daily update
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS(VAL) \
310 (0x41b90000 | (VAL)) /* lui t9,VAL */
311 #define LA25_J_MICROMIPS(VAL) \
312 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
313 #define LA25_ADDIU_MICROMIPS(VAL) \
314 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
315
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319 struct mips_elf_hash_sort_data
320 {
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334 };
335
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339 struct mips_elf_link_hash_entry
340 {
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
364
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
372
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423 #if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427 #endif
428
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
431
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
434
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
436 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
437 bfd_boolean use_rld_obj_head;
438
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
441
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
450
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
453
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
462 asection *sstubs;
463 asection *sgot;
464
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
467
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
470
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
473
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
476
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499 };
500
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
502
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
509 {
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
516 };
517
518 /* MIPS ELF private object data. */
519
520 struct mips_elf_obj_tdata
521 {
522 /* Generic ELF private object data. */
523 struct elf_obj_tdata root;
524
525 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
526 bfd *abi_fp_bfd;
527 };
528
529 /* Get MIPS ELF private object data from BFD's tdata. */
530
531 #define mips_elf_tdata(bfd) \
532 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
533
534 #define TLS_RELOC_P(r_type) \
535 (r_type == R_MIPS_TLS_DTPMOD32 \
536 || r_type == R_MIPS_TLS_DTPMOD64 \
537 || r_type == R_MIPS_TLS_DTPREL32 \
538 || r_type == R_MIPS_TLS_DTPREL64 \
539 || r_type == R_MIPS_TLS_GD \
540 || r_type == R_MIPS_TLS_LDM \
541 || r_type == R_MIPS_TLS_DTPREL_HI16 \
542 || r_type == R_MIPS_TLS_DTPREL_LO16 \
543 || r_type == R_MIPS_TLS_GOTTPREL \
544 || r_type == R_MIPS_TLS_TPREL32 \
545 || r_type == R_MIPS_TLS_TPREL64 \
546 || r_type == R_MIPS_TLS_TPREL_HI16 \
547 || r_type == R_MIPS_TLS_TPREL_LO16 \
548 || r_type == R_MIPS16_TLS_GD \
549 || r_type == R_MIPS16_TLS_LDM \
550 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
551 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
552 || r_type == R_MIPS16_TLS_GOTTPREL \
553 || r_type == R_MIPS16_TLS_TPREL_HI16 \
554 || r_type == R_MIPS16_TLS_TPREL_LO16 \
555 || r_type == R_MICROMIPS_TLS_GD \
556 || r_type == R_MICROMIPS_TLS_LDM \
557 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
558 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
559 || r_type == R_MICROMIPS_TLS_GOTTPREL \
560 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
561 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
562
563 /* Structure used to pass information to mips_elf_output_extsym. */
564
565 struct extsym_info
566 {
567 bfd *abfd;
568 struct bfd_link_info *info;
569 struct ecoff_debug_info *debug;
570 const struct ecoff_debug_swap *swap;
571 bfd_boolean failed;
572 };
573
574 /* The names of the runtime procedure table symbols used on IRIX5. */
575
576 static const char * const mips_elf_dynsym_rtproc_names[] =
577 {
578 "_procedure_table",
579 "_procedure_string_table",
580 "_procedure_table_size",
581 NULL
582 };
583
584 /* These structures are used to generate the .compact_rel section on
585 IRIX5. */
586
587 typedef struct
588 {
589 unsigned long id1; /* Always one? */
590 unsigned long num; /* Number of compact relocation entries. */
591 unsigned long id2; /* Always two? */
592 unsigned long offset; /* The file offset of the first relocation. */
593 unsigned long reserved0; /* Zero? */
594 unsigned long reserved1; /* Zero? */
595 } Elf32_compact_rel;
596
597 typedef struct
598 {
599 bfd_byte id1[4];
600 bfd_byte num[4];
601 bfd_byte id2[4];
602 bfd_byte offset[4];
603 bfd_byte reserved0[4];
604 bfd_byte reserved1[4];
605 } Elf32_External_compact_rel;
606
607 typedef struct
608 {
609 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
610 unsigned int rtype : 4; /* Relocation types. See below. */
611 unsigned int dist2to : 8;
612 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
613 unsigned long konst; /* KONST field. See below. */
614 unsigned long vaddr; /* VADDR to be relocated. */
615 } Elf32_crinfo;
616
617 typedef struct
618 {
619 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
620 unsigned int rtype : 4; /* Relocation types. See below. */
621 unsigned int dist2to : 8;
622 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
623 unsigned long konst; /* KONST field. See below. */
624 } Elf32_crinfo2;
625
626 typedef struct
627 {
628 bfd_byte info[4];
629 bfd_byte konst[4];
630 bfd_byte vaddr[4];
631 } Elf32_External_crinfo;
632
633 typedef struct
634 {
635 bfd_byte info[4];
636 bfd_byte konst[4];
637 } Elf32_External_crinfo2;
638
639 /* These are the constants used to swap the bitfields in a crinfo. */
640
641 #define CRINFO_CTYPE (0x1)
642 #define CRINFO_CTYPE_SH (31)
643 #define CRINFO_RTYPE (0xf)
644 #define CRINFO_RTYPE_SH (27)
645 #define CRINFO_DIST2TO (0xff)
646 #define CRINFO_DIST2TO_SH (19)
647 #define CRINFO_RELVADDR (0x7ffff)
648 #define CRINFO_RELVADDR_SH (0)
649
650 /* A compact relocation info has long (3 words) or short (2 words)
651 formats. A short format doesn't have VADDR field and relvaddr
652 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
653 #define CRF_MIPS_LONG 1
654 #define CRF_MIPS_SHORT 0
655
656 /* There are 4 types of compact relocation at least. The value KONST
657 has different meaning for each type:
658
659 (type) (konst)
660 CT_MIPS_REL32 Address in data
661 CT_MIPS_WORD Address in word (XXX)
662 CT_MIPS_GPHI_LO GP - vaddr
663 CT_MIPS_JMPAD Address to jump
664 */
665
666 #define CRT_MIPS_REL32 0xa
667 #define CRT_MIPS_WORD 0xb
668 #define CRT_MIPS_GPHI_LO 0xc
669 #define CRT_MIPS_JMPAD 0xd
670
671 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
672 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
673 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
674 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
675 \f
676 /* The structure of the runtime procedure descriptor created by the
677 loader for use by the static exception system. */
678
679 typedef struct runtime_pdr {
680 bfd_vma adr; /* Memory address of start of procedure. */
681 long regmask; /* Save register mask. */
682 long regoffset; /* Save register offset. */
683 long fregmask; /* Save floating point register mask. */
684 long fregoffset; /* Save floating point register offset. */
685 long frameoffset; /* Frame size. */
686 short framereg; /* Frame pointer register. */
687 short pcreg; /* Offset or reg of return pc. */
688 long irpss; /* Index into the runtime string table. */
689 long reserved;
690 struct exception_info *exception_info;/* Pointer to exception array. */
691 } RPDR, *pRPDR;
692 #define cbRPDR sizeof (RPDR)
693 #define rpdNil ((pRPDR) 0)
694 \f
695 static struct mips_got_entry *mips_elf_create_local_got_entry
696 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
697 struct mips_elf_link_hash_entry *, int);
698 static bfd_boolean mips_elf_sort_hash_table_f
699 (struct mips_elf_link_hash_entry *, void *);
700 static bfd_vma mips_elf_high
701 (bfd_vma);
702 static bfd_boolean mips_elf_create_dynamic_relocation
703 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
704 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
705 bfd_vma *, asection *);
706 static hashval_t mips_elf_got_entry_hash
707 (const void *);
708 static bfd_vma mips_elf_adjust_gp
709 (bfd *, struct mips_got_info *, bfd *);
710 static struct mips_got_info *mips_elf_got_for_ibfd
711 (struct mips_got_info *, bfd *);
712
713 /* This will be used when we sort the dynamic relocation records. */
714 static bfd *reldyn_sorting_bfd;
715
716 /* True if ABFD is for CPUs with load interlocking that include
717 non-MIPS1 CPUs and R3900. */
718 #define LOAD_INTERLOCKS_P(abfd) \
719 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
720 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
721
722 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
723 This should be safe for all architectures. We enable this predicate
724 for RM9000 for now. */
725 #define JAL_TO_BAL_P(abfd) \
726 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
727
728 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
729 This should be safe for all architectures. We enable this predicate for
730 all CPUs. */
731 #define JALR_TO_BAL_P(abfd) 1
732
733 /* True if ABFD is for CPUs that are faster if JR is converted to B.
734 This should be safe for all architectures. We enable this predicate for
735 all CPUs. */
736 #define JR_TO_B_P(abfd) 1
737
738 /* True if ABFD is a PIC object. */
739 #define PIC_OBJECT_P(abfd) \
740 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
741
742 /* Nonzero if ABFD is using the N32 ABI. */
743 #define ABI_N32_P(abfd) \
744 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
745
746 /* Nonzero if ABFD is using the N64 ABI. */
747 #define ABI_64_P(abfd) \
748 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
749
750 /* Nonzero if ABFD is using NewABI conventions. */
751 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
752
753 /* The IRIX compatibility level we are striving for. */
754 #define IRIX_COMPAT(abfd) \
755 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
756
757 /* Whether we are trying to be compatible with IRIX at all. */
758 #define SGI_COMPAT(abfd) \
759 (IRIX_COMPAT (abfd) != ict_none)
760
761 /* The name of the options section. */
762 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
763 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
764
765 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
766 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
767 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
768 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
769
770 /* Whether the section is readonly. */
771 #define MIPS_ELF_READONLY_SECTION(sec) \
772 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
773 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
774
775 /* The name of the stub section. */
776 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
777
778 /* The size of an external REL relocation. */
779 #define MIPS_ELF_REL_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->sizeof_rel)
781
782 /* The size of an external RELA relocation. */
783 #define MIPS_ELF_RELA_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_rela)
785
786 /* The size of an external dynamic table entry. */
787 #define MIPS_ELF_DYN_SIZE(abfd) \
788 (get_elf_backend_data (abfd)->s->sizeof_dyn)
789
790 /* The size of a GOT entry. */
791 #define MIPS_ELF_GOT_SIZE(abfd) \
792 (get_elf_backend_data (abfd)->s->arch_size / 8)
793
794 /* The size of the .rld_map section. */
795 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
796 (get_elf_backend_data (abfd)->s->arch_size / 8)
797
798 /* The size of a symbol-table entry. */
799 #define MIPS_ELF_SYM_SIZE(abfd) \
800 (get_elf_backend_data (abfd)->s->sizeof_sym)
801
802 /* The default alignment for sections, as a power of two. */
803 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
804 (get_elf_backend_data (abfd)->s->log_file_align)
805
806 /* Get word-sized data. */
807 #define MIPS_ELF_GET_WORD(abfd, ptr) \
808 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
809
810 /* Put out word-sized data. */
811 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
812 (ABI_64_P (abfd) \
813 ? bfd_put_64 (abfd, val, ptr) \
814 : bfd_put_32 (abfd, val, ptr))
815
816 /* The opcode for word-sized loads (LW or LD). */
817 #define MIPS_ELF_LOAD_WORD(abfd) \
818 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
819
820 /* Add a dynamic symbol table-entry. */
821 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
822 _bfd_elf_add_dynamic_entry (info, tag, val)
823
824 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
825 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
826
827 /* The name of the dynamic relocation section. */
828 #define MIPS_ELF_REL_DYN_NAME(INFO) \
829 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
830
831 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
832 from smaller values. Start with zero, widen, *then* decrement. */
833 #define MINUS_ONE (((bfd_vma)0) - 1)
834 #define MINUS_TWO (((bfd_vma)0) - 2)
835
836 /* The value to write into got[1] for SVR4 targets, to identify it is
837 a GNU object. The dynamic linker can then use got[1] to store the
838 module pointer. */
839 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
840 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
841
842 /* The offset of $gp from the beginning of the .got section. */
843 #define ELF_MIPS_GP_OFFSET(INFO) \
844 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
845
846 /* The maximum size of the GOT for it to be addressable using 16-bit
847 offsets from $gp. */
848 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
849
850 /* Instructions which appear in a stub. */
851 #define STUB_LW(abfd) \
852 ((ABI_64_P (abfd) \
853 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
854 : 0x8f998010)) /* lw t9,0x8010(gp) */
855 #define STUB_MOVE(abfd) \
856 ((ABI_64_P (abfd) \
857 ? 0x03e0782d /* daddu t7,ra */ \
858 : 0x03e07821)) /* addu t7,ra */
859 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
860 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
861 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
862 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
863 #define STUB_LI16S(abfd, VAL) \
864 ((ABI_64_P (abfd) \
865 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
866 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
867
868 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
869 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
870
871 /* The name of the dynamic interpreter. This is put in the .interp
872 section. */
873
874 #define ELF_DYNAMIC_INTERPRETER(abfd) \
875 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
876 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
877 : "/usr/lib/libc.so.1")
878
879 #ifdef BFD64
880 #define MNAME(bfd,pre,pos) \
881 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
882 #define ELF_R_SYM(bfd, i) \
883 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
884 #define ELF_R_TYPE(bfd, i) \
885 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
886 #define ELF_R_INFO(bfd, s, t) \
887 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
888 #else
889 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
890 #define ELF_R_SYM(bfd, i) \
891 (ELF32_R_SYM (i))
892 #define ELF_R_TYPE(bfd, i) \
893 (ELF32_R_TYPE (i))
894 #define ELF_R_INFO(bfd, s, t) \
895 (ELF32_R_INFO (s, t))
896 #endif
897 \f
898 /* The mips16 compiler uses a couple of special sections to handle
899 floating point arguments.
900
901 Section names that look like .mips16.fn.FNNAME contain stubs that
902 copy floating point arguments from the fp regs to the gp regs and
903 then jump to FNNAME. If any 32 bit function calls FNNAME, the
904 call should be redirected to the stub instead. If no 32 bit
905 function calls FNNAME, the stub should be discarded. We need to
906 consider any reference to the function, not just a call, because
907 if the address of the function is taken we will need the stub,
908 since the address might be passed to a 32 bit function.
909
910 Section names that look like .mips16.call.FNNAME contain stubs
911 that copy floating point arguments from the gp regs to the fp
912 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
913 then any 16 bit function that calls FNNAME should be redirected
914 to the stub instead. If FNNAME is not a 32 bit function, the
915 stub should be discarded.
916
917 .mips16.call.fp.FNNAME sections are similar, but contain stubs
918 which call FNNAME and then copy the return value from the fp regs
919 to the gp regs. These stubs store the return value in $18 while
920 calling FNNAME; any function which might call one of these stubs
921 must arrange to save $18 around the call. (This case is not
922 needed for 32 bit functions that call 16 bit functions, because
923 16 bit functions always return floating point values in both
924 $f0/$f1 and $2/$3.)
925
926 Note that in all cases FNNAME might be defined statically.
927 Therefore, FNNAME is not used literally. Instead, the relocation
928 information will indicate which symbol the section is for.
929
930 We record any stubs that we find in the symbol table. */
931
932 #define FN_STUB ".mips16.fn."
933 #define CALL_STUB ".mips16.call."
934 #define CALL_FP_STUB ".mips16.call.fp."
935
936 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
937 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
938 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
939 \f
940 /* The format of the first PLT entry in an O32 executable. */
941 static const bfd_vma mips_o32_exec_plt0_entry[] =
942 {
943 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
944 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
945 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
946 0x031cc023, /* subu $24, $24, $28 */
947 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
948 0x0018c082, /* srl $24, $24, 2 */
949 0x0320f809, /* jalr $25 */
950 0x2718fffe /* subu $24, $24, 2 */
951 };
952
953 /* The format of the first PLT entry in an N32 executable. Different
954 because gp ($28) is not available; we use t2 ($14) instead. */
955 static const bfd_vma mips_n32_exec_plt0_entry[] =
956 {
957 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
958 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
959 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
960 0x030ec023, /* subu $24, $24, $14 */
961 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
962 0x0018c082, /* srl $24, $24, 2 */
963 0x0320f809, /* jalr $25 */
964 0x2718fffe /* subu $24, $24, 2 */
965 };
966
967 /* The format of the first PLT entry in an N64 executable. Different
968 from N32 because of the increased size of GOT entries. */
969 static const bfd_vma mips_n64_exec_plt0_entry[] =
970 {
971 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
972 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
973 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
974 0x030ec023, /* subu $24, $24, $14 */
975 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
976 0x0018c0c2, /* srl $24, $24, 3 */
977 0x0320f809, /* jalr $25 */
978 0x2718fffe /* subu $24, $24, 2 */
979 };
980
981 /* The format of subsequent PLT entries. */
982 static const bfd_vma mips_exec_plt_entry[] =
983 {
984 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
985 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
986 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
987 0x03200008 /* jr $25 */
988 };
989
990 /* The format of the first PLT entry in a VxWorks executable. */
991 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
992 {
993 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
994 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
995 0x8f390008, /* lw t9, 8(t9) */
996 0x00000000, /* nop */
997 0x03200008, /* jr t9 */
998 0x00000000 /* nop */
999 };
1000
1001 /* The format of subsequent PLT entries. */
1002 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1003 {
1004 0x10000000, /* b .PLT_resolver */
1005 0x24180000, /* li t8, <pltindex> */
1006 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1007 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1008 0x8f390000, /* lw t9, 0(t9) */
1009 0x00000000, /* nop */
1010 0x03200008, /* jr t9 */
1011 0x00000000 /* nop */
1012 };
1013
1014 /* The format of the first PLT entry in a VxWorks shared object. */
1015 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1016 {
1017 0x8f990008, /* lw t9, 8(gp) */
1018 0x00000000, /* nop */
1019 0x03200008, /* jr t9 */
1020 0x00000000, /* nop */
1021 0x00000000, /* nop */
1022 0x00000000 /* nop */
1023 };
1024
1025 /* The format of subsequent PLT entries. */
1026 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1027 {
1028 0x10000000, /* b .PLT_resolver */
1029 0x24180000 /* li t8, <pltindex> */
1030 };
1031 \f
1032 /* microMIPS 32-bit opcode helper installer. */
1033
1034 static void
1035 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1036 {
1037 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1038 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1039 }
1040
1041 /* microMIPS 32-bit opcode helper retriever. */
1042
1043 static bfd_vma
1044 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1045 {
1046 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1047 }
1048 \f
1049 /* Look up an entry in a MIPS ELF linker hash table. */
1050
1051 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1052 ((struct mips_elf_link_hash_entry *) \
1053 elf_link_hash_lookup (&(table)->root, (string), (create), \
1054 (copy), (follow)))
1055
1056 /* Traverse a MIPS ELF linker hash table. */
1057
1058 #define mips_elf_link_hash_traverse(table, func, info) \
1059 (elf_link_hash_traverse \
1060 (&(table)->root, \
1061 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1062 (info)))
1063
1064 /* Find the base offsets for thread-local storage in this object,
1065 for GD/LD and IE/LE respectively. */
1066
1067 #define TP_OFFSET 0x7000
1068 #define DTP_OFFSET 0x8000
1069
1070 static bfd_vma
1071 dtprel_base (struct bfd_link_info *info)
1072 {
1073 /* If tls_sec is NULL, we should have signalled an error already. */
1074 if (elf_hash_table (info)->tls_sec == NULL)
1075 return 0;
1076 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1077 }
1078
1079 static bfd_vma
1080 tprel_base (struct bfd_link_info *info)
1081 {
1082 /* If tls_sec is NULL, we should have signalled an error already. */
1083 if (elf_hash_table (info)->tls_sec == NULL)
1084 return 0;
1085 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1086 }
1087
1088 /* Create an entry in a MIPS ELF linker hash table. */
1089
1090 static struct bfd_hash_entry *
1091 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1092 struct bfd_hash_table *table, const char *string)
1093 {
1094 struct mips_elf_link_hash_entry *ret =
1095 (struct mips_elf_link_hash_entry *) entry;
1096
1097 /* Allocate the structure if it has not already been allocated by a
1098 subclass. */
1099 if (ret == NULL)
1100 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1101 if (ret == NULL)
1102 return (struct bfd_hash_entry *) ret;
1103
1104 /* Call the allocation method of the superclass. */
1105 ret = ((struct mips_elf_link_hash_entry *)
1106 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1107 table, string));
1108 if (ret != NULL)
1109 {
1110 /* Set local fields. */
1111 memset (&ret->esym, 0, sizeof (EXTR));
1112 /* We use -2 as a marker to indicate that the information has
1113 not been set. -1 means there is no associated ifd. */
1114 ret->esym.ifd = -2;
1115 ret->la25_stub = 0;
1116 ret->possibly_dynamic_relocs = 0;
1117 ret->fn_stub = NULL;
1118 ret->call_stub = NULL;
1119 ret->call_fp_stub = NULL;
1120 ret->tls_type = GOT_NORMAL;
1121 ret->global_got_area = GGA_NONE;
1122 ret->got_only_for_calls = TRUE;
1123 ret->readonly_reloc = FALSE;
1124 ret->has_static_relocs = FALSE;
1125 ret->no_fn_stub = FALSE;
1126 ret->need_fn_stub = FALSE;
1127 ret->has_nonpic_branches = FALSE;
1128 ret->needs_lazy_stub = FALSE;
1129 }
1130
1131 return (struct bfd_hash_entry *) ret;
1132 }
1133
1134 /* Allocate MIPS ELF private object data. */
1135
1136 bfd_boolean
1137 _bfd_mips_elf_mkobject (bfd *abfd)
1138 {
1139 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1140 MIPS_ELF_DATA);
1141 }
1142
1143 bfd_boolean
1144 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1145 {
1146 if (!sec->used_by_bfd)
1147 {
1148 struct _mips_elf_section_data *sdata;
1149 bfd_size_type amt = sizeof (*sdata);
1150
1151 sdata = bfd_zalloc (abfd, amt);
1152 if (sdata == NULL)
1153 return FALSE;
1154 sec->used_by_bfd = sdata;
1155 }
1156
1157 return _bfd_elf_new_section_hook (abfd, sec);
1158 }
1159 \f
1160 /* Read ECOFF debugging information from a .mdebug section into a
1161 ecoff_debug_info structure. */
1162
1163 bfd_boolean
1164 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1165 struct ecoff_debug_info *debug)
1166 {
1167 HDRR *symhdr;
1168 const struct ecoff_debug_swap *swap;
1169 char *ext_hdr;
1170
1171 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1172 memset (debug, 0, sizeof (*debug));
1173
1174 ext_hdr = bfd_malloc (swap->external_hdr_size);
1175 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1176 goto error_return;
1177
1178 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1179 swap->external_hdr_size))
1180 goto error_return;
1181
1182 symhdr = &debug->symbolic_header;
1183 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1184
1185 /* The symbolic header contains absolute file offsets and sizes to
1186 read. */
1187 #define READ(ptr, offset, count, size, type) \
1188 if (symhdr->count == 0) \
1189 debug->ptr = NULL; \
1190 else \
1191 { \
1192 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1193 debug->ptr = bfd_malloc (amt); \
1194 if (debug->ptr == NULL) \
1195 goto error_return; \
1196 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1197 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1198 goto error_return; \
1199 }
1200
1201 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1202 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1203 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1204 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1205 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1206 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1207 union aux_ext *);
1208 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1209 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1210 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1211 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1212 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1213 #undef READ
1214
1215 debug->fdr = NULL;
1216
1217 return TRUE;
1218
1219 error_return:
1220 if (ext_hdr != NULL)
1221 free (ext_hdr);
1222 if (debug->line != NULL)
1223 free (debug->line);
1224 if (debug->external_dnr != NULL)
1225 free (debug->external_dnr);
1226 if (debug->external_pdr != NULL)
1227 free (debug->external_pdr);
1228 if (debug->external_sym != NULL)
1229 free (debug->external_sym);
1230 if (debug->external_opt != NULL)
1231 free (debug->external_opt);
1232 if (debug->external_aux != NULL)
1233 free (debug->external_aux);
1234 if (debug->ss != NULL)
1235 free (debug->ss);
1236 if (debug->ssext != NULL)
1237 free (debug->ssext);
1238 if (debug->external_fdr != NULL)
1239 free (debug->external_fdr);
1240 if (debug->external_rfd != NULL)
1241 free (debug->external_rfd);
1242 if (debug->external_ext != NULL)
1243 free (debug->external_ext);
1244 return FALSE;
1245 }
1246 \f
1247 /* Swap RPDR (runtime procedure table entry) for output. */
1248
1249 static void
1250 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1251 {
1252 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1253 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1254 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1255 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1256 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1257 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1258
1259 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1260 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1261
1262 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1263 }
1264
1265 /* Create a runtime procedure table from the .mdebug section. */
1266
1267 static bfd_boolean
1268 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1269 struct bfd_link_info *info, asection *s,
1270 struct ecoff_debug_info *debug)
1271 {
1272 const struct ecoff_debug_swap *swap;
1273 HDRR *hdr = &debug->symbolic_header;
1274 RPDR *rpdr, *rp;
1275 struct rpdr_ext *erp;
1276 void *rtproc;
1277 struct pdr_ext *epdr;
1278 struct sym_ext *esym;
1279 char *ss, **sv;
1280 char *str;
1281 bfd_size_type size;
1282 bfd_size_type count;
1283 unsigned long sindex;
1284 unsigned long i;
1285 PDR pdr;
1286 SYMR sym;
1287 const char *no_name_func = _("static procedure (no name)");
1288
1289 epdr = NULL;
1290 rpdr = NULL;
1291 esym = NULL;
1292 ss = NULL;
1293 sv = NULL;
1294
1295 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1296
1297 sindex = strlen (no_name_func) + 1;
1298 count = hdr->ipdMax;
1299 if (count > 0)
1300 {
1301 size = swap->external_pdr_size;
1302
1303 epdr = bfd_malloc (size * count);
1304 if (epdr == NULL)
1305 goto error_return;
1306
1307 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1308 goto error_return;
1309
1310 size = sizeof (RPDR);
1311 rp = rpdr = bfd_malloc (size * count);
1312 if (rpdr == NULL)
1313 goto error_return;
1314
1315 size = sizeof (char *);
1316 sv = bfd_malloc (size * count);
1317 if (sv == NULL)
1318 goto error_return;
1319
1320 count = hdr->isymMax;
1321 size = swap->external_sym_size;
1322 esym = bfd_malloc (size * count);
1323 if (esym == NULL)
1324 goto error_return;
1325
1326 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1327 goto error_return;
1328
1329 count = hdr->issMax;
1330 ss = bfd_malloc (count);
1331 if (ss == NULL)
1332 goto error_return;
1333 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1334 goto error_return;
1335
1336 count = hdr->ipdMax;
1337 for (i = 0; i < (unsigned long) count; i++, rp++)
1338 {
1339 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1340 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1341 rp->adr = sym.value;
1342 rp->regmask = pdr.regmask;
1343 rp->regoffset = pdr.regoffset;
1344 rp->fregmask = pdr.fregmask;
1345 rp->fregoffset = pdr.fregoffset;
1346 rp->frameoffset = pdr.frameoffset;
1347 rp->framereg = pdr.framereg;
1348 rp->pcreg = pdr.pcreg;
1349 rp->irpss = sindex;
1350 sv[i] = ss + sym.iss;
1351 sindex += strlen (sv[i]) + 1;
1352 }
1353 }
1354
1355 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1356 size = BFD_ALIGN (size, 16);
1357 rtproc = bfd_alloc (abfd, size);
1358 if (rtproc == NULL)
1359 {
1360 mips_elf_hash_table (info)->procedure_count = 0;
1361 goto error_return;
1362 }
1363
1364 mips_elf_hash_table (info)->procedure_count = count + 2;
1365
1366 erp = rtproc;
1367 memset (erp, 0, sizeof (struct rpdr_ext));
1368 erp++;
1369 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1370 strcpy (str, no_name_func);
1371 str += strlen (no_name_func) + 1;
1372 for (i = 0; i < count; i++)
1373 {
1374 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1375 strcpy (str, sv[i]);
1376 str += strlen (sv[i]) + 1;
1377 }
1378 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1379
1380 /* Set the size and contents of .rtproc section. */
1381 s->size = size;
1382 s->contents = rtproc;
1383
1384 /* Skip this section later on (I don't think this currently
1385 matters, but someday it might). */
1386 s->map_head.link_order = NULL;
1387
1388 if (epdr != NULL)
1389 free (epdr);
1390 if (rpdr != NULL)
1391 free (rpdr);
1392 if (esym != NULL)
1393 free (esym);
1394 if (ss != NULL)
1395 free (ss);
1396 if (sv != NULL)
1397 free (sv);
1398
1399 return TRUE;
1400
1401 error_return:
1402 if (epdr != NULL)
1403 free (epdr);
1404 if (rpdr != NULL)
1405 free (rpdr);
1406 if (esym != NULL)
1407 free (esym);
1408 if (ss != NULL)
1409 free (ss);
1410 if (sv != NULL)
1411 free (sv);
1412 return FALSE;
1413 }
1414 \f
1415 /* We're going to create a stub for H. Create a symbol for the stub's
1416 value and size, to help make the disassembly easier to read. */
1417
1418 static bfd_boolean
1419 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1420 struct mips_elf_link_hash_entry *h,
1421 const char *prefix, asection *s, bfd_vma value,
1422 bfd_vma size)
1423 {
1424 struct bfd_link_hash_entry *bh;
1425 struct elf_link_hash_entry *elfh;
1426 const char *name;
1427
1428 if (ELF_ST_IS_MICROMIPS (h->root.other))
1429 value |= 1;
1430
1431 /* Create a new symbol. */
1432 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1433 bh = NULL;
1434 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1435 BSF_LOCAL, s, value, NULL,
1436 TRUE, FALSE, &bh))
1437 return FALSE;
1438
1439 /* Make it a local function. */
1440 elfh = (struct elf_link_hash_entry *) bh;
1441 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1442 elfh->size = size;
1443 elfh->forced_local = 1;
1444 return TRUE;
1445 }
1446
1447 /* We're about to redefine H. Create a symbol to represent H's
1448 current value and size, to help make the disassembly easier
1449 to read. */
1450
1451 static bfd_boolean
1452 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1453 struct mips_elf_link_hash_entry *h,
1454 const char *prefix)
1455 {
1456 struct bfd_link_hash_entry *bh;
1457 struct elf_link_hash_entry *elfh;
1458 const char *name;
1459 asection *s;
1460 bfd_vma value;
1461
1462 /* Read the symbol's value. */
1463 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1464 || h->root.root.type == bfd_link_hash_defweak);
1465 s = h->root.root.u.def.section;
1466 value = h->root.root.u.def.value;
1467
1468 /* Create a new symbol. */
1469 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1470 bh = NULL;
1471 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1472 BSF_LOCAL, s, value, NULL,
1473 TRUE, FALSE, &bh))
1474 return FALSE;
1475
1476 /* Make it local and copy the other attributes from H. */
1477 elfh = (struct elf_link_hash_entry *) bh;
1478 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1479 elfh->other = h->root.other;
1480 elfh->size = h->root.size;
1481 elfh->forced_local = 1;
1482 return TRUE;
1483 }
1484
1485 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1486 function rather than to a hard-float stub. */
1487
1488 static bfd_boolean
1489 section_allows_mips16_refs_p (asection *section)
1490 {
1491 const char *name;
1492
1493 name = bfd_get_section_name (section->owner, section);
1494 return (FN_STUB_P (name)
1495 || CALL_STUB_P (name)
1496 || CALL_FP_STUB_P (name)
1497 || strcmp (name, ".pdr") == 0);
1498 }
1499
1500 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1501 stub section of some kind. Return the R_SYMNDX of the target
1502 function, or 0 if we can't decide which function that is. */
1503
1504 static unsigned long
1505 mips16_stub_symndx (const struct elf_backend_data *bed,
1506 asection *sec ATTRIBUTE_UNUSED,
1507 const Elf_Internal_Rela *relocs,
1508 const Elf_Internal_Rela *relend)
1509 {
1510 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1511 const Elf_Internal_Rela *rel;
1512
1513 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1514 one in a compound relocation. */
1515 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1516 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1517 return ELF_R_SYM (sec->owner, rel->r_info);
1518
1519 /* Otherwise trust the first relocation, whatever its kind. This is
1520 the traditional behavior. */
1521 if (relocs < relend)
1522 return ELF_R_SYM (sec->owner, relocs->r_info);
1523
1524 return 0;
1525 }
1526
1527 /* Check the mips16 stubs for a particular symbol, and see if we can
1528 discard them. */
1529
1530 static void
1531 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1532 struct mips_elf_link_hash_entry *h)
1533 {
1534 /* Dynamic symbols must use the standard call interface, in case other
1535 objects try to call them. */
1536 if (h->fn_stub != NULL
1537 && h->root.dynindx != -1)
1538 {
1539 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1540 h->need_fn_stub = TRUE;
1541 }
1542
1543 if (h->fn_stub != NULL
1544 && ! h->need_fn_stub)
1545 {
1546 /* We don't need the fn_stub; the only references to this symbol
1547 are 16 bit calls. Clobber the size to 0 to prevent it from
1548 being included in the link. */
1549 h->fn_stub->size = 0;
1550 h->fn_stub->flags &= ~SEC_RELOC;
1551 h->fn_stub->reloc_count = 0;
1552 h->fn_stub->flags |= SEC_EXCLUDE;
1553 }
1554
1555 if (h->call_stub != NULL
1556 && ELF_ST_IS_MIPS16 (h->root.other))
1557 {
1558 /* We don't need the call_stub; this is a 16 bit function, so
1559 calls from other 16 bit functions are OK. Clobber the size
1560 to 0 to prevent it from being included in the link. */
1561 h->call_stub->size = 0;
1562 h->call_stub->flags &= ~SEC_RELOC;
1563 h->call_stub->reloc_count = 0;
1564 h->call_stub->flags |= SEC_EXCLUDE;
1565 }
1566
1567 if (h->call_fp_stub != NULL
1568 && ELF_ST_IS_MIPS16 (h->root.other))
1569 {
1570 /* We don't need the call_stub; this is a 16 bit function, so
1571 calls from other 16 bit functions are OK. Clobber the size
1572 to 0 to prevent it from being included in the link. */
1573 h->call_fp_stub->size = 0;
1574 h->call_fp_stub->flags &= ~SEC_RELOC;
1575 h->call_fp_stub->reloc_count = 0;
1576 h->call_fp_stub->flags |= SEC_EXCLUDE;
1577 }
1578 }
1579
1580 /* Hashtable callbacks for mips_elf_la25_stubs. */
1581
1582 static hashval_t
1583 mips_elf_la25_stub_hash (const void *entry_)
1584 {
1585 const struct mips_elf_la25_stub *entry;
1586
1587 entry = (struct mips_elf_la25_stub *) entry_;
1588 return entry->h->root.root.u.def.section->id
1589 + entry->h->root.root.u.def.value;
1590 }
1591
1592 static int
1593 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1594 {
1595 const struct mips_elf_la25_stub *entry1, *entry2;
1596
1597 entry1 = (struct mips_elf_la25_stub *) entry1_;
1598 entry2 = (struct mips_elf_la25_stub *) entry2_;
1599 return ((entry1->h->root.root.u.def.section
1600 == entry2->h->root.root.u.def.section)
1601 && (entry1->h->root.root.u.def.value
1602 == entry2->h->root.root.u.def.value));
1603 }
1604
1605 /* Called by the linker to set up the la25 stub-creation code. FN is
1606 the linker's implementation of add_stub_function. Return true on
1607 success. */
1608
1609 bfd_boolean
1610 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1611 asection *(*fn) (const char *, asection *,
1612 asection *))
1613 {
1614 struct mips_elf_link_hash_table *htab;
1615
1616 htab = mips_elf_hash_table (info);
1617 if (htab == NULL)
1618 return FALSE;
1619
1620 htab->add_stub_section = fn;
1621 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1622 mips_elf_la25_stub_eq, NULL);
1623 if (htab->la25_stubs == NULL)
1624 return FALSE;
1625
1626 return TRUE;
1627 }
1628
1629 /* Return true if H is a locally-defined PIC function, in the sense
1630 that it or its fn_stub might need $25 to be valid on entry.
1631 Note that MIPS16 functions set up $gp using PC-relative instructions,
1632 so they themselves never need $25 to be valid. Only non-MIPS16
1633 entry points are of interest here. */
1634
1635 static bfd_boolean
1636 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1637 {
1638 return ((h->root.root.type == bfd_link_hash_defined
1639 || h->root.root.type == bfd_link_hash_defweak)
1640 && h->root.def_regular
1641 && !bfd_is_abs_section (h->root.root.u.def.section)
1642 && (!ELF_ST_IS_MIPS16 (h->root.other)
1643 || (h->fn_stub && h->need_fn_stub))
1644 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1645 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1646 }
1647
1648 /* Set *SEC to the input section that contains the target of STUB.
1649 Return the offset of the target from the start of that section. */
1650
1651 static bfd_vma
1652 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1653 asection **sec)
1654 {
1655 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1656 {
1657 BFD_ASSERT (stub->h->need_fn_stub);
1658 *sec = stub->h->fn_stub;
1659 return 0;
1660 }
1661 else
1662 {
1663 *sec = stub->h->root.root.u.def.section;
1664 return stub->h->root.root.u.def.value;
1665 }
1666 }
1667
1668 /* STUB describes an la25 stub that we have decided to implement
1669 by inserting an LUI/ADDIU pair before the target function.
1670 Create the section and redirect the function symbol to it. */
1671
1672 static bfd_boolean
1673 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1674 struct bfd_link_info *info)
1675 {
1676 struct mips_elf_link_hash_table *htab;
1677 char *name;
1678 asection *s, *input_section;
1679 unsigned int align;
1680
1681 htab = mips_elf_hash_table (info);
1682 if (htab == NULL)
1683 return FALSE;
1684
1685 /* Create a unique name for the new section. */
1686 name = bfd_malloc (11 + sizeof (".text.stub."));
1687 if (name == NULL)
1688 return FALSE;
1689 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1690
1691 /* Create the section. */
1692 mips_elf_get_la25_target (stub, &input_section);
1693 s = htab->add_stub_section (name, input_section,
1694 input_section->output_section);
1695 if (s == NULL)
1696 return FALSE;
1697
1698 /* Make sure that any padding goes before the stub. */
1699 align = input_section->alignment_power;
1700 if (!bfd_set_section_alignment (s->owner, s, align))
1701 return FALSE;
1702 if (align > 3)
1703 s->size = (1 << align) - 8;
1704
1705 /* Create a symbol for the stub. */
1706 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1707 stub->stub_section = s;
1708 stub->offset = s->size;
1709
1710 /* Allocate room for it. */
1711 s->size += 8;
1712 return TRUE;
1713 }
1714
1715 /* STUB describes an la25 stub that we have decided to implement
1716 with a separate trampoline. Allocate room for it and redirect
1717 the function symbol to it. */
1718
1719 static bfd_boolean
1720 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1721 struct bfd_link_info *info)
1722 {
1723 struct mips_elf_link_hash_table *htab;
1724 asection *s;
1725
1726 htab = mips_elf_hash_table (info);
1727 if (htab == NULL)
1728 return FALSE;
1729
1730 /* Create a trampoline section, if we haven't already. */
1731 s = htab->strampoline;
1732 if (s == NULL)
1733 {
1734 asection *input_section = stub->h->root.root.u.def.section;
1735 s = htab->add_stub_section (".text", NULL,
1736 input_section->output_section);
1737 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1738 return FALSE;
1739 htab->strampoline = s;
1740 }
1741
1742 /* Create a symbol for the stub. */
1743 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1744 stub->stub_section = s;
1745 stub->offset = s->size;
1746
1747 /* Allocate room for it. */
1748 s->size += 16;
1749 return TRUE;
1750 }
1751
1752 /* H describes a symbol that needs an la25 stub. Make sure that an
1753 appropriate stub exists and point H at it. */
1754
1755 static bfd_boolean
1756 mips_elf_add_la25_stub (struct bfd_link_info *info,
1757 struct mips_elf_link_hash_entry *h)
1758 {
1759 struct mips_elf_link_hash_table *htab;
1760 struct mips_elf_la25_stub search, *stub;
1761 bfd_boolean use_trampoline_p;
1762 asection *s;
1763 bfd_vma value;
1764 void **slot;
1765
1766 /* Describe the stub we want. */
1767 search.stub_section = NULL;
1768 search.offset = 0;
1769 search.h = h;
1770
1771 /* See if we've already created an equivalent stub. */
1772 htab = mips_elf_hash_table (info);
1773 if (htab == NULL)
1774 return FALSE;
1775
1776 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1777 if (slot == NULL)
1778 return FALSE;
1779
1780 stub = (struct mips_elf_la25_stub *) *slot;
1781 if (stub != NULL)
1782 {
1783 /* We can reuse the existing stub. */
1784 h->la25_stub = stub;
1785 return TRUE;
1786 }
1787
1788 /* Create a permanent copy of ENTRY and add it to the hash table. */
1789 stub = bfd_malloc (sizeof (search));
1790 if (stub == NULL)
1791 return FALSE;
1792 *stub = search;
1793 *slot = stub;
1794
1795 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1796 of the section and if we would need no more than 2 nops. */
1797 value = mips_elf_get_la25_target (stub, &s);
1798 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1799
1800 h->la25_stub = stub;
1801 return (use_trampoline_p
1802 ? mips_elf_add_la25_trampoline (stub, info)
1803 : mips_elf_add_la25_intro (stub, info));
1804 }
1805
1806 /* A mips_elf_link_hash_traverse callback that is called before sizing
1807 sections. DATA points to a mips_htab_traverse_info structure. */
1808
1809 static bfd_boolean
1810 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1811 {
1812 struct mips_htab_traverse_info *hti;
1813
1814 hti = (struct mips_htab_traverse_info *) data;
1815 if (!hti->info->relocatable)
1816 mips_elf_check_mips16_stubs (hti->info, h);
1817
1818 if (mips_elf_local_pic_function_p (h))
1819 {
1820 /* PR 12845: If H is in a section that has been garbage
1821 collected it will have its output section set to *ABS*. */
1822 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1823 return TRUE;
1824
1825 /* H is a function that might need $25 to be valid on entry.
1826 If we're creating a non-PIC relocatable object, mark H as
1827 being PIC. If we're creating a non-relocatable object with
1828 non-PIC branches and jumps to H, make sure that H has an la25
1829 stub. */
1830 if (hti->info->relocatable)
1831 {
1832 if (!PIC_OBJECT_P (hti->output_bfd))
1833 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1834 }
1835 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1836 {
1837 hti->error = TRUE;
1838 return FALSE;
1839 }
1840 }
1841 return TRUE;
1842 }
1843 \f
1844 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1845 Most mips16 instructions are 16 bits, but these instructions
1846 are 32 bits.
1847
1848 The format of these instructions is:
1849
1850 +--------------+--------------------------------+
1851 | JALX | X| Imm 20:16 | Imm 25:21 |
1852 +--------------+--------------------------------+
1853 | Immediate 15:0 |
1854 +-----------------------------------------------+
1855
1856 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1857 Note that the immediate value in the first word is swapped.
1858
1859 When producing a relocatable object file, R_MIPS16_26 is
1860 handled mostly like R_MIPS_26. In particular, the addend is
1861 stored as a straight 26-bit value in a 32-bit instruction.
1862 (gas makes life simpler for itself by never adjusting a
1863 R_MIPS16_26 reloc to be against a section, so the addend is
1864 always zero). However, the 32 bit instruction is stored as 2
1865 16-bit values, rather than a single 32-bit value. In a
1866 big-endian file, the result is the same; in a little-endian
1867 file, the two 16-bit halves of the 32 bit value are swapped.
1868 This is so that a disassembler can recognize the jal
1869 instruction.
1870
1871 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1872 instruction stored as two 16-bit values. The addend A is the
1873 contents of the targ26 field. The calculation is the same as
1874 R_MIPS_26. When storing the calculated value, reorder the
1875 immediate value as shown above, and don't forget to store the
1876 value as two 16-bit values.
1877
1878 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1879 defined as
1880
1881 big-endian:
1882 +--------+----------------------+
1883 | | |
1884 | | targ26-16 |
1885 |31 26|25 0|
1886 +--------+----------------------+
1887
1888 little-endian:
1889 +----------+------+-------------+
1890 | | | |
1891 | sub1 | | sub2 |
1892 |0 9|10 15|16 31|
1893 +----------+--------------------+
1894 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1895 ((sub1 << 16) | sub2)).
1896
1897 When producing a relocatable object file, the calculation is
1898 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1899 When producing a fully linked file, the calculation is
1900 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1901 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1902
1903 The table below lists the other MIPS16 instruction relocations.
1904 Each one is calculated in the same way as the non-MIPS16 relocation
1905 given on the right, but using the extended MIPS16 layout of 16-bit
1906 immediate fields:
1907
1908 R_MIPS16_GPREL R_MIPS_GPREL16
1909 R_MIPS16_GOT16 R_MIPS_GOT16
1910 R_MIPS16_CALL16 R_MIPS_CALL16
1911 R_MIPS16_HI16 R_MIPS_HI16
1912 R_MIPS16_LO16 R_MIPS_LO16
1913
1914 A typical instruction will have a format like this:
1915
1916 +--------------+--------------------------------+
1917 | EXTEND | Imm 10:5 | Imm 15:11 |
1918 +--------------+--------------------------------+
1919 | Major | rx | ry | Imm 4:0 |
1920 +--------------+--------------------------------+
1921
1922 EXTEND is the five bit value 11110. Major is the instruction
1923 opcode.
1924
1925 All we need to do here is shuffle the bits appropriately.
1926 As above, the two 16-bit halves must be swapped on a
1927 little-endian system. */
1928
1929 static inline bfd_boolean
1930 mips16_reloc_p (int r_type)
1931 {
1932 switch (r_type)
1933 {
1934 case R_MIPS16_26:
1935 case R_MIPS16_GPREL:
1936 case R_MIPS16_GOT16:
1937 case R_MIPS16_CALL16:
1938 case R_MIPS16_HI16:
1939 case R_MIPS16_LO16:
1940 case R_MIPS16_TLS_GD:
1941 case R_MIPS16_TLS_LDM:
1942 case R_MIPS16_TLS_DTPREL_HI16:
1943 case R_MIPS16_TLS_DTPREL_LO16:
1944 case R_MIPS16_TLS_GOTTPREL:
1945 case R_MIPS16_TLS_TPREL_HI16:
1946 case R_MIPS16_TLS_TPREL_LO16:
1947 return TRUE;
1948
1949 default:
1950 return FALSE;
1951 }
1952 }
1953
1954 /* Check if a microMIPS reloc. */
1955
1956 static inline bfd_boolean
1957 micromips_reloc_p (unsigned int r_type)
1958 {
1959 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1960 }
1961
1962 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1963 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1964 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1965
1966 static inline bfd_boolean
1967 micromips_reloc_shuffle_p (unsigned int r_type)
1968 {
1969 return (micromips_reloc_p (r_type)
1970 && r_type != R_MICROMIPS_PC7_S1
1971 && r_type != R_MICROMIPS_PC10_S1);
1972 }
1973
1974 static inline bfd_boolean
1975 got16_reloc_p (int r_type)
1976 {
1977 return (r_type == R_MIPS_GOT16
1978 || r_type == R_MIPS16_GOT16
1979 || r_type == R_MICROMIPS_GOT16);
1980 }
1981
1982 static inline bfd_boolean
1983 call16_reloc_p (int r_type)
1984 {
1985 return (r_type == R_MIPS_CALL16
1986 || r_type == R_MIPS16_CALL16
1987 || r_type == R_MICROMIPS_CALL16);
1988 }
1989
1990 static inline bfd_boolean
1991 got_disp_reloc_p (unsigned int r_type)
1992 {
1993 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1994 }
1995
1996 static inline bfd_boolean
1997 got_page_reloc_p (unsigned int r_type)
1998 {
1999 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2000 }
2001
2002 static inline bfd_boolean
2003 got_ofst_reloc_p (unsigned int r_type)
2004 {
2005 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2006 }
2007
2008 static inline bfd_boolean
2009 got_hi16_reloc_p (unsigned int r_type)
2010 {
2011 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2012 }
2013
2014 static inline bfd_boolean
2015 got_lo16_reloc_p (unsigned int r_type)
2016 {
2017 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2018 }
2019
2020 static inline bfd_boolean
2021 call_hi16_reloc_p (unsigned int r_type)
2022 {
2023 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2024 }
2025
2026 static inline bfd_boolean
2027 call_lo16_reloc_p (unsigned int r_type)
2028 {
2029 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2030 }
2031
2032 static inline bfd_boolean
2033 hi16_reloc_p (int r_type)
2034 {
2035 return (r_type == R_MIPS_HI16
2036 || r_type == R_MIPS16_HI16
2037 || r_type == R_MICROMIPS_HI16);
2038 }
2039
2040 static inline bfd_boolean
2041 lo16_reloc_p (int r_type)
2042 {
2043 return (r_type == R_MIPS_LO16
2044 || r_type == R_MIPS16_LO16
2045 || r_type == R_MICROMIPS_LO16);
2046 }
2047
2048 static inline bfd_boolean
2049 mips16_call_reloc_p (int r_type)
2050 {
2051 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2052 }
2053
2054 static inline bfd_boolean
2055 jal_reloc_p (int r_type)
2056 {
2057 return (r_type == R_MIPS_26
2058 || r_type == R_MIPS16_26
2059 || r_type == R_MICROMIPS_26_S1);
2060 }
2061
2062 static inline bfd_boolean
2063 micromips_branch_reloc_p (int r_type)
2064 {
2065 return (r_type == R_MICROMIPS_26_S1
2066 || r_type == R_MICROMIPS_PC16_S1
2067 || r_type == R_MICROMIPS_PC10_S1
2068 || r_type == R_MICROMIPS_PC7_S1);
2069 }
2070
2071 static inline bfd_boolean
2072 tls_gd_reloc_p (unsigned int r_type)
2073 {
2074 return (r_type == R_MIPS_TLS_GD
2075 || r_type == R_MIPS16_TLS_GD
2076 || r_type == R_MICROMIPS_TLS_GD);
2077 }
2078
2079 static inline bfd_boolean
2080 tls_ldm_reloc_p (unsigned int r_type)
2081 {
2082 return (r_type == R_MIPS_TLS_LDM
2083 || r_type == R_MIPS16_TLS_LDM
2084 || r_type == R_MICROMIPS_TLS_LDM);
2085 }
2086
2087 static inline bfd_boolean
2088 tls_gottprel_reloc_p (unsigned int r_type)
2089 {
2090 return (r_type == R_MIPS_TLS_GOTTPREL
2091 || r_type == R_MIPS16_TLS_GOTTPREL
2092 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2093 }
2094
2095 void
2096 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2097 bfd_boolean jal_shuffle, bfd_byte *data)
2098 {
2099 bfd_vma first, second, val;
2100
2101 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2102 return;
2103
2104 /* Pick up the first and second halfwords of the instruction. */
2105 first = bfd_get_16 (abfd, data);
2106 second = bfd_get_16 (abfd, data + 2);
2107 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2108 val = first << 16 | second;
2109 else if (r_type != R_MIPS16_26)
2110 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2111 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2112 else
2113 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2114 | ((first & 0x1f) << 21) | second);
2115 bfd_put_32 (abfd, val, data);
2116 }
2117
2118 void
2119 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2120 bfd_boolean jal_shuffle, bfd_byte *data)
2121 {
2122 bfd_vma first, second, val;
2123
2124 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2125 return;
2126
2127 val = bfd_get_32 (abfd, data);
2128 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2129 {
2130 second = val & 0xffff;
2131 first = val >> 16;
2132 }
2133 else if (r_type != R_MIPS16_26)
2134 {
2135 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2136 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2137 }
2138 else
2139 {
2140 second = val & 0xffff;
2141 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2142 | ((val >> 21) & 0x1f);
2143 }
2144 bfd_put_16 (abfd, second, data + 2);
2145 bfd_put_16 (abfd, first, data);
2146 }
2147
2148 bfd_reloc_status_type
2149 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2150 arelent *reloc_entry, asection *input_section,
2151 bfd_boolean relocatable, void *data, bfd_vma gp)
2152 {
2153 bfd_vma relocation;
2154 bfd_signed_vma val;
2155 bfd_reloc_status_type status;
2156
2157 if (bfd_is_com_section (symbol->section))
2158 relocation = 0;
2159 else
2160 relocation = symbol->value;
2161
2162 relocation += symbol->section->output_section->vma;
2163 relocation += symbol->section->output_offset;
2164
2165 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2166 return bfd_reloc_outofrange;
2167
2168 /* Set val to the offset into the section or symbol. */
2169 val = reloc_entry->addend;
2170
2171 _bfd_mips_elf_sign_extend (val, 16);
2172
2173 /* Adjust val for the final section location and GP value. If we
2174 are producing relocatable output, we don't want to do this for
2175 an external symbol. */
2176 if (! relocatable
2177 || (symbol->flags & BSF_SECTION_SYM) != 0)
2178 val += relocation - gp;
2179
2180 if (reloc_entry->howto->partial_inplace)
2181 {
2182 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2183 (bfd_byte *) data
2184 + reloc_entry->address);
2185 if (status != bfd_reloc_ok)
2186 return status;
2187 }
2188 else
2189 reloc_entry->addend = val;
2190
2191 if (relocatable)
2192 reloc_entry->address += input_section->output_offset;
2193
2194 return bfd_reloc_ok;
2195 }
2196
2197 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2198 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2199 that contains the relocation field and DATA points to the start of
2200 INPUT_SECTION. */
2201
2202 struct mips_hi16
2203 {
2204 struct mips_hi16 *next;
2205 bfd_byte *data;
2206 asection *input_section;
2207 arelent rel;
2208 };
2209
2210 /* FIXME: This should not be a static variable. */
2211
2212 static struct mips_hi16 *mips_hi16_list;
2213
2214 /* A howto special_function for REL *HI16 relocations. We can only
2215 calculate the correct value once we've seen the partnering
2216 *LO16 relocation, so just save the information for later.
2217
2218 The ABI requires that the *LO16 immediately follow the *HI16.
2219 However, as a GNU extension, we permit an arbitrary number of
2220 *HI16s to be associated with a single *LO16. This significantly
2221 simplies the relocation handling in gcc. */
2222
2223 bfd_reloc_status_type
2224 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2225 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2226 asection *input_section, bfd *output_bfd,
2227 char **error_message ATTRIBUTE_UNUSED)
2228 {
2229 struct mips_hi16 *n;
2230
2231 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2232 return bfd_reloc_outofrange;
2233
2234 n = bfd_malloc (sizeof *n);
2235 if (n == NULL)
2236 return bfd_reloc_outofrange;
2237
2238 n->next = mips_hi16_list;
2239 n->data = data;
2240 n->input_section = input_section;
2241 n->rel = *reloc_entry;
2242 mips_hi16_list = n;
2243
2244 if (output_bfd != NULL)
2245 reloc_entry->address += input_section->output_offset;
2246
2247 return bfd_reloc_ok;
2248 }
2249
2250 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2251 like any other 16-bit relocation when applied to global symbols, but is
2252 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2253
2254 bfd_reloc_status_type
2255 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2256 void *data, asection *input_section,
2257 bfd *output_bfd, char **error_message)
2258 {
2259 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2260 || bfd_is_und_section (bfd_get_section (symbol))
2261 || bfd_is_com_section (bfd_get_section (symbol)))
2262 /* The relocation is against a global symbol. */
2263 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2264 input_section, output_bfd,
2265 error_message);
2266
2267 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2268 input_section, output_bfd, error_message);
2269 }
2270
2271 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2272 is a straightforward 16 bit inplace relocation, but we must deal with
2273 any partnering high-part relocations as well. */
2274
2275 bfd_reloc_status_type
2276 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2277 void *data, asection *input_section,
2278 bfd *output_bfd, char **error_message)
2279 {
2280 bfd_vma vallo;
2281 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2282
2283 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2284 return bfd_reloc_outofrange;
2285
2286 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2287 location);
2288 vallo = bfd_get_32 (abfd, location);
2289 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2290 location);
2291
2292 while (mips_hi16_list != NULL)
2293 {
2294 bfd_reloc_status_type ret;
2295 struct mips_hi16 *hi;
2296
2297 hi = mips_hi16_list;
2298
2299 /* R_MIPS*_GOT16 relocations are something of a special case. We
2300 want to install the addend in the same way as for a R_MIPS*_HI16
2301 relocation (with a rightshift of 16). However, since GOT16
2302 relocations can also be used with global symbols, their howto
2303 has a rightshift of 0. */
2304 if (hi->rel.howto->type == R_MIPS_GOT16)
2305 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2306 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2307 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2308 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2309 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2310
2311 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2312 carry or borrow will induce a change of +1 or -1 in the high part. */
2313 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2314
2315 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2316 hi->input_section, output_bfd,
2317 error_message);
2318 if (ret != bfd_reloc_ok)
2319 return ret;
2320
2321 mips_hi16_list = hi->next;
2322 free (hi);
2323 }
2324
2325 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2326 input_section, output_bfd,
2327 error_message);
2328 }
2329
2330 /* A generic howto special_function. This calculates and installs the
2331 relocation itself, thus avoiding the oft-discussed problems in
2332 bfd_perform_relocation and bfd_install_relocation. */
2333
2334 bfd_reloc_status_type
2335 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2336 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2337 asection *input_section, bfd *output_bfd,
2338 char **error_message ATTRIBUTE_UNUSED)
2339 {
2340 bfd_signed_vma val;
2341 bfd_reloc_status_type status;
2342 bfd_boolean relocatable;
2343
2344 relocatable = (output_bfd != NULL);
2345
2346 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2347 return bfd_reloc_outofrange;
2348
2349 /* Build up the field adjustment in VAL. */
2350 val = 0;
2351 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2352 {
2353 /* Either we're calculating the final field value or we have a
2354 relocation against a section symbol. Add in the section's
2355 offset or address. */
2356 val += symbol->section->output_section->vma;
2357 val += symbol->section->output_offset;
2358 }
2359
2360 if (!relocatable)
2361 {
2362 /* We're calculating the final field value. Add in the symbol's value
2363 and, if pc-relative, subtract the address of the field itself. */
2364 val += symbol->value;
2365 if (reloc_entry->howto->pc_relative)
2366 {
2367 val -= input_section->output_section->vma;
2368 val -= input_section->output_offset;
2369 val -= reloc_entry->address;
2370 }
2371 }
2372
2373 /* VAL is now the final adjustment. If we're keeping this relocation
2374 in the output file, and if the relocation uses a separate addend,
2375 we just need to add VAL to that addend. Otherwise we need to add
2376 VAL to the relocation field itself. */
2377 if (relocatable && !reloc_entry->howto->partial_inplace)
2378 reloc_entry->addend += val;
2379 else
2380 {
2381 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2382
2383 /* Add in the separate addend, if any. */
2384 val += reloc_entry->addend;
2385
2386 /* Add VAL to the relocation field. */
2387 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2388 location);
2389 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2390 location);
2391 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2392 location);
2393
2394 if (status != bfd_reloc_ok)
2395 return status;
2396 }
2397
2398 if (relocatable)
2399 reloc_entry->address += input_section->output_offset;
2400
2401 return bfd_reloc_ok;
2402 }
2403 \f
2404 /* Swap an entry in a .gptab section. Note that these routines rely
2405 on the equivalence of the two elements of the union. */
2406
2407 static void
2408 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2409 Elf32_gptab *in)
2410 {
2411 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2412 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2413 }
2414
2415 static void
2416 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2417 Elf32_External_gptab *ex)
2418 {
2419 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2420 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2421 }
2422
2423 static void
2424 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2425 Elf32_External_compact_rel *ex)
2426 {
2427 H_PUT_32 (abfd, in->id1, ex->id1);
2428 H_PUT_32 (abfd, in->num, ex->num);
2429 H_PUT_32 (abfd, in->id2, ex->id2);
2430 H_PUT_32 (abfd, in->offset, ex->offset);
2431 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2432 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2433 }
2434
2435 static void
2436 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2437 Elf32_External_crinfo *ex)
2438 {
2439 unsigned long l;
2440
2441 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2442 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2443 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2444 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2445 H_PUT_32 (abfd, l, ex->info);
2446 H_PUT_32 (abfd, in->konst, ex->konst);
2447 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2448 }
2449 \f
2450 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2451 routines swap this structure in and out. They are used outside of
2452 BFD, so they are globally visible. */
2453
2454 void
2455 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2456 Elf32_RegInfo *in)
2457 {
2458 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2459 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2460 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2461 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2462 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2463 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2464 }
2465
2466 void
2467 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2468 Elf32_External_RegInfo *ex)
2469 {
2470 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2471 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2472 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2473 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2474 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2475 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2476 }
2477
2478 /* In the 64 bit ABI, the .MIPS.options section holds register
2479 information in an Elf64_Reginfo structure. These routines swap
2480 them in and out. They are globally visible because they are used
2481 outside of BFD. These routines are here so that gas can call them
2482 without worrying about whether the 64 bit ABI has been included. */
2483
2484 void
2485 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2486 Elf64_Internal_RegInfo *in)
2487 {
2488 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2489 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2490 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2491 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2492 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2493 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2494 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2495 }
2496
2497 void
2498 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2499 Elf64_External_RegInfo *ex)
2500 {
2501 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2502 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2503 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2504 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2505 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2506 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2507 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2508 }
2509
2510 /* Swap in an options header. */
2511
2512 void
2513 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2514 Elf_Internal_Options *in)
2515 {
2516 in->kind = H_GET_8 (abfd, ex->kind);
2517 in->size = H_GET_8 (abfd, ex->size);
2518 in->section = H_GET_16 (abfd, ex->section);
2519 in->info = H_GET_32 (abfd, ex->info);
2520 }
2521
2522 /* Swap out an options header. */
2523
2524 void
2525 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2526 Elf_External_Options *ex)
2527 {
2528 H_PUT_8 (abfd, in->kind, ex->kind);
2529 H_PUT_8 (abfd, in->size, ex->size);
2530 H_PUT_16 (abfd, in->section, ex->section);
2531 H_PUT_32 (abfd, in->info, ex->info);
2532 }
2533 \f
2534 /* This function is called via qsort() to sort the dynamic relocation
2535 entries by increasing r_symndx value. */
2536
2537 static int
2538 sort_dynamic_relocs (const void *arg1, const void *arg2)
2539 {
2540 Elf_Internal_Rela int_reloc1;
2541 Elf_Internal_Rela int_reloc2;
2542 int diff;
2543
2544 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2545 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2546
2547 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2548 if (diff != 0)
2549 return diff;
2550
2551 if (int_reloc1.r_offset < int_reloc2.r_offset)
2552 return -1;
2553 if (int_reloc1.r_offset > int_reloc2.r_offset)
2554 return 1;
2555 return 0;
2556 }
2557
2558 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2559
2560 static int
2561 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2562 const void *arg2 ATTRIBUTE_UNUSED)
2563 {
2564 #ifdef BFD64
2565 Elf_Internal_Rela int_reloc1[3];
2566 Elf_Internal_Rela int_reloc2[3];
2567
2568 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2569 (reldyn_sorting_bfd, arg1, int_reloc1);
2570 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2571 (reldyn_sorting_bfd, arg2, int_reloc2);
2572
2573 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2574 return -1;
2575 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2576 return 1;
2577
2578 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2579 return -1;
2580 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2581 return 1;
2582 return 0;
2583 #else
2584 abort ();
2585 #endif
2586 }
2587
2588
2589 /* This routine is used to write out ECOFF debugging external symbol
2590 information. It is called via mips_elf_link_hash_traverse. The
2591 ECOFF external symbol information must match the ELF external
2592 symbol information. Unfortunately, at this point we don't know
2593 whether a symbol is required by reloc information, so the two
2594 tables may wind up being different. We must sort out the external
2595 symbol information before we can set the final size of the .mdebug
2596 section, and we must set the size of the .mdebug section before we
2597 can relocate any sections, and we can't know which symbols are
2598 required by relocation until we relocate the sections.
2599 Fortunately, it is relatively unlikely that any symbol will be
2600 stripped but required by a reloc. In particular, it can not happen
2601 when generating a final executable. */
2602
2603 static bfd_boolean
2604 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2605 {
2606 struct extsym_info *einfo = data;
2607 bfd_boolean strip;
2608 asection *sec, *output_section;
2609
2610 if (h->root.indx == -2)
2611 strip = FALSE;
2612 else if ((h->root.def_dynamic
2613 || h->root.ref_dynamic
2614 || h->root.type == bfd_link_hash_new)
2615 && !h->root.def_regular
2616 && !h->root.ref_regular)
2617 strip = TRUE;
2618 else if (einfo->info->strip == strip_all
2619 || (einfo->info->strip == strip_some
2620 && bfd_hash_lookup (einfo->info->keep_hash,
2621 h->root.root.root.string,
2622 FALSE, FALSE) == NULL))
2623 strip = TRUE;
2624 else
2625 strip = FALSE;
2626
2627 if (strip)
2628 return TRUE;
2629
2630 if (h->esym.ifd == -2)
2631 {
2632 h->esym.jmptbl = 0;
2633 h->esym.cobol_main = 0;
2634 h->esym.weakext = 0;
2635 h->esym.reserved = 0;
2636 h->esym.ifd = ifdNil;
2637 h->esym.asym.value = 0;
2638 h->esym.asym.st = stGlobal;
2639
2640 if (h->root.root.type == bfd_link_hash_undefined
2641 || h->root.root.type == bfd_link_hash_undefweak)
2642 {
2643 const char *name;
2644
2645 /* Use undefined class. Also, set class and type for some
2646 special symbols. */
2647 name = h->root.root.root.string;
2648 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2649 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2650 {
2651 h->esym.asym.sc = scData;
2652 h->esym.asym.st = stLabel;
2653 h->esym.asym.value = 0;
2654 }
2655 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2656 {
2657 h->esym.asym.sc = scAbs;
2658 h->esym.asym.st = stLabel;
2659 h->esym.asym.value =
2660 mips_elf_hash_table (einfo->info)->procedure_count;
2661 }
2662 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2663 {
2664 h->esym.asym.sc = scAbs;
2665 h->esym.asym.st = stLabel;
2666 h->esym.asym.value = elf_gp (einfo->abfd);
2667 }
2668 else
2669 h->esym.asym.sc = scUndefined;
2670 }
2671 else if (h->root.root.type != bfd_link_hash_defined
2672 && h->root.root.type != bfd_link_hash_defweak)
2673 h->esym.asym.sc = scAbs;
2674 else
2675 {
2676 const char *name;
2677
2678 sec = h->root.root.u.def.section;
2679 output_section = sec->output_section;
2680
2681 /* When making a shared library and symbol h is the one from
2682 the another shared library, OUTPUT_SECTION may be null. */
2683 if (output_section == NULL)
2684 h->esym.asym.sc = scUndefined;
2685 else
2686 {
2687 name = bfd_section_name (output_section->owner, output_section);
2688
2689 if (strcmp (name, ".text") == 0)
2690 h->esym.asym.sc = scText;
2691 else if (strcmp (name, ".data") == 0)
2692 h->esym.asym.sc = scData;
2693 else if (strcmp (name, ".sdata") == 0)
2694 h->esym.asym.sc = scSData;
2695 else if (strcmp (name, ".rodata") == 0
2696 || strcmp (name, ".rdata") == 0)
2697 h->esym.asym.sc = scRData;
2698 else if (strcmp (name, ".bss") == 0)
2699 h->esym.asym.sc = scBss;
2700 else if (strcmp (name, ".sbss") == 0)
2701 h->esym.asym.sc = scSBss;
2702 else if (strcmp (name, ".init") == 0)
2703 h->esym.asym.sc = scInit;
2704 else if (strcmp (name, ".fini") == 0)
2705 h->esym.asym.sc = scFini;
2706 else
2707 h->esym.asym.sc = scAbs;
2708 }
2709 }
2710
2711 h->esym.asym.reserved = 0;
2712 h->esym.asym.index = indexNil;
2713 }
2714
2715 if (h->root.root.type == bfd_link_hash_common)
2716 h->esym.asym.value = h->root.root.u.c.size;
2717 else if (h->root.root.type == bfd_link_hash_defined
2718 || h->root.root.type == bfd_link_hash_defweak)
2719 {
2720 if (h->esym.asym.sc == scCommon)
2721 h->esym.asym.sc = scBss;
2722 else if (h->esym.asym.sc == scSCommon)
2723 h->esym.asym.sc = scSBss;
2724
2725 sec = h->root.root.u.def.section;
2726 output_section = sec->output_section;
2727 if (output_section != NULL)
2728 h->esym.asym.value = (h->root.root.u.def.value
2729 + sec->output_offset
2730 + output_section->vma);
2731 else
2732 h->esym.asym.value = 0;
2733 }
2734 else
2735 {
2736 struct mips_elf_link_hash_entry *hd = h;
2737
2738 while (hd->root.root.type == bfd_link_hash_indirect)
2739 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2740
2741 if (hd->needs_lazy_stub)
2742 {
2743 /* Set type and value for a symbol with a function stub. */
2744 h->esym.asym.st = stProc;
2745 sec = hd->root.root.u.def.section;
2746 if (sec == NULL)
2747 h->esym.asym.value = 0;
2748 else
2749 {
2750 output_section = sec->output_section;
2751 if (output_section != NULL)
2752 h->esym.asym.value = (hd->root.plt.offset
2753 + sec->output_offset
2754 + output_section->vma);
2755 else
2756 h->esym.asym.value = 0;
2757 }
2758 }
2759 }
2760
2761 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2762 h->root.root.root.string,
2763 &h->esym))
2764 {
2765 einfo->failed = TRUE;
2766 return FALSE;
2767 }
2768
2769 return TRUE;
2770 }
2771
2772 /* A comparison routine used to sort .gptab entries. */
2773
2774 static int
2775 gptab_compare (const void *p1, const void *p2)
2776 {
2777 const Elf32_gptab *a1 = p1;
2778 const Elf32_gptab *a2 = p2;
2779
2780 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2781 }
2782 \f
2783 /* Functions to manage the got entry hash table. */
2784
2785 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2786 hash number. */
2787
2788 static INLINE hashval_t
2789 mips_elf_hash_bfd_vma (bfd_vma addr)
2790 {
2791 #ifdef BFD64
2792 return addr + (addr >> 32);
2793 #else
2794 return addr;
2795 #endif
2796 }
2797
2798 /* got_entries only match if they're identical, except for gotidx, so
2799 use all fields to compute the hash, and compare the appropriate
2800 union members. */
2801
2802 static hashval_t
2803 mips_elf_got_entry_hash (const void *entry_)
2804 {
2805 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2806
2807 return entry->symndx
2808 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2809 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2810 : entry->abfd->id
2811 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2812 : entry->d.h->root.root.root.hash));
2813 }
2814
2815 static int
2816 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2817 {
2818 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2819 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2820
2821 /* An LDM entry can only match another LDM entry. */
2822 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2823 return 0;
2824
2825 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2826 && (! e1->abfd ? e1->d.address == e2->d.address
2827 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2828 : e1->d.h == e2->d.h);
2829 }
2830
2831 /* multi_got_entries are still a match in the case of global objects,
2832 even if the input bfd in which they're referenced differs, so the
2833 hash computation and compare functions are adjusted
2834 accordingly. */
2835
2836 static hashval_t
2837 mips_elf_multi_got_entry_hash (const void *entry_)
2838 {
2839 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2840
2841 return entry->symndx
2842 + (! entry->abfd
2843 ? mips_elf_hash_bfd_vma (entry->d.address)
2844 : entry->symndx >= 0
2845 ? ((entry->tls_type & GOT_TLS_LDM)
2846 ? (GOT_TLS_LDM << 17)
2847 : (entry->abfd->id
2848 + mips_elf_hash_bfd_vma (entry->d.addend)))
2849 : entry->d.h->root.root.root.hash);
2850 }
2851
2852 static int
2853 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2854 {
2855 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2856 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2857
2858 /* Any two LDM entries match. */
2859 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2860 return 1;
2861
2862 /* Nothing else matches an LDM entry. */
2863 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2864 return 0;
2865
2866 return e1->symndx == e2->symndx
2867 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2868 : e1->abfd == NULL || e2->abfd == NULL
2869 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2870 : e1->d.h == e2->d.h);
2871 }
2872
2873 static hashval_t
2874 mips_got_page_entry_hash (const void *entry_)
2875 {
2876 const struct mips_got_page_entry *entry;
2877
2878 entry = (const struct mips_got_page_entry *) entry_;
2879 return entry->abfd->id + entry->symndx;
2880 }
2881
2882 static int
2883 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2884 {
2885 const struct mips_got_page_entry *entry1, *entry2;
2886
2887 entry1 = (const struct mips_got_page_entry *) entry1_;
2888 entry2 = (const struct mips_got_page_entry *) entry2_;
2889 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2890 }
2891 \f
2892 /* Return the dynamic relocation section. If it doesn't exist, try to
2893 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2894 if creation fails. */
2895
2896 static asection *
2897 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2898 {
2899 const char *dname;
2900 asection *sreloc;
2901 bfd *dynobj;
2902
2903 dname = MIPS_ELF_REL_DYN_NAME (info);
2904 dynobj = elf_hash_table (info)->dynobj;
2905 sreloc = bfd_get_linker_section (dynobj, dname);
2906 if (sreloc == NULL && create_p)
2907 {
2908 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2909 (SEC_ALLOC
2910 | SEC_LOAD
2911 | SEC_HAS_CONTENTS
2912 | SEC_IN_MEMORY
2913 | SEC_LINKER_CREATED
2914 | SEC_READONLY));
2915 if (sreloc == NULL
2916 || ! bfd_set_section_alignment (dynobj, sreloc,
2917 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2918 return NULL;
2919 }
2920 return sreloc;
2921 }
2922
2923 /* Count the number of relocations needed for a TLS GOT entry, with
2924 access types from TLS_TYPE, and symbol H (or a local symbol if H
2925 is NULL). */
2926
2927 static int
2928 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2929 struct elf_link_hash_entry *h)
2930 {
2931 int indx = 0;
2932 int ret = 0;
2933 bfd_boolean need_relocs = FALSE;
2934 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2935
2936 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2937 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2938 indx = h->dynindx;
2939
2940 if ((info->shared || indx != 0)
2941 && (h == NULL
2942 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2943 || h->root.type != bfd_link_hash_undefweak))
2944 need_relocs = TRUE;
2945
2946 if (!need_relocs)
2947 return FALSE;
2948
2949 if (tls_type & GOT_TLS_GD)
2950 {
2951 ret++;
2952 if (indx != 0)
2953 ret++;
2954 }
2955
2956 if (tls_type & GOT_TLS_IE)
2957 ret++;
2958
2959 if ((tls_type & GOT_TLS_LDM) && info->shared)
2960 ret++;
2961
2962 return ret;
2963 }
2964
2965 /* Count the number of TLS relocations required for the GOT entry in
2966 ARG1, if it describes a local symbol. */
2967
2968 static int
2969 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2970 {
2971 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2972 struct mips_elf_count_tls_arg *arg = arg2;
2973
2974 if (entry->abfd != NULL && entry->symndx != -1)
2975 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2976
2977 return 1;
2978 }
2979
2980 /* Count the number of TLS GOT entries required for the global (or
2981 forced-local) symbol in ARG1. */
2982
2983 static int
2984 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2985 {
2986 struct mips_elf_link_hash_entry *hm
2987 = (struct mips_elf_link_hash_entry *) arg1;
2988 struct mips_elf_count_tls_arg *arg = arg2;
2989
2990 if (hm->tls_type & GOT_TLS_GD)
2991 arg->needed += 2;
2992 if (hm->tls_type & GOT_TLS_IE)
2993 arg->needed += 1;
2994
2995 return 1;
2996 }
2997
2998 /* Count the number of TLS relocations required for the global (or
2999 forced-local) symbol in ARG1. */
3000
3001 static int
3002 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
3003 {
3004 struct mips_elf_link_hash_entry *hm
3005 = (struct mips_elf_link_hash_entry *) arg1;
3006 struct mips_elf_count_tls_arg *arg = arg2;
3007
3008 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
3009
3010 return 1;
3011 }
3012
3013 /* Output a simple dynamic relocation into SRELOC. */
3014
3015 static void
3016 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3017 asection *sreloc,
3018 unsigned long reloc_index,
3019 unsigned long indx,
3020 int r_type,
3021 bfd_vma offset)
3022 {
3023 Elf_Internal_Rela rel[3];
3024
3025 memset (rel, 0, sizeof (rel));
3026
3027 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3028 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3029
3030 if (ABI_64_P (output_bfd))
3031 {
3032 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3033 (output_bfd, &rel[0],
3034 (sreloc->contents
3035 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3036 }
3037 else
3038 bfd_elf32_swap_reloc_out
3039 (output_bfd, &rel[0],
3040 (sreloc->contents
3041 + reloc_index * sizeof (Elf32_External_Rel)));
3042 }
3043
3044 /* Initialize a set of TLS GOT entries for one symbol. */
3045
3046 static void
3047 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3048 unsigned char *tls_type_p,
3049 struct bfd_link_info *info,
3050 struct mips_elf_link_hash_entry *h,
3051 bfd_vma value)
3052 {
3053 struct mips_elf_link_hash_table *htab;
3054 int indx;
3055 asection *sreloc, *sgot;
3056 bfd_vma offset, offset2;
3057 bfd_boolean need_relocs = FALSE;
3058
3059 htab = mips_elf_hash_table (info);
3060 if (htab == NULL)
3061 return;
3062
3063 sgot = htab->sgot;
3064
3065 indx = 0;
3066 if (h != NULL)
3067 {
3068 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3069
3070 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3071 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3072 indx = h->root.dynindx;
3073 }
3074
3075 if (*tls_type_p & GOT_TLS_DONE)
3076 return;
3077
3078 if ((info->shared || indx != 0)
3079 && (h == NULL
3080 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3081 || h->root.type != bfd_link_hash_undefweak))
3082 need_relocs = TRUE;
3083
3084 /* MINUS_ONE means the symbol is not defined in this object. It may not
3085 be defined at all; assume that the value doesn't matter in that
3086 case. Otherwise complain if we would use the value. */
3087 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3088 || h->root.root.type == bfd_link_hash_undefweak);
3089
3090 /* Emit necessary relocations. */
3091 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3092
3093 /* General Dynamic. */
3094 if (*tls_type_p & GOT_TLS_GD)
3095 {
3096 offset = got_offset;
3097 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3098
3099 if (need_relocs)
3100 {
3101 mips_elf_output_dynamic_relocation
3102 (abfd, sreloc, sreloc->reloc_count++, indx,
3103 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3104 sgot->output_offset + sgot->output_section->vma + offset);
3105
3106 if (indx)
3107 mips_elf_output_dynamic_relocation
3108 (abfd, sreloc, sreloc->reloc_count++, indx,
3109 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3110 sgot->output_offset + sgot->output_section->vma + offset2);
3111 else
3112 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3113 sgot->contents + offset2);
3114 }
3115 else
3116 {
3117 MIPS_ELF_PUT_WORD (abfd, 1,
3118 sgot->contents + offset);
3119 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3120 sgot->contents + offset2);
3121 }
3122
3123 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3124 }
3125
3126 /* Initial Exec model. */
3127 if (*tls_type_p & GOT_TLS_IE)
3128 {
3129 offset = got_offset;
3130
3131 if (need_relocs)
3132 {
3133 if (indx == 0)
3134 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3135 sgot->contents + offset);
3136 else
3137 MIPS_ELF_PUT_WORD (abfd, 0,
3138 sgot->contents + offset);
3139
3140 mips_elf_output_dynamic_relocation
3141 (abfd, sreloc, sreloc->reloc_count++, indx,
3142 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3143 sgot->output_offset + sgot->output_section->vma + offset);
3144 }
3145 else
3146 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3147 sgot->contents + offset);
3148 }
3149
3150 if (*tls_type_p & GOT_TLS_LDM)
3151 {
3152 /* The initial offset is zero, and the LD offsets will include the
3153 bias by DTP_OFFSET. */
3154 MIPS_ELF_PUT_WORD (abfd, 0,
3155 sgot->contents + got_offset
3156 + MIPS_ELF_GOT_SIZE (abfd));
3157
3158 if (!info->shared)
3159 MIPS_ELF_PUT_WORD (abfd, 1,
3160 sgot->contents + got_offset);
3161 else
3162 mips_elf_output_dynamic_relocation
3163 (abfd, sreloc, sreloc->reloc_count++, indx,
3164 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3165 sgot->output_offset + sgot->output_section->vma + got_offset);
3166 }
3167
3168 *tls_type_p |= GOT_TLS_DONE;
3169 }
3170
3171 /* Return the GOT index to use for a relocation of type R_TYPE against
3172 a symbol accessed using TLS_TYPE models. The GOT entries for this
3173 symbol in this GOT start at GOT_INDEX. This function initializes the
3174 GOT entries and corresponding relocations. */
3175
3176 static bfd_vma
3177 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3178 int r_type, struct bfd_link_info *info,
3179 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3180 {
3181 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3182 || tls_gd_reloc_p (r_type)
3183 || tls_ldm_reloc_p (r_type));
3184
3185 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3186
3187 if (tls_gottprel_reloc_p (r_type))
3188 {
3189 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3190 if (*tls_type & GOT_TLS_GD)
3191 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3192 else
3193 return got_index;
3194 }
3195
3196 if (tls_gd_reloc_p (r_type))
3197 {
3198 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3199 return got_index;
3200 }
3201
3202 if (tls_ldm_reloc_p (r_type))
3203 {
3204 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3205 return got_index;
3206 }
3207
3208 return got_index;
3209 }
3210
3211 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3212 for global symbol H. .got.plt comes before the GOT, so the offset
3213 will be negative. */
3214
3215 static bfd_vma
3216 mips_elf_gotplt_index (struct bfd_link_info *info,
3217 struct elf_link_hash_entry *h)
3218 {
3219 bfd_vma plt_index, got_address, got_value;
3220 struct mips_elf_link_hash_table *htab;
3221
3222 htab = mips_elf_hash_table (info);
3223 BFD_ASSERT (htab != NULL);
3224
3225 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3226
3227 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3228 section starts with reserved entries. */
3229 BFD_ASSERT (htab->is_vxworks);
3230
3231 /* Calculate the index of the symbol's PLT entry. */
3232 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3233
3234 /* Calculate the address of the associated .got.plt entry. */
3235 got_address = (htab->sgotplt->output_section->vma
3236 + htab->sgotplt->output_offset
3237 + plt_index * 4);
3238
3239 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3240 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3241 + htab->root.hgot->root.u.def.section->output_offset
3242 + htab->root.hgot->root.u.def.value);
3243
3244 return got_address - got_value;
3245 }
3246
3247 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3248 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3249 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3250 offset can be found. */
3251
3252 static bfd_vma
3253 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3254 bfd_vma value, unsigned long r_symndx,
3255 struct mips_elf_link_hash_entry *h, int r_type)
3256 {
3257 struct mips_elf_link_hash_table *htab;
3258 struct mips_got_entry *entry;
3259
3260 htab = mips_elf_hash_table (info);
3261 BFD_ASSERT (htab != NULL);
3262
3263 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3264 r_symndx, h, r_type);
3265 if (!entry)
3266 return MINUS_ONE;
3267
3268 if (TLS_RELOC_P (r_type))
3269 {
3270 if (entry->symndx == -1 && htab->got_info->next == NULL)
3271 /* A type (3) entry in the single-GOT case. We use the symbol's
3272 hash table entry to track the index. */
3273 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3274 r_type, info, h, value);
3275 else
3276 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3277 r_type, info, h, value);
3278 }
3279 else
3280 return entry->gotidx;
3281 }
3282
3283 /* Returns the GOT index for the global symbol indicated by H. */
3284
3285 static bfd_vma
3286 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3287 int r_type, struct bfd_link_info *info)
3288 {
3289 struct mips_elf_link_hash_table *htab;
3290 bfd_vma got_index;
3291 struct mips_got_info *g, *gg;
3292 long global_got_dynindx = 0;
3293
3294 htab = mips_elf_hash_table (info);
3295 BFD_ASSERT (htab != NULL);
3296
3297 gg = g = htab->got_info;
3298 if (g->bfd2got && ibfd)
3299 {
3300 struct mips_got_entry e, *p;
3301
3302 BFD_ASSERT (h->dynindx >= 0);
3303
3304 g = mips_elf_got_for_ibfd (g, ibfd);
3305 if (g->next != gg || TLS_RELOC_P (r_type))
3306 {
3307 e.abfd = ibfd;
3308 e.symndx = -1;
3309 e.d.h = (struct mips_elf_link_hash_entry *)h;
3310 e.tls_type = 0;
3311
3312 p = htab_find (g->got_entries, &e);
3313
3314 BFD_ASSERT (p->gotidx > 0);
3315
3316 if (TLS_RELOC_P (r_type))
3317 {
3318 bfd_vma value = MINUS_ONE;
3319 if ((h->root.type == bfd_link_hash_defined
3320 || h->root.type == bfd_link_hash_defweak)
3321 && h->root.u.def.section->output_section)
3322 value = (h->root.u.def.value
3323 + h->root.u.def.section->output_offset
3324 + h->root.u.def.section->output_section->vma);
3325
3326 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3327 info, e.d.h, value);
3328 }
3329 else
3330 return p->gotidx;
3331 }
3332 }
3333
3334 if (gg->global_gotsym != NULL)
3335 global_got_dynindx = gg->global_gotsym->dynindx;
3336
3337 if (TLS_RELOC_P (r_type))
3338 {
3339 struct mips_elf_link_hash_entry *hm
3340 = (struct mips_elf_link_hash_entry *) h;
3341 bfd_vma value = MINUS_ONE;
3342
3343 if ((h->root.type == bfd_link_hash_defined
3344 || h->root.type == bfd_link_hash_defweak)
3345 && h->root.u.def.section->output_section)
3346 value = (h->root.u.def.value
3347 + h->root.u.def.section->output_offset
3348 + h->root.u.def.section->output_section->vma);
3349
3350 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3351 r_type, info, hm, value);
3352 }
3353 else
3354 {
3355 /* Once we determine the global GOT entry with the lowest dynamic
3356 symbol table index, we must put all dynamic symbols with greater
3357 indices into the GOT. That makes it easy to calculate the GOT
3358 offset. */
3359 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3360 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3361 * MIPS_ELF_GOT_SIZE (abfd));
3362 }
3363 BFD_ASSERT (got_index < htab->sgot->size);
3364
3365 return got_index;
3366 }
3367
3368 /* Find a GOT page entry that points to within 32KB of VALUE. These
3369 entries are supposed to be placed at small offsets in the GOT, i.e.,
3370 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3371 entry could be created. If OFFSETP is nonnull, use it to return the
3372 offset of the GOT entry from VALUE. */
3373
3374 static bfd_vma
3375 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3376 bfd_vma value, bfd_vma *offsetp)
3377 {
3378 bfd_vma page, got_index;
3379 struct mips_got_entry *entry;
3380
3381 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3382 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3383 NULL, R_MIPS_GOT_PAGE);
3384
3385 if (!entry)
3386 return MINUS_ONE;
3387
3388 got_index = entry->gotidx;
3389
3390 if (offsetp)
3391 *offsetp = value - entry->d.address;
3392
3393 return got_index;
3394 }
3395
3396 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3397 EXTERNAL is true if the relocation was originally against a global
3398 symbol that binds locally. */
3399
3400 static bfd_vma
3401 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3402 bfd_vma value, bfd_boolean external)
3403 {
3404 struct mips_got_entry *entry;
3405
3406 /* GOT16 relocations against local symbols are followed by a LO16
3407 relocation; those against global symbols are not. Thus if the
3408 symbol was originally local, the GOT16 relocation should load the
3409 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3410 if (! external)
3411 value = mips_elf_high (value) << 16;
3412
3413 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3414 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3415 same in all cases. */
3416 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3417 NULL, R_MIPS_GOT16);
3418 if (entry)
3419 return entry->gotidx;
3420 else
3421 return MINUS_ONE;
3422 }
3423
3424 /* Returns the offset for the entry at the INDEXth position
3425 in the GOT. */
3426
3427 static bfd_vma
3428 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3429 bfd *input_bfd, bfd_vma got_index)
3430 {
3431 struct mips_elf_link_hash_table *htab;
3432 asection *sgot;
3433 bfd_vma gp;
3434
3435 htab = mips_elf_hash_table (info);
3436 BFD_ASSERT (htab != NULL);
3437
3438 sgot = htab->sgot;
3439 gp = _bfd_get_gp_value (output_bfd)
3440 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3441
3442 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3443 }
3444
3445 /* Create and return a local GOT entry for VALUE, which was calculated
3446 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3447 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3448 instead. */
3449
3450 static struct mips_got_entry *
3451 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3452 bfd *ibfd, bfd_vma value,
3453 unsigned long r_symndx,
3454 struct mips_elf_link_hash_entry *h,
3455 int r_type)
3456 {
3457 struct mips_got_entry entry, **loc;
3458 struct mips_got_info *g;
3459 struct mips_elf_link_hash_table *htab;
3460
3461 htab = mips_elf_hash_table (info);
3462 BFD_ASSERT (htab != NULL);
3463
3464 entry.abfd = NULL;
3465 entry.symndx = -1;
3466 entry.d.address = value;
3467 entry.tls_type = 0;
3468
3469 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3470 if (g == NULL)
3471 {
3472 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3473 BFD_ASSERT (g != NULL);
3474 }
3475
3476 /* This function shouldn't be called for symbols that live in the global
3477 area of the GOT. */
3478 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3479 if (TLS_RELOC_P (r_type))
3480 {
3481 struct mips_got_entry *p;
3482
3483 entry.abfd = ibfd;
3484 if (tls_ldm_reloc_p (r_type))
3485 {
3486 entry.tls_type = GOT_TLS_LDM;
3487 entry.symndx = 0;
3488 entry.d.addend = 0;
3489 }
3490 else if (h == NULL)
3491 {
3492 entry.symndx = r_symndx;
3493 entry.d.addend = 0;
3494 }
3495 else
3496 entry.d.h = h;
3497
3498 p = (struct mips_got_entry *)
3499 htab_find (g->got_entries, &entry);
3500
3501 BFD_ASSERT (p);
3502 return p;
3503 }
3504
3505 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3506 INSERT);
3507 if (*loc)
3508 return *loc;
3509
3510 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3511 entry.tls_type = 0;
3512
3513 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3514
3515 if (! *loc)
3516 return NULL;
3517
3518 memcpy (*loc, &entry, sizeof entry);
3519
3520 if (g->assigned_gotno > g->local_gotno)
3521 {
3522 (*loc)->gotidx = -1;
3523 /* We didn't allocate enough space in the GOT. */
3524 (*_bfd_error_handler)
3525 (_("not enough GOT space for local GOT entries"));
3526 bfd_set_error (bfd_error_bad_value);
3527 return NULL;
3528 }
3529
3530 MIPS_ELF_PUT_WORD (abfd, value,
3531 (htab->sgot->contents + entry.gotidx));
3532
3533 /* These GOT entries need a dynamic relocation on VxWorks. */
3534 if (htab->is_vxworks)
3535 {
3536 Elf_Internal_Rela outrel;
3537 asection *s;
3538 bfd_byte *rloc;
3539 bfd_vma got_address;
3540
3541 s = mips_elf_rel_dyn_section (info, FALSE);
3542 got_address = (htab->sgot->output_section->vma
3543 + htab->sgot->output_offset
3544 + entry.gotidx);
3545
3546 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3547 outrel.r_offset = got_address;
3548 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3549 outrel.r_addend = value;
3550 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3551 }
3552
3553 return *loc;
3554 }
3555
3556 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3557 The number might be exact or a worst-case estimate, depending on how
3558 much information is available to elf_backend_omit_section_dynsym at
3559 the current linking stage. */
3560
3561 static bfd_size_type
3562 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3563 {
3564 bfd_size_type count;
3565
3566 count = 0;
3567 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3568 {
3569 asection *p;
3570 const struct elf_backend_data *bed;
3571
3572 bed = get_elf_backend_data (output_bfd);
3573 for (p = output_bfd->sections; p ; p = p->next)
3574 if ((p->flags & SEC_EXCLUDE) == 0
3575 && (p->flags & SEC_ALLOC) != 0
3576 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3577 ++count;
3578 }
3579 return count;
3580 }
3581
3582 /* Sort the dynamic symbol table so that symbols that need GOT entries
3583 appear towards the end. */
3584
3585 static bfd_boolean
3586 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3587 {
3588 struct mips_elf_link_hash_table *htab;
3589 struct mips_elf_hash_sort_data hsd;
3590 struct mips_got_info *g;
3591
3592 if (elf_hash_table (info)->dynsymcount == 0)
3593 return TRUE;
3594
3595 htab = mips_elf_hash_table (info);
3596 BFD_ASSERT (htab != NULL);
3597
3598 g = htab->got_info;
3599 if (g == NULL)
3600 return TRUE;
3601
3602 hsd.low = NULL;
3603 hsd.max_unref_got_dynindx
3604 = hsd.min_got_dynindx
3605 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3606 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3607 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3608 elf_hash_table (info)),
3609 mips_elf_sort_hash_table_f,
3610 &hsd);
3611
3612 /* There should have been enough room in the symbol table to
3613 accommodate both the GOT and non-GOT symbols. */
3614 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3615 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3616 == elf_hash_table (info)->dynsymcount);
3617 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3618 == g->global_gotno);
3619
3620 /* Now we know which dynamic symbol has the lowest dynamic symbol
3621 table index in the GOT. */
3622 g->global_gotsym = hsd.low;
3623
3624 return TRUE;
3625 }
3626
3627 /* If H needs a GOT entry, assign it the highest available dynamic
3628 index. Otherwise, assign it the lowest available dynamic
3629 index. */
3630
3631 static bfd_boolean
3632 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3633 {
3634 struct mips_elf_hash_sort_data *hsd = data;
3635
3636 /* Symbols without dynamic symbol table entries aren't interesting
3637 at all. */
3638 if (h->root.dynindx == -1)
3639 return TRUE;
3640
3641 switch (h->global_got_area)
3642 {
3643 case GGA_NONE:
3644 h->root.dynindx = hsd->max_non_got_dynindx++;
3645 break;
3646
3647 case GGA_NORMAL:
3648 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3649
3650 h->root.dynindx = --hsd->min_got_dynindx;
3651 hsd->low = (struct elf_link_hash_entry *) h;
3652 break;
3653
3654 case GGA_RELOC_ONLY:
3655 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3656
3657 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3658 hsd->low = (struct elf_link_hash_entry *) h;
3659 h->root.dynindx = hsd->max_unref_got_dynindx++;
3660 break;
3661 }
3662
3663 return TRUE;
3664 }
3665
3666 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3667 symbol table index lower than any we've seen to date, record it for
3668 posterity. FOR_CALL is true if the caller is only interested in
3669 using the GOT entry for calls. */
3670
3671 static bfd_boolean
3672 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3673 bfd *abfd, struct bfd_link_info *info,
3674 bfd_boolean for_call,
3675 unsigned char tls_flag)
3676 {
3677 struct mips_elf_link_hash_table *htab;
3678 struct mips_elf_link_hash_entry *hmips;
3679 struct mips_got_entry entry, **loc;
3680 struct mips_got_info *g;
3681
3682 htab = mips_elf_hash_table (info);
3683 BFD_ASSERT (htab != NULL);
3684
3685 hmips = (struct mips_elf_link_hash_entry *) h;
3686 if (!for_call)
3687 hmips->got_only_for_calls = FALSE;
3688
3689 /* A global symbol in the GOT must also be in the dynamic symbol
3690 table. */
3691 if (h->dynindx == -1)
3692 {
3693 switch (ELF_ST_VISIBILITY (h->other))
3694 {
3695 case STV_INTERNAL:
3696 case STV_HIDDEN:
3697 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3698 break;
3699 }
3700 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3701 return FALSE;
3702 }
3703
3704 /* Make sure we have a GOT to put this entry into. */
3705 g = htab->got_info;
3706 BFD_ASSERT (g != NULL);
3707
3708 entry.abfd = abfd;
3709 entry.symndx = -1;
3710 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3711 entry.tls_type = 0;
3712
3713 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3714 INSERT);
3715
3716 /* If we've already marked this entry as needing GOT space, we don't
3717 need to do it again. */
3718 if (*loc)
3719 {
3720 (*loc)->tls_type |= tls_flag;
3721 return TRUE;
3722 }
3723
3724 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3725
3726 if (! *loc)
3727 return FALSE;
3728
3729 entry.gotidx = -1;
3730 entry.tls_type = tls_flag;
3731
3732 memcpy (*loc, &entry, sizeof entry);
3733
3734 if (tls_flag == 0)
3735 hmips->global_got_area = GGA_NORMAL;
3736
3737 return TRUE;
3738 }
3739
3740 /* Reserve space in G for a GOT entry containing the value of symbol
3741 SYMNDX in input bfd ABDF, plus ADDEND. */
3742
3743 static bfd_boolean
3744 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3745 struct bfd_link_info *info,
3746 unsigned char tls_flag)
3747 {
3748 struct mips_elf_link_hash_table *htab;
3749 struct mips_got_info *g;
3750 struct mips_got_entry entry, **loc;
3751
3752 htab = mips_elf_hash_table (info);
3753 BFD_ASSERT (htab != NULL);
3754
3755 g = htab->got_info;
3756 BFD_ASSERT (g != NULL);
3757
3758 entry.abfd = abfd;
3759 entry.symndx = symndx;
3760 entry.d.addend = addend;
3761 entry.tls_type = tls_flag;
3762 loc = (struct mips_got_entry **)
3763 htab_find_slot (g->got_entries, &entry, INSERT);
3764
3765 if (*loc)
3766 {
3767 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3768 {
3769 g->tls_gotno += 2;
3770 (*loc)->tls_type |= tls_flag;
3771 }
3772 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3773 {
3774 g->tls_gotno += 1;
3775 (*loc)->tls_type |= tls_flag;
3776 }
3777 return TRUE;
3778 }
3779
3780 if (tls_flag != 0)
3781 {
3782 entry.gotidx = -1;
3783 entry.tls_type = tls_flag;
3784 if (tls_flag == GOT_TLS_IE)
3785 g->tls_gotno += 1;
3786 else if (tls_flag == GOT_TLS_GD)
3787 g->tls_gotno += 2;
3788 else if (g->tls_ldm_offset == MINUS_ONE)
3789 {
3790 g->tls_ldm_offset = MINUS_TWO;
3791 g->tls_gotno += 2;
3792 }
3793 }
3794 else
3795 {
3796 entry.gotidx = g->local_gotno++;
3797 entry.tls_type = 0;
3798 }
3799
3800 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3801
3802 if (! *loc)
3803 return FALSE;
3804
3805 memcpy (*loc, &entry, sizeof entry);
3806
3807 return TRUE;
3808 }
3809
3810 /* Return the maximum number of GOT page entries required for RANGE. */
3811
3812 static bfd_vma
3813 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3814 {
3815 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3816 }
3817
3818 /* Record that ABFD has a page relocation against symbol SYMNDX and
3819 that ADDEND is the addend for that relocation.
3820
3821 This function creates an upper bound on the number of GOT slots
3822 required; no attempt is made to combine references to non-overridable
3823 global symbols across multiple input files. */
3824
3825 static bfd_boolean
3826 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3827 long symndx, bfd_signed_vma addend)
3828 {
3829 struct mips_elf_link_hash_table *htab;
3830 struct mips_got_info *g;
3831 struct mips_got_page_entry lookup, *entry;
3832 struct mips_got_page_range **range_ptr, *range;
3833 bfd_vma old_pages, new_pages;
3834 void **loc;
3835
3836 htab = mips_elf_hash_table (info);
3837 BFD_ASSERT (htab != NULL);
3838
3839 g = htab->got_info;
3840 BFD_ASSERT (g != NULL);
3841
3842 /* Find the mips_got_page_entry hash table entry for this symbol. */
3843 lookup.abfd = abfd;
3844 lookup.symndx = symndx;
3845 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3846 if (loc == NULL)
3847 return FALSE;
3848
3849 /* Create a mips_got_page_entry if this is the first time we've
3850 seen the symbol. */
3851 entry = (struct mips_got_page_entry *) *loc;
3852 if (!entry)
3853 {
3854 entry = bfd_alloc (abfd, sizeof (*entry));
3855 if (!entry)
3856 return FALSE;
3857
3858 entry->abfd = abfd;
3859 entry->symndx = symndx;
3860 entry->ranges = NULL;
3861 entry->num_pages = 0;
3862 *loc = entry;
3863 }
3864
3865 /* Skip over ranges whose maximum extent cannot share a page entry
3866 with ADDEND. */
3867 range_ptr = &entry->ranges;
3868 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3869 range_ptr = &(*range_ptr)->next;
3870
3871 /* If we scanned to the end of the list, or found a range whose
3872 minimum extent cannot share a page entry with ADDEND, create
3873 a new singleton range. */
3874 range = *range_ptr;
3875 if (!range || addend < range->min_addend - 0xffff)
3876 {
3877 range = bfd_alloc (abfd, sizeof (*range));
3878 if (!range)
3879 return FALSE;
3880
3881 range->next = *range_ptr;
3882 range->min_addend = addend;
3883 range->max_addend = addend;
3884
3885 *range_ptr = range;
3886 entry->num_pages++;
3887 g->page_gotno++;
3888 return TRUE;
3889 }
3890
3891 /* Remember how many pages the old range contributed. */
3892 old_pages = mips_elf_pages_for_range (range);
3893
3894 /* Update the ranges. */
3895 if (addend < range->min_addend)
3896 range->min_addend = addend;
3897 else if (addend > range->max_addend)
3898 {
3899 if (range->next && addend >= range->next->min_addend - 0xffff)
3900 {
3901 old_pages += mips_elf_pages_for_range (range->next);
3902 range->max_addend = range->next->max_addend;
3903 range->next = range->next->next;
3904 }
3905 else
3906 range->max_addend = addend;
3907 }
3908
3909 /* Record any change in the total estimate. */
3910 new_pages = mips_elf_pages_for_range (range);
3911 if (old_pages != new_pages)
3912 {
3913 entry->num_pages += new_pages - old_pages;
3914 g->page_gotno += new_pages - old_pages;
3915 }
3916
3917 return TRUE;
3918 }
3919
3920 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3921
3922 static void
3923 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3924 unsigned int n)
3925 {
3926 asection *s;
3927 struct mips_elf_link_hash_table *htab;
3928
3929 htab = mips_elf_hash_table (info);
3930 BFD_ASSERT (htab != NULL);
3931
3932 s = mips_elf_rel_dyn_section (info, FALSE);
3933 BFD_ASSERT (s != NULL);
3934
3935 if (htab->is_vxworks)
3936 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3937 else
3938 {
3939 if (s->size == 0)
3940 {
3941 /* Make room for a null element. */
3942 s->size += MIPS_ELF_REL_SIZE (abfd);
3943 ++s->reloc_count;
3944 }
3945 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3946 }
3947 }
3948 \f
3949 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3950 if the GOT entry is for an indirect or warning symbol. */
3951
3952 static int
3953 mips_elf_check_recreate_got (void **entryp, void *data)
3954 {
3955 struct mips_got_entry *entry;
3956 bfd_boolean *must_recreate;
3957
3958 entry = (struct mips_got_entry *) *entryp;
3959 must_recreate = (bfd_boolean *) data;
3960 if (entry->abfd != NULL && entry->symndx == -1)
3961 {
3962 struct mips_elf_link_hash_entry *h;
3963
3964 h = entry->d.h;
3965 if (h->root.root.type == bfd_link_hash_indirect
3966 || h->root.root.type == bfd_link_hash_warning)
3967 {
3968 *must_recreate = TRUE;
3969 return 0;
3970 }
3971 }
3972 return 1;
3973 }
3974
3975 /* A htab_traverse callback for GOT entries. Add all entries to
3976 hash table *DATA, converting entries for indirect and warning
3977 symbols into entries for the target symbol. Set *DATA to null
3978 on error. */
3979
3980 static int
3981 mips_elf_recreate_got (void **entryp, void *data)
3982 {
3983 htab_t *new_got;
3984 struct mips_got_entry *entry;
3985 void **slot;
3986
3987 new_got = (htab_t *) data;
3988 entry = (struct mips_got_entry *) *entryp;
3989 if (entry->abfd != NULL && entry->symndx == -1)
3990 {
3991 struct mips_elf_link_hash_entry *h;
3992
3993 h = entry->d.h;
3994 while (h->root.root.type == bfd_link_hash_indirect
3995 || h->root.root.type == bfd_link_hash_warning)
3996 {
3997 BFD_ASSERT (h->global_got_area == GGA_NONE);
3998 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3999 }
4000 entry->d.h = h;
4001 }
4002 slot = htab_find_slot (*new_got, entry, INSERT);
4003 if (slot == NULL)
4004 {
4005 *new_got = NULL;
4006 return 0;
4007 }
4008 if (*slot == NULL)
4009 *slot = entry;
4010 else
4011 free (entry);
4012 return 1;
4013 }
4014
4015 /* If any entries in G->got_entries are for indirect or warning symbols,
4016 replace them with entries for the target symbol. */
4017
4018 static bfd_boolean
4019 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
4020 {
4021 bfd_boolean must_recreate;
4022 htab_t new_got;
4023
4024 must_recreate = FALSE;
4025 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
4026 if (must_recreate)
4027 {
4028 new_got = htab_create (htab_size (g->got_entries),
4029 mips_elf_got_entry_hash,
4030 mips_elf_got_entry_eq, NULL);
4031 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
4032 if (new_got == NULL)
4033 return FALSE;
4034
4035 /* Each entry in g->got_entries has either been copied to new_got
4036 or freed. Now delete the hash table itself. */
4037 htab_delete (g->got_entries);
4038 g->got_entries = new_got;
4039 }
4040 return TRUE;
4041 }
4042
4043 /* A mips_elf_link_hash_traverse callback for which DATA points
4044 to the link_info structure. Count the number of type (3) entries
4045 in the master GOT. */
4046
4047 static int
4048 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4049 {
4050 struct bfd_link_info *info;
4051 struct mips_elf_link_hash_table *htab;
4052 struct mips_got_info *g;
4053
4054 info = (struct bfd_link_info *) data;
4055 htab = mips_elf_hash_table (info);
4056 g = htab->got_info;
4057 if (h->global_got_area != GGA_NONE)
4058 {
4059 /* Make a final decision about whether the symbol belongs in the
4060 local or global GOT. Symbols that bind locally can (and in the
4061 case of forced-local symbols, must) live in the local GOT.
4062 Those that are aren't in the dynamic symbol table must also
4063 live in the local GOT.
4064
4065 Note that the former condition does not always imply the
4066 latter: symbols do not bind locally if they are completely
4067 undefined. We'll report undefined symbols later if appropriate. */
4068 if (h->root.dynindx == -1
4069 || (h->got_only_for_calls
4070 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4071 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4072 {
4073 /* The symbol belongs in the local GOT. We no longer need this
4074 entry if it was only used for relocations; those relocations
4075 will be against the null or section symbol instead of H. */
4076 if (h->global_got_area != GGA_RELOC_ONLY)
4077 g->local_gotno++;
4078 h->global_got_area = GGA_NONE;
4079 }
4080 else if (htab->is_vxworks
4081 && h->got_only_for_calls
4082 && h->root.plt.offset != MINUS_ONE)
4083 /* On VxWorks, calls can refer directly to the .got.plt entry;
4084 they don't need entries in the regular GOT. .got.plt entries
4085 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4086 h->global_got_area = GGA_NONE;
4087 else
4088 {
4089 g->global_gotno++;
4090 if (h->global_got_area == GGA_RELOC_ONLY)
4091 g->reloc_only_gotno++;
4092 }
4093 }
4094 return 1;
4095 }
4096 \f
4097 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4098
4099 static hashval_t
4100 mips_elf_bfd2got_entry_hash (const void *entry_)
4101 {
4102 const struct mips_elf_bfd2got_hash *entry
4103 = (struct mips_elf_bfd2got_hash *)entry_;
4104
4105 return entry->bfd->id;
4106 }
4107
4108 /* Check whether two hash entries have the same bfd. */
4109
4110 static int
4111 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4112 {
4113 const struct mips_elf_bfd2got_hash *e1
4114 = (const struct mips_elf_bfd2got_hash *)entry1;
4115 const struct mips_elf_bfd2got_hash *e2
4116 = (const struct mips_elf_bfd2got_hash *)entry2;
4117
4118 return e1->bfd == e2->bfd;
4119 }
4120
4121 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4122 be the master GOT data. */
4123
4124 static struct mips_got_info *
4125 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4126 {
4127 struct mips_elf_bfd2got_hash e, *p;
4128
4129 if (! g->bfd2got)
4130 return g;
4131
4132 e.bfd = ibfd;
4133 p = htab_find (g->bfd2got, &e);
4134 return p ? p->g : NULL;
4135 }
4136
4137 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4138 Return NULL if an error occured. */
4139
4140 static struct mips_got_info *
4141 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4142 bfd *input_bfd)
4143 {
4144 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4145 struct mips_got_info *g;
4146 void **bfdgotp;
4147
4148 bfdgot_entry.bfd = input_bfd;
4149 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4150 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4151
4152 if (bfdgot == NULL)
4153 {
4154 bfdgot = ((struct mips_elf_bfd2got_hash *)
4155 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4156 if (bfdgot == NULL)
4157 return NULL;
4158
4159 *bfdgotp = bfdgot;
4160
4161 g = ((struct mips_got_info *)
4162 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4163 if (g == NULL)
4164 return NULL;
4165
4166 bfdgot->bfd = input_bfd;
4167 bfdgot->g = g;
4168
4169 g->global_gotsym = NULL;
4170 g->global_gotno = 0;
4171 g->reloc_only_gotno = 0;
4172 g->local_gotno = 0;
4173 g->page_gotno = 0;
4174 g->assigned_gotno = -1;
4175 g->tls_gotno = 0;
4176 g->tls_assigned_gotno = 0;
4177 g->tls_ldm_offset = MINUS_ONE;
4178 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4179 mips_elf_multi_got_entry_eq, NULL);
4180 if (g->got_entries == NULL)
4181 return NULL;
4182
4183 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4184 mips_got_page_entry_eq, NULL);
4185 if (g->got_page_entries == NULL)
4186 return NULL;
4187
4188 g->bfd2got = NULL;
4189 g->next = NULL;
4190 }
4191
4192 return bfdgot->g;
4193 }
4194
4195 /* A htab_traverse callback for the entries in the master got.
4196 Create one separate got for each bfd that has entries in the global
4197 got, such that we can tell how many local and global entries each
4198 bfd requires. */
4199
4200 static int
4201 mips_elf_make_got_per_bfd (void **entryp, void *p)
4202 {
4203 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4204 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4205 struct mips_got_info *g;
4206
4207 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4208 if (g == NULL)
4209 {
4210 arg->obfd = NULL;
4211 return 0;
4212 }
4213
4214 /* Insert the GOT entry in the bfd's got entry hash table. */
4215 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4216 if (*entryp != NULL)
4217 return 1;
4218
4219 *entryp = entry;
4220
4221 if (entry->tls_type)
4222 {
4223 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4224 g->tls_gotno += 2;
4225 if (entry->tls_type & GOT_TLS_IE)
4226 g->tls_gotno += 1;
4227 }
4228 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4229 ++g->local_gotno;
4230 else
4231 ++g->global_gotno;
4232
4233 return 1;
4234 }
4235
4236 /* A htab_traverse callback for the page entries in the master got.
4237 Associate each page entry with the bfd's got. */
4238
4239 static int
4240 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4241 {
4242 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4243 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4244 struct mips_got_info *g;
4245
4246 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4247 if (g == NULL)
4248 {
4249 arg->obfd = NULL;
4250 return 0;
4251 }
4252
4253 /* Insert the GOT entry in the bfd's got entry hash table. */
4254 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4255 if (*entryp != NULL)
4256 return 1;
4257
4258 *entryp = entry;
4259 g->page_gotno += entry->num_pages;
4260 return 1;
4261 }
4262
4263 /* Consider merging the got described by BFD2GOT with TO, using the
4264 information given by ARG. Return -1 if this would lead to overflow,
4265 1 if they were merged successfully, and 0 if a merge failed due to
4266 lack of memory. (These values are chosen so that nonnegative return
4267 values can be returned by a htab_traverse callback.) */
4268
4269 static int
4270 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4271 struct mips_got_info *to,
4272 struct mips_elf_got_per_bfd_arg *arg)
4273 {
4274 struct mips_got_info *from = bfd2got->g;
4275 unsigned int estimate;
4276
4277 /* Work out how many page entries we would need for the combined GOT. */
4278 estimate = arg->max_pages;
4279 if (estimate >= from->page_gotno + to->page_gotno)
4280 estimate = from->page_gotno + to->page_gotno;
4281
4282 /* And conservatively estimate how many local and TLS entries
4283 would be needed. */
4284 estimate += from->local_gotno + to->local_gotno;
4285 estimate += from->tls_gotno + to->tls_gotno;
4286
4287 /* If we're merging with the primary got, we will always have
4288 the full set of global entries. Otherwise estimate those
4289 conservatively as well. */
4290 if (to == arg->primary)
4291 estimate += arg->global_count;
4292 else
4293 estimate += from->global_gotno + to->global_gotno;
4294
4295 /* Bail out if the combined GOT might be too big. */
4296 if (estimate > arg->max_count)
4297 return -1;
4298
4299 /* Commit to the merge. Record that TO is now the bfd for this got. */
4300 bfd2got->g = to;
4301
4302 /* Transfer the bfd's got information from FROM to TO. */
4303 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4304 if (arg->obfd == NULL)
4305 return 0;
4306
4307 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4308 if (arg->obfd == NULL)
4309 return 0;
4310
4311 /* We don't have to worry about releasing memory of the actual
4312 got entries, since they're all in the master got_entries hash
4313 table anyway. */
4314 htab_delete (from->got_entries);
4315 htab_delete (from->got_page_entries);
4316 return 1;
4317 }
4318
4319 /* Attempt to merge gots of different input bfds. Try to use as much
4320 as possible of the primary got, since it doesn't require explicit
4321 dynamic relocations, but don't use bfds that would reference global
4322 symbols out of the addressable range. Failing the primary got,
4323 attempt to merge with the current got, or finish the current got
4324 and then make make the new got current. */
4325
4326 static int
4327 mips_elf_merge_gots (void **bfd2got_, void *p)
4328 {
4329 struct mips_elf_bfd2got_hash *bfd2got
4330 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4331 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4332 struct mips_got_info *g;
4333 unsigned int estimate;
4334 int result;
4335
4336 g = bfd2got->g;
4337
4338 /* Work out the number of page, local and TLS entries. */
4339 estimate = arg->max_pages;
4340 if (estimate > g->page_gotno)
4341 estimate = g->page_gotno;
4342 estimate += g->local_gotno + g->tls_gotno;
4343
4344 /* We place TLS GOT entries after both locals and globals. The globals
4345 for the primary GOT may overflow the normal GOT size limit, so be
4346 sure not to merge a GOT which requires TLS with the primary GOT in that
4347 case. This doesn't affect non-primary GOTs. */
4348 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4349
4350 if (estimate <= arg->max_count)
4351 {
4352 /* If we don't have a primary GOT, use it as
4353 a starting point for the primary GOT. */
4354 if (!arg->primary)
4355 {
4356 arg->primary = bfd2got->g;
4357 return 1;
4358 }
4359
4360 /* Try merging with the primary GOT. */
4361 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4362 if (result >= 0)
4363 return result;
4364 }
4365
4366 /* If we can merge with the last-created got, do it. */
4367 if (arg->current)
4368 {
4369 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4370 if (result >= 0)
4371 return result;
4372 }
4373
4374 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4375 fits; if it turns out that it doesn't, we'll get relocation
4376 overflows anyway. */
4377 g->next = arg->current;
4378 arg->current = g;
4379
4380 return 1;
4381 }
4382
4383 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4384 is null iff there is just a single GOT. */
4385
4386 static int
4387 mips_elf_initialize_tls_index (void **entryp, void *p)
4388 {
4389 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4390 struct mips_got_info *g = p;
4391 bfd_vma next_index;
4392 unsigned char tls_type;
4393
4394 /* We're only interested in TLS symbols. */
4395 if (entry->tls_type == 0)
4396 return 1;
4397
4398 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4399
4400 if (entry->symndx == -1 && g->next == NULL)
4401 {
4402 /* A type (3) got entry in the single-GOT case. We use the symbol's
4403 hash table entry to track its index. */
4404 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4405 return 1;
4406 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4407 entry->d.h->tls_got_offset = next_index;
4408 tls_type = entry->d.h->tls_type;
4409 }
4410 else
4411 {
4412 if (entry->tls_type & GOT_TLS_LDM)
4413 {
4414 /* There are separate mips_got_entry objects for each input bfd
4415 that requires an LDM entry. Make sure that all LDM entries in
4416 a GOT resolve to the same index. */
4417 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4418 {
4419 entry->gotidx = g->tls_ldm_offset;
4420 return 1;
4421 }
4422 g->tls_ldm_offset = next_index;
4423 }
4424 entry->gotidx = next_index;
4425 tls_type = entry->tls_type;
4426 }
4427
4428 /* Account for the entries we've just allocated. */
4429 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4430 g->tls_assigned_gotno += 2;
4431 if (tls_type & GOT_TLS_IE)
4432 g->tls_assigned_gotno += 1;
4433
4434 return 1;
4435 }
4436
4437 /* If passed a NULL mips_got_info in the argument, set the marker used
4438 to tell whether a global symbol needs a got entry (in the primary
4439 got) to the given VALUE.
4440
4441 If passed a pointer G to a mips_got_info in the argument (it must
4442 not be the primary GOT), compute the offset from the beginning of
4443 the (primary) GOT section to the entry in G corresponding to the
4444 global symbol. G's assigned_gotno must contain the index of the
4445 first available global GOT entry in G. VALUE must contain the size
4446 of a GOT entry in bytes. For each global GOT entry that requires a
4447 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4448 marked as not eligible for lazy resolution through a function
4449 stub. */
4450 static int
4451 mips_elf_set_global_got_offset (void **entryp, void *p)
4452 {
4453 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4454 struct mips_elf_set_global_got_offset_arg *arg
4455 = (struct mips_elf_set_global_got_offset_arg *)p;
4456 struct mips_got_info *g = arg->g;
4457
4458 if (g && entry->tls_type != GOT_NORMAL)
4459 arg->needed_relocs +=
4460 mips_tls_got_relocs (arg->info, entry->tls_type,
4461 entry->symndx == -1 ? &entry->d.h->root : NULL);
4462
4463 if (entry->abfd != NULL
4464 && entry->symndx == -1
4465 && entry->d.h->global_got_area != GGA_NONE)
4466 {
4467 if (g)
4468 {
4469 BFD_ASSERT (g->global_gotsym == NULL);
4470
4471 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4472 if (arg->info->shared
4473 || (elf_hash_table (arg->info)->dynamic_sections_created
4474 && entry->d.h->root.def_dynamic
4475 && !entry->d.h->root.def_regular))
4476 ++arg->needed_relocs;
4477 }
4478 else
4479 entry->d.h->global_got_area = arg->value;
4480 }
4481
4482 return 1;
4483 }
4484
4485 /* A htab_traverse callback for GOT entries for which DATA is the
4486 bfd_link_info. Forbid any global symbols from having traditional
4487 lazy-binding stubs. */
4488
4489 static int
4490 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4491 {
4492 struct bfd_link_info *info;
4493 struct mips_elf_link_hash_table *htab;
4494 struct mips_got_entry *entry;
4495
4496 entry = (struct mips_got_entry *) *entryp;
4497 info = (struct bfd_link_info *) data;
4498 htab = mips_elf_hash_table (info);
4499 BFD_ASSERT (htab != NULL);
4500
4501 if (entry->abfd != NULL
4502 && entry->symndx == -1
4503 && entry->d.h->needs_lazy_stub)
4504 {
4505 entry->d.h->needs_lazy_stub = FALSE;
4506 htab->lazy_stub_count--;
4507 }
4508
4509 return 1;
4510 }
4511
4512 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4513 the primary GOT. */
4514 static bfd_vma
4515 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4516 {
4517 if (g->bfd2got == NULL)
4518 return 0;
4519
4520 g = mips_elf_got_for_ibfd (g, ibfd);
4521 if (! g)
4522 return 0;
4523
4524 BFD_ASSERT (g->next);
4525
4526 g = g->next;
4527
4528 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4529 * MIPS_ELF_GOT_SIZE (abfd);
4530 }
4531
4532 /* Turn a single GOT that is too big for 16-bit addressing into
4533 a sequence of GOTs, each one 16-bit addressable. */
4534
4535 static bfd_boolean
4536 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4537 asection *got, bfd_size_type pages)
4538 {
4539 struct mips_elf_link_hash_table *htab;
4540 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4541 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4542 struct mips_got_info *g, *gg;
4543 unsigned int assign, needed_relocs;
4544 bfd *dynobj;
4545
4546 dynobj = elf_hash_table (info)->dynobj;
4547 htab = mips_elf_hash_table (info);
4548 BFD_ASSERT (htab != NULL);
4549
4550 g = htab->got_info;
4551 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4552 mips_elf_bfd2got_entry_eq, NULL);
4553 if (g->bfd2got == NULL)
4554 return FALSE;
4555
4556 got_per_bfd_arg.bfd2got = g->bfd2got;
4557 got_per_bfd_arg.obfd = abfd;
4558 got_per_bfd_arg.info = info;
4559
4560 /* Count how many GOT entries each input bfd requires, creating a
4561 map from bfd to got info while at that. */
4562 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4563 if (got_per_bfd_arg.obfd == NULL)
4564 return FALSE;
4565
4566 /* Also count how many page entries each input bfd requires. */
4567 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4568 &got_per_bfd_arg);
4569 if (got_per_bfd_arg.obfd == NULL)
4570 return FALSE;
4571
4572 got_per_bfd_arg.current = NULL;
4573 got_per_bfd_arg.primary = NULL;
4574 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4575 / MIPS_ELF_GOT_SIZE (abfd))
4576 - htab->reserved_gotno);
4577 got_per_bfd_arg.max_pages = pages;
4578 /* The number of globals that will be included in the primary GOT.
4579 See the calls to mips_elf_set_global_got_offset below for more
4580 information. */
4581 got_per_bfd_arg.global_count = g->global_gotno;
4582
4583 /* Try to merge the GOTs of input bfds together, as long as they
4584 don't seem to exceed the maximum GOT size, choosing one of them
4585 to be the primary GOT. */
4586 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4587 if (got_per_bfd_arg.obfd == NULL)
4588 return FALSE;
4589
4590 /* If we do not find any suitable primary GOT, create an empty one. */
4591 if (got_per_bfd_arg.primary == NULL)
4592 {
4593 g->next = (struct mips_got_info *)
4594 bfd_alloc (abfd, sizeof (struct mips_got_info));
4595 if (g->next == NULL)
4596 return FALSE;
4597
4598 g->next->global_gotsym = NULL;
4599 g->next->global_gotno = 0;
4600 g->next->reloc_only_gotno = 0;
4601 g->next->local_gotno = 0;
4602 g->next->page_gotno = 0;
4603 g->next->tls_gotno = 0;
4604 g->next->assigned_gotno = 0;
4605 g->next->tls_assigned_gotno = 0;
4606 g->next->tls_ldm_offset = MINUS_ONE;
4607 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4608 mips_elf_multi_got_entry_eq,
4609 NULL);
4610 if (g->next->got_entries == NULL)
4611 return FALSE;
4612 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4613 mips_got_page_entry_eq,
4614 NULL);
4615 if (g->next->got_page_entries == NULL)
4616 return FALSE;
4617 g->next->bfd2got = NULL;
4618 }
4619 else
4620 g->next = got_per_bfd_arg.primary;
4621 g->next->next = got_per_bfd_arg.current;
4622
4623 /* GG is now the master GOT, and G is the primary GOT. */
4624 gg = g;
4625 g = g->next;
4626
4627 /* Map the output bfd to the primary got. That's what we're going
4628 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4629 didn't mark in check_relocs, and we want a quick way to find it.
4630 We can't just use gg->next because we're going to reverse the
4631 list. */
4632 {
4633 struct mips_elf_bfd2got_hash *bfdgot;
4634 void **bfdgotp;
4635
4636 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4637 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4638
4639 if (bfdgot == NULL)
4640 return FALSE;
4641
4642 bfdgot->bfd = abfd;
4643 bfdgot->g = g;
4644 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4645
4646 BFD_ASSERT (*bfdgotp == NULL);
4647 *bfdgotp = bfdgot;
4648 }
4649
4650 /* Every symbol that is referenced in a dynamic relocation must be
4651 present in the primary GOT, so arrange for them to appear after
4652 those that are actually referenced. */
4653 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4654 g->global_gotno = gg->global_gotno;
4655
4656 set_got_offset_arg.g = NULL;
4657 set_got_offset_arg.value = GGA_RELOC_ONLY;
4658 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4659 &set_got_offset_arg);
4660 set_got_offset_arg.value = GGA_NORMAL;
4661 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4662 &set_got_offset_arg);
4663
4664 /* Now go through the GOTs assigning them offset ranges.
4665 [assigned_gotno, local_gotno[ will be set to the range of local
4666 entries in each GOT. We can then compute the end of a GOT by
4667 adding local_gotno to global_gotno. We reverse the list and make
4668 it circular since then we'll be able to quickly compute the
4669 beginning of a GOT, by computing the end of its predecessor. To
4670 avoid special cases for the primary GOT, while still preserving
4671 assertions that are valid for both single- and multi-got links,
4672 we arrange for the main got struct to have the right number of
4673 global entries, but set its local_gotno such that the initial
4674 offset of the primary GOT is zero. Remember that the primary GOT
4675 will become the last item in the circular linked list, so it
4676 points back to the master GOT. */
4677 gg->local_gotno = -g->global_gotno;
4678 gg->global_gotno = g->global_gotno;
4679 gg->tls_gotno = 0;
4680 assign = 0;
4681 gg->next = gg;
4682
4683 do
4684 {
4685 struct mips_got_info *gn;
4686
4687 assign += htab->reserved_gotno;
4688 g->assigned_gotno = assign;
4689 g->local_gotno += assign;
4690 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4691 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4692
4693 /* Take g out of the direct list, and push it onto the reversed
4694 list that gg points to. g->next is guaranteed to be nonnull after
4695 this operation, as required by mips_elf_initialize_tls_index. */
4696 gn = g->next;
4697 g->next = gg->next;
4698 gg->next = g;
4699
4700 /* Set up any TLS entries. We always place the TLS entries after
4701 all non-TLS entries. */
4702 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4703 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4704
4705 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4706 g = gn;
4707
4708 /* Forbid global symbols in every non-primary GOT from having
4709 lazy-binding stubs. */
4710 if (g)
4711 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4712 }
4713 while (g);
4714
4715 got->size = (gg->next->local_gotno
4716 + gg->next->global_gotno
4717 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4718
4719 needed_relocs = 0;
4720 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4721 set_got_offset_arg.info = info;
4722 for (g = gg->next; g && g->next != gg; g = g->next)
4723 {
4724 unsigned int save_assign;
4725
4726 /* Assign offsets to global GOT entries. */
4727 save_assign = g->assigned_gotno;
4728 g->assigned_gotno = g->local_gotno;
4729 set_got_offset_arg.g = g;
4730 set_got_offset_arg.needed_relocs = 0;
4731 htab_traverse (g->got_entries,
4732 mips_elf_set_global_got_offset,
4733 &set_got_offset_arg);
4734 needed_relocs += set_got_offset_arg.needed_relocs;
4735 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4736
4737 g->assigned_gotno = save_assign;
4738 if (info->shared)
4739 {
4740 needed_relocs += g->local_gotno - g->assigned_gotno;
4741 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4742 + g->next->global_gotno
4743 + g->next->tls_gotno
4744 + htab->reserved_gotno);
4745 }
4746 }
4747
4748 if (needed_relocs)
4749 mips_elf_allocate_dynamic_relocations (dynobj, info,
4750 needed_relocs);
4751
4752 return TRUE;
4753 }
4754
4755 \f
4756 /* Returns the first relocation of type r_type found, beginning with
4757 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4758
4759 static const Elf_Internal_Rela *
4760 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4761 const Elf_Internal_Rela *relocation,
4762 const Elf_Internal_Rela *relend)
4763 {
4764 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4765
4766 while (relocation < relend)
4767 {
4768 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4769 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4770 return relocation;
4771
4772 ++relocation;
4773 }
4774
4775 /* We didn't find it. */
4776 return NULL;
4777 }
4778
4779 /* Return whether an input relocation is against a local symbol. */
4780
4781 static bfd_boolean
4782 mips_elf_local_relocation_p (bfd *input_bfd,
4783 const Elf_Internal_Rela *relocation,
4784 asection **local_sections)
4785 {
4786 unsigned long r_symndx;
4787 Elf_Internal_Shdr *symtab_hdr;
4788 size_t extsymoff;
4789
4790 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4791 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4792 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4793
4794 if (r_symndx < extsymoff)
4795 return TRUE;
4796 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4797 return TRUE;
4798
4799 return FALSE;
4800 }
4801 \f
4802 /* Sign-extend VALUE, which has the indicated number of BITS. */
4803
4804 bfd_vma
4805 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4806 {
4807 if (value & ((bfd_vma) 1 << (bits - 1)))
4808 /* VALUE is negative. */
4809 value |= ((bfd_vma) - 1) << bits;
4810
4811 return value;
4812 }
4813
4814 /* Return non-zero if the indicated VALUE has overflowed the maximum
4815 range expressible by a signed number with the indicated number of
4816 BITS. */
4817
4818 static bfd_boolean
4819 mips_elf_overflow_p (bfd_vma value, int bits)
4820 {
4821 bfd_signed_vma svalue = (bfd_signed_vma) value;
4822
4823 if (svalue > (1 << (bits - 1)) - 1)
4824 /* The value is too big. */
4825 return TRUE;
4826 else if (svalue < -(1 << (bits - 1)))
4827 /* The value is too small. */
4828 return TRUE;
4829
4830 /* All is well. */
4831 return FALSE;
4832 }
4833
4834 /* Calculate the %high function. */
4835
4836 static bfd_vma
4837 mips_elf_high (bfd_vma value)
4838 {
4839 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4840 }
4841
4842 /* Calculate the %higher function. */
4843
4844 static bfd_vma
4845 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4846 {
4847 #ifdef BFD64
4848 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4849 #else
4850 abort ();
4851 return MINUS_ONE;
4852 #endif
4853 }
4854
4855 /* Calculate the %highest function. */
4856
4857 static bfd_vma
4858 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4859 {
4860 #ifdef BFD64
4861 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4862 #else
4863 abort ();
4864 return MINUS_ONE;
4865 #endif
4866 }
4867 \f
4868 /* Create the .compact_rel section. */
4869
4870 static bfd_boolean
4871 mips_elf_create_compact_rel_section
4872 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4873 {
4874 flagword flags;
4875 register asection *s;
4876
4877 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4878 {
4879 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4880 | SEC_READONLY);
4881
4882 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4883 if (s == NULL
4884 || ! bfd_set_section_alignment (abfd, s,
4885 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4886 return FALSE;
4887
4888 s->size = sizeof (Elf32_External_compact_rel);
4889 }
4890
4891 return TRUE;
4892 }
4893
4894 /* Create the .got section to hold the global offset table. */
4895
4896 static bfd_boolean
4897 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4898 {
4899 flagword flags;
4900 register asection *s;
4901 struct elf_link_hash_entry *h;
4902 struct bfd_link_hash_entry *bh;
4903 struct mips_got_info *g;
4904 bfd_size_type amt;
4905 struct mips_elf_link_hash_table *htab;
4906
4907 htab = mips_elf_hash_table (info);
4908 BFD_ASSERT (htab != NULL);
4909
4910 /* This function may be called more than once. */
4911 if (htab->sgot)
4912 return TRUE;
4913
4914 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4915 | SEC_LINKER_CREATED);
4916
4917 /* We have to use an alignment of 2**4 here because this is hardcoded
4918 in the function stub generation and in the linker script. */
4919 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4920 if (s == NULL
4921 || ! bfd_set_section_alignment (abfd, s, 4))
4922 return FALSE;
4923 htab->sgot = s;
4924
4925 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4926 linker script because we don't want to define the symbol if we
4927 are not creating a global offset table. */
4928 bh = NULL;
4929 if (! (_bfd_generic_link_add_one_symbol
4930 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4931 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4932 return FALSE;
4933
4934 h = (struct elf_link_hash_entry *) bh;
4935 h->non_elf = 0;
4936 h->def_regular = 1;
4937 h->type = STT_OBJECT;
4938 elf_hash_table (info)->hgot = h;
4939
4940 if (info->shared
4941 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4942 return FALSE;
4943
4944 amt = sizeof (struct mips_got_info);
4945 g = bfd_alloc (abfd, amt);
4946 if (g == NULL)
4947 return FALSE;
4948 g->global_gotsym = NULL;
4949 g->global_gotno = 0;
4950 g->reloc_only_gotno = 0;
4951 g->tls_gotno = 0;
4952 g->local_gotno = 0;
4953 g->page_gotno = 0;
4954 g->assigned_gotno = 0;
4955 g->bfd2got = NULL;
4956 g->next = NULL;
4957 g->tls_ldm_offset = MINUS_ONE;
4958 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4959 mips_elf_got_entry_eq, NULL);
4960 if (g->got_entries == NULL)
4961 return FALSE;
4962 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4963 mips_got_page_entry_eq, NULL);
4964 if (g->got_page_entries == NULL)
4965 return FALSE;
4966 htab->got_info = g;
4967 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4968 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4969
4970 /* We also need a .got.plt section when generating PLTs. */
4971 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4972 SEC_ALLOC | SEC_LOAD
4973 | SEC_HAS_CONTENTS
4974 | SEC_IN_MEMORY
4975 | SEC_LINKER_CREATED);
4976 if (s == NULL)
4977 return FALSE;
4978 htab->sgotplt = s;
4979
4980 return TRUE;
4981 }
4982 \f
4983 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4984 __GOTT_INDEX__ symbols. These symbols are only special for
4985 shared objects; they are not used in executables. */
4986
4987 static bfd_boolean
4988 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4989 {
4990 return (mips_elf_hash_table (info)->is_vxworks
4991 && info->shared
4992 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4993 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4994 }
4995
4996 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4997 require an la25 stub. See also mips_elf_local_pic_function_p,
4998 which determines whether the destination function ever requires a
4999 stub. */
5000
5001 static bfd_boolean
5002 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5003 bfd_boolean target_is_16_bit_code_p)
5004 {
5005 /* We specifically ignore branches and jumps from EF_PIC objects,
5006 where the onus is on the compiler or programmer to perform any
5007 necessary initialization of $25. Sometimes such initialization
5008 is unnecessary; for example, -mno-shared functions do not use
5009 the incoming value of $25, and may therefore be called directly. */
5010 if (PIC_OBJECT_P (input_bfd))
5011 return FALSE;
5012
5013 switch (r_type)
5014 {
5015 case R_MIPS_26:
5016 case R_MIPS_PC16:
5017 case R_MICROMIPS_26_S1:
5018 case R_MICROMIPS_PC7_S1:
5019 case R_MICROMIPS_PC10_S1:
5020 case R_MICROMIPS_PC16_S1:
5021 case R_MICROMIPS_PC23_S2:
5022 return TRUE;
5023
5024 case R_MIPS16_26:
5025 return !target_is_16_bit_code_p;
5026
5027 default:
5028 return FALSE;
5029 }
5030 }
5031 \f
5032 /* Calculate the value produced by the RELOCATION (which comes from
5033 the INPUT_BFD). The ADDEND is the addend to use for this
5034 RELOCATION; RELOCATION->R_ADDEND is ignored.
5035
5036 The result of the relocation calculation is stored in VALUEP.
5037 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5038 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5039
5040 This function returns bfd_reloc_continue if the caller need take no
5041 further action regarding this relocation, bfd_reloc_notsupported if
5042 something goes dramatically wrong, bfd_reloc_overflow if an
5043 overflow occurs, and bfd_reloc_ok to indicate success. */
5044
5045 static bfd_reloc_status_type
5046 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5047 asection *input_section,
5048 struct bfd_link_info *info,
5049 const Elf_Internal_Rela *relocation,
5050 bfd_vma addend, reloc_howto_type *howto,
5051 Elf_Internal_Sym *local_syms,
5052 asection **local_sections, bfd_vma *valuep,
5053 const char **namep,
5054 bfd_boolean *cross_mode_jump_p,
5055 bfd_boolean save_addend)
5056 {
5057 /* The eventual value we will return. */
5058 bfd_vma value;
5059 /* The address of the symbol against which the relocation is
5060 occurring. */
5061 bfd_vma symbol = 0;
5062 /* The final GP value to be used for the relocatable, executable, or
5063 shared object file being produced. */
5064 bfd_vma gp;
5065 /* The place (section offset or address) of the storage unit being
5066 relocated. */
5067 bfd_vma p;
5068 /* The value of GP used to create the relocatable object. */
5069 bfd_vma gp0;
5070 /* The offset into the global offset table at which the address of
5071 the relocation entry symbol, adjusted by the addend, resides
5072 during execution. */
5073 bfd_vma g = MINUS_ONE;
5074 /* The section in which the symbol referenced by the relocation is
5075 located. */
5076 asection *sec = NULL;
5077 struct mips_elf_link_hash_entry *h = NULL;
5078 /* TRUE if the symbol referred to by this relocation is a local
5079 symbol. */
5080 bfd_boolean local_p, was_local_p;
5081 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5082 bfd_boolean gp_disp_p = FALSE;
5083 /* TRUE if the symbol referred to by this relocation is
5084 "__gnu_local_gp". */
5085 bfd_boolean gnu_local_gp_p = FALSE;
5086 Elf_Internal_Shdr *symtab_hdr;
5087 size_t extsymoff;
5088 unsigned long r_symndx;
5089 int r_type;
5090 /* TRUE if overflow occurred during the calculation of the
5091 relocation value. */
5092 bfd_boolean overflowed_p;
5093 /* TRUE if this relocation refers to a MIPS16 function. */
5094 bfd_boolean target_is_16_bit_code_p = FALSE;
5095 bfd_boolean target_is_micromips_code_p = FALSE;
5096 struct mips_elf_link_hash_table *htab;
5097 bfd *dynobj;
5098
5099 dynobj = elf_hash_table (info)->dynobj;
5100 htab = mips_elf_hash_table (info);
5101 BFD_ASSERT (htab != NULL);
5102
5103 /* Parse the relocation. */
5104 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5105 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5106 p = (input_section->output_section->vma
5107 + input_section->output_offset
5108 + relocation->r_offset);
5109
5110 /* Assume that there will be no overflow. */
5111 overflowed_p = FALSE;
5112
5113 /* Figure out whether or not the symbol is local, and get the offset
5114 used in the array of hash table entries. */
5115 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5116 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5117 local_sections);
5118 was_local_p = local_p;
5119 if (! elf_bad_symtab (input_bfd))
5120 extsymoff = symtab_hdr->sh_info;
5121 else
5122 {
5123 /* The symbol table does not follow the rule that local symbols
5124 must come before globals. */
5125 extsymoff = 0;
5126 }
5127
5128 /* Figure out the value of the symbol. */
5129 if (local_p)
5130 {
5131 Elf_Internal_Sym *sym;
5132
5133 sym = local_syms + r_symndx;
5134 sec = local_sections[r_symndx];
5135
5136 symbol = sec->output_section->vma + sec->output_offset;
5137 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5138 || (sec->flags & SEC_MERGE))
5139 symbol += sym->st_value;
5140 if ((sec->flags & SEC_MERGE)
5141 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5142 {
5143 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5144 addend -= symbol;
5145 addend += sec->output_section->vma + sec->output_offset;
5146 }
5147
5148 /* MIPS16/microMIPS text labels should be treated as odd. */
5149 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5150 ++symbol;
5151
5152 /* Record the name of this symbol, for our caller. */
5153 *namep = bfd_elf_string_from_elf_section (input_bfd,
5154 symtab_hdr->sh_link,
5155 sym->st_name);
5156 if (*namep == '\0')
5157 *namep = bfd_section_name (input_bfd, sec);
5158
5159 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5160 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5161 }
5162 else
5163 {
5164 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5165
5166 /* For global symbols we look up the symbol in the hash-table. */
5167 h = ((struct mips_elf_link_hash_entry *)
5168 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5169 /* Find the real hash-table entry for this symbol. */
5170 while (h->root.root.type == bfd_link_hash_indirect
5171 || h->root.root.type == bfd_link_hash_warning)
5172 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5173
5174 /* Record the name of this symbol, for our caller. */
5175 *namep = h->root.root.root.string;
5176
5177 /* See if this is the special _gp_disp symbol. Note that such a
5178 symbol must always be a global symbol. */
5179 if (strcmp (*namep, "_gp_disp") == 0
5180 && ! NEWABI_P (input_bfd))
5181 {
5182 /* Relocations against _gp_disp are permitted only with
5183 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5184 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5185 return bfd_reloc_notsupported;
5186
5187 gp_disp_p = TRUE;
5188 }
5189 /* See if this is the special _gp symbol. Note that such a
5190 symbol must always be a global symbol. */
5191 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5192 gnu_local_gp_p = TRUE;
5193
5194
5195 /* If this symbol is defined, calculate its address. Note that
5196 _gp_disp is a magic symbol, always implicitly defined by the
5197 linker, so it's inappropriate to check to see whether or not
5198 its defined. */
5199 else if ((h->root.root.type == bfd_link_hash_defined
5200 || h->root.root.type == bfd_link_hash_defweak)
5201 && h->root.root.u.def.section)
5202 {
5203 sec = h->root.root.u.def.section;
5204 if (sec->output_section)
5205 symbol = (h->root.root.u.def.value
5206 + sec->output_section->vma
5207 + sec->output_offset);
5208 else
5209 symbol = h->root.root.u.def.value;
5210 }
5211 else if (h->root.root.type == bfd_link_hash_undefweak)
5212 /* We allow relocations against undefined weak symbols, giving
5213 it the value zero, so that you can undefined weak functions
5214 and check to see if they exist by looking at their
5215 addresses. */
5216 symbol = 0;
5217 else if (info->unresolved_syms_in_objects == RM_IGNORE
5218 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5219 symbol = 0;
5220 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5221 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5222 {
5223 /* If this is a dynamic link, we should have created a
5224 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5225 in in _bfd_mips_elf_create_dynamic_sections.
5226 Otherwise, we should define the symbol with a value of 0.
5227 FIXME: It should probably get into the symbol table
5228 somehow as well. */
5229 BFD_ASSERT (! info->shared);
5230 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5231 symbol = 0;
5232 }
5233 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5234 {
5235 /* This is an optional symbol - an Irix specific extension to the
5236 ELF spec. Ignore it for now.
5237 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5238 than simply ignoring them, but we do not handle this for now.
5239 For information see the "64-bit ELF Object File Specification"
5240 which is available from here:
5241 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5242 symbol = 0;
5243 }
5244 else if ((*info->callbacks->undefined_symbol)
5245 (info, h->root.root.root.string, input_bfd,
5246 input_section, relocation->r_offset,
5247 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5248 || ELF_ST_VISIBILITY (h->root.other)))
5249 {
5250 return bfd_reloc_undefined;
5251 }
5252 else
5253 {
5254 return bfd_reloc_notsupported;
5255 }
5256
5257 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5258 /* If the output section is the PLT section,
5259 then the target is not microMIPS. */
5260 target_is_micromips_code_p = (htab->splt != sec
5261 && ELF_ST_IS_MICROMIPS (h->root.other));
5262 }
5263
5264 /* If this is a reference to a 16-bit function with a stub, we need
5265 to redirect the relocation to the stub unless:
5266
5267 (a) the relocation is for a MIPS16 JAL;
5268
5269 (b) the relocation is for a MIPS16 PIC call, and there are no
5270 non-MIPS16 uses of the GOT slot; or
5271
5272 (c) the section allows direct references to MIPS16 functions. */
5273 if (r_type != R_MIPS16_26
5274 && !info->relocatable
5275 && ((h != NULL
5276 && h->fn_stub != NULL
5277 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5278 || (local_p
5279 && elf_tdata (input_bfd)->local_stubs != NULL
5280 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5281 && !section_allows_mips16_refs_p (input_section))
5282 {
5283 /* This is a 32- or 64-bit call to a 16-bit function. We should
5284 have already noticed that we were going to need the
5285 stub. */
5286 if (local_p)
5287 {
5288 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5289 value = 0;
5290 }
5291 else
5292 {
5293 BFD_ASSERT (h->need_fn_stub);
5294 if (h->la25_stub)
5295 {
5296 /* If a LA25 header for the stub itself exists, point to the
5297 prepended LUI/ADDIU sequence. */
5298 sec = h->la25_stub->stub_section;
5299 value = h->la25_stub->offset;
5300 }
5301 else
5302 {
5303 sec = h->fn_stub;
5304 value = 0;
5305 }
5306 }
5307
5308 symbol = sec->output_section->vma + sec->output_offset + value;
5309 /* The target is 16-bit, but the stub isn't. */
5310 target_is_16_bit_code_p = FALSE;
5311 }
5312 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5313 need to redirect the call to the stub. Note that we specifically
5314 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5315 use an indirect stub instead. */
5316 else if (r_type == R_MIPS16_26 && !info->relocatable
5317 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5318 || (local_p
5319 && elf_tdata (input_bfd)->local_call_stubs != NULL
5320 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5321 && !target_is_16_bit_code_p)
5322 {
5323 if (local_p)
5324 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5325 else
5326 {
5327 /* If both call_stub and call_fp_stub are defined, we can figure
5328 out which one to use by checking which one appears in the input
5329 file. */
5330 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5331 {
5332 asection *o;
5333
5334 sec = NULL;
5335 for (o = input_bfd->sections; o != NULL; o = o->next)
5336 {
5337 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5338 {
5339 sec = h->call_fp_stub;
5340 break;
5341 }
5342 }
5343 if (sec == NULL)
5344 sec = h->call_stub;
5345 }
5346 else if (h->call_stub != NULL)
5347 sec = h->call_stub;
5348 else
5349 sec = h->call_fp_stub;
5350 }
5351
5352 BFD_ASSERT (sec->size > 0);
5353 symbol = sec->output_section->vma + sec->output_offset;
5354 }
5355 /* If this is a direct call to a PIC function, redirect to the
5356 non-PIC stub. */
5357 else if (h != NULL && h->la25_stub
5358 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5359 target_is_16_bit_code_p))
5360 symbol = (h->la25_stub->stub_section->output_section->vma
5361 + h->la25_stub->stub_section->output_offset
5362 + h->la25_stub->offset);
5363
5364 /* Make sure MIPS16 and microMIPS are not used together. */
5365 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5366 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5367 {
5368 (*_bfd_error_handler)
5369 (_("MIPS16 and microMIPS functions cannot call each other"));
5370 return bfd_reloc_notsupported;
5371 }
5372
5373 /* Calls from 16-bit code to 32-bit code and vice versa require the
5374 mode change. However, we can ignore calls to undefined weak symbols,
5375 which should never be executed at runtime. This exception is important
5376 because the assembly writer may have "known" that any definition of the
5377 symbol would be 16-bit code, and that direct jumps were therefore
5378 acceptable. */
5379 *cross_mode_jump_p = (!info->relocatable
5380 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5381 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5382 || (r_type == R_MICROMIPS_26_S1
5383 && !target_is_micromips_code_p)
5384 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5385 && (target_is_16_bit_code_p
5386 || target_is_micromips_code_p))));
5387
5388 local_p = (h == NULL
5389 || (h->got_only_for_calls
5390 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5391 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
5392
5393 gp0 = _bfd_get_gp_value (input_bfd);
5394 gp = _bfd_get_gp_value (abfd);
5395 if (htab->got_info)
5396 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5397
5398 if (gnu_local_gp_p)
5399 symbol = gp;
5400
5401 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5402 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5403 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5404 if (got_page_reloc_p (r_type) && !local_p)
5405 {
5406 r_type = (micromips_reloc_p (r_type)
5407 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5408 addend = 0;
5409 }
5410
5411 /* If we haven't already determined the GOT offset, and we're going
5412 to need it, get it now. */
5413 switch (r_type)
5414 {
5415 case R_MIPS16_CALL16:
5416 case R_MIPS16_GOT16:
5417 case R_MIPS_CALL16:
5418 case R_MIPS_GOT16:
5419 case R_MIPS_GOT_DISP:
5420 case R_MIPS_GOT_HI16:
5421 case R_MIPS_CALL_HI16:
5422 case R_MIPS_GOT_LO16:
5423 case R_MIPS_CALL_LO16:
5424 case R_MICROMIPS_CALL16:
5425 case R_MICROMIPS_GOT16:
5426 case R_MICROMIPS_GOT_DISP:
5427 case R_MICROMIPS_GOT_HI16:
5428 case R_MICROMIPS_CALL_HI16:
5429 case R_MICROMIPS_GOT_LO16:
5430 case R_MICROMIPS_CALL_LO16:
5431 case R_MIPS_TLS_GD:
5432 case R_MIPS_TLS_GOTTPREL:
5433 case R_MIPS_TLS_LDM:
5434 case R_MIPS16_TLS_GD:
5435 case R_MIPS16_TLS_GOTTPREL:
5436 case R_MIPS16_TLS_LDM:
5437 case R_MICROMIPS_TLS_GD:
5438 case R_MICROMIPS_TLS_GOTTPREL:
5439 case R_MICROMIPS_TLS_LDM:
5440 /* Find the index into the GOT where this value is located. */
5441 if (tls_ldm_reloc_p (r_type))
5442 {
5443 g = mips_elf_local_got_index (abfd, input_bfd, info,
5444 0, 0, NULL, r_type);
5445 if (g == MINUS_ONE)
5446 return bfd_reloc_outofrange;
5447 }
5448 else if (!local_p)
5449 {
5450 /* On VxWorks, CALL relocations should refer to the .got.plt
5451 entry, which is initialized to point at the PLT stub. */
5452 if (htab->is_vxworks
5453 && (call_hi16_reloc_p (r_type)
5454 || call_lo16_reloc_p (r_type)
5455 || call16_reloc_p (r_type)))
5456 {
5457 BFD_ASSERT (addend == 0);
5458 BFD_ASSERT (h->root.needs_plt);
5459 g = mips_elf_gotplt_index (info, &h->root);
5460 }
5461 else
5462 {
5463 BFD_ASSERT (addend == 0);
5464 g = mips_elf_global_got_index (dynobj, input_bfd,
5465 &h->root, r_type, info);
5466 if (h->tls_type == GOT_NORMAL
5467 && !elf_hash_table (info)->dynamic_sections_created)
5468 /* This is a static link. We must initialize the GOT entry. */
5469 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5470 }
5471 }
5472 else if (!htab->is_vxworks
5473 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5474 /* The calculation below does not involve "g". */
5475 break;
5476 else
5477 {
5478 g = mips_elf_local_got_index (abfd, input_bfd, info,
5479 symbol + addend, r_symndx, h, r_type);
5480 if (g == MINUS_ONE)
5481 return bfd_reloc_outofrange;
5482 }
5483
5484 /* Convert GOT indices to actual offsets. */
5485 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5486 break;
5487 }
5488
5489 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5490 symbols are resolved by the loader. Add them to .rela.dyn. */
5491 if (h != NULL && is_gott_symbol (info, &h->root))
5492 {
5493 Elf_Internal_Rela outrel;
5494 bfd_byte *loc;
5495 asection *s;
5496
5497 s = mips_elf_rel_dyn_section (info, FALSE);
5498 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5499
5500 outrel.r_offset = (input_section->output_section->vma
5501 + input_section->output_offset
5502 + relocation->r_offset);
5503 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5504 outrel.r_addend = addend;
5505 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5506
5507 /* If we've written this relocation for a readonly section,
5508 we need to set DF_TEXTREL again, so that we do not delete the
5509 DT_TEXTREL tag. */
5510 if (MIPS_ELF_READONLY_SECTION (input_section))
5511 info->flags |= DF_TEXTREL;
5512
5513 *valuep = 0;
5514 return bfd_reloc_ok;
5515 }
5516
5517 /* Figure out what kind of relocation is being performed. */
5518 switch (r_type)
5519 {
5520 case R_MIPS_NONE:
5521 return bfd_reloc_continue;
5522
5523 case R_MIPS_16:
5524 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5525 overflowed_p = mips_elf_overflow_p (value, 16);
5526 break;
5527
5528 case R_MIPS_32:
5529 case R_MIPS_REL32:
5530 case R_MIPS_64:
5531 if ((info->shared
5532 || (htab->root.dynamic_sections_created
5533 && h != NULL
5534 && h->root.def_dynamic
5535 && !h->root.def_regular
5536 && !h->has_static_relocs))
5537 && r_symndx != STN_UNDEF
5538 && (h == NULL
5539 || h->root.root.type != bfd_link_hash_undefweak
5540 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5541 && (input_section->flags & SEC_ALLOC) != 0)
5542 {
5543 /* If we're creating a shared library, then we can't know
5544 where the symbol will end up. So, we create a relocation
5545 record in the output, and leave the job up to the dynamic
5546 linker. We must do the same for executable references to
5547 shared library symbols, unless we've decided to use copy
5548 relocs or PLTs instead. */
5549 value = addend;
5550 if (!mips_elf_create_dynamic_relocation (abfd,
5551 info,
5552 relocation,
5553 h,
5554 sec,
5555 symbol,
5556 &value,
5557 input_section))
5558 return bfd_reloc_undefined;
5559 }
5560 else
5561 {
5562 if (r_type != R_MIPS_REL32)
5563 value = symbol + addend;
5564 else
5565 value = addend;
5566 }
5567 value &= howto->dst_mask;
5568 break;
5569
5570 case R_MIPS_PC32:
5571 value = symbol + addend - p;
5572 value &= howto->dst_mask;
5573 break;
5574
5575 case R_MIPS16_26:
5576 /* The calculation for R_MIPS16_26 is just the same as for an
5577 R_MIPS_26. It's only the storage of the relocated field into
5578 the output file that's different. That's handled in
5579 mips_elf_perform_relocation. So, we just fall through to the
5580 R_MIPS_26 case here. */
5581 case R_MIPS_26:
5582 case R_MICROMIPS_26_S1:
5583 {
5584 unsigned int shift;
5585
5586 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5587 the correct ISA mode selector and bit 1 must be 0. */
5588 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5589 return bfd_reloc_outofrange;
5590
5591 /* Shift is 2, unusually, for microMIPS JALX. */
5592 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5593
5594 if (was_local_p)
5595 value = addend | ((p + 4) & (0xfc000000 << shift));
5596 else
5597 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5598 value = (value + symbol) >> shift;
5599 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5600 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5601 value &= howto->dst_mask;
5602 }
5603 break;
5604
5605 case R_MIPS_TLS_DTPREL_HI16:
5606 case R_MIPS16_TLS_DTPREL_HI16:
5607 case R_MICROMIPS_TLS_DTPREL_HI16:
5608 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5609 & howto->dst_mask);
5610 break;
5611
5612 case R_MIPS_TLS_DTPREL_LO16:
5613 case R_MIPS_TLS_DTPREL32:
5614 case R_MIPS_TLS_DTPREL64:
5615 case R_MIPS16_TLS_DTPREL_LO16:
5616 case R_MICROMIPS_TLS_DTPREL_LO16:
5617 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5618 break;
5619
5620 case R_MIPS_TLS_TPREL_HI16:
5621 case R_MIPS16_TLS_TPREL_HI16:
5622 case R_MICROMIPS_TLS_TPREL_HI16:
5623 value = (mips_elf_high (addend + symbol - tprel_base (info))
5624 & howto->dst_mask);
5625 break;
5626
5627 case R_MIPS_TLS_TPREL_LO16:
5628 case R_MIPS_TLS_TPREL32:
5629 case R_MIPS_TLS_TPREL64:
5630 case R_MIPS16_TLS_TPREL_LO16:
5631 case R_MICROMIPS_TLS_TPREL_LO16:
5632 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5633 break;
5634
5635 case R_MIPS_HI16:
5636 case R_MIPS16_HI16:
5637 case R_MICROMIPS_HI16:
5638 if (!gp_disp_p)
5639 {
5640 value = mips_elf_high (addend + symbol);
5641 value &= howto->dst_mask;
5642 }
5643 else
5644 {
5645 /* For MIPS16 ABI code we generate this sequence
5646 0: li $v0,%hi(_gp_disp)
5647 4: addiupc $v1,%lo(_gp_disp)
5648 8: sll $v0,16
5649 12: addu $v0,$v1
5650 14: move $gp,$v0
5651 So the offsets of hi and lo relocs are the same, but the
5652 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5653 ADDIUPC clears the low two bits of the instruction address,
5654 so the base is ($t9 + 4) & ~3. */
5655 if (r_type == R_MIPS16_HI16)
5656 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5657 /* The microMIPS .cpload sequence uses the same assembly
5658 instructions as the traditional psABI version, but the
5659 incoming $t9 has the low bit set. */
5660 else if (r_type == R_MICROMIPS_HI16)
5661 value = mips_elf_high (addend + gp - p - 1);
5662 else
5663 value = mips_elf_high (addend + gp - p);
5664 overflowed_p = mips_elf_overflow_p (value, 16);
5665 }
5666 break;
5667
5668 case R_MIPS_LO16:
5669 case R_MIPS16_LO16:
5670 case R_MICROMIPS_LO16:
5671 case R_MICROMIPS_HI0_LO16:
5672 if (!gp_disp_p)
5673 value = (symbol + addend) & howto->dst_mask;
5674 else
5675 {
5676 /* See the comment for R_MIPS16_HI16 above for the reason
5677 for this conditional. */
5678 if (r_type == R_MIPS16_LO16)
5679 value = addend + gp - (p & ~(bfd_vma) 0x3);
5680 else if (r_type == R_MICROMIPS_LO16
5681 || r_type == R_MICROMIPS_HI0_LO16)
5682 value = addend + gp - p + 3;
5683 else
5684 value = addend + gp - p + 4;
5685 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5686 for overflow. But, on, say, IRIX5, relocations against
5687 _gp_disp are normally generated from the .cpload
5688 pseudo-op. It generates code that normally looks like
5689 this:
5690
5691 lui $gp,%hi(_gp_disp)
5692 addiu $gp,$gp,%lo(_gp_disp)
5693 addu $gp,$gp,$t9
5694
5695 Here $t9 holds the address of the function being called,
5696 as required by the MIPS ELF ABI. The R_MIPS_LO16
5697 relocation can easily overflow in this situation, but the
5698 R_MIPS_HI16 relocation will handle the overflow.
5699 Therefore, we consider this a bug in the MIPS ABI, and do
5700 not check for overflow here. */
5701 }
5702 break;
5703
5704 case R_MIPS_LITERAL:
5705 case R_MICROMIPS_LITERAL:
5706 /* Because we don't merge literal sections, we can handle this
5707 just like R_MIPS_GPREL16. In the long run, we should merge
5708 shared literals, and then we will need to additional work
5709 here. */
5710
5711 /* Fall through. */
5712
5713 case R_MIPS16_GPREL:
5714 /* The R_MIPS16_GPREL performs the same calculation as
5715 R_MIPS_GPREL16, but stores the relocated bits in a different
5716 order. We don't need to do anything special here; the
5717 differences are handled in mips_elf_perform_relocation. */
5718 case R_MIPS_GPREL16:
5719 case R_MICROMIPS_GPREL7_S2:
5720 case R_MICROMIPS_GPREL16:
5721 /* Only sign-extend the addend if it was extracted from the
5722 instruction. If the addend was separate, leave it alone,
5723 otherwise we may lose significant bits. */
5724 if (howto->partial_inplace)
5725 addend = _bfd_mips_elf_sign_extend (addend, 16);
5726 value = symbol + addend - gp;
5727 /* If the symbol was local, any earlier relocatable links will
5728 have adjusted its addend with the gp offset, so compensate
5729 for that now. Don't do it for symbols forced local in this
5730 link, though, since they won't have had the gp offset applied
5731 to them before. */
5732 if (was_local_p)
5733 value += gp0;
5734 overflowed_p = mips_elf_overflow_p (value, 16);
5735 break;
5736
5737 case R_MIPS16_GOT16:
5738 case R_MIPS16_CALL16:
5739 case R_MIPS_GOT16:
5740 case R_MIPS_CALL16:
5741 case R_MICROMIPS_GOT16:
5742 case R_MICROMIPS_CALL16:
5743 /* VxWorks does not have separate local and global semantics for
5744 R_MIPS*_GOT16; every relocation evaluates to "G". */
5745 if (!htab->is_vxworks && local_p)
5746 {
5747 value = mips_elf_got16_entry (abfd, input_bfd, info,
5748 symbol + addend, !was_local_p);
5749 if (value == MINUS_ONE)
5750 return bfd_reloc_outofrange;
5751 value
5752 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5753 overflowed_p = mips_elf_overflow_p (value, 16);
5754 break;
5755 }
5756
5757 /* Fall through. */
5758
5759 case R_MIPS_TLS_GD:
5760 case R_MIPS_TLS_GOTTPREL:
5761 case R_MIPS_TLS_LDM:
5762 case R_MIPS_GOT_DISP:
5763 case R_MIPS16_TLS_GD:
5764 case R_MIPS16_TLS_GOTTPREL:
5765 case R_MIPS16_TLS_LDM:
5766 case R_MICROMIPS_TLS_GD:
5767 case R_MICROMIPS_TLS_GOTTPREL:
5768 case R_MICROMIPS_TLS_LDM:
5769 case R_MICROMIPS_GOT_DISP:
5770 value = g;
5771 overflowed_p = mips_elf_overflow_p (value, 16);
5772 break;
5773
5774 case R_MIPS_GPREL32:
5775 value = (addend + symbol + gp0 - gp);
5776 if (!save_addend)
5777 value &= howto->dst_mask;
5778 break;
5779
5780 case R_MIPS_PC16:
5781 case R_MIPS_GNU_REL16_S2:
5782 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5783 overflowed_p = mips_elf_overflow_p (value, 18);
5784 value >>= howto->rightshift;
5785 value &= howto->dst_mask;
5786 break;
5787
5788 case R_MICROMIPS_PC7_S1:
5789 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5790 overflowed_p = mips_elf_overflow_p (value, 8);
5791 value >>= howto->rightshift;
5792 value &= howto->dst_mask;
5793 break;
5794
5795 case R_MICROMIPS_PC10_S1:
5796 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5797 overflowed_p = mips_elf_overflow_p (value, 11);
5798 value >>= howto->rightshift;
5799 value &= howto->dst_mask;
5800 break;
5801
5802 case R_MICROMIPS_PC16_S1:
5803 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5804 overflowed_p = mips_elf_overflow_p (value, 17);
5805 value >>= howto->rightshift;
5806 value &= howto->dst_mask;
5807 break;
5808
5809 case R_MICROMIPS_PC23_S2:
5810 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5811 overflowed_p = mips_elf_overflow_p (value, 25);
5812 value >>= howto->rightshift;
5813 value &= howto->dst_mask;
5814 break;
5815
5816 case R_MIPS_GOT_HI16:
5817 case R_MIPS_CALL_HI16:
5818 case R_MICROMIPS_GOT_HI16:
5819 case R_MICROMIPS_CALL_HI16:
5820 /* We're allowed to handle these two relocations identically.
5821 The dynamic linker is allowed to handle the CALL relocations
5822 differently by creating a lazy evaluation stub. */
5823 value = g;
5824 value = mips_elf_high (value);
5825 value &= howto->dst_mask;
5826 break;
5827
5828 case R_MIPS_GOT_LO16:
5829 case R_MIPS_CALL_LO16:
5830 case R_MICROMIPS_GOT_LO16:
5831 case R_MICROMIPS_CALL_LO16:
5832 value = g & howto->dst_mask;
5833 break;
5834
5835 case R_MIPS_GOT_PAGE:
5836 case R_MICROMIPS_GOT_PAGE:
5837 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5838 if (value == MINUS_ONE)
5839 return bfd_reloc_outofrange;
5840 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5841 overflowed_p = mips_elf_overflow_p (value, 16);
5842 break;
5843
5844 case R_MIPS_GOT_OFST:
5845 case R_MICROMIPS_GOT_OFST:
5846 if (local_p)
5847 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5848 else
5849 value = addend;
5850 overflowed_p = mips_elf_overflow_p (value, 16);
5851 break;
5852
5853 case R_MIPS_SUB:
5854 case R_MICROMIPS_SUB:
5855 value = symbol - addend;
5856 value &= howto->dst_mask;
5857 break;
5858
5859 case R_MIPS_HIGHER:
5860 case R_MICROMIPS_HIGHER:
5861 value = mips_elf_higher (addend + symbol);
5862 value &= howto->dst_mask;
5863 break;
5864
5865 case R_MIPS_HIGHEST:
5866 case R_MICROMIPS_HIGHEST:
5867 value = mips_elf_highest (addend + symbol);
5868 value &= howto->dst_mask;
5869 break;
5870
5871 case R_MIPS_SCN_DISP:
5872 case R_MICROMIPS_SCN_DISP:
5873 value = symbol + addend - sec->output_offset;
5874 value &= howto->dst_mask;
5875 break;
5876
5877 case R_MIPS_JALR:
5878 case R_MICROMIPS_JALR:
5879 /* This relocation is only a hint. In some cases, we optimize
5880 it into a bal instruction. But we don't try to optimize
5881 when the symbol does not resolve locally. */
5882 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5883 return bfd_reloc_continue;
5884 value = symbol + addend;
5885 break;
5886
5887 case R_MIPS_PJUMP:
5888 case R_MIPS_GNU_VTINHERIT:
5889 case R_MIPS_GNU_VTENTRY:
5890 /* We don't do anything with these at present. */
5891 return bfd_reloc_continue;
5892
5893 default:
5894 /* An unrecognized relocation type. */
5895 return bfd_reloc_notsupported;
5896 }
5897
5898 /* Store the VALUE for our caller. */
5899 *valuep = value;
5900 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5901 }
5902
5903 /* Obtain the field relocated by RELOCATION. */
5904
5905 static bfd_vma
5906 mips_elf_obtain_contents (reloc_howto_type *howto,
5907 const Elf_Internal_Rela *relocation,
5908 bfd *input_bfd, bfd_byte *contents)
5909 {
5910 bfd_vma x;
5911 bfd_byte *location = contents + relocation->r_offset;
5912
5913 /* Obtain the bytes. */
5914 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5915
5916 return x;
5917 }
5918
5919 /* It has been determined that the result of the RELOCATION is the
5920 VALUE. Use HOWTO to place VALUE into the output file at the
5921 appropriate position. The SECTION is the section to which the
5922 relocation applies.
5923 CROSS_MODE_JUMP_P is true if the relocation field
5924 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5925
5926 Returns FALSE if anything goes wrong. */
5927
5928 static bfd_boolean
5929 mips_elf_perform_relocation (struct bfd_link_info *info,
5930 reloc_howto_type *howto,
5931 const Elf_Internal_Rela *relocation,
5932 bfd_vma value, bfd *input_bfd,
5933 asection *input_section, bfd_byte *contents,
5934 bfd_boolean cross_mode_jump_p)
5935 {
5936 bfd_vma x;
5937 bfd_byte *location;
5938 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5939
5940 /* Figure out where the relocation is occurring. */
5941 location = contents + relocation->r_offset;
5942
5943 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5944
5945 /* Obtain the current value. */
5946 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5947
5948 /* Clear the field we are setting. */
5949 x &= ~howto->dst_mask;
5950
5951 /* Set the field. */
5952 x |= (value & howto->dst_mask);
5953
5954 /* If required, turn JAL into JALX. */
5955 if (cross_mode_jump_p && jal_reloc_p (r_type))
5956 {
5957 bfd_boolean ok;
5958 bfd_vma opcode = x >> 26;
5959 bfd_vma jalx_opcode;
5960
5961 /* Check to see if the opcode is already JAL or JALX. */
5962 if (r_type == R_MIPS16_26)
5963 {
5964 ok = ((opcode == 0x6) || (opcode == 0x7));
5965 jalx_opcode = 0x7;
5966 }
5967 else if (r_type == R_MICROMIPS_26_S1)
5968 {
5969 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5970 jalx_opcode = 0x3c;
5971 }
5972 else
5973 {
5974 ok = ((opcode == 0x3) || (opcode == 0x1d));
5975 jalx_opcode = 0x1d;
5976 }
5977
5978 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5979 convert J or JALS to JALX. */
5980 if (!ok)
5981 {
5982 (*_bfd_error_handler)
5983 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5984 input_bfd,
5985 input_section,
5986 (unsigned long) relocation->r_offset);
5987 bfd_set_error (bfd_error_bad_value);
5988 return FALSE;
5989 }
5990
5991 /* Make this the JALX opcode. */
5992 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5993 }
5994
5995 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5996 range. */
5997 if (!info->relocatable
5998 && !cross_mode_jump_p
5999 && ((JAL_TO_BAL_P (input_bfd)
6000 && r_type == R_MIPS_26
6001 && (x >> 26) == 0x3) /* jal addr */
6002 || (JALR_TO_BAL_P (input_bfd)
6003 && r_type == R_MIPS_JALR
6004 && x == 0x0320f809) /* jalr t9 */
6005 || (JR_TO_B_P (input_bfd)
6006 && r_type == R_MIPS_JALR
6007 && x == 0x03200008))) /* jr t9 */
6008 {
6009 bfd_vma addr;
6010 bfd_vma dest;
6011 bfd_signed_vma off;
6012
6013 addr = (input_section->output_section->vma
6014 + input_section->output_offset
6015 + relocation->r_offset
6016 + 4);
6017 if (r_type == R_MIPS_26)
6018 dest = (value << 2) | ((addr >> 28) << 28);
6019 else
6020 dest = value;
6021 off = dest - addr;
6022 if (off <= 0x1ffff && off >= -0x20000)
6023 {
6024 if (x == 0x03200008) /* jr t9 */
6025 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6026 else
6027 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6028 }
6029 }
6030
6031 /* Put the value into the output. */
6032 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6033
6034 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6035 location);
6036
6037 return TRUE;
6038 }
6039 \f
6040 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6041 is the original relocation, which is now being transformed into a
6042 dynamic relocation. The ADDENDP is adjusted if necessary; the
6043 caller should store the result in place of the original addend. */
6044
6045 static bfd_boolean
6046 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6047 struct bfd_link_info *info,
6048 const Elf_Internal_Rela *rel,
6049 struct mips_elf_link_hash_entry *h,
6050 asection *sec, bfd_vma symbol,
6051 bfd_vma *addendp, asection *input_section)
6052 {
6053 Elf_Internal_Rela outrel[3];
6054 asection *sreloc;
6055 bfd *dynobj;
6056 int r_type;
6057 long indx;
6058 bfd_boolean defined_p;
6059 struct mips_elf_link_hash_table *htab;
6060
6061 htab = mips_elf_hash_table (info);
6062 BFD_ASSERT (htab != NULL);
6063
6064 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6065 dynobj = elf_hash_table (info)->dynobj;
6066 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6067 BFD_ASSERT (sreloc != NULL);
6068 BFD_ASSERT (sreloc->contents != NULL);
6069 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6070 < sreloc->size);
6071
6072 outrel[0].r_offset =
6073 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6074 if (ABI_64_P (output_bfd))
6075 {
6076 outrel[1].r_offset =
6077 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6078 outrel[2].r_offset =
6079 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6080 }
6081
6082 if (outrel[0].r_offset == MINUS_ONE)
6083 /* The relocation field has been deleted. */
6084 return TRUE;
6085
6086 if (outrel[0].r_offset == MINUS_TWO)
6087 {
6088 /* The relocation field has been converted into a relative value of
6089 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6090 the field to be fully relocated, so add in the symbol's value. */
6091 *addendp += symbol;
6092 return TRUE;
6093 }
6094
6095 /* We must now calculate the dynamic symbol table index to use
6096 in the relocation. */
6097 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6098 {
6099 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6100 indx = h->root.dynindx;
6101 if (SGI_COMPAT (output_bfd))
6102 defined_p = h->root.def_regular;
6103 else
6104 /* ??? glibc's ld.so just adds the final GOT entry to the
6105 relocation field. It therefore treats relocs against
6106 defined symbols in the same way as relocs against
6107 undefined symbols. */
6108 defined_p = FALSE;
6109 }
6110 else
6111 {
6112 if (sec != NULL && bfd_is_abs_section (sec))
6113 indx = 0;
6114 else if (sec == NULL || sec->owner == NULL)
6115 {
6116 bfd_set_error (bfd_error_bad_value);
6117 return FALSE;
6118 }
6119 else
6120 {
6121 indx = elf_section_data (sec->output_section)->dynindx;
6122 if (indx == 0)
6123 {
6124 asection *osec = htab->root.text_index_section;
6125 indx = elf_section_data (osec)->dynindx;
6126 }
6127 if (indx == 0)
6128 abort ();
6129 }
6130
6131 /* Instead of generating a relocation using the section
6132 symbol, we may as well make it a fully relative
6133 relocation. We want to avoid generating relocations to
6134 local symbols because we used to generate them
6135 incorrectly, without adding the original symbol value,
6136 which is mandated by the ABI for section symbols. In
6137 order to give dynamic loaders and applications time to
6138 phase out the incorrect use, we refrain from emitting
6139 section-relative relocations. It's not like they're
6140 useful, after all. This should be a bit more efficient
6141 as well. */
6142 /* ??? Although this behavior is compatible with glibc's ld.so,
6143 the ABI says that relocations against STN_UNDEF should have
6144 a symbol value of 0. Irix rld honors this, so relocations
6145 against STN_UNDEF have no effect. */
6146 if (!SGI_COMPAT (output_bfd))
6147 indx = 0;
6148 defined_p = TRUE;
6149 }
6150
6151 /* If the relocation was previously an absolute relocation and
6152 this symbol will not be referred to by the relocation, we must
6153 adjust it by the value we give it in the dynamic symbol table.
6154 Otherwise leave the job up to the dynamic linker. */
6155 if (defined_p && r_type != R_MIPS_REL32)
6156 *addendp += symbol;
6157
6158 if (htab->is_vxworks)
6159 /* VxWorks uses non-relative relocations for this. */
6160 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6161 else
6162 /* The relocation is always an REL32 relocation because we don't
6163 know where the shared library will wind up at load-time. */
6164 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6165 R_MIPS_REL32);
6166
6167 /* For strict adherence to the ABI specification, we should
6168 generate a R_MIPS_64 relocation record by itself before the
6169 _REL32/_64 record as well, such that the addend is read in as
6170 a 64-bit value (REL32 is a 32-bit relocation, after all).
6171 However, since none of the existing ELF64 MIPS dynamic
6172 loaders seems to care, we don't waste space with these
6173 artificial relocations. If this turns out to not be true,
6174 mips_elf_allocate_dynamic_relocation() should be tweaked so
6175 as to make room for a pair of dynamic relocations per
6176 invocation if ABI_64_P, and here we should generate an
6177 additional relocation record with R_MIPS_64 by itself for a
6178 NULL symbol before this relocation record. */
6179 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6180 ABI_64_P (output_bfd)
6181 ? R_MIPS_64
6182 : R_MIPS_NONE);
6183 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6184
6185 /* Adjust the output offset of the relocation to reference the
6186 correct location in the output file. */
6187 outrel[0].r_offset += (input_section->output_section->vma
6188 + input_section->output_offset);
6189 outrel[1].r_offset += (input_section->output_section->vma
6190 + input_section->output_offset);
6191 outrel[2].r_offset += (input_section->output_section->vma
6192 + input_section->output_offset);
6193
6194 /* Put the relocation back out. We have to use the special
6195 relocation outputter in the 64-bit case since the 64-bit
6196 relocation format is non-standard. */
6197 if (ABI_64_P (output_bfd))
6198 {
6199 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6200 (output_bfd, &outrel[0],
6201 (sreloc->contents
6202 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6203 }
6204 else if (htab->is_vxworks)
6205 {
6206 /* VxWorks uses RELA rather than REL dynamic relocations. */
6207 outrel[0].r_addend = *addendp;
6208 bfd_elf32_swap_reloca_out
6209 (output_bfd, &outrel[0],
6210 (sreloc->contents
6211 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6212 }
6213 else
6214 bfd_elf32_swap_reloc_out
6215 (output_bfd, &outrel[0],
6216 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6217
6218 /* We've now added another relocation. */
6219 ++sreloc->reloc_count;
6220
6221 /* Make sure the output section is writable. The dynamic linker
6222 will be writing to it. */
6223 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6224 |= SHF_WRITE;
6225
6226 /* On IRIX5, make an entry of compact relocation info. */
6227 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6228 {
6229 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6230 bfd_byte *cr;
6231
6232 if (scpt)
6233 {
6234 Elf32_crinfo cptrel;
6235
6236 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6237 cptrel.vaddr = (rel->r_offset
6238 + input_section->output_section->vma
6239 + input_section->output_offset);
6240 if (r_type == R_MIPS_REL32)
6241 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6242 else
6243 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6244 mips_elf_set_cr_dist2to (cptrel, 0);
6245 cptrel.konst = *addendp;
6246
6247 cr = (scpt->contents
6248 + sizeof (Elf32_External_compact_rel));
6249 mips_elf_set_cr_relvaddr (cptrel, 0);
6250 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6251 ((Elf32_External_crinfo *) cr
6252 + scpt->reloc_count));
6253 ++scpt->reloc_count;
6254 }
6255 }
6256
6257 /* If we've written this relocation for a readonly section,
6258 we need to set DF_TEXTREL again, so that we do not delete the
6259 DT_TEXTREL tag. */
6260 if (MIPS_ELF_READONLY_SECTION (input_section))
6261 info->flags |= DF_TEXTREL;
6262
6263 return TRUE;
6264 }
6265 \f
6266 /* Return the MACH for a MIPS e_flags value. */
6267
6268 unsigned long
6269 _bfd_elf_mips_mach (flagword flags)
6270 {
6271 switch (flags & EF_MIPS_MACH)
6272 {
6273 case E_MIPS_MACH_3900:
6274 return bfd_mach_mips3900;
6275
6276 case E_MIPS_MACH_4010:
6277 return bfd_mach_mips4010;
6278
6279 case E_MIPS_MACH_4100:
6280 return bfd_mach_mips4100;
6281
6282 case E_MIPS_MACH_4111:
6283 return bfd_mach_mips4111;
6284
6285 case E_MIPS_MACH_4120:
6286 return bfd_mach_mips4120;
6287
6288 case E_MIPS_MACH_4650:
6289 return bfd_mach_mips4650;
6290
6291 case E_MIPS_MACH_5400:
6292 return bfd_mach_mips5400;
6293
6294 case E_MIPS_MACH_5500:
6295 return bfd_mach_mips5500;
6296
6297 case E_MIPS_MACH_9000:
6298 return bfd_mach_mips9000;
6299
6300 case E_MIPS_MACH_SB1:
6301 return bfd_mach_mips_sb1;
6302
6303 case E_MIPS_MACH_LS2E:
6304 return bfd_mach_mips_loongson_2e;
6305
6306 case E_MIPS_MACH_LS2F:
6307 return bfd_mach_mips_loongson_2f;
6308
6309 case E_MIPS_MACH_LS3A:
6310 return bfd_mach_mips_loongson_3a;
6311
6312 case E_MIPS_MACH_OCTEON2:
6313 return bfd_mach_mips_octeon2;
6314
6315 case E_MIPS_MACH_OCTEON:
6316 return bfd_mach_mips_octeon;
6317
6318 case E_MIPS_MACH_XLR:
6319 return bfd_mach_mips_xlr;
6320
6321 default:
6322 switch (flags & EF_MIPS_ARCH)
6323 {
6324 default:
6325 case E_MIPS_ARCH_1:
6326 return bfd_mach_mips3000;
6327
6328 case E_MIPS_ARCH_2:
6329 return bfd_mach_mips6000;
6330
6331 case E_MIPS_ARCH_3:
6332 return bfd_mach_mips4000;
6333
6334 case E_MIPS_ARCH_4:
6335 return bfd_mach_mips8000;
6336
6337 case E_MIPS_ARCH_5:
6338 return bfd_mach_mips5;
6339
6340 case E_MIPS_ARCH_32:
6341 return bfd_mach_mipsisa32;
6342
6343 case E_MIPS_ARCH_64:
6344 return bfd_mach_mipsisa64;
6345
6346 case E_MIPS_ARCH_32R2:
6347 return bfd_mach_mipsisa32r2;
6348
6349 case E_MIPS_ARCH_64R2:
6350 return bfd_mach_mipsisa64r2;
6351 }
6352 }
6353
6354 return 0;
6355 }
6356
6357 /* Return printable name for ABI. */
6358
6359 static INLINE char *
6360 elf_mips_abi_name (bfd *abfd)
6361 {
6362 flagword flags;
6363
6364 flags = elf_elfheader (abfd)->e_flags;
6365 switch (flags & EF_MIPS_ABI)
6366 {
6367 case 0:
6368 if (ABI_N32_P (abfd))
6369 return "N32";
6370 else if (ABI_64_P (abfd))
6371 return "64";
6372 else
6373 return "none";
6374 case E_MIPS_ABI_O32:
6375 return "O32";
6376 case E_MIPS_ABI_O64:
6377 return "O64";
6378 case E_MIPS_ABI_EABI32:
6379 return "EABI32";
6380 case E_MIPS_ABI_EABI64:
6381 return "EABI64";
6382 default:
6383 return "unknown abi";
6384 }
6385 }
6386 \f
6387 /* MIPS ELF uses two common sections. One is the usual one, and the
6388 other is for small objects. All the small objects are kept
6389 together, and then referenced via the gp pointer, which yields
6390 faster assembler code. This is what we use for the small common
6391 section. This approach is copied from ecoff.c. */
6392 static asection mips_elf_scom_section;
6393 static asymbol mips_elf_scom_symbol;
6394 static asymbol *mips_elf_scom_symbol_ptr;
6395
6396 /* MIPS ELF also uses an acommon section, which represents an
6397 allocated common symbol which may be overridden by a
6398 definition in a shared library. */
6399 static asection mips_elf_acom_section;
6400 static asymbol mips_elf_acom_symbol;
6401 static asymbol *mips_elf_acom_symbol_ptr;
6402
6403 /* This is used for both the 32-bit and the 64-bit ABI. */
6404
6405 void
6406 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6407 {
6408 elf_symbol_type *elfsym;
6409
6410 /* Handle the special MIPS section numbers that a symbol may use. */
6411 elfsym = (elf_symbol_type *) asym;
6412 switch (elfsym->internal_elf_sym.st_shndx)
6413 {
6414 case SHN_MIPS_ACOMMON:
6415 /* This section is used in a dynamically linked executable file.
6416 It is an allocated common section. The dynamic linker can
6417 either resolve these symbols to something in a shared
6418 library, or it can just leave them here. For our purposes,
6419 we can consider these symbols to be in a new section. */
6420 if (mips_elf_acom_section.name == NULL)
6421 {
6422 /* Initialize the acommon section. */
6423 mips_elf_acom_section.name = ".acommon";
6424 mips_elf_acom_section.flags = SEC_ALLOC;
6425 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6426 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6427 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6428 mips_elf_acom_symbol.name = ".acommon";
6429 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6430 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6431 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6432 }
6433 asym->section = &mips_elf_acom_section;
6434 break;
6435
6436 case SHN_COMMON:
6437 /* Common symbols less than the GP size are automatically
6438 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6439 if (asym->value > elf_gp_size (abfd)
6440 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6441 || IRIX_COMPAT (abfd) == ict_irix6)
6442 break;
6443 /* Fall through. */
6444 case SHN_MIPS_SCOMMON:
6445 if (mips_elf_scom_section.name == NULL)
6446 {
6447 /* Initialize the small common section. */
6448 mips_elf_scom_section.name = ".scommon";
6449 mips_elf_scom_section.flags = SEC_IS_COMMON;
6450 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6451 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6452 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6453 mips_elf_scom_symbol.name = ".scommon";
6454 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6455 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6456 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6457 }
6458 asym->section = &mips_elf_scom_section;
6459 asym->value = elfsym->internal_elf_sym.st_size;
6460 break;
6461
6462 case SHN_MIPS_SUNDEFINED:
6463 asym->section = bfd_und_section_ptr;
6464 break;
6465
6466 case SHN_MIPS_TEXT:
6467 {
6468 asection *section = bfd_get_section_by_name (abfd, ".text");
6469
6470 if (section != NULL)
6471 {
6472 asym->section = section;
6473 /* MIPS_TEXT is a bit special, the address is not an offset
6474 to the base of the .text section. So substract the section
6475 base address to make it an offset. */
6476 asym->value -= section->vma;
6477 }
6478 }
6479 break;
6480
6481 case SHN_MIPS_DATA:
6482 {
6483 asection *section = bfd_get_section_by_name (abfd, ".data");
6484
6485 if (section != NULL)
6486 {
6487 asym->section = section;
6488 /* MIPS_DATA is a bit special, the address is not an offset
6489 to the base of the .data section. So substract the section
6490 base address to make it an offset. */
6491 asym->value -= section->vma;
6492 }
6493 }
6494 break;
6495 }
6496
6497 /* If this is an odd-valued function symbol, assume it's a MIPS16
6498 or microMIPS one. */
6499 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6500 && (asym->value & 1) != 0)
6501 {
6502 asym->value--;
6503 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6504 elfsym->internal_elf_sym.st_other
6505 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6506 else
6507 elfsym->internal_elf_sym.st_other
6508 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6509 }
6510 }
6511 \f
6512 /* Implement elf_backend_eh_frame_address_size. This differs from
6513 the default in the way it handles EABI64.
6514
6515 EABI64 was originally specified as an LP64 ABI, and that is what
6516 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6517 historically accepted the combination of -mabi=eabi and -mlong32,
6518 and this ILP32 variation has become semi-official over time.
6519 Both forms use elf32 and have pointer-sized FDE addresses.
6520
6521 If an EABI object was generated by GCC 4.0 or above, it will have
6522 an empty .gcc_compiled_longXX section, where XX is the size of longs
6523 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6524 have no special marking to distinguish them from LP64 objects.
6525
6526 We don't want users of the official LP64 ABI to be punished for the
6527 existence of the ILP32 variant, but at the same time, we don't want
6528 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6529 We therefore take the following approach:
6530
6531 - If ABFD contains a .gcc_compiled_longXX section, use it to
6532 determine the pointer size.
6533
6534 - Otherwise check the type of the first relocation. Assume that
6535 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6536
6537 - Otherwise punt.
6538
6539 The second check is enough to detect LP64 objects generated by pre-4.0
6540 compilers because, in the kind of output generated by those compilers,
6541 the first relocation will be associated with either a CIE personality
6542 routine or an FDE start address. Furthermore, the compilers never
6543 used a special (non-pointer) encoding for this ABI.
6544
6545 Checking the relocation type should also be safe because there is no
6546 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6547 did so. */
6548
6549 unsigned int
6550 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6551 {
6552 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6553 return 8;
6554 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6555 {
6556 bfd_boolean long32_p, long64_p;
6557
6558 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6559 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6560 if (long32_p && long64_p)
6561 return 0;
6562 if (long32_p)
6563 return 4;
6564 if (long64_p)
6565 return 8;
6566
6567 if (sec->reloc_count > 0
6568 && elf_section_data (sec)->relocs != NULL
6569 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6570 == R_MIPS_64))
6571 return 8;
6572
6573 return 0;
6574 }
6575 return 4;
6576 }
6577 \f
6578 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6579 relocations against two unnamed section symbols to resolve to the
6580 same address. For example, if we have code like:
6581
6582 lw $4,%got_disp(.data)($gp)
6583 lw $25,%got_disp(.text)($gp)
6584 jalr $25
6585
6586 then the linker will resolve both relocations to .data and the program
6587 will jump there rather than to .text.
6588
6589 We can work around this problem by giving names to local section symbols.
6590 This is also what the MIPSpro tools do. */
6591
6592 bfd_boolean
6593 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6594 {
6595 return SGI_COMPAT (abfd);
6596 }
6597 \f
6598 /* Work over a section just before writing it out. This routine is
6599 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6600 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6601 a better way. */
6602
6603 bfd_boolean
6604 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6605 {
6606 if (hdr->sh_type == SHT_MIPS_REGINFO
6607 && hdr->sh_size > 0)
6608 {
6609 bfd_byte buf[4];
6610
6611 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6612 BFD_ASSERT (hdr->contents == NULL);
6613
6614 if (bfd_seek (abfd,
6615 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6616 SEEK_SET) != 0)
6617 return FALSE;
6618 H_PUT_32 (abfd, elf_gp (abfd), buf);
6619 if (bfd_bwrite (buf, 4, abfd) != 4)
6620 return FALSE;
6621 }
6622
6623 if (hdr->sh_type == SHT_MIPS_OPTIONS
6624 && hdr->bfd_section != NULL
6625 && mips_elf_section_data (hdr->bfd_section) != NULL
6626 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6627 {
6628 bfd_byte *contents, *l, *lend;
6629
6630 /* We stored the section contents in the tdata field in the
6631 set_section_contents routine. We save the section contents
6632 so that we don't have to read them again.
6633 At this point we know that elf_gp is set, so we can look
6634 through the section contents to see if there is an
6635 ODK_REGINFO structure. */
6636
6637 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6638 l = contents;
6639 lend = contents + hdr->sh_size;
6640 while (l + sizeof (Elf_External_Options) <= lend)
6641 {
6642 Elf_Internal_Options intopt;
6643
6644 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6645 &intopt);
6646 if (intopt.size < sizeof (Elf_External_Options))
6647 {
6648 (*_bfd_error_handler)
6649 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6650 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6651 break;
6652 }
6653 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6654 {
6655 bfd_byte buf[8];
6656
6657 if (bfd_seek (abfd,
6658 (hdr->sh_offset
6659 + (l - contents)
6660 + sizeof (Elf_External_Options)
6661 + (sizeof (Elf64_External_RegInfo) - 8)),
6662 SEEK_SET) != 0)
6663 return FALSE;
6664 H_PUT_64 (abfd, elf_gp (abfd), buf);
6665 if (bfd_bwrite (buf, 8, abfd) != 8)
6666 return FALSE;
6667 }
6668 else if (intopt.kind == ODK_REGINFO)
6669 {
6670 bfd_byte buf[4];
6671
6672 if (bfd_seek (abfd,
6673 (hdr->sh_offset
6674 + (l - contents)
6675 + sizeof (Elf_External_Options)
6676 + (sizeof (Elf32_External_RegInfo) - 4)),
6677 SEEK_SET) != 0)
6678 return FALSE;
6679 H_PUT_32 (abfd, elf_gp (abfd), buf);
6680 if (bfd_bwrite (buf, 4, abfd) != 4)
6681 return FALSE;
6682 }
6683 l += intopt.size;
6684 }
6685 }
6686
6687 if (hdr->bfd_section != NULL)
6688 {
6689 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6690
6691 /* .sbss is not handled specially here because the GNU/Linux
6692 prelinker can convert .sbss from NOBITS to PROGBITS and
6693 changing it back to NOBITS breaks the binary. The entry in
6694 _bfd_mips_elf_special_sections will ensure the correct flags
6695 are set on .sbss if BFD creates it without reading it from an
6696 input file, and without special handling here the flags set
6697 on it in an input file will be followed. */
6698 if (strcmp (name, ".sdata") == 0
6699 || strcmp (name, ".lit8") == 0
6700 || strcmp (name, ".lit4") == 0)
6701 {
6702 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6703 hdr->sh_type = SHT_PROGBITS;
6704 }
6705 else if (strcmp (name, ".srdata") == 0)
6706 {
6707 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6708 hdr->sh_type = SHT_PROGBITS;
6709 }
6710 else if (strcmp (name, ".compact_rel") == 0)
6711 {
6712 hdr->sh_flags = 0;
6713 hdr->sh_type = SHT_PROGBITS;
6714 }
6715 else if (strcmp (name, ".rtproc") == 0)
6716 {
6717 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6718 {
6719 unsigned int adjust;
6720
6721 adjust = hdr->sh_size % hdr->sh_addralign;
6722 if (adjust != 0)
6723 hdr->sh_size += hdr->sh_addralign - adjust;
6724 }
6725 }
6726 }
6727
6728 return TRUE;
6729 }
6730
6731 /* Handle a MIPS specific section when reading an object file. This
6732 is called when elfcode.h finds a section with an unknown type.
6733 This routine supports both the 32-bit and 64-bit ELF ABI.
6734
6735 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6736 how to. */
6737
6738 bfd_boolean
6739 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6740 Elf_Internal_Shdr *hdr,
6741 const char *name,
6742 int shindex)
6743 {
6744 flagword flags = 0;
6745
6746 /* There ought to be a place to keep ELF backend specific flags, but
6747 at the moment there isn't one. We just keep track of the
6748 sections by their name, instead. Fortunately, the ABI gives
6749 suggested names for all the MIPS specific sections, so we will
6750 probably get away with this. */
6751 switch (hdr->sh_type)
6752 {
6753 case SHT_MIPS_LIBLIST:
6754 if (strcmp (name, ".liblist") != 0)
6755 return FALSE;
6756 break;
6757 case SHT_MIPS_MSYM:
6758 if (strcmp (name, ".msym") != 0)
6759 return FALSE;
6760 break;
6761 case SHT_MIPS_CONFLICT:
6762 if (strcmp (name, ".conflict") != 0)
6763 return FALSE;
6764 break;
6765 case SHT_MIPS_GPTAB:
6766 if (! CONST_STRNEQ (name, ".gptab."))
6767 return FALSE;
6768 break;
6769 case SHT_MIPS_UCODE:
6770 if (strcmp (name, ".ucode") != 0)
6771 return FALSE;
6772 break;
6773 case SHT_MIPS_DEBUG:
6774 if (strcmp (name, ".mdebug") != 0)
6775 return FALSE;
6776 flags = SEC_DEBUGGING;
6777 break;
6778 case SHT_MIPS_REGINFO:
6779 if (strcmp (name, ".reginfo") != 0
6780 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6781 return FALSE;
6782 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6783 break;
6784 case SHT_MIPS_IFACE:
6785 if (strcmp (name, ".MIPS.interfaces") != 0)
6786 return FALSE;
6787 break;
6788 case SHT_MIPS_CONTENT:
6789 if (! CONST_STRNEQ (name, ".MIPS.content"))
6790 return FALSE;
6791 break;
6792 case SHT_MIPS_OPTIONS:
6793 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6794 return FALSE;
6795 break;
6796 case SHT_MIPS_DWARF:
6797 if (! CONST_STRNEQ (name, ".debug_")
6798 && ! CONST_STRNEQ (name, ".zdebug_"))
6799 return FALSE;
6800 break;
6801 case SHT_MIPS_SYMBOL_LIB:
6802 if (strcmp (name, ".MIPS.symlib") != 0)
6803 return FALSE;
6804 break;
6805 case SHT_MIPS_EVENTS:
6806 if (! CONST_STRNEQ (name, ".MIPS.events")
6807 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6808 return FALSE;
6809 break;
6810 default:
6811 break;
6812 }
6813
6814 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6815 return FALSE;
6816
6817 if (flags)
6818 {
6819 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6820 (bfd_get_section_flags (abfd,
6821 hdr->bfd_section)
6822 | flags)))
6823 return FALSE;
6824 }
6825
6826 /* FIXME: We should record sh_info for a .gptab section. */
6827
6828 /* For a .reginfo section, set the gp value in the tdata information
6829 from the contents of this section. We need the gp value while
6830 processing relocs, so we just get it now. The .reginfo section
6831 is not used in the 64-bit MIPS ELF ABI. */
6832 if (hdr->sh_type == SHT_MIPS_REGINFO)
6833 {
6834 Elf32_External_RegInfo ext;
6835 Elf32_RegInfo s;
6836
6837 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6838 &ext, 0, sizeof ext))
6839 return FALSE;
6840 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6841 elf_gp (abfd) = s.ri_gp_value;
6842 }
6843
6844 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6845 set the gp value based on what we find. We may see both
6846 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6847 they should agree. */
6848 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6849 {
6850 bfd_byte *contents, *l, *lend;
6851
6852 contents = bfd_malloc (hdr->sh_size);
6853 if (contents == NULL)
6854 return FALSE;
6855 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6856 0, hdr->sh_size))
6857 {
6858 free (contents);
6859 return FALSE;
6860 }
6861 l = contents;
6862 lend = contents + hdr->sh_size;
6863 while (l + sizeof (Elf_External_Options) <= lend)
6864 {
6865 Elf_Internal_Options intopt;
6866
6867 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6868 &intopt);
6869 if (intopt.size < sizeof (Elf_External_Options))
6870 {
6871 (*_bfd_error_handler)
6872 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6873 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6874 break;
6875 }
6876 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6877 {
6878 Elf64_Internal_RegInfo intreg;
6879
6880 bfd_mips_elf64_swap_reginfo_in
6881 (abfd,
6882 ((Elf64_External_RegInfo *)
6883 (l + sizeof (Elf_External_Options))),
6884 &intreg);
6885 elf_gp (abfd) = intreg.ri_gp_value;
6886 }
6887 else if (intopt.kind == ODK_REGINFO)
6888 {
6889 Elf32_RegInfo intreg;
6890
6891 bfd_mips_elf32_swap_reginfo_in
6892 (abfd,
6893 ((Elf32_External_RegInfo *)
6894 (l + sizeof (Elf_External_Options))),
6895 &intreg);
6896 elf_gp (abfd) = intreg.ri_gp_value;
6897 }
6898 l += intopt.size;
6899 }
6900 free (contents);
6901 }
6902
6903 return TRUE;
6904 }
6905
6906 /* Set the correct type for a MIPS ELF section. We do this by the
6907 section name, which is a hack, but ought to work. This routine is
6908 used by both the 32-bit and the 64-bit ABI. */
6909
6910 bfd_boolean
6911 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6912 {
6913 const char *name = bfd_get_section_name (abfd, sec);
6914
6915 if (strcmp (name, ".liblist") == 0)
6916 {
6917 hdr->sh_type = SHT_MIPS_LIBLIST;
6918 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6919 /* The sh_link field is set in final_write_processing. */
6920 }
6921 else if (strcmp (name, ".conflict") == 0)
6922 hdr->sh_type = SHT_MIPS_CONFLICT;
6923 else if (CONST_STRNEQ (name, ".gptab."))
6924 {
6925 hdr->sh_type = SHT_MIPS_GPTAB;
6926 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6927 /* The sh_info field is set in final_write_processing. */
6928 }
6929 else if (strcmp (name, ".ucode") == 0)
6930 hdr->sh_type = SHT_MIPS_UCODE;
6931 else if (strcmp (name, ".mdebug") == 0)
6932 {
6933 hdr->sh_type = SHT_MIPS_DEBUG;
6934 /* In a shared object on IRIX 5.3, the .mdebug section has an
6935 entsize of 0. FIXME: Does this matter? */
6936 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6937 hdr->sh_entsize = 0;
6938 else
6939 hdr->sh_entsize = 1;
6940 }
6941 else if (strcmp (name, ".reginfo") == 0)
6942 {
6943 hdr->sh_type = SHT_MIPS_REGINFO;
6944 /* In a shared object on IRIX 5.3, the .reginfo section has an
6945 entsize of 0x18. FIXME: Does this matter? */
6946 if (SGI_COMPAT (abfd))
6947 {
6948 if ((abfd->flags & DYNAMIC) != 0)
6949 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6950 else
6951 hdr->sh_entsize = 1;
6952 }
6953 else
6954 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6955 }
6956 else if (SGI_COMPAT (abfd)
6957 && (strcmp (name, ".hash") == 0
6958 || strcmp (name, ".dynamic") == 0
6959 || strcmp (name, ".dynstr") == 0))
6960 {
6961 if (SGI_COMPAT (abfd))
6962 hdr->sh_entsize = 0;
6963 #if 0
6964 /* This isn't how the IRIX6 linker behaves. */
6965 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6966 #endif
6967 }
6968 else if (strcmp (name, ".got") == 0
6969 || strcmp (name, ".srdata") == 0
6970 || strcmp (name, ".sdata") == 0
6971 || strcmp (name, ".sbss") == 0
6972 || strcmp (name, ".lit4") == 0
6973 || strcmp (name, ".lit8") == 0)
6974 hdr->sh_flags |= SHF_MIPS_GPREL;
6975 else if (strcmp (name, ".MIPS.interfaces") == 0)
6976 {
6977 hdr->sh_type = SHT_MIPS_IFACE;
6978 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6979 }
6980 else if (CONST_STRNEQ (name, ".MIPS.content"))
6981 {
6982 hdr->sh_type = SHT_MIPS_CONTENT;
6983 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6984 /* The sh_info field is set in final_write_processing. */
6985 }
6986 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6987 {
6988 hdr->sh_type = SHT_MIPS_OPTIONS;
6989 hdr->sh_entsize = 1;
6990 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6991 }
6992 else if (CONST_STRNEQ (name, ".debug_")
6993 || CONST_STRNEQ (name, ".zdebug_"))
6994 {
6995 hdr->sh_type = SHT_MIPS_DWARF;
6996
6997 /* Irix facilities such as libexc expect a single .debug_frame
6998 per executable, the system ones have NOSTRIP set and the linker
6999 doesn't merge sections with different flags so ... */
7000 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7001 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7002 }
7003 else if (strcmp (name, ".MIPS.symlib") == 0)
7004 {
7005 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7006 /* The sh_link and sh_info fields are set in
7007 final_write_processing. */
7008 }
7009 else if (CONST_STRNEQ (name, ".MIPS.events")
7010 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7011 {
7012 hdr->sh_type = SHT_MIPS_EVENTS;
7013 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7014 /* The sh_link field is set in final_write_processing. */
7015 }
7016 else if (strcmp (name, ".msym") == 0)
7017 {
7018 hdr->sh_type = SHT_MIPS_MSYM;
7019 hdr->sh_flags |= SHF_ALLOC;
7020 hdr->sh_entsize = 8;
7021 }
7022
7023 /* The generic elf_fake_sections will set up REL_HDR using the default
7024 kind of relocations. We used to set up a second header for the
7025 non-default kind of relocations here, but only NewABI would use
7026 these, and the IRIX ld doesn't like resulting empty RELA sections.
7027 Thus we create those header only on demand now. */
7028
7029 return TRUE;
7030 }
7031
7032 /* Given a BFD section, try to locate the corresponding ELF section
7033 index. This is used by both the 32-bit and the 64-bit ABI.
7034 Actually, it's not clear to me that the 64-bit ABI supports these,
7035 but for non-PIC objects we will certainly want support for at least
7036 the .scommon section. */
7037
7038 bfd_boolean
7039 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7040 asection *sec, int *retval)
7041 {
7042 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7043 {
7044 *retval = SHN_MIPS_SCOMMON;
7045 return TRUE;
7046 }
7047 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7048 {
7049 *retval = SHN_MIPS_ACOMMON;
7050 return TRUE;
7051 }
7052 return FALSE;
7053 }
7054 \f
7055 /* Hook called by the linker routine which adds symbols from an object
7056 file. We must handle the special MIPS section numbers here. */
7057
7058 bfd_boolean
7059 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7060 Elf_Internal_Sym *sym, const char **namep,
7061 flagword *flagsp ATTRIBUTE_UNUSED,
7062 asection **secp, bfd_vma *valp)
7063 {
7064 if (SGI_COMPAT (abfd)
7065 && (abfd->flags & DYNAMIC) != 0
7066 && strcmp (*namep, "_rld_new_interface") == 0)
7067 {
7068 /* Skip IRIX5 rld entry name. */
7069 *namep = NULL;
7070 return TRUE;
7071 }
7072
7073 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7074 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7075 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7076 a magic symbol resolved by the linker, we ignore this bogus definition
7077 of _gp_disp. New ABI objects do not suffer from this problem so this
7078 is not done for them. */
7079 if (!NEWABI_P(abfd)
7080 && (sym->st_shndx == SHN_ABS)
7081 && (strcmp (*namep, "_gp_disp") == 0))
7082 {
7083 *namep = NULL;
7084 return TRUE;
7085 }
7086
7087 switch (sym->st_shndx)
7088 {
7089 case SHN_COMMON:
7090 /* Common symbols less than the GP size are automatically
7091 treated as SHN_MIPS_SCOMMON symbols. */
7092 if (sym->st_size > elf_gp_size (abfd)
7093 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7094 || IRIX_COMPAT (abfd) == ict_irix6)
7095 break;
7096 /* Fall through. */
7097 case SHN_MIPS_SCOMMON:
7098 *secp = bfd_make_section_old_way (abfd, ".scommon");
7099 (*secp)->flags |= SEC_IS_COMMON;
7100 *valp = sym->st_size;
7101 break;
7102
7103 case SHN_MIPS_TEXT:
7104 /* This section is used in a shared object. */
7105 if (elf_tdata (abfd)->elf_text_section == NULL)
7106 {
7107 asymbol *elf_text_symbol;
7108 asection *elf_text_section;
7109 bfd_size_type amt = sizeof (asection);
7110
7111 elf_text_section = bfd_zalloc (abfd, amt);
7112 if (elf_text_section == NULL)
7113 return FALSE;
7114
7115 amt = sizeof (asymbol);
7116 elf_text_symbol = bfd_zalloc (abfd, amt);
7117 if (elf_text_symbol == NULL)
7118 return FALSE;
7119
7120 /* Initialize the section. */
7121
7122 elf_tdata (abfd)->elf_text_section = elf_text_section;
7123 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7124
7125 elf_text_section->symbol = elf_text_symbol;
7126 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7127
7128 elf_text_section->name = ".text";
7129 elf_text_section->flags = SEC_NO_FLAGS;
7130 elf_text_section->output_section = NULL;
7131 elf_text_section->owner = abfd;
7132 elf_text_symbol->name = ".text";
7133 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7134 elf_text_symbol->section = elf_text_section;
7135 }
7136 /* This code used to do *secp = bfd_und_section_ptr if
7137 info->shared. I don't know why, and that doesn't make sense,
7138 so I took it out. */
7139 *secp = elf_tdata (abfd)->elf_text_section;
7140 break;
7141
7142 case SHN_MIPS_ACOMMON:
7143 /* Fall through. XXX Can we treat this as allocated data? */
7144 case SHN_MIPS_DATA:
7145 /* This section is used in a shared object. */
7146 if (elf_tdata (abfd)->elf_data_section == NULL)
7147 {
7148 asymbol *elf_data_symbol;
7149 asection *elf_data_section;
7150 bfd_size_type amt = sizeof (asection);
7151
7152 elf_data_section = bfd_zalloc (abfd, amt);
7153 if (elf_data_section == NULL)
7154 return FALSE;
7155
7156 amt = sizeof (asymbol);
7157 elf_data_symbol = bfd_zalloc (abfd, amt);
7158 if (elf_data_symbol == NULL)
7159 return FALSE;
7160
7161 /* Initialize the section. */
7162
7163 elf_tdata (abfd)->elf_data_section = elf_data_section;
7164 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7165
7166 elf_data_section->symbol = elf_data_symbol;
7167 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7168
7169 elf_data_section->name = ".data";
7170 elf_data_section->flags = SEC_NO_FLAGS;
7171 elf_data_section->output_section = NULL;
7172 elf_data_section->owner = abfd;
7173 elf_data_symbol->name = ".data";
7174 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7175 elf_data_symbol->section = elf_data_section;
7176 }
7177 /* This code used to do *secp = bfd_und_section_ptr if
7178 info->shared. I don't know why, and that doesn't make sense,
7179 so I took it out. */
7180 *secp = elf_tdata (abfd)->elf_data_section;
7181 break;
7182
7183 case SHN_MIPS_SUNDEFINED:
7184 *secp = bfd_und_section_ptr;
7185 break;
7186 }
7187
7188 if (SGI_COMPAT (abfd)
7189 && ! info->shared
7190 && info->output_bfd->xvec == abfd->xvec
7191 && strcmp (*namep, "__rld_obj_head") == 0)
7192 {
7193 struct elf_link_hash_entry *h;
7194 struct bfd_link_hash_entry *bh;
7195
7196 /* Mark __rld_obj_head as dynamic. */
7197 bh = NULL;
7198 if (! (_bfd_generic_link_add_one_symbol
7199 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7200 get_elf_backend_data (abfd)->collect, &bh)))
7201 return FALSE;
7202
7203 h = (struct elf_link_hash_entry *) bh;
7204 h->non_elf = 0;
7205 h->def_regular = 1;
7206 h->type = STT_OBJECT;
7207
7208 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7209 return FALSE;
7210
7211 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7212 mips_elf_hash_table (info)->rld_symbol = h;
7213 }
7214
7215 /* If this is a mips16 text symbol, add 1 to the value to make it
7216 odd. This will cause something like .word SYM to come up with
7217 the right value when it is loaded into the PC. */
7218 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7219 ++*valp;
7220
7221 return TRUE;
7222 }
7223
7224 /* This hook function is called before the linker writes out a global
7225 symbol. We mark symbols as small common if appropriate. This is
7226 also where we undo the increment of the value for a mips16 symbol. */
7227
7228 int
7229 _bfd_mips_elf_link_output_symbol_hook
7230 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7231 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7232 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7233 {
7234 /* If we see a common symbol, which implies a relocatable link, then
7235 if a symbol was small common in an input file, mark it as small
7236 common in the output file. */
7237 if (sym->st_shndx == SHN_COMMON
7238 && strcmp (input_sec->name, ".scommon") == 0)
7239 sym->st_shndx = SHN_MIPS_SCOMMON;
7240
7241 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7242 sym->st_value &= ~1;
7243
7244 return 1;
7245 }
7246 \f
7247 /* Functions for the dynamic linker. */
7248
7249 /* Create dynamic sections when linking against a dynamic object. */
7250
7251 bfd_boolean
7252 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7253 {
7254 struct elf_link_hash_entry *h;
7255 struct bfd_link_hash_entry *bh;
7256 flagword flags;
7257 register asection *s;
7258 const char * const *namep;
7259 struct mips_elf_link_hash_table *htab;
7260
7261 htab = mips_elf_hash_table (info);
7262 BFD_ASSERT (htab != NULL);
7263
7264 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7265 | SEC_LINKER_CREATED | SEC_READONLY);
7266
7267 /* The psABI requires a read-only .dynamic section, but the VxWorks
7268 EABI doesn't. */
7269 if (!htab->is_vxworks)
7270 {
7271 s = bfd_get_linker_section (abfd, ".dynamic");
7272 if (s != NULL)
7273 {
7274 if (! bfd_set_section_flags (abfd, s, flags))
7275 return FALSE;
7276 }
7277 }
7278
7279 /* We need to create .got section. */
7280 if (!mips_elf_create_got_section (abfd, info))
7281 return FALSE;
7282
7283 if (! mips_elf_rel_dyn_section (info, TRUE))
7284 return FALSE;
7285
7286 /* Create .stub section. */
7287 s = bfd_make_section_anyway_with_flags (abfd,
7288 MIPS_ELF_STUB_SECTION_NAME (abfd),
7289 flags | SEC_CODE);
7290 if (s == NULL
7291 || ! bfd_set_section_alignment (abfd, s,
7292 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7293 return FALSE;
7294 htab->sstubs = s;
7295
7296 if (!mips_elf_hash_table (info)->use_rld_obj_head
7297 && !info->shared
7298 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7299 {
7300 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7301 flags &~ (flagword) SEC_READONLY);
7302 if (s == NULL
7303 || ! bfd_set_section_alignment (abfd, s,
7304 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7305 return FALSE;
7306 }
7307
7308 /* On IRIX5, we adjust add some additional symbols and change the
7309 alignments of several sections. There is no ABI documentation
7310 indicating that this is necessary on IRIX6, nor any evidence that
7311 the linker takes such action. */
7312 if (IRIX_COMPAT (abfd) == ict_irix5)
7313 {
7314 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7315 {
7316 bh = NULL;
7317 if (! (_bfd_generic_link_add_one_symbol
7318 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7319 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7320 return FALSE;
7321
7322 h = (struct elf_link_hash_entry *) bh;
7323 h->non_elf = 0;
7324 h->def_regular = 1;
7325 h->type = STT_SECTION;
7326
7327 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7328 return FALSE;
7329 }
7330
7331 /* We need to create a .compact_rel section. */
7332 if (SGI_COMPAT (abfd))
7333 {
7334 if (!mips_elf_create_compact_rel_section (abfd, info))
7335 return FALSE;
7336 }
7337
7338 /* Change alignments of some sections. */
7339 s = bfd_get_linker_section (abfd, ".hash");
7340 if (s != NULL)
7341 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7342 s = bfd_get_linker_section (abfd, ".dynsym");
7343 if (s != NULL)
7344 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7345 s = bfd_get_linker_section (abfd, ".dynstr");
7346 if (s != NULL)
7347 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7348 /* ??? */
7349 s = bfd_get_section_by_name (abfd, ".reginfo");
7350 if (s != NULL)
7351 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7352 s = bfd_get_linker_section (abfd, ".dynamic");
7353 if (s != NULL)
7354 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7355 }
7356
7357 if (!info->shared)
7358 {
7359 const char *name;
7360
7361 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7362 bh = NULL;
7363 if (!(_bfd_generic_link_add_one_symbol
7364 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7365 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7366 return FALSE;
7367
7368 h = (struct elf_link_hash_entry *) bh;
7369 h->non_elf = 0;
7370 h->def_regular = 1;
7371 h->type = STT_SECTION;
7372
7373 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7374 return FALSE;
7375
7376 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7377 {
7378 /* __rld_map is a four byte word located in the .data section
7379 and is filled in by the rtld to contain a pointer to
7380 the _r_debug structure. Its symbol value will be set in
7381 _bfd_mips_elf_finish_dynamic_symbol. */
7382 s = bfd_get_linker_section (abfd, ".rld_map");
7383 BFD_ASSERT (s != NULL);
7384
7385 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7386 bh = NULL;
7387 if (!(_bfd_generic_link_add_one_symbol
7388 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7389 get_elf_backend_data (abfd)->collect, &bh)))
7390 return FALSE;
7391
7392 h = (struct elf_link_hash_entry *) bh;
7393 h->non_elf = 0;
7394 h->def_regular = 1;
7395 h->type = STT_OBJECT;
7396
7397 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7398 return FALSE;
7399 mips_elf_hash_table (info)->rld_symbol = h;
7400 }
7401 }
7402
7403 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7404 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7405 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7406 return FALSE;
7407
7408 /* Cache the sections created above. */
7409 htab->splt = bfd_get_linker_section (abfd, ".plt");
7410 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7411 if (htab->is_vxworks)
7412 {
7413 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7414 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7415 }
7416 else
7417 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7418 if (!htab->sdynbss
7419 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7420 || !htab->srelplt
7421 || !htab->splt)
7422 abort ();
7423
7424 if (htab->is_vxworks)
7425 {
7426 /* Do the usual VxWorks handling. */
7427 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7428 return FALSE;
7429
7430 /* Work out the PLT sizes. */
7431 if (info->shared)
7432 {
7433 htab->plt_header_size
7434 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7435 htab->plt_entry_size
7436 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7437 }
7438 else
7439 {
7440 htab->plt_header_size
7441 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7442 htab->plt_entry_size
7443 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7444 }
7445 }
7446 else if (!info->shared)
7447 {
7448 /* All variants of the plt0 entry are the same size. */
7449 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7450 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7451 }
7452
7453 return TRUE;
7454 }
7455 \f
7456 /* Return true if relocation REL against section SEC is a REL rather than
7457 RELA relocation. RELOCS is the first relocation in the section and
7458 ABFD is the bfd that contains SEC. */
7459
7460 static bfd_boolean
7461 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7462 const Elf_Internal_Rela *relocs,
7463 const Elf_Internal_Rela *rel)
7464 {
7465 Elf_Internal_Shdr *rel_hdr;
7466 const struct elf_backend_data *bed;
7467
7468 /* To determine which flavor of relocation this is, we depend on the
7469 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7470 rel_hdr = elf_section_data (sec)->rel.hdr;
7471 if (rel_hdr == NULL)
7472 return FALSE;
7473 bed = get_elf_backend_data (abfd);
7474 return ((size_t) (rel - relocs)
7475 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7476 }
7477
7478 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7479 HOWTO is the relocation's howto and CONTENTS points to the contents
7480 of the section that REL is against. */
7481
7482 static bfd_vma
7483 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7484 reloc_howto_type *howto, bfd_byte *contents)
7485 {
7486 bfd_byte *location;
7487 unsigned int r_type;
7488 bfd_vma addend;
7489
7490 r_type = ELF_R_TYPE (abfd, rel->r_info);
7491 location = contents + rel->r_offset;
7492
7493 /* Get the addend, which is stored in the input file. */
7494 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7495 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7496 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7497
7498 return addend & howto->src_mask;
7499 }
7500
7501 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7502 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7503 and update *ADDEND with the final addend. Return true on success
7504 or false if the LO16 could not be found. RELEND is the exclusive
7505 upper bound on the relocations for REL's section. */
7506
7507 static bfd_boolean
7508 mips_elf_add_lo16_rel_addend (bfd *abfd,
7509 const Elf_Internal_Rela *rel,
7510 const Elf_Internal_Rela *relend,
7511 bfd_byte *contents, bfd_vma *addend)
7512 {
7513 unsigned int r_type, lo16_type;
7514 const Elf_Internal_Rela *lo16_relocation;
7515 reloc_howto_type *lo16_howto;
7516 bfd_vma l;
7517
7518 r_type = ELF_R_TYPE (abfd, rel->r_info);
7519 if (mips16_reloc_p (r_type))
7520 lo16_type = R_MIPS16_LO16;
7521 else if (micromips_reloc_p (r_type))
7522 lo16_type = R_MICROMIPS_LO16;
7523 else
7524 lo16_type = R_MIPS_LO16;
7525
7526 /* The combined value is the sum of the HI16 addend, left-shifted by
7527 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7528 code does a `lui' of the HI16 value, and then an `addiu' of the
7529 LO16 value.)
7530
7531 Scan ahead to find a matching LO16 relocation.
7532
7533 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7534 be immediately following. However, for the IRIX6 ABI, the next
7535 relocation may be a composed relocation consisting of several
7536 relocations for the same address. In that case, the R_MIPS_LO16
7537 relocation may occur as one of these. We permit a similar
7538 extension in general, as that is useful for GCC.
7539
7540 In some cases GCC dead code elimination removes the LO16 but keeps
7541 the corresponding HI16. This is strictly speaking a violation of
7542 the ABI but not immediately harmful. */
7543 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7544 if (lo16_relocation == NULL)
7545 return FALSE;
7546
7547 /* Obtain the addend kept there. */
7548 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7549 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7550
7551 l <<= lo16_howto->rightshift;
7552 l = _bfd_mips_elf_sign_extend (l, 16);
7553
7554 *addend <<= 16;
7555 *addend += l;
7556 return TRUE;
7557 }
7558
7559 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7560 store the contents in *CONTENTS on success. Assume that *CONTENTS
7561 already holds the contents if it is nonull on entry. */
7562
7563 static bfd_boolean
7564 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7565 {
7566 if (*contents)
7567 return TRUE;
7568
7569 /* Get cached copy if it exists. */
7570 if (elf_section_data (sec)->this_hdr.contents != NULL)
7571 {
7572 *contents = elf_section_data (sec)->this_hdr.contents;
7573 return TRUE;
7574 }
7575
7576 return bfd_malloc_and_get_section (abfd, sec, contents);
7577 }
7578
7579 /* Look through the relocs for a section during the first phase, and
7580 allocate space in the global offset table. */
7581
7582 bfd_boolean
7583 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7584 asection *sec, const Elf_Internal_Rela *relocs)
7585 {
7586 const char *name;
7587 bfd *dynobj;
7588 Elf_Internal_Shdr *symtab_hdr;
7589 struct elf_link_hash_entry **sym_hashes;
7590 size_t extsymoff;
7591 const Elf_Internal_Rela *rel;
7592 const Elf_Internal_Rela *rel_end;
7593 asection *sreloc;
7594 const struct elf_backend_data *bed;
7595 struct mips_elf_link_hash_table *htab;
7596 bfd_byte *contents;
7597 bfd_vma addend;
7598 reloc_howto_type *howto;
7599
7600 if (info->relocatable)
7601 return TRUE;
7602
7603 htab = mips_elf_hash_table (info);
7604 BFD_ASSERT (htab != NULL);
7605
7606 dynobj = elf_hash_table (info)->dynobj;
7607 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7608 sym_hashes = elf_sym_hashes (abfd);
7609 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7610
7611 bed = get_elf_backend_data (abfd);
7612 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7613
7614 /* Check for the mips16 stub sections. */
7615
7616 name = bfd_get_section_name (abfd, sec);
7617 if (FN_STUB_P (name))
7618 {
7619 unsigned long r_symndx;
7620
7621 /* Look at the relocation information to figure out which symbol
7622 this is for. */
7623
7624 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7625 if (r_symndx == 0)
7626 {
7627 (*_bfd_error_handler)
7628 (_("%B: Warning: cannot determine the target function for"
7629 " stub section `%s'"),
7630 abfd, name);
7631 bfd_set_error (bfd_error_bad_value);
7632 return FALSE;
7633 }
7634
7635 if (r_symndx < extsymoff
7636 || sym_hashes[r_symndx - extsymoff] == NULL)
7637 {
7638 asection *o;
7639
7640 /* This stub is for a local symbol. This stub will only be
7641 needed if there is some relocation in this BFD, other
7642 than a 16 bit function call, which refers to this symbol. */
7643 for (o = abfd->sections; o != NULL; o = o->next)
7644 {
7645 Elf_Internal_Rela *sec_relocs;
7646 const Elf_Internal_Rela *r, *rend;
7647
7648 /* We can ignore stub sections when looking for relocs. */
7649 if ((o->flags & SEC_RELOC) == 0
7650 || o->reloc_count == 0
7651 || section_allows_mips16_refs_p (o))
7652 continue;
7653
7654 sec_relocs
7655 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7656 info->keep_memory);
7657 if (sec_relocs == NULL)
7658 return FALSE;
7659
7660 rend = sec_relocs + o->reloc_count;
7661 for (r = sec_relocs; r < rend; r++)
7662 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7663 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7664 break;
7665
7666 if (elf_section_data (o)->relocs != sec_relocs)
7667 free (sec_relocs);
7668
7669 if (r < rend)
7670 break;
7671 }
7672
7673 if (o == NULL)
7674 {
7675 /* There is no non-call reloc for this stub, so we do
7676 not need it. Since this function is called before
7677 the linker maps input sections to output sections, we
7678 can easily discard it by setting the SEC_EXCLUDE
7679 flag. */
7680 sec->flags |= SEC_EXCLUDE;
7681 return TRUE;
7682 }
7683
7684 /* Record this stub in an array of local symbol stubs for
7685 this BFD. */
7686 if (elf_tdata (abfd)->local_stubs == NULL)
7687 {
7688 unsigned long symcount;
7689 asection **n;
7690 bfd_size_type amt;
7691
7692 if (elf_bad_symtab (abfd))
7693 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7694 else
7695 symcount = symtab_hdr->sh_info;
7696 amt = symcount * sizeof (asection *);
7697 n = bfd_zalloc (abfd, amt);
7698 if (n == NULL)
7699 return FALSE;
7700 elf_tdata (abfd)->local_stubs = n;
7701 }
7702
7703 sec->flags |= SEC_KEEP;
7704 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7705
7706 /* We don't need to set mips16_stubs_seen in this case.
7707 That flag is used to see whether we need to look through
7708 the global symbol table for stubs. We don't need to set
7709 it here, because we just have a local stub. */
7710 }
7711 else
7712 {
7713 struct mips_elf_link_hash_entry *h;
7714
7715 h = ((struct mips_elf_link_hash_entry *)
7716 sym_hashes[r_symndx - extsymoff]);
7717
7718 while (h->root.root.type == bfd_link_hash_indirect
7719 || h->root.root.type == bfd_link_hash_warning)
7720 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7721
7722 /* H is the symbol this stub is for. */
7723
7724 /* If we already have an appropriate stub for this function, we
7725 don't need another one, so we can discard this one. Since
7726 this function is called before the linker maps input sections
7727 to output sections, we can easily discard it by setting the
7728 SEC_EXCLUDE flag. */
7729 if (h->fn_stub != NULL)
7730 {
7731 sec->flags |= SEC_EXCLUDE;
7732 return TRUE;
7733 }
7734
7735 sec->flags |= SEC_KEEP;
7736 h->fn_stub = sec;
7737 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7738 }
7739 }
7740 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7741 {
7742 unsigned long r_symndx;
7743 struct mips_elf_link_hash_entry *h;
7744 asection **loc;
7745
7746 /* Look at the relocation information to figure out which symbol
7747 this is for. */
7748
7749 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7750 if (r_symndx == 0)
7751 {
7752 (*_bfd_error_handler)
7753 (_("%B: Warning: cannot determine the target function for"
7754 " stub section `%s'"),
7755 abfd, name);
7756 bfd_set_error (bfd_error_bad_value);
7757 return FALSE;
7758 }
7759
7760 if (r_symndx < extsymoff
7761 || sym_hashes[r_symndx - extsymoff] == NULL)
7762 {
7763 asection *o;
7764
7765 /* This stub is for a local symbol. This stub will only be
7766 needed if there is some relocation (R_MIPS16_26) in this BFD
7767 that refers to this symbol. */
7768 for (o = abfd->sections; o != NULL; o = o->next)
7769 {
7770 Elf_Internal_Rela *sec_relocs;
7771 const Elf_Internal_Rela *r, *rend;
7772
7773 /* We can ignore stub sections when looking for relocs. */
7774 if ((o->flags & SEC_RELOC) == 0
7775 || o->reloc_count == 0
7776 || section_allows_mips16_refs_p (o))
7777 continue;
7778
7779 sec_relocs
7780 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7781 info->keep_memory);
7782 if (sec_relocs == NULL)
7783 return FALSE;
7784
7785 rend = sec_relocs + o->reloc_count;
7786 for (r = sec_relocs; r < rend; r++)
7787 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7788 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7789 break;
7790
7791 if (elf_section_data (o)->relocs != sec_relocs)
7792 free (sec_relocs);
7793
7794 if (r < rend)
7795 break;
7796 }
7797
7798 if (o == NULL)
7799 {
7800 /* There is no non-call reloc for this stub, so we do
7801 not need it. Since this function is called before
7802 the linker maps input sections to output sections, we
7803 can easily discard it by setting the SEC_EXCLUDE
7804 flag. */
7805 sec->flags |= SEC_EXCLUDE;
7806 return TRUE;
7807 }
7808
7809 /* Record this stub in an array of local symbol call_stubs for
7810 this BFD. */
7811 if (elf_tdata (abfd)->local_call_stubs == NULL)
7812 {
7813 unsigned long symcount;
7814 asection **n;
7815 bfd_size_type amt;
7816
7817 if (elf_bad_symtab (abfd))
7818 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7819 else
7820 symcount = symtab_hdr->sh_info;
7821 amt = symcount * sizeof (asection *);
7822 n = bfd_zalloc (abfd, amt);
7823 if (n == NULL)
7824 return FALSE;
7825 elf_tdata (abfd)->local_call_stubs = n;
7826 }
7827
7828 sec->flags |= SEC_KEEP;
7829 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7830
7831 /* We don't need to set mips16_stubs_seen in this case.
7832 That flag is used to see whether we need to look through
7833 the global symbol table for stubs. We don't need to set
7834 it here, because we just have a local stub. */
7835 }
7836 else
7837 {
7838 h = ((struct mips_elf_link_hash_entry *)
7839 sym_hashes[r_symndx - extsymoff]);
7840
7841 /* H is the symbol this stub is for. */
7842
7843 if (CALL_FP_STUB_P (name))
7844 loc = &h->call_fp_stub;
7845 else
7846 loc = &h->call_stub;
7847
7848 /* If we already have an appropriate stub for this function, we
7849 don't need another one, so we can discard this one. Since
7850 this function is called before the linker maps input sections
7851 to output sections, we can easily discard it by setting the
7852 SEC_EXCLUDE flag. */
7853 if (*loc != NULL)
7854 {
7855 sec->flags |= SEC_EXCLUDE;
7856 return TRUE;
7857 }
7858
7859 sec->flags |= SEC_KEEP;
7860 *loc = sec;
7861 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7862 }
7863 }
7864
7865 sreloc = NULL;
7866 contents = NULL;
7867 for (rel = relocs; rel < rel_end; ++rel)
7868 {
7869 unsigned long r_symndx;
7870 unsigned int r_type;
7871 struct elf_link_hash_entry *h;
7872 bfd_boolean can_make_dynamic_p;
7873
7874 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7875 r_type = ELF_R_TYPE (abfd, rel->r_info);
7876
7877 if (r_symndx < extsymoff)
7878 h = NULL;
7879 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7880 {
7881 (*_bfd_error_handler)
7882 (_("%B: Malformed reloc detected for section %s"),
7883 abfd, name);
7884 bfd_set_error (bfd_error_bad_value);
7885 return FALSE;
7886 }
7887 else
7888 {
7889 h = sym_hashes[r_symndx - extsymoff];
7890 while (h != NULL
7891 && (h->root.type == bfd_link_hash_indirect
7892 || h->root.type == bfd_link_hash_warning))
7893 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7894 }
7895
7896 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7897 relocation into a dynamic one. */
7898 can_make_dynamic_p = FALSE;
7899 switch (r_type)
7900 {
7901 case R_MIPS_GOT16:
7902 case R_MIPS_CALL16:
7903 case R_MIPS_CALL_HI16:
7904 case R_MIPS_CALL_LO16:
7905 case R_MIPS_GOT_HI16:
7906 case R_MIPS_GOT_LO16:
7907 case R_MIPS_GOT_PAGE:
7908 case R_MIPS_GOT_OFST:
7909 case R_MIPS_GOT_DISP:
7910 case R_MIPS_TLS_GOTTPREL:
7911 case R_MIPS_TLS_GD:
7912 case R_MIPS_TLS_LDM:
7913 case R_MIPS16_GOT16:
7914 case R_MIPS16_CALL16:
7915 case R_MIPS16_TLS_GOTTPREL:
7916 case R_MIPS16_TLS_GD:
7917 case R_MIPS16_TLS_LDM:
7918 case R_MICROMIPS_GOT16:
7919 case R_MICROMIPS_CALL16:
7920 case R_MICROMIPS_CALL_HI16:
7921 case R_MICROMIPS_CALL_LO16:
7922 case R_MICROMIPS_GOT_HI16:
7923 case R_MICROMIPS_GOT_LO16:
7924 case R_MICROMIPS_GOT_PAGE:
7925 case R_MICROMIPS_GOT_OFST:
7926 case R_MICROMIPS_GOT_DISP:
7927 case R_MICROMIPS_TLS_GOTTPREL:
7928 case R_MICROMIPS_TLS_GD:
7929 case R_MICROMIPS_TLS_LDM:
7930 if (dynobj == NULL)
7931 elf_hash_table (info)->dynobj = dynobj = abfd;
7932 if (!mips_elf_create_got_section (dynobj, info))
7933 return FALSE;
7934 if (htab->is_vxworks && !info->shared)
7935 {
7936 (*_bfd_error_handler)
7937 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7938 abfd, (unsigned long) rel->r_offset);
7939 bfd_set_error (bfd_error_bad_value);
7940 return FALSE;
7941 }
7942 break;
7943
7944 /* This is just a hint; it can safely be ignored. Don't set
7945 has_static_relocs for the corresponding symbol. */
7946 case R_MIPS_JALR:
7947 case R_MICROMIPS_JALR:
7948 break;
7949
7950 case R_MIPS_32:
7951 case R_MIPS_REL32:
7952 case R_MIPS_64:
7953 /* In VxWorks executables, references to external symbols
7954 must be handled using copy relocs or PLT entries; it is not
7955 possible to convert this relocation into a dynamic one.
7956
7957 For executables that use PLTs and copy-relocs, we have a
7958 choice between converting the relocation into a dynamic
7959 one or using copy relocations or PLT entries. It is
7960 usually better to do the former, unless the relocation is
7961 against a read-only section. */
7962 if ((info->shared
7963 || (h != NULL
7964 && !htab->is_vxworks
7965 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7966 && !(!info->nocopyreloc
7967 && !PIC_OBJECT_P (abfd)
7968 && MIPS_ELF_READONLY_SECTION (sec))))
7969 && (sec->flags & SEC_ALLOC) != 0)
7970 {
7971 can_make_dynamic_p = TRUE;
7972 if (dynobj == NULL)
7973 elf_hash_table (info)->dynobj = dynobj = abfd;
7974 break;
7975 }
7976 /* For sections that are not SEC_ALLOC a copy reloc would be
7977 output if possible (implying questionable semantics for
7978 read-only data objects) or otherwise the final link would
7979 fail as ld.so will not process them and could not therefore
7980 handle any outstanding dynamic relocations.
7981
7982 For such sections that are also SEC_DEBUGGING, we can avoid
7983 these problems by simply ignoring any relocs as these
7984 sections have a predefined use and we know it is safe to do
7985 so.
7986
7987 This is needed in cases such as a global symbol definition
7988 in a shared library causing a common symbol from an object
7989 file to be converted to an undefined reference. If that
7990 happens, then all the relocations against this symbol from
7991 SEC_DEBUGGING sections in the object file will resolve to
7992 nil. */
7993 if ((sec->flags & SEC_DEBUGGING) != 0)
7994 break;
7995 /* Fall through. */
7996
7997 default:
7998 /* Most static relocations require pointer equality, except
7999 for branches. */
8000 if (h)
8001 h->pointer_equality_needed = TRUE;
8002 /* Fall through. */
8003
8004 case R_MIPS_26:
8005 case R_MIPS_PC16:
8006 case R_MIPS16_26:
8007 case R_MICROMIPS_26_S1:
8008 case R_MICROMIPS_PC7_S1:
8009 case R_MICROMIPS_PC10_S1:
8010 case R_MICROMIPS_PC16_S1:
8011 case R_MICROMIPS_PC23_S2:
8012 if (h)
8013 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
8014 break;
8015 }
8016
8017 if (h)
8018 {
8019 /* Relocations against the special VxWorks __GOTT_BASE__ and
8020 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8021 room for them in .rela.dyn. */
8022 if (is_gott_symbol (info, h))
8023 {
8024 if (sreloc == NULL)
8025 {
8026 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8027 if (sreloc == NULL)
8028 return FALSE;
8029 }
8030 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8031 if (MIPS_ELF_READONLY_SECTION (sec))
8032 /* We tell the dynamic linker that there are
8033 relocations against the text segment. */
8034 info->flags |= DF_TEXTREL;
8035 }
8036 }
8037 else if (call_lo16_reloc_p (r_type)
8038 || got_lo16_reloc_p (r_type)
8039 || got_disp_reloc_p (r_type)
8040 || (got16_reloc_p (r_type) && htab->is_vxworks))
8041 {
8042 /* We may need a local GOT entry for this relocation. We
8043 don't count R_MIPS_GOT_PAGE because we can estimate the
8044 maximum number of pages needed by looking at the size of
8045 the segment. Similar comments apply to R_MIPS*_GOT16 and
8046 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8047 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8048 R_MIPS_CALL_HI16 because these are always followed by an
8049 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8050 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8051 rel->r_addend, info, 0))
8052 return FALSE;
8053 }
8054
8055 if (h != NULL
8056 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8057 ELF_ST_IS_MIPS16 (h->other)))
8058 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8059
8060 switch (r_type)
8061 {
8062 case R_MIPS_CALL16:
8063 case R_MIPS16_CALL16:
8064 case R_MICROMIPS_CALL16:
8065 if (h == NULL)
8066 {
8067 (*_bfd_error_handler)
8068 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8069 abfd, (unsigned long) rel->r_offset);
8070 bfd_set_error (bfd_error_bad_value);
8071 return FALSE;
8072 }
8073 /* Fall through. */
8074
8075 case R_MIPS_CALL_HI16:
8076 case R_MIPS_CALL_LO16:
8077 case R_MICROMIPS_CALL_HI16:
8078 case R_MICROMIPS_CALL_LO16:
8079 if (h != NULL)
8080 {
8081 /* Make sure there is room in the regular GOT to hold the
8082 function's address. We may eliminate it in favour of
8083 a .got.plt entry later; see mips_elf_count_got_symbols. */
8084 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
8085 return FALSE;
8086
8087 /* We need a stub, not a plt entry for the undefined
8088 function. But we record it as if it needs plt. See
8089 _bfd_elf_adjust_dynamic_symbol. */
8090 h->needs_plt = 1;
8091 h->type = STT_FUNC;
8092 }
8093 break;
8094
8095 case R_MIPS_GOT_PAGE:
8096 case R_MICROMIPS_GOT_PAGE:
8097 /* If this is a global, overridable symbol, GOT_PAGE will
8098 decay to GOT_DISP, so we'll need a GOT entry for it. */
8099 if (h)
8100 {
8101 struct mips_elf_link_hash_entry *hmips =
8102 (struct mips_elf_link_hash_entry *) h;
8103
8104 /* This symbol is definitely not overridable. */
8105 if (hmips->root.def_regular
8106 && ! (info->shared && ! info->symbolic
8107 && ! hmips->root.forced_local))
8108 h = NULL;
8109 }
8110 /* Fall through. */
8111
8112 case R_MIPS16_GOT16:
8113 case R_MIPS_GOT16:
8114 case R_MIPS_GOT_HI16:
8115 case R_MIPS_GOT_LO16:
8116 case R_MICROMIPS_GOT16:
8117 case R_MICROMIPS_GOT_HI16:
8118 case R_MICROMIPS_GOT_LO16:
8119 if (!h || got_page_reloc_p (r_type))
8120 {
8121 /* This relocation needs (or may need, if h != NULL) a
8122 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8123 know for sure until we know whether the symbol is
8124 preemptible. */
8125 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8126 {
8127 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8128 return FALSE;
8129 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8130 addend = mips_elf_read_rel_addend (abfd, rel,
8131 howto, contents);
8132 if (got16_reloc_p (r_type))
8133 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8134 contents, &addend);
8135 else
8136 addend <<= howto->rightshift;
8137 }
8138 else
8139 addend = rel->r_addend;
8140 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8141 addend))
8142 return FALSE;
8143 }
8144 /* Fall through. */
8145
8146 case R_MIPS_GOT_DISP:
8147 case R_MICROMIPS_GOT_DISP:
8148 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8149 FALSE, 0))
8150 return FALSE;
8151 break;
8152
8153 case R_MIPS_TLS_GOTTPREL:
8154 case R_MIPS16_TLS_GOTTPREL:
8155 case R_MICROMIPS_TLS_GOTTPREL:
8156 if (info->shared)
8157 info->flags |= DF_STATIC_TLS;
8158 /* Fall through */
8159
8160 case R_MIPS_TLS_LDM:
8161 case R_MIPS16_TLS_LDM:
8162 case R_MICROMIPS_TLS_LDM:
8163 if (tls_ldm_reloc_p (r_type))
8164 {
8165 r_symndx = STN_UNDEF;
8166 h = NULL;
8167 }
8168 /* Fall through */
8169
8170 case R_MIPS_TLS_GD:
8171 case R_MIPS16_TLS_GD:
8172 case R_MICROMIPS_TLS_GD:
8173 /* This symbol requires a global offset table entry, or two
8174 for TLS GD relocations. */
8175 {
8176 unsigned char flag;
8177
8178 flag = (tls_gd_reloc_p (r_type)
8179 ? GOT_TLS_GD
8180 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8181 if (h != NULL)
8182 {
8183 struct mips_elf_link_hash_entry *hmips =
8184 (struct mips_elf_link_hash_entry *) h;
8185 hmips->tls_type |= flag;
8186
8187 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8188 FALSE, flag))
8189 return FALSE;
8190 }
8191 else
8192 {
8193 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8194
8195 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8196 rel->r_addend,
8197 info, flag))
8198 return FALSE;
8199 }
8200 }
8201 break;
8202
8203 case R_MIPS_32:
8204 case R_MIPS_REL32:
8205 case R_MIPS_64:
8206 /* In VxWorks executables, references to external symbols
8207 are handled using copy relocs or PLT stubs, so there's
8208 no need to add a .rela.dyn entry for this relocation. */
8209 if (can_make_dynamic_p)
8210 {
8211 if (sreloc == NULL)
8212 {
8213 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8214 if (sreloc == NULL)
8215 return FALSE;
8216 }
8217 if (info->shared && h == NULL)
8218 {
8219 /* When creating a shared object, we must copy these
8220 reloc types into the output file as R_MIPS_REL32
8221 relocs. Make room for this reloc in .rel(a).dyn. */
8222 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8223 if (MIPS_ELF_READONLY_SECTION (sec))
8224 /* We tell the dynamic linker that there are
8225 relocations against the text segment. */
8226 info->flags |= DF_TEXTREL;
8227 }
8228 else
8229 {
8230 struct mips_elf_link_hash_entry *hmips;
8231
8232 /* For a shared object, we must copy this relocation
8233 unless the symbol turns out to be undefined and
8234 weak with non-default visibility, in which case
8235 it will be left as zero.
8236
8237 We could elide R_MIPS_REL32 for locally binding symbols
8238 in shared libraries, but do not yet do so.
8239
8240 For an executable, we only need to copy this
8241 reloc if the symbol is defined in a dynamic
8242 object. */
8243 hmips = (struct mips_elf_link_hash_entry *) h;
8244 ++hmips->possibly_dynamic_relocs;
8245 if (MIPS_ELF_READONLY_SECTION (sec))
8246 /* We need it to tell the dynamic linker if there
8247 are relocations against the text segment. */
8248 hmips->readonly_reloc = TRUE;
8249 }
8250 }
8251
8252 if (SGI_COMPAT (abfd))
8253 mips_elf_hash_table (info)->compact_rel_size +=
8254 sizeof (Elf32_External_crinfo);
8255 break;
8256
8257 case R_MIPS_26:
8258 case R_MIPS_GPREL16:
8259 case R_MIPS_LITERAL:
8260 case R_MIPS_GPREL32:
8261 case R_MICROMIPS_26_S1:
8262 case R_MICROMIPS_GPREL16:
8263 case R_MICROMIPS_LITERAL:
8264 case R_MICROMIPS_GPREL7_S2:
8265 if (SGI_COMPAT (abfd))
8266 mips_elf_hash_table (info)->compact_rel_size +=
8267 sizeof (Elf32_External_crinfo);
8268 break;
8269
8270 /* This relocation describes the C++ object vtable hierarchy.
8271 Reconstruct it for later use during GC. */
8272 case R_MIPS_GNU_VTINHERIT:
8273 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8274 return FALSE;
8275 break;
8276
8277 /* This relocation describes which C++ vtable entries are actually
8278 used. Record for later use during GC. */
8279 case R_MIPS_GNU_VTENTRY:
8280 BFD_ASSERT (h != NULL);
8281 if (h != NULL
8282 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8283 return FALSE;
8284 break;
8285
8286 default:
8287 break;
8288 }
8289
8290 /* We must not create a stub for a symbol that has relocations
8291 related to taking the function's address. This doesn't apply to
8292 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8293 a normal .got entry. */
8294 if (!htab->is_vxworks && h != NULL)
8295 switch (r_type)
8296 {
8297 default:
8298 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8299 break;
8300 case R_MIPS16_CALL16:
8301 case R_MIPS_CALL16:
8302 case R_MIPS_CALL_HI16:
8303 case R_MIPS_CALL_LO16:
8304 case R_MIPS_JALR:
8305 case R_MICROMIPS_CALL16:
8306 case R_MICROMIPS_CALL_HI16:
8307 case R_MICROMIPS_CALL_LO16:
8308 case R_MICROMIPS_JALR:
8309 break;
8310 }
8311
8312 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8313 if there is one. We only need to handle global symbols here;
8314 we decide whether to keep or delete stubs for local symbols
8315 when processing the stub's relocations. */
8316 if (h != NULL
8317 && !mips16_call_reloc_p (r_type)
8318 && !section_allows_mips16_refs_p (sec))
8319 {
8320 struct mips_elf_link_hash_entry *mh;
8321
8322 mh = (struct mips_elf_link_hash_entry *) h;
8323 mh->need_fn_stub = TRUE;
8324 }
8325
8326 /* Refuse some position-dependent relocations when creating a
8327 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8328 not PIC, but we can create dynamic relocations and the result
8329 will be fine. Also do not refuse R_MIPS_LO16, which can be
8330 combined with R_MIPS_GOT16. */
8331 if (info->shared)
8332 {
8333 switch (r_type)
8334 {
8335 case R_MIPS16_HI16:
8336 case R_MIPS_HI16:
8337 case R_MIPS_HIGHER:
8338 case R_MIPS_HIGHEST:
8339 case R_MICROMIPS_HI16:
8340 case R_MICROMIPS_HIGHER:
8341 case R_MICROMIPS_HIGHEST:
8342 /* Don't refuse a high part relocation if it's against
8343 no symbol (e.g. part of a compound relocation). */
8344 if (r_symndx == STN_UNDEF)
8345 break;
8346
8347 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8348 and has a special meaning. */
8349 if (!NEWABI_P (abfd) && h != NULL
8350 && strcmp (h->root.root.string, "_gp_disp") == 0)
8351 break;
8352
8353 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8354 if (is_gott_symbol (info, h))
8355 break;
8356
8357 /* FALLTHROUGH */
8358
8359 case R_MIPS16_26:
8360 case R_MIPS_26:
8361 case R_MICROMIPS_26_S1:
8362 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8363 (*_bfd_error_handler)
8364 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8365 abfd, howto->name,
8366 (h) ? h->root.root.string : "a local symbol");
8367 bfd_set_error (bfd_error_bad_value);
8368 return FALSE;
8369 default:
8370 break;
8371 }
8372 }
8373 }
8374
8375 return TRUE;
8376 }
8377 \f
8378 bfd_boolean
8379 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8380 struct bfd_link_info *link_info,
8381 bfd_boolean *again)
8382 {
8383 Elf_Internal_Rela *internal_relocs;
8384 Elf_Internal_Rela *irel, *irelend;
8385 Elf_Internal_Shdr *symtab_hdr;
8386 bfd_byte *contents = NULL;
8387 size_t extsymoff;
8388 bfd_boolean changed_contents = FALSE;
8389 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8390 Elf_Internal_Sym *isymbuf = NULL;
8391
8392 /* We are not currently changing any sizes, so only one pass. */
8393 *again = FALSE;
8394
8395 if (link_info->relocatable)
8396 return TRUE;
8397
8398 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8399 link_info->keep_memory);
8400 if (internal_relocs == NULL)
8401 return TRUE;
8402
8403 irelend = internal_relocs + sec->reloc_count
8404 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8405 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8406 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8407
8408 for (irel = internal_relocs; irel < irelend; irel++)
8409 {
8410 bfd_vma symval;
8411 bfd_signed_vma sym_offset;
8412 unsigned int r_type;
8413 unsigned long r_symndx;
8414 asection *sym_sec;
8415 unsigned long instruction;
8416
8417 /* Turn jalr into bgezal, and jr into beq, if they're marked
8418 with a JALR relocation, that indicate where they jump to.
8419 This saves some pipeline bubbles. */
8420 r_type = ELF_R_TYPE (abfd, irel->r_info);
8421 if (r_type != R_MIPS_JALR)
8422 continue;
8423
8424 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8425 /* Compute the address of the jump target. */
8426 if (r_symndx >= extsymoff)
8427 {
8428 struct mips_elf_link_hash_entry *h
8429 = ((struct mips_elf_link_hash_entry *)
8430 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8431
8432 while (h->root.root.type == bfd_link_hash_indirect
8433 || h->root.root.type == bfd_link_hash_warning)
8434 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8435
8436 /* If a symbol is undefined, or if it may be overridden,
8437 skip it. */
8438 if (! ((h->root.root.type == bfd_link_hash_defined
8439 || h->root.root.type == bfd_link_hash_defweak)
8440 && h->root.root.u.def.section)
8441 || (link_info->shared && ! link_info->symbolic
8442 && !h->root.forced_local))
8443 continue;
8444
8445 sym_sec = h->root.root.u.def.section;
8446 if (sym_sec->output_section)
8447 symval = (h->root.root.u.def.value
8448 + sym_sec->output_section->vma
8449 + sym_sec->output_offset);
8450 else
8451 symval = h->root.root.u.def.value;
8452 }
8453 else
8454 {
8455 Elf_Internal_Sym *isym;
8456
8457 /* Read this BFD's symbols if we haven't done so already. */
8458 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8459 {
8460 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8461 if (isymbuf == NULL)
8462 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8463 symtab_hdr->sh_info, 0,
8464 NULL, NULL, NULL);
8465 if (isymbuf == NULL)
8466 goto relax_return;
8467 }
8468
8469 isym = isymbuf + r_symndx;
8470 if (isym->st_shndx == SHN_UNDEF)
8471 continue;
8472 else if (isym->st_shndx == SHN_ABS)
8473 sym_sec = bfd_abs_section_ptr;
8474 else if (isym->st_shndx == SHN_COMMON)
8475 sym_sec = bfd_com_section_ptr;
8476 else
8477 sym_sec
8478 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8479 symval = isym->st_value
8480 + sym_sec->output_section->vma
8481 + sym_sec->output_offset;
8482 }
8483
8484 /* Compute branch offset, from delay slot of the jump to the
8485 branch target. */
8486 sym_offset = (symval + irel->r_addend)
8487 - (sec_start + irel->r_offset + 4);
8488
8489 /* Branch offset must be properly aligned. */
8490 if ((sym_offset & 3) != 0)
8491 continue;
8492
8493 sym_offset >>= 2;
8494
8495 /* Check that it's in range. */
8496 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8497 continue;
8498
8499 /* Get the section contents if we haven't done so already. */
8500 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8501 goto relax_return;
8502
8503 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8504
8505 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8506 if ((instruction & 0xfc1fffff) == 0x0000f809)
8507 instruction = 0x04110000;
8508 /* If it was jr <reg>, turn it into b <target>. */
8509 else if ((instruction & 0xfc1fffff) == 0x00000008)
8510 instruction = 0x10000000;
8511 else
8512 continue;
8513
8514 instruction |= (sym_offset & 0xffff);
8515 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8516 changed_contents = TRUE;
8517 }
8518
8519 if (contents != NULL
8520 && elf_section_data (sec)->this_hdr.contents != contents)
8521 {
8522 if (!changed_contents && !link_info->keep_memory)
8523 free (contents);
8524 else
8525 {
8526 /* Cache the section contents for elf_link_input_bfd. */
8527 elf_section_data (sec)->this_hdr.contents = contents;
8528 }
8529 }
8530 return TRUE;
8531
8532 relax_return:
8533 if (contents != NULL
8534 && elf_section_data (sec)->this_hdr.contents != contents)
8535 free (contents);
8536 return FALSE;
8537 }
8538 \f
8539 /* Allocate space for global sym dynamic relocs. */
8540
8541 static bfd_boolean
8542 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8543 {
8544 struct bfd_link_info *info = inf;
8545 bfd *dynobj;
8546 struct mips_elf_link_hash_entry *hmips;
8547 struct mips_elf_link_hash_table *htab;
8548
8549 htab = mips_elf_hash_table (info);
8550 BFD_ASSERT (htab != NULL);
8551
8552 dynobj = elf_hash_table (info)->dynobj;
8553 hmips = (struct mips_elf_link_hash_entry *) h;
8554
8555 /* VxWorks executables are handled elsewhere; we only need to
8556 allocate relocations in shared objects. */
8557 if (htab->is_vxworks && !info->shared)
8558 return TRUE;
8559
8560 /* Ignore indirect symbols. All relocations against such symbols
8561 will be redirected to the target symbol. */
8562 if (h->root.type == bfd_link_hash_indirect)
8563 return TRUE;
8564
8565 /* If this symbol is defined in a dynamic object, or we are creating
8566 a shared library, we will need to copy any R_MIPS_32 or
8567 R_MIPS_REL32 relocs against it into the output file. */
8568 if (! info->relocatable
8569 && hmips->possibly_dynamic_relocs != 0
8570 && (h->root.type == bfd_link_hash_defweak
8571 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8572 || info->shared))
8573 {
8574 bfd_boolean do_copy = TRUE;
8575
8576 if (h->root.type == bfd_link_hash_undefweak)
8577 {
8578 /* Do not copy relocations for undefined weak symbols with
8579 non-default visibility. */
8580 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8581 do_copy = FALSE;
8582
8583 /* Make sure undefined weak symbols are output as a dynamic
8584 symbol in PIEs. */
8585 else if (h->dynindx == -1 && !h->forced_local)
8586 {
8587 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8588 return FALSE;
8589 }
8590 }
8591
8592 if (do_copy)
8593 {
8594 /* Even though we don't directly need a GOT entry for this symbol,
8595 the SVR4 psABI requires it to have a dynamic symbol table
8596 index greater that DT_MIPS_GOTSYM if there are dynamic
8597 relocations against it.
8598
8599 VxWorks does not enforce the same mapping between the GOT
8600 and the symbol table, so the same requirement does not
8601 apply there. */
8602 if (!htab->is_vxworks)
8603 {
8604 if (hmips->global_got_area > GGA_RELOC_ONLY)
8605 hmips->global_got_area = GGA_RELOC_ONLY;
8606 hmips->got_only_for_calls = FALSE;
8607 }
8608
8609 mips_elf_allocate_dynamic_relocations
8610 (dynobj, info, hmips->possibly_dynamic_relocs);
8611 if (hmips->readonly_reloc)
8612 /* We tell the dynamic linker that there are relocations
8613 against the text segment. */
8614 info->flags |= DF_TEXTREL;
8615 }
8616 }
8617
8618 return TRUE;
8619 }
8620
8621 /* Adjust a symbol defined by a dynamic object and referenced by a
8622 regular object. The current definition is in some section of the
8623 dynamic object, but we're not including those sections. We have to
8624 change the definition to something the rest of the link can
8625 understand. */
8626
8627 bfd_boolean
8628 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8629 struct elf_link_hash_entry *h)
8630 {
8631 bfd *dynobj;
8632 struct mips_elf_link_hash_entry *hmips;
8633 struct mips_elf_link_hash_table *htab;
8634
8635 htab = mips_elf_hash_table (info);
8636 BFD_ASSERT (htab != NULL);
8637
8638 dynobj = elf_hash_table (info)->dynobj;
8639 hmips = (struct mips_elf_link_hash_entry *) h;
8640
8641 /* Make sure we know what is going on here. */
8642 BFD_ASSERT (dynobj != NULL
8643 && (h->needs_plt
8644 || h->u.weakdef != NULL
8645 || (h->def_dynamic
8646 && h->ref_regular
8647 && !h->def_regular)));
8648
8649 hmips = (struct mips_elf_link_hash_entry *) h;
8650
8651 /* If there are call relocations against an externally-defined symbol,
8652 see whether we can create a MIPS lazy-binding stub for it. We can
8653 only do this if all references to the function are through call
8654 relocations, and in that case, the traditional lazy-binding stubs
8655 are much more efficient than PLT entries.
8656
8657 Traditional stubs are only available on SVR4 psABI-based systems;
8658 VxWorks always uses PLTs instead. */
8659 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8660 {
8661 if (! elf_hash_table (info)->dynamic_sections_created)
8662 return TRUE;
8663
8664 /* If this symbol is not defined in a regular file, then set
8665 the symbol to the stub location. This is required to make
8666 function pointers compare as equal between the normal
8667 executable and the shared library. */
8668 if (!h->def_regular)
8669 {
8670 hmips->needs_lazy_stub = TRUE;
8671 htab->lazy_stub_count++;
8672 return TRUE;
8673 }
8674 }
8675 /* As above, VxWorks requires PLT entries for externally-defined
8676 functions that are only accessed through call relocations.
8677
8678 Both VxWorks and non-VxWorks targets also need PLT entries if there
8679 are static-only relocations against an externally-defined function.
8680 This can technically occur for shared libraries if there are
8681 branches to the symbol, although it is unlikely that this will be
8682 used in practice due to the short ranges involved. It can occur
8683 for any relative or absolute relocation in executables; in that
8684 case, the PLT entry becomes the function's canonical address. */
8685 else if (((h->needs_plt && !hmips->no_fn_stub)
8686 || (h->type == STT_FUNC && hmips->has_static_relocs))
8687 && htab->use_plts_and_copy_relocs
8688 && !SYMBOL_CALLS_LOCAL (info, h)
8689 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8690 && h->root.type == bfd_link_hash_undefweak))
8691 {
8692 /* If this is the first symbol to need a PLT entry, allocate room
8693 for the header. */
8694 if (htab->splt->size == 0)
8695 {
8696 BFD_ASSERT (htab->sgotplt->size == 0);
8697
8698 /* If we're using the PLT additions to the psABI, each PLT
8699 entry is 16 bytes and the PLT0 entry is 32 bytes.
8700 Encourage better cache usage by aligning. We do this
8701 lazily to avoid pessimizing traditional objects. */
8702 if (!htab->is_vxworks
8703 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8704 return FALSE;
8705
8706 /* Make sure that .got.plt is word-aligned. We do this lazily
8707 for the same reason as above. */
8708 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8709 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8710 return FALSE;
8711
8712 htab->splt->size += htab->plt_header_size;
8713
8714 /* On non-VxWorks targets, the first two entries in .got.plt
8715 are reserved. */
8716 if (!htab->is_vxworks)
8717 htab->sgotplt->size
8718 += get_elf_backend_data (dynobj)->got_header_size;
8719
8720 /* On VxWorks, also allocate room for the header's
8721 .rela.plt.unloaded entries. */
8722 if (htab->is_vxworks && !info->shared)
8723 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8724 }
8725
8726 /* Assign the next .plt entry to this symbol. */
8727 h->plt.offset = htab->splt->size;
8728 htab->splt->size += htab->plt_entry_size;
8729
8730 /* If the output file has no definition of the symbol, set the
8731 symbol's value to the address of the stub. */
8732 if (!info->shared && !h->def_regular)
8733 {
8734 h->root.u.def.section = htab->splt;
8735 h->root.u.def.value = h->plt.offset;
8736 /* For VxWorks, point at the PLT load stub rather than the
8737 lazy resolution stub; this stub will become the canonical
8738 function address. */
8739 if (htab->is_vxworks)
8740 h->root.u.def.value += 8;
8741 }
8742
8743 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8744 relocation. */
8745 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8746 htab->srelplt->size += (htab->is_vxworks
8747 ? MIPS_ELF_RELA_SIZE (dynobj)
8748 : MIPS_ELF_REL_SIZE (dynobj));
8749
8750 /* Make room for the .rela.plt.unloaded relocations. */
8751 if (htab->is_vxworks && !info->shared)
8752 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8753
8754 /* All relocations against this symbol that could have been made
8755 dynamic will now refer to the PLT entry instead. */
8756 hmips->possibly_dynamic_relocs = 0;
8757
8758 return TRUE;
8759 }
8760
8761 /* If this is a weak symbol, and there is a real definition, the
8762 processor independent code will have arranged for us to see the
8763 real definition first, and we can just use the same value. */
8764 if (h->u.weakdef != NULL)
8765 {
8766 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8767 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8768 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8769 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8770 return TRUE;
8771 }
8772
8773 /* Otherwise, there is nothing further to do for symbols defined
8774 in regular objects. */
8775 if (h->def_regular)
8776 return TRUE;
8777
8778 /* There's also nothing more to do if we'll convert all relocations
8779 against this symbol into dynamic relocations. */
8780 if (!hmips->has_static_relocs)
8781 return TRUE;
8782
8783 /* We're now relying on copy relocations. Complain if we have
8784 some that we can't convert. */
8785 if (!htab->use_plts_and_copy_relocs || info->shared)
8786 {
8787 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8788 "dynamic symbol %s"),
8789 h->root.root.string);
8790 bfd_set_error (bfd_error_bad_value);
8791 return FALSE;
8792 }
8793
8794 /* We must allocate the symbol in our .dynbss section, which will
8795 become part of the .bss section of the executable. There will be
8796 an entry for this symbol in the .dynsym section. The dynamic
8797 object will contain position independent code, so all references
8798 from the dynamic object to this symbol will go through the global
8799 offset table. The dynamic linker will use the .dynsym entry to
8800 determine the address it must put in the global offset table, so
8801 both the dynamic object and the regular object will refer to the
8802 same memory location for the variable. */
8803
8804 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8805 {
8806 if (htab->is_vxworks)
8807 htab->srelbss->size += sizeof (Elf32_External_Rela);
8808 else
8809 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8810 h->needs_copy = 1;
8811 }
8812
8813 /* All relocations against this symbol that could have been made
8814 dynamic will now refer to the local copy instead. */
8815 hmips->possibly_dynamic_relocs = 0;
8816
8817 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8818 }
8819 \f
8820 /* This function is called after all the input files have been read,
8821 and the input sections have been assigned to output sections. We
8822 check for any mips16 stub sections that we can discard. */
8823
8824 bfd_boolean
8825 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8826 struct bfd_link_info *info)
8827 {
8828 asection *ri;
8829 struct mips_elf_link_hash_table *htab;
8830 struct mips_htab_traverse_info hti;
8831
8832 htab = mips_elf_hash_table (info);
8833 BFD_ASSERT (htab != NULL);
8834
8835 /* The .reginfo section has a fixed size. */
8836 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8837 if (ri != NULL)
8838 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8839
8840 hti.info = info;
8841 hti.output_bfd = output_bfd;
8842 hti.error = FALSE;
8843 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8844 mips_elf_check_symbols, &hti);
8845 if (hti.error)
8846 return FALSE;
8847
8848 return TRUE;
8849 }
8850
8851 /* If the link uses a GOT, lay it out and work out its size. */
8852
8853 static bfd_boolean
8854 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8855 {
8856 bfd *dynobj;
8857 asection *s;
8858 struct mips_got_info *g;
8859 bfd_size_type loadable_size = 0;
8860 bfd_size_type page_gotno;
8861 bfd *sub;
8862 struct mips_elf_count_tls_arg count_tls_arg;
8863 struct mips_elf_link_hash_table *htab;
8864
8865 htab = mips_elf_hash_table (info);
8866 BFD_ASSERT (htab != NULL);
8867
8868 s = htab->sgot;
8869 if (s == NULL)
8870 return TRUE;
8871
8872 dynobj = elf_hash_table (info)->dynobj;
8873 g = htab->got_info;
8874
8875 /* Allocate room for the reserved entries. VxWorks always reserves
8876 3 entries; other objects only reserve 2 entries. */
8877 BFD_ASSERT (g->assigned_gotno == 0);
8878 if (htab->is_vxworks)
8879 htab->reserved_gotno = 3;
8880 else
8881 htab->reserved_gotno = 2;
8882 g->local_gotno += htab->reserved_gotno;
8883 g->assigned_gotno = htab->reserved_gotno;
8884
8885 /* Replace entries for indirect and warning symbols with entries for
8886 the target symbol. */
8887 if (!mips_elf_resolve_final_got_entries (g))
8888 return FALSE;
8889
8890 /* Count the number of GOT symbols. */
8891 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8892
8893 /* Calculate the total loadable size of the output. That
8894 will give us the maximum number of GOT_PAGE entries
8895 required. */
8896 for (sub = info->input_bfds; sub; sub = sub->link_next)
8897 {
8898 asection *subsection;
8899
8900 for (subsection = sub->sections;
8901 subsection;
8902 subsection = subsection->next)
8903 {
8904 if ((subsection->flags & SEC_ALLOC) == 0)
8905 continue;
8906 loadable_size += ((subsection->size + 0xf)
8907 &~ (bfd_size_type) 0xf);
8908 }
8909 }
8910
8911 if (htab->is_vxworks)
8912 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8913 relocations against local symbols evaluate to "G", and the EABI does
8914 not include R_MIPS_GOT_PAGE. */
8915 page_gotno = 0;
8916 else
8917 /* Assume there are two loadable segments consisting of contiguous
8918 sections. Is 5 enough? */
8919 page_gotno = (loadable_size >> 16) + 5;
8920
8921 /* Choose the smaller of the two estimates; both are intended to be
8922 conservative. */
8923 if (page_gotno > g->page_gotno)
8924 page_gotno = g->page_gotno;
8925
8926 g->local_gotno += page_gotno;
8927 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8928 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8929
8930 /* We need to calculate tls_gotno for global symbols at this point
8931 instead of building it up earlier, to avoid doublecounting
8932 entries for one global symbol from multiple input files. */
8933 count_tls_arg.info = info;
8934 count_tls_arg.needed = 0;
8935 elf_link_hash_traverse (elf_hash_table (info),
8936 mips_elf_count_global_tls_entries,
8937 &count_tls_arg);
8938 g->tls_gotno += count_tls_arg.needed;
8939 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8940
8941 /* VxWorks does not support multiple GOTs. It initializes $gp to
8942 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8943 dynamic loader. */
8944 if (htab->is_vxworks)
8945 {
8946 /* VxWorks executables do not need a GOT. */
8947 if (info->shared)
8948 {
8949 /* Each VxWorks GOT entry needs an explicit relocation. */
8950 unsigned int count;
8951
8952 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8953 if (count)
8954 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8955 }
8956 }
8957 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8958 {
8959 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8960 return FALSE;
8961 }
8962 else
8963 {
8964 struct mips_elf_count_tls_arg arg;
8965
8966 /* Set up TLS entries. */
8967 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8968 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8969
8970 /* Allocate room for the TLS relocations. */
8971 arg.info = info;
8972 arg.needed = 0;
8973 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8974 elf_link_hash_traverse (elf_hash_table (info),
8975 mips_elf_count_global_tls_relocs,
8976 &arg);
8977 if (arg.needed)
8978 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8979 }
8980
8981 return TRUE;
8982 }
8983
8984 /* Estimate the size of the .MIPS.stubs section. */
8985
8986 static void
8987 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8988 {
8989 struct mips_elf_link_hash_table *htab;
8990 bfd_size_type dynsymcount;
8991
8992 htab = mips_elf_hash_table (info);
8993 BFD_ASSERT (htab != NULL);
8994
8995 if (htab->lazy_stub_count == 0)
8996 return;
8997
8998 /* IRIX rld assumes that a function stub isn't at the end of the .text
8999 section, so add a dummy entry to the end. */
9000 htab->lazy_stub_count++;
9001
9002 /* Get a worst-case estimate of the number of dynamic symbols needed.
9003 At this point, dynsymcount does not account for section symbols
9004 and count_section_dynsyms may overestimate the number that will
9005 be needed. */
9006 dynsymcount = (elf_hash_table (info)->dynsymcount
9007 + count_section_dynsyms (output_bfd, info));
9008
9009 /* Determine the size of one stub entry. */
9010 htab->function_stub_size = (dynsymcount > 0x10000
9011 ? MIPS_FUNCTION_STUB_BIG_SIZE
9012 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9013
9014 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9015 }
9016
9017 /* A mips_elf_link_hash_traverse callback for which DATA points to the
9018 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
9019 allocate an entry in the stubs section. */
9020
9021 static bfd_boolean
9022 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
9023 {
9024 struct mips_elf_link_hash_table *htab;
9025
9026 htab = (struct mips_elf_link_hash_table *) data;
9027 if (h->needs_lazy_stub)
9028 {
9029 h->root.root.u.def.section = htab->sstubs;
9030 h->root.root.u.def.value = htab->sstubs->size;
9031 h->root.plt.offset = htab->sstubs->size;
9032 htab->sstubs->size += htab->function_stub_size;
9033 }
9034 return TRUE;
9035 }
9036
9037 /* Allocate offsets in the stubs section to each symbol that needs one.
9038 Set the final size of the .MIPS.stub section. */
9039
9040 static void
9041 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9042 {
9043 struct mips_elf_link_hash_table *htab;
9044
9045 htab = mips_elf_hash_table (info);
9046 BFD_ASSERT (htab != NULL);
9047
9048 if (htab->lazy_stub_count == 0)
9049 return;
9050
9051 htab->sstubs->size = 0;
9052 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
9053 htab->sstubs->size += htab->function_stub_size;
9054 BFD_ASSERT (htab->sstubs->size
9055 == htab->lazy_stub_count * htab->function_stub_size);
9056 }
9057
9058 /* Set the sizes of the dynamic sections. */
9059
9060 bfd_boolean
9061 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9062 struct bfd_link_info *info)
9063 {
9064 bfd *dynobj;
9065 asection *s, *sreldyn;
9066 bfd_boolean reltext;
9067 struct mips_elf_link_hash_table *htab;
9068
9069 htab = mips_elf_hash_table (info);
9070 BFD_ASSERT (htab != NULL);
9071 dynobj = elf_hash_table (info)->dynobj;
9072 BFD_ASSERT (dynobj != NULL);
9073
9074 if (elf_hash_table (info)->dynamic_sections_created)
9075 {
9076 /* Set the contents of the .interp section to the interpreter. */
9077 if (info->executable)
9078 {
9079 s = bfd_get_linker_section (dynobj, ".interp");
9080 BFD_ASSERT (s != NULL);
9081 s->size
9082 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9083 s->contents
9084 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9085 }
9086
9087 /* Create a symbol for the PLT, if we know that we are using it. */
9088 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9089 {
9090 struct elf_link_hash_entry *h;
9091
9092 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9093
9094 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9095 "_PROCEDURE_LINKAGE_TABLE_");
9096 htab->root.hplt = h;
9097 if (h == NULL)
9098 return FALSE;
9099 h->type = STT_FUNC;
9100 }
9101 }
9102
9103 /* Allocate space for global sym dynamic relocs. */
9104 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9105
9106 mips_elf_estimate_stub_size (output_bfd, info);
9107
9108 if (!mips_elf_lay_out_got (output_bfd, info))
9109 return FALSE;
9110
9111 mips_elf_lay_out_lazy_stubs (info);
9112
9113 /* The check_relocs and adjust_dynamic_symbol entry points have
9114 determined the sizes of the various dynamic sections. Allocate
9115 memory for them. */
9116 reltext = FALSE;
9117 for (s = dynobj->sections; s != NULL; s = s->next)
9118 {
9119 const char *name;
9120
9121 /* It's OK to base decisions on the section name, because none
9122 of the dynobj section names depend upon the input files. */
9123 name = bfd_get_section_name (dynobj, s);
9124
9125 if ((s->flags & SEC_LINKER_CREATED) == 0)
9126 continue;
9127
9128 if (CONST_STRNEQ (name, ".rel"))
9129 {
9130 if (s->size != 0)
9131 {
9132 const char *outname;
9133 asection *target;
9134
9135 /* If this relocation section applies to a read only
9136 section, then we probably need a DT_TEXTREL entry.
9137 If the relocation section is .rel(a).dyn, we always
9138 assert a DT_TEXTREL entry rather than testing whether
9139 there exists a relocation to a read only section or
9140 not. */
9141 outname = bfd_get_section_name (output_bfd,
9142 s->output_section);
9143 target = bfd_get_section_by_name (output_bfd, outname + 4);
9144 if ((target != NULL
9145 && (target->flags & SEC_READONLY) != 0
9146 && (target->flags & SEC_ALLOC) != 0)
9147 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9148 reltext = TRUE;
9149
9150 /* We use the reloc_count field as a counter if we need
9151 to copy relocs into the output file. */
9152 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9153 s->reloc_count = 0;
9154
9155 /* If combreloc is enabled, elf_link_sort_relocs() will
9156 sort relocations, but in a different way than we do,
9157 and before we're done creating relocations. Also, it
9158 will move them around between input sections'
9159 relocation's contents, so our sorting would be
9160 broken, so don't let it run. */
9161 info->combreloc = 0;
9162 }
9163 }
9164 else if (! info->shared
9165 && ! mips_elf_hash_table (info)->use_rld_obj_head
9166 && CONST_STRNEQ (name, ".rld_map"))
9167 {
9168 /* We add a room for __rld_map. It will be filled in by the
9169 rtld to contain a pointer to the _r_debug structure. */
9170 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9171 }
9172 else if (SGI_COMPAT (output_bfd)
9173 && CONST_STRNEQ (name, ".compact_rel"))
9174 s->size += mips_elf_hash_table (info)->compact_rel_size;
9175 else if (s == htab->splt)
9176 {
9177 /* If the last PLT entry has a branch delay slot, allocate
9178 room for an extra nop to fill the delay slot. This is
9179 for CPUs without load interlocking. */
9180 if (! LOAD_INTERLOCKS_P (output_bfd)
9181 && ! htab->is_vxworks && s->size > 0)
9182 s->size += 4;
9183 }
9184 else if (! CONST_STRNEQ (name, ".init")
9185 && s != htab->sgot
9186 && s != htab->sgotplt
9187 && s != htab->sstubs
9188 && s != htab->sdynbss)
9189 {
9190 /* It's not one of our sections, so don't allocate space. */
9191 continue;
9192 }
9193
9194 if (s->size == 0)
9195 {
9196 s->flags |= SEC_EXCLUDE;
9197 continue;
9198 }
9199
9200 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9201 continue;
9202
9203 /* Allocate memory for the section contents. */
9204 s->contents = bfd_zalloc (dynobj, s->size);
9205 if (s->contents == NULL)
9206 {
9207 bfd_set_error (bfd_error_no_memory);
9208 return FALSE;
9209 }
9210 }
9211
9212 if (elf_hash_table (info)->dynamic_sections_created)
9213 {
9214 /* Add some entries to the .dynamic section. We fill in the
9215 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9216 must add the entries now so that we get the correct size for
9217 the .dynamic section. */
9218
9219 /* SGI object has the equivalence of DT_DEBUG in the
9220 DT_MIPS_RLD_MAP entry. This must come first because glibc
9221 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9222 may only look at the first one they see. */
9223 if (!info->shared
9224 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9225 return FALSE;
9226
9227 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9228 used by the debugger. */
9229 if (info->executable
9230 && !SGI_COMPAT (output_bfd)
9231 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9232 return FALSE;
9233
9234 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9235 info->flags |= DF_TEXTREL;
9236
9237 if ((info->flags & DF_TEXTREL) != 0)
9238 {
9239 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9240 return FALSE;
9241
9242 /* Clear the DF_TEXTREL flag. It will be set again if we
9243 write out an actual text relocation; we may not, because
9244 at this point we do not know whether e.g. any .eh_frame
9245 absolute relocations have been converted to PC-relative. */
9246 info->flags &= ~DF_TEXTREL;
9247 }
9248
9249 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9250 return FALSE;
9251
9252 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9253 if (htab->is_vxworks)
9254 {
9255 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9256 use any of the DT_MIPS_* tags. */
9257 if (sreldyn && sreldyn->size > 0)
9258 {
9259 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9260 return FALSE;
9261
9262 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9263 return FALSE;
9264
9265 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9266 return FALSE;
9267 }
9268 }
9269 else
9270 {
9271 if (sreldyn && sreldyn->size > 0)
9272 {
9273 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9274 return FALSE;
9275
9276 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9277 return FALSE;
9278
9279 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9280 return FALSE;
9281 }
9282
9283 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9284 return FALSE;
9285
9286 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9287 return FALSE;
9288
9289 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9290 return FALSE;
9291
9292 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9293 return FALSE;
9294
9295 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9296 return FALSE;
9297
9298 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9299 return FALSE;
9300
9301 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9302 return FALSE;
9303
9304 if (IRIX_COMPAT (dynobj) == ict_irix5
9305 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9306 return FALSE;
9307
9308 if (IRIX_COMPAT (dynobj) == ict_irix6
9309 && (bfd_get_section_by_name
9310 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9311 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9312 return FALSE;
9313 }
9314 if (htab->splt->size > 0)
9315 {
9316 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9317 return FALSE;
9318
9319 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9320 return FALSE;
9321
9322 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9323 return FALSE;
9324
9325 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9326 return FALSE;
9327 }
9328 if (htab->is_vxworks
9329 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9330 return FALSE;
9331 }
9332
9333 return TRUE;
9334 }
9335 \f
9336 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9337 Adjust its R_ADDEND field so that it is correct for the output file.
9338 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9339 and sections respectively; both use symbol indexes. */
9340
9341 static void
9342 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9343 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9344 asection **local_sections, Elf_Internal_Rela *rel)
9345 {
9346 unsigned int r_type, r_symndx;
9347 Elf_Internal_Sym *sym;
9348 asection *sec;
9349
9350 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9351 {
9352 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9353 if (gprel16_reloc_p (r_type)
9354 || r_type == R_MIPS_GPREL32
9355 || literal_reloc_p (r_type))
9356 {
9357 rel->r_addend += _bfd_get_gp_value (input_bfd);
9358 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9359 }
9360
9361 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9362 sym = local_syms + r_symndx;
9363
9364 /* Adjust REL's addend to account for section merging. */
9365 if (!info->relocatable)
9366 {
9367 sec = local_sections[r_symndx];
9368 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9369 }
9370
9371 /* This would normally be done by the rela_normal code in elflink.c. */
9372 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9373 rel->r_addend += local_sections[r_symndx]->output_offset;
9374 }
9375 }
9376
9377 /* Handle relocations against symbols from removed linkonce sections,
9378 or sections discarded by a linker script. We use this wrapper around
9379 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9380 on 64-bit ELF targets. In this case for any relocation handled, which
9381 always be the first in a triplet, the remaining two have to be processed
9382 together with the first, even if they are R_MIPS_NONE. It is the symbol
9383 index referred by the first reloc that applies to all the three and the
9384 remaining two never refer to an object symbol. And it is the final
9385 relocation (the last non-null one) that determines the output field of
9386 the whole relocation so retrieve the corresponding howto structure for
9387 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9388
9389 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9390 and therefore requires to be pasted in a loop. It also defines a block
9391 and does not protect any of its arguments, hence the extra brackets. */
9392
9393 static void
9394 mips_reloc_against_discarded_section (bfd *output_bfd,
9395 struct bfd_link_info *info,
9396 bfd *input_bfd, asection *input_section,
9397 Elf_Internal_Rela **rel,
9398 const Elf_Internal_Rela **relend,
9399 bfd_boolean rel_reloc,
9400 reloc_howto_type *howto,
9401 bfd_byte *contents)
9402 {
9403 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9404 int count = bed->s->int_rels_per_ext_rel;
9405 unsigned int r_type;
9406 int i;
9407
9408 for (i = count - 1; i > 0; i--)
9409 {
9410 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9411 if (r_type != R_MIPS_NONE)
9412 {
9413 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9414 break;
9415 }
9416 }
9417 do
9418 {
9419 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9420 (*rel), count, (*relend),
9421 howto, i, contents);
9422 }
9423 while (0);
9424 }
9425
9426 /* Relocate a MIPS ELF section. */
9427
9428 bfd_boolean
9429 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9430 bfd *input_bfd, asection *input_section,
9431 bfd_byte *contents, Elf_Internal_Rela *relocs,
9432 Elf_Internal_Sym *local_syms,
9433 asection **local_sections)
9434 {
9435 Elf_Internal_Rela *rel;
9436 const Elf_Internal_Rela *relend;
9437 bfd_vma addend = 0;
9438 bfd_boolean use_saved_addend_p = FALSE;
9439 const struct elf_backend_data *bed;
9440
9441 bed = get_elf_backend_data (output_bfd);
9442 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9443 for (rel = relocs; rel < relend; ++rel)
9444 {
9445 const char *name;
9446 bfd_vma value = 0;
9447 reloc_howto_type *howto;
9448 bfd_boolean cross_mode_jump_p;
9449 /* TRUE if the relocation is a RELA relocation, rather than a
9450 REL relocation. */
9451 bfd_boolean rela_relocation_p = TRUE;
9452 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9453 const char *msg;
9454 unsigned long r_symndx;
9455 asection *sec;
9456 Elf_Internal_Shdr *symtab_hdr;
9457 struct elf_link_hash_entry *h;
9458 bfd_boolean rel_reloc;
9459
9460 rel_reloc = (NEWABI_P (input_bfd)
9461 && mips_elf_rel_relocation_p (input_bfd, input_section,
9462 relocs, rel));
9463 /* Find the relocation howto for this relocation. */
9464 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9465
9466 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9467 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9468 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9469 {
9470 sec = local_sections[r_symndx];
9471 h = NULL;
9472 }
9473 else
9474 {
9475 unsigned long extsymoff;
9476
9477 extsymoff = 0;
9478 if (!elf_bad_symtab (input_bfd))
9479 extsymoff = symtab_hdr->sh_info;
9480 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9481 while (h->root.type == bfd_link_hash_indirect
9482 || h->root.type == bfd_link_hash_warning)
9483 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9484
9485 sec = NULL;
9486 if (h->root.type == bfd_link_hash_defined
9487 || h->root.type == bfd_link_hash_defweak)
9488 sec = h->root.u.def.section;
9489 }
9490
9491 if (sec != NULL && discarded_section (sec))
9492 {
9493 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9494 input_section, &rel, &relend,
9495 rel_reloc, howto, contents);
9496 continue;
9497 }
9498
9499 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9500 {
9501 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9502 64-bit code, but make sure all their addresses are in the
9503 lowermost or uppermost 32-bit section of the 64-bit address
9504 space. Thus, when they use an R_MIPS_64 they mean what is
9505 usually meant by R_MIPS_32, with the exception that the
9506 stored value is sign-extended to 64 bits. */
9507 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9508
9509 /* On big-endian systems, we need to lie about the position
9510 of the reloc. */
9511 if (bfd_big_endian (input_bfd))
9512 rel->r_offset += 4;
9513 }
9514
9515 if (!use_saved_addend_p)
9516 {
9517 /* If these relocations were originally of the REL variety,
9518 we must pull the addend out of the field that will be
9519 relocated. Otherwise, we simply use the contents of the
9520 RELA relocation. */
9521 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9522 relocs, rel))
9523 {
9524 rela_relocation_p = FALSE;
9525 addend = mips_elf_read_rel_addend (input_bfd, rel,
9526 howto, contents);
9527 if (hi16_reloc_p (r_type)
9528 || (got16_reloc_p (r_type)
9529 && mips_elf_local_relocation_p (input_bfd, rel,
9530 local_sections)))
9531 {
9532 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9533 contents, &addend))
9534 {
9535 if (h)
9536 name = h->root.root.string;
9537 else
9538 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9539 local_syms + r_symndx,
9540 sec);
9541 (*_bfd_error_handler)
9542 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9543 input_bfd, input_section, name, howto->name,
9544 rel->r_offset);
9545 }
9546 }
9547 else
9548 addend <<= howto->rightshift;
9549 }
9550 else
9551 addend = rel->r_addend;
9552 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9553 local_syms, local_sections, rel);
9554 }
9555
9556 if (info->relocatable)
9557 {
9558 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9559 && bfd_big_endian (input_bfd))
9560 rel->r_offset -= 4;
9561
9562 if (!rela_relocation_p && rel->r_addend)
9563 {
9564 addend += rel->r_addend;
9565 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9566 addend = mips_elf_high (addend);
9567 else if (r_type == R_MIPS_HIGHER)
9568 addend = mips_elf_higher (addend);
9569 else if (r_type == R_MIPS_HIGHEST)
9570 addend = mips_elf_highest (addend);
9571 else
9572 addend >>= howto->rightshift;
9573
9574 /* We use the source mask, rather than the destination
9575 mask because the place to which we are writing will be
9576 source of the addend in the final link. */
9577 addend &= howto->src_mask;
9578
9579 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9580 /* See the comment above about using R_MIPS_64 in the 32-bit
9581 ABI. Here, we need to update the addend. It would be
9582 possible to get away with just using the R_MIPS_32 reloc
9583 but for endianness. */
9584 {
9585 bfd_vma sign_bits;
9586 bfd_vma low_bits;
9587 bfd_vma high_bits;
9588
9589 if (addend & ((bfd_vma) 1 << 31))
9590 #ifdef BFD64
9591 sign_bits = ((bfd_vma) 1 << 32) - 1;
9592 #else
9593 sign_bits = -1;
9594 #endif
9595 else
9596 sign_bits = 0;
9597
9598 /* If we don't know that we have a 64-bit type,
9599 do two separate stores. */
9600 if (bfd_big_endian (input_bfd))
9601 {
9602 /* Store the sign-bits (which are most significant)
9603 first. */
9604 low_bits = sign_bits;
9605 high_bits = addend;
9606 }
9607 else
9608 {
9609 low_bits = addend;
9610 high_bits = sign_bits;
9611 }
9612 bfd_put_32 (input_bfd, low_bits,
9613 contents + rel->r_offset);
9614 bfd_put_32 (input_bfd, high_bits,
9615 contents + rel->r_offset + 4);
9616 continue;
9617 }
9618
9619 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9620 input_bfd, input_section,
9621 contents, FALSE))
9622 return FALSE;
9623 }
9624
9625 /* Go on to the next relocation. */
9626 continue;
9627 }
9628
9629 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9630 relocations for the same offset. In that case we are
9631 supposed to treat the output of each relocation as the addend
9632 for the next. */
9633 if (rel + 1 < relend
9634 && rel->r_offset == rel[1].r_offset
9635 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9636 use_saved_addend_p = TRUE;
9637 else
9638 use_saved_addend_p = FALSE;
9639
9640 /* Figure out what value we are supposed to relocate. */
9641 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9642 input_section, info, rel,
9643 addend, howto, local_syms,
9644 local_sections, &value,
9645 &name, &cross_mode_jump_p,
9646 use_saved_addend_p))
9647 {
9648 case bfd_reloc_continue:
9649 /* There's nothing to do. */
9650 continue;
9651
9652 case bfd_reloc_undefined:
9653 /* mips_elf_calculate_relocation already called the
9654 undefined_symbol callback. There's no real point in
9655 trying to perform the relocation at this point, so we
9656 just skip ahead to the next relocation. */
9657 continue;
9658
9659 case bfd_reloc_notsupported:
9660 msg = _("internal error: unsupported relocation error");
9661 info->callbacks->warning
9662 (info, msg, name, input_bfd, input_section, rel->r_offset);
9663 return FALSE;
9664
9665 case bfd_reloc_overflow:
9666 if (use_saved_addend_p)
9667 /* Ignore overflow until we reach the last relocation for
9668 a given location. */
9669 ;
9670 else
9671 {
9672 struct mips_elf_link_hash_table *htab;
9673
9674 htab = mips_elf_hash_table (info);
9675 BFD_ASSERT (htab != NULL);
9676 BFD_ASSERT (name != NULL);
9677 if (!htab->small_data_overflow_reported
9678 && (gprel16_reloc_p (howto->type)
9679 || literal_reloc_p (howto->type)))
9680 {
9681 msg = _("small-data section exceeds 64KB;"
9682 " lower small-data size limit (see option -G)");
9683
9684 htab->small_data_overflow_reported = TRUE;
9685 (*info->callbacks->einfo) ("%P: %s\n", msg);
9686 }
9687 if (! ((*info->callbacks->reloc_overflow)
9688 (info, NULL, name, howto->name, (bfd_vma) 0,
9689 input_bfd, input_section, rel->r_offset)))
9690 return FALSE;
9691 }
9692 break;
9693
9694 case bfd_reloc_ok:
9695 break;
9696
9697 case bfd_reloc_outofrange:
9698 if (jal_reloc_p (howto->type))
9699 {
9700 msg = _("JALX to a non-word-aligned address");
9701 info->callbacks->warning
9702 (info, msg, name, input_bfd, input_section, rel->r_offset);
9703 return FALSE;
9704 }
9705 /* Fall through. */
9706
9707 default:
9708 abort ();
9709 break;
9710 }
9711
9712 /* If we've got another relocation for the address, keep going
9713 until we reach the last one. */
9714 if (use_saved_addend_p)
9715 {
9716 addend = value;
9717 continue;
9718 }
9719
9720 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9721 /* See the comment above about using R_MIPS_64 in the 32-bit
9722 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9723 that calculated the right value. Now, however, we
9724 sign-extend the 32-bit result to 64-bits, and store it as a
9725 64-bit value. We are especially generous here in that we
9726 go to extreme lengths to support this usage on systems with
9727 only a 32-bit VMA. */
9728 {
9729 bfd_vma sign_bits;
9730 bfd_vma low_bits;
9731 bfd_vma high_bits;
9732
9733 if (value & ((bfd_vma) 1 << 31))
9734 #ifdef BFD64
9735 sign_bits = ((bfd_vma) 1 << 32) - 1;
9736 #else
9737 sign_bits = -1;
9738 #endif
9739 else
9740 sign_bits = 0;
9741
9742 /* If we don't know that we have a 64-bit type,
9743 do two separate stores. */
9744 if (bfd_big_endian (input_bfd))
9745 {
9746 /* Undo what we did above. */
9747 rel->r_offset -= 4;
9748 /* Store the sign-bits (which are most significant)
9749 first. */
9750 low_bits = sign_bits;
9751 high_bits = value;
9752 }
9753 else
9754 {
9755 low_bits = value;
9756 high_bits = sign_bits;
9757 }
9758 bfd_put_32 (input_bfd, low_bits,
9759 contents + rel->r_offset);
9760 bfd_put_32 (input_bfd, high_bits,
9761 contents + rel->r_offset + 4);
9762 continue;
9763 }
9764
9765 /* Actually perform the relocation. */
9766 if (! mips_elf_perform_relocation (info, howto, rel, value,
9767 input_bfd, input_section,
9768 contents, cross_mode_jump_p))
9769 return FALSE;
9770 }
9771
9772 return TRUE;
9773 }
9774 \f
9775 /* A function that iterates over each entry in la25_stubs and fills
9776 in the code for each one. DATA points to a mips_htab_traverse_info. */
9777
9778 static int
9779 mips_elf_create_la25_stub (void **slot, void *data)
9780 {
9781 struct mips_htab_traverse_info *hti;
9782 struct mips_elf_link_hash_table *htab;
9783 struct mips_elf_la25_stub *stub;
9784 asection *s;
9785 bfd_byte *loc;
9786 bfd_vma offset, target, target_high, target_low;
9787
9788 stub = (struct mips_elf_la25_stub *) *slot;
9789 hti = (struct mips_htab_traverse_info *) data;
9790 htab = mips_elf_hash_table (hti->info);
9791 BFD_ASSERT (htab != NULL);
9792
9793 /* Create the section contents, if we haven't already. */
9794 s = stub->stub_section;
9795 loc = s->contents;
9796 if (loc == NULL)
9797 {
9798 loc = bfd_malloc (s->size);
9799 if (loc == NULL)
9800 {
9801 hti->error = TRUE;
9802 return FALSE;
9803 }
9804 s->contents = loc;
9805 }
9806
9807 /* Work out where in the section this stub should go. */
9808 offset = stub->offset;
9809
9810 /* Work out the target address. */
9811 target = mips_elf_get_la25_target (stub, &s);
9812 target += s->output_section->vma + s->output_offset;
9813
9814 target_high = ((target + 0x8000) >> 16) & 0xffff;
9815 target_low = (target & 0xffff);
9816
9817 if (stub->stub_section != htab->strampoline)
9818 {
9819 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9820 of the section and write the two instructions at the end. */
9821 memset (loc, 0, offset);
9822 loc += offset;
9823 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9824 {
9825 bfd_put_micromips_32 (hti->output_bfd,
9826 LA25_LUI_MICROMIPS (target_high),
9827 loc);
9828 bfd_put_micromips_32 (hti->output_bfd,
9829 LA25_ADDIU_MICROMIPS (target_low),
9830 loc + 4);
9831 }
9832 else
9833 {
9834 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9835 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9836 }
9837 }
9838 else
9839 {
9840 /* This is trampoline. */
9841 loc += offset;
9842 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9843 {
9844 bfd_put_micromips_32 (hti->output_bfd,
9845 LA25_LUI_MICROMIPS (target_high), loc);
9846 bfd_put_micromips_32 (hti->output_bfd,
9847 LA25_J_MICROMIPS (target), loc + 4);
9848 bfd_put_micromips_32 (hti->output_bfd,
9849 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9850 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9851 }
9852 else
9853 {
9854 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9855 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9856 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9857 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9858 }
9859 }
9860 return TRUE;
9861 }
9862
9863 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9864 adjust it appropriately now. */
9865
9866 static void
9867 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9868 const char *name, Elf_Internal_Sym *sym)
9869 {
9870 /* The linker script takes care of providing names and values for
9871 these, but we must place them into the right sections. */
9872 static const char* const text_section_symbols[] = {
9873 "_ftext",
9874 "_etext",
9875 "__dso_displacement",
9876 "__elf_header",
9877 "__program_header_table",
9878 NULL
9879 };
9880
9881 static const char* const data_section_symbols[] = {
9882 "_fdata",
9883 "_edata",
9884 "_end",
9885 "_fbss",
9886 NULL
9887 };
9888
9889 const char* const *p;
9890 int i;
9891
9892 for (i = 0; i < 2; ++i)
9893 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9894 *p;
9895 ++p)
9896 if (strcmp (*p, name) == 0)
9897 {
9898 /* All of these symbols are given type STT_SECTION by the
9899 IRIX6 linker. */
9900 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9901 sym->st_other = STO_PROTECTED;
9902
9903 /* The IRIX linker puts these symbols in special sections. */
9904 if (i == 0)
9905 sym->st_shndx = SHN_MIPS_TEXT;
9906 else
9907 sym->st_shndx = SHN_MIPS_DATA;
9908
9909 break;
9910 }
9911 }
9912
9913 /* Finish up dynamic symbol handling. We set the contents of various
9914 dynamic sections here. */
9915
9916 bfd_boolean
9917 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9918 struct bfd_link_info *info,
9919 struct elf_link_hash_entry *h,
9920 Elf_Internal_Sym *sym)
9921 {
9922 bfd *dynobj;
9923 asection *sgot;
9924 struct mips_got_info *g, *gg;
9925 const char *name;
9926 int idx;
9927 struct mips_elf_link_hash_table *htab;
9928 struct mips_elf_link_hash_entry *hmips;
9929
9930 htab = mips_elf_hash_table (info);
9931 BFD_ASSERT (htab != NULL);
9932 dynobj = elf_hash_table (info)->dynobj;
9933 hmips = (struct mips_elf_link_hash_entry *) h;
9934
9935 BFD_ASSERT (!htab->is_vxworks);
9936
9937 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9938 {
9939 /* We've decided to create a PLT entry for this symbol. */
9940 bfd_byte *loc;
9941 bfd_vma header_address, plt_index, got_address;
9942 bfd_vma got_address_high, got_address_low, load;
9943 const bfd_vma *plt_entry;
9944
9945 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9946 BFD_ASSERT (h->dynindx != -1);
9947 BFD_ASSERT (htab->splt != NULL);
9948 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9949 BFD_ASSERT (!h->def_regular);
9950
9951 /* Calculate the address of the PLT header. */
9952 header_address = (htab->splt->output_section->vma
9953 + htab->splt->output_offset);
9954
9955 /* Calculate the index of the entry. */
9956 plt_index = ((h->plt.offset - htab->plt_header_size)
9957 / htab->plt_entry_size);
9958
9959 /* Calculate the address of the .got.plt entry. */
9960 got_address = (htab->sgotplt->output_section->vma
9961 + htab->sgotplt->output_offset
9962 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9963 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9964 got_address_low = got_address & 0xffff;
9965
9966 /* Initially point the .got.plt entry at the PLT header. */
9967 loc = (htab->sgotplt->contents
9968 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9969 if (ABI_64_P (output_bfd))
9970 bfd_put_64 (output_bfd, header_address, loc);
9971 else
9972 bfd_put_32 (output_bfd, header_address, loc);
9973
9974 /* Find out where the .plt entry should go. */
9975 loc = htab->splt->contents + h->plt.offset;
9976
9977 /* Pick the load opcode. */
9978 load = MIPS_ELF_LOAD_WORD (output_bfd);
9979
9980 /* Fill in the PLT entry itself. */
9981 plt_entry = mips_exec_plt_entry;
9982 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9983 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9984
9985 if (! LOAD_INTERLOCKS_P (output_bfd))
9986 {
9987 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9988 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9989 }
9990 else
9991 {
9992 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9993 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9994 }
9995
9996 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9997 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9998 plt_index, h->dynindx,
9999 R_MIPS_JUMP_SLOT, got_address);
10000
10001 /* We distinguish between PLT entries and lazy-binding stubs by
10002 giving the former an st_other value of STO_MIPS_PLT. Set the
10003 flag and leave the value if there are any relocations in the
10004 binary where pointer equality matters. */
10005 sym->st_shndx = SHN_UNDEF;
10006 if (h->pointer_equality_needed)
10007 sym->st_other = STO_MIPS_PLT;
10008 else
10009 sym->st_value = 0;
10010 }
10011 else if (h->plt.offset != MINUS_ONE)
10012 {
10013 /* We've decided to create a lazy-binding stub. */
10014 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10015
10016 /* This symbol has a stub. Set it up. */
10017
10018 BFD_ASSERT (h->dynindx != -1);
10019
10020 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10021 || (h->dynindx <= 0xffff));
10022
10023 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10024 sign extension at runtime in the stub, resulting in a negative
10025 index value. */
10026 if (h->dynindx & ~0x7fffffff)
10027 return FALSE;
10028
10029 /* Fill the stub. */
10030 idx = 0;
10031 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10032 idx += 4;
10033 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10034 idx += 4;
10035 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10036 {
10037 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10038 stub + idx);
10039 idx += 4;
10040 }
10041 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10042 idx += 4;
10043
10044 /* If a large stub is not required and sign extension is not a
10045 problem, then use legacy code in the stub. */
10046 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10047 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
10048 else if (h->dynindx & ~0x7fff)
10049 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
10050 else
10051 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10052 stub + idx);
10053
10054 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
10055 memcpy (htab->sstubs->contents + h->plt.offset,
10056 stub, htab->function_stub_size);
10057
10058 /* Mark the symbol as undefined. plt.offset != -1 occurs
10059 only for the referenced symbol. */
10060 sym->st_shndx = SHN_UNDEF;
10061
10062 /* The run-time linker uses the st_value field of the symbol
10063 to reset the global offset table entry for this external
10064 to its stub address when unlinking a shared object. */
10065 sym->st_value = (htab->sstubs->output_section->vma
10066 + htab->sstubs->output_offset
10067 + h->plt.offset);
10068 }
10069
10070 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10071 refer to the stub, since only the stub uses the standard calling
10072 conventions. */
10073 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10074 {
10075 BFD_ASSERT (hmips->need_fn_stub);
10076 sym->st_value = (hmips->fn_stub->output_section->vma
10077 + hmips->fn_stub->output_offset);
10078 sym->st_size = hmips->fn_stub->size;
10079 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10080 }
10081
10082 BFD_ASSERT (h->dynindx != -1
10083 || h->forced_local);
10084
10085 sgot = htab->sgot;
10086 g = htab->got_info;
10087 BFD_ASSERT (g != NULL);
10088
10089 /* Run through the global symbol table, creating GOT entries for all
10090 the symbols that need them. */
10091 if (hmips->global_got_area != GGA_NONE)
10092 {
10093 bfd_vma offset;
10094 bfd_vma value;
10095
10096 value = sym->st_value;
10097 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10098 R_MIPS_GOT16, info);
10099 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10100 }
10101
10102 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
10103 {
10104 struct mips_got_entry e, *p;
10105 bfd_vma entry;
10106 bfd_vma offset;
10107
10108 gg = g;
10109
10110 e.abfd = output_bfd;
10111 e.symndx = -1;
10112 e.d.h = hmips;
10113 e.tls_type = 0;
10114
10115 for (g = g->next; g->next != gg; g = g->next)
10116 {
10117 if (g->got_entries
10118 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10119 &e)))
10120 {
10121 offset = p->gotidx;
10122 if (info->shared
10123 || (elf_hash_table (info)->dynamic_sections_created
10124 && p->d.h != NULL
10125 && p->d.h->root.def_dynamic
10126 && !p->d.h->root.def_regular))
10127 {
10128 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10129 the various compatibility problems, it's easier to mock
10130 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10131 mips_elf_create_dynamic_relocation to calculate the
10132 appropriate addend. */
10133 Elf_Internal_Rela rel[3];
10134
10135 memset (rel, 0, sizeof (rel));
10136 if (ABI_64_P (output_bfd))
10137 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10138 else
10139 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10140 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10141
10142 entry = 0;
10143 if (! (mips_elf_create_dynamic_relocation
10144 (output_bfd, info, rel,
10145 e.d.h, NULL, sym->st_value, &entry, sgot)))
10146 return FALSE;
10147 }
10148 else
10149 entry = sym->st_value;
10150 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10151 }
10152 }
10153 }
10154
10155 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10156 name = h->root.root.string;
10157 if (h == elf_hash_table (info)->hdynamic
10158 || h == elf_hash_table (info)->hgot)
10159 sym->st_shndx = SHN_ABS;
10160 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10161 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10162 {
10163 sym->st_shndx = SHN_ABS;
10164 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10165 sym->st_value = 1;
10166 }
10167 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10168 {
10169 sym->st_shndx = SHN_ABS;
10170 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10171 sym->st_value = elf_gp (output_bfd);
10172 }
10173 else if (SGI_COMPAT (output_bfd))
10174 {
10175 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10176 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10177 {
10178 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10179 sym->st_other = STO_PROTECTED;
10180 sym->st_value = 0;
10181 sym->st_shndx = SHN_MIPS_DATA;
10182 }
10183 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10184 {
10185 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10186 sym->st_other = STO_PROTECTED;
10187 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10188 sym->st_shndx = SHN_ABS;
10189 }
10190 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10191 {
10192 if (h->type == STT_FUNC)
10193 sym->st_shndx = SHN_MIPS_TEXT;
10194 else if (h->type == STT_OBJECT)
10195 sym->st_shndx = SHN_MIPS_DATA;
10196 }
10197 }
10198
10199 /* Emit a copy reloc, if needed. */
10200 if (h->needs_copy)
10201 {
10202 asection *s;
10203 bfd_vma symval;
10204
10205 BFD_ASSERT (h->dynindx != -1);
10206 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10207
10208 s = mips_elf_rel_dyn_section (info, FALSE);
10209 symval = (h->root.u.def.section->output_section->vma
10210 + h->root.u.def.section->output_offset
10211 + h->root.u.def.value);
10212 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10213 h->dynindx, R_MIPS_COPY, symval);
10214 }
10215
10216 /* Handle the IRIX6-specific symbols. */
10217 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10218 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10219
10220 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10221 treat MIPS16 symbols like any other. */
10222 if (ELF_ST_IS_MIPS16 (sym->st_other))
10223 {
10224 BFD_ASSERT (sym->st_value & 1);
10225 sym->st_other -= STO_MIPS16;
10226 }
10227
10228 return TRUE;
10229 }
10230
10231 /* Likewise, for VxWorks. */
10232
10233 bfd_boolean
10234 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10235 struct bfd_link_info *info,
10236 struct elf_link_hash_entry *h,
10237 Elf_Internal_Sym *sym)
10238 {
10239 bfd *dynobj;
10240 asection *sgot;
10241 struct mips_got_info *g;
10242 struct mips_elf_link_hash_table *htab;
10243 struct mips_elf_link_hash_entry *hmips;
10244
10245 htab = mips_elf_hash_table (info);
10246 BFD_ASSERT (htab != NULL);
10247 dynobj = elf_hash_table (info)->dynobj;
10248 hmips = (struct mips_elf_link_hash_entry *) h;
10249
10250 if (h->plt.offset != (bfd_vma) -1)
10251 {
10252 bfd_byte *loc;
10253 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10254 Elf_Internal_Rela rel;
10255 static const bfd_vma *plt_entry;
10256
10257 BFD_ASSERT (h->dynindx != -1);
10258 BFD_ASSERT (htab->splt != NULL);
10259 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10260
10261 /* Calculate the address of the .plt entry. */
10262 plt_address = (htab->splt->output_section->vma
10263 + htab->splt->output_offset
10264 + h->plt.offset);
10265
10266 /* Calculate the index of the entry. */
10267 plt_index = ((h->plt.offset - htab->plt_header_size)
10268 / htab->plt_entry_size);
10269
10270 /* Calculate the address of the .got.plt entry. */
10271 got_address = (htab->sgotplt->output_section->vma
10272 + htab->sgotplt->output_offset
10273 + plt_index * 4);
10274
10275 /* Calculate the offset of the .got.plt entry from
10276 _GLOBAL_OFFSET_TABLE_. */
10277 got_offset = mips_elf_gotplt_index (info, h);
10278
10279 /* Calculate the offset for the branch at the start of the PLT
10280 entry. The branch jumps to the beginning of .plt. */
10281 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10282
10283 /* Fill in the initial value of the .got.plt entry. */
10284 bfd_put_32 (output_bfd, plt_address,
10285 htab->sgotplt->contents + plt_index * 4);
10286
10287 /* Find out where the .plt entry should go. */
10288 loc = htab->splt->contents + h->plt.offset;
10289
10290 if (info->shared)
10291 {
10292 plt_entry = mips_vxworks_shared_plt_entry;
10293 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10294 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10295 }
10296 else
10297 {
10298 bfd_vma got_address_high, got_address_low;
10299
10300 plt_entry = mips_vxworks_exec_plt_entry;
10301 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10302 got_address_low = got_address & 0xffff;
10303
10304 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10305 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10306 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10307 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10308 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10309 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10310 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10311 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10312
10313 loc = (htab->srelplt2->contents
10314 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10315
10316 /* Emit a relocation for the .got.plt entry. */
10317 rel.r_offset = got_address;
10318 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10319 rel.r_addend = h->plt.offset;
10320 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10321
10322 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10323 loc += sizeof (Elf32_External_Rela);
10324 rel.r_offset = plt_address + 8;
10325 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10326 rel.r_addend = got_offset;
10327 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10328
10329 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10330 loc += sizeof (Elf32_External_Rela);
10331 rel.r_offset += 4;
10332 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10333 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10334 }
10335
10336 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10337 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10338 rel.r_offset = got_address;
10339 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10340 rel.r_addend = 0;
10341 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10342
10343 if (!h->def_regular)
10344 sym->st_shndx = SHN_UNDEF;
10345 }
10346
10347 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10348
10349 sgot = htab->sgot;
10350 g = htab->got_info;
10351 BFD_ASSERT (g != NULL);
10352
10353 /* See if this symbol has an entry in the GOT. */
10354 if (hmips->global_got_area != GGA_NONE)
10355 {
10356 bfd_vma offset;
10357 Elf_Internal_Rela outrel;
10358 bfd_byte *loc;
10359 asection *s;
10360
10361 /* Install the symbol value in the GOT. */
10362 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10363 R_MIPS_GOT16, info);
10364 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10365
10366 /* Add a dynamic relocation for it. */
10367 s = mips_elf_rel_dyn_section (info, FALSE);
10368 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10369 outrel.r_offset = (sgot->output_section->vma
10370 + sgot->output_offset
10371 + offset);
10372 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10373 outrel.r_addend = 0;
10374 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10375 }
10376
10377 /* Emit a copy reloc, if needed. */
10378 if (h->needs_copy)
10379 {
10380 Elf_Internal_Rela rel;
10381
10382 BFD_ASSERT (h->dynindx != -1);
10383
10384 rel.r_offset = (h->root.u.def.section->output_section->vma
10385 + h->root.u.def.section->output_offset
10386 + h->root.u.def.value);
10387 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10388 rel.r_addend = 0;
10389 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10390 htab->srelbss->contents
10391 + (htab->srelbss->reloc_count
10392 * sizeof (Elf32_External_Rela)));
10393 ++htab->srelbss->reloc_count;
10394 }
10395
10396 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10397 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10398 sym->st_value &= ~1;
10399
10400 return TRUE;
10401 }
10402
10403 /* Write out a plt0 entry to the beginning of .plt. */
10404
10405 static void
10406 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10407 {
10408 bfd_byte *loc;
10409 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10410 static const bfd_vma *plt_entry;
10411 struct mips_elf_link_hash_table *htab;
10412
10413 htab = mips_elf_hash_table (info);
10414 BFD_ASSERT (htab != NULL);
10415
10416 if (ABI_64_P (output_bfd))
10417 plt_entry = mips_n64_exec_plt0_entry;
10418 else if (ABI_N32_P (output_bfd))
10419 plt_entry = mips_n32_exec_plt0_entry;
10420 else
10421 plt_entry = mips_o32_exec_plt0_entry;
10422
10423 /* Calculate the value of .got.plt. */
10424 gotplt_value = (htab->sgotplt->output_section->vma
10425 + htab->sgotplt->output_offset);
10426 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10427 gotplt_value_low = gotplt_value & 0xffff;
10428
10429 /* The PLT sequence is not safe for N64 if .got.plt's address can
10430 not be loaded in two instructions. */
10431 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10432 || ~(gotplt_value | 0x7fffffff) == 0);
10433
10434 /* Install the PLT header. */
10435 loc = htab->splt->contents;
10436 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10437 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10438 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10439 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10440 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10441 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10442 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10443 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10444 }
10445
10446 /* Install the PLT header for a VxWorks executable and finalize the
10447 contents of .rela.plt.unloaded. */
10448
10449 static void
10450 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10451 {
10452 Elf_Internal_Rela rela;
10453 bfd_byte *loc;
10454 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10455 static const bfd_vma *plt_entry;
10456 struct mips_elf_link_hash_table *htab;
10457
10458 htab = mips_elf_hash_table (info);
10459 BFD_ASSERT (htab != NULL);
10460
10461 plt_entry = mips_vxworks_exec_plt0_entry;
10462
10463 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10464 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10465 + htab->root.hgot->root.u.def.section->output_offset
10466 + htab->root.hgot->root.u.def.value);
10467
10468 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10469 got_value_low = got_value & 0xffff;
10470
10471 /* Calculate the address of the PLT header. */
10472 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10473
10474 /* Install the PLT header. */
10475 loc = htab->splt->contents;
10476 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10477 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10478 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10479 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10480 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10481 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10482
10483 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10484 loc = htab->srelplt2->contents;
10485 rela.r_offset = plt_address;
10486 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10487 rela.r_addend = 0;
10488 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10489 loc += sizeof (Elf32_External_Rela);
10490
10491 /* Output the relocation for the following addiu of
10492 %lo(_GLOBAL_OFFSET_TABLE_). */
10493 rela.r_offset += 4;
10494 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10495 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10496 loc += sizeof (Elf32_External_Rela);
10497
10498 /* Fix up the remaining relocations. They may have the wrong
10499 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10500 in which symbols were output. */
10501 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10502 {
10503 Elf_Internal_Rela rel;
10504
10505 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10506 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10507 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10508 loc += sizeof (Elf32_External_Rela);
10509
10510 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10511 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10512 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10513 loc += sizeof (Elf32_External_Rela);
10514
10515 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10516 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10517 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10518 loc += sizeof (Elf32_External_Rela);
10519 }
10520 }
10521
10522 /* Install the PLT header for a VxWorks shared library. */
10523
10524 static void
10525 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10526 {
10527 unsigned int i;
10528 struct mips_elf_link_hash_table *htab;
10529
10530 htab = mips_elf_hash_table (info);
10531 BFD_ASSERT (htab != NULL);
10532
10533 /* We just need to copy the entry byte-by-byte. */
10534 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10535 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10536 htab->splt->contents + i * 4);
10537 }
10538
10539 /* Finish up the dynamic sections. */
10540
10541 bfd_boolean
10542 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10543 struct bfd_link_info *info)
10544 {
10545 bfd *dynobj;
10546 asection *sdyn;
10547 asection *sgot;
10548 struct mips_got_info *gg, *g;
10549 struct mips_elf_link_hash_table *htab;
10550
10551 htab = mips_elf_hash_table (info);
10552 BFD_ASSERT (htab != NULL);
10553
10554 dynobj = elf_hash_table (info)->dynobj;
10555
10556 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10557
10558 sgot = htab->sgot;
10559 gg = htab->got_info;
10560
10561 if (elf_hash_table (info)->dynamic_sections_created)
10562 {
10563 bfd_byte *b;
10564 int dyn_to_skip = 0, dyn_skipped = 0;
10565
10566 BFD_ASSERT (sdyn != NULL);
10567 BFD_ASSERT (gg != NULL);
10568
10569 g = mips_elf_got_for_ibfd (gg, output_bfd);
10570 BFD_ASSERT (g != NULL);
10571
10572 for (b = sdyn->contents;
10573 b < sdyn->contents + sdyn->size;
10574 b += MIPS_ELF_DYN_SIZE (dynobj))
10575 {
10576 Elf_Internal_Dyn dyn;
10577 const char *name;
10578 size_t elemsize;
10579 asection *s;
10580 bfd_boolean swap_out_p;
10581
10582 /* Read in the current dynamic entry. */
10583 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10584
10585 /* Assume that we're going to modify it and write it out. */
10586 swap_out_p = TRUE;
10587
10588 switch (dyn.d_tag)
10589 {
10590 case DT_RELENT:
10591 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10592 break;
10593
10594 case DT_RELAENT:
10595 BFD_ASSERT (htab->is_vxworks);
10596 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10597 break;
10598
10599 case DT_STRSZ:
10600 /* Rewrite DT_STRSZ. */
10601 dyn.d_un.d_val =
10602 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10603 break;
10604
10605 case DT_PLTGOT:
10606 s = htab->sgot;
10607 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10608 break;
10609
10610 case DT_MIPS_PLTGOT:
10611 s = htab->sgotplt;
10612 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10613 break;
10614
10615 case DT_MIPS_RLD_VERSION:
10616 dyn.d_un.d_val = 1; /* XXX */
10617 break;
10618
10619 case DT_MIPS_FLAGS:
10620 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10621 break;
10622
10623 case DT_MIPS_TIME_STAMP:
10624 {
10625 time_t t;
10626 time (&t);
10627 dyn.d_un.d_val = t;
10628 }
10629 break;
10630
10631 case DT_MIPS_ICHECKSUM:
10632 /* XXX FIXME: */
10633 swap_out_p = FALSE;
10634 break;
10635
10636 case DT_MIPS_IVERSION:
10637 /* XXX FIXME: */
10638 swap_out_p = FALSE;
10639 break;
10640
10641 case DT_MIPS_BASE_ADDRESS:
10642 s = output_bfd->sections;
10643 BFD_ASSERT (s != NULL);
10644 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10645 break;
10646
10647 case DT_MIPS_LOCAL_GOTNO:
10648 dyn.d_un.d_val = g->local_gotno;
10649 break;
10650
10651 case DT_MIPS_UNREFEXTNO:
10652 /* The index into the dynamic symbol table which is the
10653 entry of the first external symbol that is not
10654 referenced within the same object. */
10655 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10656 break;
10657
10658 case DT_MIPS_GOTSYM:
10659 if (gg->global_gotsym)
10660 {
10661 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10662 break;
10663 }
10664 /* In case if we don't have global got symbols we default
10665 to setting DT_MIPS_GOTSYM to the same value as
10666 DT_MIPS_SYMTABNO, so we just fall through. */
10667
10668 case DT_MIPS_SYMTABNO:
10669 name = ".dynsym";
10670 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10671 s = bfd_get_section_by_name (output_bfd, name);
10672 BFD_ASSERT (s != NULL);
10673
10674 dyn.d_un.d_val = s->size / elemsize;
10675 break;
10676
10677 case DT_MIPS_HIPAGENO:
10678 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10679 break;
10680
10681 case DT_MIPS_RLD_MAP:
10682 {
10683 struct elf_link_hash_entry *h;
10684 h = mips_elf_hash_table (info)->rld_symbol;
10685 if (!h)
10686 {
10687 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10688 swap_out_p = FALSE;
10689 break;
10690 }
10691 s = h->root.u.def.section;
10692 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10693 + h->root.u.def.value);
10694 }
10695 break;
10696
10697 case DT_MIPS_OPTIONS:
10698 s = (bfd_get_section_by_name
10699 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10700 dyn.d_un.d_ptr = s->vma;
10701 break;
10702
10703 case DT_RELASZ:
10704 BFD_ASSERT (htab->is_vxworks);
10705 /* The count does not include the JUMP_SLOT relocations. */
10706 if (htab->srelplt)
10707 dyn.d_un.d_val -= htab->srelplt->size;
10708 break;
10709
10710 case DT_PLTREL:
10711 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10712 if (htab->is_vxworks)
10713 dyn.d_un.d_val = DT_RELA;
10714 else
10715 dyn.d_un.d_val = DT_REL;
10716 break;
10717
10718 case DT_PLTRELSZ:
10719 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10720 dyn.d_un.d_val = htab->srelplt->size;
10721 break;
10722
10723 case DT_JMPREL:
10724 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10725 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10726 + htab->srelplt->output_offset);
10727 break;
10728
10729 case DT_TEXTREL:
10730 /* If we didn't need any text relocations after all, delete
10731 the dynamic tag. */
10732 if (!(info->flags & DF_TEXTREL))
10733 {
10734 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10735 swap_out_p = FALSE;
10736 }
10737 break;
10738
10739 case DT_FLAGS:
10740 /* If we didn't need any text relocations after all, clear
10741 DF_TEXTREL from DT_FLAGS. */
10742 if (!(info->flags & DF_TEXTREL))
10743 dyn.d_un.d_val &= ~DF_TEXTREL;
10744 else
10745 swap_out_p = FALSE;
10746 break;
10747
10748 default:
10749 swap_out_p = FALSE;
10750 if (htab->is_vxworks
10751 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10752 swap_out_p = TRUE;
10753 break;
10754 }
10755
10756 if (swap_out_p || dyn_skipped)
10757 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10758 (dynobj, &dyn, b - dyn_skipped);
10759
10760 if (dyn_to_skip)
10761 {
10762 dyn_skipped += dyn_to_skip;
10763 dyn_to_skip = 0;
10764 }
10765 }
10766
10767 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10768 if (dyn_skipped > 0)
10769 memset (b - dyn_skipped, 0, dyn_skipped);
10770 }
10771
10772 if (sgot != NULL && sgot->size > 0
10773 && !bfd_is_abs_section (sgot->output_section))
10774 {
10775 if (htab->is_vxworks)
10776 {
10777 /* The first entry of the global offset table points to the
10778 ".dynamic" section. The second is initialized by the
10779 loader and contains the shared library identifier.
10780 The third is also initialized by the loader and points
10781 to the lazy resolution stub. */
10782 MIPS_ELF_PUT_WORD (output_bfd,
10783 sdyn->output_offset + sdyn->output_section->vma,
10784 sgot->contents);
10785 MIPS_ELF_PUT_WORD (output_bfd, 0,
10786 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10787 MIPS_ELF_PUT_WORD (output_bfd, 0,
10788 sgot->contents
10789 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10790 }
10791 else
10792 {
10793 /* The first entry of the global offset table will be filled at
10794 runtime. The second entry will be used by some runtime loaders.
10795 This isn't the case of IRIX rld. */
10796 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10797 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10798 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10799 }
10800
10801 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10802 = MIPS_ELF_GOT_SIZE (output_bfd);
10803 }
10804
10805 /* Generate dynamic relocations for the non-primary gots. */
10806 if (gg != NULL && gg->next)
10807 {
10808 Elf_Internal_Rela rel[3];
10809 bfd_vma addend = 0;
10810
10811 memset (rel, 0, sizeof (rel));
10812 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10813
10814 for (g = gg->next; g->next != gg; g = g->next)
10815 {
10816 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10817 + g->next->tls_gotno;
10818
10819 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10820 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10821 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10822 sgot->contents
10823 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10824
10825 if (! info->shared)
10826 continue;
10827
10828 while (got_index < g->assigned_gotno)
10829 {
10830 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10831 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10832 if (!(mips_elf_create_dynamic_relocation
10833 (output_bfd, info, rel, NULL,
10834 bfd_abs_section_ptr,
10835 0, &addend, sgot)))
10836 return FALSE;
10837 BFD_ASSERT (addend == 0);
10838 }
10839 }
10840 }
10841
10842 /* The generation of dynamic relocations for the non-primary gots
10843 adds more dynamic relocations. We cannot count them until
10844 here. */
10845
10846 if (elf_hash_table (info)->dynamic_sections_created)
10847 {
10848 bfd_byte *b;
10849 bfd_boolean swap_out_p;
10850
10851 BFD_ASSERT (sdyn != NULL);
10852
10853 for (b = sdyn->contents;
10854 b < sdyn->contents + sdyn->size;
10855 b += MIPS_ELF_DYN_SIZE (dynobj))
10856 {
10857 Elf_Internal_Dyn dyn;
10858 asection *s;
10859
10860 /* Read in the current dynamic entry. */
10861 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10862
10863 /* Assume that we're going to modify it and write it out. */
10864 swap_out_p = TRUE;
10865
10866 switch (dyn.d_tag)
10867 {
10868 case DT_RELSZ:
10869 /* Reduce DT_RELSZ to account for any relocations we
10870 decided not to make. This is for the n64 irix rld,
10871 which doesn't seem to apply any relocations if there
10872 are trailing null entries. */
10873 s = mips_elf_rel_dyn_section (info, FALSE);
10874 dyn.d_un.d_val = (s->reloc_count
10875 * (ABI_64_P (output_bfd)
10876 ? sizeof (Elf64_Mips_External_Rel)
10877 : sizeof (Elf32_External_Rel)));
10878 /* Adjust the section size too. Tools like the prelinker
10879 can reasonably expect the values to the same. */
10880 elf_section_data (s->output_section)->this_hdr.sh_size
10881 = dyn.d_un.d_val;
10882 break;
10883
10884 default:
10885 swap_out_p = FALSE;
10886 break;
10887 }
10888
10889 if (swap_out_p)
10890 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10891 (dynobj, &dyn, b);
10892 }
10893 }
10894
10895 {
10896 asection *s;
10897 Elf32_compact_rel cpt;
10898
10899 if (SGI_COMPAT (output_bfd))
10900 {
10901 /* Write .compact_rel section out. */
10902 s = bfd_get_linker_section (dynobj, ".compact_rel");
10903 if (s != NULL)
10904 {
10905 cpt.id1 = 1;
10906 cpt.num = s->reloc_count;
10907 cpt.id2 = 2;
10908 cpt.offset = (s->output_section->filepos
10909 + sizeof (Elf32_External_compact_rel));
10910 cpt.reserved0 = 0;
10911 cpt.reserved1 = 0;
10912 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10913 ((Elf32_External_compact_rel *)
10914 s->contents));
10915
10916 /* Clean up a dummy stub function entry in .text. */
10917 if (htab->sstubs != NULL)
10918 {
10919 file_ptr dummy_offset;
10920
10921 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10922 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10923 memset (htab->sstubs->contents + dummy_offset, 0,
10924 htab->function_stub_size);
10925 }
10926 }
10927 }
10928
10929 /* The psABI says that the dynamic relocations must be sorted in
10930 increasing order of r_symndx. The VxWorks EABI doesn't require
10931 this, and because the code below handles REL rather than RELA
10932 relocations, using it for VxWorks would be outright harmful. */
10933 if (!htab->is_vxworks)
10934 {
10935 s = mips_elf_rel_dyn_section (info, FALSE);
10936 if (s != NULL
10937 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10938 {
10939 reldyn_sorting_bfd = output_bfd;
10940
10941 if (ABI_64_P (output_bfd))
10942 qsort ((Elf64_External_Rel *) s->contents + 1,
10943 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10944 sort_dynamic_relocs_64);
10945 else
10946 qsort ((Elf32_External_Rel *) s->contents + 1,
10947 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10948 sort_dynamic_relocs);
10949 }
10950 }
10951 }
10952
10953 if (htab->splt && htab->splt->size > 0)
10954 {
10955 if (htab->is_vxworks)
10956 {
10957 if (info->shared)
10958 mips_vxworks_finish_shared_plt (output_bfd, info);
10959 else
10960 mips_vxworks_finish_exec_plt (output_bfd, info);
10961 }
10962 else
10963 {
10964 BFD_ASSERT (!info->shared);
10965 mips_finish_exec_plt (output_bfd, info);
10966 }
10967 }
10968 return TRUE;
10969 }
10970
10971
10972 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10973
10974 static void
10975 mips_set_isa_flags (bfd *abfd)
10976 {
10977 flagword val;
10978
10979 switch (bfd_get_mach (abfd))
10980 {
10981 default:
10982 case bfd_mach_mips3000:
10983 val = E_MIPS_ARCH_1;
10984 break;
10985
10986 case bfd_mach_mips3900:
10987 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10988 break;
10989
10990 case bfd_mach_mips6000:
10991 val = E_MIPS_ARCH_2;
10992 break;
10993
10994 case bfd_mach_mips4000:
10995 case bfd_mach_mips4300:
10996 case bfd_mach_mips4400:
10997 case bfd_mach_mips4600:
10998 val = E_MIPS_ARCH_3;
10999 break;
11000
11001 case bfd_mach_mips4010:
11002 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11003 break;
11004
11005 case bfd_mach_mips4100:
11006 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11007 break;
11008
11009 case bfd_mach_mips4111:
11010 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11011 break;
11012
11013 case bfd_mach_mips4120:
11014 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11015 break;
11016
11017 case bfd_mach_mips4650:
11018 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11019 break;
11020
11021 case bfd_mach_mips5400:
11022 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11023 break;
11024
11025 case bfd_mach_mips5500:
11026 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11027 break;
11028
11029 case bfd_mach_mips9000:
11030 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11031 break;
11032
11033 case bfd_mach_mips5000:
11034 case bfd_mach_mips7000:
11035 case bfd_mach_mips8000:
11036 case bfd_mach_mips10000:
11037 case bfd_mach_mips12000:
11038 case bfd_mach_mips14000:
11039 case bfd_mach_mips16000:
11040 val = E_MIPS_ARCH_4;
11041 break;
11042
11043 case bfd_mach_mips5:
11044 val = E_MIPS_ARCH_5;
11045 break;
11046
11047 case bfd_mach_mips_loongson_2e:
11048 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11049 break;
11050
11051 case bfd_mach_mips_loongson_2f:
11052 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11053 break;
11054
11055 case bfd_mach_mips_sb1:
11056 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11057 break;
11058
11059 case bfd_mach_mips_loongson_3a:
11060 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11061 break;
11062
11063 case bfd_mach_mips_octeon:
11064 case bfd_mach_mips_octeonp:
11065 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11066 break;
11067
11068 case bfd_mach_mips_xlr:
11069 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11070 break;
11071
11072 case bfd_mach_mips_octeon2:
11073 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11074 break;
11075
11076 case bfd_mach_mipsisa32:
11077 val = E_MIPS_ARCH_32;
11078 break;
11079
11080 case bfd_mach_mipsisa64:
11081 val = E_MIPS_ARCH_64;
11082 break;
11083
11084 case bfd_mach_mipsisa32r2:
11085 val = E_MIPS_ARCH_32R2;
11086 break;
11087
11088 case bfd_mach_mipsisa64r2:
11089 val = E_MIPS_ARCH_64R2;
11090 break;
11091 }
11092 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11093 elf_elfheader (abfd)->e_flags |= val;
11094
11095 }
11096
11097
11098 /* The final processing done just before writing out a MIPS ELF object
11099 file. This gets the MIPS architecture right based on the machine
11100 number. This is used by both the 32-bit and the 64-bit ABI. */
11101
11102 void
11103 _bfd_mips_elf_final_write_processing (bfd *abfd,
11104 bfd_boolean linker ATTRIBUTE_UNUSED)
11105 {
11106 unsigned int i;
11107 Elf_Internal_Shdr **hdrpp;
11108 const char *name;
11109 asection *sec;
11110
11111 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11112 is nonzero. This is for compatibility with old objects, which used
11113 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11114 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11115 mips_set_isa_flags (abfd);
11116
11117 /* Set the sh_info field for .gptab sections and other appropriate
11118 info for each special section. */
11119 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11120 i < elf_numsections (abfd);
11121 i++, hdrpp++)
11122 {
11123 switch ((*hdrpp)->sh_type)
11124 {
11125 case SHT_MIPS_MSYM:
11126 case SHT_MIPS_LIBLIST:
11127 sec = bfd_get_section_by_name (abfd, ".dynstr");
11128 if (sec != NULL)
11129 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11130 break;
11131
11132 case SHT_MIPS_GPTAB:
11133 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11134 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11135 BFD_ASSERT (name != NULL
11136 && CONST_STRNEQ (name, ".gptab."));
11137 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11138 BFD_ASSERT (sec != NULL);
11139 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11140 break;
11141
11142 case SHT_MIPS_CONTENT:
11143 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11144 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11145 BFD_ASSERT (name != NULL
11146 && CONST_STRNEQ (name, ".MIPS.content"));
11147 sec = bfd_get_section_by_name (abfd,
11148 name + sizeof ".MIPS.content" - 1);
11149 BFD_ASSERT (sec != NULL);
11150 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11151 break;
11152
11153 case SHT_MIPS_SYMBOL_LIB:
11154 sec = bfd_get_section_by_name (abfd, ".dynsym");
11155 if (sec != NULL)
11156 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11157 sec = bfd_get_section_by_name (abfd, ".liblist");
11158 if (sec != NULL)
11159 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11160 break;
11161
11162 case SHT_MIPS_EVENTS:
11163 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11164 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11165 BFD_ASSERT (name != NULL);
11166 if (CONST_STRNEQ (name, ".MIPS.events"))
11167 sec = bfd_get_section_by_name (abfd,
11168 name + sizeof ".MIPS.events" - 1);
11169 else
11170 {
11171 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11172 sec = bfd_get_section_by_name (abfd,
11173 (name
11174 + sizeof ".MIPS.post_rel" - 1));
11175 }
11176 BFD_ASSERT (sec != NULL);
11177 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11178 break;
11179
11180 }
11181 }
11182 }
11183 \f
11184 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11185 segments. */
11186
11187 int
11188 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11189 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11190 {
11191 asection *s;
11192 int ret = 0;
11193
11194 /* See if we need a PT_MIPS_REGINFO segment. */
11195 s = bfd_get_section_by_name (abfd, ".reginfo");
11196 if (s && (s->flags & SEC_LOAD))
11197 ++ret;
11198
11199 /* See if we need a PT_MIPS_OPTIONS segment. */
11200 if (IRIX_COMPAT (abfd) == ict_irix6
11201 && bfd_get_section_by_name (abfd,
11202 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11203 ++ret;
11204
11205 /* See if we need a PT_MIPS_RTPROC segment. */
11206 if (IRIX_COMPAT (abfd) == ict_irix5
11207 && bfd_get_section_by_name (abfd, ".dynamic")
11208 && bfd_get_section_by_name (abfd, ".mdebug"))
11209 ++ret;
11210
11211 /* Allocate a PT_NULL header in dynamic objects. See
11212 _bfd_mips_elf_modify_segment_map for details. */
11213 if (!SGI_COMPAT (abfd)
11214 && bfd_get_section_by_name (abfd, ".dynamic"))
11215 ++ret;
11216
11217 return ret;
11218 }
11219
11220 /* Modify the segment map for an IRIX5 executable. */
11221
11222 bfd_boolean
11223 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11224 struct bfd_link_info *info)
11225 {
11226 asection *s;
11227 struct elf_segment_map *m, **pm;
11228 bfd_size_type amt;
11229
11230 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11231 segment. */
11232 s = bfd_get_section_by_name (abfd, ".reginfo");
11233 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11234 {
11235 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11236 if (m->p_type == PT_MIPS_REGINFO)
11237 break;
11238 if (m == NULL)
11239 {
11240 amt = sizeof *m;
11241 m = bfd_zalloc (abfd, amt);
11242 if (m == NULL)
11243 return FALSE;
11244
11245 m->p_type = PT_MIPS_REGINFO;
11246 m->count = 1;
11247 m->sections[0] = s;
11248
11249 /* We want to put it after the PHDR and INTERP segments. */
11250 pm = &elf_tdata (abfd)->segment_map;
11251 while (*pm != NULL
11252 && ((*pm)->p_type == PT_PHDR
11253 || (*pm)->p_type == PT_INTERP))
11254 pm = &(*pm)->next;
11255
11256 m->next = *pm;
11257 *pm = m;
11258 }
11259 }
11260
11261 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11262 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11263 PT_MIPS_OPTIONS segment immediately following the program header
11264 table. */
11265 if (NEWABI_P (abfd)
11266 /* On non-IRIX6 new abi, we'll have already created a segment
11267 for this section, so don't create another. I'm not sure this
11268 is not also the case for IRIX 6, but I can't test it right
11269 now. */
11270 && IRIX_COMPAT (abfd) == ict_irix6)
11271 {
11272 for (s = abfd->sections; s; s = s->next)
11273 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11274 break;
11275
11276 if (s)
11277 {
11278 struct elf_segment_map *options_segment;
11279
11280 pm = &elf_tdata (abfd)->segment_map;
11281 while (*pm != NULL
11282 && ((*pm)->p_type == PT_PHDR
11283 || (*pm)->p_type == PT_INTERP))
11284 pm = &(*pm)->next;
11285
11286 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11287 {
11288 amt = sizeof (struct elf_segment_map);
11289 options_segment = bfd_zalloc (abfd, amt);
11290 options_segment->next = *pm;
11291 options_segment->p_type = PT_MIPS_OPTIONS;
11292 options_segment->p_flags = PF_R;
11293 options_segment->p_flags_valid = TRUE;
11294 options_segment->count = 1;
11295 options_segment->sections[0] = s;
11296 *pm = options_segment;
11297 }
11298 }
11299 }
11300 else
11301 {
11302 if (IRIX_COMPAT (abfd) == ict_irix5)
11303 {
11304 /* If there are .dynamic and .mdebug sections, we make a room
11305 for the RTPROC header. FIXME: Rewrite without section names. */
11306 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11307 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11308 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11309 {
11310 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11311 if (m->p_type == PT_MIPS_RTPROC)
11312 break;
11313 if (m == NULL)
11314 {
11315 amt = sizeof *m;
11316 m = bfd_zalloc (abfd, amt);
11317 if (m == NULL)
11318 return FALSE;
11319
11320 m->p_type = PT_MIPS_RTPROC;
11321
11322 s = bfd_get_section_by_name (abfd, ".rtproc");
11323 if (s == NULL)
11324 {
11325 m->count = 0;
11326 m->p_flags = 0;
11327 m->p_flags_valid = 1;
11328 }
11329 else
11330 {
11331 m->count = 1;
11332 m->sections[0] = s;
11333 }
11334
11335 /* We want to put it after the DYNAMIC segment. */
11336 pm = &elf_tdata (abfd)->segment_map;
11337 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11338 pm = &(*pm)->next;
11339 if (*pm != NULL)
11340 pm = &(*pm)->next;
11341
11342 m->next = *pm;
11343 *pm = m;
11344 }
11345 }
11346 }
11347 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11348 .dynstr, .dynsym, and .hash sections, and everything in
11349 between. */
11350 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11351 pm = &(*pm)->next)
11352 if ((*pm)->p_type == PT_DYNAMIC)
11353 break;
11354 m = *pm;
11355 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11356 {
11357 /* For a normal mips executable the permissions for the PT_DYNAMIC
11358 segment are read, write and execute. We do that here since
11359 the code in elf.c sets only the read permission. This matters
11360 sometimes for the dynamic linker. */
11361 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11362 {
11363 m->p_flags = PF_R | PF_W | PF_X;
11364 m->p_flags_valid = 1;
11365 }
11366 }
11367 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11368 glibc's dynamic linker has traditionally derived the number of
11369 tags from the p_filesz field, and sometimes allocates stack
11370 arrays of that size. An overly-big PT_DYNAMIC segment can
11371 be actively harmful in such cases. Making PT_DYNAMIC contain
11372 other sections can also make life hard for the prelinker,
11373 which might move one of the other sections to a different
11374 PT_LOAD segment. */
11375 if (SGI_COMPAT (abfd)
11376 && m != NULL
11377 && m->count == 1
11378 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11379 {
11380 static const char *sec_names[] =
11381 {
11382 ".dynamic", ".dynstr", ".dynsym", ".hash"
11383 };
11384 bfd_vma low, high;
11385 unsigned int i, c;
11386 struct elf_segment_map *n;
11387
11388 low = ~(bfd_vma) 0;
11389 high = 0;
11390 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11391 {
11392 s = bfd_get_section_by_name (abfd, sec_names[i]);
11393 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11394 {
11395 bfd_size_type sz;
11396
11397 if (low > s->vma)
11398 low = s->vma;
11399 sz = s->size;
11400 if (high < s->vma + sz)
11401 high = s->vma + sz;
11402 }
11403 }
11404
11405 c = 0;
11406 for (s = abfd->sections; s != NULL; s = s->next)
11407 if ((s->flags & SEC_LOAD) != 0
11408 && s->vma >= low
11409 && s->vma + s->size <= high)
11410 ++c;
11411
11412 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11413 n = bfd_zalloc (abfd, amt);
11414 if (n == NULL)
11415 return FALSE;
11416 *n = *m;
11417 n->count = c;
11418
11419 i = 0;
11420 for (s = abfd->sections; s != NULL; s = s->next)
11421 {
11422 if ((s->flags & SEC_LOAD) != 0
11423 && s->vma >= low
11424 && s->vma + s->size <= high)
11425 {
11426 n->sections[i] = s;
11427 ++i;
11428 }
11429 }
11430
11431 *pm = n;
11432 }
11433 }
11434
11435 /* Allocate a spare program header in dynamic objects so that tools
11436 like the prelinker can add an extra PT_LOAD entry.
11437
11438 If the prelinker needs to make room for a new PT_LOAD entry, its
11439 standard procedure is to move the first (read-only) sections into
11440 the new (writable) segment. However, the MIPS ABI requires
11441 .dynamic to be in a read-only segment, and the section will often
11442 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11443
11444 Although the prelinker could in principle move .dynamic to a
11445 writable segment, it seems better to allocate a spare program
11446 header instead, and avoid the need to move any sections.
11447 There is a long tradition of allocating spare dynamic tags,
11448 so allocating a spare program header seems like a natural
11449 extension.
11450
11451 If INFO is NULL, we may be copying an already prelinked binary
11452 with objcopy or strip, so do not add this header. */
11453 if (info != NULL
11454 && !SGI_COMPAT (abfd)
11455 && bfd_get_section_by_name (abfd, ".dynamic"))
11456 {
11457 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11458 if ((*pm)->p_type == PT_NULL)
11459 break;
11460 if (*pm == NULL)
11461 {
11462 m = bfd_zalloc (abfd, sizeof (*m));
11463 if (m == NULL)
11464 return FALSE;
11465
11466 m->p_type = PT_NULL;
11467 *pm = m;
11468 }
11469 }
11470
11471 return TRUE;
11472 }
11473 \f
11474 /* Return the section that should be marked against GC for a given
11475 relocation. */
11476
11477 asection *
11478 _bfd_mips_elf_gc_mark_hook (asection *sec,
11479 struct bfd_link_info *info,
11480 Elf_Internal_Rela *rel,
11481 struct elf_link_hash_entry *h,
11482 Elf_Internal_Sym *sym)
11483 {
11484 /* ??? Do mips16 stub sections need to be handled special? */
11485
11486 if (h != NULL)
11487 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11488 {
11489 case R_MIPS_GNU_VTINHERIT:
11490 case R_MIPS_GNU_VTENTRY:
11491 return NULL;
11492 }
11493
11494 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11495 }
11496
11497 /* Update the got entry reference counts for the section being removed. */
11498
11499 bfd_boolean
11500 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11501 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11502 asection *sec ATTRIBUTE_UNUSED,
11503 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11504 {
11505 #if 0
11506 Elf_Internal_Shdr *symtab_hdr;
11507 struct elf_link_hash_entry **sym_hashes;
11508 bfd_signed_vma *local_got_refcounts;
11509 const Elf_Internal_Rela *rel, *relend;
11510 unsigned long r_symndx;
11511 struct elf_link_hash_entry *h;
11512
11513 if (info->relocatable)
11514 return TRUE;
11515
11516 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11517 sym_hashes = elf_sym_hashes (abfd);
11518 local_got_refcounts = elf_local_got_refcounts (abfd);
11519
11520 relend = relocs + sec->reloc_count;
11521 for (rel = relocs; rel < relend; rel++)
11522 switch (ELF_R_TYPE (abfd, rel->r_info))
11523 {
11524 case R_MIPS16_GOT16:
11525 case R_MIPS16_CALL16:
11526 case R_MIPS_GOT16:
11527 case R_MIPS_CALL16:
11528 case R_MIPS_CALL_HI16:
11529 case R_MIPS_CALL_LO16:
11530 case R_MIPS_GOT_HI16:
11531 case R_MIPS_GOT_LO16:
11532 case R_MIPS_GOT_DISP:
11533 case R_MIPS_GOT_PAGE:
11534 case R_MIPS_GOT_OFST:
11535 case R_MICROMIPS_GOT16:
11536 case R_MICROMIPS_CALL16:
11537 case R_MICROMIPS_CALL_HI16:
11538 case R_MICROMIPS_CALL_LO16:
11539 case R_MICROMIPS_GOT_HI16:
11540 case R_MICROMIPS_GOT_LO16:
11541 case R_MICROMIPS_GOT_DISP:
11542 case R_MICROMIPS_GOT_PAGE:
11543 case R_MICROMIPS_GOT_OFST:
11544 /* ??? It would seem that the existing MIPS code does no sort
11545 of reference counting or whatnot on its GOT and PLT entries,
11546 so it is not possible to garbage collect them at this time. */
11547 break;
11548
11549 default:
11550 break;
11551 }
11552 #endif
11553
11554 return TRUE;
11555 }
11556 \f
11557 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11558 hiding the old indirect symbol. Process additional relocation
11559 information. Also called for weakdefs, in which case we just let
11560 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11561
11562 void
11563 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11564 struct elf_link_hash_entry *dir,
11565 struct elf_link_hash_entry *ind)
11566 {
11567 struct mips_elf_link_hash_entry *dirmips, *indmips;
11568
11569 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11570
11571 dirmips = (struct mips_elf_link_hash_entry *) dir;
11572 indmips = (struct mips_elf_link_hash_entry *) ind;
11573 /* Any absolute non-dynamic relocations against an indirect or weak
11574 definition will be against the target symbol. */
11575 if (indmips->has_static_relocs)
11576 dirmips->has_static_relocs = TRUE;
11577
11578 if (ind->root.type != bfd_link_hash_indirect)
11579 return;
11580
11581 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11582 if (indmips->readonly_reloc)
11583 dirmips->readonly_reloc = TRUE;
11584 if (indmips->no_fn_stub)
11585 dirmips->no_fn_stub = TRUE;
11586 if (indmips->fn_stub)
11587 {
11588 dirmips->fn_stub = indmips->fn_stub;
11589 indmips->fn_stub = NULL;
11590 }
11591 if (indmips->need_fn_stub)
11592 {
11593 dirmips->need_fn_stub = TRUE;
11594 indmips->need_fn_stub = FALSE;
11595 }
11596 if (indmips->call_stub)
11597 {
11598 dirmips->call_stub = indmips->call_stub;
11599 indmips->call_stub = NULL;
11600 }
11601 if (indmips->call_fp_stub)
11602 {
11603 dirmips->call_fp_stub = indmips->call_fp_stub;
11604 indmips->call_fp_stub = NULL;
11605 }
11606 if (indmips->global_got_area < dirmips->global_got_area)
11607 dirmips->global_got_area = indmips->global_got_area;
11608 if (indmips->global_got_area < GGA_NONE)
11609 indmips->global_got_area = GGA_NONE;
11610 if (indmips->has_nonpic_branches)
11611 dirmips->has_nonpic_branches = TRUE;
11612
11613 if (dirmips->tls_type == 0)
11614 dirmips->tls_type = indmips->tls_type;
11615 }
11616 \f
11617 #define PDR_SIZE 32
11618
11619 bfd_boolean
11620 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11621 struct bfd_link_info *info)
11622 {
11623 asection *o;
11624 bfd_boolean ret = FALSE;
11625 unsigned char *tdata;
11626 size_t i, skip;
11627
11628 o = bfd_get_section_by_name (abfd, ".pdr");
11629 if (! o)
11630 return FALSE;
11631 if (o->size == 0)
11632 return FALSE;
11633 if (o->size % PDR_SIZE != 0)
11634 return FALSE;
11635 if (o->output_section != NULL
11636 && bfd_is_abs_section (o->output_section))
11637 return FALSE;
11638
11639 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11640 if (! tdata)
11641 return FALSE;
11642
11643 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11644 info->keep_memory);
11645 if (!cookie->rels)
11646 {
11647 free (tdata);
11648 return FALSE;
11649 }
11650
11651 cookie->rel = cookie->rels;
11652 cookie->relend = cookie->rels + o->reloc_count;
11653
11654 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11655 {
11656 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11657 {
11658 tdata[i] = 1;
11659 skip ++;
11660 }
11661 }
11662
11663 if (skip != 0)
11664 {
11665 mips_elf_section_data (o)->u.tdata = tdata;
11666 o->size -= skip * PDR_SIZE;
11667 ret = TRUE;
11668 }
11669 else
11670 free (tdata);
11671
11672 if (! info->keep_memory)
11673 free (cookie->rels);
11674
11675 return ret;
11676 }
11677
11678 bfd_boolean
11679 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11680 {
11681 if (strcmp (sec->name, ".pdr") == 0)
11682 return TRUE;
11683 return FALSE;
11684 }
11685
11686 bfd_boolean
11687 _bfd_mips_elf_write_section (bfd *output_bfd,
11688 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11689 asection *sec, bfd_byte *contents)
11690 {
11691 bfd_byte *to, *from, *end;
11692 int i;
11693
11694 if (strcmp (sec->name, ".pdr") != 0)
11695 return FALSE;
11696
11697 if (mips_elf_section_data (sec)->u.tdata == NULL)
11698 return FALSE;
11699
11700 to = contents;
11701 end = contents + sec->size;
11702 for (from = contents, i = 0;
11703 from < end;
11704 from += PDR_SIZE, i++)
11705 {
11706 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11707 continue;
11708 if (to != from)
11709 memcpy (to, from, PDR_SIZE);
11710 to += PDR_SIZE;
11711 }
11712 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11713 sec->output_offset, sec->size);
11714 return TRUE;
11715 }
11716 \f
11717 /* microMIPS code retains local labels for linker relaxation. Omit them
11718 from output by default for clarity. */
11719
11720 bfd_boolean
11721 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11722 {
11723 return _bfd_elf_is_local_label_name (abfd, sym->name);
11724 }
11725
11726 /* MIPS ELF uses a special find_nearest_line routine in order the
11727 handle the ECOFF debugging information. */
11728
11729 struct mips_elf_find_line
11730 {
11731 struct ecoff_debug_info d;
11732 struct ecoff_find_line i;
11733 };
11734
11735 bfd_boolean
11736 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11737 asymbol **symbols, bfd_vma offset,
11738 const char **filename_ptr,
11739 const char **functionname_ptr,
11740 unsigned int *line_ptr)
11741 {
11742 asection *msec;
11743
11744 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11745 filename_ptr, functionname_ptr,
11746 line_ptr))
11747 return TRUE;
11748
11749 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11750 section, symbols, offset,
11751 filename_ptr, functionname_ptr,
11752 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11753 &elf_tdata (abfd)->dwarf2_find_line_info))
11754 return TRUE;
11755
11756 msec = bfd_get_section_by_name (abfd, ".mdebug");
11757 if (msec != NULL)
11758 {
11759 flagword origflags;
11760 struct mips_elf_find_line *fi;
11761 const struct ecoff_debug_swap * const swap =
11762 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11763
11764 /* If we are called during a link, mips_elf_final_link may have
11765 cleared the SEC_HAS_CONTENTS field. We force it back on here
11766 if appropriate (which it normally will be). */
11767 origflags = msec->flags;
11768 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11769 msec->flags |= SEC_HAS_CONTENTS;
11770
11771 fi = elf_tdata (abfd)->find_line_info;
11772 if (fi == NULL)
11773 {
11774 bfd_size_type external_fdr_size;
11775 char *fraw_src;
11776 char *fraw_end;
11777 struct fdr *fdr_ptr;
11778 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11779
11780 fi = bfd_zalloc (abfd, amt);
11781 if (fi == NULL)
11782 {
11783 msec->flags = origflags;
11784 return FALSE;
11785 }
11786
11787 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11788 {
11789 msec->flags = origflags;
11790 return FALSE;
11791 }
11792
11793 /* Swap in the FDR information. */
11794 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11795 fi->d.fdr = bfd_alloc (abfd, amt);
11796 if (fi->d.fdr == NULL)
11797 {
11798 msec->flags = origflags;
11799 return FALSE;
11800 }
11801 external_fdr_size = swap->external_fdr_size;
11802 fdr_ptr = fi->d.fdr;
11803 fraw_src = (char *) fi->d.external_fdr;
11804 fraw_end = (fraw_src
11805 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11806 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11807 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11808
11809 elf_tdata (abfd)->find_line_info = fi;
11810
11811 /* Note that we don't bother to ever free this information.
11812 find_nearest_line is either called all the time, as in
11813 objdump -l, so the information should be saved, or it is
11814 rarely called, as in ld error messages, so the memory
11815 wasted is unimportant. Still, it would probably be a
11816 good idea for free_cached_info to throw it away. */
11817 }
11818
11819 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11820 &fi->i, filename_ptr, functionname_ptr,
11821 line_ptr))
11822 {
11823 msec->flags = origflags;
11824 return TRUE;
11825 }
11826
11827 msec->flags = origflags;
11828 }
11829
11830 /* Fall back on the generic ELF find_nearest_line routine. */
11831
11832 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11833 filename_ptr, functionname_ptr,
11834 line_ptr);
11835 }
11836
11837 bfd_boolean
11838 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11839 const char **filename_ptr,
11840 const char **functionname_ptr,
11841 unsigned int *line_ptr)
11842 {
11843 bfd_boolean found;
11844 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11845 functionname_ptr, line_ptr,
11846 & elf_tdata (abfd)->dwarf2_find_line_info);
11847 return found;
11848 }
11849
11850 \f
11851 /* When are writing out the .options or .MIPS.options section,
11852 remember the bytes we are writing out, so that we can install the
11853 GP value in the section_processing routine. */
11854
11855 bfd_boolean
11856 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11857 const void *location,
11858 file_ptr offset, bfd_size_type count)
11859 {
11860 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11861 {
11862 bfd_byte *c;
11863
11864 if (elf_section_data (section) == NULL)
11865 {
11866 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11867 section->used_by_bfd = bfd_zalloc (abfd, amt);
11868 if (elf_section_data (section) == NULL)
11869 return FALSE;
11870 }
11871 c = mips_elf_section_data (section)->u.tdata;
11872 if (c == NULL)
11873 {
11874 c = bfd_zalloc (abfd, section->size);
11875 if (c == NULL)
11876 return FALSE;
11877 mips_elf_section_data (section)->u.tdata = c;
11878 }
11879
11880 memcpy (c + offset, location, count);
11881 }
11882
11883 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11884 count);
11885 }
11886
11887 /* This is almost identical to bfd_generic_get_... except that some
11888 MIPS relocations need to be handled specially. Sigh. */
11889
11890 bfd_byte *
11891 _bfd_elf_mips_get_relocated_section_contents
11892 (bfd *abfd,
11893 struct bfd_link_info *link_info,
11894 struct bfd_link_order *link_order,
11895 bfd_byte *data,
11896 bfd_boolean relocatable,
11897 asymbol **symbols)
11898 {
11899 /* Get enough memory to hold the stuff */
11900 bfd *input_bfd = link_order->u.indirect.section->owner;
11901 asection *input_section = link_order->u.indirect.section;
11902 bfd_size_type sz;
11903
11904 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11905 arelent **reloc_vector = NULL;
11906 long reloc_count;
11907
11908 if (reloc_size < 0)
11909 goto error_return;
11910
11911 reloc_vector = bfd_malloc (reloc_size);
11912 if (reloc_vector == NULL && reloc_size != 0)
11913 goto error_return;
11914
11915 /* read in the section */
11916 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11917 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11918 goto error_return;
11919
11920 reloc_count = bfd_canonicalize_reloc (input_bfd,
11921 input_section,
11922 reloc_vector,
11923 symbols);
11924 if (reloc_count < 0)
11925 goto error_return;
11926
11927 if (reloc_count > 0)
11928 {
11929 arelent **parent;
11930 /* for mips */
11931 int gp_found;
11932 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11933
11934 {
11935 struct bfd_hash_entry *h;
11936 struct bfd_link_hash_entry *lh;
11937 /* Skip all this stuff if we aren't mixing formats. */
11938 if (abfd && input_bfd
11939 && abfd->xvec == input_bfd->xvec)
11940 lh = 0;
11941 else
11942 {
11943 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11944 lh = (struct bfd_link_hash_entry *) h;
11945 }
11946 lookup:
11947 if (lh)
11948 {
11949 switch (lh->type)
11950 {
11951 case bfd_link_hash_undefined:
11952 case bfd_link_hash_undefweak:
11953 case bfd_link_hash_common:
11954 gp_found = 0;
11955 break;
11956 case bfd_link_hash_defined:
11957 case bfd_link_hash_defweak:
11958 gp_found = 1;
11959 gp = lh->u.def.value;
11960 break;
11961 case bfd_link_hash_indirect:
11962 case bfd_link_hash_warning:
11963 lh = lh->u.i.link;
11964 /* @@FIXME ignoring warning for now */
11965 goto lookup;
11966 case bfd_link_hash_new:
11967 default:
11968 abort ();
11969 }
11970 }
11971 else
11972 gp_found = 0;
11973 }
11974 /* end mips */
11975 for (parent = reloc_vector; *parent != NULL; parent++)
11976 {
11977 char *error_message = NULL;
11978 bfd_reloc_status_type r;
11979
11980 /* Specific to MIPS: Deal with relocation types that require
11981 knowing the gp of the output bfd. */
11982 asymbol *sym = *(*parent)->sym_ptr_ptr;
11983
11984 /* If we've managed to find the gp and have a special
11985 function for the relocation then go ahead, else default
11986 to the generic handling. */
11987 if (gp_found
11988 && (*parent)->howto->special_function
11989 == _bfd_mips_elf32_gprel16_reloc)
11990 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11991 input_section, relocatable,
11992 data, gp);
11993 else
11994 r = bfd_perform_relocation (input_bfd, *parent, data,
11995 input_section,
11996 relocatable ? abfd : NULL,
11997 &error_message);
11998
11999 if (relocatable)
12000 {
12001 asection *os = input_section->output_section;
12002
12003 /* A partial link, so keep the relocs */
12004 os->orelocation[os->reloc_count] = *parent;
12005 os->reloc_count++;
12006 }
12007
12008 if (r != bfd_reloc_ok)
12009 {
12010 switch (r)
12011 {
12012 case bfd_reloc_undefined:
12013 if (!((*link_info->callbacks->undefined_symbol)
12014 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12015 input_bfd, input_section, (*parent)->address, TRUE)))
12016 goto error_return;
12017 break;
12018 case bfd_reloc_dangerous:
12019 BFD_ASSERT (error_message != NULL);
12020 if (!((*link_info->callbacks->reloc_dangerous)
12021 (link_info, error_message, input_bfd, input_section,
12022 (*parent)->address)))
12023 goto error_return;
12024 break;
12025 case bfd_reloc_overflow:
12026 if (!((*link_info->callbacks->reloc_overflow)
12027 (link_info, NULL,
12028 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12029 (*parent)->howto->name, (*parent)->addend,
12030 input_bfd, input_section, (*parent)->address)))
12031 goto error_return;
12032 break;
12033 case bfd_reloc_outofrange:
12034 default:
12035 abort ();
12036 break;
12037 }
12038
12039 }
12040 }
12041 }
12042 if (reloc_vector != NULL)
12043 free (reloc_vector);
12044 return data;
12045
12046 error_return:
12047 if (reloc_vector != NULL)
12048 free (reloc_vector);
12049 return NULL;
12050 }
12051 \f
12052 static bfd_boolean
12053 mips_elf_relax_delete_bytes (bfd *abfd,
12054 asection *sec, bfd_vma addr, int count)
12055 {
12056 Elf_Internal_Shdr *symtab_hdr;
12057 unsigned int sec_shndx;
12058 bfd_byte *contents;
12059 Elf_Internal_Rela *irel, *irelend;
12060 Elf_Internal_Sym *isym;
12061 Elf_Internal_Sym *isymend;
12062 struct elf_link_hash_entry **sym_hashes;
12063 struct elf_link_hash_entry **end_hashes;
12064 struct elf_link_hash_entry **start_hashes;
12065 unsigned int symcount;
12066
12067 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12068 contents = elf_section_data (sec)->this_hdr.contents;
12069
12070 irel = elf_section_data (sec)->relocs;
12071 irelend = irel + sec->reloc_count;
12072
12073 /* Actually delete the bytes. */
12074 memmove (contents + addr, contents + addr + count,
12075 (size_t) (sec->size - addr - count));
12076 sec->size -= count;
12077
12078 /* Adjust all the relocs. */
12079 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12080 {
12081 /* Get the new reloc address. */
12082 if (irel->r_offset > addr)
12083 irel->r_offset -= count;
12084 }
12085
12086 BFD_ASSERT (addr % 2 == 0);
12087 BFD_ASSERT (count % 2 == 0);
12088
12089 /* Adjust the local symbols defined in this section. */
12090 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12091 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12092 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12093 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12094 isym->st_value -= count;
12095
12096 /* Now adjust the global symbols defined in this section. */
12097 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12098 - symtab_hdr->sh_info);
12099 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12100 end_hashes = sym_hashes + symcount;
12101
12102 for (; sym_hashes < end_hashes; sym_hashes++)
12103 {
12104 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12105
12106 if ((sym_hash->root.type == bfd_link_hash_defined
12107 || sym_hash->root.type == bfd_link_hash_defweak)
12108 && sym_hash->root.u.def.section == sec)
12109 {
12110 bfd_vma value = sym_hash->root.u.def.value;
12111
12112 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12113 value &= MINUS_TWO;
12114 if (value > addr)
12115 sym_hash->root.u.def.value -= count;
12116 }
12117 }
12118
12119 return TRUE;
12120 }
12121
12122
12123 /* Opcodes needed for microMIPS relaxation as found in
12124 opcodes/micromips-opc.c. */
12125
12126 struct opcode_descriptor {
12127 unsigned long match;
12128 unsigned long mask;
12129 };
12130
12131 /* The $ra register aka $31. */
12132
12133 #define RA 31
12134
12135 /* 32-bit instruction format register fields. */
12136
12137 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12138 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12139
12140 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12141
12142 #define OP16_VALID_REG(r) \
12143 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12144
12145
12146 /* 32-bit and 16-bit branches. */
12147
12148 static const struct opcode_descriptor b_insns_32[] = {
12149 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12150 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12151 { 0, 0 } /* End marker for find_match(). */
12152 };
12153
12154 static const struct opcode_descriptor bc_insn_32 =
12155 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12156
12157 static const struct opcode_descriptor bz_insn_32 =
12158 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12159
12160 static const struct opcode_descriptor bzal_insn_32 =
12161 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12162
12163 static const struct opcode_descriptor beq_insn_32 =
12164 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12165
12166 static const struct opcode_descriptor b_insn_16 =
12167 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12168
12169 static const struct opcode_descriptor bz_insn_16 =
12170 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12171
12172
12173 /* 32-bit and 16-bit branch EQ and NE zero. */
12174
12175 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12176 eq and second the ne. This convention is used when replacing a
12177 32-bit BEQ/BNE with the 16-bit version. */
12178
12179 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12180
12181 static const struct opcode_descriptor bz_rs_insns_32[] = {
12182 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12183 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12184 { 0, 0 } /* End marker for find_match(). */
12185 };
12186
12187 static const struct opcode_descriptor bz_rt_insns_32[] = {
12188 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12189 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12190 { 0, 0 } /* End marker for find_match(). */
12191 };
12192
12193 static const struct opcode_descriptor bzc_insns_32[] = {
12194 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12195 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12196 { 0, 0 } /* End marker for find_match(). */
12197 };
12198
12199 static const struct opcode_descriptor bz_insns_16[] = {
12200 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12201 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12202 { 0, 0 } /* End marker for find_match(). */
12203 };
12204
12205 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12206
12207 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12208 #define BZ16_REG_FIELD(r) \
12209 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12210
12211
12212 /* 32-bit instructions with a delay slot. */
12213
12214 static const struct opcode_descriptor jal_insn_32_bd16 =
12215 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12216
12217 static const struct opcode_descriptor jal_insn_32_bd32 =
12218 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12219
12220 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12221 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12222
12223 static const struct opcode_descriptor j_insn_32 =
12224 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12225
12226 static const struct opcode_descriptor jalr_insn_32 =
12227 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12228
12229 /* This table can be compacted, because no opcode replacement is made. */
12230
12231 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12232 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12233
12234 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12235 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12236
12237 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12238 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12239 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12240 { 0, 0 } /* End marker for find_match(). */
12241 };
12242
12243 /* This table can be compacted, because no opcode replacement is made. */
12244
12245 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12246 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12247
12248 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12249 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12250 { 0, 0 } /* End marker for find_match(). */
12251 };
12252
12253
12254 /* 16-bit instructions with a delay slot. */
12255
12256 static const struct opcode_descriptor jalr_insn_16_bd16 =
12257 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12258
12259 static const struct opcode_descriptor jalr_insn_16_bd32 =
12260 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12261
12262 static const struct opcode_descriptor jr_insn_16 =
12263 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12264
12265 #define JR16_REG(opcode) ((opcode) & 0x1f)
12266
12267 /* This table can be compacted, because no opcode replacement is made. */
12268
12269 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12270 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12271
12272 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12273 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12274 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12275 { 0, 0 } /* End marker for find_match(). */
12276 };
12277
12278
12279 /* LUI instruction. */
12280
12281 static const struct opcode_descriptor lui_insn =
12282 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12283
12284
12285 /* ADDIU instruction. */
12286
12287 static const struct opcode_descriptor addiu_insn =
12288 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12289
12290 static const struct opcode_descriptor addiupc_insn =
12291 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12292
12293 #define ADDIUPC_REG_FIELD(r) \
12294 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12295
12296
12297 /* Relaxable instructions in a JAL delay slot: MOVE. */
12298
12299 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12300 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12301 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12302 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12303
12304 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12305 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12306
12307 static const struct opcode_descriptor move_insns_32[] = {
12308 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12309 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12310 { 0, 0 } /* End marker for find_match(). */
12311 };
12312
12313 static const struct opcode_descriptor move_insn_16 =
12314 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12315
12316
12317 /* NOP instructions. */
12318
12319 static const struct opcode_descriptor nop_insn_32 =
12320 { /* "nop", "", */ 0x00000000, 0xffffffff };
12321
12322 static const struct opcode_descriptor nop_insn_16 =
12323 { /* "nop", "", */ 0x0c00, 0xffff };
12324
12325
12326 /* Instruction match support. */
12327
12328 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12329
12330 static int
12331 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12332 {
12333 unsigned long indx;
12334
12335 for (indx = 0; insn[indx].mask != 0; indx++)
12336 if (MATCH (opcode, insn[indx]))
12337 return indx;
12338
12339 return -1;
12340 }
12341
12342
12343 /* Branch and delay slot decoding support. */
12344
12345 /* If PTR points to what *might* be a 16-bit branch or jump, then
12346 return the minimum length of its delay slot, otherwise return 0.
12347 Non-zero results are not definitive as we might be checking against
12348 the second half of another instruction. */
12349
12350 static int
12351 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12352 {
12353 unsigned long opcode;
12354 int bdsize;
12355
12356 opcode = bfd_get_16 (abfd, ptr);
12357 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12358 /* 16-bit branch/jump with a 32-bit delay slot. */
12359 bdsize = 4;
12360 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12361 || find_match (opcode, ds_insns_16_bd16) >= 0)
12362 /* 16-bit branch/jump with a 16-bit delay slot. */
12363 bdsize = 2;
12364 else
12365 /* No delay slot. */
12366 bdsize = 0;
12367
12368 return bdsize;
12369 }
12370
12371 /* If PTR points to what *might* be a 32-bit branch or jump, then
12372 return the minimum length of its delay slot, otherwise return 0.
12373 Non-zero results are not definitive as we might be checking against
12374 the second half of another instruction. */
12375
12376 static int
12377 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12378 {
12379 unsigned long opcode;
12380 int bdsize;
12381
12382 opcode = bfd_get_micromips_32 (abfd, ptr);
12383 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12384 /* 32-bit branch/jump with a 32-bit delay slot. */
12385 bdsize = 4;
12386 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12387 /* 32-bit branch/jump with a 16-bit delay slot. */
12388 bdsize = 2;
12389 else
12390 /* No delay slot. */
12391 bdsize = 0;
12392
12393 return bdsize;
12394 }
12395
12396 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12397 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12398
12399 static bfd_boolean
12400 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12401 {
12402 unsigned long opcode;
12403
12404 opcode = bfd_get_16 (abfd, ptr);
12405 if (MATCH (opcode, b_insn_16)
12406 /* B16 */
12407 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12408 /* JR16 */
12409 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12410 /* BEQZ16, BNEZ16 */
12411 || (MATCH (opcode, jalr_insn_16_bd32)
12412 /* JALR16 */
12413 && reg != JR16_REG (opcode) && reg != RA))
12414 return TRUE;
12415
12416 return FALSE;
12417 }
12418
12419 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12420 then return TRUE, otherwise FALSE. */
12421
12422 static bfd_boolean
12423 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12424 {
12425 unsigned long opcode;
12426
12427 opcode = bfd_get_micromips_32 (abfd, ptr);
12428 if (MATCH (opcode, j_insn_32)
12429 /* J */
12430 || MATCH (opcode, bc_insn_32)
12431 /* BC1F, BC1T, BC2F, BC2T */
12432 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12433 /* JAL, JALX */
12434 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12435 /* BGEZ, BGTZ, BLEZ, BLTZ */
12436 || (MATCH (opcode, bzal_insn_32)
12437 /* BGEZAL, BLTZAL */
12438 && reg != OP32_SREG (opcode) && reg != RA)
12439 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12440 /* JALR, JALR.HB, BEQ, BNE */
12441 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12442 return TRUE;
12443
12444 return FALSE;
12445 }
12446
12447 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12448 IRELEND) at OFFSET indicate that there must be a compact branch there,
12449 then return TRUE, otherwise FALSE. */
12450
12451 static bfd_boolean
12452 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12453 const Elf_Internal_Rela *internal_relocs,
12454 const Elf_Internal_Rela *irelend)
12455 {
12456 const Elf_Internal_Rela *irel;
12457 unsigned long opcode;
12458
12459 opcode = bfd_get_micromips_32 (abfd, ptr);
12460 if (find_match (opcode, bzc_insns_32) < 0)
12461 return FALSE;
12462
12463 for (irel = internal_relocs; irel < irelend; irel++)
12464 if (irel->r_offset == offset
12465 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12466 return TRUE;
12467
12468 return FALSE;
12469 }
12470
12471 /* Bitsize checking. */
12472 #define IS_BITSIZE(val, N) \
12473 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12474 - (1ULL << ((N) - 1))) == (val))
12475
12476 \f
12477 bfd_boolean
12478 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12479 struct bfd_link_info *link_info,
12480 bfd_boolean *again)
12481 {
12482 Elf_Internal_Shdr *symtab_hdr;
12483 Elf_Internal_Rela *internal_relocs;
12484 Elf_Internal_Rela *irel, *irelend;
12485 bfd_byte *contents = NULL;
12486 Elf_Internal_Sym *isymbuf = NULL;
12487
12488 /* Assume nothing changes. */
12489 *again = FALSE;
12490
12491 /* We don't have to do anything for a relocatable link, if
12492 this section does not have relocs, or if this is not a
12493 code section. */
12494
12495 if (link_info->relocatable
12496 || (sec->flags & SEC_RELOC) == 0
12497 || sec->reloc_count == 0
12498 || (sec->flags & SEC_CODE) == 0)
12499 return TRUE;
12500
12501 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12502
12503 /* Get a copy of the native relocations. */
12504 internal_relocs = (_bfd_elf_link_read_relocs
12505 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12506 link_info->keep_memory));
12507 if (internal_relocs == NULL)
12508 goto error_return;
12509
12510 /* Walk through them looking for relaxing opportunities. */
12511 irelend = internal_relocs + sec->reloc_count;
12512 for (irel = internal_relocs; irel < irelend; irel++)
12513 {
12514 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12515 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12516 bfd_boolean target_is_micromips_code_p;
12517 unsigned long opcode;
12518 bfd_vma symval;
12519 bfd_vma pcrval;
12520 bfd_byte *ptr;
12521 int fndopc;
12522
12523 /* The number of bytes to delete for relaxation and from where
12524 to delete these bytes starting at irel->r_offset. */
12525 int delcnt = 0;
12526 int deloff = 0;
12527
12528 /* If this isn't something that can be relaxed, then ignore
12529 this reloc. */
12530 if (r_type != R_MICROMIPS_HI16
12531 && r_type != R_MICROMIPS_PC16_S1
12532 && r_type != R_MICROMIPS_26_S1)
12533 continue;
12534
12535 /* Get the section contents if we haven't done so already. */
12536 if (contents == NULL)
12537 {
12538 /* Get cached copy if it exists. */
12539 if (elf_section_data (sec)->this_hdr.contents != NULL)
12540 contents = elf_section_data (sec)->this_hdr.contents;
12541 /* Go get them off disk. */
12542 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12543 goto error_return;
12544 }
12545 ptr = contents + irel->r_offset;
12546
12547 /* Read this BFD's local symbols if we haven't done so already. */
12548 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12549 {
12550 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12551 if (isymbuf == NULL)
12552 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12553 symtab_hdr->sh_info, 0,
12554 NULL, NULL, NULL);
12555 if (isymbuf == NULL)
12556 goto error_return;
12557 }
12558
12559 /* Get the value of the symbol referred to by the reloc. */
12560 if (r_symndx < symtab_hdr->sh_info)
12561 {
12562 /* A local symbol. */
12563 Elf_Internal_Sym *isym;
12564 asection *sym_sec;
12565
12566 isym = isymbuf + r_symndx;
12567 if (isym->st_shndx == SHN_UNDEF)
12568 sym_sec = bfd_und_section_ptr;
12569 else if (isym->st_shndx == SHN_ABS)
12570 sym_sec = bfd_abs_section_ptr;
12571 else if (isym->st_shndx == SHN_COMMON)
12572 sym_sec = bfd_com_section_ptr;
12573 else
12574 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12575 symval = (isym->st_value
12576 + sym_sec->output_section->vma
12577 + sym_sec->output_offset);
12578 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12579 }
12580 else
12581 {
12582 unsigned long indx;
12583 struct elf_link_hash_entry *h;
12584
12585 /* An external symbol. */
12586 indx = r_symndx - symtab_hdr->sh_info;
12587 h = elf_sym_hashes (abfd)[indx];
12588 BFD_ASSERT (h != NULL);
12589
12590 if (h->root.type != bfd_link_hash_defined
12591 && h->root.type != bfd_link_hash_defweak)
12592 /* This appears to be a reference to an undefined
12593 symbol. Just ignore it -- it will be caught by the
12594 regular reloc processing. */
12595 continue;
12596
12597 symval = (h->root.u.def.value
12598 + h->root.u.def.section->output_section->vma
12599 + h->root.u.def.section->output_offset);
12600 target_is_micromips_code_p = (!h->needs_plt
12601 && ELF_ST_IS_MICROMIPS (h->other));
12602 }
12603
12604
12605 /* For simplicity of coding, we are going to modify the
12606 section contents, the section relocs, and the BFD symbol
12607 table. We must tell the rest of the code not to free up this
12608 information. It would be possible to instead create a table
12609 of changes which have to be made, as is done in coff-mips.c;
12610 that would be more work, but would require less memory when
12611 the linker is run. */
12612
12613 /* Only 32-bit instructions relaxed. */
12614 if (irel->r_offset + 4 > sec->size)
12615 continue;
12616
12617 opcode = bfd_get_micromips_32 (abfd, ptr);
12618
12619 /* This is the pc-relative distance from the instruction the
12620 relocation is applied to, to the symbol referred. */
12621 pcrval = (symval
12622 - (sec->output_section->vma + sec->output_offset)
12623 - irel->r_offset);
12624
12625 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12626 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12627 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12628
12629 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12630
12631 where pcrval has first to be adjusted to apply against the LO16
12632 location (we make the adjustment later on, when we have figured
12633 out the offset). */
12634 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12635 {
12636 bfd_boolean bzc = FALSE;
12637 unsigned long nextopc;
12638 unsigned long reg;
12639 bfd_vma offset;
12640
12641 /* Give up if the previous reloc was a HI16 against this symbol
12642 too. */
12643 if (irel > internal_relocs
12644 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12645 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12646 continue;
12647
12648 /* Or if the next reloc is not a LO16 against this symbol. */
12649 if (irel + 1 >= irelend
12650 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12651 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12652 continue;
12653
12654 /* Or if the second next reloc is a LO16 against this symbol too. */
12655 if (irel + 2 >= irelend
12656 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12657 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12658 continue;
12659
12660 /* See if the LUI instruction *might* be in a branch delay slot.
12661 We check whether what looks like a 16-bit branch or jump is
12662 actually an immediate argument to a compact branch, and let
12663 it through if so. */
12664 if (irel->r_offset >= 2
12665 && check_br16_dslot (abfd, ptr - 2)
12666 && !(irel->r_offset >= 4
12667 && (bzc = check_relocated_bzc (abfd,
12668 ptr - 4, irel->r_offset - 4,
12669 internal_relocs, irelend))))
12670 continue;
12671 if (irel->r_offset >= 4
12672 && !bzc
12673 && check_br32_dslot (abfd, ptr - 4))
12674 continue;
12675
12676 reg = OP32_SREG (opcode);
12677
12678 /* We only relax adjacent instructions or ones separated with
12679 a branch or jump that has a delay slot. The branch or jump
12680 must not fiddle with the register used to hold the address.
12681 Subtract 4 for the LUI itself. */
12682 offset = irel[1].r_offset - irel[0].r_offset;
12683 switch (offset - 4)
12684 {
12685 case 0:
12686 break;
12687 case 2:
12688 if (check_br16 (abfd, ptr + 4, reg))
12689 break;
12690 continue;
12691 case 4:
12692 if (check_br32 (abfd, ptr + 4, reg))
12693 break;
12694 continue;
12695 default:
12696 continue;
12697 }
12698
12699 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12700
12701 /* Give up unless the same register is used with both
12702 relocations. */
12703 if (OP32_SREG (nextopc) != reg)
12704 continue;
12705
12706 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12707 and rounding up to take masking of the two LSBs into account. */
12708 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12709
12710 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12711 if (IS_BITSIZE (symval, 16))
12712 {
12713 /* Fix the relocation's type. */
12714 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12715
12716 /* Instructions using R_MICROMIPS_LO16 have the base or
12717 source register in bits 20:16. This register becomes $0
12718 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12719 nextopc &= ~0x001f0000;
12720 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12721 contents + irel[1].r_offset);
12722 }
12723
12724 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12725 We add 4 to take LUI deletion into account while checking
12726 the PC-relative distance. */
12727 else if (symval % 4 == 0
12728 && IS_BITSIZE (pcrval + 4, 25)
12729 && MATCH (nextopc, addiu_insn)
12730 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12731 && OP16_VALID_REG (OP32_TREG (nextopc)))
12732 {
12733 /* Fix the relocation's type. */
12734 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12735
12736 /* Replace ADDIU with the ADDIUPC version. */
12737 nextopc = (addiupc_insn.match
12738 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12739
12740 bfd_put_micromips_32 (abfd, nextopc,
12741 contents + irel[1].r_offset);
12742 }
12743
12744 /* Can't do anything, give up, sigh... */
12745 else
12746 continue;
12747
12748 /* Fix the relocation's type. */
12749 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12750
12751 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12752 delcnt = 4;
12753 deloff = 0;
12754 }
12755
12756 /* Compact branch relaxation -- due to the multitude of macros
12757 employed by the compiler/assembler, compact branches are not
12758 always generated. Obviously, this can/will be fixed elsewhere,
12759 but there is no drawback in double checking it here. */
12760 else if (r_type == R_MICROMIPS_PC16_S1
12761 && irel->r_offset + 5 < sec->size
12762 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12763 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12764 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12765 {
12766 unsigned long reg;
12767
12768 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12769
12770 /* Replace BEQZ/BNEZ with the compact version. */
12771 opcode = (bzc_insns_32[fndopc].match
12772 | BZC32_REG_FIELD (reg)
12773 | (opcode & 0xffff)); /* Addend value. */
12774
12775 bfd_put_micromips_32 (abfd, opcode, ptr);
12776
12777 /* Delete the 16-bit delay slot NOP: two bytes from
12778 irel->offset + 4. */
12779 delcnt = 2;
12780 deloff = 4;
12781 }
12782
12783 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12784 to check the distance from the next instruction, so subtract 2. */
12785 else if (r_type == R_MICROMIPS_PC16_S1
12786 && IS_BITSIZE (pcrval - 2, 11)
12787 && find_match (opcode, b_insns_32) >= 0)
12788 {
12789 /* Fix the relocation's type. */
12790 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12791
12792 /* Replace the 32-bit opcode with a 16-bit opcode. */
12793 bfd_put_16 (abfd,
12794 (b_insn_16.match
12795 | (opcode & 0x3ff)), /* Addend value. */
12796 ptr);
12797
12798 /* Delete 2 bytes from irel->r_offset + 2. */
12799 delcnt = 2;
12800 deloff = 2;
12801 }
12802
12803 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12804 to check the distance from the next instruction, so subtract 2. */
12805 else if (r_type == R_MICROMIPS_PC16_S1
12806 && IS_BITSIZE (pcrval - 2, 8)
12807 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12808 && OP16_VALID_REG (OP32_SREG (opcode)))
12809 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12810 && OP16_VALID_REG (OP32_TREG (opcode)))))
12811 {
12812 unsigned long reg;
12813
12814 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12815
12816 /* Fix the relocation's type. */
12817 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12818
12819 /* Replace the 32-bit opcode with a 16-bit opcode. */
12820 bfd_put_16 (abfd,
12821 (bz_insns_16[fndopc].match
12822 | BZ16_REG_FIELD (reg)
12823 | (opcode & 0x7f)), /* Addend value. */
12824 ptr);
12825
12826 /* Delete 2 bytes from irel->r_offset + 2. */
12827 delcnt = 2;
12828 deloff = 2;
12829 }
12830
12831 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12832 else if (r_type == R_MICROMIPS_26_S1
12833 && target_is_micromips_code_p
12834 && irel->r_offset + 7 < sec->size
12835 && MATCH (opcode, jal_insn_32_bd32))
12836 {
12837 unsigned long n32opc;
12838 bfd_boolean relaxed = FALSE;
12839
12840 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12841
12842 if (MATCH (n32opc, nop_insn_32))
12843 {
12844 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12845 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12846
12847 relaxed = TRUE;
12848 }
12849 else if (find_match (n32opc, move_insns_32) >= 0)
12850 {
12851 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12852 bfd_put_16 (abfd,
12853 (move_insn_16.match
12854 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12855 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12856 ptr + 4);
12857
12858 relaxed = TRUE;
12859 }
12860 /* Other 32-bit instructions relaxable to 16-bit
12861 instructions will be handled here later. */
12862
12863 if (relaxed)
12864 {
12865 /* JAL with 32-bit delay slot that is changed to a JALS
12866 with 16-bit delay slot. */
12867 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12868
12869 /* Delete 2 bytes from irel->r_offset + 6. */
12870 delcnt = 2;
12871 deloff = 6;
12872 }
12873 }
12874
12875 if (delcnt != 0)
12876 {
12877 /* Note that we've changed the relocs, section contents, etc. */
12878 elf_section_data (sec)->relocs = internal_relocs;
12879 elf_section_data (sec)->this_hdr.contents = contents;
12880 symtab_hdr->contents = (unsigned char *) isymbuf;
12881
12882 /* Delete bytes depending on the delcnt and deloff. */
12883 if (!mips_elf_relax_delete_bytes (abfd, sec,
12884 irel->r_offset + deloff, delcnt))
12885 goto error_return;
12886
12887 /* That will change things, so we should relax again.
12888 Note that this is not required, and it may be slow. */
12889 *again = TRUE;
12890 }
12891 }
12892
12893 if (isymbuf != NULL
12894 && symtab_hdr->contents != (unsigned char *) isymbuf)
12895 {
12896 if (! link_info->keep_memory)
12897 free (isymbuf);
12898 else
12899 {
12900 /* Cache the symbols for elf_link_input_bfd. */
12901 symtab_hdr->contents = (unsigned char *) isymbuf;
12902 }
12903 }
12904
12905 if (contents != NULL
12906 && elf_section_data (sec)->this_hdr.contents != contents)
12907 {
12908 if (! link_info->keep_memory)
12909 free (contents);
12910 else
12911 {
12912 /* Cache the section contents for elf_link_input_bfd. */
12913 elf_section_data (sec)->this_hdr.contents = contents;
12914 }
12915 }
12916
12917 if (internal_relocs != NULL
12918 && elf_section_data (sec)->relocs != internal_relocs)
12919 free (internal_relocs);
12920
12921 return TRUE;
12922
12923 error_return:
12924 if (isymbuf != NULL
12925 && symtab_hdr->contents != (unsigned char *) isymbuf)
12926 free (isymbuf);
12927 if (contents != NULL
12928 && elf_section_data (sec)->this_hdr.contents != contents)
12929 free (contents);
12930 if (internal_relocs != NULL
12931 && elf_section_data (sec)->relocs != internal_relocs)
12932 free (internal_relocs);
12933
12934 return FALSE;
12935 }
12936 \f
12937 /* Create a MIPS ELF linker hash table. */
12938
12939 struct bfd_link_hash_table *
12940 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12941 {
12942 struct mips_elf_link_hash_table *ret;
12943 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12944
12945 ret = bfd_malloc (amt);
12946 if (ret == NULL)
12947 return NULL;
12948
12949 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12950 mips_elf_link_hash_newfunc,
12951 sizeof (struct mips_elf_link_hash_entry),
12952 MIPS_ELF_DATA))
12953 {
12954 free (ret);
12955 return NULL;
12956 }
12957
12958 #if 0
12959 /* We no longer use this. */
12960 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12961 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12962 #endif
12963 ret->procedure_count = 0;
12964 ret->compact_rel_size = 0;
12965 ret->use_rld_obj_head = FALSE;
12966 ret->rld_symbol = NULL;
12967 ret->mips16_stubs_seen = FALSE;
12968 ret->use_plts_and_copy_relocs = FALSE;
12969 ret->is_vxworks = FALSE;
12970 ret->small_data_overflow_reported = FALSE;
12971 ret->srelbss = NULL;
12972 ret->sdynbss = NULL;
12973 ret->srelplt = NULL;
12974 ret->srelplt2 = NULL;
12975 ret->sgotplt = NULL;
12976 ret->splt = NULL;
12977 ret->sstubs = NULL;
12978 ret->sgot = NULL;
12979 ret->got_info = NULL;
12980 ret->plt_header_size = 0;
12981 ret->plt_entry_size = 0;
12982 ret->lazy_stub_count = 0;
12983 ret->function_stub_size = 0;
12984 ret->strampoline = NULL;
12985 ret->la25_stubs = NULL;
12986 ret->add_stub_section = NULL;
12987
12988 return &ret->root.root;
12989 }
12990
12991 /* Likewise, but indicate that the target is VxWorks. */
12992
12993 struct bfd_link_hash_table *
12994 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12995 {
12996 struct bfd_link_hash_table *ret;
12997
12998 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12999 if (ret)
13000 {
13001 struct mips_elf_link_hash_table *htab;
13002
13003 htab = (struct mips_elf_link_hash_table *) ret;
13004 htab->use_plts_and_copy_relocs = TRUE;
13005 htab->is_vxworks = TRUE;
13006 }
13007 return ret;
13008 }
13009
13010 /* A function that the linker calls if we are allowed to use PLTs
13011 and copy relocs. */
13012
13013 void
13014 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13015 {
13016 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13017 }
13018 \f
13019 /* We need to use a special link routine to handle the .reginfo and
13020 the .mdebug sections. We need to merge all instances of these
13021 sections together, not write them all out sequentially. */
13022
13023 bfd_boolean
13024 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
13025 {
13026 asection *o;
13027 struct bfd_link_order *p;
13028 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
13029 asection *rtproc_sec;
13030 Elf32_RegInfo reginfo;
13031 struct ecoff_debug_info debug;
13032 struct mips_htab_traverse_info hti;
13033 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13034 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
13035 HDRR *symhdr = &debug.symbolic_header;
13036 void *mdebug_handle = NULL;
13037 asection *s;
13038 EXTR esym;
13039 unsigned int i;
13040 bfd_size_type amt;
13041 struct mips_elf_link_hash_table *htab;
13042
13043 static const char * const secname[] =
13044 {
13045 ".text", ".init", ".fini", ".data",
13046 ".rodata", ".sdata", ".sbss", ".bss"
13047 };
13048 static const int sc[] =
13049 {
13050 scText, scInit, scFini, scData,
13051 scRData, scSData, scSBss, scBss
13052 };
13053
13054 /* Sort the dynamic symbols so that those with GOT entries come after
13055 those without. */
13056 htab = mips_elf_hash_table (info);
13057 BFD_ASSERT (htab != NULL);
13058
13059 if (!mips_elf_sort_hash_table (abfd, info))
13060 return FALSE;
13061
13062 /* Create any scheduled LA25 stubs. */
13063 hti.info = info;
13064 hti.output_bfd = abfd;
13065 hti.error = FALSE;
13066 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13067 if (hti.error)
13068 return FALSE;
13069
13070 /* Get a value for the GP register. */
13071 if (elf_gp (abfd) == 0)
13072 {
13073 struct bfd_link_hash_entry *h;
13074
13075 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
13076 if (h != NULL && h->type == bfd_link_hash_defined)
13077 elf_gp (abfd) = (h->u.def.value
13078 + h->u.def.section->output_section->vma
13079 + h->u.def.section->output_offset);
13080 else if (htab->is_vxworks
13081 && (h = bfd_link_hash_lookup (info->hash,
13082 "_GLOBAL_OFFSET_TABLE_",
13083 FALSE, FALSE, TRUE))
13084 && h->type == bfd_link_hash_defined)
13085 elf_gp (abfd) = (h->u.def.section->output_section->vma
13086 + h->u.def.section->output_offset
13087 + h->u.def.value);
13088 else if (info->relocatable)
13089 {
13090 bfd_vma lo = MINUS_ONE;
13091
13092 /* Find the GP-relative section with the lowest offset. */
13093 for (o = abfd->sections; o != NULL; o = o->next)
13094 if (o->vma < lo
13095 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13096 lo = o->vma;
13097
13098 /* And calculate GP relative to that. */
13099 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13100 }
13101 else
13102 {
13103 /* If the relocate_section function needs to do a reloc
13104 involving the GP value, it should make a reloc_dangerous
13105 callback to warn that GP is not defined. */
13106 }
13107 }
13108
13109 /* Go through the sections and collect the .reginfo and .mdebug
13110 information. */
13111 reginfo_sec = NULL;
13112 mdebug_sec = NULL;
13113 gptab_data_sec = NULL;
13114 gptab_bss_sec = NULL;
13115 for (o = abfd->sections; o != NULL; o = o->next)
13116 {
13117 if (strcmp (o->name, ".reginfo") == 0)
13118 {
13119 memset (&reginfo, 0, sizeof reginfo);
13120
13121 /* We have found the .reginfo section in the output file.
13122 Look through all the link_orders comprising it and merge
13123 the information together. */
13124 for (p = o->map_head.link_order; p != NULL; p = p->next)
13125 {
13126 asection *input_section;
13127 bfd *input_bfd;
13128 Elf32_External_RegInfo ext;
13129 Elf32_RegInfo sub;
13130
13131 if (p->type != bfd_indirect_link_order)
13132 {
13133 if (p->type == bfd_data_link_order)
13134 continue;
13135 abort ();
13136 }
13137
13138 input_section = p->u.indirect.section;
13139 input_bfd = input_section->owner;
13140
13141 if (! bfd_get_section_contents (input_bfd, input_section,
13142 &ext, 0, sizeof ext))
13143 return FALSE;
13144
13145 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13146
13147 reginfo.ri_gprmask |= sub.ri_gprmask;
13148 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13149 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13150 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13151 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13152
13153 /* ri_gp_value is set by the function
13154 mips_elf32_section_processing when the section is
13155 finally written out. */
13156
13157 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13158 elf_link_input_bfd ignores this section. */
13159 input_section->flags &= ~SEC_HAS_CONTENTS;
13160 }
13161
13162 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13163 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13164
13165 /* Skip this section later on (I don't think this currently
13166 matters, but someday it might). */
13167 o->map_head.link_order = NULL;
13168
13169 reginfo_sec = o;
13170 }
13171
13172 if (strcmp (o->name, ".mdebug") == 0)
13173 {
13174 struct extsym_info einfo;
13175 bfd_vma last;
13176
13177 /* We have found the .mdebug section in the output file.
13178 Look through all the link_orders comprising it and merge
13179 the information together. */
13180 symhdr->magic = swap->sym_magic;
13181 /* FIXME: What should the version stamp be? */
13182 symhdr->vstamp = 0;
13183 symhdr->ilineMax = 0;
13184 symhdr->cbLine = 0;
13185 symhdr->idnMax = 0;
13186 symhdr->ipdMax = 0;
13187 symhdr->isymMax = 0;
13188 symhdr->ioptMax = 0;
13189 symhdr->iauxMax = 0;
13190 symhdr->issMax = 0;
13191 symhdr->issExtMax = 0;
13192 symhdr->ifdMax = 0;
13193 symhdr->crfd = 0;
13194 symhdr->iextMax = 0;
13195
13196 /* We accumulate the debugging information itself in the
13197 debug_info structure. */
13198 debug.line = NULL;
13199 debug.external_dnr = NULL;
13200 debug.external_pdr = NULL;
13201 debug.external_sym = NULL;
13202 debug.external_opt = NULL;
13203 debug.external_aux = NULL;
13204 debug.ss = NULL;
13205 debug.ssext = debug.ssext_end = NULL;
13206 debug.external_fdr = NULL;
13207 debug.external_rfd = NULL;
13208 debug.external_ext = debug.external_ext_end = NULL;
13209
13210 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13211 if (mdebug_handle == NULL)
13212 return FALSE;
13213
13214 esym.jmptbl = 0;
13215 esym.cobol_main = 0;
13216 esym.weakext = 0;
13217 esym.reserved = 0;
13218 esym.ifd = ifdNil;
13219 esym.asym.iss = issNil;
13220 esym.asym.st = stLocal;
13221 esym.asym.reserved = 0;
13222 esym.asym.index = indexNil;
13223 last = 0;
13224 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13225 {
13226 esym.asym.sc = sc[i];
13227 s = bfd_get_section_by_name (abfd, secname[i]);
13228 if (s != NULL)
13229 {
13230 esym.asym.value = s->vma;
13231 last = s->vma + s->size;
13232 }
13233 else
13234 esym.asym.value = last;
13235 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13236 secname[i], &esym))
13237 return FALSE;
13238 }
13239
13240 for (p = o->map_head.link_order; p != NULL; p = p->next)
13241 {
13242 asection *input_section;
13243 bfd *input_bfd;
13244 const struct ecoff_debug_swap *input_swap;
13245 struct ecoff_debug_info input_debug;
13246 char *eraw_src;
13247 char *eraw_end;
13248
13249 if (p->type != bfd_indirect_link_order)
13250 {
13251 if (p->type == bfd_data_link_order)
13252 continue;
13253 abort ();
13254 }
13255
13256 input_section = p->u.indirect.section;
13257 input_bfd = input_section->owner;
13258
13259 if (!is_mips_elf (input_bfd))
13260 {
13261 /* I don't know what a non MIPS ELF bfd would be
13262 doing with a .mdebug section, but I don't really
13263 want to deal with it. */
13264 continue;
13265 }
13266
13267 input_swap = (get_elf_backend_data (input_bfd)
13268 ->elf_backend_ecoff_debug_swap);
13269
13270 BFD_ASSERT (p->size == input_section->size);
13271
13272 /* The ECOFF linking code expects that we have already
13273 read in the debugging information and set up an
13274 ecoff_debug_info structure, so we do that now. */
13275 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13276 &input_debug))
13277 return FALSE;
13278
13279 if (! (bfd_ecoff_debug_accumulate
13280 (mdebug_handle, abfd, &debug, swap, input_bfd,
13281 &input_debug, input_swap, info)))
13282 return FALSE;
13283
13284 /* Loop through the external symbols. For each one with
13285 interesting information, try to find the symbol in
13286 the linker global hash table and save the information
13287 for the output external symbols. */
13288 eraw_src = input_debug.external_ext;
13289 eraw_end = (eraw_src
13290 + (input_debug.symbolic_header.iextMax
13291 * input_swap->external_ext_size));
13292 for (;
13293 eraw_src < eraw_end;
13294 eraw_src += input_swap->external_ext_size)
13295 {
13296 EXTR ext;
13297 const char *name;
13298 struct mips_elf_link_hash_entry *h;
13299
13300 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13301 if (ext.asym.sc == scNil
13302 || ext.asym.sc == scUndefined
13303 || ext.asym.sc == scSUndefined)
13304 continue;
13305
13306 name = input_debug.ssext + ext.asym.iss;
13307 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13308 name, FALSE, FALSE, TRUE);
13309 if (h == NULL || h->esym.ifd != -2)
13310 continue;
13311
13312 if (ext.ifd != -1)
13313 {
13314 BFD_ASSERT (ext.ifd
13315 < input_debug.symbolic_header.ifdMax);
13316 ext.ifd = input_debug.ifdmap[ext.ifd];
13317 }
13318
13319 h->esym = ext;
13320 }
13321
13322 /* Free up the information we just read. */
13323 free (input_debug.line);
13324 free (input_debug.external_dnr);
13325 free (input_debug.external_pdr);
13326 free (input_debug.external_sym);
13327 free (input_debug.external_opt);
13328 free (input_debug.external_aux);
13329 free (input_debug.ss);
13330 free (input_debug.ssext);
13331 free (input_debug.external_fdr);
13332 free (input_debug.external_rfd);
13333 free (input_debug.external_ext);
13334
13335 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13336 elf_link_input_bfd ignores this section. */
13337 input_section->flags &= ~SEC_HAS_CONTENTS;
13338 }
13339
13340 if (SGI_COMPAT (abfd) && info->shared)
13341 {
13342 /* Create .rtproc section. */
13343 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13344 if (rtproc_sec == NULL)
13345 {
13346 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13347 | SEC_LINKER_CREATED | SEC_READONLY);
13348
13349 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13350 ".rtproc",
13351 flags);
13352 if (rtproc_sec == NULL
13353 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13354 return FALSE;
13355 }
13356
13357 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13358 info, rtproc_sec,
13359 &debug))
13360 return FALSE;
13361 }
13362
13363 /* Build the external symbol information. */
13364 einfo.abfd = abfd;
13365 einfo.info = info;
13366 einfo.debug = &debug;
13367 einfo.swap = swap;
13368 einfo.failed = FALSE;
13369 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13370 mips_elf_output_extsym, &einfo);
13371 if (einfo.failed)
13372 return FALSE;
13373
13374 /* Set the size of the .mdebug section. */
13375 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13376
13377 /* Skip this section later on (I don't think this currently
13378 matters, but someday it might). */
13379 o->map_head.link_order = NULL;
13380
13381 mdebug_sec = o;
13382 }
13383
13384 if (CONST_STRNEQ (o->name, ".gptab."))
13385 {
13386 const char *subname;
13387 unsigned int c;
13388 Elf32_gptab *tab;
13389 Elf32_External_gptab *ext_tab;
13390 unsigned int j;
13391
13392 /* The .gptab.sdata and .gptab.sbss sections hold
13393 information describing how the small data area would
13394 change depending upon the -G switch. These sections
13395 not used in executables files. */
13396 if (! info->relocatable)
13397 {
13398 for (p = o->map_head.link_order; p != NULL; p = p->next)
13399 {
13400 asection *input_section;
13401
13402 if (p->type != bfd_indirect_link_order)
13403 {
13404 if (p->type == bfd_data_link_order)
13405 continue;
13406 abort ();
13407 }
13408
13409 input_section = p->u.indirect.section;
13410
13411 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13412 elf_link_input_bfd ignores this section. */
13413 input_section->flags &= ~SEC_HAS_CONTENTS;
13414 }
13415
13416 /* Skip this section later on (I don't think this
13417 currently matters, but someday it might). */
13418 o->map_head.link_order = NULL;
13419
13420 /* Really remove the section. */
13421 bfd_section_list_remove (abfd, o);
13422 --abfd->section_count;
13423
13424 continue;
13425 }
13426
13427 /* There is one gptab for initialized data, and one for
13428 uninitialized data. */
13429 if (strcmp (o->name, ".gptab.sdata") == 0)
13430 gptab_data_sec = o;
13431 else if (strcmp (o->name, ".gptab.sbss") == 0)
13432 gptab_bss_sec = o;
13433 else
13434 {
13435 (*_bfd_error_handler)
13436 (_("%s: illegal section name `%s'"),
13437 bfd_get_filename (abfd), o->name);
13438 bfd_set_error (bfd_error_nonrepresentable_section);
13439 return FALSE;
13440 }
13441
13442 /* The linker script always combines .gptab.data and
13443 .gptab.sdata into .gptab.sdata, and likewise for
13444 .gptab.bss and .gptab.sbss. It is possible that there is
13445 no .sdata or .sbss section in the output file, in which
13446 case we must change the name of the output section. */
13447 subname = o->name + sizeof ".gptab" - 1;
13448 if (bfd_get_section_by_name (abfd, subname) == NULL)
13449 {
13450 if (o == gptab_data_sec)
13451 o->name = ".gptab.data";
13452 else
13453 o->name = ".gptab.bss";
13454 subname = o->name + sizeof ".gptab" - 1;
13455 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13456 }
13457
13458 /* Set up the first entry. */
13459 c = 1;
13460 amt = c * sizeof (Elf32_gptab);
13461 tab = bfd_malloc (amt);
13462 if (tab == NULL)
13463 return FALSE;
13464 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13465 tab[0].gt_header.gt_unused = 0;
13466
13467 /* Combine the input sections. */
13468 for (p = o->map_head.link_order; p != NULL; p = p->next)
13469 {
13470 asection *input_section;
13471 bfd *input_bfd;
13472 bfd_size_type size;
13473 unsigned long last;
13474 bfd_size_type gpentry;
13475
13476 if (p->type != bfd_indirect_link_order)
13477 {
13478 if (p->type == bfd_data_link_order)
13479 continue;
13480 abort ();
13481 }
13482
13483 input_section = p->u.indirect.section;
13484 input_bfd = input_section->owner;
13485
13486 /* Combine the gptab entries for this input section one
13487 by one. We know that the input gptab entries are
13488 sorted by ascending -G value. */
13489 size = input_section->size;
13490 last = 0;
13491 for (gpentry = sizeof (Elf32_External_gptab);
13492 gpentry < size;
13493 gpentry += sizeof (Elf32_External_gptab))
13494 {
13495 Elf32_External_gptab ext_gptab;
13496 Elf32_gptab int_gptab;
13497 unsigned long val;
13498 unsigned long add;
13499 bfd_boolean exact;
13500 unsigned int look;
13501
13502 if (! (bfd_get_section_contents
13503 (input_bfd, input_section, &ext_gptab, gpentry,
13504 sizeof (Elf32_External_gptab))))
13505 {
13506 free (tab);
13507 return FALSE;
13508 }
13509
13510 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13511 &int_gptab);
13512 val = int_gptab.gt_entry.gt_g_value;
13513 add = int_gptab.gt_entry.gt_bytes - last;
13514
13515 exact = FALSE;
13516 for (look = 1; look < c; look++)
13517 {
13518 if (tab[look].gt_entry.gt_g_value >= val)
13519 tab[look].gt_entry.gt_bytes += add;
13520
13521 if (tab[look].gt_entry.gt_g_value == val)
13522 exact = TRUE;
13523 }
13524
13525 if (! exact)
13526 {
13527 Elf32_gptab *new_tab;
13528 unsigned int max;
13529
13530 /* We need a new table entry. */
13531 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13532 new_tab = bfd_realloc (tab, amt);
13533 if (new_tab == NULL)
13534 {
13535 free (tab);
13536 return FALSE;
13537 }
13538 tab = new_tab;
13539 tab[c].gt_entry.gt_g_value = val;
13540 tab[c].gt_entry.gt_bytes = add;
13541
13542 /* Merge in the size for the next smallest -G
13543 value, since that will be implied by this new
13544 value. */
13545 max = 0;
13546 for (look = 1; look < c; look++)
13547 {
13548 if (tab[look].gt_entry.gt_g_value < val
13549 && (max == 0
13550 || (tab[look].gt_entry.gt_g_value
13551 > tab[max].gt_entry.gt_g_value)))
13552 max = look;
13553 }
13554 if (max != 0)
13555 tab[c].gt_entry.gt_bytes +=
13556 tab[max].gt_entry.gt_bytes;
13557
13558 ++c;
13559 }
13560
13561 last = int_gptab.gt_entry.gt_bytes;
13562 }
13563
13564 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13565 elf_link_input_bfd ignores this section. */
13566 input_section->flags &= ~SEC_HAS_CONTENTS;
13567 }
13568
13569 /* The table must be sorted by -G value. */
13570 if (c > 2)
13571 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13572
13573 /* Swap out the table. */
13574 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13575 ext_tab = bfd_alloc (abfd, amt);
13576 if (ext_tab == NULL)
13577 {
13578 free (tab);
13579 return FALSE;
13580 }
13581
13582 for (j = 0; j < c; j++)
13583 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13584 free (tab);
13585
13586 o->size = c * sizeof (Elf32_External_gptab);
13587 o->contents = (bfd_byte *) ext_tab;
13588
13589 /* Skip this section later on (I don't think this currently
13590 matters, but someday it might). */
13591 o->map_head.link_order = NULL;
13592 }
13593 }
13594
13595 /* Invoke the regular ELF backend linker to do all the work. */
13596 if (!bfd_elf_final_link (abfd, info))
13597 return FALSE;
13598
13599 /* Now write out the computed sections. */
13600
13601 if (reginfo_sec != NULL)
13602 {
13603 Elf32_External_RegInfo ext;
13604
13605 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13606 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13607 return FALSE;
13608 }
13609
13610 if (mdebug_sec != NULL)
13611 {
13612 BFD_ASSERT (abfd->output_has_begun);
13613 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13614 swap, info,
13615 mdebug_sec->filepos))
13616 return FALSE;
13617
13618 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13619 }
13620
13621 if (gptab_data_sec != NULL)
13622 {
13623 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13624 gptab_data_sec->contents,
13625 0, gptab_data_sec->size))
13626 return FALSE;
13627 }
13628
13629 if (gptab_bss_sec != NULL)
13630 {
13631 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13632 gptab_bss_sec->contents,
13633 0, gptab_bss_sec->size))
13634 return FALSE;
13635 }
13636
13637 if (SGI_COMPAT (abfd))
13638 {
13639 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13640 if (rtproc_sec != NULL)
13641 {
13642 if (! bfd_set_section_contents (abfd, rtproc_sec,
13643 rtproc_sec->contents,
13644 0, rtproc_sec->size))
13645 return FALSE;
13646 }
13647 }
13648
13649 return TRUE;
13650 }
13651 \f
13652 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13653
13654 struct mips_mach_extension {
13655 unsigned long extension, base;
13656 };
13657
13658
13659 /* An array describing how BFD machines relate to one another. The entries
13660 are ordered topologically with MIPS I extensions listed last. */
13661
13662 static const struct mips_mach_extension mips_mach_extensions[] = {
13663 /* MIPS64r2 extensions. */
13664 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13665 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13666 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13667
13668 /* MIPS64 extensions. */
13669 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13670 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13671 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13672 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13673
13674 /* MIPS V extensions. */
13675 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13676
13677 /* R10000 extensions. */
13678 { bfd_mach_mips12000, bfd_mach_mips10000 },
13679 { bfd_mach_mips14000, bfd_mach_mips10000 },
13680 { bfd_mach_mips16000, bfd_mach_mips10000 },
13681
13682 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13683 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13684 better to allow vr5400 and vr5500 code to be merged anyway, since
13685 many libraries will just use the core ISA. Perhaps we could add
13686 some sort of ASE flag if this ever proves a problem. */
13687 { bfd_mach_mips5500, bfd_mach_mips5400 },
13688 { bfd_mach_mips5400, bfd_mach_mips5000 },
13689
13690 /* MIPS IV extensions. */
13691 { bfd_mach_mips5, bfd_mach_mips8000 },
13692 { bfd_mach_mips10000, bfd_mach_mips8000 },
13693 { bfd_mach_mips5000, bfd_mach_mips8000 },
13694 { bfd_mach_mips7000, bfd_mach_mips8000 },
13695 { bfd_mach_mips9000, bfd_mach_mips8000 },
13696
13697 /* VR4100 extensions. */
13698 { bfd_mach_mips4120, bfd_mach_mips4100 },
13699 { bfd_mach_mips4111, bfd_mach_mips4100 },
13700
13701 /* MIPS III extensions. */
13702 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13703 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13704 { bfd_mach_mips8000, bfd_mach_mips4000 },
13705 { bfd_mach_mips4650, bfd_mach_mips4000 },
13706 { bfd_mach_mips4600, bfd_mach_mips4000 },
13707 { bfd_mach_mips4400, bfd_mach_mips4000 },
13708 { bfd_mach_mips4300, bfd_mach_mips4000 },
13709 { bfd_mach_mips4100, bfd_mach_mips4000 },
13710 { bfd_mach_mips4010, bfd_mach_mips4000 },
13711
13712 /* MIPS32 extensions. */
13713 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13714
13715 /* MIPS II extensions. */
13716 { bfd_mach_mips4000, bfd_mach_mips6000 },
13717 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13718
13719 /* MIPS I extensions. */
13720 { bfd_mach_mips6000, bfd_mach_mips3000 },
13721 { bfd_mach_mips3900, bfd_mach_mips3000 }
13722 };
13723
13724
13725 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13726
13727 static bfd_boolean
13728 mips_mach_extends_p (unsigned long base, unsigned long extension)
13729 {
13730 size_t i;
13731
13732 if (extension == base)
13733 return TRUE;
13734
13735 if (base == bfd_mach_mipsisa32
13736 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13737 return TRUE;
13738
13739 if (base == bfd_mach_mipsisa32r2
13740 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13741 return TRUE;
13742
13743 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13744 if (extension == mips_mach_extensions[i].extension)
13745 {
13746 extension = mips_mach_extensions[i].base;
13747 if (extension == base)
13748 return TRUE;
13749 }
13750
13751 return FALSE;
13752 }
13753
13754
13755 /* Return true if the given ELF header flags describe a 32-bit binary. */
13756
13757 static bfd_boolean
13758 mips_32bit_flags_p (flagword flags)
13759 {
13760 return ((flags & EF_MIPS_32BITMODE) != 0
13761 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13762 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13763 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13764 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13765 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13766 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13767 }
13768
13769
13770 /* Merge object attributes from IBFD into OBFD. Raise an error if
13771 there are conflicting attributes. */
13772 static bfd_boolean
13773 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13774 {
13775 obj_attribute *in_attr;
13776 obj_attribute *out_attr;
13777 bfd *abi_fp_bfd;
13778
13779 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13780 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13781 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13782 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
13783
13784 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13785 {
13786 /* This is the first object. Copy the attributes. */
13787 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13788
13789 /* Use the Tag_null value to indicate the attributes have been
13790 initialized. */
13791 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13792
13793 return TRUE;
13794 }
13795
13796 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13797 non-conflicting ones. */
13798 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13799 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13800 {
13801 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13802 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13803 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13804 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13805 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13806 {
13807 case 1:
13808 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13809 {
13810 case 2:
13811 _bfd_error_handler
13812 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13813 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
13814 break;
13815
13816 case 3:
13817 _bfd_error_handler
13818 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13819 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13820 break;
13821
13822 case 4:
13823 _bfd_error_handler
13824 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13825 obfd, abi_fp_bfd, ibfd,
13826 "-mdouble-float", "-mips32r2 -mfp64");
13827 break;
13828
13829 default:
13830 _bfd_error_handler
13831 (_("Warning: %B uses %s (set by %B), "
13832 "%B uses unknown floating point ABI %d"),
13833 obfd, abi_fp_bfd, ibfd,
13834 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13835 break;
13836 }
13837 break;
13838
13839 case 2:
13840 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13841 {
13842 case 1:
13843 _bfd_error_handler
13844 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13845 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
13846 break;
13847
13848 case 3:
13849 _bfd_error_handler
13850 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13851 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13852 break;
13853
13854 case 4:
13855 _bfd_error_handler
13856 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13857 obfd, abi_fp_bfd, ibfd,
13858 "-msingle-float", "-mips32r2 -mfp64");
13859 break;
13860
13861 default:
13862 _bfd_error_handler
13863 (_("Warning: %B uses %s (set by %B), "
13864 "%B uses unknown floating point ABI %d"),
13865 obfd, abi_fp_bfd, ibfd,
13866 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13867 break;
13868 }
13869 break;
13870
13871 case 3:
13872 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13873 {
13874 case 1:
13875 case 2:
13876 case 4:
13877 _bfd_error_handler
13878 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13879 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
13880 break;
13881
13882 default:
13883 _bfd_error_handler
13884 (_("Warning: %B uses %s (set by %B), "
13885 "%B uses unknown floating point ABI %d"),
13886 obfd, abi_fp_bfd, ibfd,
13887 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13888 break;
13889 }
13890 break;
13891
13892 case 4:
13893 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13894 {
13895 case 1:
13896 _bfd_error_handler
13897 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13898 obfd, abi_fp_bfd, ibfd,
13899 "-mips32r2 -mfp64", "-mdouble-float");
13900 break;
13901
13902 case 2:
13903 _bfd_error_handler
13904 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13905 obfd, abi_fp_bfd, ibfd,
13906 "-mips32r2 -mfp64", "-msingle-float");
13907 break;
13908
13909 case 3:
13910 _bfd_error_handler
13911 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13912 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13913 break;
13914
13915 default:
13916 _bfd_error_handler
13917 (_("Warning: %B uses %s (set by %B), "
13918 "%B uses unknown floating point ABI %d"),
13919 obfd, abi_fp_bfd, ibfd,
13920 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13921 break;
13922 }
13923 break;
13924
13925 default:
13926 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13927 {
13928 case 1:
13929 _bfd_error_handler
13930 (_("Warning: %B uses unknown floating point ABI %d "
13931 "(set by %B), %B uses %s"),
13932 obfd, abi_fp_bfd, ibfd,
13933 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13934 break;
13935
13936 case 2:
13937 _bfd_error_handler
13938 (_("Warning: %B uses unknown floating point ABI %d "
13939 "(set by %B), %B uses %s"),
13940 obfd, abi_fp_bfd, ibfd,
13941 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13942 break;
13943
13944 case 3:
13945 _bfd_error_handler
13946 (_("Warning: %B uses unknown floating point ABI %d "
13947 "(set by %B), %B uses %s"),
13948 obfd, abi_fp_bfd, ibfd,
13949 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13950 break;
13951
13952 case 4:
13953 _bfd_error_handler
13954 (_("Warning: %B uses unknown floating point ABI %d "
13955 "(set by %B), %B uses %s"),
13956 obfd, abi_fp_bfd, ibfd,
13957 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13958 break;
13959
13960 default:
13961 _bfd_error_handler
13962 (_("Warning: %B uses unknown floating point ABI %d "
13963 "(set by %B), %B uses unknown floating point ABI %d"),
13964 obfd, abi_fp_bfd, ibfd,
13965 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13966 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13967 break;
13968 }
13969 break;
13970 }
13971 }
13972
13973 /* Merge Tag_compatibility attributes and any common GNU ones. */
13974 _bfd_elf_merge_object_attributes (ibfd, obfd);
13975
13976 return TRUE;
13977 }
13978
13979 /* Merge backend specific data from an object file to the output
13980 object file when linking. */
13981
13982 bfd_boolean
13983 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13984 {
13985 flagword old_flags;
13986 flagword new_flags;
13987 bfd_boolean ok;
13988 bfd_boolean null_input_bfd = TRUE;
13989 asection *sec;
13990
13991 /* Check if we have the same endianness. */
13992 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13993 {
13994 (*_bfd_error_handler)
13995 (_("%B: endianness incompatible with that of the selected emulation"),
13996 ibfd);
13997 return FALSE;
13998 }
13999
14000 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
14001 return TRUE;
14002
14003 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
14004 {
14005 (*_bfd_error_handler)
14006 (_("%B: ABI is incompatible with that of the selected emulation"),
14007 ibfd);
14008 return FALSE;
14009 }
14010
14011 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
14012 return FALSE;
14013
14014 new_flags = elf_elfheader (ibfd)->e_flags;
14015 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14016 old_flags = elf_elfheader (obfd)->e_flags;
14017
14018 if (! elf_flags_init (obfd))
14019 {
14020 elf_flags_init (obfd) = TRUE;
14021 elf_elfheader (obfd)->e_flags = new_flags;
14022 elf_elfheader (obfd)->e_ident[EI_CLASS]
14023 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
14024
14025 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
14026 && (bfd_get_arch_info (obfd)->the_default
14027 || mips_mach_extends_p (bfd_get_mach (obfd),
14028 bfd_get_mach (ibfd))))
14029 {
14030 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
14031 bfd_get_mach (ibfd)))
14032 return FALSE;
14033 }
14034
14035 return TRUE;
14036 }
14037
14038 /* Check flag compatibility. */
14039
14040 new_flags &= ~EF_MIPS_NOREORDER;
14041 old_flags &= ~EF_MIPS_NOREORDER;
14042
14043 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14044 doesn't seem to matter. */
14045 new_flags &= ~EF_MIPS_XGOT;
14046 old_flags &= ~EF_MIPS_XGOT;
14047
14048 /* MIPSpro generates ucode info in n64 objects. Again, we should
14049 just be able to ignore this. */
14050 new_flags &= ~EF_MIPS_UCODE;
14051 old_flags &= ~EF_MIPS_UCODE;
14052
14053 /* DSOs should only be linked with CPIC code. */
14054 if ((ibfd->flags & DYNAMIC) != 0)
14055 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14056
14057 if (new_flags == old_flags)
14058 return TRUE;
14059
14060 /* Check to see if the input BFD actually contains any sections.
14061 If not, its flags may not have been initialised either, but it cannot
14062 actually cause any incompatibility. */
14063 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14064 {
14065 /* Ignore synthetic sections and empty .text, .data and .bss sections
14066 which are automatically generated by gas. Also ignore fake
14067 (s)common sections, since merely defining a common symbol does
14068 not affect compatibility. */
14069 if ((sec->flags & SEC_IS_COMMON) == 0
14070 && strcmp (sec->name, ".reginfo")
14071 && strcmp (sec->name, ".mdebug")
14072 && (sec->size != 0
14073 || (strcmp (sec->name, ".text")
14074 && strcmp (sec->name, ".data")
14075 && strcmp (sec->name, ".bss"))))
14076 {
14077 null_input_bfd = FALSE;
14078 break;
14079 }
14080 }
14081 if (null_input_bfd)
14082 return TRUE;
14083
14084 ok = TRUE;
14085
14086 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14087 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14088 {
14089 (*_bfd_error_handler)
14090 (_("%B: warning: linking abicalls files with non-abicalls files"),
14091 ibfd);
14092 ok = TRUE;
14093 }
14094
14095 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14096 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14097 if (! (new_flags & EF_MIPS_PIC))
14098 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14099
14100 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14101 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14102
14103 /* Compare the ISAs. */
14104 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14105 {
14106 (*_bfd_error_handler)
14107 (_("%B: linking 32-bit code with 64-bit code"),
14108 ibfd);
14109 ok = FALSE;
14110 }
14111 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14112 {
14113 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14114 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14115 {
14116 /* Copy the architecture info from IBFD to OBFD. Also copy
14117 the 32-bit flag (if set) so that we continue to recognise
14118 OBFD as a 32-bit binary. */
14119 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14120 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14121 elf_elfheader (obfd)->e_flags
14122 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14123
14124 /* Copy across the ABI flags if OBFD doesn't use them
14125 and if that was what caused us to treat IBFD as 32-bit. */
14126 if ((old_flags & EF_MIPS_ABI) == 0
14127 && mips_32bit_flags_p (new_flags)
14128 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14129 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14130 }
14131 else
14132 {
14133 /* The ISAs aren't compatible. */
14134 (*_bfd_error_handler)
14135 (_("%B: linking %s module with previous %s modules"),
14136 ibfd,
14137 bfd_printable_name (ibfd),
14138 bfd_printable_name (obfd));
14139 ok = FALSE;
14140 }
14141 }
14142
14143 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14144 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14145
14146 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14147 does set EI_CLASS differently from any 32-bit ABI. */
14148 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14149 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14150 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14151 {
14152 /* Only error if both are set (to different values). */
14153 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14154 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14155 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14156 {
14157 (*_bfd_error_handler)
14158 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14159 ibfd,
14160 elf_mips_abi_name (ibfd),
14161 elf_mips_abi_name (obfd));
14162 ok = FALSE;
14163 }
14164 new_flags &= ~EF_MIPS_ABI;
14165 old_flags &= ~EF_MIPS_ABI;
14166 }
14167
14168 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14169 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14170 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14171 {
14172 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14173 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14174 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14175 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14176 int micro_mis = old_m16 && new_micro;
14177 int m16_mis = old_micro && new_m16;
14178
14179 if (m16_mis || micro_mis)
14180 {
14181 (*_bfd_error_handler)
14182 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14183 ibfd,
14184 m16_mis ? "MIPS16" : "microMIPS",
14185 m16_mis ? "microMIPS" : "MIPS16");
14186 ok = FALSE;
14187 }
14188
14189 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14190
14191 new_flags &= ~ EF_MIPS_ARCH_ASE;
14192 old_flags &= ~ EF_MIPS_ARCH_ASE;
14193 }
14194
14195 /* Warn about any other mismatches */
14196 if (new_flags != old_flags)
14197 {
14198 (*_bfd_error_handler)
14199 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14200 ibfd, (unsigned long) new_flags,
14201 (unsigned long) old_flags);
14202 ok = FALSE;
14203 }
14204
14205 if (! ok)
14206 {
14207 bfd_set_error (bfd_error_bad_value);
14208 return FALSE;
14209 }
14210
14211 return TRUE;
14212 }
14213
14214 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14215
14216 bfd_boolean
14217 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14218 {
14219 BFD_ASSERT (!elf_flags_init (abfd)
14220 || elf_elfheader (abfd)->e_flags == flags);
14221
14222 elf_elfheader (abfd)->e_flags = flags;
14223 elf_flags_init (abfd) = TRUE;
14224 return TRUE;
14225 }
14226
14227 char *
14228 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14229 {
14230 switch (dtag)
14231 {
14232 default: return "";
14233 case DT_MIPS_RLD_VERSION:
14234 return "MIPS_RLD_VERSION";
14235 case DT_MIPS_TIME_STAMP:
14236 return "MIPS_TIME_STAMP";
14237 case DT_MIPS_ICHECKSUM:
14238 return "MIPS_ICHECKSUM";
14239 case DT_MIPS_IVERSION:
14240 return "MIPS_IVERSION";
14241 case DT_MIPS_FLAGS:
14242 return "MIPS_FLAGS";
14243 case DT_MIPS_BASE_ADDRESS:
14244 return "MIPS_BASE_ADDRESS";
14245 case DT_MIPS_MSYM:
14246 return "MIPS_MSYM";
14247 case DT_MIPS_CONFLICT:
14248 return "MIPS_CONFLICT";
14249 case DT_MIPS_LIBLIST:
14250 return "MIPS_LIBLIST";
14251 case DT_MIPS_LOCAL_GOTNO:
14252 return "MIPS_LOCAL_GOTNO";
14253 case DT_MIPS_CONFLICTNO:
14254 return "MIPS_CONFLICTNO";
14255 case DT_MIPS_LIBLISTNO:
14256 return "MIPS_LIBLISTNO";
14257 case DT_MIPS_SYMTABNO:
14258 return "MIPS_SYMTABNO";
14259 case DT_MIPS_UNREFEXTNO:
14260 return "MIPS_UNREFEXTNO";
14261 case DT_MIPS_GOTSYM:
14262 return "MIPS_GOTSYM";
14263 case DT_MIPS_HIPAGENO:
14264 return "MIPS_HIPAGENO";
14265 case DT_MIPS_RLD_MAP:
14266 return "MIPS_RLD_MAP";
14267 case DT_MIPS_DELTA_CLASS:
14268 return "MIPS_DELTA_CLASS";
14269 case DT_MIPS_DELTA_CLASS_NO:
14270 return "MIPS_DELTA_CLASS_NO";
14271 case DT_MIPS_DELTA_INSTANCE:
14272 return "MIPS_DELTA_INSTANCE";
14273 case DT_MIPS_DELTA_INSTANCE_NO:
14274 return "MIPS_DELTA_INSTANCE_NO";
14275 case DT_MIPS_DELTA_RELOC:
14276 return "MIPS_DELTA_RELOC";
14277 case DT_MIPS_DELTA_RELOC_NO:
14278 return "MIPS_DELTA_RELOC_NO";
14279 case DT_MIPS_DELTA_SYM:
14280 return "MIPS_DELTA_SYM";
14281 case DT_MIPS_DELTA_SYM_NO:
14282 return "MIPS_DELTA_SYM_NO";
14283 case DT_MIPS_DELTA_CLASSSYM:
14284 return "MIPS_DELTA_CLASSSYM";
14285 case DT_MIPS_DELTA_CLASSSYM_NO:
14286 return "MIPS_DELTA_CLASSSYM_NO";
14287 case DT_MIPS_CXX_FLAGS:
14288 return "MIPS_CXX_FLAGS";
14289 case DT_MIPS_PIXIE_INIT:
14290 return "MIPS_PIXIE_INIT";
14291 case DT_MIPS_SYMBOL_LIB:
14292 return "MIPS_SYMBOL_LIB";
14293 case DT_MIPS_LOCALPAGE_GOTIDX:
14294 return "MIPS_LOCALPAGE_GOTIDX";
14295 case DT_MIPS_LOCAL_GOTIDX:
14296 return "MIPS_LOCAL_GOTIDX";
14297 case DT_MIPS_HIDDEN_GOTIDX:
14298 return "MIPS_HIDDEN_GOTIDX";
14299 case DT_MIPS_PROTECTED_GOTIDX:
14300 return "MIPS_PROTECTED_GOT_IDX";
14301 case DT_MIPS_OPTIONS:
14302 return "MIPS_OPTIONS";
14303 case DT_MIPS_INTERFACE:
14304 return "MIPS_INTERFACE";
14305 case DT_MIPS_DYNSTR_ALIGN:
14306 return "DT_MIPS_DYNSTR_ALIGN";
14307 case DT_MIPS_INTERFACE_SIZE:
14308 return "DT_MIPS_INTERFACE_SIZE";
14309 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14310 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14311 case DT_MIPS_PERF_SUFFIX:
14312 return "DT_MIPS_PERF_SUFFIX";
14313 case DT_MIPS_COMPACT_SIZE:
14314 return "DT_MIPS_COMPACT_SIZE";
14315 case DT_MIPS_GP_VALUE:
14316 return "DT_MIPS_GP_VALUE";
14317 case DT_MIPS_AUX_DYNAMIC:
14318 return "DT_MIPS_AUX_DYNAMIC";
14319 case DT_MIPS_PLTGOT:
14320 return "DT_MIPS_PLTGOT";
14321 case DT_MIPS_RWPLT:
14322 return "DT_MIPS_RWPLT";
14323 }
14324 }
14325
14326 bfd_boolean
14327 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14328 {
14329 FILE *file = ptr;
14330
14331 BFD_ASSERT (abfd != NULL && ptr != NULL);
14332
14333 /* Print normal ELF private data. */
14334 _bfd_elf_print_private_bfd_data (abfd, ptr);
14335
14336 /* xgettext:c-format */
14337 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14338
14339 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14340 fprintf (file, _(" [abi=O32]"));
14341 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14342 fprintf (file, _(" [abi=O64]"));
14343 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14344 fprintf (file, _(" [abi=EABI32]"));
14345 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14346 fprintf (file, _(" [abi=EABI64]"));
14347 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14348 fprintf (file, _(" [abi unknown]"));
14349 else if (ABI_N32_P (abfd))
14350 fprintf (file, _(" [abi=N32]"));
14351 else if (ABI_64_P (abfd))
14352 fprintf (file, _(" [abi=64]"));
14353 else
14354 fprintf (file, _(" [no abi set]"));
14355
14356 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14357 fprintf (file, " [mips1]");
14358 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14359 fprintf (file, " [mips2]");
14360 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14361 fprintf (file, " [mips3]");
14362 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14363 fprintf (file, " [mips4]");
14364 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14365 fprintf (file, " [mips5]");
14366 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14367 fprintf (file, " [mips32]");
14368 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14369 fprintf (file, " [mips64]");
14370 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14371 fprintf (file, " [mips32r2]");
14372 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14373 fprintf (file, " [mips64r2]");
14374 else
14375 fprintf (file, _(" [unknown ISA]"));
14376
14377 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14378 fprintf (file, " [mdmx]");
14379
14380 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14381 fprintf (file, " [mips16]");
14382
14383 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14384 fprintf (file, " [micromips]");
14385
14386 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14387 fprintf (file, " [32bitmode]");
14388 else
14389 fprintf (file, _(" [not 32bitmode]"));
14390
14391 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14392 fprintf (file, " [noreorder]");
14393
14394 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14395 fprintf (file, " [PIC]");
14396
14397 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14398 fprintf (file, " [CPIC]");
14399
14400 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14401 fprintf (file, " [XGOT]");
14402
14403 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14404 fprintf (file, " [UCODE]");
14405
14406 fputc ('\n', file);
14407
14408 return TRUE;
14409 }
14410
14411 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14412 {
14413 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14414 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14415 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14416 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14417 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14418 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14419 { NULL, 0, 0, 0, 0 }
14420 };
14421
14422 /* Merge non visibility st_other attributes. Ensure that the
14423 STO_OPTIONAL flag is copied into h->other, even if this is not a
14424 definiton of the symbol. */
14425 void
14426 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14427 const Elf_Internal_Sym *isym,
14428 bfd_boolean definition,
14429 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14430 {
14431 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14432 {
14433 unsigned char other;
14434
14435 other = (definition ? isym->st_other : h->other);
14436 other &= ~ELF_ST_VISIBILITY (-1);
14437 h->other = other | ELF_ST_VISIBILITY (h->other);
14438 }
14439
14440 if (!definition
14441 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14442 h->other |= STO_OPTIONAL;
14443 }
14444
14445 /* Decide whether an undefined symbol is special and can be ignored.
14446 This is the case for OPTIONAL symbols on IRIX. */
14447 bfd_boolean
14448 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14449 {
14450 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14451 }
14452
14453 bfd_boolean
14454 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14455 {
14456 return (sym->st_shndx == SHN_COMMON
14457 || sym->st_shndx == SHN_MIPS_ACOMMON
14458 || sym->st_shndx == SHN_MIPS_SCOMMON);
14459 }
14460
14461 /* Return address for Ith PLT stub in section PLT, for relocation REL
14462 or (bfd_vma) -1 if it should not be included. */
14463
14464 bfd_vma
14465 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14466 const arelent *rel ATTRIBUTE_UNUSED)
14467 {
14468 return (plt->vma
14469 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14470 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14471 }
14472
14473 void
14474 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14475 {
14476 struct mips_elf_link_hash_table *htab;
14477 Elf_Internal_Ehdr *i_ehdrp;
14478
14479 i_ehdrp = elf_elfheader (abfd);
14480 if (link_info)
14481 {
14482 htab = mips_elf_hash_table (link_info);
14483 BFD_ASSERT (htab != NULL);
14484
14485 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14486 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14487 }
14488 }
This page took 1.539922 seconds and 4 git commands to generate.