boolean
3925 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3926 bfd *abfd, struct bfd_link_info *info,
3927 bfd_boolean for_call, int r_type)
3928 {
3929 struct mips_elf_link_hash_table *htab;
3930 struct mips_elf_link_hash_entry *hmips;
3931 struct mips_got_entry entry;
3932 unsigned char tls_type;
3933
3934 htab = mips_elf_hash_table (info);
3935 BFD_ASSERT (htab != NULL);
3936
3937 hmips = (struct mips_elf_link_hash_entry *) h;
3938 if (!for_call)
3939 hmips->got_only_for_calls = FALSE;
3940
3941 /* A global symbol in the GOT must also be in the dynamic symbol
3942 table. */
3943 if (h->dynindx == -1)
3944 {
3945 switch (ELF_ST_VISIBILITY (h->other))
3946 {
3947 case STV_INTERNAL:
3948 case STV_HIDDEN:
3949 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3950 break;
3951 }
3952 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3953 return FALSE;
3954 }
3955
3956 tls_type = mips_elf_reloc_tls_type (r_type);
3957 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3958 hmips->global_got_area = GGA_NORMAL;
3959
3960 entry.abfd = abfd;
3961 entry.symndx = -1;
3962 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3963 entry.tls_type = tls_type;
3964 return mips_elf_record_got_entry (info, abfd, &entry);
3965 }
3966
3967 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3968 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3969
3970 static bfd_boolean
3971 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3972 struct bfd_link_info *info, int r_type)
3973 {
3974 struct mips_elf_link_hash_table *htab;
3975 struct mips_got_info *g;
3976 struct mips_got_entry entry;
3977
3978 htab = mips_elf_hash_table (info);
3979 BFD_ASSERT (htab != NULL);
3980
3981 g = htab->got_info;
3982 BFD_ASSERT (g != NULL);
3983
3984 entry.abfd = abfd;
3985 entry.symndx = symndx;
3986 entry.d.addend = addend;
3987 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3988 return mips_elf_record_got_entry (info, abfd, &entry);
3989 }
3990
3991 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3992 H is the symbol's hash table entry, or null if SYMNDX is local
3993 to ABFD. */
3994
3995 static bfd_boolean
3996 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3997 long symndx, struct elf_link_hash_entry *h,
3998 bfd_signed_vma addend)
3999 {
4000 struct mips_elf_link_hash_table *htab;
4001 struct mips_got_info *g1, *g2;
4002 struct mips_got_page_ref lookup, *entry;
4003 void **loc, **bfd_loc;
4004
4005 htab = mips_elf_hash_table (info);
4006 BFD_ASSERT (htab != NULL);
4007
4008 g1 = htab->got_info;
4009 BFD_ASSERT (g1 != NULL);
4010
4011 if (h)
4012 {
4013 lookup.symndx = -1;
4014 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4015 }
4016 else
4017 {
4018 lookup.symndx = symndx;
4019 lookup.u.abfd = abfd;
4020 }
4021 lookup.addend = addend;
4022 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4023 if (loc == NULL)
4024 return FALSE;
4025
4026 entry = (struct mips_got_page_ref *) *loc;
4027 if (!entry)
4028 {
4029 entry = bfd_alloc (abfd, sizeof (*entry));
4030 if (!entry)
4031 return FALSE;
4032
4033 *entry = lookup;
4034 *loc = entry;
4035 }
4036
4037 /* Add the same entry to the BFD's GOT. */
4038 g2 = mips_elf_bfd_got (abfd, TRUE);
4039 if (!g2)
4040 return FALSE;
4041
4042 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4043 if (!bfd_loc)
4044 return FALSE;
4045
4046 if (!*bfd_loc)
4047 *bfd_loc = entry;
4048
4049 return TRUE;
4050 }
4051
4052 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4053
4054 static void
4055 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4056 unsigned int n)
4057 {
4058 asection *s;
4059 struct mips_elf_link_hash_table *htab;
4060
4061 htab = mips_elf_hash_table (info);
4062 BFD_ASSERT (htab != NULL);
4063
4064 s = mips_elf_rel_dyn_section (info, FALSE);
4065 BFD_ASSERT (s != NULL);
4066
4067 if (htab->is_vxworks)
4068 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4069 else
4070 {
4071 if (s->size == 0)
4072 {
4073 /* Make room for a null element. */
4074 s->size += MIPS_ELF_REL_SIZE (abfd);
4075 ++s->reloc_count;
4076 }
4077 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4078 }
4079 }
4080 \f
4081 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4082 mips_elf_traverse_got_arg structure. Count the number of GOT
4083 entries and TLS relocs. Set DATA->value to true if we need
4084 to resolve indirect or warning symbols and then recreate the GOT. */
4085
4086 static int
4087 mips_elf_check_recreate_got (void **entryp, void *data)
4088 {
4089 struct mips_got_entry *entry;
4090 struct mips_elf_traverse_got_arg *arg;
4091
4092 entry = (struct mips_got_entry *) *entryp;
4093 arg = (struct mips_elf_traverse_got_arg *) data;
4094 if (entry->abfd != NULL && entry->symndx == -1)
4095 {
4096 struct mips_elf_link_hash_entry *h;
4097
4098 h = entry->d.h;
4099 if (h->root.root.type == bfd_link_hash_indirect
4100 || h->root.root.type == bfd_link_hash_warning)
4101 {
4102 arg->value = TRUE;
4103 return 0;
4104 }
4105 }
4106 mips_elf_count_got_entry (arg->info, arg->g, entry);
4107 return 1;
4108 }
4109
4110 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4111 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4112 converting entries for indirect and warning symbols into entries
4113 for the target symbol. Set DATA->g to null on error. */
4114
4115 static int
4116 mips_elf_recreate_got (void **entryp, void *data)
4117 {
4118 struct mips_got_entry new_entry, *entry;
4119 struct mips_elf_traverse_got_arg *arg;
4120 void **slot;
4121
4122 entry = (struct mips_got_entry *) *entryp;
4123 arg = (struct mips_elf_traverse_got_arg *) data;
4124 if (entry->abfd != NULL
4125 && entry->symndx == -1
4126 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4127 || entry->d.h->root.root.type == bfd_link_hash_warning))
4128 {
4129 struct mips_elf_link_hash_entry *h;
4130
4131 new_entry = *entry;
4132 entry = &new_entry;
4133 h = entry->d.h;
4134 do
4135 {
4136 BFD_ASSERT (h->global_got_area == GGA_NONE);
4137 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4138 }
4139 while (h->root.root.type == bfd_link_hash_indirect
4140 || h->root.root.type == bfd_link_hash_warning);
4141 entry->d.h = h;
4142 }
4143 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4144 if (slot == NULL)
4145 {
4146 arg->g = NULL;
4147 return 0;
4148 }
4149 if (*slot == NULL)
4150 {
4151 if (entry == &new_entry)
4152 {
4153 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4154 if (!entry)
4155 {
4156 arg->g = NULL;
4157 return 0;
4158 }
4159 *entry = new_entry;
4160 }
4161 *slot = entry;
4162 mips_elf_count_got_entry (arg->info, arg->g, entry);
4163 }
4164 return 1;
4165 }
4166
4167 /* Return the maximum number of GOT page entries required for RANGE. */
4168
4169 static bfd_vma
4170 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4171 {
4172 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4173 }
4174
4175 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4176
4177 static bfd_boolean
4178 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4179 asection *sec, bfd_signed_vma addend)
4180 {
4181 struct mips_got_info *g = arg->g;
4182 struct mips_got_page_entry lookup, *entry;
4183 struct mips_got_page_range **range_ptr, *range;
4184 bfd_vma old_pages, new_pages;
4185 void **loc;
4186
4187 /* Find the mips_got_page_entry hash table entry for this section. */
4188 lookup.sec = sec;
4189 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4190 if (loc == NULL)
4191 return FALSE;
4192
4193 /* Create a mips_got_page_entry if this is the first time we've
4194 seen the section. */
4195 entry = (struct mips_got_page_entry *) *loc;
4196 if (!entry)
4197 {
4198 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4199 if (!entry)
4200 return FALSE;
4201
4202 entry->sec = sec;
4203 *loc = entry;
4204 }
4205
4206 /* Skip over ranges whose maximum extent cannot share a page entry
4207 with ADDEND. */
4208 range_ptr = &entry->ranges;
4209 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4210 range_ptr = &(*range_ptr)->next;
4211
4212 /* If we scanned to the end of the list, or found a range whose
4213 minimum extent cannot share a page entry with ADDEND, create
4214 a new singleton range. */
4215 range = *range_ptr;
4216 if (!range || addend < range->min_addend - 0xffff)
4217 {
4218 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4219 if (!range)
4220 return FALSE;
4221
4222 range->next = *range_ptr;
4223 range->min_addend = addend;
4224 range->max_addend = addend;
4225
4226 *range_ptr = range;
4227 entry->num_pages++;
4228 g->page_gotno++;
4229 return TRUE;
4230 }
4231
4232 /* Remember how many pages the old range contributed. */
4233 old_pages = mips_elf_pages_for_range (range);
4234
4235 /* Update the ranges. */
4236 if (addend < range->min_addend)
4237 range->min_addend = addend;
4238 else if (addend > range->max_addend)
4239 {
4240 if (range->next && addend >= range->next->min_addend - 0xffff)
4241 {
4242 old_pages += mips_elf_pages_for_range (range->next);
4243 range->max_addend = range->next->max_addend;
4244 range->next = range->next->next;
4245 }
4246 else
4247 range->max_addend = addend;
4248 }
4249
4250 /* Record any change in the total estimate. */
4251 new_pages = mips_elf_pages_for_range (range);
4252 if (old_pages != new_pages)
4253 {
4254 entry->num_pages += new_pages - old_pages;
4255 g->page_gotno += new_pages - old_pages;
4256 }
4257
4258 return TRUE;
4259 }
4260
4261 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4262 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4263 whether the page reference described by *REFP needs a GOT page entry,
4264 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4265
4266 static bfd_boolean
4267 mips_elf_resolve_got_page_ref (void **refp, void *data)
4268 {
4269 struct mips_got_page_ref *ref;
4270 struct mips_elf_traverse_got_arg *arg;
4271 struct mips_elf_link_hash_table *htab;
4272 asection *sec;
4273 bfd_vma addend;
4274
4275 ref = (struct mips_got_page_ref *) *refp;
4276 arg = (struct mips_elf_traverse_got_arg *) data;
4277 htab = mips_elf_hash_table (arg->info);
4278
4279 if (ref->symndx < 0)
4280 {
4281 struct mips_elf_link_hash_entry *h;
4282
4283 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4284 h = ref->u.h;
4285 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4286 return 1;
4287
4288 /* Ignore undefined symbols; we'll issue an error later if
4289 appropriate. */
4290 if (!((h->root.root.type == bfd_link_hash_defined
4291 || h->root.root.type == bfd_link_hash_defweak)
4292 && h->root.root.u.def.section))
4293 return 1;
4294
4295 sec = h->root.root.u.def.section;
4296 addend = h->root.root.u.def.value + ref->addend;
4297 }
4298 else
4299 {
4300 Elf_Internal_Sym *isym;
4301
4302 /* Read in the symbol. */
4303 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4304 ref->symndx);
4305 if (isym == NULL)
4306 {
4307 arg->g = NULL;
4308 return 0;
4309 }
4310
4311 /* Get the associated input section. */
4312 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4313 if (sec == NULL)
4314 {
4315 arg->g = NULL;
4316 return 0;
4317 }
4318
4319 /* If this is a mergable section, work out the section and offset
4320 of the merged data. For section symbols, the addend specifies
4321 of the offset _of_ the first byte in the data, otherwise it
4322 specifies the offset _from_ the first byte. */
4323 if (sec->flags & SEC_MERGE)
4324 {
4325 void *secinfo;
4326
4327 secinfo = elf_section_data (sec)->sec_info;
4328 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4329 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4330 isym->st_value + ref->addend);
4331 else
4332 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4333 isym->st_value) + ref->addend;
4334 }
4335 else
4336 addend = isym->st_value + ref->addend;
4337 }
4338 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4339 {
4340 arg->g = NULL;
4341 return 0;
4342 }
4343 return 1;
4344 }
4345
4346 /* If any entries in G->got_entries are for indirect or warning symbols,
4347 replace them with entries for the target symbol. Convert g->got_page_refs
4348 into got_page_entry structures and estimate the number of page entries
4349 that they require. */
4350
4351 static bfd_boolean
4352 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4353 struct mips_got_info *g)
4354 {
4355 struct mips_elf_traverse_got_arg tga;
4356 struct mips_got_info oldg;
4357
4358 oldg = *g;
4359
4360 tga.info = info;
4361 tga.g = g;
4362 tga.value = FALSE;
4363 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4364 if (tga.value)
4365 {
4366 *g = oldg;
4367 g->got_entries = htab_create (htab_size (oldg.got_entries),
4368 mips_elf_got_entry_hash,
4369 mips_elf_got_entry_eq, NULL);
4370 if (!g->got_entries)
4371 return FALSE;
4372
4373 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4374 if (!tga.g)
4375 return FALSE;
4376
4377 htab_delete (oldg.got_entries);
4378 }
4379
4380 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4381 mips_got_page_entry_eq, NULL);
4382 if (g->got_page_entries == NULL)
4383 return FALSE;
4384
4385 tga.info = info;
4386 tga.g = g;
4387 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4388
4389 return TRUE;
4390 }
4391
4392 /* Return true if a GOT entry for H should live in the local rather than
4393 global GOT area. */
4394
4395 static bfd_boolean
4396 mips_use_local_got_p (struct bfd_link_info *info,
4397 struct mips_elf_link_hash_entry *h)
4398 {
4399 /* Symbols that aren't in the dynamic symbol table must live in the
4400 local GOT. This includes symbols that are completely undefined
4401 and which therefore don't bind locally. We'll report undefined
4402 symbols later if appropriate. */
4403 if (h->root.dynindx == -1)
4404 return TRUE;
4405
4406 /* Symbols that bind locally can (and in the case of forced-local
4407 symbols, must) live in the local GOT. */
4408 if (h->got_only_for_calls
4409 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4410 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4411 return TRUE;
4412
4413 /* If this is an executable that must provide a definition of the symbol,
4414 either though PLTs or copy relocations, then that address should go in
4415 the local rather than global GOT. */
4416 if (info->executable && h->has_static_relocs)
4417 return TRUE;
4418
4419 return FALSE;
4420 }
4421
4422 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4423 link_info structure. Decide whether the hash entry needs an entry in
4424 the global part of the primary GOT, setting global_got_area accordingly.
4425 Count the number of global symbols that are in the primary GOT only
4426 because they have relocations against them (reloc_only_gotno). */
4427
4428 static int
4429 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4430 {
4431 struct bfd_link_info *info;
4432 struct mips_elf_link_hash_table *htab;
4433 struct mips_got_info *g;
4434
4435 info = (struct bfd_link_info *) data;
4436 htab = mips_elf_hash_table (info);
4437 g = htab->got_info;
4438 if (h->global_got_area != GGA_NONE)
4439 {
4440 /* Make a final decision about whether the symbol belongs in the
4441 local or global GOT. */
4442 if (mips_use_local_got_p (info, h))
4443 /* The symbol belongs in the local GOT. We no longer need this
4444 entry if it was only used for relocations; those relocations
4445 will be against the null or section symbol instead of H. */
4446 h->global_got_area = GGA_NONE;
4447 else if (htab->is_vxworks
4448 && h->got_only_for_calls
4449 && h->root.plt.plist->mips_offset != MINUS_ONE)
4450 /* On VxWorks, calls can refer directly to the .got.plt entry;
4451 they don't need entries in the regular GOT. .got.plt entries
4452 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4453 h->global_got_area = GGA_NONE;
4454 else if (h->global_got_area == GGA_RELOC_ONLY)
4455 {
4456 g->reloc_only_gotno++;
4457 g->global_gotno++;
4458 }
4459 }
4460 return 1;
4461 }
4462 \f
4463 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4464 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4465
4466 static int
4467 mips_elf_add_got_entry (void **entryp, void *data)
4468 {
4469 struct mips_got_entry *entry;
4470 struct mips_elf_traverse_got_arg *arg;
4471 void **slot;
4472
4473 entry = (struct mips_got_entry *) *entryp;
4474 arg = (struct mips_elf_traverse_got_arg *) data;
4475 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4476 if (!slot)
4477 {
4478 arg->g = NULL;
4479 return 0;
4480 }
4481 if (!*slot)
4482 {
4483 *slot = entry;
4484 mips_elf_count_got_entry (arg->info, arg->g, entry);
4485 }
4486 return 1;
4487 }
4488
4489 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4490 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4491
4492 static int
4493 mips_elf_add_got_page_entry (void **entryp, void *data)
4494 {
4495 struct mips_got_page_entry *entry;
4496 struct mips_elf_traverse_got_arg *arg;
4497 void **slot;
4498
4499 entry = (struct mips_got_page_entry *) *entryp;
4500 arg = (struct mips_elf_traverse_got_arg *) data;
4501 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4502 if (!slot)
4503 {
4504 arg->g = NULL;
4505 return 0;
4506 }
4507 if (!*slot)
4508 {
4509 *slot = entry;
4510 arg->g->page_gotno += entry->num_pages;
4511 }
4512 return 1;
4513 }
4514
4515 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4516 this would lead to overflow, 1 if they were merged successfully,
4517 and 0 if a merge failed due to lack of memory. (These values are chosen
4518 so that nonnegative return values can be returned by a htab_traverse
4519 callback.) */
4520
4521 static int
4522 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4523 struct mips_got_info *to,
4524 struct mips_elf_got_per_bfd_arg *arg)
4525 {
4526 struct mips_elf_traverse_got_arg tga;
4527 unsigned int estimate;
4528
4529 /* Work out how many page entries we would need for the combined GOT. */
4530 estimate = arg->max_pages;
4531 if (estimate >= from->page_gotno + to->page_gotno)
4532 estimate = from->page_gotno + to->page_gotno;
4533
4534 /* And conservatively estimate how many local and TLS entries
4535 would be needed. */
4536 estimate += from->local_gotno + to->local_gotno;
4537 estimate += from->tls_gotno + to->tls_gotno;
4538
4539 /* If we're merging with the primary got, any TLS relocations will
4540 come after the full set of global entries. Otherwise estimate those
4541 conservatively as well. */
4542 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4543 estimate += arg->global_count;
4544 else
4545 estimate += from->global_gotno + to->global_gotno;
4546
4547 /* Bail out if the combined GOT might be too big. */
4548 if (estimate > arg->max_count)
4549 return -1;
4550
4551 /* Transfer the bfd's got information from FROM to TO. */
4552 tga.info = arg->info;
4553 tga.g = to;
4554 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4555 if (!tga.g)
4556 return 0;
4557
4558 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4559 if (!tga.g)
4560 return 0;
4561
4562 mips_elf_replace_bfd_got (abfd, to);
4563 return 1;
4564 }
4565
4566 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4567 as possible of the primary got, since it doesn't require explicit
4568 dynamic relocations, but don't use bfds that would reference global
4569 symbols out of the addressable range. Failing the primary got,
4570 attempt to merge with the current got, or finish the current got
4571 and then make make the new got current. */
4572
4573 static bfd_boolean
4574 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4575 struct mips_elf_got_per_bfd_arg *arg)
4576 {
4577 unsigned int estimate;
4578 int result;
4579
4580 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4581 return FALSE;
4582
4583 /* Work out the number of page, local and TLS entries. */
4584 estimate = arg->max_pages;
4585 if (estimate > g->page_gotno)
4586 estimate = g->page_gotno;
4587 estimate += g->local_gotno + g->tls_gotno;
4588
4589 /* We place TLS GOT entries after both locals and globals. The globals
4590 for the primary GOT may overflow the normal GOT size limit, so be
4591 sure not to merge a GOT which requires TLS with the primary GOT in that
4592 case. This doesn't affect non-primary GOTs. */
4593 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4594
4595 if (estimate <= arg->max_count)
4596 {
4597 /* If we don't have a primary GOT, use it as
4598 a starting point for the primary GOT. */
4599 if (!arg->primary)
4600 {
4601 arg->primary = g;
4602 return TRUE;
4603 }
4604
4605 /* Try merging with the primary GOT. */
4606 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4607 if (result >= 0)
4608 return result;
4609 }
4610
4611 /* If we can merge with the last-created got, do it. */
4612 if (arg->current)
4613 {
4614 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4615 if (result >= 0)
4616 return result;
4617 }
4618
4619 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4620 fits; if it turns out that it doesn't, we'll get relocation
4621 overflows anyway. */
4622 g->next = arg->current;
4623 arg->current = g;
4624
4625 return TRUE;
4626 }
4627
4628 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4629 to GOTIDX, duplicating the entry if it has already been assigned
4630 an index in a different GOT. */
4631
4632 static bfd_boolean
4633 mips_elf_set_gotidx (void **entryp, long gotidx)
4634 {
4635 struct mips_got_entry *entry;
4636
4637 entry = (struct mips_got_entry *) *entryp;
4638 if (entry->gotidx > 0)
4639 {
4640 struct mips_got_entry *new_entry;
4641
4642 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4643 if (!new_entry)
4644 return FALSE;
4645
4646 *new_entry = *entry;
4647 *entryp = new_entry;
4648 entry = new_entry;
4649 }
4650 entry->gotidx = gotidx;
4651 return TRUE;
4652 }
4653
4654 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4655 mips_elf_traverse_got_arg in which DATA->value is the size of one
4656 GOT entry. Set DATA->g to null on failure. */
4657
4658 static int
4659 mips_elf_initialize_tls_index (void **entryp, void *data)
4660 {
4661 struct mips_got_entry *entry;
4662 struct mips_elf_traverse_got_arg *arg;
4663
4664 /* We're only interested in TLS symbols. */
4665 entry = (struct mips_got_entry *) *entryp;
4666 if (entry->tls_type == GOT_TLS_NONE)
4667 return 1;
4668
4669 arg = (struct mips_elf_traverse_got_arg *) data;
4670 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4671 {
4672 arg->g = NULL;
4673 return 0;
4674 }
4675
4676 /* Account for the entries we've just allocated. */
4677 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4678 return 1;
4679 }
4680
4681 /* A htab_traverse callback for GOT entries, where DATA points to a
4682 mips_elf_traverse_got_arg. Set the global_got_area of each global
4683 symbol to DATA->value. */
4684
4685 static int
4686 mips_elf_set_global_got_area (void **entryp, void *data)
4687 {
4688 struct mips_got_entry *entry;
4689 struct mips_elf_traverse_got_arg *arg;
4690
4691 entry = (struct mips_got_entry *) *entryp;
4692 arg = (struct mips_elf_traverse_got_arg *) data;
4693 if (entry->abfd != NULL
4694 && entry->symndx == -1
4695 && entry->d.h->global_got_area != GGA_NONE)
4696 entry->d.h->global_got_area = arg->value;
4697 return 1;
4698 }
4699
4700 /* A htab_traverse callback for secondary GOT entries, where DATA points
4701 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4702 and record the number of relocations they require. DATA->value is
4703 the size of one GOT entry. Set DATA->g to null on failure. */
4704
4705 static int
4706 mips_elf_set_global_gotidx (void **entryp, void *data)
4707 {
4708 struct mips_got_entry *entry;
4709 struct mips_elf_traverse_got_arg *arg;
4710
4711 entry = (struct mips_got_entry *) *entryp;
4712 arg = (struct mips_elf_traverse_got_arg *) data;
4713 if (entry->abfd != NULL
4714 && entry->symndx == -1
4715 && entry->d.h->global_got_area != GGA_NONE)
4716 {
4717 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4718 {
4719 arg->g = NULL;
4720 return 0;
4721 }
4722 arg->g->assigned_low_gotno += 1;
4723
4724 if (arg->info->shared
4725 || (elf_hash_table (arg->info)->dynamic_sections_created
4726 && entry->d.h->root.def_dynamic
4727 && !entry->d.h->root.def_regular))
4728 arg->g->relocs += 1;
4729 }
4730
4731 return 1;
4732 }
4733
4734 /* A htab_traverse callback for GOT entries for which DATA is the
4735 bfd_link_info. Forbid any global symbols from having traditional
4736 lazy-binding stubs. */
4737
4738 static int
4739 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4740 {
4741 struct bfd_link_info *info;
4742 struct mips_elf_link_hash_table *htab;
4743 struct mips_got_entry *entry;
4744
4745 entry = (struct mips_got_entry *) *entryp;
4746 info = (struct bfd_link_info *) data;
4747 htab = mips_elf_hash_table (info);
4748 BFD_ASSERT (htab != NULL);
4749
4750 if (entry->abfd != NULL
4751 && entry->symndx == -1
4752 && entry->d.h->needs_lazy_stub)
4753 {
4754 entry->d.h->needs_lazy_stub = FALSE;
4755 htab->lazy_stub_count--;
4756 }
4757
4758 return 1;
4759 }
4760
4761 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4762 the primary GOT. */
4763 static bfd_vma
4764 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4765 {
4766 if (!g->next)
4767 return 0;
4768
4769 g = mips_elf_bfd_got (ibfd, FALSE);
4770 if (! g)
4771 return 0;
4772
4773 BFD_ASSERT (g->next);
4774
4775 g = g->next;
4776
4777 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4778 * MIPS_ELF_GOT_SIZE (abfd);
4779 }
4780
4781 /* Turn a single GOT that is too big for 16-bit addressing into
4782 a sequence of GOTs, each one 16-bit addressable. */
4783
4784 static bfd_boolean
4785 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4786 asection *got, bfd_size_type pages)
4787 {
4788 struct mips_elf_link_hash_table *htab;
4789 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4790 struct mips_elf_traverse_got_arg tga;
4791 struct mips_got_info *g, *gg;
4792 unsigned int assign, needed_relocs;
4793 bfd *dynobj, *ibfd;
4794
4795 dynobj = elf_hash_table (info)->dynobj;
4796 htab = mips_elf_hash_table (info);
4797 BFD_ASSERT (htab != NULL);
4798
4799 g = htab->got_info;
4800
4801 got_per_bfd_arg.obfd = abfd;
4802 got_per_bfd_arg.info = info;
4803 got_per_bfd_arg.current = NULL;
4804 got_per_bfd_arg.primary = NULL;
4805 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4806 / MIPS_ELF_GOT_SIZE (abfd))
4807 - htab->reserved_gotno);
4808 got_per_bfd_arg.max_pages = pages;
4809 /* The number of globals that will be included in the primary GOT.
4810 See the calls to mips_elf_set_global_got_area below for more
4811 information. */
4812 got_per_bfd_arg.global_count = g->global_gotno;
4813
4814 /* Try to merge the GOTs of input bfds together, as long as they
4815 don't seem to exceed the maximum GOT size, choosing one of them
4816 to be the primary GOT. */
4817 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4818 {
4819 gg = mips_elf_bfd_got (ibfd, FALSE);
4820 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4821 return FALSE;
4822 }
4823
4824 /* If we do not find any suitable primary GOT, create an empty one. */
4825 if (got_per_bfd_arg.primary == NULL)
4826 g->next = mips_elf_create_got_info (abfd);
4827 else
4828 g->next = got_per_bfd_arg.primary;
4829 g->next->next = got_per_bfd_arg.current;
4830
4831 /* GG is now the master GOT, and G is the primary GOT. */
4832 gg = g;
4833 g = g->next;
4834
4835 /* Map the output bfd to the primary got. That's what we're going
4836 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4837 didn't mark in check_relocs, and we want a quick way to find it.
4838 We can't just use gg->next because we're going to reverse the
4839 list. */
4840 mips_elf_replace_bfd_got (abfd, g);
4841
4842 /* Every symbol that is referenced in a dynamic relocation must be
4843 present in the primary GOT, so arrange for them to appear after
4844 those that are actually referenced. */
4845 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4846 g->global_gotno = gg->global_gotno;
4847
4848 tga.info = info;
4849 tga.value = GGA_RELOC_ONLY;
4850 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4851 tga.value = GGA_NORMAL;
4852 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4853
4854 /* Now go through the GOTs assigning them offset ranges.
4855 [assigned_low_gotno, local_gotno[ will be set to the range of local
4856 entries in each GOT. We can then compute the end of a GOT by
4857 adding local_gotno to global_gotno. We reverse the list and make
4858 it circular since then we'll be able to quickly compute the
4859 beginning of a GOT, by computing the end of its predecessor. To
4860 avoid special cases for the primary GOT, while still preserving
4861 assertions that are valid for both single- and multi-got links,
4862 we arrange for the main got struct to have the right number of
4863 global entries, but set its local_gotno such that the initial
4864 offset of the primary GOT is zero. Remember that the primary GOT
4865 will become the last item in the circular linked list, so it
4866 points back to the master GOT. */
4867 gg->local_gotno = -g->global_gotno;
4868 gg->global_gotno = g->global_gotno;
4869 gg->tls_gotno = 0;
4870 assign = 0;
4871 gg->next = gg;
4872
4873 do
4874 {
4875 struct mips_got_info *gn;
4876
4877 assign += htab->reserved_gotno;
4878 g->assigned_low_gotno = assign;
4879 g->local_gotno += assign;
4880 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4881 g->assigned_high_gotno = g->local_gotno - 1;
4882 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4883
4884 /* Take g out of the direct list, and push it onto the reversed
4885 list that gg points to. g->next is guaranteed to be nonnull after
4886 this operation, as required by mips_elf_initialize_tls_index. */
4887 gn = g->next;
4888 g->next = gg->next;
4889 gg->next = g;
4890
4891 /* Set up any TLS entries. We always place the TLS entries after
4892 all non-TLS entries. */
4893 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4894 tga.g = g;
4895 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4896 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4897 if (!tga.g)
4898 return FALSE;
4899 BFD_ASSERT (g->tls_assigned_gotno == assign);
4900
4901 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4902 g = gn;
4903
4904 /* Forbid global symbols in every non-primary GOT from having
4905 lazy-binding stubs. */
4906 if (g)
4907 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4908 }
4909 while (g);
4910
4911 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4912
4913 needed_relocs = 0;
4914 for (g = gg->next; g && g->next != gg; g = g->next)
4915 {
4916 unsigned int save_assign;
4917
4918 /* Assign offsets to global GOT entries and count how many
4919 relocations they need. */
4920 save_assign = g->assigned_low_gotno;
4921 g->assigned_low_gotno = g->local_gotno;
4922 tga.info = info;
4923 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4924 tga.g = g;
4925 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4926 if (!tga.g)
4927 return FALSE;
4928 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4929 g->assigned_low_gotno = save_assign;
4930
4931 if (info->shared)
4932 {
4933 g->relocs += g->local_gotno - g->assigned_low_gotno;
4934 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4935 + g->next->global_gotno
4936 + g->next->tls_gotno
4937 + htab->reserved_gotno);
4938 }
4939 needed_relocs += g->relocs;
4940 }
4941 needed_relocs += g->relocs;
4942
4943 if (needed_relocs)
4944 mips_elf_allocate_dynamic_relocations (dynobj, info,
4945 needed_relocs);
4946
4947 return TRUE;
4948 }
4949
4950 \f
4951 /* Returns the first relocation of type r_type found, beginning with
4952 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4953
4954 static const Elf_Internal_Rela *
4955 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4956 const Elf_Internal_Rela *relocation,
4957 const Elf_Internal_Rela *relend)
4958 {
4959 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4960
4961 while (relocation < relend)
4962 {
4963 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4964 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4965 return relocation;
4966
4967 ++relocation;
4968 }
4969
4970 /* We didn't find it. */
4971 return NULL;
4972 }
4973
4974 /* Return whether an input relocation is against a local symbol. */
4975
4976 static bfd_boolean
4977 mips_elf_local_relocation_p (bfd *input_bfd,
4978 const Elf_Internal_Rela *relocation,
4979 asection **local_sections)
4980 {
4981 unsigned long r_symndx;
4982 Elf_Internal_Shdr *symtab_hdr;
4983 size_t extsymoff;
4984
4985 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4986 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4987 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4988
4989 if (r_symndx < extsymoff)
4990 return TRUE;
4991 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4992 return TRUE;
4993
4994 return FALSE;
4995 }
4996 \f
4997 /* Sign-extend VALUE, which has the indicated number of BITS. */
4998
4999 bfd_vma
5000 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5001 {
5002 if (value & ((bfd_vma) 1 << (bits - 1)))
5003 /* VALUE is negative. */
5004 value |= ((bfd_vma) - 1) << bits;
5005
5006 return value;
5007 }
5008
5009 /* Return non-zero if the indicated VALUE has overflowed the maximum
5010 range expressible by a signed number with the indicated number of
5011 BITS. */
5012
5013 static bfd_boolean
5014 mips_elf_overflow_p (bfd_vma value, int bits)
5015 {
5016 bfd_signed_vma svalue = (bfd_signed_vma) value;
5017
5018 if (svalue > (1 << (bits - 1)) - 1)
5019 /* The value is too big. */
5020 return TRUE;
5021 else if (svalue < -(1 << (bits - 1)))
5022 /* The value is too small. */
5023 return TRUE;
5024
5025 /* All is well. */
5026 return FALSE;
5027 }
5028
5029 /* Calculate the %high function. */
5030
5031 static bfd_vma
5032 mips_elf_high (bfd_vma value)
5033 {
5034 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5035 }
5036
5037 /* Calculate the %higher function. */
5038
5039 static bfd_vma
5040 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5041 {
5042 #ifdef BFD64
5043 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5044 #else
5045 abort ();
5046 return MINUS_ONE;
5047 #endif
5048 }
5049
5050 /* Calculate the %highest function. */
5051
5052 static bfd_vma
5053 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5054 {
5055 #ifdef BFD64
5056 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5057 #else
5058 abort ();
5059 return MINUS_ONE;
5060 #endif
5061 }
5062 \f
5063 /* Create the .compact_rel section. */
5064
5065 static bfd_boolean
5066 mips_elf_create_compact_rel_section
5067 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5068 {
5069 flagword flags;
5070 register asection *s;
5071
5072 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5073 {
5074 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5075 | SEC_READONLY);
5076
5077 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5078 if (s == NULL
5079 || ! bfd_set_section_alignment (abfd, s,
5080 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5081 return FALSE;
5082
5083 s->size = sizeof (Elf32_External_compact_rel);
5084 }
5085
5086 return TRUE;
5087 }
5088
5089 /* Create the .got section to hold the global offset table. */
5090
5091 static bfd_boolean
5092 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5093 {
5094 flagword flags;
5095 register asection *s;
5096 struct elf_link_hash_entry *h;
5097 struct bfd_link_hash_entry *bh;
5098 struct mips_elf_link_hash_table *htab;
5099
5100 htab = mips_elf_hash_table (info);
5101 BFD_ASSERT (htab != NULL);
5102
5103 /* This function may be called more than once. */
5104 if (htab->sgot)
5105 return TRUE;
5106
5107 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5108 | SEC_LINKER_CREATED);
5109
5110 /* We have to use an alignment of 2**4 here because this is hardcoded
5111 in the function stub generation and in the linker script. */
5112 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5113 if (s == NULL
5114 || ! bfd_set_section_alignment (abfd, s, 4))
5115 return FALSE;
5116 htab->sgot = s;
5117
5118 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5119 linker script because we don't want to define the symbol if we
5120 are not creating a global offset table. */
5121 bh = NULL;
5122 if (! (_bfd_generic_link_add_one_symbol
5123 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5124 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5125 return FALSE;
5126
5127 h = (struct elf_link_hash_entry *) bh;
5128 h->non_elf = 0;
5129 h->def_regular = 1;
5130 h->type = STT_OBJECT;
5131 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5132 elf_hash_table (info)->hgot = h;
5133
5134 if (info->shared
5135 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5136 return FALSE;
5137
5138 htab->got_info = mips_elf_create_got_info (abfd);
5139 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5140 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5141
5142 /* We also need a .got.plt section when generating PLTs. */
5143 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5144 SEC_ALLOC | SEC_LOAD
5145 | SEC_HAS_CONTENTS
5146 | SEC_IN_MEMORY
5147 | SEC_LINKER_CREATED);
5148 if (s == NULL)
5149 return FALSE;
5150 htab->sgotplt = s;
5151
5152 return TRUE;
5153 }
5154 \f
5155 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5156 __GOTT_INDEX__ symbols. These symbols are only special for
5157 shared objects; they are not used in executables. */
5158
5159 static bfd_boolean
5160 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5161 {
5162 return (mips_elf_hash_table (info)->is_vxworks
5163 && info->shared
5164 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5165 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5166 }
5167
5168 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5169 require an la25 stub. See also mips_elf_local_pic_function_p,
5170 which determines whether the destination function ever requires a
5171 stub. */
5172
5173 static bfd_boolean
5174 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5175 bfd_boolean target_is_16_bit_code_p)
5176 {
5177 /* We specifically ignore branches and jumps from EF_PIC objects,
5178 where the onus is on the compiler or programmer to perform any
5179 necessary initialization of $25. Sometimes such initialization
5180 is unnecessary; for example, -mno-shared functions do not use
5181 the incoming value of $25, and may therefore be called directly. */
5182 if (PIC_OBJECT_P (input_bfd))
5183 return FALSE;
5184
5185 switch (r_type)
5186 {
5187 case R_MIPS_26:
5188 case R_MIPS_PC16:
5189 case R_MIPS_PC21_S2:
5190 case R_MIPS_PC26_S2:
5191 case R_MICROMIPS_26_S1:
5192 case R_MICROMIPS_PC7_S1:
5193 case R_MICROMIPS_PC10_S1:
5194 case R_MICROMIPS_PC16_S1:
5195 case R_MICROMIPS_PC23_S2:
5196 return TRUE;
5197
5198 case R_MIPS16_26:
5199 return !target_is_16_bit_code_p;
5200
5201 default:
5202 return FALSE;
5203 }
5204 }
5205 \f
5206 /* Calculate the value produced by the RELOCATION (which comes from
5207 the INPUT_BFD). The ADDEND is the addend to use for this
5208 RELOCATION; RELOCATION->R_ADDEND is ignored.
5209
5210 The result of the relocation calculation is stored in VALUEP.
5211 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5212 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5213
5214 This function returns bfd_reloc_continue if the caller need take no
5215 further action regarding this relocation, bfd_reloc_notsupported if
5216 something goes dramatically wrong, bfd_reloc_overflow if an
5217 overflow occurs, and bfd_reloc_ok to indicate success. */
5218
5219 static bfd_reloc_status_type
5220 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5221 asection *input_section,
5222 struct bfd_link_info *info,
5223 const Elf_Internal_Rela *relocation,
5224 bfd_vma addend, reloc_howto_type *howto,
5225 Elf_Internal_Sym *local_syms,
5226 asection **local_sections, bfd_vma *valuep,
5227 const char **namep,
5228 bfd_boolean *cross_mode_jump_p,
5229 bfd_boolean save_addend)
5230 {
5231 /* The eventual value we will return. */
5232 bfd_vma value;
5233 /* The address of the symbol against which the relocation is
5234 occurring. */
5235 bfd_vma symbol = 0;
5236 /* The final GP value to be used for the relocatable, executable, or
5237 shared object file being produced. */
5238 bfd_vma gp;
5239 /* The place (section offset or address) of the storage unit being
5240 relocated. */
5241 bfd_vma p;
5242 /* The value of GP used to create the relocatable object. */
5243 bfd_vma gp0;
5244 /* The offset into the global offset table at which the address of
5245 the relocation entry symbol, adjusted by the addend, resides
5246 during execution. */
5247 bfd_vma g = MINUS_ONE;
5248 /* The section in which the symbol referenced by the relocation is
5249 located. */
5250 asection *sec = NULL;
5251 struct mips_elf_link_hash_entry *h = NULL;
5252 /* TRUE if the symbol referred to by this relocation is a local
5253 symbol. */
5254 bfd_boolean local_p, was_local_p;
5255 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5256 bfd_boolean gp_disp_p = FALSE;
5257 /* TRUE if the symbol referred to by this relocation is
5258 "__gnu_local_gp". */
5259 bfd_boolean gnu_local_gp_p = FALSE;
5260 Elf_Internal_Shdr *symtab_hdr;
5261 size_t extsymoff;
5262 unsigned long r_symndx;
5263 int r_type;
5264 /* TRUE if overflow occurred during the calculation of the
5265 relocation value. */
5266 bfd_boolean overflowed_p;
5267 /* TRUE if this relocation refers to a MIPS16 function. */
5268 bfd_boolean target_is_16_bit_code_p = FALSE;
5269 bfd_boolean target_is_micromips_code_p = FALSE;
5270 struct mips_elf_link_hash_table *htab;
5271 bfd *dynobj;
5272
5273 dynobj = elf_hash_table (info)->dynobj;
5274 htab = mips_elf_hash_table (info);
5275 BFD_ASSERT (htab != NULL);
5276
5277 /* Parse the relocation. */
5278 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5279 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5280 p = (input_section->output_section->vma
5281 + input_section->output_offset
5282 + relocation->r_offset);
5283
5284 /* Assume that there will be no overflow. */
5285 overflowed_p = FALSE;
5286
5287 /* Figure out whether or not the symbol is local, and get the offset
5288 used in the array of hash table entries. */
5289 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5290 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5291 local_sections);
5292 was_local_p = local_p;
5293 if (! elf_bad_symtab (input_bfd))
5294 extsymoff = symtab_hdr->sh_info;
5295 else
5296 {
5297 /* The symbol table does not follow the rule that local symbols
5298 must come before globals. */
5299 extsymoff = 0;
5300 }
5301
5302 /* Figure out the value of the symbol. */
5303 if (local_p)
5304 {
5305 Elf_Internal_Sym *sym;
5306
5307 sym = local_syms + r_symndx;
5308 sec = local_sections[r_symndx];
5309
5310 symbol = sec->output_section->vma + sec->output_offset;
5311 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5312 || (sec->flags & SEC_MERGE))
5313 symbol += sym->st_value;
5314 if ((sec->flags & SEC_MERGE)
5315 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5316 {
5317 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5318 addend -= symbol;
5319 addend += sec->output_section->vma + sec->output_offset;
5320 }
5321
5322 /* MIPS16/microMIPS text labels should be treated as odd. */
5323 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5324 ++symbol;
5325
5326 /* Record the name of this symbol, for our caller. */
5327 *namep = bfd_elf_string_from_elf_section (input_bfd,
5328 symtab_hdr->sh_link,
5329 sym->st_name);
5330 if (*namep == '\0')
5331 *namep = bfd_section_name (input_bfd, sec);
5332
5333 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5334 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5335 }
5336 else
5337 {
5338 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5339
5340 /* For global symbols we look up the symbol in the hash-table. */
5341 h = ((struct mips_elf_link_hash_entry *)
5342 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5343 /* Find the real hash-table entry for this symbol. */
5344 while (h->root.root.type == bfd_link_hash_indirect
5345 || h->root.root.type == bfd_link_hash_warning)
5346 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5347
5348 /* Record the name of this symbol, for our caller. */
5349 *namep = h->root.root.root.string;
5350
5351 /* See if this is the special _gp_disp symbol. Note that such a
5352 symbol must always be a global symbol. */
5353 if (strcmp (*namep, "_gp_disp") == 0
5354 && ! NEWABI_P (input_bfd))
5355 {
5356 /* Relocations against _gp_disp are permitted only with
5357 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5358 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5359 return bfd_reloc_notsupported;
5360
5361 gp_disp_p = TRUE;
5362 }
5363 /* See if this is the special _gp symbol. Note that such a
5364 symbol must always be a global symbol. */
5365 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5366 gnu_local_gp_p = TRUE;
5367
5368
5369 /* If this symbol is defined, calculate its address. Note that
5370 _gp_disp is a magic symbol, always implicitly defined by the
5371 linker, so it's inappropriate to check to see whether or not
5372 its defined. */
5373 else if ((h->root.root.type == bfd_link_hash_defined
5374 || h->root.root.type == bfd_link_hash_defweak)
5375 && h->root.root.u.def.section)
5376 {
5377 sec = h->root.root.u.def.section;
5378 if (sec->output_section)
5379 symbol = (h->root.root.u.def.value
5380 + sec->output_section->vma
5381 + sec->output_offset);
5382 else
5383 symbol = h->root.root.u.def.value;
5384 }
5385 else if (h->root.root.type == bfd_link_hash_undefweak)
5386 /* We allow relocations against undefined weak symbols, giving
5387 it the value zero, so that you can undefined weak functions
5388 and check to see if they exist by looking at their
5389 addresses. */
5390 symbol = 0;
5391 else if (info->unresolved_syms_in_objects == RM_IGNORE
5392 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5393 symbol = 0;
5394 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5395 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5396 {
5397 /* If this is a dynamic link, we should have created a
5398 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5399 in in _bfd_mips_elf_create_dynamic_sections.
5400 Otherwise, we should define the symbol with a value of 0.
5401 FIXME: It should probably get into the symbol table
5402 somehow as well. */
5403 BFD_ASSERT (! info->shared);
5404 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5405 symbol = 0;
5406 }
5407 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5408 {
5409 /* This is an optional symbol - an Irix specific extension to the
5410 ELF spec. Ignore it for now.
5411 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5412 than simply ignoring them, but we do not handle this for now.
5413 For information see the "64-bit ELF Object File Specification"
5414 which is available from here:
5415 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5416 symbol = 0;
5417 }
5418 else if ((*info->callbacks->undefined_symbol)
5419 (info, h->root.root.root.string, input_bfd,
5420 input_section, relocation->r_offset,
5421 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5422 || ELF_ST_VISIBILITY (h->root.other)))
5423 {
5424 return bfd_reloc_undefined;
5425 }
5426 else
5427 {
5428 return bfd_reloc_notsupported;
5429 }
5430
5431 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5432 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5433 }
5434
5435 /* If this is a reference to a 16-bit function with a stub, we need
5436 to redirect the relocation to the stub unless:
5437
5438 (a) the relocation is for a MIPS16 JAL;
5439
5440 (b) the relocation is for a MIPS16 PIC call, and there are no
5441 non-MIPS16 uses of the GOT slot; or
5442
5443 (c) the section allows direct references to MIPS16 functions. */
5444 if (r_type != R_MIPS16_26
5445 && !info->relocatable
5446 && ((h != NULL
5447 && h->fn_stub != NULL
5448 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5449 || (local_p
5450 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5451 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5452 && !section_allows_mips16_refs_p (input_section))
5453 {
5454 /* This is a 32- or 64-bit call to a 16-bit function. We should
5455 have already noticed that we were going to need the
5456 stub. */
5457 if (local_p)
5458 {
5459 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5460 value = 0;
5461 }
5462 else
5463 {
5464 BFD_ASSERT (h->need_fn_stub);
5465 if (h->la25_stub)
5466 {
5467 /* If a LA25 header for the stub itself exists, point to the
5468 prepended LUI/ADDIU sequence. */
5469 sec = h->la25_stub->stub_section;
5470 value = h->la25_stub->offset;
5471 }
5472 else
5473 {
5474 sec = h->fn_stub;
5475 value = 0;
5476 }
5477 }
5478
5479 symbol = sec->output_section->vma + sec->output_offset + value;
5480 /* The target is 16-bit, but the stub isn't. */
5481 target_is_16_bit_code_p = FALSE;
5482 }
5483 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5484 to a standard MIPS function, we need to redirect the call to the stub.
5485 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5486 indirect calls should use an indirect stub instead. */
5487 else if (r_type == R_MIPS16_26 && !info->relocatable
5488 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5489 || (local_p
5490 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5491 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5492 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5493 {
5494 if (local_p)
5495 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5496 else
5497 {
5498 /* If both call_stub and call_fp_stub are defined, we can figure
5499 out which one to use by checking which one appears in the input
5500 file. */
5501 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5502 {
5503 asection *o;
5504
5505 sec = NULL;
5506 for (o = input_bfd->sections; o != NULL; o = o->next)
5507 {
5508 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5509 {
5510 sec = h->call_fp_stub;
5511 break;
5512 }
5513 }
5514 if (sec == NULL)
5515 sec = h->call_stub;
5516 }
5517 else if (h->call_stub != NULL)
5518 sec = h->call_stub;
5519 else
5520 sec = h->call_fp_stub;
5521 }
5522
5523 BFD_ASSERT (sec->size > 0);
5524 symbol = sec->output_section->vma + sec->output_offset;
5525 }
5526 /* If this is a direct call to a PIC function, redirect to the
5527 non-PIC stub. */
5528 else if (h != NULL && h->la25_stub
5529 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5530 target_is_16_bit_code_p))
5531 symbol = (h->la25_stub->stub_section->output_section->vma
5532 + h->la25_stub->stub_section->output_offset
5533 + h->la25_stub->offset);
5534 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5535 entry is used if a standard PLT entry has also been made. In this
5536 case the symbol will have been set by mips_elf_set_plt_sym_value
5537 to point to the standard PLT entry, so redirect to the compressed
5538 one. */
5539 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5540 && !info->relocatable
5541 && h != NULL
5542 && h->use_plt_entry
5543 && h->root.plt.plist->comp_offset != MINUS_ONE
5544 && h->root.plt.plist->mips_offset != MINUS_ONE)
5545 {
5546 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5547
5548 sec = htab->splt;
5549 symbol = (sec->output_section->vma
5550 + sec->output_offset
5551 + htab->plt_header_size
5552 + htab->plt_mips_offset
5553 + h->root.plt.plist->comp_offset
5554 + 1);
5555
5556 target_is_16_bit_code_p = !micromips_p;
5557 target_is_micromips_code_p = micromips_p;
5558 }
5559
5560 /* Make sure MIPS16 and microMIPS are not used together. */
5561 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5562 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5563 {
5564 (*_bfd_error_handler)
5565 (_("MIPS16 and microMIPS functions cannot call each other"));
5566 return bfd_reloc_notsupported;
5567 }
5568
5569 /* Calls from 16-bit code to 32-bit code and vice versa require the
5570 mode change. However, we can ignore calls to undefined weak symbols,
5571 which should never be executed at runtime. This exception is important
5572 because the assembly writer may have "known" that any definition of the
5573 symbol would be 16-bit code, and that direct jumps were therefore
5574 acceptable. */
5575 *cross_mode_jump_p = (!info->relocatable
5576 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5577 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5578 || (r_type == R_MICROMIPS_26_S1
5579 && !target_is_micromips_code_p)
5580 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5581 && (target_is_16_bit_code_p
5582 || target_is_micromips_code_p))));
5583
5584 local_p = (h == NULL || mips_use_local_got_p (info, h));
5585
5586 gp0 = _bfd_get_gp_value (input_bfd);
5587 gp = _bfd_get_gp_value (abfd);
5588 if (htab->got_info)
5589 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5590
5591 if (gnu_local_gp_p)
5592 symbol = gp;
5593
5594 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5595 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5596 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5597 if (got_page_reloc_p (r_type) && !local_p)
5598 {
5599 r_type = (micromips_reloc_p (r_type)
5600 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5601 addend = 0;
5602 }
5603
5604 /* If we haven't already determined the GOT offset, and we're going
5605 to need it, get it now. */
5606 switch (r_type)
5607 {
5608 case R_MIPS16_CALL16:
5609 case R_MIPS16_GOT16:
5610 case R_MIPS_CALL16:
5611 case R_MIPS_GOT16:
5612 case R_MIPS_GOT_DISP:
5613 case R_MIPS_GOT_HI16:
5614 case R_MIPS_CALL_HI16:
5615 case R_MIPS_GOT_LO16:
5616 case R_MIPS_CALL_LO16:
5617 case R_MICROMIPS_CALL16:
5618 case R_MICROMIPS_GOT16:
5619 case R_MICROMIPS_GOT_DISP:
5620 case R_MICROMIPS_GOT_HI16:
5621 case R_MICROMIPS_CALL_HI16:
5622 case R_MICROMIPS_GOT_LO16:
5623 case R_MICROMIPS_CALL_LO16:
5624 case R_MIPS_TLS_GD:
5625 case R_MIPS_TLS_GOTTPREL:
5626 case R_MIPS_TLS_LDM:
5627 case R_MIPS16_TLS_GD:
5628 case R_MIPS16_TLS_GOTTPREL:
5629 case R_MIPS16_TLS_LDM:
5630 case R_MICROMIPS_TLS_GD:
5631 case R_MICROMIPS_TLS_GOTTPREL:
5632 case R_MICROMIPS_TLS_LDM:
5633 /* Find the index into the GOT where this value is located. */
5634 if (tls_ldm_reloc_p (r_type))
5635 {
5636 g = mips_elf_local_got_index (abfd, input_bfd, info,
5637 0, 0, NULL, r_type);
5638 if (g == MINUS_ONE)
5639 return bfd_reloc_outofrange;
5640 }
5641 else if (!local_p)
5642 {
5643 /* On VxWorks, CALL relocations should refer to the .got.plt
5644 entry, which is initialized to point at the PLT stub. */
5645 if (htab->is_vxworks
5646 && (call_hi16_reloc_p (r_type)
5647 || call_lo16_reloc_p (r_type)
5648 || call16_reloc_p (r_type)))
5649 {
5650 BFD_ASSERT (addend == 0);
5651 BFD_ASSERT (h->root.needs_plt);
5652 g = mips_elf_gotplt_index (info, &h->root);
5653 }
5654 else
5655 {
5656 BFD_ASSERT (addend == 0);
5657 g = mips_elf_global_got_index (abfd, info, input_bfd,
5658 &h->root, r_type);
5659 if (!TLS_RELOC_P (r_type)
5660 && !elf_hash_table (info)->dynamic_sections_created)
5661 /* This is a static link. We must initialize the GOT entry. */
5662 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5663 }
5664 }
5665 else if (!htab->is_vxworks
5666 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5667 /* The calculation below does not involve "g". */
5668 break;
5669 else
5670 {
5671 g = mips_elf_local_got_index (abfd, input_bfd, info,
5672 symbol + addend, r_symndx, h, r_type);
5673 if (g == MINUS_ONE)
5674 return bfd_reloc_outofrange;
5675 }
5676
5677 /* Convert GOT indices to actual offsets. */
5678 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5679 break;
5680 }
5681
5682 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5683 symbols are resolved by the loader. Add them to .rela.dyn. */
5684 if (h != NULL && is_gott_symbol (info, &h->root))
5685 {
5686 Elf_Internal_Rela outrel;
5687 bfd_byte *loc;
5688 asection *s;
5689
5690 s = mips_elf_rel_dyn_section (info, FALSE);
5691 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5692
5693 outrel.r_offset = (input_section->output_section->vma
5694 + input_section->output_offset
5695 + relocation->r_offset);
5696 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5697 outrel.r_addend = addend;
5698 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5699
5700 /* If we've written this relocation for a readonly section,
5701 we need to set DF_TEXTREL again, so that we do not delete the
5702 DT_TEXTREL tag. */
5703 if (MIPS_ELF_READONLY_SECTION (input_section))
5704 info->flags |= DF_TEXTREL;
5705
5706 *valuep = 0;
5707 return bfd_reloc_ok;
5708 }
5709
5710 /* Figure out what kind of relocation is being performed. */
5711 switch (r_type)
5712 {
5713 case R_MIPS_NONE:
5714 return bfd_reloc_continue;
5715
5716 case R_MIPS_16:
5717 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5718 overflowed_p = mips_elf_overflow_p (value, 16);
5719 break;
5720
5721 case R_MIPS_32:
5722 case R_MIPS_REL32:
5723 case R_MIPS_64:
5724 if ((info->shared
5725 || (htab->root.dynamic_sections_created
5726 && h != NULL
5727 && h->root.def_dynamic
5728 && !h->root.def_regular
5729 && !h->has_static_relocs))
5730 && r_symndx != STN_UNDEF
5731 && (h == NULL
5732 || h->root.root.type != bfd_link_hash_undefweak
5733 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5734 && (input_section->flags & SEC_ALLOC) != 0)
5735 {
5736 /* If we're creating a shared library, then we can't know
5737 where the symbol will end up. So, we create a relocation
5738 record in the output, and leave the job up to the dynamic
5739 linker. We must do the same for executable references to
5740 shared library symbols, unless we've decided to use copy
5741 relocs or PLTs instead. */
5742 value = addend;
5743 if (!mips_elf_create_dynamic_relocation (abfd,
5744 info,
5745 relocation,
5746 h,
5747 sec,
5748 symbol,
5749 &value,
5750 input_section))
5751 return bfd_reloc_undefined;
5752 }
5753 else
5754 {
5755 if (r_type != R_MIPS_REL32)
5756 value = symbol + addend;
5757 else
5758 value = addend;
5759 }
5760 value &= howto->dst_mask;
5761 break;
5762
5763 case R_MIPS_PC32:
5764 value = symbol + addend - p;
5765 value &= howto->dst_mask;
5766 break;
5767
5768 case R_MIPS16_26:
5769 /* The calculation for R_MIPS16_26 is just the same as for an
5770 R_MIPS_26. It's only the storage of the relocated field into
5771 the output file that's different. That's handled in
5772 mips_elf_perform_relocation. So, we just fall through to the
5773 R_MIPS_26 case here. */
5774 case R_MIPS_26:
5775 case R_MICROMIPS_26_S1:
5776 {
5777 unsigned int shift;
5778
5779 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5780 the correct ISA mode selector and bit 1 must be 0. */
5781 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5782 return bfd_reloc_outofrange;
5783
5784 /* Shift is 2, unusually, for microMIPS JALX. */
5785 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5786
5787 if (was_local_p)
5788 value = addend | ((p + 4) & (0xfc000000 << shift));
5789 else
5790 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5791 value = (value + symbol) >> shift;
5792 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5793 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5794 value &= howto->dst_mask;
5795 }
5796 break;
5797
5798 case R_MIPS_TLS_DTPREL_HI16:
5799 case R_MIPS16_TLS_DTPREL_HI16:
5800 case R_MICROMIPS_TLS_DTPREL_HI16:
5801 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5802 & howto->dst_mask);
5803 break;
5804
5805 case R_MIPS_TLS_DTPREL_LO16:
5806 case R_MIPS_TLS_DTPREL32:
5807 case R_MIPS_TLS_DTPREL64:
5808 case R_MIPS16_TLS_DTPREL_LO16:
5809 case R_MICROMIPS_TLS_DTPREL_LO16:
5810 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5811 break;
5812
5813 case R_MIPS_TLS_TPREL_HI16:
5814 case R_MIPS16_TLS_TPREL_HI16:
5815 case R_MICROMIPS_TLS_TPREL_HI16:
5816 value = (mips_elf_high (addend + symbol - tprel_base (info))
5817 & howto->dst_mask);
5818 break;
5819
5820 case R_MIPS_TLS_TPREL_LO16:
5821 case R_MIPS_TLS_TPREL32:
5822 case R_MIPS_TLS_TPREL64:
5823 case R_MIPS16_TLS_TPREL_LO16:
5824 case R_MICROMIPS_TLS_TPREL_LO16:
5825 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5826 break;
5827
5828 case R_MIPS_HI16:
5829 case R_MIPS16_HI16:
5830 case R_MICROMIPS_HI16:
5831 if (!gp_disp_p)
5832 {
5833 value = mips_elf_high (addend + symbol);
5834 value &= howto->dst_mask;
5835 }
5836 else
5837 {
5838 /* For MIPS16 ABI code we generate this sequence
5839 0: li $v0,%hi(_gp_disp)
5840 4: addiupc $v1,%lo(_gp_disp)
5841 8: sll $v0,16
5842 12: addu $v0,$v1
5843 14: move $gp,$v0
5844 So the offsets of hi and lo relocs are the same, but the
5845 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5846 ADDIUPC clears the low two bits of the instruction address,
5847 so the base is ($t9 + 4) & ~3. */
5848 if (r_type == R_MIPS16_HI16)
5849 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5850 /* The microMIPS .cpload sequence uses the same assembly
5851 instructions as the traditional psABI version, but the
5852 incoming $t9 has the low bit set. */
5853 else if (r_type == R_MICROMIPS_HI16)
5854 value = mips_elf_high (addend + gp - p - 1);
5855 else
5856 value = mips_elf_high (addend + gp - p);
5857 overflowed_p = mips_elf_overflow_p (value, 16);
5858 }
5859 break;
5860
5861 case R_MIPS_LO16:
5862 case R_MIPS16_LO16:
5863 case R_MICROMIPS_LO16:
5864 case R_MICROMIPS_HI0_LO16:
5865 if (!gp_disp_p)
5866 value = (symbol + addend) & howto->dst_mask;
5867 else
5868 {
5869 /* See the comment for R_MIPS16_HI16 above for the reason
5870 for this conditional. */
5871 if (r_type == R_MIPS16_LO16)
5872 value = addend + gp - (p & ~(bfd_vma) 0x3);
5873 else if (r_type == R_MICROMIPS_LO16
5874 || r_type == R_MICROMIPS_HI0_LO16)
5875 value = addend + gp - p + 3;
5876 else
5877 value = addend + gp - p + 4;
5878 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5879 for overflow. But, on, say, IRIX5, relocations against
5880 _gp_disp are normally generated from the .cpload
5881 pseudo-op. It generates code that normally looks like
5882 this:
5883
5884 lui $gp,%hi(_gp_disp)
5885 addiu $gp,$gp,%lo(_gp_disp)
5886 addu $gp,$gp,$t9
5887
5888 Here $t9 holds the address of the function being called,
5889 as required by the MIPS ELF ABI. The R_MIPS_LO16
5890 relocation can easily overflow in this situation, but the
5891 R_MIPS_HI16 relocation will handle the overflow.
5892 Therefore, we consider this a bug in the MIPS ABI, and do
5893 not check for overflow here. */
5894 }
5895 break;
5896
5897 case R_MIPS_LITERAL:
5898 case R_MICROMIPS_LITERAL:
5899 /* Because we don't merge literal sections, we can handle this
5900 just like R_MIPS_GPREL16. In the long run, we should merge
5901 shared literals, and then we will need to additional work
5902 here. */
5903
5904 /* Fall through. */
5905
5906 case R_MIPS16_GPREL:
5907 /* The R_MIPS16_GPREL performs the same calculation as
5908 R_MIPS_GPREL16, but stores the relocated bits in a different
5909 order. We don't need to do anything special here; the
5910 differences are handled in mips_elf_perform_relocation. */
5911 case R_MIPS_GPREL16:
5912 case R_MICROMIPS_GPREL7_S2:
5913 case R_MICROMIPS_GPREL16:
5914 /* Only sign-extend the addend if it was extracted from the
5915 instruction. If the addend was separate, leave it alone,
5916 otherwise we may lose significant bits. */
5917 if (howto->partial_inplace)
5918 addend = _bfd_mips_elf_sign_extend (addend, 16);
5919 value = symbol + addend - gp;
5920 /* If the symbol was local, any earlier relocatable links will
5921 have adjusted its addend with the gp offset, so compensate
5922 for that now. Don't do it for symbols forced local in this
5923 link, though, since they won't have had the gp offset applied
5924 to them before. */
5925 if (was_local_p)
5926 value += gp0;
5927 overflowed_p = mips_elf_overflow_p (value, 16);
5928 break;
5929
5930 case R_MIPS16_GOT16:
5931 case R_MIPS16_CALL16:
5932 case R_MIPS_GOT16:
5933 case R_MIPS_CALL16:
5934 case R_MICROMIPS_GOT16:
5935 case R_MICROMIPS_CALL16:
5936 /* VxWorks does not have separate local and global semantics for
5937 R_MIPS*_GOT16; every relocation evaluates to "G". */
5938 if (!htab->is_vxworks && local_p)
5939 {
5940 value = mips_elf_got16_entry (abfd, input_bfd, info,
5941 symbol + addend, !was_local_p);
5942 if (value == MINUS_ONE)
5943 return bfd_reloc_outofrange;
5944 value
5945 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5946 overflowed_p = mips_elf_overflow_p (value, 16);
5947 break;
5948 }
5949
5950 /* Fall through. */
5951
5952 case R_MIPS_TLS_GD:
5953 case R_MIPS_TLS_GOTTPREL:
5954 case R_MIPS_TLS_LDM:
5955 case R_MIPS_GOT_DISP:
5956 case R_MIPS16_TLS_GD:
5957 case R_MIPS16_TLS_GOTTPREL:
5958 case R_MIPS16_TLS_LDM:
5959 case R_MICROMIPS_TLS_GD:
5960 case R_MICROMIPS_TLS_GOTTPREL:
5961 case R_MICROMIPS_TLS_LDM:
5962 case R_MICROMIPS_GOT_DISP:
5963 value = g;
5964 overflowed_p = mips_elf_overflow_p (value, 16);
5965 break;
5966
5967 case R_MIPS_GPREL32:
5968 value = (addend + symbol + gp0 - gp);
5969 if (!save_addend)
5970 value &= howto->dst_mask;
5971 break;
5972
5973 case R_MIPS_PC16:
5974 case R_MIPS_GNU_REL16_S2:
5975 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5976 overflowed_p = mips_elf_overflow_p (value, 18);
5977 value >>= howto->rightshift;
5978 value &= howto->dst_mask;
5979 break;
5980
5981 case R_MIPS_PC21_S2:
5982 if (howto->partial_inplace)
5983 addend = _bfd_mips_elf_sign_extend (addend, 23);
5984
5985 if ((symbol + addend) & 3)
5986 return bfd_reloc_outofrange;
5987
5988 value = symbol + addend - p;
5989 overflowed_p = mips_elf_overflow_p (value, 23);
5990 value >>= howto->rightshift;
5991 value &= howto->dst_mask;
5992 break;
5993
5994 case R_MIPS_PC26_S2:
5995 if (howto->partial_inplace)
5996 addend = _bfd_mips_elf_sign_extend (addend, 28);
5997
5998 if ((symbol + addend) & 3)
5999 return bfd_reloc_outofrange;
6000
6001 value = symbol + addend - p;
6002 overflowed_p = mips_elf_overflow_p (value, 28);
6003 value >>= howto->rightshift;
6004 value &= howto->dst_mask;
6005 break;
6006
6007 case R_MIPS_PC18_S3:
6008 if (howto->partial_inplace)
6009 addend = _bfd_mips_elf_sign_extend (addend, 21);
6010
6011 if ((symbol + addend) & 7)
6012 return bfd_reloc_outofrange;
6013
6014 value = symbol + addend - ((p | 7) ^ 7);
6015 overflowed_p = mips_elf_overflow_p (value, 21);
6016 value >>= howto->rightshift;
6017 value &= howto->dst_mask;
6018 break;
6019
6020 case R_MIPS_PC19_S2:
6021 if (howto->partial_inplace)
6022 addend = _bfd_mips_elf_sign_extend (addend, 21);
6023
6024 if ((symbol + addend) & 3)
6025 return bfd_reloc_outofrange;
6026
6027 value = symbol + addend - p;
6028 overflowed_p = mips_elf_overflow_p (value, 21);
6029 value >>= howto->rightshift;
6030 value &= howto->dst_mask;
6031 break;
6032
6033 case R_MIPS_PCHI16:
6034 value = mips_elf_high (symbol + addend - p);
6035 overflowed_p = mips_elf_overflow_p (value, 16);
6036 value &= howto->dst_mask;
6037 break;
6038
6039 case R_MIPS_PCLO16:
6040 if (howto->partial_inplace)
6041 addend = _bfd_mips_elf_sign_extend (addend, 16);
6042 value = symbol + addend - p;
6043 value &= howto->dst_mask;
6044 break;
6045
6046 case R_MICROMIPS_PC7_S1:
6047 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
6048 overflowed_p = mips_elf_overflow_p (value, 8);
6049 value >>= howto->rightshift;
6050 value &= howto->dst_mask;
6051 break;
6052
6053 case R_MICROMIPS_PC10_S1:
6054 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
6055 overflowed_p = mips_elf_overflow_p (value, 11);
6056 value >>= howto->rightshift;
6057 value &= howto->dst_mask;
6058 break;
6059
6060 case R_MICROMIPS_PC16_S1:
6061 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
6062 overflowed_p = mips_elf_overflow_p (value, 17);
6063 value >>= howto->rightshift;
6064 value &= howto->dst_mask;
6065 break;
6066
6067 case R_MICROMIPS_PC23_S2:
6068 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
6069 overflowed_p = mips_elf_overflow_p (value, 25);
6070 value >>= howto->rightshift;
6071 value &= howto->dst_mask;
6072 break;
6073
6074 case R_MIPS_GOT_HI16:
6075 case R_MIPS_CALL_HI16:
6076 case R_MICROMIPS_GOT_HI16:
6077 case R_MICROMIPS_CALL_HI16:
6078 /* We're allowed to handle these two relocations identically.
6079 The dynamic linker is allowed to handle the CALL relocations
6080 differently by creating a lazy evaluation stub. */
6081 value = g;
6082 value = mips_elf_high (value);
6083 value &= howto->dst_mask;
6084 break;
6085
6086 case R_MIPS_GOT_LO16:
6087 case R_MIPS_CALL_LO16:
6088 case R_MICROMIPS_GOT_LO16:
6089 case R_MICROMIPS_CALL_LO16:
6090 value = g & howto->dst_mask;
6091 break;
6092
6093 case R_MIPS_GOT_PAGE:
6094 case R_MICROMIPS_GOT_PAGE:
6095 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6096 if (value == MINUS_ONE)
6097 return bfd_reloc_outofrange;
6098 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6099 overflowed_p = mips_elf_overflow_p (value, 16);
6100 break;
6101
6102 case R_MIPS_GOT_OFST:
6103 case R_MICROMIPS_GOT_OFST:
6104 if (local_p)
6105 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6106 else
6107 value = addend;
6108 overflowed_p = mips_elf_overflow_p (value, 16);
6109 break;
6110
6111 case R_MIPS_SUB:
6112 case R_MICROMIPS_SUB:
6113 value = symbol - addend;
6114 value &= howto->dst_mask;
6115 break;
6116
6117 case R_MIPS_HIGHER:
6118 case R_MICROMIPS_HIGHER:
6119 value = mips_elf_higher (addend + symbol);
6120 value &= howto->dst_mask;
6121 break;
6122
6123 case R_MIPS_HIGHEST:
6124 case R_MICROMIPS_HIGHEST:
6125 value = mips_elf_highest (addend + symbol);
6126 value &= howto->dst_mask;
6127 break;
6128
6129 case R_MIPS_SCN_DISP:
6130 case R_MICROMIPS_SCN_DISP:
6131 value = symbol + addend - sec->output_offset;
6132 value &= howto->dst_mask;
6133 break;
6134
6135 case R_MIPS_JALR:
6136 case R_MICROMIPS_JALR:
6137 /* This relocation is only a hint. In some cases, we optimize
6138 it into a bal instruction. But we don't try to optimize
6139 when the symbol does not resolve locally. */
6140 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6141 return bfd_reloc_continue;
6142 value = symbol + addend;
6143 break;
6144
6145 case R_MIPS_PJUMP:
6146 case R_MIPS_GNU_VTINHERIT:
6147 case R_MIPS_GNU_VTENTRY:
6148 /* We don't do anything with these at present. */
6149 return bfd_reloc_continue;
6150
6151 default:
6152 /* An unrecognized relocation type. */
6153 return bfd_reloc_notsupported;
6154 }
6155
6156 /* Store the VALUE for our caller. */
6157 *valuep = value;
6158 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6159 }
6160
6161 /* Obtain the field relocated by RELOCATION. */
6162
6163 static bfd_vma
6164 mips_elf_obtain_contents (reloc_howto_type *howto,
6165 const Elf_Internal_Rela *relocation,
6166 bfd *input_bfd, bfd_byte *contents)
6167 {
6168 bfd_vma x;
6169 bfd_byte *location = contents + relocation->r_offset;
6170
6171 /* Obtain the bytes. */
6172 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
6173
6174 return x;
6175 }
6176
6177 /* It has been determined that the result of the RELOCATION is the
6178 VALUE. Use HOWTO to place VALUE into the output file at the
6179 appropriate position. The SECTION is the section to which the
6180 relocation applies.
6181 CROSS_MODE_JUMP_P is true if the relocation field
6182 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6183
6184 Returns FALSE if anything goes wrong. */
6185
6186 static bfd_boolean
6187 mips_elf_perform_relocation (struct bfd_link_info *info,
6188 reloc_howto_type *howto,
6189 const Elf_Internal_Rela *relocation,
6190 bfd_vma value, bfd *input_bfd,
6191 asection *input_section, bfd_byte *contents,
6192 bfd_boolean cross_mode_jump_p)
6193 {
6194 bfd_vma x;
6195 bfd_byte *location;
6196 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6197
6198 /* Figure out where the relocation is occurring. */
6199 location = contents + relocation->r_offset;
6200
6201 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6202
6203 /* Obtain the current value. */
6204 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6205
6206 /* Clear the field we are setting. */
6207 x &= ~howto->dst_mask;
6208
6209 /* Set the field. */
6210 x |= (value & howto->dst_mask);
6211
6212 /* If required, turn JAL into JALX. */
6213 if (cross_mode_jump_p && jal_reloc_p (r_type))
6214 {
6215 bfd_boolean ok;
6216 bfd_vma opcode = x >> 26;
6217 bfd_vma jalx_opcode;
6218
6219 /* Check to see if the opcode is already JAL or JALX. */
6220 if (r_type == R_MIPS16_26)
6221 {
6222 ok = ((opcode == 0x6) || (opcode == 0x7));
6223 jalx_opcode = 0x7;
6224 }
6225 else if (r_type == R_MICROMIPS_26_S1)
6226 {
6227 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6228 jalx_opcode = 0x3c;
6229 }
6230 else
6231 {
6232 ok = ((opcode == 0x3) || (opcode == 0x1d));
6233 jalx_opcode = 0x1d;
6234 }
6235
6236 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6237 convert J or JALS to JALX. */
6238 if (!ok)
6239 {
6240 (*_bfd_error_handler)
6241 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6242 input_bfd,
6243 input_section,
6244 (unsigned long) relocation->r_offset);
6245 bfd_set_error (bfd_error_bad_value);
6246 return FALSE;
6247 }
6248
6249 /* Make this the JALX opcode. */
6250 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6251 }
6252
6253 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6254 range. */
6255 if (!info->relocatable
6256 && !cross_mode_jump_p
6257 && ((JAL_TO_BAL_P (input_bfd)
6258 && r_type == R_MIPS_26
6259 && (x >> 26) == 0x3) /* jal addr */
6260 || (JALR_TO_BAL_P (input_bfd)
6261 && r_type == R_MIPS_JALR
6262 && x == 0x0320f809) /* jalr t9 */
6263 || (JR_TO_B_P (input_bfd)
6264 && r_type == R_MIPS_JALR
6265 && x == 0x03200008))) /* jr t9 */
6266 {
6267 bfd_vma addr;
6268 bfd_vma dest;
6269 bfd_signed_vma off;
6270
6271 addr = (input_section->output_section->vma
6272 + input_section->output_offset
6273 + relocation->r_offset
6274 + 4);
6275 if (r_type == R_MIPS_26)
6276 dest = (value << 2) | ((addr >> 28) << 28);
6277 else
6278 dest = value;
6279 off = dest - addr;
6280 if (off <= 0x1ffff && off >= -0x20000)
6281 {
6282 if (x == 0x03200008) /* jr t9 */
6283 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6284 else
6285 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6286 }
6287 }
6288
6289 /* Put the value into the output. */
6290 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6291
6292 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6293 location);
6294
6295 return TRUE;
6296 }
6297 \f
6298 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6299 is the original relocation, which is now being transformed into a
6300 dynamic relocation. The ADDENDP is adjusted if necessary; the
6301 caller should store the result in place of the original addend. */
6302
6303 static bfd_boolean
6304 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6305 struct bfd_link_info *info,
6306 const Elf_Internal_Rela *rel,
6307 struct mips_elf_link_hash_entry *h,
6308 asection *sec, bfd_vma symbol,
6309 bfd_vma *addendp, asection *input_section)
6310 {
6311 Elf_Internal_Rela outrel[3];
6312 asection *sreloc;
6313 bfd *dynobj;
6314 int r_type;
6315 long indx;
6316 bfd_boolean defined_p;
6317 struct mips_elf_link_hash_table *htab;
6318
6319 htab = mips_elf_hash_table (info);
6320 BFD_ASSERT (htab != NULL);
6321
6322 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6323 dynobj = elf_hash_table (info)->dynobj;
6324 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6325 BFD_ASSERT (sreloc != NULL);
6326 BFD_ASSERT (sreloc->contents != NULL);
6327 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6328 < sreloc->size);
6329
6330 outrel[0].r_offset =
6331 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6332 if (ABI_64_P (output_bfd))
6333 {
6334 outrel[1].r_offset =
6335 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6336 outrel[2].r_offset =
6337 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6338 }
6339
6340 if (outrel[0].r_offset == MINUS_ONE)
6341 /* The relocation field has been deleted. */
6342 return TRUE;
6343
6344 if (outrel[0].r_offset == MINUS_TWO)
6345 {
6346 /* The relocation field has been converted into a relative value of
6347 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6348 the field to be fully relocated, so add in the symbol's value. */
6349 *addendp += symbol;
6350 return TRUE;
6351 }
6352
6353 /* We must now calculate the dynamic symbol table index to use
6354 in the relocation. */
6355 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6356 {
6357 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6358 indx = h->root.dynindx;
6359 if (SGI_COMPAT (output_bfd))
6360 defined_p = h->root.def_regular;
6361 else
6362 /* ??? glibc's ld.so just adds the final GOT entry to the
6363 relocation field. It therefore treats relocs against
6364 defined symbols in the same way as relocs against
6365 undefined symbols. */
6366 defined_p = FALSE;
6367 }
6368 else
6369 {
6370 if (sec != NULL && bfd_is_abs_section (sec))
6371 indx = 0;
6372 else if (sec == NULL || sec->owner == NULL)
6373 {
6374 bfd_set_error (bfd_error_bad_value);
6375 return FALSE;
6376 }
6377 else
6378 {
6379 indx = elf_section_data (sec->output_section)->dynindx;
6380 if (indx == 0)
6381 {
6382 asection *osec = htab->root.text_index_section;
6383 indx = elf_section_data (osec)->dynindx;
6384 }
6385 if (indx == 0)
6386 abort ();
6387 }
6388
6389 /* Instead of generating a relocation using the section
6390 symbol, we may as well make it a fully relative
6391 relocation. We want to avoid generating relocations to
6392 local symbols because we used to generate them
6393 incorrectly, without adding the original symbol value,
6394 which is mandated by the ABI for section symbols. In
6395 order to give dynamic loaders and applications time to
6396 phase out the incorrect use, we refrain from emitting
6397 section-relative relocations. It's not like they're
6398 useful, after all. This should be a bit more efficient
6399 as well. */
6400 /* ??? Although this behavior is compatible with glibc's ld.so,
6401 the ABI says that relocations against STN_UNDEF should have
6402 a symbol value of 0. Irix rld honors this, so relocations
6403 against STN_UNDEF have no effect. */
6404 if (!SGI_COMPAT (output_bfd))
6405 indx = 0;
6406 defined_p = TRUE;
6407 }
6408
6409 /* If the relocation was previously an absolute relocation and
6410 this symbol will not be referred to by the relocation, we must
6411 adjust it by the value we give it in the dynamic symbol table.
6412 Otherwise leave the job up to the dynamic linker. */
6413 if (defined_p && r_type != R_MIPS_REL32)
6414 *addendp += symbol;
6415
6416 if (htab->is_vxworks)
6417 /* VxWorks uses non-relative relocations for this. */
6418 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6419 else
6420 /* The relocation is always an REL32 relocation because we don't
6421 know where the shared library will wind up at load-time. */
6422 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6423 R_MIPS_REL32);
6424
6425 /* For strict adherence to the ABI specification, we should
6426 generate a R_MIPS_64 relocation record by itself before the
6427 _REL32/_64 record as well, such that the addend is read in as
6428 a 64-bit value (REL32 is a 32-bit relocation, after all).
6429 However, since none of the existing ELF64 MIPS dynamic
6430 loaders seems to care, we don't waste space with these
6431 artificial relocations. If this turns out to not be true,
6432 mips_elf_allocate_dynamic_relocation() should be tweaked so
6433 as to make room for a pair of dynamic relocations per
6434 invocation if ABI_64_P, and here we should generate an
6435 additional relocation record with R_MIPS_64 by itself for a
6436 NULL symbol before this relocation record. */
6437 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6438 ABI_64_P (output_bfd)
6439 ? R_MIPS_64
6440 : R_MIPS_NONE);
6441 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6442
6443 /* Adjust the output offset of the relocation to reference the
6444 correct location in the output file. */
6445 outrel[0].r_offset += (input_section->output_section->vma
6446 + input_section->output_offset);
6447 outrel[1].r_offset += (input_section->output_section->vma
6448 + input_section->output_offset);
6449 outrel[2].r_offset += (input_section->output_section->vma
6450 + input_section->output_offset);
6451
6452 /* Put the relocation back out. We have to use the special
6453 relocation outputter in the 64-bit case since the 64-bit
6454 relocation format is non-standard. */
6455 if (ABI_64_P (output_bfd))
6456 {
6457 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6458 (output_bfd, &outrel[0],
6459 (sreloc->contents
6460 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6461 }
6462 else if (htab->is_vxworks)
6463 {
6464 /* VxWorks uses RELA rather than REL dynamic relocations. */
6465 outrel[0].r_addend = *addendp;
6466 bfd_elf32_swap_reloca_out
6467 (output_bfd, &outrel[0],
6468 (sreloc->contents
6469 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6470 }
6471 else
6472 bfd_elf32_swap_reloc_out
6473 (output_bfd, &outrel[0],
6474 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6475
6476 /* We've now added another relocation. */
6477 ++sreloc->reloc_count;
6478
6479 /* Make sure the output section is writable. The dynamic linker
6480 will be writing to it. */
6481 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6482 |= SHF_WRITE;
6483
6484 /* On IRIX5, make an entry of compact relocation info. */
6485 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6486 {
6487 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6488 bfd_byte *cr;
6489
6490 if (scpt)
6491 {
6492 Elf32_crinfo cptrel;
6493
6494 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6495 cptrel.vaddr = (rel->r_offset
6496 + input_section->output_section->vma
6497 + input_section->output_offset);
6498 if (r_type == R_MIPS_REL32)
6499 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6500 else
6501 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6502 mips_elf_set_cr_dist2to (cptrel, 0);
6503 cptrel.konst = *addendp;
6504
6505 cr = (scpt->contents
6506 + sizeof (Elf32_External_compact_rel));
6507 mips_elf_set_cr_relvaddr (cptrel, 0);
6508 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6509 ((Elf32_External_crinfo *) cr
6510 + scpt->reloc_count));
6511 ++scpt->reloc_count;
6512 }
6513 }
6514
6515 /* If we've written this relocation for a readonly section,
6516 we need to set DF_TEXTREL again, so that we do not delete the
6517 DT_TEXTREL tag. */
6518 if (MIPS_ELF_READONLY_SECTION (input_section))
6519 info->flags |= DF_TEXTREL;
6520
6521 return TRUE;
6522 }
6523 \f
6524 /* Return the MACH for a MIPS e_flags value. */
6525
6526 unsigned long
6527 _bfd_elf_mips_mach (flagword flags)
6528 {
6529 switch (flags & EF_MIPS_MACH)
6530 {
6531 case E_MIPS_MACH_3900:
6532 return bfd_mach_mips3900;
6533
6534 case E_MIPS_MACH_4010:
6535 return bfd_mach_mips4010;
6536
6537 case E_MIPS_MACH_4100:
6538 return bfd_mach_mips4100;
6539
6540 case E_MIPS_MACH_4111:
6541 return bfd_mach_mips4111;
6542
6543 case E_MIPS_MACH_4120:
6544 return bfd_mach_mips4120;
6545
6546 case E_MIPS_MACH_4650:
6547 return bfd_mach_mips4650;
6548
6549 case E_MIPS_MACH_5400:
6550 return bfd_mach_mips5400;
6551
6552 case E_MIPS_MACH_5500:
6553 return bfd_mach_mips5500;
6554
6555 case E_MIPS_MACH_5900:
6556 return bfd_mach_mips5900;
6557
6558 case E_MIPS_MACH_9000:
6559 return bfd_mach_mips9000;
6560
6561 case E_MIPS_MACH_SB1:
6562 return bfd_mach_mips_sb1;
6563
6564 case E_MIPS_MACH_LS2E:
6565 return bfd_mach_mips_loongson_2e;
6566
6567 case E_MIPS_MACH_LS2F:
6568 return bfd_mach_mips_loongson_2f;
6569
6570 case E_MIPS_MACH_LS3A:
6571 return bfd_mach_mips_loongson_3a;
6572
6573 case E_MIPS_MACH_OCTEON2:
6574 return bfd_mach_mips_octeon2;
6575
6576 case E_MIPS_MACH_OCTEON:
6577 return bfd_mach_mips_octeon;
6578
6579 case E_MIPS_MACH_XLR:
6580 return bfd_mach_mips_xlr;
6581
6582 default:
6583 switch (flags & EF_MIPS_ARCH)
6584 {
6585 default:
6586 case E_MIPS_ARCH_1:
6587 return bfd_mach_mips3000;
6588
6589 case E_MIPS_ARCH_2:
6590 return bfd_mach_mips6000;
6591
6592 case E_MIPS_ARCH_3:
6593 return bfd_mach_mips4000;
6594
6595 case E_MIPS_ARCH_4:
6596 return bfd_mach_mips8000;
6597
6598 case E_MIPS_ARCH_5:
6599 return bfd_mach_mips5;
6600
6601 case E_MIPS_ARCH_32:
6602 return bfd_mach_mipsisa32;
6603
6604 case E_MIPS_ARCH_64:
6605 return bfd_mach_mipsisa64;
6606
6607 case E_MIPS_ARCH_32R2:
6608 return bfd_mach_mipsisa32r2;
6609
6610 case E_MIPS_ARCH_64R2:
6611 return bfd_mach_mipsisa64r2;
6612
6613 case E_MIPS_ARCH_32R6:
6614 return bfd_mach_mipsisa32r6;
6615
6616 case E_MIPS_ARCH_64R6:
6617 return bfd_mach_mipsisa64r6;
6618 }
6619 }
6620
6621 return 0;
6622 }
6623
6624 /* Return printable name for ABI. */
6625
6626 static INLINE char *
6627 elf_mips_abi_name (bfd *abfd)
6628 {
6629 flagword flags;
6630
6631 flags = elf_elfheader (abfd)->e_flags;
6632 switch (flags & EF_MIPS_ABI)
6633 {
6634 case 0:
6635 if (ABI_N32_P (abfd))
6636 return "N32";
6637 else if (ABI_64_P (abfd))
6638 return "64";
6639 else
6640 return "none";
6641 case E_MIPS_ABI_O32:
6642 return "O32";
6643 case E_MIPS_ABI_O64:
6644 return "O64";
6645 case E_MIPS_ABI_EABI32:
6646 return "EABI32";
6647 case E_MIPS_ABI_EABI64:
6648 return "EABI64";
6649 default:
6650 return "unknown abi";
6651 }
6652 }
6653 \f
6654 /* MIPS ELF uses two common sections. One is the usual one, and the
6655 other is for small objects. All the small objects are kept
6656 together, and then referenced via the gp pointer, which yields
6657 faster assembler code. This is what we use for the small common
6658 section. This approach is copied from ecoff.c. */
6659 static asection mips_elf_scom_section;
6660 static asymbol mips_elf_scom_symbol;
6661 static asymbol *mips_elf_scom_symbol_ptr;
6662
6663 /* MIPS ELF also uses an acommon section, which represents an
6664 allocated common symbol which may be overridden by a
6665 definition in a shared library. */
6666 static asection mips_elf_acom_section;
6667 static asymbol mips_elf_acom_symbol;
6668 static asymbol *mips_elf_acom_symbol_ptr;
6669
6670 /* This is used for both the 32-bit and the 64-bit ABI. */
6671
6672 void
6673 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6674 {
6675 elf_symbol_type *elfsym;
6676
6677 /* Handle the special MIPS section numbers that a symbol may use. */
6678 elfsym = (elf_symbol_type *) asym;
6679 switch (elfsym->internal_elf_sym.st_shndx)
6680 {
6681 case SHN_MIPS_ACOMMON:
6682 /* This section is used in a dynamically linked executable file.
6683 It is an allocated common section. The dynamic linker can
6684 either resolve these symbols to something in a shared
6685 library, or it can just leave them here. For our purposes,
6686 we can consider these symbols to be in a new section. */
6687 if (mips_elf_acom_section.name == NULL)
6688 {
6689 /* Initialize the acommon section. */
6690 mips_elf_acom_section.name = ".acommon";
6691 mips_elf_acom_section.flags = SEC_ALLOC;
6692 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6693 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6694 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6695 mips_elf_acom_symbol.name = ".acommon";
6696 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6697 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6698 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6699 }
6700 asym->section = &mips_elf_acom_section;
6701 break;
6702
6703 case SHN_COMMON:
6704 /* Common symbols less than the GP size are automatically
6705 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6706 if (asym->value > elf_gp_size (abfd)
6707 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6708 || IRIX_COMPAT (abfd) == ict_irix6)
6709 break;
6710 /* Fall through. */
6711 case SHN_MIPS_SCOMMON:
6712 if (mips_elf_scom_section.name == NULL)
6713 {
6714 /* Initialize the small common section. */
6715 mips_elf_scom_section.name = ".scommon";
6716 mips_elf_scom_section.flags = SEC_IS_COMMON;
6717 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6718 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6719 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6720 mips_elf_scom_symbol.name = ".scommon";
6721 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6722 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6723 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6724 }
6725 asym->section = &mips_elf_scom_section;
6726 asym->value = elfsym->internal_elf_sym.st_size;
6727 break;
6728
6729 case SHN_MIPS_SUNDEFINED:
6730 asym->section = bfd_und_section_ptr;
6731 break;
6732
6733 case SHN_MIPS_TEXT:
6734 {
6735 asection *section = bfd_get_section_by_name (abfd, ".text");
6736
6737 if (section != NULL)
6738 {
6739 asym->section = section;
6740 /* MIPS_TEXT is a bit special, the address is not an offset
6741 to the base of the .text section. So substract the section
6742 base address to make it an offset. */
6743 asym->value -= section->vma;
6744 }
6745 }
6746 break;
6747
6748 case SHN_MIPS_DATA:
6749 {
6750 asection *section = bfd_get_section_by_name (abfd, ".data");
6751
6752 if (section != NULL)
6753 {
6754 asym->section = section;
6755 /* MIPS_DATA is a bit special, the address is not an offset
6756 to the base of the .data section. So substract the section
6757 base address to make it an offset. */
6758 asym->value -= section->vma;
6759 }
6760 }
6761 break;
6762 }
6763
6764 /* If this is an odd-valued function symbol, assume it's a MIPS16
6765 or microMIPS one. */
6766 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6767 && (asym->value & 1) != 0)
6768 {
6769 asym->value--;
6770 if (MICROMIPS_P (abfd))
6771 elfsym->internal_elf_sym.st_other
6772 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6773 else
6774 elfsym->internal_elf_sym.st_other
6775 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6776 }
6777 }
6778 \f
6779 /* Implement elf_backend_eh_frame_address_size. This differs from
6780 the default in the way it handles EABI64.
6781
6782 EABI64 was originally specified as an LP64 ABI, and that is what
6783 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6784 historically accepted the combination of -mabi=eabi and -mlong32,
6785 and this ILP32 variation has become semi-official over time.
6786 Both forms use elf32 and have pointer-sized FDE addresses.
6787
6788 If an EABI object was generated by GCC 4.0 or above, it will have
6789 an empty .gcc_compiled_longXX section, where XX is the size of longs
6790 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6791 have no special marking to distinguish them from LP64 objects.
6792
6793 We don't want users of the official LP64 ABI to be punished for the
6794 existence of the ILP32 variant, but at the same time, we don't want
6795 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6796 We therefore take the following approach:
6797
6798 - If ABFD contains a .gcc_compiled_longXX section, use it to
6799 determine the pointer size.
6800
6801 - Otherwise check the type of the first relocation. Assume that
6802 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6803
6804 - Otherwise punt.
6805
6806 The second check is enough to detect LP64 objects generated by pre-4.0
6807 compilers because, in the kind of output generated by those compilers,
6808 the first relocation will be associated with either a CIE personality
6809 routine or an FDE start address. Furthermore, the compilers never
6810 used a special (non-pointer) encoding for this ABI.
6811
6812 Checking the relocation type should also be safe because there is no
6813 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6814 did so. */
6815
6816 unsigned int
6817 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6818 {
6819 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6820 return 8;
6821 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6822 {
6823 bfd_boolean long32_p, long64_p;
6824
6825 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6826 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6827 if (long32_p && long64_p)
6828 return 0;
6829 if (long32_p)
6830 return 4;
6831 if (long64_p)
6832 return 8;
6833
6834 if (sec->reloc_count > 0
6835 && elf_section_data (sec)->relocs != NULL
6836 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6837 == R_MIPS_64))
6838 return 8;
6839
6840 return 0;
6841 }
6842 return 4;
6843 }
6844 \f
6845 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6846 relocations against two unnamed section symbols to resolve to the
6847 same address. For example, if we have code like:
6848
6849 lw $4,%got_disp(.data)($gp)
6850 lw $25,%got_disp(.text)($gp)
6851 jalr $25
6852
6853 then the linker will resolve both relocations to .data and the program
6854 will jump there rather than to .text.
6855
6856 We can work around this problem by giving names to local section symbols.
6857 This is also what the MIPSpro tools do. */
6858
6859 bfd_boolean
6860 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6861 {
6862 return SGI_COMPAT (abfd);
6863 }
6864 \f
6865 /* Work over a section just before writing it out. This routine is
6866 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6867 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6868 a better way. */
6869
6870 bfd_boolean
6871 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6872 {
6873 if (hdr->sh_type == SHT_MIPS_REGINFO
6874 && hdr->sh_size > 0)
6875 {
6876 bfd_byte buf[4];
6877
6878 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6879 BFD_ASSERT (hdr->contents == NULL);
6880
6881 if (bfd_seek (abfd,
6882 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6883 SEEK_SET) != 0)
6884 return FALSE;
6885 H_PUT_32 (abfd, elf_gp (abfd), buf);
6886 if (bfd_bwrite (buf, 4, abfd) != 4)
6887 return FALSE;
6888 }
6889
6890 if (hdr->sh_type == SHT_MIPS_OPTIONS
6891 && hdr->bfd_section != NULL
6892 && mips_elf_section_data (hdr->bfd_section) != NULL
6893 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6894 {
6895 bfd_byte *contents, *l, *lend;
6896
6897 /* We stored the section contents in the tdata field in the
6898 set_section_contents routine. We save the section contents
6899 so that we don't have to read them again.
6900 At this point we know that elf_gp is set, so we can look
6901 through the section contents to see if there is an
6902 ODK_REGINFO structure. */
6903
6904 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6905 l = contents;
6906 lend = contents + hdr->sh_size;
6907 while (l + sizeof (Elf_External_Options) <= lend)
6908 {
6909 Elf_Internal_Options intopt;
6910
6911 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6912 &intopt);
6913 if (intopt.size < sizeof (Elf_External_Options))
6914 {
6915 (*_bfd_error_handler)
6916 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6917 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6918 break;
6919 }
6920 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6921 {
6922 bfd_byte buf[8];
6923
6924 if (bfd_seek (abfd,
6925 (hdr->sh_offset
6926 + (l - contents)
6927 + sizeof (Elf_External_Options)
6928 + (sizeof (Elf64_External_RegInfo) - 8)),
6929 SEEK_SET) != 0)
6930 return FALSE;
6931 H_PUT_64 (abfd, elf_gp (abfd), buf);
6932 if (bfd_bwrite (buf, 8, abfd) != 8)
6933 return FALSE;
6934 }
6935 else if (intopt.kind == ODK_REGINFO)
6936 {
6937 bfd_byte buf[4];
6938
6939 if (bfd_seek (abfd,
6940 (hdr->sh_offset
6941 + (l - contents)
6942 + sizeof (Elf_External_Options)
6943 + (sizeof (Elf32_External_RegInfo) - 4)),
6944 SEEK_SET) != 0)
6945 return FALSE;
6946 H_PUT_32 (abfd, elf_gp (abfd), buf);
6947 if (bfd_bwrite (buf, 4, abfd) != 4)
6948 return FALSE;
6949 }
6950 l += intopt.size;
6951 }
6952 }
6953
6954 if (hdr->bfd_section != NULL)
6955 {
6956 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6957
6958 /* .sbss is not handled specially here because the GNU/Linux
6959 prelinker can convert .sbss from NOBITS to PROGBITS and
6960 changing it back to NOBITS breaks the binary. The entry in
6961 _bfd_mips_elf_special_sections will ensure the correct flags
6962 are set on .sbss if BFD creates it without reading it from an
6963 input file, and without special handling here the flags set
6964 on it in an input file will be followed. */
6965 if (strcmp (name, ".sdata") == 0
6966 || strcmp (name, ".lit8") == 0
6967 || strcmp (name, ".lit4") == 0)
6968 {
6969 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6970 hdr->sh_type = SHT_PROGBITS;
6971 }
6972 else if (strcmp (name, ".srdata") == 0)
6973 {
6974 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6975 hdr->sh_type = SHT_PROGBITS;
6976 }
6977 else if (strcmp (name, ".compact_rel") == 0)
6978 {
6979 hdr->sh_flags = 0;
6980 hdr->sh_type = SHT_PROGBITS;
6981 }
6982 else if (strcmp (name, ".rtproc") == 0)
6983 {
6984 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6985 {
6986 unsigned int adjust;
6987
6988 adjust = hdr->sh_size % hdr->sh_addralign;
6989 if (adjust != 0)
6990 hdr->sh_size += hdr->sh_addralign - adjust;
6991 }
6992 }
6993 }
6994
6995 return TRUE;
6996 }
6997
6998 /* Handle a MIPS specific section when reading an object file. This
6999 is called when elfcode.h finds a section with an unknown type.
7000 This routine supports both the 32-bit and 64-bit ELF ABI.
7001
7002 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7003 how to. */
7004
7005 bfd_boolean
7006 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7007 Elf_Internal_Shdr *hdr,
7008 const char *name,
7009 int shindex)
7010 {
7011 flagword flags = 0;
7012
7013 /* There ought to be a place to keep ELF backend specific flags, but
7014 at the moment there isn't one. We just keep track of the
7015 sections by their name, instead. Fortunately, the ABI gives
7016 suggested names for all the MIPS specific sections, so we will
7017 probably get away with this. */
7018 switch (hdr->sh_type)
7019 {
7020 case SHT_MIPS_LIBLIST:
7021 if (strcmp (name, ".liblist") != 0)
7022 return FALSE;
7023 break;
7024 case SHT_MIPS_MSYM:
7025 if (strcmp (name, ".msym") != 0)
7026 return FALSE;
7027 break;
7028 case SHT_MIPS_CONFLICT:
7029 if (strcmp (name, ".conflict") != 0)
7030 return FALSE;
7031 break;
7032 case SHT_MIPS_GPTAB:
7033 if (! CONST_STRNEQ (name, ".gptab."))
7034 return FALSE;
7035 break;
7036 case SHT_MIPS_UCODE:
7037 if (strcmp (name, ".ucode") != 0)
7038 return FALSE;
7039 break;
7040 case SHT_MIPS_DEBUG:
7041 if (strcmp (name, ".mdebug") != 0)
7042 return FALSE;
7043 flags = SEC_DEBUGGING;
7044 break;
7045 case SHT_MIPS_REGINFO:
7046 if (strcmp (name, ".reginfo") != 0
7047 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7048 return FALSE;
7049 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7050 break;
7051 case SHT_MIPS_IFACE:
7052 if (strcmp (name, ".MIPS.interfaces") != 0)
7053 return FALSE;
7054 break;
7055 case SHT_MIPS_CONTENT:
7056 if (! CONST_STRNEQ (name, ".MIPS.content"))
7057 return FALSE;
7058 break;
7059 case SHT_MIPS_OPTIONS:
7060 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7061 return FALSE;
7062 break;
7063 case SHT_MIPS_ABIFLAGS:
7064 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7065 return FALSE;
7066 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7067 break;
7068 case SHT_MIPS_DWARF:
7069 if (! CONST_STRNEQ (name, ".debug_")
7070 && ! CONST_STRNEQ (name, ".zdebug_"))
7071 return FALSE;
7072 break;
7073 case SHT_MIPS_SYMBOL_LIB:
7074 if (strcmp (name, ".MIPS.symlib") != 0)
7075 return FALSE;
7076 break;
7077 case SHT_MIPS_EVENTS:
7078 if (! CONST_STRNEQ (name, ".MIPS.events")
7079 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7080 return FALSE;
7081 break;
7082 default:
7083 break;
7084 }
7085
7086 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7087 return FALSE;
7088
7089 if (flags)
7090 {
7091 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7092 (bfd_get_section_flags (abfd,
7093 hdr->bfd_section)
7094 | flags)))
7095 return FALSE;
7096 }
7097
7098 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7099 {
7100 Elf_External_ABIFlags_v0 ext;
7101
7102 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7103 &ext, 0, sizeof ext))
7104 return FALSE;
7105 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7106 &mips_elf_tdata (abfd)->abiflags);
7107 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7108 return FALSE;
7109 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7110 }
7111
7112 /* FIXME: We should record sh_info for a .gptab section. */
7113
7114 /* For a .reginfo section, set the gp value in the tdata information
7115 from the contents of this section. We need the gp value while
7116 processing relocs, so we just get it now. The .reginfo section
7117 is not used in the 64-bit MIPS ELF ABI. */
7118 if (hdr->sh_type == SHT_MIPS_REGINFO)
7119 {
7120 Elf32_External_RegInfo ext;
7121 Elf32_RegInfo s;
7122
7123 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7124 &ext, 0, sizeof ext))
7125 return FALSE;
7126 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7127 elf_gp (abfd) = s.ri_gp_value;
7128 }
7129
7130 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7131 set the gp value based on what we find. We may see both
7132 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7133 they should agree. */
7134 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7135 {
7136 bfd_byte *contents, *l, *lend;
7137
7138 contents = bfd_malloc (hdr->sh_size);
7139 if (contents == NULL)
7140 return FALSE;
7141 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7142 0, hdr->sh_size))
7143 {
7144 free (contents);
7145 return FALSE;
7146 }
7147 l = contents;
7148 lend = contents + hdr->sh_size;
7149 while (l + sizeof (Elf_External_Options) <= lend)
7150 {
7151 Elf_Internal_Options intopt;
7152
7153 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7154 &intopt);
7155 if (intopt.size < sizeof (Elf_External_Options))
7156 {
7157 (*_bfd_error_handler)
7158 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7159 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7160 break;
7161 }
7162 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7163 {
7164 Elf64_Internal_RegInfo intreg;
7165
7166 bfd_mips_elf64_swap_reginfo_in
7167 (abfd,
7168 ((Elf64_External_RegInfo *)
7169 (l + sizeof (Elf_External_Options))),
7170 &intreg);
7171 elf_gp (abfd) = intreg.ri_gp_value;
7172 }
7173 else if (intopt.kind == ODK_REGINFO)
7174 {
7175 Elf32_RegInfo intreg;
7176
7177 bfd_mips_elf32_swap_reginfo_in
7178 (abfd,
7179 ((Elf32_External_RegInfo *)
7180 (l + sizeof (Elf_External_Options))),
7181 &intreg);
7182 elf_gp (abfd) = intreg.ri_gp_value;
7183 }
7184 l += intopt.size;
7185 }
7186 free (contents);
7187 }
7188
7189 return TRUE;
7190 }
7191
7192 /* Set the correct type for a MIPS ELF section. We do this by the
7193 section name, which is a hack, but ought to work. This routine is
7194 used by both the 32-bit and the 64-bit ABI. */
7195
7196 bfd_boolean
7197 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7198 {
7199 const char *name = bfd_get_section_name (abfd, sec);
7200
7201 if (strcmp (name, ".liblist") == 0)
7202 {
7203 hdr->sh_type = SHT_MIPS_LIBLIST;
7204 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7205 /* The sh_link field is set in final_write_processing. */
7206 }
7207 else if (strcmp (name, ".conflict") == 0)
7208 hdr->sh_type = SHT_MIPS_CONFLICT;
7209 else if (CONST_STRNEQ (name, ".gptab."))
7210 {
7211 hdr->sh_type = SHT_MIPS_GPTAB;
7212 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7213 /* The sh_info field is set in final_write_processing. */
7214 }
7215 else if (strcmp (name, ".ucode") == 0)
7216 hdr->sh_type = SHT_MIPS_UCODE;
7217 else if (strcmp (name, ".mdebug") == 0)
7218 {
7219 hdr->sh_type = SHT_MIPS_DEBUG;
7220 /* In a shared object on IRIX 5.3, the .mdebug section has an
7221 entsize of 0. FIXME: Does this matter? */
7222 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7223 hdr->sh_entsize = 0;
7224 else
7225 hdr->sh_entsize = 1;
7226 }
7227 else if (strcmp (name, ".reginfo") == 0)
7228 {
7229 hdr->sh_type = SHT_MIPS_REGINFO;
7230 /* In a shared object on IRIX 5.3, the .reginfo section has an
7231 entsize of 0x18. FIXME: Does this matter? */
7232 if (SGI_COMPAT (abfd))
7233 {
7234 if ((abfd->flags & DYNAMIC) != 0)
7235 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7236 else
7237 hdr->sh_entsize = 1;
7238 }
7239 else
7240 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7241 }
7242 else if (SGI_COMPAT (abfd)
7243 && (strcmp (name, ".hash") == 0
7244 || strcmp (name, ".dynamic") == 0
7245 || strcmp (name, ".dynstr") == 0))
7246 {
7247 if (SGI_COMPAT (abfd))
7248 hdr->sh_entsize = 0;
7249 #if 0
7250 /* This isn't how the IRIX6 linker behaves. */
7251 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7252 #endif
7253 }
7254 else if (strcmp (name, ".got") == 0
7255 || strcmp (name, ".srdata") == 0
7256 || strcmp (name, ".sdata") == 0
7257 || strcmp (name, ".sbss") == 0
7258 || strcmp (name, ".lit4") == 0
7259 || strcmp (name, ".lit8") == 0)
7260 hdr->sh_flags |= SHF_MIPS_GPREL;
7261 else if (strcmp (name, ".MIPS.interfaces") == 0)
7262 {
7263 hdr->sh_type = SHT_MIPS_IFACE;
7264 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7265 }
7266 else if (CONST_STRNEQ (name, ".MIPS.content"))
7267 {
7268 hdr->sh_type = SHT_MIPS_CONTENT;
7269 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7270 /* The sh_info field is set in final_write_processing. */
7271 }
7272 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7273 {
7274 hdr->sh_type = SHT_MIPS_OPTIONS;
7275 hdr->sh_entsize = 1;
7276 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7277 }
7278 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7279 {
7280 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7281 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7282 }
7283 else if (CONST_STRNEQ (name, ".debug_")
7284 || CONST_STRNEQ (name, ".zdebug_"))
7285 {
7286 hdr->sh_type = SHT_MIPS_DWARF;
7287
7288 /* Irix facilities such as libexc expect a single .debug_frame
7289 per executable, the system ones have NOSTRIP set and the linker
7290 doesn't merge sections with different flags so ... */
7291 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7292 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7293 }
7294 else if (strcmp (name, ".MIPS.symlib") == 0)
7295 {
7296 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7297 /* The sh_link and sh_info fields are set in
7298 final_write_processing. */
7299 }
7300 else if (CONST_STRNEQ (name, ".MIPS.events")
7301 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7302 {
7303 hdr->sh_type = SHT_MIPS_EVENTS;
7304 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7305 /* The sh_link field is set in final_write_processing. */
7306 }
7307 else if (strcmp (name, ".msym") == 0)
7308 {
7309 hdr->sh_type = SHT_MIPS_MSYM;
7310 hdr->sh_flags |= SHF_ALLOC;
7311 hdr->sh_entsize = 8;
7312 }
7313
7314 /* The generic elf_fake_sections will set up REL_HDR using the default
7315 kind of relocations. We used to set up a second header for the
7316 non-default kind of relocations here, but only NewABI would use
7317 these, and the IRIX ld doesn't like resulting empty RELA sections.
7318 Thus we create those header only on demand now. */
7319
7320 return TRUE;
7321 }
7322
7323 /* Given a BFD section, try to locate the corresponding ELF section
7324 index. This is used by both the 32-bit and the 64-bit ABI.
7325 Actually, it's not clear to me that the 64-bit ABI supports these,
7326 but for non-PIC objects we will certainly want support for at least
7327 the .scommon section. */
7328
7329 bfd_boolean
7330 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7331 asection *sec, int *retval)
7332 {
7333 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7334 {
7335 *retval = SHN_MIPS_SCOMMON;
7336 return TRUE;
7337 }
7338 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7339 {
7340 *retval = SHN_MIPS_ACOMMON;
7341 return TRUE;
7342 }
7343 return FALSE;
7344 }
7345 \f
7346 /* Hook called by the linker routine which adds symbols from an object
7347 file. We must handle the special MIPS section numbers here. */
7348
7349 bfd_boolean
7350 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7351 Elf_Internal_Sym *sym, const char **namep,
7352 flagword *flagsp ATTRIBUTE_UNUSED,
7353 asection **secp, bfd_vma *valp)
7354 {
7355 if (SGI_COMPAT (abfd)
7356 && (abfd->flags & DYNAMIC) != 0
7357 && strcmp (*namep, "_rld_new_interface") == 0)
7358 {
7359 /* Skip IRIX5 rld entry name. */
7360 *namep = NULL;
7361 return TRUE;
7362 }
7363
7364 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7365 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7366 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7367 a magic symbol resolved by the linker, we ignore this bogus definition
7368 of _gp_disp. New ABI objects do not suffer from this problem so this
7369 is not done for them. */
7370 if (!NEWABI_P(abfd)
7371 && (sym->st_shndx == SHN_ABS)
7372 && (strcmp (*namep, "_gp_disp") == 0))
7373 {
7374 *namep = NULL;
7375 return TRUE;
7376 }
7377
7378 switch (sym->st_shndx)
7379 {
7380 case SHN_COMMON:
7381 /* Common symbols less than the GP size are automatically
7382 treated as SHN_MIPS_SCOMMON symbols. */
7383 if (sym->st_size > elf_gp_size (abfd)
7384 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7385 || IRIX_COMPAT (abfd) == ict_irix6)
7386 break;
7387 /* Fall through. */
7388 case SHN_MIPS_SCOMMON:
7389 *secp = bfd_make_section_old_way (abfd, ".scommon");
7390 (*secp)->flags |= SEC_IS_COMMON;
7391 *valp = sym->st_size;
7392 break;
7393
7394 case SHN_MIPS_TEXT:
7395 /* This section is used in a shared object. */
7396 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7397 {
7398 asymbol *elf_text_symbol;
7399 asection *elf_text_section;
7400 bfd_size_type amt = sizeof (asection);
7401
7402 elf_text_section = bfd_zalloc (abfd, amt);
7403 if (elf_text_section == NULL)
7404 return FALSE;
7405
7406 amt = sizeof (asymbol);
7407 elf_text_symbol = bfd_zalloc (abfd, amt);
7408 if (elf_text_symbol == NULL)
7409 return FALSE;
7410
7411 /* Initialize the section. */
7412
7413 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7414 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7415
7416 elf_text_section->symbol = elf_text_symbol;
7417 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7418
7419 elf_text_section->name = ".text";
7420 elf_text_section->flags = SEC_NO_FLAGS;
7421 elf_text_section->output_section = NULL;
7422 elf_text_section->owner = abfd;
7423 elf_text_symbol->name = ".text";
7424 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7425 elf_text_symbol->section = elf_text_section;
7426 }
7427 /* This code used to do *secp = bfd_und_section_ptr if
7428 info->shared. I don't know why, and that doesn't make sense,
7429 so I took it out. */
7430 *secp = mips_elf_tdata (abfd)->elf_text_section;
7431 break;
7432
7433 case SHN_MIPS_ACOMMON:
7434 /* Fall through. XXX Can we treat this as allocated data? */
7435 case SHN_MIPS_DATA:
7436 /* This section is used in a shared object. */
7437 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7438 {
7439 asymbol *elf_data_symbol;
7440 asection *elf_data_section;
7441 bfd_size_type amt = sizeof (asection);
7442
7443 elf_data_section = bfd_zalloc (abfd, amt);
7444 if (elf_data_section == NULL)
7445 return FALSE;
7446
7447 amt = sizeof (asymbol);
7448 elf_data_symbol = bfd_zalloc (abfd, amt);
7449 if (elf_data_symbol == NULL)
7450 return FALSE;
7451
7452 /* Initialize the section. */
7453
7454 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7455 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7456
7457 elf_data_section->symbol = elf_data_symbol;
7458 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7459
7460 elf_data_section->name = ".data";
7461 elf_data_section->flags = SEC_NO_FLAGS;
7462 elf_data_section->output_section = NULL;
7463 elf_data_section->owner = abfd;
7464 elf_data_symbol->name = ".data";
7465 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7466 elf_data_symbol->section = elf_data_section;
7467 }
7468 /* This code used to do *secp = bfd_und_section_ptr if
7469 info->shared. I don't know why, and that doesn't make sense,
7470 so I took it out. */
7471 *secp = mips_elf_tdata (abfd)->elf_data_section;
7472 break;
7473
7474 case SHN_MIPS_SUNDEFINED:
7475 *secp = bfd_und_section_ptr;
7476 break;
7477 }
7478
7479 if (SGI_COMPAT (abfd)
7480 && ! info->shared
7481 && info->output_bfd->xvec == abfd->xvec
7482 && strcmp (*namep, "__rld_obj_head") == 0)
7483 {
7484 struct elf_link_hash_entry *h;
7485 struct bfd_link_hash_entry *bh;
7486
7487 /* Mark __rld_obj_head as dynamic. */
7488 bh = NULL;
7489 if (! (_bfd_generic_link_add_one_symbol
7490 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7491 get_elf_backend_data (abfd)->collect, &bh)))
7492 return FALSE;
7493
7494 h = (struct elf_link_hash_entry *) bh;
7495 h->non_elf = 0;
7496 h->def_regular = 1;
7497 h->type = STT_OBJECT;
7498
7499 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7500 return FALSE;
7501
7502 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7503 mips_elf_hash_table (info)->rld_symbol = h;
7504 }
7505
7506 /* If this is a mips16 text symbol, add 1 to the value to make it
7507 odd. This will cause something like .word SYM to come up with
7508 the right value when it is loaded into the PC. */
7509 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7510 ++*valp;
7511
7512 return TRUE;
7513 }
7514
7515 /* This hook function is called before the linker writes out a global
7516 symbol. We mark symbols as small common if appropriate. This is
7517 also where we undo the increment of the value for a mips16 symbol. */
7518
7519 int
7520 _bfd_mips_elf_link_output_symbol_hook
7521 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7522 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7523 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7524 {
7525 /* If we see a common symbol, which implies a relocatable link, then
7526 if a symbol was small common in an input file, mark it as small
7527 common in the output file. */
7528 if (sym->st_shndx == SHN_COMMON
7529 && strcmp (input_sec->name, ".scommon") == 0)
7530 sym->st_shndx = SHN_MIPS_SCOMMON;
7531
7532 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7533 sym->st_value &= ~1;
7534
7535 return 1;
7536 }
7537 \f
7538 /* Functions for the dynamic linker. */
7539
7540 /* Create dynamic sections when linking against a dynamic object. */
7541
7542 bfd_boolean
7543 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7544 {
7545 struct elf_link_hash_entry *h;
7546 struct bfd_link_hash_entry *bh;
7547 flagword flags;
7548 register asection *s;
7549 const char * const *namep;
7550 struct mips_elf_link_hash_table *htab;
7551
7552 htab = mips_elf_hash_table (info);
7553 BFD_ASSERT (htab != NULL);
7554
7555 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7556 | SEC_LINKER_CREATED | SEC_READONLY);
7557
7558 /* The psABI requires a read-only .dynamic section, but the VxWorks
7559 EABI doesn't. */
7560 if (!htab->is_vxworks)
7561 {
7562 s = bfd_get_linker_section (abfd, ".dynamic");
7563 if (s != NULL)
7564 {
7565 if (! bfd_set_section_flags (abfd, s, flags))
7566 return FALSE;
7567 }
7568 }
7569
7570 /* We need to create .got section. */
7571 if (!mips_elf_create_got_section (abfd, info))
7572 return FALSE;
7573
7574 if (! mips_elf_rel_dyn_section (info, TRUE))
7575 return FALSE;
7576
7577 /* Create .stub section. */
7578 s = bfd_make_section_anyway_with_flags (abfd,
7579 MIPS_ELF_STUB_SECTION_NAME (abfd),
7580 flags | SEC_CODE);
7581 if (s == NULL
7582 || ! bfd_set_section_alignment (abfd, s,
7583 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7584 return FALSE;
7585 htab->sstubs = s;
7586
7587 if (!mips_elf_hash_table (info)->use_rld_obj_head
7588 && !info->shared
7589 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7590 {
7591 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7592 flags &~ (flagword) SEC_READONLY);
7593 if (s == NULL
7594 || ! bfd_set_section_alignment (abfd, s,
7595 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7596 return FALSE;
7597 }
7598
7599 /* On IRIX5, we adjust add some additional symbols and change the
7600 alignments of several sections. There is no ABI documentation
7601 indicating that this is necessary on IRIX6, nor any evidence that
7602 the linker takes such action. */
7603 if (IRIX_COMPAT (abfd) == ict_irix5)
7604 {
7605 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7606 {
7607 bh = NULL;
7608 if (! (_bfd_generic_link_add_one_symbol
7609 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7610 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7611 return FALSE;
7612
7613 h = (struct elf_link_hash_entry *) bh;
7614 h->non_elf = 0;
7615 h->def_regular = 1;
7616 h->type = STT_SECTION;
7617
7618 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7619 return FALSE;
7620 }
7621
7622 /* We need to create a .compact_rel section. */
7623 if (SGI_COMPAT (abfd))
7624 {
7625 if (!mips_elf_create_compact_rel_section (abfd, info))
7626 return FALSE;
7627 }
7628
7629 /* Change alignments of some sections. */
7630 s = bfd_get_linker_section (abfd, ".hash");
7631 if (s != NULL)
7632 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7633
7634 s = bfd_get_linker_section (abfd, ".dynsym");
7635 if (s != NULL)
7636 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7637
7638 s = bfd_get_linker_section (abfd, ".dynstr");
7639 if (s != NULL)
7640 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7641
7642 /* ??? */
7643 s = bfd_get_section_by_name (abfd, ".reginfo");
7644 if (s != NULL)
7645 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7646
7647 s = bfd_get_linker_section (abfd, ".dynamic");
7648 if (s != NULL)
7649 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7650 }
7651
7652 if (!info->shared)
7653 {
7654 const char *name;
7655
7656 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7657 bh = NULL;
7658 if (!(_bfd_generic_link_add_one_symbol
7659 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7660 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7661 return FALSE;
7662
7663 h = (struct elf_link_hash_entry *) bh;
7664 h->non_elf = 0;
7665 h->def_regular = 1;
7666 h->type = STT_SECTION;
7667
7668 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7669 return FALSE;
7670
7671 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7672 {
7673 /* __rld_map is a four byte word located in the .data section
7674 and is filled in by the rtld to contain a pointer to
7675 the _r_debug structure. Its symbol value will be set in
7676 _bfd_mips_elf_finish_dynamic_symbol. */
7677 s = bfd_get_linker_section (abfd, ".rld_map");
7678 BFD_ASSERT (s != NULL);
7679
7680 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7681 bh = NULL;
7682 if (!(_bfd_generic_link_add_one_symbol
7683 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7684 get_elf_backend_data (abfd)->collect, &bh)))
7685 return FALSE;
7686
7687 h = (struct elf_link_hash_entry *) bh;
7688 h->non_elf = 0;
7689 h->def_regular = 1;
7690 h->type = STT_OBJECT;
7691
7692 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7693 return FALSE;
7694 mips_elf_hash_table (info)->rld_symbol = h;
7695 }
7696 }
7697
7698 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7699 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7700 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7701 return FALSE;
7702
7703 /* Cache the sections created above. */
7704 htab->splt = bfd_get_linker_section (abfd, ".plt");
7705 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7706 if (htab->is_vxworks)
7707 {
7708 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7709 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7710 }
7711 else
7712 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7713 if (!htab->sdynbss
7714 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7715 || !htab->srelplt
7716 || !htab->splt)
7717 abort ();
7718
7719 /* Do the usual VxWorks handling. */
7720 if (htab->is_vxworks
7721 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7722 return FALSE;
7723
7724 return TRUE;
7725 }
7726 \f
7727 /* Return true if relocation REL against section SEC is a REL rather than
7728 RELA relocation. RELOCS is the first relocation in the section and
7729 ABFD is the bfd that contains SEC. */
7730
7731 static bfd_boolean
7732 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7733 const Elf_Internal_Rela *relocs,
7734 const Elf_Internal_Rela *rel)
7735 {
7736 Elf_Internal_Shdr *rel_hdr;
7737 const struct elf_backend_data *bed;
7738
7739 /* To determine which flavor of relocation this is, we depend on the
7740 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7741 rel_hdr = elf_section_data (sec)->rel.hdr;
7742 if (rel_hdr == NULL)
7743 return FALSE;
7744 bed = get_elf_backend_data (abfd);
7745 return ((size_t) (rel - relocs)
7746 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7747 }
7748
7749 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7750 HOWTO is the relocation's howto and CONTENTS points to the contents
7751 of the section that REL is against. */
7752
7753 static bfd_vma
7754 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7755 reloc_howto_type *howto, bfd_byte *contents)
7756 {
7757 bfd_byte *location;
7758 unsigned int r_type;
7759 bfd_vma addend;
7760
7761 r_type = ELF_R_TYPE (abfd, rel->r_info);
7762 location = contents + rel->r_offset;
7763
7764 /* Get the addend, which is stored in the input file. */
7765 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7766 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7767 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7768
7769 return addend & howto->src_mask;
7770 }
7771
7772 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7773 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7774 and update *ADDEND with the final addend. Return true on success
7775 or false if the LO16 could not be found. RELEND is the exclusive
7776 upper bound on the relocations for REL's section. */
7777
7778 static bfd_boolean
7779 mips_elf_add_lo16_rel_addend (bfd *abfd,
7780 const Elf_Internal_Rela *rel,
7781 const Elf_Internal_Rela *relend,
7782 bfd_byte *contents, bfd_vma *addend)
7783 {
7784 unsigned int r_type, lo16_type;
7785 const Elf_Internal_Rela *lo16_relocation;
7786 reloc_howto_type *lo16_howto;
7787 bfd_vma l;
7788
7789 r_type = ELF_R_TYPE (abfd, rel->r_info);
7790 if (mips16_reloc_p (r_type))
7791 lo16_type = R_MIPS16_LO16;
7792 else if (micromips_reloc_p (r_type))
7793 lo16_type = R_MICROMIPS_LO16;
7794 else if (r_type == R_MIPS_PCHI16)
7795 lo16_type = R_MIPS_PCLO16;
7796 else
7797 lo16_type = R_MIPS_LO16;
7798
7799 /* The combined value is the sum of the HI16 addend, left-shifted by
7800 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7801 code does a `lui' of the HI16 value, and then an `addiu' of the
7802 LO16 value.)
7803
7804 Scan ahead to find a matching LO16 relocation.
7805
7806 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7807 be immediately following. However, for the IRIX6 ABI, the next
7808 relocation may be a composed relocation consisting of several
7809 relocations for the same address. In that case, the R_MIPS_LO16
7810 relocation may occur as one of these. We permit a similar
7811 extension in general, as that is useful for GCC.
7812
7813 In some cases GCC dead code elimination removes the LO16 but keeps
7814 the corresponding HI16. This is strictly speaking a violation of
7815 the ABI but not immediately harmful. */
7816 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7817 if (lo16_relocation == NULL)
7818 return FALSE;
7819
7820 /* Obtain the addend kept there. */
7821 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7822 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7823
7824 l <<= lo16_howto->rightshift;
7825 l = _bfd_mips_elf_sign_extend (l, 16);
7826
7827 *addend <<= 16;
7828 *addend += l;
7829 return TRUE;
7830 }
7831
7832 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7833 store the contents in *CONTENTS on success. Assume that *CONTENTS
7834 already holds the contents if it is nonull on entry. */
7835
7836 static bfd_boolean
7837 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7838 {
7839 if (*contents)
7840 return TRUE;
7841
7842 /* Get cached copy if it exists. */
7843 if (elf_section_data (sec)->this_hdr.contents != NULL)
7844 {
7845 *contents = elf_section_data (sec)->this_hdr.contents;
7846 return TRUE;
7847 }
7848
7849 return bfd_malloc_and_get_section (abfd, sec, contents);
7850 }
7851
7852 /* Make a new PLT record to keep internal data. */
7853
7854 static struct plt_entry *
7855 mips_elf_make_plt_record (bfd *abfd)
7856 {
7857 struct plt_entry *entry;
7858
7859 entry = bfd_zalloc (abfd, sizeof (*entry));
7860 if (entry == NULL)
7861 return NULL;
7862
7863 entry->stub_offset = MINUS_ONE;
7864 entry->mips_offset = MINUS_ONE;
7865 entry->comp_offset = MINUS_ONE;
7866 entry->gotplt_index = MINUS_ONE;
7867 return entry;
7868 }
7869
7870 /* Look through the relocs for a section during the first phase, and
7871 allocate space in the global offset table and record the need for
7872 standard MIPS and compressed procedure linkage table entries. */
7873
7874 bfd_boolean
7875 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7876 asection *sec, const Elf_Internal_Rela *relocs)
7877 {
7878 const char *name;
7879 bfd *dynobj;
7880 Elf_Internal_Shdr *symtab_hdr;
7881 struct elf_link_hash_entry **sym_hashes;
7882 size_t extsymoff;
7883 const Elf_Internal_Rela *rel;
7884 const Elf_Internal_Rela *rel_end;
7885 asection *sreloc;
7886 const struct elf_backend_data *bed;
7887 struct mips_elf_link_hash_table *htab;
7888 bfd_byte *contents;
7889 bfd_vma addend;
7890 reloc_howto_type *howto;
7891
7892 if (info->relocatable)
7893 return TRUE;
7894
7895 htab = mips_elf_hash_table (info);
7896 BFD_ASSERT (htab != NULL);
7897
7898 dynobj = elf_hash_table (info)->dynobj;
7899 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7900 sym_hashes = elf_sym_hashes (abfd);
7901 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7902
7903 bed = get_elf_backend_data (abfd);
7904 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7905
7906 /* Check for the mips16 stub sections. */
7907
7908 name = bfd_get_section_name (abfd, sec);
7909 if (FN_STUB_P (name))
7910 {
7911 unsigned long r_symndx;
7912
7913 /* Look at the relocation information to figure out which symbol
7914 this is for. */
7915
7916 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7917 if (r_symndx == 0)
7918 {
7919 (*_bfd_error_handler)
7920 (_("%B: Warning: cannot determine the target function for"
7921 " stub section `%s'"),
7922 abfd, name);
7923 bfd_set_error (bfd_error_bad_value);
7924 return FALSE;
7925 }
7926
7927 if (r_symndx < extsymoff
7928 || sym_hashes[r_symndx - extsymoff] == NULL)
7929 {
7930 asection *o;
7931
7932 /* This stub is for a local symbol. This stub will only be
7933 needed if there is some relocation in this BFD, other
7934 than a 16 bit function call, which refers to this symbol. */
7935 for (o = abfd->sections; o != NULL; o = o->next)
7936 {
7937 Elf_Internal_Rela *sec_relocs;
7938 const Elf_Internal_Rela *r, *rend;
7939
7940 /* We can ignore stub sections when looking for relocs. */
7941 if ((o->flags & SEC_RELOC) == 0
7942 || o->reloc_count == 0
7943 || section_allows_mips16_refs_p (o))
7944 continue;
7945
7946 sec_relocs
7947 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7948 info->keep_memory);
7949 if (sec_relocs == NULL)
7950 return FALSE;
7951
7952 rend = sec_relocs + o->reloc_count;
7953 for (r = sec_relocs; r < rend; r++)
7954 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7955 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7956 break;
7957
7958 if (elf_section_data (o)->relocs != sec_relocs)
7959 free (sec_relocs);
7960
7961 if (r < rend)
7962 break;
7963 }
7964
7965 if (o == NULL)
7966 {
7967 /* There is no non-call reloc for this stub, so we do
7968 not need it. Since this function is called before
7969 the linker maps input sections to output sections, we
7970 can easily discard it by setting the SEC_EXCLUDE
7971 flag. */
7972 sec->flags |= SEC_EXCLUDE;
7973 return TRUE;
7974 }
7975
7976 /* Record this stub in an array of local symbol stubs for
7977 this BFD. */
7978 if (mips_elf_tdata (abfd)->local_stubs == NULL)
7979 {
7980 unsigned long symcount;
7981 asection **n;
7982 bfd_size_type amt;
7983
7984 if (elf_bad_symtab (abfd))
7985 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7986 else
7987 symcount = symtab_hdr->sh_info;
7988 amt = symcount * sizeof (asection *);
7989 n = bfd_zalloc (abfd, amt);
7990 if (n == NULL)
7991 return FALSE;
7992 mips_elf_tdata (abfd)->local_stubs = n;
7993 }
7994
7995 sec->flags |= SEC_KEEP;
7996 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7997
7998 /* We don't need to set mips16_stubs_seen in this case.
7999 That flag is used to see whether we need to look through
8000 the global symbol table for stubs. We don't need to set
8001 it here, because we just have a local stub. */
8002 }
8003 else
8004 {
8005 struct mips_elf_link_hash_entry *h;
8006
8007 h = ((struct mips_elf_link_hash_entry *)
8008 sym_hashes[r_symndx - extsymoff]);
8009
8010 while (h->root.root.type == bfd_link_hash_indirect
8011 || h->root.root.type == bfd_link_hash_warning)
8012 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8013
8014 /* H is the symbol this stub is for. */
8015
8016 /* If we already have an appropriate stub for this function, we
8017 don't need another one, so we can discard this one. Since
8018 this function is called before the linker maps input sections
8019 to output sections, we can easily discard it by setting the
8020 SEC_EXCLUDE flag. */
8021 if (h->fn_stub != NULL)
8022 {
8023 sec->flags |= SEC_EXCLUDE;
8024 return TRUE;
8025 }
8026
8027 sec->flags |= SEC_KEEP;
8028 h->fn_stub = sec;
8029 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8030 }
8031 }
8032 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8033 {
8034 unsigned long r_symndx;
8035 struct mips_elf_link_hash_entry *h;
8036 asection **loc;
8037
8038 /* Look at the relocation information to figure out which symbol
8039 this is for. */
8040
8041 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8042 if (r_symndx == 0)
8043 {
8044 (*_bfd_error_handler)
8045 (_("%B: Warning: cannot determine the target function for"
8046 " stub section `%s'"),
8047 abfd, name);
8048 bfd_set_error (bfd_error_bad_value);
8049 return FALSE;
8050 }
8051
8052 if (r_symndx < extsymoff
8053 || sym_hashes[r_symndx - extsymoff] == NULL)
8054 {
8055 asection *o;
8056
8057 /* This stub is for a local symbol. This stub will only be
8058 needed if there is some relocation (R_MIPS16_26) in this BFD
8059 that refers to this symbol. */
8060 for (o = abfd->sections; o != NULL; o = o->next)
8061 {
8062 Elf_Internal_Rela *sec_relocs;
8063 const Elf_Internal_Rela *r, *rend;
8064
8065 /* We can ignore stub sections when looking for relocs. */
8066 if ((o->flags & SEC_RELOC) == 0
8067 || o->reloc_count == 0
8068 || section_allows_mips16_refs_p (o))
8069 continue;
8070
8071 sec_relocs
8072 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8073 info->keep_memory);
8074 if (sec_relocs == NULL)
8075 return FALSE;
8076
8077 rend = sec_relocs + o->reloc_count;
8078 for (r = sec_relocs; r < rend; r++)
8079 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8080 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8081 break;
8082
8083 if (elf_section_data (o)->relocs != sec_relocs)
8084 free (sec_relocs);
8085
8086 if (r < rend)
8087 break;
8088 }
8089
8090 if (o == NULL)
8091 {
8092 /* There is no non-call reloc for this stub, so we do
8093 not need it. Since this function is called before
8094 the linker maps input sections to output sections, we
8095 can easily discard it by setting the SEC_EXCLUDE
8096 flag. */
8097 sec->flags |= SEC_EXCLUDE;
8098 return TRUE;
8099 }
8100
8101 /* Record this stub in an array of local symbol call_stubs for
8102 this BFD. */
8103 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8104 {
8105 unsigned long symcount;
8106 asection **n;
8107 bfd_size_type amt;
8108
8109 if (elf_bad_symtab (abfd))
8110 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8111 else
8112 symcount = symtab_hdr->sh_info;
8113 amt = symcount * sizeof (asection *);
8114 n = bfd_zalloc (abfd, amt);
8115 if (n == NULL)
8116 return FALSE;
8117 mips_elf_tdata (abfd)->local_call_stubs = n;
8118 }
8119
8120 sec->flags |= SEC_KEEP;
8121 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8122
8123 /* We don't need to set mips16_stubs_seen in this case.
8124 That flag is used to see whether we need to look through
8125 the global symbol table for stubs. We don't need to set
8126 it here, because we just have a local stub. */
8127 }
8128 else
8129 {
8130 h = ((struct mips_elf_link_hash_entry *)
8131 sym_hashes[r_symndx - extsymoff]);
8132
8133 /* H is the symbol this stub is for. */
8134
8135 if (CALL_FP_STUB_P (name))
8136 loc = &h->call_fp_stub;
8137 else
8138 loc = &h->call_stub;
8139
8140 /* If we already have an appropriate stub for this function, we
8141 don't need another one, so we can discard this one. Since
8142 this function is called before the linker maps input sections
8143 to output sections, we can easily discard it by setting the
8144 SEC_EXCLUDE flag. */
8145 if (*loc != NULL)
8146 {
8147 sec->flags |= SEC_EXCLUDE;
8148 return TRUE;
8149 }
8150
8151 sec->flags |= SEC_KEEP;
8152 *loc = sec;
8153 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8154 }
8155 }
8156
8157 sreloc = NULL;
8158 contents = NULL;
8159 for (rel = relocs; rel < rel_end; ++rel)
8160 {
8161 unsigned long r_symndx;
8162 unsigned int r_type;
8163 struct elf_link_hash_entry *h;
8164 bfd_boolean can_make_dynamic_p;
8165 bfd_boolean call_reloc_p;
8166 bfd_boolean constrain_symbol_p;
8167
8168 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8169 r_type = ELF_R_TYPE (abfd, rel->r_info);
8170
8171 if (r_symndx < extsymoff)
8172 h = NULL;
8173 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8174 {
8175 (*_bfd_error_handler)
8176 (_("%B: Malformed reloc detected for section %s"),
8177 abfd, name);
8178 bfd_set_error (bfd_error_bad_value);
8179 return FALSE;
8180 }
8181 else
8182 {
8183 h = sym_hashes[r_symndx - extsymoff];
8184 if (h != NULL)
8185 {
8186 while (h->root.type == bfd_link_hash_indirect
8187 || h->root.type == bfd_link_hash_warning)
8188 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8189
8190 /* PR15323, ref flags aren't set for references in the
8191 same object. */
8192 h->root.non_ir_ref = 1;
8193 }
8194 }
8195
8196 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8197 relocation into a dynamic one. */
8198 can_make_dynamic_p = FALSE;
8199
8200 /* Set CALL_RELOC_P to true if the relocation is for a call,
8201 and if pointer equality therefore doesn't matter. */
8202 call_reloc_p = FALSE;
8203
8204 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8205 into account when deciding how to define the symbol.
8206 Relocations in nonallocatable sections such as .pdr and
8207 .debug* should have no effect. */
8208 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8209
8210 switch (r_type)
8211 {
8212 case R_MIPS_CALL16:
8213 case R_MIPS_CALL_HI16:
8214 case R_MIPS_CALL_LO16:
8215 case R_MIPS16_CALL16:
8216 case R_MICROMIPS_CALL16:
8217 case R_MICROMIPS_CALL_HI16:
8218 case R_MICROMIPS_CALL_LO16:
8219 call_reloc_p = TRUE;
8220 /* Fall through. */
8221
8222 case R_MIPS_GOT16:
8223 case R_MIPS_GOT_HI16:
8224 case R_MIPS_GOT_LO16:
8225 case R_MIPS_GOT_PAGE:
8226 case R_MIPS_GOT_OFST:
8227 case R_MIPS_GOT_DISP:
8228 case R_MIPS_TLS_GOTTPREL:
8229 case R_MIPS_TLS_GD:
8230 case R_MIPS_TLS_LDM:
8231 case R_MIPS16_GOT16:
8232 case R_MIPS16_TLS_GOTTPREL:
8233 case R_MIPS16_TLS_GD:
8234 case R_MIPS16_TLS_LDM:
8235 case R_MICROMIPS_GOT16:
8236 case R_MICROMIPS_GOT_HI16:
8237 case R_MICROMIPS_GOT_LO16:
8238 case R_MICROMIPS_GOT_PAGE:
8239 case R_MICROMIPS_GOT_OFST:
8240 case R_MICROMIPS_GOT_DISP:
8241 case R_MICROMIPS_TLS_GOTTPREL:
8242 case R_MICROMIPS_TLS_GD:
8243 case R_MICROMIPS_TLS_LDM:
8244 if (dynobj == NULL)
8245 elf_hash_table (info)->dynobj = dynobj = abfd;
8246 if (!mips_elf_create_got_section (dynobj, info))
8247 return FALSE;
8248 if (htab->is_vxworks && !info->shared)
8249 {
8250 (*_bfd_error_handler)
8251 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8252 abfd, (unsigned long) rel->r_offset);
8253 bfd_set_error (bfd_error_bad_value);
8254 return FALSE;
8255 }
8256 can_make_dynamic_p = TRUE;
8257 break;
8258
8259 case R_MIPS_NONE:
8260 case R_MIPS_JALR:
8261 case R_MICROMIPS_JALR:
8262 /* These relocations have empty fields and are purely there to
8263 provide link information. The symbol value doesn't matter. */
8264 constrain_symbol_p = FALSE;
8265 break;
8266
8267 case R_MIPS_GPREL16:
8268 case R_MIPS_GPREL32:
8269 case R_MIPS16_GPREL:
8270 case R_MICROMIPS_GPREL16:
8271 /* GP-relative relocations always resolve to a definition in a
8272 regular input file, ignoring the one-definition rule. This is
8273 important for the GP setup sequence in NewABI code, which
8274 always resolves to a local function even if other relocations
8275 against the symbol wouldn't. */
8276 constrain_symbol_p = FALSE;
8277 break;
8278
8279 case R_MIPS_32:
8280 case R_MIPS_REL32:
8281 case R_MIPS_64:
8282 /* In VxWorks executables, references to external symbols
8283 must be handled using copy relocs or PLT entries; it is not
8284 possible to convert this relocation into a dynamic one.
8285
8286 For executables that use PLTs and copy-relocs, we have a
8287 choice between converting the relocation into a dynamic
8288 one or using copy relocations or PLT entries. It is
8289 usually better to do the former, unless the relocation is
8290 against a read-only section. */
8291 if ((info->shared
8292 || (h != NULL
8293 && !htab->is_vxworks
8294 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8295 && !(!info->nocopyreloc
8296 && !PIC_OBJECT_P (abfd)
8297 && MIPS_ELF_READONLY_SECTION (sec))))
8298 && (sec->flags & SEC_ALLOC) != 0)
8299 {
8300 can_make_dynamic_p = TRUE;
8301 if (dynobj == NULL)
8302 elf_hash_table (info)->dynobj = dynobj = abfd;
8303 }
8304 break;
8305
8306 case R_MIPS_26:
8307 case R_MIPS_PC16:
8308 case R_MIPS_PC21_S2:
8309 case R_MIPS_PC26_S2:
8310 case R_MIPS16_26:
8311 case R_MICROMIPS_26_S1:
8312 case R_MICROMIPS_PC7_S1:
8313 case R_MICROMIPS_PC10_S1:
8314 case R_MICROMIPS_PC16_S1:
8315 case R_MICROMIPS_PC23_S2:
8316 call_reloc_p = TRUE;
8317 break;
8318 }
8319
8320 if (h)
8321 {
8322 if (constrain_symbol_p)
8323 {
8324 if (!can_make_dynamic_p)
8325 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8326
8327 if (!call_reloc_p)
8328 h->pointer_equality_needed = 1;
8329
8330 /* We must not create a stub for a symbol that has
8331 relocations related to taking the function's address.
8332 This doesn't apply to VxWorks, where CALL relocs refer
8333 to a .got.plt entry instead of a normal .got entry. */
8334 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8335 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8336 }
8337
8338 /* Relocations against the special VxWorks __GOTT_BASE__ and
8339 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8340 room for them in .rela.dyn. */
8341 if (is_gott_symbol (info, h))
8342 {
8343 if (sreloc == NULL)
8344 {
8345 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8346 if (sreloc == NULL)
8347 return FALSE;
8348 }
8349 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8350 if (MIPS_ELF_READONLY_SECTION (sec))
8351 /* We tell the dynamic linker that there are
8352 relocations against the text segment. */
8353 info->flags |= DF_TEXTREL;
8354 }
8355 }
8356 else if (call_lo16_reloc_p (r_type)
8357 || got_lo16_reloc_p (r_type)
8358 || got_disp_reloc_p (r_type)
8359 || (got16_reloc_p (r_type) && htab->is_vxworks))
8360 {
8361 /* We may need a local GOT entry for this relocation. We
8362 don't count R_MIPS_GOT_PAGE because we can estimate the
8363 maximum number of pages needed by looking at the size of
8364 the segment. Similar comments apply to R_MIPS*_GOT16 and
8365 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8366 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8367 R_MIPS_CALL_HI16 because these are always followed by an
8368 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8369 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8370 rel->r_addend, info, r_type))
8371 return FALSE;
8372 }
8373
8374 if (h != NULL
8375 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8376 ELF_ST_IS_MIPS16 (h->other)))
8377 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8378
8379 switch (r_type)
8380 {
8381 case R_MIPS_CALL16:
8382 case R_MIPS16_CALL16:
8383 case R_MICROMIPS_CALL16:
8384 if (h == NULL)
8385 {
8386 (*_bfd_error_handler)
8387 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8388 abfd, (unsigned long) rel->r_offset);
8389 bfd_set_error (bfd_error_bad_value);
8390 return FALSE;
8391 }
8392 /* Fall through. */
8393
8394 case R_MIPS_CALL_HI16:
8395 case R_MIPS_CALL_LO16:
8396 case R_MICROMIPS_CALL_HI16:
8397 case R_MICROMIPS_CALL_LO16:
8398 if (h != NULL)
8399 {
8400 /* Make sure there is room in the regular GOT to hold the
8401 function's address. We may eliminate it in favour of
8402 a .got.plt entry later; see mips_elf_count_got_symbols. */
8403 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8404 r_type))
8405 return FALSE;
8406
8407 /* We need a stub, not a plt entry for the undefined
8408 function. But we record it as if it needs plt. See
8409 _bfd_elf_adjust_dynamic_symbol. */
8410 h->needs_plt = 1;
8411 h->type = STT_FUNC;
8412 }
8413 break;
8414
8415 case R_MIPS_GOT_PAGE:
8416 case R_MICROMIPS_GOT_PAGE:
8417 case R_MIPS16_GOT16:
8418 case R_MIPS_GOT16:
8419 case R_MIPS_GOT_HI16:
8420 case R_MIPS_GOT_LO16:
8421 case R_MICROMIPS_GOT16:
8422 case R_MICROMIPS_GOT_HI16:
8423 case R_MICROMIPS_GOT_LO16:
8424 if (!h || got_page_reloc_p (r_type))
8425 {
8426 /* This relocation needs (or may need, if h != NULL) a
8427 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8428 know for sure until we know whether the symbol is
8429 preemptible. */
8430 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8431 {
8432 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8433 return FALSE;
8434 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8435 addend = mips_elf_read_rel_addend (abfd, rel,
8436 howto, contents);
8437 if (got16_reloc_p (r_type))
8438 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8439 contents, &addend);
8440 else
8441 addend <<= howto->rightshift;
8442 }
8443 else
8444 addend = rel->r_addend;
8445 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8446 h, addend))
8447 return FALSE;
8448
8449 if (h)
8450 {
8451 struct mips_elf_link_hash_entry *hmips =
8452 (struct mips_elf_link_hash_entry *) h;
8453
8454 /* This symbol is definitely not overridable. */
8455 if (hmips->root.def_regular
8456 && ! (info->shared && ! info->symbolic
8457 && ! hmips->root.forced_local))
8458 h = NULL;
8459 }
8460 }
8461 /* If this is a global, overridable symbol, GOT_PAGE will
8462 decay to GOT_DISP, so we'll need a GOT entry for it. */
8463 /* Fall through. */
8464
8465 case R_MIPS_GOT_DISP:
8466 case R_MICROMIPS_GOT_DISP:
8467 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8468 FALSE, r_type))
8469 return FALSE;
8470 break;
8471
8472 case R_MIPS_TLS_GOTTPREL:
8473 case R_MIPS16_TLS_GOTTPREL:
8474 case R_MICROMIPS_TLS_GOTTPREL:
8475 if (info->shared)
8476 info->flags |= DF_STATIC_TLS;
8477 /* Fall through */
8478
8479 case R_MIPS_TLS_LDM:
8480 case R_MIPS16_TLS_LDM:
8481 case R_MICROMIPS_TLS_LDM:
8482 if (tls_ldm_reloc_p (r_type))
8483 {
8484 r_symndx = STN_UNDEF;
8485 h = NULL;
8486 }
8487 /* Fall through */
8488
8489 case R_MIPS_TLS_GD:
8490 case R_MIPS16_TLS_GD:
8491 case R_MICROMIPS_TLS_GD:
8492 /* This symbol requires a global offset table entry, or two
8493 for TLS GD relocations. */
8494 if (h != NULL)
8495 {
8496 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8497 FALSE, r_type))
8498 return FALSE;
8499 }
8500 else
8501 {
8502 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8503 rel->r_addend,
8504 info, r_type))
8505 return FALSE;
8506 }
8507 break;
8508
8509 case R_MIPS_32:
8510 case R_MIPS_REL32:
8511 case R_MIPS_64:
8512 /* In VxWorks executables, references to external symbols
8513 are handled using copy relocs or PLT stubs, so there's
8514 no need to add a .rela.dyn entry for this relocation. */
8515 if (can_make_dynamic_p)
8516 {
8517 if (sreloc == NULL)
8518 {
8519 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8520 if (sreloc == NULL)
8521 return FALSE;
8522 }
8523 if (info->shared && h == NULL)
8524 {
8525 /* When creating a shared object, we must copy these
8526 reloc types into the output file as R_MIPS_REL32
8527 relocs. Make room for this reloc in .rel(a).dyn. */
8528 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8529 if (MIPS_ELF_READONLY_SECTION (sec))
8530 /* We tell the dynamic linker that there are
8531 relocations against the text segment. */
8532 info->flags |= DF_TEXTREL;
8533 }
8534 else
8535 {
8536 struct mips_elf_link_hash_entry *hmips;
8537
8538 /* For a shared object, we must copy this relocation
8539 unless the symbol turns out to be undefined and
8540 weak with non-default visibility, in which case
8541 it will be left as zero.
8542
8543 We could elide R_MIPS_REL32 for locally binding symbols
8544 in shared libraries, but do not yet do so.
8545
8546 For an executable, we only need to copy this
8547 reloc if the symbol is defined in a dynamic
8548 object. */
8549 hmips = (struct mips_elf_link_hash_entry *) h;
8550 ++hmips->possibly_dynamic_relocs;
8551 if (MIPS_ELF_READONLY_SECTION (sec))
8552 /* We need it to tell the dynamic linker if there
8553 are relocations against the text segment. */
8554 hmips->readonly_reloc = TRUE;
8555 }
8556 }
8557
8558 if (SGI_COMPAT (abfd))
8559 mips_elf_hash_table (info)->compact_rel_size +=
8560 sizeof (Elf32_External_crinfo);
8561 break;
8562
8563 case R_MIPS_26:
8564 case R_MIPS_GPREL16:
8565 case R_MIPS_LITERAL:
8566 case R_MIPS_GPREL32:
8567 case R_MICROMIPS_26_S1:
8568 case R_MICROMIPS_GPREL16:
8569 case R_MICROMIPS_LITERAL:
8570 case R_MICROMIPS_GPREL7_S2:
8571 if (SGI_COMPAT (abfd))
8572 mips_elf_hash_table (info)->compact_rel_size +=
8573 sizeof (Elf32_External_crinfo);
8574 break;
8575
8576 /* This relocation describes the C++ object vtable hierarchy.
8577 Reconstruct it for later use during GC. */
8578 case R_MIPS_GNU_VTINHERIT:
8579 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8580 return FALSE;
8581 break;
8582
8583 /* This relocation describes which C++ vtable entries are actually
8584 used. Record for later use during GC. */
8585 case R_MIPS_GNU_VTENTRY:
8586 BFD_ASSERT (h != NULL);
8587 if (h != NULL
8588 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8589 return FALSE;
8590 break;
8591
8592 default:
8593 break;
8594 }
8595
8596 /* Record the need for a PLT entry. At this point we don't know
8597 yet if we are going to create a PLT in the first place, but
8598 we only record whether the relocation requires a standard MIPS
8599 or a compressed code entry anyway. If we don't make a PLT after
8600 all, then we'll just ignore these arrangements. Likewise if
8601 a PLT entry is not created because the symbol is satisfied
8602 locally. */
8603 if (h != NULL
8604 && jal_reloc_p (r_type)
8605 && !SYMBOL_CALLS_LOCAL (info, h))
8606 {
8607 if (h->plt.plist == NULL)
8608 h->plt.plist = mips_elf_make_plt_record (abfd);
8609 if (h->plt.plist == NULL)
8610 return FALSE;
8611
8612 if (r_type == R_MIPS_26)
8613 h->plt.plist->need_mips = TRUE;
8614 else
8615 h->plt.plist->need_comp = TRUE;
8616 }
8617
8618 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8619 if there is one. We only need to handle global symbols here;
8620 we decide whether to keep or delete stubs for local symbols
8621 when processing the stub's relocations. */
8622 if (h != NULL
8623 && !mips16_call_reloc_p (r_type)
8624 && !section_allows_mips16_refs_p (sec))
8625 {
8626 struct mips_elf_link_hash_entry *mh;
8627
8628 mh = (struct mips_elf_link_hash_entry *) h;
8629 mh->need_fn_stub = TRUE;
8630 }
8631
8632 /* Refuse some position-dependent relocations when creating a
8633 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8634 not PIC, but we can create dynamic relocations and the result
8635 will be fine. Also do not refuse R_MIPS_LO16, which can be
8636 combined with R_MIPS_GOT16. */
8637 if (info->shared)
8638 {
8639 switch (r_type)
8640 {
8641 case R_MIPS16_HI16:
8642 case R_MIPS_HI16:
8643 case R_MIPS_HIGHER:
8644 case R_MIPS_HIGHEST:
8645 case R_MICROMIPS_HI16:
8646 case R_MICROMIPS_HIGHER:
8647 case R_MICROMIPS_HIGHEST:
8648 /* Don't refuse a high part relocation if it's against
8649 no symbol (e.g. part of a compound relocation). */
8650 if (r_symndx == STN_UNDEF)
8651 break;
8652
8653 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8654 and has a special meaning. */
8655 if (!NEWABI_P (abfd) && h != NULL
8656 && strcmp (h->root.root.string, "_gp_disp") == 0)
8657 break;
8658
8659 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8660 if (is_gott_symbol (info, h))
8661 break;
8662
8663 /* FALLTHROUGH */
8664
8665 case R_MIPS16_26:
8666 case R_MIPS_26:
8667 case R_MICROMIPS_26_S1:
8668 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8669 (*_bfd_error_handler)
8670 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8671 abfd, howto->name,
8672 (h) ? h->root.root.string : "a local symbol");
8673 bfd_set_error (bfd_error_bad_value);
8674 return FALSE;
8675 default:
8676 break;
8677 }
8678 }
8679 }
8680
8681 return TRUE;
8682 }
8683 \f
8684 bfd_boolean
8685 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8686 struct bfd_link_info *link_info,
8687 bfd_boolean *again)
8688 {
8689 Elf_Internal_Rela *internal_relocs;
8690 Elf_Internal_Rela *irel, *irelend;
8691 Elf_Internal_Shdr *symtab_hdr;
8692 bfd_byte *contents = NULL;
8693 size_t extsymoff;
8694 bfd_boolean changed_contents = FALSE;
8695 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8696 Elf_Internal_Sym *isymbuf = NULL;
8697
8698 /* We are not currently changing any sizes, so only one pass. */
8699 *again = FALSE;
8700
8701 if (link_info->relocatable)
8702 return TRUE;
8703
8704 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8705 link_info->keep_memory);
8706 if (internal_relocs == NULL)
8707 return TRUE;
8708
8709 irelend = internal_relocs + sec->reloc_count
8710 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8711 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8712 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8713
8714 for (irel = internal_relocs; irel < irelend; irel++)
8715 {
8716 bfd_vma symval;
8717 bfd_signed_vma sym_offset;
8718 unsigned int r_type;
8719 unsigned long r_symndx;
8720 asection *sym_sec;
8721 unsigned long instruction;
8722
8723 /* Turn jalr into bgezal, and jr into beq, if they're marked
8724 with a JALR relocation, that indicate where they jump to.
8725 This saves some pipeline bubbles. */
8726 r_type = ELF_R_TYPE (abfd, irel->r_info);
8727 if (r_type != R_MIPS_JALR)
8728 continue;
8729
8730 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8731 /* Compute the address of the jump target. */
8732 if (r_symndx >= extsymoff)
8733 {
8734 struct mips_elf_link_hash_entry *h
8735 = ((struct mips_elf_link_hash_entry *)
8736 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8737
8738 while (h->root.root.type == bfd_link_hash_indirect
8739 || h->root.root.type == bfd_link_hash_warning)
8740 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8741
8742 /* If a symbol is undefined, or if it may be overridden,
8743 skip it. */
8744 if (! ((h->root.root.type == bfd_link_hash_defined
8745 || h->root.root.type == bfd_link_hash_defweak)
8746 && h->root.root.u.def.section)
8747 || (link_info->shared && ! link_info->symbolic
8748 && !h->root.forced_local))
8749 continue;
8750
8751 sym_sec = h->root.root.u.def.section;
8752 if (sym_sec->output_section)
8753 symval = (h->root.root.u.def.value
8754 + sym_sec->output_section->vma
8755 + sym_sec->output_offset);
8756 else
8757 symval = h->root.root.u.def.value;
8758 }
8759 else
8760 {
8761 Elf_Internal_Sym *isym;
8762
8763 /* Read this BFD's symbols if we haven't done so already. */
8764 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8765 {
8766 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8767 if (isymbuf == NULL)
8768 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8769 symtab_hdr->sh_info, 0,
8770 NULL, NULL, NULL);
8771 if (isymbuf == NULL)
8772 goto relax_return;
8773 }
8774
8775 isym = isymbuf + r_symndx;
8776 if (isym->st_shndx == SHN_UNDEF)
8777 continue;
8778 else if (isym->st_shndx == SHN_ABS)
8779 sym_sec = bfd_abs_section_ptr;
8780 else if (isym->st_shndx == SHN_COMMON)
8781 sym_sec = bfd_com_section_ptr;
8782 else
8783 sym_sec
8784 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8785 symval = isym->st_value
8786 + sym_sec->output_section->vma
8787 + sym_sec->output_offset;
8788 }
8789
8790 /* Compute branch offset, from delay slot of the jump to the
8791 branch target. */
8792 sym_offset = (symval + irel->r_addend)
8793 - (sec_start + irel->r_offset + 4);
8794
8795 /* Branch offset must be properly aligned. */
8796 if ((sym_offset & 3) != 0)
8797 continue;
8798
8799 sym_offset >>= 2;
8800
8801 /* Check that it's in range. */
8802 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8803 continue;
8804
8805 /* Get the section contents if we haven't done so already. */
8806 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8807 goto relax_return;
8808
8809 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8810
8811 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8812 if ((instruction & 0xfc1fffff) == 0x0000f809)
8813 instruction = 0x04110000;
8814 /* If it was jr <reg>, turn it into b <target>. */
8815 else if ((instruction & 0xfc1fffff) == 0x00000008)
8816 instruction = 0x10000000;
8817 else
8818 continue;
8819
8820 instruction |= (sym_offset & 0xffff);
8821 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8822 changed_contents = TRUE;
8823 }
8824
8825 if (contents != NULL
8826 && elf_section_data (sec)->this_hdr.contents != contents)
8827 {
8828 if (!changed_contents && !link_info->keep_memory)
8829 free (contents);
8830 else
8831 {
8832 /* Cache the section contents for elf_link_input_bfd. */
8833 elf_section_data (sec)->this_hdr.contents = contents;
8834 }
8835 }
8836 return TRUE;
8837
8838 relax_return:
8839 if (contents != NULL
8840 && elf_section_data (sec)->this_hdr.contents != contents)
8841 free (contents);
8842 return FALSE;
8843 }
8844 \f
8845 /* Allocate space for global sym dynamic relocs. */
8846
8847 static bfd_boolean
8848 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8849 {
8850 struct bfd_link_info *info = inf;
8851 bfd *dynobj;
8852 struct mips_elf_link_hash_entry *hmips;
8853 struct mips_elf_link_hash_table *htab;
8854
8855 htab = mips_elf_hash_table (info);
8856 BFD_ASSERT (htab != NULL);
8857
8858 dynobj = elf_hash_table (info)->dynobj;
8859 hmips = (struct mips_elf_link_hash_entry *) h;
8860
8861 /* VxWorks executables are handled elsewhere; we only need to
8862 allocate relocations in shared objects. */
8863 if (htab->is_vxworks && !info->shared)
8864 return TRUE;
8865
8866 /* Ignore indirect symbols. All relocations against such symbols
8867 will be redirected to the target symbol. */
8868 if (h->root.type == bfd_link_hash_indirect)
8869 return TRUE;
8870
8871 /* If this symbol is defined in a dynamic object, or we are creating
8872 a shared library, we will need to copy any R_MIPS_32 or
8873 R_MIPS_REL32 relocs against it into the output file. */
8874 if (! info->relocatable
8875 && hmips->possibly_dynamic_relocs != 0
8876 && (h->root.type == bfd_link_hash_defweak
8877 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8878 || info->shared))
8879 {
8880 bfd_boolean do_copy = TRUE;
8881
8882 if (h->root.type == bfd_link_hash_undefweak)
8883 {
8884 /* Do not copy relocations for undefined weak symbols with
8885 non-default visibility. */
8886 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8887 do_copy = FALSE;
8888
8889 /* Make sure undefined weak symbols are output as a dynamic
8890 symbol in PIEs. */
8891 else if (h->dynindx == -1 && !h->forced_local)
8892 {
8893 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8894 return FALSE;
8895 }
8896 }
8897
8898 if (do_copy)
8899 {
8900 /* Even though we don't directly need a GOT entry for this symbol,
8901 the SVR4 psABI requires it to have a dynamic symbol table
8902 index greater that DT_MIPS_GOTSYM if there are dynamic
8903 relocations against it.
8904
8905 VxWorks does not enforce the same mapping between the GOT
8906 and the symbol table, so the same requirement does not
8907 apply there. */
8908 if (!htab->is_vxworks)
8909 {
8910 if (hmips->global_got_area > GGA_RELOC_ONLY)
8911 hmips->global_got_area = GGA_RELOC_ONLY;
8912 hmips->got_only_for_calls = FALSE;
8913 }
8914
8915 mips_elf_allocate_dynamic_relocations
8916 (dynobj, info, hmips->possibly_dynamic_relocs);
8917 if (hmips->readonly_reloc)
8918 /* We tell the dynamic linker that there are relocations
8919 against the text segment. */
8920 info->flags |= DF_TEXTREL;
8921 }
8922 }
8923
8924 return TRUE;
8925 }
8926
8927 /* Adjust a symbol defined by a dynamic object and referenced by a
8928 regular object. The current definition is in some section of the
8929 dynamic object, but we're not including those sections. We have to
8930 change the definition to something the rest of the link can
8931 understand. */
8932
8933 bfd_boolean
8934 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8935 struct elf_link_hash_entry *h)
8936 {
8937 bfd *dynobj;
8938 struct mips_elf_link_hash_entry *hmips;
8939 struct mips_elf_link_hash_table *htab;
8940
8941 htab = mips_elf_hash_table (info);
8942 BFD_ASSERT (htab != NULL);
8943
8944 dynobj = elf_hash_table (info)->dynobj;
8945 hmips = (struct mips_elf_link_hash_entry *) h;
8946
8947 /* Make sure we know what is going on here. */
8948 BFD_ASSERT (dynobj != NULL
8949 && (h->needs_plt
8950 || h->u.weakdef != NULL
8951 || (h->def_dynamic
8952 && h->ref_regular
8953 && !h->def_regular)));
8954
8955 hmips = (struct mips_elf_link_hash_entry *) h;
8956
8957 /* If there are call relocations against an externally-defined symbol,
8958 see whether we can create a MIPS lazy-binding stub for it. We can
8959 only do this if all references to the function are through call
8960 relocations, and in that case, the traditional lazy-binding stubs
8961 are much more efficient than PLT entries.
8962
8963 Traditional stubs are only available on SVR4 psABI-based systems;
8964 VxWorks always uses PLTs instead. */
8965 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8966 {
8967 if (! elf_hash_table (info)->dynamic_sections_created)
8968 return TRUE;
8969
8970 /* If this symbol is not defined in a regular file, then set
8971 the symbol to the stub location. This is required to make
8972 function pointers compare as equal between the normal
8973 executable and the shared library. */
8974 if (!h->def_regular)
8975 {
8976 hmips->needs_lazy_stub = TRUE;
8977 htab->lazy_stub_count++;
8978 return TRUE;
8979 }
8980 }
8981 /* As above, VxWorks requires PLT entries for externally-defined
8982 functions that are only accessed through call relocations.
8983
8984 Both VxWorks and non-VxWorks targets also need PLT entries if there
8985 are static-only relocations against an externally-defined function.
8986 This can technically occur for shared libraries if there are
8987 branches to the symbol, although it is unlikely that this will be
8988 used in practice due to the short ranges involved. It can occur
8989 for any relative or absolute relocation in executables; in that
8990 case, the PLT entry becomes the function's canonical address. */
8991 else if (((h->needs_plt && !hmips->no_fn_stub)
8992 || (h->type == STT_FUNC && hmips->has_static_relocs))
8993 && htab->use_plts_and_copy_relocs
8994 && !SYMBOL_CALLS_LOCAL (info, h)
8995 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8996 && h->root.type == bfd_link_hash_undefweak))
8997 {
8998 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
8999 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9000
9001 /* If this is the first symbol to need a PLT entry, then make some
9002 basic setup. Also work out PLT entry sizes. We'll need them
9003 for PLT offset calculations. */
9004 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9005 {
9006 BFD_ASSERT (htab->sgotplt->size == 0);
9007 BFD_ASSERT (htab->plt_got_index == 0);
9008
9009 /* If we're using the PLT additions to the psABI, each PLT
9010 entry is 16 bytes and the PLT0 entry is 32 bytes.
9011 Encourage better cache usage by aligning. We do this
9012 lazily to avoid pessimizing traditional objects. */
9013 if (!htab->is_vxworks
9014 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9015 return FALSE;
9016
9017 /* Make sure that .got.plt is word-aligned. We do this lazily
9018 for the same reason as above. */
9019 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9020 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9021 return FALSE;
9022
9023 /* On non-VxWorks targets, the first two entries in .got.plt
9024 are reserved. */
9025 if (!htab->is_vxworks)
9026 htab->plt_got_index
9027 += (get_elf_backend_data (dynobj)->got_header_size
9028 / MIPS_ELF_GOT_SIZE (dynobj));
9029
9030 /* On VxWorks, also allocate room for the header's
9031 .rela.plt.unloaded entries. */
9032 if (htab->is_vxworks && !info->shared)
9033 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9034
9035 /* Now work out the sizes of individual PLT entries. */
9036 if (htab->is_vxworks && info->shared)
9037 htab->plt_mips_entry_size
9038 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9039 else if (htab->is_vxworks)
9040 htab->plt_mips_entry_size
9041 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9042 else if (newabi_p)
9043 htab->plt_mips_entry_size
9044 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9045 else if (!micromips_p)
9046 {
9047 htab->plt_mips_entry_size
9048 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9049 htab->plt_comp_entry_size
9050 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9051 }
9052 else if (htab->insn32)
9053 {
9054 htab->plt_mips_entry_size
9055 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9056 htab->plt_comp_entry_size
9057 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9058 }
9059 else
9060 {
9061 htab->plt_mips_entry_size
9062 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9063 htab->plt_comp_entry_size
9064 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9065 }
9066 }
9067
9068 if (h->plt.plist == NULL)
9069 h->plt.plist = mips_elf_make_plt_record (dynobj);
9070 if (h->plt.plist == NULL)
9071 return FALSE;
9072
9073 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9074 n32 or n64, so always use a standard entry there.
9075
9076 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9077 all MIPS16 calls will go via that stub, and there is no benefit
9078 to having a MIPS16 entry. And in the case of call_stub a
9079 standard entry actually has to be used as the stub ends with a J
9080 instruction. */
9081 if (newabi_p
9082 || htab->is_vxworks
9083 || hmips->call_stub
9084 || hmips->call_fp_stub)
9085 {
9086 h->plt.plist->need_mips = TRUE;
9087 h->plt.plist->need_comp = FALSE;
9088 }
9089
9090 /* Otherwise, if there are no direct calls to the function, we
9091 have a free choice of whether to use standard or compressed
9092 entries. Prefer microMIPS entries if the object is known to
9093 contain microMIPS code, so that it becomes possible to create
9094 pure microMIPS binaries. Prefer standard entries otherwise,
9095 because MIPS16 ones are no smaller and are usually slower. */
9096 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9097 {
9098 if (micromips_p)
9099 h->plt.plist->need_comp = TRUE;
9100 else
9101 h->plt.plist->need_mips = TRUE;
9102 }
9103
9104 if (h->plt.plist->need_mips)
9105 {
9106 h->plt.plist->mips_offset = htab->plt_mips_offset;
9107 htab->plt_mips_offset += htab->plt_mips_entry_size;
9108 }
9109 if (h->plt.plist->need_comp)
9110 {
9111 h->plt.plist->comp_offset = htab->plt_comp_offset;
9112 htab->plt_comp_offset += htab->plt_comp_entry_size;
9113 }
9114
9115 /* Reserve the corresponding .got.plt entry now too. */
9116 h->plt.plist->gotplt_index = htab->plt_got_index++;
9117
9118 /* If the output file has no definition of the symbol, set the
9119 symbol's value to the address of the stub. */
9120 if (!info->shared && !h->def_regular)
9121 hmips->use_plt_entry = TRUE;
9122
9123 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9124 htab->srelplt->size += (htab->is_vxworks
9125 ? MIPS_ELF_RELA_SIZE (dynobj)
9126 : MIPS_ELF_REL_SIZE (dynobj));
9127
9128 /* Make room for the .rela.plt.unloaded relocations. */
9129 if (htab->is_vxworks && !info->shared)
9130 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9131
9132 /* All relocations against this symbol that could have been made
9133 dynamic will now refer to the PLT entry instead. */
9134 hmips->possibly_dynamic_relocs = 0;
9135
9136 return TRUE;
9137 }
9138
9139 /* If this is a weak symbol, and there is a real definition, the
9140 processor independent code will have arranged for us to see the
9141 real definition first, and we can just use the same value. */
9142 if (h->u.weakdef != NULL)
9143 {
9144 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9145 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9146 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9147 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9148 return TRUE;
9149 }
9150
9151 /* Otherwise, there is nothing further to do for symbols defined
9152 in regular objects. */
9153 if (h->def_regular)
9154 return TRUE;
9155
9156 /* There's also nothing more to do if we'll convert all relocations
9157 against this symbol into dynamic relocations. */
9158 if (!hmips->has_static_relocs)
9159 return TRUE;
9160
9161 /* We're now relying on copy relocations. Complain if we have
9162 some that we can't convert. */
9163 if (!htab->use_plts_and_copy_relocs || info->shared)
9164 {
9165 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9166 "dynamic symbol %s"),
9167 h->root.root.string);
9168 bfd_set_error (bfd_error_bad_value);
9169 return FALSE;
9170 }
9171
9172 /* We must allocate the symbol in our .dynbss section, which will
9173 become part of the .bss section of the executable. There will be
9174 an entry for this symbol in the .dynsym section. The dynamic
9175 object will contain position independent code, so all references
9176 from the dynamic object to this symbol will go through the global
9177 offset table. The dynamic linker will use the .dynsym entry to
9178 determine the address it must put in the global offset table, so
9179 both the dynamic object and the regular object will refer to the
9180 same memory location for the variable. */
9181
9182 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9183 {
9184 if (htab->is_vxworks)
9185 htab->srelbss->size += sizeof (Elf32_External_Rela);
9186 else
9187 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9188 h->needs_copy = 1;
9189 }
9190
9191 /* All relocations against this symbol that could have been made
9192 dynamic will now refer to the local copy instead. */
9193 hmips->possibly_dynamic_relocs = 0;
9194
9195 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
9196 }
9197 \f
9198 /* This function is called after all the input files have been read,
9199 and the input sections have been assigned to output sections. We
9200 check for any mips16 stub sections that we can discard. */
9201
9202 bfd_boolean
9203 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9204 struct bfd_link_info *info)
9205 {
9206 asection *sect;
9207 struct mips_elf_link_hash_table *htab;
9208 struct mips_htab_traverse_info hti;
9209
9210 htab = mips_elf_hash_table (info);
9211 BFD_ASSERT (htab != NULL);
9212
9213 /* The .reginfo section has a fixed size. */
9214 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9215 if (sect != NULL)
9216 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9217
9218 /* The .MIPS.abiflags section has a fixed size. */
9219 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9220 if (sect != NULL)
9221 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9222
9223 hti.info = info;
9224 hti.output_bfd = output_bfd;
9225 hti.error = FALSE;
9226 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9227 mips_elf_check_symbols, &hti);
9228 if (hti.error)
9229 return FALSE;
9230
9231 return TRUE;
9232 }
9233
9234 /* If the link uses a GOT, lay it out and work out its size. */
9235
9236 static bfd_boolean
9237 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9238 {
9239 bfd *dynobj;
9240 asection *s;
9241 struct mips_got_info *g;
9242 bfd_size_type loadable_size = 0;
9243 bfd_size_type page_gotno;
9244 bfd *ibfd;
9245 struct mips_elf_traverse_got_arg tga;
9246 struct mips_elf_link_hash_table *htab;
9247
9248 htab = mips_elf_hash_table (info);
9249 BFD_ASSERT (htab != NULL);
9250
9251 s = htab->sgot;
9252 if (s == NULL)
9253 return TRUE;
9254
9255 dynobj = elf_hash_table (info)->dynobj;
9256 g = htab->got_info;
9257
9258 /* Allocate room for the reserved entries. VxWorks always reserves
9259 3 entries; other objects only reserve 2 entries. */
9260 BFD_ASSERT (g->assigned_low_gotno == 0);
9261 if (htab->is_vxworks)
9262 htab->reserved_gotno = 3;
9263 else
9264 htab->reserved_gotno = 2;
9265 g->local_gotno += htab->reserved_gotno;
9266 g->assigned_low_gotno = htab->reserved_gotno;
9267
9268 /* Decide which symbols need to go in the global part of the GOT and
9269 count the number of reloc-only GOT symbols. */
9270 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9271
9272 if (!mips_elf_resolve_final_got_entries (info, g))
9273 return FALSE;
9274
9275 /* Calculate the total loadable size of the output. That
9276 will give us the maximum number of GOT_PAGE entries
9277 required. */
9278 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9279 {
9280 asection *subsection;
9281
9282 for (subsection = ibfd->sections;
9283 subsection;
9284 subsection = subsection->next)
9285 {
9286 if ((subsection->flags & SEC_ALLOC) == 0)
9287 continue;
9288 loadable_size += ((subsection->size + 0xf)
9289 &~ (bfd_size_type) 0xf);
9290 }
9291 }
9292
9293 if (htab->is_vxworks)
9294 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9295 relocations against local symbols evaluate to "G", and the EABI does
9296 not include R_MIPS_GOT_PAGE. */
9297 page_gotno = 0;
9298 else
9299 /* Assume there are two loadable segments consisting of contiguous
9300 sections. Is 5 enough? */
9301 page_gotno = (loadable_size >> 16) + 5;
9302
9303 /* Choose the smaller of the two page estimates; both are intended to be
9304 conservative. */
9305 if (page_gotno > g->page_gotno)
9306 page_gotno = g->page_gotno;
9307
9308 g->local_gotno += page_gotno;
9309 g->assigned_high_gotno = g->local_gotno - 1;
9310
9311 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9312 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9313 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9314
9315 /* VxWorks does not support multiple GOTs. It initializes $gp to
9316 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9317 dynamic loader. */
9318 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9319 {
9320 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9321 return FALSE;
9322 }
9323 else
9324 {
9325 /* Record that all bfds use G. This also has the effect of freeing
9326 the per-bfd GOTs, which we no longer need. */
9327 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9328 if (mips_elf_bfd_got (ibfd, FALSE))
9329 mips_elf_replace_bfd_got (ibfd, g);
9330 mips_elf_replace_bfd_got (output_bfd, g);
9331
9332 /* Set up TLS entries. */
9333 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9334 tga.info = info;
9335 tga.g = g;
9336 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9337 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9338 if (!tga.g)
9339 return FALSE;
9340 BFD_ASSERT (g->tls_assigned_gotno
9341 == g->global_gotno + g->local_gotno + g->tls_gotno);
9342
9343 /* Each VxWorks GOT entry needs an explicit relocation. */
9344 if (htab->is_vxworks && info->shared)
9345 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9346
9347 /* Allocate room for the TLS relocations. */
9348 if (g->relocs)
9349 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9350 }
9351
9352 return TRUE;
9353 }
9354
9355 /* Estimate the size of the .MIPS.stubs section. */
9356
9357 static void
9358 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9359 {
9360 struct mips_elf_link_hash_table *htab;
9361 bfd_size_type dynsymcount;
9362
9363 htab = mips_elf_hash_table (info);
9364 BFD_ASSERT (htab != NULL);
9365
9366 if (htab->lazy_stub_count == 0)
9367 return;
9368
9369 /* IRIX rld assumes that a function stub isn't at the end of the .text
9370 section, so add a dummy entry to the end. */
9371 htab->lazy_stub_count++;
9372
9373 /* Get a worst-case estimate of the number of dynamic symbols needed.
9374 At this point, dynsymcount does not account for section symbols
9375 and count_section_dynsyms may overestimate the number that will
9376 be needed. */
9377 dynsymcount = (elf_hash_table (info)->dynsymcount
9378 + count_section_dynsyms (output_bfd, info));
9379
9380 /* Determine the size of one stub entry. There's no disadvantage
9381 from using microMIPS code here, so for the sake of pure-microMIPS
9382 binaries we prefer it whenever there's any microMIPS code in
9383 output produced at all. This has a benefit of stubs being
9384 shorter by 4 bytes each too, unless in the insn32 mode. */
9385 if (!MICROMIPS_P (output_bfd))
9386 htab->function_stub_size = (dynsymcount > 0x10000
9387 ? MIPS_FUNCTION_STUB_BIG_SIZE
9388 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9389 else if (htab->insn32)
9390 htab->function_stub_size = (dynsymcount > 0x10000
9391 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9392 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9393 else
9394 htab->function_stub_size = (dynsymcount > 0x10000
9395 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9396 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9397
9398 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9399 }
9400
9401 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9402 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9403 stub, allocate an entry in the stubs section. */
9404
9405 static bfd_boolean
9406 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9407 {
9408 struct mips_htab_traverse_info *hti = data;
9409 struct mips_elf_link_hash_table *htab;
9410 struct bfd_link_info *info;
9411 bfd *output_bfd;
9412
9413 info = hti->info;
9414 output_bfd = hti->output_bfd;
9415 htab = mips_elf_hash_table (info);
9416 BFD_ASSERT (htab != NULL);
9417
9418 if (h->needs_lazy_stub)
9419 {
9420 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9421 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9422 bfd_vma isa_bit = micromips_p;
9423
9424 BFD_ASSERT (htab->root.dynobj != NULL);
9425 if (h->root.plt.plist == NULL)
9426 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9427 if (h->root.plt.plist == NULL)
9428 {
9429 hti->error = TRUE;
9430 return FALSE;
9431 }
9432 h->root.root.u.def.section = htab->sstubs;
9433 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9434 h->root.plt.plist->stub_offset = htab->sstubs->size;
9435 h->root.other = other;
9436 htab->sstubs->size += htab->function_stub_size;
9437 }
9438 return TRUE;
9439 }
9440
9441 /* Allocate offsets in the stubs section to each symbol that needs one.
9442 Set the final size of the .MIPS.stub section. */
9443
9444 static bfd_boolean
9445 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9446 {
9447 bfd *output_bfd = info->output_bfd;
9448 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9449 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9450 bfd_vma isa_bit = micromips_p;
9451 struct mips_elf_link_hash_table *htab;
9452 struct mips_htab_traverse_info hti;
9453 struct elf_link_hash_entry *h;
9454 bfd *dynobj;
9455
9456 htab = mips_elf_hash_table (info);
9457 BFD_ASSERT (htab != NULL);
9458
9459 if (htab->lazy_stub_count == 0)
9460 return TRUE;
9461
9462 htab->sstubs->size = 0;
9463 hti.info = info;
9464 hti.output_bfd = output_bfd;
9465 hti.error = FALSE;
9466 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9467 if (hti.error)
9468 return FALSE;
9469 htab->sstubs->size += htab->function_stub_size;
9470 BFD_ASSERT (htab->sstubs->size
9471 == htab->lazy_stub_count * htab->function_stub_size);
9472
9473 dynobj = elf_hash_table (info)->dynobj;
9474 BFD_ASSERT (dynobj != NULL);
9475 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9476 if (h == NULL)
9477 return FALSE;
9478 h->root.u.def.value = isa_bit;
9479 h->other = other;
9480 h->type = STT_FUNC;
9481
9482 return TRUE;
9483 }
9484
9485 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9486 bfd_link_info. If H uses the address of a PLT entry as the value
9487 of the symbol, then set the entry in the symbol table now. Prefer
9488 a standard MIPS PLT entry. */
9489
9490 static bfd_boolean
9491 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9492 {
9493 struct bfd_link_info *info = data;
9494 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9495 struct mips_elf_link_hash_table *htab;
9496 unsigned int other;
9497 bfd_vma isa_bit;
9498 bfd_vma val;
9499
9500 htab = mips_elf_hash_table (info);
9501 BFD_ASSERT (htab != NULL);
9502
9503 if (h->use_plt_entry)
9504 {
9505 BFD_ASSERT (h->root.plt.plist != NULL);
9506 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9507 || h->root.plt.plist->comp_offset != MINUS_ONE);
9508
9509 val = htab->plt_header_size;
9510 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9511 {
9512 isa_bit = 0;
9513 val += h->root.plt.plist->mips_offset;
9514 other = 0;
9515 }
9516 else
9517 {
9518 isa_bit = 1;
9519 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9520 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9521 }
9522 val += isa_bit;
9523 /* For VxWorks, point at the PLT load stub rather than the lazy
9524 resolution stub; this stub will become the canonical function
9525 address. */
9526 if (htab->is_vxworks)
9527 val += 8;
9528
9529 h->root.root.u.def.section = htab->splt;
9530 h->root.root.u.def.value = val;
9531 h->root.other = other;
9532 }
9533
9534 return TRUE;
9535 }
9536
9537 /* Set the sizes of the dynamic sections. */
9538
9539 bfd_boolean
9540 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9541 struct bfd_link_info *info)
9542 {
9543 bfd *dynobj;
9544 asection *s, *sreldyn;
9545 bfd_boolean reltext;
9546 struct mips_elf_link_hash_table *htab;
9547
9548 htab = mips_elf_hash_table (info);
9549 BFD_ASSERT (htab != NULL);
9550 dynobj = elf_hash_table (info)->dynobj;
9551 BFD_ASSERT (dynobj != NULL);
9552
9553 if (elf_hash_table (info)->dynamic_sections_created)
9554 {
9555 /* Set the contents of the .interp section to the interpreter. */
9556 if (info->executable)
9557 {
9558 s = bfd_get_linker_section (dynobj, ".interp");
9559 BFD_ASSERT (s != NULL);
9560 s->size
9561 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9562 s->contents
9563 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9564 }
9565
9566 /* Figure out the size of the PLT header if we know that we
9567 are using it. For the sake of cache alignment always use
9568 a standard header whenever any standard entries are present
9569 even if microMIPS entries are present as well. This also
9570 lets the microMIPS header rely on the value of $v0 only set
9571 by microMIPS entries, for a small size reduction.
9572
9573 Set symbol table entry values for symbols that use the
9574 address of their PLT entry now that we can calculate it.
9575
9576 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9577 haven't already in _bfd_elf_create_dynamic_sections. */
9578 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9579 {
9580 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9581 && !htab->plt_mips_offset);
9582 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9583 bfd_vma isa_bit = micromips_p;
9584 struct elf_link_hash_entry *h;
9585 bfd_vma size;
9586
9587 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9588 BFD_ASSERT (htab->sgotplt->size == 0);
9589 BFD_ASSERT (htab->splt->size == 0);
9590
9591 if (htab->is_vxworks && info->shared)
9592 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9593 else if (htab->is_vxworks)
9594 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9595 else if (ABI_64_P (output_bfd))
9596 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9597 else if (ABI_N32_P (output_bfd))
9598 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9599 else if (!micromips_p)
9600 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9601 else if (htab->insn32)
9602 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9603 else
9604 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9605
9606 htab->plt_header_is_comp = micromips_p;
9607 htab->plt_header_size = size;
9608 htab->splt->size = (size
9609 + htab->plt_mips_offset
9610 + htab->plt_comp_offset);
9611 htab->sgotplt->size = (htab->plt_got_index
9612 * MIPS_ELF_GOT_SIZE (dynobj));
9613
9614 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9615
9616 if (htab->root.hplt == NULL)
9617 {
9618 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9619 "_PROCEDURE_LINKAGE_TABLE_");
9620 htab->root.hplt = h;
9621 if (h == NULL)
9622 return FALSE;
9623 }
9624
9625 h = htab->root.hplt;
9626 h->root.u.def.value = isa_bit;
9627 h->other = other;
9628 h->type = STT_FUNC;
9629 }
9630 }
9631
9632 /* Allocate space for global sym dynamic relocs. */
9633 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9634
9635 mips_elf_estimate_stub_size (output_bfd, info);
9636
9637 if (!mips_elf_lay_out_got (output_bfd, info))
9638 return FALSE;
9639
9640 mips_elf_lay_out_lazy_stubs (info);
9641
9642 /* The check_relocs and adjust_dynamic_symbol entry points have
9643 determined the sizes of the various dynamic sections. Allocate
9644 memory for them. */
9645 reltext = FALSE;
9646 for (s = dynobj->sections; s != NULL; s = s->next)
9647 {
9648 const char *name;
9649
9650 /* It's OK to base decisions on the section name, because none
9651 of the dynobj section names depend upon the input files. */
9652 name = bfd_get_section_name (dynobj, s);
9653
9654 if ((s->flags & SEC_LINKER_CREATED) == 0)
9655 continue;
9656
9657 if (CONST_STRNEQ (name, ".rel"))
9658 {
9659 if (s->size != 0)
9660 {
9661 const char *outname;
9662 asection *target;
9663
9664 /* If this relocation section applies to a read only
9665 section, then we probably need a DT_TEXTREL entry.
9666 If the relocation section is .rel(a).dyn, we always
9667 assert a DT_TEXTREL entry rather than testing whether
9668 there exists a relocation to a read only section or
9669 not. */
9670 outname = bfd_get_section_name (output_bfd,
9671 s->output_section);
9672 target = bfd_get_section_by_name (output_bfd, outname + 4);
9673 if ((target != NULL
9674 && (target->flags & SEC_READONLY) != 0
9675 && (target->flags & SEC_ALLOC) != 0)
9676 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9677 reltext = TRUE;
9678
9679 /* We use the reloc_count field as a counter if we need
9680 to copy relocs into the output file. */
9681 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9682 s->reloc_count = 0;
9683
9684 /* If combreloc is enabled, elf_link_sort_relocs() will
9685 sort relocations, but in a different way than we do,
9686 and before we're done creating relocations. Also, it
9687 will move them around between input sections'
9688 relocation's contents, so our sorting would be
9689 broken, so don't let it run. */
9690 info->combreloc = 0;
9691 }
9692 }
9693 else if (! info->shared
9694 && ! mips_elf_hash_table (info)->use_rld_obj_head
9695 && CONST_STRNEQ (name, ".rld_map"))
9696 {
9697 /* We add a room for __rld_map. It will be filled in by the
9698 rtld to contain a pointer to the _r_debug structure. */
9699 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9700 }
9701 else if (SGI_COMPAT (output_bfd)
9702 && CONST_STRNEQ (name, ".compact_rel"))
9703 s->size += mips_elf_hash_table (info)->compact_rel_size;
9704 else if (s == htab->splt)
9705 {
9706 /* If the last PLT entry has a branch delay slot, allocate
9707 room for an extra nop to fill the delay slot. This is
9708 for CPUs without load interlocking. */
9709 if (! LOAD_INTERLOCKS_P (output_bfd)
9710 && ! htab->is_vxworks && s->size > 0)
9711 s->size += 4;
9712 }
9713 else if (! CONST_STRNEQ (name, ".init")
9714 && s != htab->sgot
9715 && s != htab->sgotplt
9716 && s != htab->sstubs
9717 && s != htab->sdynbss)
9718 {
9719 /* It's not one of our sections, so don't allocate space. */
9720 continue;
9721 }
9722
9723 if (s->size == 0)
9724 {
9725 s->flags |= SEC_EXCLUDE;
9726 continue;
9727 }
9728
9729 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9730 continue;
9731
9732 /* Allocate memory for the section contents. */
9733 s->contents = bfd_zalloc (dynobj, s->size);
9734 if (s->contents == NULL)
9735 {
9736 bfd_set_error (bfd_error_no_memory);
9737 return FALSE;
9738 }
9739 }
9740
9741 if (elf_hash_table (info)->dynamic_sections_created)
9742 {
9743 /* Add some entries to the .dynamic section. We fill in the
9744 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9745 must add the entries now so that we get the correct size for
9746 the .dynamic section. */
9747
9748 /* SGI object has the equivalence of DT_DEBUG in the
9749 DT_MIPS_RLD_MAP entry. This must come first because glibc
9750 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9751 may only look at the first one they see. */
9752 if (!info->shared
9753 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9754 return FALSE;
9755
9756 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9757 used by the debugger. */
9758 if (info->executable
9759 && !SGI_COMPAT (output_bfd)
9760 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9761 return FALSE;
9762
9763 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9764 info->flags |= DF_TEXTREL;
9765
9766 if ((info->flags & DF_TEXTREL) != 0)
9767 {
9768 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9769 return FALSE;
9770
9771 /* Clear the DF_TEXTREL flag. It will be set again if we
9772 write out an actual text relocation; we may not, because
9773 at this point we do not know whether e.g. any .eh_frame
9774 absolute relocations have been converted to PC-relative. */
9775 info->flags &= ~DF_TEXTREL;
9776 }
9777
9778 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9779 return FALSE;
9780
9781 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9782 if (htab->is_vxworks)
9783 {
9784 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9785 use any of the DT_MIPS_* tags. */
9786 if (sreldyn && sreldyn->size > 0)
9787 {
9788 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9789 return FALSE;
9790
9791 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9792 return FALSE;
9793
9794 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9795 return FALSE;
9796 }
9797 }
9798 else
9799 {
9800 if (sreldyn && sreldyn->size > 0)
9801 {
9802 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9803 return FALSE;
9804
9805 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9806 return FALSE;
9807
9808 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9809 return FALSE;
9810 }
9811
9812 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9813 return FALSE;
9814
9815 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9816 return FALSE;
9817
9818 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9819 return FALSE;
9820
9821 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9822 return FALSE;
9823
9824 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9825 return FALSE;
9826
9827 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9828 return FALSE;
9829
9830 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9831 return FALSE;
9832
9833 if (IRIX_COMPAT (dynobj) == ict_irix5
9834 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9835 return FALSE;
9836
9837 if (IRIX_COMPAT (dynobj) == ict_irix6
9838 && (bfd_get_section_by_name
9839 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9840 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9841 return FALSE;
9842 }
9843 if (htab->splt->size > 0)
9844 {
9845 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9846 return FALSE;
9847
9848 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9849 return FALSE;
9850
9851 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9852 return FALSE;
9853
9854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9855 return FALSE;
9856 }
9857 if (htab->is_vxworks
9858 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9859 return FALSE;
9860 }
9861
9862 return TRUE;
9863 }
9864 \f
9865 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9866 Adjust its R_ADDEND field so that it is correct for the output file.
9867 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9868 and sections respectively; both use symbol indexes. */
9869
9870 static void
9871 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9872 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9873 asection **local_sections, Elf_Internal_Rela *rel)
9874 {
9875 unsigned int r_type, r_symndx;
9876 Elf_Internal_Sym *sym;
9877 asection *sec;
9878
9879 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9880 {
9881 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9882 if (gprel16_reloc_p (r_type)
9883 || r_type == R_MIPS_GPREL32
9884 || literal_reloc_p (r_type))
9885 {
9886 rel->r_addend += _bfd_get_gp_value (input_bfd);
9887 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9888 }
9889
9890 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9891 sym = local_syms + r_symndx;
9892
9893 /* Adjust REL's addend to account for section merging. */
9894 if (!info->relocatable)
9895 {
9896 sec = local_sections[r_symndx];
9897 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9898 }
9899
9900 /* This would normally be done by the rela_normal code in elflink.c. */
9901 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9902 rel->r_addend += local_sections[r_symndx]->output_offset;
9903 }
9904 }
9905
9906 /* Handle relocations against symbols from removed linkonce sections,
9907 or sections discarded by a linker script. We use this wrapper around
9908 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9909 on 64-bit ELF targets. In this case for any relocation handled, which
9910 always be the first in a triplet, the remaining two have to be processed
9911 together with the first, even if they are R_MIPS_NONE. It is the symbol
9912 index referred by the first reloc that applies to all the three and the
9913 remaining two never refer to an object symbol. And it is the final
9914 relocation (the last non-null one) that determines the output field of
9915 the whole relocation so retrieve the corresponding howto structure for
9916 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9917
9918 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9919 and therefore requires to be pasted in a loop. It also defines a block
9920 and does not protect any of its arguments, hence the extra brackets. */
9921
9922 static void
9923 mips_reloc_against_discarded_section (bfd *output_bfd,
9924 struct bfd_link_info *info,
9925 bfd *input_bfd, asection *input_section,
9926 Elf_Internal_Rela **rel,
9927 const Elf_Internal_Rela **relend,
9928 bfd_boolean rel_reloc,
9929 reloc_howto_type *howto,
9930 bfd_byte *contents)
9931 {
9932 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9933 int count = bed->s->int_rels_per_ext_rel;
9934 unsigned int r_type;
9935 int i;
9936
9937 for (i = count - 1; i > 0; i--)
9938 {
9939 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9940 if (r_type != R_MIPS_NONE)
9941 {
9942 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9943 break;
9944 }
9945 }
9946 do
9947 {
9948 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9949 (*rel), count, (*relend),
9950 howto, i, contents);
9951 }
9952 while (0);
9953 }
9954
9955 /* Relocate a MIPS ELF section. */
9956
9957 bfd_boolean
9958 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9959 bfd *input_bfd, asection *input_section,
9960 bfd_byte *contents, Elf_Internal_Rela *relocs,
9961 Elf_Internal_Sym *local_syms,
9962 asection **local_sections)
9963 {
9964 Elf_Internal_Rela *rel;
9965 const Elf_Internal_Rela *relend;
9966 bfd_vma addend = 0;
9967 bfd_boolean use_saved_addend_p = FALSE;
9968 const struct elf_backend_data *bed;
9969
9970 bed = get_elf_backend_data (output_bfd);
9971 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9972 for (rel = relocs; rel < relend; ++rel)
9973 {
9974 const char *name;
9975 bfd_vma value = 0;
9976 reloc_howto_type *howto;
9977 bfd_boolean cross_mode_jump_p = FALSE;
9978 /* TRUE if the relocation is a RELA relocation, rather than a
9979 REL relocation. */
9980 bfd_boolean rela_relocation_p = TRUE;
9981 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9982 const char *msg;
9983 unsigned long r_symndx;
9984 asection *sec;
9985 Elf_Internal_Shdr *symtab_hdr;
9986 struct elf_link_hash_entry *h;
9987 bfd_boolean rel_reloc;
9988
9989 rel_reloc = (NEWABI_P (input_bfd)
9990 && mips_elf_rel_relocation_p (input_bfd, input_section,
9991 relocs, rel));
9992 /* Find the relocation howto for this relocation. */
9993 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9994
9995 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9996 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9997 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9998 {
9999 sec = local_sections[r_symndx];
10000 h = NULL;
10001 }
10002 else
10003 {
10004 unsigned long extsymoff;
10005
10006 extsymoff = 0;
10007 if (!elf_bad_symtab (input_bfd))
10008 extsymoff = symtab_hdr->sh_info;
10009 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10010 while (h->root.type == bfd_link_hash_indirect
10011 || h->root.type == bfd_link_hash_warning)
10012 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10013
10014 sec = NULL;
10015 if (h->root.type == bfd_link_hash_defined
10016 || h->root.type == bfd_link_hash_defweak)
10017 sec = h->root.u.def.section;
10018 }
10019
10020 if (sec != NULL && discarded_section (sec))
10021 {
10022 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10023 input_section, &rel, &relend,
10024 rel_reloc, howto, contents);
10025 continue;
10026 }
10027
10028 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10029 {
10030 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10031 64-bit code, but make sure all their addresses are in the
10032 lowermost or uppermost 32-bit section of the 64-bit address
10033 space. Thus, when they use an R_MIPS_64 they mean what is
10034 usually meant by R_MIPS_32, with the exception that the
10035 stored value is sign-extended to 64 bits. */
10036 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10037
10038 /* On big-endian systems, we need to lie about the position
10039 of the reloc. */
10040 if (bfd_big_endian (input_bfd))
10041 rel->r_offset += 4;
10042 }
10043
10044 if (!use_saved_addend_p)
10045 {
10046 /* If these relocations were originally of the REL variety,
10047 we must pull the addend out of the field that will be
10048 relocated. Otherwise, we simply use the contents of the
10049 RELA relocation. */
10050 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10051 relocs, rel))
10052 {
10053 rela_relocation_p = FALSE;
10054 addend = mips_elf_read_rel_addend (input_bfd, rel,
10055 howto, contents);
10056 if (hi16_reloc_p (r_type)
10057 || (got16_reloc_p (r_type)
10058 && mips_elf_local_relocation_p (input_bfd, rel,
10059 local_sections)))
10060 {
10061 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10062 contents, &addend))
10063 {
10064 if (h)
10065 name = h->root.root.string;
10066 else
10067 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10068 local_syms + r_symndx,
10069 sec);
10070 (*_bfd_error_handler)
10071 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10072 input_bfd, input_section, name, howto->name,
10073 rel->r_offset);
10074 }
10075 }
10076 else
10077 addend <<= howto->rightshift;
10078 }
10079 else
10080 addend = rel->r_addend;
10081 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10082 local_syms, local_sections, rel);
10083 }
10084
10085 if (info->relocatable)
10086 {
10087 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10088 && bfd_big_endian (input_bfd))
10089 rel->r_offset -= 4;
10090
10091 if (!rela_relocation_p && rel->r_addend)
10092 {
10093 addend += rel->r_addend;
10094 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10095 addend = mips_elf_high (addend);
10096 else if (r_type == R_MIPS_HIGHER)
10097 addend = mips_elf_higher (addend);
10098 else if (r_type == R_MIPS_HIGHEST)
10099 addend = mips_elf_highest (addend);
10100 else
10101 addend >>= howto->rightshift;
10102
10103 /* We use the source mask, rather than the destination
10104 mask because the place to which we are writing will be
10105 source of the addend in the final link. */
10106 addend &= howto->src_mask;
10107
10108 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10109 /* See the comment above about using R_MIPS_64 in the 32-bit
10110 ABI. Here, we need to update the addend. It would be
10111 possible to get away with just using the R_MIPS_32 reloc
10112 but for endianness. */
10113 {
10114 bfd_vma sign_bits;
10115 bfd_vma low_bits;
10116 bfd_vma high_bits;
10117
10118 if (addend & ((bfd_vma) 1 << 31))
10119 #ifdef BFD64
10120 sign_bits = ((bfd_vma) 1 << 32) - 1;
10121 #else
10122 sign_bits = -1;
10123 #endif
10124 else
10125 sign_bits = 0;
10126
10127 /* If we don't know that we have a 64-bit type,
10128 do two separate stores. */
10129 if (bfd_big_endian (input_bfd))
10130 {
10131 /* Store the sign-bits (which are most significant)
10132 first. */
10133 low_bits = sign_bits;
10134 high_bits = addend;
10135 }
10136 else
10137 {
10138 low_bits = addend;
10139 high_bits = sign_bits;
10140 }
10141 bfd_put_32 (input_bfd, low_bits,
10142 contents + rel->r_offset);
10143 bfd_put_32 (input_bfd, high_bits,
10144 contents + rel->r_offset + 4);
10145 continue;
10146 }
10147
10148 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10149 input_bfd, input_section,
10150 contents, FALSE))
10151 return FALSE;
10152 }
10153
10154 /* Go on to the next relocation. */
10155 continue;
10156 }
10157
10158 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10159 relocations for the same offset. In that case we are
10160 supposed to treat the output of each relocation as the addend
10161 for the next. */
10162 if (rel + 1 < relend
10163 && rel->r_offset == rel[1].r_offset
10164 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10165 use_saved_addend_p = TRUE;
10166 else
10167 use_saved_addend_p = FALSE;
10168
10169 /* Figure out what value we are supposed to relocate. */
10170 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10171 input_section, info, rel,
10172 addend, howto, local_syms,
10173 local_sections, &value,
10174 &name, &cross_mode_jump_p,
10175 use_saved_addend_p))
10176 {
10177 case bfd_reloc_continue:
10178 /* There's nothing to do. */
10179 continue;
10180
10181 case bfd_reloc_undefined:
10182 /* mips_elf_calculate_relocation already called the
10183 undefined_symbol callback. There's no real point in
10184 trying to perform the relocation at this point, so we
10185 just skip ahead to the next relocation. */
10186 continue;
10187
10188 case bfd_reloc_notsupported:
10189 msg = _("internal error: unsupported relocation error");
10190 info->callbacks->warning
10191 (info, msg, name, input_bfd, input_section, rel->r_offset);
10192 return FALSE;
10193
10194 case bfd_reloc_overflow:
10195 if (use_saved_addend_p)
10196 /* Ignore overflow until we reach the last relocation for
10197 a given location. */
10198 ;
10199 else
10200 {
10201 struct mips_elf_link_hash_table *htab;
10202
10203 htab = mips_elf_hash_table (info);
10204 BFD_ASSERT (htab != NULL);
10205 BFD_ASSERT (name != NULL);
10206 if (!htab->small_data_overflow_reported
10207 && (gprel16_reloc_p (howto->type)
10208 || literal_reloc_p (howto->type)))
10209 {
10210 msg = _("small-data section exceeds 64KB;"
10211 " lower small-data size limit (see option -G)");
10212
10213 htab->small_data_overflow_reported = TRUE;
10214 (*info->callbacks->einfo) ("%P: %s\n", msg);
10215 }
10216 if (! ((*info->callbacks->reloc_overflow)
10217 (info, NULL, name, howto->name, (bfd_vma) 0,
10218 input_bfd, input_section, rel->r_offset)))
10219 return FALSE;
10220 }
10221 break;
10222
10223 case bfd_reloc_ok:
10224 break;
10225
10226 case bfd_reloc_outofrange:
10227 if (jal_reloc_p (howto->type))
10228 {
10229 msg = _("JALX to a non-word-aligned address");
10230 info->callbacks->warning
10231 (info, msg, name, input_bfd, input_section, rel->r_offset);
10232 return FALSE;
10233 }
10234 if (aligned_pcrel_reloc_p (howto->type))
10235 {
10236 msg = _("PC-relative load from unaligned address");
10237 info->callbacks->warning
10238 (info, msg, name, input_bfd, input_section, rel->r_offset);
10239 return FALSE;
10240 }
10241 /* Fall through. */
10242
10243 default:
10244 abort ();
10245 break;
10246 }
10247
10248 /* If we've got another relocation for the address, keep going
10249 until we reach the last one. */
10250 if (use_saved_addend_p)
10251 {
10252 addend = value;
10253 continue;
10254 }
10255
10256 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10257 /* See the comment above about using R_MIPS_64 in the 32-bit
10258 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10259 that calculated the right value. Now, however, we
10260 sign-extend the 32-bit result to 64-bits, and store it as a
10261 64-bit value. We are especially generous here in that we
10262 go to extreme lengths to support this usage on systems with
10263 only a 32-bit VMA. */
10264 {
10265 bfd_vma sign_bits;
10266 bfd_vma low_bits;
10267 bfd_vma high_bits;
10268
10269 if (value & ((bfd_vma) 1 << 31))
10270 #ifdef BFD64
10271 sign_bits = ((bfd_vma) 1 << 32) - 1;
10272 #else
10273 sign_bits = -1;
10274 #endif
10275 else
10276 sign_bits = 0;
10277
10278 /* If we don't know that we have a 64-bit type,
10279 do two separate stores. */
10280 if (bfd_big_endian (input_bfd))
10281 {
10282 /* Undo what we did above. */
10283 rel->r_offset -= 4;
10284 /* Store the sign-bits (which are most significant)
10285 first. */
10286 low_bits = sign_bits;
10287 high_bits = value;
10288 }
10289 else
10290 {
10291 low_bits = value;
10292 high_bits = sign_bits;
10293 }
10294 bfd_put_32 (input_bfd, low_bits,
10295 contents + rel->r_offset);
10296 bfd_put_32 (input_bfd, high_bits,
10297 contents + rel->r_offset + 4);
10298 continue;
10299 }
10300
10301 /* Actually perform the relocation. */
10302 if (! mips_elf_perform_relocation (info, howto, rel, value,
10303 input_bfd, input_section,
10304 contents, cross_mode_jump_p))
10305 return FALSE;
10306 }
10307
10308 return TRUE;
10309 }
10310 \f
10311 /* A function that iterates over each entry in la25_stubs and fills
10312 in the code for each one. DATA points to a mips_htab_traverse_info. */
10313
10314 static int
10315 mips_elf_create_la25_stub (void **slot, void *data)
10316 {
10317 struct mips_htab_traverse_info *hti;
10318 struct mips_elf_link_hash_table *htab;
10319 struct mips_elf_la25_stub *stub;
10320 asection *s;
10321 bfd_byte *loc;
10322 bfd_vma offset, target, target_high, target_low;
10323
10324 stub = (struct mips_elf_la25_stub *) *slot;
10325 hti = (struct mips_htab_traverse_info *) data;
10326 htab = mips_elf_hash_table (hti->info);
10327 BFD_ASSERT (htab != NULL);
10328
10329 /* Create the section contents, if we haven't already. */
10330 s = stub->stub_section;
10331 loc = s->contents;
10332 if (loc == NULL)
10333 {
10334 loc = bfd_malloc (s->size);
10335 if (loc == NULL)
10336 {
10337 hti->error = TRUE;
10338 return FALSE;
10339 }
10340 s->contents = loc;
10341 }
10342
10343 /* Work out where in the section this stub should go. */
10344 offset = stub->offset;
10345
10346 /* Work out the target address. */
10347 target = mips_elf_get_la25_target (stub, &s);
10348 target += s->output_section->vma + s->output_offset;
10349
10350 target_high = ((target + 0x8000) >> 16) & 0xffff;
10351 target_low = (target & 0xffff);
10352
10353 if (stub->stub_section != htab->strampoline)
10354 {
10355 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10356 of the section and write the two instructions at the end. */
10357 memset (loc, 0, offset);
10358 loc += offset;
10359 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10360 {
10361 bfd_put_micromips_32 (hti->output_bfd,
10362 LA25_LUI_MICROMIPS (target_high),
10363 loc);
10364 bfd_put_micromips_32 (hti->output_bfd,
10365 LA25_ADDIU_MICROMIPS (target_low),
10366 loc + 4);
10367 }
10368 else
10369 {
10370 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10371 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10372 }
10373 }
10374 else
10375 {
10376 /* This is trampoline. */
10377 loc += offset;
10378 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10379 {
10380 bfd_put_micromips_32 (hti->output_bfd,
10381 LA25_LUI_MICROMIPS (target_high), loc);
10382 bfd_put_micromips_32 (hti->output_bfd,
10383 LA25_J_MICROMIPS (target), loc + 4);
10384 bfd_put_micromips_32 (hti->output_bfd,
10385 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10386 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10387 }
10388 else
10389 {
10390 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10391 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10392 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10393 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10394 }
10395 }
10396 return TRUE;
10397 }
10398
10399 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10400 adjust it appropriately now. */
10401
10402 static void
10403 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10404 const char *name, Elf_Internal_Sym *sym)
10405 {
10406 /* The linker script takes care of providing names and values for
10407 these, but we must place them into the right sections. */
10408 static const char* const text_section_symbols[] = {
10409 "_ftext",
10410 "_etext",
10411 "__dso_displacement",
10412 "__elf_header",
10413 "__program_header_table",
10414 NULL
10415 };
10416
10417 static const char* const data_section_symbols[] = {
10418 "_fdata",
10419 "_edata",
10420 "_end",
10421 "_fbss",
10422 NULL
10423 };
10424
10425 const char* const *p;
10426 int i;
10427
10428 for (i = 0; i < 2; ++i)
10429 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10430 *p;
10431 ++p)
10432 if (strcmp (*p, name) == 0)
10433 {
10434 /* All of these symbols are given type STT_SECTION by the
10435 IRIX6 linker. */
10436 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10437 sym->st_other = STO_PROTECTED;
10438
10439 /* The IRIX linker puts these symbols in special sections. */
10440 if (i == 0)
10441 sym->st_shndx = SHN_MIPS_TEXT;
10442 else
10443 sym->st_shndx = SHN_MIPS_DATA;
10444
10445 break;
10446 }
10447 }
10448
10449 /* Finish up dynamic symbol handling. We set the contents of various
10450 dynamic sections here. */
10451
10452 bfd_boolean
10453 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10454 struct bfd_link_info *info,
10455 struct elf_link_hash_entry *h,
10456 Elf_Internal_Sym *sym)
10457 {
10458 bfd *dynobj;
10459 asection *sgot;
10460 struct mips_got_info *g, *gg;
10461 const char *name;
10462 int idx;
10463 struct mips_elf_link_hash_table *htab;
10464 struct mips_elf_link_hash_entry *hmips;
10465
10466 htab = mips_elf_hash_table (info);
10467 BFD_ASSERT (htab != NULL);
10468 dynobj = elf_hash_table (info)->dynobj;
10469 hmips = (struct mips_elf_link_hash_entry *) h;
10470
10471 BFD_ASSERT (!htab->is_vxworks);
10472
10473 if (h->plt.plist != NULL
10474 && (h->plt.plist->mips_offset != MINUS_ONE
10475 || h->plt.plist->comp_offset != MINUS_ONE))
10476 {
10477 /* We've decided to create a PLT entry for this symbol. */
10478 bfd_byte *loc;
10479 bfd_vma header_address, got_address;
10480 bfd_vma got_address_high, got_address_low, load;
10481 bfd_vma got_index;
10482 bfd_vma isa_bit;
10483
10484 got_index = h->plt.plist->gotplt_index;
10485
10486 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10487 BFD_ASSERT (h->dynindx != -1);
10488 BFD_ASSERT (htab->splt != NULL);
10489 BFD_ASSERT (got_index != MINUS_ONE);
10490 BFD_ASSERT (!h->def_regular);
10491
10492 /* Calculate the address of the PLT header. */
10493 isa_bit = htab->plt_header_is_comp;
10494 header_address = (htab->splt->output_section->vma
10495 + htab->splt->output_offset + isa_bit);
10496
10497 /* Calculate the address of the .got.plt entry. */
10498 got_address = (htab->sgotplt->output_section->vma
10499 + htab->sgotplt->output_offset
10500 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10501
10502 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10503 got_address_low = got_address & 0xffff;
10504
10505 /* Initially point the .got.plt entry at the PLT header. */
10506 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10507 if (ABI_64_P (output_bfd))
10508 bfd_put_64 (output_bfd, header_address, loc);
10509 else
10510 bfd_put_32 (output_bfd, header_address, loc);
10511
10512 /* Now handle the PLT itself. First the standard entry (the order
10513 does not matter, we just have to pick one). */
10514 if (h->plt.plist->mips_offset != MINUS_ONE)
10515 {
10516 const bfd_vma *plt_entry;
10517 bfd_vma plt_offset;
10518
10519 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10520
10521 BFD_ASSERT (plt_offset <= htab->splt->size);
10522
10523 /* Find out where the .plt entry should go. */
10524 loc = htab->splt->contents + plt_offset;
10525
10526 /* Pick the load opcode. */
10527 load = MIPS_ELF_LOAD_WORD (output_bfd);
10528
10529 /* Fill in the PLT entry itself. */
10530
10531 if (MIPSR6_P (output_bfd))
10532 plt_entry = mipsr6_exec_plt_entry;
10533 else
10534 plt_entry = mips_exec_plt_entry;
10535 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10536 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10537 loc + 4);
10538
10539 if (! LOAD_INTERLOCKS_P (output_bfd))
10540 {
10541 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10542 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10543 }
10544 else
10545 {
10546 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10547 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10548 loc + 12);
10549 }
10550 }
10551
10552 /* Now the compressed entry. They come after any standard ones. */
10553 if (h->plt.plist->comp_offset != MINUS_ONE)
10554 {
10555 bfd_vma plt_offset;
10556
10557 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10558 + h->plt.plist->comp_offset);
10559
10560 BFD_ASSERT (plt_offset <= htab->splt->size);
10561
10562 /* Find out where the .plt entry should go. */
10563 loc = htab->splt->contents + plt_offset;
10564
10565 /* Fill in the PLT entry itself. */
10566 if (!MICROMIPS_P (output_bfd))
10567 {
10568 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10569
10570 bfd_put_16 (output_bfd, plt_entry[0], loc);
10571 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10572 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10573 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10574 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10575 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10576 bfd_put_32 (output_bfd, got_address, loc + 12);
10577 }
10578 else if (htab->insn32)
10579 {
10580 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10581
10582 bfd_put_16 (output_bfd, plt_entry[0], loc);
10583 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10584 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10585 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10586 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10587 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10588 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10589 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10590 }
10591 else
10592 {
10593 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10594 bfd_signed_vma gotpc_offset;
10595 bfd_vma loc_address;
10596
10597 BFD_ASSERT (got_address % 4 == 0);
10598
10599 loc_address = (htab->splt->output_section->vma
10600 + htab->splt->output_offset + plt_offset);
10601 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10602
10603 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10604 if (gotpc_offset + 0x1000000 >= 0x2000000)
10605 {
10606 (*_bfd_error_handler)
10607 (_("%B: `%A' offset of %ld from `%A' "
10608 "beyond the range of ADDIUPC"),
10609 output_bfd,
10610 htab->sgotplt->output_section,
10611 htab->splt->output_section,
10612 (long) gotpc_offset);
10613 bfd_set_error (bfd_error_no_error);
10614 return FALSE;
10615 }
10616 bfd_put_16 (output_bfd,
10617 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10618 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10619 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10620 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10621 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10622 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10623 }
10624 }
10625
10626 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10627 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10628 got_index - 2, h->dynindx,
10629 R_MIPS_JUMP_SLOT, got_address);
10630
10631 /* We distinguish between PLT entries and lazy-binding stubs by
10632 giving the former an st_other value of STO_MIPS_PLT. Set the
10633 flag and leave the value if there are any relocations in the
10634 binary where pointer equality matters. */
10635 sym->st_shndx = SHN_UNDEF;
10636 if (h->pointer_equality_needed)
10637 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10638 else
10639 {
10640 sym->st_value = 0;
10641 sym->st_other = 0;
10642 }
10643 }
10644
10645 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10646 {
10647 /* We've decided to create a lazy-binding stub. */
10648 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10649 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10650 bfd_vma stub_size = htab->function_stub_size;
10651 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10652 bfd_vma isa_bit = micromips_p;
10653 bfd_vma stub_big_size;
10654
10655 if (!micromips_p)
10656 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10657 else if (htab->insn32)
10658 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10659 else
10660 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10661
10662 /* This symbol has a stub. Set it up. */
10663
10664 BFD_ASSERT (h->dynindx != -1);
10665
10666 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10667
10668 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10669 sign extension at runtime in the stub, resulting in a negative
10670 index value. */
10671 if (h->dynindx & ~0x7fffffff)
10672 return FALSE;
10673
10674 /* Fill the stub. */
10675 if (micromips_p)
10676 {
10677 idx = 0;
10678 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10679 stub + idx);
10680 idx += 4;
10681 if (htab->insn32)
10682 {
10683 bfd_put_micromips_32 (output_bfd,
10684 STUB_MOVE32_MICROMIPS (output_bfd),
10685 stub + idx);
10686 idx += 4;
10687 }
10688 else
10689 {
10690 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10691 idx += 2;
10692 }
10693 if (stub_size == stub_big_size)
10694 {
10695 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10696
10697 bfd_put_micromips_32 (output_bfd,
10698 STUB_LUI_MICROMIPS (dynindx_hi),
10699 stub + idx);
10700 idx += 4;
10701 }
10702 if (htab->insn32)
10703 {
10704 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10705 stub + idx);
10706 idx += 4;
10707 }
10708 else
10709 {
10710 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10711 idx += 2;
10712 }
10713
10714 /* If a large stub is not required and sign extension is not a
10715 problem, then use legacy code in the stub. */
10716 if (stub_size == stub_big_size)
10717 bfd_put_micromips_32 (output_bfd,
10718 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10719 stub + idx);
10720 else if (h->dynindx & ~0x7fff)
10721 bfd_put_micromips_32 (output_bfd,
10722 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10723 stub + idx);
10724 else
10725 bfd_put_micromips_32 (output_bfd,
10726 STUB_LI16S_MICROMIPS (output_bfd,
10727 h->dynindx),
10728 stub + idx);
10729 }
10730 else
10731 {
10732 idx = 0;
10733 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10734 idx += 4;
10735 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10736 idx += 4;
10737 if (stub_size == stub_big_size)
10738 {
10739 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10740 stub + idx);
10741 idx += 4;
10742 }
10743 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10744 idx += 4;
10745
10746 /* If a large stub is not required and sign extension is not a
10747 problem, then use legacy code in the stub. */
10748 if (stub_size == stub_big_size)
10749 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10750 stub + idx);
10751 else if (h->dynindx & ~0x7fff)
10752 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10753 stub + idx);
10754 else
10755 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10756 stub + idx);
10757 }
10758
10759 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10760 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10761 stub, stub_size);
10762
10763 /* Mark the symbol as undefined. stub_offset != -1 occurs
10764 only for the referenced symbol. */
10765 sym->st_shndx = SHN_UNDEF;
10766
10767 /* The run-time linker uses the st_value field of the symbol
10768 to reset the global offset table entry for this external
10769 to its stub address when unlinking a shared object. */
10770 sym->st_value = (htab->sstubs->output_section->vma
10771 + htab->sstubs->output_offset
10772 + h->plt.plist->stub_offset
10773 + isa_bit);
10774 sym->st_other = other;
10775 }
10776
10777 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10778 refer to the stub, since only the stub uses the standard calling
10779 conventions. */
10780 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10781 {
10782 BFD_ASSERT (hmips->need_fn_stub);
10783 sym->st_value = (hmips->fn_stub->output_section->vma
10784 + hmips->fn_stub->output_offset);
10785 sym->st_size = hmips->fn_stub->size;
10786 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10787 }
10788
10789 BFD_ASSERT (h->dynindx != -1
10790 || h->forced_local);
10791
10792 sgot = htab->sgot;
10793 g = htab->got_info;
10794 BFD_ASSERT (g != NULL);
10795
10796 /* Run through the global symbol table, creating GOT entries for all
10797 the symbols that need them. */
10798 if (hmips->global_got_area != GGA_NONE)
10799 {
10800 bfd_vma offset;
10801 bfd_vma value;
10802
10803 value = sym->st_value;
10804 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10805 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10806 }
10807
10808 if (hmips->global_got_area != GGA_NONE && g->next)
10809 {
10810 struct mips_got_entry e, *p;
10811 bfd_vma entry;
10812 bfd_vma offset;
10813
10814 gg = g;
10815
10816 e.abfd = output_bfd;
10817 e.symndx = -1;
10818 e.d.h = hmips;
10819 e.tls_type = GOT_TLS_NONE;
10820
10821 for (g = g->next; g->next != gg; g = g->next)
10822 {
10823 if (g->got_entries
10824 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10825 &e)))
10826 {
10827 offset = p->gotidx;
10828 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10829 if (info->shared
10830 || (elf_hash_table (info)->dynamic_sections_created
10831 && p->d.h != NULL
10832 && p->d.h->root.def_dynamic
10833 && !p->d.h->root.def_regular))
10834 {
10835 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10836 the various compatibility problems, it's easier to mock
10837 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10838 mips_elf_create_dynamic_relocation to calculate the
10839 appropriate addend. */
10840 Elf_Internal_Rela rel[3];
10841
10842 memset (rel, 0, sizeof (rel));
10843 if (ABI_64_P (output_bfd))
10844 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10845 else
10846 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10847 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10848
10849 entry = 0;
10850 if (! (mips_elf_create_dynamic_relocation
10851 (output_bfd, info, rel,
10852 e.d.h, NULL, sym->st_value, &entry, sgot)))
10853 return FALSE;
10854 }
10855 else
10856 entry = sym->st_value;
10857 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10858 }
10859 }
10860 }
10861
10862 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10863 name = h->root.root.string;
10864 if (h == elf_hash_table (info)->hdynamic
10865 || h == elf_hash_table (info)->hgot)
10866 sym->st_shndx = SHN_ABS;
10867 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10868 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10869 {
10870 sym->st_shndx = SHN_ABS;
10871 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10872 sym->st_value = 1;
10873 }
10874 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10875 {
10876 sym->st_shndx = SHN_ABS;
10877 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10878 sym->st_value = elf_gp (output_bfd);
10879 }
10880 else if (SGI_COMPAT (output_bfd))
10881 {
10882 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10883 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10884 {
10885 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10886 sym->st_other = STO_PROTECTED;
10887 sym->st_value = 0;
10888 sym->st_shndx = SHN_MIPS_DATA;
10889 }
10890 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10891 {
10892 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10893 sym->st_other = STO_PROTECTED;
10894 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10895 sym->st_shndx = SHN_ABS;
10896 }
10897 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10898 {
10899 if (h->type == STT_FUNC)
10900 sym->st_shndx = SHN_MIPS_TEXT;
10901 else if (h->type == STT_OBJECT)
10902 sym->st_shndx = SHN_MIPS_DATA;
10903 }
10904 }
10905
10906 /* Emit a copy reloc, if needed. */
10907 if (h->needs_copy)
10908 {
10909 asection *s;
10910 bfd_vma symval;
10911
10912 BFD_ASSERT (h->dynindx != -1);
10913 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10914
10915 s = mips_elf_rel_dyn_section (info, FALSE);
10916 symval = (h->root.u.def.section->output_section->vma
10917 + h->root.u.def.section->output_offset
10918 + h->root.u.def.value);
10919 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10920 h->dynindx, R_MIPS_COPY, symval);
10921 }
10922
10923 /* Handle the IRIX6-specific symbols. */
10924 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10925 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10926
10927 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10928 to treat compressed symbols like any other. */
10929 if (ELF_ST_IS_MIPS16 (sym->st_other))
10930 {
10931 BFD_ASSERT (sym->st_value & 1);
10932 sym->st_other -= STO_MIPS16;
10933 }
10934 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10935 {
10936 BFD_ASSERT (sym->st_value & 1);
10937 sym->st_other -= STO_MICROMIPS;
10938 }
10939
10940 return TRUE;
10941 }
10942
10943 /* Likewise, for VxWorks. */
10944
10945 bfd_boolean
10946 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10947 struct bfd_link_info *info,
10948 struct elf_link_hash_entry *h,
10949 Elf_Internal_Sym *sym)
10950 {
10951 bfd *dynobj;
10952 asection *sgot;
10953 struct mips_got_info *g;
10954 struct mips_elf_link_hash_table *htab;
10955 struct mips_elf_link_hash_entry *hmips;
10956
10957 htab = mips_elf_hash_table (info);
10958 BFD_ASSERT (htab != NULL);
10959 dynobj = elf_hash_table (info)->dynobj;
10960 hmips = (struct mips_elf_link_hash_entry *) h;
10961
10962 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10963 {
10964 bfd_byte *loc;
10965 bfd_vma plt_address, got_address, got_offset, branch_offset;
10966 Elf_Internal_Rela rel;
10967 static const bfd_vma *plt_entry;
10968 bfd_vma gotplt_index;
10969 bfd_vma plt_offset;
10970
10971 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10972 gotplt_index = h->plt.plist->gotplt_index;
10973
10974 BFD_ASSERT (h->dynindx != -1);
10975 BFD_ASSERT (htab->splt != NULL);
10976 BFD_ASSERT (gotplt_index != MINUS_ONE);
10977 BFD_ASSERT (plt_offset <= htab->splt->size);
10978
10979 /* Calculate the address of the .plt entry. */
10980 plt_address = (htab->splt->output_section->vma
10981 + htab->splt->output_offset
10982 + plt_offset);
10983
10984 /* Calculate the address of the .got.plt entry. */
10985 got_address = (htab->sgotplt->output_section->vma
10986 + htab->sgotplt->output_offset
10987 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
10988
10989 /* Calculate the offset of the .got.plt entry from
10990 _GLOBAL_OFFSET_TABLE_. */
10991 got_offset = mips_elf_gotplt_index (info, h);
10992
10993 /* Calculate the offset for the branch at the start of the PLT
10994 entry. The branch jumps to the beginning of .plt. */
10995 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
10996
10997 /* Fill in the initial value of the .got.plt entry. */
10998 bfd_put_32 (output_bfd, plt_address,
10999 (htab->sgotplt->contents
11000 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11001
11002 /* Find out where the .plt entry should go. */
11003 loc = htab->splt->contents + plt_offset;
11004
11005 if (info->shared)
11006 {
11007 plt_entry = mips_vxworks_shared_plt_entry;
11008 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11009 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11010 }
11011 else
11012 {
11013 bfd_vma got_address_high, got_address_low;
11014
11015 plt_entry = mips_vxworks_exec_plt_entry;
11016 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11017 got_address_low = got_address & 0xffff;
11018
11019 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11020 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11021 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11022 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11023 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11024 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11025 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11026 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11027
11028 loc = (htab->srelplt2->contents
11029 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11030
11031 /* Emit a relocation for the .got.plt entry. */
11032 rel.r_offset = got_address;
11033 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11034 rel.r_addend = plt_offset;
11035 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11036
11037 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11038 loc += sizeof (Elf32_External_Rela);
11039 rel.r_offset = plt_address + 8;
11040 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11041 rel.r_addend = got_offset;
11042 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11043
11044 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11045 loc += sizeof (Elf32_External_Rela);
11046 rel.r_offset += 4;
11047 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11048 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11049 }
11050
11051 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11052 loc = (htab->srelplt->contents
11053 + gotplt_index * sizeof (Elf32_External_Rela));
11054 rel.r_offset = got_address;
11055 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11056 rel.r_addend = 0;
11057 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11058
11059 if (!h->def_regular)
11060 sym->st_shndx = SHN_UNDEF;
11061 }
11062
11063 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11064
11065 sgot = htab->sgot;
11066 g = htab->got_info;
11067 BFD_ASSERT (g != NULL);
11068
11069 /* See if this symbol has an entry in the GOT. */
11070 if (hmips->global_got_area != GGA_NONE)
11071 {
11072 bfd_vma offset;
11073 Elf_Internal_Rela outrel;
11074 bfd_byte *loc;
11075 asection *s;
11076
11077 /* Install the symbol value in the GOT. */
11078 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11079 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11080
11081 /* Add a dynamic relocation for it. */
11082 s = mips_elf_rel_dyn_section (info, FALSE);
11083 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11084 outrel.r_offset = (sgot->output_section->vma
11085 + sgot->output_offset
11086 + offset);
11087 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11088 outrel.r_addend = 0;
11089 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11090 }
11091
11092 /* Emit a copy reloc, if needed. */
11093 if (h->needs_copy)
11094 {
11095 Elf_Internal_Rela rel;
11096
11097 BFD_ASSERT (h->dynindx != -1);
11098
11099 rel.r_offset = (h->root.u.def.section->output_section->vma
11100 + h->root.u.def.section->output_offset
11101 + h->root.u.def.value);
11102 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11103 rel.r_addend = 0;
11104 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11105 htab->srelbss->contents
11106 + (htab->srelbss->reloc_count
11107 * sizeof (Elf32_External_Rela)));
11108 ++htab->srelbss->reloc_count;
11109 }
11110
11111 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11112 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11113 sym->st_value &= ~1;
11114
11115 return TRUE;
11116 }
11117
11118 /* Write out a plt0 entry to the beginning of .plt. */
11119
11120 static bfd_boolean
11121 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11122 {
11123 bfd_byte *loc;
11124 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11125 static const bfd_vma *plt_entry;
11126 struct mips_elf_link_hash_table *htab;
11127
11128 htab = mips_elf_hash_table (info);
11129 BFD_ASSERT (htab != NULL);
11130
11131 if (ABI_64_P (output_bfd))
11132 plt_entry = mips_n64_exec_plt0_entry;
11133 else if (ABI_N32_P (output_bfd))
11134 plt_entry = mips_n32_exec_plt0_entry;
11135 else if (!htab->plt_header_is_comp)
11136 plt_entry = mips_o32_exec_plt0_entry;
11137 else if (htab->insn32)
11138 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11139 else
11140 plt_entry = micromips_o32_exec_plt0_entry;
11141
11142 /* Calculate the value of .got.plt. */
11143 gotplt_value = (htab->sgotplt->output_section->vma
11144 + htab->sgotplt->output_offset);
11145 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11146 gotplt_value_low = gotplt_value & 0xffff;
11147
11148 /* The PLT sequence is not safe for N64 if .got.plt's address can
11149 not be loaded in two instructions. */
11150 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11151 || ~(gotplt_value | 0x7fffffff) == 0);
11152
11153 /* Install the PLT header. */
11154 loc = htab->splt->contents;
11155 if (plt_entry == micromips_o32_exec_plt0_entry)
11156 {
11157 bfd_vma gotpc_offset;
11158 bfd_vma loc_address;
11159 size_t i;
11160
11161 BFD_ASSERT (gotplt_value % 4 == 0);
11162
11163 loc_address = (htab->splt->output_section->vma
11164 + htab->splt->output_offset);
11165 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11166
11167 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11168 if (gotpc_offset + 0x1000000 >= 0x2000000)
11169 {
11170 (*_bfd_error_handler)
11171 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11172 output_bfd,
11173 htab->sgotplt->output_section,
11174 htab->splt->output_section,
11175 (long) gotpc_offset);
11176 bfd_set_error (bfd_error_no_error);
11177 return FALSE;
11178 }
11179 bfd_put_16 (output_bfd,
11180 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11181 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11182 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11183 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11184 }
11185 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11186 {
11187 size_t i;
11188
11189 bfd_put_16 (output_bfd, plt_entry[0], loc);
11190 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11191 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11192 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11193 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11194 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11195 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11196 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11197 }
11198 else
11199 {
11200 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11201 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11202 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11203 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11204 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11205 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11206 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11207 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11208 }
11209
11210 return TRUE;
11211 }
11212
11213 /* Install the PLT header for a VxWorks executable and finalize the
11214 contents of .rela.plt.unloaded. */
11215
11216 static void
11217 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11218 {
11219 Elf_Internal_Rela rela;
11220 bfd_byte *loc;
11221 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11222 static const bfd_vma *plt_entry;
11223 struct mips_elf_link_hash_table *htab;
11224
11225 htab = mips_elf_hash_table (info);
11226 BFD_ASSERT (htab != NULL);
11227
11228 plt_entry = mips_vxworks_exec_plt0_entry;
11229
11230 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11231 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11232 + htab->root.hgot->root.u.def.section->output_offset
11233 + htab->root.hgot->root.u.def.value);
11234
11235 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11236 got_value_low = got_value & 0xffff;
11237
11238 /* Calculate the address of the PLT header. */
11239 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11240
11241 /* Install the PLT header. */
11242 loc = htab->splt->contents;
11243 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11244 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11245 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11246 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11247 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11248 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11249
11250 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11251 loc = htab->srelplt2->contents;
11252 rela.r_offset = plt_address;
11253 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11254 rela.r_addend = 0;
11255 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11256 loc += sizeof (Elf32_External_Rela);
11257
11258 /* Output the relocation for the following addiu of
11259 %lo(_GLOBAL_OFFSET_TABLE_). */
11260 rela.r_offset += 4;
11261 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11262 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11263 loc += sizeof (Elf32_External_Rela);
11264
11265 /* Fix up the remaining relocations. They may have the wrong
11266 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11267 in which symbols were output. */
11268 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11269 {
11270 Elf_Internal_Rela rel;
11271
11272 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11273 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11274 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11275 loc += sizeof (Elf32_External_Rela);
11276
11277 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11278 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11279 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11280 loc += sizeof (Elf32_External_Rela);
11281
11282 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11283 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11284 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11285 loc += sizeof (Elf32_External_Rela);
11286 }
11287 }
11288
11289 /* Install the PLT header for a VxWorks shared library. */
11290
11291 static void
11292 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11293 {
11294 unsigned int i;
11295 struct mips_elf_link_hash_table *htab;
11296
11297 htab = mips_elf_hash_table (info);
11298 BFD_ASSERT (htab != NULL);
11299
11300 /* We just need to copy the entry byte-by-byte. */
11301 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11302 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11303 htab->splt->contents + i * 4);
11304 }
11305
11306 /* Finish up the dynamic sections. */
11307
11308 bfd_boolean
11309 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11310 struct bfd_link_info *info)
11311 {
11312 bfd *dynobj;
11313 asection *sdyn;
11314 asection *sgot;
11315 struct mips_got_info *gg, *g;
11316 struct mips_elf_link_hash_table *htab;
11317
11318 htab = mips_elf_hash_table (info);
11319 BFD_ASSERT (htab != NULL);
11320
11321 dynobj = elf_hash_table (info)->dynobj;
11322
11323 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11324
11325 sgot = htab->sgot;
11326 gg = htab->got_info;
11327
11328 if (elf_hash_table (info)->dynamic_sections_created)
11329 {
11330 bfd_byte *b;
11331 int dyn_to_skip = 0, dyn_skipped = 0;
11332
11333 BFD_ASSERT (sdyn != NULL);
11334 BFD_ASSERT (gg != NULL);
11335
11336 g = mips_elf_bfd_got (output_bfd, FALSE);
11337 BFD_ASSERT (g != NULL);
11338
11339 for (b = sdyn->contents;
11340 b < sdyn->contents + sdyn->size;
11341 b += MIPS_ELF_DYN_SIZE (dynobj))
11342 {
11343 Elf_Internal_Dyn dyn;
11344 const char *name;
11345 size_t elemsize;
11346 asection *s;
11347 bfd_boolean swap_out_p;
11348
11349 /* Read in the current dynamic entry. */
11350 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11351
11352 /* Assume that we're going to modify it and write it out. */
11353 swap_out_p = TRUE;
11354
11355 switch (dyn.d_tag)
11356 {
11357 case DT_RELENT:
11358 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11359 break;
11360
11361 case DT_RELAENT:
11362 BFD_ASSERT (htab->is_vxworks);
11363 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11364 break;
11365
11366 case DT_STRSZ:
11367 /* Rewrite DT_STRSZ. */
11368 dyn.d_un.d_val =
11369 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11370 break;
11371
11372 case DT_PLTGOT:
11373 s = htab->sgot;
11374 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11375 break;
11376
11377 case DT_MIPS_PLTGOT:
11378 s = htab->sgotplt;
11379 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11380 break;
11381
11382 case DT_MIPS_RLD_VERSION:
11383 dyn.d_un.d_val = 1; /* XXX */
11384 break;
11385
11386 case DT_MIPS_FLAGS:
11387 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11388 break;
11389
11390 case DT_MIPS_TIME_STAMP:
11391 {
11392 time_t t;
11393 time (&t);
11394 dyn.d_un.d_val = t;
11395 }
11396 break;
11397
11398 case DT_MIPS_ICHECKSUM:
11399 /* XXX FIXME: */
11400 swap_out_p = FALSE;
11401 break;
11402
11403 case DT_MIPS_IVERSION:
11404 /* XXX FIXME: */
11405 swap_out_p = FALSE;
11406 break;
11407
11408 case DT_MIPS_BASE_ADDRESS:
11409 s = output_bfd->sections;
11410 BFD_ASSERT (s != NULL);
11411 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11412 break;
11413
11414 case DT_MIPS_LOCAL_GOTNO:
11415 dyn.d_un.d_val = g->local_gotno;
11416 break;
11417
11418 case DT_MIPS_UNREFEXTNO:
11419 /* The index into the dynamic symbol table which is the
11420 entry of the first external symbol that is not
11421 referenced within the same object. */
11422 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11423 break;
11424
11425 case DT_MIPS_GOTSYM:
11426 if (htab->global_gotsym)
11427 {
11428 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11429 break;
11430 }
11431 /* In case if we don't have global got symbols we default
11432 to setting DT_MIPS_GOTSYM to the same value as
11433 DT_MIPS_SYMTABNO, so we just fall through. */
11434
11435 case DT_MIPS_SYMTABNO:
11436 name = ".dynsym";
11437 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11438 s = bfd_get_section_by_name (output_bfd, name);
11439 BFD_ASSERT (s != NULL);
11440
11441 dyn.d_un.d_val = s->size / elemsize;
11442 break;
11443
11444 case DT_MIPS_HIPAGENO:
11445 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11446 break;
11447
11448 case DT_MIPS_RLD_MAP:
11449 {
11450 struct elf_link_hash_entry *h;
11451 h = mips_elf_hash_table (info)->rld_symbol;
11452 if (!h)
11453 {
11454 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11455 swap_out_p = FALSE;
11456 break;
11457 }
11458 s = h->root.u.def.section;
11459 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11460 + h->root.u.def.value);
11461 }
11462 break;
11463
11464 case DT_MIPS_OPTIONS:
11465 s = (bfd_get_section_by_name
11466 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11467 dyn.d_un.d_ptr = s->vma;
11468 break;
11469
11470 case DT_RELASZ:
11471 BFD_ASSERT (htab->is_vxworks);
11472 /* The count does not include the JUMP_SLOT relocations. */
11473 if (htab->srelplt)
11474 dyn.d_un.d_val -= htab->srelplt->size;
11475 break;
11476
11477 case DT_PLTREL:
11478 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11479 if (htab->is_vxworks)
11480 dyn.d_un.d_val = DT_RELA;
11481 else
11482 dyn.d_un.d_val = DT_REL;
11483 break;
11484
11485 case DT_PLTRELSZ:
11486 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11487 dyn.d_un.d_val = htab->srelplt->size;
11488 break;
11489
11490 case DT_JMPREL:
11491 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11492 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11493 + htab->srelplt->output_offset);
11494 break;
11495
11496 case DT_TEXTREL:
11497 /* If we didn't need any text relocations after all, delete
11498 the dynamic tag. */
11499 if (!(info->flags & DF_TEXTREL))
11500 {
11501 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11502 swap_out_p = FALSE;
11503 }
11504 break;
11505
11506 case DT_FLAGS:
11507 /* If we didn't need any text relocations after all, clear
11508 DF_TEXTREL from DT_FLAGS. */
11509 if (!(info->flags & DF_TEXTREL))
11510 dyn.d_un.d_val &= ~DF_TEXTREL;
11511 else
11512 swap_out_p = FALSE;
11513 break;
11514
11515 default:
11516 swap_out_p = FALSE;
11517 if (htab->is_vxworks
11518 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11519 swap_out_p = TRUE;
11520 break;
11521 }
11522
11523 if (swap_out_p || dyn_skipped)
11524 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11525 (dynobj, &dyn, b - dyn_skipped);
11526
11527 if (dyn_to_skip)
11528 {
11529 dyn_skipped += dyn_to_skip;
11530 dyn_to_skip = 0;
11531 }
11532 }
11533
11534 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11535 if (dyn_skipped > 0)
11536 memset (b - dyn_skipped, 0, dyn_skipped);
11537 }
11538
11539 if (sgot != NULL && sgot->size > 0
11540 && !bfd_is_abs_section (sgot->output_section))
11541 {
11542 if (htab->is_vxworks)
11543 {
11544 /* The first entry of the global offset table points to the
11545 ".dynamic" section. The second is initialized by the
11546 loader and contains the shared library identifier.
11547 The third is also initialized by the loader and points
11548 to the lazy resolution stub. */
11549 MIPS_ELF_PUT_WORD (output_bfd,
11550 sdyn->output_offset + sdyn->output_section->vma,
11551 sgot->contents);
11552 MIPS_ELF_PUT_WORD (output_bfd, 0,
11553 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11554 MIPS_ELF_PUT_WORD (output_bfd, 0,
11555 sgot->contents
11556 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11557 }
11558 else
11559 {
11560 /* The first entry of the global offset table will be filled at
11561 runtime. The second entry will be used by some runtime loaders.
11562 This isn't the case of IRIX rld. */
11563 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11564 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11565 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11566 }
11567
11568 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11569 = MIPS_ELF_GOT_SIZE (output_bfd);
11570 }
11571
11572 /* Generate dynamic relocations for the non-primary gots. */
11573 if (gg != NULL && gg->next)
11574 {
11575 Elf_Internal_Rela rel[3];
11576 bfd_vma addend = 0;
11577
11578 memset (rel, 0, sizeof (rel));
11579 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11580
11581 for (g = gg->next; g->next != gg; g = g->next)
11582 {
11583 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11584 + g->next->tls_gotno;
11585
11586 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11587 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11588 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11589 sgot->contents
11590 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11591
11592 if (! info->shared)
11593 continue;
11594
11595 for (; got_index < g->local_gotno; got_index++)
11596 {
11597 if (got_index >= g->assigned_low_gotno
11598 && got_index <= g->assigned_high_gotno)
11599 continue;
11600
11601 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11602 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11603 if (!(mips_elf_create_dynamic_relocation
11604 (output_bfd, info, rel, NULL,
11605 bfd_abs_section_ptr,
11606 0, &addend, sgot)))
11607 return FALSE;
11608 BFD_ASSERT (addend == 0);
11609 }
11610 }
11611 }
11612
11613 /* The generation of dynamic relocations for the non-primary gots
11614 adds more dynamic relocations. We cannot count them until
11615 here. */
11616
11617 if (elf_hash_table (info)->dynamic_sections_created)
11618 {
11619 bfd_byte *b;
11620 bfd_boolean swap_out_p;
11621
11622 BFD_ASSERT (sdyn != NULL);
11623
11624 for (b = sdyn->contents;
11625 b < sdyn->contents + sdyn->size;
11626 b += MIPS_ELF_DYN_SIZE (dynobj))
11627 {
11628 Elf_Internal_Dyn dyn;
11629 asection *s;
11630
11631 /* Read in the current dynamic entry. */
11632 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11633
11634 /* Assume that we're going to modify it and write it out. */
11635 swap_out_p = TRUE;
11636
11637 switch (dyn.d_tag)
11638 {
11639 case DT_RELSZ:
11640 /* Reduce DT_RELSZ to account for any relocations we
11641 decided not to make. This is for the n64 irix rld,
11642 which doesn't seem to apply any relocations if there
11643 are trailing null entries. */
11644 s = mips_elf_rel_dyn_section (info, FALSE);
11645 dyn.d_un.d_val = (s->reloc_count
11646 * (ABI_64_P (output_bfd)
11647 ? sizeof (Elf64_Mips_External_Rel)
11648 : sizeof (Elf32_External_Rel)));
11649 /* Adjust the section size too. Tools like the prelinker
11650 can reasonably expect the values to the same. */
11651 elf_section_data (s->output_section)->this_hdr.sh_size
11652 = dyn.d_un.d_val;
11653 break;
11654
11655 default:
11656 swap_out_p = FALSE;
11657 break;
11658 }
11659
11660 if (swap_out_p)
11661 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11662 (dynobj, &dyn, b);
11663 }
11664 }
11665
11666 {
11667 asection *s;
11668 Elf32_compact_rel cpt;
11669
11670 if (SGI_COMPAT (output_bfd))
11671 {
11672 /* Write .compact_rel section out. */
11673 s = bfd_get_linker_section (dynobj, ".compact_rel");
11674 if (s != NULL)
11675 {
11676 cpt.id1 = 1;
11677 cpt.num = s->reloc_count;
11678 cpt.id2 = 2;
11679 cpt.offset = (s->output_section->filepos
11680 + sizeof (Elf32_External_compact_rel));
11681 cpt.reserved0 = 0;
11682 cpt.reserved1 = 0;
11683 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11684 ((Elf32_External_compact_rel *)
11685 s->contents));
11686
11687 /* Clean up a dummy stub function entry in .text. */
11688 if (htab->sstubs != NULL)
11689 {
11690 file_ptr dummy_offset;
11691
11692 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11693 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11694 memset (htab->sstubs->contents + dummy_offset, 0,
11695 htab->function_stub_size);
11696 }
11697 }
11698 }
11699
11700 /* The psABI says that the dynamic relocations must be sorted in
11701 increasing order of r_symndx. The VxWorks EABI doesn't require
11702 this, and because the code below handles REL rather than RELA
11703 relocations, using it for VxWorks would be outright harmful. */
11704 if (!htab->is_vxworks)
11705 {
11706 s = mips_elf_rel_dyn_section (info, FALSE);
11707 if (s != NULL
11708 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11709 {
11710 reldyn_sorting_bfd = output_bfd;
11711
11712 if (ABI_64_P (output_bfd))
11713 qsort ((Elf64_External_Rel *) s->contents + 1,
11714 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11715 sort_dynamic_relocs_64);
11716 else
11717 qsort ((Elf32_External_Rel *) s->contents + 1,
11718 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11719 sort_dynamic_relocs);
11720 }
11721 }
11722 }
11723
11724 if (htab->splt && htab->splt->size > 0)
11725 {
11726 if (htab->is_vxworks)
11727 {
11728 if (info->shared)
11729 mips_vxworks_finish_shared_plt (output_bfd, info);
11730 else
11731 mips_vxworks_finish_exec_plt (output_bfd, info);
11732 }
11733 else
11734 {
11735 BFD_ASSERT (!info->shared);
11736 if (!mips_finish_exec_plt (output_bfd, info))
11737 return FALSE;
11738 }
11739 }
11740 return TRUE;
11741 }
11742
11743
11744 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11745
11746 static void
11747 mips_set_isa_flags (bfd *abfd)
11748 {
11749 flagword val;
11750
11751 switch (bfd_get_mach (abfd))
11752 {
11753 default:
11754 case bfd_mach_mips3000:
11755 val = E_MIPS_ARCH_1;
11756 break;
11757
11758 case bfd_mach_mips3900:
11759 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11760 break;
11761
11762 case bfd_mach_mips6000:
11763 val = E_MIPS_ARCH_2;
11764 break;
11765
11766 case bfd_mach_mips4000:
11767 case bfd_mach_mips4300:
11768 case bfd_mach_mips4400:
11769 case bfd_mach_mips4600:
11770 val = E_MIPS_ARCH_3;
11771 break;
11772
11773 case bfd_mach_mips4010:
11774 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11775 break;
11776
11777 case bfd_mach_mips4100:
11778 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11779 break;
11780
11781 case bfd_mach_mips4111:
11782 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11783 break;
11784
11785 case bfd_mach_mips4120:
11786 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11787 break;
11788
11789 case bfd_mach_mips4650:
11790 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11791 break;
11792
11793 case bfd_mach_mips5400:
11794 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11795 break;
11796
11797 case bfd_mach_mips5500:
11798 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11799 break;
11800
11801 case bfd_mach_mips5900:
11802 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11803 break;
11804
11805 case bfd_mach_mips9000:
11806 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11807 break;
11808
11809 case bfd_mach_mips5000:
11810 case bfd_mach_mips7000:
11811 case bfd_mach_mips8000:
11812 case bfd_mach_mips10000:
11813 case bfd_mach_mips12000:
11814 case bfd_mach_mips14000:
11815 case bfd_mach_mips16000:
11816 val = E_MIPS_ARCH_4;
11817 break;
11818
11819 case bfd_mach_mips5:
11820 val = E_MIPS_ARCH_5;
11821 break;
11822
11823 case bfd_mach_mips_loongson_2e:
11824 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11825 break;
11826
11827 case bfd_mach_mips_loongson_2f:
11828 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11829 break;
11830
11831 case bfd_mach_mips_sb1:
11832 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11833 break;
11834
11835 case bfd_mach_mips_loongson_3a:
11836 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11837 break;
11838
11839 case bfd_mach_mips_octeon:
11840 case bfd_mach_mips_octeonp:
11841 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11842 break;
11843
11844 case bfd_mach_mips_xlr:
11845 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11846 break;
11847
11848 case bfd_mach_mips_octeon2:
11849 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11850 break;
11851
11852 case bfd_mach_mipsisa32:
11853 val = E_MIPS_ARCH_32;
11854 break;
11855
11856 case bfd_mach_mipsisa64:
11857 val = E_MIPS_ARCH_64;
11858 break;
11859
11860 case bfd_mach_mipsisa32r2:
11861 case bfd_mach_mipsisa32r3:
11862 case bfd_mach_mipsisa32r5:
11863 val = E_MIPS_ARCH_32R2;
11864 break;
11865
11866 case bfd_mach_mipsisa64r2:
11867 case bfd_mach_mipsisa64r3:
11868 case bfd_mach_mipsisa64r5:
11869 val = E_MIPS_ARCH_64R2;
11870 break;
11871
11872 case bfd_mach_mipsisa32r6:
11873 val = E_MIPS_ARCH_32R6;
11874 break;
11875
11876 case bfd_mach_mipsisa64r6:
11877 val = E_MIPS_ARCH_64R6;
11878 break;
11879 }
11880 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11881 elf_elfheader (abfd)->e_flags |= val;
11882
11883 }
11884
11885
11886 /* The final processing done just before writing out a MIPS ELF object
11887 file. This gets the MIPS architecture right based on the machine
11888 number. This is used by both the 32-bit and the 64-bit ABI. */
11889
11890 void
11891 _bfd_mips_elf_final_write_processing (bfd *abfd,
11892 bfd_boolean linker ATTRIBUTE_UNUSED)
11893 {
11894 unsigned int i;
11895 Elf_Internal_Shdr **hdrpp;
11896 const char *name;
11897 asection *sec;
11898
11899 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11900 is nonzero. This is for compatibility with old objects, which used
11901 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11902 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11903 mips_set_isa_flags (abfd);
11904
11905 /* Set the sh_info field for .gptab sections and other appropriate
11906 info for each special section. */
11907 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11908 i < elf_numsections (abfd);
11909 i++, hdrpp++)
11910 {
11911 switch ((*hdrpp)->sh_type)
11912 {
11913 case SHT_MIPS_MSYM:
11914 case SHT_MIPS_LIBLIST:
11915 sec = bfd_get_section_by_name (abfd, ".dynstr");
11916 if (sec != NULL)
11917 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11918 break;
11919
11920 case SHT_MIPS_GPTAB:
11921 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11922 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11923 BFD_ASSERT (name != NULL
11924 && CONST_STRNEQ (name, ".gptab."));
11925 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11926 BFD_ASSERT (sec != NULL);
11927 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11928 break;
11929
11930 case SHT_MIPS_CONTENT:
11931 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11932 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11933 BFD_ASSERT (name != NULL
11934 && CONST_STRNEQ (name, ".MIPS.content"));
11935 sec = bfd_get_section_by_name (abfd,
11936 name + sizeof ".MIPS.content" - 1);
11937 BFD_ASSERT (sec != NULL);
11938 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11939 break;
11940
11941 case SHT_MIPS_SYMBOL_LIB:
11942 sec = bfd_get_section_by_name (abfd, ".dynsym");
11943 if (sec != NULL)
11944 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11945 sec = bfd_get_section_by_name (abfd, ".liblist");
11946 if (sec != NULL)
11947 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11948 break;
11949
11950 case SHT_MIPS_EVENTS:
11951 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11952 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11953 BFD_ASSERT (name != NULL);
11954 if (CONST_STRNEQ (name, ".MIPS.events"))
11955 sec = bfd_get_section_by_name (abfd,
11956 name + sizeof ".MIPS.events" - 1);
11957 else
11958 {
11959 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11960 sec = bfd_get_section_by_name (abfd,
11961 (name
11962 + sizeof ".MIPS.post_rel" - 1));
11963 }
11964 BFD_ASSERT (sec != NULL);
11965 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11966 break;
11967
11968 }
11969 }
11970 }
11971 \f
11972 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11973 segments. */
11974
11975 int
11976 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11977 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11978 {
11979 asection *s;
11980 int ret = 0;
11981
11982 /* See if we need a PT_MIPS_REGINFO segment. */
11983 s = bfd_get_section_by_name (abfd, ".reginfo");
11984 if (s && (s->flags & SEC_LOAD))
11985 ++ret;
11986
11987 /* See if we need a PT_MIPS_ABIFLAGS segment. */
11988 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
11989 ++ret;
11990
11991 /* See if we need a PT_MIPS_OPTIONS segment. */
11992 if (IRIX_COMPAT (abfd) == ict_irix6
11993 && bfd_get_section_by_name (abfd,
11994 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11995 ++ret;
11996
11997 /* See if we need a PT_MIPS_RTPROC segment. */
11998 if (IRIX_COMPAT (abfd) == ict_irix5
11999 && bfd_get_section_by_name (abfd, ".dynamic")
12000 && bfd_get_section_by_name (abfd, ".mdebug"))
12001 ++ret;
12002
12003 /* Allocate a PT_NULL header in dynamic objects. See
12004 _bfd_mips_elf_modify_segment_map for details. */
12005 if (!SGI_COMPAT (abfd)
12006 && bfd_get_section_by_name (abfd, ".dynamic"))
12007 ++ret;
12008
12009 return ret;
12010 }
12011
12012 /* Modify the segment map for an IRIX5 executable. */
12013
12014 bfd_boolean
12015 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12016 struct bfd_link_info *info)
12017 {
12018 asection *s;
12019 struct elf_segment_map *m, **pm;
12020 bfd_size_type amt;
12021
12022 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12023 segment. */
12024 s = bfd_get_section_by_name (abfd, ".reginfo");
12025 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12026 {
12027 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12028 if (m->p_type == PT_MIPS_REGINFO)
12029 break;
12030 if (m == NULL)
12031 {
12032 amt = sizeof *m;
12033 m = bfd_zalloc (abfd, amt);
12034 if (m == NULL)
12035 return FALSE;
12036
12037 m->p_type = PT_MIPS_REGINFO;
12038 m->count = 1;
12039 m->sections[0] = s;
12040
12041 /* We want to put it after the PHDR and INTERP segments. */
12042 pm = &elf_seg_map (abfd);
12043 while (*pm != NULL
12044 && ((*pm)->p_type == PT_PHDR
12045 || (*pm)->p_type == PT_INTERP))
12046 pm = &(*pm)->next;
12047
12048 m->next = *pm;
12049 *pm = m;
12050 }
12051 }
12052
12053 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12054 segment. */
12055 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12056 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12057 {
12058 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12059 if (m->p_type == PT_MIPS_ABIFLAGS)
12060 break;
12061 if (m == NULL)
12062 {
12063 amt = sizeof *m;
12064 m = bfd_zalloc (abfd, amt);
12065 if (m == NULL)
12066 return FALSE;
12067
12068 m->p_type = PT_MIPS_ABIFLAGS;
12069 m->count = 1;
12070 m->sections[0] = s;
12071
12072 /* We want to put it after the PHDR and INTERP segments. */
12073 pm = &elf_seg_map (abfd);
12074 while (*pm != NULL
12075 && ((*pm)->p_type == PT_PHDR
12076 || (*pm)->p_type == PT_INTERP))
12077 pm = &(*pm)->next;
12078
12079 m->next = *pm;
12080 *pm = m;
12081 }
12082 }
12083
12084 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12085 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12086 PT_MIPS_OPTIONS segment immediately following the program header
12087 table. */
12088 if (NEWABI_P (abfd)
12089 /* On non-IRIX6 new abi, we'll have already created a segment
12090 for this section, so don't create another. I'm not sure this
12091 is not also the case for IRIX 6, but I can't test it right
12092 now. */
12093 && IRIX_COMPAT (abfd) == ict_irix6)
12094 {
12095 for (s = abfd->sections; s; s = s->next)
12096 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12097 break;
12098
12099 if (s)
12100 {
12101 struct elf_segment_map *options_segment;
12102
12103 pm = &elf_seg_map (abfd);
12104 while (*pm != NULL
12105 && ((*pm)->p_type == PT_PHDR
12106 || (*pm)->p_type == PT_INTERP))
12107 pm = &(*pm)->next;
12108
12109 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12110 {
12111 amt = sizeof (struct elf_segment_map);
12112 options_segment = bfd_zalloc (abfd, amt);
12113 options_segment->next = *pm;
12114 options_segment->p_type = PT_MIPS_OPTIONS;
12115 options_segment->p_flags = PF_R;
12116 options_segment->p_flags_valid = TRUE;
12117 options_segment->count = 1;
12118 options_segment->sections[0] = s;
12119 *pm = options_segment;
12120 }
12121 }
12122 }
12123 else
12124 {
12125 if (IRIX_COMPAT (abfd) == ict_irix5)
12126 {
12127 /* If there are .dynamic and .mdebug sections, we make a room
12128 for the RTPROC header. FIXME: Rewrite without section names. */
12129 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12130 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12131 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12132 {
12133 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12134 if (m->p_type == PT_MIPS_RTPROC)
12135 break;
12136 if (m == NULL)
12137 {
12138 amt = sizeof *m;
12139 m = bfd_zalloc (abfd, amt);
12140 if (m == NULL)
12141 return FALSE;
12142
12143 m->p_type = PT_MIPS_RTPROC;
12144
12145 s = bfd_get_section_by_name (abfd, ".rtproc");
12146 if (s == NULL)
12147 {
12148 m->count = 0;
12149 m->p_flags = 0;
12150 m->p_flags_valid = 1;
12151 }
12152 else
12153 {
12154 m->count = 1;
12155 m->sections[0] = s;
12156 }
12157
12158 /* We want to put it after the DYNAMIC segment. */
12159 pm = &elf_seg_map (abfd);
12160 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12161 pm = &(*pm)->next;
12162 if (*pm != NULL)
12163 pm = &(*pm)->next;
12164
12165 m->next = *pm;
12166 *pm = m;
12167 }
12168 }
12169 }
12170 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12171 .dynstr, .dynsym, and .hash sections, and everything in
12172 between. */
12173 for (pm = &elf_seg_map (abfd); *pm != NULL;
12174 pm = &(*pm)->next)
12175 if ((*pm)->p_type == PT_DYNAMIC)
12176 break;
12177 m = *pm;
12178 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12179 glibc's dynamic linker has traditionally derived the number of
12180 tags from the p_filesz field, and sometimes allocates stack
12181 arrays of that size. An overly-big PT_DYNAMIC segment can
12182 be actively harmful in such cases. Making PT_DYNAMIC contain
12183 other sections can also make life hard for the prelinker,
12184 which might move one of the other sections to a different
12185 PT_LOAD segment. */
12186 if (SGI_COMPAT (abfd)
12187 && m != NULL
12188 && m->count == 1
12189 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12190 {
12191 static const char *sec_names[] =
12192 {
12193 ".dynamic", ".dynstr", ".dynsym", ".hash"
12194 };
12195 bfd_vma low, high;
12196 unsigned int i, c;
12197 struct elf_segment_map *n;
12198
12199 low = ~(bfd_vma) 0;
12200 high = 0;
12201 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12202 {
12203 s = bfd_get_section_by_name (abfd, sec_names[i]);
12204 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12205 {
12206 bfd_size_type sz;
12207
12208 if (low > s->vma)
12209 low = s->vma;
12210 sz = s->size;
12211 if (high < s->vma + sz)
12212 high = s->vma + sz;
12213 }
12214 }
12215
12216 c = 0;
12217 for (s = abfd->sections; s != NULL; s = s->next)
12218 if ((s->flags & SEC_LOAD) != 0
12219 && s->vma >= low
12220 && s->vma + s->size <= high)
12221 ++c;
12222
12223 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12224 n = bfd_zalloc (abfd, amt);
12225 if (n == NULL)
12226 return FALSE;
12227 *n = *m;
12228 n->count = c;
12229
12230 i = 0;
12231 for (s = abfd->sections; s != NULL; s = s->next)
12232 {
12233 if ((s->flags & SEC_LOAD) != 0
12234 && s->vma >= low
12235 && s->vma + s->size <= high)
12236 {
12237 n->sections[i] = s;
12238 ++i;
12239 }
12240 }
12241
12242 *pm = n;
12243 }
12244 }
12245
12246 /* Allocate a spare program header in dynamic objects so that tools
12247 like the prelinker can add an extra PT_LOAD entry.
12248
12249 If the prelinker needs to make room for a new PT_LOAD entry, its
12250 standard procedure is to move the first (read-only) sections into
12251 the new (writable) segment. However, the MIPS ABI requires
12252 .dynamic to be in a read-only segment, and the section will often
12253 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12254
12255 Although the prelinker could in principle move .dynamic to a
12256 writable segment, it seems better to allocate a spare program
12257 header instead, and avoid the need to move any sections.
12258 There is a long tradition of allocating spare dynamic tags,
12259 so allocating a spare program header seems like a natural
12260 extension.
12261
12262 If INFO is NULL, we may be copying an already prelinked binary
12263 with objcopy or strip, so do not add this header. */
12264 if (info != NULL
12265 && !SGI_COMPAT (abfd)
12266 && bfd_get_section_by_name (abfd, ".dynamic"))
12267 {
12268 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12269 if ((*pm)->p_type == PT_NULL)
12270 break;
12271 if (*pm == NULL)
12272 {
12273 m = bfd_zalloc (abfd, sizeof (*m));
12274 if (m == NULL)
12275 return FALSE;
12276
12277 m->p_type = PT_NULL;
12278 *pm = m;
12279 }
12280 }
12281
12282 return TRUE;
12283 }
12284 \f
12285 /* Return the section that should be marked against GC for a given
12286 relocation. */
12287
12288 asection *
12289 _bfd_mips_elf_gc_mark_hook (asection *sec,
12290 struct bfd_link_info *info,
12291 Elf_Internal_Rela *rel,
12292 struct elf_link_hash_entry *h,
12293 Elf_Internal_Sym *sym)
12294 {
12295 /* ??? Do mips16 stub sections need to be handled special? */
12296
12297 if (h != NULL)
12298 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12299 {
12300 case R_MIPS_GNU_VTINHERIT:
12301 case R_MIPS_GNU_VTENTRY:
12302 return NULL;
12303 }
12304
12305 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12306 }
12307
12308 /* Update the got entry reference counts for the section being removed. */
12309
12310 bfd_boolean
12311 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12312 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12313 asection *sec ATTRIBUTE_UNUSED,
12314 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12315 {
12316 #if 0
12317 Elf_Internal_Shdr *symtab_hdr;
12318 struct elf_link_hash_entry **sym_hashes;
12319 bfd_signed_vma *local_got_refcounts;
12320 const Elf_Internal_Rela *rel, *relend;
12321 unsigned long r_symndx;
12322 struct elf_link_hash_entry *h;
12323
12324 if (info->relocatable)
12325 return TRUE;
12326
12327 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12328 sym_hashes = elf_sym_hashes (abfd);
12329 local_got_refcounts = elf_local_got_refcounts (abfd);
12330
12331 relend = relocs + sec->reloc_count;
12332 for (rel = relocs; rel < relend; rel++)
12333 switch (ELF_R_TYPE (abfd, rel->r_info))
12334 {
12335 case R_MIPS16_GOT16:
12336 case R_MIPS16_CALL16:
12337 case R_MIPS_GOT16:
12338 case R_MIPS_CALL16:
12339 case R_MIPS_CALL_HI16:
12340 case R_MIPS_CALL_LO16:
12341 case R_MIPS_GOT_HI16:
12342 case R_MIPS_GOT_LO16:
12343 case R_MIPS_GOT_DISP:
12344 case R_MIPS_GOT_PAGE:
12345 case R_MIPS_GOT_OFST:
12346 case R_MICROMIPS_GOT16:
12347 case R_MICROMIPS_CALL16:
12348 case R_MICROMIPS_CALL_HI16:
12349 case R_MICROMIPS_CALL_LO16:
12350 case R_MICROMIPS_GOT_HI16:
12351 case R_MICROMIPS_GOT_LO16:
12352 case R_MICROMIPS_GOT_DISP:
12353 case R_MICROMIPS_GOT_PAGE:
12354 case R_MICROMIPS_GOT_OFST:
12355 /* ??? It would seem that the existing MIPS code does no sort
12356 of reference counting or whatnot on its GOT and PLT entries,
12357 so it is not possible to garbage collect them at this time. */
12358 break;
12359
12360 default:
12361 break;
12362 }
12363 #endif
12364
12365 return TRUE;
12366 }
12367
12368 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12369
12370 bfd_boolean
12371 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12372 elf_gc_mark_hook_fn gc_mark_hook)
12373 {
12374 bfd *sub;
12375
12376 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12377
12378 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12379 {
12380 asection *o;
12381
12382 if (! is_mips_elf (sub))
12383 continue;
12384
12385 for (o = sub->sections; o != NULL; o = o->next)
12386 if (!o->gc_mark
12387 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12388 (bfd_get_section_name (sub, o)))
12389 {
12390 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12391 return FALSE;
12392 }
12393 }
12394
12395 return TRUE;
12396 }
12397 \f
12398 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12399 hiding the old indirect symbol. Process additional relocation
12400 information. Also called for weakdefs, in which case we just let
12401 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12402
12403 void
12404 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12405 struct elf_link_hash_entry *dir,
12406 struct elf_link_hash_entry *ind)
12407 {
12408 struct mips_elf_link_hash_entry *dirmips, *indmips;
12409
12410 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12411
12412 dirmips = (struct mips_elf_link_hash_entry *) dir;
12413 indmips = (struct mips_elf_link_hash_entry *) ind;
12414 /* Any absolute non-dynamic relocations against an indirect or weak
12415 definition will be against the target symbol. */
12416 if (indmips->has_static_relocs)
12417 dirmips->has_static_relocs = TRUE;
12418
12419 if (ind->root.type != bfd_link_hash_indirect)
12420 return;
12421
12422 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12423 if (indmips->readonly_reloc)
12424 dirmips->readonly_reloc = TRUE;
12425 if (indmips->no_fn_stub)
12426 dirmips->no_fn_stub = TRUE;
12427 if (indmips->fn_stub)
12428 {
12429 dirmips->fn_stub = indmips->fn_stub;
12430 indmips->fn_stub = NULL;
12431 }
12432 if (indmips->need_fn_stub)
12433 {
12434 dirmips->need_fn_stub = TRUE;
12435 indmips->need_fn_stub = FALSE;
12436 }
12437 if (indmips->call_stub)
12438 {
12439 dirmips->call_stub = indmips->call_stub;
12440 indmips->call_stub = NULL;
12441 }
12442 if (indmips->call_fp_stub)
12443 {
12444 dirmips->call_fp_stub = indmips->call_fp_stub;
12445 indmips->call_fp_stub = NULL;
12446 }
12447 if (indmips->global_got_area < dirmips->global_got_area)
12448 dirmips->global_got_area = indmips->global_got_area;
12449 if (indmips->global_got_area < GGA_NONE)
12450 indmips->global_got_area = GGA_NONE;
12451 if (indmips->has_nonpic_branches)
12452 dirmips->has_nonpic_branches = TRUE;
12453 }
12454 \f
12455 #define PDR_SIZE 32
12456
12457 bfd_boolean
12458 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12459 struct bfd_link_info *info)
12460 {
12461 asection *o;
12462 bfd_boolean ret = FALSE;
12463 unsigned char *tdata;
12464 size_t i, skip;
12465
12466 o = bfd_get_section_by_name (abfd, ".pdr");
12467 if (! o)
12468 return FALSE;
12469 if (o->size == 0)
12470 return FALSE;
12471 if (o->size % PDR_SIZE != 0)
12472 return FALSE;
12473 if (o->output_section != NULL
12474 && bfd_is_abs_section (o->output_section))
12475 return FALSE;
12476
12477 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12478 if (! tdata)
12479 return FALSE;
12480
12481 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12482 info->keep_memory);
12483 if (!cookie->rels)
12484 {
12485 free (tdata);
12486 return FALSE;
12487 }
12488
12489 cookie->rel = cookie->rels;
12490 cookie->relend = cookie->rels + o->reloc_count;
12491
12492 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12493 {
12494 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12495 {
12496 tdata[i] = 1;
12497 skip ++;
12498 }
12499 }
12500
12501 if (skip != 0)
12502 {
12503 mips_elf_section_data (o)->u.tdata = tdata;
12504 if (o->rawsize == 0)
12505 o->rawsize = o->size;
12506 o->size -= skip * PDR_SIZE;
12507 ret = TRUE;
12508 }
12509 else
12510 free (tdata);
12511
12512 if (! info->keep_memory)
12513 free (cookie->rels);
12514
12515 return ret;
12516 }
12517
12518 bfd_boolean
12519 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12520 {
12521 if (strcmp (sec->name, ".pdr") == 0)
12522 return TRUE;
12523 return FALSE;
12524 }
12525
12526 bfd_boolean
12527 _bfd_mips_elf_write_section (bfd *output_bfd,
12528 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12529 asection *sec, bfd_byte *contents)
12530 {
12531 bfd_byte *to, *from, *end;
12532 int i;
12533
12534 if (strcmp (sec->name, ".pdr") != 0)
12535 return FALSE;
12536
12537 if (mips_elf_section_data (sec)->u.tdata == NULL)
12538 return FALSE;
12539
12540 to = contents;
12541 end = contents + sec->size;
12542 for (from = contents, i = 0;
12543 from < end;
12544 from += PDR_SIZE, i++)
12545 {
12546 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12547 continue;
12548 if (to != from)
12549 memcpy (to, from, PDR_SIZE);
12550 to += PDR_SIZE;
12551 }
12552 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12553 sec->output_offset, sec->size);
12554 return TRUE;
12555 }
12556 \f
12557 /* microMIPS code retains local labels for linker relaxation. Omit them
12558 from output by default for clarity. */
12559
12560 bfd_boolean
12561 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12562 {
12563 return _bfd_elf_is_local_label_name (abfd, sym->name);
12564 }
12565
12566 /* MIPS ELF uses a special find_nearest_line routine in order the
12567 handle the ECOFF debugging information. */
12568
12569 struct mips_elf_find_line
12570 {
12571 struct ecoff_debug_info d;
12572 struct ecoff_find_line i;
12573 };
12574
12575 bfd_boolean
12576 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
12577 asymbol **symbols, bfd_vma offset,
12578 const char **filename_ptr,
12579 const char **functionname_ptr,
12580 unsigned int *line_ptr)
12581 {
12582 asection *msec;
12583
12584 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
12585 filename_ptr, functionname_ptr,
12586 line_ptr))
12587 return TRUE;
12588
12589 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
12590 section, symbols, offset,
12591 filename_ptr, functionname_ptr,
12592 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
12593 &elf_tdata (abfd)->dwarf2_find_line_info))
12594 return TRUE;
12595
12596 msec = bfd_get_section_by_name (abfd, ".mdebug");
12597 if (msec != NULL)
12598 {
12599 flagword origflags;
12600 struct mips_elf_find_line *fi;
12601 const struct ecoff_debug_swap * const swap =
12602 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12603
12604 /* If we are called during a link, mips_elf_final_link may have
12605 cleared the SEC_HAS_CONTENTS field. We force it back on here
12606 if appropriate (which it normally will be). */
12607 origflags = msec->flags;
12608 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12609 msec->flags |= SEC_HAS_CONTENTS;
12610
12611 fi = mips_elf_tdata (abfd)->find_line_info;
12612 if (fi == NULL)
12613 {
12614 bfd_size_type external_fdr_size;
12615 char *fraw_src;
12616 char *fraw_end;
12617 struct fdr *fdr_ptr;
12618 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12619
12620 fi = bfd_zalloc (abfd, amt);
12621 if (fi == NULL)
12622 {
12623 msec->flags = origflags;
12624 return FALSE;
12625 }
12626
12627 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12628 {
12629 msec->flags = origflags;
12630 return FALSE;
12631 }
12632
12633 /* Swap in the FDR information. */
12634 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12635 fi->d.fdr = bfd_alloc (abfd, amt);
12636 if (fi->d.fdr == NULL)
12637 {
12638 msec->flags = origflags;
12639 return FALSE;
12640 }
12641 external_fdr_size = swap->external_fdr_size;
12642 fdr_ptr = fi->d.fdr;
12643 fraw_src = (char *) fi->d.external_fdr;
12644 fraw_end = (fraw_src
12645 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12646 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12647 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12648
12649 mips_elf_tdata (abfd)->find_line_info = fi;
12650
12651 /* Note that we don't bother to ever free this information.
12652 find_nearest_line is either called all the time, as in
12653 objdump -l, so the information should be saved, or it is
12654 rarely called, as in ld error messages, so the memory
12655 wasted is unimportant. Still, it would probably be a
12656 good idea for free_cached_info to throw it away. */
12657 }
12658
12659 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12660 &fi->i, filename_ptr, functionname_ptr,
12661 line_ptr))
12662 {
12663 msec->flags = origflags;
12664 return TRUE;
12665 }
12666
12667 msec->flags = origflags;
12668 }
12669
12670 /* Fall back on the generic ELF find_nearest_line routine. */
12671
12672 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
12673 filename_ptr, functionname_ptr,
12674 line_ptr);
12675 }
12676
12677 bfd_boolean
12678 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12679 const char **filename_ptr,
12680 const char **functionname_ptr,
12681 unsigned int *line_ptr)
12682 {
12683 bfd_boolean found;
12684 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12685 functionname_ptr, line_ptr,
12686 & elf_tdata (abfd)->dwarf2_find_line_info);
12687 return found;
12688 }
12689
12690 \f
12691 /* When are writing out the .options or .MIPS.options section,
12692 remember the bytes we are writing out, so that we can install the
12693 GP value in the section_processing routine. */
12694
12695 bfd_boolean
12696 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12697 const void *location,
12698 file_ptr offset, bfd_size_type count)
12699 {
12700 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12701 {
12702 bfd_byte *c;
12703
12704 if (elf_section_data (section) == NULL)
12705 {
12706 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12707 section->used_by_bfd = bfd_zalloc (abfd, amt);
12708 if (elf_section_data (section) == NULL)
12709 return FALSE;
12710 }
12711 c = mips_elf_section_data (section)->u.tdata;
12712 if (c == NULL)
12713 {
12714 c = bfd_zalloc (abfd, section->size);
12715 if (c == NULL)
12716 return FALSE;
12717 mips_elf_section_data (section)->u.tdata = c;
12718 }
12719
12720 memcpy (c + offset, location, count);
12721 }
12722
12723 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12724 count);
12725 }
12726
12727 /* This is almost identical to bfd_generic_get_... except that some
12728 MIPS relocations need to be handled specially. Sigh. */
12729
12730 bfd_byte *
12731 _bfd_elf_mips_get_relocated_section_contents
12732 (bfd *abfd,
12733 struct bfd_link_info *link_info,
12734 struct bfd_link_order *link_order,
12735 bfd_byte *data,
12736 bfd_boolean relocatable,
12737 asymbol **symbols)
12738 {
12739 /* Get enough memory to hold the stuff */
12740 bfd *input_bfd = link_order->u.indirect.section->owner;
12741 asection *input_section = link_order->u.indirect.section;
12742 bfd_size_type sz;
12743
12744 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12745 arelent **reloc_vector = NULL;
12746 long reloc_count;
12747
12748 if (reloc_size < 0)
12749 goto error_return;
12750
12751 reloc_vector = bfd_malloc (reloc_size);
12752 if (reloc_vector == NULL && reloc_size != 0)
12753 goto error_return;
12754
12755 /* read in the section */
12756 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12757 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12758 goto error_return;
12759
12760 reloc_count = bfd_canonicalize_reloc (input_bfd,
12761 input_section,
12762 reloc_vector,
12763 symbols);
12764 if (reloc_count < 0)
12765 goto error_return;
12766
12767 if (reloc_count > 0)
12768 {
12769 arelent **parent;
12770 /* for mips */
12771 int gp_found;
12772 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12773
12774 {
12775 struct bfd_hash_entry *h;
12776 struct bfd_link_hash_entry *lh;
12777 /* Skip all this stuff if we aren't mixing formats. */
12778 if (abfd && input_bfd
12779 && abfd->xvec == input_bfd->xvec)
12780 lh = 0;
12781 else
12782 {
12783 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12784 lh = (struct bfd_link_hash_entry *) h;
12785 }
12786 lookup:
12787 if (lh)
12788 {
12789 switch (lh->type)
12790 {
12791 case bfd_link_hash_undefined:
12792 case bfd_link_hash_undefweak:
12793 case bfd_link_hash_common:
12794 gp_found = 0;
12795 break;
12796 case bfd_link_hash_defined:
12797 case bfd_link_hash_defweak:
12798 gp_found = 1;
12799 gp = lh->u.def.value;
12800 break;
12801 case bfd_link_hash_indirect:
12802 case bfd_link_hash_warning:
12803 lh = lh->u.i.link;
12804 /* @@FIXME ignoring warning for now */
12805 goto lookup;
12806 case bfd_link_hash_new:
12807 default:
12808 abort ();
12809 }
12810 }
12811 else
12812 gp_found = 0;
12813 }
12814 /* end mips */
12815 for (parent = reloc_vector; *parent != NULL; parent++)
12816 {
12817 char *error_message = NULL;
12818 bfd_reloc_status_type r;
12819
12820 /* Specific to MIPS: Deal with relocation types that require
12821 knowing the gp of the output bfd. */
12822 asymbol *sym = *(*parent)->sym_ptr_ptr;
12823
12824 /* If we've managed to find the gp and have a special
12825 function for the relocation then go ahead, else default
12826 to the generic handling. */
12827 if (gp_found
12828 && (*parent)->howto->special_function
12829 == _bfd_mips_elf32_gprel16_reloc)
12830 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12831 input_section, relocatable,
12832 data, gp);
12833 else
12834 r = bfd_perform_relocation (input_bfd, *parent, data,
12835 input_section,
12836 relocatable ? abfd : NULL,
12837 &error_message);
12838
12839 if (relocatable)
12840 {
12841 asection *os = input_section->output_section;
12842
12843 /* A partial link, so keep the relocs */
12844 os->orelocation[os->reloc_count] = *parent;
12845 os->reloc_count++;
12846 }
12847
12848 if (r != bfd_reloc_ok)
12849 {
12850 switch (r)
12851 {
12852 case bfd_reloc_undefined:
12853 if (!((*link_info->callbacks->undefined_symbol)
12854 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12855 input_bfd, input_section, (*parent)->address, TRUE)))
12856 goto error_return;
12857 break;
12858 case bfd_reloc_dangerous:
12859 BFD_ASSERT (error_message != NULL);
12860 if (!((*link_info->callbacks->reloc_dangerous)
12861 (link_info, error_message, input_bfd, input_section,
12862 (*parent)->address)))
12863 goto error_return;
12864 break;
12865 case bfd_reloc_overflow:
12866 if (!((*link_info->callbacks->reloc_overflow)
12867 (link_info, NULL,
12868 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12869 (*parent)->howto->name, (*parent)->addend,
12870 input_bfd, input_section, (*parent)->address)))
12871 goto error_return;
12872 break;
12873 case bfd_reloc_outofrange:
12874 default:
12875 abort ();
12876 break;
12877 }
12878
12879 }
12880 }
12881 }
12882 if (reloc_vector != NULL)
12883 free (reloc_vector);
12884 return data;
12885
12886 error_return:
12887 if (reloc_vector != NULL)
12888 free (reloc_vector);
12889 return NULL;
12890 }
12891 \f
12892 static bfd_boolean
12893 mips_elf_relax_delete_bytes (bfd *abfd,
12894 asection *sec, bfd_vma addr, int count)
12895 {
12896 Elf_Internal_Shdr *symtab_hdr;
12897 unsigned int sec_shndx;
12898 bfd_byte *contents;
12899 Elf_Internal_Rela *irel, *irelend;
12900 Elf_Internal_Sym *isym;
12901 Elf_Internal_Sym *isymend;
12902 struct elf_link_hash_entry **sym_hashes;
12903 struct elf_link_hash_entry **end_hashes;
12904 struct elf_link_hash_entry **start_hashes;
12905 unsigned int symcount;
12906
12907 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12908 contents = elf_section_data (sec)->this_hdr.contents;
12909
12910 irel = elf_section_data (sec)->relocs;
12911 irelend = irel + sec->reloc_count;
12912
12913 /* Actually delete the bytes. */
12914 memmove (contents + addr, contents + addr + count,
12915 (size_t) (sec->size - addr - count));
12916 sec->size -= count;
12917
12918 /* Adjust all the relocs. */
12919 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12920 {
12921 /* Get the new reloc address. */
12922 if (irel->r_offset > addr)
12923 irel->r_offset -= count;
12924 }
12925
12926 BFD_ASSERT (addr % 2 == 0);
12927 BFD_ASSERT (count % 2 == 0);
12928
12929 /* Adjust the local symbols defined in this section. */
12930 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12931 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12932 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12933 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12934 isym->st_value -= count;
12935
12936 /* Now adjust the global symbols defined in this section. */
12937 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12938 - symtab_hdr->sh_info);
12939 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12940 end_hashes = sym_hashes + symcount;
12941
12942 for (; sym_hashes < end_hashes; sym_hashes++)
12943 {
12944 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12945
12946 if ((sym_hash->root.type == bfd_link_hash_defined
12947 || sym_hash->root.type == bfd_link_hash_defweak)
12948 && sym_hash->root.u.def.section == sec)
12949 {
12950 bfd_vma value = sym_hash->root.u.def.value;
12951
12952 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12953 value &= MINUS_TWO;
12954 if (value > addr)
12955 sym_hash->root.u.def.value -= count;
12956 }
12957 }
12958
12959 return TRUE;
12960 }
12961
12962
12963 /* Opcodes needed for microMIPS relaxation as found in
12964 opcodes/micromips-opc.c. */
12965
12966 struct opcode_descriptor {
12967 unsigned long match;
12968 unsigned long mask;
12969 };
12970
12971 /* The $ra register aka $31. */
12972
12973 #define RA 31
12974
12975 /* 32-bit instruction format register fields. */
12976
12977 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12978 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12979
12980 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12981
12982 #define OP16_VALID_REG(r) \
12983 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12984
12985
12986 /* 32-bit and 16-bit branches. */
12987
12988 static const struct opcode_descriptor b_insns_32[] = {
12989 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12990 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12991 { 0, 0 } /* End marker for find_match(). */
12992 };
12993
12994 static const struct opcode_descriptor bc_insn_32 =
12995 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12996
12997 static const struct opcode_descriptor bz_insn_32 =
12998 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12999
13000 static const struct opcode_descriptor bzal_insn_32 =
13001 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13002
13003 static const struct opcode_descriptor beq_insn_32 =
13004 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13005
13006 static const struct opcode_descriptor b_insn_16 =
13007 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13008
13009 static const struct opcode_descriptor bz_insn_16 =
13010 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13011
13012
13013 /* 32-bit and 16-bit branch EQ and NE zero. */
13014
13015 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13016 eq and second the ne. This convention is used when replacing a
13017 32-bit BEQ/BNE with the 16-bit version. */
13018
13019 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13020
13021 static const struct opcode_descriptor bz_rs_insns_32[] = {
13022 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13023 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13024 { 0, 0 } /* End marker for find_match(). */
13025 };
13026
13027 static const struct opcode_descriptor bz_rt_insns_32[] = {
13028 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13029 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13030 { 0, 0 } /* End marker for find_match(). */
13031 };
13032
13033 static const struct opcode_descriptor bzc_insns_32[] = {
13034 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13035 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13036 { 0, 0 } /* End marker for find_match(). */
13037 };
13038
13039 static const struct opcode_descriptor bz_insns_16[] = {
13040 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13041 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13042 { 0, 0 } /* End marker for find_match(). */
13043 };
13044
13045 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13046
13047 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
13048 #define BZ16_REG_FIELD(r) \
13049 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
13050
13051
13052 /* 32-bit instructions with a delay slot. */
13053
13054 static const struct opcode_descriptor jal_insn_32_bd16 =
13055 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13056
13057 static const struct opcode_descriptor jal_insn_32_bd32 =
13058 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13059
13060 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13061 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13062
13063 static const struct opcode_descriptor j_insn_32 =
13064 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13065
13066 static const struct opcode_descriptor jalr_insn_32 =
13067 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13068
13069 /* This table can be compacted, because no opcode replacement is made. */
13070
13071 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13072 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13073
13074 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13075 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13076
13077 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13078 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13079 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13080 { 0, 0 } /* End marker for find_match(). */
13081 };
13082
13083 /* This table can be compacted, because no opcode replacement is made. */
13084
13085 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13086 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13087
13088 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13089 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13090 { 0, 0 } /* End marker for find_match(). */
13091 };
13092
13093
13094 /* 16-bit instructions with a delay slot. */
13095
13096 static const struct opcode_descriptor jalr_insn_16_bd16 =
13097 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13098
13099 static const struct opcode_descriptor jalr_insn_16_bd32 =
13100 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13101
13102 static const struct opcode_descriptor jr_insn_16 =
13103 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13104
13105 #define JR16_REG(opcode) ((opcode) & 0x1f)
13106
13107 /* This table can be compacted, because no opcode replacement is made. */
13108
13109 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13110 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13111
13112 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13113 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13114 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13115 { 0, 0 } /* End marker for find_match(). */
13116 };
13117
13118
13119 /* LUI instruction. */
13120
13121 static const struct opcode_descriptor lui_insn =
13122 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13123
13124
13125 /* ADDIU instruction. */
13126
13127 static const struct opcode_descriptor addiu_insn =
13128 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13129
13130 static const struct opcode_descriptor addiupc_insn =
13131 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13132
13133 #define ADDIUPC_REG_FIELD(r) \
13134 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13135
13136
13137 /* Relaxable instructions in a JAL delay slot: MOVE. */
13138
13139 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13140 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13141 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13142 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13143
13144 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13145 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13146
13147 static const struct opcode_descriptor move_insns_32[] = {
13148 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13149 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13150 { 0, 0 } /* End marker for find_match(). */
13151 };
13152
13153 static const struct opcode_descriptor move_insn_16 =
13154 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13155
13156
13157 /* NOP instructions. */
13158
13159 static const struct opcode_descriptor nop_insn_32 =
13160 { /* "nop", "", */ 0x00000000, 0xffffffff };
13161
13162 static const struct opcode_descriptor nop_insn_16 =
13163 { /* "nop", "", */ 0x0c00, 0xffff };
13164
13165
13166 /* Instruction match support. */
13167
13168 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13169
13170 static int
13171 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13172 {
13173 unsigned long indx;
13174
13175 for (indx = 0; insn[indx].mask != 0; indx++)
13176 if (MATCH (opcode, insn[indx]))
13177 return indx;
13178
13179 return -1;
13180 }
13181
13182
13183 /* Branch and delay slot decoding support. */
13184
13185 /* If PTR points to what *might* be a 16-bit branch or jump, then
13186 return the minimum length of its delay slot, otherwise return 0.
13187 Non-zero results are not definitive as we might be checking against
13188 the second half of another instruction. */
13189
13190 static int
13191 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13192 {
13193 unsigned long opcode;
13194 int bdsize;
13195
13196 opcode = bfd_get_16 (abfd, ptr);
13197 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13198 /* 16-bit branch/jump with a 32-bit delay slot. */
13199 bdsize = 4;
13200 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13201 || find_match (opcode, ds_insns_16_bd16) >= 0)
13202 /* 16-bit branch/jump with a 16-bit delay slot. */
13203 bdsize = 2;
13204 else
13205 /* No delay slot. */
13206 bdsize = 0;
13207
13208 return bdsize;
13209 }
13210
13211 /* If PTR points to what *might* be a 32-bit branch or jump, then
13212 return the minimum length of its delay slot, otherwise return 0.
13213 Non-zero results are not definitive as we might be checking against
13214 the second half of another instruction. */
13215
13216 static int
13217 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13218 {
13219 unsigned long opcode;
13220 int bdsize;
13221
13222 opcode = bfd_get_micromips_32 (abfd, ptr);
13223 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13224 /* 32-bit branch/jump with a 32-bit delay slot. */
13225 bdsize = 4;
13226 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13227 /* 32-bit branch/jump with a 16-bit delay slot. */
13228 bdsize = 2;
13229 else
13230 /* No delay slot. */
13231 bdsize = 0;
13232
13233 return bdsize;
13234 }
13235
13236 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13237 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13238
13239 static bfd_boolean
13240 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13241 {
13242 unsigned long opcode;
13243
13244 opcode = bfd_get_16 (abfd, ptr);
13245 if (MATCH (opcode, b_insn_16)
13246 /* B16 */
13247 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13248 /* JR16 */
13249 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13250 /* BEQZ16, BNEZ16 */
13251 || (MATCH (opcode, jalr_insn_16_bd32)
13252 /* JALR16 */
13253 && reg != JR16_REG (opcode) && reg != RA))
13254 return TRUE;
13255
13256 return FALSE;
13257 }
13258
13259 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13260 then return TRUE, otherwise FALSE. */
13261
13262 static bfd_boolean
13263 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13264 {
13265 unsigned long opcode;
13266
13267 opcode = bfd_get_micromips_32 (abfd, ptr);
13268 if (MATCH (opcode, j_insn_32)
13269 /* J */
13270 || MATCH (opcode, bc_insn_32)
13271 /* BC1F, BC1T, BC2F, BC2T */
13272 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13273 /* JAL, JALX */
13274 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13275 /* BGEZ, BGTZ, BLEZ, BLTZ */
13276 || (MATCH (opcode, bzal_insn_32)
13277 /* BGEZAL, BLTZAL */
13278 && reg != OP32_SREG (opcode) && reg != RA)
13279 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13280 /* JALR, JALR.HB, BEQ, BNE */
13281 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13282 return TRUE;
13283
13284 return FALSE;
13285 }
13286
13287 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13288 IRELEND) at OFFSET indicate that there must be a compact branch there,
13289 then return TRUE, otherwise FALSE. */
13290
13291 static bfd_boolean
13292 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13293 const Elf_Internal_Rela *internal_relocs,
13294 const Elf_Internal_Rela *irelend)
13295 {
13296 const Elf_Internal_Rela *irel;
13297 unsigned long opcode;
13298
13299 opcode = bfd_get_micromips_32 (abfd, ptr);
13300 if (find_match (opcode, bzc_insns_32) < 0)
13301 return FALSE;
13302
13303 for (irel = internal_relocs; irel < irelend; irel++)
13304 if (irel->r_offset == offset
13305 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13306 return TRUE;
13307
13308 return FALSE;
13309 }
13310
13311 /* Bitsize checking. */
13312 #define IS_BITSIZE(val, N) \
13313 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13314 - (1ULL << ((N) - 1))) == (val))
13315
13316 \f
13317 bfd_boolean
13318 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13319 struct bfd_link_info *link_info,
13320 bfd_boolean *again)
13321 {
13322 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13323 Elf_Internal_Shdr *symtab_hdr;
13324 Elf_Internal_Rela *internal_relocs;
13325 Elf_Internal_Rela *irel, *irelend;
13326 bfd_byte *contents = NULL;
13327 Elf_Internal_Sym *isymbuf = NULL;
13328
13329 /* Assume nothing changes. */
13330 *again = FALSE;
13331
13332 /* We don't have to do anything for a relocatable link, if
13333 this section does not have relocs, or if this is not a
13334 code section. */
13335
13336 if (link_info->relocatable
13337 || (sec->flags & SEC_RELOC) == 0
13338 || sec->reloc_count == 0
13339 || (sec->flags & SEC_CODE) == 0)
13340 return TRUE;
13341
13342 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13343
13344 /* Get a copy of the native relocations. */
13345 internal_relocs = (_bfd_elf_link_read_relocs
13346 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13347 link_info->keep_memory));
13348 if (internal_relocs == NULL)
13349 goto error_return;
13350
13351 /* Walk through them looking for relaxing opportunities. */
13352 irelend = internal_relocs + sec->reloc_count;
13353 for (irel = internal_relocs; irel < irelend; irel++)
13354 {
13355 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13356 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13357 bfd_boolean target_is_micromips_code_p;
13358 unsigned long opcode;
13359 bfd_vma symval;
13360 bfd_vma pcrval;
13361 bfd_byte *ptr;
13362 int fndopc;
13363
13364 /* The number of bytes to delete for relaxation and from where
13365 to delete these bytes starting at irel->r_offset. */
13366 int delcnt = 0;
13367 int deloff = 0;
13368
13369 /* If this isn't something that can be relaxed, then ignore
13370 this reloc. */
13371 if (r_type != R_MICROMIPS_HI16
13372 && r_type != R_MICROMIPS_PC16_S1
13373 && r_type != R_MICROMIPS_26_S1)
13374 continue;
13375
13376 /* Get the section contents if we haven't done so already. */
13377 if (contents == NULL)
13378 {
13379 /* Get cached copy if it exists. */
13380 if (elf_section_data (sec)->this_hdr.contents != NULL)
13381 contents = elf_section_data (sec)->this_hdr.contents;
13382 /* Go get them off disk. */
13383 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13384 goto error_return;
13385 }
13386 ptr = contents + irel->r_offset;
13387
13388 /* Read this BFD's local symbols if we haven't done so already. */
13389 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13390 {
13391 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13392 if (isymbuf == NULL)
13393 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13394 symtab_hdr->sh_info, 0,
13395 NULL, NULL, NULL);
13396 if (isymbuf == NULL)
13397 goto error_return;
13398 }
13399
13400 /* Get the value of the symbol referred to by the reloc. */
13401 if (r_symndx < symtab_hdr->sh_info)
13402 {
13403 /* A local symbol. */
13404 Elf_Internal_Sym *isym;
13405 asection *sym_sec;
13406
13407 isym = isymbuf + r_symndx;
13408 if (isym->st_shndx == SHN_UNDEF)
13409 sym_sec = bfd_und_section_ptr;
13410 else if (isym->st_shndx == SHN_ABS)
13411 sym_sec = bfd_abs_section_ptr;
13412 else if (isym->st_shndx == SHN_COMMON)
13413 sym_sec = bfd_com_section_ptr;
13414 else
13415 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13416 symval = (isym->st_value
13417 + sym_sec->output_section->vma
13418 + sym_sec->output_offset);
13419 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13420 }
13421 else
13422 {
13423 unsigned long indx;
13424 struct elf_link_hash_entry *h;
13425
13426 /* An external symbol. */
13427 indx = r_symndx - symtab_hdr->sh_info;
13428 h = elf_sym_hashes (abfd)[indx];
13429 BFD_ASSERT (h != NULL);
13430
13431 if (h->root.type != bfd_link_hash_defined
13432 && h->root.type != bfd_link_hash_defweak)
13433 /* This appears to be a reference to an undefined
13434 symbol. Just ignore it -- it will be caught by the
13435 regular reloc processing. */
13436 continue;
13437
13438 symval = (h->root.u.def.value
13439 + h->root.u.def.section->output_section->vma
13440 + h->root.u.def.section->output_offset);
13441 target_is_micromips_code_p = (!h->needs_plt
13442 && ELF_ST_IS_MICROMIPS (h->other));
13443 }
13444
13445
13446 /* For simplicity of coding, we are going to modify the
13447 section contents, the section relocs, and the BFD symbol
13448 table. We must tell the rest of the code not to free up this
13449 information. It would be possible to instead create a table
13450 of changes which have to be made, as is done in coff-mips.c;
13451 that would be more work, but would require less memory when
13452 the linker is run. */
13453
13454 /* Only 32-bit instructions relaxed. */
13455 if (irel->r_offset + 4 > sec->size)
13456 continue;
13457
13458 opcode = bfd_get_micromips_32 (abfd, ptr);
13459
13460 /* This is the pc-relative distance from the instruction the
13461 relocation is applied to, to the symbol referred. */
13462 pcrval = (symval
13463 - (sec->output_section->vma + sec->output_offset)
13464 - irel->r_offset);
13465
13466 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13467 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13468 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13469
13470 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13471
13472 where pcrval has first to be adjusted to apply against the LO16
13473 location (we make the adjustment later on, when we have figured
13474 out the offset). */
13475 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13476 {
13477 bfd_boolean bzc = FALSE;
13478 unsigned long nextopc;
13479 unsigned long reg;
13480 bfd_vma offset;
13481
13482 /* Give up if the previous reloc was a HI16 against this symbol
13483 too. */
13484 if (irel > internal_relocs
13485 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13486 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13487 continue;
13488
13489 /* Or if the next reloc is not a LO16 against this symbol. */
13490 if (irel + 1 >= irelend
13491 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13492 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13493 continue;
13494
13495 /* Or if the second next reloc is a LO16 against this symbol too. */
13496 if (irel + 2 >= irelend
13497 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13498 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13499 continue;
13500
13501 /* See if the LUI instruction *might* be in a branch delay slot.
13502 We check whether what looks like a 16-bit branch or jump is
13503 actually an immediate argument to a compact branch, and let
13504 it through if so. */
13505 if (irel->r_offset >= 2
13506 && check_br16_dslot (abfd, ptr - 2)
13507 && !(irel->r_offset >= 4
13508 && (bzc = check_relocated_bzc (abfd,
13509 ptr - 4, irel->r_offset - 4,
13510 internal_relocs, irelend))))
13511 continue;
13512 if (irel->r_offset >= 4
13513 && !bzc
13514 && check_br32_dslot (abfd, ptr - 4))
13515 continue;
13516
13517 reg = OP32_SREG (opcode);
13518
13519 /* We only relax adjacent instructions or ones separated with
13520 a branch or jump that has a delay slot. The branch or jump
13521 must not fiddle with the register used to hold the address.
13522 Subtract 4 for the LUI itself. */
13523 offset = irel[1].r_offset - irel[0].r_offset;
13524 switch (offset - 4)
13525 {
13526 case 0:
13527 break;
13528 case 2:
13529 if (check_br16 (abfd, ptr + 4, reg))
13530 break;
13531 continue;
13532 case 4:
13533 if (check_br32 (abfd, ptr + 4, reg))
13534 break;
13535 continue;
13536 default:
13537 continue;
13538 }
13539
13540 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13541
13542 /* Give up unless the same register is used with both
13543 relocations. */
13544 if (OP32_SREG (nextopc) != reg)
13545 continue;
13546
13547 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13548 and rounding up to take masking of the two LSBs into account. */
13549 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13550
13551 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13552 if (IS_BITSIZE (symval, 16))
13553 {
13554 /* Fix the relocation's type. */
13555 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13556
13557 /* Instructions using R_MICROMIPS_LO16 have the base or
13558 source register in bits 20:16. This register becomes $0
13559 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13560 nextopc &= ~0x001f0000;
13561 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13562 contents + irel[1].r_offset);
13563 }
13564
13565 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13566 We add 4 to take LUI deletion into account while checking
13567 the PC-relative distance. */
13568 else if (symval % 4 == 0
13569 && IS_BITSIZE (pcrval + 4, 25)
13570 && MATCH (nextopc, addiu_insn)
13571 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13572 && OP16_VALID_REG (OP32_TREG (nextopc)))
13573 {
13574 /* Fix the relocation's type. */
13575 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13576
13577 /* Replace ADDIU with the ADDIUPC version. */
13578 nextopc = (addiupc_insn.match
13579 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13580
13581 bfd_put_micromips_32 (abfd, nextopc,
13582 contents + irel[1].r_offset);
13583 }
13584
13585 /* Can't do anything, give up, sigh... */
13586 else
13587 continue;
13588
13589 /* Fix the relocation's type. */
13590 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13591
13592 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13593 delcnt = 4;
13594 deloff = 0;
13595 }
13596
13597 /* Compact branch relaxation -- due to the multitude of macros
13598 employed by the compiler/assembler, compact branches are not
13599 always generated. Obviously, this can/will be fixed elsewhere,
13600 but there is no drawback in double checking it here. */
13601 else if (r_type == R_MICROMIPS_PC16_S1
13602 && irel->r_offset + 5 < sec->size
13603 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13604 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13605 && ((!insn32
13606 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13607 nop_insn_16) ? 2 : 0))
13608 || (irel->r_offset + 7 < sec->size
13609 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13610 ptr + 4),
13611 nop_insn_32) ? 4 : 0))))
13612 {
13613 unsigned long reg;
13614
13615 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13616
13617 /* Replace BEQZ/BNEZ with the compact version. */
13618 opcode = (bzc_insns_32[fndopc].match
13619 | BZC32_REG_FIELD (reg)
13620 | (opcode & 0xffff)); /* Addend value. */
13621
13622 bfd_put_micromips_32 (abfd, opcode, ptr);
13623
13624 /* Delete the delay slot NOP: two or four bytes from
13625 irel->offset + 4; delcnt has already been set above. */
13626 deloff = 4;
13627 }
13628
13629 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13630 to check the distance from the next instruction, so subtract 2. */
13631 else if (!insn32
13632 && r_type == R_MICROMIPS_PC16_S1
13633 && IS_BITSIZE (pcrval - 2, 11)
13634 && find_match (opcode, b_insns_32) >= 0)
13635 {
13636 /* Fix the relocation's type. */
13637 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13638
13639 /* Replace the 32-bit opcode with a 16-bit opcode. */
13640 bfd_put_16 (abfd,
13641 (b_insn_16.match
13642 | (opcode & 0x3ff)), /* Addend value. */
13643 ptr);
13644
13645 /* Delete 2 bytes from irel->r_offset + 2. */
13646 delcnt = 2;
13647 deloff = 2;
13648 }
13649
13650 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13651 to check the distance from the next instruction, so subtract 2. */
13652 else if (!insn32
13653 && r_type == R_MICROMIPS_PC16_S1
13654 && IS_BITSIZE (pcrval - 2, 8)
13655 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13656 && OP16_VALID_REG (OP32_SREG (opcode)))
13657 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13658 && OP16_VALID_REG (OP32_TREG (opcode)))))
13659 {
13660 unsigned long reg;
13661
13662 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13663
13664 /* Fix the relocation's type. */
13665 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13666
13667 /* Replace the 32-bit opcode with a 16-bit opcode. */
13668 bfd_put_16 (abfd,
13669 (bz_insns_16[fndopc].match
13670 | BZ16_REG_FIELD (reg)
13671 | (opcode & 0x7f)), /* Addend value. */
13672 ptr);
13673
13674 /* Delete 2 bytes from irel->r_offset + 2. */
13675 delcnt = 2;
13676 deloff = 2;
13677 }
13678
13679 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13680 else if (!insn32
13681 && r_type == R_MICROMIPS_26_S1
13682 && target_is_micromips_code_p
13683 && irel->r_offset + 7 < sec->size
13684 && MATCH (opcode, jal_insn_32_bd32))
13685 {
13686 unsigned long n32opc;
13687 bfd_boolean relaxed = FALSE;
13688
13689 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13690
13691 if (MATCH (n32opc, nop_insn_32))
13692 {
13693 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13694 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13695
13696 relaxed = TRUE;
13697 }
13698 else if (find_match (n32opc, move_insns_32) >= 0)
13699 {
13700 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13701 bfd_put_16 (abfd,
13702 (move_insn_16.match
13703 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13704 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13705 ptr + 4);
13706
13707 relaxed = TRUE;
13708 }
13709 /* Other 32-bit instructions relaxable to 16-bit
13710 instructions will be handled here later. */
13711
13712 if (relaxed)
13713 {
13714 /* JAL with 32-bit delay slot that is changed to a JALS
13715 with 16-bit delay slot. */
13716 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13717
13718 /* Delete 2 bytes from irel->r_offset + 6. */
13719 delcnt = 2;
13720 deloff = 6;
13721 }
13722 }
13723
13724 if (delcnt != 0)
13725 {
13726 /* Note that we've changed the relocs, section contents, etc. */
13727 elf_section_data (sec)->relocs = internal_relocs;
13728 elf_section_data (sec)->this_hdr.contents = contents;
13729 symtab_hdr->contents = (unsigned char *) isymbuf;
13730
13731 /* Delete bytes depending on the delcnt and deloff. */
13732 if (!mips_elf_relax_delete_bytes (abfd, sec,
13733 irel->r_offset + deloff, delcnt))
13734 goto error_return;
13735
13736 /* That will change things, so we should relax again.
13737 Note that this is not required, and it may be slow. */
13738 *again = TRUE;
13739 }
13740 }
13741
13742 if (isymbuf != NULL
13743 && symtab_hdr->contents != (unsigned char *) isymbuf)
13744 {
13745 if (! link_info->keep_memory)
13746 free (isymbuf);
13747 else
13748 {
13749 /* Cache the symbols for elf_link_input_bfd. */
13750 symtab_hdr->contents = (unsigned char *) isymbuf;
13751 }
13752 }
13753
13754 if (contents != NULL
13755 && elf_section_data (sec)->this_hdr.contents != contents)
13756 {
13757 if (! link_info->keep_memory)
13758 free (contents);
13759 else
13760 {
13761 /* Cache the section contents for elf_link_input_bfd. */
13762 elf_section_data (sec)->this_hdr.contents = contents;
13763 }
13764 }
13765
13766 if (internal_relocs != NULL
13767 && elf_section_data (sec)->relocs != internal_relocs)
13768 free (internal_relocs);
13769
13770 return TRUE;
13771
13772 error_return:
13773 if (isymbuf != NULL
13774 && symtab_hdr->contents != (unsigned char *) isymbuf)
13775 free (isymbuf);
13776 if (contents != NULL
13777 && elf_section_data (sec)->this_hdr.contents != contents)
13778 free (contents);
13779 if (internal_relocs != NULL
13780 && elf_section_data (sec)->relocs != internal_relocs)
13781 free (internal_relocs);
13782
13783 return FALSE;
13784 }
13785 \f
13786 /* Create a MIPS ELF linker hash table. */
13787
13788 struct bfd_link_hash_table *
13789 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13790 {
13791 struct mips_elf_link_hash_table *ret;
13792 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13793
13794 ret = bfd_zmalloc (amt);
13795 if (ret == NULL)
13796 return NULL;
13797
13798 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13799 mips_elf_link_hash_newfunc,
13800 sizeof (struct mips_elf_link_hash_entry),
13801 MIPS_ELF_DATA))
13802 {
13803 free (ret);
13804 return NULL;
13805 }
13806 ret->root.init_plt_refcount.plist = NULL;
13807 ret->root.init_plt_offset.plist = NULL;
13808
13809 return &ret->root.root;
13810 }
13811
13812 /* Likewise, but indicate that the target is VxWorks. */
13813
13814 struct bfd_link_hash_table *
13815 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13816 {
13817 struct bfd_link_hash_table *ret;
13818
13819 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13820 if (ret)
13821 {
13822 struct mips_elf_link_hash_table *htab;
13823
13824 htab = (struct mips_elf_link_hash_table *) ret;
13825 htab->use_plts_and_copy_relocs = TRUE;
13826 htab->is_vxworks = TRUE;
13827 }
13828 return ret;
13829 }
13830
13831 /* A function that the linker calls if we are allowed to use PLTs
13832 and copy relocs. */
13833
13834 void
13835 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13836 {
13837 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13838 }
13839
13840 /* A function that the linker calls to select between all or only
13841 32-bit microMIPS instructions. */
13842
13843 void
13844 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13845 {
13846 mips_elf_hash_table (info)->insn32 = on;
13847 }
13848 \f
13849 /* Return the .MIPS.abiflags value representing each ISA Extension. */
13850
13851 unsigned int
13852 bfd_mips_isa_ext (bfd *abfd)
13853 {
13854 switch (bfd_get_mach (abfd))
13855 {
13856 case bfd_mach_mips3900:
13857 return AFL_EXT_3900;
13858 case bfd_mach_mips4010:
13859 return AFL_EXT_4010;
13860 case bfd_mach_mips4100:
13861 return AFL_EXT_4100;
13862 case bfd_mach_mips4111:
13863 return AFL_EXT_4111;
13864 case bfd_mach_mips4120:
13865 return AFL_EXT_4120;
13866 case bfd_mach_mips4650:
13867 return AFL_EXT_4650;
13868 case bfd_mach_mips5400:
13869 return AFL_EXT_5400;
13870 case bfd_mach_mips5500:
13871 return AFL_EXT_5500;
13872 case bfd_mach_mips5900:
13873 return AFL_EXT_5900;
13874 case bfd_mach_mips10000:
13875 return AFL_EXT_10000;
13876 case bfd_mach_mips_loongson_2e:
13877 return AFL_EXT_LOONGSON_2E;
13878 case bfd_mach_mips_loongson_2f:
13879 return AFL_EXT_LOONGSON_2F;
13880 case bfd_mach_mips_loongson_3a:
13881 return AFL_EXT_LOONGSON_3A;
13882 case bfd_mach_mips_sb1:
13883 return AFL_EXT_SB1;
13884 case bfd_mach_mips_octeon:
13885 return AFL_EXT_OCTEON;
13886 case bfd_mach_mips_octeonp:
13887 return AFL_EXT_OCTEONP;
13888 case bfd_mach_mips_octeon2:
13889 return AFL_EXT_OCTEON2;
13890 case bfd_mach_mips_xlr:
13891 return AFL_EXT_XLR;
13892 }
13893 return 0;
13894 }
13895
13896 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
13897
13898 static void
13899 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
13900 {
13901 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
13902 {
13903 case E_MIPS_ARCH_1:
13904 abiflags->isa_level = 1;
13905 abiflags->isa_rev = 0;
13906 break;
13907 case E_MIPS_ARCH_2:
13908 abiflags->isa_level = 2;
13909 abiflags->isa_rev = 0;
13910 break;
13911 case E_MIPS_ARCH_3:
13912 abiflags->isa_level = 3;
13913 abiflags->isa_rev = 0;
13914 break;
13915 case E_MIPS_ARCH_4:
13916 abiflags->isa_level = 4;
13917 abiflags->isa_rev = 0;
13918 break;
13919 case E_MIPS_ARCH_5:
13920 abiflags->isa_level = 5;
13921 abiflags->isa_rev = 0;
13922 break;
13923 case E_MIPS_ARCH_32:
13924 abiflags->isa_level = 32;
13925 abiflags->isa_rev = 1;
13926 break;
13927 case E_MIPS_ARCH_32R2:
13928 abiflags->isa_level = 32;
13929 /* Handle MIPS32r3 and MIPS32r5 which do not have a header flag. */
13930 if (abiflags->isa_rev < 2)
13931 abiflags->isa_rev = 2;
13932 break;
13933 case E_MIPS_ARCH_64:
13934 abiflags->isa_level = 64;
13935 abiflags->isa_rev = 1;
13936 break;
13937 case E_MIPS_ARCH_64R2:
13938 /* Handle MIPS64r3 and MIPS64r5 which do not have a header flag. */
13939 abiflags->isa_level = 64;
13940 if (abiflags->isa_rev < 2)
13941 abiflags->isa_rev = 2;
13942 break;
13943 default:
13944 (*_bfd_error_handler)
13945 (_("%B: Unknown architecture %s"),
13946 abfd, bfd_printable_name (abfd));
13947 }
13948
13949 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
13950 }
13951
13952 /* Return true if the given ELF header flags describe a 32-bit binary. */
13953
13954 static bfd_boolean
13955 mips_32bit_flags_p (flagword flags)
13956 {
13957 return ((flags & EF_MIPS_32BITMODE) != 0
13958 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13959 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13960 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13961 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13962 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13963 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
13964 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
13965 }
13966
13967 /* Infer the content of the ABI flags based on the elf header. */
13968
13969 static void
13970 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
13971 {
13972 obj_attribute *in_attr;
13973
13974 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
13975 update_mips_abiflags_isa (abfd, abiflags);
13976
13977 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
13978 abiflags->gpr_size = AFL_REG_32;
13979 else
13980 abiflags->gpr_size = AFL_REG_64;
13981
13982 abiflags->cpr1_size = AFL_REG_NONE;
13983
13984 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
13985 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13986
13987 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
13988 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
13989 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
13990 && abiflags->gpr_size == AFL_REG_32))
13991 abiflags->cpr1_size = AFL_REG_32;
13992 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
13993 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
13994 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
13995 abiflags->cpr1_size = AFL_REG_64;
13996
13997 abiflags->cpr2_size = AFL_REG_NONE;
13998
13999 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14000 abiflags->ases |= AFL_ASE_MDMX;
14001 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14002 abiflags->ases |= AFL_ASE_MIPS16;
14003 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14004 abiflags->ases |= AFL_ASE_MICROMIPS;
14005
14006 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14007 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14008 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14009 && abiflags->isa_level >= 32
14010 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14011 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14012 }
14013
14014 /* We need to use a special link routine to handle the .reginfo and
14015 the .mdebug sections. We need to merge all instances of these
14016 sections together, not write them all out sequentially. */
14017
14018 bfd_boolean
14019 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14020 {
14021 asection *o;
14022 struct bfd_link_order *p;
14023 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14024 asection *rtproc_sec, *abiflags_sec;
14025 Elf32_RegInfo reginfo;
14026 struct ecoff_debug_info debug;
14027 struct mips_htab_traverse_info hti;
14028 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14029 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14030 HDRR *symhdr = &debug.symbolic_header;
14031 void *mdebug_handle = NULL;
14032 asection *s;
14033 EXTR esym;
14034 unsigned int i;
14035 bfd_size_type amt;
14036 struct mips_elf_link_hash_table *htab;
14037
14038 static const char * const secname[] =
14039 {
14040 ".text", ".init", ".fini", ".data",
14041 ".rodata", ".sdata", ".sbss", ".bss"
14042 };
14043 static const int sc[] =
14044 {
14045 scText, scInit, scFini, scData,
14046 scRData, scSData, scSBss, scBss
14047 };
14048
14049 /* Sort the dynamic symbols so that those with GOT entries come after
14050 those without. */
14051 htab = mips_elf_hash_table (info);
14052 BFD_ASSERT (htab != NULL);
14053
14054 if (!mips_elf_sort_hash_table (abfd, info))
14055 return FALSE;
14056
14057 /* Create any scheduled LA25 stubs. */
14058 hti.info = info;
14059 hti.output_bfd = abfd;
14060 hti.error = FALSE;
14061 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14062 if (hti.error)
14063 return FALSE;
14064
14065 /* Get a value for the GP register. */
14066 if (elf_gp (abfd) == 0)
14067 {
14068 struct bfd_link_hash_entry *h;
14069
14070 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14071 if (h != NULL && h->type == bfd_link_hash_defined)
14072 elf_gp (abfd) = (h->u.def.value
14073 + h->u.def.section->output_section->vma
14074 + h->u.def.section->output_offset);
14075 else if (htab->is_vxworks
14076 && (h = bfd_link_hash_lookup (info->hash,
14077 "_GLOBAL_OFFSET_TABLE_",
14078 FALSE, FALSE, TRUE))
14079 && h->type == bfd_link_hash_defined)
14080 elf_gp (abfd) = (h->u.def.section->output_section->vma
14081 + h->u.def.section->output_offset
14082 + h->u.def.value);
14083 else if (info->relocatable)
14084 {
14085 bfd_vma lo = MINUS_ONE;
14086
14087 /* Find the GP-relative section with the lowest offset. */
14088 for (o = abfd->sections; o != NULL; o = o->next)
14089 if (o->vma < lo
14090 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14091 lo = o->vma;
14092
14093 /* And calculate GP relative to that. */
14094 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14095 }
14096 else
14097 {
14098 /* If the relocate_section function needs to do a reloc
14099 involving the GP value, it should make a reloc_dangerous
14100 callback to warn that GP is not defined. */
14101 }
14102 }
14103
14104 /* Go through the sections and collect the .reginfo and .mdebug
14105 information. */
14106 abiflags_sec = NULL;
14107 reginfo_sec = NULL;
14108 mdebug_sec = NULL;
14109 gptab_data_sec = NULL;
14110 gptab_bss_sec = NULL;
14111 for (o = abfd->sections; o != NULL; o = o->next)
14112 {
14113 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14114 {
14115 /* We have found the .MIPS.abiflags section in the output file.
14116 Look through all the link_orders comprising it and remove them.
14117 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14118 for (p = o->map_head.link_order; p != NULL; p = p->next)
14119 {
14120 asection *input_section;
14121
14122 if (p->type != bfd_indirect_link_order)
14123 {
14124 if (p->type == bfd_data_link_order)
14125 continue;
14126 abort ();
14127 }
14128
14129 input_section = p->u.indirect.section;
14130
14131 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14132 elf_link_input_bfd ignores this section. */
14133 input_section->flags &= ~SEC_HAS_CONTENTS;
14134 }
14135
14136 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14137 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14138
14139 /* Skip this section later on (I don't think this currently
14140 matters, but someday it might). */
14141 o->map_head.link_order = NULL;
14142
14143 abiflags_sec = o;
14144 }
14145
14146 if (strcmp (o->name, ".reginfo") == 0)
14147 {
14148 memset (&reginfo, 0, sizeof reginfo);
14149
14150 /* We have found the .reginfo section in the output file.
14151 Look through all the link_orders comprising it and merge
14152 the information together. */
14153 for (p = o->map_head.link_order; p != NULL; p = p->next)
14154 {
14155 asection *input_section;
14156 bfd *input_bfd;
14157 Elf32_External_RegInfo ext;
14158 Elf32_RegInfo sub;
14159
14160 if (p->type != bfd_indirect_link_order)
14161 {
14162 if (p->type == bfd_data_link_order)
14163 continue;
14164 abort ();
14165 }
14166
14167 input_section = p->u.indirect.section;
14168 input_bfd = input_section->owner;
14169
14170 if (! bfd_get_section_contents (input_bfd, input_section,
14171 &ext, 0, sizeof ext))
14172 return FALSE;
14173
14174 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14175
14176 reginfo.ri_gprmask |= sub.ri_gprmask;
14177 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14178 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14179 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14180 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14181
14182 /* ri_gp_value is set by the function
14183 mips_elf32_section_processing when the section is
14184 finally written out. */
14185
14186 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14187 elf_link_input_bfd ignores this section. */
14188 input_section->flags &= ~SEC_HAS_CONTENTS;
14189 }
14190
14191 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14192 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14193
14194 /* Skip this section later on (I don't think this currently
14195 matters, but someday it might). */
14196 o->map_head.link_order = NULL;
14197
14198 reginfo_sec = o;
14199 }
14200
14201 if (strcmp (o->name, ".mdebug") == 0)
14202 {
14203 struct extsym_info einfo;
14204 bfd_vma last;
14205
14206 /* We have found the .mdebug section in the output file.
14207 Look through all the link_orders comprising it and merge
14208 the information together. */
14209 symhdr->magic = swap->sym_magic;
14210 /* FIXME: What should the version stamp be? */
14211 symhdr->vstamp = 0;
14212 symhdr->ilineMax = 0;
14213 symhdr->cbLine = 0;
14214 symhdr->idnMax = 0;
14215 symhdr->ipdMax = 0;
14216 symhdr->isymMax = 0;
14217 symhdr->ioptMax = 0;
14218 symhdr->iauxMax = 0;
14219 symhdr->issMax = 0;
14220 symhdr->issExtMax = 0;
14221 symhdr->ifdMax = 0;
14222 symhdr->crfd = 0;
14223 symhdr->iextMax = 0;
14224
14225 /* We accumulate the debugging information itself in the
14226 debug_info structure. */
14227 debug.line = NULL;
14228 debug.external_dnr = NULL;
14229 debug.external_pdr = NULL;
14230 debug.external_sym = NULL;
14231 debug.external_opt = NULL;
14232 debug.external_aux = NULL;
14233 debug.ss = NULL;
14234 debug.ssext = debug.ssext_end = NULL;
14235 debug.external_fdr = NULL;
14236 debug.external_rfd = NULL;
14237 debug.external_ext = debug.external_ext_end = NULL;
14238
14239 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14240 if (mdebug_handle == NULL)
14241 return FALSE;
14242
14243 esym.jmptbl = 0;
14244 esym.cobol_main = 0;
14245 esym.weakext = 0;
14246 esym.reserved = 0;
14247 esym.ifd = ifdNil;
14248 esym.asym.iss = issNil;
14249 esym.asym.st = stLocal;
14250 esym.asym.reserved = 0;
14251 esym.asym.index = indexNil;
14252 last = 0;
14253 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14254 {
14255 esym.asym.sc = sc[i];
14256 s = bfd_get_section_by_name (abfd, secname[i]);
14257 if (s != NULL)
14258 {
14259 esym.asym.value = s->vma;
14260 last = s->vma + s->size;
14261 }
14262 else
14263 esym.asym.value = last;
14264 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14265 secname[i], &esym))
14266 return FALSE;
14267 }
14268
14269 for (p = o->map_head.link_order; p != NULL; p = p->next)
14270 {
14271 asection *input_section;
14272 bfd *input_bfd;
14273 const struct ecoff_debug_swap *input_swap;
14274 struct ecoff_debug_info input_debug;
14275 char *eraw_src;
14276 char *eraw_end;
14277
14278 if (p->type != bfd_indirect_link_order)
14279 {
14280 if (p->type == bfd_data_link_order)
14281 continue;
14282 abort ();
14283 }
14284
14285 input_section = p->u.indirect.section;
14286 input_bfd = input_section->owner;
14287
14288 if (!is_mips_elf (input_bfd))
14289 {
14290 /* I don't know what a non MIPS ELF bfd would be
14291 doing with a .mdebug section, but I don't really
14292 want to deal with it. */
14293 continue;
14294 }
14295
14296 input_swap = (get_elf_backend_data (input_bfd)
14297 ->elf_backend_ecoff_debug_swap);
14298
14299 BFD_ASSERT (p->size == input_section->size);
14300
14301 /* The ECOFF linking code expects that we have already
14302 read in the debugging information and set up an
14303 ecoff_debug_info structure, so we do that now. */
14304 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14305 &input_debug))
14306 return FALSE;
14307
14308 if (! (bfd_ecoff_debug_accumulate
14309 (mdebug_handle, abfd, &debug, swap, input_bfd,
14310 &input_debug, input_swap, info)))
14311 return FALSE;
14312
14313 /* Loop through the external symbols. For each one with
14314 interesting information, try to find the symbol in
14315 the linker global hash table and save the information
14316 for the output external symbols. */
14317 eraw_src = input_debug.external_ext;
14318 eraw_end = (eraw_src
14319 + (input_debug.symbolic_header.iextMax
14320 * input_swap->external_ext_size));
14321 for (;
14322 eraw_src < eraw_end;
14323 eraw_src += input_swap->external_ext_size)
14324 {
14325 EXTR ext;
14326 const char *name;
14327 struct mips_elf_link_hash_entry *h;
14328
14329 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14330 if (ext.asym.sc == scNil
14331 || ext.asym.sc == scUndefined
14332 || ext.asym.sc == scSUndefined)
14333 continue;
14334
14335 name = input_debug.ssext + ext.asym.iss;
14336 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14337 name, FALSE, FALSE, TRUE);
14338 if (h == NULL || h->esym.ifd != -2)
14339 continue;
14340
14341 if (ext.ifd != -1)
14342 {
14343 BFD_ASSERT (ext.ifd
14344 < input_debug.symbolic_header.ifdMax);
14345 ext.ifd = input_debug.ifdmap[ext.ifd];
14346 }
14347
14348 h->esym = ext;
14349 }
14350
14351 /* Free up the information we just read. */
14352 free (input_debug.line);
14353 free (input_debug.external_dnr);
14354 free (input_debug.external_pdr);
14355 free (input_debug.external_sym);
14356 free (input_debug.external_opt);
14357 free (input_debug.external_aux);
14358 free (input_debug.ss);
14359 free (input_debug.ssext);
14360 free (input_debug.external_fdr);
14361 free (input_debug.external_rfd);
14362 free (input_debug.external_ext);
14363
14364 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14365 elf_link_input_bfd ignores this section. */
14366 input_section->flags &= ~SEC_HAS_CONTENTS;
14367 }
14368
14369 if (SGI_COMPAT (abfd) && info->shared)
14370 {
14371 /* Create .rtproc section. */
14372 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14373 if (rtproc_sec == NULL)
14374 {
14375 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14376 | SEC_LINKER_CREATED | SEC_READONLY);
14377
14378 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14379 ".rtproc",
14380 flags);
14381 if (rtproc_sec == NULL
14382 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14383 return FALSE;
14384 }
14385
14386 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14387 info, rtproc_sec,
14388 &debug))
14389 return FALSE;
14390 }
14391
14392 /* Build the external symbol information. */
14393 einfo.abfd = abfd;
14394 einfo.info = info;
14395 einfo.debug = &debug;
14396 einfo.swap = swap;
14397 einfo.failed = FALSE;
14398 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14399 mips_elf_output_extsym, &einfo);
14400 if (einfo.failed)
14401 return FALSE;
14402
14403 /* Set the size of the .mdebug section. */
14404 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14405
14406 /* Skip this section later on (I don't think this currently
14407 matters, but someday it might). */
14408 o->map_head.link_order = NULL;
14409
14410 mdebug_sec = o;
14411 }
14412
14413 if (CONST_STRNEQ (o->name, ".gptab."))
14414 {
14415 const char *subname;
14416 unsigned int c;
14417 Elf32_gptab *tab;
14418 Elf32_External_gptab *ext_tab;
14419 unsigned int j;
14420
14421 /* The .gptab.sdata and .gptab.sbss sections hold
14422 information describing how the small data area would
14423 change depending upon the -G switch. These sections
14424 not used in executables files. */
14425 if (! info->relocatable)
14426 {
14427 for (p = o->map_head.link_order; p != NULL; p = p->next)
14428 {
14429 asection *input_section;
14430
14431 if (p->type != bfd_indirect_link_order)
14432 {
14433 if (p->type == bfd_data_link_order)
14434 continue;
14435 abort ();
14436 }
14437
14438 input_section = p->u.indirect.section;
14439
14440 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14441 elf_link_input_bfd ignores this section. */
14442 input_section->flags &= ~SEC_HAS_CONTENTS;
14443 }
14444
14445 /* Skip this section later on (I don't think this
14446 currently matters, but someday it might). */
14447 o->map_head.link_order = NULL;
14448
14449 /* Really remove the section. */
14450 bfd_section_list_remove (abfd, o);
14451 --abfd->section_count;
14452
14453 continue;
14454 }
14455
14456 /* There is one gptab for initialized data, and one for
14457 uninitialized data. */
14458 if (strcmp (o->name, ".gptab.sdata") == 0)
14459 gptab_data_sec = o;
14460 else if (strcmp (o->name, ".gptab.sbss") == 0)
14461 gptab_bss_sec = o;
14462 else
14463 {
14464 (*_bfd_error_handler)
14465 (_("%s: illegal section name `%s'"),
14466 bfd_get_filename (abfd), o->name);
14467 bfd_set_error (bfd_error_nonrepresentable_section);
14468 return FALSE;
14469 }
14470
14471 /* The linker script always combines .gptab.data and
14472 .gptab.sdata into .gptab.sdata, and likewise for
14473 .gptab.bss and .gptab.sbss. It is possible that there is
14474 no .sdata or .sbss section in the output file, in which
14475 case we must change the name of the output section. */
14476 subname = o->name + sizeof ".gptab" - 1;
14477 if (bfd_get_section_by_name (abfd, subname) == NULL)
14478 {
14479 if (o == gptab_data_sec)
14480 o->name = ".gptab.data";
14481 else
14482 o->name = ".gptab.bss";
14483 subname = o->name + sizeof ".gptab" - 1;
14484 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14485 }
14486
14487 /* Set up the first entry. */
14488 c = 1;
14489 amt = c * sizeof (Elf32_gptab);
14490 tab = bfd_malloc (amt);
14491 if (tab == NULL)
14492 return FALSE;
14493 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14494 tab[0].gt_header.gt_unused = 0;
14495
14496 /* Combine the input sections. */
14497 for (p = o->map_head.link_order; p != NULL; p = p->next)
14498 {
14499 asection *input_section;
14500 bfd *input_bfd;
14501 bfd_size_type size;
14502 unsigned long last;
14503 bfd_size_type gpentry;
14504
14505 if (p->type != bfd_indirect_link_order)
14506 {
14507 if (p->type == bfd_data_link_order)
14508 continue;
14509 abort ();
14510 }
14511
14512 input_section = p->u.indirect.section;
14513 input_bfd = input_section->owner;
14514
14515 /* Combine the gptab entries for this input section one
14516 by one. We know that the input gptab entries are
14517 sorted by ascending -G value. */
14518 size = input_section->size;
14519 last = 0;
14520 for (gpentry = sizeof (Elf32_External_gptab);
14521 gpentry < size;
14522 gpentry += sizeof (Elf32_External_gptab))
14523 {
14524 Elf32_External_gptab ext_gptab;
14525 Elf32_gptab int_gptab;
14526 unsigned long val;
14527 unsigned long add;
14528 bfd_boolean exact;
14529 unsigned int look;
14530
14531 if (! (bfd_get_section_contents
14532 (input_bfd, input_section, &ext_gptab, gpentry,
14533 sizeof (Elf32_External_gptab))))
14534 {
14535 free (tab);
14536 return FALSE;
14537 }
14538
14539 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14540 &int_gptab);
14541 val = int_gptab.gt_entry.gt_g_value;
14542 add = int_gptab.gt_entry.gt_bytes - last;
14543
14544 exact = FALSE;
14545 for (look = 1; look < c; look++)
14546 {
14547 if (tab[look].gt_entry.gt_g_value >= val)
14548 tab[look].gt_entry.gt_bytes += add;
14549
14550 if (tab[look].gt_entry.gt_g_value == val)
14551 exact = TRUE;
14552 }
14553
14554 if (! exact)
14555 {
14556 Elf32_gptab *new_tab;
14557 unsigned int max;
14558
14559 /* We need a new table entry. */
14560 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14561 new_tab = bfd_realloc (tab, amt);
14562 if (new_tab == NULL)
14563 {
14564 free (tab);
14565 return FALSE;
14566 }
14567 tab = new_tab;
14568 tab[c].gt_entry.gt_g_value = val;
14569 tab[c].gt_entry.gt_bytes = add;
14570
14571 /* Merge in the size for the next smallest -G
14572 value, since that will be implied by this new
14573 value. */
14574 max = 0;
14575 for (look = 1; look < c; look++)
14576 {
14577 if (tab[look].gt_entry.gt_g_value < val
14578 && (max == 0
14579 || (tab[look].gt_entry.gt_g_value
14580 > tab[max].gt_entry.gt_g_value)))
14581 max = look;
14582 }
14583 if (max != 0)
14584 tab[c].gt_entry.gt_bytes +=
14585 tab[max].gt_entry.gt_bytes;
14586
14587 ++c;
14588 }
14589
14590 last = int_gptab.gt_entry.gt_bytes;
14591 }
14592
14593 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14594 elf_link_input_bfd ignores this section. */
14595 input_section->flags &= ~SEC_HAS_CONTENTS;
14596 }
14597
14598 /* The table must be sorted by -G value. */
14599 if (c > 2)
14600 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14601
14602 /* Swap out the table. */
14603 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14604 ext_tab = bfd_alloc (abfd, amt);
14605 if (ext_tab == NULL)
14606 {
14607 free (tab);
14608 return FALSE;
14609 }
14610
14611 for (j = 0; j < c; j++)
14612 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14613 free (tab);
14614
14615 o->size = c * sizeof (Elf32_External_gptab);
14616 o->contents = (bfd_byte *) ext_tab;
14617
14618 /* Skip this section later on (I don't think this currently
14619 matters, but someday it might). */
14620 o->map_head.link_order = NULL;
14621 }
14622 }
14623
14624 /* Invoke the regular ELF backend linker to do all the work. */
14625 if (!bfd_elf_final_link (abfd, info))
14626 return FALSE;
14627
14628 /* Now write out the computed sections. */
14629
14630 if (abiflags_sec != NULL)
14631 {
14632 Elf_External_ABIFlags_v0 ext;
14633 Elf_Internal_ABIFlags_v0 *abiflags;
14634
14635 abiflags = &mips_elf_tdata (abfd)->abiflags;
14636
14637 /* Set up the abiflags if no valid input sections were found. */
14638 if (!mips_elf_tdata (abfd)->abiflags_valid)
14639 {
14640 infer_mips_abiflags (abfd, abiflags);
14641 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14642 }
14643 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14644 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14645 return FALSE;
14646 }
14647
14648 if (reginfo_sec != NULL)
14649 {
14650 Elf32_External_RegInfo ext;
14651
14652 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14653 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14654 return FALSE;
14655 }
14656
14657 if (mdebug_sec != NULL)
14658 {
14659 BFD_ASSERT (abfd->output_has_begun);
14660 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14661 swap, info,
14662 mdebug_sec->filepos))
14663 return FALSE;
14664
14665 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14666 }
14667
14668 if (gptab_data_sec != NULL)
14669 {
14670 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14671 gptab_data_sec->contents,
14672 0, gptab_data_sec->size))
14673 return FALSE;
14674 }
14675
14676 if (gptab_bss_sec != NULL)
14677 {
14678 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14679 gptab_bss_sec->contents,
14680 0, gptab_bss_sec->size))
14681 return FALSE;
14682 }
14683
14684 if (SGI_COMPAT (abfd))
14685 {
14686 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14687 if (rtproc_sec != NULL)
14688 {
14689 if (! bfd_set_section_contents (abfd, rtproc_sec,
14690 rtproc_sec->contents,
14691 0, rtproc_sec->size))
14692 return FALSE;
14693 }
14694 }
14695
14696 return TRUE;
14697 }
14698 \f
14699 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14700
14701 struct mips_mach_extension
14702 {
14703 unsigned long extension, base;
14704 };
14705
14706
14707 /* An array describing how BFD machines relate to one another. The entries
14708 are ordered topologically with MIPS I extensions listed last. */
14709
14710 static const struct mips_mach_extension mips_mach_extensions[] =
14711 {
14712 /* MIPS64r2 extensions. */
14713 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14714 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14715 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14716 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14717
14718 /* MIPS64 extensions. */
14719 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14720 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14721 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14722
14723 /* MIPS V extensions. */
14724 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14725
14726 /* R10000 extensions. */
14727 { bfd_mach_mips12000, bfd_mach_mips10000 },
14728 { bfd_mach_mips14000, bfd_mach_mips10000 },
14729 { bfd_mach_mips16000, bfd_mach_mips10000 },
14730
14731 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14732 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14733 better to allow vr5400 and vr5500 code to be merged anyway, since
14734 many libraries will just use the core ISA. Perhaps we could add
14735 some sort of ASE flag if this ever proves a problem. */
14736 { bfd_mach_mips5500, bfd_mach_mips5400 },
14737 { bfd_mach_mips5400, bfd_mach_mips5000 },
14738
14739 /* MIPS IV extensions. */
14740 { bfd_mach_mips5, bfd_mach_mips8000 },
14741 { bfd_mach_mips10000, bfd_mach_mips8000 },
14742 { bfd_mach_mips5000, bfd_mach_mips8000 },
14743 { bfd_mach_mips7000, bfd_mach_mips8000 },
14744 { bfd_mach_mips9000, bfd_mach_mips8000 },
14745
14746 /* VR4100 extensions. */
14747 { bfd_mach_mips4120, bfd_mach_mips4100 },
14748 { bfd_mach_mips4111, bfd_mach_mips4100 },
14749
14750 /* MIPS III extensions. */
14751 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14752 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14753 { bfd_mach_mips8000, bfd_mach_mips4000 },
14754 { bfd_mach_mips4650, bfd_mach_mips4000 },
14755 { bfd_mach_mips4600, bfd_mach_mips4000 },
14756 { bfd_mach_mips4400, bfd_mach_mips4000 },
14757 { bfd_mach_mips4300, bfd_mach_mips4000 },
14758 { bfd_mach_mips4100, bfd_mach_mips4000 },
14759 { bfd_mach_mips4010, bfd_mach_mips4000 },
14760 { bfd_mach_mips5900, bfd_mach_mips4000 },
14761
14762 /* MIPS32 extensions. */
14763 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14764
14765 /* MIPS II extensions. */
14766 { bfd_mach_mips4000, bfd_mach_mips6000 },
14767 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14768
14769 /* MIPS I extensions. */
14770 { bfd_mach_mips6000, bfd_mach_mips3000 },
14771 { bfd_mach_mips3900, bfd_mach_mips3000 }
14772 };
14773
14774
14775 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14776
14777 static bfd_boolean
14778 mips_mach_extends_p (unsigned long base, unsigned long extension)
14779 {
14780 size_t i;
14781
14782 if (extension == base)
14783 return TRUE;
14784
14785 if (base == bfd_mach_mipsisa32
14786 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14787 return TRUE;
14788
14789 if (base == bfd_mach_mipsisa32r2
14790 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14791 return TRUE;
14792
14793 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14794 if (extension == mips_mach_extensions[i].extension)
14795 {
14796 extension = mips_mach_extensions[i].base;
14797 if (extension == base)
14798 return TRUE;
14799 }
14800
14801 return FALSE;
14802 }
14803
14804
14805 /* Merge object attributes from IBFD into OBFD. Raise an error if
14806 there are conflicting attributes. */
14807 static bfd_boolean
14808 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
14809 {
14810 obj_attribute *in_attr;
14811 obj_attribute *out_attr;
14812 bfd *abi_fp_bfd;
14813 bfd *abi_msa_bfd;
14814
14815 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
14816 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
14817 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
14818 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14819
14820 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
14821 if (!abi_msa_bfd
14822 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14823 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
14824
14825 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14826 {
14827 /* This is the first object. Copy the attributes. */
14828 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14829
14830 /* Use the Tag_null value to indicate the attributes have been
14831 initialized. */
14832 elf_known_obj_attributes_proc (obfd)[0].i = 1;
14833
14834 return TRUE;
14835 }
14836
14837 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
14838 non-conflicting ones. */
14839 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14840 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
14841 {
14842 int out_fp, in_fp;
14843
14844 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
14845 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14846 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
14847 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
14848 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
14849 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
14850 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14851 || in_fp == Val_GNU_MIPS_ABI_FP_64
14852 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
14853 {
14854 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14855 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14856 }
14857 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
14858 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14859 || out_fp == Val_GNU_MIPS_ABI_FP_64
14860 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
14861 /* Keep the current setting. */;
14862 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
14863 && in_fp == Val_GNU_MIPS_ABI_FP_64)
14864 {
14865 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14866 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14867 }
14868 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
14869 && out_fp == Val_GNU_MIPS_ABI_FP_64)
14870 /* Keep the current setting. */;
14871 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
14872 {
14873 const char *out_string, *in_string;
14874
14875 out_string = _bfd_mips_fp_abi_string (out_fp);
14876 in_string = _bfd_mips_fp_abi_string (in_fp);
14877 /* First warn about cases involving unrecognised ABIs. */
14878 if (!out_string && !in_string)
14879 _bfd_error_handler
14880 (_("Warning: %B uses unknown floating point ABI %d "
14881 "(set by %B), %B uses unknown floating point ABI %d"),
14882 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
14883 else if (!out_string)
14884 _bfd_error_handler
14885 (_("Warning: %B uses unknown floating point ABI %d "
14886 "(set by %B), %B uses %s"),
14887 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
14888 else if (!in_string)
14889 _bfd_error_handler
14890 (_("Warning: %B uses %s (set by %B), "
14891 "%B uses unknown floating point ABI %d"),
14892 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
14893 else
14894 {
14895 /* If one of the bfds is soft-float, the other must be
14896 hard-float. The exact choice of hard-float ABI isn't
14897 really relevant to the error message. */
14898 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14899 out_string = "-mhard-float";
14900 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14901 in_string = "-mhard-float";
14902 _bfd_error_handler
14903 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14904 obfd, abi_fp_bfd, ibfd, out_string, in_string);
14905 }
14906 }
14907 }
14908
14909 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
14910 non-conflicting ones. */
14911 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14912 {
14913 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
14914 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
14915 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
14916 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14917 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14918 {
14919 case Val_GNU_MIPS_ABI_MSA_128:
14920 _bfd_error_handler
14921 (_("Warning: %B uses %s (set by %B), "
14922 "%B uses unknown MSA ABI %d"),
14923 obfd, abi_msa_bfd, ibfd,
14924 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14925 break;
14926
14927 default:
14928 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
14929 {
14930 case Val_GNU_MIPS_ABI_MSA_128:
14931 _bfd_error_handler
14932 (_("Warning: %B uses unknown MSA ABI %d "
14933 "(set by %B), %B uses %s"),
14934 obfd, abi_msa_bfd, ibfd,
14935 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
14936 break;
14937
14938 default:
14939 _bfd_error_handler
14940 (_("Warning: %B uses unknown MSA ABI %d "
14941 "(set by %B), %B uses unknown MSA ABI %d"),
14942 obfd, abi_msa_bfd, ibfd,
14943 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
14944 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14945 break;
14946 }
14947 }
14948 }
14949
14950 /* Merge Tag_compatibility attributes and any common GNU ones. */
14951 _bfd_elf_merge_object_attributes (ibfd, obfd);
14952
14953 return TRUE;
14954 }
14955
14956 /* Merge backend specific data from an object file to the output
14957 object file when linking. */
14958
14959 bfd_boolean
14960 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
14961 {
14962 flagword old_flags;
14963 flagword new_flags;
14964 bfd_boolean ok;
14965 bfd_boolean null_input_bfd = TRUE;
14966 asection *sec;
14967 obj_attribute *out_attr;
14968
14969 /* Check if we have the same endianness. */
14970 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
14971 {
14972 (*_bfd_error_handler)
14973 (_("%B: endianness incompatible with that of the selected emulation"),
14974 ibfd);
14975 return FALSE;
14976 }
14977
14978 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
14979 return TRUE;
14980
14981 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
14982 {
14983 (*_bfd_error_handler)
14984 (_("%B: ABI is incompatible with that of the selected emulation"),
14985 ibfd);
14986 return FALSE;
14987 }
14988
14989 /* Set up the FP ABI attribute from the abiflags if it is not already
14990 set. */
14991 if (mips_elf_tdata (ibfd)->abiflags_valid)
14992 {
14993 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
14994 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
14995 in_attr[Tag_GNU_MIPS_ABI_FP].i =
14996 mips_elf_tdata (ibfd)->abiflags.fp_abi;
14997 }
14998
14999 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
15000 return FALSE;
15001
15002 /* Check to see if the input BFD actually contains any sections.
15003 If not, its flags may not have been initialised either, but it cannot
15004 actually cause any incompatibility. */
15005 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15006 {
15007 /* Ignore synthetic sections and empty .text, .data and .bss sections
15008 which are automatically generated by gas. Also ignore fake
15009 (s)common sections, since merely defining a common symbol does
15010 not affect compatibility. */
15011 if ((sec->flags & SEC_IS_COMMON) == 0
15012 && strcmp (sec->name, ".reginfo")
15013 && strcmp (sec->name, ".mdebug")
15014 && (sec->size != 0
15015 || (strcmp (sec->name, ".text")
15016 && strcmp (sec->name, ".data")
15017 && strcmp (sec->name, ".bss"))))
15018 {
15019 null_input_bfd = FALSE;
15020 break;
15021 }
15022 }
15023 if (null_input_bfd)
15024 return TRUE;
15025
15026 /* Populate abiflags using existing information. */
15027 if (!mips_elf_tdata (ibfd)->abiflags_valid)
15028 {
15029 infer_mips_abiflags (ibfd, &mips_elf_tdata (ibfd)->abiflags);
15030 mips_elf_tdata (ibfd)->abiflags_valid = TRUE;
15031 }
15032 else
15033 {
15034 Elf_Internal_ABIFlags_v0 abiflags;
15035 Elf_Internal_ABIFlags_v0 in_abiflags;
15036 infer_mips_abiflags (ibfd, &abiflags);
15037 in_abiflags = mips_elf_tdata (ibfd)->abiflags;
15038
15039 /* It is not possible to infer the correct ISA revision
15040 for R3 or R5 so drop down to R2 for the checks. */
15041 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15042 in_abiflags.isa_rev = 2;
15043
15044 if (in_abiflags.isa_level != abiflags.isa_level
15045 || in_abiflags.isa_rev != abiflags.isa_rev
15046 || in_abiflags.isa_ext != abiflags.isa_ext)
15047 (*_bfd_error_handler)
15048 (_("%B: warning: Inconsistent ISA between e_flags and "
15049 ".MIPS.abiflags"), ibfd);
15050 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15051 && in_abiflags.fp_abi != abiflags.fp_abi)
15052 (*_bfd_error_handler)
15053 (_("%B: warning: Inconsistent FP ABI between e_flags and "
15054 ".MIPS.abiflags"), ibfd);
15055 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15056 (*_bfd_error_handler)
15057 (_("%B: warning: Inconsistent ASEs between e_flags and "
15058 ".MIPS.abiflags"), ibfd);
15059 if (in_abiflags.isa_ext != abiflags.isa_ext)
15060 (*_bfd_error_handler)
15061 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15062 ".MIPS.abiflags"), ibfd);
15063 if (in_abiflags.flags2 != 0)
15064 (*_bfd_error_handler)
15065 (_("%B: warning: Unexpected flag in the flags2 field of "
15066 ".MIPS.abiflags (0x%lx)"), ibfd,
15067 (unsigned long) in_abiflags.flags2);
15068 }
15069
15070 if (!mips_elf_tdata (obfd)->abiflags_valid)
15071 {
15072 /* Copy input abiflags if output abiflags are not already valid. */
15073 mips_elf_tdata (obfd)->abiflags = mips_elf_tdata (ibfd)->abiflags;
15074 mips_elf_tdata (obfd)->abiflags_valid = TRUE;
15075 }
15076
15077 if (! elf_flags_init (obfd))
15078 {
15079 elf_flags_init (obfd) = TRUE;
15080 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15081 elf_elfheader (obfd)->e_ident[EI_CLASS]
15082 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15083
15084 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15085 && (bfd_get_arch_info (obfd)->the_default
15086 || mips_mach_extends_p (bfd_get_mach (obfd),
15087 bfd_get_mach (ibfd))))
15088 {
15089 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15090 bfd_get_mach (ibfd)))
15091 return FALSE;
15092
15093 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15094 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15095 }
15096
15097 return TRUE;
15098 }
15099
15100 /* Update the output abiflags fp_abi using the computed fp_abi. */
15101 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15102 mips_elf_tdata (obfd)->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15103
15104 #define max(a,b) ((a) > (b) ? (a) : (b))
15105 /* Merge abiflags. */
15106 mips_elf_tdata (obfd)->abiflags.isa_rev
15107 = max (mips_elf_tdata (obfd)->abiflags.isa_rev,
15108 mips_elf_tdata (ibfd)->abiflags.isa_rev);
15109 mips_elf_tdata (obfd)->abiflags.gpr_size
15110 = max (mips_elf_tdata (obfd)->abiflags.gpr_size,
15111 mips_elf_tdata (ibfd)->abiflags.gpr_size);
15112 mips_elf_tdata (obfd)->abiflags.cpr1_size
15113 = max (mips_elf_tdata (obfd)->abiflags.cpr1_size,
15114 mips_elf_tdata (ibfd)->abiflags.cpr1_size);
15115 mips_elf_tdata (obfd)->abiflags.cpr2_size
15116 = max (mips_elf_tdata (obfd)->abiflags.cpr2_size,
15117 mips_elf_tdata (ibfd)->abiflags.cpr2_size);
15118 #undef max
15119 mips_elf_tdata (obfd)->abiflags.ases
15120 |= mips_elf_tdata (ibfd)->abiflags.ases;
15121 mips_elf_tdata (obfd)->abiflags.flags1
15122 |= mips_elf_tdata (ibfd)->abiflags.flags1;
15123
15124 new_flags = elf_elfheader (ibfd)->e_flags;
15125 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15126 old_flags = elf_elfheader (obfd)->e_flags;
15127
15128 /* Check flag compatibility. */
15129
15130 new_flags &= ~EF_MIPS_NOREORDER;
15131 old_flags &= ~EF_MIPS_NOREORDER;
15132
15133 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15134 doesn't seem to matter. */
15135 new_flags &= ~EF_MIPS_XGOT;
15136 old_flags &= ~EF_MIPS_XGOT;
15137
15138 /* MIPSpro generates ucode info in n64 objects. Again, we should
15139 just be able to ignore this. */
15140 new_flags &= ~EF_MIPS_UCODE;
15141 old_flags &= ~EF_MIPS_UCODE;
15142
15143 /* DSOs should only be linked with CPIC code. */
15144 if ((ibfd->flags & DYNAMIC) != 0)
15145 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15146
15147 if (new_flags == old_flags)
15148 return TRUE;
15149
15150 ok = TRUE;
15151
15152 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15153 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15154 {
15155 (*_bfd_error_handler)
15156 (_("%B: warning: linking abicalls files with non-abicalls files"),
15157 ibfd);
15158 ok = TRUE;
15159 }
15160
15161 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15162 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15163 if (! (new_flags & EF_MIPS_PIC))
15164 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15165
15166 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15167 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15168
15169 /* Compare the ISAs. */
15170 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15171 {
15172 (*_bfd_error_handler)
15173 (_("%B: linking 32-bit code with 64-bit code"),
15174 ibfd);
15175 ok = FALSE;
15176 }
15177 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15178 {
15179 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15180 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15181 {
15182 /* Copy the architecture info from IBFD to OBFD. Also copy
15183 the 32-bit flag (if set) so that we continue to recognise
15184 OBFD as a 32-bit binary. */
15185 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15186 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15187 elf_elfheader (obfd)->e_flags
15188 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15189
15190 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15191 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15192
15193 /* Copy across the ABI flags if OBFD doesn't use them
15194 and if that was what caused us to treat IBFD as 32-bit. */
15195 if ((old_flags & EF_MIPS_ABI) == 0
15196 && mips_32bit_flags_p (new_flags)
15197 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15198 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15199 }
15200 else
15201 {
15202 /* The ISAs aren't compatible. */
15203 (*_bfd_error_handler)
15204 (_("%B: linking %s module with previous %s modules"),
15205 ibfd,
15206 bfd_printable_name (ibfd),
15207 bfd_printable_name (obfd));
15208 ok = FALSE;
15209 }
15210 }
15211
15212 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15213 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15214
15215 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15216 does set EI_CLASS differently from any 32-bit ABI. */
15217 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15218 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15219 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15220 {
15221 /* Only error if both are set (to different values). */
15222 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15223 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15224 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15225 {
15226 (*_bfd_error_handler)
15227 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15228 ibfd,
15229 elf_mips_abi_name (ibfd),
15230 elf_mips_abi_name (obfd));
15231 ok = FALSE;
15232 }
15233 new_flags &= ~EF_MIPS_ABI;
15234 old_flags &= ~EF_MIPS_ABI;
15235 }
15236
15237 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15238 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15239 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15240 {
15241 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15242 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15243 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15244 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15245 int micro_mis = old_m16 && new_micro;
15246 int m16_mis = old_micro && new_m16;
15247
15248 if (m16_mis || micro_mis)
15249 {
15250 (*_bfd_error_handler)
15251 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15252 ibfd,
15253 m16_mis ? "MIPS16" : "microMIPS",
15254 m16_mis ? "microMIPS" : "MIPS16");
15255 ok = FALSE;
15256 }
15257
15258 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15259
15260 new_flags &= ~ EF_MIPS_ARCH_ASE;
15261 old_flags &= ~ EF_MIPS_ARCH_ASE;
15262 }
15263
15264 /* Compare NaN encodings. */
15265 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15266 {
15267 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15268 ibfd,
15269 (new_flags & EF_MIPS_NAN2008
15270 ? "-mnan=2008" : "-mnan=legacy"),
15271 (old_flags & EF_MIPS_NAN2008
15272 ? "-mnan=2008" : "-mnan=legacy"));
15273 ok = FALSE;
15274 new_flags &= ~EF_MIPS_NAN2008;
15275 old_flags &= ~EF_MIPS_NAN2008;
15276 }
15277
15278 /* Compare FP64 state. */
15279 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15280 {
15281 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15282 ibfd,
15283 (new_flags & EF_MIPS_FP64
15284 ? "-mfp64" : "-mfp32"),
15285 (old_flags & EF_MIPS_FP64
15286 ? "-mfp64" : "-mfp32"));
15287 ok = FALSE;
15288 new_flags &= ~EF_MIPS_FP64;
15289 old_flags &= ~EF_MIPS_FP64;
15290 }
15291
15292 /* Warn about any other mismatches */
15293 if (new_flags != old_flags)
15294 {
15295 (*_bfd_error_handler)
15296 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
15297 ibfd, (unsigned long) new_flags,
15298 (unsigned long) old_flags);
15299 ok = FALSE;
15300 }
15301
15302 if (! ok)
15303 {
15304 bfd_set_error (bfd_error_bad_value);
15305 return FALSE;
15306 }
15307
15308 return TRUE;
15309 }
15310
15311 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15312
15313 bfd_boolean
15314 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15315 {
15316 BFD_ASSERT (!elf_flags_init (abfd)
15317 || elf_elfheader (abfd)->e_flags == flags);
15318
15319 elf_elfheader (abfd)->e_flags = flags;
15320 elf_flags_init (abfd) = TRUE;
15321 return TRUE;
15322 }
15323
15324 char *
15325 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15326 {
15327 switch (dtag)
15328 {
15329 default: return "";
15330 case DT_MIPS_RLD_VERSION:
15331 return "MIPS_RLD_VERSION";
15332 case DT_MIPS_TIME_STAMP:
15333 return "MIPS_TIME_STAMP";
15334 case DT_MIPS_ICHECKSUM:
15335 return "MIPS_ICHECKSUM";
15336 case DT_MIPS_IVERSION:
15337 return "MIPS_IVERSION";
15338 case DT_MIPS_FLAGS:
15339 return "MIPS_FLAGS";
15340 case DT_MIPS_BASE_ADDRESS:
15341 return "MIPS_BASE_ADDRESS";
15342 case DT_MIPS_MSYM:
15343 return "MIPS_MSYM";
15344 case DT_MIPS_CONFLICT:
15345 return "MIPS_CONFLICT";
15346 case DT_MIPS_LIBLIST:
15347 return "MIPS_LIBLIST";
15348 case DT_MIPS_LOCAL_GOTNO:
15349 return "MIPS_LOCAL_GOTNO";
15350 case DT_MIPS_CONFLICTNO:
15351 return "MIPS_CONFLICTNO";
15352 case DT_MIPS_LIBLISTNO:
15353 return "MIPS_LIBLISTNO";
15354 case DT_MIPS_SYMTABNO:
15355 return "MIPS_SYMTABNO";
15356 case DT_MIPS_UNREFEXTNO:
15357 return "MIPS_UNREFEXTNO";
15358 case DT_MIPS_GOTSYM:
15359 return "MIPS_GOTSYM";
15360 case DT_MIPS_HIPAGENO:
15361 return "MIPS_HIPAGENO";
15362 case DT_MIPS_RLD_MAP:
15363 return "MIPS_RLD_MAP";
15364 case DT_MIPS_DELTA_CLASS:
15365 return "MIPS_DELTA_CLASS";
15366 case DT_MIPS_DELTA_CLASS_NO:
15367 return "MIPS_DELTA_CLASS_NO";
15368 case DT_MIPS_DELTA_INSTANCE:
15369 return "MIPS_DELTA_INSTANCE";
15370 case DT_MIPS_DELTA_INSTANCE_NO:
15371 return "MIPS_DELTA_INSTANCE_NO";
15372 case DT_MIPS_DELTA_RELOC:
15373 return "MIPS_DELTA_RELOC";
15374 case DT_MIPS_DELTA_RELOC_NO:
15375 return "MIPS_DELTA_RELOC_NO";
15376 case DT_MIPS_DELTA_SYM:
15377 return "MIPS_DELTA_SYM";
15378 case DT_MIPS_DELTA_SYM_NO:
15379 return "MIPS_DELTA_SYM_NO";
15380 case DT_MIPS_DELTA_CLASSSYM:
15381 return "MIPS_DELTA_CLASSSYM";
15382 case DT_MIPS_DELTA_CLASSSYM_NO:
15383 return "MIPS_DELTA_CLASSSYM_NO";
15384 case DT_MIPS_CXX_FLAGS:
15385 return "MIPS_CXX_FLAGS";
15386 case DT_MIPS_PIXIE_INIT:
15387 return "MIPS_PIXIE_INIT";
15388 case DT_MIPS_SYMBOL_LIB:
15389 return "MIPS_SYMBOL_LIB";
15390 case DT_MIPS_LOCALPAGE_GOTIDX:
15391 return "MIPS_LOCALPAGE_GOTIDX";
15392 case DT_MIPS_LOCAL_GOTIDX:
15393 return "MIPS_LOCAL_GOTIDX";
15394 case DT_MIPS_HIDDEN_GOTIDX:
15395 return "MIPS_HIDDEN_GOTIDX";
15396 case DT_MIPS_PROTECTED_GOTIDX:
15397 return "MIPS_PROTECTED_GOT_IDX";
15398 case DT_MIPS_OPTIONS:
15399 return "MIPS_OPTIONS";
15400 case DT_MIPS_INTERFACE:
15401 return "MIPS_INTERFACE";
15402 case DT_MIPS_DYNSTR_ALIGN:
15403 return "DT_MIPS_DYNSTR_ALIGN";
15404 case DT_MIPS_INTERFACE_SIZE:
15405 return "DT_MIPS_INTERFACE_SIZE";
15406 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15407 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15408 case DT_MIPS_PERF_SUFFIX:
15409 return "DT_MIPS_PERF_SUFFIX";
15410 case DT_MIPS_COMPACT_SIZE:
15411 return "DT_MIPS_COMPACT_SIZE";
15412 case DT_MIPS_GP_VALUE:
15413 return "DT_MIPS_GP_VALUE";
15414 case DT_MIPS_AUX_DYNAMIC:
15415 return "DT_MIPS_AUX_DYNAMIC";
15416 case DT_MIPS_PLTGOT:
15417 return "DT_MIPS_PLTGOT";
15418 case DT_MIPS_RWPLT:
15419 return "DT_MIPS_RWPLT";
15420 }
15421 }
15422
15423 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15424 not known. */
15425
15426 const char *
15427 _bfd_mips_fp_abi_string (int fp)
15428 {
15429 switch (fp)
15430 {
15431 /* These strings aren't translated because they're simply
15432 option lists. */
15433 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15434 return "-mdouble-float";
15435
15436 case Val_GNU_MIPS_ABI_FP_SINGLE:
15437 return "-msingle-float";
15438
15439 case Val_GNU_MIPS_ABI_FP_SOFT:
15440 return "-msoft-float";
15441
15442 case Val_GNU_MIPS_ABI_FP_OLD_64:
15443 return _("-mips32r2 -mfp64 (12 callee-saved)");
15444
15445 case Val_GNU_MIPS_ABI_FP_XX:
15446 return "-mfpxx";
15447
15448 case Val_GNU_MIPS_ABI_FP_64:
15449 return "-mgp32 -mfp64";
15450
15451 case Val_GNU_MIPS_ABI_FP_64A:
15452 return "-mgp32 -mfp64 -mno-odd-spreg";
15453
15454 default:
15455 return 0;
15456 }
15457 }
15458
15459 static void
15460 print_mips_ases (FILE *file, unsigned int mask)
15461 {
15462 if (mask & AFL_ASE_DSP)
15463 fputs ("\n\tDSP ASE", file);
15464 if (mask & AFL_ASE_DSPR2)
15465 fputs ("\n\tDSP R2 ASE", file);
15466 if (mask & AFL_ASE_EVA)
15467 fputs ("\n\tEnhanced VA Scheme", file);
15468 if (mask & AFL_ASE_MCU)
15469 fputs ("\n\tMCU (MicroController) ASE", file);
15470 if (mask & AFL_ASE_MDMX)
15471 fputs ("\n\tMDMX ASE", file);
15472 if (mask & AFL_ASE_MIPS3D)
15473 fputs ("\n\tMIPS-3D ASE", file);
15474 if (mask & AFL_ASE_MT)
15475 fputs ("\n\tMT ASE", file);
15476 if (mask & AFL_ASE_SMARTMIPS)
15477 fputs ("\n\tSmartMIPS ASE", file);
15478 if (mask & AFL_ASE_VIRT)
15479 fputs ("\n\tVZ ASE", file);
15480 if (mask & AFL_ASE_MSA)
15481 fputs ("\n\tMSA ASE", file);
15482 if (mask & AFL_ASE_MIPS16)
15483 fputs ("\n\tMIPS16 ASE", file);
15484 if (mask & AFL_ASE_MICROMIPS)
15485 fputs ("\n\tMICROMIPS ASE", file);
15486 if (mask & AFL_ASE_XPA)
15487 fputs ("\n\tXPA ASE", file);
15488 if (mask == 0)
15489 fprintf (file, "\n\t%s", _("None"));
15490 }
15491
15492 static void
15493 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15494 {
15495 switch (isa_ext)
15496 {
15497 case 0:
15498 fputs (_("None"), file);
15499 break;
15500 case AFL_EXT_XLR:
15501 fputs ("RMI XLR", file);
15502 break;
15503 case AFL_EXT_OCTEON2:
15504 fputs ("Cavium Networks Octeon2", file);
15505 break;
15506 case AFL_EXT_OCTEONP:
15507 fputs ("Cavium Networks OcteonP", file);
15508 break;
15509 case AFL_EXT_LOONGSON_3A:
15510 fputs ("Loongson 3A", file);
15511 break;
15512 case AFL_EXT_OCTEON:
15513 fputs ("Cavium Networks Octeon", file);
15514 break;
15515 case AFL_EXT_5900:
15516 fputs ("Toshiba R5900", file);
15517 break;
15518 case AFL_EXT_4650:
15519 fputs ("MIPS R4650", file);
15520 break;
15521 case AFL_EXT_4010:
15522 fputs ("LSI R4010", file);
15523 break;
15524 case AFL_EXT_4100:
15525 fputs ("NEC VR4100", file);
15526 break;
15527 case AFL_EXT_3900:
15528 fputs ("Toshiba R3900", file);
15529 break;
15530 case AFL_EXT_10000:
15531 fputs ("MIPS R10000", file);
15532 break;
15533 case AFL_EXT_SB1:
15534 fputs ("Broadcom SB-1", file);
15535 break;
15536 case AFL_EXT_4111:
15537 fputs ("NEC VR4111/VR4181", file);
15538 break;
15539 case AFL_EXT_4120:
15540 fputs ("NEC VR4120", file);
15541 break;
15542 case AFL_EXT_5400:
15543 fputs ("NEC VR5400", file);
15544 break;
15545 case AFL_EXT_5500:
15546 fputs ("NEC VR5500", file);
15547 break;
15548 case AFL_EXT_LOONGSON_2E:
15549 fputs ("ST Microelectronics Loongson 2E", file);
15550 break;
15551 case AFL_EXT_LOONGSON_2F:
15552 fputs ("ST Microelectronics Loongson 2F", file);
15553 break;
15554 default:
15555 fputs (_("Unknown"), file);
15556 break;
15557 }
15558 }
15559
15560 static void
15561 print_mips_fp_abi_value (FILE *file, int val)
15562 {
15563 switch (val)
15564 {
15565 case Val_GNU_MIPS_ABI_FP_ANY:
15566 fprintf (file, _("Hard or soft float\n"));
15567 break;
15568 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15569 fprintf (file, _("Hard float (double precision)\n"));
15570 break;
15571 case Val_GNU_MIPS_ABI_FP_SINGLE:
15572 fprintf (file, _("Hard float (single precision)\n"));
15573 break;
15574 case Val_GNU_MIPS_ABI_FP_SOFT:
15575 fprintf (file, _("Soft float\n"));
15576 break;
15577 case Val_GNU_MIPS_ABI_FP_OLD_64:
15578 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15579 break;
15580 case Val_GNU_MIPS_ABI_FP_XX:
15581 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15582 break;
15583 case Val_GNU_MIPS_ABI_FP_64:
15584 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15585 break;
15586 case Val_GNU_MIPS_ABI_FP_64A:
15587 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15588 break;
15589 default:
15590 fprintf (file, "??? (%d)\n", val);
15591 break;
15592 }
15593 }
15594
15595 static int
15596 get_mips_reg_size (int reg_size)
15597 {
15598 return (reg_size == AFL_REG_NONE) ? 0
15599 : (reg_size == AFL_REG_32) ? 32
15600 : (reg_size == AFL_REG_64) ? 64
15601 : (reg_size == AFL_REG_128) ? 128
15602 : -1;
15603 }
15604
15605 bfd_boolean
15606 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15607 {
15608 FILE *file = ptr;
15609
15610 BFD_ASSERT (abfd != NULL && ptr != NULL);
15611
15612 /* Print normal ELF private data. */
15613 _bfd_elf_print_private_bfd_data (abfd, ptr);
15614
15615 /* xgettext:c-format */
15616 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15617
15618 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15619 fprintf (file, _(" [abi=O32]"));
15620 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15621 fprintf (file, _(" [abi=O64]"));
15622 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15623 fprintf (file, _(" [abi=EABI32]"));
15624 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15625 fprintf (file, _(" [abi=EABI64]"));
15626 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15627 fprintf (file, _(" [abi unknown]"));
15628 else if (ABI_N32_P (abfd))
15629 fprintf (file, _(" [abi=N32]"));
15630 else if (ABI_64_P (abfd))
15631 fprintf (file, _(" [abi=64]"));
15632 else
15633 fprintf (file, _(" [no abi set]"));
15634
15635 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15636 fprintf (file, " [mips1]");
15637 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15638 fprintf (file, " [mips2]");
15639 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15640 fprintf (file, " [mips3]");
15641 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15642 fprintf (file, " [mips4]");
15643 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15644 fprintf (file, " [mips5]");
15645 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15646 fprintf (file, " [mips32]");
15647 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15648 fprintf (file, " [mips64]");
15649 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15650 fprintf (file, " [mips32r2]");
15651 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15652 fprintf (file, " [mips64r2]");
15653 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15654 fprintf (file, " [mips32r6]");
15655 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15656 fprintf (file, " [mips64r6]");
15657 else
15658 fprintf (file, _(" [unknown ISA]"));
15659
15660 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15661 fprintf (file, " [mdmx]");
15662
15663 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15664 fprintf (file, " [mips16]");
15665
15666 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15667 fprintf (file, " [micromips]");
15668
15669 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15670 fprintf (file, " [nan2008]");
15671
15672 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15673 fprintf (file, " [old fp64]");
15674
15675 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15676 fprintf (file, " [32bitmode]");
15677 else
15678 fprintf (file, _(" [not 32bitmode]"));
15679
15680 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15681 fprintf (file, " [noreorder]");
15682
15683 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15684 fprintf (file, " [PIC]");
15685
15686 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15687 fprintf (file, " [CPIC]");
15688
15689 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15690 fprintf (file, " [XGOT]");
15691
15692 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15693 fprintf (file, " [UCODE]");
15694
15695 fputc ('\n', file);
15696
15697 if (mips_elf_tdata (abfd)->abiflags_valid)
15698 {
15699 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15700 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15701 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15702 if (abiflags->isa_rev > 1)
15703 fprintf (file, "r%d", abiflags->isa_rev);
15704 fprintf (file, "\nGPR size: %d",
15705 get_mips_reg_size (abiflags->gpr_size));
15706 fprintf (file, "\nCPR1 size: %d",
15707 get_mips_reg_size (abiflags->cpr1_size));
15708 fprintf (file, "\nCPR2 size: %d",
15709 get_mips_reg_size (abiflags->cpr2_size));
15710 fputs ("\nFP ABI: ", file);
15711 print_mips_fp_abi_value (file, abiflags->fp_abi);
15712 fputs ("ISA Extension: ", file);
15713 print_mips_isa_ext (file, abiflags->isa_ext);
15714 fputs ("\nASEs:", file);
15715 print_mips_ases (file, abiflags->ases);
15716 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15717 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15718 fputc ('\n', file);
15719 }
15720
15721 return TRUE;
15722 }
15723
15724 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15725 {
15726 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15727 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15728 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15729 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15730 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15731 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15732 { NULL, 0, 0, 0, 0 }
15733 };
15734
15735 /* Merge non visibility st_other attributes. Ensure that the
15736 STO_OPTIONAL flag is copied into h->other, even if this is not a
15737 definiton of the symbol. */
15738 void
15739 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15740 const Elf_Internal_Sym *isym,
15741 bfd_boolean definition,
15742 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15743 {
15744 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15745 {
15746 unsigned char other;
15747
15748 other = (definition ? isym->st_other : h->other);
15749 other &= ~ELF_ST_VISIBILITY (-1);
15750 h->other = other | ELF_ST_VISIBILITY (h->other);
15751 }
15752
15753 if (!definition
15754 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15755 h->other |= STO_OPTIONAL;
15756 }
15757
15758 /* Decide whether an undefined symbol is special and can be ignored.
15759 This is the case for OPTIONAL symbols on IRIX. */
15760 bfd_boolean
15761 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15762 {
15763 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15764 }
15765
15766 bfd_boolean
15767 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15768 {
15769 return (sym->st_shndx == SHN_COMMON
15770 || sym->st_shndx == SHN_MIPS_ACOMMON
15771 || sym->st_shndx == SHN_MIPS_SCOMMON);
15772 }
15773
15774 /* Return address for Ith PLT stub in section PLT, for relocation REL
15775 or (bfd_vma) -1 if it should not be included. */
15776
15777 bfd_vma
15778 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15779 const arelent *rel ATTRIBUTE_UNUSED)
15780 {
15781 return (plt->vma
15782 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15783 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15784 }
15785
15786 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15787 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15788 and .got.plt and also the slots may be of a different size each we walk
15789 the PLT manually fetching instructions and matching them against known
15790 patterns. To make things easier standard MIPS slots, if any, always come
15791 first. As we don't create proper ELF symbols we use the UDATA.I member
15792 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15793 with the ST_OTHER member of the ELF symbol. */
15794
15795 long
15796 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15797 long symcount ATTRIBUTE_UNUSED,
15798 asymbol **syms ATTRIBUTE_UNUSED,
15799 long dynsymcount, asymbol **dynsyms,
15800 asymbol **ret)
15801 {
15802 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15803 static const char microsuffix[] = "@micromipsplt";
15804 static const char m16suffix[] = "@mips16plt";
15805 static const char mipssuffix[] = "@plt";
15806
15807 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15808 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15809 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15810 Elf_Internal_Shdr *hdr;
15811 bfd_byte *plt_data;
15812 bfd_vma plt_offset;
15813 unsigned int other;
15814 bfd_vma entry_size;
15815 bfd_vma plt0_size;
15816 asection *relplt;
15817 bfd_vma opcode;
15818 asection *plt;
15819 asymbol *send;
15820 size_t size;
15821 char *names;
15822 long counti;
15823 arelent *p;
15824 asymbol *s;
15825 char *nend;
15826 long count;
15827 long pi;
15828 long i;
15829 long n;
15830
15831 *ret = NULL;
15832
15833 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15834 return 0;
15835
15836 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15837 if (relplt == NULL)
15838 return 0;
15839
15840 hdr = &elf_section_data (relplt)->this_hdr;
15841 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15842 return 0;
15843
15844 plt = bfd_get_section_by_name (abfd, ".plt");
15845 if (plt == NULL)
15846 return 0;
15847
15848 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15849 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15850 return -1;
15851 p = relplt->relocation;
15852
15853 /* Calculating the exact amount of space required for symbols would
15854 require two passes over the PLT, so just pessimise assuming two
15855 PLT slots per relocation. */
15856 count = relplt->size / hdr->sh_entsize;
15857 counti = count * bed->s->int_rels_per_ext_rel;
15858 size = 2 * count * sizeof (asymbol);
15859 size += count * (sizeof (mipssuffix) +
15860 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15861 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15862 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15863
15864 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15865 size += sizeof (asymbol) + sizeof (pltname);
15866
15867 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15868 return -1;
15869
15870 if (plt->size < 16)
15871 return -1;
15872
15873 s = *ret = bfd_malloc (size);
15874 if (s == NULL)
15875 return -1;
15876 send = s + 2 * count + 1;
15877
15878 names = (char *) send;
15879 nend = (char *) s + size;
15880 n = 0;
15881
15882 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15883 if (opcode == 0x3302fffe)
15884 {
15885 if (!micromips_p)
15886 return -1;
15887 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15888 other = STO_MICROMIPS;
15889 }
15890 else if (opcode == 0x0398c1d0)
15891 {
15892 if (!micromips_p)
15893 return -1;
15894 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15895 other = STO_MICROMIPS;
15896 }
15897 else
15898 {
15899 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
15900 other = 0;
15901 }
15902
15903 s->the_bfd = abfd;
15904 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
15905 s->section = plt;
15906 s->value = 0;
15907 s->name = names;
15908 s->udata.i = other;
15909 memcpy (names, pltname, sizeof (pltname));
15910 names += sizeof (pltname);
15911 ++s, ++n;
15912
15913 pi = 0;
15914 for (plt_offset = plt0_size;
15915 plt_offset + 8 <= plt->size && s < send;
15916 plt_offset += entry_size)
15917 {
15918 bfd_vma gotplt_addr;
15919 const char *suffix;
15920 bfd_vma gotplt_hi;
15921 bfd_vma gotplt_lo;
15922 size_t suffixlen;
15923
15924 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
15925
15926 /* Check if the second word matches the expected MIPS16 instruction. */
15927 if (opcode == 0x651aeb00)
15928 {
15929 if (micromips_p)
15930 return -1;
15931 /* Truncated table??? */
15932 if (plt_offset + 16 > plt->size)
15933 break;
15934 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
15935 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
15936 suffixlen = sizeof (m16suffix);
15937 suffix = m16suffix;
15938 other = STO_MIPS16;
15939 }
15940 /* Likewise the expected microMIPS instruction (no insn32 mode). */
15941 else if (opcode == 0xff220000)
15942 {
15943 if (!micromips_p)
15944 return -1;
15945 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
15946 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
15947 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
15948 gotplt_lo <<= 2;
15949 gotplt_addr = gotplt_hi + gotplt_lo;
15950 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
15951 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
15952 suffixlen = sizeof (microsuffix);
15953 suffix = microsuffix;
15954 other = STO_MICROMIPS;
15955 }
15956 /* Likewise the expected microMIPS instruction (insn32 mode). */
15957 else if ((opcode & 0xffff0000) == 0xff2f0000)
15958 {
15959 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
15960 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
15961 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
15962 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
15963 gotplt_addr = gotplt_hi + gotplt_lo;
15964 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
15965 suffixlen = sizeof (microsuffix);
15966 suffix = microsuffix;
15967 other = STO_MICROMIPS;
15968 }
15969 /* Otherwise assume standard MIPS code. */
15970 else
15971 {
15972 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
15973 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
15974 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
15975 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
15976 gotplt_addr = gotplt_hi + gotplt_lo;
15977 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
15978 suffixlen = sizeof (mipssuffix);
15979 suffix = mipssuffix;
15980 other = 0;
15981 }
15982 /* Truncated table??? */
15983 if (plt_offset + entry_size > plt->size)
15984 break;
15985
15986 for (i = 0;
15987 i < count && p[pi].address != gotplt_addr;
15988 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
15989
15990 if (i < count)
15991 {
15992 size_t namelen;
15993 size_t len;
15994
15995 *s = **p[pi].sym_ptr_ptr;
15996 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
15997 we are defining a symbol, ensure one of them is set. */
15998 if ((s->flags & BSF_LOCAL) == 0)
15999 s->flags |= BSF_GLOBAL;
16000 s->flags |= BSF_SYNTHETIC;
16001 s->section = plt;
16002 s->value = plt_offset;
16003 s->name = names;
16004 s->udata.i = other;
16005
16006 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16007 namelen = len + suffixlen;
16008 if (names + namelen > nend)
16009 break;
16010
16011 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16012 names += len;
16013 memcpy (names, suffix, suffixlen);
16014 names += suffixlen;
16015
16016 ++s, ++n;
16017 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16018 }
16019 }
16020
16021 free (plt_data);
16022
16023 return n;
16024 }
16025
16026 void
16027 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16028 {
16029 struct mips_elf_link_hash_table *htab;
16030 Elf_Internal_Ehdr *i_ehdrp;
16031
16032 i_ehdrp = elf_elfheader (abfd);
16033 if (link_info)
16034 {
16035 htab = mips_elf_hash_table (link_info);
16036 BFD_ASSERT (htab != NULL);
16037
16038 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16039 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16040 }
16041
16042 _bfd_elf_post_process_headers (abfd, link_info);
16043
16044 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16045 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16046 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16047 }
This page took 0.406728 seconds and 4 git commands to generate.