bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29
30 /* This file handles functionality common to the different MIPS ABI's. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
82 struct mips_got_entry
83 {
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
113 };
114
115 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118 struct mips_got_page_range
119 {
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
123 };
124
125 /* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127 struct mips_got_page_entry
128 {
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
137 };
138
139 /* This structure is used to hold .got information when linking. */
140
141 struct mips_got_info
142 {
143 /* The global symbol in the GOT with the lowest index in the dynamic
144 symbol table. */
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
148 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
149 unsigned int reloc_only_gotno;
150 /* The number of .got slots used for TLS. */
151 unsigned int tls_gotno;
152 /* The first unused TLS .got entry. Used only during
153 mips_elf_initialize_tls_index. */
154 unsigned int tls_assigned_gotno;
155 /* The number of local .got entries, eventually including page entries. */
156 unsigned int local_gotno;
157 /* The maximum number of page entries needed. */
158 unsigned int page_gotno;
159 /* The number of local .got entries we have used. */
160 unsigned int assigned_gotno;
161 /* A hash table holding members of the got. */
162 struct htab *got_entries;
163 /* A hash table of mips_got_page_entry structures. */
164 struct htab *got_page_entries;
165 /* A hash table mapping input bfds to other mips_got_info. NULL
166 unless multi-got was necessary. */
167 struct htab *bfd2got;
168 /* In multi-got links, a pointer to the next got (err, rather, most
169 of the time, it points to the previous got). */
170 struct mips_got_info *next;
171 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
172 for none, or MINUS_TWO for not yet assigned. This is needed
173 because a single-GOT link may have multiple hash table entries
174 for the LDM. It does not get initialized in multi-GOT mode. */
175 bfd_vma tls_ldm_offset;
176 };
177
178 /* Map an input bfd to a got in a multi-got link. */
179
180 struct mips_elf_bfd2got_hash {
181 bfd *bfd;
182 struct mips_got_info *g;
183 };
184
185 /* Structure passed when traversing the bfd2got hash table, used to
186 create and merge bfd's gots. */
187
188 struct mips_elf_got_per_bfd_arg
189 {
190 /* A hashtable that maps bfds to gots. */
191 htab_t bfd2got;
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
213 };
214
215 /* Another structure used to pass arguments for got entries traversal. */
216
217 struct mips_elf_set_global_got_offset_arg
218 {
219 struct mips_got_info *g;
220 int value;
221 unsigned int needed_relocs;
222 struct bfd_link_info *info;
223 };
224
225 /* A structure used to count TLS relocations or GOT entries, for GOT
226 entry or ELF symbol table traversal. */
227
228 struct mips_elf_count_tls_arg
229 {
230 struct bfd_link_info *info;
231 unsigned int needed;
232 };
233
234 struct _mips_elf_section_data
235 {
236 struct bfd_elf_section_data elf;
237 union
238 {
239 bfd_byte *tdata;
240 } u;
241 };
242
243 #define mips_elf_section_data(sec) \
244 ((struct _mips_elf_section_data *) elf_section_data (sec))
245
246 #define is_mips_elf(bfd) \
247 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
248 && elf_tdata (bfd) != NULL \
249 && elf_object_id (bfd) == MIPS_ELF_TDATA)
250
251 /* The ABI says that every symbol used by dynamic relocations must have
252 a global GOT entry. Among other things, this provides the dynamic
253 linker with a free, directly-indexed cache. The GOT can therefore
254 contain symbols that are not referenced by GOT relocations themselves
255 (in other words, it may have symbols that are not referenced by things
256 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
257
258 GOT relocations are less likely to overflow if we put the associated
259 GOT entries towards the beginning. We therefore divide the global
260 GOT entries into two areas: "normal" and "reloc-only". Entries in
261 the first area can be used for both dynamic relocations and GP-relative
262 accesses, while those in the "reloc-only" area are for dynamic
263 relocations only.
264
265 These GGA_* ("Global GOT Area") values are organised so that lower
266 values are more general than higher values. Also, non-GGA_NONE
267 values are ordered by the position of the area in the GOT. */
268 #define GGA_NORMAL 0
269 #define GGA_RELOC_ONLY 1
270 #define GGA_NONE 2
271
272 /* Information about a non-PIC interface to a PIC function. There are
273 two ways of creating these interfaces. The first is to add:
274
275 lui $25,%hi(func)
276 addiu $25,$25,%lo(func)
277
278 immediately before a PIC function "func". The second is to add:
279
280 lui $25,%hi(func)
281 j func
282 addiu $25,$25,%lo(func)
283
284 to a separate trampoline section.
285
286 Stubs of the first kind go in a new section immediately before the
287 target function. Stubs of the second kind go in a single section
288 pointed to by the hash table's "strampoline" field. */
289 struct mips_elf_la25_stub {
290 /* The generated section that contains this stub. */
291 asection *stub_section;
292
293 /* The offset of the stub from the start of STUB_SECTION. */
294 bfd_vma offset;
295
296 /* One symbol for the original function. Its location is available
297 in H->root.root.u.def. */
298 struct mips_elf_link_hash_entry *h;
299 };
300
301 /* Macros for populating a mips_elf_la25_stub. */
302
303 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
304 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
305 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
306
307 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
308 the dynamic symbols. */
309
310 struct mips_elf_hash_sort_data
311 {
312 /* The symbol in the global GOT with the lowest dynamic symbol table
313 index. */
314 struct elf_link_hash_entry *low;
315 /* The least dynamic symbol table index corresponding to a non-TLS
316 symbol with a GOT entry. */
317 long min_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a symbol
319 with a GOT entry that is not referenced (e.g., a dynamic symbol
320 with dynamic relocations pointing to it from non-primary GOTs). */
321 long max_unref_got_dynindx;
322 /* The greatest dynamic symbol table index not corresponding to a
323 symbol without a GOT entry. */
324 long max_non_got_dynindx;
325 };
326
327 /* The MIPS ELF linker needs additional information for each symbol in
328 the global hash table. */
329
330 struct mips_elf_link_hash_entry
331 {
332 struct elf_link_hash_entry root;
333
334 /* External symbol information. */
335 EXTR esym;
336
337 /* The la25 stub we have created for ths symbol, if any. */
338 struct mips_elf_la25_stub *la25_stub;
339
340 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
341 this symbol. */
342 unsigned int possibly_dynamic_relocs;
343
344 /* If there is a stub that 32 bit functions should use to call this
345 16 bit function, this points to the section containing the stub. */
346 asection *fn_stub;
347
348 /* If there is a stub that 16 bit functions should use to call this
349 32 bit function, this points to the section containing the stub. */
350 asection *call_stub;
351
352 /* This is like the call_stub field, but it is used if the function
353 being called returns a floating point value. */
354 asection *call_fp_stub;
355
356 #define GOT_NORMAL 0
357 #define GOT_TLS_GD 1
358 #define GOT_TLS_LDM 2
359 #define GOT_TLS_IE 4
360 #define GOT_TLS_OFFSET_DONE 0x40
361 #define GOT_TLS_DONE 0x80
362 unsigned char tls_type;
363
364 /* This is only used in single-GOT mode; in multi-GOT mode there
365 is one mips_got_entry per GOT entry, so the offset is stored
366 there. In single-GOT mode there may be many mips_got_entry
367 structures all referring to the same GOT slot. It might be
368 possible to use root.got.offset instead, but that field is
369 overloaded already. */
370 bfd_vma tls_got_offset;
371
372 /* The highest GGA_* value that satisfies all references to this symbol. */
373 unsigned int global_got_area : 2;
374
375 /* True if one of the relocations described by possibly_dynamic_relocs
376 is against a readonly section. */
377 unsigned int readonly_reloc : 1;
378
379 /* True if there is a relocation against this symbol that must be
380 resolved by the static linker (in other words, if the relocation
381 cannot possibly be made dynamic). */
382 unsigned int has_static_relocs : 1;
383
384 /* True if we must not create a .MIPS.stubs entry for this symbol.
385 This is set, for example, if there are relocations related to
386 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
387 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
388 unsigned int no_fn_stub : 1;
389
390 /* Whether we need the fn_stub; this is true if this symbol appears
391 in any relocs other than a 16 bit call. */
392 unsigned int need_fn_stub : 1;
393
394 /* True if this symbol is referenced by branch relocations from
395 any non-PIC input file. This is used to determine whether an
396 la25 stub is required. */
397 unsigned int has_nonpic_branches : 1;
398
399 /* Does this symbol need a traditional MIPS lazy-binding stub
400 (as opposed to a PLT entry)? */
401 unsigned int needs_lazy_stub : 1;
402 };
403
404 /* MIPS ELF linker hash table. */
405
406 struct mips_elf_link_hash_table
407 {
408 struct elf_link_hash_table root;
409 #if 0
410 /* We no longer use this. */
411 /* String section indices for the dynamic section symbols. */
412 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
413 #endif
414
415 /* The number of .rtproc entries. */
416 bfd_size_type procedure_count;
417
418 /* The size of the .compact_rel section (if SGI_COMPAT). */
419 bfd_size_type compact_rel_size;
420
421 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
422 entry is set to the address of __rld_obj_head as in IRIX5. */
423 bfd_boolean use_rld_obj_head;
424
425 /* This is the value of the __rld_map or __rld_obj_head symbol. */
426 bfd_vma rld_value;
427
428 /* This is set if we see any mips16 stub sections. */
429 bfd_boolean mips16_stubs_seen;
430
431 /* True if we can generate copy relocs and PLTs. */
432 bfd_boolean use_plts_and_copy_relocs;
433
434 /* True if we're generating code for VxWorks. */
435 bfd_boolean is_vxworks;
436
437 /* True if we already reported the small-data section overflow. */
438 bfd_boolean small_data_overflow_reported;
439
440 /* Shortcuts to some dynamic sections, or NULL if they are not
441 being used. */
442 asection *srelbss;
443 asection *sdynbss;
444 asection *srelplt;
445 asection *srelplt2;
446 asection *sgotplt;
447 asection *splt;
448 asection *sstubs;
449 asection *sgot;
450
451 /* The master GOT information. */
452 struct mips_got_info *got_info;
453
454 /* The size of the PLT header in bytes. */
455 bfd_vma plt_header_size;
456
457 /* The size of a PLT entry in bytes. */
458 bfd_vma plt_entry_size;
459
460 /* The number of functions that need a lazy-binding stub. */
461 bfd_vma lazy_stub_count;
462
463 /* The size of a function stub entry in bytes. */
464 bfd_vma function_stub_size;
465
466 /* The number of reserved entries at the beginning of the GOT. */
467 unsigned int reserved_gotno;
468
469 /* The section used for mips_elf_la25_stub trampolines.
470 See the comment above that structure for details. */
471 asection *strampoline;
472
473 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
474 pairs. */
475 htab_t la25_stubs;
476
477 /* A function FN (NAME, IS, OS) that creates a new input section
478 called NAME and links it to output section OS. If IS is nonnull,
479 the new section should go immediately before it, otherwise it
480 should go at the (current) beginning of OS.
481
482 The function returns the new section on success, otherwise it
483 returns null. */
484 asection *(*add_stub_section) (const char *, asection *, asection *);
485 };
486
487 /* A structure used to communicate with htab_traverse callbacks. */
488 struct mips_htab_traverse_info {
489 /* The usual link-wide information. */
490 struct bfd_link_info *info;
491 bfd *output_bfd;
492
493 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
494 bfd_boolean error;
495 };
496
497 #define TLS_RELOC_P(r_type) \
498 (r_type == R_MIPS_TLS_DTPMOD32 \
499 || r_type == R_MIPS_TLS_DTPMOD64 \
500 || r_type == R_MIPS_TLS_DTPREL32 \
501 || r_type == R_MIPS_TLS_DTPREL64 \
502 || r_type == R_MIPS_TLS_GD \
503 || r_type == R_MIPS_TLS_LDM \
504 || r_type == R_MIPS_TLS_DTPREL_HI16 \
505 || r_type == R_MIPS_TLS_DTPREL_LO16 \
506 || r_type == R_MIPS_TLS_GOTTPREL \
507 || r_type == R_MIPS_TLS_TPREL32 \
508 || r_type == R_MIPS_TLS_TPREL64 \
509 || r_type == R_MIPS_TLS_TPREL_HI16 \
510 || r_type == R_MIPS_TLS_TPREL_LO16)
511
512 /* Structure used to pass information to mips_elf_output_extsym. */
513
514 struct extsym_info
515 {
516 bfd *abfd;
517 struct bfd_link_info *info;
518 struct ecoff_debug_info *debug;
519 const struct ecoff_debug_swap *swap;
520 bfd_boolean failed;
521 };
522
523 /* The names of the runtime procedure table symbols used on IRIX5. */
524
525 static const char * const mips_elf_dynsym_rtproc_names[] =
526 {
527 "_procedure_table",
528 "_procedure_string_table",
529 "_procedure_table_size",
530 NULL
531 };
532
533 /* These structures are used to generate the .compact_rel section on
534 IRIX5. */
535
536 typedef struct
537 {
538 unsigned long id1; /* Always one? */
539 unsigned long num; /* Number of compact relocation entries. */
540 unsigned long id2; /* Always two? */
541 unsigned long offset; /* The file offset of the first relocation. */
542 unsigned long reserved0; /* Zero? */
543 unsigned long reserved1; /* Zero? */
544 } Elf32_compact_rel;
545
546 typedef struct
547 {
548 bfd_byte id1[4];
549 bfd_byte num[4];
550 bfd_byte id2[4];
551 bfd_byte offset[4];
552 bfd_byte reserved0[4];
553 bfd_byte reserved1[4];
554 } Elf32_External_compact_rel;
555
556 typedef struct
557 {
558 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
559 unsigned int rtype : 4; /* Relocation types. See below. */
560 unsigned int dist2to : 8;
561 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
562 unsigned long konst; /* KONST field. See below. */
563 unsigned long vaddr; /* VADDR to be relocated. */
564 } Elf32_crinfo;
565
566 typedef struct
567 {
568 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
569 unsigned int rtype : 4; /* Relocation types. See below. */
570 unsigned int dist2to : 8;
571 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
572 unsigned long konst; /* KONST field. See below. */
573 } Elf32_crinfo2;
574
575 typedef struct
576 {
577 bfd_byte info[4];
578 bfd_byte konst[4];
579 bfd_byte vaddr[4];
580 } Elf32_External_crinfo;
581
582 typedef struct
583 {
584 bfd_byte info[4];
585 bfd_byte konst[4];
586 } Elf32_External_crinfo2;
587
588 /* These are the constants used to swap the bitfields in a crinfo. */
589
590 #define CRINFO_CTYPE (0x1)
591 #define CRINFO_CTYPE_SH (31)
592 #define CRINFO_RTYPE (0xf)
593 #define CRINFO_RTYPE_SH (27)
594 #define CRINFO_DIST2TO (0xff)
595 #define CRINFO_DIST2TO_SH (19)
596 #define CRINFO_RELVADDR (0x7ffff)
597 #define CRINFO_RELVADDR_SH (0)
598
599 /* A compact relocation info has long (3 words) or short (2 words)
600 formats. A short format doesn't have VADDR field and relvaddr
601 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
602 #define CRF_MIPS_LONG 1
603 #define CRF_MIPS_SHORT 0
604
605 /* There are 4 types of compact relocation at least. The value KONST
606 has different meaning for each type:
607
608 (type) (konst)
609 CT_MIPS_REL32 Address in data
610 CT_MIPS_WORD Address in word (XXX)
611 CT_MIPS_GPHI_LO GP - vaddr
612 CT_MIPS_JMPAD Address to jump
613 */
614
615 #define CRT_MIPS_REL32 0xa
616 #define CRT_MIPS_WORD 0xb
617 #define CRT_MIPS_GPHI_LO 0xc
618 #define CRT_MIPS_JMPAD 0xd
619
620 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
621 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
622 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
623 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
624 \f
625 /* The structure of the runtime procedure descriptor created by the
626 loader for use by the static exception system. */
627
628 typedef struct runtime_pdr {
629 bfd_vma adr; /* Memory address of start of procedure. */
630 long regmask; /* Save register mask. */
631 long regoffset; /* Save register offset. */
632 long fregmask; /* Save floating point register mask. */
633 long fregoffset; /* Save floating point register offset. */
634 long frameoffset; /* Frame size. */
635 short framereg; /* Frame pointer register. */
636 short pcreg; /* Offset or reg of return pc. */
637 long irpss; /* Index into the runtime string table. */
638 long reserved;
639 struct exception_info *exception_info;/* Pointer to exception array. */
640 } RPDR, *pRPDR;
641 #define cbRPDR sizeof (RPDR)
642 #define rpdNil ((pRPDR) 0)
643 \f
644 static struct mips_got_entry *mips_elf_create_local_got_entry
645 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
646 struct mips_elf_link_hash_entry *, int);
647 static bfd_boolean mips_elf_sort_hash_table_f
648 (struct mips_elf_link_hash_entry *, void *);
649 static bfd_vma mips_elf_high
650 (bfd_vma);
651 static bfd_boolean mips_elf_create_dynamic_relocation
652 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
653 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
654 bfd_vma *, asection *);
655 static hashval_t mips_elf_got_entry_hash
656 (const void *);
657 static bfd_vma mips_elf_adjust_gp
658 (bfd *, struct mips_got_info *, bfd *);
659 static struct mips_got_info *mips_elf_got_for_ibfd
660 (struct mips_got_info *, bfd *);
661
662 /* This will be used when we sort the dynamic relocation records. */
663 static bfd *reldyn_sorting_bfd;
664
665 /* True if ABFD is a PIC object. */
666 #define PIC_OBJECT_P(abfd) \
667 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
668
669 /* Nonzero if ABFD is using the N32 ABI. */
670 #define ABI_N32_P(abfd) \
671 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
672
673 /* Nonzero if ABFD is using the N64 ABI. */
674 #define ABI_64_P(abfd) \
675 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
676
677 /* Nonzero if ABFD is using NewABI conventions. */
678 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
679
680 /* The IRIX compatibility level we are striving for. */
681 #define IRIX_COMPAT(abfd) \
682 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
683
684 /* Whether we are trying to be compatible with IRIX at all. */
685 #define SGI_COMPAT(abfd) \
686 (IRIX_COMPAT (abfd) != ict_none)
687
688 /* The name of the options section. */
689 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
690 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
691
692 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
693 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
694 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
695 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
696
697 /* Whether the section is readonly. */
698 #define MIPS_ELF_READONLY_SECTION(sec) \
699 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
700 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
701
702 /* The name of the stub section. */
703 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
704
705 /* The size of an external REL relocation. */
706 #define MIPS_ELF_REL_SIZE(abfd) \
707 (get_elf_backend_data (abfd)->s->sizeof_rel)
708
709 /* The size of an external RELA relocation. */
710 #define MIPS_ELF_RELA_SIZE(abfd) \
711 (get_elf_backend_data (abfd)->s->sizeof_rela)
712
713 /* The size of an external dynamic table entry. */
714 #define MIPS_ELF_DYN_SIZE(abfd) \
715 (get_elf_backend_data (abfd)->s->sizeof_dyn)
716
717 /* The size of a GOT entry. */
718 #define MIPS_ELF_GOT_SIZE(abfd) \
719 (get_elf_backend_data (abfd)->s->arch_size / 8)
720
721 /* The size of a symbol-table entry. */
722 #define MIPS_ELF_SYM_SIZE(abfd) \
723 (get_elf_backend_data (abfd)->s->sizeof_sym)
724
725 /* The default alignment for sections, as a power of two. */
726 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
727 (get_elf_backend_data (abfd)->s->log_file_align)
728
729 /* Get word-sized data. */
730 #define MIPS_ELF_GET_WORD(abfd, ptr) \
731 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
732
733 /* Put out word-sized data. */
734 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
735 (ABI_64_P (abfd) \
736 ? bfd_put_64 (abfd, val, ptr) \
737 : bfd_put_32 (abfd, val, ptr))
738
739 /* The opcode for word-sized loads (LW or LD). */
740 #define MIPS_ELF_LOAD_WORD(abfd) \
741 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
742
743 /* Add a dynamic symbol table-entry. */
744 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
745 _bfd_elf_add_dynamic_entry (info, tag, val)
746
747 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
748 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
749
750 /* Determine whether the internal relocation of index REL_IDX is REL
751 (zero) or RELA (non-zero). The assumption is that, if there are
752 two relocation sections for this section, one of them is REL and
753 the other is RELA. If the index of the relocation we're testing is
754 in range for the first relocation section, check that the external
755 relocation size is that for RELA. It is also assumed that, if
756 rel_idx is not in range for the first section, and this first
757 section contains REL relocs, then the relocation is in the second
758 section, that is RELA. */
759 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
760 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
761 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
762 > (bfd_vma)(rel_idx)) \
763 == (elf_section_data (sec)->rel_hdr.sh_entsize \
764 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
765 : sizeof (Elf32_External_Rela))))
766
767 /* The name of the dynamic relocation section. */
768 #define MIPS_ELF_REL_DYN_NAME(INFO) \
769 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
770
771 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
772 from smaller values. Start with zero, widen, *then* decrement. */
773 #define MINUS_ONE (((bfd_vma)0) - 1)
774 #define MINUS_TWO (((bfd_vma)0) - 2)
775
776 /* The value to write into got[1] for SVR4 targets, to identify it is
777 a GNU object. The dynamic linker can then use got[1] to store the
778 module pointer. */
779 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
780 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
781
782 /* The offset of $gp from the beginning of the .got section. */
783 #define ELF_MIPS_GP_OFFSET(INFO) \
784 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
785
786 /* The maximum size of the GOT for it to be addressable using 16-bit
787 offsets from $gp. */
788 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
789
790 /* Instructions which appear in a stub. */
791 #define STUB_LW(abfd) \
792 ((ABI_64_P (abfd) \
793 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
794 : 0x8f998010)) /* lw t9,0x8010(gp) */
795 #define STUB_MOVE(abfd) \
796 ((ABI_64_P (abfd) \
797 ? 0x03e0782d /* daddu t7,ra */ \
798 : 0x03e07821)) /* addu t7,ra */
799 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
800 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
801 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
802 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
803 #define STUB_LI16S(abfd, VAL) \
804 ((ABI_64_P (abfd) \
805 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
806 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
807
808 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
809 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
810
811 /* The name of the dynamic interpreter. This is put in the .interp
812 section. */
813
814 #define ELF_DYNAMIC_INTERPRETER(abfd) \
815 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
816 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
817 : "/usr/lib/libc.so.1")
818
819 #ifdef BFD64
820 #define MNAME(bfd,pre,pos) \
821 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
822 #define ELF_R_SYM(bfd, i) \
823 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
824 #define ELF_R_TYPE(bfd, i) \
825 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
826 #define ELF_R_INFO(bfd, s, t) \
827 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
828 #else
829 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
830 #define ELF_R_SYM(bfd, i) \
831 (ELF32_R_SYM (i))
832 #define ELF_R_TYPE(bfd, i) \
833 (ELF32_R_TYPE (i))
834 #define ELF_R_INFO(bfd, s, t) \
835 (ELF32_R_INFO (s, t))
836 #endif
837 \f
838 /* The mips16 compiler uses a couple of special sections to handle
839 floating point arguments.
840
841 Section names that look like .mips16.fn.FNNAME contain stubs that
842 copy floating point arguments from the fp regs to the gp regs and
843 then jump to FNNAME. If any 32 bit function calls FNNAME, the
844 call should be redirected to the stub instead. If no 32 bit
845 function calls FNNAME, the stub should be discarded. We need to
846 consider any reference to the function, not just a call, because
847 if the address of the function is taken we will need the stub,
848 since the address might be passed to a 32 bit function.
849
850 Section names that look like .mips16.call.FNNAME contain stubs
851 that copy floating point arguments from the gp regs to the fp
852 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
853 then any 16 bit function that calls FNNAME should be redirected
854 to the stub instead. If FNNAME is not a 32 bit function, the
855 stub should be discarded.
856
857 .mips16.call.fp.FNNAME sections are similar, but contain stubs
858 which call FNNAME and then copy the return value from the fp regs
859 to the gp regs. These stubs store the return value in $18 while
860 calling FNNAME; any function which might call one of these stubs
861 must arrange to save $18 around the call. (This case is not
862 needed for 32 bit functions that call 16 bit functions, because
863 16 bit functions always return floating point values in both
864 $f0/$f1 and $2/$3.)
865
866 Note that in all cases FNNAME might be defined statically.
867 Therefore, FNNAME is not used literally. Instead, the relocation
868 information will indicate which symbol the section is for.
869
870 We record any stubs that we find in the symbol table. */
871
872 #define FN_STUB ".mips16.fn."
873 #define CALL_STUB ".mips16.call."
874 #define CALL_FP_STUB ".mips16.call.fp."
875
876 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
877 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
878 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
879 \f
880 /* The format of the first PLT entry in an O32 executable. */
881 static const bfd_vma mips_o32_exec_plt0_entry[] = {
882 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
883 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
884 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
885 0x031cc023, /* subu $24, $24, $28 */
886 0x03e07821, /* move $15, $31 */
887 0x0018c082, /* srl $24, $24, 2 */
888 0x0320f809, /* jalr $25 */
889 0x2718fffe /* subu $24, $24, 2 */
890 };
891
892 /* The format of the first PLT entry in an N32 executable. Different
893 because gp ($28) is not available; we use t2 ($14) instead. */
894 static const bfd_vma mips_n32_exec_plt0_entry[] = {
895 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
896 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
897 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
898 0x030ec023, /* subu $24, $24, $14 */
899 0x03e07821, /* move $15, $31 */
900 0x0018c082, /* srl $24, $24, 2 */
901 0x0320f809, /* jalr $25 */
902 0x2718fffe /* subu $24, $24, 2 */
903 };
904
905 /* The format of the first PLT entry in an N64 executable. Different
906 from N32 because of the increased size of GOT entries. */
907 static const bfd_vma mips_n64_exec_plt0_entry[] = {
908 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
909 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
910 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
911 0x030ec023, /* subu $24, $24, $14 */
912 0x03e07821, /* move $15, $31 */
913 0x0018c0c2, /* srl $24, $24, 3 */
914 0x0320f809, /* jalr $25 */
915 0x2718fffe /* subu $24, $24, 2 */
916 };
917
918 /* The format of subsequent PLT entries. */
919 static const bfd_vma mips_exec_plt_entry[] = {
920 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
921 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
922 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
923 0x03200008 /* jr $25 */
924 };
925
926 /* The format of the first PLT entry in a VxWorks executable. */
927 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
928 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
929 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
930 0x8f390008, /* lw t9, 8(t9) */
931 0x00000000, /* nop */
932 0x03200008, /* jr t9 */
933 0x00000000 /* nop */
934 };
935
936 /* The format of subsequent PLT entries. */
937 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
938 0x10000000, /* b .PLT_resolver */
939 0x24180000, /* li t8, <pltindex> */
940 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
941 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
942 0x8f390000, /* lw t9, 0(t9) */
943 0x00000000, /* nop */
944 0x03200008, /* jr t9 */
945 0x00000000 /* nop */
946 };
947
948 /* The format of the first PLT entry in a VxWorks shared object. */
949 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
950 0x8f990008, /* lw t9, 8(gp) */
951 0x00000000, /* nop */
952 0x03200008, /* jr t9 */
953 0x00000000, /* nop */
954 0x00000000, /* nop */
955 0x00000000 /* nop */
956 };
957
958 /* The format of subsequent PLT entries. */
959 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
960 0x10000000, /* b .PLT_resolver */
961 0x24180000 /* li t8, <pltindex> */
962 };
963 \f
964 /* Look up an entry in a MIPS ELF linker hash table. */
965
966 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
967 ((struct mips_elf_link_hash_entry *) \
968 elf_link_hash_lookup (&(table)->root, (string), (create), \
969 (copy), (follow)))
970
971 /* Traverse a MIPS ELF linker hash table. */
972
973 #define mips_elf_link_hash_traverse(table, func, info) \
974 (elf_link_hash_traverse \
975 (&(table)->root, \
976 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
977 (info)))
978
979 /* Get the MIPS ELF linker hash table from a link_info structure. */
980
981 #define mips_elf_hash_table(p) \
982 ((struct mips_elf_link_hash_table *) ((p)->hash))
983
984 /* Find the base offsets for thread-local storage in this object,
985 for GD/LD and IE/LE respectively. */
986
987 #define TP_OFFSET 0x7000
988 #define DTP_OFFSET 0x8000
989
990 static bfd_vma
991 dtprel_base (struct bfd_link_info *info)
992 {
993 /* If tls_sec is NULL, we should have signalled an error already. */
994 if (elf_hash_table (info)->tls_sec == NULL)
995 return 0;
996 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
997 }
998
999 static bfd_vma
1000 tprel_base (struct bfd_link_info *info)
1001 {
1002 /* If tls_sec is NULL, we should have signalled an error already. */
1003 if (elf_hash_table (info)->tls_sec == NULL)
1004 return 0;
1005 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1006 }
1007
1008 /* Create an entry in a MIPS ELF linker hash table. */
1009
1010 static struct bfd_hash_entry *
1011 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1012 struct bfd_hash_table *table, const char *string)
1013 {
1014 struct mips_elf_link_hash_entry *ret =
1015 (struct mips_elf_link_hash_entry *) entry;
1016
1017 /* Allocate the structure if it has not already been allocated by a
1018 subclass. */
1019 if (ret == NULL)
1020 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1021 if (ret == NULL)
1022 return (struct bfd_hash_entry *) ret;
1023
1024 /* Call the allocation method of the superclass. */
1025 ret = ((struct mips_elf_link_hash_entry *)
1026 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1027 table, string));
1028 if (ret != NULL)
1029 {
1030 /* Set local fields. */
1031 memset (&ret->esym, 0, sizeof (EXTR));
1032 /* We use -2 as a marker to indicate that the information has
1033 not been set. -1 means there is no associated ifd. */
1034 ret->esym.ifd = -2;
1035 ret->la25_stub = 0;
1036 ret->possibly_dynamic_relocs = 0;
1037 ret->fn_stub = NULL;
1038 ret->call_stub = NULL;
1039 ret->call_fp_stub = NULL;
1040 ret->tls_type = GOT_NORMAL;
1041 ret->global_got_area = GGA_NONE;
1042 ret->readonly_reloc = FALSE;
1043 ret->has_static_relocs = FALSE;
1044 ret->no_fn_stub = FALSE;
1045 ret->need_fn_stub = FALSE;
1046 ret->has_nonpic_branches = FALSE;
1047 ret->needs_lazy_stub = FALSE;
1048 }
1049
1050 return (struct bfd_hash_entry *) ret;
1051 }
1052
1053 bfd_boolean
1054 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1055 {
1056 if (!sec->used_by_bfd)
1057 {
1058 struct _mips_elf_section_data *sdata;
1059 bfd_size_type amt = sizeof (*sdata);
1060
1061 sdata = bfd_zalloc (abfd, amt);
1062 if (sdata == NULL)
1063 return FALSE;
1064 sec->used_by_bfd = sdata;
1065 }
1066
1067 return _bfd_elf_new_section_hook (abfd, sec);
1068 }
1069 \f
1070 /* Read ECOFF debugging information from a .mdebug section into a
1071 ecoff_debug_info structure. */
1072
1073 bfd_boolean
1074 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1075 struct ecoff_debug_info *debug)
1076 {
1077 HDRR *symhdr;
1078 const struct ecoff_debug_swap *swap;
1079 char *ext_hdr;
1080
1081 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1082 memset (debug, 0, sizeof (*debug));
1083
1084 ext_hdr = bfd_malloc (swap->external_hdr_size);
1085 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1086 goto error_return;
1087
1088 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1089 swap->external_hdr_size))
1090 goto error_return;
1091
1092 symhdr = &debug->symbolic_header;
1093 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1094
1095 /* The symbolic header contains absolute file offsets and sizes to
1096 read. */
1097 #define READ(ptr, offset, count, size, type) \
1098 if (symhdr->count == 0) \
1099 debug->ptr = NULL; \
1100 else \
1101 { \
1102 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1103 debug->ptr = bfd_malloc (amt); \
1104 if (debug->ptr == NULL) \
1105 goto error_return; \
1106 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1107 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1108 goto error_return; \
1109 }
1110
1111 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1112 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1113 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1114 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1115 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1116 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1117 union aux_ext *);
1118 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1119 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1120 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1121 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1122 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1123 #undef READ
1124
1125 debug->fdr = NULL;
1126
1127 return TRUE;
1128
1129 error_return:
1130 if (ext_hdr != NULL)
1131 free (ext_hdr);
1132 if (debug->line != NULL)
1133 free (debug->line);
1134 if (debug->external_dnr != NULL)
1135 free (debug->external_dnr);
1136 if (debug->external_pdr != NULL)
1137 free (debug->external_pdr);
1138 if (debug->external_sym != NULL)
1139 free (debug->external_sym);
1140 if (debug->external_opt != NULL)
1141 free (debug->external_opt);
1142 if (debug->external_aux != NULL)
1143 free (debug->external_aux);
1144 if (debug->ss != NULL)
1145 free (debug->ss);
1146 if (debug->ssext != NULL)
1147 free (debug->ssext);
1148 if (debug->external_fdr != NULL)
1149 free (debug->external_fdr);
1150 if (debug->external_rfd != NULL)
1151 free (debug->external_rfd);
1152 if (debug->external_ext != NULL)
1153 free (debug->external_ext);
1154 return FALSE;
1155 }
1156 \f
1157 /* Swap RPDR (runtime procedure table entry) for output. */
1158
1159 static void
1160 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1161 {
1162 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1163 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1164 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1165 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1166 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1167 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1168
1169 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1170 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1171
1172 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1173 }
1174
1175 /* Create a runtime procedure table from the .mdebug section. */
1176
1177 static bfd_boolean
1178 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1179 struct bfd_link_info *info, asection *s,
1180 struct ecoff_debug_info *debug)
1181 {
1182 const struct ecoff_debug_swap *swap;
1183 HDRR *hdr = &debug->symbolic_header;
1184 RPDR *rpdr, *rp;
1185 struct rpdr_ext *erp;
1186 void *rtproc;
1187 struct pdr_ext *epdr;
1188 struct sym_ext *esym;
1189 char *ss, **sv;
1190 char *str;
1191 bfd_size_type size;
1192 bfd_size_type count;
1193 unsigned long sindex;
1194 unsigned long i;
1195 PDR pdr;
1196 SYMR sym;
1197 const char *no_name_func = _("static procedure (no name)");
1198
1199 epdr = NULL;
1200 rpdr = NULL;
1201 esym = NULL;
1202 ss = NULL;
1203 sv = NULL;
1204
1205 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1206
1207 sindex = strlen (no_name_func) + 1;
1208 count = hdr->ipdMax;
1209 if (count > 0)
1210 {
1211 size = swap->external_pdr_size;
1212
1213 epdr = bfd_malloc (size * count);
1214 if (epdr == NULL)
1215 goto error_return;
1216
1217 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1218 goto error_return;
1219
1220 size = sizeof (RPDR);
1221 rp = rpdr = bfd_malloc (size * count);
1222 if (rpdr == NULL)
1223 goto error_return;
1224
1225 size = sizeof (char *);
1226 sv = bfd_malloc (size * count);
1227 if (sv == NULL)
1228 goto error_return;
1229
1230 count = hdr->isymMax;
1231 size = swap->external_sym_size;
1232 esym = bfd_malloc (size * count);
1233 if (esym == NULL)
1234 goto error_return;
1235
1236 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1237 goto error_return;
1238
1239 count = hdr->issMax;
1240 ss = bfd_malloc (count);
1241 if (ss == NULL)
1242 goto error_return;
1243 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1244 goto error_return;
1245
1246 count = hdr->ipdMax;
1247 for (i = 0; i < (unsigned long) count; i++, rp++)
1248 {
1249 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1250 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1251 rp->adr = sym.value;
1252 rp->regmask = pdr.regmask;
1253 rp->regoffset = pdr.regoffset;
1254 rp->fregmask = pdr.fregmask;
1255 rp->fregoffset = pdr.fregoffset;
1256 rp->frameoffset = pdr.frameoffset;
1257 rp->framereg = pdr.framereg;
1258 rp->pcreg = pdr.pcreg;
1259 rp->irpss = sindex;
1260 sv[i] = ss + sym.iss;
1261 sindex += strlen (sv[i]) + 1;
1262 }
1263 }
1264
1265 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1266 size = BFD_ALIGN (size, 16);
1267 rtproc = bfd_alloc (abfd, size);
1268 if (rtproc == NULL)
1269 {
1270 mips_elf_hash_table (info)->procedure_count = 0;
1271 goto error_return;
1272 }
1273
1274 mips_elf_hash_table (info)->procedure_count = count + 2;
1275
1276 erp = rtproc;
1277 memset (erp, 0, sizeof (struct rpdr_ext));
1278 erp++;
1279 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1280 strcpy (str, no_name_func);
1281 str += strlen (no_name_func) + 1;
1282 for (i = 0; i < count; i++)
1283 {
1284 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1285 strcpy (str, sv[i]);
1286 str += strlen (sv[i]) + 1;
1287 }
1288 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1289
1290 /* Set the size and contents of .rtproc section. */
1291 s->size = size;
1292 s->contents = rtproc;
1293
1294 /* Skip this section later on (I don't think this currently
1295 matters, but someday it might). */
1296 s->map_head.link_order = NULL;
1297
1298 if (epdr != NULL)
1299 free (epdr);
1300 if (rpdr != NULL)
1301 free (rpdr);
1302 if (esym != NULL)
1303 free (esym);
1304 if (ss != NULL)
1305 free (ss);
1306 if (sv != NULL)
1307 free (sv);
1308
1309 return TRUE;
1310
1311 error_return:
1312 if (epdr != NULL)
1313 free (epdr);
1314 if (rpdr != NULL)
1315 free (rpdr);
1316 if (esym != NULL)
1317 free (esym);
1318 if (ss != NULL)
1319 free (ss);
1320 if (sv != NULL)
1321 free (sv);
1322 return FALSE;
1323 }
1324 \f
1325 /* We're going to create a stub for H. Create a symbol for the stub's
1326 value and size, to help make the disassembly easier to read. */
1327
1328 static bfd_boolean
1329 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1330 struct mips_elf_link_hash_entry *h,
1331 const char *prefix, asection *s, bfd_vma value,
1332 bfd_vma size)
1333 {
1334 struct bfd_link_hash_entry *bh;
1335 struct elf_link_hash_entry *elfh;
1336 const char *name;
1337
1338 /* Create a new symbol. */
1339 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1340 bh = NULL;
1341 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1342 BSF_LOCAL, s, value, NULL,
1343 TRUE, FALSE, &bh))
1344 return FALSE;
1345
1346 /* Make it a local function. */
1347 elfh = (struct elf_link_hash_entry *) bh;
1348 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1349 elfh->size = size;
1350 elfh->forced_local = 1;
1351 return TRUE;
1352 }
1353
1354 /* We're about to redefine H. Create a symbol to represent H's
1355 current value and size, to help make the disassembly easier
1356 to read. */
1357
1358 static bfd_boolean
1359 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1360 struct mips_elf_link_hash_entry *h,
1361 const char *prefix)
1362 {
1363 struct bfd_link_hash_entry *bh;
1364 struct elf_link_hash_entry *elfh;
1365 const char *name;
1366 asection *s;
1367 bfd_vma value;
1368
1369 /* Read the symbol's value. */
1370 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1371 || h->root.root.type == bfd_link_hash_defweak);
1372 s = h->root.root.u.def.section;
1373 value = h->root.root.u.def.value;
1374
1375 /* Create a new symbol. */
1376 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1377 bh = NULL;
1378 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1379 BSF_LOCAL, s, value, NULL,
1380 TRUE, FALSE, &bh))
1381 return FALSE;
1382
1383 /* Make it local and copy the other attributes from H. */
1384 elfh = (struct elf_link_hash_entry *) bh;
1385 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1386 elfh->other = h->root.other;
1387 elfh->size = h->root.size;
1388 elfh->forced_local = 1;
1389 return TRUE;
1390 }
1391
1392 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1393 function rather than to a hard-float stub. */
1394
1395 static bfd_boolean
1396 section_allows_mips16_refs_p (asection *section)
1397 {
1398 const char *name;
1399
1400 name = bfd_get_section_name (section->owner, section);
1401 return (FN_STUB_P (name)
1402 || CALL_STUB_P (name)
1403 || CALL_FP_STUB_P (name)
1404 || strcmp (name, ".pdr") == 0);
1405 }
1406
1407 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1408 stub section of some kind. Return the R_SYMNDX of the target
1409 function, or 0 if we can't decide which function that is. */
1410
1411 static unsigned long
1412 mips16_stub_symndx (asection *sec, const Elf_Internal_Rela *relocs,
1413 const Elf_Internal_Rela *relend)
1414 {
1415 const Elf_Internal_Rela *rel;
1416
1417 /* Trust the first R_MIPS_NONE relocation, if any. */
1418 for (rel = relocs; rel < relend; rel++)
1419 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1420 return ELF_R_SYM (sec->owner, rel->r_info);
1421
1422 /* Otherwise trust the first relocation, whatever its kind. This is
1423 the traditional behavior. */
1424 if (relocs < relend)
1425 return ELF_R_SYM (sec->owner, relocs->r_info);
1426
1427 return 0;
1428 }
1429
1430 /* Check the mips16 stubs for a particular symbol, and see if we can
1431 discard them. */
1432
1433 static void
1434 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1435 struct mips_elf_link_hash_entry *h)
1436 {
1437 /* Dynamic symbols must use the standard call interface, in case other
1438 objects try to call them. */
1439 if (h->fn_stub != NULL
1440 && h->root.dynindx != -1)
1441 {
1442 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1443 h->need_fn_stub = TRUE;
1444 }
1445
1446 if (h->fn_stub != NULL
1447 && ! h->need_fn_stub)
1448 {
1449 /* We don't need the fn_stub; the only references to this symbol
1450 are 16 bit calls. Clobber the size to 0 to prevent it from
1451 being included in the link. */
1452 h->fn_stub->size = 0;
1453 h->fn_stub->flags &= ~SEC_RELOC;
1454 h->fn_stub->reloc_count = 0;
1455 h->fn_stub->flags |= SEC_EXCLUDE;
1456 }
1457
1458 if (h->call_stub != NULL
1459 && ELF_ST_IS_MIPS16 (h->root.other))
1460 {
1461 /* We don't need the call_stub; this is a 16 bit function, so
1462 calls from other 16 bit functions are OK. Clobber the size
1463 to 0 to prevent it from being included in the link. */
1464 h->call_stub->size = 0;
1465 h->call_stub->flags &= ~SEC_RELOC;
1466 h->call_stub->reloc_count = 0;
1467 h->call_stub->flags |= SEC_EXCLUDE;
1468 }
1469
1470 if (h->call_fp_stub != NULL
1471 && ELF_ST_IS_MIPS16 (h->root.other))
1472 {
1473 /* We don't need the call_stub; this is a 16 bit function, so
1474 calls from other 16 bit functions are OK. Clobber the size
1475 to 0 to prevent it from being included in the link. */
1476 h->call_fp_stub->size = 0;
1477 h->call_fp_stub->flags &= ~SEC_RELOC;
1478 h->call_fp_stub->reloc_count = 0;
1479 h->call_fp_stub->flags |= SEC_EXCLUDE;
1480 }
1481 }
1482
1483 /* Hashtable callbacks for mips_elf_la25_stubs. */
1484
1485 static hashval_t
1486 mips_elf_la25_stub_hash (const void *entry_)
1487 {
1488 const struct mips_elf_la25_stub *entry;
1489
1490 entry = (struct mips_elf_la25_stub *) entry_;
1491 return entry->h->root.root.u.def.section->id
1492 + entry->h->root.root.u.def.value;
1493 }
1494
1495 static int
1496 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1497 {
1498 const struct mips_elf_la25_stub *entry1, *entry2;
1499
1500 entry1 = (struct mips_elf_la25_stub *) entry1_;
1501 entry2 = (struct mips_elf_la25_stub *) entry2_;
1502 return ((entry1->h->root.root.u.def.section
1503 == entry2->h->root.root.u.def.section)
1504 && (entry1->h->root.root.u.def.value
1505 == entry2->h->root.root.u.def.value));
1506 }
1507
1508 /* Called by the linker to set up the la25 stub-creation code. FN is
1509 the linker's implementation of add_stub_function. Return true on
1510 success. */
1511
1512 bfd_boolean
1513 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1514 asection *(*fn) (const char *, asection *,
1515 asection *))
1516 {
1517 struct mips_elf_link_hash_table *htab;
1518
1519 htab = mips_elf_hash_table (info);
1520 htab->add_stub_section = fn;
1521 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1522 mips_elf_la25_stub_eq, NULL);
1523 if (htab->la25_stubs == NULL)
1524 return FALSE;
1525
1526 return TRUE;
1527 }
1528
1529 /* Return true if H is a locally-defined PIC function, in the sense
1530 that it might need $25 to be valid on entry. Note that MIPS16
1531 functions never need $25 to be valid on entry; they set up $gp
1532 using PC-relative instructions instead. */
1533
1534 static bfd_boolean
1535 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1536 {
1537 return ((h->root.root.type == bfd_link_hash_defined
1538 || h->root.root.type == bfd_link_hash_defweak)
1539 && h->root.def_regular
1540 && !bfd_is_abs_section (h->root.root.u.def.section)
1541 && !ELF_ST_IS_MIPS16 (h->root.other)
1542 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1543 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1544 }
1545
1546 /* STUB describes an la25 stub that we have decided to implement
1547 by inserting an LUI/ADDIU pair before the target function.
1548 Create the section and redirect the function symbol to it. */
1549
1550 static bfd_boolean
1551 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1552 struct bfd_link_info *info)
1553 {
1554 struct mips_elf_link_hash_table *htab;
1555 char *name;
1556 asection *s, *input_section;
1557 unsigned int align;
1558
1559 htab = mips_elf_hash_table (info);
1560
1561 /* Create a unique name for the new section. */
1562 name = bfd_malloc (11 + sizeof (".text.stub."));
1563 if (name == NULL)
1564 return FALSE;
1565 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1566
1567 /* Create the section. */
1568 input_section = stub->h->root.root.u.def.section;
1569 s = htab->add_stub_section (name, input_section,
1570 input_section->output_section);
1571 if (s == NULL)
1572 return FALSE;
1573
1574 /* Make sure that any padding goes before the stub. */
1575 align = input_section->alignment_power;
1576 if (!bfd_set_section_alignment (s->owner, s, align))
1577 return FALSE;
1578 if (align > 3)
1579 s->size = (1 << align) - 8;
1580
1581 /* Create a symbol for the stub. */
1582 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1583 stub->stub_section = s;
1584 stub->offset = s->size;
1585
1586 /* Allocate room for it. */
1587 s->size += 8;
1588 return TRUE;
1589 }
1590
1591 /* STUB describes an la25 stub that we have decided to implement
1592 with a separate trampoline. Allocate room for it and redirect
1593 the function symbol to it. */
1594
1595 static bfd_boolean
1596 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1597 struct bfd_link_info *info)
1598 {
1599 struct mips_elf_link_hash_table *htab;
1600 asection *s;
1601
1602 htab = mips_elf_hash_table (info);
1603
1604 /* Create a trampoline section, if we haven't already. */
1605 s = htab->strampoline;
1606 if (s == NULL)
1607 {
1608 asection *input_section = stub->h->root.root.u.def.section;
1609 s = htab->add_stub_section (".text", NULL,
1610 input_section->output_section);
1611 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1612 return FALSE;
1613 htab->strampoline = s;
1614 }
1615
1616 /* Create a symbol for the stub. */
1617 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1618 stub->stub_section = s;
1619 stub->offset = s->size;
1620
1621 /* Allocate room for it. */
1622 s->size += 16;
1623 return TRUE;
1624 }
1625
1626 /* H describes a symbol that needs an la25 stub. Make sure that an
1627 appropriate stub exists and point H at it. */
1628
1629 static bfd_boolean
1630 mips_elf_add_la25_stub (struct bfd_link_info *info,
1631 struct mips_elf_link_hash_entry *h)
1632 {
1633 struct mips_elf_link_hash_table *htab;
1634 struct mips_elf_la25_stub search, *stub;
1635 bfd_boolean use_trampoline_p;
1636 asection *s;
1637 bfd_vma value;
1638 void **slot;
1639
1640 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1641 of the section and if we would need no more than 2 nops. */
1642 s = h->root.root.u.def.section;
1643 value = h->root.root.u.def.value;
1644 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1645
1646 /* Describe the stub we want. */
1647 search.stub_section = NULL;
1648 search.offset = 0;
1649 search.h = h;
1650
1651 /* See if we've already created an equivalent stub. */
1652 htab = mips_elf_hash_table (info);
1653 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1654 if (slot == NULL)
1655 return FALSE;
1656
1657 stub = (struct mips_elf_la25_stub *) *slot;
1658 if (stub != NULL)
1659 {
1660 /* We can reuse the existing stub. */
1661 h->la25_stub = stub;
1662 return TRUE;
1663 }
1664
1665 /* Create a permanent copy of ENTRY and add it to the hash table. */
1666 stub = bfd_malloc (sizeof (search));
1667 if (stub == NULL)
1668 return FALSE;
1669 *stub = search;
1670 *slot = stub;
1671
1672 h->la25_stub = stub;
1673 return (use_trampoline_p
1674 ? mips_elf_add_la25_trampoline (stub, info)
1675 : mips_elf_add_la25_intro (stub, info));
1676 }
1677
1678 /* A mips_elf_link_hash_traverse callback that is called before sizing
1679 sections. DATA points to a mips_htab_traverse_info structure. */
1680
1681 static bfd_boolean
1682 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1683 {
1684 struct mips_htab_traverse_info *hti;
1685
1686 hti = (struct mips_htab_traverse_info *) data;
1687 if (h->root.root.type == bfd_link_hash_warning)
1688 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1689
1690 if (!hti->info->relocatable)
1691 mips_elf_check_mips16_stubs (hti->info, h);
1692
1693 if (mips_elf_local_pic_function_p (h))
1694 {
1695 /* H is a function that might need $25 to be valid on entry.
1696 If we're creating a non-PIC relocatable object, mark H as
1697 being PIC. If we're creating a non-relocatable object with
1698 non-PIC branches and jumps to H, make sure that H has an la25
1699 stub. */
1700 if (hti->info->relocatable)
1701 {
1702 if (!PIC_OBJECT_P (hti->output_bfd))
1703 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1704 }
1705 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1706 {
1707 hti->error = TRUE;
1708 return FALSE;
1709 }
1710 }
1711 return TRUE;
1712 }
1713 \f
1714 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1715 Most mips16 instructions are 16 bits, but these instructions
1716 are 32 bits.
1717
1718 The format of these instructions is:
1719
1720 +--------------+--------------------------------+
1721 | JALX | X| Imm 20:16 | Imm 25:21 |
1722 +--------------+--------------------------------+
1723 | Immediate 15:0 |
1724 +-----------------------------------------------+
1725
1726 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1727 Note that the immediate value in the first word is swapped.
1728
1729 When producing a relocatable object file, R_MIPS16_26 is
1730 handled mostly like R_MIPS_26. In particular, the addend is
1731 stored as a straight 26-bit value in a 32-bit instruction.
1732 (gas makes life simpler for itself by never adjusting a
1733 R_MIPS16_26 reloc to be against a section, so the addend is
1734 always zero). However, the 32 bit instruction is stored as 2
1735 16-bit values, rather than a single 32-bit value. In a
1736 big-endian file, the result is the same; in a little-endian
1737 file, the two 16-bit halves of the 32 bit value are swapped.
1738 This is so that a disassembler can recognize the jal
1739 instruction.
1740
1741 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1742 instruction stored as two 16-bit values. The addend A is the
1743 contents of the targ26 field. The calculation is the same as
1744 R_MIPS_26. When storing the calculated value, reorder the
1745 immediate value as shown above, and don't forget to store the
1746 value as two 16-bit values.
1747
1748 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1749 defined as
1750
1751 big-endian:
1752 +--------+----------------------+
1753 | | |
1754 | | targ26-16 |
1755 |31 26|25 0|
1756 +--------+----------------------+
1757
1758 little-endian:
1759 +----------+------+-------------+
1760 | | | |
1761 | sub1 | | sub2 |
1762 |0 9|10 15|16 31|
1763 +----------+--------------------+
1764 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1765 ((sub1 << 16) | sub2)).
1766
1767 When producing a relocatable object file, the calculation is
1768 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1769 When producing a fully linked file, the calculation is
1770 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1771 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1772
1773 The table below lists the other MIPS16 instruction relocations.
1774 Each one is calculated in the same way as the non-MIPS16 relocation
1775 given on the right, but using the extended MIPS16 layout of 16-bit
1776 immediate fields:
1777
1778 R_MIPS16_GPREL R_MIPS_GPREL16
1779 R_MIPS16_GOT16 R_MIPS_GOT16
1780 R_MIPS16_CALL16 R_MIPS_CALL16
1781 R_MIPS16_HI16 R_MIPS_HI16
1782 R_MIPS16_LO16 R_MIPS_LO16
1783
1784 A typical instruction will have a format like this:
1785
1786 +--------------+--------------------------------+
1787 | EXTEND | Imm 10:5 | Imm 15:11 |
1788 +--------------+--------------------------------+
1789 | Major | rx | ry | Imm 4:0 |
1790 +--------------+--------------------------------+
1791
1792 EXTEND is the five bit value 11110. Major is the instruction
1793 opcode.
1794
1795 All we need to do here is shuffle the bits appropriately.
1796 As above, the two 16-bit halves must be swapped on a
1797 little-endian system. */
1798
1799 static inline bfd_boolean
1800 mips16_reloc_p (int r_type)
1801 {
1802 switch (r_type)
1803 {
1804 case R_MIPS16_26:
1805 case R_MIPS16_GPREL:
1806 case R_MIPS16_GOT16:
1807 case R_MIPS16_CALL16:
1808 case R_MIPS16_HI16:
1809 case R_MIPS16_LO16:
1810 return TRUE;
1811
1812 default:
1813 return FALSE;
1814 }
1815 }
1816
1817 static inline bfd_boolean
1818 got16_reloc_p (int r_type)
1819 {
1820 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1821 }
1822
1823 static inline bfd_boolean
1824 call16_reloc_p (int r_type)
1825 {
1826 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1827 }
1828
1829 static inline bfd_boolean
1830 hi16_reloc_p (int r_type)
1831 {
1832 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1833 }
1834
1835 static inline bfd_boolean
1836 lo16_reloc_p (int r_type)
1837 {
1838 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1839 }
1840
1841 static inline bfd_boolean
1842 mips16_call_reloc_p (int r_type)
1843 {
1844 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1845 }
1846
1847 void
1848 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1849 bfd_boolean jal_shuffle, bfd_byte *data)
1850 {
1851 bfd_vma extend, insn, val;
1852
1853 if (!mips16_reloc_p (r_type))
1854 return;
1855
1856 /* Pick up the mips16 extend instruction and the real instruction. */
1857 extend = bfd_get_16 (abfd, data);
1858 insn = bfd_get_16 (abfd, data + 2);
1859 if (r_type == R_MIPS16_26)
1860 {
1861 if (jal_shuffle)
1862 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1863 | ((extend & 0x1f) << 21) | insn;
1864 else
1865 val = extend << 16 | insn;
1866 }
1867 else
1868 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1869 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1870 bfd_put_32 (abfd, val, data);
1871 }
1872
1873 void
1874 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1875 bfd_boolean jal_shuffle, bfd_byte *data)
1876 {
1877 bfd_vma extend, insn, val;
1878
1879 if (!mips16_reloc_p (r_type))
1880 return;
1881
1882 val = bfd_get_32 (abfd, data);
1883 if (r_type == R_MIPS16_26)
1884 {
1885 if (jal_shuffle)
1886 {
1887 insn = val & 0xffff;
1888 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1889 | ((val >> 21) & 0x1f);
1890 }
1891 else
1892 {
1893 insn = val & 0xffff;
1894 extend = val >> 16;
1895 }
1896 }
1897 else
1898 {
1899 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1900 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1901 }
1902 bfd_put_16 (abfd, insn, data + 2);
1903 bfd_put_16 (abfd, extend, data);
1904 }
1905
1906 bfd_reloc_status_type
1907 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1908 arelent *reloc_entry, asection *input_section,
1909 bfd_boolean relocatable, void *data, bfd_vma gp)
1910 {
1911 bfd_vma relocation;
1912 bfd_signed_vma val;
1913 bfd_reloc_status_type status;
1914
1915 if (bfd_is_com_section (symbol->section))
1916 relocation = 0;
1917 else
1918 relocation = symbol->value;
1919
1920 relocation += symbol->section->output_section->vma;
1921 relocation += symbol->section->output_offset;
1922
1923 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1924 return bfd_reloc_outofrange;
1925
1926 /* Set val to the offset into the section or symbol. */
1927 val = reloc_entry->addend;
1928
1929 _bfd_mips_elf_sign_extend (val, 16);
1930
1931 /* Adjust val for the final section location and GP value. If we
1932 are producing relocatable output, we don't want to do this for
1933 an external symbol. */
1934 if (! relocatable
1935 || (symbol->flags & BSF_SECTION_SYM) != 0)
1936 val += relocation - gp;
1937
1938 if (reloc_entry->howto->partial_inplace)
1939 {
1940 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1941 (bfd_byte *) data
1942 + reloc_entry->address);
1943 if (status != bfd_reloc_ok)
1944 return status;
1945 }
1946 else
1947 reloc_entry->addend = val;
1948
1949 if (relocatable)
1950 reloc_entry->address += input_section->output_offset;
1951
1952 return bfd_reloc_ok;
1953 }
1954
1955 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1956 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1957 that contains the relocation field and DATA points to the start of
1958 INPUT_SECTION. */
1959
1960 struct mips_hi16
1961 {
1962 struct mips_hi16 *next;
1963 bfd_byte *data;
1964 asection *input_section;
1965 arelent rel;
1966 };
1967
1968 /* FIXME: This should not be a static variable. */
1969
1970 static struct mips_hi16 *mips_hi16_list;
1971
1972 /* A howto special_function for REL *HI16 relocations. We can only
1973 calculate the correct value once we've seen the partnering
1974 *LO16 relocation, so just save the information for later.
1975
1976 The ABI requires that the *LO16 immediately follow the *HI16.
1977 However, as a GNU extension, we permit an arbitrary number of
1978 *HI16s to be associated with a single *LO16. This significantly
1979 simplies the relocation handling in gcc. */
1980
1981 bfd_reloc_status_type
1982 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1983 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1984 asection *input_section, bfd *output_bfd,
1985 char **error_message ATTRIBUTE_UNUSED)
1986 {
1987 struct mips_hi16 *n;
1988
1989 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1990 return bfd_reloc_outofrange;
1991
1992 n = bfd_malloc (sizeof *n);
1993 if (n == NULL)
1994 return bfd_reloc_outofrange;
1995
1996 n->next = mips_hi16_list;
1997 n->data = data;
1998 n->input_section = input_section;
1999 n->rel = *reloc_entry;
2000 mips_hi16_list = n;
2001
2002 if (output_bfd != NULL)
2003 reloc_entry->address += input_section->output_offset;
2004
2005 return bfd_reloc_ok;
2006 }
2007
2008 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2009 like any other 16-bit relocation when applied to global symbols, but is
2010 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2011
2012 bfd_reloc_status_type
2013 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2014 void *data, asection *input_section,
2015 bfd *output_bfd, char **error_message)
2016 {
2017 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2018 || bfd_is_und_section (bfd_get_section (symbol))
2019 || bfd_is_com_section (bfd_get_section (symbol)))
2020 /* The relocation is against a global symbol. */
2021 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2022 input_section, output_bfd,
2023 error_message);
2024
2025 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2026 input_section, output_bfd, error_message);
2027 }
2028
2029 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2030 is a straightforward 16 bit inplace relocation, but we must deal with
2031 any partnering high-part relocations as well. */
2032
2033 bfd_reloc_status_type
2034 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2035 void *data, asection *input_section,
2036 bfd *output_bfd, char **error_message)
2037 {
2038 bfd_vma vallo;
2039 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2040
2041 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2042 return bfd_reloc_outofrange;
2043
2044 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2045 location);
2046 vallo = bfd_get_32 (abfd, location);
2047 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2048 location);
2049
2050 while (mips_hi16_list != NULL)
2051 {
2052 bfd_reloc_status_type ret;
2053 struct mips_hi16 *hi;
2054
2055 hi = mips_hi16_list;
2056
2057 /* R_MIPS*_GOT16 relocations are something of a special case. We
2058 want to install the addend in the same way as for a R_MIPS*_HI16
2059 relocation (with a rightshift of 16). However, since GOT16
2060 relocations can also be used with global symbols, their howto
2061 has a rightshift of 0. */
2062 if (hi->rel.howto->type == R_MIPS_GOT16)
2063 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2064 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2065 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2066
2067 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2068 carry or borrow will induce a change of +1 or -1 in the high part. */
2069 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2070
2071 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2072 hi->input_section, output_bfd,
2073 error_message);
2074 if (ret != bfd_reloc_ok)
2075 return ret;
2076
2077 mips_hi16_list = hi->next;
2078 free (hi);
2079 }
2080
2081 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2082 input_section, output_bfd,
2083 error_message);
2084 }
2085
2086 /* A generic howto special_function. This calculates and installs the
2087 relocation itself, thus avoiding the oft-discussed problems in
2088 bfd_perform_relocation and bfd_install_relocation. */
2089
2090 bfd_reloc_status_type
2091 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2092 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2093 asection *input_section, bfd *output_bfd,
2094 char **error_message ATTRIBUTE_UNUSED)
2095 {
2096 bfd_signed_vma val;
2097 bfd_reloc_status_type status;
2098 bfd_boolean relocatable;
2099
2100 relocatable = (output_bfd != NULL);
2101
2102 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2103 return bfd_reloc_outofrange;
2104
2105 /* Build up the field adjustment in VAL. */
2106 val = 0;
2107 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2108 {
2109 /* Either we're calculating the final field value or we have a
2110 relocation against a section symbol. Add in the section's
2111 offset or address. */
2112 val += symbol->section->output_section->vma;
2113 val += symbol->section->output_offset;
2114 }
2115
2116 if (!relocatable)
2117 {
2118 /* We're calculating the final field value. Add in the symbol's value
2119 and, if pc-relative, subtract the address of the field itself. */
2120 val += symbol->value;
2121 if (reloc_entry->howto->pc_relative)
2122 {
2123 val -= input_section->output_section->vma;
2124 val -= input_section->output_offset;
2125 val -= reloc_entry->address;
2126 }
2127 }
2128
2129 /* VAL is now the final adjustment. If we're keeping this relocation
2130 in the output file, and if the relocation uses a separate addend,
2131 we just need to add VAL to that addend. Otherwise we need to add
2132 VAL to the relocation field itself. */
2133 if (relocatable && !reloc_entry->howto->partial_inplace)
2134 reloc_entry->addend += val;
2135 else
2136 {
2137 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2138
2139 /* Add in the separate addend, if any. */
2140 val += reloc_entry->addend;
2141
2142 /* Add VAL to the relocation field. */
2143 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2144 location);
2145 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2146 location);
2147 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2148 location);
2149
2150 if (status != bfd_reloc_ok)
2151 return status;
2152 }
2153
2154 if (relocatable)
2155 reloc_entry->address += input_section->output_offset;
2156
2157 return bfd_reloc_ok;
2158 }
2159 \f
2160 /* Swap an entry in a .gptab section. Note that these routines rely
2161 on the equivalence of the two elements of the union. */
2162
2163 static void
2164 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2165 Elf32_gptab *in)
2166 {
2167 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2168 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2169 }
2170
2171 static void
2172 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2173 Elf32_External_gptab *ex)
2174 {
2175 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2176 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2177 }
2178
2179 static void
2180 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2181 Elf32_External_compact_rel *ex)
2182 {
2183 H_PUT_32 (abfd, in->id1, ex->id1);
2184 H_PUT_32 (abfd, in->num, ex->num);
2185 H_PUT_32 (abfd, in->id2, ex->id2);
2186 H_PUT_32 (abfd, in->offset, ex->offset);
2187 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2188 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2189 }
2190
2191 static void
2192 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2193 Elf32_External_crinfo *ex)
2194 {
2195 unsigned long l;
2196
2197 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2198 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2199 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2200 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2201 H_PUT_32 (abfd, l, ex->info);
2202 H_PUT_32 (abfd, in->konst, ex->konst);
2203 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2204 }
2205 \f
2206 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2207 routines swap this structure in and out. They are used outside of
2208 BFD, so they are globally visible. */
2209
2210 void
2211 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2212 Elf32_RegInfo *in)
2213 {
2214 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2215 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2216 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2217 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2218 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2219 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2220 }
2221
2222 void
2223 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2224 Elf32_External_RegInfo *ex)
2225 {
2226 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2227 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2228 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2229 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2230 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2231 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2232 }
2233
2234 /* In the 64 bit ABI, the .MIPS.options section holds register
2235 information in an Elf64_Reginfo structure. These routines swap
2236 them in and out. They are globally visible because they are used
2237 outside of BFD. These routines are here so that gas can call them
2238 without worrying about whether the 64 bit ABI has been included. */
2239
2240 void
2241 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2242 Elf64_Internal_RegInfo *in)
2243 {
2244 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2245 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2246 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2247 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2248 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2249 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2250 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2251 }
2252
2253 void
2254 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2255 Elf64_External_RegInfo *ex)
2256 {
2257 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2258 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2259 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2260 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2261 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2262 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2263 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2264 }
2265
2266 /* Swap in an options header. */
2267
2268 void
2269 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2270 Elf_Internal_Options *in)
2271 {
2272 in->kind = H_GET_8 (abfd, ex->kind);
2273 in->size = H_GET_8 (abfd, ex->size);
2274 in->section = H_GET_16 (abfd, ex->section);
2275 in->info = H_GET_32 (abfd, ex->info);
2276 }
2277
2278 /* Swap out an options header. */
2279
2280 void
2281 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2282 Elf_External_Options *ex)
2283 {
2284 H_PUT_8 (abfd, in->kind, ex->kind);
2285 H_PUT_8 (abfd, in->size, ex->size);
2286 H_PUT_16 (abfd, in->section, ex->section);
2287 H_PUT_32 (abfd, in->info, ex->info);
2288 }
2289 \f
2290 /* This function is called via qsort() to sort the dynamic relocation
2291 entries by increasing r_symndx value. */
2292
2293 static int
2294 sort_dynamic_relocs (const void *arg1, const void *arg2)
2295 {
2296 Elf_Internal_Rela int_reloc1;
2297 Elf_Internal_Rela int_reloc2;
2298 int diff;
2299
2300 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2301 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2302
2303 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2304 if (diff != 0)
2305 return diff;
2306
2307 if (int_reloc1.r_offset < int_reloc2.r_offset)
2308 return -1;
2309 if (int_reloc1.r_offset > int_reloc2.r_offset)
2310 return 1;
2311 return 0;
2312 }
2313
2314 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2315
2316 static int
2317 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2318 const void *arg2 ATTRIBUTE_UNUSED)
2319 {
2320 #ifdef BFD64
2321 Elf_Internal_Rela int_reloc1[3];
2322 Elf_Internal_Rela int_reloc2[3];
2323
2324 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2325 (reldyn_sorting_bfd, arg1, int_reloc1);
2326 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2327 (reldyn_sorting_bfd, arg2, int_reloc2);
2328
2329 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2330 return -1;
2331 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2332 return 1;
2333
2334 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2335 return -1;
2336 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2337 return 1;
2338 return 0;
2339 #else
2340 abort ();
2341 #endif
2342 }
2343
2344
2345 /* This routine is used to write out ECOFF debugging external symbol
2346 information. It is called via mips_elf_link_hash_traverse. The
2347 ECOFF external symbol information must match the ELF external
2348 symbol information. Unfortunately, at this point we don't know
2349 whether a symbol is required by reloc information, so the two
2350 tables may wind up being different. We must sort out the external
2351 symbol information before we can set the final size of the .mdebug
2352 section, and we must set the size of the .mdebug section before we
2353 can relocate any sections, and we can't know which symbols are
2354 required by relocation until we relocate the sections.
2355 Fortunately, it is relatively unlikely that any symbol will be
2356 stripped but required by a reloc. In particular, it can not happen
2357 when generating a final executable. */
2358
2359 static bfd_boolean
2360 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2361 {
2362 struct extsym_info *einfo = data;
2363 bfd_boolean strip;
2364 asection *sec, *output_section;
2365
2366 if (h->root.root.type == bfd_link_hash_warning)
2367 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2368
2369 if (h->root.indx == -2)
2370 strip = FALSE;
2371 else if ((h->root.def_dynamic
2372 || h->root.ref_dynamic
2373 || h->root.type == bfd_link_hash_new)
2374 && !h->root.def_regular
2375 && !h->root.ref_regular)
2376 strip = TRUE;
2377 else if (einfo->info->strip == strip_all
2378 || (einfo->info->strip == strip_some
2379 && bfd_hash_lookup (einfo->info->keep_hash,
2380 h->root.root.root.string,
2381 FALSE, FALSE) == NULL))
2382 strip = TRUE;
2383 else
2384 strip = FALSE;
2385
2386 if (strip)
2387 return TRUE;
2388
2389 if (h->esym.ifd == -2)
2390 {
2391 h->esym.jmptbl = 0;
2392 h->esym.cobol_main = 0;
2393 h->esym.weakext = 0;
2394 h->esym.reserved = 0;
2395 h->esym.ifd = ifdNil;
2396 h->esym.asym.value = 0;
2397 h->esym.asym.st = stGlobal;
2398
2399 if (h->root.root.type == bfd_link_hash_undefined
2400 || h->root.root.type == bfd_link_hash_undefweak)
2401 {
2402 const char *name;
2403
2404 /* Use undefined class. Also, set class and type for some
2405 special symbols. */
2406 name = h->root.root.root.string;
2407 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2408 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2409 {
2410 h->esym.asym.sc = scData;
2411 h->esym.asym.st = stLabel;
2412 h->esym.asym.value = 0;
2413 }
2414 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2415 {
2416 h->esym.asym.sc = scAbs;
2417 h->esym.asym.st = stLabel;
2418 h->esym.asym.value =
2419 mips_elf_hash_table (einfo->info)->procedure_count;
2420 }
2421 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2422 {
2423 h->esym.asym.sc = scAbs;
2424 h->esym.asym.st = stLabel;
2425 h->esym.asym.value = elf_gp (einfo->abfd);
2426 }
2427 else
2428 h->esym.asym.sc = scUndefined;
2429 }
2430 else if (h->root.root.type != bfd_link_hash_defined
2431 && h->root.root.type != bfd_link_hash_defweak)
2432 h->esym.asym.sc = scAbs;
2433 else
2434 {
2435 const char *name;
2436
2437 sec = h->root.root.u.def.section;
2438 output_section = sec->output_section;
2439
2440 /* When making a shared library and symbol h is the one from
2441 the another shared library, OUTPUT_SECTION may be null. */
2442 if (output_section == NULL)
2443 h->esym.asym.sc = scUndefined;
2444 else
2445 {
2446 name = bfd_section_name (output_section->owner, output_section);
2447
2448 if (strcmp (name, ".text") == 0)
2449 h->esym.asym.sc = scText;
2450 else if (strcmp (name, ".data") == 0)
2451 h->esym.asym.sc = scData;
2452 else if (strcmp (name, ".sdata") == 0)
2453 h->esym.asym.sc = scSData;
2454 else if (strcmp (name, ".rodata") == 0
2455 || strcmp (name, ".rdata") == 0)
2456 h->esym.asym.sc = scRData;
2457 else if (strcmp (name, ".bss") == 0)
2458 h->esym.asym.sc = scBss;
2459 else if (strcmp (name, ".sbss") == 0)
2460 h->esym.asym.sc = scSBss;
2461 else if (strcmp (name, ".init") == 0)
2462 h->esym.asym.sc = scInit;
2463 else if (strcmp (name, ".fini") == 0)
2464 h->esym.asym.sc = scFini;
2465 else
2466 h->esym.asym.sc = scAbs;
2467 }
2468 }
2469
2470 h->esym.asym.reserved = 0;
2471 h->esym.asym.index = indexNil;
2472 }
2473
2474 if (h->root.root.type == bfd_link_hash_common)
2475 h->esym.asym.value = h->root.root.u.c.size;
2476 else if (h->root.root.type == bfd_link_hash_defined
2477 || h->root.root.type == bfd_link_hash_defweak)
2478 {
2479 if (h->esym.asym.sc == scCommon)
2480 h->esym.asym.sc = scBss;
2481 else if (h->esym.asym.sc == scSCommon)
2482 h->esym.asym.sc = scSBss;
2483
2484 sec = h->root.root.u.def.section;
2485 output_section = sec->output_section;
2486 if (output_section != NULL)
2487 h->esym.asym.value = (h->root.root.u.def.value
2488 + sec->output_offset
2489 + output_section->vma);
2490 else
2491 h->esym.asym.value = 0;
2492 }
2493 else
2494 {
2495 struct mips_elf_link_hash_entry *hd = h;
2496
2497 while (hd->root.root.type == bfd_link_hash_indirect)
2498 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2499
2500 if (hd->needs_lazy_stub)
2501 {
2502 /* Set type and value for a symbol with a function stub. */
2503 h->esym.asym.st = stProc;
2504 sec = hd->root.root.u.def.section;
2505 if (sec == NULL)
2506 h->esym.asym.value = 0;
2507 else
2508 {
2509 output_section = sec->output_section;
2510 if (output_section != NULL)
2511 h->esym.asym.value = (hd->root.plt.offset
2512 + sec->output_offset
2513 + output_section->vma);
2514 else
2515 h->esym.asym.value = 0;
2516 }
2517 }
2518 }
2519
2520 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2521 h->root.root.root.string,
2522 &h->esym))
2523 {
2524 einfo->failed = TRUE;
2525 return FALSE;
2526 }
2527
2528 return TRUE;
2529 }
2530
2531 /* A comparison routine used to sort .gptab entries. */
2532
2533 static int
2534 gptab_compare (const void *p1, const void *p2)
2535 {
2536 const Elf32_gptab *a1 = p1;
2537 const Elf32_gptab *a2 = p2;
2538
2539 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2540 }
2541 \f
2542 /* Functions to manage the got entry hash table. */
2543
2544 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2545 hash number. */
2546
2547 static INLINE hashval_t
2548 mips_elf_hash_bfd_vma (bfd_vma addr)
2549 {
2550 #ifdef BFD64
2551 return addr + (addr >> 32);
2552 #else
2553 return addr;
2554 #endif
2555 }
2556
2557 /* got_entries only match if they're identical, except for gotidx, so
2558 use all fields to compute the hash, and compare the appropriate
2559 union members. */
2560
2561 static hashval_t
2562 mips_elf_got_entry_hash (const void *entry_)
2563 {
2564 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2565
2566 return entry->symndx
2567 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2568 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2569 : entry->abfd->id
2570 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2571 : entry->d.h->root.root.root.hash));
2572 }
2573
2574 static int
2575 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2576 {
2577 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2578 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2579
2580 /* An LDM entry can only match another LDM entry. */
2581 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2582 return 0;
2583
2584 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2585 && (! e1->abfd ? e1->d.address == e2->d.address
2586 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2587 : e1->d.h == e2->d.h);
2588 }
2589
2590 /* multi_got_entries are still a match in the case of global objects,
2591 even if the input bfd in which they're referenced differs, so the
2592 hash computation and compare functions are adjusted
2593 accordingly. */
2594
2595 static hashval_t
2596 mips_elf_multi_got_entry_hash (const void *entry_)
2597 {
2598 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2599
2600 return entry->symndx
2601 + (! entry->abfd
2602 ? mips_elf_hash_bfd_vma (entry->d.address)
2603 : entry->symndx >= 0
2604 ? ((entry->tls_type & GOT_TLS_LDM)
2605 ? (GOT_TLS_LDM << 17)
2606 : (entry->abfd->id
2607 + mips_elf_hash_bfd_vma (entry->d.addend)))
2608 : entry->d.h->root.root.root.hash);
2609 }
2610
2611 static int
2612 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2613 {
2614 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2615 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2616
2617 /* Any two LDM entries match. */
2618 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2619 return 1;
2620
2621 /* Nothing else matches an LDM entry. */
2622 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2623 return 0;
2624
2625 return e1->symndx == e2->symndx
2626 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2627 : e1->abfd == NULL || e2->abfd == NULL
2628 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2629 : e1->d.h == e2->d.h);
2630 }
2631
2632 static hashval_t
2633 mips_got_page_entry_hash (const void *entry_)
2634 {
2635 const struct mips_got_page_entry *entry;
2636
2637 entry = (const struct mips_got_page_entry *) entry_;
2638 return entry->abfd->id + entry->symndx;
2639 }
2640
2641 static int
2642 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2643 {
2644 const struct mips_got_page_entry *entry1, *entry2;
2645
2646 entry1 = (const struct mips_got_page_entry *) entry1_;
2647 entry2 = (const struct mips_got_page_entry *) entry2_;
2648 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2649 }
2650 \f
2651 /* Return the dynamic relocation section. If it doesn't exist, try to
2652 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2653 if creation fails. */
2654
2655 static asection *
2656 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2657 {
2658 const char *dname;
2659 asection *sreloc;
2660 bfd *dynobj;
2661
2662 dname = MIPS_ELF_REL_DYN_NAME (info);
2663 dynobj = elf_hash_table (info)->dynobj;
2664 sreloc = bfd_get_section_by_name (dynobj, dname);
2665 if (sreloc == NULL && create_p)
2666 {
2667 sreloc = bfd_make_section_with_flags (dynobj, dname,
2668 (SEC_ALLOC
2669 | SEC_LOAD
2670 | SEC_HAS_CONTENTS
2671 | SEC_IN_MEMORY
2672 | SEC_LINKER_CREATED
2673 | SEC_READONLY));
2674 if (sreloc == NULL
2675 || ! bfd_set_section_alignment (dynobj, sreloc,
2676 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2677 return NULL;
2678 }
2679 return sreloc;
2680 }
2681
2682 /* Count the number of relocations needed for a TLS GOT entry, with
2683 access types from TLS_TYPE, and symbol H (or a local symbol if H
2684 is NULL). */
2685
2686 static int
2687 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2688 struct elf_link_hash_entry *h)
2689 {
2690 int indx = 0;
2691 int ret = 0;
2692 bfd_boolean need_relocs = FALSE;
2693 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2694
2695 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2696 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2697 indx = h->dynindx;
2698
2699 if ((info->shared || indx != 0)
2700 && (h == NULL
2701 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2702 || h->root.type != bfd_link_hash_undefweak))
2703 need_relocs = TRUE;
2704
2705 if (!need_relocs)
2706 return FALSE;
2707
2708 if (tls_type & GOT_TLS_GD)
2709 {
2710 ret++;
2711 if (indx != 0)
2712 ret++;
2713 }
2714
2715 if (tls_type & GOT_TLS_IE)
2716 ret++;
2717
2718 if ((tls_type & GOT_TLS_LDM) && info->shared)
2719 ret++;
2720
2721 return ret;
2722 }
2723
2724 /* Count the number of TLS relocations required for the GOT entry in
2725 ARG1, if it describes a local symbol. */
2726
2727 static int
2728 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2729 {
2730 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2731 struct mips_elf_count_tls_arg *arg = arg2;
2732
2733 if (entry->abfd != NULL && entry->symndx != -1)
2734 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2735
2736 return 1;
2737 }
2738
2739 /* Count the number of TLS GOT entries required for the global (or
2740 forced-local) symbol in ARG1. */
2741
2742 static int
2743 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2744 {
2745 struct mips_elf_link_hash_entry *hm
2746 = (struct mips_elf_link_hash_entry *) arg1;
2747 struct mips_elf_count_tls_arg *arg = arg2;
2748
2749 if (hm->tls_type & GOT_TLS_GD)
2750 arg->needed += 2;
2751 if (hm->tls_type & GOT_TLS_IE)
2752 arg->needed += 1;
2753
2754 return 1;
2755 }
2756
2757 /* Count the number of TLS relocations required for the global (or
2758 forced-local) symbol in ARG1. */
2759
2760 static int
2761 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2762 {
2763 struct mips_elf_link_hash_entry *hm
2764 = (struct mips_elf_link_hash_entry *) arg1;
2765 struct mips_elf_count_tls_arg *arg = arg2;
2766
2767 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2768
2769 return 1;
2770 }
2771
2772 /* Output a simple dynamic relocation into SRELOC. */
2773
2774 static void
2775 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2776 asection *sreloc,
2777 unsigned long reloc_index,
2778 unsigned long indx,
2779 int r_type,
2780 bfd_vma offset)
2781 {
2782 Elf_Internal_Rela rel[3];
2783
2784 memset (rel, 0, sizeof (rel));
2785
2786 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2787 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2788
2789 if (ABI_64_P (output_bfd))
2790 {
2791 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2792 (output_bfd, &rel[0],
2793 (sreloc->contents
2794 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2795 }
2796 else
2797 bfd_elf32_swap_reloc_out
2798 (output_bfd, &rel[0],
2799 (sreloc->contents
2800 + reloc_index * sizeof (Elf32_External_Rel)));
2801 }
2802
2803 /* Initialize a set of TLS GOT entries for one symbol. */
2804
2805 static void
2806 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2807 unsigned char *tls_type_p,
2808 struct bfd_link_info *info,
2809 struct mips_elf_link_hash_entry *h,
2810 bfd_vma value)
2811 {
2812 struct mips_elf_link_hash_table *htab;
2813 int indx;
2814 asection *sreloc, *sgot;
2815 bfd_vma offset, offset2;
2816 bfd_boolean need_relocs = FALSE;
2817
2818 htab = mips_elf_hash_table (info);
2819 sgot = htab->sgot;
2820
2821 indx = 0;
2822 if (h != NULL)
2823 {
2824 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2825
2826 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2827 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2828 indx = h->root.dynindx;
2829 }
2830
2831 if (*tls_type_p & GOT_TLS_DONE)
2832 return;
2833
2834 if ((info->shared || indx != 0)
2835 && (h == NULL
2836 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2837 || h->root.type != bfd_link_hash_undefweak))
2838 need_relocs = TRUE;
2839
2840 /* MINUS_ONE means the symbol is not defined in this object. It may not
2841 be defined at all; assume that the value doesn't matter in that
2842 case. Otherwise complain if we would use the value. */
2843 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2844 || h->root.root.type == bfd_link_hash_undefweak);
2845
2846 /* Emit necessary relocations. */
2847 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2848
2849 /* General Dynamic. */
2850 if (*tls_type_p & GOT_TLS_GD)
2851 {
2852 offset = got_offset;
2853 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2854
2855 if (need_relocs)
2856 {
2857 mips_elf_output_dynamic_relocation
2858 (abfd, sreloc, sreloc->reloc_count++, indx,
2859 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2860 sgot->output_offset + sgot->output_section->vma + offset);
2861
2862 if (indx)
2863 mips_elf_output_dynamic_relocation
2864 (abfd, sreloc, sreloc->reloc_count++, indx,
2865 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2866 sgot->output_offset + sgot->output_section->vma + offset2);
2867 else
2868 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2869 sgot->contents + offset2);
2870 }
2871 else
2872 {
2873 MIPS_ELF_PUT_WORD (abfd, 1,
2874 sgot->contents + offset);
2875 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2876 sgot->contents + offset2);
2877 }
2878
2879 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2880 }
2881
2882 /* Initial Exec model. */
2883 if (*tls_type_p & GOT_TLS_IE)
2884 {
2885 offset = got_offset;
2886
2887 if (need_relocs)
2888 {
2889 if (indx == 0)
2890 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2891 sgot->contents + offset);
2892 else
2893 MIPS_ELF_PUT_WORD (abfd, 0,
2894 sgot->contents + offset);
2895
2896 mips_elf_output_dynamic_relocation
2897 (abfd, sreloc, sreloc->reloc_count++, indx,
2898 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2899 sgot->output_offset + sgot->output_section->vma + offset);
2900 }
2901 else
2902 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2903 sgot->contents + offset);
2904 }
2905
2906 if (*tls_type_p & GOT_TLS_LDM)
2907 {
2908 /* The initial offset is zero, and the LD offsets will include the
2909 bias by DTP_OFFSET. */
2910 MIPS_ELF_PUT_WORD (abfd, 0,
2911 sgot->contents + got_offset
2912 + MIPS_ELF_GOT_SIZE (abfd));
2913
2914 if (!info->shared)
2915 MIPS_ELF_PUT_WORD (abfd, 1,
2916 sgot->contents + got_offset);
2917 else
2918 mips_elf_output_dynamic_relocation
2919 (abfd, sreloc, sreloc->reloc_count++, indx,
2920 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2921 sgot->output_offset + sgot->output_section->vma + got_offset);
2922 }
2923
2924 *tls_type_p |= GOT_TLS_DONE;
2925 }
2926
2927 /* Return the GOT index to use for a relocation of type R_TYPE against
2928 a symbol accessed using TLS_TYPE models. The GOT entries for this
2929 symbol in this GOT start at GOT_INDEX. This function initializes the
2930 GOT entries and corresponding relocations. */
2931
2932 static bfd_vma
2933 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2934 int r_type, struct bfd_link_info *info,
2935 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2936 {
2937 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2938 || r_type == R_MIPS_TLS_LDM);
2939
2940 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2941
2942 if (r_type == R_MIPS_TLS_GOTTPREL)
2943 {
2944 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2945 if (*tls_type & GOT_TLS_GD)
2946 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2947 else
2948 return got_index;
2949 }
2950
2951 if (r_type == R_MIPS_TLS_GD)
2952 {
2953 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2954 return got_index;
2955 }
2956
2957 if (r_type == R_MIPS_TLS_LDM)
2958 {
2959 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2960 return got_index;
2961 }
2962
2963 return got_index;
2964 }
2965
2966 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2967 for global symbol H. .got.plt comes before the GOT, so the offset
2968 will be negative. */
2969
2970 static bfd_vma
2971 mips_elf_gotplt_index (struct bfd_link_info *info,
2972 struct elf_link_hash_entry *h)
2973 {
2974 bfd_vma plt_index, got_address, got_value;
2975 struct mips_elf_link_hash_table *htab;
2976
2977 htab = mips_elf_hash_table (info);
2978 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2979
2980 /* This function only works for VxWorks, because a non-VxWorks .got.plt
2981 section starts with reserved entries. */
2982 BFD_ASSERT (htab->is_vxworks);
2983
2984 /* Calculate the index of the symbol's PLT entry. */
2985 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2986
2987 /* Calculate the address of the associated .got.plt entry. */
2988 got_address = (htab->sgotplt->output_section->vma
2989 + htab->sgotplt->output_offset
2990 + plt_index * 4);
2991
2992 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2993 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2994 + htab->root.hgot->root.u.def.section->output_offset
2995 + htab->root.hgot->root.u.def.value);
2996
2997 return got_address - got_value;
2998 }
2999
3000 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3001 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3002 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3003 offset can be found. */
3004
3005 static bfd_vma
3006 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3007 bfd_vma value, unsigned long r_symndx,
3008 struct mips_elf_link_hash_entry *h, int r_type)
3009 {
3010 struct mips_elf_link_hash_table *htab;
3011 struct mips_got_entry *entry;
3012
3013 htab = mips_elf_hash_table (info);
3014 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3015 r_symndx, h, r_type);
3016 if (!entry)
3017 return MINUS_ONE;
3018
3019 if (TLS_RELOC_P (r_type))
3020 {
3021 if (entry->symndx == -1 && htab->got_info->next == NULL)
3022 /* A type (3) entry in the single-GOT case. We use the symbol's
3023 hash table entry to track the index. */
3024 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3025 r_type, info, h, value);
3026 else
3027 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3028 r_type, info, h, value);
3029 }
3030 else
3031 return entry->gotidx;
3032 }
3033
3034 /* Returns the GOT index for the global symbol indicated by H. */
3035
3036 static bfd_vma
3037 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3038 int r_type, struct bfd_link_info *info)
3039 {
3040 struct mips_elf_link_hash_table *htab;
3041 bfd_vma index;
3042 struct mips_got_info *g, *gg;
3043 long global_got_dynindx = 0;
3044
3045 htab = mips_elf_hash_table (info);
3046 gg = g = htab->got_info;
3047 if (g->bfd2got && ibfd)
3048 {
3049 struct mips_got_entry e, *p;
3050
3051 BFD_ASSERT (h->dynindx >= 0);
3052
3053 g = mips_elf_got_for_ibfd (g, ibfd);
3054 if (g->next != gg || TLS_RELOC_P (r_type))
3055 {
3056 e.abfd = ibfd;
3057 e.symndx = -1;
3058 e.d.h = (struct mips_elf_link_hash_entry *)h;
3059 e.tls_type = 0;
3060
3061 p = htab_find (g->got_entries, &e);
3062
3063 BFD_ASSERT (p->gotidx > 0);
3064
3065 if (TLS_RELOC_P (r_type))
3066 {
3067 bfd_vma value = MINUS_ONE;
3068 if ((h->root.type == bfd_link_hash_defined
3069 || h->root.type == bfd_link_hash_defweak)
3070 && h->root.u.def.section->output_section)
3071 value = (h->root.u.def.value
3072 + h->root.u.def.section->output_offset
3073 + h->root.u.def.section->output_section->vma);
3074
3075 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3076 info, e.d.h, value);
3077 }
3078 else
3079 return p->gotidx;
3080 }
3081 }
3082
3083 if (gg->global_gotsym != NULL)
3084 global_got_dynindx = gg->global_gotsym->dynindx;
3085
3086 if (TLS_RELOC_P (r_type))
3087 {
3088 struct mips_elf_link_hash_entry *hm
3089 = (struct mips_elf_link_hash_entry *) h;
3090 bfd_vma value = MINUS_ONE;
3091
3092 if ((h->root.type == bfd_link_hash_defined
3093 || h->root.type == bfd_link_hash_defweak)
3094 && h->root.u.def.section->output_section)
3095 value = (h->root.u.def.value
3096 + h->root.u.def.section->output_offset
3097 + h->root.u.def.section->output_section->vma);
3098
3099 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3100 r_type, info, hm, value);
3101 }
3102 else
3103 {
3104 /* Once we determine the global GOT entry with the lowest dynamic
3105 symbol table index, we must put all dynamic symbols with greater
3106 indices into the GOT. That makes it easy to calculate the GOT
3107 offset. */
3108 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3109 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3110 * MIPS_ELF_GOT_SIZE (abfd));
3111 }
3112 BFD_ASSERT (index < htab->sgot->size);
3113
3114 return index;
3115 }
3116
3117 /* Find a GOT page entry that points to within 32KB of VALUE. These
3118 entries are supposed to be placed at small offsets in the GOT, i.e.,
3119 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3120 entry could be created. If OFFSETP is nonnull, use it to return the
3121 offset of the GOT entry from VALUE. */
3122
3123 static bfd_vma
3124 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3125 bfd_vma value, bfd_vma *offsetp)
3126 {
3127 bfd_vma page, index;
3128 struct mips_got_entry *entry;
3129
3130 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3131 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3132 NULL, R_MIPS_GOT_PAGE);
3133
3134 if (!entry)
3135 return MINUS_ONE;
3136
3137 index = entry->gotidx;
3138
3139 if (offsetp)
3140 *offsetp = value - entry->d.address;
3141
3142 return index;
3143 }
3144
3145 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3146 EXTERNAL is true if the relocation was against a global symbol
3147 that has been forced local. */
3148
3149 static bfd_vma
3150 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3151 bfd_vma value, bfd_boolean external)
3152 {
3153 struct mips_got_entry *entry;
3154
3155 /* GOT16 relocations against local symbols are followed by a LO16
3156 relocation; those against global symbols are not. Thus if the
3157 symbol was originally local, the GOT16 relocation should load the
3158 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3159 if (! external)
3160 value = mips_elf_high (value) << 16;
3161
3162 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3163 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3164 same in all cases. */
3165 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3166 NULL, R_MIPS_GOT16);
3167 if (entry)
3168 return entry->gotidx;
3169 else
3170 return MINUS_ONE;
3171 }
3172
3173 /* Returns the offset for the entry at the INDEXth position
3174 in the GOT. */
3175
3176 static bfd_vma
3177 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3178 bfd *input_bfd, bfd_vma index)
3179 {
3180 struct mips_elf_link_hash_table *htab;
3181 asection *sgot;
3182 bfd_vma gp;
3183
3184 htab = mips_elf_hash_table (info);
3185 sgot = htab->sgot;
3186 gp = _bfd_get_gp_value (output_bfd)
3187 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3188
3189 return sgot->output_section->vma + sgot->output_offset + index - gp;
3190 }
3191
3192 /* Create and return a local GOT entry for VALUE, which was calculated
3193 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3194 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3195 instead. */
3196
3197 static struct mips_got_entry *
3198 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3199 bfd *ibfd, bfd_vma value,
3200 unsigned long r_symndx,
3201 struct mips_elf_link_hash_entry *h,
3202 int r_type)
3203 {
3204 struct mips_got_entry entry, **loc;
3205 struct mips_got_info *g;
3206 struct mips_elf_link_hash_table *htab;
3207
3208 htab = mips_elf_hash_table (info);
3209
3210 entry.abfd = NULL;
3211 entry.symndx = -1;
3212 entry.d.address = value;
3213 entry.tls_type = 0;
3214
3215 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3216 if (g == NULL)
3217 {
3218 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3219 BFD_ASSERT (g != NULL);
3220 }
3221
3222 /* We might have a symbol, H, if it has been forced local. Use the
3223 global entry then. It doesn't matter whether an entry is local
3224 or global for TLS, since the dynamic linker does not
3225 automatically relocate TLS GOT entries. */
3226 BFD_ASSERT (h == NULL || h->root.forced_local);
3227 if (TLS_RELOC_P (r_type))
3228 {
3229 struct mips_got_entry *p;
3230
3231 entry.abfd = ibfd;
3232 if (r_type == R_MIPS_TLS_LDM)
3233 {
3234 entry.tls_type = GOT_TLS_LDM;
3235 entry.symndx = 0;
3236 entry.d.addend = 0;
3237 }
3238 else if (h == NULL)
3239 {
3240 entry.symndx = r_symndx;
3241 entry.d.addend = 0;
3242 }
3243 else
3244 entry.d.h = h;
3245
3246 p = (struct mips_got_entry *)
3247 htab_find (g->got_entries, &entry);
3248
3249 BFD_ASSERT (p);
3250 return p;
3251 }
3252
3253 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3254 INSERT);
3255 if (*loc)
3256 return *loc;
3257
3258 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3259 entry.tls_type = 0;
3260
3261 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3262
3263 if (! *loc)
3264 return NULL;
3265
3266 memcpy (*loc, &entry, sizeof entry);
3267
3268 if (g->assigned_gotno > g->local_gotno)
3269 {
3270 (*loc)->gotidx = -1;
3271 /* We didn't allocate enough space in the GOT. */
3272 (*_bfd_error_handler)
3273 (_("not enough GOT space for local GOT entries"));
3274 bfd_set_error (bfd_error_bad_value);
3275 return NULL;
3276 }
3277
3278 MIPS_ELF_PUT_WORD (abfd, value,
3279 (htab->sgot->contents + entry.gotidx));
3280
3281 /* These GOT entries need a dynamic relocation on VxWorks. */
3282 if (htab->is_vxworks)
3283 {
3284 Elf_Internal_Rela outrel;
3285 asection *s;
3286 bfd_byte *loc;
3287 bfd_vma got_address;
3288
3289 s = mips_elf_rel_dyn_section (info, FALSE);
3290 got_address = (htab->sgot->output_section->vma
3291 + htab->sgot->output_offset
3292 + entry.gotidx);
3293
3294 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3295 outrel.r_offset = got_address;
3296 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3297 outrel.r_addend = value;
3298 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
3299 }
3300
3301 return *loc;
3302 }
3303
3304 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3305 The number might be exact or a worst-case estimate, depending on how
3306 much information is available to elf_backend_omit_section_dynsym at
3307 the current linking stage. */
3308
3309 static bfd_size_type
3310 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3311 {
3312 bfd_size_type count;
3313
3314 count = 0;
3315 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3316 {
3317 asection *p;
3318 const struct elf_backend_data *bed;
3319
3320 bed = get_elf_backend_data (output_bfd);
3321 for (p = output_bfd->sections; p ; p = p->next)
3322 if ((p->flags & SEC_EXCLUDE) == 0
3323 && (p->flags & SEC_ALLOC) != 0
3324 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3325 ++count;
3326 }
3327 return count;
3328 }
3329
3330 /* Sort the dynamic symbol table so that symbols that need GOT entries
3331 appear towards the end. */
3332
3333 static bfd_boolean
3334 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3335 {
3336 struct mips_elf_link_hash_table *htab;
3337 struct mips_elf_hash_sort_data hsd;
3338 struct mips_got_info *g;
3339
3340 if (elf_hash_table (info)->dynsymcount == 0)
3341 return TRUE;
3342
3343 htab = mips_elf_hash_table (info);
3344 g = htab->got_info;
3345 if (g == NULL)
3346 return TRUE;
3347
3348 hsd.low = NULL;
3349 hsd.max_unref_got_dynindx
3350 = hsd.min_got_dynindx
3351 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3352 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3353 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3354 elf_hash_table (info)),
3355 mips_elf_sort_hash_table_f,
3356 &hsd);
3357
3358 /* There should have been enough room in the symbol table to
3359 accommodate both the GOT and non-GOT symbols. */
3360 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3361 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3362 == elf_hash_table (info)->dynsymcount);
3363 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3364 == g->global_gotno);
3365
3366 /* Now we know which dynamic symbol has the lowest dynamic symbol
3367 table index in the GOT. */
3368 g->global_gotsym = hsd.low;
3369
3370 return TRUE;
3371 }
3372
3373 /* If H needs a GOT entry, assign it the highest available dynamic
3374 index. Otherwise, assign it the lowest available dynamic
3375 index. */
3376
3377 static bfd_boolean
3378 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3379 {
3380 struct mips_elf_hash_sort_data *hsd = data;
3381
3382 if (h->root.root.type == bfd_link_hash_warning)
3383 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3384
3385 /* Symbols without dynamic symbol table entries aren't interesting
3386 at all. */
3387 if (h->root.dynindx == -1)
3388 return TRUE;
3389
3390 switch (h->global_got_area)
3391 {
3392 case GGA_NONE:
3393 h->root.dynindx = hsd->max_non_got_dynindx++;
3394 break;
3395
3396 case GGA_NORMAL:
3397 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3398
3399 h->root.dynindx = --hsd->min_got_dynindx;
3400 hsd->low = (struct elf_link_hash_entry *) h;
3401 break;
3402
3403 case GGA_RELOC_ONLY:
3404 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3405
3406 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3407 hsd->low = (struct elf_link_hash_entry *) h;
3408 h->root.dynindx = hsd->max_unref_got_dynindx++;
3409 break;
3410 }
3411
3412 return TRUE;
3413 }
3414
3415 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3416 symbol table index lower than any we've seen to date, record it for
3417 posterity. */
3418
3419 static bfd_boolean
3420 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3421 bfd *abfd, struct bfd_link_info *info,
3422 unsigned char tls_flag)
3423 {
3424 struct mips_elf_link_hash_table *htab;
3425 struct mips_elf_link_hash_entry *hmips;
3426 struct mips_got_entry entry, **loc;
3427 struct mips_got_info *g;
3428
3429 htab = mips_elf_hash_table (info);
3430 hmips = (struct mips_elf_link_hash_entry *) h;
3431
3432 /* A global symbol in the GOT must also be in the dynamic symbol
3433 table. */
3434 if (h->dynindx == -1)
3435 {
3436 switch (ELF_ST_VISIBILITY (h->other))
3437 {
3438 case STV_INTERNAL:
3439 case STV_HIDDEN:
3440 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3441 break;
3442 }
3443 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3444 return FALSE;
3445 }
3446
3447 /* Make sure we have a GOT to put this entry into. */
3448 g = htab->got_info;
3449 BFD_ASSERT (g != NULL);
3450
3451 entry.abfd = abfd;
3452 entry.symndx = -1;
3453 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3454 entry.tls_type = 0;
3455
3456 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3457 INSERT);
3458
3459 /* If we've already marked this entry as needing GOT space, we don't
3460 need to do it again. */
3461 if (*loc)
3462 {
3463 (*loc)->tls_type |= tls_flag;
3464 return TRUE;
3465 }
3466
3467 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3468
3469 if (! *loc)
3470 return FALSE;
3471
3472 entry.gotidx = -1;
3473 entry.tls_type = tls_flag;
3474
3475 memcpy (*loc, &entry, sizeof entry);
3476
3477 if (tls_flag == 0)
3478 hmips->global_got_area = GGA_NORMAL;
3479
3480 return TRUE;
3481 }
3482
3483 /* Reserve space in G for a GOT entry containing the value of symbol
3484 SYMNDX in input bfd ABDF, plus ADDEND. */
3485
3486 static bfd_boolean
3487 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3488 struct bfd_link_info *info,
3489 unsigned char tls_flag)
3490 {
3491 struct mips_elf_link_hash_table *htab;
3492 struct mips_got_info *g;
3493 struct mips_got_entry entry, **loc;
3494
3495 htab = mips_elf_hash_table (info);
3496 g = htab->got_info;
3497 BFD_ASSERT (g != NULL);
3498
3499 entry.abfd = abfd;
3500 entry.symndx = symndx;
3501 entry.d.addend = addend;
3502 entry.tls_type = tls_flag;
3503 loc = (struct mips_got_entry **)
3504 htab_find_slot (g->got_entries, &entry, INSERT);
3505
3506 if (*loc)
3507 {
3508 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3509 {
3510 g->tls_gotno += 2;
3511 (*loc)->tls_type |= tls_flag;
3512 }
3513 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3514 {
3515 g->tls_gotno += 1;
3516 (*loc)->tls_type |= tls_flag;
3517 }
3518 return TRUE;
3519 }
3520
3521 if (tls_flag != 0)
3522 {
3523 entry.gotidx = -1;
3524 entry.tls_type = tls_flag;
3525 if (tls_flag == GOT_TLS_IE)
3526 g->tls_gotno += 1;
3527 else if (tls_flag == GOT_TLS_GD)
3528 g->tls_gotno += 2;
3529 else if (g->tls_ldm_offset == MINUS_ONE)
3530 {
3531 g->tls_ldm_offset = MINUS_TWO;
3532 g->tls_gotno += 2;
3533 }
3534 }
3535 else
3536 {
3537 entry.gotidx = g->local_gotno++;
3538 entry.tls_type = 0;
3539 }
3540
3541 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3542
3543 if (! *loc)
3544 return FALSE;
3545
3546 memcpy (*loc, &entry, sizeof entry);
3547
3548 return TRUE;
3549 }
3550
3551 /* Return the maximum number of GOT page entries required for RANGE. */
3552
3553 static bfd_vma
3554 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3555 {
3556 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3557 }
3558
3559 /* Record that ABFD has a page relocation against symbol SYMNDX and
3560 that ADDEND is the addend for that relocation.
3561
3562 This function creates an upper bound on the number of GOT slots
3563 required; no attempt is made to combine references to non-overridable
3564 global symbols across multiple input files. */
3565
3566 static bfd_boolean
3567 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3568 long symndx, bfd_signed_vma addend)
3569 {
3570 struct mips_elf_link_hash_table *htab;
3571 struct mips_got_info *g;
3572 struct mips_got_page_entry lookup, *entry;
3573 struct mips_got_page_range **range_ptr, *range;
3574 bfd_vma old_pages, new_pages;
3575 void **loc;
3576
3577 htab = mips_elf_hash_table (info);
3578 g = htab->got_info;
3579 BFD_ASSERT (g != NULL);
3580
3581 /* Find the mips_got_page_entry hash table entry for this symbol. */
3582 lookup.abfd = abfd;
3583 lookup.symndx = symndx;
3584 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3585 if (loc == NULL)
3586 return FALSE;
3587
3588 /* Create a mips_got_page_entry if this is the first time we've
3589 seen the symbol. */
3590 entry = (struct mips_got_page_entry *) *loc;
3591 if (!entry)
3592 {
3593 entry = bfd_alloc (abfd, sizeof (*entry));
3594 if (!entry)
3595 return FALSE;
3596
3597 entry->abfd = abfd;
3598 entry->symndx = symndx;
3599 entry->ranges = NULL;
3600 entry->num_pages = 0;
3601 *loc = entry;
3602 }
3603
3604 /* Skip over ranges whose maximum extent cannot share a page entry
3605 with ADDEND. */
3606 range_ptr = &entry->ranges;
3607 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3608 range_ptr = &(*range_ptr)->next;
3609
3610 /* If we scanned to the end of the list, or found a range whose
3611 minimum extent cannot share a page entry with ADDEND, create
3612 a new singleton range. */
3613 range = *range_ptr;
3614 if (!range || addend < range->min_addend - 0xffff)
3615 {
3616 range = bfd_alloc (abfd, sizeof (*range));
3617 if (!range)
3618 return FALSE;
3619
3620 range->next = *range_ptr;
3621 range->min_addend = addend;
3622 range->max_addend = addend;
3623
3624 *range_ptr = range;
3625 entry->num_pages++;
3626 g->page_gotno++;
3627 return TRUE;
3628 }
3629
3630 /* Remember how many pages the old range contributed. */
3631 old_pages = mips_elf_pages_for_range (range);
3632
3633 /* Update the ranges. */
3634 if (addend < range->min_addend)
3635 range->min_addend = addend;
3636 else if (addend > range->max_addend)
3637 {
3638 if (range->next && addend >= range->next->min_addend - 0xffff)
3639 {
3640 old_pages += mips_elf_pages_for_range (range->next);
3641 range->max_addend = range->next->max_addend;
3642 range->next = range->next->next;
3643 }
3644 else
3645 range->max_addend = addend;
3646 }
3647
3648 /* Record any change in the total estimate. */
3649 new_pages = mips_elf_pages_for_range (range);
3650 if (old_pages != new_pages)
3651 {
3652 entry->num_pages += new_pages - old_pages;
3653 g->page_gotno += new_pages - old_pages;
3654 }
3655
3656 return TRUE;
3657 }
3658
3659 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3660
3661 static void
3662 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3663 unsigned int n)
3664 {
3665 asection *s;
3666 struct mips_elf_link_hash_table *htab;
3667
3668 htab = mips_elf_hash_table (info);
3669 s = mips_elf_rel_dyn_section (info, FALSE);
3670 BFD_ASSERT (s != NULL);
3671
3672 if (htab->is_vxworks)
3673 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3674 else
3675 {
3676 if (s->size == 0)
3677 {
3678 /* Make room for a null element. */
3679 s->size += MIPS_ELF_REL_SIZE (abfd);
3680 ++s->reloc_count;
3681 }
3682 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3683 }
3684 }
3685 \f
3686 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3687 if the GOT entry is for an indirect or warning symbol. */
3688
3689 static int
3690 mips_elf_check_recreate_got (void **entryp, void *data)
3691 {
3692 struct mips_got_entry *entry;
3693 bfd_boolean *must_recreate;
3694
3695 entry = (struct mips_got_entry *) *entryp;
3696 must_recreate = (bfd_boolean *) data;
3697 if (entry->abfd != NULL && entry->symndx == -1)
3698 {
3699 struct mips_elf_link_hash_entry *h;
3700
3701 h = entry->d.h;
3702 if (h->root.root.type == bfd_link_hash_indirect
3703 || h->root.root.type == bfd_link_hash_warning)
3704 {
3705 *must_recreate = TRUE;
3706 return 0;
3707 }
3708 }
3709 return 1;
3710 }
3711
3712 /* A htab_traverse callback for GOT entries. Add all entries to
3713 hash table *DATA, converting entries for indirect and warning
3714 symbols into entries for the target symbol. Set *DATA to null
3715 on error. */
3716
3717 static int
3718 mips_elf_recreate_got (void **entryp, void *data)
3719 {
3720 htab_t *new_got;
3721 struct mips_got_entry *entry;
3722 void **slot;
3723
3724 new_got = (htab_t *) data;
3725 entry = (struct mips_got_entry *) *entryp;
3726 if (entry->abfd != NULL && entry->symndx == -1)
3727 {
3728 struct mips_elf_link_hash_entry *h;
3729
3730 h = entry->d.h;
3731 while (h->root.root.type == bfd_link_hash_indirect
3732 || h->root.root.type == bfd_link_hash_warning)
3733 {
3734 BFD_ASSERT (h->global_got_area == GGA_NONE);
3735 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3736 }
3737 entry->d.h = h;
3738 }
3739 slot = htab_find_slot (*new_got, entry, INSERT);
3740 if (slot == NULL)
3741 {
3742 *new_got = NULL;
3743 return 0;
3744 }
3745 if (*slot == NULL)
3746 *slot = entry;
3747 else
3748 free (entry);
3749 return 1;
3750 }
3751
3752 /* If any entries in G->got_entries are for indirect or warning symbols,
3753 replace them with entries for the target symbol. */
3754
3755 static bfd_boolean
3756 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3757 {
3758 bfd_boolean must_recreate;
3759 htab_t new_got;
3760
3761 must_recreate = FALSE;
3762 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3763 if (must_recreate)
3764 {
3765 new_got = htab_create (htab_size (g->got_entries),
3766 mips_elf_got_entry_hash,
3767 mips_elf_got_entry_eq, NULL);
3768 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3769 if (new_got == NULL)
3770 return FALSE;
3771
3772 /* Each entry in g->got_entries has either been copied to new_got
3773 or freed. Now delete the hash table itself. */
3774 htab_delete (g->got_entries);
3775 g->got_entries = new_got;
3776 }
3777 return TRUE;
3778 }
3779
3780 /* A mips_elf_link_hash_traverse callback for which DATA points
3781 to a mips_got_info. Count the number of type (3) entries. */
3782
3783 static int
3784 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3785 {
3786 struct mips_got_info *g;
3787
3788 g = (struct mips_got_info *) data;
3789 if (h->global_got_area != GGA_NONE)
3790 {
3791 if (h->root.forced_local || h->root.dynindx == -1)
3792 {
3793 /* We no longer need this entry if it was only used for
3794 relocations; those relocations will be against the
3795 null or section symbol instead of H. */
3796 if (h->global_got_area != GGA_RELOC_ONLY)
3797 g->local_gotno++;
3798 h->global_got_area = GGA_NONE;
3799 }
3800 else
3801 {
3802 g->global_gotno++;
3803 if (h->global_got_area == GGA_RELOC_ONLY)
3804 g->reloc_only_gotno++;
3805 }
3806 }
3807 return 1;
3808 }
3809 \f
3810 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3811
3812 static hashval_t
3813 mips_elf_bfd2got_entry_hash (const void *entry_)
3814 {
3815 const struct mips_elf_bfd2got_hash *entry
3816 = (struct mips_elf_bfd2got_hash *)entry_;
3817
3818 return entry->bfd->id;
3819 }
3820
3821 /* Check whether two hash entries have the same bfd. */
3822
3823 static int
3824 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3825 {
3826 const struct mips_elf_bfd2got_hash *e1
3827 = (const struct mips_elf_bfd2got_hash *)entry1;
3828 const struct mips_elf_bfd2got_hash *e2
3829 = (const struct mips_elf_bfd2got_hash *)entry2;
3830
3831 return e1->bfd == e2->bfd;
3832 }
3833
3834 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3835 be the master GOT data. */
3836
3837 static struct mips_got_info *
3838 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3839 {
3840 struct mips_elf_bfd2got_hash e, *p;
3841
3842 if (! g->bfd2got)
3843 return g;
3844
3845 e.bfd = ibfd;
3846 p = htab_find (g->bfd2got, &e);
3847 return p ? p->g : NULL;
3848 }
3849
3850 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3851 Return NULL if an error occured. */
3852
3853 static struct mips_got_info *
3854 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3855 bfd *input_bfd)
3856 {
3857 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3858 struct mips_got_info *g;
3859 void **bfdgotp;
3860
3861 bfdgot_entry.bfd = input_bfd;
3862 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3863 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3864
3865 if (bfdgot == NULL)
3866 {
3867 bfdgot = ((struct mips_elf_bfd2got_hash *)
3868 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3869 if (bfdgot == NULL)
3870 return NULL;
3871
3872 *bfdgotp = bfdgot;
3873
3874 g = ((struct mips_got_info *)
3875 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3876 if (g == NULL)
3877 return NULL;
3878
3879 bfdgot->bfd = input_bfd;
3880 bfdgot->g = g;
3881
3882 g->global_gotsym = NULL;
3883 g->global_gotno = 0;
3884 g->reloc_only_gotno = 0;
3885 g->local_gotno = 0;
3886 g->page_gotno = 0;
3887 g->assigned_gotno = -1;
3888 g->tls_gotno = 0;
3889 g->tls_assigned_gotno = 0;
3890 g->tls_ldm_offset = MINUS_ONE;
3891 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3892 mips_elf_multi_got_entry_eq, NULL);
3893 if (g->got_entries == NULL)
3894 return NULL;
3895
3896 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3897 mips_got_page_entry_eq, NULL);
3898 if (g->got_page_entries == NULL)
3899 return NULL;
3900
3901 g->bfd2got = NULL;
3902 g->next = NULL;
3903 }
3904
3905 return bfdgot->g;
3906 }
3907
3908 /* A htab_traverse callback for the entries in the master got.
3909 Create one separate got for each bfd that has entries in the global
3910 got, such that we can tell how many local and global entries each
3911 bfd requires. */
3912
3913 static int
3914 mips_elf_make_got_per_bfd (void **entryp, void *p)
3915 {
3916 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3917 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3918 struct mips_got_info *g;
3919
3920 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3921 if (g == NULL)
3922 {
3923 arg->obfd = NULL;
3924 return 0;
3925 }
3926
3927 /* Insert the GOT entry in the bfd's got entry hash table. */
3928 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3929 if (*entryp != NULL)
3930 return 1;
3931
3932 *entryp = entry;
3933
3934 if (entry->tls_type)
3935 {
3936 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3937 g->tls_gotno += 2;
3938 if (entry->tls_type & GOT_TLS_IE)
3939 g->tls_gotno += 1;
3940 }
3941 else if (entry->symndx >= 0 || entry->d.h->root.forced_local)
3942 ++g->local_gotno;
3943 else
3944 ++g->global_gotno;
3945
3946 return 1;
3947 }
3948
3949 /* A htab_traverse callback for the page entries in the master got.
3950 Associate each page entry with the bfd's got. */
3951
3952 static int
3953 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
3954 {
3955 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
3956 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
3957 struct mips_got_info *g;
3958
3959 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3960 if (g == NULL)
3961 {
3962 arg->obfd = NULL;
3963 return 0;
3964 }
3965
3966 /* Insert the GOT entry in the bfd's got entry hash table. */
3967 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
3968 if (*entryp != NULL)
3969 return 1;
3970
3971 *entryp = entry;
3972 g->page_gotno += entry->num_pages;
3973 return 1;
3974 }
3975
3976 /* Consider merging the got described by BFD2GOT with TO, using the
3977 information given by ARG. Return -1 if this would lead to overflow,
3978 1 if they were merged successfully, and 0 if a merge failed due to
3979 lack of memory. (These values are chosen so that nonnegative return
3980 values can be returned by a htab_traverse callback.) */
3981
3982 static int
3983 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
3984 struct mips_got_info *to,
3985 struct mips_elf_got_per_bfd_arg *arg)
3986 {
3987 struct mips_got_info *from = bfd2got->g;
3988 unsigned int estimate;
3989
3990 /* Work out how many page entries we would need for the combined GOT. */
3991 estimate = arg->max_pages;
3992 if (estimate >= from->page_gotno + to->page_gotno)
3993 estimate = from->page_gotno + to->page_gotno;
3994
3995 /* And conservatively estimate how many local, global and TLS entries
3996 would be needed. */
3997 estimate += (from->local_gotno
3998 + from->global_gotno
3999 + from->tls_gotno
4000 + to->local_gotno
4001 + to->global_gotno
4002 + to->tls_gotno);
4003
4004 /* Bail out if the combined GOT might be too big. */
4005 if (estimate > arg->max_count)
4006 return -1;
4007
4008 /* Commit to the merge. Record that TO is now the bfd for this got. */
4009 bfd2got->g = to;
4010
4011 /* Transfer the bfd's got information from FROM to TO. */
4012 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4013 if (arg->obfd == NULL)
4014 return 0;
4015
4016 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4017 if (arg->obfd == NULL)
4018 return 0;
4019
4020 /* We don't have to worry about releasing memory of the actual
4021 got entries, since they're all in the master got_entries hash
4022 table anyway. */
4023 htab_delete (from->got_entries);
4024 htab_delete (from->got_page_entries);
4025 return 1;
4026 }
4027
4028 /* Attempt to merge gots of different input bfds. Try to use as much
4029 as possible of the primary got, since it doesn't require explicit
4030 dynamic relocations, but don't use bfds that would reference global
4031 symbols out of the addressable range. Failing the primary got,
4032 attempt to merge with the current got, or finish the current got
4033 and then make make the new got current. */
4034
4035 static int
4036 mips_elf_merge_gots (void **bfd2got_, void *p)
4037 {
4038 struct mips_elf_bfd2got_hash *bfd2got
4039 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4040 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4041 struct mips_got_info *g;
4042 unsigned int estimate;
4043 int result;
4044
4045 g = bfd2got->g;
4046
4047 /* Work out the number of page, local and TLS entries. */
4048 estimate = arg->max_pages;
4049 if (estimate > g->page_gotno)
4050 estimate = g->page_gotno;
4051 estimate += g->local_gotno + g->tls_gotno;
4052
4053 /* We place TLS GOT entries after both locals and globals. The globals
4054 for the primary GOT may overflow the normal GOT size limit, so be
4055 sure not to merge a GOT which requires TLS with the primary GOT in that
4056 case. This doesn't affect non-primary GOTs. */
4057 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4058
4059 if (estimate <= arg->max_count)
4060 {
4061 /* If we don't have a primary GOT, use it as
4062 a starting point for the primary GOT. */
4063 if (!arg->primary)
4064 {
4065 arg->primary = bfd2got->g;
4066 return 1;
4067 }
4068
4069 /* Try merging with the primary GOT. */
4070 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4071 if (result >= 0)
4072 return result;
4073 }
4074
4075 /* If we can merge with the last-created got, do it. */
4076 if (arg->current)
4077 {
4078 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4079 if (result >= 0)
4080 return result;
4081 }
4082
4083 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4084 fits; if it turns out that it doesn't, we'll get relocation
4085 overflows anyway. */
4086 g->next = arg->current;
4087 arg->current = g;
4088
4089 return 1;
4090 }
4091
4092 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4093 is null iff there is just a single GOT. */
4094
4095 static int
4096 mips_elf_initialize_tls_index (void **entryp, void *p)
4097 {
4098 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4099 struct mips_got_info *g = p;
4100 bfd_vma next_index;
4101 unsigned char tls_type;
4102
4103 /* We're only interested in TLS symbols. */
4104 if (entry->tls_type == 0)
4105 return 1;
4106
4107 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4108
4109 if (entry->symndx == -1 && g->next == NULL)
4110 {
4111 /* A type (3) got entry in the single-GOT case. We use the symbol's
4112 hash table entry to track its index. */
4113 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4114 return 1;
4115 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4116 entry->d.h->tls_got_offset = next_index;
4117 tls_type = entry->d.h->tls_type;
4118 }
4119 else
4120 {
4121 if (entry->tls_type & GOT_TLS_LDM)
4122 {
4123 /* There are separate mips_got_entry objects for each input bfd
4124 that requires an LDM entry. Make sure that all LDM entries in
4125 a GOT resolve to the same index. */
4126 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4127 {
4128 entry->gotidx = g->tls_ldm_offset;
4129 return 1;
4130 }
4131 g->tls_ldm_offset = next_index;
4132 }
4133 entry->gotidx = next_index;
4134 tls_type = entry->tls_type;
4135 }
4136
4137 /* Account for the entries we've just allocated. */
4138 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4139 g->tls_assigned_gotno += 2;
4140 if (tls_type & GOT_TLS_IE)
4141 g->tls_assigned_gotno += 1;
4142
4143 return 1;
4144 }
4145
4146 /* If passed a NULL mips_got_info in the argument, set the marker used
4147 to tell whether a global symbol needs a got entry (in the primary
4148 got) to the given VALUE.
4149
4150 If passed a pointer G to a mips_got_info in the argument (it must
4151 not be the primary GOT), compute the offset from the beginning of
4152 the (primary) GOT section to the entry in G corresponding to the
4153 global symbol. G's assigned_gotno must contain the index of the
4154 first available global GOT entry in G. VALUE must contain the size
4155 of a GOT entry in bytes. For each global GOT entry that requires a
4156 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4157 marked as not eligible for lazy resolution through a function
4158 stub. */
4159 static int
4160 mips_elf_set_global_got_offset (void **entryp, void *p)
4161 {
4162 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4163 struct mips_elf_set_global_got_offset_arg *arg
4164 = (struct mips_elf_set_global_got_offset_arg *)p;
4165 struct mips_got_info *g = arg->g;
4166
4167 if (g && entry->tls_type != GOT_NORMAL)
4168 arg->needed_relocs +=
4169 mips_tls_got_relocs (arg->info, entry->tls_type,
4170 entry->symndx == -1 ? &entry->d.h->root : NULL);
4171
4172 if (entry->abfd != NULL
4173 && entry->symndx == -1
4174 && entry->d.h->global_got_area != GGA_NONE)
4175 {
4176 if (g)
4177 {
4178 BFD_ASSERT (g->global_gotsym == NULL);
4179
4180 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4181 if (arg->info->shared
4182 || (elf_hash_table (arg->info)->dynamic_sections_created
4183 && entry->d.h->root.def_dynamic
4184 && !entry->d.h->root.def_regular))
4185 ++arg->needed_relocs;
4186 }
4187 else
4188 entry->d.h->global_got_area = arg->value;
4189 }
4190
4191 return 1;
4192 }
4193
4194 /* A htab_traverse callback for GOT entries for which DATA is the
4195 bfd_link_info. Forbid any global symbols from having traditional
4196 lazy-binding stubs. */
4197
4198 static int
4199 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4200 {
4201 struct bfd_link_info *info;
4202 struct mips_elf_link_hash_table *htab;
4203 struct mips_got_entry *entry;
4204
4205 entry = (struct mips_got_entry *) *entryp;
4206 info = (struct bfd_link_info *) data;
4207 htab = mips_elf_hash_table (info);
4208 if (entry->abfd != NULL
4209 && entry->symndx == -1
4210 && entry->d.h->needs_lazy_stub)
4211 {
4212 entry->d.h->needs_lazy_stub = FALSE;
4213 htab->lazy_stub_count--;
4214 }
4215
4216 return 1;
4217 }
4218
4219 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4220 the primary GOT. */
4221 static bfd_vma
4222 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4223 {
4224 if (g->bfd2got == NULL)
4225 return 0;
4226
4227 g = mips_elf_got_for_ibfd (g, ibfd);
4228 if (! g)
4229 return 0;
4230
4231 BFD_ASSERT (g->next);
4232
4233 g = g->next;
4234
4235 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4236 * MIPS_ELF_GOT_SIZE (abfd);
4237 }
4238
4239 /* Turn a single GOT that is too big for 16-bit addressing into
4240 a sequence of GOTs, each one 16-bit addressable. */
4241
4242 static bfd_boolean
4243 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4244 asection *got, bfd_size_type pages)
4245 {
4246 struct mips_elf_link_hash_table *htab;
4247 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4248 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4249 struct mips_got_info *g, *gg;
4250 unsigned int assign, needed_relocs;
4251 bfd *dynobj;
4252
4253 dynobj = elf_hash_table (info)->dynobj;
4254 htab = mips_elf_hash_table (info);
4255 g = htab->got_info;
4256 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4257 mips_elf_bfd2got_entry_eq, NULL);
4258 if (g->bfd2got == NULL)
4259 return FALSE;
4260
4261 got_per_bfd_arg.bfd2got = g->bfd2got;
4262 got_per_bfd_arg.obfd = abfd;
4263 got_per_bfd_arg.info = info;
4264
4265 /* Count how many GOT entries each input bfd requires, creating a
4266 map from bfd to got info while at that. */
4267 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4268 if (got_per_bfd_arg.obfd == NULL)
4269 return FALSE;
4270
4271 /* Also count how many page entries each input bfd requires. */
4272 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4273 &got_per_bfd_arg);
4274 if (got_per_bfd_arg.obfd == NULL)
4275 return FALSE;
4276
4277 got_per_bfd_arg.current = NULL;
4278 got_per_bfd_arg.primary = NULL;
4279 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4280 / MIPS_ELF_GOT_SIZE (abfd))
4281 - htab->reserved_gotno);
4282 got_per_bfd_arg.max_pages = pages;
4283 /* The number of globals that will be included in the primary GOT.
4284 See the calls to mips_elf_set_global_got_offset below for more
4285 information. */
4286 got_per_bfd_arg.global_count = g->global_gotno;
4287
4288 /* Try to merge the GOTs of input bfds together, as long as they
4289 don't seem to exceed the maximum GOT size, choosing one of them
4290 to be the primary GOT. */
4291 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4292 if (got_per_bfd_arg.obfd == NULL)
4293 return FALSE;
4294
4295 /* If we do not find any suitable primary GOT, create an empty one. */
4296 if (got_per_bfd_arg.primary == NULL)
4297 {
4298 g->next = (struct mips_got_info *)
4299 bfd_alloc (abfd, sizeof (struct mips_got_info));
4300 if (g->next == NULL)
4301 return FALSE;
4302
4303 g->next->global_gotsym = NULL;
4304 g->next->global_gotno = 0;
4305 g->next->reloc_only_gotno = 0;
4306 g->next->local_gotno = 0;
4307 g->next->page_gotno = 0;
4308 g->next->tls_gotno = 0;
4309 g->next->assigned_gotno = 0;
4310 g->next->tls_assigned_gotno = 0;
4311 g->next->tls_ldm_offset = MINUS_ONE;
4312 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4313 mips_elf_multi_got_entry_eq,
4314 NULL);
4315 if (g->next->got_entries == NULL)
4316 return FALSE;
4317 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4318 mips_got_page_entry_eq,
4319 NULL);
4320 if (g->next->got_page_entries == NULL)
4321 return FALSE;
4322 g->next->bfd2got = NULL;
4323 }
4324 else
4325 g->next = got_per_bfd_arg.primary;
4326 g->next->next = got_per_bfd_arg.current;
4327
4328 /* GG is now the master GOT, and G is the primary GOT. */
4329 gg = g;
4330 g = g->next;
4331
4332 /* Map the output bfd to the primary got. That's what we're going
4333 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4334 didn't mark in check_relocs, and we want a quick way to find it.
4335 We can't just use gg->next because we're going to reverse the
4336 list. */
4337 {
4338 struct mips_elf_bfd2got_hash *bfdgot;
4339 void **bfdgotp;
4340
4341 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4342 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4343
4344 if (bfdgot == NULL)
4345 return FALSE;
4346
4347 bfdgot->bfd = abfd;
4348 bfdgot->g = g;
4349 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4350
4351 BFD_ASSERT (*bfdgotp == NULL);
4352 *bfdgotp = bfdgot;
4353 }
4354
4355 /* Every symbol that is referenced in a dynamic relocation must be
4356 present in the primary GOT, so arrange for them to appear after
4357 those that are actually referenced. */
4358 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4359 g->global_gotno = gg->global_gotno;
4360
4361 set_got_offset_arg.g = NULL;
4362 set_got_offset_arg.value = GGA_RELOC_ONLY;
4363 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4364 &set_got_offset_arg);
4365 set_got_offset_arg.value = GGA_NORMAL;
4366 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4367 &set_got_offset_arg);
4368
4369 /* Now go through the GOTs assigning them offset ranges.
4370 [assigned_gotno, local_gotno[ will be set to the range of local
4371 entries in each GOT. We can then compute the end of a GOT by
4372 adding local_gotno to global_gotno. We reverse the list and make
4373 it circular since then we'll be able to quickly compute the
4374 beginning of a GOT, by computing the end of its predecessor. To
4375 avoid special cases for the primary GOT, while still preserving
4376 assertions that are valid for both single- and multi-got links,
4377 we arrange for the main got struct to have the right number of
4378 global entries, but set its local_gotno such that the initial
4379 offset of the primary GOT is zero. Remember that the primary GOT
4380 will become the last item in the circular linked list, so it
4381 points back to the master GOT. */
4382 gg->local_gotno = -g->global_gotno;
4383 gg->global_gotno = g->global_gotno;
4384 gg->tls_gotno = 0;
4385 assign = 0;
4386 gg->next = gg;
4387
4388 do
4389 {
4390 struct mips_got_info *gn;
4391
4392 assign += htab->reserved_gotno;
4393 g->assigned_gotno = assign;
4394 g->local_gotno += assign;
4395 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4396 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4397
4398 /* Take g out of the direct list, and push it onto the reversed
4399 list that gg points to. g->next is guaranteed to be nonnull after
4400 this operation, as required by mips_elf_initialize_tls_index. */
4401 gn = g->next;
4402 g->next = gg->next;
4403 gg->next = g;
4404
4405 /* Set up any TLS entries. We always place the TLS entries after
4406 all non-TLS entries. */
4407 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4408 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4409
4410 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4411 g = gn;
4412
4413 /* Forbid global symbols in every non-primary GOT from having
4414 lazy-binding stubs. */
4415 if (g)
4416 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4417 }
4418 while (g);
4419
4420 got->size = (gg->next->local_gotno
4421 + gg->next->global_gotno
4422 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4423
4424 needed_relocs = 0;
4425 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4426 set_got_offset_arg.info = info;
4427 for (g = gg->next; g && g->next != gg; g = g->next)
4428 {
4429 unsigned int save_assign;
4430
4431 /* Assign offsets to global GOT entries. */
4432 save_assign = g->assigned_gotno;
4433 g->assigned_gotno = g->local_gotno;
4434 set_got_offset_arg.g = g;
4435 set_got_offset_arg.needed_relocs = 0;
4436 htab_traverse (g->got_entries,
4437 mips_elf_set_global_got_offset,
4438 &set_got_offset_arg);
4439 needed_relocs += set_got_offset_arg.needed_relocs;
4440 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4441
4442 g->assigned_gotno = save_assign;
4443 if (info->shared)
4444 {
4445 needed_relocs += g->local_gotno - g->assigned_gotno;
4446 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4447 + g->next->global_gotno
4448 + g->next->tls_gotno
4449 + htab->reserved_gotno);
4450 }
4451 }
4452
4453 if (needed_relocs)
4454 mips_elf_allocate_dynamic_relocations (dynobj, info,
4455 needed_relocs);
4456
4457 return TRUE;
4458 }
4459
4460 \f
4461 /* Returns the first relocation of type r_type found, beginning with
4462 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4463
4464 static const Elf_Internal_Rela *
4465 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4466 const Elf_Internal_Rela *relocation,
4467 const Elf_Internal_Rela *relend)
4468 {
4469 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4470
4471 while (relocation < relend)
4472 {
4473 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4474 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4475 return relocation;
4476
4477 ++relocation;
4478 }
4479
4480 /* We didn't find it. */
4481 return NULL;
4482 }
4483
4484 /* Return whether a relocation is against a local symbol. */
4485
4486 static bfd_boolean
4487 mips_elf_local_relocation_p (bfd *input_bfd,
4488 const Elf_Internal_Rela *relocation,
4489 asection **local_sections,
4490 bfd_boolean check_forced)
4491 {
4492 unsigned long r_symndx;
4493 Elf_Internal_Shdr *symtab_hdr;
4494 struct mips_elf_link_hash_entry *h;
4495 size_t extsymoff;
4496
4497 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4498 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4499 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4500
4501 if (r_symndx < extsymoff)
4502 return TRUE;
4503 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4504 return TRUE;
4505
4506 if (check_forced)
4507 {
4508 /* Look up the hash table to check whether the symbol
4509 was forced local. */
4510 h = (struct mips_elf_link_hash_entry *)
4511 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
4512 /* Find the real hash-table entry for this symbol. */
4513 while (h->root.root.type == bfd_link_hash_indirect
4514 || h->root.root.type == bfd_link_hash_warning)
4515 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4516 if (h->root.forced_local)
4517 return TRUE;
4518 }
4519
4520 return FALSE;
4521 }
4522 \f
4523 /* Sign-extend VALUE, which has the indicated number of BITS. */
4524
4525 bfd_vma
4526 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4527 {
4528 if (value & ((bfd_vma) 1 << (bits - 1)))
4529 /* VALUE is negative. */
4530 value |= ((bfd_vma) - 1) << bits;
4531
4532 return value;
4533 }
4534
4535 /* Return non-zero if the indicated VALUE has overflowed the maximum
4536 range expressible by a signed number with the indicated number of
4537 BITS. */
4538
4539 static bfd_boolean
4540 mips_elf_overflow_p (bfd_vma value, int bits)
4541 {
4542 bfd_signed_vma svalue = (bfd_signed_vma) value;
4543
4544 if (svalue > (1 << (bits - 1)) - 1)
4545 /* The value is too big. */
4546 return TRUE;
4547 else if (svalue < -(1 << (bits - 1)))
4548 /* The value is too small. */
4549 return TRUE;
4550
4551 /* All is well. */
4552 return FALSE;
4553 }
4554
4555 /* Calculate the %high function. */
4556
4557 static bfd_vma
4558 mips_elf_high (bfd_vma value)
4559 {
4560 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4561 }
4562
4563 /* Calculate the %higher function. */
4564
4565 static bfd_vma
4566 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4567 {
4568 #ifdef BFD64
4569 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4570 #else
4571 abort ();
4572 return MINUS_ONE;
4573 #endif
4574 }
4575
4576 /* Calculate the %highest function. */
4577
4578 static bfd_vma
4579 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4580 {
4581 #ifdef BFD64
4582 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4583 #else
4584 abort ();
4585 return MINUS_ONE;
4586 #endif
4587 }
4588 \f
4589 /* Create the .compact_rel section. */
4590
4591 static bfd_boolean
4592 mips_elf_create_compact_rel_section
4593 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4594 {
4595 flagword flags;
4596 register asection *s;
4597
4598 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4599 {
4600 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4601 | SEC_READONLY);
4602
4603 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4604 if (s == NULL
4605 || ! bfd_set_section_alignment (abfd, s,
4606 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4607 return FALSE;
4608
4609 s->size = sizeof (Elf32_External_compact_rel);
4610 }
4611
4612 return TRUE;
4613 }
4614
4615 /* Create the .got section to hold the global offset table. */
4616
4617 static bfd_boolean
4618 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4619 {
4620 flagword flags;
4621 register asection *s;
4622 struct elf_link_hash_entry *h;
4623 struct bfd_link_hash_entry *bh;
4624 struct mips_got_info *g;
4625 bfd_size_type amt;
4626 struct mips_elf_link_hash_table *htab;
4627
4628 htab = mips_elf_hash_table (info);
4629
4630 /* This function may be called more than once. */
4631 if (htab->sgot)
4632 return TRUE;
4633
4634 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4635 | SEC_LINKER_CREATED);
4636
4637 /* We have to use an alignment of 2**4 here because this is hardcoded
4638 in the function stub generation and in the linker script. */
4639 s = bfd_make_section_with_flags (abfd, ".got", flags);
4640 if (s == NULL
4641 || ! bfd_set_section_alignment (abfd, s, 4))
4642 return FALSE;
4643 htab->sgot = s;
4644
4645 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4646 linker script because we don't want to define the symbol if we
4647 are not creating a global offset table. */
4648 bh = NULL;
4649 if (! (_bfd_generic_link_add_one_symbol
4650 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4651 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4652 return FALSE;
4653
4654 h = (struct elf_link_hash_entry *) bh;
4655 h->non_elf = 0;
4656 h->def_regular = 1;
4657 h->type = STT_OBJECT;
4658 elf_hash_table (info)->hgot = h;
4659
4660 if (info->shared
4661 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4662 return FALSE;
4663
4664 amt = sizeof (struct mips_got_info);
4665 g = bfd_alloc (abfd, amt);
4666 if (g == NULL)
4667 return FALSE;
4668 g->global_gotsym = NULL;
4669 g->global_gotno = 0;
4670 g->reloc_only_gotno = 0;
4671 g->tls_gotno = 0;
4672 g->local_gotno = 0;
4673 g->page_gotno = 0;
4674 g->assigned_gotno = 0;
4675 g->bfd2got = NULL;
4676 g->next = NULL;
4677 g->tls_ldm_offset = MINUS_ONE;
4678 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4679 mips_elf_got_entry_eq, NULL);
4680 if (g->got_entries == NULL)
4681 return FALSE;
4682 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4683 mips_got_page_entry_eq, NULL);
4684 if (g->got_page_entries == NULL)
4685 return FALSE;
4686 htab->got_info = g;
4687 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4688 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4689
4690 /* We also need a .got.plt section when generating PLTs. */
4691 s = bfd_make_section_with_flags (abfd, ".got.plt",
4692 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4693 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4694 if (s == NULL)
4695 return FALSE;
4696 htab->sgotplt = s;
4697
4698 return TRUE;
4699 }
4700 \f
4701 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4702 __GOTT_INDEX__ symbols. These symbols are only special for
4703 shared objects; they are not used in executables. */
4704
4705 static bfd_boolean
4706 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4707 {
4708 return (mips_elf_hash_table (info)->is_vxworks
4709 && info->shared
4710 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4711 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4712 }
4713
4714 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4715 require an la25 stub. See also mips_elf_local_pic_function_p,
4716 which determines whether the destination function ever requires a
4717 stub. */
4718
4719 static bfd_boolean
4720 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4721 {
4722 /* We specifically ignore branches and jumps from EF_PIC objects,
4723 where the onus is on the compiler or programmer to perform any
4724 necessary initialization of $25. Sometimes such initialization
4725 is unnecessary; for example, -mno-shared functions do not use
4726 the incoming value of $25, and may therefore be called directly. */
4727 if (PIC_OBJECT_P (input_bfd))
4728 return FALSE;
4729
4730 switch (r_type)
4731 {
4732 case R_MIPS_26:
4733 case R_MIPS_PC16:
4734 case R_MIPS16_26:
4735 return TRUE;
4736
4737 default:
4738 return FALSE;
4739 }
4740 }
4741 \f
4742 /* Calculate the value produced by the RELOCATION (which comes from
4743 the INPUT_BFD). The ADDEND is the addend to use for this
4744 RELOCATION; RELOCATION->R_ADDEND is ignored.
4745
4746 The result of the relocation calculation is stored in VALUEP.
4747 REQUIRE_JALXP indicates whether or not the opcode used with this
4748 relocation must be JALX.
4749
4750 This function returns bfd_reloc_continue if the caller need take no
4751 further action regarding this relocation, bfd_reloc_notsupported if
4752 something goes dramatically wrong, bfd_reloc_overflow if an
4753 overflow occurs, and bfd_reloc_ok to indicate success. */
4754
4755 static bfd_reloc_status_type
4756 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4757 asection *input_section,
4758 struct bfd_link_info *info,
4759 const Elf_Internal_Rela *relocation,
4760 bfd_vma addend, reloc_howto_type *howto,
4761 Elf_Internal_Sym *local_syms,
4762 asection **local_sections, bfd_vma *valuep,
4763 const char **namep, bfd_boolean *require_jalxp,
4764 bfd_boolean save_addend)
4765 {
4766 /* The eventual value we will return. */
4767 bfd_vma value;
4768 /* The address of the symbol against which the relocation is
4769 occurring. */
4770 bfd_vma symbol = 0;
4771 /* The final GP value to be used for the relocatable, executable, or
4772 shared object file being produced. */
4773 bfd_vma gp;
4774 /* The place (section offset or address) of the storage unit being
4775 relocated. */
4776 bfd_vma p;
4777 /* The value of GP used to create the relocatable object. */
4778 bfd_vma gp0;
4779 /* The offset into the global offset table at which the address of
4780 the relocation entry symbol, adjusted by the addend, resides
4781 during execution. */
4782 bfd_vma g = MINUS_ONE;
4783 /* The section in which the symbol referenced by the relocation is
4784 located. */
4785 asection *sec = NULL;
4786 struct mips_elf_link_hash_entry *h = NULL;
4787 /* TRUE if the symbol referred to by this relocation is a local
4788 symbol. */
4789 bfd_boolean local_p, was_local_p;
4790 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4791 bfd_boolean gp_disp_p = FALSE;
4792 /* TRUE if the symbol referred to by this relocation is
4793 "__gnu_local_gp". */
4794 bfd_boolean gnu_local_gp_p = FALSE;
4795 Elf_Internal_Shdr *symtab_hdr;
4796 size_t extsymoff;
4797 unsigned long r_symndx;
4798 int r_type;
4799 /* TRUE if overflow occurred during the calculation of the
4800 relocation value. */
4801 bfd_boolean overflowed_p;
4802 /* TRUE if this relocation refers to a MIPS16 function. */
4803 bfd_boolean target_is_16_bit_code_p = FALSE;
4804 struct mips_elf_link_hash_table *htab;
4805 bfd *dynobj;
4806
4807 dynobj = elf_hash_table (info)->dynobj;
4808 htab = mips_elf_hash_table (info);
4809
4810 /* Parse the relocation. */
4811 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4812 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4813 p = (input_section->output_section->vma
4814 + input_section->output_offset
4815 + relocation->r_offset);
4816
4817 /* Assume that there will be no overflow. */
4818 overflowed_p = FALSE;
4819
4820 /* Figure out whether or not the symbol is local, and get the offset
4821 used in the array of hash table entries. */
4822 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4823 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4824 local_sections, FALSE);
4825 was_local_p = local_p;
4826 if (! elf_bad_symtab (input_bfd))
4827 extsymoff = symtab_hdr->sh_info;
4828 else
4829 {
4830 /* The symbol table does not follow the rule that local symbols
4831 must come before globals. */
4832 extsymoff = 0;
4833 }
4834
4835 /* Figure out the value of the symbol. */
4836 if (local_p)
4837 {
4838 Elf_Internal_Sym *sym;
4839
4840 sym = local_syms + r_symndx;
4841 sec = local_sections[r_symndx];
4842
4843 symbol = sec->output_section->vma + sec->output_offset;
4844 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4845 || (sec->flags & SEC_MERGE))
4846 symbol += sym->st_value;
4847 if ((sec->flags & SEC_MERGE)
4848 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4849 {
4850 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4851 addend -= symbol;
4852 addend += sec->output_section->vma + sec->output_offset;
4853 }
4854
4855 /* MIPS16 text labels should be treated as odd. */
4856 if (ELF_ST_IS_MIPS16 (sym->st_other))
4857 ++symbol;
4858
4859 /* Record the name of this symbol, for our caller. */
4860 *namep = bfd_elf_string_from_elf_section (input_bfd,
4861 symtab_hdr->sh_link,
4862 sym->st_name);
4863 if (*namep == '\0')
4864 *namep = bfd_section_name (input_bfd, sec);
4865
4866 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4867 }
4868 else
4869 {
4870 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4871
4872 /* For global symbols we look up the symbol in the hash-table. */
4873 h = ((struct mips_elf_link_hash_entry *)
4874 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4875 /* Find the real hash-table entry for this symbol. */
4876 while (h->root.root.type == bfd_link_hash_indirect
4877 || h->root.root.type == bfd_link_hash_warning)
4878 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4879
4880 /* Record the name of this symbol, for our caller. */
4881 *namep = h->root.root.root.string;
4882
4883 /* See if this is the special _gp_disp symbol. Note that such a
4884 symbol must always be a global symbol. */
4885 if (strcmp (*namep, "_gp_disp") == 0
4886 && ! NEWABI_P (input_bfd))
4887 {
4888 /* Relocations against _gp_disp are permitted only with
4889 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4890 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4891 return bfd_reloc_notsupported;
4892
4893 gp_disp_p = TRUE;
4894 }
4895 /* See if this is the special _gp symbol. Note that such a
4896 symbol must always be a global symbol. */
4897 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4898 gnu_local_gp_p = TRUE;
4899
4900
4901 /* If this symbol is defined, calculate its address. Note that
4902 _gp_disp is a magic symbol, always implicitly defined by the
4903 linker, so it's inappropriate to check to see whether or not
4904 its defined. */
4905 else if ((h->root.root.type == bfd_link_hash_defined
4906 || h->root.root.type == bfd_link_hash_defweak)
4907 && h->root.root.u.def.section)
4908 {
4909 sec = h->root.root.u.def.section;
4910 if (sec->output_section)
4911 symbol = (h->root.root.u.def.value
4912 + sec->output_section->vma
4913 + sec->output_offset);
4914 else
4915 symbol = h->root.root.u.def.value;
4916 }
4917 else if (h->root.root.type == bfd_link_hash_undefweak)
4918 /* We allow relocations against undefined weak symbols, giving
4919 it the value zero, so that you can undefined weak functions
4920 and check to see if they exist by looking at their
4921 addresses. */
4922 symbol = 0;
4923 else if (info->unresolved_syms_in_objects == RM_IGNORE
4924 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4925 symbol = 0;
4926 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4927 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4928 {
4929 /* If this is a dynamic link, we should have created a
4930 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4931 in in _bfd_mips_elf_create_dynamic_sections.
4932 Otherwise, we should define the symbol with a value of 0.
4933 FIXME: It should probably get into the symbol table
4934 somehow as well. */
4935 BFD_ASSERT (! info->shared);
4936 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4937 symbol = 0;
4938 }
4939 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4940 {
4941 /* This is an optional symbol - an Irix specific extension to the
4942 ELF spec. Ignore it for now.
4943 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4944 than simply ignoring them, but we do not handle this for now.
4945 For information see the "64-bit ELF Object File Specification"
4946 which is available from here:
4947 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4948 symbol = 0;
4949 }
4950 else
4951 {
4952 if (! ((*info->callbacks->undefined_symbol)
4953 (info, h->root.root.root.string, input_bfd,
4954 input_section, relocation->r_offset,
4955 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4956 || ELF_ST_VISIBILITY (h->root.other))))
4957 return bfd_reloc_undefined;
4958 symbol = 0;
4959 }
4960
4961 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
4962 }
4963
4964 /* If this is a reference to a 16-bit function with a stub, we need
4965 to redirect the relocation to the stub unless:
4966
4967 (a) the relocation is for a MIPS16 JAL;
4968
4969 (b) the relocation is for a MIPS16 PIC call, and there are no
4970 non-MIPS16 uses of the GOT slot; or
4971
4972 (c) the section allows direct references to MIPS16 functions. */
4973 if (r_type != R_MIPS16_26
4974 && !info->relocatable
4975 && ((h != NULL
4976 && h->fn_stub != NULL
4977 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
4978 || (local_p
4979 && elf_tdata (input_bfd)->local_stubs != NULL
4980 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4981 && !section_allows_mips16_refs_p (input_section))
4982 {
4983 /* This is a 32- or 64-bit call to a 16-bit function. We should
4984 have already noticed that we were going to need the
4985 stub. */
4986 if (local_p)
4987 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4988 else
4989 {
4990 BFD_ASSERT (h->need_fn_stub);
4991 sec = h->fn_stub;
4992 }
4993
4994 symbol = sec->output_section->vma + sec->output_offset;
4995 /* The target is 16-bit, but the stub isn't. */
4996 target_is_16_bit_code_p = FALSE;
4997 }
4998 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4999 need to redirect the call to the stub. Note that we specifically
5000 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5001 use an indirect stub instead. */
5002 else if (r_type == R_MIPS16_26 && !info->relocatable
5003 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5004 || (local_p
5005 && elf_tdata (input_bfd)->local_call_stubs != NULL
5006 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5007 && !target_is_16_bit_code_p)
5008 {
5009 if (local_p)
5010 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5011 else
5012 {
5013 /* If both call_stub and call_fp_stub are defined, we can figure
5014 out which one to use by checking which one appears in the input
5015 file. */
5016 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5017 {
5018 asection *o;
5019
5020 sec = NULL;
5021 for (o = input_bfd->sections; o != NULL; o = o->next)
5022 {
5023 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5024 {
5025 sec = h->call_fp_stub;
5026 break;
5027 }
5028 }
5029 if (sec == NULL)
5030 sec = h->call_stub;
5031 }
5032 else if (h->call_stub != NULL)
5033 sec = h->call_stub;
5034 else
5035 sec = h->call_fp_stub;
5036 }
5037
5038 BFD_ASSERT (sec->size > 0);
5039 symbol = sec->output_section->vma + sec->output_offset;
5040 }
5041 /* If this is a direct call to a PIC function, redirect to the
5042 non-PIC stub. */
5043 else if (h != NULL && h->la25_stub
5044 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5045 symbol = (h->la25_stub->stub_section->output_section->vma
5046 + h->la25_stub->stub_section->output_offset
5047 + h->la25_stub->offset);
5048
5049 /* Calls from 16-bit code to 32-bit code and vice versa require the
5050 special jalx instruction. */
5051 *require_jalxp = (!info->relocatable
5052 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
5053 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
5054
5055 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5056 local_sections, TRUE);
5057
5058 gp0 = _bfd_get_gp_value (input_bfd);
5059 gp = _bfd_get_gp_value (abfd);
5060 if (htab->got_info)
5061 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5062
5063 if (gnu_local_gp_p)
5064 symbol = gp;
5065
5066 /* If we haven't already determined the GOT offset, oand we're going
5067 to need it, get it now. */
5068 switch (r_type)
5069 {
5070 case R_MIPS_GOT_PAGE:
5071 case R_MIPS_GOT_OFST:
5072 /* We need to decay to GOT_DISP/addend if the symbol doesn't
5073 bind locally. */
5074 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
5075 if (local_p || r_type == R_MIPS_GOT_OFST)
5076 break;
5077 /* Fall through. */
5078
5079 case R_MIPS16_CALL16:
5080 case R_MIPS16_GOT16:
5081 case R_MIPS_CALL16:
5082 case R_MIPS_GOT16:
5083 case R_MIPS_GOT_DISP:
5084 case R_MIPS_GOT_HI16:
5085 case R_MIPS_CALL_HI16:
5086 case R_MIPS_GOT_LO16:
5087 case R_MIPS_CALL_LO16:
5088 case R_MIPS_TLS_GD:
5089 case R_MIPS_TLS_GOTTPREL:
5090 case R_MIPS_TLS_LDM:
5091 /* Find the index into the GOT where this value is located. */
5092 if (r_type == R_MIPS_TLS_LDM)
5093 {
5094 g = mips_elf_local_got_index (abfd, input_bfd, info,
5095 0, 0, NULL, r_type);
5096 if (g == MINUS_ONE)
5097 return bfd_reloc_outofrange;
5098 }
5099 else if (!local_p)
5100 {
5101 /* On VxWorks, CALL relocations should refer to the .got.plt
5102 entry, which is initialized to point at the PLT stub. */
5103 if (htab->is_vxworks
5104 && (r_type == R_MIPS_CALL_HI16
5105 || r_type == R_MIPS_CALL_LO16
5106 || call16_reloc_p (r_type)))
5107 {
5108 BFD_ASSERT (addend == 0);
5109 BFD_ASSERT (h->root.needs_plt);
5110 g = mips_elf_gotplt_index (info, &h->root);
5111 }
5112 else
5113 {
5114 /* GOT_PAGE may take a non-zero addend, that is ignored in a
5115 GOT_PAGE relocation that decays to GOT_DISP because the
5116 symbol turns out to be global. The addend is then added
5117 as GOT_OFST. */
5118 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
5119 g = mips_elf_global_got_index (dynobj, input_bfd,
5120 &h->root, r_type, info);
5121 if (h->tls_type == GOT_NORMAL
5122 && (! elf_hash_table(info)->dynamic_sections_created
5123 || (info->shared
5124 && (info->symbolic || h->root.forced_local)
5125 && h->root.def_regular)))
5126 /* This is a static link or a -Bsymbolic link. The
5127 symbol is defined locally, or was forced to be local.
5128 We must initialize this entry in the GOT. */
5129 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5130 }
5131 }
5132 else if (!htab->is_vxworks
5133 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5134 /* The calculation below does not involve "g". */
5135 break;
5136 else
5137 {
5138 g = mips_elf_local_got_index (abfd, input_bfd, info,
5139 symbol + addend, r_symndx, h, r_type);
5140 if (g == MINUS_ONE)
5141 return bfd_reloc_outofrange;
5142 }
5143
5144 /* Convert GOT indices to actual offsets. */
5145 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5146 break;
5147 }
5148
5149 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5150 symbols are resolved by the loader. Add them to .rela.dyn. */
5151 if (h != NULL && is_gott_symbol (info, &h->root))
5152 {
5153 Elf_Internal_Rela outrel;
5154 bfd_byte *loc;
5155 asection *s;
5156
5157 s = mips_elf_rel_dyn_section (info, FALSE);
5158 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5159
5160 outrel.r_offset = (input_section->output_section->vma
5161 + input_section->output_offset
5162 + relocation->r_offset);
5163 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5164 outrel.r_addend = addend;
5165 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5166
5167 /* If we've written this relocation for a readonly section,
5168 we need to set DF_TEXTREL again, so that we do not delete the
5169 DT_TEXTREL tag. */
5170 if (MIPS_ELF_READONLY_SECTION (input_section))
5171 info->flags |= DF_TEXTREL;
5172
5173 *valuep = 0;
5174 return bfd_reloc_ok;
5175 }
5176
5177 /* Figure out what kind of relocation is being performed. */
5178 switch (r_type)
5179 {
5180 case R_MIPS_NONE:
5181 return bfd_reloc_continue;
5182
5183 case R_MIPS_16:
5184 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5185 overflowed_p = mips_elf_overflow_p (value, 16);
5186 break;
5187
5188 case R_MIPS_32:
5189 case R_MIPS_REL32:
5190 case R_MIPS_64:
5191 if ((info->shared
5192 || (htab->root.dynamic_sections_created
5193 && h != NULL
5194 && h->root.def_dynamic
5195 && !h->root.def_regular
5196 && !h->has_static_relocs))
5197 && r_symndx != 0
5198 && (h == NULL
5199 || h->root.root.type != bfd_link_hash_undefweak
5200 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5201 && (input_section->flags & SEC_ALLOC) != 0)
5202 {
5203 /* If we're creating a shared library, then we can't know
5204 where the symbol will end up. So, we create a relocation
5205 record in the output, and leave the job up to the dynamic
5206 linker. We must do the same for executable references to
5207 shared library symbols, unless we've decided to use copy
5208 relocs or PLTs instead. */
5209 value = addend;
5210 if (!mips_elf_create_dynamic_relocation (abfd,
5211 info,
5212 relocation,
5213 h,
5214 sec,
5215 symbol,
5216 &value,
5217 input_section))
5218 return bfd_reloc_undefined;
5219 }
5220 else
5221 {
5222 if (r_type != R_MIPS_REL32)
5223 value = symbol + addend;
5224 else
5225 value = addend;
5226 }
5227 value &= howto->dst_mask;
5228 break;
5229
5230 case R_MIPS_PC32:
5231 value = symbol + addend - p;
5232 value &= howto->dst_mask;
5233 break;
5234
5235 case R_MIPS16_26:
5236 /* The calculation for R_MIPS16_26 is just the same as for an
5237 R_MIPS_26. It's only the storage of the relocated field into
5238 the output file that's different. That's handled in
5239 mips_elf_perform_relocation. So, we just fall through to the
5240 R_MIPS_26 case here. */
5241 case R_MIPS_26:
5242 if (local_p)
5243 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
5244 else
5245 {
5246 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
5247 if (h->root.root.type != bfd_link_hash_undefweak)
5248 overflowed_p = (value >> 26) != ((p + 4) >> 28);
5249 }
5250 value &= howto->dst_mask;
5251 break;
5252
5253 case R_MIPS_TLS_DTPREL_HI16:
5254 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5255 & howto->dst_mask);
5256 break;
5257
5258 case R_MIPS_TLS_DTPREL_LO16:
5259 case R_MIPS_TLS_DTPREL32:
5260 case R_MIPS_TLS_DTPREL64:
5261 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5262 break;
5263
5264 case R_MIPS_TLS_TPREL_HI16:
5265 value = (mips_elf_high (addend + symbol - tprel_base (info))
5266 & howto->dst_mask);
5267 break;
5268
5269 case R_MIPS_TLS_TPREL_LO16:
5270 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5271 break;
5272
5273 case R_MIPS_HI16:
5274 case R_MIPS16_HI16:
5275 if (!gp_disp_p)
5276 {
5277 value = mips_elf_high (addend + symbol);
5278 value &= howto->dst_mask;
5279 }
5280 else
5281 {
5282 /* For MIPS16 ABI code we generate this sequence
5283 0: li $v0,%hi(_gp_disp)
5284 4: addiupc $v1,%lo(_gp_disp)
5285 8: sll $v0,16
5286 12: addu $v0,$v1
5287 14: move $gp,$v0
5288 So the offsets of hi and lo relocs are the same, but the
5289 $pc is four higher than $t9 would be, so reduce
5290 both reloc addends by 4. */
5291 if (r_type == R_MIPS16_HI16)
5292 value = mips_elf_high (addend + gp - p - 4);
5293 else
5294 value = mips_elf_high (addend + gp - p);
5295 overflowed_p = mips_elf_overflow_p (value, 16);
5296 }
5297 break;
5298
5299 case R_MIPS_LO16:
5300 case R_MIPS16_LO16:
5301 if (!gp_disp_p)
5302 value = (symbol + addend) & howto->dst_mask;
5303 else
5304 {
5305 /* See the comment for R_MIPS16_HI16 above for the reason
5306 for this conditional. */
5307 if (r_type == R_MIPS16_LO16)
5308 value = addend + gp - p;
5309 else
5310 value = addend + gp - p + 4;
5311 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5312 for overflow. But, on, say, IRIX5, relocations against
5313 _gp_disp are normally generated from the .cpload
5314 pseudo-op. It generates code that normally looks like
5315 this:
5316
5317 lui $gp,%hi(_gp_disp)
5318 addiu $gp,$gp,%lo(_gp_disp)
5319 addu $gp,$gp,$t9
5320
5321 Here $t9 holds the address of the function being called,
5322 as required by the MIPS ELF ABI. The R_MIPS_LO16
5323 relocation can easily overflow in this situation, but the
5324 R_MIPS_HI16 relocation will handle the overflow.
5325 Therefore, we consider this a bug in the MIPS ABI, and do
5326 not check for overflow here. */
5327 }
5328 break;
5329
5330 case R_MIPS_LITERAL:
5331 /* Because we don't merge literal sections, we can handle this
5332 just like R_MIPS_GPREL16. In the long run, we should merge
5333 shared literals, and then we will need to additional work
5334 here. */
5335
5336 /* Fall through. */
5337
5338 case R_MIPS16_GPREL:
5339 /* The R_MIPS16_GPREL performs the same calculation as
5340 R_MIPS_GPREL16, but stores the relocated bits in a different
5341 order. We don't need to do anything special here; the
5342 differences are handled in mips_elf_perform_relocation. */
5343 case R_MIPS_GPREL16:
5344 /* Only sign-extend the addend if it was extracted from the
5345 instruction. If the addend was separate, leave it alone,
5346 otherwise we may lose significant bits. */
5347 if (howto->partial_inplace)
5348 addend = _bfd_mips_elf_sign_extend (addend, 16);
5349 value = symbol + addend - gp;
5350 /* If the symbol was local, any earlier relocatable links will
5351 have adjusted its addend with the gp offset, so compensate
5352 for that now. Don't do it for symbols forced local in this
5353 link, though, since they won't have had the gp offset applied
5354 to them before. */
5355 if (was_local_p)
5356 value += gp0;
5357 overflowed_p = mips_elf_overflow_p (value, 16);
5358 break;
5359
5360 case R_MIPS16_GOT16:
5361 case R_MIPS16_CALL16:
5362 case R_MIPS_GOT16:
5363 case R_MIPS_CALL16:
5364 /* VxWorks does not have separate local and global semantics for
5365 R_MIPS*_GOT16; every relocation evaluates to "G". */
5366 if (!htab->is_vxworks && local_p)
5367 {
5368 bfd_boolean forced;
5369
5370 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
5371 local_sections, FALSE);
5372 value = mips_elf_got16_entry (abfd, input_bfd, info,
5373 symbol + addend, forced);
5374 if (value == MINUS_ONE)
5375 return bfd_reloc_outofrange;
5376 value
5377 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5378 overflowed_p = mips_elf_overflow_p (value, 16);
5379 break;
5380 }
5381
5382 /* Fall through. */
5383
5384 case R_MIPS_TLS_GD:
5385 case R_MIPS_TLS_GOTTPREL:
5386 case R_MIPS_TLS_LDM:
5387 case R_MIPS_GOT_DISP:
5388 got_disp:
5389 value = g;
5390 overflowed_p = mips_elf_overflow_p (value, 16);
5391 break;
5392
5393 case R_MIPS_GPREL32:
5394 value = (addend + symbol + gp0 - gp);
5395 if (!save_addend)
5396 value &= howto->dst_mask;
5397 break;
5398
5399 case R_MIPS_PC16:
5400 case R_MIPS_GNU_REL16_S2:
5401 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5402 overflowed_p = mips_elf_overflow_p (value, 18);
5403 value >>= howto->rightshift;
5404 value &= howto->dst_mask;
5405 break;
5406
5407 case R_MIPS_GOT_HI16:
5408 case R_MIPS_CALL_HI16:
5409 /* We're allowed to handle these two relocations identically.
5410 The dynamic linker is allowed to handle the CALL relocations
5411 differently by creating a lazy evaluation stub. */
5412 value = g;
5413 value = mips_elf_high (value);
5414 value &= howto->dst_mask;
5415 break;
5416
5417 case R_MIPS_GOT_LO16:
5418 case R_MIPS_CALL_LO16:
5419 value = g & howto->dst_mask;
5420 break;
5421
5422 case R_MIPS_GOT_PAGE:
5423 /* GOT_PAGE relocations that reference non-local symbols decay
5424 to GOT_DISP. The corresponding GOT_OFST relocation decays to
5425 0. */
5426 if (! local_p)
5427 goto got_disp;
5428 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5429 if (value == MINUS_ONE)
5430 return bfd_reloc_outofrange;
5431 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5432 overflowed_p = mips_elf_overflow_p (value, 16);
5433 break;
5434
5435 case R_MIPS_GOT_OFST:
5436 if (local_p)
5437 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5438 else
5439 value = addend;
5440 overflowed_p = mips_elf_overflow_p (value, 16);
5441 break;
5442
5443 case R_MIPS_SUB:
5444 value = symbol - addend;
5445 value &= howto->dst_mask;
5446 break;
5447
5448 case R_MIPS_HIGHER:
5449 value = mips_elf_higher (addend + symbol);
5450 value &= howto->dst_mask;
5451 break;
5452
5453 case R_MIPS_HIGHEST:
5454 value = mips_elf_highest (addend + symbol);
5455 value &= howto->dst_mask;
5456 break;
5457
5458 case R_MIPS_SCN_DISP:
5459 value = symbol + addend - sec->output_offset;
5460 value &= howto->dst_mask;
5461 break;
5462
5463 case R_MIPS_JALR:
5464 /* This relocation is only a hint. In some cases, we optimize
5465 it into a bal instruction. But we don't try to optimize
5466 branches to the PLT; that will wind up wasting time. */
5467 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
5468 return bfd_reloc_continue;
5469 value = symbol + addend;
5470 break;
5471
5472 case R_MIPS_PJUMP:
5473 case R_MIPS_GNU_VTINHERIT:
5474 case R_MIPS_GNU_VTENTRY:
5475 /* We don't do anything with these at present. */
5476 return bfd_reloc_continue;
5477
5478 default:
5479 /* An unrecognized relocation type. */
5480 return bfd_reloc_notsupported;
5481 }
5482
5483 /* Store the VALUE for our caller. */
5484 *valuep = value;
5485 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5486 }
5487
5488 /* Obtain the field relocated by RELOCATION. */
5489
5490 static bfd_vma
5491 mips_elf_obtain_contents (reloc_howto_type *howto,
5492 const Elf_Internal_Rela *relocation,
5493 bfd *input_bfd, bfd_byte *contents)
5494 {
5495 bfd_vma x;
5496 bfd_byte *location = contents + relocation->r_offset;
5497
5498 /* Obtain the bytes. */
5499 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5500
5501 return x;
5502 }
5503
5504 /* It has been determined that the result of the RELOCATION is the
5505 VALUE. Use HOWTO to place VALUE into the output file at the
5506 appropriate position. The SECTION is the section to which the
5507 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
5508 for the relocation must be either JAL or JALX, and it is
5509 unconditionally converted to JALX.
5510
5511 Returns FALSE if anything goes wrong. */
5512
5513 static bfd_boolean
5514 mips_elf_perform_relocation (struct bfd_link_info *info,
5515 reloc_howto_type *howto,
5516 const Elf_Internal_Rela *relocation,
5517 bfd_vma value, bfd *input_bfd,
5518 asection *input_section, bfd_byte *contents,
5519 bfd_boolean require_jalx)
5520 {
5521 bfd_vma x;
5522 bfd_byte *location;
5523 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5524
5525 /* Figure out where the relocation is occurring. */
5526 location = contents + relocation->r_offset;
5527
5528 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5529
5530 /* Obtain the current value. */
5531 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5532
5533 /* Clear the field we are setting. */
5534 x &= ~howto->dst_mask;
5535
5536 /* Set the field. */
5537 x |= (value & howto->dst_mask);
5538
5539 /* If required, turn JAL into JALX. */
5540 if (require_jalx)
5541 {
5542 bfd_boolean ok;
5543 bfd_vma opcode = x >> 26;
5544 bfd_vma jalx_opcode;
5545
5546 /* Check to see if the opcode is already JAL or JALX. */
5547 if (r_type == R_MIPS16_26)
5548 {
5549 ok = ((opcode == 0x6) || (opcode == 0x7));
5550 jalx_opcode = 0x7;
5551 }
5552 else
5553 {
5554 ok = ((opcode == 0x3) || (opcode == 0x1d));
5555 jalx_opcode = 0x1d;
5556 }
5557
5558 /* If the opcode is not JAL or JALX, there's a problem. */
5559 if (!ok)
5560 {
5561 (*_bfd_error_handler)
5562 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
5563 input_bfd,
5564 input_section,
5565 (unsigned long) relocation->r_offset);
5566 bfd_set_error (bfd_error_bad_value);
5567 return FALSE;
5568 }
5569
5570 /* Make this the JALX opcode. */
5571 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5572 }
5573
5574 /* On the RM9000, bal is faster than jal, because bal uses branch
5575 prediction hardware. If we are linking for the RM9000, and we
5576 see jal, and bal fits, use it instead. Note that this
5577 transformation should be safe for all architectures. */
5578 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
5579 && !info->relocatable
5580 && !require_jalx
5581 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
5582 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
5583 {
5584 bfd_vma addr;
5585 bfd_vma dest;
5586 bfd_signed_vma off;
5587
5588 addr = (input_section->output_section->vma
5589 + input_section->output_offset
5590 + relocation->r_offset
5591 + 4);
5592 if (r_type == R_MIPS_26)
5593 dest = (value << 2) | ((addr >> 28) << 28);
5594 else
5595 dest = value;
5596 off = dest - addr;
5597 if (off <= 0x1ffff && off >= -0x20000)
5598 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5599 }
5600
5601 /* Put the value into the output. */
5602 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5603
5604 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5605 location);
5606
5607 return TRUE;
5608 }
5609 \f
5610 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5611 is the original relocation, which is now being transformed into a
5612 dynamic relocation. The ADDENDP is adjusted if necessary; the
5613 caller should store the result in place of the original addend. */
5614
5615 static bfd_boolean
5616 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5617 struct bfd_link_info *info,
5618 const Elf_Internal_Rela *rel,
5619 struct mips_elf_link_hash_entry *h,
5620 asection *sec, bfd_vma symbol,
5621 bfd_vma *addendp, asection *input_section)
5622 {
5623 Elf_Internal_Rela outrel[3];
5624 asection *sreloc;
5625 bfd *dynobj;
5626 int r_type;
5627 long indx;
5628 bfd_boolean defined_p;
5629 struct mips_elf_link_hash_table *htab;
5630
5631 htab = mips_elf_hash_table (info);
5632 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5633 dynobj = elf_hash_table (info)->dynobj;
5634 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5635 BFD_ASSERT (sreloc != NULL);
5636 BFD_ASSERT (sreloc->contents != NULL);
5637 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5638 < sreloc->size);
5639
5640 outrel[0].r_offset =
5641 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5642 if (ABI_64_P (output_bfd))
5643 {
5644 outrel[1].r_offset =
5645 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5646 outrel[2].r_offset =
5647 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5648 }
5649
5650 if (outrel[0].r_offset == MINUS_ONE)
5651 /* The relocation field has been deleted. */
5652 return TRUE;
5653
5654 if (outrel[0].r_offset == MINUS_TWO)
5655 {
5656 /* The relocation field has been converted into a relative value of
5657 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5658 the field to be fully relocated, so add in the symbol's value. */
5659 *addendp += symbol;
5660 return TRUE;
5661 }
5662
5663 /* We must now calculate the dynamic symbol table index to use
5664 in the relocation. */
5665 if (h != NULL
5666 && (!h->root.def_regular
5667 || (info->shared && !info->symbolic && !h->root.forced_local)))
5668 {
5669 indx = h->root.dynindx;
5670 if (SGI_COMPAT (output_bfd))
5671 defined_p = h->root.def_regular;
5672 else
5673 /* ??? glibc's ld.so just adds the final GOT entry to the
5674 relocation field. It therefore treats relocs against
5675 defined symbols in the same way as relocs against
5676 undefined symbols. */
5677 defined_p = FALSE;
5678 }
5679 else
5680 {
5681 if (sec != NULL && bfd_is_abs_section (sec))
5682 indx = 0;
5683 else if (sec == NULL || sec->owner == NULL)
5684 {
5685 bfd_set_error (bfd_error_bad_value);
5686 return FALSE;
5687 }
5688 else
5689 {
5690 indx = elf_section_data (sec->output_section)->dynindx;
5691 if (indx == 0)
5692 {
5693 asection *osec = htab->root.text_index_section;
5694 indx = elf_section_data (osec)->dynindx;
5695 }
5696 if (indx == 0)
5697 abort ();
5698 }
5699
5700 /* Instead of generating a relocation using the section
5701 symbol, we may as well make it a fully relative
5702 relocation. We want to avoid generating relocations to
5703 local symbols because we used to generate them
5704 incorrectly, without adding the original symbol value,
5705 which is mandated by the ABI for section symbols. In
5706 order to give dynamic loaders and applications time to
5707 phase out the incorrect use, we refrain from emitting
5708 section-relative relocations. It's not like they're
5709 useful, after all. This should be a bit more efficient
5710 as well. */
5711 /* ??? Although this behavior is compatible with glibc's ld.so,
5712 the ABI says that relocations against STN_UNDEF should have
5713 a symbol value of 0. Irix rld honors this, so relocations
5714 against STN_UNDEF have no effect. */
5715 if (!SGI_COMPAT (output_bfd))
5716 indx = 0;
5717 defined_p = TRUE;
5718 }
5719
5720 /* If the relocation was previously an absolute relocation and
5721 this symbol will not be referred to by the relocation, we must
5722 adjust it by the value we give it in the dynamic symbol table.
5723 Otherwise leave the job up to the dynamic linker. */
5724 if (defined_p && r_type != R_MIPS_REL32)
5725 *addendp += symbol;
5726
5727 if (htab->is_vxworks)
5728 /* VxWorks uses non-relative relocations for this. */
5729 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5730 else
5731 /* The relocation is always an REL32 relocation because we don't
5732 know where the shared library will wind up at load-time. */
5733 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5734 R_MIPS_REL32);
5735
5736 /* For strict adherence to the ABI specification, we should
5737 generate a R_MIPS_64 relocation record by itself before the
5738 _REL32/_64 record as well, such that the addend is read in as
5739 a 64-bit value (REL32 is a 32-bit relocation, after all).
5740 However, since none of the existing ELF64 MIPS dynamic
5741 loaders seems to care, we don't waste space with these
5742 artificial relocations. If this turns out to not be true,
5743 mips_elf_allocate_dynamic_relocation() should be tweaked so
5744 as to make room for a pair of dynamic relocations per
5745 invocation if ABI_64_P, and here we should generate an
5746 additional relocation record with R_MIPS_64 by itself for a
5747 NULL symbol before this relocation record. */
5748 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5749 ABI_64_P (output_bfd)
5750 ? R_MIPS_64
5751 : R_MIPS_NONE);
5752 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5753
5754 /* Adjust the output offset of the relocation to reference the
5755 correct location in the output file. */
5756 outrel[0].r_offset += (input_section->output_section->vma
5757 + input_section->output_offset);
5758 outrel[1].r_offset += (input_section->output_section->vma
5759 + input_section->output_offset);
5760 outrel[2].r_offset += (input_section->output_section->vma
5761 + input_section->output_offset);
5762
5763 /* Put the relocation back out. We have to use the special
5764 relocation outputter in the 64-bit case since the 64-bit
5765 relocation format is non-standard. */
5766 if (ABI_64_P (output_bfd))
5767 {
5768 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5769 (output_bfd, &outrel[0],
5770 (sreloc->contents
5771 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5772 }
5773 else if (htab->is_vxworks)
5774 {
5775 /* VxWorks uses RELA rather than REL dynamic relocations. */
5776 outrel[0].r_addend = *addendp;
5777 bfd_elf32_swap_reloca_out
5778 (output_bfd, &outrel[0],
5779 (sreloc->contents
5780 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5781 }
5782 else
5783 bfd_elf32_swap_reloc_out
5784 (output_bfd, &outrel[0],
5785 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5786
5787 /* We've now added another relocation. */
5788 ++sreloc->reloc_count;
5789
5790 /* Make sure the output section is writable. The dynamic linker
5791 will be writing to it. */
5792 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5793 |= SHF_WRITE;
5794
5795 /* On IRIX5, make an entry of compact relocation info. */
5796 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5797 {
5798 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5799 bfd_byte *cr;
5800
5801 if (scpt)
5802 {
5803 Elf32_crinfo cptrel;
5804
5805 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5806 cptrel.vaddr = (rel->r_offset
5807 + input_section->output_section->vma
5808 + input_section->output_offset);
5809 if (r_type == R_MIPS_REL32)
5810 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5811 else
5812 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5813 mips_elf_set_cr_dist2to (cptrel, 0);
5814 cptrel.konst = *addendp;
5815
5816 cr = (scpt->contents
5817 + sizeof (Elf32_External_compact_rel));
5818 mips_elf_set_cr_relvaddr (cptrel, 0);
5819 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5820 ((Elf32_External_crinfo *) cr
5821 + scpt->reloc_count));
5822 ++scpt->reloc_count;
5823 }
5824 }
5825
5826 /* If we've written this relocation for a readonly section,
5827 we need to set DF_TEXTREL again, so that we do not delete the
5828 DT_TEXTREL tag. */
5829 if (MIPS_ELF_READONLY_SECTION (input_section))
5830 info->flags |= DF_TEXTREL;
5831
5832 return TRUE;
5833 }
5834 \f
5835 /* Return the MACH for a MIPS e_flags value. */
5836
5837 unsigned long
5838 _bfd_elf_mips_mach (flagword flags)
5839 {
5840 switch (flags & EF_MIPS_MACH)
5841 {
5842 case E_MIPS_MACH_3900:
5843 return bfd_mach_mips3900;
5844
5845 case E_MIPS_MACH_4010:
5846 return bfd_mach_mips4010;
5847
5848 case E_MIPS_MACH_4100:
5849 return bfd_mach_mips4100;
5850
5851 case E_MIPS_MACH_4111:
5852 return bfd_mach_mips4111;
5853
5854 case E_MIPS_MACH_4120:
5855 return bfd_mach_mips4120;
5856
5857 case E_MIPS_MACH_4650:
5858 return bfd_mach_mips4650;
5859
5860 case E_MIPS_MACH_5400:
5861 return bfd_mach_mips5400;
5862
5863 case E_MIPS_MACH_5500:
5864 return bfd_mach_mips5500;
5865
5866 case E_MIPS_MACH_9000:
5867 return bfd_mach_mips9000;
5868
5869 case E_MIPS_MACH_SB1:
5870 return bfd_mach_mips_sb1;
5871
5872 case E_MIPS_MACH_LS2E:
5873 return bfd_mach_mips_loongson_2e;
5874
5875 case E_MIPS_MACH_LS2F:
5876 return bfd_mach_mips_loongson_2f;
5877
5878 case E_MIPS_MACH_OCTEON:
5879 return bfd_mach_mips_octeon;
5880
5881 default:
5882 switch (flags & EF_MIPS_ARCH)
5883 {
5884 default:
5885 case E_MIPS_ARCH_1:
5886 return bfd_mach_mips3000;
5887
5888 case E_MIPS_ARCH_2:
5889 return bfd_mach_mips6000;
5890
5891 case E_MIPS_ARCH_3:
5892 return bfd_mach_mips4000;
5893
5894 case E_MIPS_ARCH_4:
5895 return bfd_mach_mips8000;
5896
5897 case E_MIPS_ARCH_5:
5898 return bfd_mach_mips5;
5899
5900 case E_MIPS_ARCH_32:
5901 return bfd_mach_mipsisa32;
5902
5903 case E_MIPS_ARCH_64:
5904 return bfd_mach_mipsisa64;
5905
5906 case E_MIPS_ARCH_32R2:
5907 return bfd_mach_mipsisa32r2;
5908
5909 case E_MIPS_ARCH_64R2:
5910 return bfd_mach_mipsisa64r2;
5911 }
5912 }
5913
5914 return 0;
5915 }
5916
5917 /* Return printable name for ABI. */
5918
5919 static INLINE char *
5920 elf_mips_abi_name (bfd *abfd)
5921 {
5922 flagword flags;
5923
5924 flags = elf_elfheader (abfd)->e_flags;
5925 switch (flags & EF_MIPS_ABI)
5926 {
5927 case 0:
5928 if (ABI_N32_P (abfd))
5929 return "N32";
5930 else if (ABI_64_P (abfd))
5931 return "64";
5932 else
5933 return "none";
5934 case E_MIPS_ABI_O32:
5935 return "O32";
5936 case E_MIPS_ABI_O64:
5937 return "O64";
5938 case E_MIPS_ABI_EABI32:
5939 return "EABI32";
5940 case E_MIPS_ABI_EABI64:
5941 return "EABI64";
5942 default:
5943 return "unknown abi";
5944 }
5945 }
5946 \f
5947 /* MIPS ELF uses two common sections. One is the usual one, and the
5948 other is for small objects. All the small objects are kept
5949 together, and then referenced via the gp pointer, which yields
5950 faster assembler code. This is what we use for the small common
5951 section. This approach is copied from ecoff.c. */
5952 static asection mips_elf_scom_section;
5953 static asymbol mips_elf_scom_symbol;
5954 static asymbol *mips_elf_scom_symbol_ptr;
5955
5956 /* MIPS ELF also uses an acommon section, which represents an
5957 allocated common symbol which may be overridden by a
5958 definition in a shared library. */
5959 static asection mips_elf_acom_section;
5960 static asymbol mips_elf_acom_symbol;
5961 static asymbol *mips_elf_acom_symbol_ptr;
5962
5963 /* This is used for both the 32-bit and the 64-bit ABI. */
5964
5965 void
5966 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5967 {
5968 elf_symbol_type *elfsym;
5969
5970 /* Handle the special MIPS section numbers that a symbol may use. */
5971 elfsym = (elf_symbol_type *) asym;
5972 switch (elfsym->internal_elf_sym.st_shndx)
5973 {
5974 case SHN_MIPS_ACOMMON:
5975 /* This section is used in a dynamically linked executable file.
5976 It is an allocated common section. The dynamic linker can
5977 either resolve these symbols to something in a shared
5978 library, or it can just leave them here. For our purposes,
5979 we can consider these symbols to be in a new section. */
5980 if (mips_elf_acom_section.name == NULL)
5981 {
5982 /* Initialize the acommon section. */
5983 mips_elf_acom_section.name = ".acommon";
5984 mips_elf_acom_section.flags = SEC_ALLOC;
5985 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5986 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5987 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5988 mips_elf_acom_symbol.name = ".acommon";
5989 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5990 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5991 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5992 }
5993 asym->section = &mips_elf_acom_section;
5994 break;
5995
5996 case SHN_COMMON:
5997 /* Common symbols less than the GP size are automatically
5998 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5999 if (asym->value > elf_gp_size (abfd)
6000 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6001 || IRIX_COMPAT (abfd) == ict_irix6)
6002 break;
6003 /* Fall through. */
6004 case SHN_MIPS_SCOMMON:
6005 if (mips_elf_scom_section.name == NULL)
6006 {
6007 /* Initialize the small common section. */
6008 mips_elf_scom_section.name = ".scommon";
6009 mips_elf_scom_section.flags = SEC_IS_COMMON;
6010 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6011 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6012 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6013 mips_elf_scom_symbol.name = ".scommon";
6014 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6015 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6016 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6017 }
6018 asym->section = &mips_elf_scom_section;
6019 asym->value = elfsym->internal_elf_sym.st_size;
6020 break;
6021
6022 case SHN_MIPS_SUNDEFINED:
6023 asym->section = bfd_und_section_ptr;
6024 break;
6025
6026 case SHN_MIPS_TEXT:
6027 {
6028 asection *section = bfd_get_section_by_name (abfd, ".text");
6029
6030 BFD_ASSERT (SGI_COMPAT (abfd));
6031 if (section != NULL)
6032 {
6033 asym->section = section;
6034 /* MIPS_TEXT is a bit special, the address is not an offset
6035 to the base of the .text section. So substract the section
6036 base address to make it an offset. */
6037 asym->value -= section->vma;
6038 }
6039 }
6040 break;
6041
6042 case SHN_MIPS_DATA:
6043 {
6044 asection *section = bfd_get_section_by_name (abfd, ".data");
6045
6046 BFD_ASSERT (SGI_COMPAT (abfd));
6047 if (section != NULL)
6048 {
6049 asym->section = section;
6050 /* MIPS_DATA is a bit special, the address is not an offset
6051 to the base of the .data section. So substract the section
6052 base address to make it an offset. */
6053 asym->value -= section->vma;
6054 }
6055 }
6056 break;
6057 }
6058
6059 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6060 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6061 && (asym->value & 1) != 0)
6062 {
6063 asym->value--;
6064 elfsym->internal_elf_sym.st_other
6065 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6066 }
6067 }
6068 \f
6069 /* Implement elf_backend_eh_frame_address_size. This differs from
6070 the default in the way it handles EABI64.
6071
6072 EABI64 was originally specified as an LP64 ABI, and that is what
6073 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6074 historically accepted the combination of -mabi=eabi and -mlong32,
6075 and this ILP32 variation has become semi-official over time.
6076 Both forms use elf32 and have pointer-sized FDE addresses.
6077
6078 If an EABI object was generated by GCC 4.0 or above, it will have
6079 an empty .gcc_compiled_longXX section, where XX is the size of longs
6080 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6081 have no special marking to distinguish them from LP64 objects.
6082
6083 We don't want users of the official LP64 ABI to be punished for the
6084 existence of the ILP32 variant, but at the same time, we don't want
6085 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6086 We therefore take the following approach:
6087
6088 - If ABFD contains a .gcc_compiled_longXX section, use it to
6089 determine the pointer size.
6090
6091 - Otherwise check the type of the first relocation. Assume that
6092 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6093
6094 - Otherwise punt.
6095
6096 The second check is enough to detect LP64 objects generated by pre-4.0
6097 compilers because, in the kind of output generated by those compilers,
6098 the first relocation will be associated with either a CIE personality
6099 routine or an FDE start address. Furthermore, the compilers never
6100 used a special (non-pointer) encoding for this ABI.
6101
6102 Checking the relocation type should also be safe because there is no
6103 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6104 did so. */
6105
6106 unsigned int
6107 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6108 {
6109 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6110 return 8;
6111 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6112 {
6113 bfd_boolean long32_p, long64_p;
6114
6115 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6116 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6117 if (long32_p && long64_p)
6118 return 0;
6119 if (long32_p)
6120 return 4;
6121 if (long64_p)
6122 return 8;
6123
6124 if (sec->reloc_count > 0
6125 && elf_section_data (sec)->relocs != NULL
6126 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6127 == R_MIPS_64))
6128 return 8;
6129
6130 return 0;
6131 }
6132 return 4;
6133 }
6134 \f
6135 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6136 relocations against two unnamed section symbols to resolve to the
6137 same address. For example, if we have code like:
6138
6139 lw $4,%got_disp(.data)($gp)
6140 lw $25,%got_disp(.text)($gp)
6141 jalr $25
6142
6143 then the linker will resolve both relocations to .data and the program
6144 will jump there rather than to .text.
6145
6146 We can work around this problem by giving names to local section symbols.
6147 This is also what the MIPSpro tools do. */
6148
6149 bfd_boolean
6150 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6151 {
6152 return SGI_COMPAT (abfd);
6153 }
6154 \f
6155 /* Work over a section just before writing it out. This routine is
6156 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6157 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6158 a better way. */
6159
6160 bfd_boolean
6161 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6162 {
6163 if (hdr->sh_type == SHT_MIPS_REGINFO
6164 && hdr->sh_size > 0)
6165 {
6166 bfd_byte buf[4];
6167
6168 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6169 BFD_ASSERT (hdr->contents == NULL);
6170
6171 if (bfd_seek (abfd,
6172 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6173 SEEK_SET) != 0)
6174 return FALSE;
6175 H_PUT_32 (abfd, elf_gp (abfd), buf);
6176 if (bfd_bwrite (buf, 4, abfd) != 4)
6177 return FALSE;
6178 }
6179
6180 if (hdr->sh_type == SHT_MIPS_OPTIONS
6181 && hdr->bfd_section != NULL
6182 && mips_elf_section_data (hdr->bfd_section) != NULL
6183 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6184 {
6185 bfd_byte *contents, *l, *lend;
6186
6187 /* We stored the section contents in the tdata field in the
6188 set_section_contents routine. We save the section contents
6189 so that we don't have to read them again.
6190 At this point we know that elf_gp is set, so we can look
6191 through the section contents to see if there is an
6192 ODK_REGINFO structure. */
6193
6194 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6195 l = contents;
6196 lend = contents + hdr->sh_size;
6197 while (l + sizeof (Elf_External_Options) <= lend)
6198 {
6199 Elf_Internal_Options intopt;
6200
6201 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6202 &intopt);
6203 if (intopt.size < sizeof (Elf_External_Options))
6204 {
6205 (*_bfd_error_handler)
6206 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6207 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6208 break;
6209 }
6210 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6211 {
6212 bfd_byte buf[8];
6213
6214 if (bfd_seek (abfd,
6215 (hdr->sh_offset
6216 + (l - contents)
6217 + sizeof (Elf_External_Options)
6218 + (sizeof (Elf64_External_RegInfo) - 8)),
6219 SEEK_SET) != 0)
6220 return FALSE;
6221 H_PUT_64 (abfd, elf_gp (abfd), buf);
6222 if (bfd_bwrite (buf, 8, abfd) != 8)
6223 return FALSE;
6224 }
6225 else if (intopt.kind == ODK_REGINFO)
6226 {
6227 bfd_byte buf[4];
6228
6229 if (bfd_seek (abfd,
6230 (hdr->sh_offset
6231 + (l - contents)
6232 + sizeof (Elf_External_Options)
6233 + (sizeof (Elf32_External_RegInfo) - 4)),
6234 SEEK_SET) != 0)
6235 return FALSE;
6236 H_PUT_32 (abfd, elf_gp (abfd), buf);
6237 if (bfd_bwrite (buf, 4, abfd) != 4)
6238 return FALSE;
6239 }
6240 l += intopt.size;
6241 }
6242 }
6243
6244 if (hdr->bfd_section != NULL)
6245 {
6246 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6247
6248 if (strcmp (name, ".sdata") == 0
6249 || strcmp (name, ".lit8") == 0
6250 || strcmp (name, ".lit4") == 0)
6251 {
6252 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6253 hdr->sh_type = SHT_PROGBITS;
6254 }
6255 else if (strcmp (name, ".sbss") == 0)
6256 {
6257 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6258 hdr->sh_type = SHT_NOBITS;
6259 }
6260 else if (strcmp (name, ".srdata") == 0)
6261 {
6262 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6263 hdr->sh_type = SHT_PROGBITS;
6264 }
6265 else if (strcmp (name, ".compact_rel") == 0)
6266 {
6267 hdr->sh_flags = 0;
6268 hdr->sh_type = SHT_PROGBITS;
6269 }
6270 else if (strcmp (name, ".rtproc") == 0)
6271 {
6272 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6273 {
6274 unsigned int adjust;
6275
6276 adjust = hdr->sh_size % hdr->sh_addralign;
6277 if (adjust != 0)
6278 hdr->sh_size += hdr->sh_addralign - adjust;
6279 }
6280 }
6281 }
6282
6283 return TRUE;
6284 }
6285
6286 /* Handle a MIPS specific section when reading an object file. This
6287 is called when elfcode.h finds a section with an unknown type.
6288 This routine supports both the 32-bit and 64-bit ELF ABI.
6289
6290 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6291 how to. */
6292
6293 bfd_boolean
6294 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6295 Elf_Internal_Shdr *hdr,
6296 const char *name,
6297 int shindex)
6298 {
6299 flagword flags = 0;
6300
6301 /* There ought to be a place to keep ELF backend specific flags, but
6302 at the moment there isn't one. We just keep track of the
6303 sections by their name, instead. Fortunately, the ABI gives
6304 suggested names for all the MIPS specific sections, so we will
6305 probably get away with this. */
6306 switch (hdr->sh_type)
6307 {
6308 case SHT_MIPS_LIBLIST:
6309 if (strcmp (name, ".liblist") != 0)
6310 return FALSE;
6311 break;
6312 case SHT_MIPS_MSYM:
6313 if (strcmp (name, ".msym") != 0)
6314 return FALSE;
6315 break;
6316 case SHT_MIPS_CONFLICT:
6317 if (strcmp (name, ".conflict") != 0)
6318 return FALSE;
6319 break;
6320 case SHT_MIPS_GPTAB:
6321 if (! CONST_STRNEQ (name, ".gptab."))
6322 return FALSE;
6323 break;
6324 case SHT_MIPS_UCODE:
6325 if (strcmp (name, ".ucode") != 0)
6326 return FALSE;
6327 break;
6328 case SHT_MIPS_DEBUG:
6329 if (strcmp (name, ".mdebug") != 0)
6330 return FALSE;
6331 flags = SEC_DEBUGGING;
6332 break;
6333 case SHT_MIPS_REGINFO:
6334 if (strcmp (name, ".reginfo") != 0
6335 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6336 return FALSE;
6337 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6338 break;
6339 case SHT_MIPS_IFACE:
6340 if (strcmp (name, ".MIPS.interfaces") != 0)
6341 return FALSE;
6342 break;
6343 case SHT_MIPS_CONTENT:
6344 if (! CONST_STRNEQ (name, ".MIPS.content"))
6345 return FALSE;
6346 break;
6347 case SHT_MIPS_OPTIONS:
6348 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6349 return FALSE;
6350 break;
6351 case SHT_MIPS_DWARF:
6352 if (! CONST_STRNEQ (name, ".debug_")
6353 && ! CONST_STRNEQ (name, ".zdebug_"))
6354 return FALSE;
6355 break;
6356 case SHT_MIPS_SYMBOL_LIB:
6357 if (strcmp (name, ".MIPS.symlib") != 0)
6358 return FALSE;
6359 break;
6360 case SHT_MIPS_EVENTS:
6361 if (! CONST_STRNEQ (name, ".MIPS.events")
6362 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6363 return FALSE;
6364 break;
6365 default:
6366 break;
6367 }
6368
6369 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6370 return FALSE;
6371
6372 if (flags)
6373 {
6374 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6375 (bfd_get_section_flags (abfd,
6376 hdr->bfd_section)
6377 | flags)))
6378 return FALSE;
6379 }
6380
6381 /* FIXME: We should record sh_info for a .gptab section. */
6382
6383 /* For a .reginfo section, set the gp value in the tdata information
6384 from the contents of this section. We need the gp value while
6385 processing relocs, so we just get it now. The .reginfo section
6386 is not used in the 64-bit MIPS ELF ABI. */
6387 if (hdr->sh_type == SHT_MIPS_REGINFO)
6388 {
6389 Elf32_External_RegInfo ext;
6390 Elf32_RegInfo s;
6391
6392 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6393 &ext, 0, sizeof ext))
6394 return FALSE;
6395 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6396 elf_gp (abfd) = s.ri_gp_value;
6397 }
6398
6399 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6400 set the gp value based on what we find. We may see both
6401 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6402 they should agree. */
6403 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6404 {
6405 bfd_byte *contents, *l, *lend;
6406
6407 contents = bfd_malloc (hdr->sh_size);
6408 if (contents == NULL)
6409 return FALSE;
6410 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6411 0, hdr->sh_size))
6412 {
6413 free (contents);
6414 return FALSE;
6415 }
6416 l = contents;
6417 lend = contents + hdr->sh_size;
6418 while (l + sizeof (Elf_External_Options) <= lend)
6419 {
6420 Elf_Internal_Options intopt;
6421
6422 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6423 &intopt);
6424 if (intopt.size < sizeof (Elf_External_Options))
6425 {
6426 (*_bfd_error_handler)
6427 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6428 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6429 break;
6430 }
6431 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6432 {
6433 Elf64_Internal_RegInfo intreg;
6434
6435 bfd_mips_elf64_swap_reginfo_in
6436 (abfd,
6437 ((Elf64_External_RegInfo *)
6438 (l + sizeof (Elf_External_Options))),
6439 &intreg);
6440 elf_gp (abfd) = intreg.ri_gp_value;
6441 }
6442 else if (intopt.kind == ODK_REGINFO)
6443 {
6444 Elf32_RegInfo intreg;
6445
6446 bfd_mips_elf32_swap_reginfo_in
6447 (abfd,
6448 ((Elf32_External_RegInfo *)
6449 (l + sizeof (Elf_External_Options))),
6450 &intreg);
6451 elf_gp (abfd) = intreg.ri_gp_value;
6452 }
6453 l += intopt.size;
6454 }
6455 free (contents);
6456 }
6457
6458 return TRUE;
6459 }
6460
6461 /* Set the correct type for a MIPS ELF section. We do this by the
6462 section name, which is a hack, but ought to work. This routine is
6463 used by both the 32-bit and the 64-bit ABI. */
6464
6465 bfd_boolean
6466 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6467 {
6468 const char *name = bfd_get_section_name (abfd, sec);
6469
6470 if (strcmp (name, ".liblist") == 0)
6471 {
6472 hdr->sh_type = SHT_MIPS_LIBLIST;
6473 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6474 /* The sh_link field is set in final_write_processing. */
6475 }
6476 else if (strcmp (name, ".conflict") == 0)
6477 hdr->sh_type = SHT_MIPS_CONFLICT;
6478 else if (CONST_STRNEQ (name, ".gptab."))
6479 {
6480 hdr->sh_type = SHT_MIPS_GPTAB;
6481 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6482 /* The sh_info field is set in final_write_processing. */
6483 }
6484 else if (strcmp (name, ".ucode") == 0)
6485 hdr->sh_type = SHT_MIPS_UCODE;
6486 else if (strcmp (name, ".mdebug") == 0)
6487 {
6488 hdr->sh_type = SHT_MIPS_DEBUG;
6489 /* In a shared object on IRIX 5.3, the .mdebug section has an
6490 entsize of 0. FIXME: Does this matter? */
6491 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6492 hdr->sh_entsize = 0;
6493 else
6494 hdr->sh_entsize = 1;
6495 }
6496 else if (strcmp (name, ".reginfo") == 0)
6497 {
6498 hdr->sh_type = SHT_MIPS_REGINFO;
6499 /* In a shared object on IRIX 5.3, the .reginfo section has an
6500 entsize of 0x18. FIXME: Does this matter? */
6501 if (SGI_COMPAT (abfd))
6502 {
6503 if ((abfd->flags & DYNAMIC) != 0)
6504 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6505 else
6506 hdr->sh_entsize = 1;
6507 }
6508 else
6509 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6510 }
6511 else if (SGI_COMPAT (abfd)
6512 && (strcmp (name, ".hash") == 0
6513 || strcmp (name, ".dynamic") == 0
6514 || strcmp (name, ".dynstr") == 0))
6515 {
6516 if (SGI_COMPAT (abfd))
6517 hdr->sh_entsize = 0;
6518 #if 0
6519 /* This isn't how the IRIX6 linker behaves. */
6520 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6521 #endif
6522 }
6523 else if (strcmp (name, ".got") == 0
6524 || strcmp (name, ".srdata") == 0
6525 || strcmp (name, ".sdata") == 0
6526 || strcmp (name, ".sbss") == 0
6527 || strcmp (name, ".lit4") == 0
6528 || strcmp (name, ".lit8") == 0)
6529 hdr->sh_flags |= SHF_MIPS_GPREL;
6530 else if (strcmp (name, ".MIPS.interfaces") == 0)
6531 {
6532 hdr->sh_type = SHT_MIPS_IFACE;
6533 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6534 }
6535 else if (CONST_STRNEQ (name, ".MIPS.content"))
6536 {
6537 hdr->sh_type = SHT_MIPS_CONTENT;
6538 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6539 /* The sh_info field is set in final_write_processing. */
6540 }
6541 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6542 {
6543 hdr->sh_type = SHT_MIPS_OPTIONS;
6544 hdr->sh_entsize = 1;
6545 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6546 }
6547 else if (CONST_STRNEQ (name, ".debug_")
6548 || CONST_STRNEQ (name, ".zdebug_"))
6549 {
6550 hdr->sh_type = SHT_MIPS_DWARF;
6551
6552 /* Irix facilities such as libexc expect a single .debug_frame
6553 per executable, the system ones have NOSTRIP set and the linker
6554 doesn't merge sections with different flags so ... */
6555 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6556 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6557 }
6558 else if (strcmp (name, ".MIPS.symlib") == 0)
6559 {
6560 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6561 /* The sh_link and sh_info fields are set in
6562 final_write_processing. */
6563 }
6564 else if (CONST_STRNEQ (name, ".MIPS.events")
6565 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6566 {
6567 hdr->sh_type = SHT_MIPS_EVENTS;
6568 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6569 /* The sh_link field is set in final_write_processing. */
6570 }
6571 else if (strcmp (name, ".msym") == 0)
6572 {
6573 hdr->sh_type = SHT_MIPS_MSYM;
6574 hdr->sh_flags |= SHF_ALLOC;
6575 hdr->sh_entsize = 8;
6576 }
6577
6578 /* The generic elf_fake_sections will set up REL_HDR using the default
6579 kind of relocations. We used to set up a second header for the
6580 non-default kind of relocations here, but only NewABI would use
6581 these, and the IRIX ld doesn't like resulting empty RELA sections.
6582 Thus we create those header only on demand now. */
6583
6584 return TRUE;
6585 }
6586
6587 /* Given a BFD section, try to locate the corresponding ELF section
6588 index. This is used by both the 32-bit and the 64-bit ABI.
6589 Actually, it's not clear to me that the 64-bit ABI supports these,
6590 but for non-PIC objects we will certainly want support for at least
6591 the .scommon section. */
6592
6593 bfd_boolean
6594 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6595 asection *sec, int *retval)
6596 {
6597 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6598 {
6599 *retval = SHN_MIPS_SCOMMON;
6600 return TRUE;
6601 }
6602 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6603 {
6604 *retval = SHN_MIPS_ACOMMON;
6605 return TRUE;
6606 }
6607 return FALSE;
6608 }
6609 \f
6610 /* Hook called by the linker routine which adds symbols from an object
6611 file. We must handle the special MIPS section numbers here. */
6612
6613 bfd_boolean
6614 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6615 Elf_Internal_Sym *sym, const char **namep,
6616 flagword *flagsp ATTRIBUTE_UNUSED,
6617 asection **secp, bfd_vma *valp)
6618 {
6619 if (SGI_COMPAT (abfd)
6620 && (abfd->flags & DYNAMIC) != 0
6621 && strcmp (*namep, "_rld_new_interface") == 0)
6622 {
6623 /* Skip IRIX5 rld entry name. */
6624 *namep = NULL;
6625 return TRUE;
6626 }
6627
6628 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6629 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6630 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6631 a magic symbol resolved by the linker, we ignore this bogus definition
6632 of _gp_disp. New ABI objects do not suffer from this problem so this
6633 is not done for them. */
6634 if (!NEWABI_P(abfd)
6635 && (sym->st_shndx == SHN_ABS)
6636 && (strcmp (*namep, "_gp_disp") == 0))
6637 {
6638 *namep = NULL;
6639 return TRUE;
6640 }
6641
6642 switch (sym->st_shndx)
6643 {
6644 case SHN_COMMON:
6645 /* Common symbols less than the GP size are automatically
6646 treated as SHN_MIPS_SCOMMON symbols. */
6647 if (sym->st_size > elf_gp_size (abfd)
6648 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6649 || IRIX_COMPAT (abfd) == ict_irix6)
6650 break;
6651 /* Fall through. */
6652 case SHN_MIPS_SCOMMON:
6653 *secp = bfd_make_section_old_way (abfd, ".scommon");
6654 (*secp)->flags |= SEC_IS_COMMON;
6655 *valp = sym->st_size;
6656 break;
6657
6658 case SHN_MIPS_TEXT:
6659 /* This section is used in a shared object. */
6660 if (elf_tdata (abfd)->elf_text_section == NULL)
6661 {
6662 asymbol *elf_text_symbol;
6663 asection *elf_text_section;
6664 bfd_size_type amt = sizeof (asection);
6665
6666 elf_text_section = bfd_zalloc (abfd, amt);
6667 if (elf_text_section == NULL)
6668 return FALSE;
6669
6670 amt = sizeof (asymbol);
6671 elf_text_symbol = bfd_zalloc (abfd, amt);
6672 if (elf_text_symbol == NULL)
6673 return FALSE;
6674
6675 /* Initialize the section. */
6676
6677 elf_tdata (abfd)->elf_text_section = elf_text_section;
6678 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6679
6680 elf_text_section->symbol = elf_text_symbol;
6681 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6682
6683 elf_text_section->name = ".text";
6684 elf_text_section->flags = SEC_NO_FLAGS;
6685 elf_text_section->output_section = NULL;
6686 elf_text_section->owner = abfd;
6687 elf_text_symbol->name = ".text";
6688 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6689 elf_text_symbol->section = elf_text_section;
6690 }
6691 /* This code used to do *secp = bfd_und_section_ptr if
6692 info->shared. I don't know why, and that doesn't make sense,
6693 so I took it out. */
6694 *secp = elf_tdata (abfd)->elf_text_section;
6695 break;
6696
6697 case SHN_MIPS_ACOMMON:
6698 /* Fall through. XXX Can we treat this as allocated data? */
6699 case SHN_MIPS_DATA:
6700 /* This section is used in a shared object. */
6701 if (elf_tdata (abfd)->elf_data_section == NULL)
6702 {
6703 asymbol *elf_data_symbol;
6704 asection *elf_data_section;
6705 bfd_size_type amt = sizeof (asection);
6706
6707 elf_data_section = bfd_zalloc (abfd, amt);
6708 if (elf_data_section == NULL)
6709 return FALSE;
6710
6711 amt = sizeof (asymbol);
6712 elf_data_symbol = bfd_zalloc (abfd, amt);
6713 if (elf_data_symbol == NULL)
6714 return FALSE;
6715
6716 /* Initialize the section. */
6717
6718 elf_tdata (abfd)->elf_data_section = elf_data_section;
6719 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6720
6721 elf_data_section->symbol = elf_data_symbol;
6722 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6723
6724 elf_data_section->name = ".data";
6725 elf_data_section->flags = SEC_NO_FLAGS;
6726 elf_data_section->output_section = NULL;
6727 elf_data_section->owner = abfd;
6728 elf_data_symbol->name = ".data";
6729 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6730 elf_data_symbol->section = elf_data_section;
6731 }
6732 /* This code used to do *secp = bfd_und_section_ptr if
6733 info->shared. I don't know why, and that doesn't make sense,
6734 so I took it out. */
6735 *secp = elf_tdata (abfd)->elf_data_section;
6736 break;
6737
6738 case SHN_MIPS_SUNDEFINED:
6739 *secp = bfd_und_section_ptr;
6740 break;
6741 }
6742
6743 if (SGI_COMPAT (abfd)
6744 && ! info->shared
6745 && info->output_bfd->xvec == abfd->xvec
6746 && strcmp (*namep, "__rld_obj_head") == 0)
6747 {
6748 struct elf_link_hash_entry *h;
6749 struct bfd_link_hash_entry *bh;
6750
6751 /* Mark __rld_obj_head as dynamic. */
6752 bh = NULL;
6753 if (! (_bfd_generic_link_add_one_symbol
6754 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6755 get_elf_backend_data (abfd)->collect, &bh)))
6756 return FALSE;
6757
6758 h = (struct elf_link_hash_entry *) bh;
6759 h->non_elf = 0;
6760 h->def_regular = 1;
6761 h->type = STT_OBJECT;
6762
6763 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6764 return FALSE;
6765
6766 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6767 }
6768
6769 /* If this is a mips16 text symbol, add 1 to the value to make it
6770 odd. This will cause something like .word SYM to come up with
6771 the right value when it is loaded into the PC. */
6772 if (ELF_ST_IS_MIPS16 (sym->st_other))
6773 ++*valp;
6774
6775 return TRUE;
6776 }
6777
6778 /* This hook function is called before the linker writes out a global
6779 symbol. We mark symbols as small common if appropriate. This is
6780 also where we undo the increment of the value for a mips16 symbol. */
6781
6782 bfd_boolean
6783 _bfd_mips_elf_link_output_symbol_hook
6784 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6785 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6786 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6787 {
6788 /* If we see a common symbol, which implies a relocatable link, then
6789 if a symbol was small common in an input file, mark it as small
6790 common in the output file. */
6791 if (sym->st_shndx == SHN_COMMON
6792 && strcmp (input_sec->name, ".scommon") == 0)
6793 sym->st_shndx = SHN_MIPS_SCOMMON;
6794
6795 if (ELF_ST_IS_MIPS16 (sym->st_other))
6796 sym->st_value &= ~1;
6797
6798 return TRUE;
6799 }
6800 \f
6801 /* Functions for the dynamic linker. */
6802
6803 /* Create dynamic sections when linking against a dynamic object. */
6804
6805 bfd_boolean
6806 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6807 {
6808 struct elf_link_hash_entry *h;
6809 struct bfd_link_hash_entry *bh;
6810 flagword flags;
6811 register asection *s;
6812 const char * const *namep;
6813 struct mips_elf_link_hash_table *htab;
6814
6815 htab = mips_elf_hash_table (info);
6816 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6817 | SEC_LINKER_CREATED | SEC_READONLY);
6818
6819 /* The psABI requires a read-only .dynamic section, but the VxWorks
6820 EABI doesn't. */
6821 if (!htab->is_vxworks)
6822 {
6823 s = bfd_get_section_by_name (abfd, ".dynamic");
6824 if (s != NULL)
6825 {
6826 if (! bfd_set_section_flags (abfd, s, flags))
6827 return FALSE;
6828 }
6829 }
6830
6831 /* We need to create .got section. */
6832 if (!mips_elf_create_got_section (abfd, info))
6833 return FALSE;
6834
6835 if (! mips_elf_rel_dyn_section (info, TRUE))
6836 return FALSE;
6837
6838 /* Create .stub section. */
6839 s = bfd_make_section_with_flags (abfd,
6840 MIPS_ELF_STUB_SECTION_NAME (abfd),
6841 flags | SEC_CODE);
6842 if (s == NULL
6843 || ! bfd_set_section_alignment (abfd, s,
6844 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6845 return FALSE;
6846 htab->sstubs = s;
6847
6848 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6849 && !info->shared
6850 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6851 {
6852 s = bfd_make_section_with_flags (abfd, ".rld_map",
6853 flags &~ (flagword) SEC_READONLY);
6854 if (s == NULL
6855 || ! bfd_set_section_alignment (abfd, s,
6856 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6857 return FALSE;
6858 }
6859
6860 /* On IRIX5, we adjust add some additional symbols and change the
6861 alignments of several sections. There is no ABI documentation
6862 indicating that this is necessary on IRIX6, nor any evidence that
6863 the linker takes such action. */
6864 if (IRIX_COMPAT (abfd) == ict_irix5)
6865 {
6866 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6867 {
6868 bh = NULL;
6869 if (! (_bfd_generic_link_add_one_symbol
6870 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6871 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6872 return FALSE;
6873
6874 h = (struct elf_link_hash_entry *) bh;
6875 h->non_elf = 0;
6876 h->def_regular = 1;
6877 h->type = STT_SECTION;
6878
6879 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6880 return FALSE;
6881 }
6882
6883 /* We need to create a .compact_rel section. */
6884 if (SGI_COMPAT (abfd))
6885 {
6886 if (!mips_elf_create_compact_rel_section (abfd, info))
6887 return FALSE;
6888 }
6889
6890 /* Change alignments of some sections. */
6891 s = bfd_get_section_by_name (abfd, ".hash");
6892 if (s != NULL)
6893 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6894 s = bfd_get_section_by_name (abfd, ".dynsym");
6895 if (s != NULL)
6896 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6897 s = bfd_get_section_by_name (abfd, ".dynstr");
6898 if (s != NULL)
6899 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6900 s = bfd_get_section_by_name (abfd, ".reginfo");
6901 if (s != NULL)
6902 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6903 s = bfd_get_section_by_name (abfd, ".dynamic");
6904 if (s != NULL)
6905 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6906 }
6907
6908 if (!info->shared)
6909 {
6910 const char *name;
6911
6912 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6913 bh = NULL;
6914 if (!(_bfd_generic_link_add_one_symbol
6915 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6916 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6917 return FALSE;
6918
6919 h = (struct elf_link_hash_entry *) bh;
6920 h->non_elf = 0;
6921 h->def_regular = 1;
6922 h->type = STT_SECTION;
6923
6924 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6925 return FALSE;
6926
6927 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6928 {
6929 /* __rld_map is a four byte word located in the .data section
6930 and is filled in by the rtld to contain a pointer to
6931 the _r_debug structure. Its symbol value will be set in
6932 _bfd_mips_elf_finish_dynamic_symbol. */
6933 s = bfd_get_section_by_name (abfd, ".rld_map");
6934 BFD_ASSERT (s != NULL);
6935
6936 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6937 bh = NULL;
6938 if (!(_bfd_generic_link_add_one_symbol
6939 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6940 get_elf_backend_data (abfd)->collect, &bh)))
6941 return FALSE;
6942
6943 h = (struct elf_link_hash_entry *) bh;
6944 h->non_elf = 0;
6945 h->def_regular = 1;
6946 h->type = STT_OBJECT;
6947
6948 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6949 return FALSE;
6950 }
6951 }
6952
6953 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
6954 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6955 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6956 return FALSE;
6957
6958 /* Cache the sections created above. */
6959 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6960 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6961 if (htab->is_vxworks)
6962 {
6963 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6964 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6965 }
6966 else
6967 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
6968 if (!htab->sdynbss
6969 || (htab->is_vxworks && !htab->srelbss && !info->shared)
6970 || !htab->srelplt
6971 || !htab->splt)
6972 abort ();
6973
6974 if (htab->is_vxworks)
6975 {
6976 /* Do the usual VxWorks handling. */
6977 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6978 return FALSE;
6979
6980 /* Work out the PLT sizes. */
6981 if (info->shared)
6982 {
6983 htab->plt_header_size
6984 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6985 htab->plt_entry_size
6986 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6987 }
6988 else
6989 {
6990 htab->plt_header_size
6991 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6992 htab->plt_entry_size
6993 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6994 }
6995 }
6996 else if (!info->shared)
6997 {
6998 /* All variants of the plt0 entry are the same size. */
6999 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7000 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7001 }
7002
7003 return TRUE;
7004 }
7005 \f
7006 /* Return true if relocation REL against section SEC is a REL rather than
7007 RELA relocation. RELOCS is the first relocation in the section and
7008 ABFD is the bfd that contains SEC. */
7009
7010 static bfd_boolean
7011 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7012 const Elf_Internal_Rela *relocs,
7013 const Elf_Internal_Rela *rel)
7014 {
7015 Elf_Internal_Shdr *rel_hdr;
7016 const struct elf_backend_data *bed;
7017
7018 /* To determine which flavor or relocation this is, we depend on the
7019 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
7020 rel_hdr = &elf_section_data (sec)->rel_hdr;
7021 bed = get_elf_backend_data (abfd);
7022 if ((size_t) (rel - relocs)
7023 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7024 rel_hdr = elf_section_data (sec)->rel_hdr2;
7025 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
7026 }
7027
7028 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7029 HOWTO is the relocation's howto and CONTENTS points to the contents
7030 of the section that REL is against. */
7031
7032 static bfd_vma
7033 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7034 reloc_howto_type *howto, bfd_byte *contents)
7035 {
7036 bfd_byte *location;
7037 unsigned int r_type;
7038 bfd_vma addend;
7039
7040 r_type = ELF_R_TYPE (abfd, rel->r_info);
7041 location = contents + rel->r_offset;
7042
7043 /* Get the addend, which is stored in the input file. */
7044 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7045 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7046 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7047
7048 return addend & howto->src_mask;
7049 }
7050
7051 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7052 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7053 and update *ADDEND with the final addend. Return true on success
7054 or false if the LO16 could not be found. RELEND is the exclusive
7055 upper bound on the relocations for REL's section. */
7056
7057 static bfd_boolean
7058 mips_elf_add_lo16_rel_addend (bfd *abfd,
7059 const Elf_Internal_Rela *rel,
7060 const Elf_Internal_Rela *relend,
7061 bfd_byte *contents, bfd_vma *addend)
7062 {
7063 unsigned int r_type, lo16_type;
7064 const Elf_Internal_Rela *lo16_relocation;
7065 reloc_howto_type *lo16_howto;
7066 bfd_vma l;
7067
7068 r_type = ELF_R_TYPE (abfd, rel->r_info);
7069 if (mips16_reloc_p (r_type))
7070 lo16_type = R_MIPS16_LO16;
7071 else
7072 lo16_type = R_MIPS_LO16;
7073
7074 /* The combined value is the sum of the HI16 addend, left-shifted by
7075 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7076 code does a `lui' of the HI16 value, and then an `addiu' of the
7077 LO16 value.)
7078
7079 Scan ahead to find a matching LO16 relocation.
7080
7081 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7082 be immediately following. However, for the IRIX6 ABI, the next
7083 relocation may be a composed relocation consisting of several
7084 relocations for the same address. In that case, the R_MIPS_LO16
7085 relocation may occur as one of these. We permit a similar
7086 extension in general, as that is useful for GCC.
7087
7088 In some cases GCC dead code elimination removes the LO16 but keeps
7089 the corresponding HI16. This is strictly speaking a violation of
7090 the ABI but not immediately harmful. */
7091 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7092 if (lo16_relocation == NULL)
7093 return FALSE;
7094
7095 /* Obtain the addend kept there. */
7096 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7097 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7098
7099 l <<= lo16_howto->rightshift;
7100 l = _bfd_mips_elf_sign_extend (l, 16);
7101
7102 *addend <<= 16;
7103 *addend += l;
7104 return TRUE;
7105 }
7106
7107 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7108 store the contents in *CONTENTS on success. Assume that *CONTENTS
7109 already holds the contents if it is nonull on entry. */
7110
7111 static bfd_boolean
7112 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7113 {
7114 if (*contents)
7115 return TRUE;
7116
7117 /* Get cached copy if it exists. */
7118 if (elf_section_data (sec)->this_hdr.contents != NULL)
7119 {
7120 *contents = elf_section_data (sec)->this_hdr.contents;
7121 return TRUE;
7122 }
7123
7124 return bfd_malloc_and_get_section (abfd, sec, contents);
7125 }
7126
7127 /* Look through the relocs for a section during the first phase, and
7128 allocate space in the global offset table. */
7129
7130 bfd_boolean
7131 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7132 asection *sec, const Elf_Internal_Rela *relocs)
7133 {
7134 const char *name;
7135 bfd *dynobj;
7136 Elf_Internal_Shdr *symtab_hdr;
7137 struct elf_link_hash_entry **sym_hashes;
7138 size_t extsymoff;
7139 const Elf_Internal_Rela *rel;
7140 const Elf_Internal_Rela *rel_end;
7141 asection *sreloc;
7142 const struct elf_backend_data *bed;
7143 struct mips_elf_link_hash_table *htab;
7144 bfd_byte *contents;
7145 bfd_vma addend;
7146 reloc_howto_type *howto;
7147
7148 if (info->relocatable)
7149 return TRUE;
7150
7151 htab = mips_elf_hash_table (info);
7152 dynobj = elf_hash_table (info)->dynobj;
7153 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7154 sym_hashes = elf_sym_hashes (abfd);
7155 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7156
7157 bed = get_elf_backend_data (abfd);
7158 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7159
7160 /* Check for the mips16 stub sections. */
7161
7162 name = bfd_get_section_name (abfd, sec);
7163 if (FN_STUB_P (name))
7164 {
7165 unsigned long r_symndx;
7166
7167 /* Look at the relocation information to figure out which symbol
7168 this is for. */
7169
7170 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7171 if (r_symndx == 0)
7172 {
7173 (*_bfd_error_handler)
7174 (_("%B: Warning: cannot determine the target function for"
7175 " stub section `%s'"),
7176 abfd, name);
7177 bfd_set_error (bfd_error_bad_value);
7178 return FALSE;
7179 }
7180
7181 if (r_symndx < extsymoff
7182 || sym_hashes[r_symndx - extsymoff] == NULL)
7183 {
7184 asection *o;
7185
7186 /* This stub is for a local symbol. This stub will only be
7187 needed if there is some relocation in this BFD, other
7188 than a 16 bit function call, which refers to this symbol. */
7189 for (o = abfd->sections; o != NULL; o = o->next)
7190 {
7191 Elf_Internal_Rela *sec_relocs;
7192 const Elf_Internal_Rela *r, *rend;
7193
7194 /* We can ignore stub sections when looking for relocs. */
7195 if ((o->flags & SEC_RELOC) == 0
7196 || o->reloc_count == 0
7197 || section_allows_mips16_refs_p (o))
7198 continue;
7199
7200 sec_relocs
7201 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7202 info->keep_memory);
7203 if (sec_relocs == NULL)
7204 return FALSE;
7205
7206 rend = sec_relocs + o->reloc_count;
7207 for (r = sec_relocs; r < rend; r++)
7208 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7209 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7210 break;
7211
7212 if (elf_section_data (o)->relocs != sec_relocs)
7213 free (sec_relocs);
7214
7215 if (r < rend)
7216 break;
7217 }
7218
7219 if (o == NULL)
7220 {
7221 /* There is no non-call reloc for this stub, so we do
7222 not need it. Since this function is called before
7223 the linker maps input sections to output sections, we
7224 can easily discard it by setting the SEC_EXCLUDE
7225 flag. */
7226 sec->flags |= SEC_EXCLUDE;
7227 return TRUE;
7228 }
7229
7230 /* Record this stub in an array of local symbol stubs for
7231 this BFD. */
7232 if (elf_tdata (abfd)->local_stubs == NULL)
7233 {
7234 unsigned long symcount;
7235 asection **n;
7236 bfd_size_type amt;
7237
7238 if (elf_bad_symtab (abfd))
7239 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7240 else
7241 symcount = symtab_hdr->sh_info;
7242 amt = symcount * sizeof (asection *);
7243 n = bfd_zalloc (abfd, amt);
7244 if (n == NULL)
7245 return FALSE;
7246 elf_tdata (abfd)->local_stubs = n;
7247 }
7248
7249 sec->flags |= SEC_KEEP;
7250 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7251
7252 /* We don't need to set mips16_stubs_seen in this case.
7253 That flag is used to see whether we need to look through
7254 the global symbol table for stubs. We don't need to set
7255 it here, because we just have a local stub. */
7256 }
7257 else
7258 {
7259 struct mips_elf_link_hash_entry *h;
7260
7261 h = ((struct mips_elf_link_hash_entry *)
7262 sym_hashes[r_symndx - extsymoff]);
7263
7264 while (h->root.root.type == bfd_link_hash_indirect
7265 || h->root.root.type == bfd_link_hash_warning)
7266 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7267
7268 /* H is the symbol this stub is for. */
7269
7270 /* If we already have an appropriate stub for this function, we
7271 don't need another one, so we can discard this one. Since
7272 this function is called before the linker maps input sections
7273 to output sections, we can easily discard it by setting the
7274 SEC_EXCLUDE flag. */
7275 if (h->fn_stub != NULL)
7276 {
7277 sec->flags |= SEC_EXCLUDE;
7278 return TRUE;
7279 }
7280
7281 sec->flags |= SEC_KEEP;
7282 h->fn_stub = sec;
7283 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7284 }
7285 }
7286 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7287 {
7288 unsigned long r_symndx;
7289 struct mips_elf_link_hash_entry *h;
7290 asection **loc;
7291
7292 /* Look at the relocation information to figure out which symbol
7293 this is for. */
7294
7295 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7296 if (r_symndx == 0)
7297 {
7298 (*_bfd_error_handler)
7299 (_("%B: Warning: cannot determine the target function for"
7300 " stub section `%s'"),
7301 abfd, name);
7302 bfd_set_error (bfd_error_bad_value);
7303 return FALSE;
7304 }
7305
7306 if (r_symndx < extsymoff
7307 || sym_hashes[r_symndx - extsymoff] == NULL)
7308 {
7309 asection *o;
7310
7311 /* This stub is for a local symbol. This stub will only be
7312 needed if there is some relocation (R_MIPS16_26) in this BFD
7313 that refers to this symbol. */
7314 for (o = abfd->sections; o != NULL; o = o->next)
7315 {
7316 Elf_Internal_Rela *sec_relocs;
7317 const Elf_Internal_Rela *r, *rend;
7318
7319 /* We can ignore stub sections when looking for relocs. */
7320 if ((o->flags & SEC_RELOC) == 0
7321 || o->reloc_count == 0
7322 || section_allows_mips16_refs_p (o))
7323 continue;
7324
7325 sec_relocs
7326 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7327 info->keep_memory);
7328 if (sec_relocs == NULL)
7329 return FALSE;
7330
7331 rend = sec_relocs + o->reloc_count;
7332 for (r = sec_relocs; r < rend; r++)
7333 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7334 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7335 break;
7336
7337 if (elf_section_data (o)->relocs != sec_relocs)
7338 free (sec_relocs);
7339
7340 if (r < rend)
7341 break;
7342 }
7343
7344 if (o == NULL)
7345 {
7346 /* There is no non-call reloc for this stub, so we do
7347 not need it. Since this function is called before
7348 the linker maps input sections to output sections, we
7349 can easily discard it by setting the SEC_EXCLUDE
7350 flag. */
7351 sec->flags |= SEC_EXCLUDE;
7352 return TRUE;
7353 }
7354
7355 /* Record this stub in an array of local symbol call_stubs for
7356 this BFD. */
7357 if (elf_tdata (abfd)->local_call_stubs == NULL)
7358 {
7359 unsigned long symcount;
7360 asection **n;
7361 bfd_size_type amt;
7362
7363 if (elf_bad_symtab (abfd))
7364 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7365 else
7366 symcount = symtab_hdr->sh_info;
7367 amt = symcount * sizeof (asection *);
7368 n = bfd_zalloc (abfd, amt);
7369 if (n == NULL)
7370 return FALSE;
7371 elf_tdata (abfd)->local_call_stubs = n;
7372 }
7373
7374 sec->flags |= SEC_KEEP;
7375 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7376
7377 /* We don't need to set mips16_stubs_seen in this case.
7378 That flag is used to see whether we need to look through
7379 the global symbol table for stubs. We don't need to set
7380 it here, because we just have a local stub. */
7381 }
7382 else
7383 {
7384 h = ((struct mips_elf_link_hash_entry *)
7385 sym_hashes[r_symndx - extsymoff]);
7386
7387 /* H is the symbol this stub is for. */
7388
7389 if (CALL_FP_STUB_P (name))
7390 loc = &h->call_fp_stub;
7391 else
7392 loc = &h->call_stub;
7393
7394 /* If we already have an appropriate stub for this function, we
7395 don't need another one, so we can discard this one. Since
7396 this function is called before the linker maps input sections
7397 to output sections, we can easily discard it by setting the
7398 SEC_EXCLUDE flag. */
7399 if (*loc != NULL)
7400 {
7401 sec->flags |= SEC_EXCLUDE;
7402 return TRUE;
7403 }
7404
7405 sec->flags |= SEC_KEEP;
7406 *loc = sec;
7407 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7408 }
7409 }
7410
7411 sreloc = NULL;
7412 contents = NULL;
7413 for (rel = relocs; rel < rel_end; ++rel)
7414 {
7415 unsigned long r_symndx;
7416 unsigned int r_type;
7417 struct elf_link_hash_entry *h;
7418 bfd_boolean can_make_dynamic_p;
7419
7420 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7421 r_type = ELF_R_TYPE (abfd, rel->r_info);
7422
7423 if (r_symndx < extsymoff)
7424 h = NULL;
7425 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7426 {
7427 (*_bfd_error_handler)
7428 (_("%B: Malformed reloc detected for section %s"),
7429 abfd, name);
7430 bfd_set_error (bfd_error_bad_value);
7431 return FALSE;
7432 }
7433 else
7434 {
7435 h = sym_hashes[r_symndx - extsymoff];
7436 while (h != NULL
7437 && (h->root.type == bfd_link_hash_indirect
7438 || h->root.type == bfd_link_hash_warning))
7439 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7440 }
7441
7442 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7443 relocation into a dynamic one. */
7444 can_make_dynamic_p = FALSE;
7445 switch (r_type)
7446 {
7447 case R_MIPS16_GOT16:
7448 case R_MIPS16_CALL16:
7449 case R_MIPS_GOT16:
7450 case R_MIPS_CALL16:
7451 case R_MIPS_CALL_HI16:
7452 case R_MIPS_CALL_LO16:
7453 case R_MIPS_GOT_HI16:
7454 case R_MIPS_GOT_LO16:
7455 case R_MIPS_GOT_PAGE:
7456 case R_MIPS_GOT_OFST:
7457 case R_MIPS_GOT_DISP:
7458 case R_MIPS_TLS_GOTTPREL:
7459 case R_MIPS_TLS_GD:
7460 case R_MIPS_TLS_LDM:
7461 if (dynobj == NULL)
7462 elf_hash_table (info)->dynobj = dynobj = abfd;
7463 if (!mips_elf_create_got_section (dynobj, info))
7464 return FALSE;
7465 if (htab->is_vxworks && !info->shared)
7466 {
7467 (*_bfd_error_handler)
7468 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7469 abfd, (unsigned long) rel->r_offset);
7470 bfd_set_error (bfd_error_bad_value);
7471 return FALSE;
7472 }
7473 break;
7474
7475 case R_MIPS_32:
7476 case R_MIPS_REL32:
7477 case R_MIPS_64:
7478 /* In VxWorks executables, references to external symbols
7479 must be handled using copy relocs or PLT entries; it is not
7480 possible to convert this relocation into a dynamic one.
7481
7482 For executables that use PLTs and copy-relocs, we have a
7483 choice between converting the relocation into a dynamic
7484 one or using copy relocations or PLT entries. It is
7485 usually better to do the former, unless the relocation is
7486 against a read-only section. */
7487 if ((info->shared
7488 || (h != NULL
7489 && !htab->is_vxworks
7490 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7491 && !(!info->nocopyreloc
7492 && !PIC_OBJECT_P (abfd)
7493 && MIPS_ELF_READONLY_SECTION (sec))))
7494 && (sec->flags & SEC_ALLOC) != 0)
7495 {
7496 can_make_dynamic_p = TRUE;
7497 if (dynobj == NULL)
7498 elf_hash_table (info)->dynobj = dynobj = abfd;
7499 break;
7500 }
7501 /* Fall through. */
7502
7503 default:
7504 /* Most static relocations require pointer equality, except
7505 for branches. */
7506 if (h)
7507 h->pointer_equality_needed = TRUE;
7508 /* Fall through. */
7509
7510 case R_MIPS_26:
7511 case R_MIPS_PC16:
7512 case R_MIPS16_26:
7513 if (h)
7514 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7515 break;
7516 }
7517
7518 if (h)
7519 {
7520 /* Relocations against the special VxWorks __GOTT_BASE__ and
7521 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7522 room for them in .rela.dyn. */
7523 if (is_gott_symbol (info, h))
7524 {
7525 if (sreloc == NULL)
7526 {
7527 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7528 if (sreloc == NULL)
7529 return FALSE;
7530 }
7531 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7532 if (MIPS_ELF_READONLY_SECTION (sec))
7533 /* We tell the dynamic linker that there are
7534 relocations against the text segment. */
7535 info->flags |= DF_TEXTREL;
7536 }
7537 }
7538 else if (r_type == R_MIPS_CALL_LO16
7539 || r_type == R_MIPS_GOT_LO16
7540 || r_type == R_MIPS_GOT_DISP
7541 || (got16_reloc_p (r_type) && htab->is_vxworks))
7542 {
7543 /* We may need a local GOT entry for this relocation. We
7544 don't count R_MIPS_GOT_PAGE because we can estimate the
7545 maximum number of pages needed by looking at the size of
7546 the segment. Similar comments apply to R_MIPS*_GOT16 and
7547 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7548 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7549 R_MIPS_CALL_HI16 because these are always followed by an
7550 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7551 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7552 rel->r_addend, info, 0))
7553 return FALSE;
7554 }
7555
7556 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7557 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7558
7559 switch (r_type)
7560 {
7561 case R_MIPS_CALL16:
7562 case R_MIPS16_CALL16:
7563 if (h == NULL)
7564 {
7565 (*_bfd_error_handler)
7566 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7567 abfd, (unsigned long) rel->r_offset);
7568 bfd_set_error (bfd_error_bad_value);
7569 return FALSE;
7570 }
7571 /* Fall through. */
7572
7573 case R_MIPS_CALL_HI16:
7574 case R_MIPS_CALL_LO16:
7575 if (h != NULL)
7576 {
7577 /* VxWorks call relocations point the function's .got.plt
7578 entry, which will be allocated by adjust_dynamic_symbol.
7579 Otherwise, this symbol requires a global GOT entry. */
7580 if ((!htab->is_vxworks || h->forced_local)
7581 && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
7582 return FALSE;
7583
7584 /* We need a stub, not a plt entry for the undefined
7585 function. But we record it as if it needs plt. See
7586 _bfd_elf_adjust_dynamic_symbol. */
7587 h->needs_plt = 1;
7588 h->type = STT_FUNC;
7589 }
7590 break;
7591
7592 case R_MIPS_GOT_PAGE:
7593 /* If this is a global, overridable symbol, GOT_PAGE will
7594 decay to GOT_DISP, so we'll need a GOT entry for it. */
7595 if (h)
7596 {
7597 struct mips_elf_link_hash_entry *hmips =
7598 (struct mips_elf_link_hash_entry *) h;
7599
7600 /* This symbol is definitely not overridable. */
7601 if (hmips->root.def_regular
7602 && ! (info->shared && ! info->symbolic
7603 && ! hmips->root.forced_local))
7604 h = NULL;
7605 }
7606 /* Fall through. */
7607
7608 case R_MIPS16_GOT16:
7609 case R_MIPS_GOT16:
7610 case R_MIPS_GOT_HI16:
7611 case R_MIPS_GOT_LO16:
7612 if (!h || r_type == R_MIPS_GOT_PAGE)
7613 {
7614 /* This relocation needs (or may need, if h != NULL) a
7615 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7616 know for sure until we know whether the symbol is
7617 preemptible. */
7618 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7619 {
7620 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7621 return FALSE;
7622 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7623 addend = mips_elf_read_rel_addend (abfd, rel,
7624 howto, contents);
7625 if (r_type == R_MIPS_GOT16)
7626 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7627 contents, &addend);
7628 else
7629 addend <<= howto->rightshift;
7630 }
7631 else
7632 addend = rel->r_addend;
7633 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7634 addend))
7635 return FALSE;
7636 break;
7637 }
7638 /* Fall through. */
7639
7640 case R_MIPS_GOT_DISP:
7641 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
7642 return FALSE;
7643 break;
7644
7645 case R_MIPS_TLS_GOTTPREL:
7646 if (info->shared)
7647 info->flags |= DF_STATIC_TLS;
7648 /* Fall through */
7649
7650 case R_MIPS_TLS_LDM:
7651 if (r_type == R_MIPS_TLS_LDM)
7652 {
7653 r_symndx = 0;
7654 h = NULL;
7655 }
7656 /* Fall through */
7657
7658 case R_MIPS_TLS_GD:
7659 /* This symbol requires a global offset table entry, or two
7660 for TLS GD relocations. */
7661 {
7662 unsigned char flag = (r_type == R_MIPS_TLS_GD
7663 ? GOT_TLS_GD
7664 : r_type == R_MIPS_TLS_LDM
7665 ? GOT_TLS_LDM
7666 : GOT_TLS_IE);
7667 if (h != NULL)
7668 {
7669 struct mips_elf_link_hash_entry *hmips =
7670 (struct mips_elf_link_hash_entry *) h;
7671 hmips->tls_type |= flag;
7672
7673 if (h && !mips_elf_record_global_got_symbol (h, abfd,
7674 info, flag))
7675 return FALSE;
7676 }
7677 else
7678 {
7679 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
7680
7681 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7682 rel->r_addend,
7683 info, flag))
7684 return FALSE;
7685 }
7686 }
7687 break;
7688
7689 case R_MIPS_32:
7690 case R_MIPS_REL32:
7691 case R_MIPS_64:
7692 /* In VxWorks executables, references to external symbols
7693 are handled using copy relocs or PLT stubs, so there's
7694 no need to add a .rela.dyn entry for this relocation. */
7695 if (can_make_dynamic_p)
7696 {
7697 if (sreloc == NULL)
7698 {
7699 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7700 if (sreloc == NULL)
7701 return FALSE;
7702 }
7703 if (info->shared && h == NULL)
7704 {
7705 /* When creating a shared object, we must copy these
7706 reloc types into the output file as R_MIPS_REL32
7707 relocs. Make room for this reloc in .rel(a).dyn. */
7708 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7709 if (MIPS_ELF_READONLY_SECTION (sec))
7710 /* We tell the dynamic linker that there are
7711 relocations against the text segment. */
7712 info->flags |= DF_TEXTREL;
7713 }
7714 else
7715 {
7716 struct mips_elf_link_hash_entry *hmips;
7717
7718 /* For a shared object, we must copy this relocation
7719 unless the symbol turns out to be undefined and
7720 weak with non-default visibility, in which case
7721 it will be left as zero.
7722
7723 We could elide R_MIPS_REL32 for locally binding symbols
7724 in shared libraries, but do not yet do so.
7725
7726 For an executable, we only need to copy this
7727 reloc if the symbol is defined in a dynamic
7728 object. */
7729 hmips = (struct mips_elf_link_hash_entry *) h;
7730 ++hmips->possibly_dynamic_relocs;
7731 if (MIPS_ELF_READONLY_SECTION (sec))
7732 /* We need it to tell the dynamic linker if there
7733 are relocations against the text segment. */
7734 hmips->readonly_reloc = TRUE;
7735 }
7736 }
7737
7738 if (SGI_COMPAT (abfd))
7739 mips_elf_hash_table (info)->compact_rel_size +=
7740 sizeof (Elf32_External_crinfo);
7741 break;
7742
7743 case R_MIPS_26:
7744 case R_MIPS_GPREL16:
7745 case R_MIPS_LITERAL:
7746 case R_MIPS_GPREL32:
7747 if (SGI_COMPAT (abfd))
7748 mips_elf_hash_table (info)->compact_rel_size +=
7749 sizeof (Elf32_External_crinfo);
7750 break;
7751
7752 /* This relocation describes the C++ object vtable hierarchy.
7753 Reconstruct it for later use during GC. */
7754 case R_MIPS_GNU_VTINHERIT:
7755 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7756 return FALSE;
7757 break;
7758
7759 /* This relocation describes which C++ vtable entries are actually
7760 used. Record for later use during GC. */
7761 case R_MIPS_GNU_VTENTRY:
7762 BFD_ASSERT (h != NULL);
7763 if (h != NULL
7764 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7765 return FALSE;
7766 break;
7767
7768 default:
7769 break;
7770 }
7771
7772 /* We must not create a stub for a symbol that has relocations
7773 related to taking the function's address. This doesn't apply to
7774 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7775 a normal .got entry. */
7776 if (!htab->is_vxworks && h != NULL)
7777 switch (r_type)
7778 {
7779 default:
7780 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7781 break;
7782 case R_MIPS16_CALL16:
7783 case R_MIPS_CALL16:
7784 case R_MIPS_CALL_HI16:
7785 case R_MIPS_CALL_LO16:
7786 case R_MIPS_JALR:
7787 break;
7788 }
7789
7790 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7791 if there is one. We only need to handle global symbols here;
7792 we decide whether to keep or delete stubs for local symbols
7793 when processing the stub's relocations. */
7794 if (h != NULL
7795 && !mips16_call_reloc_p (r_type)
7796 && !section_allows_mips16_refs_p (sec))
7797 {
7798 struct mips_elf_link_hash_entry *mh;
7799
7800 mh = (struct mips_elf_link_hash_entry *) h;
7801 mh->need_fn_stub = TRUE;
7802 }
7803
7804 /* Refuse some position-dependent relocations when creating a
7805 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7806 not PIC, but we can create dynamic relocations and the result
7807 will be fine. Also do not refuse R_MIPS_LO16, which can be
7808 combined with R_MIPS_GOT16. */
7809 if (info->shared)
7810 {
7811 switch (r_type)
7812 {
7813 case R_MIPS16_HI16:
7814 case R_MIPS_HI16:
7815 case R_MIPS_HIGHER:
7816 case R_MIPS_HIGHEST:
7817 /* Don't refuse a high part relocation if it's against
7818 no symbol (e.g. part of a compound relocation). */
7819 if (r_symndx == 0)
7820 break;
7821
7822 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7823 and has a special meaning. */
7824 if (!NEWABI_P (abfd) && h != NULL
7825 && strcmp (h->root.root.string, "_gp_disp") == 0)
7826 break;
7827
7828 /* FALLTHROUGH */
7829
7830 case R_MIPS16_26:
7831 case R_MIPS_26:
7832 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7833 (*_bfd_error_handler)
7834 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7835 abfd, howto->name,
7836 (h) ? h->root.root.string : "a local symbol");
7837 bfd_set_error (bfd_error_bad_value);
7838 return FALSE;
7839 default:
7840 break;
7841 }
7842 }
7843 }
7844
7845 return TRUE;
7846 }
7847 \f
7848 bfd_boolean
7849 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7850 struct bfd_link_info *link_info,
7851 bfd_boolean *again)
7852 {
7853 Elf_Internal_Rela *internal_relocs;
7854 Elf_Internal_Rela *irel, *irelend;
7855 Elf_Internal_Shdr *symtab_hdr;
7856 bfd_byte *contents = NULL;
7857 size_t extsymoff;
7858 bfd_boolean changed_contents = FALSE;
7859 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7860 Elf_Internal_Sym *isymbuf = NULL;
7861
7862 /* We are not currently changing any sizes, so only one pass. */
7863 *again = FALSE;
7864
7865 if (link_info->relocatable)
7866 return TRUE;
7867
7868 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7869 link_info->keep_memory);
7870 if (internal_relocs == NULL)
7871 return TRUE;
7872
7873 irelend = internal_relocs + sec->reloc_count
7874 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7875 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7876 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7877
7878 for (irel = internal_relocs; irel < irelend; irel++)
7879 {
7880 bfd_vma symval;
7881 bfd_signed_vma sym_offset;
7882 unsigned int r_type;
7883 unsigned long r_symndx;
7884 asection *sym_sec;
7885 unsigned long instruction;
7886
7887 /* Turn jalr into bgezal, and jr into beq, if they're marked
7888 with a JALR relocation, that indicate where they jump to.
7889 This saves some pipeline bubbles. */
7890 r_type = ELF_R_TYPE (abfd, irel->r_info);
7891 if (r_type != R_MIPS_JALR)
7892 continue;
7893
7894 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7895 /* Compute the address of the jump target. */
7896 if (r_symndx >= extsymoff)
7897 {
7898 struct mips_elf_link_hash_entry *h
7899 = ((struct mips_elf_link_hash_entry *)
7900 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7901
7902 while (h->root.root.type == bfd_link_hash_indirect
7903 || h->root.root.type == bfd_link_hash_warning)
7904 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7905
7906 /* If a symbol is undefined, or if it may be overridden,
7907 skip it. */
7908 if (! ((h->root.root.type == bfd_link_hash_defined
7909 || h->root.root.type == bfd_link_hash_defweak)
7910 && h->root.root.u.def.section)
7911 || (link_info->shared && ! link_info->symbolic
7912 && !h->root.forced_local))
7913 continue;
7914
7915 sym_sec = h->root.root.u.def.section;
7916 if (sym_sec->output_section)
7917 symval = (h->root.root.u.def.value
7918 + sym_sec->output_section->vma
7919 + sym_sec->output_offset);
7920 else
7921 symval = h->root.root.u.def.value;
7922 }
7923 else
7924 {
7925 Elf_Internal_Sym *isym;
7926
7927 /* Read this BFD's symbols if we haven't done so already. */
7928 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
7929 {
7930 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
7931 if (isymbuf == NULL)
7932 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
7933 symtab_hdr->sh_info, 0,
7934 NULL, NULL, NULL);
7935 if (isymbuf == NULL)
7936 goto relax_return;
7937 }
7938
7939 isym = isymbuf + r_symndx;
7940 if (isym->st_shndx == SHN_UNDEF)
7941 continue;
7942 else if (isym->st_shndx == SHN_ABS)
7943 sym_sec = bfd_abs_section_ptr;
7944 else if (isym->st_shndx == SHN_COMMON)
7945 sym_sec = bfd_com_section_ptr;
7946 else
7947 sym_sec
7948 = bfd_section_from_elf_index (abfd, isym->st_shndx);
7949 symval = isym->st_value
7950 + sym_sec->output_section->vma
7951 + sym_sec->output_offset;
7952 }
7953
7954 /* Compute branch offset, from delay slot of the jump to the
7955 branch target. */
7956 sym_offset = (symval + irel->r_addend)
7957 - (sec_start + irel->r_offset + 4);
7958
7959 /* Branch offset must be properly aligned. */
7960 if ((sym_offset & 3) != 0)
7961 continue;
7962
7963 sym_offset >>= 2;
7964
7965 /* Check that it's in range. */
7966 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
7967 continue;
7968
7969 /* Get the section contents if we haven't done so already. */
7970 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7971 goto relax_return;
7972
7973 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
7974
7975 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
7976 if ((instruction & 0xfc1fffff) == 0x0000f809)
7977 instruction = 0x04110000;
7978 /* If it was jr <reg>, turn it into b <target>. */
7979 else if ((instruction & 0xfc1fffff) == 0x00000008)
7980 instruction = 0x10000000;
7981 else
7982 continue;
7983
7984 instruction |= (sym_offset & 0xffff);
7985 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
7986 changed_contents = TRUE;
7987 }
7988
7989 if (contents != NULL
7990 && elf_section_data (sec)->this_hdr.contents != contents)
7991 {
7992 if (!changed_contents && !link_info->keep_memory)
7993 free (contents);
7994 else
7995 {
7996 /* Cache the section contents for elf_link_input_bfd. */
7997 elf_section_data (sec)->this_hdr.contents = contents;
7998 }
7999 }
8000 return TRUE;
8001
8002 relax_return:
8003 if (contents != NULL
8004 && elf_section_data (sec)->this_hdr.contents != contents)
8005 free (contents);
8006 return FALSE;
8007 }
8008 \f
8009 /* Allocate space for global sym dynamic relocs. */
8010
8011 static bfd_boolean
8012 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8013 {
8014 struct bfd_link_info *info = inf;
8015 bfd *dynobj;
8016 struct mips_elf_link_hash_entry *hmips;
8017 struct mips_elf_link_hash_table *htab;
8018
8019 htab = mips_elf_hash_table (info);
8020 dynobj = elf_hash_table (info)->dynobj;
8021 hmips = (struct mips_elf_link_hash_entry *) h;
8022
8023 /* VxWorks executables are handled elsewhere; we only need to
8024 allocate relocations in shared objects. */
8025 if (htab->is_vxworks && !info->shared)
8026 return TRUE;
8027
8028 /* Ignore indirect and warning symbols. All relocations against
8029 such symbols will be redirected to the target symbol. */
8030 if (h->root.type == bfd_link_hash_indirect
8031 || h->root.type == bfd_link_hash_warning)
8032 return TRUE;
8033
8034 /* If this symbol is defined in a dynamic object, or we are creating
8035 a shared library, we will need to copy any R_MIPS_32 or
8036 R_MIPS_REL32 relocs against it into the output file. */
8037 if (! info->relocatable
8038 && hmips->possibly_dynamic_relocs != 0
8039 && (h->root.type == bfd_link_hash_defweak
8040 || !h->def_regular
8041 || info->shared))
8042 {
8043 bfd_boolean do_copy = TRUE;
8044
8045 if (h->root.type == bfd_link_hash_undefweak)
8046 {
8047 /* Do not copy relocations for undefined weak symbols with
8048 non-default visibility. */
8049 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8050 do_copy = FALSE;
8051
8052 /* Make sure undefined weak symbols are output as a dynamic
8053 symbol in PIEs. */
8054 else if (h->dynindx == -1 && !h->forced_local)
8055 {
8056 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8057 return FALSE;
8058 }
8059 }
8060
8061 if (do_copy)
8062 {
8063 /* Even though we don't directly need a GOT entry for this symbol,
8064 a symbol must have a dynamic symbol table index greater that
8065 DT_MIPS_GOTSYM if there are dynamic relocations against it. */
8066 if (hmips->global_got_area > GGA_RELOC_ONLY)
8067 hmips->global_got_area = GGA_RELOC_ONLY;
8068
8069 mips_elf_allocate_dynamic_relocations
8070 (dynobj, info, hmips->possibly_dynamic_relocs);
8071 if (hmips->readonly_reloc)
8072 /* We tell the dynamic linker that there are relocations
8073 against the text segment. */
8074 info->flags |= DF_TEXTREL;
8075 }
8076 }
8077
8078 return TRUE;
8079 }
8080
8081 /* Adjust a symbol defined by a dynamic object and referenced by a
8082 regular object. The current definition is in some section of the
8083 dynamic object, but we're not including those sections. We have to
8084 change the definition to something the rest of the link can
8085 understand. */
8086
8087 bfd_boolean
8088 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8089 struct elf_link_hash_entry *h)
8090 {
8091 bfd *dynobj;
8092 struct mips_elf_link_hash_entry *hmips;
8093 struct mips_elf_link_hash_table *htab;
8094
8095 htab = mips_elf_hash_table (info);
8096 dynobj = elf_hash_table (info)->dynobj;
8097 hmips = (struct mips_elf_link_hash_entry *) h;
8098
8099 /* Make sure we know what is going on here. */
8100 BFD_ASSERT (dynobj != NULL
8101 && (h->needs_plt
8102 || h->u.weakdef != NULL
8103 || (h->def_dynamic
8104 && h->ref_regular
8105 && !h->def_regular)));
8106
8107 hmips = (struct mips_elf_link_hash_entry *) h;
8108
8109 /* If there are call relocations against an externally-defined symbol,
8110 see whether we can create a MIPS lazy-binding stub for it. We can
8111 only do this if all references to the function are through call
8112 relocations, and in that case, the traditional lazy-binding stubs
8113 are much more efficient than PLT entries.
8114
8115 Traditional stubs are only available on SVR4 psABI-based systems;
8116 VxWorks always uses PLTs instead. */
8117 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8118 {
8119 if (! elf_hash_table (info)->dynamic_sections_created)
8120 return TRUE;
8121
8122 /* If this symbol is not defined in a regular file, then set
8123 the symbol to the stub location. This is required to make
8124 function pointers compare as equal between the normal
8125 executable and the shared library. */
8126 if (!h->def_regular)
8127 {
8128 hmips->needs_lazy_stub = TRUE;
8129 htab->lazy_stub_count++;
8130 return TRUE;
8131 }
8132 }
8133 /* As above, VxWorks requires PLT entries for externally-defined
8134 functions that are only accessed through call relocations.
8135
8136 Both VxWorks and non-VxWorks targets also need PLT entries if there
8137 are static-only relocations against an externally-defined function.
8138 This can technically occur for shared libraries if there are
8139 branches to the symbol, although it is unlikely that this will be
8140 used in practice due to the short ranges involved. It can occur
8141 for any relative or absolute relocation in executables; in that
8142 case, the PLT entry becomes the function's canonical address. */
8143 else if (((h->needs_plt && !hmips->no_fn_stub)
8144 || (h->type == STT_FUNC && hmips->has_static_relocs))
8145 && htab->use_plts_and_copy_relocs
8146 && !SYMBOL_CALLS_LOCAL (info, h)
8147 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8148 && h->root.type == bfd_link_hash_undefweak))
8149 {
8150 /* If this is the first symbol to need a PLT entry, allocate room
8151 for the header. */
8152 if (htab->splt->size == 0)
8153 {
8154 BFD_ASSERT (htab->sgotplt->size == 0);
8155
8156 /* If we're using the PLT additions to the psABI, each PLT
8157 entry is 16 bytes and the PLT0 entry is 32 bytes.
8158 Encourage better cache usage by aligning. We do this
8159 lazily to avoid pessimizing traditional objects. */
8160 if (!htab->is_vxworks
8161 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8162 return FALSE;
8163
8164 /* Make sure that .got.plt is word-aligned. We do this lazily
8165 for the same reason as above. */
8166 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8167 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8168 return FALSE;
8169
8170 htab->splt->size += htab->plt_header_size;
8171
8172 /* On non-VxWorks targets, the first two entries in .got.plt
8173 are reserved. */
8174 if (!htab->is_vxworks)
8175 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8176
8177 /* On VxWorks, also allocate room for the header's
8178 .rela.plt.unloaded entries. */
8179 if (htab->is_vxworks && !info->shared)
8180 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8181 }
8182
8183 /* Assign the next .plt entry to this symbol. */
8184 h->plt.offset = htab->splt->size;
8185 htab->splt->size += htab->plt_entry_size;
8186
8187 /* If the output file has no definition of the symbol, set the
8188 symbol's value to the address of the stub. */
8189 if (!info->shared && !h->def_regular)
8190 {
8191 h->root.u.def.section = htab->splt;
8192 h->root.u.def.value = h->plt.offset;
8193 /* For VxWorks, point at the PLT load stub rather than the
8194 lazy resolution stub; this stub will become the canonical
8195 function address. */
8196 if (htab->is_vxworks)
8197 h->root.u.def.value += 8;
8198 }
8199
8200 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8201 relocation. */
8202 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8203 htab->srelplt->size += (htab->is_vxworks
8204 ? MIPS_ELF_RELA_SIZE (dynobj)
8205 : MIPS_ELF_REL_SIZE (dynobj));
8206
8207 /* Make room for the .rela.plt.unloaded relocations. */
8208 if (htab->is_vxworks && !info->shared)
8209 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8210
8211 /* All relocations against this symbol that could have been made
8212 dynamic will now refer to the PLT entry instead. */
8213 hmips->possibly_dynamic_relocs = 0;
8214
8215 return TRUE;
8216 }
8217
8218 /* If this is a weak symbol, and there is a real definition, the
8219 processor independent code will have arranged for us to see the
8220 real definition first, and we can just use the same value. */
8221 if (h->u.weakdef != NULL)
8222 {
8223 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8224 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8225 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8226 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8227 return TRUE;
8228 }
8229
8230 /* Otherwise, there is nothing further to do for symbols defined
8231 in regular objects. */
8232 if (h->def_regular)
8233 return TRUE;
8234
8235 /* There's also nothing more to do if we'll convert all relocations
8236 against this symbol into dynamic relocations. */
8237 if (!hmips->has_static_relocs)
8238 return TRUE;
8239
8240 /* We're now relying on copy relocations. Complain if we have
8241 some that we can't convert. */
8242 if (!htab->use_plts_and_copy_relocs || info->shared)
8243 {
8244 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8245 "dynamic symbol %s"),
8246 h->root.root.string);
8247 bfd_set_error (bfd_error_bad_value);
8248 return FALSE;
8249 }
8250
8251 /* We must allocate the symbol in our .dynbss section, which will
8252 become part of the .bss section of the executable. There will be
8253 an entry for this symbol in the .dynsym section. The dynamic
8254 object will contain position independent code, so all references
8255 from the dynamic object to this symbol will go through the global
8256 offset table. The dynamic linker will use the .dynsym entry to
8257 determine the address it must put in the global offset table, so
8258 both the dynamic object and the regular object will refer to the
8259 same memory location for the variable. */
8260
8261 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8262 {
8263 if (htab->is_vxworks)
8264 htab->srelbss->size += sizeof (Elf32_External_Rela);
8265 else
8266 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8267 h->needs_copy = 1;
8268 }
8269
8270 /* All relocations against this symbol that could have been made
8271 dynamic will now refer to the local copy instead. */
8272 hmips->possibly_dynamic_relocs = 0;
8273
8274 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8275 }
8276 \f
8277 /* This function is called after all the input files have been read,
8278 and the input sections have been assigned to output sections. We
8279 check for any mips16 stub sections that we can discard. */
8280
8281 bfd_boolean
8282 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8283 struct bfd_link_info *info)
8284 {
8285 asection *ri;
8286 struct mips_elf_link_hash_table *htab;
8287 struct mips_htab_traverse_info hti;
8288
8289 htab = mips_elf_hash_table (info);
8290
8291 /* The .reginfo section has a fixed size. */
8292 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8293 if (ri != NULL)
8294 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8295
8296 hti.info = info;
8297 hti.output_bfd = output_bfd;
8298 hti.error = FALSE;
8299 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8300 mips_elf_check_symbols, &hti);
8301 if (hti.error)
8302 return FALSE;
8303
8304 return TRUE;
8305 }
8306
8307 /* If the link uses a GOT, lay it out and work out its size. */
8308
8309 static bfd_boolean
8310 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8311 {
8312 bfd *dynobj;
8313 asection *s;
8314 struct mips_got_info *g;
8315 bfd_size_type loadable_size = 0;
8316 bfd_size_type page_gotno;
8317 bfd *sub;
8318 struct mips_elf_count_tls_arg count_tls_arg;
8319 struct mips_elf_link_hash_table *htab;
8320
8321 htab = mips_elf_hash_table (info);
8322 s = htab->sgot;
8323 if (s == NULL)
8324 return TRUE;
8325
8326 dynobj = elf_hash_table (info)->dynobj;
8327 g = htab->got_info;
8328
8329 /* Allocate room for the reserved entries. VxWorks always reserves
8330 3 entries; other objects only reserve 2 entries. */
8331 BFD_ASSERT (g->assigned_gotno == 0);
8332 if (htab->is_vxworks)
8333 htab->reserved_gotno = 3;
8334 else
8335 htab->reserved_gotno = 2;
8336 g->local_gotno += htab->reserved_gotno;
8337 g->assigned_gotno = htab->reserved_gotno;
8338
8339 /* Replace entries for indirect and warning symbols with entries for
8340 the target symbol. */
8341 if (!mips_elf_resolve_final_got_entries (g))
8342 return FALSE;
8343
8344 /* Count the number of GOT symbols. */
8345 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, g);
8346
8347 /* Calculate the total loadable size of the output. That
8348 will give us the maximum number of GOT_PAGE entries
8349 required. */
8350 for (sub = info->input_bfds; sub; sub = sub->link_next)
8351 {
8352 asection *subsection;
8353
8354 for (subsection = sub->sections;
8355 subsection;
8356 subsection = subsection->next)
8357 {
8358 if ((subsection->flags & SEC_ALLOC) == 0)
8359 continue;
8360 loadable_size += ((subsection->size + 0xf)
8361 &~ (bfd_size_type) 0xf);
8362 }
8363 }
8364
8365 if (htab->is_vxworks)
8366 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8367 relocations against local symbols evaluate to "G", and the EABI does
8368 not include R_MIPS_GOT_PAGE. */
8369 page_gotno = 0;
8370 else
8371 /* Assume there are two loadable segments consisting of contiguous
8372 sections. Is 5 enough? */
8373 page_gotno = (loadable_size >> 16) + 5;
8374
8375 /* Choose the smaller of the two estimates; both are intended to be
8376 conservative. */
8377 if (page_gotno > g->page_gotno)
8378 page_gotno = g->page_gotno;
8379
8380 g->local_gotno += page_gotno;
8381 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8382 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8383
8384 /* We need to calculate tls_gotno for global symbols at this point
8385 instead of building it up earlier, to avoid doublecounting
8386 entries for one global symbol from multiple input files. */
8387 count_tls_arg.info = info;
8388 count_tls_arg.needed = 0;
8389 elf_link_hash_traverse (elf_hash_table (info),
8390 mips_elf_count_global_tls_entries,
8391 &count_tls_arg);
8392 g->tls_gotno += count_tls_arg.needed;
8393 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8394
8395 /* VxWorks does not support multiple GOTs. It initializes $gp to
8396 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8397 dynamic loader. */
8398 if (htab->is_vxworks)
8399 {
8400 /* VxWorks executables do not need a GOT. */
8401 if (info->shared)
8402 {
8403 /* Each VxWorks GOT entry needs an explicit relocation. */
8404 unsigned int count;
8405
8406 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8407 if (count)
8408 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8409 }
8410 }
8411 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8412 {
8413 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8414 return FALSE;
8415 }
8416 else
8417 {
8418 struct mips_elf_count_tls_arg arg;
8419
8420 /* Set up TLS entries. */
8421 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8422 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8423
8424 /* Allocate room for the TLS relocations. */
8425 arg.info = info;
8426 arg.needed = 0;
8427 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8428 elf_link_hash_traverse (elf_hash_table (info),
8429 mips_elf_count_global_tls_relocs,
8430 &arg);
8431 if (arg.needed)
8432 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8433 }
8434
8435 return TRUE;
8436 }
8437
8438 /* Estimate the size of the .MIPS.stubs section. */
8439
8440 static void
8441 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8442 {
8443 struct mips_elf_link_hash_table *htab;
8444 bfd_size_type dynsymcount;
8445
8446 htab = mips_elf_hash_table (info);
8447 if (htab->lazy_stub_count == 0)
8448 return;
8449
8450 /* IRIX rld assumes that a function stub isn't at the end of the .text
8451 section, so add a dummy entry to the end. */
8452 htab->lazy_stub_count++;
8453
8454 /* Get a worst-case estimate of the number of dynamic symbols needed.
8455 At this point, dynsymcount does not account for section symbols
8456 and count_section_dynsyms may overestimate the number that will
8457 be needed. */
8458 dynsymcount = (elf_hash_table (info)->dynsymcount
8459 + count_section_dynsyms (output_bfd, info));
8460
8461 /* Determine the size of one stub entry. */
8462 htab->function_stub_size = (dynsymcount > 0x10000
8463 ? MIPS_FUNCTION_STUB_BIG_SIZE
8464 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8465
8466 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8467 }
8468
8469 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8470 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8471 allocate an entry in the stubs section. */
8472
8473 static bfd_boolean
8474 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8475 {
8476 struct mips_elf_link_hash_table *htab;
8477
8478 htab = (struct mips_elf_link_hash_table *) data;
8479 if (h->needs_lazy_stub)
8480 {
8481 h->root.root.u.def.section = htab->sstubs;
8482 h->root.root.u.def.value = htab->sstubs->size;
8483 h->root.plt.offset = htab->sstubs->size;
8484 htab->sstubs->size += htab->function_stub_size;
8485 }
8486 return TRUE;
8487 }
8488
8489 /* Allocate offsets in the stubs section to each symbol that needs one.
8490 Set the final size of the .MIPS.stub section. */
8491
8492 static void
8493 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8494 {
8495 struct mips_elf_link_hash_table *htab;
8496
8497 htab = mips_elf_hash_table (info);
8498 if (htab->lazy_stub_count == 0)
8499 return;
8500
8501 htab->sstubs->size = 0;
8502 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8503 mips_elf_allocate_lazy_stub, htab);
8504 htab->sstubs->size += htab->function_stub_size;
8505 BFD_ASSERT (htab->sstubs->size
8506 == htab->lazy_stub_count * htab->function_stub_size);
8507 }
8508
8509 /* Set the sizes of the dynamic sections. */
8510
8511 bfd_boolean
8512 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8513 struct bfd_link_info *info)
8514 {
8515 bfd *dynobj;
8516 asection *s, *sreldyn;
8517 bfd_boolean reltext;
8518 struct mips_elf_link_hash_table *htab;
8519
8520 htab = mips_elf_hash_table (info);
8521 dynobj = elf_hash_table (info)->dynobj;
8522 BFD_ASSERT (dynobj != NULL);
8523
8524 if (elf_hash_table (info)->dynamic_sections_created)
8525 {
8526 /* Set the contents of the .interp section to the interpreter. */
8527 if (info->executable)
8528 {
8529 s = bfd_get_section_by_name (dynobj, ".interp");
8530 BFD_ASSERT (s != NULL);
8531 s->size
8532 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8533 s->contents
8534 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8535 }
8536
8537 /* Create a symbol for the PLT, if we know that we are using it. */
8538 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8539 {
8540 struct elf_link_hash_entry *h;
8541
8542 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8543
8544 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8545 "_PROCEDURE_LINKAGE_TABLE_");
8546 htab->root.hplt = h;
8547 if (h == NULL)
8548 return FALSE;
8549 h->type = STT_FUNC;
8550 }
8551 }
8552
8553 /* Allocate space for global sym dynamic relocs. */
8554 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8555
8556 mips_elf_estimate_stub_size (output_bfd, info);
8557
8558 if (!mips_elf_lay_out_got (output_bfd, info))
8559 return FALSE;
8560
8561 mips_elf_lay_out_lazy_stubs (info);
8562
8563 /* The check_relocs and adjust_dynamic_symbol entry points have
8564 determined the sizes of the various dynamic sections. Allocate
8565 memory for them. */
8566 reltext = FALSE;
8567 for (s = dynobj->sections; s != NULL; s = s->next)
8568 {
8569 const char *name;
8570
8571 /* It's OK to base decisions on the section name, because none
8572 of the dynobj section names depend upon the input files. */
8573 name = bfd_get_section_name (dynobj, s);
8574
8575 if ((s->flags & SEC_LINKER_CREATED) == 0)
8576 continue;
8577
8578 if (CONST_STRNEQ (name, ".rel"))
8579 {
8580 if (s->size != 0)
8581 {
8582 const char *outname;
8583 asection *target;
8584
8585 /* If this relocation section applies to a read only
8586 section, then we probably need a DT_TEXTREL entry.
8587 If the relocation section is .rel(a).dyn, we always
8588 assert a DT_TEXTREL entry rather than testing whether
8589 there exists a relocation to a read only section or
8590 not. */
8591 outname = bfd_get_section_name (output_bfd,
8592 s->output_section);
8593 target = bfd_get_section_by_name (output_bfd, outname + 4);
8594 if ((target != NULL
8595 && (target->flags & SEC_READONLY) != 0
8596 && (target->flags & SEC_ALLOC) != 0)
8597 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8598 reltext = TRUE;
8599
8600 /* We use the reloc_count field as a counter if we need
8601 to copy relocs into the output file. */
8602 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8603 s->reloc_count = 0;
8604
8605 /* If combreloc is enabled, elf_link_sort_relocs() will
8606 sort relocations, but in a different way than we do,
8607 and before we're done creating relocations. Also, it
8608 will move them around between input sections'
8609 relocation's contents, so our sorting would be
8610 broken, so don't let it run. */
8611 info->combreloc = 0;
8612 }
8613 }
8614 else if (! info->shared
8615 && ! mips_elf_hash_table (info)->use_rld_obj_head
8616 && CONST_STRNEQ (name, ".rld_map"))
8617 {
8618 /* We add a room for __rld_map. It will be filled in by the
8619 rtld to contain a pointer to the _r_debug structure. */
8620 s->size += 4;
8621 }
8622 else if (SGI_COMPAT (output_bfd)
8623 && CONST_STRNEQ (name, ".compact_rel"))
8624 s->size += mips_elf_hash_table (info)->compact_rel_size;
8625 else if (s == htab->splt)
8626 {
8627 /* If the last PLT entry has a branch delay slot, allocate
8628 room for an extra nop to fill the delay slot. */
8629 if (!htab->is_vxworks && s->size > 0)
8630 s->size += 4;
8631 }
8632 else if (! CONST_STRNEQ (name, ".init")
8633 && s != htab->sgot
8634 && s != htab->sgotplt
8635 && s != htab->sstubs
8636 && s != htab->sdynbss)
8637 {
8638 /* It's not one of our sections, so don't allocate space. */
8639 continue;
8640 }
8641
8642 if (s->size == 0)
8643 {
8644 s->flags |= SEC_EXCLUDE;
8645 continue;
8646 }
8647
8648 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8649 continue;
8650
8651 /* Allocate memory for the section contents. */
8652 s->contents = bfd_zalloc (dynobj, s->size);
8653 if (s->contents == NULL)
8654 {
8655 bfd_set_error (bfd_error_no_memory);
8656 return FALSE;
8657 }
8658 }
8659
8660 if (elf_hash_table (info)->dynamic_sections_created)
8661 {
8662 /* Add some entries to the .dynamic section. We fill in the
8663 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8664 must add the entries now so that we get the correct size for
8665 the .dynamic section. */
8666
8667 /* SGI object has the equivalence of DT_DEBUG in the
8668 DT_MIPS_RLD_MAP entry. This must come first because glibc
8669 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8670 looks at the first one it sees. */
8671 if (!info->shared
8672 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8673 return FALSE;
8674
8675 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8676 used by the debugger. */
8677 if (info->executable
8678 && !SGI_COMPAT (output_bfd)
8679 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8680 return FALSE;
8681
8682 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8683 info->flags |= DF_TEXTREL;
8684
8685 if ((info->flags & DF_TEXTREL) != 0)
8686 {
8687 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8688 return FALSE;
8689
8690 /* Clear the DF_TEXTREL flag. It will be set again if we
8691 write out an actual text relocation; we may not, because
8692 at this point we do not know whether e.g. any .eh_frame
8693 absolute relocations have been converted to PC-relative. */
8694 info->flags &= ~DF_TEXTREL;
8695 }
8696
8697 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8698 return FALSE;
8699
8700 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
8701 if (htab->is_vxworks)
8702 {
8703 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8704 use any of the DT_MIPS_* tags. */
8705 if (sreldyn && sreldyn->size > 0)
8706 {
8707 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8708 return FALSE;
8709
8710 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8711 return FALSE;
8712
8713 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8714 return FALSE;
8715 }
8716 }
8717 else
8718 {
8719 if (sreldyn && sreldyn->size > 0)
8720 {
8721 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8722 return FALSE;
8723
8724 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8725 return FALSE;
8726
8727 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8728 return FALSE;
8729 }
8730
8731 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8732 return FALSE;
8733
8734 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8735 return FALSE;
8736
8737 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8738 return FALSE;
8739
8740 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8741 return FALSE;
8742
8743 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8744 return FALSE;
8745
8746 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8747 return FALSE;
8748
8749 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8750 return FALSE;
8751
8752 if (IRIX_COMPAT (dynobj) == ict_irix5
8753 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8754 return FALSE;
8755
8756 if (IRIX_COMPAT (dynobj) == ict_irix6
8757 && (bfd_get_section_by_name
8758 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8759 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8760 return FALSE;
8761 }
8762 if (htab->splt->size > 0)
8763 {
8764 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8765 return FALSE;
8766
8767 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8768 return FALSE;
8769
8770 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8771 return FALSE;
8772
8773 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
8774 return FALSE;
8775 }
8776 if (htab->is_vxworks
8777 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8778 return FALSE;
8779 }
8780
8781 return TRUE;
8782 }
8783 \f
8784 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8785 Adjust its R_ADDEND field so that it is correct for the output file.
8786 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8787 and sections respectively; both use symbol indexes. */
8788
8789 static void
8790 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8791 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8792 asection **local_sections, Elf_Internal_Rela *rel)
8793 {
8794 unsigned int r_type, r_symndx;
8795 Elf_Internal_Sym *sym;
8796 asection *sec;
8797
8798 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8799 {
8800 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8801 if (r_type == R_MIPS16_GPREL
8802 || r_type == R_MIPS_GPREL16
8803 || r_type == R_MIPS_GPREL32
8804 || r_type == R_MIPS_LITERAL)
8805 {
8806 rel->r_addend += _bfd_get_gp_value (input_bfd);
8807 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8808 }
8809
8810 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8811 sym = local_syms + r_symndx;
8812
8813 /* Adjust REL's addend to account for section merging. */
8814 if (!info->relocatable)
8815 {
8816 sec = local_sections[r_symndx];
8817 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8818 }
8819
8820 /* This would normally be done by the rela_normal code in elflink.c. */
8821 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8822 rel->r_addend += local_sections[r_symndx]->output_offset;
8823 }
8824 }
8825
8826 /* Relocate a MIPS ELF section. */
8827
8828 bfd_boolean
8829 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8830 bfd *input_bfd, asection *input_section,
8831 bfd_byte *contents, Elf_Internal_Rela *relocs,
8832 Elf_Internal_Sym *local_syms,
8833 asection **local_sections)
8834 {
8835 Elf_Internal_Rela *rel;
8836 const Elf_Internal_Rela *relend;
8837 bfd_vma addend = 0;
8838 bfd_boolean use_saved_addend_p = FALSE;
8839 const struct elf_backend_data *bed;
8840
8841 bed = get_elf_backend_data (output_bfd);
8842 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8843 for (rel = relocs; rel < relend; ++rel)
8844 {
8845 const char *name;
8846 bfd_vma value = 0;
8847 reloc_howto_type *howto;
8848 bfd_boolean require_jalx;
8849 /* TRUE if the relocation is a RELA relocation, rather than a
8850 REL relocation. */
8851 bfd_boolean rela_relocation_p = TRUE;
8852 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8853 const char *msg;
8854 unsigned long r_symndx;
8855 asection *sec;
8856 Elf_Internal_Shdr *symtab_hdr;
8857 struct elf_link_hash_entry *h;
8858
8859 /* Find the relocation howto for this relocation. */
8860 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8861 NEWABI_P (input_bfd)
8862 && (MIPS_RELOC_RELA_P
8863 (input_bfd, input_section,
8864 rel - relocs)));
8865
8866 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
8867 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8868 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8869 {
8870 sec = local_sections[r_symndx];
8871 h = NULL;
8872 }
8873 else
8874 {
8875 unsigned long extsymoff;
8876
8877 extsymoff = 0;
8878 if (!elf_bad_symtab (input_bfd))
8879 extsymoff = symtab_hdr->sh_info;
8880 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8881 while (h->root.type == bfd_link_hash_indirect
8882 || h->root.type == bfd_link_hash_warning)
8883 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8884
8885 sec = NULL;
8886 if (h->root.type == bfd_link_hash_defined
8887 || h->root.type == bfd_link_hash_defweak)
8888 sec = h->root.u.def.section;
8889 }
8890
8891 if (sec != NULL && elf_discarded_section (sec))
8892 {
8893 /* For relocs against symbols from removed linkonce sections,
8894 or sections discarded by a linker script, we just want the
8895 section contents zeroed. Avoid any special processing. */
8896 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8897 rel->r_info = 0;
8898 rel->r_addend = 0;
8899 continue;
8900 }
8901
8902 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
8903 {
8904 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8905 64-bit code, but make sure all their addresses are in the
8906 lowermost or uppermost 32-bit section of the 64-bit address
8907 space. Thus, when they use an R_MIPS_64 they mean what is
8908 usually meant by R_MIPS_32, with the exception that the
8909 stored value is sign-extended to 64 bits. */
8910 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
8911
8912 /* On big-endian systems, we need to lie about the position
8913 of the reloc. */
8914 if (bfd_big_endian (input_bfd))
8915 rel->r_offset += 4;
8916 }
8917
8918 if (!use_saved_addend_p)
8919 {
8920 /* If these relocations were originally of the REL variety,
8921 we must pull the addend out of the field that will be
8922 relocated. Otherwise, we simply use the contents of the
8923 RELA relocation. */
8924 if (mips_elf_rel_relocation_p (input_bfd, input_section,
8925 relocs, rel))
8926 {
8927 rela_relocation_p = FALSE;
8928 addend = mips_elf_read_rel_addend (input_bfd, rel,
8929 howto, contents);
8930 if (hi16_reloc_p (r_type)
8931 || (got16_reloc_p (r_type)
8932 && mips_elf_local_relocation_p (input_bfd, rel,
8933 local_sections, FALSE)))
8934 {
8935 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
8936 contents, &addend))
8937 {
8938 const char *name;
8939
8940 if (h)
8941 name = h->root.root.string;
8942 else
8943 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
8944 local_syms + r_symndx,
8945 sec);
8946 (*_bfd_error_handler)
8947 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8948 input_bfd, input_section, name, howto->name,
8949 rel->r_offset);
8950 }
8951 }
8952 else
8953 addend <<= howto->rightshift;
8954 }
8955 else
8956 addend = rel->r_addend;
8957 mips_elf_adjust_addend (output_bfd, info, input_bfd,
8958 local_syms, local_sections, rel);
8959 }
8960
8961 if (info->relocatable)
8962 {
8963 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
8964 && bfd_big_endian (input_bfd))
8965 rel->r_offset -= 4;
8966
8967 if (!rela_relocation_p && rel->r_addend)
8968 {
8969 addend += rel->r_addend;
8970 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
8971 addend = mips_elf_high (addend);
8972 else if (r_type == R_MIPS_HIGHER)
8973 addend = mips_elf_higher (addend);
8974 else if (r_type == R_MIPS_HIGHEST)
8975 addend = mips_elf_highest (addend);
8976 else
8977 addend >>= howto->rightshift;
8978
8979 /* We use the source mask, rather than the destination
8980 mask because the place to which we are writing will be
8981 source of the addend in the final link. */
8982 addend &= howto->src_mask;
8983
8984 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8985 /* See the comment above about using R_MIPS_64 in the 32-bit
8986 ABI. Here, we need to update the addend. It would be
8987 possible to get away with just using the R_MIPS_32 reloc
8988 but for endianness. */
8989 {
8990 bfd_vma sign_bits;
8991 bfd_vma low_bits;
8992 bfd_vma high_bits;
8993
8994 if (addend & ((bfd_vma) 1 << 31))
8995 #ifdef BFD64
8996 sign_bits = ((bfd_vma) 1 << 32) - 1;
8997 #else
8998 sign_bits = -1;
8999 #endif
9000 else
9001 sign_bits = 0;
9002
9003 /* If we don't know that we have a 64-bit type,
9004 do two separate stores. */
9005 if (bfd_big_endian (input_bfd))
9006 {
9007 /* Store the sign-bits (which are most significant)
9008 first. */
9009 low_bits = sign_bits;
9010 high_bits = addend;
9011 }
9012 else
9013 {
9014 low_bits = addend;
9015 high_bits = sign_bits;
9016 }
9017 bfd_put_32 (input_bfd, low_bits,
9018 contents + rel->r_offset);
9019 bfd_put_32 (input_bfd, high_bits,
9020 contents + rel->r_offset + 4);
9021 continue;
9022 }
9023
9024 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9025 input_bfd, input_section,
9026 contents, FALSE))
9027 return FALSE;
9028 }
9029
9030 /* Go on to the next relocation. */
9031 continue;
9032 }
9033
9034 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9035 relocations for the same offset. In that case we are
9036 supposed to treat the output of each relocation as the addend
9037 for the next. */
9038 if (rel + 1 < relend
9039 && rel->r_offset == rel[1].r_offset
9040 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9041 use_saved_addend_p = TRUE;
9042 else
9043 use_saved_addend_p = FALSE;
9044
9045 /* Figure out what value we are supposed to relocate. */
9046 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9047 input_section, info, rel,
9048 addend, howto, local_syms,
9049 local_sections, &value,
9050 &name, &require_jalx,
9051 use_saved_addend_p))
9052 {
9053 case bfd_reloc_continue:
9054 /* There's nothing to do. */
9055 continue;
9056
9057 case bfd_reloc_undefined:
9058 /* mips_elf_calculate_relocation already called the
9059 undefined_symbol callback. There's no real point in
9060 trying to perform the relocation at this point, so we
9061 just skip ahead to the next relocation. */
9062 continue;
9063
9064 case bfd_reloc_notsupported:
9065 msg = _("internal error: unsupported relocation error");
9066 info->callbacks->warning
9067 (info, msg, name, input_bfd, input_section, rel->r_offset);
9068 return FALSE;
9069
9070 case bfd_reloc_overflow:
9071 if (use_saved_addend_p)
9072 /* Ignore overflow until we reach the last relocation for
9073 a given location. */
9074 ;
9075 else
9076 {
9077 struct mips_elf_link_hash_table *htab;
9078
9079 htab = mips_elf_hash_table (info);
9080 BFD_ASSERT (name != NULL);
9081 if (!htab->small_data_overflow_reported
9082 && (howto->type == R_MIPS_GPREL16
9083 || howto->type == R_MIPS_LITERAL))
9084 {
9085 const char *msg =
9086 _("small-data section exceeds 64KB;"
9087 " lower small-data size limit (see option -G)");
9088
9089 htab->small_data_overflow_reported = TRUE;
9090 (*info->callbacks->einfo) ("%P: %s\n", msg);
9091 }
9092 if (! ((*info->callbacks->reloc_overflow)
9093 (info, NULL, name, howto->name, (bfd_vma) 0,
9094 input_bfd, input_section, rel->r_offset)))
9095 return FALSE;
9096 }
9097 break;
9098
9099 case bfd_reloc_ok:
9100 break;
9101
9102 default:
9103 abort ();
9104 break;
9105 }
9106
9107 /* If we've got another relocation for the address, keep going
9108 until we reach the last one. */
9109 if (use_saved_addend_p)
9110 {
9111 addend = value;
9112 continue;
9113 }
9114
9115 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9116 /* See the comment above about using R_MIPS_64 in the 32-bit
9117 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9118 that calculated the right value. Now, however, we
9119 sign-extend the 32-bit result to 64-bits, and store it as a
9120 64-bit value. We are especially generous here in that we
9121 go to extreme lengths to support this usage on systems with
9122 only a 32-bit VMA. */
9123 {
9124 bfd_vma sign_bits;
9125 bfd_vma low_bits;
9126 bfd_vma high_bits;
9127
9128 if (value & ((bfd_vma) 1 << 31))
9129 #ifdef BFD64
9130 sign_bits = ((bfd_vma) 1 << 32) - 1;
9131 #else
9132 sign_bits = -1;
9133 #endif
9134 else
9135 sign_bits = 0;
9136
9137 /* If we don't know that we have a 64-bit type,
9138 do two separate stores. */
9139 if (bfd_big_endian (input_bfd))
9140 {
9141 /* Undo what we did above. */
9142 rel->r_offset -= 4;
9143 /* Store the sign-bits (which are most significant)
9144 first. */
9145 low_bits = sign_bits;
9146 high_bits = value;
9147 }
9148 else
9149 {
9150 low_bits = value;
9151 high_bits = sign_bits;
9152 }
9153 bfd_put_32 (input_bfd, low_bits,
9154 contents + rel->r_offset);
9155 bfd_put_32 (input_bfd, high_bits,
9156 contents + rel->r_offset + 4);
9157 continue;
9158 }
9159
9160 /* Actually perform the relocation. */
9161 if (! mips_elf_perform_relocation (info, howto, rel, value,
9162 input_bfd, input_section,
9163 contents, require_jalx))
9164 return FALSE;
9165 }
9166
9167 return TRUE;
9168 }
9169 \f
9170 /* A function that iterates over each entry in la25_stubs and fills
9171 in the code for each one. DATA points to a mips_htab_traverse_info. */
9172
9173 static int
9174 mips_elf_create_la25_stub (void **slot, void *data)
9175 {
9176 struct mips_htab_traverse_info *hti;
9177 struct mips_elf_link_hash_table *htab;
9178 struct mips_elf_la25_stub *stub;
9179 asection *s;
9180 bfd_byte *loc;
9181 bfd_vma offset, target, target_high, target_low;
9182
9183 stub = (struct mips_elf_la25_stub *) *slot;
9184 hti = (struct mips_htab_traverse_info *) data;
9185 htab = mips_elf_hash_table (hti->info);
9186
9187 /* Create the section contents, if we haven't already. */
9188 s = stub->stub_section;
9189 loc = s->contents;
9190 if (loc == NULL)
9191 {
9192 loc = bfd_malloc (s->size);
9193 if (loc == NULL)
9194 {
9195 hti->error = TRUE;
9196 return FALSE;
9197 }
9198 s->contents = loc;
9199 }
9200
9201 /* Work out where in the section this stub should go. */
9202 offset = stub->offset;
9203
9204 /* Work out the target address. */
9205 target = (stub->h->root.root.u.def.section->output_section->vma
9206 + stub->h->root.root.u.def.section->output_offset
9207 + stub->h->root.root.u.def.value);
9208 target_high = ((target + 0x8000) >> 16) & 0xffff;
9209 target_low = (target & 0xffff);
9210
9211 if (stub->stub_section != htab->strampoline)
9212 {
9213 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9214 of the section and write the two instructions at the end. */
9215 memset (loc, 0, offset);
9216 loc += offset;
9217 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9218 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9219 }
9220 else
9221 {
9222 /* This is trampoline. */
9223 loc += offset;
9224 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9225 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9226 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9227 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9228 }
9229 return TRUE;
9230 }
9231
9232 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9233 adjust it appropriately now. */
9234
9235 static void
9236 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9237 const char *name, Elf_Internal_Sym *sym)
9238 {
9239 /* The linker script takes care of providing names and values for
9240 these, but we must place them into the right sections. */
9241 static const char* const text_section_symbols[] = {
9242 "_ftext",
9243 "_etext",
9244 "__dso_displacement",
9245 "__elf_header",
9246 "__program_header_table",
9247 NULL
9248 };
9249
9250 static const char* const data_section_symbols[] = {
9251 "_fdata",
9252 "_edata",
9253 "_end",
9254 "_fbss",
9255 NULL
9256 };
9257
9258 const char* const *p;
9259 int i;
9260
9261 for (i = 0; i < 2; ++i)
9262 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9263 *p;
9264 ++p)
9265 if (strcmp (*p, name) == 0)
9266 {
9267 /* All of these symbols are given type STT_SECTION by the
9268 IRIX6 linker. */
9269 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9270 sym->st_other = STO_PROTECTED;
9271
9272 /* The IRIX linker puts these symbols in special sections. */
9273 if (i == 0)
9274 sym->st_shndx = SHN_MIPS_TEXT;
9275 else
9276 sym->st_shndx = SHN_MIPS_DATA;
9277
9278 break;
9279 }
9280 }
9281
9282 /* Finish up dynamic symbol handling. We set the contents of various
9283 dynamic sections here. */
9284
9285 bfd_boolean
9286 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9287 struct bfd_link_info *info,
9288 struct elf_link_hash_entry *h,
9289 Elf_Internal_Sym *sym)
9290 {
9291 bfd *dynobj;
9292 asection *sgot;
9293 struct mips_got_info *g, *gg;
9294 const char *name;
9295 int idx;
9296 struct mips_elf_link_hash_table *htab;
9297 struct mips_elf_link_hash_entry *hmips;
9298
9299 htab = mips_elf_hash_table (info);
9300 dynobj = elf_hash_table (info)->dynobj;
9301 hmips = (struct mips_elf_link_hash_entry *) h;
9302
9303 BFD_ASSERT (!htab->is_vxworks);
9304
9305 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9306 {
9307 /* We've decided to create a PLT entry for this symbol. */
9308 bfd_byte *loc;
9309 bfd_vma header_address, plt_index, got_address;
9310 bfd_vma got_address_high, got_address_low, load;
9311 const bfd_vma *plt_entry;
9312
9313 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9314 BFD_ASSERT (h->dynindx != -1);
9315 BFD_ASSERT (htab->splt != NULL);
9316 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9317 BFD_ASSERT (!h->def_regular);
9318
9319 /* Calculate the address of the PLT header. */
9320 header_address = (htab->splt->output_section->vma
9321 + htab->splt->output_offset);
9322
9323 /* Calculate the index of the entry. */
9324 plt_index = ((h->plt.offset - htab->plt_header_size)
9325 / htab->plt_entry_size);
9326
9327 /* Calculate the address of the .got.plt entry. */
9328 got_address = (htab->sgotplt->output_section->vma
9329 + htab->sgotplt->output_offset
9330 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9331 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9332 got_address_low = got_address & 0xffff;
9333
9334 /* Initially point the .got.plt entry at the PLT header. */
9335 loc = (htab->sgotplt->contents
9336 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9337 if (ABI_64_P (output_bfd))
9338 bfd_put_64 (output_bfd, header_address, loc);
9339 else
9340 bfd_put_32 (output_bfd, header_address, loc);
9341
9342 /* Find out where the .plt entry should go. */
9343 loc = htab->splt->contents + h->plt.offset;
9344
9345 /* Pick the load opcode. */
9346 load = MIPS_ELF_LOAD_WORD (output_bfd);
9347
9348 /* Fill in the PLT entry itself. */
9349 plt_entry = mips_exec_plt_entry;
9350 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9351 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9352 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9353 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9354
9355 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9356 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9357 plt_index, h->dynindx,
9358 R_MIPS_JUMP_SLOT, got_address);
9359
9360 /* We distinguish between PLT entries and lazy-binding stubs by
9361 giving the former an st_other value of STO_MIPS_PLT. Set the
9362 flag and leave the value if there are any relocations in the
9363 binary where pointer equality matters. */
9364 sym->st_shndx = SHN_UNDEF;
9365 if (h->pointer_equality_needed)
9366 sym->st_other = STO_MIPS_PLT;
9367 else
9368 sym->st_value = 0;
9369 }
9370 else if (h->plt.offset != MINUS_ONE)
9371 {
9372 /* We've decided to create a lazy-binding stub. */
9373 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9374
9375 /* This symbol has a stub. Set it up. */
9376
9377 BFD_ASSERT (h->dynindx != -1);
9378
9379 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9380 || (h->dynindx <= 0xffff));
9381
9382 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9383 sign extension at runtime in the stub, resulting in a negative
9384 index value. */
9385 if (h->dynindx & ~0x7fffffff)
9386 return FALSE;
9387
9388 /* Fill the stub. */
9389 idx = 0;
9390 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9391 idx += 4;
9392 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9393 idx += 4;
9394 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9395 {
9396 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9397 stub + idx);
9398 idx += 4;
9399 }
9400 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9401 idx += 4;
9402
9403 /* If a large stub is not required and sign extension is not a
9404 problem, then use legacy code in the stub. */
9405 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9406 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9407 else if (h->dynindx & ~0x7fff)
9408 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9409 else
9410 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9411 stub + idx);
9412
9413 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9414 memcpy (htab->sstubs->contents + h->plt.offset,
9415 stub, htab->function_stub_size);
9416
9417 /* Mark the symbol as undefined. plt.offset != -1 occurs
9418 only for the referenced symbol. */
9419 sym->st_shndx = SHN_UNDEF;
9420
9421 /* The run-time linker uses the st_value field of the symbol
9422 to reset the global offset table entry for this external
9423 to its stub address when unlinking a shared object. */
9424 sym->st_value = (htab->sstubs->output_section->vma
9425 + htab->sstubs->output_offset
9426 + h->plt.offset);
9427 }
9428
9429 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9430 refer to the stub, since only the stub uses the standard calling
9431 conventions. */
9432 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9433 {
9434 BFD_ASSERT (hmips->need_fn_stub);
9435 sym->st_value = (hmips->fn_stub->output_section->vma
9436 + hmips->fn_stub->output_offset);
9437 sym->st_size = hmips->fn_stub->size;
9438 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9439 }
9440
9441 BFD_ASSERT (h->dynindx != -1
9442 || h->forced_local);
9443
9444 sgot = htab->sgot;
9445 g = htab->got_info;
9446 BFD_ASSERT (g != NULL);
9447
9448 /* Run through the global symbol table, creating GOT entries for all
9449 the symbols that need them. */
9450 if (g->global_gotsym != NULL
9451 && h->dynindx >= g->global_gotsym->dynindx)
9452 {
9453 bfd_vma offset;
9454 bfd_vma value;
9455
9456 value = sym->st_value;
9457 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9458 R_MIPS_GOT16, info);
9459 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9460 }
9461
9462 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
9463 {
9464 struct mips_got_entry e, *p;
9465 bfd_vma entry;
9466 bfd_vma offset;
9467
9468 gg = g;
9469
9470 e.abfd = output_bfd;
9471 e.symndx = -1;
9472 e.d.h = hmips;
9473 e.tls_type = 0;
9474
9475 for (g = g->next; g->next != gg; g = g->next)
9476 {
9477 if (g->got_entries
9478 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9479 &e)))
9480 {
9481 offset = p->gotidx;
9482 if (info->shared
9483 || (elf_hash_table (info)->dynamic_sections_created
9484 && p->d.h != NULL
9485 && p->d.h->root.def_dynamic
9486 && !p->d.h->root.def_regular))
9487 {
9488 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9489 the various compatibility problems, it's easier to mock
9490 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9491 mips_elf_create_dynamic_relocation to calculate the
9492 appropriate addend. */
9493 Elf_Internal_Rela rel[3];
9494
9495 memset (rel, 0, sizeof (rel));
9496 if (ABI_64_P (output_bfd))
9497 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9498 else
9499 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9500 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9501
9502 entry = 0;
9503 if (! (mips_elf_create_dynamic_relocation
9504 (output_bfd, info, rel,
9505 e.d.h, NULL, sym->st_value, &entry, sgot)))
9506 return FALSE;
9507 }
9508 else
9509 entry = sym->st_value;
9510 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9511 }
9512 }
9513 }
9514
9515 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9516 name = h->root.root.string;
9517 if (strcmp (name, "_DYNAMIC") == 0
9518 || h == elf_hash_table (info)->hgot)
9519 sym->st_shndx = SHN_ABS;
9520 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9521 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9522 {
9523 sym->st_shndx = SHN_ABS;
9524 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9525 sym->st_value = 1;
9526 }
9527 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9528 {
9529 sym->st_shndx = SHN_ABS;
9530 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9531 sym->st_value = elf_gp (output_bfd);
9532 }
9533 else if (SGI_COMPAT (output_bfd))
9534 {
9535 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9536 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9537 {
9538 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9539 sym->st_other = STO_PROTECTED;
9540 sym->st_value = 0;
9541 sym->st_shndx = SHN_MIPS_DATA;
9542 }
9543 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9544 {
9545 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9546 sym->st_other = STO_PROTECTED;
9547 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9548 sym->st_shndx = SHN_ABS;
9549 }
9550 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9551 {
9552 if (h->type == STT_FUNC)
9553 sym->st_shndx = SHN_MIPS_TEXT;
9554 else if (h->type == STT_OBJECT)
9555 sym->st_shndx = SHN_MIPS_DATA;
9556 }
9557 }
9558
9559 /* Emit a copy reloc, if needed. */
9560 if (h->needs_copy)
9561 {
9562 asection *s;
9563 bfd_vma symval;
9564
9565 BFD_ASSERT (h->dynindx != -1);
9566 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9567
9568 s = mips_elf_rel_dyn_section (info, FALSE);
9569 symval = (h->root.u.def.section->output_section->vma
9570 + h->root.u.def.section->output_offset
9571 + h->root.u.def.value);
9572 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9573 h->dynindx, R_MIPS_COPY, symval);
9574 }
9575
9576 /* Handle the IRIX6-specific symbols. */
9577 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9578 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9579
9580 if (! info->shared)
9581 {
9582 if (! mips_elf_hash_table (info)->use_rld_obj_head
9583 && (strcmp (name, "__rld_map") == 0
9584 || strcmp (name, "__RLD_MAP") == 0))
9585 {
9586 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9587 BFD_ASSERT (s != NULL);
9588 sym->st_value = s->output_section->vma + s->output_offset;
9589 bfd_put_32 (output_bfd, 0, s->contents);
9590 if (mips_elf_hash_table (info)->rld_value == 0)
9591 mips_elf_hash_table (info)->rld_value = sym->st_value;
9592 }
9593 else if (mips_elf_hash_table (info)->use_rld_obj_head
9594 && strcmp (name, "__rld_obj_head") == 0)
9595 {
9596 /* IRIX6 does not use a .rld_map section. */
9597 if (IRIX_COMPAT (output_bfd) == ict_irix5
9598 || IRIX_COMPAT (output_bfd) == ict_none)
9599 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9600 != NULL);
9601 mips_elf_hash_table (info)->rld_value = sym->st_value;
9602 }
9603 }
9604
9605 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9606 treat MIPS16 symbols like any other. */
9607 if (ELF_ST_IS_MIPS16 (sym->st_other))
9608 {
9609 BFD_ASSERT (sym->st_value & 1);
9610 sym->st_other -= STO_MIPS16;
9611 }
9612
9613 return TRUE;
9614 }
9615
9616 /* Likewise, for VxWorks. */
9617
9618 bfd_boolean
9619 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9620 struct bfd_link_info *info,
9621 struct elf_link_hash_entry *h,
9622 Elf_Internal_Sym *sym)
9623 {
9624 bfd *dynobj;
9625 asection *sgot;
9626 struct mips_got_info *g;
9627 struct mips_elf_link_hash_table *htab;
9628
9629 htab = mips_elf_hash_table (info);
9630 dynobj = elf_hash_table (info)->dynobj;
9631
9632 if (h->plt.offset != (bfd_vma) -1)
9633 {
9634 bfd_byte *loc;
9635 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9636 Elf_Internal_Rela rel;
9637 static const bfd_vma *plt_entry;
9638
9639 BFD_ASSERT (h->dynindx != -1);
9640 BFD_ASSERT (htab->splt != NULL);
9641 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9642
9643 /* Calculate the address of the .plt entry. */
9644 plt_address = (htab->splt->output_section->vma
9645 + htab->splt->output_offset
9646 + h->plt.offset);
9647
9648 /* Calculate the index of the entry. */
9649 plt_index = ((h->plt.offset - htab->plt_header_size)
9650 / htab->plt_entry_size);
9651
9652 /* Calculate the address of the .got.plt entry. */
9653 got_address = (htab->sgotplt->output_section->vma
9654 + htab->sgotplt->output_offset
9655 + plt_index * 4);
9656
9657 /* Calculate the offset of the .got.plt entry from
9658 _GLOBAL_OFFSET_TABLE_. */
9659 got_offset = mips_elf_gotplt_index (info, h);
9660
9661 /* Calculate the offset for the branch at the start of the PLT
9662 entry. The branch jumps to the beginning of .plt. */
9663 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9664
9665 /* Fill in the initial value of the .got.plt entry. */
9666 bfd_put_32 (output_bfd, plt_address,
9667 htab->sgotplt->contents + plt_index * 4);
9668
9669 /* Find out where the .plt entry should go. */
9670 loc = htab->splt->contents + h->plt.offset;
9671
9672 if (info->shared)
9673 {
9674 plt_entry = mips_vxworks_shared_plt_entry;
9675 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9676 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9677 }
9678 else
9679 {
9680 bfd_vma got_address_high, got_address_low;
9681
9682 plt_entry = mips_vxworks_exec_plt_entry;
9683 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9684 got_address_low = got_address & 0xffff;
9685
9686 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9687 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9688 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9689 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9690 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9691 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9692 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9693 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9694
9695 loc = (htab->srelplt2->contents
9696 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9697
9698 /* Emit a relocation for the .got.plt entry. */
9699 rel.r_offset = got_address;
9700 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9701 rel.r_addend = h->plt.offset;
9702 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9703
9704 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9705 loc += sizeof (Elf32_External_Rela);
9706 rel.r_offset = plt_address + 8;
9707 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9708 rel.r_addend = got_offset;
9709 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9710
9711 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9712 loc += sizeof (Elf32_External_Rela);
9713 rel.r_offset += 4;
9714 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9715 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9716 }
9717
9718 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9719 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9720 rel.r_offset = got_address;
9721 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9722 rel.r_addend = 0;
9723 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9724
9725 if (!h->def_regular)
9726 sym->st_shndx = SHN_UNDEF;
9727 }
9728
9729 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9730
9731 sgot = htab->sgot;
9732 g = htab->got_info;
9733 BFD_ASSERT (g != NULL);
9734
9735 /* See if this symbol has an entry in the GOT. */
9736 if (g->global_gotsym != NULL
9737 && h->dynindx >= g->global_gotsym->dynindx)
9738 {
9739 bfd_vma offset;
9740 Elf_Internal_Rela outrel;
9741 bfd_byte *loc;
9742 asection *s;
9743
9744 /* Install the symbol value in the GOT. */
9745 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9746 R_MIPS_GOT16, info);
9747 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9748
9749 /* Add a dynamic relocation for it. */
9750 s = mips_elf_rel_dyn_section (info, FALSE);
9751 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9752 outrel.r_offset = (sgot->output_section->vma
9753 + sgot->output_offset
9754 + offset);
9755 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9756 outrel.r_addend = 0;
9757 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9758 }
9759
9760 /* Emit a copy reloc, if needed. */
9761 if (h->needs_copy)
9762 {
9763 Elf_Internal_Rela rel;
9764
9765 BFD_ASSERT (h->dynindx != -1);
9766
9767 rel.r_offset = (h->root.u.def.section->output_section->vma
9768 + h->root.u.def.section->output_offset
9769 + h->root.u.def.value);
9770 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9771 rel.r_addend = 0;
9772 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9773 htab->srelbss->contents
9774 + (htab->srelbss->reloc_count
9775 * sizeof (Elf32_External_Rela)));
9776 ++htab->srelbss->reloc_count;
9777 }
9778
9779 /* If this is a mips16 symbol, force the value to be even. */
9780 if (ELF_ST_IS_MIPS16 (sym->st_other))
9781 sym->st_value &= ~1;
9782
9783 return TRUE;
9784 }
9785
9786 /* Write out a plt0 entry to the beginning of .plt. */
9787
9788 static void
9789 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9790 {
9791 bfd_byte *loc;
9792 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
9793 static const bfd_vma *plt_entry;
9794 struct mips_elf_link_hash_table *htab;
9795
9796 htab = mips_elf_hash_table (info);
9797 if (ABI_64_P (output_bfd))
9798 plt_entry = mips_n64_exec_plt0_entry;
9799 else if (ABI_N32_P (output_bfd))
9800 plt_entry = mips_n32_exec_plt0_entry;
9801 else
9802 plt_entry = mips_o32_exec_plt0_entry;
9803
9804 /* Calculate the value of .got.plt. */
9805 gotplt_value = (htab->sgotplt->output_section->vma
9806 + htab->sgotplt->output_offset);
9807 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
9808 gotplt_value_low = gotplt_value & 0xffff;
9809
9810 /* The PLT sequence is not safe for N64 if .got.plt's address can
9811 not be loaded in two instructions. */
9812 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
9813 || ~(gotplt_value | 0x7fffffff) == 0);
9814
9815 /* Install the PLT header. */
9816 loc = htab->splt->contents;
9817 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
9818 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
9819 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
9820 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9821 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9822 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9823 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9824 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9825 }
9826
9827 /* Install the PLT header for a VxWorks executable and finalize the
9828 contents of .rela.plt.unloaded. */
9829
9830 static void
9831 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9832 {
9833 Elf_Internal_Rela rela;
9834 bfd_byte *loc;
9835 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9836 static const bfd_vma *plt_entry;
9837 struct mips_elf_link_hash_table *htab;
9838
9839 htab = mips_elf_hash_table (info);
9840 plt_entry = mips_vxworks_exec_plt0_entry;
9841
9842 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9843 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9844 + htab->root.hgot->root.u.def.section->output_offset
9845 + htab->root.hgot->root.u.def.value);
9846
9847 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9848 got_value_low = got_value & 0xffff;
9849
9850 /* Calculate the address of the PLT header. */
9851 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9852
9853 /* Install the PLT header. */
9854 loc = htab->splt->contents;
9855 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9856 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9857 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9858 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9859 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9860 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9861
9862 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9863 loc = htab->srelplt2->contents;
9864 rela.r_offset = plt_address;
9865 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9866 rela.r_addend = 0;
9867 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9868 loc += sizeof (Elf32_External_Rela);
9869
9870 /* Output the relocation for the following addiu of
9871 %lo(_GLOBAL_OFFSET_TABLE_). */
9872 rela.r_offset += 4;
9873 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9874 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9875 loc += sizeof (Elf32_External_Rela);
9876
9877 /* Fix up the remaining relocations. They may have the wrong
9878 symbol index for _G_O_T_ or _P_L_T_ depending on the order
9879 in which symbols were output. */
9880 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
9881 {
9882 Elf_Internal_Rela rel;
9883
9884 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9885 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9886 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9887 loc += sizeof (Elf32_External_Rela);
9888
9889 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9890 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9891 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9892 loc += sizeof (Elf32_External_Rela);
9893
9894 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9895 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9896 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9897 loc += sizeof (Elf32_External_Rela);
9898 }
9899 }
9900
9901 /* Install the PLT header for a VxWorks shared library. */
9902
9903 static void
9904 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
9905 {
9906 unsigned int i;
9907 struct mips_elf_link_hash_table *htab;
9908
9909 htab = mips_elf_hash_table (info);
9910
9911 /* We just need to copy the entry byte-by-byte. */
9912 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
9913 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
9914 htab->splt->contents + i * 4);
9915 }
9916
9917 /* Finish up the dynamic sections. */
9918
9919 bfd_boolean
9920 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
9921 struct bfd_link_info *info)
9922 {
9923 bfd *dynobj;
9924 asection *sdyn;
9925 asection *sgot;
9926 struct mips_got_info *gg, *g;
9927 struct mips_elf_link_hash_table *htab;
9928
9929 htab = mips_elf_hash_table (info);
9930 dynobj = elf_hash_table (info)->dynobj;
9931
9932 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9933
9934 sgot = htab->sgot;
9935 gg = htab->got_info;
9936
9937 if (elf_hash_table (info)->dynamic_sections_created)
9938 {
9939 bfd_byte *b;
9940 int dyn_to_skip = 0, dyn_skipped = 0;
9941
9942 BFD_ASSERT (sdyn != NULL);
9943 BFD_ASSERT (gg != NULL);
9944
9945 g = mips_elf_got_for_ibfd (gg, output_bfd);
9946 BFD_ASSERT (g != NULL);
9947
9948 for (b = sdyn->contents;
9949 b < sdyn->contents + sdyn->size;
9950 b += MIPS_ELF_DYN_SIZE (dynobj))
9951 {
9952 Elf_Internal_Dyn dyn;
9953 const char *name;
9954 size_t elemsize;
9955 asection *s;
9956 bfd_boolean swap_out_p;
9957
9958 /* Read in the current dynamic entry. */
9959 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9960
9961 /* Assume that we're going to modify it and write it out. */
9962 swap_out_p = TRUE;
9963
9964 switch (dyn.d_tag)
9965 {
9966 case DT_RELENT:
9967 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
9968 break;
9969
9970 case DT_RELAENT:
9971 BFD_ASSERT (htab->is_vxworks);
9972 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
9973 break;
9974
9975 case DT_STRSZ:
9976 /* Rewrite DT_STRSZ. */
9977 dyn.d_un.d_val =
9978 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
9979 break;
9980
9981 case DT_PLTGOT:
9982 s = htab->sgot;
9983 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9984 break;
9985
9986 case DT_MIPS_PLTGOT:
9987 s = htab->sgotplt;
9988 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9989 break;
9990
9991 case DT_MIPS_RLD_VERSION:
9992 dyn.d_un.d_val = 1; /* XXX */
9993 break;
9994
9995 case DT_MIPS_FLAGS:
9996 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
9997 break;
9998
9999 case DT_MIPS_TIME_STAMP:
10000 {
10001 time_t t;
10002 time (&t);
10003 dyn.d_un.d_val = t;
10004 }
10005 break;
10006
10007 case DT_MIPS_ICHECKSUM:
10008 /* XXX FIXME: */
10009 swap_out_p = FALSE;
10010 break;
10011
10012 case DT_MIPS_IVERSION:
10013 /* XXX FIXME: */
10014 swap_out_p = FALSE;
10015 break;
10016
10017 case DT_MIPS_BASE_ADDRESS:
10018 s = output_bfd->sections;
10019 BFD_ASSERT (s != NULL);
10020 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10021 break;
10022
10023 case DT_MIPS_LOCAL_GOTNO:
10024 dyn.d_un.d_val = g->local_gotno;
10025 break;
10026
10027 case DT_MIPS_UNREFEXTNO:
10028 /* The index into the dynamic symbol table which is the
10029 entry of the first external symbol that is not
10030 referenced within the same object. */
10031 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10032 break;
10033
10034 case DT_MIPS_GOTSYM:
10035 if (gg->global_gotsym)
10036 {
10037 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10038 break;
10039 }
10040 /* In case if we don't have global got symbols we default
10041 to setting DT_MIPS_GOTSYM to the same value as
10042 DT_MIPS_SYMTABNO, so we just fall through. */
10043
10044 case DT_MIPS_SYMTABNO:
10045 name = ".dynsym";
10046 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10047 s = bfd_get_section_by_name (output_bfd, name);
10048 BFD_ASSERT (s != NULL);
10049
10050 dyn.d_un.d_val = s->size / elemsize;
10051 break;
10052
10053 case DT_MIPS_HIPAGENO:
10054 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10055 break;
10056
10057 case DT_MIPS_RLD_MAP:
10058 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10059 break;
10060
10061 case DT_MIPS_OPTIONS:
10062 s = (bfd_get_section_by_name
10063 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10064 dyn.d_un.d_ptr = s->vma;
10065 break;
10066
10067 case DT_RELASZ:
10068 BFD_ASSERT (htab->is_vxworks);
10069 /* The count does not include the JUMP_SLOT relocations. */
10070 if (htab->srelplt)
10071 dyn.d_un.d_val -= htab->srelplt->size;
10072 break;
10073
10074 case DT_PLTREL:
10075 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10076 if (htab->is_vxworks)
10077 dyn.d_un.d_val = DT_RELA;
10078 else
10079 dyn.d_un.d_val = DT_REL;
10080 break;
10081
10082 case DT_PLTRELSZ:
10083 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10084 dyn.d_un.d_val = htab->srelplt->size;
10085 break;
10086
10087 case DT_JMPREL:
10088 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10089 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10090 + htab->srelplt->output_offset);
10091 break;
10092
10093 case DT_TEXTREL:
10094 /* If we didn't need any text relocations after all, delete
10095 the dynamic tag. */
10096 if (!(info->flags & DF_TEXTREL))
10097 {
10098 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10099 swap_out_p = FALSE;
10100 }
10101 break;
10102
10103 case DT_FLAGS:
10104 /* If we didn't need any text relocations after all, clear
10105 DF_TEXTREL from DT_FLAGS. */
10106 if (!(info->flags & DF_TEXTREL))
10107 dyn.d_un.d_val &= ~DF_TEXTREL;
10108 else
10109 swap_out_p = FALSE;
10110 break;
10111
10112 default:
10113 swap_out_p = FALSE;
10114 if (htab->is_vxworks
10115 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10116 swap_out_p = TRUE;
10117 break;
10118 }
10119
10120 if (swap_out_p || dyn_skipped)
10121 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10122 (dynobj, &dyn, b - dyn_skipped);
10123
10124 if (dyn_to_skip)
10125 {
10126 dyn_skipped += dyn_to_skip;
10127 dyn_to_skip = 0;
10128 }
10129 }
10130
10131 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10132 if (dyn_skipped > 0)
10133 memset (b - dyn_skipped, 0, dyn_skipped);
10134 }
10135
10136 if (sgot != NULL && sgot->size > 0
10137 && !bfd_is_abs_section (sgot->output_section))
10138 {
10139 if (htab->is_vxworks)
10140 {
10141 /* The first entry of the global offset table points to the
10142 ".dynamic" section. The second is initialized by the
10143 loader and contains the shared library identifier.
10144 The third is also initialized by the loader and points
10145 to the lazy resolution stub. */
10146 MIPS_ELF_PUT_WORD (output_bfd,
10147 sdyn->output_offset + sdyn->output_section->vma,
10148 sgot->contents);
10149 MIPS_ELF_PUT_WORD (output_bfd, 0,
10150 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10151 MIPS_ELF_PUT_WORD (output_bfd, 0,
10152 sgot->contents
10153 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10154 }
10155 else
10156 {
10157 /* The first entry of the global offset table will be filled at
10158 runtime. The second entry will be used by some runtime loaders.
10159 This isn't the case of IRIX rld. */
10160 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10161 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10162 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10163 }
10164
10165 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10166 = MIPS_ELF_GOT_SIZE (output_bfd);
10167 }
10168
10169 /* Generate dynamic relocations for the non-primary gots. */
10170 if (gg != NULL && gg->next)
10171 {
10172 Elf_Internal_Rela rel[3];
10173 bfd_vma addend = 0;
10174
10175 memset (rel, 0, sizeof (rel));
10176 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10177
10178 for (g = gg->next; g->next != gg; g = g->next)
10179 {
10180 bfd_vma index = g->next->local_gotno + g->next->global_gotno
10181 + g->next->tls_gotno;
10182
10183 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10184 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10185 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10186 sgot->contents
10187 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10188
10189 if (! info->shared)
10190 continue;
10191
10192 while (index < g->assigned_gotno)
10193 {
10194 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10195 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10196 if (!(mips_elf_create_dynamic_relocation
10197 (output_bfd, info, rel, NULL,
10198 bfd_abs_section_ptr,
10199 0, &addend, sgot)))
10200 return FALSE;
10201 BFD_ASSERT (addend == 0);
10202 }
10203 }
10204 }
10205
10206 /* The generation of dynamic relocations for the non-primary gots
10207 adds more dynamic relocations. We cannot count them until
10208 here. */
10209
10210 if (elf_hash_table (info)->dynamic_sections_created)
10211 {
10212 bfd_byte *b;
10213 bfd_boolean swap_out_p;
10214
10215 BFD_ASSERT (sdyn != NULL);
10216
10217 for (b = sdyn->contents;
10218 b < sdyn->contents + sdyn->size;
10219 b += MIPS_ELF_DYN_SIZE (dynobj))
10220 {
10221 Elf_Internal_Dyn dyn;
10222 asection *s;
10223
10224 /* Read in the current dynamic entry. */
10225 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10226
10227 /* Assume that we're going to modify it and write it out. */
10228 swap_out_p = TRUE;
10229
10230 switch (dyn.d_tag)
10231 {
10232 case DT_RELSZ:
10233 /* Reduce DT_RELSZ to account for any relocations we
10234 decided not to make. This is for the n64 irix rld,
10235 which doesn't seem to apply any relocations if there
10236 are trailing null entries. */
10237 s = mips_elf_rel_dyn_section (info, FALSE);
10238 dyn.d_un.d_val = (s->reloc_count
10239 * (ABI_64_P (output_bfd)
10240 ? sizeof (Elf64_Mips_External_Rel)
10241 : sizeof (Elf32_External_Rel)));
10242 /* Adjust the section size too. Tools like the prelinker
10243 can reasonably expect the values to the same. */
10244 elf_section_data (s->output_section)->this_hdr.sh_size
10245 = dyn.d_un.d_val;
10246 break;
10247
10248 default:
10249 swap_out_p = FALSE;
10250 break;
10251 }
10252
10253 if (swap_out_p)
10254 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10255 (dynobj, &dyn, b);
10256 }
10257 }
10258
10259 {
10260 asection *s;
10261 Elf32_compact_rel cpt;
10262
10263 if (SGI_COMPAT (output_bfd))
10264 {
10265 /* Write .compact_rel section out. */
10266 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10267 if (s != NULL)
10268 {
10269 cpt.id1 = 1;
10270 cpt.num = s->reloc_count;
10271 cpt.id2 = 2;
10272 cpt.offset = (s->output_section->filepos
10273 + sizeof (Elf32_External_compact_rel));
10274 cpt.reserved0 = 0;
10275 cpt.reserved1 = 0;
10276 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10277 ((Elf32_External_compact_rel *)
10278 s->contents));
10279
10280 /* Clean up a dummy stub function entry in .text. */
10281 if (htab->sstubs != NULL)
10282 {
10283 file_ptr dummy_offset;
10284
10285 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10286 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10287 memset (htab->sstubs->contents + dummy_offset, 0,
10288 htab->function_stub_size);
10289 }
10290 }
10291 }
10292
10293 /* The psABI says that the dynamic relocations must be sorted in
10294 increasing order of r_symndx. The VxWorks EABI doesn't require
10295 this, and because the code below handles REL rather than RELA
10296 relocations, using it for VxWorks would be outright harmful. */
10297 if (!htab->is_vxworks)
10298 {
10299 s = mips_elf_rel_dyn_section (info, FALSE);
10300 if (s != NULL
10301 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10302 {
10303 reldyn_sorting_bfd = output_bfd;
10304
10305 if (ABI_64_P (output_bfd))
10306 qsort ((Elf64_External_Rel *) s->contents + 1,
10307 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10308 sort_dynamic_relocs_64);
10309 else
10310 qsort ((Elf32_External_Rel *) s->contents + 1,
10311 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10312 sort_dynamic_relocs);
10313 }
10314 }
10315 }
10316
10317 if (htab->splt && htab->splt->size > 0)
10318 {
10319 if (htab->is_vxworks)
10320 {
10321 if (info->shared)
10322 mips_vxworks_finish_shared_plt (output_bfd, info);
10323 else
10324 mips_vxworks_finish_exec_plt (output_bfd, info);
10325 }
10326 else
10327 {
10328 BFD_ASSERT (!info->shared);
10329 mips_finish_exec_plt (output_bfd, info);
10330 }
10331 }
10332 return TRUE;
10333 }
10334
10335
10336 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10337
10338 static void
10339 mips_set_isa_flags (bfd *abfd)
10340 {
10341 flagword val;
10342
10343 switch (bfd_get_mach (abfd))
10344 {
10345 default:
10346 case bfd_mach_mips3000:
10347 val = E_MIPS_ARCH_1;
10348 break;
10349
10350 case bfd_mach_mips3900:
10351 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10352 break;
10353
10354 case bfd_mach_mips6000:
10355 val = E_MIPS_ARCH_2;
10356 break;
10357
10358 case bfd_mach_mips4000:
10359 case bfd_mach_mips4300:
10360 case bfd_mach_mips4400:
10361 case bfd_mach_mips4600:
10362 val = E_MIPS_ARCH_3;
10363 break;
10364
10365 case bfd_mach_mips4010:
10366 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10367 break;
10368
10369 case bfd_mach_mips4100:
10370 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10371 break;
10372
10373 case bfd_mach_mips4111:
10374 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10375 break;
10376
10377 case bfd_mach_mips4120:
10378 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10379 break;
10380
10381 case bfd_mach_mips4650:
10382 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10383 break;
10384
10385 case bfd_mach_mips5400:
10386 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10387 break;
10388
10389 case bfd_mach_mips5500:
10390 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10391 break;
10392
10393 case bfd_mach_mips9000:
10394 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10395 break;
10396
10397 case bfd_mach_mips5000:
10398 case bfd_mach_mips7000:
10399 case bfd_mach_mips8000:
10400 case bfd_mach_mips10000:
10401 case bfd_mach_mips12000:
10402 val = E_MIPS_ARCH_4;
10403 break;
10404
10405 case bfd_mach_mips5:
10406 val = E_MIPS_ARCH_5;
10407 break;
10408
10409 case bfd_mach_mips_loongson_2e:
10410 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10411 break;
10412
10413 case bfd_mach_mips_loongson_2f:
10414 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10415 break;
10416
10417 case bfd_mach_mips_sb1:
10418 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10419 break;
10420
10421 case bfd_mach_mips_octeon:
10422 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10423 break;
10424
10425 case bfd_mach_mipsisa32:
10426 val = E_MIPS_ARCH_32;
10427 break;
10428
10429 case bfd_mach_mipsisa64:
10430 val = E_MIPS_ARCH_64;
10431 break;
10432
10433 case bfd_mach_mipsisa32r2:
10434 val = E_MIPS_ARCH_32R2;
10435 break;
10436
10437 case bfd_mach_mipsisa64r2:
10438 val = E_MIPS_ARCH_64R2;
10439 break;
10440 }
10441 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10442 elf_elfheader (abfd)->e_flags |= val;
10443
10444 }
10445
10446
10447 /* The final processing done just before writing out a MIPS ELF object
10448 file. This gets the MIPS architecture right based on the machine
10449 number. This is used by both the 32-bit and the 64-bit ABI. */
10450
10451 void
10452 _bfd_mips_elf_final_write_processing (bfd *abfd,
10453 bfd_boolean linker ATTRIBUTE_UNUSED)
10454 {
10455 unsigned int i;
10456 Elf_Internal_Shdr **hdrpp;
10457 const char *name;
10458 asection *sec;
10459
10460 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10461 is nonzero. This is for compatibility with old objects, which used
10462 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10463 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10464 mips_set_isa_flags (abfd);
10465
10466 /* Set the sh_info field for .gptab sections and other appropriate
10467 info for each special section. */
10468 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10469 i < elf_numsections (abfd);
10470 i++, hdrpp++)
10471 {
10472 switch ((*hdrpp)->sh_type)
10473 {
10474 case SHT_MIPS_MSYM:
10475 case SHT_MIPS_LIBLIST:
10476 sec = bfd_get_section_by_name (abfd, ".dynstr");
10477 if (sec != NULL)
10478 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10479 break;
10480
10481 case SHT_MIPS_GPTAB:
10482 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10483 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10484 BFD_ASSERT (name != NULL
10485 && CONST_STRNEQ (name, ".gptab."));
10486 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10487 BFD_ASSERT (sec != NULL);
10488 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10489 break;
10490
10491 case SHT_MIPS_CONTENT:
10492 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10493 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10494 BFD_ASSERT (name != NULL
10495 && CONST_STRNEQ (name, ".MIPS.content"));
10496 sec = bfd_get_section_by_name (abfd,
10497 name + sizeof ".MIPS.content" - 1);
10498 BFD_ASSERT (sec != NULL);
10499 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10500 break;
10501
10502 case SHT_MIPS_SYMBOL_LIB:
10503 sec = bfd_get_section_by_name (abfd, ".dynsym");
10504 if (sec != NULL)
10505 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10506 sec = bfd_get_section_by_name (abfd, ".liblist");
10507 if (sec != NULL)
10508 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10509 break;
10510
10511 case SHT_MIPS_EVENTS:
10512 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10513 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10514 BFD_ASSERT (name != NULL);
10515 if (CONST_STRNEQ (name, ".MIPS.events"))
10516 sec = bfd_get_section_by_name (abfd,
10517 name + sizeof ".MIPS.events" - 1);
10518 else
10519 {
10520 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10521 sec = bfd_get_section_by_name (abfd,
10522 (name
10523 + sizeof ".MIPS.post_rel" - 1));
10524 }
10525 BFD_ASSERT (sec != NULL);
10526 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10527 break;
10528
10529 }
10530 }
10531 }
10532 \f
10533 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10534 segments. */
10535
10536 int
10537 _bfd_mips_elf_additional_program_headers (bfd *abfd,
10538 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10539 {
10540 asection *s;
10541 int ret = 0;
10542
10543 /* See if we need a PT_MIPS_REGINFO segment. */
10544 s = bfd_get_section_by_name (abfd, ".reginfo");
10545 if (s && (s->flags & SEC_LOAD))
10546 ++ret;
10547
10548 /* See if we need a PT_MIPS_OPTIONS segment. */
10549 if (IRIX_COMPAT (abfd) == ict_irix6
10550 && bfd_get_section_by_name (abfd,
10551 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10552 ++ret;
10553
10554 /* See if we need a PT_MIPS_RTPROC segment. */
10555 if (IRIX_COMPAT (abfd) == ict_irix5
10556 && bfd_get_section_by_name (abfd, ".dynamic")
10557 && bfd_get_section_by_name (abfd, ".mdebug"))
10558 ++ret;
10559
10560 /* Allocate a PT_NULL header in dynamic objects. See
10561 _bfd_mips_elf_modify_segment_map for details. */
10562 if (!SGI_COMPAT (abfd)
10563 && bfd_get_section_by_name (abfd, ".dynamic"))
10564 ++ret;
10565
10566 return ret;
10567 }
10568
10569 /* Modify the segment map for an IRIX5 executable. */
10570
10571 bfd_boolean
10572 _bfd_mips_elf_modify_segment_map (bfd *abfd,
10573 struct bfd_link_info *info)
10574 {
10575 asection *s;
10576 struct elf_segment_map *m, **pm;
10577 bfd_size_type amt;
10578
10579 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10580 segment. */
10581 s = bfd_get_section_by_name (abfd, ".reginfo");
10582 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10583 {
10584 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10585 if (m->p_type == PT_MIPS_REGINFO)
10586 break;
10587 if (m == NULL)
10588 {
10589 amt = sizeof *m;
10590 m = bfd_zalloc (abfd, amt);
10591 if (m == NULL)
10592 return FALSE;
10593
10594 m->p_type = PT_MIPS_REGINFO;
10595 m->count = 1;
10596 m->sections[0] = s;
10597
10598 /* We want to put it after the PHDR and INTERP segments. */
10599 pm = &elf_tdata (abfd)->segment_map;
10600 while (*pm != NULL
10601 && ((*pm)->p_type == PT_PHDR
10602 || (*pm)->p_type == PT_INTERP))
10603 pm = &(*pm)->next;
10604
10605 m->next = *pm;
10606 *pm = m;
10607 }
10608 }
10609
10610 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10611 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10612 PT_MIPS_OPTIONS segment immediately following the program header
10613 table. */
10614 if (NEWABI_P (abfd)
10615 /* On non-IRIX6 new abi, we'll have already created a segment
10616 for this section, so don't create another. I'm not sure this
10617 is not also the case for IRIX 6, but I can't test it right
10618 now. */
10619 && IRIX_COMPAT (abfd) == ict_irix6)
10620 {
10621 for (s = abfd->sections; s; s = s->next)
10622 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10623 break;
10624
10625 if (s)
10626 {
10627 struct elf_segment_map *options_segment;
10628
10629 pm = &elf_tdata (abfd)->segment_map;
10630 while (*pm != NULL
10631 && ((*pm)->p_type == PT_PHDR
10632 || (*pm)->p_type == PT_INTERP))
10633 pm = &(*pm)->next;
10634
10635 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10636 {
10637 amt = sizeof (struct elf_segment_map);
10638 options_segment = bfd_zalloc (abfd, amt);
10639 options_segment->next = *pm;
10640 options_segment->p_type = PT_MIPS_OPTIONS;
10641 options_segment->p_flags = PF_R;
10642 options_segment->p_flags_valid = TRUE;
10643 options_segment->count = 1;
10644 options_segment->sections[0] = s;
10645 *pm = options_segment;
10646 }
10647 }
10648 }
10649 else
10650 {
10651 if (IRIX_COMPAT (abfd) == ict_irix5)
10652 {
10653 /* If there are .dynamic and .mdebug sections, we make a room
10654 for the RTPROC header. FIXME: Rewrite without section names. */
10655 if (bfd_get_section_by_name (abfd, ".interp") == NULL
10656 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10657 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10658 {
10659 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10660 if (m->p_type == PT_MIPS_RTPROC)
10661 break;
10662 if (m == NULL)
10663 {
10664 amt = sizeof *m;
10665 m = bfd_zalloc (abfd, amt);
10666 if (m == NULL)
10667 return FALSE;
10668
10669 m->p_type = PT_MIPS_RTPROC;
10670
10671 s = bfd_get_section_by_name (abfd, ".rtproc");
10672 if (s == NULL)
10673 {
10674 m->count = 0;
10675 m->p_flags = 0;
10676 m->p_flags_valid = 1;
10677 }
10678 else
10679 {
10680 m->count = 1;
10681 m->sections[0] = s;
10682 }
10683
10684 /* We want to put it after the DYNAMIC segment. */
10685 pm = &elf_tdata (abfd)->segment_map;
10686 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10687 pm = &(*pm)->next;
10688 if (*pm != NULL)
10689 pm = &(*pm)->next;
10690
10691 m->next = *pm;
10692 *pm = m;
10693 }
10694 }
10695 }
10696 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10697 .dynstr, .dynsym, and .hash sections, and everything in
10698 between. */
10699 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10700 pm = &(*pm)->next)
10701 if ((*pm)->p_type == PT_DYNAMIC)
10702 break;
10703 m = *pm;
10704 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10705 {
10706 /* For a normal mips executable the permissions for the PT_DYNAMIC
10707 segment are read, write and execute. We do that here since
10708 the code in elf.c sets only the read permission. This matters
10709 sometimes for the dynamic linker. */
10710 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10711 {
10712 m->p_flags = PF_R | PF_W | PF_X;
10713 m->p_flags_valid = 1;
10714 }
10715 }
10716 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10717 glibc's dynamic linker has traditionally derived the number of
10718 tags from the p_filesz field, and sometimes allocates stack
10719 arrays of that size. An overly-big PT_DYNAMIC segment can
10720 be actively harmful in such cases. Making PT_DYNAMIC contain
10721 other sections can also make life hard for the prelinker,
10722 which might move one of the other sections to a different
10723 PT_LOAD segment. */
10724 if (SGI_COMPAT (abfd)
10725 && m != NULL
10726 && m->count == 1
10727 && strcmp (m->sections[0]->name, ".dynamic") == 0)
10728 {
10729 static const char *sec_names[] =
10730 {
10731 ".dynamic", ".dynstr", ".dynsym", ".hash"
10732 };
10733 bfd_vma low, high;
10734 unsigned int i, c;
10735 struct elf_segment_map *n;
10736
10737 low = ~(bfd_vma) 0;
10738 high = 0;
10739 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10740 {
10741 s = bfd_get_section_by_name (abfd, sec_names[i]);
10742 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10743 {
10744 bfd_size_type sz;
10745
10746 if (low > s->vma)
10747 low = s->vma;
10748 sz = s->size;
10749 if (high < s->vma + sz)
10750 high = s->vma + sz;
10751 }
10752 }
10753
10754 c = 0;
10755 for (s = abfd->sections; s != NULL; s = s->next)
10756 if ((s->flags & SEC_LOAD) != 0
10757 && s->vma >= low
10758 && s->vma + s->size <= high)
10759 ++c;
10760
10761 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
10762 n = bfd_zalloc (abfd, amt);
10763 if (n == NULL)
10764 return FALSE;
10765 *n = *m;
10766 n->count = c;
10767
10768 i = 0;
10769 for (s = abfd->sections; s != NULL; s = s->next)
10770 {
10771 if ((s->flags & SEC_LOAD) != 0
10772 && s->vma >= low
10773 && s->vma + s->size <= high)
10774 {
10775 n->sections[i] = s;
10776 ++i;
10777 }
10778 }
10779
10780 *pm = n;
10781 }
10782 }
10783
10784 /* Allocate a spare program header in dynamic objects so that tools
10785 like the prelinker can add an extra PT_LOAD entry.
10786
10787 If the prelinker needs to make room for a new PT_LOAD entry, its
10788 standard procedure is to move the first (read-only) sections into
10789 the new (writable) segment. However, the MIPS ABI requires
10790 .dynamic to be in a read-only segment, and the section will often
10791 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10792
10793 Although the prelinker could in principle move .dynamic to a
10794 writable segment, it seems better to allocate a spare program
10795 header instead, and avoid the need to move any sections.
10796 There is a long tradition of allocating spare dynamic tags,
10797 so allocating a spare program header seems like a natural
10798 extension.
10799
10800 If INFO is NULL, we may be copying an already prelinked binary
10801 with objcopy or strip, so do not add this header. */
10802 if (info != NULL
10803 && !SGI_COMPAT (abfd)
10804 && bfd_get_section_by_name (abfd, ".dynamic"))
10805 {
10806 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10807 if ((*pm)->p_type == PT_NULL)
10808 break;
10809 if (*pm == NULL)
10810 {
10811 m = bfd_zalloc (abfd, sizeof (*m));
10812 if (m == NULL)
10813 return FALSE;
10814
10815 m->p_type = PT_NULL;
10816 *pm = m;
10817 }
10818 }
10819
10820 return TRUE;
10821 }
10822 \f
10823 /* Return the section that should be marked against GC for a given
10824 relocation. */
10825
10826 asection *
10827 _bfd_mips_elf_gc_mark_hook (asection *sec,
10828 struct bfd_link_info *info,
10829 Elf_Internal_Rela *rel,
10830 struct elf_link_hash_entry *h,
10831 Elf_Internal_Sym *sym)
10832 {
10833 /* ??? Do mips16 stub sections need to be handled special? */
10834
10835 if (h != NULL)
10836 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10837 {
10838 case R_MIPS_GNU_VTINHERIT:
10839 case R_MIPS_GNU_VTENTRY:
10840 return NULL;
10841 }
10842
10843 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10844 }
10845
10846 /* Update the got entry reference counts for the section being removed. */
10847
10848 bfd_boolean
10849 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
10850 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10851 asection *sec ATTRIBUTE_UNUSED,
10852 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
10853 {
10854 #if 0
10855 Elf_Internal_Shdr *symtab_hdr;
10856 struct elf_link_hash_entry **sym_hashes;
10857 bfd_signed_vma *local_got_refcounts;
10858 const Elf_Internal_Rela *rel, *relend;
10859 unsigned long r_symndx;
10860 struct elf_link_hash_entry *h;
10861
10862 if (info->relocatable)
10863 return TRUE;
10864
10865 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10866 sym_hashes = elf_sym_hashes (abfd);
10867 local_got_refcounts = elf_local_got_refcounts (abfd);
10868
10869 relend = relocs + sec->reloc_count;
10870 for (rel = relocs; rel < relend; rel++)
10871 switch (ELF_R_TYPE (abfd, rel->r_info))
10872 {
10873 case R_MIPS16_GOT16:
10874 case R_MIPS16_CALL16:
10875 case R_MIPS_GOT16:
10876 case R_MIPS_CALL16:
10877 case R_MIPS_CALL_HI16:
10878 case R_MIPS_CALL_LO16:
10879 case R_MIPS_GOT_HI16:
10880 case R_MIPS_GOT_LO16:
10881 case R_MIPS_GOT_DISP:
10882 case R_MIPS_GOT_PAGE:
10883 case R_MIPS_GOT_OFST:
10884 /* ??? It would seem that the existing MIPS code does no sort
10885 of reference counting or whatnot on its GOT and PLT entries,
10886 so it is not possible to garbage collect them at this time. */
10887 break;
10888
10889 default:
10890 break;
10891 }
10892 #endif
10893
10894 return TRUE;
10895 }
10896 \f
10897 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
10898 hiding the old indirect symbol. Process additional relocation
10899 information. Also called for weakdefs, in which case we just let
10900 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
10901
10902 void
10903 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
10904 struct elf_link_hash_entry *dir,
10905 struct elf_link_hash_entry *ind)
10906 {
10907 struct mips_elf_link_hash_entry *dirmips, *indmips;
10908
10909 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
10910
10911 dirmips = (struct mips_elf_link_hash_entry *) dir;
10912 indmips = (struct mips_elf_link_hash_entry *) ind;
10913 /* Any absolute non-dynamic relocations against an indirect or weak
10914 definition will be against the target symbol. */
10915 if (indmips->has_static_relocs)
10916 dirmips->has_static_relocs = TRUE;
10917
10918 if (ind->root.type != bfd_link_hash_indirect)
10919 return;
10920
10921 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
10922 if (indmips->readonly_reloc)
10923 dirmips->readonly_reloc = TRUE;
10924 if (indmips->no_fn_stub)
10925 dirmips->no_fn_stub = TRUE;
10926 if (indmips->fn_stub)
10927 {
10928 dirmips->fn_stub = indmips->fn_stub;
10929 indmips->fn_stub = NULL;
10930 }
10931 if (indmips->need_fn_stub)
10932 {
10933 dirmips->need_fn_stub = TRUE;
10934 indmips->need_fn_stub = FALSE;
10935 }
10936 if (indmips->call_stub)
10937 {
10938 dirmips->call_stub = indmips->call_stub;
10939 indmips->call_stub = NULL;
10940 }
10941 if (indmips->call_fp_stub)
10942 {
10943 dirmips->call_fp_stub = indmips->call_fp_stub;
10944 indmips->call_fp_stub = NULL;
10945 }
10946 if (indmips->global_got_area < dirmips->global_got_area)
10947 dirmips->global_got_area = indmips->global_got_area;
10948 if (indmips->global_got_area < GGA_NONE)
10949 indmips->global_got_area = GGA_NONE;
10950 if (indmips->has_nonpic_branches)
10951 dirmips->has_nonpic_branches = TRUE;
10952
10953 if (dirmips->tls_type == 0)
10954 dirmips->tls_type = indmips->tls_type;
10955 }
10956 \f
10957 #define PDR_SIZE 32
10958
10959 bfd_boolean
10960 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
10961 struct bfd_link_info *info)
10962 {
10963 asection *o;
10964 bfd_boolean ret = FALSE;
10965 unsigned char *tdata;
10966 size_t i, skip;
10967
10968 o = bfd_get_section_by_name (abfd, ".pdr");
10969 if (! o)
10970 return FALSE;
10971 if (o->size == 0)
10972 return FALSE;
10973 if (o->size % PDR_SIZE != 0)
10974 return FALSE;
10975 if (o->output_section != NULL
10976 && bfd_is_abs_section (o->output_section))
10977 return FALSE;
10978
10979 tdata = bfd_zmalloc (o->size / PDR_SIZE);
10980 if (! tdata)
10981 return FALSE;
10982
10983 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
10984 info->keep_memory);
10985 if (!cookie->rels)
10986 {
10987 free (tdata);
10988 return FALSE;
10989 }
10990
10991 cookie->rel = cookie->rels;
10992 cookie->relend = cookie->rels + o->reloc_count;
10993
10994 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
10995 {
10996 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
10997 {
10998 tdata[i] = 1;
10999 skip ++;
11000 }
11001 }
11002
11003 if (skip != 0)
11004 {
11005 mips_elf_section_data (o)->u.tdata = tdata;
11006 o->size -= skip * PDR_SIZE;
11007 ret = TRUE;
11008 }
11009 else
11010 free (tdata);
11011
11012 if (! info->keep_memory)
11013 free (cookie->rels);
11014
11015 return ret;
11016 }
11017
11018 bfd_boolean
11019 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11020 {
11021 if (strcmp (sec->name, ".pdr") == 0)
11022 return TRUE;
11023 return FALSE;
11024 }
11025
11026 bfd_boolean
11027 _bfd_mips_elf_write_section (bfd *output_bfd,
11028 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11029 asection *sec, bfd_byte *contents)
11030 {
11031 bfd_byte *to, *from, *end;
11032 int i;
11033
11034 if (strcmp (sec->name, ".pdr") != 0)
11035 return FALSE;
11036
11037 if (mips_elf_section_data (sec)->u.tdata == NULL)
11038 return FALSE;
11039
11040 to = contents;
11041 end = contents + sec->size;
11042 for (from = contents, i = 0;
11043 from < end;
11044 from += PDR_SIZE, i++)
11045 {
11046 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11047 continue;
11048 if (to != from)
11049 memcpy (to, from, PDR_SIZE);
11050 to += PDR_SIZE;
11051 }
11052 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11053 sec->output_offset, sec->size);
11054 return TRUE;
11055 }
11056 \f
11057 /* MIPS ELF uses a special find_nearest_line routine in order the
11058 handle the ECOFF debugging information. */
11059
11060 struct mips_elf_find_line
11061 {
11062 struct ecoff_debug_info d;
11063 struct ecoff_find_line i;
11064 };
11065
11066 bfd_boolean
11067 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11068 asymbol **symbols, bfd_vma offset,
11069 const char **filename_ptr,
11070 const char **functionname_ptr,
11071 unsigned int *line_ptr)
11072 {
11073 asection *msec;
11074
11075 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11076 filename_ptr, functionname_ptr,
11077 line_ptr))
11078 return TRUE;
11079
11080 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11081 filename_ptr, functionname_ptr,
11082 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11083 &elf_tdata (abfd)->dwarf2_find_line_info))
11084 return TRUE;
11085
11086 msec = bfd_get_section_by_name (abfd, ".mdebug");
11087 if (msec != NULL)
11088 {
11089 flagword origflags;
11090 struct mips_elf_find_line *fi;
11091 const struct ecoff_debug_swap * const swap =
11092 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11093
11094 /* If we are called during a link, mips_elf_final_link may have
11095 cleared the SEC_HAS_CONTENTS field. We force it back on here
11096 if appropriate (which it normally will be). */
11097 origflags = msec->flags;
11098 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11099 msec->flags |= SEC_HAS_CONTENTS;
11100
11101 fi = elf_tdata (abfd)->find_line_info;
11102 if (fi == NULL)
11103 {
11104 bfd_size_type external_fdr_size;
11105 char *fraw_src;
11106 char *fraw_end;
11107 struct fdr *fdr_ptr;
11108 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11109
11110 fi = bfd_zalloc (abfd, amt);
11111 if (fi == NULL)
11112 {
11113 msec->flags = origflags;
11114 return FALSE;
11115 }
11116
11117 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11118 {
11119 msec->flags = origflags;
11120 return FALSE;
11121 }
11122
11123 /* Swap in the FDR information. */
11124 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11125 fi->d.fdr = bfd_alloc (abfd, amt);
11126 if (fi->d.fdr == NULL)
11127 {
11128 msec->flags = origflags;
11129 return FALSE;
11130 }
11131 external_fdr_size = swap->external_fdr_size;
11132 fdr_ptr = fi->d.fdr;
11133 fraw_src = (char *) fi->d.external_fdr;
11134 fraw_end = (fraw_src
11135 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11136 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11137 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11138
11139 elf_tdata (abfd)->find_line_info = fi;
11140
11141 /* Note that we don't bother to ever free this information.
11142 find_nearest_line is either called all the time, as in
11143 objdump -l, so the information should be saved, or it is
11144 rarely called, as in ld error messages, so the memory
11145 wasted is unimportant. Still, it would probably be a
11146 good idea for free_cached_info to throw it away. */
11147 }
11148
11149 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11150 &fi->i, filename_ptr, functionname_ptr,
11151 line_ptr))
11152 {
11153 msec->flags = origflags;
11154 return TRUE;
11155 }
11156
11157 msec->flags = origflags;
11158 }
11159
11160 /* Fall back on the generic ELF find_nearest_line routine. */
11161
11162 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11163 filename_ptr, functionname_ptr,
11164 line_ptr);
11165 }
11166
11167 bfd_boolean
11168 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11169 const char **filename_ptr,
11170 const char **functionname_ptr,
11171 unsigned int *line_ptr)
11172 {
11173 bfd_boolean found;
11174 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11175 functionname_ptr, line_ptr,
11176 & elf_tdata (abfd)->dwarf2_find_line_info);
11177 return found;
11178 }
11179
11180 \f
11181 /* When are writing out the .options or .MIPS.options section,
11182 remember the bytes we are writing out, so that we can install the
11183 GP value in the section_processing routine. */
11184
11185 bfd_boolean
11186 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11187 const void *location,
11188 file_ptr offset, bfd_size_type count)
11189 {
11190 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11191 {
11192 bfd_byte *c;
11193
11194 if (elf_section_data (section) == NULL)
11195 {
11196 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11197 section->used_by_bfd = bfd_zalloc (abfd, amt);
11198 if (elf_section_data (section) == NULL)
11199 return FALSE;
11200 }
11201 c = mips_elf_section_data (section)->u.tdata;
11202 if (c == NULL)
11203 {
11204 c = bfd_zalloc (abfd, section->size);
11205 if (c == NULL)
11206 return FALSE;
11207 mips_elf_section_data (section)->u.tdata = c;
11208 }
11209
11210 memcpy (c + offset, location, count);
11211 }
11212
11213 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11214 count);
11215 }
11216
11217 /* This is almost identical to bfd_generic_get_... except that some
11218 MIPS relocations need to be handled specially. Sigh. */
11219
11220 bfd_byte *
11221 _bfd_elf_mips_get_relocated_section_contents
11222 (bfd *abfd,
11223 struct bfd_link_info *link_info,
11224 struct bfd_link_order *link_order,
11225 bfd_byte *data,
11226 bfd_boolean relocatable,
11227 asymbol **symbols)
11228 {
11229 /* Get enough memory to hold the stuff */
11230 bfd *input_bfd = link_order->u.indirect.section->owner;
11231 asection *input_section = link_order->u.indirect.section;
11232 bfd_size_type sz;
11233
11234 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11235 arelent **reloc_vector = NULL;
11236 long reloc_count;
11237
11238 if (reloc_size < 0)
11239 goto error_return;
11240
11241 reloc_vector = bfd_malloc (reloc_size);
11242 if (reloc_vector == NULL && reloc_size != 0)
11243 goto error_return;
11244
11245 /* read in the section */
11246 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11247 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11248 goto error_return;
11249
11250 reloc_count = bfd_canonicalize_reloc (input_bfd,
11251 input_section,
11252 reloc_vector,
11253 symbols);
11254 if (reloc_count < 0)
11255 goto error_return;
11256
11257 if (reloc_count > 0)
11258 {
11259 arelent **parent;
11260 /* for mips */
11261 int gp_found;
11262 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11263
11264 {
11265 struct bfd_hash_entry *h;
11266 struct bfd_link_hash_entry *lh;
11267 /* Skip all this stuff if we aren't mixing formats. */
11268 if (abfd && input_bfd
11269 && abfd->xvec == input_bfd->xvec)
11270 lh = 0;
11271 else
11272 {
11273 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11274 lh = (struct bfd_link_hash_entry *) h;
11275 }
11276 lookup:
11277 if (lh)
11278 {
11279 switch (lh->type)
11280 {
11281 case bfd_link_hash_undefined:
11282 case bfd_link_hash_undefweak:
11283 case bfd_link_hash_common:
11284 gp_found = 0;
11285 break;
11286 case bfd_link_hash_defined:
11287 case bfd_link_hash_defweak:
11288 gp_found = 1;
11289 gp = lh->u.def.value;
11290 break;
11291 case bfd_link_hash_indirect:
11292 case bfd_link_hash_warning:
11293 lh = lh->u.i.link;
11294 /* @@FIXME ignoring warning for now */
11295 goto lookup;
11296 case bfd_link_hash_new:
11297 default:
11298 abort ();
11299 }
11300 }
11301 else
11302 gp_found = 0;
11303 }
11304 /* end mips */
11305 for (parent = reloc_vector; *parent != NULL; parent++)
11306 {
11307 char *error_message = NULL;
11308 bfd_reloc_status_type r;
11309
11310 /* Specific to MIPS: Deal with relocation types that require
11311 knowing the gp of the output bfd. */
11312 asymbol *sym = *(*parent)->sym_ptr_ptr;
11313
11314 /* If we've managed to find the gp and have a special
11315 function for the relocation then go ahead, else default
11316 to the generic handling. */
11317 if (gp_found
11318 && (*parent)->howto->special_function
11319 == _bfd_mips_elf32_gprel16_reloc)
11320 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11321 input_section, relocatable,
11322 data, gp);
11323 else
11324 r = bfd_perform_relocation (input_bfd, *parent, data,
11325 input_section,
11326 relocatable ? abfd : NULL,
11327 &error_message);
11328
11329 if (relocatable)
11330 {
11331 asection *os = input_section->output_section;
11332
11333 /* A partial link, so keep the relocs */
11334 os->orelocation[os->reloc_count] = *parent;
11335 os->reloc_count++;
11336 }
11337
11338 if (r != bfd_reloc_ok)
11339 {
11340 switch (r)
11341 {
11342 case bfd_reloc_undefined:
11343 if (!((*link_info->callbacks->undefined_symbol)
11344 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11345 input_bfd, input_section, (*parent)->address, TRUE)))
11346 goto error_return;
11347 break;
11348 case bfd_reloc_dangerous:
11349 BFD_ASSERT (error_message != NULL);
11350 if (!((*link_info->callbacks->reloc_dangerous)
11351 (link_info, error_message, input_bfd, input_section,
11352 (*parent)->address)))
11353 goto error_return;
11354 break;
11355 case bfd_reloc_overflow:
11356 if (!((*link_info->callbacks->reloc_overflow)
11357 (link_info, NULL,
11358 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11359 (*parent)->howto->name, (*parent)->addend,
11360 input_bfd, input_section, (*parent)->address)))
11361 goto error_return;
11362 break;
11363 case bfd_reloc_outofrange:
11364 default:
11365 abort ();
11366 break;
11367 }
11368
11369 }
11370 }
11371 }
11372 if (reloc_vector != NULL)
11373 free (reloc_vector);
11374 return data;
11375
11376 error_return:
11377 if (reloc_vector != NULL)
11378 free (reloc_vector);
11379 return NULL;
11380 }
11381 \f
11382 /* Allocate ABFD's target-dependent data. */
11383
11384 bfd_boolean
11385 _bfd_mips_elf_mkobject (bfd *abfd)
11386 {
11387 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
11388 MIPS_ELF_TDATA);
11389 }
11390
11391 /* Create a MIPS ELF linker hash table. */
11392
11393 struct bfd_link_hash_table *
11394 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
11395 {
11396 struct mips_elf_link_hash_table *ret;
11397 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
11398
11399 ret = bfd_malloc (amt);
11400 if (ret == NULL)
11401 return NULL;
11402
11403 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
11404 mips_elf_link_hash_newfunc,
11405 sizeof (struct mips_elf_link_hash_entry)))
11406 {
11407 free (ret);
11408 return NULL;
11409 }
11410
11411 #if 0
11412 /* We no longer use this. */
11413 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
11414 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
11415 #endif
11416 ret->procedure_count = 0;
11417 ret->compact_rel_size = 0;
11418 ret->use_rld_obj_head = FALSE;
11419 ret->rld_value = 0;
11420 ret->mips16_stubs_seen = FALSE;
11421 ret->use_plts_and_copy_relocs = FALSE;
11422 ret->is_vxworks = FALSE;
11423 ret->small_data_overflow_reported = FALSE;
11424 ret->srelbss = NULL;
11425 ret->sdynbss = NULL;
11426 ret->srelplt = NULL;
11427 ret->srelplt2 = NULL;
11428 ret->sgotplt = NULL;
11429 ret->splt = NULL;
11430 ret->sstubs = NULL;
11431 ret->sgot = NULL;
11432 ret->got_info = NULL;
11433 ret->plt_header_size = 0;
11434 ret->plt_entry_size = 0;
11435 ret->lazy_stub_count = 0;
11436 ret->function_stub_size = 0;
11437 ret->strampoline = NULL;
11438 ret->la25_stubs = NULL;
11439 ret->add_stub_section = NULL;
11440
11441 return &ret->root.root;
11442 }
11443
11444 /* Likewise, but indicate that the target is VxWorks. */
11445
11446 struct bfd_link_hash_table *
11447 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
11448 {
11449 struct bfd_link_hash_table *ret;
11450
11451 ret = _bfd_mips_elf_link_hash_table_create (abfd);
11452 if (ret)
11453 {
11454 struct mips_elf_link_hash_table *htab;
11455
11456 htab = (struct mips_elf_link_hash_table *) ret;
11457 htab->use_plts_and_copy_relocs = TRUE;
11458 htab->is_vxworks = TRUE;
11459 }
11460 return ret;
11461 }
11462
11463 /* A function that the linker calls if we are allowed to use PLTs
11464 and copy relocs. */
11465
11466 void
11467 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
11468 {
11469 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
11470 }
11471 \f
11472 /* We need to use a special link routine to handle the .reginfo and
11473 the .mdebug sections. We need to merge all instances of these
11474 sections together, not write them all out sequentially. */
11475
11476 bfd_boolean
11477 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11478 {
11479 asection *o;
11480 struct bfd_link_order *p;
11481 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
11482 asection *rtproc_sec;
11483 Elf32_RegInfo reginfo;
11484 struct ecoff_debug_info debug;
11485 struct mips_htab_traverse_info hti;
11486 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11487 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
11488 HDRR *symhdr = &debug.symbolic_header;
11489 void *mdebug_handle = NULL;
11490 asection *s;
11491 EXTR esym;
11492 unsigned int i;
11493 bfd_size_type amt;
11494 struct mips_elf_link_hash_table *htab;
11495
11496 static const char * const secname[] =
11497 {
11498 ".text", ".init", ".fini", ".data",
11499 ".rodata", ".sdata", ".sbss", ".bss"
11500 };
11501 static const int sc[] =
11502 {
11503 scText, scInit, scFini, scData,
11504 scRData, scSData, scSBss, scBss
11505 };
11506
11507 /* Sort the dynamic symbols so that those with GOT entries come after
11508 those without. */
11509 htab = mips_elf_hash_table (info);
11510 if (!mips_elf_sort_hash_table (abfd, info))
11511 return FALSE;
11512
11513 /* Create any scheduled LA25 stubs. */
11514 hti.info = info;
11515 hti.output_bfd = abfd;
11516 hti.error = FALSE;
11517 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
11518 if (hti.error)
11519 return FALSE;
11520
11521 /* Get a value for the GP register. */
11522 if (elf_gp (abfd) == 0)
11523 {
11524 struct bfd_link_hash_entry *h;
11525
11526 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
11527 if (h != NULL && h->type == bfd_link_hash_defined)
11528 elf_gp (abfd) = (h->u.def.value
11529 + h->u.def.section->output_section->vma
11530 + h->u.def.section->output_offset);
11531 else if (htab->is_vxworks
11532 && (h = bfd_link_hash_lookup (info->hash,
11533 "_GLOBAL_OFFSET_TABLE_",
11534 FALSE, FALSE, TRUE))
11535 && h->type == bfd_link_hash_defined)
11536 elf_gp (abfd) = (h->u.def.section->output_section->vma
11537 + h->u.def.section->output_offset
11538 + h->u.def.value);
11539 else if (info->relocatable)
11540 {
11541 bfd_vma lo = MINUS_ONE;
11542
11543 /* Find the GP-relative section with the lowest offset. */
11544 for (o = abfd->sections; o != NULL; o = o->next)
11545 if (o->vma < lo
11546 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
11547 lo = o->vma;
11548
11549 /* And calculate GP relative to that. */
11550 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
11551 }
11552 else
11553 {
11554 /* If the relocate_section function needs to do a reloc
11555 involving the GP value, it should make a reloc_dangerous
11556 callback to warn that GP is not defined. */
11557 }
11558 }
11559
11560 /* Go through the sections and collect the .reginfo and .mdebug
11561 information. */
11562 reginfo_sec = NULL;
11563 mdebug_sec = NULL;
11564 gptab_data_sec = NULL;
11565 gptab_bss_sec = NULL;
11566 for (o = abfd->sections; o != NULL; o = o->next)
11567 {
11568 if (strcmp (o->name, ".reginfo") == 0)
11569 {
11570 memset (&reginfo, 0, sizeof reginfo);
11571
11572 /* We have found the .reginfo section in the output file.
11573 Look through all the link_orders comprising it and merge
11574 the information together. */
11575 for (p = o->map_head.link_order; p != NULL; p = p->next)
11576 {
11577 asection *input_section;
11578 bfd *input_bfd;
11579 Elf32_External_RegInfo ext;
11580 Elf32_RegInfo sub;
11581
11582 if (p->type != bfd_indirect_link_order)
11583 {
11584 if (p->type == bfd_data_link_order)
11585 continue;
11586 abort ();
11587 }
11588
11589 input_section = p->u.indirect.section;
11590 input_bfd = input_section->owner;
11591
11592 if (! bfd_get_section_contents (input_bfd, input_section,
11593 &ext, 0, sizeof ext))
11594 return FALSE;
11595
11596 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
11597
11598 reginfo.ri_gprmask |= sub.ri_gprmask;
11599 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
11600 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
11601 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
11602 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
11603
11604 /* ri_gp_value is set by the function
11605 mips_elf32_section_processing when the section is
11606 finally written out. */
11607
11608 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11609 elf_link_input_bfd ignores this section. */
11610 input_section->flags &= ~SEC_HAS_CONTENTS;
11611 }
11612
11613 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11614 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
11615
11616 /* Skip this section later on (I don't think this currently
11617 matters, but someday it might). */
11618 o->map_head.link_order = NULL;
11619
11620 reginfo_sec = o;
11621 }
11622
11623 if (strcmp (o->name, ".mdebug") == 0)
11624 {
11625 struct extsym_info einfo;
11626 bfd_vma last;
11627
11628 /* We have found the .mdebug section in the output file.
11629 Look through all the link_orders comprising it and merge
11630 the information together. */
11631 symhdr->magic = swap->sym_magic;
11632 /* FIXME: What should the version stamp be? */
11633 symhdr->vstamp = 0;
11634 symhdr->ilineMax = 0;
11635 symhdr->cbLine = 0;
11636 symhdr->idnMax = 0;
11637 symhdr->ipdMax = 0;
11638 symhdr->isymMax = 0;
11639 symhdr->ioptMax = 0;
11640 symhdr->iauxMax = 0;
11641 symhdr->issMax = 0;
11642 symhdr->issExtMax = 0;
11643 symhdr->ifdMax = 0;
11644 symhdr->crfd = 0;
11645 symhdr->iextMax = 0;
11646
11647 /* We accumulate the debugging information itself in the
11648 debug_info structure. */
11649 debug.line = NULL;
11650 debug.external_dnr = NULL;
11651 debug.external_pdr = NULL;
11652 debug.external_sym = NULL;
11653 debug.external_opt = NULL;
11654 debug.external_aux = NULL;
11655 debug.ss = NULL;
11656 debug.ssext = debug.ssext_end = NULL;
11657 debug.external_fdr = NULL;
11658 debug.external_rfd = NULL;
11659 debug.external_ext = debug.external_ext_end = NULL;
11660
11661 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
11662 if (mdebug_handle == NULL)
11663 return FALSE;
11664
11665 esym.jmptbl = 0;
11666 esym.cobol_main = 0;
11667 esym.weakext = 0;
11668 esym.reserved = 0;
11669 esym.ifd = ifdNil;
11670 esym.asym.iss = issNil;
11671 esym.asym.st = stLocal;
11672 esym.asym.reserved = 0;
11673 esym.asym.index = indexNil;
11674 last = 0;
11675 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11676 {
11677 esym.asym.sc = sc[i];
11678 s = bfd_get_section_by_name (abfd, secname[i]);
11679 if (s != NULL)
11680 {
11681 esym.asym.value = s->vma;
11682 last = s->vma + s->size;
11683 }
11684 else
11685 esym.asym.value = last;
11686 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11687 secname[i], &esym))
11688 return FALSE;
11689 }
11690
11691 for (p = o->map_head.link_order; p != NULL; p = p->next)
11692 {
11693 asection *input_section;
11694 bfd *input_bfd;
11695 const struct ecoff_debug_swap *input_swap;
11696 struct ecoff_debug_info input_debug;
11697 char *eraw_src;
11698 char *eraw_end;
11699
11700 if (p->type != bfd_indirect_link_order)
11701 {
11702 if (p->type == bfd_data_link_order)
11703 continue;
11704 abort ();
11705 }
11706
11707 input_section = p->u.indirect.section;
11708 input_bfd = input_section->owner;
11709
11710 if (!is_mips_elf (input_bfd))
11711 {
11712 /* I don't know what a non MIPS ELF bfd would be
11713 doing with a .mdebug section, but I don't really
11714 want to deal with it. */
11715 continue;
11716 }
11717
11718 input_swap = (get_elf_backend_data (input_bfd)
11719 ->elf_backend_ecoff_debug_swap);
11720
11721 BFD_ASSERT (p->size == input_section->size);
11722
11723 /* The ECOFF linking code expects that we have already
11724 read in the debugging information and set up an
11725 ecoff_debug_info structure, so we do that now. */
11726 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11727 &input_debug))
11728 return FALSE;
11729
11730 if (! (bfd_ecoff_debug_accumulate
11731 (mdebug_handle, abfd, &debug, swap, input_bfd,
11732 &input_debug, input_swap, info)))
11733 return FALSE;
11734
11735 /* Loop through the external symbols. For each one with
11736 interesting information, try to find the symbol in
11737 the linker global hash table and save the information
11738 for the output external symbols. */
11739 eraw_src = input_debug.external_ext;
11740 eraw_end = (eraw_src
11741 + (input_debug.symbolic_header.iextMax
11742 * input_swap->external_ext_size));
11743 for (;
11744 eraw_src < eraw_end;
11745 eraw_src += input_swap->external_ext_size)
11746 {
11747 EXTR ext;
11748 const char *name;
11749 struct mips_elf_link_hash_entry *h;
11750
11751 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
11752 if (ext.asym.sc == scNil
11753 || ext.asym.sc == scUndefined
11754 || ext.asym.sc == scSUndefined)
11755 continue;
11756
11757 name = input_debug.ssext + ext.asym.iss;
11758 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
11759 name, FALSE, FALSE, TRUE);
11760 if (h == NULL || h->esym.ifd != -2)
11761 continue;
11762
11763 if (ext.ifd != -1)
11764 {
11765 BFD_ASSERT (ext.ifd
11766 < input_debug.symbolic_header.ifdMax);
11767 ext.ifd = input_debug.ifdmap[ext.ifd];
11768 }
11769
11770 h->esym = ext;
11771 }
11772
11773 /* Free up the information we just read. */
11774 free (input_debug.line);
11775 free (input_debug.external_dnr);
11776 free (input_debug.external_pdr);
11777 free (input_debug.external_sym);
11778 free (input_debug.external_opt);
11779 free (input_debug.external_aux);
11780 free (input_debug.ss);
11781 free (input_debug.ssext);
11782 free (input_debug.external_fdr);
11783 free (input_debug.external_rfd);
11784 free (input_debug.external_ext);
11785
11786 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11787 elf_link_input_bfd ignores this section. */
11788 input_section->flags &= ~SEC_HAS_CONTENTS;
11789 }
11790
11791 if (SGI_COMPAT (abfd) && info->shared)
11792 {
11793 /* Create .rtproc section. */
11794 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11795 if (rtproc_sec == NULL)
11796 {
11797 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11798 | SEC_LINKER_CREATED | SEC_READONLY);
11799
11800 rtproc_sec = bfd_make_section_with_flags (abfd,
11801 ".rtproc",
11802 flags);
11803 if (rtproc_sec == NULL
11804 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
11805 return FALSE;
11806 }
11807
11808 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11809 info, rtproc_sec,
11810 &debug))
11811 return FALSE;
11812 }
11813
11814 /* Build the external symbol information. */
11815 einfo.abfd = abfd;
11816 einfo.info = info;
11817 einfo.debug = &debug;
11818 einfo.swap = swap;
11819 einfo.failed = FALSE;
11820 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
11821 mips_elf_output_extsym, &einfo);
11822 if (einfo.failed)
11823 return FALSE;
11824
11825 /* Set the size of the .mdebug section. */
11826 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
11827
11828 /* Skip this section later on (I don't think this currently
11829 matters, but someday it might). */
11830 o->map_head.link_order = NULL;
11831
11832 mdebug_sec = o;
11833 }
11834
11835 if (CONST_STRNEQ (o->name, ".gptab."))
11836 {
11837 const char *subname;
11838 unsigned int c;
11839 Elf32_gptab *tab;
11840 Elf32_External_gptab *ext_tab;
11841 unsigned int j;
11842
11843 /* The .gptab.sdata and .gptab.sbss sections hold
11844 information describing how the small data area would
11845 change depending upon the -G switch. These sections
11846 not used in executables files. */
11847 if (! info->relocatable)
11848 {
11849 for (p = o->map_head.link_order; p != NULL; p = p->next)
11850 {
11851 asection *input_section;
11852
11853 if (p->type != bfd_indirect_link_order)
11854 {
11855 if (p->type == bfd_data_link_order)
11856 continue;
11857 abort ();
11858 }
11859
11860 input_section = p->u.indirect.section;
11861
11862 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11863 elf_link_input_bfd ignores this section. */
11864 input_section->flags &= ~SEC_HAS_CONTENTS;
11865 }
11866
11867 /* Skip this section later on (I don't think this
11868 currently matters, but someday it might). */
11869 o->map_head.link_order = NULL;
11870
11871 /* Really remove the section. */
11872 bfd_section_list_remove (abfd, o);
11873 --abfd->section_count;
11874
11875 continue;
11876 }
11877
11878 /* There is one gptab for initialized data, and one for
11879 uninitialized data. */
11880 if (strcmp (o->name, ".gptab.sdata") == 0)
11881 gptab_data_sec = o;
11882 else if (strcmp (o->name, ".gptab.sbss") == 0)
11883 gptab_bss_sec = o;
11884 else
11885 {
11886 (*_bfd_error_handler)
11887 (_("%s: illegal section name `%s'"),
11888 bfd_get_filename (abfd), o->name);
11889 bfd_set_error (bfd_error_nonrepresentable_section);
11890 return FALSE;
11891 }
11892
11893 /* The linker script always combines .gptab.data and
11894 .gptab.sdata into .gptab.sdata, and likewise for
11895 .gptab.bss and .gptab.sbss. It is possible that there is
11896 no .sdata or .sbss section in the output file, in which
11897 case we must change the name of the output section. */
11898 subname = o->name + sizeof ".gptab" - 1;
11899 if (bfd_get_section_by_name (abfd, subname) == NULL)
11900 {
11901 if (o == gptab_data_sec)
11902 o->name = ".gptab.data";
11903 else
11904 o->name = ".gptab.bss";
11905 subname = o->name + sizeof ".gptab" - 1;
11906 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
11907 }
11908
11909 /* Set up the first entry. */
11910 c = 1;
11911 amt = c * sizeof (Elf32_gptab);
11912 tab = bfd_malloc (amt);
11913 if (tab == NULL)
11914 return FALSE;
11915 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
11916 tab[0].gt_header.gt_unused = 0;
11917
11918 /* Combine the input sections. */
11919 for (p = o->map_head.link_order; p != NULL; p = p->next)
11920 {
11921 asection *input_section;
11922 bfd *input_bfd;
11923 bfd_size_type size;
11924 unsigned long last;
11925 bfd_size_type gpentry;
11926
11927 if (p->type != bfd_indirect_link_order)
11928 {
11929 if (p->type == bfd_data_link_order)
11930 continue;
11931 abort ();
11932 }
11933
11934 input_section = p->u.indirect.section;
11935 input_bfd = input_section->owner;
11936
11937 /* Combine the gptab entries for this input section one
11938 by one. We know that the input gptab entries are
11939 sorted by ascending -G value. */
11940 size = input_section->size;
11941 last = 0;
11942 for (gpentry = sizeof (Elf32_External_gptab);
11943 gpentry < size;
11944 gpentry += sizeof (Elf32_External_gptab))
11945 {
11946 Elf32_External_gptab ext_gptab;
11947 Elf32_gptab int_gptab;
11948 unsigned long val;
11949 unsigned long add;
11950 bfd_boolean exact;
11951 unsigned int look;
11952
11953 if (! (bfd_get_section_contents
11954 (input_bfd, input_section, &ext_gptab, gpentry,
11955 sizeof (Elf32_External_gptab))))
11956 {
11957 free (tab);
11958 return FALSE;
11959 }
11960
11961 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
11962 &int_gptab);
11963 val = int_gptab.gt_entry.gt_g_value;
11964 add = int_gptab.gt_entry.gt_bytes - last;
11965
11966 exact = FALSE;
11967 for (look = 1; look < c; look++)
11968 {
11969 if (tab[look].gt_entry.gt_g_value >= val)
11970 tab[look].gt_entry.gt_bytes += add;
11971
11972 if (tab[look].gt_entry.gt_g_value == val)
11973 exact = TRUE;
11974 }
11975
11976 if (! exact)
11977 {
11978 Elf32_gptab *new_tab;
11979 unsigned int max;
11980
11981 /* We need a new table entry. */
11982 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
11983 new_tab = bfd_realloc (tab, amt);
11984 if (new_tab == NULL)
11985 {
11986 free (tab);
11987 return FALSE;
11988 }
11989 tab = new_tab;
11990 tab[c].gt_entry.gt_g_value = val;
11991 tab[c].gt_entry.gt_bytes = add;
11992
11993 /* Merge in the size for the next smallest -G
11994 value, since that will be implied by this new
11995 value. */
11996 max = 0;
11997 for (look = 1; look < c; look++)
11998 {
11999 if (tab[look].gt_entry.gt_g_value < val
12000 && (max == 0
12001 || (tab[look].gt_entry.gt_g_value
12002 > tab[max].gt_entry.gt_g_value)))
12003 max = look;
12004 }
12005 if (max != 0)
12006 tab[c].gt_entry.gt_bytes +=
12007 tab[max].gt_entry.gt_bytes;
12008
12009 ++c;
12010 }
12011
12012 last = int_gptab.gt_entry.gt_bytes;
12013 }
12014
12015 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12016 elf_link_input_bfd ignores this section. */
12017 input_section->flags &= ~SEC_HAS_CONTENTS;
12018 }
12019
12020 /* The table must be sorted by -G value. */
12021 if (c > 2)
12022 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
12023
12024 /* Swap out the table. */
12025 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
12026 ext_tab = bfd_alloc (abfd, amt);
12027 if (ext_tab == NULL)
12028 {
12029 free (tab);
12030 return FALSE;
12031 }
12032
12033 for (j = 0; j < c; j++)
12034 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
12035 free (tab);
12036
12037 o->size = c * sizeof (Elf32_External_gptab);
12038 o->contents = (bfd_byte *) ext_tab;
12039
12040 /* Skip this section later on (I don't think this currently
12041 matters, but someday it might). */
12042 o->map_head.link_order = NULL;
12043 }
12044 }
12045
12046 /* Invoke the regular ELF backend linker to do all the work. */
12047 if (!bfd_elf_final_link (abfd, info))
12048 return FALSE;
12049
12050 /* Now write out the computed sections. */
12051
12052 if (reginfo_sec != NULL)
12053 {
12054 Elf32_External_RegInfo ext;
12055
12056 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
12057 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
12058 return FALSE;
12059 }
12060
12061 if (mdebug_sec != NULL)
12062 {
12063 BFD_ASSERT (abfd->output_has_begun);
12064 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
12065 swap, info,
12066 mdebug_sec->filepos))
12067 return FALSE;
12068
12069 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
12070 }
12071
12072 if (gptab_data_sec != NULL)
12073 {
12074 if (! bfd_set_section_contents (abfd, gptab_data_sec,
12075 gptab_data_sec->contents,
12076 0, gptab_data_sec->size))
12077 return FALSE;
12078 }
12079
12080 if (gptab_bss_sec != NULL)
12081 {
12082 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
12083 gptab_bss_sec->contents,
12084 0, gptab_bss_sec->size))
12085 return FALSE;
12086 }
12087
12088 if (SGI_COMPAT (abfd))
12089 {
12090 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
12091 if (rtproc_sec != NULL)
12092 {
12093 if (! bfd_set_section_contents (abfd, rtproc_sec,
12094 rtproc_sec->contents,
12095 0, rtproc_sec->size))
12096 return FALSE;
12097 }
12098 }
12099
12100 return TRUE;
12101 }
12102 \f
12103 /* Structure for saying that BFD machine EXTENSION extends BASE. */
12104
12105 struct mips_mach_extension {
12106 unsigned long extension, base;
12107 };
12108
12109
12110 /* An array describing how BFD machines relate to one another. The entries
12111 are ordered topologically with MIPS I extensions listed last. */
12112
12113 static const struct mips_mach_extension mips_mach_extensions[] = {
12114 /* MIPS64r2 extensions. */
12115 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
12116
12117 /* MIPS64 extensions. */
12118 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
12119 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
12120
12121 /* MIPS V extensions. */
12122 { bfd_mach_mipsisa64, bfd_mach_mips5 },
12123
12124 /* R10000 extensions. */
12125 { bfd_mach_mips12000, bfd_mach_mips10000 },
12126
12127 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12128 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12129 better to allow vr5400 and vr5500 code to be merged anyway, since
12130 many libraries will just use the core ISA. Perhaps we could add
12131 some sort of ASE flag if this ever proves a problem. */
12132 { bfd_mach_mips5500, bfd_mach_mips5400 },
12133 { bfd_mach_mips5400, bfd_mach_mips5000 },
12134
12135 /* MIPS IV extensions. */
12136 { bfd_mach_mips5, bfd_mach_mips8000 },
12137 { bfd_mach_mips10000, bfd_mach_mips8000 },
12138 { bfd_mach_mips5000, bfd_mach_mips8000 },
12139 { bfd_mach_mips7000, bfd_mach_mips8000 },
12140 { bfd_mach_mips9000, bfd_mach_mips8000 },
12141
12142 /* VR4100 extensions. */
12143 { bfd_mach_mips4120, bfd_mach_mips4100 },
12144 { bfd_mach_mips4111, bfd_mach_mips4100 },
12145
12146 /* MIPS III extensions. */
12147 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
12148 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
12149 { bfd_mach_mips8000, bfd_mach_mips4000 },
12150 { bfd_mach_mips4650, bfd_mach_mips4000 },
12151 { bfd_mach_mips4600, bfd_mach_mips4000 },
12152 { bfd_mach_mips4400, bfd_mach_mips4000 },
12153 { bfd_mach_mips4300, bfd_mach_mips4000 },
12154 { bfd_mach_mips4100, bfd_mach_mips4000 },
12155 { bfd_mach_mips4010, bfd_mach_mips4000 },
12156
12157 /* MIPS32 extensions. */
12158 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
12159
12160 /* MIPS II extensions. */
12161 { bfd_mach_mips4000, bfd_mach_mips6000 },
12162 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
12163
12164 /* MIPS I extensions. */
12165 { bfd_mach_mips6000, bfd_mach_mips3000 },
12166 { bfd_mach_mips3900, bfd_mach_mips3000 }
12167 };
12168
12169
12170 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12171
12172 static bfd_boolean
12173 mips_mach_extends_p (unsigned long base, unsigned long extension)
12174 {
12175 size_t i;
12176
12177 if (extension == base)
12178 return TRUE;
12179
12180 if (base == bfd_mach_mipsisa32
12181 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
12182 return TRUE;
12183
12184 if (base == bfd_mach_mipsisa32r2
12185 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
12186 return TRUE;
12187
12188 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
12189 if (extension == mips_mach_extensions[i].extension)
12190 {
12191 extension = mips_mach_extensions[i].base;
12192 if (extension == base)
12193 return TRUE;
12194 }
12195
12196 return FALSE;
12197 }
12198
12199
12200 /* Return true if the given ELF header flags describe a 32-bit binary. */
12201
12202 static bfd_boolean
12203 mips_32bit_flags_p (flagword flags)
12204 {
12205 return ((flags & EF_MIPS_32BITMODE) != 0
12206 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
12207 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
12208 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
12209 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
12210 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
12211 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
12212 }
12213
12214
12215 /* Merge object attributes from IBFD into OBFD. Raise an error if
12216 there are conflicting attributes. */
12217 static bfd_boolean
12218 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
12219 {
12220 obj_attribute *in_attr;
12221 obj_attribute *out_attr;
12222
12223 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12224 {
12225 /* This is the first object. Copy the attributes. */
12226 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12227
12228 /* Use the Tag_null value to indicate the attributes have been
12229 initialized. */
12230 elf_known_obj_attributes_proc (obfd)[0].i = 1;
12231
12232 return TRUE;
12233 }
12234
12235 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12236 non-conflicting ones. */
12237 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
12238 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
12239 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
12240 {
12241 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
12242 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12243 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
12244 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12245 ;
12246 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12247 _bfd_error_handler
12248 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
12249 in_attr[Tag_GNU_MIPS_ABI_FP].i);
12250 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12251 _bfd_error_handler
12252 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
12253 out_attr[Tag_GNU_MIPS_ABI_FP].i);
12254 else
12255 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
12256 {
12257 case 1:
12258 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12259 {
12260 case 2:
12261 _bfd_error_handler
12262 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12263 obfd, ibfd);
12264 break;
12265
12266 case 3:
12267 _bfd_error_handler
12268 (_("Warning: %B uses hard float, %B uses soft float"),
12269 obfd, ibfd);
12270 break;
12271
12272 case 4:
12273 _bfd_error_handler
12274 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12275 obfd, ibfd);
12276 break;
12277
12278 default:
12279 abort ();
12280 }
12281 break;
12282
12283 case 2:
12284 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12285 {
12286 case 1:
12287 _bfd_error_handler
12288 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12289 ibfd, obfd);
12290 break;
12291
12292 case 3:
12293 _bfd_error_handler
12294 (_("Warning: %B uses hard float, %B uses soft float"),
12295 obfd, ibfd);
12296 break;
12297
12298 case 4:
12299 _bfd_error_handler
12300 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12301 obfd, ibfd);
12302 break;
12303
12304 default:
12305 abort ();
12306 }
12307 break;
12308
12309 case 3:
12310 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12311 {
12312 case 1:
12313 case 2:
12314 case 4:
12315 _bfd_error_handler
12316 (_("Warning: %B uses hard float, %B uses soft float"),
12317 ibfd, obfd);
12318 break;
12319
12320 default:
12321 abort ();
12322 }
12323 break;
12324
12325 case 4:
12326 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12327 {
12328 case 1:
12329 _bfd_error_handler
12330 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12331 ibfd, obfd);
12332 break;
12333
12334 case 2:
12335 _bfd_error_handler
12336 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12337 ibfd, obfd);
12338 break;
12339
12340 case 3:
12341 _bfd_error_handler
12342 (_("Warning: %B uses hard float, %B uses soft float"),
12343 obfd, ibfd);
12344 break;
12345
12346 default:
12347 abort ();
12348 }
12349 break;
12350
12351 default:
12352 abort ();
12353 }
12354 }
12355
12356 /* Merge Tag_compatibility attributes and any common GNU ones. */
12357 _bfd_elf_merge_object_attributes (ibfd, obfd);
12358
12359 return TRUE;
12360 }
12361
12362 /* Merge backend specific data from an object file to the output
12363 object file when linking. */
12364
12365 bfd_boolean
12366 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
12367 {
12368 flagword old_flags;
12369 flagword new_flags;
12370 bfd_boolean ok;
12371 bfd_boolean null_input_bfd = TRUE;
12372 asection *sec;
12373
12374 /* Check if we have the same endianess */
12375 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
12376 {
12377 (*_bfd_error_handler)
12378 (_("%B: endianness incompatible with that of the selected emulation"),
12379 ibfd);
12380 return FALSE;
12381 }
12382
12383 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
12384 return TRUE;
12385
12386 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
12387 {
12388 (*_bfd_error_handler)
12389 (_("%B: ABI is incompatible with that of the selected emulation"),
12390 ibfd);
12391 return FALSE;
12392 }
12393
12394 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
12395 return FALSE;
12396
12397 new_flags = elf_elfheader (ibfd)->e_flags;
12398 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
12399 old_flags = elf_elfheader (obfd)->e_flags;
12400
12401 if (! elf_flags_init (obfd))
12402 {
12403 elf_flags_init (obfd) = TRUE;
12404 elf_elfheader (obfd)->e_flags = new_flags;
12405 elf_elfheader (obfd)->e_ident[EI_CLASS]
12406 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
12407
12408 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
12409 && (bfd_get_arch_info (obfd)->the_default
12410 || mips_mach_extends_p (bfd_get_mach (obfd),
12411 bfd_get_mach (ibfd))))
12412 {
12413 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
12414 bfd_get_mach (ibfd)))
12415 return FALSE;
12416 }
12417
12418 return TRUE;
12419 }
12420
12421 /* Check flag compatibility. */
12422
12423 new_flags &= ~EF_MIPS_NOREORDER;
12424 old_flags &= ~EF_MIPS_NOREORDER;
12425
12426 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12427 doesn't seem to matter. */
12428 new_flags &= ~EF_MIPS_XGOT;
12429 old_flags &= ~EF_MIPS_XGOT;
12430
12431 /* MIPSpro generates ucode info in n64 objects. Again, we should
12432 just be able to ignore this. */
12433 new_flags &= ~EF_MIPS_UCODE;
12434 old_flags &= ~EF_MIPS_UCODE;
12435
12436 /* DSOs should only be linked with CPIC code. */
12437 if ((ibfd->flags & DYNAMIC) != 0)
12438 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
12439
12440 if (new_flags == old_flags)
12441 return TRUE;
12442
12443 /* Check to see if the input BFD actually contains any sections.
12444 If not, its flags may not have been initialised either, but it cannot
12445 actually cause any incompatibility. */
12446 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
12447 {
12448 /* Ignore synthetic sections and empty .text, .data and .bss sections
12449 which are automatically generated by gas. */
12450 if (strcmp (sec->name, ".reginfo")
12451 && strcmp (sec->name, ".mdebug")
12452 && (sec->size != 0
12453 || (strcmp (sec->name, ".text")
12454 && strcmp (sec->name, ".data")
12455 && strcmp (sec->name, ".bss"))))
12456 {
12457 null_input_bfd = FALSE;
12458 break;
12459 }
12460 }
12461 if (null_input_bfd)
12462 return TRUE;
12463
12464 ok = TRUE;
12465
12466 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
12467 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
12468 {
12469 (*_bfd_error_handler)
12470 (_("%B: warning: linking abicalls files with non-abicalls files"),
12471 ibfd);
12472 ok = TRUE;
12473 }
12474
12475 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
12476 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
12477 if (! (new_flags & EF_MIPS_PIC))
12478 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
12479
12480 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12481 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12482
12483 /* Compare the ISAs. */
12484 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
12485 {
12486 (*_bfd_error_handler)
12487 (_("%B: linking 32-bit code with 64-bit code"),
12488 ibfd);
12489 ok = FALSE;
12490 }
12491 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
12492 {
12493 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12494 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
12495 {
12496 /* Copy the architecture info from IBFD to OBFD. Also copy
12497 the 32-bit flag (if set) so that we continue to recognise
12498 OBFD as a 32-bit binary. */
12499 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
12500 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12501 elf_elfheader (obfd)->e_flags
12502 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12503
12504 /* Copy across the ABI flags if OBFD doesn't use them
12505 and if that was what caused us to treat IBFD as 32-bit. */
12506 if ((old_flags & EF_MIPS_ABI) == 0
12507 && mips_32bit_flags_p (new_flags)
12508 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
12509 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
12510 }
12511 else
12512 {
12513 /* The ISAs aren't compatible. */
12514 (*_bfd_error_handler)
12515 (_("%B: linking %s module with previous %s modules"),
12516 ibfd,
12517 bfd_printable_name (ibfd),
12518 bfd_printable_name (obfd));
12519 ok = FALSE;
12520 }
12521 }
12522
12523 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12524 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12525
12526 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12527 does set EI_CLASS differently from any 32-bit ABI. */
12528 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
12529 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12530 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12531 {
12532 /* Only error if both are set (to different values). */
12533 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
12534 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12535 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12536 {
12537 (*_bfd_error_handler)
12538 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12539 ibfd,
12540 elf_mips_abi_name (ibfd),
12541 elf_mips_abi_name (obfd));
12542 ok = FALSE;
12543 }
12544 new_flags &= ~EF_MIPS_ABI;
12545 old_flags &= ~EF_MIPS_ABI;
12546 }
12547
12548 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12549 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
12550 {
12551 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
12552
12553 new_flags &= ~ EF_MIPS_ARCH_ASE;
12554 old_flags &= ~ EF_MIPS_ARCH_ASE;
12555 }
12556
12557 /* Warn about any other mismatches */
12558 if (new_flags != old_flags)
12559 {
12560 (*_bfd_error_handler)
12561 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12562 ibfd, (unsigned long) new_flags,
12563 (unsigned long) old_flags);
12564 ok = FALSE;
12565 }
12566
12567 if (! ok)
12568 {
12569 bfd_set_error (bfd_error_bad_value);
12570 return FALSE;
12571 }
12572
12573 return TRUE;
12574 }
12575
12576 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12577
12578 bfd_boolean
12579 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
12580 {
12581 BFD_ASSERT (!elf_flags_init (abfd)
12582 || elf_elfheader (abfd)->e_flags == flags);
12583
12584 elf_elfheader (abfd)->e_flags = flags;
12585 elf_flags_init (abfd) = TRUE;
12586 return TRUE;
12587 }
12588
12589 char *
12590 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
12591 {
12592 switch (dtag)
12593 {
12594 default: return "";
12595 case DT_MIPS_RLD_VERSION:
12596 return "MIPS_RLD_VERSION";
12597 case DT_MIPS_TIME_STAMP:
12598 return "MIPS_TIME_STAMP";
12599 case DT_MIPS_ICHECKSUM:
12600 return "MIPS_ICHECKSUM";
12601 case DT_MIPS_IVERSION:
12602 return "MIPS_IVERSION";
12603 case DT_MIPS_FLAGS:
12604 return "MIPS_FLAGS";
12605 case DT_MIPS_BASE_ADDRESS:
12606 return "MIPS_BASE_ADDRESS";
12607 case DT_MIPS_MSYM:
12608 return "MIPS_MSYM";
12609 case DT_MIPS_CONFLICT:
12610 return "MIPS_CONFLICT";
12611 case DT_MIPS_LIBLIST:
12612 return "MIPS_LIBLIST";
12613 case DT_MIPS_LOCAL_GOTNO:
12614 return "MIPS_LOCAL_GOTNO";
12615 case DT_MIPS_CONFLICTNO:
12616 return "MIPS_CONFLICTNO";
12617 case DT_MIPS_LIBLISTNO:
12618 return "MIPS_LIBLISTNO";
12619 case DT_MIPS_SYMTABNO:
12620 return "MIPS_SYMTABNO";
12621 case DT_MIPS_UNREFEXTNO:
12622 return "MIPS_UNREFEXTNO";
12623 case DT_MIPS_GOTSYM:
12624 return "MIPS_GOTSYM";
12625 case DT_MIPS_HIPAGENO:
12626 return "MIPS_HIPAGENO";
12627 case DT_MIPS_RLD_MAP:
12628 return "MIPS_RLD_MAP";
12629 case DT_MIPS_DELTA_CLASS:
12630 return "MIPS_DELTA_CLASS";
12631 case DT_MIPS_DELTA_CLASS_NO:
12632 return "MIPS_DELTA_CLASS_NO";
12633 case DT_MIPS_DELTA_INSTANCE:
12634 return "MIPS_DELTA_INSTANCE";
12635 case DT_MIPS_DELTA_INSTANCE_NO:
12636 return "MIPS_DELTA_INSTANCE_NO";
12637 case DT_MIPS_DELTA_RELOC:
12638 return "MIPS_DELTA_RELOC";
12639 case DT_MIPS_DELTA_RELOC_NO:
12640 return "MIPS_DELTA_RELOC_NO";
12641 case DT_MIPS_DELTA_SYM:
12642 return "MIPS_DELTA_SYM";
12643 case DT_MIPS_DELTA_SYM_NO:
12644 return "MIPS_DELTA_SYM_NO";
12645 case DT_MIPS_DELTA_CLASSSYM:
12646 return "MIPS_DELTA_CLASSSYM";
12647 case DT_MIPS_DELTA_CLASSSYM_NO:
12648 return "MIPS_DELTA_CLASSSYM_NO";
12649 case DT_MIPS_CXX_FLAGS:
12650 return "MIPS_CXX_FLAGS";
12651 case DT_MIPS_PIXIE_INIT:
12652 return "MIPS_PIXIE_INIT";
12653 case DT_MIPS_SYMBOL_LIB:
12654 return "MIPS_SYMBOL_LIB";
12655 case DT_MIPS_LOCALPAGE_GOTIDX:
12656 return "MIPS_LOCALPAGE_GOTIDX";
12657 case DT_MIPS_LOCAL_GOTIDX:
12658 return "MIPS_LOCAL_GOTIDX";
12659 case DT_MIPS_HIDDEN_GOTIDX:
12660 return "MIPS_HIDDEN_GOTIDX";
12661 case DT_MIPS_PROTECTED_GOTIDX:
12662 return "MIPS_PROTECTED_GOT_IDX";
12663 case DT_MIPS_OPTIONS:
12664 return "MIPS_OPTIONS";
12665 case DT_MIPS_INTERFACE:
12666 return "MIPS_INTERFACE";
12667 case DT_MIPS_DYNSTR_ALIGN:
12668 return "DT_MIPS_DYNSTR_ALIGN";
12669 case DT_MIPS_INTERFACE_SIZE:
12670 return "DT_MIPS_INTERFACE_SIZE";
12671 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12672 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12673 case DT_MIPS_PERF_SUFFIX:
12674 return "DT_MIPS_PERF_SUFFIX";
12675 case DT_MIPS_COMPACT_SIZE:
12676 return "DT_MIPS_COMPACT_SIZE";
12677 case DT_MIPS_GP_VALUE:
12678 return "DT_MIPS_GP_VALUE";
12679 case DT_MIPS_AUX_DYNAMIC:
12680 return "DT_MIPS_AUX_DYNAMIC";
12681 case DT_MIPS_PLTGOT:
12682 return "DT_MIPS_PLTGOT";
12683 case DT_MIPS_RWPLT:
12684 return "DT_MIPS_RWPLT";
12685 }
12686 }
12687
12688 bfd_boolean
12689 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
12690 {
12691 FILE *file = ptr;
12692
12693 BFD_ASSERT (abfd != NULL && ptr != NULL);
12694
12695 /* Print normal ELF private data. */
12696 _bfd_elf_print_private_bfd_data (abfd, ptr);
12697
12698 /* xgettext:c-format */
12699 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12700
12701 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12702 fprintf (file, _(" [abi=O32]"));
12703 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12704 fprintf (file, _(" [abi=O64]"));
12705 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12706 fprintf (file, _(" [abi=EABI32]"));
12707 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12708 fprintf (file, _(" [abi=EABI64]"));
12709 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12710 fprintf (file, _(" [abi unknown]"));
12711 else if (ABI_N32_P (abfd))
12712 fprintf (file, _(" [abi=N32]"));
12713 else if (ABI_64_P (abfd))
12714 fprintf (file, _(" [abi=64]"));
12715 else
12716 fprintf (file, _(" [no abi set]"));
12717
12718 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
12719 fprintf (file, " [mips1]");
12720 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
12721 fprintf (file, " [mips2]");
12722 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
12723 fprintf (file, " [mips3]");
12724 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
12725 fprintf (file, " [mips4]");
12726 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
12727 fprintf (file, " [mips5]");
12728 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
12729 fprintf (file, " [mips32]");
12730 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
12731 fprintf (file, " [mips64]");
12732 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
12733 fprintf (file, " [mips32r2]");
12734 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
12735 fprintf (file, " [mips64r2]");
12736 else
12737 fprintf (file, _(" [unknown ISA]"));
12738
12739 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
12740 fprintf (file, " [mdmx]");
12741
12742 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
12743 fprintf (file, " [mips16]");
12744
12745 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
12746 fprintf (file, " [32bitmode]");
12747 else
12748 fprintf (file, _(" [not 32bitmode]"));
12749
12750 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
12751 fprintf (file, " [noreorder]");
12752
12753 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
12754 fprintf (file, " [PIC]");
12755
12756 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
12757 fprintf (file, " [CPIC]");
12758
12759 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
12760 fprintf (file, " [XGOT]");
12761
12762 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
12763 fprintf (file, " [UCODE]");
12764
12765 fputc ('\n', file);
12766
12767 return TRUE;
12768 }
12769
12770 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
12771 {
12772 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12773 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12774 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12775 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12776 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12777 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12778 { NULL, 0, 0, 0, 0 }
12779 };
12780
12781 /* Merge non visibility st_other attributes. Ensure that the
12782 STO_OPTIONAL flag is copied into h->other, even if this is not a
12783 definiton of the symbol. */
12784 void
12785 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12786 const Elf_Internal_Sym *isym,
12787 bfd_boolean definition,
12788 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12789 {
12790 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12791 {
12792 unsigned char other;
12793
12794 other = (definition ? isym->st_other : h->other);
12795 other &= ~ELF_ST_VISIBILITY (-1);
12796 h->other = other | ELF_ST_VISIBILITY (h->other);
12797 }
12798
12799 if (!definition
12800 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12801 h->other |= STO_OPTIONAL;
12802 }
12803
12804 /* Decide whether an undefined symbol is special and can be ignored.
12805 This is the case for OPTIONAL symbols on IRIX. */
12806 bfd_boolean
12807 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12808 {
12809 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12810 }
12811
12812 bfd_boolean
12813 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12814 {
12815 return (sym->st_shndx == SHN_COMMON
12816 || sym->st_shndx == SHN_MIPS_ACOMMON
12817 || sym->st_shndx == SHN_MIPS_SCOMMON);
12818 }
12819
12820 /* Return address for Ith PLT stub in section PLT, for relocation REL
12821 or (bfd_vma) -1 if it should not be included. */
12822
12823 bfd_vma
12824 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
12825 const arelent *rel ATTRIBUTE_UNUSED)
12826 {
12827 return (plt->vma
12828 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
12829 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
12830 }
12831
12832 void
12833 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
12834 {
12835 struct mips_elf_link_hash_table *htab;
12836 Elf_Internal_Ehdr *i_ehdrp;
12837
12838 i_ehdrp = elf_elfheader (abfd);
12839 if (link_info)
12840 {
12841 htab = mips_elf_hash_table (link_info);
12842 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
12843 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
12844 }
12845 }
This page took 0.321551 seconds and 4 git commands to generate.