2004-11-03 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171 };
172
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176 struct mips_elf_link_hash_entry
177 {
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
195 bfd_boolean no_fn_stub;
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
203 bfd_boolean need_fn_stub;
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
212
213 /* Are we forced local? .*/
214 bfd_boolean forced_local;
215 };
216
217 /* MIPS ELF linker hash table. */
218
219 struct mips_elf_link_hash_table
220 {
221 struct elf_link_hash_table root;
222 #if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226 #endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
232 entry is set to the address of __rld_obj_head as in IRIX5. */
233 bfd_boolean use_rld_obj_head;
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
237 bfd_boolean mips16_stubs_seen;
238 };
239
240 /* Structure used to pass information to mips_elf_output_extsym. */
241
242 struct extsym_info
243 {
244 bfd *abfd;
245 struct bfd_link_info *info;
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
248 bfd_boolean failed;
249 };
250
251 /* The names of the runtime procedure table symbols used on IRIX5. */
252
253 static const char * const mips_elf_dynsym_rtproc_names[] =
254 {
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259 };
260
261 /* These structures are used to generate the .compact_rel section on
262 IRIX5. */
263
264 typedef struct
265 {
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272 } Elf32_compact_rel;
273
274 typedef struct
275 {
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282 } Elf32_External_compact_rel;
283
284 typedef struct
285 {
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292 } Elf32_crinfo;
293
294 typedef struct
295 {
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301 } Elf32_crinfo2;
302
303 typedef struct
304 {
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308 } Elf32_External_crinfo;
309
310 typedef struct
311 {
312 bfd_byte info[4];
313 bfd_byte konst[4];
314 } Elf32_External_crinfo2;
315
316 /* These are the constants used to swap the bitfields in a crinfo. */
317
318 #define CRINFO_CTYPE (0x1)
319 #define CRINFO_CTYPE_SH (31)
320 #define CRINFO_RTYPE (0xf)
321 #define CRINFO_RTYPE_SH (27)
322 #define CRINFO_DIST2TO (0xff)
323 #define CRINFO_DIST2TO_SH (19)
324 #define CRINFO_RELVADDR (0x7ffff)
325 #define CRINFO_RELVADDR_SH (0)
326
327 /* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330 #define CRF_MIPS_LONG 1
331 #define CRF_MIPS_SHORT 0
332
333 /* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343 #define CRT_MIPS_REL32 0xa
344 #define CRT_MIPS_WORD 0xb
345 #define CRT_MIPS_GPHI_LO 0xc
346 #define CRT_MIPS_JMPAD 0xd
347
348 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352 \f
353 /* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356 typedef struct runtime_pdr {
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
366 long reserved;
367 struct exception_info *exception_info;/* Pointer to exception array. */
368 } RPDR, *pRPDR;
369 #define cbRPDR sizeof (RPDR)
370 #define rpdNil ((pRPDR) 0)
371 \f
372 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
374 static void ecoff_swap_rpdr_out
375 (bfd *, const RPDR *, struct rpdr_ext *);
376 static bfd_boolean mips_elf_create_procedure_table
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
379 static bfd_boolean mips_elf_check_mips16_stubs
380 (struct mips_elf_link_hash_entry *, void *);
381 static void bfd_mips_elf32_swap_gptab_in
382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
383 static void bfd_mips_elf32_swap_gptab_out
384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
385 static void bfd_elf32_swap_compact_rel_out
386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
387 static void bfd_elf32_swap_crinfo_out
388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
389 static int sort_dynamic_relocs
390 (const void *, const void *);
391 static int sort_dynamic_relocs_64
392 (const void *, const void *);
393 static bfd_boolean mips_elf_output_extsym
394 (struct mips_elf_link_hash_entry *, void *);
395 static int gptab_compare
396 (const void *, const void *);
397 static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399 static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
401 static struct mips_got_info *mips_elf_got_info
402 (bfd *, asection **);
403 static bfd_vma mips_elf_local_got_index
404 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
405 static bfd_vma mips_elf_global_got_index
406 (bfd *, bfd *, struct elf_link_hash_entry *);
407 static bfd_vma mips_elf_got_page
408 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
409 static bfd_vma mips_elf_got16_entry
410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
411 static bfd_vma mips_elf_got_offset_from_index
412 (bfd *, bfd *, bfd *, bfd_vma);
413 static struct mips_got_entry *mips_elf_create_local_got_entry
414 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
415 static bfd_boolean mips_elf_sort_hash_table
416 (struct bfd_link_info *, unsigned long);
417 static bfd_boolean mips_elf_sort_hash_table_f
418 (struct mips_elf_link_hash_entry *, void *);
419 static bfd_boolean mips_elf_record_local_got_symbol
420 (bfd *, long, bfd_vma, struct mips_got_info *);
421 static bfd_boolean mips_elf_record_global_got_symbol
422 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
423 struct mips_got_info *);
424 static const Elf_Internal_Rela *mips_elf_next_relocation
425 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
426 static bfd_boolean mips_elf_local_relocation_p
427 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
428 static bfd_boolean mips_elf_overflow_p
429 (bfd_vma, int);
430 static bfd_vma mips_elf_high
431 (bfd_vma);
432 static bfd_vma mips_elf_higher
433 (bfd_vma);
434 static bfd_vma mips_elf_highest
435 (bfd_vma);
436 static bfd_boolean mips_elf_create_compact_rel_section
437 (bfd *, struct bfd_link_info *);
438 static bfd_boolean mips_elf_create_got_section
439 (bfd *, struct bfd_link_info *, bfd_boolean);
440 static bfd_reloc_status_type mips_elf_calculate_relocation
441 (bfd *, bfd *, asection *, struct bfd_link_info *,
442 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
443 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
444 bfd_boolean *, bfd_boolean);
445 static bfd_vma mips_elf_obtain_contents
446 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
447 static bfd_boolean mips_elf_perform_relocation
448 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
449 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
450 static bfd_boolean mips_elf_stub_section_p
451 (bfd *, asection *);
452 static void mips_elf_allocate_dynamic_relocations
453 (bfd *, unsigned int);
454 static bfd_boolean mips_elf_create_dynamic_relocation
455 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
456 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
457 bfd_vma *, asection *);
458 static void mips_set_isa_flags
459 (bfd *);
460 static INLINE char *elf_mips_abi_name
461 (bfd *);
462 static void mips_elf_irix6_finish_dynamic_symbol
463 (bfd *, const char *, Elf_Internal_Sym *);
464 static bfd_boolean mips_mach_extends_p
465 (unsigned long, unsigned long);
466 static bfd_boolean mips_32bit_flags_p
467 (flagword);
468 static INLINE hashval_t mips_elf_hash_bfd_vma
469 (bfd_vma);
470 static hashval_t mips_elf_got_entry_hash
471 (const void *);
472 static int mips_elf_got_entry_eq
473 (const void *, const void *);
474
475 static bfd_boolean mips_elf_multi_got
476 (bfd *, struct bfd_link_info *, struct mips_got_info *,
477 asection *, bfd_size_type);
478 static hashval_t mips_elf_multi_got_entry_hash
479 (const void *);
480 static int mips_elf_multi_got_entry_eq
481 (const void *, const void *);
482 static hashval_t mips_elf_bfd2got_entry_hash
483 (const void *);
484 static int mips_elf_bfd2got_entry_eq
485 (const void *, const void *);
486 static int mips_elf_make_got_per_bfd
487 (void **, void *);
488 static int mips_elf_merge_gots
489 (void **, void *);
490 static int mips_elf_set_global_got_offset
491 (void **, void *);
492 static int mips_elf_set_no_stub
493 (void **, void *);
494 static int mips_elf_resolve_final_got_entry
495 (void **, void *);
496 static void mips_elf_resolve_final_got_entries
497 (struct mips_got_info *);
498 static bfd_vma mips_elf_adjust_gp
499 (bfd *, struct mips_got_info *, bfd *);
500 static struct mips_got_info *mips_elf_got_for_ibfd
501 (struct mips_got_info *, bfd *);
502
503 /* This will be used when we sort the dynamic relocation records. */
504 static bfd *reldyn_sorting_bfd;
505
506 /* Nonzero if ABFD is using the N32 ABI. */
507
508 #define ABI_N32_P(abfd) \
509 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
510
511 /* Nonzero if ABFD is using the N64 ABI. */
512 #define ABI_64_P(abfd) \
513 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
514
515 /* Nonzero if ABFD is using NewABI conventions. */
516 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
517
518 /* The IRIX compatibility level we are striving for. */
519 #define IRIX_COMPAT(abfd) \
520 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
521
522 /* Whether we are trying to be compatible with IRIX at all. */
523 #define SGI_COMPAT(abfd) \
524 (IRIX_COMPAT (abfd) != ict_none)
525
526 /* The name of the options section. */
527 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
528 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
529
530 /* The name of the stub section. */
531 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
532
533 /* The size of an external REL relocation. */
534 #define MIPS_ELF_REL_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->sizeof_rel)
536
537 /* The size of an external dynamic table entry. */
538 #define MIPS_ELF_DYN_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_dyn)
540
541 /* The size of a GOT entry. */
542 #define MIPS_ELF_GOT_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->arch_size / 8)
544
545 /* The size of a symbol-table entry. */
546 #define MIPS_ELF_SYM_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_sym)
548
549 /* The default alignment for sections, as a power of two. */
550 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
551 (get_elf_backend_data (abfd)->s->log_file_align)
552
553 /* Get word-sized data. */
554 #define MIPS_ELF_GET_WORD(abfd, ptr) \
555 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
556
557 /* Put out word-sized data. */
558 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
559 (ABI_64_P (abfd) \
560 ? bfd_put_64 (abfd, val, ptr) \
561 : bfd_put_32 (abfd, val, ptr))
562
563 /* Add a dynamic symbol table-entry. */
564 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
565 _bfd_elf_add_dynamic_entry (info, tag, val)
566
567 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
568 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
569
570 /* Determine whether the internal relocation of index REL_IDX is REL
571 (zero) or RELA (non-zero). The assumption is that, if there are
572 two relocation sections for this section, one of them is REL and
573 the other is RELA. If the index of the relocation we're testing is
574 in range for the first relocation section, check that the external
575 relocation size is that for RELA. It is also assumed that, if
576 rel_idx is not in range for the first section, and this first
577 section contains REL relocs, then the relocation is in the second
578 section, that is RELA. */
579 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
580 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
581 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
582 > (bfd_vma)(rel_idx)) \
583 == (elf_section_data (sec)->rel_hdr.sh_entsize \
584 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
585 : sizeof (Elf32_External_Rela))))
586
587 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
588 from smaller values. Start with zero, widen, *then* decrement. */
589 #define MINUS_ONE (((bfd_vma)0) - 1)
590 #define MINUS_TWO (((bfd_vma)0) - 2)
591
592 /* The number of local .got entries we reserve. */
593 #define MIPS_RESERVED_GOTNO (2)
594
595 /* The offset of $gp from the beginning of the .got section. */
596 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598 /* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
602 /* Instructions which appear in a stub. */
603 #define STUB_LW(abfd) \
604 ((ABI_64_P (abfd) \
605 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
606 : 0x8f998010)) /* lw t9,0x8010(gp) */
607 #define STUB_MOVE(abfd) \
608 ((ABI_64_P (abfd) \
609 ? 0x03e0782d /* daddu t7,ra */ \
610 : 0x03e07821)) /* addu t7,ra */
611 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
612 #define STUB_LI16(abfd) \
613 ((ABI_64_P (abfd) \
614 ? 0x64180000 /* daddiu t8,zero,0 */ \
615 : 0x24180000)) /* addiu t8,zero,0 */
616 #define MIPS_FUNCTION_STUB_SIZE (16)
617
618 /* The name of the dynamic interpreter. This is put in the .interp
619 section. */
620
621 #define ELF_DYNAMIC_INTERPRETER(abfd) \
622 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
623 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
624 : "/usr/lib/libc.so.1")
625
626 #ifdef BFD64
627 #define MNAME(bfd,pre,pos) \
628 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
629 #define ELF_R_SYM(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
631 #define ELF_R_TYPE(bfd, i) \
632 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
633 #define ELF_R_INFO(bfd, s, t) \
634 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
635 #else
636 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
637 #define ELF_R_SYM(bfd, i) \
638 (ELF32_R_SYM (i))
639 #define ELF_R_TYPE(bfd, i) \
640 (ELF32_R_TYPE (i))
641 #define ELF_R_INFO(bfd, s, t) \
642 (ELF32_R_INFO (s, t))
643 #endif
644 \f
645 /* The mips16 compiler uses a couple of special sections to handle
646 floating point arguments.
647
648 Section names that look like .mips16.fn.FNNAME contain stubs that
649 copy floating point arguments from the fp regs to the gp regs and
650 then jump to FNNAME. If any 32 bit function calls FNNAME, the
651 call should be redirected to the stub instead. If no 32 bit
652 function calls FNNAME, the stub should be discarded. We need to
653 consider any reference to the function, not just a call, because
654 if the address of the function is taken we will need the stub,
655 since the address might be passed to a 32 bit function.
656
657 Section names that look like .mips16.call.FNNAME contain stubs
658 that copy floating point arguments from the gp regs to the fp
659 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
660 then any 16 bit function that calls FNNAME should be redirected
661 to the stub instead. If FNNAME is not a 32 bit function, the
662 stub should be discarded.
663
664 .mips16.call.fp.FNNAME sections are similar, but contain stubs
665 which call FNNAME and then copy the return value from the fp regs
666 to the gp regs. These stubs store the return value in $18 while
667 calling FNNAME; any function which might call one of these stubs
668 must arrange to save $18 around the call. (This case is not
669 needed for 32 bit functions that call 16 bit functions, because
670 16 bit functions always return floating point values in both
671 $f0/$f1 and $2/$3.)
672
673 Note that in all cases FNNAME might be defined statically.
674 Therefore, FNNAME is not used literally. Instead, the relocation
675 information will indicate which symbol the section is for.
676
677 We record any stubs that we find in the symbol table. */
678
679 #define FN_STUB ".mips16.fn."
680 #define CALL_STUB ".mips16.call."
681 #define CALL_FP_STUB ".mips16.call.fp."
682 \f
683 /* Look up an entry in a MIPS ELF linker hash table. */
684
685 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
686 ((struct mips_elf_link_hash_entry *) \
687 elf_link_hash_lookup (&(table)->root, (string), (create), \
688 (copy), (follow)))
689
690 /* Traverse a MIPS ELF linker hash table. */
691
692 #define mips_elf_link_hash_traverse(table, func, info) \
693 (elf_link_hash_traverse \
694 (&(table)->root, \
695 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
696 (info)))
697
698 /* Get the MIPS ELF linker hash table from a link_info structure. */
699
700 #define mips_elf_hash_table(p) \
701 ((struct mips_elf_link_hash_table *) ((p)->hash))
702
703 /* Create an entry in a MIPS ELF linker hash table. */
704
705 static struct bfd_hash_entry *
706 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
707 struct bfd_hash_table *table, const char *string)
708 {
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
714 if (ret == NULL)
715 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
716 if (ret == NULL)
717 return (struct bfd_hash_entry *) ret;
718
719 /* Call the allocation method of the superclass. */
720 ret = ((struct mips_elf_link_hash_entry *)
721 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
722 table, string));
723 if (ret != NULL)
724 {
725 /* Set local fields. */
726 memset (&ret->esym, 0, sizeof (EXTR));
727 /* We use -2 as a marker to indicate that the information has
728 not been set. -1 means there is no associated ifd. */
729 ret->esym.ifd = -2;
730 ret->possibly_dynamic_relocs = 0;
731 ret->readonly_reloc = FALSE;
732 ret->no_fn_stub = FALSE;
733 ret->fn_stub = NULL;
734 ret->need_fn_stub = FALSE;
735 ret->call_stub = NULL;
736 ret->call_fp_stub = NULL;
737 ret->forced_local = FALSE;
738 }
739
740 return (struct bfd_hash_entry *) ret;
741 }
742
743 bfd_boolean
744 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
745 {
746 struct _mips_elf_section_data *sdata;
747 bfd_size_type amt = sizeof (*sdata);
748
749 sdata = bfd_zalloc (abfd, amt);
750 if (sdata == NULL)
751 return FALSE;
752 sec->used_by_bfd = sdata;
753
754 return _bfd_elf_new_section_hook (abfd, sec);
755 }
756 \f
757 /* Read ECOFF debugging information from a .mdebug section into a
758 ecoff_debug_info structure. */
759
760 bfd_boolean
761 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
762 struct ecoff_debug_info *debug)
763 {
764 HDRR *symhdr;
765 const struct ecoff_debug_swap *swap;
766 char *ext_hdr;
767
768 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
769 memset (debug, 0, sizeof (*debug));
770
771 ext_hdr = bfd_malloc (swap->external_hdr_size);
772 if (ext_hdr == NULL && swap->external_hdr_size != 0)
773 goto error_return;
774
775 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
776 swap->external_hdr_size))
777 goto error_return;
778
779 symhdr = &debug->symbolic_header;
780 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
781
782 /* The symbolic header contains absolute file offsets and sizes to
783 read. */
784 #define READ(ptr, offset, count, size, type) \
785 if (symhdr->count == 0) \
786 debug->ptr = NULL; \
787 else \
788 { \
789 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
790 debug->ptr = bfd_malloc (amt); \
791 if (debug->ptr == NULL) \
792 goto error_return; \
793 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
794 || bfd_bread (debug->ptr, amt, abfd) != amt) \
795 goto error_return; \
796 }
797
798 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
799 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
800 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
801 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
802 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
803 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
804 union aux_ext *);
805 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
806 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
807 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
808 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
809 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
810 #undef READ
811
812 debug->fdr = NULL;
813
814 return TRUE;
815
816 error_return:
817 if (ext_hdr != NULL)
818 free (ext_hdr);
819 if (debug->line != NULL)
820 free (debug->line);
821 if (debug->external_dnr != NULL)
822 free (debug->external_dnr);
823 if (debug->external_pdr != NULL)
824 free (debug->external_pdr);
825 if (debug->external_sym != NULL)
826 free (debug->external_sym);
827 if (debug->external_opt != NULL)
828 free (debug->external_opt);
829 if (debug->external_aux != NULL)
830 free (debug->external_aux);
831 if (debug->ss != NULL)
832 free (debug->ss);
833 if (debug->ssext != NULL)
834 free (debug->ssext);
835 if (debug->external_fdr != NULL)
836 free (debug->external_fdr);
837 if (debug->external_rfd != NULL)
838 free (debug->external_rfd);
839 if (debug->external_ext != NULL)
840 free (debug->external_ext);
841 return FALSE;
842 }
843 \f
844 /* Swap RPDR (runtime procedure table entry) for output. */
845
846 static void
847 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
848 {
849 H_PUT_S32 (abfd, in->adr, ex->p_adr);
850 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
851 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
852 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
853 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
854 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
855
856 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
857 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
858
859 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
860 #if 0 /* FIXME */
861 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
862 #endif
863 }
864
865 /* Create a runtime procedure table from the .mdebug section. */
866
867 static bfd_boolean
868 mips_elf_create_procedure_table (void *handle, bfd *abfd,
869 struct bfd_link_info *info, asection *s,
870 struct ecoff_debug_info *debug)
871 {
872 const struct ecoff_debug_swap *swap;
873 HDRR *hdr = &debug->symbolic_header;
874 RPDR *rpdr, *rp;
875 struct rpdr_ext *erp;
876 void *rtproc;
877 struct pdr_ext *epdr;
878 struct sym_ext *esym;
879 char *ss, **sv;
880 char *str;
881 bfd_size_type size;
882 bfd_size_type count;
883 unsigned long sindex;
884 unsigned long i;
885 PDR pdr;
886 SYMR sym;
887 const char *no_name_func = _("static procedure (no name)");
888
889 epdr = NULL;
890 rpdr = NULL;
891 esym = NULL;
892 ss = NULL;
893 sv = NULL;
894
895 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
896
897 sindex = strlen (no_name_func) + 1;
898 count = hdr->ipdMax;
899 if (count > 0)
900 {
901 size = swap->external_pdr_size;
902
903 epdr = bfd_malloc (size * count);
904 if (epdr == NULL)
905 goto error_return;
906
907 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
908 goto error_return;
909
910 size = sizeof (RPDR);
911 rp = rpdr = bfd_malloc (size * count);
912 if (rpdr == NULL)
913 goto error_return;
914
915 size = sizeof (char *);
916 sv = bfd_malloc (size * count);
917 if (sv == NULL)
918 goto error_return;
919
920 count = hdr->isymMax;
921 size = swap->external_sym_size;
922 esym = bfd_malloc (size * count);
923 if (esym == NULL)
924 goto error_return;
925
926 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
927 goto error_return;
928
929 count = hdr->issMax;
930 ss = bfd_malloc (count);
931 if (ss == NULL)
932 goto error_return;
933 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
934 goto error_return;
935
936 count = hdr->ipdMax;
937 for (i = 0; i < (unsigned long) count; i++, rp++)
938 {
939 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
940 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
941 rp->adr = sym.value;
942 rp->regmask = pdr.regmask;
943 rp->regoffset = pdr.regoffset;
944 rp->fregmask = pdr.fregmask;
945 rp->fregoffset = pdr.fregoffset;
946 rp->frameoffset = pdr.frameoffset;
947 rp->framereg = pdr.framereg;
948 rp->pcreg = pdr.pcreg;
949 rp->irpss = sindex;
950 sv[i] = ss + sym.iss;
951 sindex += strlen (sv[i]) + 1;
952 }
953 }
954
955 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
956 size = BFD_ALIGN (size, 16);
957 rtproc = bfd_alloc (abfd, size);
958 if (rtproc == NULL)
959 {
960 mips_elf_hash_table (info)->procedure_count = 0;
961 goto error_return;
962 }
963
964 mips_elf_hash_table (info)->procedure_count = count + 2;
965
966 erp = rtproc;
967 memset (erp, 0, sizeof (struct rpdr_ext));
968 erp++;
969 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
970 strcpy (str, no_name_func);
971 str += strlen (no_name_func) + 1;
972 for (i = 0; i < count; i++)
973 {
974 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
975 strcpy (str, sv[i]);
976 str += strlen (sv[i]) + 1;
977 }
978 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
979
980 /* Set the size and contents of .rtproc section. */
981 s->size = size;
982 s->contents = rtproc;
983
984 /* Skip this section later on (I don't think this currently
985 matters, but someday it might). */
986 s->link_order_head = NULL;
987
988 if (epdr != NULL)
989 free (epdr);
990 if (rpdr != NULL)
991 free (rpdr);
992 if (esym != NULL)
993 free (esym);
994 if (ss != NULL)
995 free (ss);
996 if (sv != NULL)
997 free (sv);
998
999 return TRUE;
1000
1001 error_return:
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
1012 return FALSE;
1013 }
1014
1015 /* Check the mips16 stubs for a particular symbol, and see if we can
1016 discard them. */
1017
1018 static bfd_boolean
1019 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1020 void *data ATTRIBUTE_UNUSED)
1021 {
1022 if (h->root.root.type == bfd_link_hash_warning)
1023 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1024
1025 if (h->fn_stub != NULL
1026 && ! h->need_fn_stub)
1027 {
1028 /* We don't need the fn_stub; the only references to this symbol
1029 are 16 bit calls. Clobber the size to 0 to prevent it from
1030 being included in the link. */
1031 h->fn_stub->size = 0;
1032 h->fn_stub->flags &= ~SEC_RELOC;
1033 h->fn_stub->reloc_count = 0;
1034 h->fn_stub->flags |= SEC_EXCLUDE;
1035 }
1036
1037 if (h->call_stub != NULL
1038 && h->root.other == STO_MIPS16)
1039 {
1040 /* We don't need the call_stub; this is a 16 bit function, so
1041 calls from other 16 bit functions are OK. Clobber the size
1042 to 0 to prevent it from being included in the link. */
1043 h->call_stub->size = 0;
1044 h->call_stub->flags &= ~SEC_RELOC;
1045 h->call_stub->reloc_count = 0;
1046 h->call_stub->flags |= SEC_EXCLUDE;
1047 }
1048
1049 if (h->call_fp_stub != NULL
1050 && h->root.other == STO_MIPS16)
1051 {
1052 /* We don't need the call_stub; this is a 16 bit function, so
1053 calls from other 16 bit functions are OK. Clobber the size
1054 to 0 to prevent it from being included in the link. */
1055 h->call_fp_stub->size = 0;
1056 h->call_fp_stub->flags &= ~SEC_RELOC;
1057 h->call_fp_stub->reloc_count = 0;
1058 h->call_fp_stub->flags |= SEC_EXCLUDE;
1059 }
1060
1061 return TRUE;
1062 }
1063 \f
1064 bfd_reloc_status_type
1065 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1066 arelent *reloc_entry, asection *input_section,
1067 bfd_boolean relocatable, void *data, bfd_vma gp)
1068 {
1069 bfd_vma relocation;
1070 bfd_signed_vma val;
1071 bfd_reloc_status_type status;
1072
1073 if (bfd_is_com_section (symbol->section))
1074 relocation = 0;
1075 else
1076 relocation = symbol->value;
1077
1078 relocation += symbol->section->output_section->vma;
1079 relocation += symbol->section->output_offset;
1080
1081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1082 return bfd_reloc_outofrange;
1083
1084 /* Set val to the offset into the section or symbol. */
1085 val = reloc_entry->addend;
1086
1087 _bfd_mips_elf_sign_extend (val, 16);
1088
1089 /* Adjust val for the final section location and GP value. If we
1090 are producing relocatable output, we don't want to do this for
1091 an external symbol. */
1092 if (! relocatable
1093 || (symbol->flags & BSF_SECTION_SYM) != 0)
1094 val += relocation - gp;
1095
1096 if (reloc_entry->howto->partial_inplace)
1097 {
1098 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1099 (bfd_byte *) data
1100 + reloc_entry->address);
1101 if (status != bfd_reloc_ok)
1102 return status;
1103 }
1104 else
1105 reloc_entry->addend = val;
1106
1107 if (relocatable)
1108 reloc_entry->address += input_section->output_offset;
1109
1110 return bfd_reloc_ok;
1111 }
1112
1113 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1114 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1115 that contains the relocation field and DATA points to the start of
1116 INPUT_SECTION. */
1117
1118 struct mips_hi16
1119 {
1120 struct mips_hi16 *next;
1121 bfd_byte *data;
1122 asection *input_section;
1123 arelent rel;
1124 };
1125
1126 /* FIXME: This should not be a static variable. */
1127
1128 static struct mips_hi16 *mips_hi16_list;
1129
1130 /* A howto special_function for REL *HI16 relocations. We can only
1131 calculate the correct value once we've seen the partnering
1132 *LO16 relocation, so just save the information for later.
1133
1134 The ABI requires that the *LO16 immediately follow the *HI16.
1135 However, as a GNU extension, we permit an arbitrary number of
1136 *HI16s to be associated with a single *LO16. This significantly
1137 simplies the relocation handling in gcc. */
1138
1139 bfd_reloc_status_type
1140 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1141 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1142 asection *input_section, bfd *output_bfd,
1143 char **error_message ATTRIBUTE_UNUSED)
1144 {
1145 struct mips_hi16 *n;
1146
1147 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1148 return bfd_reloc_outofrange;
1149
1150 n = bfd_malloc (sizeof *n);
1151 if (n == NULL)
1152 return bfd_reloc_outofrange;
1153
1154 n->next = mips_hi16_list;
1155 n->data = data;
1156 n->input_section = input_section;
1157 n->rel = *reloc_entry;
1158 mips_hi16_list = n;
1159
1160 if (output_bfd != NULL)
1161 reloc_entry->address += input_section->output_offset;
1162
1163 return bfd_reloc_ok;
1164 }
1165
1166 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1167 like any other 16-bit relocation when applied to global symbols, but is
1168 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1169
1170 bfd_reloc_status_type
1171 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1172 void *data, asection *input_section,
1173 bfd *output_bfd, char **error_message)
1174 {
1175 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1176 || bfd_is_und_section (bfd_get_section (symbol))
1177 || bfd_is_com_section (bfd_get_section (symbol)))
1178 /* The relocation is against a global symbol. */
1179 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1180 input_section, output_bfd,
1181 error_message);
1182
1183 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1184 input_section, output_bfd, error_message);
1185 }
1186
1187 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1188 is a straightforward 16 bit inplace relocation, but we must deal with
1189 any partnering high-part relocations as well. */
1190
1191 bfd_reloc_status_type
1192 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1193 void *data, asection *input_section,
1194 bfd *output_bfd, char **error_message)
1195 {
1196 bfd_vma vallo;
1197
1198 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1199 return bfd_reloc_outofrange;
1200
1201 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1202 while (mips_hi16_list != NULL)
1203 {
1204 bfd_reloc_status_type ret;
1205 struct mips_hi16 *hi;
1206
1207 hi = mips_hi16_list;
1208
1209 /* R_MIPS_GOT16 relocations are something of a special case. We
1210 want to install the addend in the same way as for a R_MIPS_HI16
1211 relocation (with a rightshift of 16). However, since GOT16
1212 relocations can also be used with global symbols, their howto
1213 has a rightshift of 0. */
1214 if (hi->rel.howto->type == R_MIPS_GOT16)
1215 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1216
1217 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1218 carry or borrow will induce a change of +1 or -1 in the high part. */
1219 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1220
1221 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1222 hi->input_section, output_bfd,
1223 error_message);
1224 if (ret != bfd_reloc_ok)
1225 return ret;
1226
1227 mips_hi16_list = hi->next;
1228 free (hi);
1229 }
1230
1231 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1232 input_section, output_bfd,
1233 error_message);
1234 }
1235
1236 /* A generic howto special_function. This calculates and installs the
1237 relocation itself, thus avoiding the oft-discussed problems in
1238 bfd_perform_relocation and bfd_install_relocation. */
1239
1240 bfd_reloc_status_type
1241 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1242 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1243 asection *input_section, bfd *output_bfd,
1244 char **error_message ATTRIBUTE_UNUSED)
1245 {
1246 bfd_signed_vma val;
1247 bfd_reloc_status_type status;
1248 bfd_boolean relocatable;
1249
1250 relocatable = (output_bfd != NULL);
1251
1252 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1253 return bfd_reloc_outofrange;
1254
1255 /* Build up the field adjustment in VAL. */
1256 val = 0;
1257 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1258 {
1259 /* Either we're calculating the final field value or we have a
1260 relocation against a section symbol. Add in the section's
1261 offset or address. */
1262 val += symbol->section->output_section->vma;
1263 val += symbol->section->output_offset;
1264 }
1265
1266 if (!relocatable)
1267 {
1268 /* We're calculating the final field value. Add in the symbol's value
1269 and, if pc-relative, subtract the address of the field itself. */
1270 val += symbol->value;
1271 if (reloc_entry->howto->pc_relative)
1272 {
1273 val -= input_section->output_section->vma;
1274 val -= input_section->output_offset;
1275 val -= reloc_entry->address;
1276 }
1277 }
1278
1279 /* VAL is now the final adjustment. If we're keeping this relocation
1280 in the output file, and if the relocation uses a separate addend,
1281 we just need to add VAL to that addend. Otherwise we need to add
1282 VAL to the relocation field itself. */
1283 if (relocatable && !reloc_entry->howto->partial_inplace)
1284 reloc_entry->addend += val;
1285 else
1286 {
1287 /* Add in the separate addend, if any. */
1288 val += reloc_entry->addend;
1289
1290 /* Add VAL to the relocation field. */
1291 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1292 (bfd_byte *) data
1293 + reloc_entry->address);
1294 if (status != bfd_reloc_ok)
1295 return status;
1296 }
1297
1298 if (relocatable)
1299 reloc_entry->address += input_section->output_offset;
1300
1301 return bfd_reloc_ok;
1302 }
1303 \f
1304 /* Swap an entry in a .gptab section. Note that these routines rely
1305 on the equivalence of the two elements of the union. */
1306
1307 static void
1308 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1309 Elf32_gptab *in)
1310 {
1311 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1312 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1313 }
1314
1315 static void
1316 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1317 Elf32_External_gptab *ex)
1318 {
1319 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1320 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1321 }
1322
1323 static void
1324 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1325 Elf32_External_compact_rel *ex)
1326 {
1327 H_PUT_32 (abfd, in->id1, ex->id1);
1328 H_PUT_32 (abfd, in->num, ex->num);
1329 H_PUT_32 (abfd, in->id2, ex->id2);
1330 H_PUT_32 (abfd, in->offset, ex->offset);
1331 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1332 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1333 }
1334
1335 static void
1336 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1337 Elf32_External_crinfo *ex)
1338 {
1339 unsigned long l;
1340
1341 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1342 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1343 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1344 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1345 H_PUT_32 (abfd, l, ex->info);
1346 H_PUT_32 (abfd, in->konst, ex->konst);
1347 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1348 }
1349 \f
1350 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1351 routines swap this structure in and out. They are used outside of
1352 BFD, so they are globally visible. */
1353
1354 void
1355 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1356 Elf32_RegInfo *in)
1357 {
1358 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1359 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1360 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1361 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1362 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1363 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1364 }
1365
1366 void
1367 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1368 Elf32_External_RegInfo *ex)
1369 {
1370 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1371 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1372 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1373 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1374 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1375 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1376 }
1377
1378 /* In the 64 bit ABI, the .MIPS.options section holds register
1379 information in an Elf64_Reginfo structure. These routines swap
1380 them in and out. They are globally visible because they are used
1381 outside of BFD. These routines are here so that gas can call them
1382 without worrying about whether the 64 bit ABI has been included. */
1383
1384 void
1385 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1386 Elf64_Internal_RegInfo *in)
1387 {
1388 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1389 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1390 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1391 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1392 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1393 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1394 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1395 }
1396
1397 void
1398 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1399 Elf64_External_RegInfo *ex)
1400 {
1401 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1402 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1403 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1404 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1405 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1406 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1407 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1408 }
1409
1410 /* Swap in an options header. */
1411
1412 void
1413 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1414 Elf_Internal_Options *in)
1415 {
1416 in->kind = H_GET_8 (abfd, ex->kind);
1417 in->size = H_GET_8 (abfd, ex->size);
1418 in->section = H_GET_16 (abfd, ex->section);
1419 in->info = H_GET_32 (abfd, ex->info);
1420 }
1421
1422 /* Swap out an options header. */
1423
1424 void
1425 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1426 Elf_External_Options *ex)
1427 {
1428 H_PUT_8 (abfd, in->kind, ex->kind);
1429 H_PUT_8 (abfd, in->size, ex->size);
1430 H_PUT_16 (abfd, in->section, ex->section);
1431 H_PUT_32 (abfd, in->info, ex->info);
1432 }
1433 \f
1434 /* This function is called via qsort() to sort the dynamic relocation
1435 entries by increasing r_symndx value. */
1436
1437 static int
1438 sort_dynamic_relocs (const void *arg1, const void *arg2)
1439 {
1440 Elf_Internal_Rela int_reloc1;
1441 Elf_Internal_Rela int_reloc2;
1442
1443 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1444 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1445
1446 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1447 }
1448
1449 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1450
1451 static int
1452 sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
1453 {
1454 Elf_Internal_Rela int_reloc1[3];
1455 Elf_Internal_Rela int_reloc2[3];
1456
1457 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1458 (reldyn_sorting_bfd, arg1, int_reloc1);
1459 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1460 (reldyn_sorting_bfd, arg2, int_reloc2);
1461
1462 return (ELF64_R_SYM (int_reloc1[0].r_info)
1463 - ELF64_R_SYM (int_reloc2[0].r_info));
1464 }
1465
1466
1467 /* This routine is used to write out ECOFF debugging external symbol
1468 information. It is called via mips_elf_link_hash_traverse. The
1469 ECOFF external symbol information must match the ELF external
1470 symbol information. Unfortunately, at this point we don't know
1471 whether a symbol is required by reloc information, so the two
1472 tables may wind up being different. We must sort out the external
1473 symbol information before we can set the final size of the .mdebug
1474 section, and we must set the size of the .mdebug section before we
1475 can relocate any sections, and we can't know which symbols are
1476 required by relocation until we relocate the sections.
1477 Fortunately, it is relatively unlikely that any symbol will be
1478 stripped but required by a reloc. In particular, it can not happen
1479 when generating a final executable. */
1480
1481 static bfd_boolean
1482 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1483 {
1484 struct extsym_info *einfo = data;
1485 bfd_boolean strip;
1486 asection *sec, *output_section;
1487
1488 if (h->root.root.type == bfd_link_hash_warning)
1489 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1490
1491 if (h->root.indx == -2)
1492 strip = FALSE;
1493 else if ((h->root.def_dynamic
1494 || h->root.ref_dynamic)
1495 && !h->root.def_regular
1496 && !h->root.ref_regular)
1497 strip = TRUE;
1498 else if (einfo->info->strip == strip_all
1499 || (einfo->info->strip == strip_some
1500 && bfd_hash_lookup (einfo->info->keep_hash,
1501 h->root.root.root.string,
1502 FALSE, FALSE) == NULL))
1503 strip = TRUE;
1504 else
1505 strip = FALSE;
1506
1507 if (strip)
1508 return TRUE;
1509
1510 if (h->esym.ifd == -2)
1511 {
1512 h->esym.jmptbl = 0;
1513 h->esym.cobol_main = 0;
1514 h->esym.weakext = 0;
1515 h->esym.reserved = 0;
1516 h->esym.ifd = ifdNil;
1517 h->esym.asym.value = 0;
1518 h->esym.asym.st = stGlobal;
1519
1520 if (h->root.root.type == bfd_link_hash_undefined
1521 || h->root.root.type == bfd_link_hash_undefweak)
1522 {
1523 const char *name;
1524
1525 /* Use undefined class. Also, set class and type for some
1526 special symbols. */
1527 name = h->root.root.root.string;
1528 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1529 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1530 {
1531 h->esym.asym.sc = scData;
1532 h->esym.asym.st = stLabel;
1533 h->esym.asym.value = 0;
1534 }
1535 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1536 {
1537 h->esym.asym.sc = scAbs;
1538 h->esym.asym.st = stLabel;
1539 h->esym.asym.value =
1540 mips_elf_hash_table (einfo->info)->procedure_count;
1541 }
1542 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1543 {
1544 h->esym.asym.sc = scAbs;
1545 h->esym.asym.st = stLabel;
1546 h->esym.asym.value = elf_gp (einfo->abfd);
1547 }
1548 else
1549 h->esym.asym.sc = scUndefined;
1550 }
1551 else if (h->root.root.type != bfd_link_hash_defined
1552 && h->root.root.type != bfd_link_hash_defweak)
1553 h->esym.asym.sc = scAbs;
1554 else
1555 {
1556 const char *name;
1557
1558 sec = h->root.root.u.def.section;
1559 output_section = sec->output_section;
1560
1561 /* When making a shared library and symbol h is the one from
1562 the another shared library, OUTPUT_SECTION may be null. */
1563 if (output_section == NULL)
1564 h->esym.asym.sc = scUndefined;
1565 else
1566 {
1567 name = bfd_section_name (output_section->owner, output_section);
1568
1569 if (strcmp (name, ".text") == 0)
1570 h->esym.asym.sc = scText;
1571 else if (strcmp (name, ".data") == 0)
1572 h->esym.asym.sc = scData;
1573 else if (strcmp (name, ".sdata") == 0)
1574 h->esym.asym.sc = scSData;
1575 else if (strcmp (name, ".rodata") == 0
1576 || strcmp (name, ".rdata") == 0)
1577 h->esym.asym.sc = scRData;
1578 else if (strcmp (name, ".bss") == 0)
1579 h->esym.asym.sc = scBss;
1580 else if (strcmp (name, ".sbss") == 0)
1581 h->esym.asym.sc = scSBss;
1582 else if (strcmp (name, ".init") == 0)
1583 h->esym.asym.sc = scInit;
1584 else if (strcmp (name, ".fini") == 0)
1585 h->esym.asym.sc = scFini;
1586 else
1587 h->esym.asym.sc = scAbs;
1588 }
1589 }
1590
1591 h->esym.asym.reserved = 0;
1592 h->esym.asym.index = indexNil;
1593 }
1594
1595 if (h->root.root.type == bfd_link_hash_common)
1596 h->esym.asym.value = h->root.root.u.c.size;
1597 else if (h->root.root.type == bfd_link_hash_defined
1598 || h->root.root.type == bfd_link_hash_defweak)
1599 {
1600 if (h->esym.asym.sc == scCommon)
1601 h->esym.asym.sc = scBss;
1602 else if (h->esym.asym.sc == scSCommon)
1603 h->esym.asym.sc = scSBss;
1604
1605 sec = h->root.root.u.def.section;
1606 output_section = sec->output_section;
1607 if (output_section != NULL)
1608 h->esym.asym.value = (h->root.root.u.def.value
1609 + sec->output_offset
1610 + output_section->vma);
1611 else
1612 h->esym.asym.value = 0;
1613 }
1614 else if (h->root.needs_plt)
1615 {
1616 struct mips_elf_link_hash_entry *hd = h;
1617 bfd_boolean no_fn_stub = h->no_fn_stub;
1618
1619 while (hd->root.root.type == bfd_link_hash_indirect)
1620 {
1621 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1622 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1623 }
1624
1625 if (!no_fn_stub)
1626 {
1627 /* Set type and value for a symbol with a function stub. */
1628 h->esym.asym.st = stProc;
1629 sec = hd->root.root.u.def.section;
1630 if (sec == NULL)
1631 h->esym.asym.value = 0;
1632 else
1633 {
1634 output_section = sec->output_section;
1635 if (output_section != NULL)
1636 h->esym.asym.value = (hd->root.plt.offset
1637 + sec->output_offset
1638 + output_section->vma);
1639 else
1640 h->esym.asym.value = 0;
1641 }
1642 #if 0 /* FIXME? */
1643 h->esym.ifd = 0;
1644 #endif
1645 }
1646 }
1647
1648 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1649 h->root.root.root.string,
1650 &h->esym))
1651 {
1652 einfo->failed = TRUE;
1653 return FALSE;
1654 }
1655
1656 return TRUE;
1657 }
1658
1659 /* A comparison routine used to sort .gptab entries. */
1660
1661 static int
1662 gptab_compare (const void *p1, const void *p2)
1663 {
1664 const Elf32_gptab *a1 = p1;
1665 const Elf32_gptab *a2 = p2;
1666
1667 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1668 }
1669 \f
1670 /* Functions to manage the got entry hash table. */
1671
1672 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1673 hash number. */
1674
1675 static INLINE hashval_t
1676 mips_elf_hash_bfd_vma (bfd_vma addr)
1677 {
1678 #ifdef BFD64
1679 return addr + (addr >> 32);
1680 #else
1681 return addr;
1682 #endif
1683 }
1684
1685 /* got_entries only match if they're identical, except for gotidx, so
1686 use all fields to compute the hash, and compare the appropriate
1687 union members. */
1688
1689 static hashval_t
1690 mips_elf_got_entry_hash (const void *entry_)
1691 {
1692 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1693
1694 return entry->symndx
1695 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1696 : entry->abfd->id
1697 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1698 : entry->d.h->root.root.root.hash));
1699 }
1700
1701 static int
1702 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1703 {
1704 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1705 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1706
1707 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1708 && (! e1->abfd ? e1->d.address == e2->d.address
1709 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1710 : e1->d.h == e2->d.h);
1711 }
1712
1713 /* multi_got_entries are still a match in the case of global objects,
1714 even if the input bfd in which they're referenced differs, so the
1715 hash computation and compare functions are adjusted
1716 accordingly. */
1717
1718 static hashval_t
1719 mips_elf_multi_got_entry_hash (const void *entry_)
1720 {
1721 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1722
1723 return entry->symndx
1724 + (! entry->abfd
1725 ? mips_elf_hash_bfd_vma (entry->d.address)
1726 : entry->symndx >= 0
1727 ? (entry->abfd->id
1728 + mips_elf_hash_bfd_vma (entry->d.addend))
1729 : entry->d.h->root.root.root.hash);
1730 }
1731
1732 static int
1733 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1734 {
1735 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1736 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1737
1738 return e1->symndx == e2->symndx
1739 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1740 : e1->abfd == NULL || e2->abfd == NULL
1741 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1742 : e1->d.h == e2->d.h);
1743 }
1744 \f
1745 /* Returns the dynamic relocation section for DYNOBJ. */
1746
1747 static asection *
1748 mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
1749 {
1750 static const char dname[] = ".rel.dyn";
1751 asection *sreloc;
1752
1753 sreloc = bfd_get_section_by_name (dynobj, dname);
1754 if (sreloc == NULL && create_p)
1755 {
1756 sreloc = bfd_make_section (dynobj, dname);
1757 if (sreloc == NULL
1758 || ! bfd_set_section_flags (dynobj, sreloc,
1759 (SEC_ALLOC
1760 | SEC_LOAD
1761 | SEC_HAS_CONTENTS
1762 | SEC_IN_MEMORY
1763 | SEC_LINKER_CREATED
1764 | SEC_READONLY))
1765 || ! bfd_set_section_alignment (dynobj, sreloc,
1766 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1767 return NULL;
1768 }
1769 return sreloc;
1770 }
1771
1772 /* Returns the GOT section for ABFD. */
1773
1774 static asection *
1775 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
1776 {
1777 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1778 if (sgot == NULL
1779 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1780 return NULL;
1781 return sgot;
1782 }
1783
1784 /* Returns the GOT information associated with the link indicated by
1785 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1786 section. */
1787
1788 static struct mips_got_info *
1789 mips_elf_got_info (bfd *abfd, asection **sgotp)
1790 {
1791 asection *sgot;
1792 struct mips_got_info *g;
1793
1794 sgot = mips_elf_got_section (abfd, TRUE);
1795 BFD_ASSERT (sgot != NULL);
1796 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1797 g = mips_elf_section_data (sgot)->u.got_info;
1798 BFD_ASSERT (g != NULL);
1799
1800 if (sgotp)
1801 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1802
1803 return g;
1804 }
1805
1806 /* Returns the GOT offset at which the indicated address can be found.
1807 If there is not yet a GOT entry for this value, create one. Returns
1808 -1 if no satisfactory GOT offset can be found. */
1809
1810 static bfd_vma
1811 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1812 bfd_vma value)
1813 {
1814 asection *sgot;
1815 struct mips_got_info *g;
1816 struct mips_got_entry *entry;
1817
1818 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1819
1820 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1821 if (entry)
1822 return entry->gotidx;
1823 else
1824 return MINUS_ONE;
1825 }
1826
1827 /* Returns the GOT index for the global symbol indicated by H. */
1828
1829 static bfd_vma
1830 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
1831 {
1832 bfd_vma index;
1833 asection *sgot;
1834 struct mips_got_info *g, *gg;
1835 long global_got_dynindx = 0;
1836
1837 gg = g = mips_elf_got_info (abfd, &sgot);
1838 if (g->bfd2got && ibfd)
1839 {
1840 struct mips_got_entry e, *p;
1841
1842 BFD_ASSERT (h->dynindx >= 0);
1843
1844 g = mips_elf_got_for_ibfd (g, ibfd);
1845 if (g->next != gg)
1846 {
1847 e.abfd = ibfd;
1848 e.symndx = -1;
1849 e.d.h = (struct mips_elf_link_hash_entry *)h;
1850
1851 p = htab_find (g->got_entries, &e);
1852
1853 BFD_ASSERT (p->gotidx > 0);
1854 return p->gotidx;
1855 }
1856 }
1857
1858 if (gg->global_gotsym != NULL)
1859 global_got_dynindx = gg->global_gotsym->dynindx;
1860
1861 /* Once we determine the global GOT entry with the lowest dynamic
1862 symbol table index, we must put all dynamic symbols with greater
1863 indices into the GOT. That makes it easy to calculate the GOT
1864 offset. */
1865 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1866 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1867 * MIPS_ELF_GOT_SIZE (abfd));
1868 BFD_ASSERT (index < sgot->size);
1869
1870 return index;
1871 }
1872
1873 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1874 are supposed to be placed at small offsets in the GOT, i.e.,
1875 within 32KB of GP. Return the index into the GOT for this page,
1876 and store the offset from this entry to the desired address in
1877 OFFSETP, if it is non-NULL. */
1878
1879 static bfd_vma
1880 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1881 bfd_vma value, bfd_vma *offsetp)
1882 {
1883 asection *sgot;
1884 struct mips_got_info *g;
1885 bfd_vma index;
1886 struct mips_got_entry *entry;
1887
1888 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1889
1890 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1891 (value + 0x8000)
1892 & (~(bfd_vma)0xffff));
1893
1894 if (!entry)
1895 return MINUS_ONE;
1896
1897 index = entry->gotidx;
1898
1899 if (offsetp)
1900 *offsetp = value - entry->d.address;
1901
1902 return index;
1903 }
1904
1905 /* Find a GOT entry whose higher-order 16 bits are the same as those
1906 for value. Return the index into the GOT for this entry. */
1907
1908 static bfd_vma
1909 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1910 bfd_vma value, bfd_boolean external)
1911 {
1912 asection *sgot;
1913 struct mips_got_info *g;
1914 struct mips_got_entry *entry;
1915
1916 if (! external)
1917 {
1918 /* Although the ABI says that it is "the high-order 16 bits" that we
1919 want, it is really the %high value. The complete value is
1920 calculated with a `addiu' of a LO16 relocation, just as with a
1921 HI16/LO16 pair. */
1922 value = mips_elf_high (value) << 16;
1923 }
1924
1925 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1926
1927 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1928 if (entry)
1929 return entry->gotidx;
1930 else
1931 return MINUS_ONE;
1932 }
1933
1934 /* Returns the offset for the entry at the INDEXth position
1935 in the GOT. */
1936
1937 static bfd_vma
1938 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1939 bfd *input_bfd, bfd_vma index)
1940 {
1941 asection *sgot;
1942 bfd_vma gp;
1943 struct mips_got_info *g;
1944
1945 g = mips_elf_got_info (dynobj, &sgot);
1946 gp = _bfd_get_gp_value (output_bfd)
1947 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1948
1949 return sgot->output_section->vma + sgot->output_offset + index - gp;
1950 }
1951
1952 /* Create a local GOT entry for VALUE. Return the index of the entry,
1953 or -1 if it could not be created. */
1954
1955 static struct mips_got_entry *
1956 mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
1957 struct mips_got_info *gg,
1958 asection *sgot, bfd_vma value)
1959 {
1960 struct mips_got_entry entry, **loc;
1961 struct mips_got_info *g;
1962
1963 entry.abfd = NULL;
1964 entry.symndx = -1;
1965 entry.d.address = value;
1966
1967 g = mips_elf_got_for_ibfd (gg, ibfd);
1968 if (g == NULL)
1969 {
1970 g = mips_elf_got_for_ibfd (gg, abfd);
1971 BFD_ASSERT (g != NULL);
1972 }
1973
1974 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1975 INSERT);
1976 if (*loc)
1977 return *loc;
1978
1979 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1980
1981 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1982
1983 if (! *loc)
1984 return NULL;
1985
1986 memcpy (*loc, &entry, sizeof entry);
1987
1988 if (g->assigned_gotno >= g->local_gotno)
1989 {
1990 (*loc)->gotidx = -1;
1991 /* We didn't allocate enough space in the GOT. */
1992 (*_bfd_error_handler)
1993 (_("not enough GOT space for local GOT entries"));
1994 bfd_set_error (bfd_error_bad_value);
1995 return NULL;
1996 }
1997
1998 MIPS_ELF_PUT_WORD (abfd, value,
1999 (sgot->contents + entry.gotidx));
2000
2001 return *loc;
2002 }
2003
2004 /* Sort the dynamic symbol table so that symbols that need GOT entries
2005 appear towards the end. This reduces the amount of GOT space
2006 required. MAX_LOCAL is used to set the number of local symbols
2007 known to be in the dynamic symbol table. During
2008 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2009 section symbols are added and the count is higher. */
2010
2011 static bfd_boolean
2012 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2013 {
2014 struct mips_elf_hash_sort_data hsd;
2015 struct mips_got_info *g;
2016 bfd *dynobj;
2017
2018 dynobj = elf_hash_table (info)->dynobj;
2019
2020 g = mips_elf_got_info (dynobj, NULL);
2021
2022 hsd.low = NULL;
2023 hsd.max_unref_got_dynindx =
2024 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2025 /* In the multi-got case, assigned_gotno of the master got_info
2026 indicate the number of entries that aren't referenced in the
2027 primary GOT, but that must have entries because there are
2028 dynamic relocations that reference it. Since they aren't
2029 referenced, we move them to the end of the GOT, so that they
2030 don't prevent other entries that are referenced from getting
2031 too large offsets. */
2032 - (g->next ? g->assigned_gotno : 0);
2033 hsd.max_non_got_dynindx = max_local;
2034 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2035 elf_hash_table (info)),
2036 mips_elf_sort_hash_table_f,
2037 &hsd);
2038
2039 /* There should have been enough room in the symbol table to
2040 accommodate both the GOT and non-GOT symbols. */
2041 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2042 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2043 <= elf_hash_table (info)->dynsymcount);
2044
2045 /* Now we know which dynamic symbol has the lowest dynamic symbol
2046 table index in the GOT. */
2047 g->global_gotsym = hsd.low;
2048
2049 return TRUE;
2050 }
2051
2052 /* If H needs a GOT entry, assign it the highest available dynamic
2053 index. Otherwise, assign it the lowest available dynamic
2054 index. */
2055
2056 static bfd_boolean
2057 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2058 {
2059 struct mips_elf_hash_sort_data *hsd = data;
2060
2061 if (h->root.root.type == bfd_link_hash_warning)
2062 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2063
2064 /* Symbols without dynamic symbol table entries aren't interesting
2065 at all. */
2066 if (h->root.dynindx == -1)
2067 return TRUE;
2068
2069 /* Global symbols that need GOT entries that are not explicitly
2070 referenced are marked with got offset 2. Those that are
2071 referenced get a 1, and those that don't need GOT entries get
2072 -1. */
2073 if (h->root.got.offset == 2)
2074 {
2075 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2076 hsd->low = (struct elf_link_hash_entry *) h;
2077 h->root.dynindx = hsd->max_unref_got_dynindx++;
2078 }
2079 else if (h->root.got.offset != 1)
2080 h->root.dynindx = hsd->max_non_got_dynindx++;
2081 else
2082 {
2083 h->root.dynindx = --hsd->min_got_dynindx;
2084 hsd->low = (struct elf_link_hash_entry *) h;
2085 }
2086
2087 return TRUE;
2088 }
2089
2090 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2091 symbol table index lower than any we've seen to date, record it for
2092 posterity. */
2093
2094 static bfd_boolean
2095 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2096 bfd *abfd, struct bfd_link_info *info,
2097 struct mips_got_info *g)
2098 {
2099 struct mips_got_entry entry, **loc;
2100
2101 /* A global symbol in the GOT must also be in the dynamic symbol
2102 table. */
2103 if (h->dynindx == -1)
2104 {
2105 switch (ELF_ST_VISIBILITY (h->other))
2106 {
2107 case STV_INTERNAL:
2108 case STV_HIDDEN:
2109 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2110 break;
2111 }
2112 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2113 return FALSE;
2114 }
2115
2116 entry.abfd = abfd;
2117 entry.symndx = -1;
2118 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2119
2120 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2121 INSERT);
2122
2123 /* If we've already marked this entry as needing GOT space, we don't
2124 need to do it again. */
2125 if (*loc)
2126 return TRUE;
2127
2128 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2129
2130 if (! *loc)
2131 return FALSE;
2132
2133 entry.gotidx = -1;
2134 memcpy (*loc, &entry, sizeof entry);
2135
2136 if (h->got.offset != MINUS_ONE)
2137 return TRUE;
2138
2139 /* By setting this to a value other than -1, we are indicating that
2140 there needs to be a GOT entry for H. Avoid using zero, as the
2141 generic ELF copy_indirect_symbol tests for <= 0. */
2142 h->got.offset = 1;
2143
2144 return TRUE;
2145 }
2146
2147 /* Reserve space in G for a GOT entry containing the value of symbol
2148 SYMNDX in input bfd ABDF, plus ADDEND. */
2149
2150 static bfd_boolean
2151 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2152 struct mips_got_info *g)
2153 {
2154 struct mips_got_entry entry, **loc;
2155
2156 entry.abfd = abfd;
2157 entry.symndx = symndx;
2158 entry.d.addend = addend;
2159 loc = (struct mips_got_entry **)
2160 htab_find_slot (g->got_entries, &entry, INSERT);
2161
2162 if (*loc)
2163 return TRUE;
2164
2165 entry.gotidx = g->local_gotno++;
2166
2167 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2168
2169 if (! *loc)
2170 return FALSE;
2171
2172 memcpy (*loc, &entry, sizeof entry);
2173
2174 return TRUE;
2175 }
2176 \f
2177 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2178
2179 static hashval_t
2180 mips_elf_bfd2got_entry_hash (const void *entry_)
2181 {
2182 const struct mips_elf_bfd2got_hash *entry
2183 = (struct mips_elf_bfd2got_hash *)entry_;
2184
2185 return entry->bfd->id;
2186 }
2187
2188 /* Check whether two hash entries have the same bfd. */
2189
2190 static int
2191 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2192 {
2193 const struct mips_elf_bfd2got_hash *e1
2194 = (const struct mips_elf_bfd2got_hash *)entry1;
2195 const struct mips_elf_bfd2got_hash *e2
2196 = (const struct mips_elf_bfd2got_hash *)entry2;
2197
2198 return e1->bfd == e2->bfd;
2199 }
2200
2201 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2202 be the master GOT data. */
2203
2204 static struct mips_got_info *
2205 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2206 {
2207 struct mips_elf_bfd2got_hash e, *p;
2208
2209 if (! g->bfd2got)
2210 return g;
2211
2212 e.bfd = ibfd;
2213 p = htab_find (g->bfd2got, &e);
2214 return p ? p->g : NULL;
2215 }
2216
2217 /* Create one separate got for each bfd that has entries in the global
2218 got, such that we can tell how many local and global entries each
2219 bfd requires. */
2220
2221 static int
2222 mips_elf_make_got_per_bfd (void **entryp, void *p)
2223 {
2224 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2225 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2226 htab_t bfd2got = arg->bfd2got;
2227 struct mips_got_info *g;
2228 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2229 void **bfdgotp;
2230
2231 /* Find the got_info for this GOT entry's input bfd. Create one if
2232 none exists. */
2233 bfdgot_entry.bfd = entry->abfd;
2234 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2235 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2236
2237 if (bfdgot != NULL)
2238 g = bfdgot->g;
2239 else
2240 {
2241 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2242 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2243
2244 if (bfdgot == NULL)
2245 {
2246 arg->obfd = 0;
2247 return 0;
2248 }
2249
2250 *bfdgotp = bfdgot;
2251
2252 bfdgot->bfd = entry->abfd;
2253 bfdgot->g = g = (struct mips_got_info *)
2254 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2255 if (g == NULL)
2256 {
2257 arg->obfd = 0;
2258 return 0;
2259 }
2260
2261 g->global_gotsym = NULL;
2262 g->global_gotno = 0;
2263 g->local_gotno = 0;
2264 g->assigned_gotno = -1;
2265 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2266 mips_elf_multi_got_entry_eq, NULL);
2267 if (g->got_entries == NULL)
2268 {
2269 arg->obfd = 0;
2270 return 0;
2271 }
2272
2273 g->bfd2got = NULL;
2274 g->next = NULL;
2275 }
2276
2277 /* Insert the GOT entry in the bfd's got entry hash table. */
2278 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2279 if (*entryp != NULL)
2280 return 1;
2281
2282 *entryp = entry;
2283
2284 if (entry->symndx >= 0 || entry->d.h->forced_local)
2285 ++g->local_gotno;
2286 else
2287 ++g->global_gotno;
2288
2289 return 1;
2290 }
2291
2292 /* Attempt to merge gots of different input bfds. Try to use as much
2293 as possible of the primary got, since it doesn't require explicit
2294 dynamic relocations, but don't use bfds that would reference global
2295 symbols out of the addressable range. Failing the primary got,
2296 attempt to merge with the current got, or finish the current got
2297 and then make make the new got current. */
2298
2299 static int
2300 mips_elf_merge_gots (void **bfd2got_, void *p)
2301 {
2302 struct mips_elf_bfd2got_hash *bfd2got
2303 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2304 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2305 unsigned int lcount = bfd2got->g->local_gotno;
2306 unsigned int gcount = bfd2got->g->global_gotno;
2307 unsigned int maxcnt = arg->max_count;
2308
2309 /* If we don't have a primary GOT and this is not too big, use it as
2310 a starting point for the primary GOT. */
2311 if (! arg->primary && lcount + gcount <= maxcnt)
2312 {
2313 arg->primary = bfd2got->g;
2314 arg->primary_count = lcount + gcount;
2315 }
2316 /* If it looks like we can merge this bfd's entries with those of
2317 the primary, merge them. The heuristics is conservative, but we
2318 don't have to squeeze it too hard. */
2319 else if (arg->primary
2320 && (arg->primary_count + lcount + gcount) <= maxcnt)
2321 {
2322 struct mips_got_info *g = bfd2got->g;
2323 int old_lcount = arg->primary->local_gotno;
2324 int old_gcount = arg->primary->global_gotno;
2325
2326 bfd2got->g = arg->primary;
2327
2328 htab_traverse (g->got_entries,
2329 mips_elf_make_got_per_bfd,
2330 arg);
2331 if (arg->obfd == NULL)
2332 return 0;
2333
2334 htab_delete (g->got_entries);
2335 /* We don't have to worry about releasing memory of the actual
2336 got entries, since they're all in the master got_entries hash
2337 table anyway. */
2338
2339 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
2340 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2341
2342 arg->primary_count = arg->primary->local_gotno
2343 + arg->primary->global_gotno;
2344 }
2345 /* If we can merge with the last-created got, do it. */
2346 else if (arg->current
2347 && arg->current_count + lcount + gcount <= maxcnt)
2348 {
2349 struct mips_got_info *g = bfd2got->g;
2350 int old_lcount = arg->current->local_gotno;
2351 int old_gcount = arg->current->global_gotno;
2352
2353 bfd2got->g = arg->current;
2354
2355 htab_traverse (g->got_entries,
2356 mips_elf_make_got_per_bfd,
2357 arg);
2358 if (arg->obfd == NULL)
2359 return 0;
2360
2361 htab_delete (g->got_entries);
2362
2363 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
2364 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2365
2366 arg->current_count = arg->current->local_gotno
2367 + arg->current->global_gotno;
2368 }
2369 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2370 fits; if it turns out that it doesn't, we'll get relocation
2371 overflows anyway. */
2372 else
2373 {
2374 bfd2got->g->next = arg->current;
2375 arg->current = bfd2got->g;
2376
2377 arg->current_count = lcount + gcount;
2378 }
2379
2380 return 1;
2381 }
2382
2383 /* If passed a NULL mips_got_info in the argument, set the marker used
2384 to tell whether a global symbol needs a got entry (in the primary
2385 got) to the given VALUE.
2386
2387 If passed a pointer G to a mips_got_info in the argument (it must
2388 not be the primary GOT), compute the offset from the beginning of
2389 the (primary) GOT section to the entry in G corresponding to the
2390 global symbol. G's assigned_gotno must contain the index of the
2391 first available global GOT entry in G. VALUE must contain the size
2392 of a GOT entry in bytes. For each global GOT entry that requires a
2393 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2394 marked as not eligible for lazy resolution through a function
2395 stub. */
2396 static int
2397 mips_elf_set_global_got_offset (void **entryp, void *p)
2398 {
2399 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2400 struct mips_elf_set_global_got_offset_arg *arg
2401 = (struct mips_elf_set_global_got_offset_arg *)p;
2402 struct mips_got_info *g = arg->g;
2403
2404 if (entry->abfd != NULL && entry->symndx == -1
2405 && entry->d.h->root.dynindx != -1)
2406 {
2407 if (g)
2408 {
2409 BFD_ASSERT (g->global_gotsym == NULL);
2410
2411 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2412 if (arg->info->shared
2413 || (elf_hash_table (arg->info)->dynamic_sections_created
2414 && entry->d.h->root.def_dynamic
2415 && !entry->d.h->root.def_regular))
2416 ++arg->needed_relocs;
2417 }
2418 else
2419 entry->d.h->root.got.offset = arg->value;
2420 }
2421
2422 return 1;
2423 }
2424
2425 /* Mark any global symbols referenced in the GOT we are iterating over
2426 as inelligible for lazy resolution stubs. */
2427 static int
2428 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
2429 {
2430 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2431
2432 if (entry->abfd != NULL
2433 && entry->symndx == -1
2434 && entry->d.h->root.dynindx != -1)
2435 entry->d.h->no_fn_stub = TRUE;
2436
2437 return 1;
2438 }
2439
2440 /* Follow indirect and warning hash entries so that each got entry
2441 points to the final symbol definition. P must point to a pointer
2442 to the hash table we're traversing. Since this traversal may
2443 modify the hash table, we set this pointer to NULL to indicate
2444 we've made a potentially-destructive change to the hash table, so
2445 the traversal must be restarted. */
2446 static int
2447 mips_elf_resolve_final_got_entry (void **entryp, void *p)
2448 {
2449 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2450 htab_t got_entries = *(htab_t *)p;
2451
2452 if (entry->abfd != NULL && entry->symndx == -1)
2453 {
2454 struct mips_elf_link_hash_entry *h = entry->d.h;
2455
2456 while (h->root.root.type == bfd_link_hash_indirect
2457 || h->root.root.type == bfd_link_hash_warning)
2458 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2459
2460 if (entry->d.h == h)
2461 return 1;
2462
2463 entry->d.h = h;
2464
2465 /* If we can't find this entry with the new bfd hash, re-insert
2466 it, and get the traversal restarted. */
2467 if (! htab_find (got_entries, entry))
2468 {
2469 htab_clear_slot (got_entries, entryp);
2470 entryp = htab_find_slot (got_entries, entry, INSERT);
2471 if (! *entryp)
2472 *entryp = entry;
2473 /* Abort the traversal, since the whole table may have
2474 moved, and leave it up to the parent to restart the
2475 process. */
2476 *(htab_t *)p = NULL;
2477 return 0;
2478 }
2479 /* We might want to decrement the global_gotno count, but it's
2480 either too early or too late for that at this point. */
2481 }
2482
2483 return 1;
2484 }
2485
2486 /* Turn indirect got entries in a got_entries table into their final
2487 locations. */
2488 static void
2489 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
2490 {
2491 htab_t got_entries;
2492
2493 do
2494 {
2495 got_entries = g->got_entries;
2496
2497 htab_traverse (got_entries,
2498 mips_elf_resolve_final_got_entry,
2499 &got_entries);
2500 }
2501 while (got_entries == NULL);
2502 }
2503
2504 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2505 the primary GOT. */
2506 static bfd_vma
2507 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
2508 {
2509 if (g->bfd2got == NULL)
2510 return 0;
2511
2512 g = mips_elf_got_for_ibfd (g, ibfd);
2513 if (! g)
2514 return 0;
2515
2516 BFD_ASSERT (g->next);
2517
2518 g = g->next;
2519
2520 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2521 }
2522
2523 /* Turn a single GOT that is too big for 16-bit addressing into
2524 a sequence of GOTs, each one 16-bit addressable. */
2525
2526 static bfd_boolean
2527 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2528 struct mips_got_info *g, asection *got,
2529 bfd_size_type pages)
2530 {
2531 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2532 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2533 struct mips_got_info *gg;
2534 unsigned int assign;
2535
2536 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2537 mips_elf_bfd2got_entry_eq, NULL);
2538 if (g->bfd2got == NULL)
2539 return FALSE;
2540
2541 got_per_bfd_arg.bfd2got = g->bfd2got;
2542 got_per_bfd_arg.obfd = abfd;
2543 got_per_bfd_arg.info = info;
2544
2545 /* Count how many GOT entries each input bfd requires, creating a
2546 map from bfd to got info while at that. */
2547 mips_elf_resolve_final_got_entries (g);
2548 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2549 if (got_per_bfd_arg.obfd == NULL)
2550 return FALSE;
2551
2552 got_per_bfd_arg.current = NULL;
2553 got_per_bfd_arg.primary = NULL;
2554 /* Taking out PAGES entries is a worst-case estimate. We could
2555 compute the maximum number of pages that each separate input bfd
2556 uses, but it's probably not worth it. */
2557 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2558 / MIPS_ELF_GOT_SIZE (abfd))
2559 - MIPS_RESERVED_GOTNO - pages);
2560
2561 /* Try to merge the GOTs of input bfds together, as long as they
2562 don't seem to exceed the maximum GOT size, choosing one of them
2563 to be the primary GOT. */
2564 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2565 if (got_per_bfd_arg.obfd == NULL)
2566 return FALSE;
2567
2568 /* If we find any suitable primary GOT, create an empty one. */
2569 if (got_per_bfd_arg.primary == NULL)
2570 {
2571 g->next = (struct mips_got_info *)
2572 bfd_alloc (abfd, sizeof (struct mips_got_info));
2573 if (g->next == NULL)
2574 return FALSE;
2575
2576 g->next->global_gotsym = NULL;
2577 g->next->global_gotno = 0;
2578 g->next->local_gotno = 0;
2579 g->next->assigned_gotno = 0;
2580 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2581 mips_elf_multi_got_entry_eq,
2582 NULL);
2583 if (g->next->got_entries == NULL)
2584 return FALSE;
2585 g->next->bfd2got = NULL;
2586 }
2587 else
2588 g->next = got_per_bfd_arg.primary;
2589 g->next->next = got_per_bfd_arg.current;
2590
2591 /* GG is now the master GOT, and G is the primary GOT. */
2592 gg = g;
2593 g = g->next;
2594
2595 /* Map the output bfd to the primary got. That's what we're going
2596 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2597 didn't mark in check_relocs, and we want a quick way to find it.
2598 We can't just use gg->next because we're going to reverse the
2599 list. */
2600 {
2601 struct mips_elf_bfd2got_hash *bfdgot;
2602 void **bfdgotp;
2603
2604 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2605 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2606
2607 if (bfdgot == NULL)
2608 return FALSE;
2609
2610 bfdgot->bfd = abfd;
2611 bfdgot->g = g;
2612 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2613
2614 BFD_ASSERT (*bfdgotp == NULL);
2615 *bfdgotp = bfdgot;
2616 }
2617
2618 /* The IRIX dynamic linker requires every symbol that is referenced
2619 in a dynamic relocation to be present in the primary GOT, so
2620 arrange for them to appear after those that are actually
2621 referenced.
2622
2623 GNU/Linux could very well do without it, but it would slow down
2624 the dynamic linker, since it would have to resolve every dynamic
2625 symbol referenced in other GOTs more than once, without help from
2626 the cache. Also, knowing that every external symbol has a GOT
2627 helps speed up the resolution of local symbols too, so GNU/Linux
2628 follows IRIX's practice.
2629
2630 The number 2 is used by mips_elf_sort_hash_table_f to count
2631 global GOT symbols that are unreferenced in the primary GOT, with
2632 an initial dynamic index computed from gg->assigned_gotno, where
2633 the number of unreferenced global entries in the primary GOT is
2634 preserved. */
2635 if (1)
2636 {
2637 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2638 g->global_gotno = gg->global_gotno;
2639 set_got_offset_arg.value = 2;
2640 }
2641 else
2642 {
2643 /* This could be used for dynamic linkers that don't optimize
2644 symbol resolution while applying relocations so as to use
2645 primary GOT entries or assuming the symbol is locally-defined.
2646 With this code, we assign lower dynamic indices to global
2647 symbols that are not referenced in the primary GOT, so that
2648 their entries can be omitted. */
2649 gg->assigned_gotno = 0;
2650 set_got_offset_arg.value = -1;
2651 }
2652
2653 /* Reorder dynamic symbols as described above (which behavior
2654 depends on the setting of VALUE). */
2655 set_got_offset_arg.g = NULL;
2656 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2657 &set_got_offset_arg);
2658 set_got_offset_arg.value = 1;
2659 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2660 &set_got_offset_arg);
2661 if (! mips_elf_sort_hash_table (info, 1))
2662 return FALSE;
2663
2664 /* Now go through the GOTs assigning them offset ranges.
2665 [assigned_gotno, local_gotno[ will be set to the range of local
2666 entries in each GOT. We can then compute the end of a GOT by
2667 adding local_gotno to global_gotno. We reverse the list and make
2668 it circular since then we'll be able to quickly compute the
2669 beginning of a GOT, by computing the end of its predecessor. To
2670 avoid special cases for the primary GOT, while still preserving
2671 assertions that are valid for both single- and multi-got links,
2672 we arrange for the main got struct to have the right number of
2673 global entries, but set its local_gotno such that the initial
2674 offset of the primary GOT is zero. Remember that the primary GOT
2675 will become the last item in the circular linked list, so it
2676 points back to the master GOT. */
2677 gg->local_gotno = -g->global_gotno;
2678 gg->global_gotno = g->global_gotno;
2679 assign = 0;
2680 gg->next = gg;
2681
2682 do
2683 {
2684 struct mips_got_info *gn;
2685
2686 assign += MIPS_RESERVED_GOTNO;
2687 g->assigned_gotno = assign;
2688 g->local_gotno += assign + pages;
2689 assign = g->local_gotno + g->global_gotno;
2690
2691 /* Take g out of the direct list, and push it onto the reversed
2692 list that gg points to. */
2693 gn = g->next;
2694 g->next = gg->next;
2695 gg->next = g;
2696 g = gn;
2697
2698 /* Mark global symbols in every non-primary GOT as ineligible for
2699 stubs. */
2700 if (g)
2701 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
2702 }
2703 while (g);
2704
2705 got->size = (gg->next->local_gotno
2706 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2707
2708 return TRUE;
2709 }
2710
2711 \f
2712 /* Returns the first relocation of type r_type found, beginning with
2713 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2714
2715 static const Elf_Internal_Rela *
2716 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2717 const Elf_Internal_Rela *relocation,
2718 const Elf_Internal_Rela *relend)
2719 {
2720 while (relocation < relend)
2721 {
2722 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2723 return relocation;
2724
2725 ++relocation;
2726 }
2727
2728 /* We didn't find it. */
2729 bfd_set_error (bfd_error_bad_value);
2730 return NULL;
2731 }
2732
2733 /* Return whether a relocation is against a local symbol. */
2734
2735 static bfd_boolean
2736 mips_elf_local_relocation_p (bfd *input_bfd,
2737 const Elf_Internal_Rela *relocation,
2738 asection **local_sections,
2739 bfd_boolean check_forced)
2740 {
2741 unsigned long r_symndx;
2742 Elf_Internal_Shdr *symtab_hdr;
2743 struct mips_elf_link_hash_entry *h;
2744 size_t extsymoff;
2745
2746 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2747 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2748 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2749
2750 if (r_symndx < extsymoff)
2751 return TRUE;
2752 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2753 return TRUE;
2754
2755 if (check_forced)
2756 {
2757 /* Look up the hash table to check whether the symbol
2758 was forced local. */
2759 h = (struct mips_elf_link_hash_entry *)
2760 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2761 /* Find the real hash-table entry for this symbol. */
2762 while (h->root.root.type == bfd_link_hash_indirect
2763 || h->root.root.type == bfd_link_hash_warning)
2764 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2765 if (h->root.forced_local)
2766 return TRUE;
2767 }
2768
2769 return FALSE;
2770 }
2771 \f
2772 /* Sign-extend VALUE, which has the indicated number of BITS. */
2773
2774 bfd_vma
2775 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
2776 {
2777 if (value & ((bfd_vma) 1 << (bits - 1)))
2778 /* VALUE is negative. */
2779 value |= ((bfd_vma) - 1) << bits;
2780
2781 return value;
2782 }
2783
2784 /* Return non-zero if the indicated VALUE has overflowed the maximum
2785 range expressible by a signed number with the indicated number of
2786 BITS. */
2787
2788 static bfd_boolean
2789 mips_elf_overflow_p (bfd_vma value, int bits)
2790 {
2791 bfd_signed_vma svalue = (bfd_signed_vma) value;
2792
2793 if (svalue > (1 << (bits - 1)) - 1)
2794 /* The value is too big. */
2795 return TRUE;
2796 else if (svalue < -(1 << (bits - 1)))
2797 /* The value is too small. */
2798 return TRUE;
2799
2800 /* All is well. */
2801 return FALSE;
2802 }
2803
2804 /* Calculate the %high function. */
2805
2806 static bfd_vma
2807 mips_elf_high (bfd_vma value)
2808 {
2809 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2810 }
2811
2812 /* Calculate the %higher function. */
2813
2814 static bfd_vma
2815 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
2816 {
2817 #ifdef BFD64
2818 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2819 #else
2820 abort ();
2821 return MINUS_ONE;
2822 #endif
2823 }
2824
2825 /* Calculate the %highest function. */
2826
2827 static bfd_vma
2828 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
2829 {
2830 #ifdef BFD64
2831 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2832 #else
2833 abort ();
2834 return MINUS_ONE;
2835 #endif
2836 }
2837 \f
2838 /* Create the .compact_rel section. */
2839
2840 static bfd_boolean
2841 mips_elf_create_compact_rel_section
2842 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
2843 {
2844 flagword flags;
2845 register asection *s;
2846
2847 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2848 {
2849 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2850 | SEC_READONLY);
2851
2852 s = bfd_make_section (abfd, ".compact_rel");
2853 if (s == NULL
2854 || ! bfd_set_section_flags (abfd, s, flags)
2855 || ! bfd_set_section_alignment (abfd, s,
2856 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2857 return FALSE;
2858
2859 s->size = sizeof (Elf32_External_compact_rel);
2860 }
2861
2862 return TRUE;
2863 }
2864
2865 /* Create the .got section to hold the global offset table. */
2866
2867 static bfd_boolean
2868 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2869 bfd_boolean maybe_exclude)
2870 {
2871 flagword flags;
2872 register asection *s;
2873 struct elf_link_hash_entry *h;
2874 struct bfd_link_hash_entry *bh;
2875 struct mips_got_info *g;
2876 bfd_size_type amt;
2877
2878 /* This function may be called more than once. */
2879 s = mips_elf_got_section (abfd, TRUE);
2880 if (s)
2881 {
2882 if (! maybe_exclude)
2883 s->flags &= ~SEC_EXCLUDE;
2884 return TRUE;
2885 }
2886
2887 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2888 | SEC_LINKER_CREATED);
2889
2890 if (maybe_exclude)
2891 flags |= SEC_EXCLUDE;
2892
2893 /* We have to use an alignment of 2**4 here because this is hardcoded
2894 in the function stub generation and in the linker script. */
2895 s = bfd_make_section (abfd, ".got");
2896 if (s == NULL
2897 || ! bfd_set_section_flags (abfd, s, flags)
2898 || ! bfd_set_section_alignment (abfd, s, 4))
2899 return FALSE;
2900
2901 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2902 linker script because we don't want to define the symbol if we
2903 are not creating a global offset table. */
2904 bh = NULL;
2905 if (! (_bfd_generic_link_add_one_symbol
2906 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2907 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
2908 return FALSE;
2909
2910 h = (struct elf_link_hash_entry *) bh;
2911 h->non_elf = 0;
2912 h->def_regular = 1;
2913 h->type = STT_OBJECT;
2914
2915 if (info->shared
2916 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2917 return FALSE;
2918
2919 amt = sizeof (struct mips_got_info);
2920 g = bfd_alloc (abfd, amt);
2921 if (g == NULL)
2922 return FALSE;
2923 g->global_gotsym = NULL;
2924 g->global_gotno = 0;
2925 g->local_gotno = MIPS_RESERVED_GOTNO;
2926 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2927 g->bfd2got = NULL;
2928 g->next = NULL;
2929 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2930 mips_elf_got_entry_eq, NULL);
2931 if (g->got_entries == NULL)
2932 return FALSE;
2933 mips_elf_section_data (s)->u.got_info = g;
2934 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2935 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2936
2937 return TRUE;
2938 }
2939 \f
2940 /* Calculate the value produced by the RELOCATION (which comes from
2941 the INPUT_BFD). The ADDEND is the addend to use for this
2942 RELOCATION; RELOCATION->R_ADDEND is ignored.
2943
2944 The result of the relocation calculation is stored in VALUEP.
2945 REQUIRE_JALXP indicates whether or not the opcode used with this
2946 relocation must be JALX.
2947
2948 This function returns bfd_reloc_continue if the caller need take no
2949 further action regarding this relocation, bfd_reloc_notsupported if
2950 something goes dramatically wrong, bfd_reloc_overflow if an
2951 overflow occurs, and bfd_reloc_ok to indicate success. */
2952
2953 static bfd_reloc_status_type
2954 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
2955 asection *input_section,
2956 struct bfd_link_info *info,
2957 const Elf_Internal_Rela *relocation,
2958 bfd_vma addend, reloc_howto_type *howto,
2959 Elf_Internal_Sym *local_syms,
2960 asection **local_sections, bfd_vma *valuep,
2961 const char **namep, bfd_boolean *require_jalxp,
2962 bfd_boolean save_addend)
2963 {
2964 /* The eventual value we will return. */
2965 bfd_vma value;
2966 /* The address of the symbol against which the relocation is
2967 occurring. */
2968 bfd_vma symbol = 0;
2969 /* The final GP value to be used for the relocatable, executable, or
2970 shared object file being produced. */
2971 bfd_vma gp = MINUS_ONE;
2972 /* The place (section offset or address) of the storage unit being
2973 relocated. */
2974 bfd_vma p;
2975 /* The value of GP used to create the relocatable object. */
2976 bfd_vma gp0 = MINUS_ONE;
2977 /* The offset into the global offset table at which the address of
2978 the relocation entry symbol, adjusted by the addend, resides
2979 during execution. */
2980 bfd_vma g = MINUS_ONE;
2981 /* The section in which the symbol referenced by the relocation is
2982 located. */
2983 asection *sec = NULL;
2984 struct mips_elf_link_hash_entry *h = NULL;
2985 /* TRUE if the symbol referred to by this relocation is a local
2986 symbol. */
2987 bfd_boolean local_p, was_local_p;
2988 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2989 bfd_boolean gp_disp_p = FALSE;
2990 Elf_Internal_Shdr *symtab_hdr;
2991 size_t extsymoff;
2992 unsigned long r_symndx;
2993 int r_type;
2994 /* TRUE if overflow occurred during the calculation of the
2995 relocation value. */
2996 bfd_boolean overflowed_p;
2997 /* TRUE if this relocation refers to a MIPS16 function. */
2998 bfd_boolean target_is_16_bit_code_p = FALSE;
2999
3000 /* Parse the relocation. */
3001 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3002 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3003 p = (input_section->output_section->vma
3004 + input_section->output_offset
3005 + relocation->r_offset);
3006
3007 /* Assume that there will be no overflow. */
3008 overflowed_p = FALSE;
3009
3010 /* Figure out whether or not the symbol is local, and get the offset
3011 used in the array of hash table entries. */
3012 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3013 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3014 local_sections, FALSE);
3015 was_local_p = local_p;
3016 if (! elf_bad_symtab (input_bfd))
3017 extsymoff = symtab_hdr->sh_info;
3018 else
3019 {
3020 /* The symbol table does not follow the rule that local symbols
3021 must come before globals. */
3022 extsymoff = 0;
3023 }
3024
3025 /* Figure out the value of the symbol. */
3026 if (local_p)
3027 {
3028 Elf_Internal_Sym *sym;
3029
3030 sym = local_syms + r_symndx;
3031 sec = local_sections[r_symndx];
3032
3033 symbol = sec->output_section->vma + sec->output_offset;
3034 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3035 || (sec->flags & SEC_MERGE))
3036 symbol += sym->st_value;
3037 if ((sec->flags & SEC_MERGE)
3038 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3039 {
3040 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3041 addend -= symbol;
3042 addend += sec->output_section->vma + sec->output_offset;
3043 }
3044
3045 /* MIPS16 text labels should be treated as odd. */
3046 if (sym->st_other == STO_MIPS16)
3047 ++symbol;
3048
3049 /* Record the name of this symbol, for our caller. */
3050 *namep = bfd_elf_string_from_elf_section (input_bfd,
3051 symtab_hdr->sh_link,
3052 sym->st_name);
3053 if (*namep == '\0')
3054 *namep = bfd_section_name (input_bfd, sec);
3055
3056 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3057 }
3058 else
3059 {
3060 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3061
3062 /* For global symbols we look up the symbol in the hash-table. */
3063 h = ((struct mips_elf_link_hash_entry *)
3064 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3065 /* Find the real hash-table entry for this symbol. */
3066 while (h->root.root.type == bfd_link_hash_indirect
3067 || h->root.root.type == bfd_link_hash_warning)
3068 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3069
3070 /* Record the name of this symbol, for our caller. */
3071 *namep = h->root.root.root.string;
3072
3073 /* See if this is the special _gp_disp symbol. Note that such a
3074 symbol must always be a global symbol. */
3075 if (strcmp (*namep, "_gp_disp") == 0
3076 && ! NEWABI_P (input_bfd))
3077 {
3078 /* Relocations against _gp_disp are permitted only with
3079 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3080 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3081 return bfd_reloc_notsupported;
3082
3083 gp_disp_p = TRUE;
3084 }
3085 /* If this symbol is defined, calculate its address. Note that
3086 _gp_disp is a magic symbol, always implicitly defined by the
3087 linker, so it's inappropriate to check to see whether or not
3088 its defined. */
3089 else if ((h->root.root.type == bfd_link_hash_defined
3090 || h->root.root.type == bfd_link_hash_defweak)
3091 && h->root.root.u.def.section)
3092 {
3093 sec = h->root.root.u.def.section;
3094 if (sec->output_section)
3095 symbol = (h->root.root.u.def.value
3096 + sec->output_section->vma
3097 + sec->output_offset);
3098 else
3099 symbol = h->root.root.u.def.value;
3100 }
3101 else if (h->root.root.type == bfd_link_hash_undefweak)
3102 /* We allow relocations against undefined weak symbols, giving
3103 it the value zero, so that you can undefined weak functions
3104 and check to see if they exist by looking at their
3105 addresses. */
3106 symbol = 0;
3107 else if (info->unresolved_syms_in_objects == RM_IGNORE
3108 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3109 symbol = 0;
3110 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3111 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
3112 {
3113 /* If this is a dynamic link, we should have created a
3114 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3115 in in _bfd_mips_elf_create_dynamic_sections.
3116 Otherwise, we should define the symbol with a value of 0.
3117 FIXME: It should probably get into the symbol table
3118 somehow as well. */
3119 BFD_ASSERT (! info->shared);
3120 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3121 symbol = 0;
3122 }
3123 else
3124 {
3125 if (! ((*info->callbacks->undefined_symbol)
3126 (info, h->root.root.root.string, input_bfd,
3127 input_section, relocation->r_offset,
3128 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3129 || ELF_ST_VISIBILITY (h->root.other))))
3130 return bfd_reloc_undefined;
3131 symbol = 0;
3132 }
3133
3134 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3135 }
3136
3137 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3138 need to redirect the call to the stub, unless we're already *in*
3139 a stub. */
3140 if (r_type != R_MIPS16_26 && !info->relocatable
3141 && ((h != NULL && h->fn_stub != NULL)
3142 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3143 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3144 && !mips_elf_stub_section_p (input_bfd, input_section))
3145 {
3146 /* This is a 32- or 64-bit call to a 16-bit function. We should
3147 have already noticed that we were going to need the
3148 stub. */
3149 if (local_p)
3150 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3151 else
3152 {
3153 BFD_ASSERT (h->need_fn_stub);
3154 sec = h->fn_stub;
3155 }
3156
3157 symbol = sec->output_section->vma + sec->output_offset;
3158 }
3159 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3160 need to redirect the call to the stub. */
3161 else if (r_type == R_MIPS16_26 && !info->relocatable
3162 && h != NULL
3163 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3164 && !target_is_16_bit_code_p)
3165 {
3166 /* If both call_stub and call_fp_stub are defined, we can figure
3167 out which one to use by seeing which one appears in the input
3168 file. */
3169 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3170 {
3171 asection *o;
3172
3173 sec = NULL;
3174 for (o = input_bfd->sections; o != NULL; o = o->next)
3175 {
3176 if (strncmp (bfd_get_section_name (input_bfd, o),
3177 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3178 {
3179 sec = h->call_fp_stub;
3180 break;
3181 }
3182 }
3183 if (sec == NULL)
3184 sec = h->call_stub;
3185 }
3186 else if (h->call_stub != NULL)
3187 sec = h->call_stub;
3188 else
3189 sec = h->call_fp_stub;
3190
3191 BFD_ASSERT (sec->size > 0);
3192 symbol = sec->output_section->vma + sec->output_offset;
3193 }
3194
3195 /* Calls from 16-bit code to 32-bit code and vice versa require the
3196 special jalx instruction. */
3197 *require_jalxp = (!info->relocatable
3198 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3199 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3200
3201 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3202 local_sections, TRUE);
3203
3204 /* If we haven't already determined the GOT offset, or the GP value,
3205 and we're going to need it, get it now. */
3206 switch (r_type)
3207 {
3208 case R_MIPS_GOT_PAGE:
3209 case R_MIPS_GOT_OFST:
3210 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3211 bind locally. */
3212 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
3213 if (local_p || r_type == R_MIPS_GOT_OFST)
3214 break;
3215 /* Fall through. */
3216
3217 case R_MIPS_CALL16:
3218 case R_MIPS_GOT16:
3219 case R_MIPS_GOT_DISP:
3220 case R_MIPS_GOT_HI16:
3221 case R_MIPS_CALL_HI16:
3222 case R_MIPS_GOT_LO16:
3223 case R_MIPS_CALL_LO16:
3224 /* Find the index into the GOT where this value is located. */
3225 if (!local_p)
3226 {
3227 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3228 GOT_PAGE relocation that decays to GOT_DISP because the
3229 symbol turns out to be global. The addend is then added
3230 as GOT_OFST. */
3231 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3232 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3233 input_bfd,
3234 (struct elf_link_hash_entry *) h);
3235 if (! elf_hash_table(info)->dynamic_sections_created
3236 || (info->shared
3237 && (info->symbolic || h->root.dynindx == -1)
3238 && h->root.def_regular))
3239 {
3240 /* This is a static link or a -Bsymbolic link. The
3241 symbol is defined locally, or was forced to be local.
3242 We must initialize this entry in the GOT. */
3243 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3244 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3245 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3246 }
3247 }
3248 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3249 /* There's no need to create a local GOT entry here; the
3250 calculation for a local GOT16 entry does not involve G. */
3251 break;
3252 else
3253 {
3254 g = mips_elf_local_got_index (abfd, input_bfd,
3255 info, symbol + addend);
3256 if (g == MINUS_ONE)
3257 return bfd_reloc_outofrange;
3258 }
3259
3260 /* Convert GOT indices to actual offsets. */
3261 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3262 abfd, input_bfd, g);
3263 break;
3264
3265 case R_MIPS_HI16:
3266 case R_MIPS_LO16:
3267 case R_MIPS16_GPREL:
3268 case R_MIPS_GPREL16:
3269 case R_MIPS_GPREL32:
3270 case R_MIPS_LITERAL:
3271 gp0 = _bfd_get_gp_value (input_bfd);
3272 gp = _bfd_get_gp_value (abfd);
3273 if (elf_hash_table (info)->dynobj)
3274 gp += mips_elf_adjust_gp (abfd,
3275 mips_elf_got_info
3276 (elf_hash_table (info)->dynobj, NULL),
3277 input_bfd);
3278 break;
3279
3280 default:
3281 break;
3282 }
3283
3284 /* Figure out what kind of relocation is being performed. */
3285 switch (r_type)
3286 {
3287 case R_MIPS_NONE:
3288 return bfd_reloc_continue;
3289
3290 case R_MIPS_16:
3291 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3292 overflowed_p = mips_elf_overflow_p (value, 16);
3293 break;
3294
3295 case R_MIPS_32:
3296 case R_MIPS_REL32:
3297 case R_MIPS_64:
3298 if ((info->shared
3299 || (elf_hash_table (info)->dynamic_sections_created
3300 && h != NULL
3301 && h->root.def_dynamic
3302 && !h->root.def_regular))
3303 && r_symndx != 0
3304 && (input_section->flags & SEC_ALLOC) != 0)
3305 {
3306 /* If we're creating a shared library, or this relocation is
3307 against a symbol in a shared library, then we can't know
3308 where the symbol will end up. So, we create a relocation
3309 record in the output, and leave the job up to the dynamic
3310 linker. */
3311 value = addend;
3312 if (!mips_elf_create_dynamic_relocation (abfd,
3313 info,
3314 relocation,
3315 h,
3316 sec,
3317 symbol,
3318 &value,
3319 input_section))
3320 return bfd_reloc_undefined;
3321 }
3322 else
3323 {
3324 if (r_type != R_MIPS_REL32)
3325 value = symbol + addend;
3326 else
3327 value = addend;
3328 }
3329 value &= howto->dst_mask;
3330 break;
3331
3332 case R_MIPS_PC32:
3333 value = symbol + addend - p;
3334 value &= howto->dst_mask;
3335 break;
3336
3337 case R_MIPS_GNU_REL16_S2:
3338 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
3339 overflowed_p = mips_elf_overflow_p (value, 18);
3340 value = (value >> 2) & howto->dst_mask;
3341 break;
3342
3343 case R_MIPS16_26:
3344 /* The calculation for R_MIPS16_26 is just the same as for an
3345 R_MIPS_26. It's only the storage of the relocated field into
3346 the output file that's different. That's handled in
3347 mips_elf_perform_relocation. So, we just fall through to the
3348 R_MIPS_26 case here. */
3349 case R_MIPS_26:
3350 if (local_p)
3351 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3352 else
3353 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
3354 value &= howto->dst_mask;
3355 break;
3356
3357 case R_MIPS_HI16:
3358 if (!gp_disp_p)
3359 {
3360 value = mips_elf_high (addend + symbol);
3361 value &= howto->dst_mask;
3362 }
3363 else
3364 {
3365 value = mips_elf_high (addend + gp - p);
3366 overflowed_p = mips_elf_overflow_p (value, 16);
3367 }
3368 break;
3369
3370 case R_MIPS_LO16:
3371 if (!gp_disp_p)
3372 value = (symbol + addend) & howto->dst_mask;
3373 else
3374 {
3375 value = addend + gp - p + 4;
3376 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3377 for overflow. But, on, say, IRIX5, relocations against
3378 _gp_disp are normally generated from the .cpload
3379 pseudo-op. It generates code that normally looks like
3380 this:
3381
3382 lui $gp,%hi(_gp_disp)
3383 addiu $gp,$gp,%lo(_gp_disp)
3384 addu $gp,$gp,$t9
3385
3386 Here $t9 holds the address of the function being called,
3387 as required by the MIPS ELF ABI. The R_MIPS_LO16
3388 relocation can easily overflow in this situation, but the
3389 R_MIPS_HI16 relocation will handle the overflow.
3390 Therefore, we consider this a bug in the MIPS ABI, and do
3391 not check for overflow here. */
3392 }
3393 break;
3394
3395 case R_MIPS_LITERAL:
3396 /* Because we don't merge literal sections, we can handle this
3397 just like R_MIPS_GPREL16. In the long run, we should merge
3398 shared literals, and then we will need to additional work
3399 here. */
3400
3401 /* Fall through. */
3402
3403 case R_MIPS16_GPREL:
3404 /* The R_MIPS16_GPREL performs the same calculation as
3405 R_MIPS_GPREL16, but stores the relocated bits in a different
3406 order. We don't need to do anything special here; the
3407 differences are handled in mips_elf_perform_relocation. */
3408 case R_MIPS_GPREL16:
3409 /* Only sign-extend the addend if it was extracted from the
3410 instruction. If the addend was separate, leave it alone,
3411 otherwise we may lose significant bits. */
3412 if (howto->partial_inplace)
3413 addend = _bfd_mips_elf_sign_extend (addend, 16);
3414 value = symbol + addend - gp;
3415 /* If the symbol was local, any earlier relocatable links will
3416 have adjusted its addend with the gp offset, so compensate
3417 for that now. Don't do it for symbols forced local in this
3418 link, though, since they won't have had the gp offset applied
3419 to them before. */
3420 if (was_local_p)
3421 value += gp0;
3422 overflowed_p = mips_elf_overflow_p (value, 16);
3423 break;
3424
3425 case R_MIPS_GOT16:
3426 case R_MIPS_CALL16:
3427 if (local_p)
3428 {
3429 bfd_boolean forced;
3430
3431 /* The special case is when the symbol is forced to be local. We
3432 need the full address in the GOT since no R_MIPS_LO16 relocation
3433 follows. */
3434 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3435 local_sections, FALSE);
3436 value = mips_elf_got16_entry (abfd, input_bfd, info,
3437 symbol + addend, forced);
3438 if (value == MINUS_ONE)
3439 return bfd_reloc_outofrange;
3440 value
3441 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3442 abfd, input_bfd, value);
3443 overflowed_p = mips_elf_overflow_p (value, 16);
3444 break;
3445 }
3446
3447 /* Fall through. */
3448
3449 case R_MIPS_GOT_DISP:
3450 got_disp:
3451 value = g;
3452 overflowed_p = mips_elf_overflow_p (value, 16);
3453 break;
3454
3455 case R_MIPS_GPREL32:
3456 value = (addend + symbol + gp0 - gp);
3457 if (!save_addend)
3458 value &= howto->dst_mask;
3459 break;
3460
3461 case R_MIPS_PC16:
3462 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3463 overflowed_p = mips_elf_overflow_p (value, 16);
3464 break;
3465
3466 case R_MIPS_GOT_HI16:
3467 case R_MIPS_CALL_HI16:
3468 /* We're allowed to handle these two relocations identically.
3469 The dynamic linker is allowed to handle the CALL relocations
3470 differently by creating a lazy evaluation stub. */
3471 value = g;
3472 value = mips_elf_high (value);
3473 value &= howto->dst_mask;
3474 break;
3475
3476 case R_MIPS_GOT_LO16:
3477 case R_MIPS_CALL_LO16:
3478 value = g & howto->dst_mask;
3479 break;
3480
3481 case R_MIPS_GOT_PAGE:
3482 /* GOT_PAGE relocations that reference non-local symbols decay
3483 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3484 0. */
3485 if (! local_p)
3486 goto got_disp;
3487 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3488 if (value == MINUS_ONE)
3489 return bfd_reloc_outofrange;
3490 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3491 abfd, input_bfd, value);
3492 overflowed_p = mips_elf_overflow_p (value, 16);
3493 break;
3494
3495 case R_MIPS_GOT_OFST:
3496 if (local_p)
3497 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3498 else
3499 value = addend;
3500 overflowed_p = mips_elf_overflow_p (value, 16);
3501 break;
3502
3503 case R_MIPS_SUB:
3504 value = symbol - addend;
3505 value &= howto->dst_mask;
3506 break;
3507
3508 case R_MIPS_HIGHER:
3509 value = mips_elf_higher (addend + symbol);
3510 value &= howto->dst_mask;
3511 break;
3512
3513 case R_MIPS_HIGHEST:
3514 value = mips_elf_highest (addend + symbol);
3515 value &= howto->dst_mask;
3516 break;
3517
3518 case R_MIPS_SCN_DISP:
3519 value = symbol + addend - sec->output_offset;
3520 value &= howto->dst_mask;
3521 break;
3522
3523 case R_MIPS_PJUMP:
3524 case R_MIPS_JALR:
3525 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3526 hint; we could improve performance by honoring that hint. */
3527 return bfd_reloc_continue;
3528
3529 case R_MIPS_GNU_VTINHERIT:
3530 case R_MIPS_GNU_VTENTRY:
3531 /* We don't do anything with these at present. */
3532 return bfd_reloc_continue;
3533
3534 default:
3535 /* An unrecognized relocation type. */
3536 return bfd_reloc_notsupported;
3537 }
3538
3539 /* Store the VALUE for our caller. */
3540 *valuep = value;
3541 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3542 }
3543
3544 /* Obtain the field relocated by RELOCATION. */
3545
3546 static bfd_vma
3547 mips_elf_obtain_contents (reloc_howto_type *howto,
3548 const Elf_Internal_Rela *relocation,
3549 bfd *input_bfd, bfd_byte *contents)
3550 {
3551 bfd_vma x;
3552 bfd_byte *location = contents + relocation->r_offset;
3553
3554 /* Obtain the bytes. */
3555 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3556
3557 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3558 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3559 && bfd_little_endian (input_bfd))
3560 /* The two 16-bit words will be reversed on a little-endian system.
3561 See mips_elf_perform_relocation for more details. */
3562 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3563
3564 return x;
3565 }
3566
3567 /* It has been determined that the result of the RELOCATION is the
3568 VALUE. Use HOWTO to place VALUE into the output file at the
3569 appropriate position. The SECTION is the section to which the
3570 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3571 for the relocation must be either JAL or JALX, and it is
3572 unconditionally converted to JALX.
3573
3574 Returns FALSE if anything goes wrong. */
3575
3576 static bfd_boolean
3577 mips_elf_perform_relocation (struct bfd_link_info *info,
3578 reloc_howto_type *howto,
3579 const Elf_Internal_Rela *relocation,
3580 bfd_vma value, bfd *input_bfd,
3581 asection *input_section, bfd_byte *contents,
3582 bfd_boolean require_jalx)
3583 {
3584 bfd_vma x;
3585 bfd_byte *location;
3586 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3587
3588 /* Figure out where the relocation is occurring. */
3589 location = contents + relocation->r_offset;
3590
3591 /* Obtain the current value. */
3592 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3593
3594 /* Clear the field we are setting. */
3595 x &= ~howto->dst_mask;
3596
3597 /* If this is the R_MIPS16_26 relocation, we must store the
3598 value in a funny way. */
3599 if (r_type == R_MIPS16_26)
3600 {
3601 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3602 Most mips16 instructions are 16 bits, but these instructions
3603 are 32 bits.
3604
3605 The format of these instructions is:
3606
3607 +--------------+--------------------------------+
3608 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3609 +--------------+--------------------------------+
3610 ! Immediate 15:0 !
3611 +-----------------------------------------------+
3612
3613 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3614 Note that the immediate value in the first word is swapped.
3615
3616 When producing a relocatable object file, R_MIPS16_26 is
3617 handled mostly like R_MIPS_26. In particular, the addend is
3618 stored as a straight 26-bit value in a 32-bit instruction.
3619 (gas makes life simpler for itself by never adjusting a
3620 R_MIPS16_26 reloc to be against a section, so the addend is
3621 always zero). However, the 32 bit instruction is stored as 2
3622 16-bit values, rather than a single 32-bit value. In a
3623 big-endian file, the result is the same; in a little-endian
3624 file, the two 16-bit halves of the 32 bit value are swapped.
3625 This is so that a disassembler can recognize the jal
3626 instruction.
3627
3628 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3629 instruction stored as two 16-bit values. The addend A is the
3630 contents of the targ26 field. The calculation is the same as
3631 R_MIPS_26. When storing the calculated value, reorder the
3632 immediate value as shown above, and don't forget to store the
3633 value as two 16-bit values.
3634
3635 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3636 defined as
3637
3638 big-endian:
3639 +--------+----------------------+
3640 | | |
3641 | | targ26-16 |
3642 |31 26|25 0|
3643 +--------+----------------------+
3644
3645 little-endian:
3646 +----------+------+-------------+
3647 | | | |
3648 | sub1 | | sub2 |
3649 |0 9|10 15|16 31|
3650 +----------+--------------------+
3651 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3652 ((sub1 << 16) | sub2)).
3653
3654 When producing a relocatable object file, the calculation is
3655 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3656 When producing a fully linked file, the calculation is
3657 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3658 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3659
3660 if (!info->relocatable)
3661 /* Shuffle the bits according to the formula above. */
3662 value = (((value & 0x1f0000) << 5)
3663 | ((value & 0x3e00000) >> 5)
3664 | (value & 0xffff));
3665 }
3666 else if (r_type == R_MIPS16_GPREL)
3667 {
3668 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3669 mode. A typical instruction will have a format like this:
3670
3671 +--------------+--------------------------------+
3672 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3673 +--------------+--------------------------------+
3674 ! Major ! rx ! ry ! Imm 4:0 !
3675 +--------------+--------------------------------+
3676
3677 EXTEND is the five bit value 11110. Major is the instruction
3678 opcode.
3679
3680 This is handled exactly like R_MIPS_GPREL16, except that the
3681 addend is retrieved and stored as shown in this diagram; that
3682 is, the Imm fields above replace the V-rel16 field.
3683
3684 All we need to do here is shuffle the bits appropriately. As
3685 above, the two 16-bit halves must be swapped on a
3686 little-endian system. */
3687 value = (((value & 0x7e0) << 16)
3688 | ((value & 0xf800) << 5)
3689 | (value & 0x1f));
3690 }
3691
3692 /* Set the field. */
3693 x |= (value & howto->dst_mask);
3694
3695 /* If required, turn JAL into JALX. */
3696 if (require_jalx)
3697 {
3698 bfd_boolean ok;
3699 bfd_vma opcode = x >> 26;
3700 bfd_vma jalx_opcode;
3701
3702 /* Check to see if the opcode is already JAL or JALX. */
3703 if (r_type == R_MIPS16_26)
3704 {
3705 ok = ((opcode == 0x6) || (opcode == 0x7));
3706 jalx_opcode = 0x7;
3707 }
3708 else
3709 {
3710 ok = ((opcode == 0x3) || (opcode == 0x1d));
3711 jalx_opcode = 0x1d;
3712 }
3713
3714 /* If the opcode is not JAL or JALX, there's a problem. */
3715 if (!ok)
3716 {
3717 (*_bfd_error_handler)
3718 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
3719 input_bfd,
3720 input_section,
3721 (unsigned long) relocation->r_offset);
3722 bfd_set_error (bfd_error_bad_value);
3723 return FALSE;
3724 }
3725
3726 /* Make this the JALX opcode. */
3727 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3728 }
3729
3730 /* Swap the high- and low-order 16 bits on little-endian systems
3731 when doing a MIPS16 relocation. */
3732 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3733 && bfd_little_endian (input_bfd))
3734 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3735
3736 /* Put the value into the output. */
3737 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3738 return TRUE;
3739 }
3740
3741 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3742
3743 static bfd_boolean
3744 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
3745 {
3746 const char *name = bfd_get_section_name (abfd, section);
3747
3748 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3749 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3750 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3751 }
3752 \f
3753 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3754
3755 static void
3756 mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
3757 {
3758 asection *s;
3759
3760 s = mips_elf_rel_dyn_section (abfd, FALSE);
3761 BFD_ASSERT (s != NULL);
3762
3763 if (s->size == 0)
3764 {
3765 /* Make room for a null element. */
3766 s->size += MIPS_ELF_REL_SIZE (abfd);
3767 ++s->reloc_count;
3768 }
3769 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3770 }
3771
3772 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3773 is the original relocation, which is now being transformed into a
3774 dynamic relocation. The ADDENDP is adjusted if necessary; the
3775 caller should store the result in place of the original addend. */
3776
3777 static bfd_boolean
3778 mips_elf_create_dynamic_relocation (bfd *output_bfd,
3779 struct bfd_link_info *info,
3780 const Elf_Internal_Rela *rel,
3781 struct mips_elf_link_hash_entry *h,
3782 asection *sec, bfd_vma symbol,
3783 bfd_vma *addendp, asection *input_section)
3784 {
3785 Elf_Internal_Rela outrel[3];
3786 bfd_boolean skip;
3787 asection *sreloc;
3788 bfd *dynobj;
3789 int r_type;
3790
3791 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3792 dynobj = elf_hash_table (info)->dynobj;
3793 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3794 BFD_ASSERT (sreloc != NULL);
3795 BFD_ASSERT (sreloc->contents != NULL);
3796 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3797 < sreloc->size);
3798
3799 skip = FALSE;
3800 outrel[0].r_offset =
3801 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3802 outrel[1].r_offset =
3803 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3804 outrel[2].r_offset =
3805 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3806
3807 #if 0
3808 /* We begin by assuming that the offset for the dynamic relocation
3809 is the same as for the original relocation. We'll adjust this
3810 later to reflect the correct output offsets. */
3811 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3812 {
3813 outrel[1].r_offset = rel[1].r_offset;
3814 outrel[2].r_offset = rel[2].r_offset;
3815 }
3816 else
3817 {
3818 /* Except that in a stab section things are more complex.
3819 Because we compress stab information, the offset given in the
3820 relocation may not be the one we want; we must let the stabs
3821 machinery tell us the offset. */
3822 outrel[1].r_offset = outrel[0].r_offset;
3823 outrel[2].r_offset = outrel[0].r_offset;
3824 /* If we didn't need the relocation at all, this value will be
3825 -1. */
3826 if (outrel[0].r_offset == MINUS_ONE)
3827 skip = TRUE;
3828 }
3829 #endif
3830
3831 if (outrel[0].r_offset == MINUS_ONE)
3832 /* The relocation field has been deleted. */
3833 skip = TRUE;
3834 else if (outrel[0].r_offset == MINUS_TWO)
3835 {
3836 /* The relocation field has been converted into a relative value of
3837 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3838 the field to be fully relocated, so add in the symbol's value. */
3839 skip = TRUE;
3840 *addendp += symbol;
3841 }
3842
3843 /* If we've decided to skip this relocation, just output an empty
3844 record. Note that R_MIPS_NONE == 0, so that this call to memset
3845 is a way of setting R_TYPE to R_MIPS_NONE. */
3846 if (skip)
3847 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3848 else
3849 {
3850 long indx;
3851 bfd_boolean defined_p;
3852
3853 /* We must now calculate the dynamic symbol table index to use
3854 in the relocation. */
3855 if (h != NULL
3856 && (! info->symbolic || !h->root.def_regular)
3857 /* h->root.dynindx may be -1 if this symbol was marked to
3858 become local. */
3859 && h->root.dynindx != -1)
3860 {
3861 indx = h->root.dynindx;
3862 if (SGI_COMPAT (output_bfd))
3863 defined_p = h->root.def_regular;
3864 else
3865 /* ??? glibc's ld.so just adds the final GOT entry to the
3866 relocation field. It therefore treats relocs against
3867 defined symbols in the same way as relocs against
3868 undefined symbols. */
3869 defined_p = FALSE;
3870 }
3871 else
3872 {
3873 if (sec != NULL && bfd_is_abs_section (sec))
3874 indx = 0;
3875 else if (sec == NULL || sec->owner == NULL)
3876 {
3877 bfd_set_error (bfd_error_bad_value);
3878 return FALSE;
3879 }
3880 else
3881 {
3882 indx = elf_section_data (sec->output_section)->dynindx;
3883 if (indx == 0)
3884 abort ();
3885 }
3886
3887 /* Instead of generating a relocation using the section
3888 symbol, we may as well make it a fully relative
3889 relocation. We want to avoid generating relocations to
3890 local symbols because we used to generate them
3891 incorrectly, without adding the original symbol value,
3892 which is mandated by the ABI for section symbols. In
3893 order to give dynamic loaders and applications time to
3894 phase out the incorrect use, we refrain from emitting
3895 section-relative relocations. It's not like they're
3896 useful, after all. This should be a bit more efficient
3897 as well. */
3898 /* ??? Although this behavior is compatible with glibc's ld.so,
3899 the ABI says that relocations against STN_UNDEF should have
3900 a symbol value of 0. Irix rld honors this, so relocations
3901 against STN_UNDEF have no effect. */
3902 if (!SGI_COMPAT (output_bfd))
3903 indx = 0;
3904 defined_p = TRUE;
3905 }
3906
3907 /* If the relocation was previously an absolute relocation and
3908 this symbol will not be referred to by the relocation, we must
3909 adjust it by the value we give it in the dynamic symbol table.
3910 Otherwise leave the job up to the dynamic linker. */
3911 if (defined_p && r_type != R_MIPS_REL32)
3912 *addendp += symbol;
3913
3914 /* The relocation is always an REL32 relocation because we don't
3915 know where the shared library will wind up at load-time. */
3916 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3917 R_MIPS_REL32);
3918 /* For strict adherence to the ABI specification, we should
3919 generate a R_MIPS_64 relocation record by itself before the
3920 _REL32/_64 record as well, such that the addend is read in as
3921 a 64-bit value (REL32 is a 32-bit relocation, after all).
3922 However, since none of the existing ELF64 MIPS dynamic
3923 loaders seems to care, we don't waste space with these
3924 artificial relocations. If this turns out to not be true,
3925 mips_elf_allocate_dynamic_relocation() should be tweaked so
3926 as to make room for a pair of dynamic relocations per
3927 invocation if ABI_64_P, and here we should generate an
3928 additional relocation record with R_MIPS_64 by itself for a
3929 NULL symbol before this relocation record. */
3930 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3931 ABI_64_P (output_bfd)
3932 ? R_MIPS_64
3933 : R_MIPS_NONE);
3934 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3935
3936 /* Adjust the output offset of the relocation to reference the
3937 correct location in the output file. */
3938 outrel[0].r_offset += (input_section->output_section->vma
3939 + input_section->output_offset);
3940 outrel[1].r_offset += (input_section->output_section->vma
3941 + input_section->output_offset);
3942 outrel[2].r_offset += (input_section->output_section->vma
3943 + input_section->output_offset);
3944 }
3945
3946 /* Put the relocation back out. We have to use the special
3947 relocation outputter in the 64-bit case since the 64-bit
3948 relocation format is non-standard. */
3949 if (ABI_64_P (output_bfd))
3950 {
3951 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3952 (output_bfd, &outrel[0],
3953 (sreloc->contents
3954 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3955 }
3956 else
3957 bfd_elf32_swap_reloc_out
3958 (output_bfd, &outrel[0],
3959 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3960
3961 /* We've now added another relocation. */
3962 ++sreloc->reloc_count;
3963
3964 /* Make sure the output section is writable. The dynamic linker
3965 will be writing to it. */
3966 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3967 |= SHF_WRITE;
3968
3969 /* On IRIX5, make an entry of compact relocation info. */
3970 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
3971 {
3972 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3973 bfd_byte *cr;
3974
3975 if (scpt)
3976 {
3977 Elf32_crinfo cptrel;
3978
3979 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3980 cptrel.vaddr = (rel->r_offset
3981 + input_section->output_section->vma
3982 + input_section->output_offset);
3983 if (r_type == R_MIPS_REL32)
3984 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3985 else
3986 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3987 mips_elf_set_cr_dist2to (cptrel, 0);
3988 cptrel.konst = *addendp;
3989
3990 cr = (scpt->contents
3991 + sizeof (Elf32_External_compact_rel));
3992 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3993 ((Elf32_External_crinfo *) cr
3994 + scpt->reloc_count));
3995 ++scpt->reloc_count;
3996 }
3997 }
3998
3999 return TRUE;
4000 }
4001 \f
4002 /* Return the MACH for a MIPS e_flags value. */
4003
4004 unsigned long
4005 _bfd_elf_mips_mach (flagword flags)
4006 {
4007 switch (flags & EF_MIPS_MACH)
4008 {
4009 case E_MIPS_MACH_3900:
4010 return bfd_mach_mips3900;
4011
4012 case E_MIPS_MACH_4010:
4013 return bfd_mach_mips4010;
4014
4015 case E_MIPS_MACH_4100:
4016 return bfd_mach_mips4100;
4017
4018 case E_MIPS_MACH_4111:
4019 return bfd_mach_mips4111;
4020
4021 case E_MIPS_MACH_4120:
4022 return bfd_mach_mips4120;
4023
4024 case E_MIPS_MACH_4650:
4025 return bfd_mach_mips4650;
4026
4027 case E_MIPS_MACH_5400:
4028 return bfd_mach_mips5400;
4029
4030 case E_MIPS_MACH_5500:
4031 return bfd_mach_mips5500;
4032
4033 case E_MIPS_MACH_SB1:
4034 return bfd_mach_mips_sb1;
4035
4036 default:
4037 switch (flags & EF_MIPS_ARCH)
4038 {
4039 default:
4040 case E_MIPS_ARCH_1:
4041 return bfd_mach_mips3000;
4042 break;
4043
4044 case E_MIPS_ARCH_2:
4045 return bfd_mach_mips6000;
4046 break;
4047
4048 case E_MIPS_ARCH_3:
4049 return bfd_mach_mips4000;
4050 break;
4051
4052 case E_MIPS_ARCH_4:
4053 return bfd_mach_mips8000;
4054 break;
4055
4056 case E_MIPS_ARCH_5:
4057 return bfd_mach_mips5;
4058 break;
4059
4060 case E_MIPS_ARCH_32:
4061 return bfd_mach_mipsisa32;
4062 break;
4063
4064 case E_MIPS_ARCH_64:
4065 return bfd_mach_mipsisa64;
4066 break;
4067
4068 case E_MIPS_ARCH_32R2:
4069 return bfd_mach_mipsisa32r2;
4070 break;
4071
4072 case E_MIPS_ARCH_64R2:
4073 return bfd_mach_mipsisa64r2;
4074 break;
4075 }
4076 }
4077
4078 return 0;
4079 }
4080
4081 /* Return printable name for ABI. */
4082
4083 static INLINE char *
4084 elf_mips_abi_name (bfd *abfd)
4085 {
4086 flagword flags;
4087
4088 flags = elf_elfheader (abfd)->e_flags;
4089 switch (flags & EF_MIPS_ABI)
4090 {
4091 case 0:
4092 if (ABI_N32_P (abfd))
4093 return "N32";
4094 else if (ABI_64_P (abfd))
4095 return "64";
4096 else
4097 return "none";
4098 case E_MIPS_ABI_O32:
4099 return "O32";
4100 case E_MIPS_ABI_O64:
4101 return "O64";
4102 case E_MIPS_ABI_EABI32:
4103 return "EABI32";
4104 case E_MIPS_ABI_EABI64:
4105 return "EABI64";
4106 default:
4107 return "unknown abi";
4108 }
4109 }
4110 \f
4111 /* MIPS ELF uses two common sections. One is the usual one, and the
4112 other is for small objects. All the small objects are kept
4113 together, and then referenced via the gp pointer, which yields
4114 faster assembler code. This is what we use for the small common
4115 section. This approach is copied from ecoff.c. */
4116 static asection mips_elf_scom_section;
4117 static asymbol mips_elf_scom_symbol;
4118 static asymbol *mips_elf_scom_symbol_ptr;
4119
4120 /* MIPS ELF also uses an acommon section, which represents an
4121 allocated common symbol which may be overridden by a
4122 definition in a shared library. */
4123 static asection mips_elf_acom_section;
4124 static asymbol mips_elf_acom_symbol;
4125 static asymbol *mips_elf_acom_symbol_ptr;
4126
4127 /* Handle the special MIPS section numbers that a symbol may use.
4128 This is used for both the 32-bit and the 64-bit ABI. */
4129
4130 void
4131 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
4132 {
4133 elf_symbol_type *elfsym;
4134
4135 elfsym = (elf_symbol_type *) asym;
4136 switch (elfsym->internal_elf_sym.st_shndx)
4137 {
4138 case SHN_MIPS_ACOMMON:
4139 /* This section is used in a dynamically linked executable file.
4140 It is an allocated common section. The dynamic linker can
4141 either resolve these symbols to something in a shared
4142 library, or it can just leave them here. For our purposes,
4143 we can consider these symbols to be in a new section. */
4144 if (mips_elf_acom_section.name == NULL)
4145 {
4146 /* Initialize the acommon section. */
4147 mips_elf_acom_section.name = ".acommon";
4148 mips_elf_acom_section.flags = SEC_ALLOC;
4149 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4150 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4151 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4152 mips_elf_acom_symbol.name = ".acommon";
4153 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4154 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4155 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4156 }
4157 asym->section = &mips_elf_acom_section;
4158 break;
4159
4160 case SHN_COMMON:
4161 /* Common symbols less than the GP size are automatically
4162 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4163 if (asym->value > elf_gp_size (abfd)
4164 || IRIX_COMPAT (abfd) == ict_irix6)
4165 break;
4166 /* Fall through. */
4167 case SHN_MIPS_SCOMMON:
4168 if (mips_elf_scom_section.name == NULL)
4169 {
4170 /* Initialize the small common section. */
4171 mips_elf_scom_section.name = ".scommon";
4172 mips_elf_scom_section.flags = SEC_IS_COMMON;
4173 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4174 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4175 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4176 mips_elf_scom_symbol.name = ".scommon";
4177 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4178 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4179 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4180 }
4181 asym->section = &mips_elf_scom_section;
4182 asym->value = elfsym->internal_elf_sym.st_size;
4183 break;
4184
4185 case SHN_MIPS_SUNDEFINED:
4186 asym->section = bfd_und_section_ptr;
4187 break;
4188
4189 case SHN_MIPS_TEXT:
4190 {
4191 asection *section = bfd_get_section_by_name (abfd, ".text");
4192
4193 BFD_ASSERT (SGI_COMPAT (abfd));
4194 if (section != NULL)
4195 {
4196 asym->section = section;
4197 /* MIPS_TEXT is a bit special, the address is not an offset
4198 to the base of the .text section. So substract the section
4199 base address to make it an offset. */
4200 asym->value -= section->vma;
4201 }
4202 }
4203 break;
4204
4205 case SHN_MIPS_DATA:
4206 {
4207 asection *section = bfd_get_section_by_name (abfd, ".data");
4208
4209 BFD_ASSERT (SGI_COMPAT (abfd));
4210 if (section != NULL)
4211 {
4212 asym->section = section;
4213 /* MIPS_DATA is a bit special, the address is not an offset
4214 to the base of the .data section. So substract the section
4215 base address to make it an offset. */
4216 asym->value -= section->vma;
4217 }
4218 }
4219 break;
4220 }
4221 }
4222 \f
4223 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4224 relocations against two unnamed section symbols to resolve to the
4225 same address. For example, if we have code like:
4226
4227 lw $4,%got_disp(.data)($gp)
4228 lw $25,%got_disp(.text)($gp)
4229 jalr $25
4230
4231 then the linker will resolve both relocations to .data and the program
4232 will jump there rather than to .text.
4233
4234 We can work around this problem by giving names to local section symbols.
4235 This is also what the MIPSpro tools do. */
4236
4237 bfd_boolean
4238 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4239 {
4240 return SGI_COMPAT (abfd);
4241 }
4242 \f
4243 /* Work over a section just before writing it out. This routine is
4244 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4245 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4246 a better way. */
4247
4248 bfd_boolean
4249 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
4250 {
4251 if (hdr->sh_type == SHT_MIPS_REGINFO
4252 && hdr->sh_size > 0)
4253 {
4254 bfd_byte buf[4];
4255
4256 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4257 BFD_ASSERT (hdr->contents == NULL);
4258
4259 if (bfd_seek (abfd,
4260 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4261 SEEK_SET) != 0)
4262 return FALSE;
4263 H_PUT_32 (abfd, elf_gp (abfd), buf);
4264 if (bfd_bwrite (buf, 4, abfd) != 4)
4265 return FALSE;
4266 }
4267
4268 if (hdr->sh_type == SHT_MIPS_OPTIONS
4269 && hdr->bfd_section != NULL
4270 && mips_elf_section_data (hdr->bfd_section) != NULL
4271 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4272 {
4273 bfd_byte *contents, *l, *lend;
4274
4275 /* We stored the section contents in the tdata field in the
4276 set_section_contents routine. We save the section contents
4277 so that we don't have to read them again.
4278 At this point we know that elf_gp is set, so we can look
4279 through the section contents to see if there is an
4280 ODK_REGINFO structure. */
4281
4282 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4283 l = contents;
4284 lend = contents + hdr->sh_size;
4285 while (l + sizeof (Elf_External_Options) <= lend)
4286 {
4287 Elf_Internal_Options intopt;
4288
4289 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4290 &intopt);
4291 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4292 {
4293 bfd_byte buf[8];
4294
4295 if (bfd_seek (abfd,
4296 (hdr->sh_offset
4297 + (l - contents)
4298 + sizeof (Elf_External_Options)
4299 + (sizeof (Elf64_External_RegInfo) - 8)),
4300 SEEK_SET) != 0)
4301 return FALSE;
4302 H_PUT_64 (abfd, elf_gp (abfd), buf);
4303 if (bfd_bwrite (buf, 8, abfd) != 8)
4304 return FALSE;
4305 }
4306 else if (intopt.kind == ODK_REGINFO)
4307 {
4308 bfd_byte buf[4];
4309
4310 if (bfd_seek (abfd,
4311 (hdr->sh_offset
4312 + (l - contents)
4313 + sizeof (Elf_External_Options)
4314 + (sizeof (Elf32_External_RegInfo) - 4)),
4315 SEEK_SET) != 0)
4316 return FALSE;
4317 H_PUT_32 (abfd, elf_gp (abfd), buf);
4318 if (bfd_bwrite (buf, 4, abfd) != 4)
4319 return FALSE;
4320 }
4321 l += intopt.size;
4322 }
4323 }
4324
4325 if (hdr->bfd_section != NULL)
4326 {
4327 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4328
4329 if (strcmp (name, ".sdata") == 0
4330 || strcmp (name, ".lit8") == 0
4331 || strcmp (name, ".lit4") == 0)
4332 {
4333 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4334 hdr->sh_type = SHT_PROGBITS;
4335 }
4336 else if (strcmp (name, ".sbss") == 0)
4337 {
4338 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4339 hdr->sh_type = SHT_NOBITS;
4340 }
4341 else if (strcmp (name, ".srdata") == 0)
4342 {
4343 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4344 hdr->sh_type = SHT_PROGBITS;
4345 }
4346 else if (strcmp (name, ".compact_rel") == 0)
4347 {
4348 hdr->sh_flags = 0;
4349 hdr->sh_type = SHT_PROGBITS;
4350 }
4351 else if (strcmp (name, ".rtproc") == 0)
4352 {
4353 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4354 {
4355 unsigned int adjust;
4356
4357 adjust = hdr->sh_size % hdr->sh_addralign;
4358 if (adjust != 0)
4359 hdr->sh_size += hdr->sh_addralign - adjust;
4360 }
4361 }
4362 }
4363
4364 return TRUE;
4365 }
4366
4367 /* Handle a MIPS specific section when reading an object file. This
4368 is called when elfcode.h finds a section with an unknown type.
4369 This routine supports both the 32-bit and 64-bit ELF ABI.
4370
4371 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4372 how to. */
4373
4374 bfd_boolean
4375 _bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4376 const char *name)
4377 {
4378 flagword flags = 0;
4379
4380 /* There ought to be a place to keep ELF backend specific flags, but
4381 at the moment there isn't one. We just keep track of the
4382 sections by their name, instead. Fortunately, the ABI gives
4383 suggested names for all the MIPS specific sections, so we will
4384 probably get away with this. */
4385 switch (hdr->sh_type)
4386 {
4387 case SHT_MIPS_LIBLIST:
4388 if (strcmp (name, ".liblist") != 0)
4389 return FALSE;
4390 break;
4391 case SHT_MIPS_MSYM:
4392 if (strcmp (name, ".msym") != 0)
4393 return FALSE;
4394 break;
4395 case SHT_MIPS_CONFLICT:
4396 if (strcmp (name, ".conflict") != 0)
4397 return FALSE;
4398 break;
4399 case SHT_MIPS_GPTAB:
4400 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4401 return FALSE;
4402 break;
4403 case SHT_MIPS_UCODE:
4404 if (strcmp (name, ".ucode") != 0)
4405 return FALSE;
4406 break;
4407 case SHT_MIPS_DEBUG:
4408 if (strcmp (name, ".mdebug") != 0)
4409 return FALSE;
4410 flags = SEC_DEBUGGING;
4411 break;
4412 case SHT_MIPS_REGINFO:
4413 if (strcmp (name, ".reginfo") != 0
4414 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4415 return FALSE;
4416 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4417 break;
4418 case SHT_MIPS_IFACE:
4419 if (strcmp (name, ".MIPS.interfaces") != 0)
4420 return FALSE;
4421 break;
4422 case SHT_MIPS_CONTENT:
4423 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4424 return FALSE;
4425 break;
4426 case SHT_MIPS_OPTIONS:
4427 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4428 return FALSE;
4429 break;
4430 case SHT_MIPS_DWARF:
4431 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4432 return FALSE;
4433 break;
4434 case SHT_MIPS_SYMBOL_LIB:
4435 if (strcmp (name, ".MIPS.symlib") != 0)
4436 return FALSE;
4437 break;
4438 case SHT_MIPS_EVENTS:
4439 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4440 && strncmp (name, ".MIPS.post_rel",
4441 sizeof ".MIPS.post_rel" - 1) != 0)
4442 return FALSE;
4443 break;
4444 default:
4445 return FALSE;
4446 }
4447
4448 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4449 return FALSE;
4450
4451 if (flags)
4452 {
4453 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4454 (bfd_get_section_flags (abfd,
4455 hdr->bfd_section)
4456 | flags)))
4457 return FALSE;
4458 }
4459
4460 /* FIXME: We should record sh_info for a .gptab section. */
4461
4462 /* For a .reginfo section, set the gp value in the tdata information
4463 from the contents of this section. We need the gp value while
4464 processing relocs, so we just get it now. The .reginfo section
4465 is not used in the 64-bit MIPS ELF ABI. */
4466 if (hdr->sh_type == SHT_MIPS_REGINFO)
4467 {
4468 Elf32_External_RegInfo ext;
4469 Elf32_RegInfo s;
4470
4471 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4472 &ext, 0, sizeof ext))
4473 return FALSE;
4474 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4475 elf_gp (abfd) = s.ri_gp_value;
4476 }
4477
4478 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4479 set the gp value based on what we find. We may see both
4480 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4481 they should agree. */
4482 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4483 {
4484 bfd_byte *contents, *l, *lend;
4485
4486 contents = bfd_malloc (hdr->sh_size);
4487 if (contents == NULL)
4488 return FALSE;
4489 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4490 0, hdr->sh_size))
4491 {
4492 free (contents);
4493 return FALSE;
4494 }
4495 l = contents;
4496 lend = contents + hdr->sh_size;
4497 while (l + sizeof (Elf_External_Options) <= lend)
4498 {
4499 Elf_Internal_Options intopt;
4500
4501 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4502 &intopt);
4503 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4504 {
4505 Elf64_Internal_RegInfo intreg;
4506
4507 bfd_mips_elf64_swap_reginfo_in
4508 (abfd,
4509 ((Elf64_External_RegInfo *)
4510 (l + sizeof (Elf_External_Options))),
4511 &intreg);
4512 elf_gp (abfd) = intreg.ri_gp_value;
4513 }
4514 else if (intopt.kind == ODK_REGINFO)
4515 {
4516 Elf32_RegInfo intreg;
4517
4518 bfd_mips_elf32_swap_reginfo_in
4519 (abfd,
4520 ((Elf32_External_RegInfo *)
4521 (l + sizeof (Elf_External_Options))),
4522 &intreg);
4523 elf_gp (abfd) = intreg.ri_gp_value;
4524 }
4525 l += intopt.size;
4526 }
4527 free (contents);
4528 }
4529
4530 return TRUE;
4531 }
4532
4533 /* Set the correct type for a MIPS ELF section. We do this by the
4534 section name, which is a hack, but ought to work. This routine is
4535 used by both the 32-bit and the 64-bit ABI. */
4536
4537 bfd_boolean
4538 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
4539 {
4540 register const char *name;
4541
4542 name = bfd_get_section_name (abfd, sec);
4543
4544 if (strcmp (name, ".liblist") == 0)
4545 {
4546 hdr->sh_type = SHT_MIPS_LIBLIST;
4547 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
4548 /* The sh_link field is set in final_write_processing. */
4549 }
4550 else if (strcmp (name, ".conflict") == 0)
4551 hdr->sh_type = SHT_MIPS_CONFLICT;
4552 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4553 {
4554 hdr->sh_type = SHT_MIPS_GPTAB;
4555 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4556 /* The sh_info field is set in final_write_processing. */
4557 }
4558 else if (strcmp (name, ".ucode") == 0)
4559 hdr->sh_type = SHT_MIPS_UCODE;
4560 else if (strcmp (name, ".mdebug") == 0)
4561 {
4562 hdr->sh_type = SHT_MIPS_DEBUG;
4563 /* In a shared object on IRIX 5.3, the .mdebug section has an
4564 entsize of 0. FIXME: Does this matter? */
4565 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4566 hdr->sh_entsize = 0;
4567 else
4568 hdr->sh_entsize = 1;
4569 }
4570 else if (strcmp (name, ".reginfo") == 0)
4571 {
4572 hdr->sh_type = SHT_MIPS_REGINFO;
4573 /* In a shared object on IRIX 5.3, the .reginfo section has an
4574 entsize of 0x18. FIXME: Does this matter? */
4575 if (SGI_COMPAT (abfd))
4576 {
4577 if ((abfd->flags & DYNAMIC) != 0)
4578 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4579 else
4580 hdr->sh_entsize = 1;
4581 }
4582 else
4583 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4584 }
4585 else if (SGI_COMPAT (abfd)
4586 && (strcmp (name, ".hash") == 0
4587 || strcmp (name, ".dynamic") == 0
4588 || strcmp (name, ".dynstr") == 0))
4589 {
4590 if (SGI_COMPAT (abfd))
4591 hdr->sh_entsize = 0;
4592 #if 0
4593 /* This isn't how the IRIX6 linker behaves. */
4594 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4595 #endif
4596 }
4597 else if (strcmp (name, ".got") == 0
4598 || strcmp (name, ".srdata") == 0
4599 || strcmp (name, ".sdata") == 0
4600 || strcmp (name, ".sbss") == 0
4601 || strcmp (name, ".lit4") == 0
4602 || strcmp (name, ".lit8") == 0)
4603 hdr->sh_flags |= SHF_MIPS_GPREL;
4604 else if (strcmp (name, ".MIPS.interfaces") == 0)
4605 {
4606 hdr->sh_type = SHT_MIPS_IFACE;
4607 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4608 }
4609 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4610 {
4611 hdr->sh_type = SHT_MIPS_CONTENT;
4612 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4613 /* The sh_info field is set in final_write_processing. */
4614 }
4615 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4616 {
4617 hdr->sh_type = SHT_MIPS_OPTIONS;
4618 hdr->sh_entsize = 1;
4619 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4620 }
4621 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4622 hdr->sh_type = SHT_MIPS_DWARF;
4623 else if (strcmp (name, ".MIPS.symlib") == 0)
4624 {
4625 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4626 /* The sh_link and sh_info fields are set in
4627 final_write_processing. */
4628 }
4629 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4630 || strncmp (name, ".MIPS.post_rel",
4631 sizeof ".MIPS.post_rel" - 1) == 0)
4632 {
4633 hdr->sh_type = SHT_MIPS_EVENTS;
4634 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4635 /* The sh_link field is set in final_write_processing. */
4636 }
4637 else if (strcmp (name, ".msym") == 0)
4638 {
4639 hdr->sh_type = SHT_MIPS_MSYM;
4640 hdr->sh_flags |= SHF_ALLOC;
4641 hdr->sh_entsize = 8;
4642 }
4643
4644 /* The generic elf_fake_sections will set up REL_HDR using the default
4645 kind of relocations. We used to set up a second header for the
4646 non-default kind of relocations here, but only NewABI would use
4647 these, and the IRIX ld doesn't like resulting empty RELA sections.
4648 Thus we create those header only on demand now. */
4649
4650 return TRUE;
4651 }
4652
4653 /* Given a BFD section, try to locate the corresponding ELF section
4654 index. This is used by both the 32-bit and the 64-bit ABI.
4655 Actually, it's not clear to me that the 64-bit ABI supports these,
4656 but for non-PIC objects we will certainly want support for at least
4657 the .scommon section. */
4658
4659 bfd_boolean
4660 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4661 asection *sec, int *retval)
4662 {
4663 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4664 {
4665 *retval = SHN_MIPS_SCOMMON;
4666 return TRUE;
4667 }
4668 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4669 {
4670 *retval = SHN_MIPS_ACOMMON;
4671 return TRUE;
4672 }
4673 return FALSE;
4674 }
4675 \f
4676 /* Hook called by the linker routine which adds symbols from an object
4677 file. We must handle the special MIPS section numbers here. */
4678
4679 bfd_boolean
4680 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
4681 Elf_Internal_Sym *sym, const char **namep,
4682 flagword *flagsp ATTRIBUTE_UNUSED,
4683 asection **secp, bfd_vma *valp)
4684 {
4685 if (SGI_COMPAT (abfd)
4686 && (abfd->flags & DYNAMIC) != 0
4687 && strcmp (*namep, "_rld_new_interface") == 0)
4688 {
4689 /* Skip IRIX5 rld entry name. */
4690 *namep = NULL;
4691 return TRUE;
4692 }
4693
4694 switch (sym->st_shndx)
4695 {
4696 case SHN_COMMON:
4697 /* Common symbols less than the GP size are automatically
4698 treated as SHN_MIPS_SCOMMON symbols. */
4699 if (sym->st_size > elf_gp_size (abfd)
4700 || IRIX_COMPAT (abfd) == ict_irix6)
4701 break;
4702 /* Fall through. */
4703 case SHN_MIPS_SCOMMON:
4704 *secp = bfd_make_section_old_way (abfd, ".scommon");
4705 (*secp)->flags |= SEC_IS_COMMON;
4706 *valp = sym->st_size;
4707 break;
4708
4709 case SHN_MIPS_TEXT:
4710 /* This section is used in a shared object. */
4711 if (elf_tdata (abfd)->elf_text_section == NULL)
4712 {
4713 asymbol *elf_text_symbol;
4714 asection *elf_text_section;
4715 bfd_size_type amt = sizeof (asection);
4716
4717 elf_text_section = bfd_zalloc (abfd, amt);
4718 if (elf_text_section == NULL)
4719 return FALSE;
4720
4721 amt = sizeof (asymbol);
4722 elf_text_symbol = bfd_zalloc (abfd, amt);
4723 if (elf_text_symbol == NULL)
4724 return FALSE;
4725
4726 /* Initialize the section. */
4727
4728 elf_tdata (abfd)->elf_text_section = elf_text_section;
4729 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4730
4731 elf_text_section->symbol = elf_text_symbol;
4732 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4733
4734 elf_text_section->name = ".text";
4735 elf_text_section->flags = SEC_NO_FLAGS;
4736 elf_text_section->output_section = NULL;
4737 elf_text_section->owner = abfd;
4738 elf_text_symbol->name = ".text";
4739 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4740 elf_text_symbol->section = elf_text_section;
4741 }
4742 /* This code used to do *secp = bfd_und_section_ptr if
4743 info->shared. I don't know why, and that doesn't make sense,
4744 so I took it out. */
4745 *secp = elf_tdata (abfd)->elf_text_section;
4746 break;
4747
4748 case SHN_MIPS_ACOMMON:
4749 /* Fall through. XXX Can we treat this as allocated data? */
4750 case SHN_MIPS_DATA:
4751 /* This section is used in a shared object. */
4752 if (elf_tdata (abfd)->elf_data_section == NULL)
4753 {
4754 asymbol *elf_data_symbol;
4755 asection *elf_data_section;
4756 bfd_size_type amt = sizeof (asection);
4757
4758 elf_data_section = bfd_zalloc (abfd, amt);
4759 if (elf_data_section == NULL)
4760 return FALSE;
4761
4762 amt = sizeof (asymbol);
4763 elf_data_symbol = bfd_zalloc (abfd, amt);
4764 if (elf_data_symbol == NULL)
4765 return FALSE;
4766
4767 /* Initialize the section. */
4768
4769 elf_tdata (abfd)->elf_data_section = elf_data_section;
4770 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4771
4772 elf_data_section->symbol = elf_data_symbol;
4773 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4774
4775 elf_data_section->name = ".data";
4776 elf_data_section->flags = SEC_NO_FLAGS;
4777 elf_data_section->output_section = NULL;
4778 elf_data_section->owner = abfd;
4779 elf_data_symbol->name = ".data";
4780 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4781 elf_data_symbol->section = elf_data_section;
4782 }
4783 /* This code used to do *secp = bfd_und_section_ptr if
4784 info->shared. I don't know why, and that doesn't make sense,
4785 so I took it out. */
4786 *secp = elf_tdata (abfd)->elf_data_section;
4787 break;
4788
4789 case SHN_MIPS_SUNDEFINED:
4790 *secp = bfd_und_section_ptr;
4791 break;
4792 }
4793
4794 if (SGI_COMPAT (abfd)
4795 && ! info->shared
4796 && info->hash->creator == abfd->xvec
4797 && strcmp (*namep, "__rld_obj_head") == 0)
4798 {
4799 struct elf_link_hash_entry *h;
4800 struct bfd_link_hash_entry *bh;
4801
4802 /* Mark __rld_obj_head as dynamic. */
4803 bh = NULL;
4804 if (! (_bfd_generic_link_add_one_symbol
4805 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
4806 get_elf_backend_data (abfd)->collect, &bh)))
4807 return FALSE;
4808
4809 h = (struct elf_link_hash_entry *) bh;
4810 h->non_elf = 0;
4811 h->def_regular = 1;
4812 h->type = STT_OBJECT;
4813
4814 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4815 return FALSE;
4816
4817 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4818 }
4819
4820 /* If this is a mips16 text symbol, add 1 to the value to make it
4821 odd. This will cause something like .word SYM to come up with
4822 the right value when it is loaded into the PC. */
4823 if (sym->st_other == STO_MIPS16)
4824 ++*valp;
4825
4826 return TRUE;
4827 }
4828
4829 /* This hook function is called before the linker writes out a global
4830 symbol. We mark symbols as small common if appropriate. This is
4831 also where we undo the increment of the value for a mips16 symbol. */
4832
4833 bfd_boolean
4834 _bfd_mips_elf_link_output_symbol_hook
4835 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4836 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4837 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
4838 {
4839 /* If we see a common symbol, which implies a relocatable link, then
4840 if a symbol was small common in an input file, mark it as small
4841 common in the output file. */
4842 if (sym->st_shndx == SHN_COMMON
4843 && strcmp (input_sec->name, ".scommon") == 0)
4844 sym->st_shndx = SHN_MIPS_SCOMMON;
4845
4846 if (sym->st_other == STO_MIPS16)
4847 sym->st_value &= ~1;
4848
4849 return TRUE;
4850 }
4851 \f
4852 /* Functions for the dynamic linker. */
4853
4854 /* Create dynamic sections when linking against a dynamic object. */
4855
4856 bfd_boolean
4857 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
4858 {
4859 struct elf_link_hash_entry *h;
4860 struct bfd_link_hash_entry *bh;
4861 flagword flags;
4862 register asection *s;
4863 const char * const *namep;
4864
4865 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4866 | SEC_LINKER_CREATED | SEC_READONLY);
4867
4868 /* Mips ABI requests the .dynamic section to be read only. */
4869 s = bfd_get_section_by_name (abfd, ".dynamic");
4870 if (s != NULL)
4871 {
4872 if (! bfd_set_section_flags (abfd, s, flags))
4873 return FALSE;
4874 }
4875
4876 /* We need to create .got section. */
4877 if (! mips_elf_create_got_section (abfd, info, FALSE))
4878 return FALSE;
4879
4880 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4881 return FALSE;
4882
4883 /* Create .stub section. */
4884 if (bfd_get_section_by_name (abfd,
4885 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4886 {
4887 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4888 if (s == NULL
4889 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4890 || ! bfd_set_section_alignment (abfd, s,
4891 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4892 return FALSE;
4893 }
4894
4895 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4896 && !info->shared
4897 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4898 {
4899 s = bfd_make_section (abfd, ".rld_map");
4900 if (s == NULL
4901 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4902 || ! bfd_set_section_alignment (abfd, s,
4903 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4904 return FALSE;
4905 }
4906
4907 /* On IRIX5, we adjust add some additional symbols and change the
4908 alignments of several sections. There is no ABI documentation
4909 indicating that this is necessary on IRIX6, nor any evidence that
4910 the linker takes such action. */
4911 if (IRIX_COMPAT (abfd) == ict_irix5)
4912 {
4913 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4914 {
4915 bh = NULL;
4916 if (! (_bfd_generic_link_add_one_symbol
4917 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4918 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4919 return FALSE;
4920
4921 h = (struct elf_link_hash_entry *) bh;
4922 h->non_elf = 0;
4923 h->def_regular = 1;
4924 h->type = STT_SECTION;
4925
4926 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4927 return FALSE;
4928 }
4929
4930 /* We need to create a .compact_rel section. */
4931 if (SGI_COMPAT (abfd))
4932 {
4933 if (!mips_elf_create_compact_rel_section (abfd, info))
4934 return FALSE;
4935 }
4936
4937 /* Change alignments of some sections. */
4938 s = bfd_get_section_by_name (abfd, ".hash");
4939 if (s != NULL)
4940 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4941 s = bfd_get_section_by_name (abfd, ".dynsym");
4942 if (s != NULL)
4943 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4944 s = bfd_get_section_by_name (abfd, ".dynstr");
4945 if (s != NULL)
4946 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4947 s = bfd_get_section_by_name (abfd, ".reginfo");
4948 if (s != NULL)
4949 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4950 s = bfd_get_section_by_name (abfd, ".dynamic");
4951 if (s != NULL)
4952 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4953 }
4954
4955 if (!info->shared)
4956 {
4957 const char *name;
4958
4959 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4960 bh = NULL;
4961 if (!(_bfd_generic_link_add_one_symbol
4962 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4963 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4964 return FALSE;
4965
4966 h = (struct elf_link_hash_entry *) bh;
4967 h->non_elf = 0;
4968 h->def_regular = 1;
4969 h->type = STT_SECTION;
4970
4971 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4972 return FALSE;
4973
4974 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4975 {
4976 /* __rld_map is a four byte word located in the .data section
4977 and is filled in by the rtld to contain a pointer to
4978 the _r_debug structure. Its symbol value will be set in
4979 _bfd_mips_elf_finish_dynamic_symbol. */
4980 s = bfd_get_section_by_name (abfd, ".rld_map");
4981 BFD_ASSERT (s != NULL);
4982
4983 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4984 bh = NULL;
4985 if (!(_bfd_generic_link_add_one_symbol
4986 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
4987 get_elf_backend_data (abfd)->collect, &bh)))
4988 return FALSE;
4989
4990 h = (struct elf_link_hash_entry *) bh;
4991 h->non_elf = 0;
4992 h->def_regular = 1;
4993 h->type = STT_OBJECT;
4994
4995 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4996 return FALSE;
4997 }
4998 }
4999
5000 return TRUE;
5001 }
5002 \f
5003 /* Look through the relocs for a section during the first phase, and
5004 allocate space in the global offset table. */
5005
5006 bfd_boolean
5007 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5008 asection *sec, const Elf_Internal_Rela *relocs)
5009 {
5010 const char *name;
5011 bfd *dynobj;
5012 Elf_Internal_Shdr *symtab_hdr;
5013 struct elf_link_hash_entry **sym_hashes;
5014 struct mips_got_info *g;
5015 size_t extsymoff;
5016 const Elf_Internal_Rela *rel;
5017 const Elf_Internal_Rela *rel_end;
5018 asection *sgot;
5019 asection *sreloc;
5020 const struct elf_backend_data *bed;
5021
5022 if (info->relocatable)
5023 return TRUE;
5024
5025 dynobj = elf_hash_table (info)->dynobj;
5026 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5027 sym_hashes = elf_sym_hashes (abfd);
5028 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5029
5030 /* Check for the mips16 stub sections. */
5031
5032 name = bfd_get_section_name (abfd, sec);
5033 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5034 {
5035 unsigned long r_symndx;
5036
5037 /* Look at the relocation information to figure out which symbol
5038 this is for. */
5039
5040 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5041
5042 if (r_symndx < extsymoff
5043 || sym_hashes[r_symndx - extsymoff] == NULL)
5044 {
5045 asection *o;
5046
5047 /* This stub is for a local symbol. This stub will only be
5048 needed if there is some relocation in this BFD, other
5049 than a 16 bit function call, which refers to this symbol. */
5050 for (o = abfd->sections; o != NULL; o = o->next)
5051 {
5052 Elf_Internal_Rela *sec_relocs;
5053 const Elf_Internal_Rela *r, *rend;
5054
5055 /* We can ignore stub sections when looking for relocs. */
5056 if ((o->flags & SEC_RELOC) == 0
5057 || o->reloc_count == 0
5058 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5059 sizeof FN_STUB - 1) == 0
5060 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5061 sizeof CALL_STUB - 1) == 0
5062 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5063 sizeof CALL_FP_STUB - 1) == 0)
5064 continue;
5065
5066 sec_relocs
5067 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
5068 info->keep_memory);
5069 if (sec_relocs == NULL)
5070 return FALSE;
5071
5072 rend = sec_relocs + o->reloc_count;
5073 for (r = sec_relocs; r < rend; r++)
5074 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5075 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5076 break;
5077
5078 if (elf_section_data (o)->relocs != sec_relocs)
5079 free (sec_relocs);
5080
5081 if (r < rend)
5082 break;
5083 }
5084
5085 if (o == NULL)
5086 {
5087 /* There is no non-call reloc for this stub, so we do
5088 not need it. Since this function is called before
5089 the linker maps input sections to output sections, we
5090 can easily discard it by setting the SEC_EXCLUDE
5091 flag. */
5092 sec->flags |= SEC_EXCLUDE;
5093 return TRUE;
5094 }
5095
5096 /* Record this stub in an array of local symbol stubs for
5097 this BFD. */
5098 if (elf_tdata (abfd)->local_stubs == NULL)
5099 {
5100 unsigned long symcount;
5101 asection **n;
5102 bfd_size_type amt;
5103
5104 if (elf_bad_symtab (abfd))
5105 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5106 else
5107 symcount = symtab_hdr->sh_info;
5108 amt = symcount * sizeof (asection *);
5109 n = bfd_zalloc (abfd, amt);
5110 if (n == NULL)
5111 return FALSE;
5112 elf_tdata (abfd)->local_stubs = n;
5113 }
5114
5115 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5116
5117 /* We don't need to set mips16_stubs_seen in this case.
5118 That flag is used to see whether we need to look through
5119 the global symbol table for stubs. We don't need to set
5120 it here, because we just have a local stub. */
5121 }
5122 else
5123 {
5124 struct mips_elf_link_hash_entry *h;
5125
5126 h = ((struct mips_elf_link_hash_entry *)
5127 sym_hashes[r_symndx - extsymoff]);
5128
5129 /* H is the symbol this stub is for. */
5130
5131 h->fn_stub = sec;
5132 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5133 }
5134 }
5135 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5136 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5137 {
5138 unsigned long r_symndx;
5139 struct mips_elf_link_hash_entry *h;
5140 asection **loc;
5141
5142 /* Look at the relocation information to figure out which symbol
5143 this is for. */
5144
5145 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5146
5147 if (r_symndx < extsymoff
5148 || sym_hashes[r_symndx - extsymoff] == NULL)
5149 {
5150 /* This stub was actually built for a static symbol defined
5151 in the same file. We assume that all static symbols in
5152 mips16 code are themselves mips16, so we can simply
5153 discard this stub. Since this function is called before
5154 the linker maps input sections to output sections, we can
5155 easily discard it by setting the SEC_EXCLUDE flag. */
5156 sec->flags |= SEC_EXCLUDE;
5157 return TRUE;
5158 }
5159
5160 h = ((struct mips_elf_link_hash_entry *)
5161 sym_hashes[r_symndx - extsymoff]);
5162
5163 /* H is the symbol this stub is for. */
5164
5165 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5166 loc = &h->call_fp_stub;
5167 else
5168 loc = &h->call_stub;
5169
5170 /* If we already have an appropriate stub for this function, we
5171 don't need another one, so we can discard this one. Since
5172 this function is called before the linker maps input sections
5173 to output sections, we can easily discard it by setting the
5174 SEC_EXCLUDE flag. We can also discard this section if we
5175 happen to already know that this is a mips16 function; it is
5176 not necessary to check this here, as it is checked later, but
5177 it is slightly faster to check now. */
5178 if (*loc != NULL || h->root.other == STO_MIPS16)
5179 {
5180 sec->flags |= SEC_EXCLUDE;
5181 return TRUE;
5182 }
5183
5184 *loc = sec;
5185 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5186 }
5187
5188 if (dynobj == NULL)
5189 {
5190 sgot = NULL;
5191 g = NULL;
5192 }
5193 else
5194 {
5195 sgot = mips_elf_got_section (dynobj, FALSE);
5196 if (sgot == NULL)
5197 g = NULL;
5198 else
5199 {
5200 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5201 g = mips_elf_section_data (sgot)->u.got_info;
5202 BFD_ASSERT (g != NULL);
5203 }
5204 }
5205
5206 sreloc = NULL;
5207 bed = get_elf_backend_data (abfd);
5208 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5209 for (rel = relocs; rel < rel_end; ++rel)
5210 {
5211 unsigned long r_symndx;
5212 unsigned int r_type;
5213 struct elf_link_hash_entry *h;
5214
5215 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5216 r_type = ELF_R_TYPE (abfd, rel->r_info);
5217
5218 if (r_symndx < extsymoff)
5219 h = NULL;
5220 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5221 {
5222 (*_bfd_error_handler)
5223 (_("%B: Malformed reloc detected for section %s"),
5224 abfd, name);
5225 bfd_set_error (bfd_error_bad_value);
5226 return FALSE;
5227 }
5228 else
5229 {
5230 h = sym_hashes[r_symndx - extsymoff];
5231
5232 /* This may be an indirect symbol created because of a version. */
5233 if (h != NULL)
5234 {
5235 while (h->root.type == bfd_link_hash_indirect)
5236 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5237 }
5238 }
5239
5240 /* Some relocs require a global offset table. */
5241 if (dynobj == NULL || sgot == NULL)
5242 {
5243 switch (r_type)
5244 {
5245 case R_MIPS_GOT16:
5246 case R_MIPS_CALL16:
5247 case R_MIPS_CALL_HI16:
5248 case R_MIPS_CALL_LO16:
5249 case R_MIPS_GOT_HI16:
5250 case R_MIPS_GOT_LO16:
5251 case R_MIPS_GOT_PAGE:
5252 case R_MIPS_GOT_OFST:
5253 case R_MIPS_GOT_DISP:
5254 if (dynobj == NULL)
5255 elf_hash_table (info)->dynobj = dynobj = abfd;
5256 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5257 return FALSE;
5258 g = mips_elf_got_info (dynobj, &sgot);
5259 break;
5260
5261 case R_MIPS_32:
5262 case R_MIPS_REL32:
5263 case R_MIPS_64:
5264 if (dynobj == NULL
5265 && (info->shared || h != NULL)
5266 && (sec->flags & SEC_ALLOC) != 0)
5267 elf_hash_table (info)->dynobj = dynobj = abfd;
5268 break;
5269
5270 default:
5271 break;
5272 }
5273 }
5274
5275 if (!h && (r_type == R_MIPS_CALL_LO16
5276 || r_type == R_MIPS_GOT_LO16
5277 || r_type == R_MIPS_GOT_DISP))
5278 {
5279 /* We may need a local GOT entry for this relocation. We
5280 don't count R_MIPS_GOT_PAGE because we can estimate the
5281 maximum number of pages needed by looking at the size of
5282 the segment. Similar comments apply to R_MIPS_GOT16 and
5283 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5284 R_MIPS_CALL_HI16 because these are always followed by an
5285 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5286 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5287 rel->r_addend, g))
5288 return FALSE;
5289 }
5290
5291 switch (r_type)
5292 {
5293 case R_MIPS_CALL16:
5294 if (h == NULL)
5295 {
5296 (*_bfd_error_handler)
5297 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
5298 abfd, (unsigned long) rel->r_offset);
5299 bfd_set_error (bfd_error_bad_value);
5300 return FALSE;
5301 }
5302 /* Fall through. */
5303
5304 case R_MIPS_CALL_HI16:
5305 case R_MIPS_CALL_LO16:
5306 if (h != NULL)
5307 {
5308 /* This symbol requires a global offset table entry. */
5309 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5310 return FALSE;
5311
5312 /* We need a stub, not a plt entry for the undefined
5313 function. But we record it as if it needs plt. See
5314 _bfd_elf_adjust_dynamic_symbol. */
5315 h->needs_plt = 1;
5316 h->type = STT_FUNC;
5317 }
5318 break;
5319
5320 case R_MIPS_GOT_PAGE:
5321 /* If this is a global, overridable symbol, GOT_PAGE will
5322 decay to GOT_DISP, so we'll need a GOT entry for it. */
5323 if (h == NULL)
5324 break;
5325 else
5326 {
5327 struct mips_elf_link_hash_entry *hmips =
5328 (struct mips_elf_link_hash_entry *) h;
5329
5330 while (hmips->root.root.type == bfd_link_hash_indirect
5331 || hmips->root.root.type == bfd_link_hash_warning)
5332 hmips = (struct mips_elf_link_hash_entry *)
5333 hmips->root.root.u.i.link;
5334
5335 if (hmips->root.def_regular
5336 && ! (info->shared && ! info->symbolic
5337 && ! hmips->root.forced_local))
5338 break;
5339 }
5340 /* Fall through. */
5341
5342 case R_MIPS_GOT16:
5343 case R_MIPS_GOT_HI16:
5344 case R_MIPS_GOT_LO16:
5345 case R_MIPS_GOT_DISP:
5346 /* This symbol requires a global offset table entry. */
5347 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5348 return FALSE;
5349 break;
5350
5351 case R_MIPS_32:
5352 case R_MIPS_REL32:
5353 case R_MIPS_64:
5354 if ((info->shared || h != NULL)
5355 && (sec->flags & SEC_ALLOC) != 0)
5356 {
5357 if (sreloc == NULL)
5358 {
5359 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5360 if (sreloc == NULL)
5361 return FALSE;
5362 }
5363 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5364 if (info->shared)
5365 {
5366 /* When creating a shared object, we must copy these
5367 reloc types into the output file as R_MIPS_REL32
5368 relocs. We make room for this reloc in the
5369 .rel.dyn reloc section. */
5370 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5371 if ((sec->flags & MIPS_READONLY_SECTION)
5372 == MIPS_READONLY_SECTION)
5373 /* We tell the dynamic linker that there are
5374 relocations against the text segment. */
5375 info->flags |= DF_TEXTREL;
5376 }
5377 else
5378 {
5379 struct mips_elf_link_hash_entry *hmips;
5380
5381 /* We only need to copy this reloc if the symbol is
5382 defined in a dynamic object. */
5383 hmips = (struct mips_elf_link_hash_entry *) h;
5384 ++hmips->possibly_dynamic_relocs;
5385 if ((sec->flags & MIPS_READONLY_SECTION)
5386 == MIPS_READONLY_SECTION)
5387 /* We need it to tell the dynamic linker if there
5388 are relocations against the text segment. */
5389 hmips->readonly_reloc = TRUE;
5390 }
5391
5392 /* Even though we don't directly need a GOT entry for
5393 this symbol, a symbol must have a dynamic symbol
5394 table index greater that DT_MIPS_GOTSYM if there are
5395 dynamic relocations against it. */
5396 if (h != NULL)
5397 {
5398 if (dynobj == NULL)
5399 elf_hash_table (info)->dynobj = dynobj = abfd;
5400 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5401 return FALSE;
5402 g = mips_elf_got_info (dynobj, &sgot);
5403 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5404 return FALSE;
5405 }
5406 }
5407
5408 if (SGI_COMPAT (abfd))
5409 mips_elf_hash_table (info)->compact_rel_size +=
5410 sizeof (Elf32_External_crinfo);
5411 break;
5412
5413 case R_MIPS_26:
5414 case R_MIPS_GPREL16:
5415 case R_MIPS_LITERAL:
5416 case R_MIPS_GPREL32:
5417 if (SGI_COMPAT (abfd))
5418 mips_elf_hash_table (info)->compact_rel_size +=
5419 sizeof (Elf32_External_crinfo);
5420 break;
5421
5422 /* This relocation describes the C++ object vtable hierarchy.
5423 Reconstruct it for later use during GC. */
5424 case R_MIPS_GNU_VTINHERIT:
5425 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5426 return FALSE;
5427 break;
5428
5429 /* This relocation describes which C++ vtable entries are actually
5430 used. Record for later use during GC. */
5431 case R_MIPS_GNU_VTENTRY:
5432 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5433 return FALSE;
5434 break;
5435
5436 default:
5437 break;
5438 }
5439
5440 /* We must not create a stub for a symbol that has relocations
5441 related to taking the function's address. */
5442 switch (r_type)
5443 {
5444 default:
5445 if (h != NULL)
5446 {
5447 struct mips_elf_link_hash_entry *mh;
5448
5449 mh = (struct mips_elf_link_hash_entry *) h;
5450 mh->no_fn_stub = TRUE;
5451 }
5452 break;
5453 case R_MIPS_CALL16:
5454 case R_MIPS_CALL_HI16:
5455 case R_MIPS_CALL_LO16:
5456 case R_MIPS_JALR:
5457 break;
5458 }
5459
5460 /* If this reloc is not a 16 bit call, and it has a global
5461 symbol, then we will need the fn_stub if there is one.
5462 References from a stub section do not count. */
5463 if (h != NULL
5464 && r_type != R_MIPS16_26
5465 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5466 sizeof FN_STUB - 1) != 0
5467 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5468 sizeof CALL_STUB - 1) != 0
5469 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5470 sizeof CALL_FP_STUB - 1) != 0)
5471 {
5472 struct mips_elf_link_hash_entry *mh;
5473
5474 mh = (struct mips_elf_link_hash_entry *) h;
5475 mh->need_fn_stub = TRUE;
5476 }
5477 }
5478
5479 return TRUE;
5480 }
5481 \f
5482 bfd_boolean
5483 _bfd_mips_relax_section (bfd *abfd, asection *sec,
5484 struct bfd_link_info *link_info,
5485 bfd_boolean *again)
5486 {
5487 Elf_Internal_Rela *internal_relocs;
5488 Elf_Internal_Rela *irel, *irelend;
5489 Elf_Internal_Shdr *symtab_hdr;
5490 bfd_byte *contents = NULL;
5491 size_t extsymoff;
5492 bfd_boolean changed_contents = FALSE;
5493 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5494 Elf_Internal_Sym *isymbuf = NULL;
5495
5496 /* We are not currently changing any sizes, so only one pass. */
5497 *again = FALSE;
5498
5499 if (link_info->relocatable)
5500 return TRUE;
5501
5502 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
5503 link_info->keep_memory);
5504 if (internal_relocs == NULL)
5505 return TRUE;
5506
5507 irelend = internal_relocs + sec->reloc_count
5508 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5509 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5510 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5511
5512 for (irel = internal_relocs; irel < irelend; irel++)
5513 {
5514 bfd_vma symval;
5515 bfd_signed_vma sym_offset;
5516 unsigned int r_type;
5517 unsigned long r_symndx;
5518 asection *sym_sec;
5519 unsigned long instruction;
5520
5521 /* Turn jalr into bgezal, and jr into beq, if they're marked
5522 with a JALR relocation, that indicate where they jump to.
5523 This saves some pipeline bubbles. */
5524 r_type = ELF_R_TYPE (abfd, irel->r_info);
5525 if (r_type != R_MIPS_JALR)
5526 continue;
5527
5528 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5529 /* Compute the address of the jump target. */
5530 if (r_symndx >= extsymoff)
5531 {
5532 struct mips_elf_link_hash_entry *h
5533 = ((struct mips_elf_link_hash_entry *)
5534 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5535
5536 while (h->root.root.type == bfd_link_hash_indirect
5537 || h->root.root.type == bfd_link_hash_warning)
5538 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5539
5540 /* If a symbol is undefined, or if it may be overridden,
5541 skip it. */
5542 if (! ((h->root.root.type == bfd_link_hash_defined
5543 || h->root.root.type == bfd_link_hash_defweak)
5544 && h->root.root.u.def.section)
5545 || (link_info->shared && ! link_info->symbolic
5546 && !h->root.forced_local))
5547 continue;
5548
5549 sym_sec = h->root.root.u.def.section;
5550 if (sym_sec->output_section)
5551 symval = (h->root.root.u.def.value
5552 + sym_sec->output_section->vma
5553 + sym_sec->output_offset);
5554 else
5555 symval = h->root.root.u.def.value;
5556 }
5557 else
5558 {
5559 Elf_Internal_Sym *isym;
5560
5561 /* Read this BFD's symbols if we haven't done so already. */
5562 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5563 {
5564 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5565 if (isymbuf == NULL)
5566 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5567 symtab_hdr->sh_info, 0,
5568 NULL, NULL, NULL);
5569 if (isymbuf == NULL)
5570 goto relax_return;
5571 }
5572
5573 isym = isymbuf + r_symndx;
5574 if (isym->st_shndx == SHN_UNDEF)
5575 continue;
5576 else if (isym->st_shndx == SHN_ABS)
5577 sym_sec = bfd_abs_section_ptr;
5578 else if (isym->st_shndx == SHN_COMMON)
5579 sym_sec = bfd_com_section_ptr;
5580 else
5581 sym_sec
5582 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5583 symval = isym->st_value
5584 + sym_sec->output_section->vma
5585 + sym_sec->output_offset;
5586 }
5587
5588 /* Compute branch offset, from delay slot of the jump to the
5589 branch target. */
5590 sym_offset = (symval + irel->r_addend)
5591 - (sec_start + irel->r_offset + 4);
5592
5593 /* Branch offset must be properly aligned. */
5594 if ((sym_offset & 3) != 0)
5595 continue;
5596
5597 sym_offset >>= 2;
5598
5599 /* Check that it's in range. */
5600 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5601 continue;
5602
5603 /* Get the section contents if we haven't done so already. */
5604 if (contents == NULL)
5605 {
5606 /* Get cached copy if it exists. */
5607 if (elf_section_data (sec)->this_hdr.contents != NULL)
5608 contents = elf_section_data (sec)->this_hdr.contents;
5609 else
5610 {
5611 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5612 goto relax_return;
5613 }
5614 }
5615
5616 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5617
5618 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5619 if ((instruction & 0xfc1fffff) == 0x0000f809)
5620 instruction = 0x04110000;
5621 /* If it was jr <reg>, turn it into b <target>. */
5622 else if ((instruction & 0xfc1fffff) == 0x00000008)
5623 instruction = 0x10000000;
5624 else
5625 continue;
5626
5627 instruction |= (sym_offset & 0xffff);
5628 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5629 changed_contents = TRUE;
5630 }
5631
5632 if (contents != NULL
5633 && elf_section_data (sec)->this_hdr.contents != contents)
5634 {
5635 if (!changed_contents && !link_info->keep_memory)
5636 free (contents);
5637 else
5638 {
5639 /* Cache the section contents for elf_link_input_bfd. */
5640 elf_section_data (sec)->this_hdr.contents = contents;
5641 }
5642 }
5643 return TRUE;
5644
5645 relax_return:
5646 if (contents != NULL
5647 && elf_section_data (sec)->this_hdr.contents != contents)
5648 free (contents);
5649 return FALSE;
5650 }
5651 \f
5652 /* Adjust a symbol defined by a dynamic object and referenced by a
5653 regular object. The current definition is in some section of the
5654 dynamic object, but we're not including those sections. We have to
5655 change the definition to something the rest of the link can
5656 understand. */
5657
5658 bfd_boolean
5659 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5660 struct elf_link_hash_entry *h)
5661 {
5662 bfd *dynobj;
5663 struct mips_elf_link_hash_entry *hmips;
5664 asection *s;
5665
5666 dynobj = elf_hash_table (info)->dynobj;
5667
5668 /* Make sure we know what is going on here. */
5669 BFD_ASSERT (dynobj != NULL
5670 && (h->needs_plt
5671 || h->u.weakdef != NULL
5672 || (h->def_dynamic
5673 && h->ref_regular
5674 && !h->def_regular)));
5675
5676 /* If this symbol is defined in a dynamic object, we need to copy
5677 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5678 file. */
5679 hmips = (struct mips_elf_link_hash_entry *) h;
5680 if (! info->relocatable
5681 && hmips->possibly_dynamic_relocs != 0
5682 && (h->root.type == bfd_link_hash_defweak
5683 || !h->def_regular))
5684 {
5685 mips_elf_allocate_dynamic_relocations (dynobj,
5686 hmips->possibly_dynamic_relocs);
5687 if (hmips->readonly_reloc)
5688 /* We tell the dynamic linker that there are relocations
5689 against the text segment. */
5690 info->flags |= DF_TEXTREL;
5691 }
5692
5693 /* For a function, create a stub, if allowed. */
5694 if (! hmips->no_fn_stub
5695 && h->needs_plt)
5696 {
5697 if (! elf_hash_table (info)->dynamic_sections_created)
5698 return TRUE;
5699
5700 /* If this symbol is not defined in a regular file, then set
5701 the symbol to the stub location. This is required to make
5702 function pointers compare as equal between the normal
5703 executable and the shared library. */
5704 if (!h->def_regular)
5705 {
5706 /* We need .stub section. */
5707 s = bfd_get_section_by_name (dynobj,
5708 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5709 BFD_ASSERT (s != NULL);
5710
5711 h->root.u.def.section = s;
5712 h->root.u.def.value = s->size;
5713
5714 /* XXX Write this stub address somewhere. */
5715 h->plt.offset = s->size;
5716
5717 /* Make room for this stub code. */
5718 s->size += MIPS_FUNCTION_STUB_SIZE;
5719
5720 /* The last half word of the stub will be filled with the index
5721 of this symbol in .dynsym section. */
5722 return TRUE;
5723 }
5724 }
5725 else if ((h->type == STT_FUNC)
5726 && !h->needs_plt)
5727 {
5728 /* This will set the entry for this symbol in the GOT to 0, and
5729 the dynamic linker will take care of this. */
5730 h->root.u.def.value = 0;
5731 return TRUE;
5732 }
5733
5734 /* If this is a weak symbol, and there is a real definition, the
5735 processor independent code will have arranged for us to see the
5736 real definition first, and we can just use the same value. */
5737 if (h->u.weakdef != NULL)
5738 {
5739 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5740 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5741 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5742 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5743 return TRUE;
5744 }
5745
5746 /* This is a reference to a symbol defined by a dynamic object which
5747 is not a function. */
5748
5749 return TRUE;
5750 }
5751 \f
5752 /* This function is called after all the input files have been read,
5753 and the input sections have been assigned to output sections. We
5754 check for any mips16 stub sections that we can discard. */
5755
5756 bfd_boolean
5757 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
5758 struct bfd_link_info *info)
5759 {
5760 asection *ri;
5761
5762 bfd *dynobj;
5763 asection *s;
5764 struct mips_got_info *g;
5765 int i;
5766 bfd_size_type loadable_size = 0;
5767 bfd_size_type local_gotno;
5768 bfd *sub;
5769
5770 /* The .reginfo section has a fixed size. */
5771 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5772 if (ri != NULL)
5773 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
5774
5775 if (! (info->relocatable
5776 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5777 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5778 mips_elf_check_mips16_stubs, NULL);
5779
5780 dynobj = elf_hash_table (info)->dynobj;
5781 if (dynobj == NULL)
5782 /* Relocatable links don't have it. */
5783 return TRUE;
5784
5785 g = mips_elf_got_info (dynobj, &s);
5786 if (s == NULL)
5787 return TRUE;
5788
5789 /* Calculate the total loadable size of the output. That
5790 will give us the maximum number of GOT_PAGE entries
5791 required. */
5792 for (sub = info->input_bfds; sub; sub = sub->link_next)
5793 {
5794 asection *subsection;
5795
5796 for (subsection = sub->sections;
5797 subsection;
5798 subsection = subsection->next)
5799 {
5800 if ((subsection->flags & SEC_ALLOC) == 0)
5801 continue;
5802 loadable_size += ((subsection->size + 0xf)
5803 &~ (bfd_size_type) 0xf);
5804 }
5805 }
5806
5807 /* There has to be a global GOT entry for every symbol with
5808 a dynamic symbol table index of DT_MIPS_GOTSYM or
5809 higher. Therefore, it make sense to put those symbols
5810 that need GOT entries at the end of the symbol table. We
5811 do that here. */
5812 if (! mips_elf_sort_hash_table (info, 1))
5813 return FALSE;
5814
5815 if (g->global_gotsym != NULL)
5816 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5817 else
5818 /* If there are no global symbols, or none requiring
5819 relocations, then GLOBAL_GOTSYM will be NULL. */
5820 i = 0;
5821
5822 /* In the worst case, we'll get one stub per dynamic symbol, plus
5823 one to account for the dummy entry at the end required by IRIX
5824 rld. */
5825 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5826
5827 /* Assume there are two loadable segments consisting of
5828 contiguous sections. Is 5 enough? */
5829 local_gotno = (loadable_size >> 16) + 5;
5830
5831 g->local_gotno += local_gotno;
5832 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5833
5834 g->global_gotno = i;
5835 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5836
5837 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5838 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5839 return FALSE;
5840
5841 return TRUE;
5842 }
5843
5844 /* Set the sizes of the dynamic sections. */
5845
5846 bfd_boolean
5847 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5848 struct bfd_link_info *info)
5849 {
5850 bfd *dynobj;
5851 asection *s;
5852 bfd_boolean reltext;
5853
5854 dynobj = elf_hash_table (info)->dynobj;
5855 BFD_ASSERT (dynobj != NULL);
5856
5857 if (elf_hash_table (info)->dynamic_sections_created)
5858 {
5859 /* Set the contents of the .interp section to the interpreter. */
5860 if (info->executable)
5861 {
5862 s = bfd_get_section_by_name (dynobj, ".interp");
5863 BFD_ASSERT (s != NULL);
5864 s->size
5865 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5866 s->contents
5867 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5868 }
5869 }
5870
5871 /* The check_relocs and adjust_dynamic_symbol entry points have
5872 determined the sizes of the various dynamic sections. Allocate
5873 memory for them. */
5874 reltext = FALSE;
5875 for (s = dynobj->sections; s != NULL; s = s->next)
5876 {
5877 const char *name;
5878 bfd_boolean strip;
5879
5880 /* It's OK to base decisions on the section name, because none
5881 of the dynobj section names depend upon the input files. */
5882 name = bfd_get_section_name (dynobj, s);
5883
5884 if ((s->flags & SEC_LINKER_CREATED) == 0)
5885 continue;
5886
5887 strip = FALSE;
5888
5889 if (strncmp (name, ".rel", 4) == 0)
5890 {
5891 if (s->size == 0)
5892 {
5893 /* We only strip the section if the output section name
5894 has the same name. Otherwise, there might be several
5895 input sections for this output section. FIXME: This
5896 code is probably not needed these days anyhow, since
5897 the linker now does not create empty output sections. */
5898 if (s->output_section != NULL
5899 && strcmp (name,
5900 bfd_get_section_name (s->output_section->owner,
5901 s->output_section)) == 0)
5902 strip = TRUE;
5903 }
5904 else
5905 {
5906 const char *outname;
5907 asection *target;
5908
5909 /* If this relocation section applies to a read only
5910 section, then we probably need a DT_TEXTREL entry.
5911 If the relocation section is .rel.dyn, we always
5912 assert a DT_TEXTREL entry rather than testing whether
5913 there exists a relocation to a read only section or
5914 not. */
5915 outname = bfd_get_section_name (output_bfd,
5916 s->output_section);
5917 target = bfd_get_section_by_name (output_bfd, outname + 4);
5918 if ((target != NULL
5919 && (target->flags & SEC_READONLY) != 0
5920 && (target->flags & SEC_ALLOC) != 0)
5921 || strcmp (outname, ".rel.dyn") == 0)
5922 reltext = TRUE;
5923
5924 /* We use the reloc_count field as a counter if we need
5925 to copy relocs into the output file. */
5926 if (strcmp (name, ".rel.dyn") != 0)
5927 s->reloc_count = 0;
5928
5929 /* If combreloc is enabled, elf_link_sort_relocs() will
5930 sort relocations, but in a different way than we do,
5931 and before we're done creating relocations. Also, it
5932 will move them around between input sections'
5933 relocation's contents, so our sorting would be
5934 broken, so don't let it run. */
5935 info->combreloc = 0;
5936 }
5937 }
5938 else if (strncmp (name, ".got", 4) == 0)
5939 {
5940 /* _bfd_mips_elf_always_size_sections() has already done
5941 most of the work, but some symbols may have been mapped
5942 to versions that we must now resolve in the got_entries
5943 hash tables. */
5944 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5945 struct mips_got_info *g = gg;
5946 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5947 unsigned int needed_relocs = 0;
5948
5949 if (gg->next)
5950 {
5951 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5952 set_got_offset_arg.info = info;
5953
5954 mips_elf_resolve_final_got_entries (gg);
5955 for (g = gg->next; g && g->next != gg; g = g->next)
5956 {
5957 unsigned int save_assign;
5958
5959 mips_elf_resolve_final_got_entries (g);
5960
5961 /* Assign offsets to global GOT entries. */
5962 save_assign = g->assigned_gotno;
5963 g->assigned_gotno = g->local_gotno;
5964 set_got_offset_arg.g = g;
5965 set_got_offset_arg.needed_relocs = 0;
5966 htab_traverse (g->got_entries,
5967 mips_elf_set_global_got_offset,
5968 &set_got_offset_arg);
5969 needed_relocs += set_got_offset_arg.needed_relocs;
5970 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5971 <= g->global_gotno);
5972
5973 g->assigned_gotno = save_assign;
5974 if (info->shared)
5975 {
5976 needed_relocs += g->local_gotno - g->assigned_gotno;
5977 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5978 + g->next->global_gotno
5979 + MIPS_RESERVED_GOTNO);
5980 }
5981 }
5982
5983 if (needed_relocs)
5984 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5985 }
5986 }
5987 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5988 {
5989 /* IRIX rld assumes that the function stub isn't at the end
5990 of .text section. So put a dummy. XXX */
5991 s->size += MIPS_FUNCTION_STUB_SIZE;
5992 }
5993 else if (! info->shared
5994 && ! mips_elf_hash_table (info)->use_rld_obj_head
5995 && strncmp (name, ".rld_map", 8) == 0)
5996 {
5997 /* We add a room for __rld_map. It will be filled in by the
5998 rtld to contain a pointer to the _r_debug structure. */
5999 s->size += 4;
6000 }
6001 else if (SGI_COMPAT (output_bfd)
6002 && strncmp (name, ".compact_rel", 12) == 0)
6003 s->size += mips_elf_hash_table (info)->compact_rel_size;
6004 else if (strncmp (name, ".init", 5) != 0)
6005 {
6006 /* It's not one of our sections, so don't allocate space. */
6007 continue;
6008 }
6009
6010 if (strip)
6011 {
6012 _bfd_strip_section_from_output (info, s);
6013 continue;
6014 }
6015
6016 /* Allocate memory for the section contents. */
6017 s->contents = bfd_zalloc (dynobj, s->size);
6018 if (s->contents == NULL && s->size != 0)
6019 {
6020 bfd_set_error (bfd_error_no_memory);
6021 return FALSE;
6022 }
6023 }
6024
6025 if (elf_hash_table (info)->dynamic_sections_created)
6026 {
6027 /* Add some entries to the .dynamic section. We fill in the
6028 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6029 must add the entries now so that we get the correct size for
6030 the .dynamic section. The DT_DEBUG entry is filled in by the
6031 dynamic linker and used by the debugger. */
6032 if (! info->shared)
6033 {
6034 /* SGI object has the equivalence of DT_DEBUG in the
6035 DT_MIPS_RLD_MAP entry. */
6036 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6037 return FALSE;
6038 if (!SGI_COMPAT (output_bfd))
6039 {
6040 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6041 return FALSE;
6042 }
6043 }
6044 else
6045 {
6046 /* Shared libraries on traditional mips have DT_DEBUG. */
6047 if (!SGI_COMPAT (output_bfd))
6048 {
6049 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6050 return FALSE;
6051 }
6052 }
6053
6054 if (reltext && SGI_COMPAT (output_bfd))
6055 info->flags |= DF_TEXTREL;
6056
6057 if ((info->flags & DF_TEXTREL) != 0)
6058 {
6059 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6060 return FALSE;
6061 }
6062
6063 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6064 return FALSE;
6065
6066 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6067 {
6068 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6069 return FALSE;
6070
6071 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6072 return FALSE;
6073
6074 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6075 return FALSE;
6076 }
6077
6078 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6079 return FALSE;
6080
6081 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6082 return FALSE;
6083
6084 #if 0
6085 /* Time stamps in executable files are a bad idea. */
6086 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6087 return FALSE;
6088 #endif
6089
6090 #if 0 /* FIXME */
6091 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6092 return FALSE;
6093 #endif
6094
6095 #if 0 /* FIXME */
6096 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6097 return FALSE;
6098 #endif
6099
6100 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6101 return FALSE;
6102
6103 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6104 return FALSE;
6105
6106 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6107 return FALSE;
6108
6109 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6110 return FALSE;
6111
6112 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6113 return FALSE;
6114
6115 if (IRIX_COMPAT (dynobj) == ict_irix5
6116 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6117 return FALSE;
6118
6119 if (IRIX_COMPAT (dynobj) == ict_irix6
6120 && (bfd_get_section_by_name
6121 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6122 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6123 return FALSE;
6124 }
6125
6126 return TRUE;
6127 }
6128 \f
6129 /* Relocate a MIPS ELF section. */
6130
6131 bfd_boolean
6132 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6133 bfd *input_bfd, asection *input_section,
6134 bfd_byte *contents, Elf_Internal_Rela *relocs,
6135 Elf_Internal_Sym *local_syms,
6136 asection **local_sections)
6137 {
6138 Elf_Internal_Rela *rel;
6139 const Elf_Internal_Rela *relend;
6140 bfd_vma addend = 0;
6141 bfd_boolean use_saved_addend_p = FALSE;
6142 const struct elf_backend_data *bed;
6143
6144 bed = get_elf_backend_data (output_bfd);
6145 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6146 for (rel = relocs; rel < relend; ++rel)
6147 {
6148 const char *name;
6149 bfd_vma value;
6150 reloc_howto_type *howto;
6151 bfd_boolean require_jalx;
6152 /* TRUE if the relocation is a RELA relocation, rather than a
6153 REL relocation. */
6154 bfd_boolean rela_relocation_p = TRUE;
6155 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6156 const char *msg;
6157
6158 /* Find the relocation howto for this relocation. */
6159 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6160 {
6161 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6162 64-bit code, but make sure all their addresses are in the
6163 lowermost or uppermost 32-bit section of the 64-bit address
6164 space. Thus, when they use an R_MIPS_64 they mean what is
6165 usually meant by R_MIPS_32, with the exception that the
6166 stored value is sign-extended to 64 bits. */
6167 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6168
6169 /* On big-endian systems, we need to lie about the position
6170 of the reloc. */
6171 if (bfd_big_endian (input_bfd))
6172 rel->r_offset += 4;
6173 }
6174 else
6175 /* NewABI defaults to RELA relocations. */
6176 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6177 NEWABI_P (input_bfd)
6178 && (MIPS_RELOC_RELA_P
6179 (input_bfd, input_section,
6180 rel - relocs)));
6181
6182 if (!use_saved_addend_p)
6183 {
6184 Elf_Internal_Shdr *rel_hdr;
6185
6186 /* If these relocations were originally of the REL variety,
6187 we must pull the addend out of the field that will be
6188 relocated. Otherwise, we simply use the contents of the
6189 RELA relocation. To determine which flavor or relocation
6190 this is, we depend on the fact that the INPUT_SECTION's
6191 REL_HDR is read before its REL_HDR2. */
6192 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6193 if ((size_t) (rel - relocs)
6194 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6195 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6196 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6197 {
6198 /* Note that this is a REL relocation. */
6199 rela_relocation_p = FALSE;
6200
6201 /* Get the addend, which is stored in the input file. */
6202 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6203 contents);
6204 addend &= howto->src_mask;
6205
6206 /* For some kinds of relocations, the ADDEND is a
6207 combination of the addend stored in two different
6208 relocations. */
6209 if (r_type == R_MIPS_HI16
6210 || (r_type == R_MIPS_GOT16
6211 && mips_elf_local_relocation_p (input_bfd, rel,
6212 local_sections, FALSE)))
6213 {
6214 bfd_vma l;
6215 const Elf_Internal_Rela *lo16_relocation;
6216 reloc_howto_type *lo16_howto;
6217
6218 /* The combined value is the sum of the HI16 addend,
6219 left-shifted by sixteen bits, and the LO16
6220 addend, sign extended. (Usually, the code does
6221 a `lui' of the HI16 value, and then an `addiu' of
6222 the LO16 value.)
6223
6224 Scan ahead to find a matching LO16 relocation.
6225
6226 According to the MIPS ELF ABI, the R_MIPS_LO16
6227 relocation must be immediately following.
6228 However, for the IRIX6 ABI, the next relocation
6229 may be a composed relocation consisting of
6230 several relocations for the same address. In
6231 that case, the R_MIPS_LO16 relocation may occur
6232 as one of these. We permit a similar extension
6233 in general, as that is useful for GCC. */
6234 lo16_relocation = mips_elf_next_relocation (input_bfd,
6235 R_MIPS_LO16,
6236 rel, relend);
6237 if (lo16_relocation == NULL)
6238 return FALSE;
6239
6240 /* Obtain the addend kept there. */
6241 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6242 R_MIPS_LO16, FALSE);
6243 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6244 input_bfd, contents);
6245 l &= lo16_howto->src_mask;
6246 l <<= lo16_howto->rightshift;
6247 l = _bfd_mips_elf_sign_extend (l, 16);
6248
6249 addend <<= 16;
6250
6251 /* Compute the combined addend. */
6252 addend += l;
6253 }
6254 else if (r_type == R_MIPS16_GPREL)
6255 {
6256 /* The addend is scrambled in the object file. See
6257 mips_elf_perform_relocation for details on the
6258 format. */
6259 addend = (((addend & 0x1f0000) >> 5)
6260 | ((addend & 0x7e00000) >> 16)
6261 | (addend & 0x1f));
6262 }
6263 else
6264 addend <<= howto->rightshift;
6265 }
6266 else
6267 addend = rel->r_addend;
6268 }
6269
6270 if (info->relocatable)
6271 {
6272 Elf_Internal_Sym *sym;
6273 unsigned long r_symndx;
6274
6275 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6276 && bfd_big_endian (input_bfd))
6277 rel->r_offset -= 4;
6278
6279 /* Since we're just relocating, all we need to do is copy
6280 the relocations back out to the object file, unless
6281 they're against a section symbol, in which case we need
6282 to adjust by the section offset, or unless they're GP
6283 relative in which case we need to adjust by the amount
6284 that we're adjusting GP in this relocatable object. */
6285
6286 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6287 FALSE))
6288 /* There's nothing to do for non-local relocations. */
6289 continue;
6290
6291 if (r_type == R_MIPS16_GPREL
6292 || r_type == R_MIPS_GPREL16
6293 || r_type == R_MIPS_GPREL32
6294 || r_type == R_MIPS_LITERAL)
6295 addend -= (_bfd_get_gp_value (output_bfd)
6296 - _bfd_get_gp_value (input_bfd));
6297
6298 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6299 sym = local_syms + r_symndx;
6300 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6301 /* Adjust the addend appropriately. */
6302 addend += local_sections[r_symndx]->output_offset;
6303
6304 if (rela_relocation_p)
6305 /* If this is a RELA relocation, just update the addend. */
6306 rel->r_addend = addend;
6307 else
6308 {
6309 if (r_type == R_MIPS_HI16
6310 || r_type == R_MIPS_GOT16)
6311 addend = mips_elf_high (addend);
6312 else if (r_type == R_MIPS_HIGHER)
6313 addend = mips_elf_higher (addend);
6314 else if (r_type == R_MIPS_HIGHEST)
6315 addend = mips_elf_highest (addend);
6316 else
6317 addend >>= howto->rightshift;
6318
6319 /* We use the source mask, rather than the destination
6320 mask because the place to which we are writing will be
6321 source of the addend in the final link. */
6322 addend &= howto->src_mask;
6323
6324 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6325 /* See the comment above about using R_MIPS_64 in the 32-bit
6326 ABI. Here, we need to update the addend. It would be
6327 possible to get away with just using the R_MIPS_32 reloc
6328 but for endianness. */
6329 {
6330 bfd_vma sign_bits;
6331 bfd_vma low_bits;
6332 bfd_vma high_bits;
6333
6334 if (addend & ((bfd_vma) 1 << 31))
6335 #ifdef BFD64
6336 sign_bits = ((bfd_vma) 1 << 32) - 1;
6337 #else
6338 sign_bits = -1;
6339 #endif
6340 else
6341 sign_bits = 0;
6342
6343 /* If we don't know that we have a 64-bit type,
6344 do two separate stores. */
6345 if (bfd_big_endian (input_bfd))
6346 {
6347 /* Store the sign-bits (which are most significant)
6348 first. */
6349 low_bits = sign_bits;
6350 high_bits = addend;
6351 }
6352 else
6353 {
6354 low_bits = addend;
6355 high_bits = sign_bits;
6356 }
6357 bfd_put_32 (input_bfd, low_bits,
6358 contents + rel->r_offset);
6359 bfd_put_32 (input_bfd, high_bits,
6360 contents + rel->r_offset + 4);
6361 continue;
6362 }
6363
6364 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6365 input_bfd, input_section,
6366 contents, FALSE))
6367 return FALSE;
6368 }
6369
6370 /* Go on to the next relocation. */
6371 continue;
6372 }
6373
6374 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6375 relocations for the same offset. In that case we are
6376 supposed to treat the output of each relocation as the addend
6377 for the next. */
6378 if (rel + 1 < relend
6379 && rel->r_offset == rel[1].r_offset
6380 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6381 use_saved_addend_p = TRUE;
6382 else
6383 use_saved_addend_p = FALSE;
6384
6385 /* Figure out what value we are supposed to relocate. */
6386 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6387 input_section, info, rel,
6388 addend, howto, local_syms,
6389 local_sections, &value,
6390 &name, &require_jalx,
6391 use_saved_addend_p))
6392 {
6393 case bfd_reloc_continue:
6394 /* There's nothing to do. */
6395 continue;
6396
6397 case bfd_reloc_undefined:
6398 /* mips_elf_calculate_relocation already called the
6399 undefined_symbol callback. There's no real point in
6400 trying to perform the relocation at this point, so we
6401 just skip ahead to the next relocation. */
6402 continue;
6403
6404 case bfd_reloc_notsupported:
6405 msg = _("internal error: unsupported relocation error");
6406 info->callbacks->warning
6407 (info, msg, name, input_bfd, input_section, rel->r_offset);
6408 return FALSE;
6409
6410 case bfd_reloc_overflow:
6411 if (use_saved_addend_p)
6412 /* Ignore overflow until we reach the last relocation for
6413 a given location. */
6414 ;
6415 else
6416 {
6417 BFD_ASSERT (name != NULL);
6418 if (! ((*info->callbacks->reloc_overflow)
6419 (info, NULL, name, howto->name, (bfd_vma) 0,
6420 input_bfd, input_section, rel->r_offset)))
6421 return FALSE;
6422 }
6423 break;
6424
6425 case bfd_reloc_ok:
6426 break;
6427
6428 default:
6429 abort ();
6430 break;
6431 }
6432
6433 /* If we've got another relocation for the address, keep going
6434 until we reach the last one. */
6435 if (use_saved_addend_p)
6436 {
6437 addend = value;
6438 continue;
6439 }
6440
6441 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6442 /* See the comment above about using R_MIPS_64 in the 32-bit
6443 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6444 that calculated the right value. Now, however, we
6445 sign-extend the 32-bit result to 64-bits, and store it as a
6446 64-bit value. We are especially generous here in that we
6447 go to extreme lengths to support this usage on systems with
6448 only a 32-bit VMA. */
6449 {
6450 bfd_vma sign_bits;
6451 bfd_vma low_bits;
6452 bfd_vma high_bits;
6453
6454 if (value & ((bfd_vma) 1 << 31))
6455 #ifdef BFD64
6456 sign_bits = ((bfd_vma) 1 << 32) - 1;
6457 #else
6458 sign_bits = -1;
6459 #endif
6460 else
6461 sign_bits = 0;
6462
6463 /* If we don't know that we have a 64-bit type,
6464 do two separate stores. */
6465 if (bfd_big_endian (input_bfd))
6466 {
6467 /* Undo what we did above. */
6468 rel->r_offset -= 4;
6469 /* Store the sign-bits (which are most significant)
6470 first. */
6471 low_bits = sign_bits;
6472 high_bits = value;
6473 }
6474 else
6475 {
6476 low_bits = value;
6477 high_bits = sign_bits;
6478 }
6479 bfd_put_32 (input_bfd, low_bits,
6480 contents + rel->r_offset);
6481 bfd_put_32 (input_bfd, high_bits,
6482 contents + rel->r_offset + 4);
6483 continue;
6484 }
6485
6486 /* Actually perform the relocation. */
6487 if (! mips_elf_perform_relocation (info, howto, rel, value,
6488 input_bfd, input_section,
6489 contents, require_jalx))
6490 return FALSE;
6491 }
6492
6493 return TRUE;
6494 }
6495 \f
6496 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6497 adjust it appropriately now. */
6498
6499 static void
6500 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6501 const char *name, Elf_Internal_Sym *sym)
6502 {
6503 /* The linker script takes care of providing names and values for
6504 these, but we must place them into the right sections. */
6505 static const char* const text_section_symbols[] = {
6506 "_ftext",
6507 "_etext",
6508 "__dso_displacement",
6509 "__elf_header",
6510 "__program_header_table",
6511 NULL
6512 };
6513
6514 static const char* const data_section_symbols[] = {
6515 "_fdata",
6516 "_edata",
6517 "_end",
6518 "_fbss",
6519 NULL
6520 };
6521
6522 const char* const *p;
6523 int i;
6524
6525 for (i = 0; i < 2; ++i)
6526 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6527 *p;
6528 ++p)
6529 if (strcmp (*p, name) == 0)
6530 {
6531 /* All of these symbols are given type STT_SECTION by the
6532 IRIX6 linker. */
6533 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6534 sym->st_other = STO_PROTECTED;
6535
6536 /* The IRIX linker puts these symbols in special sections. */
6537 if (i == 0)
6538 sym->st_shndx = SHN_MIPS_TEXT;
6539 else
6540 sym->st_shndx = SHN_MIPS_DATA;
6541
6542 break;
6543 }
6544 }
6545
6546 /* Finish up dynamic symbol handling. We set the contents of various
6547 dynamic sections here. */
6548
6549 bfd_boolean
6550 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6551 struct bfd_link_info *info,
6552 struct elf_link_hash_entry *h,
6553 Elf_Internal_Sym *sym)
6554 {
6555 bfd *dynobj;
6556 asection *sgot;
6557 struct mips_got_info *g, *gg;
6558 const char *name;
6559
6560 dynobj = elf_hash_table (info)->dynobj;
6561
6562 if (h->plt.offset != MINUS_ONE)
6563 {
6564 asection *s;
6565 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6566
6567 /* This symbol has a stub. Set it up. */
6568
6569 BFD_ASSERT (h->dynindx != -1);
6570
6571 s = bfd_get_section_by_name (dynobj,
6572 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6573 BFD_ASSERT (s != NULL);
6574
6575 /* FIXME: Can h->dynindex be more than 64K? */
6576 if (h->dynindx & 0xffff0000)
6577 return FALSE;
6578
6579 /* Fill the stub. */
6580 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6581 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6582 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6583 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6584
6585 BFD_ASSERT (h->plt.offset <= s->size);
6586 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6587
6588 /* Mark the symbol as undefined. plt.offset != -1 occurs
6589 only for the referenced symbol. */
6590 sym->st_shndx = SHN_UNDEF;
6591
6592 /* The run-time linker uses the st_value field of the symbol
6593 to reset the global offset table entry for this external
6594 to its stub address when unlinking a shared object. */
6595 sym->st_value = (s->output_section->vma + s->output_offset
6596 + h->plt.offset);
6597 }
6598
6599 BFD_ASSERT (h->dynindx != -1
6600 || h->forced_local);
6601
6602 sgot = mips_elf_got_section (dynobj, FALSE);
6603 BFD_ASSERT (sgot != NULL);
6604 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6605 g = mips_elf_section_data (sgot)->u.got_info;
6606 BFD_ASSERT (g != NULL);
6607
6608 /* Run through the global symbol table, creating GOT entries for all
6609 the symbols that need them. */
6610 if (g->global_gotsym != NULL
6611 && h->dynindx >= g->global_gotsym->dynindx)
6612 {
6613 bfd_vma offset;
6614 bfd_vma value;
6615
6616 value = sym->st_value;
6617 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6618 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6619 }
6620
6621 if (g->next && h->dynindx != -1)
6622 {
6623 struct mips_got_entry e, *p;
6624 bfd_vma entry;
6625 bfd_vma offset;
6626
6627 gg = g;
6628
6629 e.abfd = output_bfd;
6630 e.symndx = -1;
6631 e.d.h = (struct mips_elf_link_hash_entry *)h;
6632
6633 for (g = g->next; g->next != gg; g = g->next)
6634 {
6635 if (g->got_entries
6636 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6637 &e)))
6638 {
6639 offset = p->gotidx;
6640 if (info->shared
6641 || (elf_hash_table (info)->dynamic_sections_created
6642 && p->d.h != NULL
6643 && p->d.h->root.def_dynamic
6644 && !p->d.h->root.def_regular))
6645 {
6646 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6647 the various compatibility problems, it's easier to mock
6648 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6649 mips_elf_create_dynamic_relocation to calculate the
6650 appropriate addend. */
6651 Elf_Internal_Rela rel[3];
6652
6653 memset (rel, 0, sizeof (rel));
6654 if (ABI_64_P (output_bfd))
6655 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6656 else
6657 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6658 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6659
6660 entry = 0;
6661 if (! (mips_elf_create_dynamic_relocation
6662 (output_bfd, info, rel,
6663 e.d.h, NULL, sym->st_value, &entry, sgot)))
6664 return FALSE;
6665 }
6666 else
6667 entry = sym->st_value;
6668 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
6669 }
6670 }
6671 }
6672
6673 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6674 name = h->root.root.string;
6675 if (strcmp (name, "_DYNAMIC") == 0
6676 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6677 sym->st_shndx = SHN_ABS;
6678 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6679 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6680 {
6681 sym->st_shndx = SHN_ABS;
6682 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6683 sym->st_value = 1;
6684 }
6685 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6686 {
6687 sym->st_shndx = SHN_ABS;
6688 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6689 sym->st_value = elf_gp (output_bfd);
6690 }
6691 else if (SGI_COMPAT (output_bfd))
6692 {
6693 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6694 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6695 {
6696 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6697 sym->st_other = STO_PROTECTED;
6698 sym->st_value = 0;
6699 sym->st_shndx = SHN_MIPS_DATA;
6700 }
6701 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6702 {
6703 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6704 sym->st_other = STO_PROTECTED;
6705 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6706 sym->st_shndx = SHN_ABS;
6707 }
6708 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6709 {
6710 if (h->type == STT_FUNC)
6711 sym->st_shndx = SHN_MIPS_TEXT;
6712 else if (h->type == STT_OBJECT)
6713 sym->st_shndx = SHN_MIPS_DATA;
6714 }
6715 }
6716
6717 /* Handle the IRIX6-specific symbols. */
6718 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6719 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6720
6721 if (! info->shared)
6722 {
6723 if (! mips_elf_hash_table (info)->use_rld_obj_head
6724 && (strcmp (name, "__rld_map") == 0
6725 || strcmp (name, "__RLD_MAP") == 0))
6726 {
6727 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6728 BFD_ASSERT (s != NULL);
6729 sym->st_value = s->output_section->vma + s->output_offset;
6730 bfd_put_32 (output_bfd, 0, s->contents);
6731 if (mips_elf_hash_table (info)->rld_value == 0)
6732 mips_elf_hash_table (info)->rld_value = sym->st_value;
6733 }
6734 else if (mips_elf_hash_table (info)->use_rld_obj_head
6735 && strcmp (name, "__rld_obj_head") == 0)
6736 {
6737 /* IRIX6 does not use a .rld_map section. */
6738 if (IRIX_COMPAT (output_bfd) == ict_irix5
6739 || IRIX_COMPAT (output_bfd) == ict_none)
6740 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6741 != NULL);
6742 mips_elf_hash_table (info)->rld_value = sym->st_value;
6743 }
6744 }
6745
6746 /* If this is a mips16 symbol, force the value to be even. */
6747 if (sym->st_other == STO_MIPS16)
6748 sym->st_value &= ~1;
6749
6750 return TRUE;
6751 }
6752
6753 /* Finish up the dynamic sections. */
6754
6755 bfd_boolean
6756 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6757 struct bfd_link_info *info)
6758 {
6759 bfd *dynobj;
6760 asection *sdyn;
6761 asection *sgot;
6762 struct mips_got_info *gg, *g;
6763
6764 dynobj = elf_hash_table (info)->dynobj;
6765
6766 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6767
6768 sgot = mips_elf_got_section (dynobj, FALSE);
6769 if (sgot == NULL)
6770 gg = g = NULL;
6771 else
6772 {
6773 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6774 gg = mips_elf_section_data (sgot)->u.got_info;
6775 BFD_ASSERT (gg != NULL);
6776 g = mips_elf_got_for_ibfd (gg, output_bfd);
6777 BFD_ASSERT (g != NULL);
6778 }
6779
6780 if (elf_hash_table (info)->dynamic_sections_created)
6781 {
6782 bfd_byte *b;
6783
6784 BFD_ASSERT (sdyn != NULL);
6785 BFD_ASSERT (g != NULL);
6786
6787 for (b = sdyn->contents;
6788 b < sdyn->contents + sdyn->size;
6789 b += MIPS_ELF_DYN_SIZE (dynobj))
6790 {
6791 Elf_Internal_Dyn dyn;
6792 const char *name;
6793 size_t elemsize;
6794 asection *s;
6795 bfd_boolean swap_out_p;
6796
6797 /* Read in the current dynamic entry. */
6798 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6799
6800 /* Assume that we're going to modify it and write it out. */
6801 swap_out_p = TRUE;
6802
6803 switch (dyn.d_tag)
6804 {
6805 case DT_RELENT:
6806 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6807 BFD_ASSERT (s != NULL);
6808 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6809 break;
6810
6811 case DT_STRSZ:
6812 /* Rewrite DT_STRSZ. */
6813 dyn.d_un.d_val =
6814 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6815 break;
6816
6817 case DT_PLTGOT:
6818 name = ".got";
6819 s = bfd_get_section_by_name (output_bfd, name);
6820 BFD_ASSERT (s != NULL);
6821 dyn.d_un.d_ptr = s->vma;
6822 break;
6823
6824 case DT_MIPS_RLD_VERSION:
6825 dyn.d_un.d_val = 1; /* XXX */
6826 break;
6827
6828 case DT_MIPS_FLAGS:
6829 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6830 break;
6831
6832 case DT_MIPS_TIME_STAMP:
6833 time ((time_t *) &dyn.d_un.d_val);
6834 break;
6835
6836 case DT_MIPS_ICHECKSUM:
6837 /* XXX FIXME: */
6838 swap_out_p = FALSE;
6839 break;
6840
6841 case DT_MIPS_IVERSION:
6842 /* XXX FIXME: */
6843 swap_out_p = FALSE;
6844 break;
6845
6846 case DT_MIPS_BASE_ADDRESS:
6847 s = output_bfd->sections;
6848 BFD_ASSERT (s != NULL);
6849 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6850 break;
6851
6852 case DT_MIPS_LOCAL_GOTNO:
6853 dyn.d_un.d_val = g->local_gotno;
6854 break;
6855
6856 case DT_MIPS_UNREFEXTNO:
6857 /* The index into the dynamic symbol table which is the
6858 entry of the first external symbol that is not
6859 referenced within the same object. */
6860 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6861 break;
6862
6863 case DT_MIPS_GOTSYM:
6864 if (gg->global_gotsym)
6865 {
6866 dyn.d_un.d_val = gg->global_gotsym->dynindx;
6867 break;
6868 }
6869 /* In case if we don't have global got symbols we default
6870 to setting DT_MIPS_GOTSYM to the same value as
6871 DT_MIPS_SYMTABNO, so we just fall through. */
6872
6873 case DT_MIPS_SYMTABNO:
6874 name = ".dynsym";
6875 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6876 s = bfd_get_section_by_name (output_bfd, name);
6877 BFD_ASSERT (s != NULL);
6878
6879 dyn.d_un.d_val = s->size / elemsize;
6880 break;
6881
6882 case DT_MIPS_HIPAGENO:
6883 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6884 break;
6885
6886 case DT_MIPS_RLD_MAP:
6887 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6888 break;
6889
6890 case DT_MIPS_OPTIONS:
6891 s = (bfd_get_section_by_name
6892 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6893 dyn.d_un.d_ptr = s->vma;
6894 break;
6895
6896 case DT_RELSZ:
6897 /* Reduce DT_RELSZ to account for any relocations we
6898 decided not to make. This is for the n64 irix rld,
6899 which doesn't seem to apply any relocations if there
6900 are trailing null entries. */
6901 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6902 dyn.d_un.d_val = (s->reloc_count
6903 * (ABI_64_P (output_bfd)
6904 ? sizeof (Elf64_Mips_External_Rel)
6905 : sizeof (Elf32_External_Rel)));
6906 break;
6907
6908 default:
6909 swap_out_p = FALSE;
6910 break;
6911 }
6912
6913 if (swap_out_p)
6914 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6915 (dynobj, &dyn, b);
6916 }
6917 }
6918
6919 /* The first entry of the global offset table will be filled at
6920 runtime. The second entry will be used by some runtime loaders.
6921 This isn't the case of IRIX rld. */
6922 if (sgot != NULL && sgot->size > 0)
6923 {
6924 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6925 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
6926 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6927 }
6928
6929 if (sgot != NULL)
6930 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6931 = MIPS_ELF_GOT_SIZE (output_bfd);
6932
6933 /* Generate dynamic relocations for the non-primary gots. */
6934 if (gg != NULL && gg->next)
6935 {
6936 Elf_Internal_Rela rel[3];
6937 bfd_vma addend = 0;
6938
6939 memset (rel, 0, sizeof (rel));
6940 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6941
6942 for (g = gg->next; g->next != gg; g = g->next)
6943 {
6944 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6945
6946 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
6947 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6948 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
6949 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6950
6951 if (! info->shared)
6952 continue;
6953
6954 while (index < g->assigned_gotno)
6955 {
6956 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6957 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6958 if (!(mips_elf_create_dynamic_relocation
6959 (output_bfd, info, rel, NULL,
6960 bfd_abs_section_ptr,
6961 0, &addend, sgot)))
6962 return FALSE;
6963 BFD_ASSERT (addend == 0);
6964 }
6965 }
6966 }
6967
6968 {
6969 asection *s;
6970 Elf32_compact_rel cpt;
6971
6972 if (SGI_COMPAT (output_bfd))
6973 {
6974 /* Write .compact_rel section out. */
6975 s = bfd_get_section_by_name (dynobj, ".compact_rel");
6976 if (s != NULL)
6977 {
6978 cpt.id1 = 1;
6979 cpt.num = s->reloc_count;
6980 cpt.id2 = 2;
6981 cpt.offset = (s->output_section->filepos
6982 + sizeof (Elf32_External_compact_rel));
6983 cpt.reserved0 = 0;
6984 cpt.reserved1 = 0;
6985 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
6986 ((Elf32_External_compact_rel *)
6987 s->contents));
6988
6989 /* Clean up a dummy stub function entry in .text. */
6990 s = bfd_get_section_by_name (dynobj,
6991 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6992 if (s != NULL)
6993 {
6994 file_ptr dummy_offset;
6995
6996 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
6997 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
6998 memset (s->contents + dummy_offset, 0,
6999 MIPS_FUNCTION_STUB_SIZE);
7000 }
7001 }
7002 }
7003
7004 /* We need to sort the entries of the dynamic relocation section. */
7005
7006 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7007
7008 if (s != NULL
7009 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7010 {
7011 reldyn_sorting_bfd = output_bfd;
7012
7013 if (ABI_64_P (output_bfd))
7014 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
7015 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7016 else
7017 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
7018 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7019 }
7020 }
7021
7022 return TRUE;
7023 }
7024
7025
7026 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7027
7028 static void
7029 mips_set_isa_flags (bfd *abfd)
7030 {
7031 flagword val;
7032
7033 switch (bfd_get_mach (abfd))
7034 {
7035 default:
7036 case bfd_mach_mips3000:
7037 val = E_MIPS_ARCH_1;
7038 break;
7039
7040 case bfd_mach_mips3900:
7041 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7042 break;
7043
7044 case bfd_mach_mips6000:
7045 val = E_MIPS_ARCH_2;
7046 break;
7047
7048 case bfd_mach_mips4000:
7049 case bfd_mach_mips4300:
7050 case bfd_mach_mips4400:
7051 case bfd_mach_mips4600:
7052 val = E_MIPS_ARCH_3;
7053 break;
7054
7055 case bfd_mach_mips4010:
7056 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7057 break;
7058
7059 case bfd_mach_mips4100:
7060 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7061 break;
7062
7063 case bfd_mach_mips4111:
7064 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7065 break;
7066
7067 case bfd_mach_mips4120:
7068 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7069 break;
7070
7071 case bfd_mach_mips4650:
7072 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7073 break;
7074
7075 case bfd_mach_mips5400:
7076 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7077 break;
7078
7079 case bfd_mach_mips5500:
7080 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7081 break;
7082
7083 case bfd_mach_mips5000:
7084 case bfd_mach_mips7000:
7085 case bfd_mach_mips8000:
7086 case bfd_mach_mips10000:
7087 case bfd_mach_mips12000:
7088 val = E_MIPS_ARCH_4;
7089 break;
7090
7091 case bfd_mach_mips5:
7092 val = E_MIPS_ARCH_5;
7093 break;
7094
7095 case bfd_mach_mips_sb1:
7096 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7097 break;
7098
7099 case bfd_mach_mipsisa32:
7100 val = E_MIPS_ARCH_32;
7101 break;
7102
7103 case bfd_mach_mipsisa64:
7104 val = E_MIPS_ARCH_64;
7105 break;
7106
7107 case bfd_mach_mipsisa32r2:
7108 val = E_MIPS_ARCH_32R2;
7109 break;
7110
7111 case bfd_mach_mipsisa64r2:
7112 val = E_MIPS_ARCH_64R2;
7113 break;
7114 }
7115 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7116 elf_elfheader (abfd)->e_flags |= val;
7117
7118 }
7119
7120
7121 /* The final processing done just before writing out a MIPS ELF object
7122 file. This gets the MIPS architecture right based on the machine
7123 number. This is used by both the 32-bit and the 64-bit ABI. */
7124
7125 void
7126 _bfd_mips_elf_final_write_processing (bfd *abfd,
7127 bfd_boolean linker ATTRIBUTE_UNUSED)
7128 {
7129 unsigned int i;
7130 Elf_Internal_Shdr **hdrpp;
7131 const char *name;
7132 asection *sec;
7133
7134 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7135 is nonzero. This is for compatibility with old objects, which used
7136 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7137 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7138 mips_set_isa_flags (abfd);
7139
7140 /* Set the sh_info field for .gptab sections and other appropriate
7141 info for each special section. */
7142 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7143 i < elf_numsections (abfd);
7144 i++, hdrpp++)
7145 {
7146 switch ((*hdrpp)->sh_type)
7147 {
7148 case SHT_MIPS_MSYM:
7149 case SHT_MIPS_LIBLIST:
7150 sec = bfd_get_section_by_name (abfd, ".dynstr");
7151 if (sec != NULL)
7152 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7153 break;
7154
7155 case SHT_MIPS_GPTAB:
7156 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7157 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7158 BFD_ASSERT (name != NULL
7159 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7160 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7161 BFD_ASSERT (sec != NULL);
7162 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7163 break;
7164
7165 case SHT_MIPS_CONTENT:
7166 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7167 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7168 BFD_ASSERT (name != NULL
7169 && strncmp (name, ".MIPS.content",
7170 sizeof ".MIPS.content" - 1) == 0);
7171 sec = bfd_get_section_by_name (abfd,
7172 name + sizeof ".MIPS.content" - 1);
7173 BFD_ASSERT (sec != NULL);
7174 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7175 break;
7176
7177 case SHT_MIPS_SYMBOL_LIB:
7178 sec = bfd_get_section_by_name (abfd, ".dynsym");
7179 if (sec != NULL)
7180 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7181 sec = bfd_get_section_by_name (abfd, ".liblist");
7182 if (sec != NULL)
7183 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7184 break;
7185
7186 case SHT_MIPS_EVENTS:
7187 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7188 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7189 BFD_ASSERT (name != NULL);
7190 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7191 sec = bfd_get_section_by_name (abfd,
7192 name + sizeof ".MIPS.events" - 1);
7193 else
7194 {
7195 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7196 sizeof ".MIPS.post_rel" - 1) == 0);
7197 sec = bfd_get_section_by_name (abfd,
7198 (name
7199 + sizeof ".MIPS.post_rel" - 1));
7200 }
7201 BFD_ASSERT (sec != NULL);
7202 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7203 break;
7204
7205 }
7206 }
7207 }
7208 \f
7209 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7210 segments. */
7211
7212 int
7213 _bfd_mips_elf_additional_program_headers (bfd *abfd)
7214 {
7215 asection *s;
7216 int ret = 0;
7217
7218 /* See if we need a PT_MIPS_REGINFO segment. */
7219 s = bfd_get_section_by_name (abfd, ".reginfo");
7220 if (s && (s->flags & SEC_LOAD))
7221 ++ret;
7222
7223 /* See if we need a PT_MIPS_OPTIONS segment. */
7224 if (IRIX_COMPAT (abfd) == ict_irix6
7225 && bfd_get_section_by_name (abfd,
7226 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7227 ++ret;
7228
7229 /* See if we need a PT_MIPS_RTPROC segment. */
7230 if (IRIX_COMPAT (abfd) == ict_irix5
7231 && bfd_get_section_by_name (abfd, ".dynamic")
7232 && bfd_get_section_by_name (abfd, ".mdebug"))
7233 ++ret;
7234
7235 return ret;
7236 }
7237
7238 /* Modify the segment map for an IRIX5 executable. */
7239
7240 bfd_boolean
7241 _bfd_mips_elf_modify_segment_map (bfd *abfd,
7242 struct bfd_link_info *info ATTRIBUTE_UNUSED)
7243 {
7244 asection *s;
7245 struct elf_segment_map *m, **pm;
7246 bfd_size_type amt;
7247
7248 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7249 segment. */
7250 s = bfd_get_section_by_name (abfd, ".reginfo");
7251 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7252 {
7253 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7254 if (m->p_type == PT_MIPS_REGINFO)
7255 break;
7256 if (m == NULL)
7257 {
7258 amt = sizeof *m;
7259 m = bfd_zalloc (abfd, amt);
7260 if (m == NULL)
7261 return FALSE;
7262
7263 m->p_type = PT_MIPS_REGINFO;
7264 m->count = 1;
7265 m->sections[0] = s;
7266
7267 /* We want to put it after the PHDR and INTERP segments. */
7268 pm = &elf_tdata (abfd)->segment_map;
7269 while (*pm != NULL
7270 && ((*pm)->p_type == PT_PHDR
7271 || (*pm)->p_type == PT_INTERP))
7272 pm = &(*pm)->next;
7273
7274 m->next = *pm;
7275 *pm = m;
7276 }
7277 }
7278
7279 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7280 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7281 PT_MIPS_OPTIONS segment immediately following the program header
7282 table. */
7283 if (NEWABI_P (abfd)
7284 /* On non-IRIX6 new abi, we'll have already created a segment
7285 for this section, so don't create another. I'm not sure this
7286 is not also the case for IRIX 6, but I can't test it right
7287 now. */
7288 && IRIX_COMPAT (abfd) == ict_irix6)
7289 {
7290 for (s = abfd->sections; s; s = s->next)
7291 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7292 break;
7293
7294 if (s)
7295 {
7296 struct elf_segment_map *options_segment;
7297
7298 pm = &elf_tdata (abfd)->segment_map;
7299 while (*pm != NULL
7300 && ((*pm)->p_type == PT_PHDR
7301 || (*pm)->p_type == PT_INTERP))
7302 pm = &(*pm)->next;
7303
7304 amt = sizeof (struct elf_segment_map);
7305 options_segment = bfd_zalloc (abfd, amt);
7306 options_segment->next = *pm;
7307 options_segment->p_type = PT_MIPS_OPTIONS;
7308 options_segment->p_flags = PF_R;
7309 options_segment->p_flags_valid = TRUE;
7310 options_segment->count = 1;
7311 options_segment->sections[0] = s;
7312 *pm = options_segment;
7313 }
7314 }
7315 else
7316 {
7317 if (IRIX_COMPAT (abfd) == ict_irix5)
7318 {
7319 /* If there are .dynamic and .mdebug sections, we make a room
7320 for the RTPROC header. FIXME: Rewrite without section names. */
7321 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7322 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7323 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7324 {
7325 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7326 if (m->p_type == PT_MIPS_RTPROC)
7327 break;
7328 if (m == NULL)
7329 {
7330 amt = sizeof *m;
7331 m = bfd_zalloc (abfd, amt);
7332 if (m == NULL)
7333 return FALSE;
7334
7335 m->p_type = PT_MIPS_RTPROC;
7336
7337 s = bfd_get_section_by_name (abfd, ".rtproc");
7338 if (s == NULL)
7339 {
7340 m->count = 0;
7341 m->p_flags = 0;
7342 m->p_flags_valid = 1;
7343 }
7344 else
7345 {
7346 m->count = 1;
7347 m->sections[0] = s;
7348 }
7349
7350 /* We want to put it after the DYNAMIC segment. */
7351 pm = &elf_tdata (abfd)->segment_map;
7352 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7353 pm = &(*pm)->next;
7354 if (*pm != NULL)
7355 pm = &(*pm)->next;
7356
7357 m->next = *pm;
7358 *pm = m;
7359 }
7360 }
7361 }
7362 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7363 .dynstr, .dynsym, and .hash sections, and everything in
7364 between. */
7365 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7366 pm = &(*pm)->next)
7367 if ((*pm)->p_type == PT_DYNAMIC)
7368 break;
7369 m = *pm;
7370 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7371 {
7372 /* For a normal mips executable the permissions for the PT_DYNAMIC
7373 segment are read, write and execute. We do that here since
7374 the code in elf.c sets only the read permission. This matters
7375 sometimes for the dynamic linker. */
7376 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7377 {
7378 m->p_flags = PF_R | PF_W | PF_X;
7379 m->p_flags_valid = 1;
7380 }
7381 }
7382 if (m != NULL
7383 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7384 {
7385 static const char *sec_names[] =
7386 {
7387 ".dynamic", ".dynstr", ".dynsym", ".hash"
7388 };
7389 bfd_vma low, high;
7390 unsigned int i, c;
7391 struct elf_segment_map *n;
7392
7393 low = ~(bfd_vma) 0;
7394 high = 0;
7395 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7396 {
7397 s = bfd_get_section_by_name (abfd, sec_names[i]);
7398 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7399 {
7400 bfd_size_type sz;
7401
7402 if (low > s->vma)
7403 low = s->vma;
7404 sz = s->size;
7405 if (high < s->vma + sz)
7406 high = s->vma + sz;
7407 }
7408 }
7409
7410 c = 0;
7411 for (s = abfd->sections; s != NULL; s = s->next)
7412 if ((s->flags & SEC_LOAD) != 0
7413 && s->vma >= low
7414 && s->vma + s->size <= high)
7415 ++c;
7416
7417 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7418 n = bfd_zalloc (abfd, amt);
7419 if (n == NULL)
7420 return FALSE;
7421 *n = *m;
7422 n->count = c;
7423
7424 i = 0;
7425 for (s = abfd->sections; s != NULL; s = s->next)
7426 {
7427 if ((s->flags & SEC_LOAD) != 0
7428 && s->vma >= low
7429 && s->vma + s->size <= high)
7430 {
7431 n->sections[i] = s;
7432 ++i;
7433 }
7434 }
7435
7436 *pm = n;
7437 }
7438 }
7439
7440 return TRUE;
7441 }
7442 \f
7443 /* Return the section that should be marked against GC for a given
7444 relocation. */
7445
7446 asection *
7447 _bfd_mips_elf_gc_mark_hook (asection *sec,
7448 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7449 Elf_Internal_Rela *rel,
7450 struct elf_link_hash_entry *h,
7451 Elf_Internal_Sym *sym)
7452 {
7453 /* ??? Do mips16 stub sections need to be handled special? */
7454
7455 if (h != NULL)
7456 {
7457 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7458 {
7459 case R_MIPS_GNU_VTINHERIT:
7460 case R_MIPS_GNU_VTENTRY:
7461 break;
7462
7463 default:
7464 switch (h->root.type)
7465 {
7466 case bfd_link_hash_defined:
7467 case bfd_link_hash_defweak:
7468 return h->root.u.def.section;
7469
7470 case bfd_link_hash_common:
7471 return h->root.u.c.p->section;
7472
7473 default:
7474 break;
7475 }
7476 }
7477 }
7478 else
7479 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7480
7481 return NULL;
7482 }
7483
7484 /* Update the got entry reference counts for the section being removed. */
7485
7486 bfd_boolean
7487 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7488 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7489 asection *sec ATTRIBUTE_UNUSED,
7490 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
7491 {
7492 #if 0
7493 Elf_Internal_Shdr *symtab_hdr;
7494 struct elf_link_hash_entry **sym_hashes;
7495 bfd_signed_vma *local_got_refcounts;
7496 const Elf_Internal_Rela *rel, *relend;
7497 unsigned long r_symndx;
7498 struct elf_link_hash_entry *h;
7499
7500 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7501 sym_hashes = elf_sym_hashes (abfd);
7502 local_got_refcounts = elf_local_got_refcounts (abfd);
7503
7504 relend = relocs + sec->reloc_count;
7505 for (rel = relocs; rel < relend; rel++)
7506 switch (ELF_R_TYPE (abfd, rel->r_info))
7507 {
7508 case R_MIPS_GOT16:
7509 case R_MIPS_CALL16:
7510 case R_MIPS_CALL_HI16:
7511 case R_MIPS_CALL_LO16:
7512 case R_MIPS_GOT_HI16:
7513 case R_MIPS_GOT_LO16:
7514 case R_MIPS_GOT_DISP:
7515 case R_MIPS_GOT_PAGE:
7516 case R_MIPS_GOT_OFST:
7517 /* ??? It would seem that the existing MIPS code does no sort
7518 of reference counting or whatnot on its GOT and PLT entries,
7519 so it is not possible to garbage collect them at this time. */
7520 break;
7521
7522 default:
7523 break;
7524 }
7525 #endif
7526
7527 return TRUE;
7528 }
7529 \f
7530 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7531 hiding the old indirect symbol. Process additional relocation
7532 information. Also called for weakdefs, in which case we just let
7533 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7534
7535 void
7536 _bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7537 struct elf_link_hash_entry *dir,
7538 struct elf_link_hash_entry *ind)
7539 {
7540 struct mips_elf_link_hash_entry *dirmips, *indmips;
7541
7542 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7543
7544 if (ind->root.type != bfd_link_hash_indirect)
7545 return;
7546
7547 dirmips = (struct mips_elf_link_hash_entry *) dir;
7548 indmips = (struct mips_elf_link_hash_entry *) ind;
7549 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7550 if (indmips->readonly_reloc)
7551 dirmips->readonly_reloc = TRUE;
7552 if (indmips->no_fn_stub)
7553 dirmips->no_fn_stub = TRUE;
7554 }
7555
7556 void
7557 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7558 struct elf_link_hash_entry *entry,
7559 bfd_boolean force_local)
7560 {
7561 bfd *dynobj;
7562 asection *got;
7563 struct mips_got_info *g;
7564 struct mips_elf_link_hash_entry *h;
7565
7566 h = (struct mips_elf_link_hash_entry *) entry;
7567 if (h->forced_local)
7568 return;
7569 h->forced_local = force_local;
7570
7571 dynobj = elf_hash_table (info)->dynobj;
7572 if (dynobj != NULL && force_local)
7573 {
7574 got = mips_elf_got_section (dynobj, FALSE);
7575 g = mips_elf_section_data (got)->u.got_info;
7576
7577 if (g->next)
7578 {
7579 struct mips_got_entry e;
7580 struct mips_got_info *gg = g;
7581
7582 /* Since we're turning what used to be a global symbol into a
7583 local one, bump up the number of local entries of each GOT
7584 that had an entry for it. This will automatically decrease
7585 the number of global entries, since global_gotno is actually
7586 the upper limit of global entries. */
7587 e.abfd = dynobj;
7588 e.symndx = -1;
7589 e.d.h = h;
7590
7591 for (g = g->next; g != gg; g = g->next)
7592 if (htab_find (g->got_entries, &e))
7593 {
7594 BFD_ASSERT (g->global_gotno > 0);
7595 g->local_gotno++;
7596 g->global_gotno--;
7597 }
7598
7599 /* If this was a global symbol forced into the primary GOT, we
7600 no longer need an entry for it. We can't release the entry
7601 at this point, but we must at least stop counting it as one
7602 of the symbols that required a forced got entry. */
7603 if (h->root.got.offset == 2)
7604 {
7605 BFD_ASSERT (gg->assigned_gotno > 0);
7606 gg->assigned_gotno--;
7607 }
7608 }
7609 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7610 /* If we haven't got through GOT allocation yet, just bump up the
7611 number of local entries, as this symbol won't be counted as
7612 global. */
7613 g->local_gotno++;
7614 else if (h->root.got.offset == 1)
7615 {
7616 /* If we're past non-multi-GOT allocation and this symbol had
7617 been marked for a global got entry, give it a local entry
7618 instead. */
7619 BFD_ASSERT (g->global_gotno > 0);
7620 g->local_gotno++;
7621 g->global_gotno--;
7622 }
7623 }
7624
7625 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7626 }
7627 \f
7628 #define PDR_SIZE 32
7629
7630 bfd_boolean
7631 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7632 struct bfd_link_info *info)
7633 {
7634 asection *o;
7635 bfd_boolean ret = FALSE;
7636 unsigned char *tdata;
7637 size_t i, skip;
7638
7639 o = bfd_get_section_by_name (abfd, ".pdr");
7640 if (! o)
7641 return FALSE;
7642 if (o->size == 0)
7643 return FALSE;
7644 if (o->size % PDR_SIZE != 0)
7645 return FALSE;
7646 if (o->output_section != NULL
7647 && bfd_is_abs_section (o->output_section))
7648 return FALSE;
7649
7650 tdata = bfd_zmalloc (o->size / PDR_SIZE);
7651 if (! tdata)
7652 return FALSE;
7653
7654 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7655 info->keep_memory);
7656 if (!cookie->rels)
7657 {
7658 free (tdata);
7659 return FALSE;
7660 }
7661
7662 cookie->rel = cookie->rels;
7663 cookie->relend = cookie->rels + o->reloc_count;
7664
7665 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
7666 {
7667 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
7668 {
7669 tdata[i] = 1;
7670 skip ++;
7671 }
7672 }
7673
7674 if (skip != 0)
7675 {
7676 mips_elf_section_data (o)->u.tdata = tdata;
7677 o->size -= skip * PDR_SIZE;
7678 ret = TRUE;
7679 }
7680 else
7681 free (tdata);
7682
7683 if (! info->keep_memory)
7684 free (cookie->rels);
7685
7686 return ret;
7687 }
7688
7689 bfd_boolean
7690 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
7691 {
7692 if (strcmp (sec->name, ".pdr") == 0)
7693 return TRUE;
7694 return FALSE;
7695 }
7696
7697 bfd_boolean
7698 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7699 bfd_byte *contents)
7700 {
7701 bfd_byte *to, *from, *end;
7702 int i;
7703
7704 if (strcmp (sec->name, ".pdr") != 0)
7705 return FALSE;
7706
7707 if (mips_elf_section_data (sec)->u.tdata == NULL)
7708 return FALSE;
7709
7710 to = contents;
7711 end = contents + sec->size;
7712 for (from = contents, i = 0;
7713 from < end;
7714 from += PDR_SIZE, i++)
7715 {
7716 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7717 continue;
7718 if (to != from)
7719 memcpy (to, from, PDR_SIZE);
7720 to += PDR_SIZE;
7721 }
7722 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7723 sec->output_offset, sec->size);
7724 return TRUE;
7725 }
7726 \f
7727 /* MIPS ELF uses a special find_nearest_line routine in order the
7728 handle the ECOFF debugging information. */
7729
7730 struct mips_elf_find_line
7731 {
7732 struct ecoff_debug_info d;
7733 struct ecoff_find_line i;
7734 };
7735
7736 bfd_boolean
7737 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7738 asymbol **symbols, bfd_vma offset,
7739 const char **filename_ptr,
7740 const char **functionname_ptr,
7741 unsigned int *line_ptr)
7742 {
7743 asection *msec;
7744
7745 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7746 filename_ptr, functionname_ptr,
7747 line_ptr))
7748 return TRUE;
7749
7750 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7751 filename_ptr, functionname_ptr,
7752 line_ptr, ABI_64_P (abfd) ? 8 : 0,
7753 &elf_tdata (abfd)->dwarf2_find_line_info))
7754 return TRUE;
7755
7756 msec = bfd_get_section_by_name (abfd, ".mdebug");
7757 if (msec != NULL)
7758 {
7759 flagword origflags;
7760 struct mips_elf_find_line *fi;
7761 const struct ecoff_debug_swap * const swap =
7762 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7763
7764 /* If we are called during a link, mips_elf_final_link may have
7765 cleared the SEC_HAS_CONTENTS field. We force it back on here
7766 if appropriate (which it normally will be). */
7767 origflags = msec->flags;
7768 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7769 msec->flags |= SEC_HAS_CONTENTS;
7770
7771 fi = elf_tdata (abfd)->find_line_info;
7772 if (fi == NULL)
7773 {
7774 bfd_size_type external_fdr_size;
7775 char *fraw_src;
7776 char *fraw_end;
7777 struct fdr *fdr_ptr;
7778 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7779
7780 fi = bfd_zalloc (abfd, amt);
7781 if (fi == NULL)
7782 {
7783 msec->flags = origflags;
7784 return FALSE;
7785 }
7786
7787 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7788 {
7789 msec->flags = origflags;
7790 return FALSE;
7791 }
7792
7793 /* Swap in the FDR information. */
7794 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7795 fi->d.fdr = bfd_alloc (abfd, amt);
7796 if (fi->d.fdr == NULL)
7797 {
7798 msec->flags = origflags;
7799 return FALSE;
7800 }
7801 external_fdr_size = swap->external_fdr_size;
7802 fdr_ptr = fi->d.fdr;
7803 fraw_src = (char *) fi->d.external_fdr;
7804 fraw_end = (fraw_src
7805 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7806 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7807 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
7808
7809 elf_tdata (abfd)->find_line_info = fi;
7810
7811 /* Note that we don't bother to ever free this information.
7812 find_nearest_line is either called all the time, as in
7813 objdump -l, so the information should be saved, or it is
7814 rarely called, as in ld error messages, so the memory
7815 wasted is unimportant. Still, it would probably be a
7816 good idea for free_cached_info to throw it away. */
7817 }
7818
7819 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7820 &fi->i, filename_ptr, functionname_ptr,
7821 line_ptr))
7822 {
7823 msec->flags = origflags;
7824 return TRUE;
7825 }
7826
7827 msec->flags = origflags;
7828 }
7829
7830 /* Fall back on the generic ELF find_nearest_line routine. */
7831
7832 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7833 filename_ptr, functionname_ptr,
7834 line_ptr);
7835 }
7836 \f
7837 /* When are writing out the .options or .MIPS.options section,
7838 remember the bytes we are writing out, so that we can install the
7839 GP value in the section_processing routine. */
7840
7841 bfd_boolean
7842 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7843 const void *location,
7844 file_ptr offset, bfd_size_type count)
7845 {
7846 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7847 {
7848 bfd_byte *c;
7849
7850 if (elf_section_data (section) == NULL)
7851 {
7852 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7853 section->used_by_bfd = bfd_zalloc (abfd, amt);
7854 if (elf_section_data (section) == NULL)
7855 return FALSE;
7856 }
7857 c = mips_elf_section_data (section)->u.tdata;
7858 if (c == NULL)
7859 {
7860 c = bfd_zalloc (abfd, section->size);
7861 if (c == NULL)
7862 return FALSE;
7863 mips_elf_section_data (section)->u.tdata = c;
7864 }
7865
7866 memcpy (c + offset, location, count);
7867 }
7868
7869 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7870 count);
7871 }
7872
7873 /* This is almost identical to bfd_generic_get_... except that some
7874 MIPS relocations need to be handled specially. Sigh. */
7875
7876 bfd_byte *
7877 _bfd_elf_mips_get_relocated_section_contents
7878 (bfd *abfd,
7879 struct bfd_link_info *link_info,
7880 struct bfd_link_order *link_order,
7881 bfd_byte *data,
7882 bfd_boolean relocatable,
7883 asymbol **symbols)
7884 {
7885 /* Get enough memory to hold the stuff */
7886 bfd *input_bfd = link_order->u.indirect.section->owner;
7887 asection *input_section = link_order->u.indirect.section;
7888 bfd_size_type sz;
7889
7890 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7891 arelent **reloc_vector = NULL;
7892 long reloc_count;
7893
7894 if (reloc_size < 0)
7895 goto error_return;
7896
7897 reloc_vector = bfd_malloc (reloc_size);
7898 if (reloc_vector == NULL && reloc_size != 0)
7899 goto error_return;
7900
7901 /* read in the section */
7902 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
7903 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
7904 goto error_return;
7905
7906 reloc_count = bfd_canonicalize_reloc (input_bfd,
7907 input_section,
7908 reloc_vector,
7909 symbols);
7910 if (reloc_count < 0)
7911 goto error_return;
7912
7913 if (reloc_count > 0)
7914 {
7915 arelent **parent;
7916 /* for mips */
7917 int gp_found;
7918 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7919
7920 {
7921 struct bfd_hash_entry *h;
7922 struct bfd_link_hash_entry *lh;
7923 /* Skip all this stuff if we aren't mixing formats. */
7924 if (abfd && input_bfd
7925 && abfd->xvec == input_bfd->xvec)
7926 lh = 0;
7927 else
7928 {
7929 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
7930 lh = (struct bfd_link_hash_entry *) h;
7931 }
7932 lookup:
7933 if (lh)
7934 {
7935 switch (lh->type)
7936 {
7937 case bfd_link_hash_undefined:
7938 case bfd_link_hash_undefweak:
7939 case bfd_link_hash_common:
7940 gp_found = 0;
7941 break;
7942 case bfd_link_hash_defined:
7943 case bfd_link_hash_defweak:
7944 gp_found = 1;
7945 gp = lh->u.def.value;
7946 break;
7947 case bfd_link_hash_indirect:
7948 case bfd_link_hash_warning:
7949 lh = lh->u.i.link;
7950 /* @@FIXME ignoring warning for now */
7951 goto lookup;
7952 case bfd_link_hash_new:
7953 default:
7954 abort ();
7955 }
7956 }
7957 else
7958 gp_found = 0;
7959 }
7960 /* end mips */
7961 for (parent = reloc_vector; *parent != NULL; parent++)
7962 {
7963 char *error_message = NULL;
7964 bfd_reloc_status_type r;
7965
7966 /* Specific to MIPS: Deal with relocation types that require
7967 knowing the gp of the output bfd. */
7968 asymbol *sym = *(*parent)->sym_ptr_ptr;
7969 if (bfd_is_abs_section (sym->section) && abfd)
7970 {
7971 /* The special_function wouldn't get called anyway. */
7972 }
7973 else if (!gp_found)
7974 {
7975 /* The gp isn't there; let the special function code
7976 fall over on its own. */
7977 }
7978 else if ((*parent)->howto->special_function
7979 == _bfd_mips_elf32_gprel16_reloc)
7980 {
7981 /* bypass special_function call */
7982 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
7983 input_section, relocatable,
7984 data, gp);
7985 goto skip_bfd_perform_relocation;
7986 }
7987 /* end mips specific stuff */
7988
7989 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
7990 relocatable ? abfd : NULL,
7991 &error_message);
7992 skip_bfd_perform_relocation:
7993
7994 if (relocatable)
7995 {
7996 asection *os = input_section->output_section;
7997
7998 /* A partial link, so keep the relocs */
7999 os->orelocation[os->reloc_count] = *parent;
8000 os->reloc_count++;
8001 }
8002
8003 if (r != bfd_reloc_ok)
8004 {
8005 switch (r)
8006 {
8007 case bfd_reloc_undefined:
8008 if (!((*link_info->callbacks->undefined_symbol)
8009 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8010 input_bfd, input_section, (*parent)->address,
8011 TRUE)))
8012 goto error_return;
8013 break;
8014 case bfd_reloc_dangerous:
8015 BFD_ASSERT (error_message != NULL);
8016 if (!((*link_info->callbacks->reloc_dangerous)
8017 (link_info, error_message, input_bfd, input_section,
8018 (*parent)->address)))
8019 goto error_return;
8020 break;
8021 case bfd_reloc_overflow:
8022 if (!((*link_info->callbacks->reloc_overflow)
8023 (link_info, NULL,
8024 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8025 (*parent)->howto->name, (*parent)->addend,
8026 input_bfd, input_section, (*parent)->address)))
8027 goto error_return;
8028 break;
8029 case bfd_reloc_outofrange:
8030 default:
8031 abort ();
8032 break;
8033 }
8034
8035 }
8036 }
8037 }
8038 if (reloc_vector != NULL)
8039 free (reloc_vector);
8040 return data;
8041
8042 error_return:
8043 if (reloc_vector != NULL)
8044 free (reloc_vector);
8045 return NULL;
8046 }
8047 \f
8048 /* Create a MIPS ELF linker hash table. */
8049
8050 struct bfd_link_hash_table *
8051 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
8052 {
8053 struct mips_elf_link_hash_table *ret;
8054 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8055
8056 ret = bfd_malloc (amt);
8057 if (ret == NULL)
8058 return NULL;
8059
8060 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8061 mips_elf_link_hash_newfunc))
8062 {
8063 free (ret);
8064 return NULL;
8065 }
8066
8067 #if 0
8068 /* We no longer use this. */
8069 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8070 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8071 #endif
8072 ret->procedure_count = 0;
8073 ret->compact_rel_size = 0;
8074 ret->use_rld_obj_head = FALSE;
8075 ret->rld_value = 0;
8076 ret->mips16_stubs_seen = FALSE;
8077
8078 return &ret->root.root;
8079 }
8080 \f
8081 /* We need to use a special link routine to handle the .reginfo and
8082 the .mdebug sections. We need to merge all instances of these
8083 sections together, not write them all out sequentially. */
8084
8085 bfd_boolean
8086 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
8087 {
8088 asection **secpp;
8089 asection *o;
8090 struct bfd_link_order *p;
8091 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8092 asection *rtproc_sec;
8093 Elf32_RegInfo reginfo;
8094 struct ecoff_debug_info debug;
8095 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8096 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
8097 HDRR *symhdr = &debug.symbolic_header;
8098 void *mdebug_handle = NULL;
8099 asection *s;
8100 EXTR esym;
8101 unsigned int i;
8102 bfd_size_type amt;
8103
8104 static const char * const secname[] =
8105 {
8106 ".text", ".init", ".fini", ".data",
8107 ".rodata", ".sdata", ".sbss", ".bss"
8108 };
8109 static const int sc[] =
8110 {
8111 scText, scInit, scFini, scData,
8112 scRData, scSData, scSBss, scBss
8113 };
8114
8115 /* We'd carefully arranged the dynamic symbol indices, and then the
8116 generic size_dynamic_sections renumbered them out from under us.
8117 Rather than trying somehow to prevent the renumbering, just do
8118 the sort again. */
8119 if (elf_hash_table (info)->dynamic_sections_created)
8120 {
8121 bfd *dynobj;
8122 asection *got;
8123 struct mips_got_info *g;
8124 bfd_size_type dynsecsymcount;
8125
8126 /* When we resort, we must tell mips_elf_sort_hash_table what
8127 the lowest index it may use is. That's the number of section
8128 symbols we're going to add. The generic ELF linker only
8129 adds these symbols when building a shared object. Note that
8130 we count the sections after (possibly) removing the .options
8131 section above. */
8132
8133 dynsecsymcount = 0;
8134 if (info->shared)
8135 {
8136 asection * p;
8137
8138 for (p = abfd->sections; p ; p = p->next)
8139 if ((p->flags & SEC_EXCLUDE) == 0
8140 && (p->flags & SEC_ALLOC) != 0
8141 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8142 ++ dynsecsymcount;
8143 }
8144
8145 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
8146 return FALSE;
8147
8148 /* Make sure we didn't grow the global .got region. */
8149 dynobj = elf_hash_table (info)->dynobj;
8150 got = mips_elf_got_section (dynobj, FALSE);
8151 g = mips_elf_section_data (got)->u.got_info;
8152
8153 if (g->global_gotsym != NULL)
8154 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8155 - g->global_gotsym->dynindx)
8156 <= g->global_gotno);
8157 }
8158
8159 #if 0
8160 /* We want to set the GP value for ld -r. */
8161 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8162 include it, even though we don't process it quite right. (Some
8163 entries are supposed to be merged.) Empirically, we seem to be
8164 better off including it then not. */
8165 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8166 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8167 {
8168 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8169 {
8170 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8171 if (p->type == bfd_indirect_link_order)
8172 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8173 (*secpp)->link_order_head = NULL;
8174 bfd_section_list_remove (abfd, secpp);
8175 --abfd->section_count;
8176
8177 break;
8178 }
8179 }
8180
8181 /* We include .MIPS.options, even though we don't process it quite right.
8182 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8183 to be better off including it than not. */
8184 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8185 {
8186 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8187 {
8188 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8189 if (p->type == bfd_indirect_link_order)
8190 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8191 (*secpp)->link_order_head = NULL;
8192 bfd_section_list_remove (abfd, secpp);
8193 --abfd->section_count;
8194
8195 break;
8196 }
8197 }
8198 #endif
8199
8200 /* Get a value for the GP register. */
8201 if (elf_gp (abfd) == 0)
8202 {
8203 struct bfd_link_hash_entry *h;
8204
8205 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8206 if (h != NULL && h->type == bfd_link_hash_defined)
8207 elf_gp (abfd) = (h->u.def.value
8208 + h->u.def.section->output_section->vma
8209 + h->u.def.section->output_offset);
8210 else if (info->relocatable)
8211 {
8212 bfd_vma lo = MINUS_ONE;
8213
8214 /* Find the GP-relative section with the lowest offset. */
8215 for (o = abfd->sections; o != NULL; o = o->next)
8216 if (o->vma < lo
8217 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8218 lo = o->vma;
8219
8220 /* And calculate GP relative to that. */
8221 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8222 }
8223 else
8224 {
8225 /* If the relocate_section function needs to do a reloc
8226 involving the GP value, it should make a reloc_dangerous
8227 callback to warn that GP is not defined. */
8228 }
8229 }
8230
8231 /* Go through the sections and collect the .reginfo and .mdebug
8232 information. */
8233 reginfo_sec = NULL;
8234 mdebug_sec = NULL;
8235 gptab_data_sec = NULL;
8236 gptab_bss_sec = NULL;
8237 for (o = abfd->sections; o != NULL; o = o->next)
8238 {
8239 if (strcmp (o->name, ".reginfo") == 0)
8240 {
8241 memset (&reginfo, 0, sizeof reginfo);
8242
8243 /* We have found the .reginfo section in the output file.
8244 Look through all the link_orders comprising it and merge
8245 the information together. */
8246 for (p = o->link_order_head; p != NULL; p = p->next)
8247 {
8248 asection *input_section;
8249 bfd *input_bfd;
8250 Elf32_External_RegInfo ext;
8251 Elf32_RegInfo sub;
8252
8253 if (p->type != bfd_indirect_link_order)
8254 {
8255 if (p->type == bfd_data_link_order)
8256 continue;
8257 abort ();
8258 }
8259
8260 input_section = p->u.indirect.section;
8261 input_bfd = input_section->owner;
8262
8263 if (! bfd_get_section_contents (input_bfd, input_section,
8264 &ext, 0, sizeof ext))
8265 return FALSE;
8266
8267 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8268
8269 reginfo.ri_gprmask |= sub.ri_gprmask;
8270 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8271 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8272 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8273 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8274
8275 /* ri_gp_value is set by the function
8276 mips_elf32_section_processing when the section is
8277 finally written out. */
8278
8279 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8280 elf_link_input_bfd ignores this section. */
8281 input_section->flags &= ~SEC_HAS_CONTENTS;
8282 }
8283
8284 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8285 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
8286
8287 /* Skip this section later on (I don't think this currently
8288 matters, but someday it might). */
8289 o->link_order_head = NULL;
8290
8291 reginfo_sec = o;
8292 }
8293
8294 if (strcmp (o->name, ".mdebug") == 0)
8295 {
8296 struct extsym_info einfo;
8297 bfd_vma last;
8298
8299 /* We have found the .mdebug section in the output file.
8300 Look through all the link_orders comprising it and merge
8301 the information together. */
8302 symhdr->magic = swap->sym_magic;
8303 /* FIXME: What should the version stamp be? */
8304 symhdr->vstamp = 0;
8305 symhdr->ilineMax = 0;
8306 symhdr->cbLine = 0;
8307 symhdr->idnMax = 0;
8308 symhdr->ipdMax = 0;
8309 symhdr->isymMax = 0;
8310 symhdr->ioptMax = 0;
8311 symhdr->iauxMax = 0;
8312 symhdr->issMax = 0;
8313 symhdr->issExtMax = 0;
8314 symhdr->ifdMax = 0;
8315 symhdr->crfd = 0;
8316 symhdr->iextMax = 0;
8317
8318 /* We accumulate the debugging information itself in the
8319 debug_info structure. */
8320 debug.line = NULL;
8321 debug.external_dnr = NULL;
8322 debug.external_pdr = NULL;
8323 debug.external_sym = NULL;
8324 debug.external_opt = NULL;
8325 debug.external_aux = NULL;
8326 debug.ss = NULL;
8327 debug.ssext = debug.ssext_end = NULL;
8328 debug.external_fdr = NULL;
8329 debug.external_rfd = NULL;
8330 debug.external_ext = debug.external_ext_end = NULL;
8331
8332 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8333 if (mdebug_handle == NULL)
8334 return FALSE;
8335
8336 esym.jmptbl = 0;
8337 esym.cobol_main = 0;
8338 esym.weakext = 0;
8339 esym.reserved = 0;
8340 esym.ifd = ifdNil;
8341 esym.asym.iss = issNil;
8342 esym.asym.st = stLocal;
8343 esym.asym.reserved = 0;
8344 esym.asym.index = indexNil;
8345 last = 0;
8346 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8347 {
8348 esym.asym.sc = sc[i];
8349 s = bfd_get_section_by_name (abfd, secname[i]);
8350 if (s != NULL)
8351 {
8352 esym.asym.value = s->vma;
8353 last = s->vma + s->size;
8354 }
8355 else
8356 esym.asym.value = last;
8357 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8358 secname[i], &esym))
8359 return FALSE;
8360 }
8361
8362 for (p = o->link_order_head; p != NULL; p = p->next)
8363 {
8364 asection *input_section;
8365 bfd *input_bfd;
8366 const struct ecoff_debug_swap *input_swap;
8367 struct ecoff_debug_info input_debug;
8368 char *eraw_src;
8369 char *eraw_end;
8370
8371 if (p->type != bfd_indirect_link_order)
8372 {
8373 if (p->type == bfd_data_link_order)
8374 continue;
8375 abort ();
8376 }
8377
8378 input_section = p->u.indirect.section;
8379 input_bfd = input_section->owner;
8380
8381 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8382 || (get_elf_backend_data (input_bfd)
8383 ->elf_backend_ecoff_debug_swap) == NULL)
8384 {
8385 /* I don't know what a non MIPS ELF bfd would be
8386 doing with a .mdebug section, but I don't really
8387 want to deal with it. */
8388 continue;
8389 }
8390
8391 input_swap = (get_elf_backend_data (input_bfd)
8392 ->elf_backend_ecoff_debug_swap);
8393
8394 BFD_ASSERT (p->size == input_section->size);
8395
8396 /* The ECOFF linking code expects that we have already
8397 read in the debugging information and set up an
8398 ecoff_debug_info structure, so we do that now. */
8399 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8400 &input_debug))
8401 return FALSE;
8402
8403 if (! (bfd_ecoff_debug_accumulate
8404 (mdebug_handle, abfd, &debug, swap, input_bfd,
8405 &input_debug, input_swap, info)))
8406 return FALSE;
8407
8408 /* Loop through the external symbols. For each one with
8409 interesting information, try to find the symbol in
8410 the linker global hash table and save the information
8411 for the output external symbols. */
8412 eraw_src = input_debug.external_ext;
8413 eraw_end = (eraw_src
8414 + (input_debug.symbolic_header.iextMax
8415 * input_swap->external_ext_size));
8416 for (;
8417 eraw_src < eraw_end;
8418 eraw_src += input_swap->external_ext_size)
8419 {
8420 EXTR ext;
8421 const char *name;
8422 struct mips_elf_link_hash_entry *h;
8423
8424 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
8425 if (ext.asym.sc == scNil
8426 || ext.asym.sc == scUndefined
8427 || ext.asym.sc == scSUndefined)
8428 continue;
8429
8430 name = input_debug.ssext + ext.asym.iss;
8431 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8432 name, FALSE, FALSE, TRUE);
8433 if (h == NULL || h->esym.ifd != -2)
8434 continue;
8435
8436 if (ext.ifd != -1)
8437 {
8438 BFD_ASSERT (ext.ifd
8439 < input_debug.symbolic_header.ifdMax);
8440 ext.ifd = input_debug.ifdmap[ext.ifd];
8441 }
8442
8443 h->esym = ext;
8444 }
8445
8446 /* Free up the information we just read. */
8447 free (input_debug.line);
8448 free (input_debug.external_dnr);
8449 free (input_debug.external_pdr);
8450 free (input_debug.external_sym);
8451 free (input_debug.external_opt);
8452 free (input_debug.external_aux);
8453 free (input_debug.ss);
8454 free (input_debug.ssext);
8455 free (input_debug.external_fdr);
8456 free (input_debug.external_rfd);
8457 free (input_debug.external_ext);
8458
8459 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8460 elf_link_input_bfd ignores this section. */
8461 input_section->flags &= ~SEC_HAS_CONTENTS;
8462 }
8463
8464 if (SGI_COMPAT (abfd) && info->shared)
8465 {
8466 /* Create .rtproc section. */
8467 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8468 if (rtproc_sec == NULL)
8469 {
8470 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8471 | SEC_LINKER_CREATED | SEC_READONLY);
8472
8473 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8474 if (rtproc_sec == NULL
8475 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8476 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8477 return FALSE;
8478 }
8479
8480 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8481 info, rtproc_sec,
8482 &debug))
8483 return FALSE;
8484 }
8485
8486 /* Build the external symbol information. */
8487 einfo.abfd = abfd;
8488 einfo.info = info;
8489 einfo.debug = &debug;
8490 einfo.swap = swap;
8491 einfo.failed = FALSE;
8492 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8493 mips_elf_output_extsym, &einfo);
8494 if (einfo.failed)
8495 return FALSE;
8496
8497 /* Set the size of the .mdebug section. */
8498 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
8499
8500 /* Skip this section later on (I don't think this currently
8501 matters, but someday it might). */
8502 o->link_order_head = NULL;
8503
8504 mdebug_sec = o;
8505 }
8506
8507 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8508 {
8509 const char *subname;
8510 unsigned int c;
8511 Elf32_gptab *tab;
8512 Elf32_External_gptab *ext_tab;
8513 unsigned int j;
8514
8515 /* The .gptab.sdata and .gptab.sbss sections hold
8516 information describing how the small data area would
8517 change depending upon the -G switch. These sections
8518 not used in executables files. */
8519 if (! info->relocatable)
8520 {
8521 for (p = o->link_order_head; p != NULL; p = p->next)
8522 {
8523 asection *input_section;
8524
8525 if (p->type != bfd_indirect_link_order)
8526 {
8527 if (p->type == bfd_data_link_order)
8528 continue;
8529 abort ();
8530 }
8531
8532 input_section = p->u.indirect.section;
8533
8534 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8535 elf_link_input_bfd ignores this section. */
8536 input_section->flags &= ~SEC_HAS_CONTENTS;
8537 }
8538
8539 /* Skip this section later on (I don't think this
8540 currently matters, but someday it might). */
8541 o->link_order_head = NULL;
8542
8543 /* Really remove the section. */
8544 for (secpp = &abfd->sections;
8545 *secpp != o;
8546 secpp = &(*secpp)->next)
8547 ;
8548 bfd_section_list_remove (abfd, secpp);
8549 --abfd->section_count;
8550
8551 continue;
8552 }
8553
8554 /* There is one gptab for initialized data, and one for
8555 uninitialized data. */
8556 if (strcmp (o->name, ".gptab.sdata") == 0)
8557 gptab_data_sec = o;
8558 else if (strcmp (o->name, ".gptab.sbss") == 0)
8559 gptab_bss_sec = o;
8560 else
8561 {
8562 (*_bfd_error_handler)
8563 (_("%s: illegal section name `%s'"),
8564 bfd_get_filename (abfd), o->name);
8565 bfd_set_error (bfd_error_nonrepresentable_section);
8566 return FALSE;
8567 }
8568
8569 /* The linker script always combines .gptab.data and
8570 .gptab.sdata into .gptab.sdata, and likewise for
8571 .gptab.bss and .gptab.sbss. It is possible that there is
8572 no .sdata or .sbss section in the output file, in which
8573 case we must change the name of the output section. */
8574 subname = o->name + sizeof ".gptab" - 1;
8575 if (bfd_get_section_by_name (abfd, subname) == NULL)
8576 {
8577 if (o == gptab_data_sec)
8578 o->name = ".gptab.data";
8579 else
8580 o->name = ".gptab.bss";
8581 subname = o->name + sizeof ".gptab" - 1;
8582 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8583 }
8584
8585 /* Set up the first entry. */
8586 c = 1;
8587 amt = c * sizeof (Elf32_gptab);
8588 tab = bfd_malloc (amt);
8589 if (tab == NULL)
8590 return FALSE;
8591 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8592 tab[0].gt_header.gt_unused = 0;
8593
8594 /* Combine the input sections. */
8595 for (p = o->link_order_head; p != NULL; p = p->next)
8596 {
8597 asection *input_section;
8598 bfd *input_bfd;
8599 bfd_size_type size;
8600 unsigned long last;
8601 bfd_size_type gpentry;
8602
8603 if (p->type != bfd_indirect_link_order)
8604 {
8605 if (p->type == bfd_data_link_order)
8606 continue;
8607 abort ();
8608 }
8609
8610 input_section = p->u.indirect.section;
8611 input_bfd = input_section->owner;
8612
8613 /* Combine the gptab entries for this input section one
8614 by one. We know that the input gptab entries are
8615 sorted by ascending -G value. */
8616 size = input_section->size;
8617 last = 0;
8618 for (gpentry = sizeof (Elf32_External_gptab);
8619 gpentry < size;
8620 gpentry += sizeof (Elf32_External_gptab))
8621 {
8622 Elf32_External_gptab ext_gptab;
8623 Elf32_gptab int_gptab;
8624 unsigned long val;
8625 unsigned long add;
8626 bfd_boolean exact;
8627 unsigned int look;
8628
8629 if (! (bfd_get_section_contents
8630 (input_bfd, input_section, &ext_gptab, gpentry,
8631 sizeof (Elf32_External_gptab))))
8632 {
8633 free (tab);
8634 return FALSE;
8635 }
8636
8637 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8638 &int_gptab);
8639 val = int_gptab.gt_entry.gt_g_value;
8640 add = int_gptab.gt_entry.gt_bytes - last;
8641
8642 exact = FALSE;
8643 for (look = 1; look < c; look++)
8644 {
8645 if (tab[look].gt_entry.gt_g_value >= val)
8646 tab[look].gt_entry.gt_bytes += add;
8647
8648 if (tab[look].gt_entry.gt_g_value == val)
8649 exact = TRUE;
8650 }
8651
8652 if (! exact)
8653 {
8654 Elf32_gptab *new_tab;
8655 unsigned int max;
8656
8657 /* We need a new table entry. */
8658 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8659 new_tab = bfd_realloc (tab, amt);
8660 if (new_tab == NULL)
8661 {
8662 free (tab);
8663 return FALSE;
8664 }
8665 tab = new_tab;
8666 tab[c].gt_entry.gt_g_value = val;
8667 tab[c].gt_entry.gt_bytes = add;
8668
8669 /* Merge in the size for the next smallest -G
8670 value, since that will be implied by this new
8671 value. */
8672 max = 0;
8673 for (look = 1; look < c; look++)
8674 {
8675 if (tab[look].gt_entry.gt_g_value < val
8676 && (max == 0
8677 || (tab[look].gt_entry.gt_g_value
8678 > tab[max].gt_entry.gt_g_value)))
8679 max = look;
8680 }
8681 if (max != 0)
8682 tab[c].gt_entry.gt_bytes +=
8683 tab[max].gt_entry.gt_bytes;
8684
8685 ++c;
8686 }
8687
8688 last = int_gptab.gt_entry.gt_bytes;
8689 }
8690
8691 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8692 elf_link_input_bfd ignores this section. */
8693 input_section->flags &= ~SEC_HAS_CONTENTS;
8694 }
8695
8696 /* The table must be sorted by -G value. */
8697 if (c > 2)
8698 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8699
8700 /* Swap out the table. */
8701 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8702 ext_tab = bfd_alloc (abfd, amt);
8703 if (ext_tab == NULL)
8704 {
8705 free (tab);
8706 return FALSE;
8707 }
8708
8709 for (j = 0; j < c; j++)
8710 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8711 free (tab);
8712
8713 o->size = c * sizeof (Elf32_External_gptab);
8714 o->contents = (bfd_byte *) ext_tab;
8715
8716 /* Skip this section later on (I don't think this currently
8717 matters, but someday it might). */
8718 o->link_order_head = NULL;
8719 }
8720 }
8721
8722 /* Invoke the regular ELF backend linker to do all the work. */
8723 if (!bfd_elf_final_link (abfd, info))
8724 return FALSE;
8725
8726 /* Now write out the computed sections. */
8727
8728 if (reginfo_sec != NULL)
8729 {
8730 Elf32_External_RegInfo ext;
8731
8732 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8733 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
8734 return FALSE;
8735 }
8736
8737 if (mdebug_sec != NULL)
8738 {
8739 BFD_ASSERT (abfd->output_has_begun);
8740 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8741 swap, info,
8742 mdebug_sec->filepos))
8743 return FALSE;
8744
8745 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8746 }
8747
8748 if (gptab_data_sec != NULL)
8749 {
8750 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8751 gptab_data_sec->contents,
8752 0, gptab_data_sec->size))
8753 return FALSE;
8754 }
8755
8756 if (gptab_bss_sec != NULL)
8757 {
8758 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8759 gptab_bss_sec->contents,
8760 0, gptab_bss_sec->size))
8761 return FALSE;
8762 }
8763
8764 if (SGI_COMPAT (abfd))
8765 {
8766 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8767 if (rtproc_sec != NULL)
8768 {
8769 if (! bfd_set_section_contents (abfd, rtproc_sec,
8770 rtproc_sec->contents,
8771 0, rtproc_sec->size))
8772 return FALSE;
8773 }
8774 }
8775
8776 return TRUE;
8777 }
8778 \f
8779 /* Structure for saying that BFD machine EXTENSION extends BASE. */
8780
8781 struct mips_mach_extension {
8782 unsigned long extension, base;
8783 };
8784
8785
8786 /* An array describing how BFD machines relate to one another. The entries
8787 are ordered topologically with MIPS I extensions listed last. */
8788
8789 static const struct mips_mach_extension mips_mach_extensions[] = {
8790 /* MIPS64 extensions. */
8791 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
8792 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8793
8794 /* MIPS V extensions. */
8795 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8796
8797 /* R10000 extensions. */
8798 { bfd_mach_mips12000, bfd_mach_mips10000 },
8799
8800 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8801 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8802 better to allow vr5400 and vr5500 code to be merged anyway, since
8803 many libraries will just use the core ISA. Perhaps we could add
8804 some sort of ASE flag if this ever proves a problem. */
8805 { bfd_mach_mips5500, bfd_mach_mips5400 },
8806 { bfd_mach_mips5400, bfd_mach_mips5000 },
8807
8808 /* MIPS IV extensions. */
8809 { bfd_mach_mips5, bfd_mach_mips8000 },
8810 { bfd_mach_mips10000, bfd_mach_mips8000 },
8811 { bfd_mach_mips5000, bfd_mach_mips8000 },
8812 { bfd_mach_mips7000, bfd_mach_mips8000 },
8813
8814 /* VR4100 extensions. */
8815 { bfd_mach_mips4120, bfd_mach_mips4100 },
8816 { bfd_mach_mips4111, bfd_mach_mips4100 },
8817
8818 /* MIPS III extensions. */
8819 { bfd_mach_mips8000, bfd_mach_mips4000 },
8820 { bfd_mach_mips4650, bfd_mach_mips4000 },
8821 { bfd_mach_mips4600, bfd_mach_mips4000 },
8822 { bfd_mach_mips4400, bfd_mach_mips4000 },
8823 { bfd_mach_mips4300, bfd_mach_mips4000 },
8824 { bfd_mach_mips4100, bfd_mach_mips4000 },
8825 { bfd_mach_mips4010, bfd_mach_mips4000 },
8826
8827 /* MIPS32 extensions. */
8828 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8829
8830 /* MIPS II extensions. */
8831 { bfd_mach_mips4000, bfd_mach_mips6000 },
8832 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8833
8834 /* MIPS I extensions. */
8835 { bfd_mach_mips6000, bfd_mach_mips3000 },
8836 { bfd_mach_mips3900, bfd_mach_mips3000 }
8837 };
8838
8839
8840 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8841
8842 static bfd_boolean
8843 mips_mach_extends_p (unsigned long base, unsigned long extension)
8844 {
8845 size_t i;
8846
8847 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8848 if (extension == mips_mach_extensions[i].extension)
8849 extension = mips_mach_extensions[i].base;
8850
8851 return extension == base;
8852 }
8853
8854
8855 /* Return true if the given ELF header flags describe a 32-bit binary. */
8856
8857 static bfd_boolean
8858 mips_32bit_flags_p (flagword flags)
8859 {
8860 return ((flags & EF_MIPS_32BITMODE) != 0
8861 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8862 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8863 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8864 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8865 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8866 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
8867 }
8868
8869
8870 /* Merge backend specific data from an object file to the output
8871 object file when linking. */
8872
8873 bfd_boolean
8874 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
8875 {
8876 flagword old_flags;
8877 flagword new_flags;
8878 bfd_boolean ok;
8879 bfd_boolean null_input_bfd = TRUE;
8880 asection *sec;
8881
8882 /* Check if we have the same endianess */
8883 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8884 {
8885 (*_bfd_error_handler)
8886 (_("%B: endianness incompatible with that of the selected emulation"),
8887 ibfd);
8888 return FALSE;
8889 }
8890
8891 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8892 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8893 return TRUE;
8894
8895 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8896 {
8897 (*_bfd_error_handler)
8898 (_("%B: ABI is incompatible with that of the selected emulation"),
8899 ibfd);
8900 return FALSE;
8901 }
8902
8903 new_flags = elf_elfheader (ibfd)->e_flags;
8904 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8905 old_flags = elf_elfheader (obfd)->e_flags;
8906
8907 if (! elf_flags_init (obfd))
8908 {
8909 elf_flags_init (obfd) = TRUE;
8910 elf_elfheader (obfd)->e_flags = new_flags;
8911 elf_elfheader (obfd)->e_ident[EI_CLASS]
8912 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8913
8914 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8915 && bfd_get_arch_info (obfd)->the_default)
8916 {
8917 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8918 bfd_get_mach (ibfd)))
8919 return FALSE;
8920 }
8921
8922 return TRUE;
8923 }
8924
8925 /* Check flag compatibility. */
8926
8927 new_flags &= ~EF_MIPS_NOREORDER;
8928 old_flags &= ~EF_MIPS_NOREORDER;
8929
8930 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8931 doesn't seem to matter. */
8932 new_flags &= ~EF_MIPS_XGOT;
8933 old_flags &= ~EF_MIPS_XGOT;
8934
8935 /* MIPSpro generates ucode info in n64 objects. Again, we should
8936 just be able to ignore this. */
8937 new_flags &= ~EF_MIPS_UCODE;
8938 old_flags &= ~EF_MIPS_UCODE;
8939
8940 if (new_flags == old_flags)
8941 return TRUE;
8942
8943 /* Check to see if the input BFD actually contains any sections.
8944 If not, its flags may not have been initialised either, but it cannot
8945 actually cause any incompatibility. */
8946 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8947 {
8948 /* Ignore synthetic sections and empty .text, .data and .bss sections
8949 which are automatically generated by gas. */
8950 if (strcmp (sec->name, ".reginfo")
8951 && strcmp (sec->name, ".mdebug")
8952 && (sec->size != 0
8953 || (strcmp (sec->name, ".text")
8954 && strcmp (sec->name, ".data")
8955 && strcmp (sec->name, ".bss"))))
8956 {
8957 null_input_bfd = FALSE;
8958 break;
8959 }
8960 }
8961 if (null_input_bfd)
8962 return TRUE;
8963
8964 ok = TRUE;
8965
8966 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
8967 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
8968 {
8969 (*_bfd_error_handler)
8970 (_("%B: warning: linking PIC files with non-PIC files"),
8971 ibfd);
8972 ok = TRUE;
8973 }
8974
8975 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
8976 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
8977 if (! (new_flags & EF_MIPS_PIC))
8978 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
8979
8980 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8981 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8982
8983 /* Compare the ISAs. */
8984 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
8985 {
8986 (*_bfd_error_handler)
8987 (_("%B: linking 32-bit code with 64-bit code"),
8988 ibfd);
8989 ok = FALSE;
8990 }
8991 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
8992 {
8993 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
8994 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
8995 {
8996 /* Copy the architecture info from IBFD to OBFD. Also copy
8997 the 32-bit flag (if set) so that we continue to recognise
8998 OBFD as a 32-bit binary. */
8999 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9000 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9001 elf_elfheader (obfd)->e_flags
9002 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9003
9004 /* Copy across the ABI flags if OBFD doesn't use them
9005 and if that was what caused us to treat IBFD as 32-bit. */
9006 if ((old_flags & EF_MIPS_ABI) == 0
9007 && mips_32bit_flags_p (new_flags)
9008 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9009 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9010 }
9011 else
9012 {
9013 /* The ISAs aren't compatible. */
9014 (*_bfd_error_handler)
9015 (_("%B: linking %s module with previous %s modules"),
9016 ibfd,
9017 bfd_printable_name (ibfd),
9018 bfd_printable_name (obfd));
9019 ok = FALSE;
9020 }
9021 }
9022
9023 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9024 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9025
9026 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9027 does set EI_CLASS differently from any 32-bit ABI. */
9028 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9029 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9030 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9031 {
9032 /* Only error if both are set (to different values). */
9033 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9034 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9035 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9036 {
9037 (*_bfd_error_handler)
9038 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9039 ibfd,
9040 elf_mips_abi_name (ibfd),
9041 elf_mips_abi_name (obfd));
9042 ok = FALSE;
9043 }
9044 new_flags &= ~EF_MIPS_ABI;
9045 old_flags &= ~EF_MIPS_ABI;
9046 }
9047
9048 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9049 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9050 {
9051 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9052
9053 new_flags &= ~ EF_MIPS_ARCH_ASE;
9054 old_flags &= ~ EF_MIPS_ARCH_ASE;
9055 }
9056
9057 /* Warn about any other mismatches */
9058 if (new_flags != old_flags)
9059 {
9060 (*_bfd_error_handler)
9061 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9062 ibfd, (unsigned long) new_flags,
9063 (unsigned long) old_flags);
9064 ok = FALSE;
9065 }
9066
9067 if (! ok)
9068 {
9069 bfd_set_error (bfd_error_bad_value);
9070 return FALSE;
9071 }
9072
9073 return TRUE;
9074 }
9075
9076 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9077
9078 bfd_boolean
9079 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
9080 {
9081 BFD_ASSERT (!elf_flags_init (abfd)
9082 || elf_elfheader (abfd)->e_flags == flags);
9083
9084 elf_elfheader (abfd)->e_flags = flags;
9085 elf_flags_init (abfd) = TRUE;
9086 return TRUE;
9087 }
9088
9089 bfd_boolean
9090 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
9091 {
9092 FILE *file = ptr;
9093
9094 BFD_ASSERT (abfd != NULL && ptr != NULL);
9095
9096 /* Print normal ELF private data. */
9097 _bfd_elf_print_private_bfd_data (abfd, ptr);
9098
9099 /* xgettext:c-format */
9100 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9101
9102 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9103 fprintf (file, _(" [abi=O32]"));
9104 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9105 fprintf (file, _(" [abi=O64]"));
9106 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9107 fprintf (file, _(" [abi=EABI32]"));
9108 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9109 fprintf (file, _(" [abi=EABI64]"));
9110 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9111 fprintf (file, _(" [abi unknown]"));
9112 else if (ABI_N32_P (abfd))
9113 fprintf (file, _(" [abi=N32]"));
9114 else if (ABI_64_P (abfd))
9115 fprintf (file, _(" [abi=64]"));
9116 else
9117 fprintf (file, _(" [no abi set]"));
9118
9119 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9120 fprintf (file, _(" [mips1]"));
9121 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9122 fprintf (file, _(" [mips2]"));
9123 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9124 fprintf (file, _(" [mips3]"));
9125 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9126 fprintf (file, _(" [mips4]"));
9127 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9128 fprintf (file, _(" [mips5]"));
9129 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9130 fprintf (file, _(" [mips32]"));
9131 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9132 fprintf (file, _(" [mips64]"));
9133 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9134 fprintf (file, _(" [mips32r2]"));
9135 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9136 fprintf (file, _(" [mips64r2]"));
9137 else
9138 fprintf (file, _(" [unknown ISA]"));
9139
9140 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9141 fprintf (file, _(" [mdmx]"));
9142
9143 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9144 fprintf (file, _(" [mips16]"));
9145
9146 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9147 fprintf (file, _(" [32bitmode]"));
9148 else
9149 fprintf (file, _(" [not 32bitmode]"));
9150
9151 fputc ('\n', file);
9152
9153 return TRUE;
9154 }
9155
9156 struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9157 {
9158 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9159 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9160 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9161 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9162 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9163 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9164 { NULL, 0, 0, 0, 0 }
9165 };
This page took 0.225833 seconds and 4 git commands to generate.