bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29
30 /* This file handles functionality common to the different MIPS ABI's. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
82 struct mips_got_entry
83 {
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to symbol in the GOT. The symbol's entry
98 is in the local area if h->global_got_area is GGA_NONE,
99 otherwise it is in the global area. */
100 struct mips_elf_link_hash_entry *h;
101 } d;
102
103 /* The TLS types included in this GOT entry (specifically, GD and
104 IE). The GD and IE flags can be added as we encounter new
105 relocations. LDM can also be set; it will always be alone, not
106 combined with any GD or IE flags. An LDM GOT entry will be
107 a local symbol entry with r_symndx == 0. */
108 unsigned char tls_type;
109
110 /* The offset from the beginning of the .got section to the entry
111 corresponding to this symbol+addend. If it's a global symbol
112 whose offset is yet to be decided, it's going to be -1. */
113 long gotidx;
114 };
115
116 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
117 The structures form a non-overlapping list that is sorted by increasing
118 MIN_ADDEND. */
119 struct mips_got_page_range
120 {
121 struct mips_got_page_range *next;
122 bfd_signed_vma min_addend;
123 bfd_signed_vma max_addend;
124 };
125
126 /* This structure describes the range of addends that are applied to page
127 relocations against a given symbol. */
128 struct mips_got_page_entry
129 {
130 /* The input bfd in which the symbol is defined. */
131 bfd *abfd;
132 /* The index of the symbol, as stored in the relocation r_info. */
133 long symndx;
134 /* The ranges for this page entry. */
135 struct mips_got_page_range *ranges;
136 /* The maximum number of page entries needed for RANGES. */
137 bfd_vma num_pages;
138 };
139
140 /* This structure is used to hold .got information when linking. */
141
142 struct mips_got_info
143 {
144 /* The global symbol in the GOT with the lowest index in the dynamic
145 symbol table. */
146 struct elf_link_hash_entry *global_gotsym;
147 /* The number of global .got entries. */
148 unsigned int global_gotno;
149 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
150 unsigned int reloc_only_gotno;
151 /* The number of .got slots used for TLS. */
152 unsigned int tls_gotno;
153 /* The first unused TLS .got entry. Used only during
154 mips_elf_initialize_tls_index. */
155 unsigned int tls_assigned_gotno;
156 /* The number of local .got entries, eventually including page entries. */
157 unsigned int local_gotno;
158 /* The maximum number of page entries needed. */
159 unsigned int page_gotno;
160 /* The number of local .got entries we have used. */
161 unsigned int assigned_gotno;
162 /* A hash table holding members of the got. */
163 struct htab *got_entries;
164 /* A hash table of mips_got_page_entry structures. */
165 struct htab *got_page_entries;
166 /* A hash table mapping input bfds to other mips_got_info. NULL
167 unless multi-got was necessary. */
168 struct htab *bfd2got;
169 /* In multi-got links, a pointer to the next got (err, rather, most
170 of the time, it points to the previous got). */
171 struct mips_got_info *next;
172 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
173 for none, or MINUS_TWO for not yet assigned. This is needed
174 because a single-GOT link may have multiple hash table entries
175 for the LDM. It does not get initialized in multi-GOT mode. */
176 bfd_vma tls_ldm_offset;
177 };
178
179 /* Map an input bfd to a got in a multi-got link. */
180
181 struct mips_elf_bfd2got_hash
182 {
183 bfd *bfd;
184 struct mips_got_info *g;
185 };
186
187 /* Structure passed when traversing the bfd2got hash table, used to
188 create and merge bfd's gots. */
189
190 struct mips_elf_got_per_bfd_arg
191 {
192 /* A hashtable that maps bfds to gots. */
193 htab_t bfd2got;
194 /* The output bfd. */
195 bfd *obfd;
196 /* The link information. */
197 struct bfd_link_info *info;
198 /* A pointer to the primary got, i.e., the one that's going to get
199 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
200 DT_MIPS_GOTSYM. */
201 struct mips_got_info *primary;
202 /* A non-primary got we're trying to merge with other input bfd's
203 gots. */
204 struct mips_got_info *current;
205 /* The maximum number of got entries that can be addressed with a
206 16-bit offset. */
207 unsigned int max_count;
208 /* The maximum number of page entries needed by each got. */
209 unsigned int max_pages;
210 /* The total number of global entries which will live in the
211 primary got and be automatically relocated. This includes
212 those not referenced by the primary GOT but included in
213 the "master" GOT. */
214 unsigned int global_count;
215 };
216
217 /* Another structure used to pass arguments for got entries traversal. */
218
219 struct mips_elf_set_global_got_offset_arg
220 {
221 struct mips_got_info *g;
222 int value;
223 unsigned int needed_relocs;
224 struct bfd_link_info *info;
225 };
226
227 /* A structure used to count TLS relocations or GOT entries, for GOT
228 entry or ELF symbol table traversal. */
229
230 struct mips_elf_count_tls_arg
231 {
232 struct bfd_link_info *info;
233 unsigned int needed;
234 };
235
236 struct _mips_elf_section_data
237 {
238 struct bfd_elf_section_data elf;
239 union
240 {
241 bfd_byte *tdata;
242 } u;
243 };
244
245 #define mips_elf_section_data(sec) \
246 ((struct _mips_elf_section_data *) elf_section_data (sec))
247
248 #define is_mips_elf(bfd) \
249 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
250 && elf_tdata (bfd) != NULL \
251 && elf_object_id (bfd) == MIPS_ELF_DATA)
252
253 /* The ABI says that every symbol used by dynamic relocations must have
254 a global GOT entry. Among other things, this provides the dynamic
255 linker with a free, directly-indexed cache. The GOT can therefore
256 contain symbols that are not referenced by GOT relocations themselves
257 (in other words, it may have symbols that are not referenced by things
258 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
259
260 GOT relocations are less likely to overflow if we put the associated
261 GOT entries towards the beginning. We therefore divide the global
262 GOT entries into two areas: "normal" and "reloc-only". Entries in
263 the first area can be used for both dynamic relocations and GP-relative
264 accesses, while those in the "reloc-only" area are for dynamic
265 relocations only.
266
267 These GGA_* ("Global GOT Area") values are organised so that lower
268 values are more general than higher values. Also, non-GGA_NONE
269 values are ordered by the position of the area in the GOT. */
270 #define GGA_NORMAL 0
271 #define GGA_RELOC_ONLY 1
272 #define GGA_NONE 2
273
274 /* Information about a non-PIC interface to a PIC function. There are
275 two ways of creating these interfaces. The first is to add:
276
277 lui $25,%hi(func)
278 addiu $25,$25,%lo(func)
279
280 immediately before a PIC function "func". The second is to add:
281
282 lui $25,%hi(func)
283 j func
284 addiu $25,$25,%lo(func)
285
286 to a separate trampoline section.
287
288 Stubs of the first kind go in a new section immediately before the
289 target function. Stubs of the second kind go in a single section
290 pointed to by the hash table's "strampoline" field. */
291 struct mips_elf_la25_stub {
292 /* The generated section that contains this stub. */
293 asection *stub_section;
294
295 /* The offset of the stub from the start of STUB_SECTION. */
296 bfd_vma offset;
297
298 /* One symbol for the original function. Its location is available
299 in H->root.root.u.def. */
300 struct mips_elf_link_hash_entry *h;
301 };
302
303 /* Macros for populating a mips_elf_la25_stub. */
304
305 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
306 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
307 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
308
309 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
310 the dynamic symbols. */
311
312 struct mips_elf_hash_sort_data
313 {
314 /* The symbol in the global GOT with the lowest dynamic symbol table
315 index. */
316 struct elf_link_hash_entry *low;
317 /* The least dynamic symbol table index corresponding to a non-TLS
318 symbol with a GOT entry. */
319 long min_got_dynindx;
320 /* The greatest dynamic symbol table index corresponding to a symbol
321 with a GOT entry that is not referenced (e.g., a dynamic symbol
322 with dynamic relocations pointing to it from non-primary GOTs). */
323 long max_unref_got_dynindx;
324 /* The greatest dynamic symbol table index not corresponding to a
325 symbol without a GOT entry. */
326 long max_non_got_dynindx;
327 };
328
329 /* The MIPS ELF linker needs additional information for each symbol in
330 the global hash table. */
331
332 struct mips_elf_link_hash_entry
333 {
334 struct elf_link_hash_entry root;
335
336 /* External symbol information. */
337 EXTR esym;
338
339 /* The la25 stub we have created for ths symbol, if any. */
340 struct mips_elf_la25_stub *la25_stub;
341
342 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
343 this symbol. */
344 unsigned int possibly_dynamic_relocs;
345
346 /* If there is a stub that 32 bit functions should use to call this
347 16 bit function, this points to the section containing the stub. */
348 asection *fn_stub;
349
350 /* If there is a stub that 16 bit functions should use to call this
351 32 bit function, this points to the section containing the stub. */
352 asection *call_stub;
353
354 /* This is like the call_stub field, but it is used if the function
355 being called returns a floating point value. */
356 asection *call_fp_stub;
357
358 #define GOT_NORMAL 0
359 #define GOT_TLS_GD 1
360 #define GOT_TLS_LDM 2
361 #define GOT_TLS_IE 4
362 #define GOT_TLS_OFFSET_DONE 0x40
363 #define GOT_TLS_DONE 0x80
364 unsigned char tls_type;
365
366 /* This is only used in single-GOT mode; in multi-GOT mode there
367 is one mips_got_entry per GOT entry, so the offset is stored
368 there. In single-GOT mode there may be many mips_got_entry
369 structures all referring to the same GOT slot. It might be
370 possible to use root.got.offset instead, but that field is
371 overloaded already. */
372 bfd_vma tls_got_offset;
373
374 /* The highest GGA_* value that satisfies all references to this symbol. */
375 unsigned int global_got_area : 2;
376
377 /* True if all GOT relocations against this symbol are for calls. This is
378 a looser condition than no_fn_stub below, because there may be other
379 non-call non-GOT relocations against the symbol. */
380 unsigned int got_only_for_calls : 1;
381
382 /* True if one of the relocations described by possibly_dynamic_relocs
383 is against a readonly section. */
384 unsigned int readonly_reloc : 1;
385
386 /* True if there is a relocation against this symbol that must be
387 resolved by the static linker (in other words, if the relocation
388 cannot possibly be made dynamic). */
389 unsigned int has_static_relocs : 1;
390
391 /* True if we must not create a .MIPS.stubs entry for this symbol.
392 This is set, for example, if there are relocations related to
393 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
394 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
395 unsigned int no_fn_stub : 1;
396
397 /* Whether we need the fn_stub; this is true if this symbol appears
398 in any relocs other than a 16 bit call. */
399 unsigned int need_fn_stub : 1;
400
401 /* True if this symbol is referenced by branch relocations from
402 any non-PIC input file. This is used to determine whether an
403 la25 stub is required. */
404 unsigned int has_nonpic_branches : 1;
405
406 /* Does this symbol need a traditional MIPS lazy-binding stub
407 (as opposed to a PLT entry)? */
408 unsigned int needs_lazy_stub : 1;
409 };
410
411 /* MIPS ELF linker hash table. */
412
413 struct mips_elf_link_hash_table
414 {
415 struct elf_link_hash_table root;
416 #if 0
417 /* We no longer use this. */
418 /* String section indices for the dynamic section symbols. */
419 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
420 #endif
421
422 /* The number of .rtproc entries. */
423 bfd_size_type procedure_count;
424
425 /* The size of the .compact_rel section (if SGI_COMPAT). */
426 bfd_size_type compact_rel_size;
427
428 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
429 entry is set to the address of __rld_obj_head as in IRIX5. */
430 bfd_boolean use_rld_obj_head;
431
432 /* This is the value of the __rld_map or __rld_obj_head symbol. */
433 bfd_vma rld_value;
434
435 /* This is set if we see any mips16 stub sections. */
436 bfd_boolean mips16_stubs_seen;
437
438 /* True if we can generate copy relocs and PLTs. */
439 bfd_boolean use_plts_and_copy_relocs;
440
441 /* True if we're generating code for VxWorks. */
442 bfd_boolean is_vxworks;
443
444 /* True if we already reported the small-data section overflow. */
445 bfd_boolean small_data_overflow_reported;
446
447 /* Shortcuts to some dynamic sections, or NULL if they are not
448 being used. */
449 asection *srelbss;
450 asection *sdynbss;
451 asection *srelplt;
452 asection *srelplt2;
453 asection *sgotplt;
454 asection *splt;
455 asection *sstubs;
456 asection *sgot;
457
458 /* The master GOT information. */
459 struct mips_got_info *got_info;
460
461 /* The size of the PLT header in bytes. */
462 bfd_vma plt_header_size;
463
464 /* The size of a PLT entry in bytes. */
465 bfd_vma plt_entry_size;
466
467 /* The number of functions that need a lazy-binding stub. */
468 bfd_vma lazy_stub_count;
469
470 /* The size of a function stub entry in bytes. */
471 bfd_vma function_stub_size;
472
473 /* The number of reserved entries at the beginning of the GOT. */
474 unsigned int reserved_gotno;
475
476 /* The section used for mips_elf_la25_stub trampolines.
477 See the comment above that structure for details. */
478 asection *strampoline;
479
480 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
481 pairs. */
482 htab_t la25_stubs;
483
484 /* A function FN (NAME, IS, OS) that creates a new input section
485 called NAME and links it to output section OS. If IS is nonnull,
486 the new section should go immediately before it, otherwise it
487 should go at the (current) beginning of OS.
488
489 The function returns the new section on success, otherwise it
490 returns null. */
491 asection *(*add_stub_section) (const char *, asection *, asection *);
492 };
493
494 /* Get the MIPS ELF linker hash table from a link_info structure. */
495
496 #define mips_elf_hash_table(p) \
497 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
498 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
499
500 /* A structure used to communicate with htab_traverse callbacks. */
501 struct mips_htab_traverse_info
502 {
503 /* The usual link-wide information. */
504 struct bfd_link_info *info;
505 bfd *output_bfd;
506
507 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
508 bfd_boolean error;
509 };
510
511 #define TLS_RELOC_P(r_type) \
512 (r_type == R_MIPS_TLS_DTPMOD32 \
513 || r_type == R_MIPS_TLS_DTPMOD64 \
514 || r_type == R_MIPS_TLS_DTPREL32 \
515 || r_type == R_MIPS_TLS_DTPREL64 \
516 || r_type == R_MIPS_TLS_GD \
517 || r_type == R_MIPS_TLS_LDM \
518 || r_type == R_MIPS_TLS_DTPREL_HI16 \
519 || r_type == R_MIPS_TLS_DTPREL_LO16 \
520 || r_type == R_MIPS_TLS_GOTTPREL \
521 || r_type == R_MIPS_TLS_TPREL32 \
522 || r_type == R_MIPS_TLS_TPREL64 \
523 || r_type == R_MIPS_TLS_TPREL_HI16 \
524 || r_type == R_MIPS_TLS_TPREL_LO16)
525
526 /* Structure used to pass information to mips_elf_output_extsym. */
527
528 struct extsym_info
529 {
530 bfd *abfd;
531 struct bfd_link_info *info;
532 struct ecoff_debug_info *debug;
533 const struct ecoff_debug_swap *swap;
534 bfd_boolean failed;
535 };
536
537 /* The names of the runtime procedure table symbols used on IRIX5. */
538
539 static const char * const mips_elf_dynsym_rtproc_names[] =
540 {
541 "_procedure_table",
542 "_procedure_string_table",
543 "_procedure_table_size",
544 NULL
545 };
546
547 /* These structures are used to generate the .compact_rel section on
548 IRIX5. */
549
550 typedef struct
551 {
552 unsigned long id1; /* Always one? */
553 unsigned long num; /* Number of compact relocation entries. */
554 unsigned long id2; /* Always two? */
555 unsigned long offset; /* The file offset of the first relocation. */
556 unsigned long reserved0; /* Zero? */
557 unsigned long reserved1; /* Zero? */
558 } Elf32_compact_rel;
559
560 typedef struct
561 {
562 bfd_byte id1[4];
563 bfd_byte num[4];
564 bfd_byte id2[4];
565 bfd_byte offset[4];
566 bfd_byte reserved0[4];
567 bfd_byte reserved1[4];
568 } Elf32_External_compact_rel;
569
570 typedef struct
571 {
572 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
573 unsigned int rtype : 4; /* Relocation types. See below. */
574 unsigned int dist2to : 8;
575 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
576 unsigned long konst; /* KONST field. See below. */
577 unsigned long vaddr; /* VADDR to be relocated. */
578 } Elf32_crinfo;
579
580 typedef struct
581 {
582 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
583 unsigned int rtype : 4; /* Relocation types. See below. */
584 unsigned int dist2to : 8;
585 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
586 unsigned long konst; /* KONST field. See below. */
587 } Elf32_crinfo2;
588
589 typedef struct
590 {
591 bfd_byte info[4];
592 bfd_byte konst[4];
593 bfd_byte vaddr[4];
594 } Elf32_External_crinfo;
595
596 typedef struct
597 {
598 bfd_byte info[4];
599 bfd_byte konst[4];
600 } Elf32_External_crinfo2;
601
602 /* These are the constants used to swap the bitfields in a crinfo. */
603
604 #define CRINFO_CTYPE (0x1)
605 #define CRINFO_CTYPE_SH (31)
606 #define CRINFO_RTYPE (0xf)
607 #define CRINFO_RTYPE_SH (27)
608 #define CRINFO_DIST2TO (0xff)
609 #define CRINFO_DIST2TO_SH (19)
610 #define CRINFO_RELVADDR (0x7ffff)
611 #define CRINFO_RELVADDR_SH (0)
612
613 /* A compact relocation info has long (3 words) or short (2 words)
614 formats. A short format doesn't have VADDR field and relvaddr
615 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
616 #define CRF_MIPS_LONG 1
617 #define CRF_MIPS_SHORT 0
618
619 /* There are 4 types of compact relocation at least. The value KONST
620 has different meaning for each type:
621
622 (type) (konst)
623 CT_MIPS_REL32 Address in data
624 CT_MIPS_WORD Address in word (XXX)
625 CT_MIPS_GPHI_LO GP - vaddr
626 CT_MIPS_JMPAD Address to jump
627 */
628
629 #define CRT_MIPS_REL32 0xa
630 #define CRT_MIPS_WORD 0xb
631 #define CRT_MIPS_GPHI_LO 0xc
632 #define CRT_MIPS_JMPAD 0xd
633
634 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
635 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
636 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
637 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
638 \f
639 /* The structure of the runtime procedure descriptor created by the
640 loader for use by the static exception system. */
641
642 typedef struct runtime_pdr {
643 bfd_vma adr; /* Memory address of start of procedure. */
644 long regmask; /* Save register mask. */
645 long regoffset; /* Save register offset. */
646 long fregmask; /* Save floating point register mask. */
647 long fregoffset; /* Save floating point register offset. */
648 long frameoffset; /* Frame size. */
649 short framereg; /* Frame pointer register. */
650 short pcreg; /* Offset or reg of return pc. */
651 long irpss; /* Index into the runtime string table. */
652 long reserved;
653 struct exception_info *exception_info;/* Pointer to exception array. */
654 } RPDR, *pRPDR;
655 #define cbRPDR sizeof (RPDR)
656 #define rpdNil ((pRPDR) 0)
657 \f
658 static struct mips_got_entry *mips_elf_create_local_got_entry
659 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
660 struct mips_elf_link_hash_entry *, int);
661 static bfd_boolean mips_elf_sort_hash_table_f
662 (struct mips_elf_link_hash_entry *, void *);
663 static bfd_vma mips_elf_high
664 (bfd_vma);
665 static bfd_boolean mips_elf_create_dynamic_relocation
666 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
667 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
668 bfd_vma *, asection *);
669 static hashval_t mips_elf_got_entry_hash
670 (const void *);
671 static bfd_vma mips_elf_adjust_gp
672 (bfd *, struct mips_got_info *, bfd *);
673 static struct mips_got_info *mips_elf_got_for_ibfd
674 (struct mips_got_info *, bfd *);
675
676 /* This will be used when we sort the dynamic relocation records. */
677 static bfd *reldyn_sorting_bfd;
678
679 /* True if ABFD is for CPUs with load interlocking that include
680 non-MIPS1 CPUs and R3900. */
681 #define LOAD_INTERLOCKS_P(abfd) \
682 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
683 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
684
685 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
686 This should be safe for all architectures. We enable this predicate
687 for RM9000 for now. */
688 #define JAL_TO_BAL_P(abfd) \
689 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
690
691 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
692 This should be safe for all architectures. We enable this predicate for
693 all CPUs. */
694 #define JALR_TO_BAL_P(abfd) 1
695
696 /* True if ABFD is for CPUs that are faster if JR is converted to B.
697 This should be safe for all architectures. We enable this predicate for
698 all CPUs. */
699 #define JR_TO_B_P(abfd) 1
700
701 /* True if ABFD is a PIC object. */
702 #define PIC_OBJECT_P(abfd) \
703 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
704
705 /* Nonzero if ABFD is using the N32 ABI. */
706 #define ABI_N32_P(abfd) \
707 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
708
709 /* Nonzero if ABFD is using the N64 ABI. */
710 #define ABI_64_P(abfd) \
711 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
712
713 /* Nonzero if ABFD is using NewABI conventions. */
714 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
715
716 /* The IRIX compatibility level we are striving for. */
717 #define IRIX_COMPAT(abfd) \
718 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
719
720 /* Whether we are trying to be compatible with IRIX at all. */
721 #define SGI_COMPAT(abfd) \
722 (IRIX_COMPAT (abfd) != ict_none)
723
724 /* The name of the options section. */
725 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
726 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
727
728 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
729 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
730 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
731 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
732
733 /* Whether the section is readonly. */
734 #define MIPS_ELF_READONLY_SECTION(sec) \
735 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
736 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
737
738 /* The name of the stub section. */
739 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
740
741 /* The size of an external REL relocation. */
742 #define MIPS_ELF_REL_SIZE(abfd) \
743 (get_elf_backend_data (abfd)->s->sizeof_rel)
744
745 /* The size of an external RELA relocation. */
746 #define MIPS_ELF_RELA_SIZE(abfd) \
747 (get_elf_backend_data (abfd)->s->sizeof_rela)
748
749 /* The size of an external dynamic table entry. */
750 #define MIPS_ELF_DYN_SIZE(abfd) \
751 (get_elf_backend_data (abfd)->s->sizeof_dyn)
752
753 /* The size of a GOT entry. */
754 #define MIPS_ELF_GOT_SIZE(abfd) \
755 (get_elf_backend_data (abfd)->s->arch_size / 8)
756
757 /* The size of a symbol-table entry. */
758 #define MIPS_ELF_SYM_SIZE(abfd) \
759 (get_elf_backend_data (abfd)->s->sizeof_sym)
760
761 /* The default alignment for sections, as a power of two. */
762 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
763 (get_elf_backend_data (abfd)->s->log_file_align)
764
765 /* Get word-sized data. */
766 #define MIPS_ELF_GET_WORD(abfd, ptr) \
767 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
768
769 /* Put out word-sized data. */
770 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
771 (ABI_64_P (abfd) \
772 ? bfd_put_64 (abfd, val, ptr) \
773 : bfd_put_32 (abfd, val, ptr))
774
775 /* The opcode for word-sized loads (LW or LD). */
776 #define MIPS_ELF_LOAD_WORD(abfd) \
777 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
778
779 /* Add a dynamic symbol table-entry. */
780 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
781 _bfd_elf_add_dynamic_entry (info, tag, val)
782
783 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
784 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
785
786 /* The name of the dynamic relocation section. */
787 #define MIPS_ELF_REL_DYN_NAME(INFO) \
788 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
789
790 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
791 from smaller values. Start with zero, widen, *then* decrement. */
792 #define MINUS_ONE (((bfd_vma)0) - 1)
793 #define MINUS_TWO (((bfd_vma)0) - 2)
794
795 /* The value to write into got[1] for SVR4 targets, to identify it is
796 a GNU object. The dynamic linker can then use got[1] to store the
797 module pointer. */
798 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
799 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
800
801 /* The offset of $gp from the beginning of the .got section. */
802 #define ELF_MIPS_GP_OFFSET(INFO) \
803 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
804
805 /* The maximum size of the GOT for it to be addressable using 16-bit
806 offsets from $gp. */
807 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
808
809 /* Instructions which appear in a stub. */
810 #define STUB_LW(abfd) \
811 ((ABI_64_P (abfd) \
812 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
813 : 0x8f998010)) /* lw t9,0x8010(gp) */
814 #define STUB_MOVE(abfd) \
815 ((ABI_64_P (abfd) \
816 ? 0x03e0782d /* daddu t7,ra */ \
817 : 0x03e07821)) /* addu t7,ra */
818 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
819 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
820 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
821 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
822 #define STUB_LI16S(abfd, VAL) \
823 ((ABI_64_P (abfd) \
824 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
825 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
826
827 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
828 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
829
830 /* The name of the dynamic interpreter. This is put in the .interp
831 section. */
832
833 #define ELF_DYNAMIC_INTERPRETER(abfd) \
834 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
835 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
836 : "/usr/lib/libc.so.1")
837
838 #ifdef BFD64
839 #define MNAME(bfd,pre,pos) \
840 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
841 #define ELF_R_SYM(bfd, i) \
842 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
843 #define ELF_R_TYPE(bfd, i) \
844 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
845 #define ELF_R_INFO(bfd, s, t) \
846 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
847 #else
848 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
849 #define ELF_R_SYM(bfd, i) \
850 (ELF32_R_SYM (i))
851 #define ELF_R_TYPE(bfd, i) \
852 (ELF32_R_TYPE (i))
853 #define ELF_R_INFO(bfd, s, t) \
854 (ELF32_R_INFO (s, t))
855 #endif
856 \f
857 /* The mips16 compiler uses a couple of special sections to handle
858 floating point arguments.
859
860 Section names that look like .mips16.fn.FNNAME contain stubs that
861 copy floating point arguments from the fp regs to the gp regs and
862 then jump to FNNAME. If any 32 bit function calls FNNAME, the
863 call should be redirected to the stub instead. If no 32 bit
864 function calls FNNAME, the stub should be discarded. We need to
865 consider any reference to the function, not just a call, because
866 if the address of the function is taken we will need the stub,
867 since the address might be passed to a 32 bit function.
868
869 Section names that look like .mips16.call.FNNAME contain stubs
870 that copy floating point arguments from the gp regs to the fp
871 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
872 then any 16 bit function that calls FNNAME should be redirected
873 to the stub instead. If FNNAME is not a 32 bit function, the
874 stub should be discarded.
875
876 .mips16.call.fp.FNNAME sections are similar, but contain stubs
877 which call FNNAME and then copy the return value from the fp regs
878 to the gp regs. These stubs store the return value in $18 while
879 calling FNNAME; any function which might call one of these stubs
880 must arrange to save $18 around the call. (This case is not
881 needed for 32 bit functions that call 16 bit functions, because
882 16 bit functions always return floating point values in both
883 $f0/$f1 and $2/$3.)
884
885 Note that in all cases FNNAME might be defined statically.
886 Therefore, FNNAME is not used literally. Instead, the relocation
887 information will indicate which symbol the section is for.
888
889 We record any stubs that we find in the symbol table. */
890
891 #define FN_STUB ".mips16.fn."
892 #define CALL_STUB ".mips16.call."
893 #define CALL_FP_STUB ".mips16.call.fp."
894
895 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
896 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
897 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
898 \f
899 /* The format of the first PLT entry in an O32 executable. */
900 static const bfd_vma mips_o32_exec_plt0_entry[] =
901 {
902 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
903 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
904 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
905 0x031cc023, /* subu $24, $24, $28 */
906 0x03e07821, /* move $15, $31 */
907 0x0018c082, /* srl $24, $24, 2 */
908 0x0320f809, /* jalr $25 */
909 0x2718fffe /* subu $24, $24, 2 */
910 };
911
912 /* The format of the first PLT entry in an N32 executable. Different
913 because gp ($28) is not available; we use t2 ($14) instead. */
914 static const bfd_vma mips_n32_exec_plt0_entry[] =
915 {
916 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
917 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
918 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
919 0x030ec023, /* subu $24, $24, $14 */
920 0x03e07821, /* move $15, $31 */
921 0x0018c082, /* srl $24, $24, 2 */
922 0x0320f809, /* jalr $25 */
923 0x2718fffe /* subu $24, $24, 2 */
924 };
925
926 /* The format of the first PLT entry in an N64 executable. Different
927 from N32 because of the increased size of GOT entries. */
928 static const bfd_vma mips_n64_exec_plt0_entry[] =
929 {
930 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
931 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
932 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
933 0x030ec023, /* subu $24, $24, $14 */
934 0x03e07821, /* move $15, $31 */
935 0x0018c0c2, /* srl $24, $24, 3 */
936 0x0320f809, /* jalr $25 */
937 0x2718fffe /* subu $24, $24, 2 */
938 };
939
940 /* The format of subsequent PLT entries. */
941 static const bfd_vma mips_exec_plt_entry[] =
942 {
943 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
944 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
945 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
946 0x03200008 /* jr $25 */
947 };
948
949 /* The format of the first PLT entry in a VxWorks executable. */
950 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
951 {
952 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
953 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
954 0x8f390008, /* lw t9, 8(t9) */
955 0x00000000, /* nop */
956 0x03200008, /* jr t9 */
957 0x00000000 /* nop */
958 };
959
960 /* The format of subsequent PLT entries. */
961 static const bfd_vma mips_vxworks_exec_plt_entry[] =
962 {
963 0x10000000, /* b .PLT_resolver */
964 0x24180000, /* li t8, <pltindex> */
965 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
966 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
967 0x8f390000, /* lw t9, 0(t9) */
968 0x00000000, /* nop */
969 0x03200008, /* jr t9 */
970 0x00000000 /* nop */
971 };
972
973 /* The format of the first PLT entry in a VxWorks shared object. */
974 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
975 {
976 0x8f990008, /* lw t9, 8(gp) */
977 0x00000000, /* nop */
978 0x03200008, /* jr t9 */
979 0x00000000, /* nop */
980 0x00000000, /* nop */
981 0x00000000 /* nop */
982 };
983
984 /* The format of subsequent PLT entries. */
985 static const bfd_vma mips_vxworks_shared_plt_entry[] =
986 {
987 0x10000000, /* b .PLT_resolver */
988 0x24180000 /* li t8, <pltindex> */
989 };
990 \f
991 /* Look up an entry in a MIPS ELF linker hash table. */
992
993 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
994 ((struct mips_elf_link_hash_entry *) \
995 elf_link_hash_lookup (&(table)->root, (string), (create), \
996 (copy), (follow)))
997
998 /* Traverse a MIPS ELF linker hash table. */
999
1000 #define mips_elf_link_hash_traverse(table, func, info) \
1001 (elf_link_hash_traverse \
1002 (&(table)->root, \
1003 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1004 (info)))
1005
1006 /* Find the base offsets for thread-local storage in this object,
1007 for GD/LD and IE/LE respectively. */
1008
1009 #define TP_OFFSET 0x7000
1010 #define DTP_OFFSET 0x8000
1011
1012 static bfd_vma
1013 dtprel_base (struct bfd_link_info *info)
1014 {
1015 /* If tls_sec is NULL, we should have signalled an error already. */
1016 if (elf_hash_table (info)->tls_sec == NULL)
1017 return 0;
1018 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1019 }
1020
1021 static bfd_vma
1022 tprel_base (struct bfd_link_info *info)
1023 {
1024 /* If tls_sec is NULL, we should have signalled an error already. */
1025 if (elf_hash_table (info)->tls_sec == NULL)
1026 return 0;
1027 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1028 }
1029
1030 /* Create an entry in a MIPS ELF linker hash table. */
1031
1032 static struct bfd_hash_entry *
1033 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1034 struct bfd_hash_table *table, const char *string)
1035 {
1036 struct mips_elf_link_hash_entry *ret =
1037 (struct mips_elf_link_hash_entry *) entry;
1038
1039 /* Allocate the structure if it has not already been allocated by a
1040 subclass. */
1041 if (ret == NULL)
1042 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1043 if (ret == NULL)
1044 return (struct bfd_hash_entry *) ret;
1045
1046 /* Call the allocation method of the superclass. */
1047 ret = ((struct mips_elf_link_hash_entry *)
1048 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1049 table, string));
1050 if (ret != NULL)
1051 {
1052 /* Set local fields. */
1053 memset (&ret->esym, 0, sizeof (EXTR));
1054 /* We use -2 as a marker to indicate that the information has
1055 not been set. -1 means there is no associated ifd. */
1056 ret->esym.ifd = -2;
1057 ret->la25_stub = 0;
1058 ret->possibly_dynamic_relocs = 0;
1059 ret->fn_stub = NULL;
1060 ret->call_stub = NULL;
1061 ret->call_fp_stub = NULL;
1062 ret->tls_type = GOT_NORMAL;
1063 ret->global_got_area = GGA_NONE;
1064 ret->got_only_for_calls = TRUE;
1065 ret->readonly_reloc = FALSE;
1066 ret->has_static_relocs = FALSE;
1067 ret->no_fn_stub = FALSE;
1068 ret->need_fn_stub = FALSE;
1069 ret->has_nonpic_branches = FALSE;
1070 ret->needs_lazy_stub = FALSE;
1071 }
1072
1073 return (struct bfd_hash_entry *) ret;
1074 }
1075
1076 bfd_boolean
1077 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1078 {
1079 if (!sec->used_by_bfd)
1080 {
1081 struct _mips_elf_section_data *sdata;
1082 bfd_size_type amt = sizeof (*sdata);
1083
1084 sdata = bfd_zalloc (abfd, amt);
1085 if (sdata == NULL)
1086 return FALSE;
1087 sec->used_by_bfd = sdata;
1088 }
1089
1090 return _bfd_elf_new_section_hook (abfd, sec);
1091 }
1092 \f
1093 /* Read ECOFF debugging information from a .mdebug section into a
1094 ecoff_debug_info structure. */
1095
1096 bfd_boolean
1097 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1098 struct ecoff_debug_info *debug)
1099 {
1100 HDRR *symhdr;
1101 const struct ecoff_debug_swap *swap;
1102 char *ext_hdr;
1103
1104 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1105 memset (debug, 0, sizeof (*debug));
1106
1107 ext_hdr = bfd_malloc (swap->external_hdr_size);
1108 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1109 goto error_return;
1110
1111 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1112 swap->external_hdr_size))
1113 goto error_return;
1114
1115 symhdr = &debug->symbolic_header;
1116 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1117
1118 /* The symbolic header contains absolute file offsets and sizes to
1119 read. */
1120 #define READ(ptr, offset, count, size, type) \
1121 if (symhdr->count == 0) \
1122 debug->ptr = NULL; \
1123 else \
1124 { \
1125 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1126 debug->ptr = bfd_malloc (amt); \
1127 if (debug->ptr == NULL) \
1128 goto error_return; \
1129 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1130 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1131 goto error_return; \
1132 }
1133
1134 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1135 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1136 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1137 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1138 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1139 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1140 union aux_ext *);
1141 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1142 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1143 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1144 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1145 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1146 #undef READ
1147
1148 debug->fdr = NULL;
1149
1150 return TRUE;
1151
1152 error_return:
1153 if (ext_hdr != NULL)
1154 free (ext_hdr);
1155 if (debug->line != NULL)
1156 free (debug->line);
1157 if (debug->external_dnr != NULL)
1158 free (debug->external_dnr);
1159 if (debug->external_pdr != NULL)
1160 free (debug->external_pdr);
1161 if (debug->external_sym != NULL)
1162 free (debug->external_sym);
1163 if (debug->external_opt != NULL)
1164 free (debug->external_opt);
1165 if (debug->external_aux != NULL)
1166 free (debug->external_aux);
1167 if (debug->ss != NULL)
1168 free (debug->ss);
1169 if (debug->ssext != NULL)
1170 free (debug->ssext);
1171 if (debug->external_fdr != NULL)
1172 free (debug->external_fdr);
1173 if (debug->external_rfd != NULL)
1174 free (debug->external_rfd);
1175 if (debug->external_ext != NULL)
1176 free (debug->external_ext);
1177 return FALSE;
1178 }
1179 \f
1180 /* Swap RPDR (runtime procedure table entry) for output. */
1181
1182 static void
1183 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1184 {
1185 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1186 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1187 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1188 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1189 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1190 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1191
1192 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1193 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1194
1195 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1196 }
1197
1198 /* Create a runtime procedure table from the .mdebug section. */
1199
1200 static bfd_boolean
1201 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1202 struct bfd_link_info *info, asection *s,
1203 struct ecoff_debug_info *debug)
1204 {
1205 const struct ecoff_debug_swap *swap;
1206 HDRR *hdr = &debug->symbolic_header;
1207 RPDR *rpdr, *rp;
1208 struct rpdr_ext *erp;
1209 void *rtproc;
1210 struct pdr_ext *epdr;
1211 struct sym_ext *esym;
1212 char *ss, **sv;
1213 char *str;
1214 bfd_size_type size;
1215 bfd_size_type count;
1216 unsigned long sindex;
1217 unsigned long i;
1218 PDR pdr;
1219 SYMR sym;
1220 const char *no_name_func = _("static procedure (no name)");
1221
1222 epdr = NULL;
1223 rpdr = NULL;
1224 esym = NULL;
1225 ss = NULL;
1226 sv = NULL;
1227
1228 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1229
1230 sindex = strlen (no_name_func) + 1;
1231 count = hdr->ipdMax;
1232 if (count > 0)
1233 {
1234 size = swap->external_pdr_size;
1235
1236 epdr = bfd_malloc (size * count);
1237 if (epdr == NULL)
1238 goto error_return;
1239
1240 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1241 goto error_return;
1242
1243 size = sizeof (RPDR);
1244 rp = rpdr = bfd_malloc (size * count);
1245 if (rpdr == NULL)
1246 goto error_return;
1247
1248 size = sizeof (char *);
1249 sv = bfd_malloc (size * count);
1250 if (sv == NULL)
1251 goto error_return;
1252
1253 count = hdr->isymMax;
1254 size = swap->external_sym_size;
1255 esym = bfd_malloc (size * count);
1256 if (esym == NULL)
1257 goto error_return;
1258
1259 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1260 goto error_return;
1261
1262 count = hdr->issMax;
1263 ss = bfd_malloc (count);
1264 if (ss == NULL)
1265 goto error_return;
1266 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1267 goto error_return;
1268
1269 count = hdr->ipdMax;
1270 for (i = 0; i < (unsigned long) count; i++, rp++)
1271 {
1272 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1273 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1274 rp->adr = sym.value;
1275 rp->regmask = pdr.regmask;
1276 rp->regoffset = pdr.regoffset;
1277 rp->fregmask = pdr.fregmask;
1278 rp->fregoffset = pdr.fregoffset;
1279 rp->frameoffset = pdr.frameoffset;
1280 rp->framereg = pdr.framereg;
1281 rp->pcreg = pdr.pcreg;
1282 rp->irpss = sindex;
1283 sv[i] = ss + sym.iss;
1284 sindex += strlen (sv[i]) + 1;
1285 }
1286 }
1287
1288 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1289 size = BFD_ALIGN (size, 16);
1290 rtproc = bfd_alloc (abfd, size);
1291 if (rtproc == NULL)
1292 {
1293 mips_elf_hash_table (info)->procedure_count = 0;
1294 goto error_return;
1295 }
1296
1297 mips_elf_hash_table (info)->procedure_count = count + 2;
1298
1299 erp = rtproc;
1300 memset (erp, 0, sizeof (struct rpdr_ext));
1301 erp++;
1302 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1303 strcpy (str, no_name_func);
1304 str += strlen (no_name_func) + 1;
1305 for (i = 0; i < count; i++)
1306 {
1307 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1308 strcpy (str, sv[i]);
1309 str += strlen (sv[i]) + 1;
1310 }
1311 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1312
1313 /* Set the size and contents of .rtproc section. */
1314 s->size = size;
1315 s->contents = rtproc;
1316
1317 /* Skip this section later on (I don't think this currently
1318 matters, but someday it might). */
1319 s->map_head.link_order = NULL;
1320
1321 if (epdr != NULL)
1322 free (epdr);
1323 if (rpdr != NULL)
1324 free (rpdr);
1325 if (esym != NULL)
1326 free (esym);
1327 if (ss != NULL)
1328 free (ss);
1329 if (sv != NULL)
1330 free (sv);
1331
1332 return TRUE;
1333
1334 error_return:
1335 if (epdr != NULL)
1336 free (epdr);
1337 if (rpdr != NULL)
1338 free (rpdr);
1339 if (esym != NULL)
1340 free (esym);
1341 if (ss != NULL)
1342 free (ss);
1343 if (sv != NULL)
1344 free (sv);
1345 return FALSE;
1346 }
1347 \f
1348 /* We're going to create a stub for H. Create a symbol for the stub's
1349 value and size, to help make the disassembly easier to read. */
1350
1351 static bfd_boolean
1352 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1353 struct mips_elf_link_hash_entry *h,
1354 const char *prefix, asection *s, bfd_vma value,
1355 bfd_vma size)
1356 {
1357 struct bfd_link_hash_entry *bh;
1358 struct elf_link_hash_entry *elfh;
1359 const char *name;
1360
1361 /* Create a new symbol. */
1362 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1363 bh = NULL;
1364 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1365 BSF_LOCAL, s, value, NULL,
1366 TRUE, FALSE, &bh))
1367 return FALSE;
1368
1369 /* Make it a local function. */
1370 elfh = (struct elf_link_hash_entry *) bh;
1371 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1372 elfh->size = size;
1373 elfh->forced_local = 1;
1374 return TRUE;
1375 }
1376
1377 /* We're about to redefine H. Create a symbol to represent H's
1378 current value and size, to help make the disassembly easier
1379 to read. */
1380
1381 static bfd_boolean
1382 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1383 struct mips_elf_link_hash_entry *h,
1384 const char *prefix)
1385 {
1386 struct bfd_link_hash_entry *bh;
1387 struct elf_link_hash_entry *elfh;
1388 const char *name;
1389 asection *s;
1390 bfd_vma value;
1391
1392 /* Read the symbol's value. */
1393 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1394 || h->root.root.type == bfd_link_hash_defweak);
1395 s = h->root.root.u.def.section;
1396 value = h->root.root.u.def.value;
1397
1398 /* Create a new symbol. */
1399 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1400 bh = NULL;
1401 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1402 BSF_LOCAL, s, value, NULL,
1403 TRUE, FALSE, &bh))
1404 return FALSE;
1405
1406 /* Make it local and copy the other attributes from H. */
1407 elfh = (struct elf_link_hash_entry *) bh;
1408 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1409 elfh->other = h->root.other;
1410 elfh->size = h->root.size;
1411 elfh->forced_local = 1;
1412 return TRUE;
1413 }
1414
1415 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1416 function rather than to a hard-float stub. */
1417
1418 static bfd_boolean
1419 section_allows_mips16_refs_p (asection *section)
1420 {
1421 const char *name;
1422
1423 name = bfd_get_section_name (section->owner, section);
1424 return (FN_STUB_P (name)
1425 || CALL_STUB_P (name)
1426 || CALL_FP_STUB_P (name)
1427 || strcmp (name, ".pdr") == 0);
1428 }
1429
1430 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1431 stub section of some kind. Return the R_SYMNDX of the target
1432 function, or 0 if we can't decide which function that is. */
1433
1434 static unsigned long
1435 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1436 const Elf_Internal_Rela *relocs,
1437 const Elf_Internal_Rela *relend)
1438 {
1439 const Elf_Internal_Rela *rel;
1440
1441 /* Trust the first R_MIPS_NONE relocation, if any. */
1442 for (rel = relocs; rel < relend; rel++)
1443 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1444 return ELF_R_SYM (sec->owner, rel->r_info);
1445
1446 /* Otherwise trust the first relocation, whatever its kind. This is
1447 the traditional behavior. */
1448 if (relocs < relend)
1449 return ELF_R_SYM (sec->owner, relocs->r_info);
1450
1451 return 0;
1452 }
1453
1454 /* Check the mips16 stubs for a particular symbol, and see if we can
1455 discard them. */
1456
1457 static void
1458 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1459 struct mips_elf_link_hash_entry *h)
1460 {
1461 /* Dynamic symbols must use the standard call interface, in case other
1462 objects try to call them. */
1463 if (h->fn_stub != NULL
1464 && h->root.dynindx != -1)
1465 {
1466 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1467 h->need_fn_stub = TRUE;
1468 }
1469
1470 if (h->fn_stub != NULL
1471 && ! h->need_fn_stub)
1472 {
1473 /* We don't need the fn_stub; the only references to this symbol
1474 are 16 bit calls. Clobber the size to 0 to prevent it from
1475 being included in the link. */
1476 h->fn_stub->size = 0;
1477 h->fn_stub->flags &= ~SEC_RELOC;
1478 h->fn_stub->reloc_count = 0;
1479 h->fn_stub->flags |= SEC_EXCLUDE;
1480 }
1481
1482 if (h->call_stub != NULL
1483 && ELF_ST_IS_MIPS16 (h->root.other))
1484 {
1485 /* We don't need the call_stub; this is a 16 bit function, so
1486 calls from other 16 bit functions are OK. Clobber the size
1487 to 0 to prevent it from being included in the link. */
1488 h->call_stub->size = 0;
1489 h->call_stub->flags &= ~SEC_RELOC;
1490 h->call_stub->reloc_count = 0;
1491 h->call_stub->flags |= SEC_EXCLUDE;
1492 }
1493
1494 if (h->call_fp_stub != NULL
1495 && ELF_ST_IS_MIPS16 (h->root.other))
1496 {
1497 /* We don't need the call_stub; this is a 16 bit function, so
1498 calls from other 16 bit functions are OK. Clobber the size
1499 to 0 to prevent it from being included in the link. */
1500 h->call_fp_stub->size = 0;
1501 h->call_fp_stub->flags &= ~SEC_RELOC;
1502 h->call_fp_stub->reloc_count = 0;
1503 h->call_fp_stub->flags |= SEC_EXCLUDE;
1504 }
1505 }
1506
1507 /* Hashtable callbacks for mips_elf_la25_stubs. */
1508
1509 static hashval_t
1510 mips_elf_la25_stub_hash (const void *entry_)
1511 {
1512 const struct mips_elf_la25_stub *entry;
1513
1514 entry = (struct mips_elf_la25_stub *) entry_;
1515 return entry->h->root.root.u.def.section->id
1516 + entry->h->root.root.u.def.value;
1517 }
1518
1519 static int
1520 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1521 {
1522 const struct mips_elf_la25_stub *entry1, *entry2;
1523
1524 entry1 = (struct mips_elf_la25_stub *) entry1_;
1525 entry2 = (struct mips_elf_la25_stub *) entry2_;
1526 return ((entry1->h->root.root.u.def.section
1527 == entry2->h->root.root.u.def.section)
1528 && (entry1->h->root.root.u.def.value
1529 == entry2->h->root.root.u.def.value));
1530 }
1531
1532 /* Called by the linker to set up the la25 stub-creation code. FN is
1533 the linker's implementation of add_stub_function. Return true on
1534 success. */
1535
1536 bfd_boolean
1537 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1538 asection *(*fn) (const char *, asection *,
1539 asection *))
1540 {
1541 struct mips_elf_link_hash_table *htab;
1542
1543 htab = mips_elf_hash_table (info);
1544 if (htab == NULL)
1545 return FALSE;
1546
1547 htab->add_stub_section = fn;
1548 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1549 mips_elf_la25_stub_eq, NULL);
1550 if (htab->la25_stubs == NULL)
1551 return FALSE;
1552
1553 return TRUE;
1554 }
1555
1556 /* Return true if H is a locally-defined PIC function, in the sense
1557 that it might need $25 to be valid on entry. Note that MIPS16
1558 functions never need $25 to be valid on entry; they set up $gp
1559 using PC-relative instructions instead. */
1560
1561 static bfd_boolean
1562 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1563 {
1564 return ((h->root.root.type == bfd_link_hash_defined
1565 || h->root.root.type == bfd_link_hash_defweak)
1566 && h->root.def_regular
1567 && !bfd_is_abs_section (h->root.root.u.def.section)
1568 && !ELF_ST_IS_MIPS16 (h->root.other)
1569 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1570 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1571 }
1572
1573 /* STUB describes an la25 stub that we have decided to implement
1574 by inserting an LUI/ADDIU pair before the target function.
1575 Create the section and redirect the function symbol to it. */
1576
1577 static bfd_boolean
1578 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1579 struct bfd_link_info *info)
1580 {
1581 struct mips_elf_link_hash_table *htab;
1582 char *name;
1583 asection *s, *input_section;
1584 unsigned int align;
1585
1586 htab = mips_elf_hash_table (info);
1587 if (htab == NULL)
1588 return FALSE;
1589
1590 /* Create a unique name for the new section. */
1591 name = bfd_malloc (11 + sizeof (".text.stub."));
1592 if (name == NULL)
1593 return FALSE;
1594 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1595
1596 /* Create the section. */
1597 input_section = stub->h->root.root.u.def.section;
1598 s = htab->add_stub_section (name, input_section,
1599 input_section->output_section);
1600 if (s == NULL)
1601 return FALSE;
1602
1603 /* Make sure that any padding goes before the stub. */
1604 align = input_section->alignment_power;
1605 if (!bfd_set_section_alignment (s->owner, s, align))
1606 return FALSE;
1607 if (align > 3)
1608 s->size = (1 << align) - 8;
1609
1610 /* Create a symbol for the stub. */
1611 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1612 stub->stub_section = s;
1613 stub->offset = s->size;
1614
1615 /* Allocate room for it. */
1616 s->size += 8;
1617 return TRUE;
1618 }
1619
1620 /* STUB describes an la25 stub that we have decided to implement
1621 with a separate trampoline. Allocate room for it and redirect
1622 the function symbol to it. */
1623
1624 static bfd_boolean
1625 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1626 struct bfd_link_info *info)
1627 {
1628 struct mips_elf_link_hash_table *htab;
1629 asection *s;
1630
1631 htab = mips_elf_hash_table (info);
1632 if (htab == NULL)
1633 return FALSE;
1634
1635 /* Create a trampoline section, if we haven't already. */
1636 s = htab->strampoline;
1637 if (s == NULL)
1638 {
1639 asection *input_section = stub->h->root.root.u.def.section;
1640 s = htab->add_stub_section (".text", NULL,
1641 input_section->output_section);
1642 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1643 return FALSE;
1644 htab->strampoline = s;
1645 }
1646
1647 /* Create a symbol for the stub. */
1648 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1649 stub->stub_section = s;
1650 stub->offset = s->size;
1651
1652 /* Allocate room for it. */
1653 s->size += 16;
1654 return TRUE;
1655 }
1656
1657 /* H describes a symbol that needs an la25 stub. Make sure that an
1658 appropriate stub exists and point H at it. */
1659
1660 static bfd_boolean
1661 mips_elf_add_la25_stub (struct bfd_link_info *info,
1662 struct mips_elf_link_hash_entry *h)
1663 {
1664 struct mips_elf_link_hash_table *htab;
1665 struct mips_elf_la25_stub search, *stub;
1666 bfd_boolean use_trampoline_p;
1667 asection *s;
1668 bfd_vma value;
1669 void **slot;
1670
1671 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1672 of the section and if we would need no more than 2 nops. */
1673 s = h->root.root.u.def.section;
1674 value = h->root.root.u.def.value;
1675 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1676
1677 /* Describe the stub we want. */
1678 search.stub_section = NULL;
1679 search.offset = 0;
1680 search.h = h;
1681
1682 /* See if we've already created an equivalent stub. */
1683 htab = mips_elf_hash_table (info);
1684 if (htab == NULL)
1685 return FALSE;
1686
1687 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1688 if (slot == NULL)
1689 return FALSE;
1690
1691 stub = (struct mips_elf_la25_stub *) *slot;
1692 if (stub != NULL)
1693 {
1694 /* We can reuse the existing stub. */
1695 h->la25_stub = stub;
1696 return TRUE;
1697 }
1698
1699 /* Create a permanent copy of ENTRY and add it to the hash table. */
1700 stub = bfd_malloc (sizeof (search));
1701 if (stub == NULL)
1702 return FALSE;
1703 *stub = search;
1704 *slot = stub;
1705
1706 h->la25_stub = stub;
1707 return (use_trampoline_p
1708 ? mips_elf_add_la25_trampoline (stub, info)
1709 : mips_elf_add_la25_intro (stub, info));
1710 }
1711
1712 /* A mips_elf_link_hash_traverse callback that is called before sizing
1713 sections. DATA points to a mips_htab_traverse_info structure. */
1714
1715 static bfd_boolean
1716 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1717 {
1718 struct mips_htab_traverse_info *hti;
1719
1720 hti = (struct mips_htab_traverse_info *) data;
1721 if (h->root.root.type == bfd_link_hash_warning)
1722 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1723
1724 if (!hti->info->relocatable)
1725 mips_elf_check_mips16_stubs (hti->info, h);
1726
1727 if (mips_elf_local_pic_function_p (h))
1728 {
1729 /* H is a function that might need $25 to be valid on entry.
1730 If we're creating a non-PIC relocatable object, mark H as
1731 being PIC. If we're creating a non-relocatable object with
1732 non-PIC branches and jumps to H, make sure that H has an la25
1733 stub. */
1734 if (hti->info->relocatable)
1735 {
1736 if (!PIC_OBJECT_P (hti->output_bfd))
1737 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1738 }
1739 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1740 {
1741 hti->error = TRUE;
1742 return FALSE;
1743 }
1744 }
1745 return TRUE;
1746 }
1747 \f
1748 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1749 Most mips16 instructions are 16 bits, but these instructions
1750 are 32 bits.
1751
1752 The format of these instructions is:
1753
1754 +--------------+--------------------------------+
1755 | JALX | X| Imm 20:16 | Imm 25:21 |
1756 +--------------+--------------------------------+
1757 | Immediate 15:0 |
1758 +-----------------------------------------------+
1759
1760 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1761 Note that the immediate value in the first word is swapped.
1762
1763 When producing a relocatable object file, R_MIPS16_26 is
1764 handled mostly like R_MIPS_26. In particular, the addend is
1765 stored as a straight 26-bit value in a 32-bit instruction.
1766 (gas makes life simpler for itself by never adjusting a
1767 R_MIPS16_26 reloc to be against a section, so the addend is
1768 always zero). However, the 32 bit instruction is stored as 2
1769 16-bit values, rather than a single 32-bit value. In a
1770 big-endian file, the result is the same; in a little-endian
1771 file, the two 16-bit halves of the 32 bit value are swapped.
1772 This is so that a disassembler can recognize the jal
1773 instruction.
1774
1775 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1776 instruction stored as two 16-bit values. The addend A is the
1777 contents of the targ26 field. The calculation is the same as
1778 R_MIPS_26. When storing the calculated value, reorder the
1779 immediate value as shown above, and don't forget to store the
1780 value as two 16-bit values.
1781
1782 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1783 defined as
1784
1785 big-endian:
1786 +--------+----------------------+
1787 | | |
1788 | | targ26-16 |
1789 |31 26|25 0|
1790 +--------+----------------------+
1791
1792 little-endian:
1793 +----------+------+-------------+
1794 | | | |
1795 | sub1 | | sub2 |
1796 |0 9|10 15|16 31|
1797 +----------+--------------------+
1798 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1799 ((sub1 << 16) | sub2)).
1800
1801 When producing a relocatable object file, the calculation is
1802 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1803 When producing a fully linked file, the calculation is
1804 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1805 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1806
1807 The table below lists the other MIPS16 instruction relocations.
1808 Each one is calculated in the same way as the non-MIPS16 relocation
1809 given on the right, but using the extended MIPS16 layout of 16-bit
1810 immediate fields:
1811
1812 R_MIPS16_GPREL R_MIPS_GPREL16
1813 R_MIPS16_GOT16 R_MIPS_GOT16
1814 R_MIPS16_CALL16 R_MIPS_CALL16
1815 R_MIPS16_HI16 R_MIPS_HI16
1816 R_MIPS16_LO16 R_MIPS_LO16
1817
1818 A typical instruction will have a format like this:
1819
1820 +--------------+--------------------------------+
1821 | EXTEND | Imm 10:5 | Imm 15:11 |
1822 +--------------+--------------------------------+
1823 | Major | rx | ry | Imm 4:0 |
1824 +--------------+--------------------------------+
1825
1826 EXTEND is the five bit value 11110. Major is the instruction
1827 opcode.
1828
1829 All we need to do here is shuffle the bits appropriately.
1830 As above, the two 16-bit halves must be swapped on a
1831 little-endian system. */
1832
1833 static inline bfd_boolean
1834 mips16_reloc_p (int r_type)
1835 {
1836 switch (r_type)
1837 {
1838 case R_MIPS16_26:
1839 case R_MIPS16_GPREL:
1840 case R_MIPS16_GOT16:
1841 case R_MIPS16_CALL16:
1842 case R_MIPS16_HI16:
1843 case R_MIPS16_LO16:
1844 return TRUE;
1845
1846 default:
1847 return FALSE;
1848 }
1849 }
1850
1851 static inline bfd_boolean
1852 got16_reloc_p (int r_type)
1853 {
1854 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1855 }
1856
1857 static inline bfd_boolean
1858 call16_reloc_p (int r_type)
1859 {
1860 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1861 }
1862
1863 static inline bfd_boolean
1864 hi16_reloc_p (int r_type)
1865 {
1866 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1867 }
1868
1869 static inline bfd_boolean
1870 lo16_reloc_p (int r_type)
1871 {
1872 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1873 }
1874
1875 static inline bfd_boolean
1876 mips16_call_reloc_p (int r_type)
1877 {
1878 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1879 }
1880
1881 static inline bfd_boolean
1882 jal_reloc_p (int r_type)
1883 {
1884 return r_type == R_MIPS_26 || r_type == R_MIPS16_26;
1885 }
1886
1887 void
1888 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1889 bfd_boolean jal_shuffle, bfd_byte *data)
1890 {
1891 bfd_vma extend, insn, val;
1892
1893 if (!mips16_reloc_p (r_type))
1894 return;
1895
1896 /* Pick up the mips16 extend instruction and the real instruction. */
1897 extend = bfd_get_16 (abfd, data);
1898 insn = bfd_get_16 (abfd, data + 2);
1899 if (r_type == R_MIPS16_26)
1900 {
1901 if (jal_shuffle)
1902 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1903 | ((extend & 0x1f) << 21) | insn;
1904 else
1905 val = extend << 16 | insn;
1906 }
1907 else
1908 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1909 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1910 bfd_put_32 (abfd, val, data);
1911 }
1912
1913 void
1914 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1915 bfd_boolean jal_shuffle, bfd_byte *data)
1916 {
1917 bfd_vma extend, insn, val;
1918
1919 if (!mips16_reloc_p (r_type))
1920 return;
1921
1922 val = bfd_get_32 (abfd, data);
1923 if (r_type == R_MIPS16_26)
1924 {
1925 if (jal_shuffle)
1926 {
1927 insn = val & 0xffff;
1928 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1929 | ((val >> 21) & 0x1f);
1930 }
1931 else
1932 {
1933 insn = val & 0xffff;
1934 extend = val >> 16;
1935 }
1936 }
1937 else
1938 {
1939 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1940 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1941 }
1942 bfd_put_16 (abfd, insn, data + 2);
1943 bfd_put_16 (abfd, extend, data);
1944 }
1945
1946 bfd_reloc_status_type
1947 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1948 arelent *reloc_entry, asection *input_section,
1949 bfd_boolean relocatable, void *data, bfd_vma gp)
1950 {
1951 bfd_vma relocation;
1952 bfd_signed_vma val;
1953 bfd_reloc_status_type status;
1954
1955 if (bfd_is_com_section (symbol->section))
1956 relocation = 0;
1957 else
1958 relocation = symbol->value;
1959
1960 relocation += symbol->section->output_section->vma;
1961 relocation += symbol->section->output_offset;
1962
1963 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1964 return bfd_reloc_outofrange;
1965
1966 /* Set val to the offset into the section or symbol. */
1967 val = reloc_entry->addend;
1968
1969 _bfd_mips_elf_sign_extend (val, 16);
1970
1971 /* Adjust val for the final section location and GP value. If we
1972 are producing relocatable output, we don't want to do this for
1973 an external symbol. */
1974 if (! relocatable
1975 || (symbol->flags & BSF_SECTION_SYM) != 0)
1976 val += relocation - gp;
1977
1978 if (reloc_entry->howto->partial_inplace)
1979 {
1980 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1981 (bfd_byte *) data
1982 + reloc_entry->address);
1983 if (status != bfd_reloc_ok)
1984 return status;
1985 }
1986 else
1987 reloc_entry->addend = val;
1988
1989 if (relocatable)
1990 reloc_entry->address += input_section->output_offset;
1991
1992 return bfd_reloc_ok;
1993 }
1994
1995 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1996 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1997 that contains the relocation field and DATA points to the start of
1998 INPUT_SECTION. */
1999
2000 struct mips_hi16
2001 {
2002 struct mips_hi16 *next;
2003 bfd_byte *data;
2004 asection *input_section;
2005 arelent rel;
2006 };
2007
2008 /* FIXME: This should not be a static variable. */
2009
2010 static struct mips_hi16 *mips_hi16_list;
2011
2012 /* A howto special_function for REL *HI16 relocations. We can only
2013 calculate the correct value once we've seen the partnering
2014 *LO16 relocation, so just save the information for later.
2015
2016 The ABI requires that the *LO16 immediately follow the *HI16.
2017 However, as a GNU extension, we permit an arbitrary number of
2018 *HI16s to be associated with a single *LO16. This significantly
2019 simplies the relocation handling in gcc. */
2020
2021 bfd_reloc_status_type
2022 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2023 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2024 asection *input_section, bfd *output_bfd,
2025 char **error_message ATTRIBUTE_UNUSED)
2026 {
2027 struct mips_hi16 *n;
2028
2029 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2030 return bfd_reloc_outofrange;
2031
2032 n = bfd_malloc (sizeof *n);
2033 if (n == NULL)
2034 return bfd_reloc_outofrange;
2035
2036 n->next = mips_hi16_list;
2037 n->data = data;
2038 n->input_section = input_section;
2039 n->rel = *reloc_entry;
2040 mips_hi16_list = n;
2041
2042 if (output_bfd != NULL)
2043 reloc_entry->address += input_section->output_offset;
2044
2045 return bfd_reloc_ok;
2046 }
2047
2048 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2049 like any other 16-bit relocation when applied to global symbols, but is
2050 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2051
2052 bfd_reloc_status_type
2053 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2054 void *data, asection *input_section,
2055 bfd *output_bfd, char **error_message)
2056 {
2057 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2058 || bfd_is_und_section (bfd_get_section (symbol))
2059 || bfd_is_com_section (bfd_get_section (symbol)))
2060 /* The relocation is against a global symbol. */
2061 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2062 input_section, output_bfd,
2063 error_message);
2064
2065 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2066 input_section, output_bfd, error_message);
2067 }
2068
2069 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2070 is a straightforward 16 bit inplace relocation, but we must deal with
2071 any partnering high-part relocations as well. */
2072
2073 bfd_reloc_status_type
2074 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2075 void *data, asection *input_section,
2076 bfd *output_bfd, char **error_message)
2077 {
2078 bfd_vma vallo;
2079 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2080
2081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2082 return bfd_reloc_outofrange;
2083
2084 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2085 location);
2086 vallo = bfd_get_32 (abfd, location);
2087 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2088 location);
2089
2090 while (mips_hi16_list != NULL)
2091 {
2092 bfd_reloc_status_type ret;
2093 struct mips_hi16 *hi;
2094
2095 hi = mips_hi16_list;
2096
2097 /* R_MIPS*_GOT16 relocations are something of a special case. We
2098 want to install the addend in the same way as for a R_MIPS*_HI16
2099 relocation (with a rightshift of 16). However, since GOT16
2100 relocations can also be used with global symbols, their howto
2101 has a rightshift of 0. */
2102 if (hi->rel.howto->type == R_MIPS_GOT16)
2103 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2104 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2105 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2106
2107 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2108 carry or borrow will induce a change of +1 or -1 in the high part. */
2109 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2110
2111 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2112 hi->input_section, output_bfd,
2113 error_message);
2114 if (ret != bfd_reloc_ok)
2115 return ret;
2116
2117 mips_hi16_list = hi->next;
2118 free (hi);
2119 }
2120
2121 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2122 input_section, output_bfd,
2123 error_message);
2124 }
2125
2126 /* A generic howto special_function. This calculates and installs the
2127 relocation itself, thus avoiding the oft-discussed problems in
2128 bfd_perform_relocation and bfd_install_relocation. */
2129
2130 bfd_reloc_status_type
2131 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2132 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2133 asection *input_section, bfd *output_bfd,
2134 char **error_message ATTRIBUTE_UNUSED)
2135 {
2136 bfd_signed_vma val;
2137 bfd_reloc_status_type status;
2138 bfd_boolean relocatable;
2139
2140 relocatable = (output_bfd != NULL);
2141
2142 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2143 return bfd_reloc_outofrange;
2144
2145 /* Build up the field adjustment in VAL. */
2146 val = 0;
2147 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2148 {
2149 /* Either we're calculating the final field value or we have a
2150 relocation against a section symbol. Add in the section's
2151 offset or address. */
2152 val += symbol->section->output_section->vma;
2153 val += symbol->section->output_offset;
2154 }
2155
2156 if (!relocatable)
2157 {
2158 /* We're calculating the final field value. Add in the symbol's value
2159 and, if pc-relative, subtract the address of the field itself. */
2160 val += symbol->value;
2161 if (reloc_entry->howto->pc_relative)
2162 {
2163 val -= input_section->output_section->vma;
2164 val -= input_section->output_offset;
2165 val -= reloc_entry->address;
2166 }
2167 }
2168
2169 /* VAL is now the final adjustment. If we're keeping this relocation
2170 in the output file, and if the relocation uses a separate addend,
2171 we just need to add VAL to that addend. Otherwise we need to add
2172 VAL to the relocation field itself. */
2173 if (relocatable && !reloc_entry->howto->partial_inplace)
2174 reloc_entry->addend += val;
2175 else
2176 {
2177 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2178
2179 /* Add in the separate addend, if any. */
2180 val += reloc_entry->addend;
2181
2182 /* Add VAL to the relocation field. */
2183 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2184 location);
2185 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2186 location);
2187 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2188 location);
2189
2190 if (status != bfd_reloc_ok)
2191 return status;
2192 }
2193
2194 if (relocatable)
2195 reloc_entry->address += input_section->output_offset;
2196
2197 return bfd_reloc_ok;
2198 }
2199 \f
2200 /* Swap an entry in a .gptab section. Note that these routines rely
2201 on the equivalence of the two elements of the union. */
2202
2203 static void
2204 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2205 Elf32_gptab *in)
2206 {
2207 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2208 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2209 }
2210
2211 static void
2212 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2213 Elf32_External_gptab *ex)
2214 {
2215 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2216 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2217 }
2218
2219 static void
2220 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2221 Elf32_External_compact_rel *ex)
2222 {
2223 H_PUT_32 (abfd, in->id1, ex->id1);
2224 H_PUT_32 (abfd, in->num, ex->num);
2225 H_PUT_32 (abfd, in->id2, ex->id2);
2226 H_PUT_32 (abfd, in->offset, ex->offset);
2227 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2228 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2229 }
2230
2231 static void
2232 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2233 Elf32_External_crinfo *ex)
2234 {
2235 unsigned long l;
2236
2237 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2238 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2239 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2240 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2241 H_PUT_32 (abfd, l, ex->info);
2242 H_PUT_32 (abfd, in->konst, ex->konst);
2243 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2244 }
2245 \f
2246 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2247 routines swap this structure in and out. They are used outside of
2248 BFD, so they are globally visible. */
2249
2250 void
2251 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2252 Elf32_RegInfo *in)
2253 {
2254 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2255 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2256 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2257 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2258 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2259 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2260 }
2261
2262 void
2263 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2264 Elf32_External_RegInfo *ex)
2265 {
2266 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2267 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2268 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2269 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2270 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2271 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2272 }
2273
2274 /* In the 64 bit ABI, the .MIPS.options section holds register
2275 information in an Elf64_Reginfo structure. These routines swap
2276 them in and out. They are globally visible because they are used
2277 outside of BFD. These routines are here so that gas can call them
2278 without worrying about whether the 64 bit ABI has been included. */
2279
2280 void
2281 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2282 Elf64_Internal_RegInfo *in)
2283 {
2284 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2285 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2286 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2287 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2288 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2289 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2290 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2291 }
2292
2293 void
2294 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2295 Elf64_External_RegInfo *ex)
2296 {
2297 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2298 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2299 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2300 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2301 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2302 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2303 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2304 }
2305
2306 /* Swap in an options header. */
2307
2308 void
2309 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2310 Elf_Internal_Options *in)
2311 {
2312 in->kind = H_GET_8 (abfd, ex->kind);
2313 in->size = H_GET_8 (abfd, ex->size);
2314 in->section = H_GET_16 (abfd, ex->section);
2315 in->info = H_GET_32 (abfd, ex->info);
2316 }
2317
2318 /* Swap out an options header. */
2319
2320 void
2321 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2322 Elf_External_Options *ex)
2323 {
2324 H_PUT_8 (abfd, in->kind, ex->kind);
2325 H_PUT_8 (abfd, in->size, ex->size);
2326 H_PUT_16 (abfd, in->section, ex->section);
2327 H_PUT_32 (abfd, in->info, ex->info);
2328 }
2329 \f
2330 /* This function is called via qsort() to sort the dynamic relocation
2331 entries by increasing r_symndx value. */
2332
2333 static int
2334 sort_dynamic_relocs (const void *arg1, const void *arg2)
2335 {
2336 Elf_Internal_Rela int_reloc1;
2337 Elf_Internal_Rela int_reloc2;
2338 int diff;
2339
2340 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2341 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2342
2343 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2344 if (diff != 0)
2345 return diff;
2346
2347 if (int_reloc1.r_offset < int_reloc2.r_offset)
2348 return -1;
2349 if (int_reloc1.r_offset > int_reloc2.r_offset)
2350 return 1;
2351 return 0;
2352 }
2353
2354 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2355
2356 static int
2357 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2358 const void *arg2 ATTRIBUTE_UNUSED)
2359 {
2360 #ifdef BFD64
2361 Elf_Internal_Rela int_reloc1[3];
2362 Elf_Internal_Rela int_reloc2[3];
2363
2364 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2365 (reldyn_sorting_bfd, arg1, int_reloc1);
2366 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2367 (reldyn_sorting_bfd, arg2, int_reloc2);
2368
2369 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2370 return -1;
2371 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2372 return 1;
2373
2374 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2375 return -1;
2376 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2377 return 1;
2378 return 0;
2379 #else
2380 abort ();
2381 #endif
2382 }
2383
2384
2385 /* This routine is used to write out ECOFF debugging external symbol
2386 information. It is called via mips_elf_link_hash_traverse. The
2387 ECOFF external symbol information must match the ELF external
2388 symbol information. Unfortunately, at this point we don't know
2389 whether a symbol is required by reloc information, so the two
2390 tables may wind up being different. We must sort out the external
2391 symbol information before we can set the final size of the .mdebug
2392 section, and we must set the size of the .mdebug section before we
2393 can relocate any sections, and we can't know which symbols are
2394 required by relocation until we relocate the sections.
2395 Fortunately, it is relatively unlikely that any symbol will be
2396 stripped but required by a reloc. In particular, it can not happen
2397 when generating a final executable. */
2398
2399 static bfd_boolean
2400 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2401 {
2402 struct extsym_info *einfo = data;
2403 bfd_boolean strip;
2404 asection *sec, *output_section;
2405
2406 if (h->root.root.type == bfd_link_hash_warning)
2407 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2408
2409 if (h->root.indx == -2)
2410 strip = FALSE;
2411 else if ((h->root.def_dynamic
2412 || h->root.ref_dynamic
2413 || h->root.type == bfd_link_hash_new)
2414 && !h->root.def_regular
2415 && !h->root.ref_regular)
2416 strip = TRUE;
2417 else if (einfo->info->strip == strip_all
2418 || (einfo->info->strip == strip_some
2419 && bfd_hash_lookup (einfo->info->keep_hash,
2420 h->root.root.root.string,
2421 FALSE, FALSE) == NULL))
2422 strip = TRUE;
2423 else
2424 strip = FALSE;
2425
2426 if (strip)
2427 return TRUE;
2428
2429 if (h->esym.ifd == -2)
2430 {
2431 h->esym.jmptbl = 0;
2432 h->esym.cobol_main = 0;
2433 h->esym.weakext = 0;
2434 h->esym.reserved = 0;
2435 h->esym.ifd = ifdNil;
2436 h->esym.asym.value = 0;
2437 h->esym.asym.st = stGlobal;
2438
2439 if (h->root.root.type == bfd_link_hash_undefined
2440 || h->root.root.type == bfd_link_hash_undefweak)
2441 {
2442 const char *name;
2443
2444 /* Use undefined class. Also, set class and type for some
2445 special symbols. */
2446 name = h->root.root.root.string;
2447 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2448 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2449 {
2450 h->esym.asym.sc = scData;
2451 h->esym.asym.st = stLabel;
2452 h->esym.asym.value = 0;
2453 }
2454 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2455 {
2456 h->esym.asym.sc = scAbs;
2457 h->esym.asym.st = stLabel;
2458 h->esym.asym.value =
2459 mips_elf_hash_table (einfo->info)->procedure_count;
2460 }
2461 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2462 {
2463 h->esym.asym.sc = scAbs;
2464 h->esym.asym.st = stLabel;
2465 h->esym.asym.value = elf_gp (einfo->abfd);
2466 }
2467 else
2468 h->esym.asym.sc = scUndefined;
2469 }
2470 else if (h->root.root.type != bfd_link_hash_defined
2471 && h->root.root.type != bfd_link_hash_defweak)
2472 h->esym.asym.sc = scAbs;
2473 else
2474 {
2475 const char *name;
2476
2477 sec = h->root.root.u.def.section;
2478 output_section = sec->output_section;
2479
2480 /* When making a shared library and symbol h is the one from
2481 the another shared library, OUTPUT_SECTION may be null. */
2482 if (output_section == NULL)
2483 h->esym.asym.sc = scUndefined;
2484 else
2485 {
2486 name = bfd_section_name (output_section->owner, output_section);
2487
2488 if (strcmp (name, ".text") == 0)
2489 h->esym.asym.sc = scText;
2490 else if (strcmp (name, ".data") == 0)
2491 h->esym.asym.sc = scData;
2492 else if (strcmp (name, ".sdata") == 0)
2493 h->esym.asym.sc = scSData;
2494 else if (strcmp (name, ".rodata") == 0
2495 || strcmp (name, ".rdata") == 0)
2496 h->esym.asym.sc = scRData;
2497 else if (strcmp (name, ".bss") == 0)
2498 h->esym.asym.sc = scBss;
2499 else if (strcmp (name, ".sbss") == 0)
2500 h->esym.asym.sc = scSBss;
2501 else if (strcmp (name, ".init") == 0)
2502 h->esym.asym.sc = scInit;
2503 else if (strcmp (name, ".fini") == 0)
2504 h->esym.asym.sc = scFini;
2505 else
2506 h->esym.asym.sc = scAbs;
2507 }
2508 }
2509
2510 h->esym.asym.reserved = 0;
2511 h->esym.asym.index = indexNil;
2512 }
2513
2514 if (h->root.root.type == bfd_link_hash_common)
2515 h->esym.asym.value = h->root.root.u.c.size;
2516 else if (h->root.root.type == bfd_link_hash_defined
2517 || h->root.root.type == bfd_link_hash_defweak)
2518 {
2519 if (h->esym.asym.sc == scCommon)
2520 h->esym.asym.sc = scBss;
2521 else if (h->esym.asym.sc == scSCommon)
2522 h->esym.asym.sc = scSBss;
2523
2524 sec = h->root.root.u.def.section;
2525 output_section = sec->output_section;
2526 if (output_section != NULL)
2527 h->esym.asym.value = (h->root.root.u.def.value
2528 + sec->output_offset
2529 + output_section->vma);
2530 else
2531 h->esym.asym.value = 0;
2532 }
2533 else
2534 {
2535 struct mips_elf_link_hash_entry *hd = h;
2536
2537 while (hd->root.root.type == bfd_link_hash_indirect)
2538 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2539
2540 if (hd->needs_lazy_stub)
2541 {
2542 /* Set type and value for a symbol with a function stub. */
2543 h->esym.asym.st = stProc;
2544 sec = hd->root.root.u.def.section;
2545 if (sec == NULL)
2546 h->esym.asym.value = 0;
2547 else
2548 {
2549 output_section = sec->output_section;
2550 if (output_section != NULL)
2551 h->esym.asym.value = (hd->root.plt.offset
2552 + sec->output_offset
2553 + output_section->vma);
2554 else
2555 h->esym.asym.value = 0;
2556 }
2557 }
2558 }
2559
2560 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2561 h->root.root.root.string,
2562 &h->esym))
2563 {
2564 einfo->failed = TRUE;
2565 return FALSE;
2566 }
2567
2568 return TRUE;
2569 }
2570
2571 /* A comparison routine used to sort .gptab entries. */
2572
2573 static int
2574 gptab_compare (const void *p1, const void *p2)
2575 {
2576 const Elf32_gptab *a1 = p1;
2577 const Elf32_gptab *a2 = p2;
2578
2579 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2580 }
2581 \f
2582 /* Functions to manage the got entry hash table. */
2583
2584 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2585 hash number. */
2586
2587 static INLINE hashval_t
2588 mips_elf_hash_bfd_vma (bfd_vma addr)
2589 {
2590 #ifdef BFD64
2591 return addr + (addr >> 32);
2592 #else
2593 return addr;
2594 #endif
2595 }
2596
2597 /* got_entries only match if they're identical, except for gotidx, so
2598 use all fields to compute the hash, and compare the appropriate
2599 union members. */
2600
2601 static hashval_t
2602 mips_elf_got_entry_hash (const void *entry_)
2603 {
2604 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2605
2606 return entry->symndx
2607 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2608 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2609 : entry->abfd->id
2610 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2611 : entry->d.h->root.root.root.hash));
2612 }
2613
2614 static int
2615 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2616 {
2617 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2618 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2619
2620 /* An LDM entry can only match another LDM entry. */
2621 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2622 return 0;
2623
2624 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2625 && (! e1->abfd ? e1->d.address == e2->d.address
2626 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2627 : e1->d.h == e2->d.h);
2628 }
2629
2630 /* multi_got_entries are still a match in the case of global objects,
2631 even if the input bfd in which they're referenced differs, so the
2632 hash computation and compare functions are adjusted
2633 accordingly. */
2634
2635 static hashval_t
2636 mips_elf_multi_got_entry_hash (const void *entry_)
2637 {
2638 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2639
2640 return entry->symndx
2641 + (! entry->abfd
2642 ? mips_elf_hash_bfd_vma (entry->d.address)
2643 : entry->symndx >= 0
2644 ? ((entry->tls_type & GOT_TLS_LDM)
2645 ? (GOT_TLS_LDM << 17)
2646 : (entry->abfd->id
2647 + mips_elf_hash_bfd_vma (entry->d.addend)))
2648 : entry->d.h->root.root.root.hash);
2649 }
2650
2651 static int
2652 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2653 {
2654 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2655 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2656
2657 /* Any two LDM entries match. */
2658 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2659 return 1;
2660
2661 /* Nothing else matches an LDM entry. */
2662 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2663 return 0;
2664
2665 return e1->symndx == e2->symndx
2666 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2667 : e1->abfd == NULL || e2->abfd == NULL
2668 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2669 : e1->d.h == e2->d.h);
2670 }
2671
2672 static hashval_t
2673 mips_got_page_entry_hash (const void *entry_)
2674 {
2675 const struct mips_got_page_entry *entry;
2676
2677 entry = (const struct mips_got_page_entry *) entry_;
2678 return entry->abfd->id + entry->symndx;
2679 }
2680
2681 static int
2682 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2683 {
2684 const struct mips_got_page_entry *entry1, *entry2;
2685
2686 entry1 = (const struct mips_got_page_entry *) entry1_;
2687 entry2 = (const struct mips_got_page_entry *) entry2_;
2688 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2689 }
2690 \f
2691 /* Return the dynamic relocation section. If it doesn't exist, try to
2692 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2693 if creation fails. */
2694
2695 static asection *
2696 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2697 {
2698 const char *dname;
2699 asection *sreloc;
2700 bfd *dynobj;
2701
2702 dname = MIPS_ELF_REL_DYN_NAME (info);
2703 dynobj = elf_hash_table (info)->dynobj;
2704 sreloc = bfd_get_section_by_name (dynobj, dname);
2705 if (sreloc == NULL && create_p)
2706 {
2707 sreloc = bfd_make_section_with_flags (dynobj, dname,
2708 (SEC_ALLOC
2709 | SEC_LOAD
2710 | SEC_HAS_CONTENTS
2711 | SEC_IN_MEMORY
2712 | SEC_LINKER_CREATED
2713 | SEC_READONLY));
2714 if (sreloc == NULL
2715 || ! bfd_set_section_alignment (dynobj, sreloc,
2716 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2717 return NULL;
2718 }
2719 return sreloc;
2720 }
2721
2722 /* Count the number of relocations needed for a TLS GOT entry, with
2723 access types from TLS_TYPE, and symbol H (or a local symbol if H
2724 is NULL). */
2725
2726 static int
2727 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2728 struct elf_link_hash_entry *h)
2729 {
2730 int indx = 0;
2731 int ret = 0;
2732 bfd_boolean need_relocs = FALSE;
2733 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2734
2735 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2736 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2737 indx = h->dynindx;
2738
2739 if ((info->shared || indx != 0)
2740 && (h == NULL
2741 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2742 || h->root.type != bfd_link_hash_undefweak))
2743 need_relocs = TRUE;
2744
2745 if (!need_relocs)
2746 return FALSE;
2747
2748 if (tls_type & GOT_TLS_GD)
2749 {
2750 ret++;
2751 if (indx != 0)
2752 ret++;
2753 }
2754
2755 if (tls_type & GOT_TLS_IE)
2756 ret++;
2757
2758 if ((tls_type & GOT_TLS_LDM) && info->shared)
2759 ret++;
2760
2761 return ret;
2762 }
2763
2764 /* Count the number of TLS relocations required for the GOT entry in
2765 ARG1, if it describes a local symbol. */
2766
2767 static int
2768 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2769 {
2770 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2771 struct mips_elf_count_tls_arg *arg = arg2;
2772
2773 if (entry->abfd != NULL && entry->symndx != -1)
2774 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2775
2776 return 1;
2777 }
2778
2779 /* Count the number of TLS GOT entries required for the global (or
2780 forced-local) symbol in ARG1. */
2781
2782 static int
2783 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2784 {
2785 struct mips_elf_link_hash_entry *hm
2786 = (struct mips_elf_link_hash_entry *) arg1;
2787 struct mips_elf_count_tls_arg *arg = arg2;
2788
2789 if (hm->tls_type & GOT_TLS_GD)
2790 arg->needed += 2;
2791 if (hm->tls_type & GOT_TLS_IE)
2792 arg->needed += 1;
2793
2794 return 1;
2795 }
2796
2797 /* Count the number of TLS relocations required for the global (or
2798 forced-local) symbol in ARG1. */
2799
2800 static int
2801 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2802 {
2803 struct mips_elf_link_hash_entry *hm
2804 = (struct mips_elf_link_hash_entry *) arg1;
2805 struct mips_elf_count_tls_arg *arg = arg2;
2806
2807 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2808
2809 return 1;
2810 }
2811
2812 /* Output a simple dynamic relocation into SRELOC. */
2813
2814 static void
2815 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2816 asection *sreloc,
2817 unsigned long reloc_index,
2818 unsigned long indx,
2819 int r_type,
2820 bfd_vma offset)
2821 {
2822 Elf_Internal_Rela rel[3];
2823
2824 memset (rel, 0, sizeof (rel));
2825
2826 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2827 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2828
2829 if (ABI_64_P (output_bfd))
2830 {
2831 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2832 (output_bfd, &rel[0],
2833 (sreloc->contents
2834 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2835 }
2836 else
2837 bfd_elf32_swap_reloc_out
2838 (output_bfd, &rel[0],
2839 (sreloc->contents
2840 + reloc_index * sizeof (Elf32_External_Rel)));
2841 }
2842
2843 /* Initialize a set of TLS GOT entries for one symbol. */
2844
2845 static void
2846 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2847 unsigned char *tls_type_p,
2848 struct bfd_link_info *info,
2849 struct mips_elf_link_hash_entry *h,
2850 bfd_vma value)
2851 {
2852 struct mips_elf_link_hash_table *htab;
2853 int indx;
2854 asection *sreloc, *sgot;
2855 bfd_vma offset, offset2;
2856 bfd_boolean need_relocs = FALSE;
2857
2858 htab = mips_elf_hash_table (info);
2859 if (htab == NULL)
2860 return;
2861
2862 sgot = htab->sgot;
2863
2864 indx = 0;
2865 if (h != NULL)
2866 {
2867 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2868
2869 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2870 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2871 indx = h->root.dynindx;
2872 }
2873
2874 if (*tls_type_p & GOT_TLS_DONE)
2875 return;
2876
2877 if ((info->shared || indx != 0)
2878 && (h == NULL
2879 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2880 || h->root.type != bfd_link_hash_undefweak))
2881 need_relocs = TRUE;
2882
2883 /* MINUS_ONE means the symbol is not defined in this object. It may not
2884 be defined at all; assume that the value doesn't matter in that
2885 case. Otherwise complain if we would use the value. */
2886 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2887 || h->root.root.type == bfd_link_hash_undefweak);
2888
2889 /* Emit necessary relocations. */
2890 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2891
2892 /* General Dynamic. */
2893 if (*tls_type_p & GOT_TLS_GD)
2894 {
2895 offset = got_offset;
2896 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2897
2898 if (need_relocs)
2899 {
2900 mips_elf_output_dynamic_relocation
2901 (abfd, sreloc, sreloc->reloc_count++, indx,
2902 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2903 sgot->output_offset + sgot->output_section->vma + offset);
2904
2905 if (indx)
2906 mips_elf_output_dynamic_relocation
2907 (abfd, sreloc, sreloc->reloc_count++, indx,
2908 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2909 sgot->output_offset + sgot->output_section->vma + offset2);
2910 else
2911 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2912 sgot->contents + offset2);
2913 }
2914 else
2915 {
2916 MIPS_ELF_PUT_WORD (abfd, 1,
2917 sgot->contents + offset);
2918 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2919 sgot->contents + offset2);
2920 }
2921
2922 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2923 }
2924
2925 /* Initial Exec model. */
2926 if (*tls_type_p & GOT_TLS_IE)
2927 {
2928 offset = got_offset;
2929
2930 if (need_relocs)
2931 {
2932 if (indx == 0)
2933 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2934 sgot->contents + offset);
2935 else
2936 MIPS_ELF_PUT_WORD (abfd, 0,
2937 sgot->contents + offset);
2938
2939 mips_elf_output_dynamic_relocation
2940 (abfd, sreloc, sreloc->reloc_count++, indx,
2941 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2942 sgot->output_offset + sgot->output_section->vma + offset);
2943 }
2944 else
2945 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2946 sgot->contents + offset);
2947 }
2948
2949 if (*tls_type_p & GOT_TLS_LDM)
2950 {
2951 /* The initial offset is zero, and the LD offsets will include the
2952 bias by DTP_OFFSET. */
2953 MIPS_ELF_PUT_WORD (abfd, 0,
2954 sgot->contents + got_offset
2955 + MIPS_ELF_GOT_SIZE (abfd));
2956
2957 if (!info->shared)
2958 MIPS_ELF_PUT_WORD (abfd, 1,
2959 sgot->contents + got_offset);
2960 else
2961 mips_elf_output_dynamic_relocation
2962 (abfd, sreloc, sreloc->reloc_count++, indx,
2963 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2964 sgot->output_offset + sgot->output_section->vma + got_offset);
2965 }
2966
2967 *tls_type_p |= GOT_TLS_DONE;
2968 }
2969
2970 /* Return the GOT index to use for a relocation of type R_TYPE against
2971 a symbol accessed using TLS_TYPE models. The GOT entries for this
2972 symbol in this GOT start at GOT_INDEX. This function initializes the
2973 GOT entries and corresponding relocations. */
2974
2975 static bfd_vma
2976 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2977 int r_type, struct bfd_link_info *info,
2978 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2979 {
2980 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2981 || r_type == R_MIPS_TLS_LDM);
2982
2983 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2984
2985 if (r_type == R_MIPS_TLS_GOTTPREL)
2986 {
2987 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2988 if (*tls_type & GOT_TLS_GD)
2989 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2990 else
2991 return got_index;
2992 }
2993
2994 if (r_type == R_MIPS_TLS_GD)
2995 {
2996 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2997 return got_index;
2998 }
2999
3000 if (r_type == R_MIPS_TLS_LDM)
3001 {
3002 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3003 return got_index;
3004 }
3005
3006 return got_index;
3007 }
3008
3009 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3010 for global symbol H. .got.plt comes before the GOT, so the offset
3011 will be negative. */
3012
3013 static bfd_vma
3014 mips_elf_gotplt_index (struct bfd_link_info *info,
3015 struct elf_link_hash_entry *h)
3016 {
3017 bfd_vma plt_index, got_address, got_value;
3018 struct mips_elf_link_hash_table *htab;
3019
3020 htab = mips_elf_hash_table (info);
3021 BFD_ASSERT (htab != NULL);
3022
3023 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3024
3025 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3026 section starts with reserved entries. */
3027 BFD_ASSERT (htab->is_vxworks);
3028
3029 /* Calculate the index of the symbol's PLT entry. */
3030 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3031
3032 /* Calculate the address of the associated .got.plt entry. */
3033 got_address = (htab->sgotplt->output_section->vma
3034 + htab->sgotplt->output_offset
3035 + plt_index * 4);
3036
3037 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3038 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3039 + htab->root.hgot->root.u.def.section->output_offset
3040 + htab->root.hgot->root.u.def.value);
3041
3042 return got_address - got_value;
3043 }
3044
3045 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3046 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3047 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3048 offset can be found. */
3049
3050 static bfd_vma
3051 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3052 bfd_vma value, unsigned long r_symndx,
3053 struct mips_elf_link_hash_entry *h, int r_type)
3054 {
3055 struct mips_elf_link_hash_table *htab;
3056 struct mips_got_entry *entry;
3057
3058 htab = mips_elf_hash_table (info);
3059 BFD_ASSERT (htab != NULL);
3060
3061 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3062 r_symndx, h, r_type);
3063 if (!entry)
3064 return MINUS_ONE;
3065
3066 if (TLS_RELOC_P (r_type))
3067 {
3068 if (entry->symndx == -1 && htab->got_info->next == NULL)
3069 /* A type (3) entry in the single-GOT case. We use the symbol's
3070 hash table entry to track the index. */
3071 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3072 r_type, info, h, value);
3073 else
3074 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3075 r_type, info, h, value);
3076 }
3077 else
3078 return entry->gotidx;
3079 }
3080
3081 /* Returns the GOT index for the global symbol indicated by H. */
3082
3083 static bfd_vma
3084 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3085 int r_type, struct bfd_link_info *info)
3086 {
3087 struct mips_elf_link_hash_table *htab;
3088 bfd_vma got_index;
3089 struct mips_got_info *g, *gg;
3090 long global_got_dynindx = 0;
3091
3092 htab = mips_elf_hash_table (info);
3093 BFD_ASSERT (htab != NULL);
3094
3095 gg = g = htab->got_info;
3096 if (g->bfd2got && ibfd)
3097 {
3098 struct mips_got_entry e, *p;
3099
3100 BFD_ASSERT (h->dynindx >= 0);
3101
3102 g = mips_elf_got_for_ibfd (g, ibfd);
3103 if (g->next != gg || TLS_RELOC_P (r_type))
3104 {
3105 e.abfd = ibfd;
3106 e.symndx = -1;
3107 e.d.h = (struct mips_elf_link_hash_entry *)h;
3108 e.tls_type = 0;
3109
3110 p = htab_find (g->got_entries, &e);
3111
3112 BFD_ASSERT (p->gotidx > 0);
3113
3114 if (TLS_RELOC_P (r_type))
3115 {
3116 bfd_vma value = MINUS_ONE;
3117 if ((h->root.type == bfd_link_hash_defined
3118 || h->root.type == bfd_link_hash_defweak)
3119 && h->root.u.def.section->output_section)
3120 value = (h->root.u.def.value
3121 + h->root.u.def.section->output_offset
3122 + h->root.u.def.section->output_section->vma);
3123
3124 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3125 info, e.d.h, value);
3126 }
3127 else
3128 return p->gotidx;
3129 }
3130 }
3131
3132 if (gg->global_gotsym != NULL)
3133 global_got_dynindx = gg->global_gotsym->dynindx;
3134
3135 if (TLS_RELOC_P (r_type))
3136 {
3137 struct mips_elf_link_hash_entry *hm
3138 = (struct mips_elf_link_hash_entry *) h;
3139 bfd_vma value = MINUS_ONE;
3140
3141 if ((h->root.type == bfd_link_hash_defined
3142 || h->root.type == bfd_link_hash_defweak)
3143 && h->root.u.def.section->output_section)
3144 value = (h->root.u.def.value
3145 + h->root.u.def.section->output_offset
3146 + h->root.u.def.section->output_section->vma);
3147
3148 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3149 r_type, info, hm, value);
3150 }
3151 else
3152 {
3153 /* Once we determine the global GOT entry with the lowest dynamic
3154 symbol table index, we must put all dynamic symbols with greater
3155 indices into the GOT. That makes it easy to calculate the GOT
3156 offset. */
3157 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3158 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3159 * MIPS_ELF_GOT_SIZE (abfd));
3160 }
3161 BFD_ASSERT (got_index < htab->sgot->size);
3162
3163 return got_index;
3164 }
3165
3166 /* Find a GOT page entry that points to within 32KB of VALUE. These
3167 entries are supposed to be placed at small offsets in the GOT, i.e.,
3168 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3169 entry could be created. If OFFSETP is nonnull, use it to return the
3170 offset of the GOT entry from VALUE. */
3171
3172 static bfd_vma
3173 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3174 bfd_vma value, bfd_vma *offsetp)
3175 {
3176 bfd_vma page, got_index;
3177 struct mips_got_entry *entry;
3178
3179 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3180 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3181 NULL, R_MIPS_GOT_PAGE);
3182
3183 if (!entry)
3184 return MINUS_ONE;
3185
3186 got_index = entry->gotidx;
3187
3188 if (offsetp)
3189 *offsetp = value - entry->d.address;
3190
3191 return got_index;
3192 }
3193
3194 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3195 EXTERNAL is true if the relocation was originally against a global
3196 symbol that binds locally. */
3197
3198 static bfd_vma
3199 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3200 bfd_vma value, bfd_boolean external)
3201 {
3202 struct mips_got_entry *entry;
3203
3204 /* GOT16 relocations against local symbols are followed by a LO16
3205 relocation; those against global symbols are not. Thus if the
3206 symbol was originally local, the GOT16 relocation should load the
3207 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3208 if (! external)
3209 value = mips_elf_high (value) << 16;
3210
3211 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3212 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3213 same in all cases. */
3214 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3215 NULL, R_MIPS_GOT16);
3216 if (entry)
3217 return entry->gotidx;
3218 else
3219 return MINUS_ONE;
3220 }
3221
3222 /* Returns the offset for the entry at the INDEXth position
3223 in the GOT. */
3224
3225 static bfd_vma
3226 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3227 bfd *input_bfd, bfd_vma got_index)
3228 {
3229 struct mips_elf_link_hash_table *htab;
3230 asection *sgot;
3231 bfd_vma gp;
3232
3233 htab = mips_elf_hash_table (info);
3234 BFD_ASSERT (htab != NULL);
3235
3236 sgot = htab->sgot;
3237 gp = _bfd_get_gp_value (output_bfd)
3238 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3239
3240 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3241 }
3242
3243 /* Create and return a local GOT entry for VALUE, which was calculated
3244 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3245 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3246 instead. */
3247
3248 static struct mips_got_entry *
3249 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3250 bfd *ibfd, bfd_vma value,
3251 unsigned long r_symndx,
3252 struct mips_elf_link_hash_entry *h,
3253 int r_type)
3254 {
3255 struct mips_got_entry entry, **loc;
3256 struct mips_got_info *g;
3257 struct mips_elf_link_hash_table *htab;
3258
3259 htab = mips_elf_hash_table (info);
3260 BFD_ASSERT (htab != NULL);
3261
3262 entry.abfd = NULL;
3263 entry.symndx = -1;
3264 entry.d.address = value;
3265 entry.tls_type = 0;
3266
3267 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3268 if (g == NULL)
3269 {
3270 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3271 BFD_ASSERT (g != NULL);
3272 }
3273
3274 /* This function shouldn't be called for symbols that live in the global
3275 area of the GOT. */
3276 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3277 if (TLS_RELOC_P (r_type))
3278 {
3279 struct mips_got_entry *p;
3280
3281 entry.abfd = ibfd;
3282 if (r_type == R_MIPS_TLS_LDM)
3283 {
3284 entry.tls_type = GOT_TLS_LDM;
3285 entry.symndx = 0;
3286 entry.d.addend = 0;
3287 }
3288 else if (h == NULL)
3289 {
3290 entry.symndx = r_symndx;
3291 entry.d.addend = 0;
3292 }
3293 else
3294 entry.d.h = h;
3295
3296 p = (struct mips_got_entry *)
3297 htab_find (g->got_entries, &entry);
3298
3299 BFD_ASSERT (p);
3300 return p;
3301 }
3302
3303 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3304 INSERT);
3305 if (*loc)
3306 return *loc;
3307
3308 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3309 entry.tls_type = 0;
3310
3311 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3312
3313 if (! *loc)
3314 return NULL;
3315
3316 memcpy (*loc, &entry, sizeof entry);
3317
3318 if (g->assigned_gotno > g->local_gotno)
3319 {
3320 (*loc)->gotidx = -1;
3321 /* We didn't allocate enough space in the GOT. */
3322 (*_bfd_error_handler)
3323 (_("not enough GOT space for local GOT entries"));
3324 bfd_set_error (bfd_error_bad_value);
3325 return NULL;
3326 }
3327
3328 MIPS_ELF_PUT_WORD (abfd, value,
3329 (htab->sgot->contents + entry.gotidx));
3330
3331 /* These GOT entries need a dynamic relocation on VxWorks. */
3332 if (htab->is_vxworks)
3333 {
3334 Elf_Internal_Rela outrel;
3335 asection *s;
3336 bfd_byte *rloc;
3337 bfd_vma got_address;
3338
3339 s = mips_elf_rel_dyn_section (info, FALSE);
3340 got_address = (htab->sgot->output_section->vma
3341 + htab->sgot->output_offset
3342 + entry.gotidx);
3343
3344 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3345 outrel.r_offset = got_address;
3346 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3347 outrel.r_addend = value;
3348 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3349 }
3350
3351 return *loc;
3352 }
3353
3354 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3355 The number might be exact or a worst-case estimate, depending on how
3356 much information is available to elf_backend_omit_section_dynsym at
3357 the current linking stage. */
3358
3359 static bfd_size_type
3360 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3361 {
3362 bfd_size_type count;
3363
3364 count = 0;
3365 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3366 {
3367 asection *p;
3368 const struct elf_backend_data *bed;
3369
3370 bed = get_elf_backend_data (output_bfd);
3371 for (p = output_bfd->sections; p ; p = p->next)
3372 if ((p->flags & SEC_EXCLUDE) == 0
3373 && (p->flags & SEC_ALLOC) != 0
3374 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3375 ++count;
3376 }
3377 return count;
3378 }
3379
3380 /* Sort the dynamic symbol table so that symbols that need GOT entries
3381 appear towards the end. */
3382
3383 static bfd_boolean
3384 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3385 {
3386 struct mips_elf_link_hash_table *htab;
3387 struct mips_elf_hash_sort_data hsd;
3388 struct mips_got_info *g;
3389
3390 if (elf_hash_table (info)->dynsymcount == 0)
3391 return TRUE;
3392
3393 htab = mips_elf_hash_table (info);
3394 BFD_ASSERT (htab != NULL);
3395
3396 g = htab->got_info;
3397 if (g == NULL)
3398 return TRUE;
3399
3400 hsd.low = NULL;
3401 hsd.max_unref_got_dynindx
3402 = hsd.min_got_dynindx
3403 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3404 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3405 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3406 elf_hash_table (info)),
3407 mips_elf_sort_hash_table_f,
3408 &hsd);
3409
3410 /* There should have been enough room in the symbol table to
3411 accommodate both the GOT and non-GOT symbols. */
3412 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3413 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3414 == elf_hash_table (info)->dynsymcount);
3415 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3416 == g->global_gotno);
3417
3418 /* Now we know which dynamic symbol has the lowest dynamic symbol
3419 table index in the GOT. */
3420 g->global_gotsym = hsd.low;
3421
3422 return TRUE;
3423 }
3424
3425 /* If H needs a GOT entry, assign it the highest available dynamic
3426 index. Otherwise, assign it the lowest available dynamic
3427 index. */
3428
3429 static bfd_boolean
3430 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3431 {
3432 struct mips_elf_hash_sort_data *hsd = data;
3433
3434 if (h->root.root.type == bfd_link_hash_warning)
3435 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3436
3437 /* Symbols without dynamic symbol table entries aren't interesting
3438 at all. */
3439 if (h->root.dynindx == -1)
3440 return TRUE;
3441
3442 switch (h->global_got_area)
3443 {
3444 case GGA_NONE:
3445 h->root.dynindx = hsd->max_non_got_dynindx++;
3446 break;
3447
3448 case GGA_NORMAL:
3449 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3450
3451 h->root.dynindx = --hsd->min_got_dynindx;
3452 hsd->low = (struct elf_link_hash_entry *) h;
3453 break;
3454
3455 case GGA_RELOC_ONLY:
3456 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3457
3458 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3459 hsd->low = (struct elf_link_hash_entry *) h;
3460 h->root.dynindx = hsd->max_unref_got_dynindx++;
3461 break;
3462 }
3463
3464 return TRUE;
3465 }
3466
3467 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3468 symbol table index lower than any we've seen to date, record it for
3469 posterity. FOR_CALL is true if the caller is only interested in
3470 using the GOT entry for calls. */
3471
3472 static bfd_boolean
3473 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3474 bfd *abfd, struct bfd_link_info *info,
3475 bfd_boolean for_call,
3476 unsigned char tls_flag)
3477 {
3478 struct mips_elf_link_hash_table *htab;
3479 struct mips_elf_link_hash_entry *hmips;
3480 struct mips_got_entry entry, **loc;
3481 struct mips_got_info *g;
3482
3483 htab = mips_elf_hash_table (info);
3484 BFD_ASSERT (htab != NULL);
3485
3486 hmips = (struct mips_elf_link_hash_entry *) h;
3487 if (!for_call)
3488 hmips->got_only_for_calls = FALSE;
3489
3490 /* A global symbol in the GOT must also be in the dynamic symbol
3491 table. */
3492 if (h->dynindx == -1)
3493 {
3494 switch (ELF_ST_VISIBILITY (h->other))
3495 {
3496 case STV_INTERNAL:
3497 case STV_HIDDEN:
3498 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3499 break;
3500 }
3501 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3502 return FALSE;
3503 }
3504
3505 /* Make sure we have a GOT to put this entry into. */
3506 g = htab->got_info;
3507 BFD_ASSERT (g != NULL);
3508
3509 entry.abfd = abfd;
3510 entry.symndx = -1;
3511 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3512 entry.tls_type = 0;
3513
3514 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3515 INSERT);
3516
3517 /* If we've already marked this entry as needing GOT space, we don't
3518 need to do it again. */
3519 if (*loc)
3520 {
3521 (*loc)->tls_type |= tls_flag;
3522 return TRUE;
3523 }
3524
3525 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3526
3527 if (! *loc)
3528 return FALSE;
3529
3530 entry.gotidx = -1;
3531 entry.tls_type = tls_flag;
3532
3533 memcpy (*loc, &entry, sizeof entry);
3534
3535 if (tls_flag == 0)
3536 hmips->global_got_area = GGA_NORMAL;
3537
3538 return TRUE;
3539 }
3540
3541 /* Reserve space in G for a GOT entry containing the value of symbol
3542 SYMNDX in input bfd ABDF, plus ADDEND. */
3543
3544 static bfd_boolean
3545 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3546 struct bfd_link_info *info,
3547 unsigned char tls_flag)
3548 {
3549 struct mips_elf_link_hash_table *htab;
3550 struct mips_got_info *g;
3551 struct mips_got_entry entry, **loc;
3552
3553 htab = mips_elf_hash_table (info);
3554 BFD_ASSERT (htab != NULL);
3555
3556 g = htab->got_info;
3557 BFD_ASSERT (g != NULL);
3558
3559 entry.abfd = abfd;
3560 entry.symndx = symndx;
3561 entry.d.addend = addend;
3562 entry.tls_type = tls_flag;
3563 loc = (struct mips_got_entry **)
3564 htab_find_slot (g->got_entries, &entry, INSERT);
3565
3566 if (*loc)
3567 {
3568 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3569 {
3570 g->tls_gotno += 2;
3571 (*loc)->tls_type |= tls_flag;
3572 }
3573 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3574 {
3575 g->tls_gotno += 1;
3576 (*loc)->tls_type |= tls_flag;
3577 }
3578 return TRUE;
3579 }
3580
3581 if (tls_flag != 0)
3582 {
3583 entry.gotidx = -1;
3584 entry.tls_type = tls_flag;
3585 if (tls_flag == GOT_TLS_IE)
3586 g->tls_gotno += 1;
3587 else if (tls_flag == GOT_TLS_GD)
3588 g->tls_gotno += 2;
3589 else if (g->tls_ldm_offset == MINUS_ONE)
3590 {
3591 g->tls_ldm_offset = MINUS_TWO;
3592 g->tls_gotno += 2;
3593 }
3594 }
3595 else
3596 {
3597 entry.gotidx = g->local_gotno++;
3598 entry.tls_type = 0;
3599 }
3600
3601 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3602
3603 if (! *loc)
3604 return FALSE;
3605
3606 memcpy (*loc, &entry, sizeof entry);
3607
3608 return TRUE;
3609 }
3610
3611 /* Return the maximum number of GOT page entries required for RANGE. */
3612
3613 static bfd_vma
3614 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3615 {
3616 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3617 }
3618
3619 /* Record that ABFD has a page relocation against symbol SYMNDX and
3620 that ADDEND is the addend for that relocation.
3621
3622 This function creates an upper bound on the number of GOT slots
3623 required; no attempt is made to combine references to non-overridable
3624 global symbols across multiple input files. */
3625
3626 static bfd_boolean
3627 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3628 long symndx, bfd_signed_vma addend)
3629 {
3630 struct mips_elf_link_hash_table *htab;
3631 struct mips_got_info *g;
3632 struct mips_got_page_entry lookup, *entry;
3633 struct mips_got_page_range **range_ptr, *range;
3634 bfd_vma old_pages, new_pages;
3635 void **loc;
3636
3637 htab = mips_elf_hash_table (info);
3638 BFD_ASSERT (htab != NULL);
3639
3640 g = htab->got_info;
3641 BFD_ASSERT (g != NULL);
3642
3643 /* Find the mips_got_page_entry hash table entry for this symbol. */
3644 lookup.abfd = abfd;
3645 lookup.symndx = symndx;
3646 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3647 if (loc == NULL)
3648 return FALSE;
3649
3650 /* Create a mips_got_page_entry if this is the first time we've
3651 seen the symbol. */
3652 entry = (struct mips_got_page_entry *) *loc;
3653 if (!entry)
3654 {
3655 entry = bfd_alloc (abfd, sizeof (*entry));
3656 if (!entry)
3657 return FALSE;
3658
3659 entry->abfd = abfd;
3660 entry->symndx = symndx;
3661 entry->ranges = NULL;
3662 entry->num_pages = 0;
3663 *loc = entry;
3664 }
3665
3666 /* Skip over ranges whose maximum extent cannot share a page entry
3667 with ADDEND. */
3668 range_ptr = &entry->ranges;
3669 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3670 range_ptr = &(*range_ptr)->next;
3671
3672 /* If we scanned to the end of the list, or found a range whose
3673 minimum extent cannot share a page entry with ADDEND, create
3674 a new singleton range. */
3675 range = *range_ptr;
3676 if (!range || addend < range->min_addend - 0xffff)
3677 {
3678 range = bfd_alloc (abfd, sizeof (*range));
3679 if (!range)
3680 return FALSE;
3681
3682 range->next = *range_ptr;
3683 range->min_addend = addend;
3684 range->max_addend = addend;
3685
3686 *range_ptr = range;
3687 entry->num_pages++;
3688 g->page_gotno++;
3689 return TRUE;
3690 }
3691
3692 /* Remember how many pages the old range contributed. */
3693 old_pages = mips_elf_pages_for_range (range);
3694
3695 /* Update the ranges. */
3696 if (addend < range->min_addend)
3697 range->min_addend = addend;
3698 else if (addend > range->max_addend)
3699 {
3700 if (range->next && addend >= range->next->min_addend - 0xffff)
3701 {
3702 old_pages += mips_elf_pages_for_range (range->next);
3703 range->max_addend = range->next->max_addend;
3704 range->next = range->next->next;
3705 }
3706 else
3707 range->max_addend = addend;
3708 }
3709
3710 /* Record any change in the total estimate. */
3711 new_pages = mips_elf_pages_for_range (range);
3712 if (old_pages != new_pages)
3713 {
3714 entry->num_pages += new_pages - old_pages;
3715 g->page_gotno += new_pages - old_pages;
3716 }
3717
3718 return TRUE;
3719 }
3720
3721 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3722
3723 static void
3724 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3725 unsigned int n)
3726 {
3727 asection *s;
3728 struct mips_elf_link_hash_table *htab;
3729
3730 htab = mips_elf_hash_table (info);
3731 BFD_ASSERT (htab != NULL);
3732
3733 s = mips_elf_rel_dyn_section (info, FALSE);
3734 BFD_ASSERT (s != NULL);
3735
3736 if (htab->is_vxworks)
3737 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3738 else
3739 {
3740 if (s->size == 0)
3741 {
3742 /* Make room for a null element. */
3743 s->size += MIPS_ELF_REL_SIZE (abfd);
3744 ++s->reloc_count;
3745 }
3746 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3747 }
3748 }
3749 \f
3750 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3751 if the GOT entry is for an indirect or warning symbol. */
3752
3753 static int
3754 mips_elf_check_recreate_got (void **entryp, void *data)
3755 {
3756 struct mips_got_entry *entry;
3757 bfd_boolean *must_recreate;
3758
3759 entry = (struct mips_got_entry *) *entryp;
3760 must_recreate = (bfd_boolean *) data;
3761 if (entry->abfd != NULL && entry->symndx == -1)
3762 {
3763 struct mips_elf_link_hash_entry *h;
3764
3765 h = entry->d.h;
3766 if (h->root.root.type == bfd_link_hash_indirect
3767 || h->root.root.type == bfd_link_hash_warning)
3768 {
3769 *must_recreate = TRUE;
3770 return 0;
3771 }
3772 }
3773 return 1;
3774 }
3775
3776 /* A htab_traverse callback for GOT entries. Add all entries to
3777 hash table *DATA, converting entries for indirect and warning
3778 symbols into entries for the target symbol. Set *DATA to null
3779 on error. */
3780
3781 static int
3782 mips_elf_recreate_got (void **entryp, void *data)
3783 {
3784 htab_t *new_got;
3785 struct mips_got_entry *entry;
3786 void **slot;
3787
3788 new_got = (htab_t *) data;
3789 entry = (struct mips_got_entry *) *entryp;
3790 if (entry->abfd != NULL && entry->symndx == -1)
3791 {
3792 struct mips_elf_link_hash_entry *h;
3793
3794 h = entry->d.h;
3795 while (h->root.root.type == bfd_link_hash_indirect
3796 || h->root.root.type == bfd_link_hash_warning)
3797 {
3798 BFD_ASSERT (h->global_got_area == GGA_NONE);
3799 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3800 }
3801 entry->d.h = h;
3802 }
3803 slot = htab_find_slot (*new_got, entry, INSERT);
3804 if (slot == NULL)
3805 {
3806 *new_got = NULL;
3807 return 0;
3808 }
3809 if (*slot == NULL)
3810 *slot = entry;
3811 else
3812 free (entry);
3813 return 1;
3814 }
3815
3816 /* If any entries in G->got_entries are for indirect or warning symbols,
3817 replace them with entries for the target symbol. */
3818
3819 static bfd_boolean
3820 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3821 {
3822 bfd_boolean must_recreate;
3823 htab_t new_got;
3824
3825 must_recreate = FALSE;
3826 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3827 if (must_recreate)
3828 {
3829 new_got = htab_create (htab_size (g->got_entries),
3830 mips_elf_got_entry_hash,
3831 mips_elf_got_entry_eq, NULL);
3832 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3833 if (new_got == NULL)
3834 return FALSE;
3835
3836 /* Each entry in g->got_entries has either been copied to new_got
3837 or freed. Now delete the hash table itself. */
3838 htab_delete (g->got_entries);
3839 g->got_entries = new_got;
3840 }
3841 return TRUE;
3842 }
3843
3844 /* A mips_elf_link_hash_traverse callback for which DATA points
3845 to the link_info structure. Count the number of type (3) entries
3846 in the master GOT. */
3847
3848 static int
3849 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3850 {
3851 struct bfd_link_info *info;
3852 struct mips_elf_link_hash_table *htab;
3853 struct mips_got_info *g;
3854
3855 info = (struct bfd_link_info *) data;
3856 htab = mips_elf_hash_table (info);
3857 g = htab->got_info;
3858 if (h->global_got_area != GGA_NONE)
3859 {
3860 /* Make a final decision about whether the symbol belongs in the
3861 local or global GOT. Symbols that bind locally can (and in the
3862 case of forced-local symbols, must) live in the local GOT.
3863 Those that are aren't in the dynamic symbol table must also
3864 live in the local GOT.
3865
3866 Note that the former condition does not always imply the
3867 latter: symbols do not bind locally if they are completely
3868 undefined. We'll report undefined symbols later if appropriate. */
3869 if (h->root.dynindx == -1
3870 || (h->got_only_for_calls
3871 ? SYMBOL_CALLS_LOCAL (info, &h->root)
3872 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3873 {
3874 /* The symbol belongs in the local GOT. We no longer need this
3875 entry if it was only used for relocations; those relocations
3876 will be against the null or section symbol instead of H. */
3877 if (h->global_got_area != GGA_RELOC_ONLY)
3878 g->local_gotno++;
3879 h->global_got_area = GGA_NONE;
3880 }
3881 else if (htab->is_vxworks
3882 && h->got_only_for_calls
3883 && h->root.plt.offset != MINUS_ONE)
3884 /* On VxWorks, calls can refer directly to the .got.plt entry;
3885 they don't need entries in the regular GOT. .got.plt entries
3886 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
3887 h->global_got_area = GGA_NONE;
3888 else
3889 {
3890 g->global_gotno++;
3891 if (h->global_got_area == GGA_RELOC_ONLY)
3892 g->reloc_only_gotno++;
3893 }
3894 }
3895 return 1;
3896 }
3897 \f
3898 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3899
3900 static hashval_t
3901 mips_elf_bfd2got_entry_hash (const void *entry_)
3902 {
3903 const struct mips_elf_bfd2got_hash *entry
3904 = (struct mips_elf_bfd2got_hash *)entry_;
3905
3906 return entry->bfd->id;
3907 }
3908
3909 /* Check whether two hash entries have the same bfd. */
3910
3911 static int
3912 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3913 {
3914 const struct mips_elf_bfd2got_hash *e1
3915 = (const struct mips_elf_bfd2got_hash *)entry1;
3916 const struct mips_elf_bfd2got_hash *e2
3917 = (const struct mips_elf_bfd2got_hash *)entry2;
3918
3919 return e1->bfd == e2->bfd;
3920 }
3921
3922 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3923 be the master GOT data. */
3924
3925 static struct mips_got_info *
3926 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3927 {
3928 struct mips_elf_bfd2got_hash e, *p;
3929
3930 if (! g->bfd2got)
3931 return g;
3932
3933 e.bfd = ibfd;
3934 p = htab_find (g->bfd2got, &e);
3935 return p ? p->g : NULL;
3936 }
3937
3938 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3939 Return NULL if an error occured. */
3940
3941 static struct mips_got_info *
3942 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3943 bfd *input_bfd)
3944 {
3945 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3946 struct mips_got_info *g;
3947 void **bfdgotp;
3948
3949 bfdgot_entry.bfd = input_bfd;
3950 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3951 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3952
3953 if (bfdgot == NULL)
3954 {
3955 bfdgot = ((struct mips_elf_bfd2got_hash *)
3956 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3957 if (bfdgot == NULL)
3958 return NULL;
3959
3960 *bfdgotp = bfdgot;
3961
3962 g = ((struct mips_got_info *)
3963 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3964 if (g == NULL)
3965 return NULL;
3966
3967 bfdgot->bfd = input_bfd;
3968 bfdgot->g = g;
3969
3970 g->global_gotsym = NULL;
3971 g->global_gotno = 0;
3972 g->reloc_only_gotno = 0;
3973 g->local_gotno = 0;
3974 g->page_gotno = 0;
3975 g->assigned_gotno = -1;
3976 g->tls_gotno = 0;
3977 g->tls_assigned_gotno = 0;
3978 g->tls_ldm_offset = MINUS_ONE;
3979 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3980 mips_elf_multi_got_entry_eq, NULL);
3981 if (g->got_entries == NULL)
3982 return NULL;
3983
3984 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3985 mips_got_page_entry_eq, NULL);
3986 if (g->got_page_entries == NULL)
3987 return NULL;
3988
3989 g->bfd2got = NULL;
3990 g->next = NULL;
3991 }
3992
3993 return bfdgot->g;
3994 }
3995
3996 /* A htab_traverse callback for the entries in the master got.
3997 Create one separate got for each bfd that has entries in the global
3998 got, such that we can tell how many local and global entries each
3999 bfd requires. */
4000
4001 static int
4002 mips_elf_make_got_per_bfd (void **entryp, void *p)
4003 {
4004 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4005 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4006 struct mips_got_info *g;
4007
4008 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4009 if (g == NULL)
4010 {
4011 arg->obfd = NULL;
4012 return 0;
4013 }
4014
4015 /* Insert the GOT entry in the bfd's got entry hash table. */
4016 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4017 if (*entryp != NULL)
4018 return 1;
4019
4020 *entryp = entry;
4021
4022 if (entry->tls_type)
4023 {
4024 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4025 g->tls_gotno += 2;
4026 if (entry->tls_type & GOT_TLS_IE)
4027 g->tls_gotno += 1;
4028 }
4029 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4030 ++g->local_gotno;
4031 else
4032 ++g->global_gotno;
4033
4034 return 1;
4035 }
4036
4037 /* A htab_traverse callback for the page entries in the master got.
4038 Associate each page entry with the bfd's got. */
4039
4040 static int
4041 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4042 {
4043 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4044 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4045 struct mips_got_info *g;
4046
4047 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4048 if (g == NULL)
4049 {
4050 arg->obfd = NULL;
4051 return 0;
4052 }
4053
4054 /* Insert the GOT entry in the bfd's got entry hash table. */
4055 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4056 if (*entryp != NULL)
4057 return 1;
4058
4059 *entryp = entry;
4060 g->page_gotno += entry->num_pages;
4061 return 1;
4062 }
4063
4064 /* Consider merging the got described by BFD2GOT with TO, using the
4065 information given by ARG. Return -1 if this would lead to overflow,
4066 1 if they were merged successfully, and 0 if a merge failed due to
4067 lack of memory. (These values are chosen so that nonnegative return
4068 values can be returned by a htab_traverse callback.) */
4069
4070 static int
4071 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4072 struct mips_got_info *to,
4073 struct mips_elf_got_per_bfd_arg *arg)
4074 {
4075 struct mips_got_info *from = bfd2got->g;
4076 unsigned int estimate;
4077
4078 /* Work out how many page entries we would need for the combined GOT. */
4079 estimate = arg->max_pages;
4080 if (estimate >= from->page_gotno + to->page_gotno)
4081 estimate = from->page_gotno + to->page_gotno;
4082
4083 /* And conservatively estimate how many local, global and TLS entries
4084 would be needed. */
4085 estimate += (from->local_gotno
4086 + from->global_gotno
4087 + from->tls_gotno
4088 + to->local_gotno
4089 + to->global_gotno
4090 + to->tls_gotno);
4091
4092 /* Bail out if the combined GOT might be too big. */
4093 if (estimate > arg->max_count)
4094 return -1;
4095
4096 /* Commit to the merge. Record that TO is now the bfd for this got. */
4097 bfd2got->g = to;
4098
4099 /* Transfer the bfd's got information from FROM to TO. */
4100 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4101 if (arg->obfd == NULL)
4102 return 0;
4103
4104 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4105 if (arg->obfd == NULL)
4106 return 0;
4107
4108 /* We don't have to worry about releasing memory of the actual
4109 got entries, since they're all in the master got_entries hash
4110 table anyway. */
4111 htab_delete (from->got_entries);
4112 htab_delete (from->got_page_entries);
4113 return 1;
4114 }
4115
4116 /* Attempt to merge gots of different input bfds. Try to use as much
4117 as possible of the primary got, since it doesn't require explicit
4118 dynamic relocations, but don't use bfds that would reference global
4119 symbols out of the addressable range. Failing the primary got,
4120 attempt to merge with the current got, or finish the current got
4121 and then make make the new got current. */
4122
4123 static int
4124 mips_elf_merge_gots (void **bfd2got_, void *p)
4125 {
4126 struct mips_elf_bfd2got_hash *bfd2got
4127 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4128 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4129 struct mips_got_info *g;
4130 unsigned int estimate;
4131 int result;
4132
4133 g = bfd2got->g;
4134
4135 /* Work out the number of page, local and TLS entries. */
4136 estimate = arg->max_pages;
4137 if (estimate > g->page_gotno)
4138 estimate = g->page_gotno;
4139 estimate += g->local_gotno + g->tls_gotno;
4140
4141 /* We place TLS GOT entries after both locals and globals. The globals
4142 for the primary GOT may overflow the normal GOT size limit, so be
4143 sure not to merge a GOT which requires TLS with the primary GOT in that
4144 case. This doesn't affect non-primary GOTs. */
4145 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4146
4147 if (estimate <= arg->max_count)
4148 {
4149 /* If we don't have a primary GOT, use it as
4150 a starting point for the primary GOT. */
4151 if (!arg->primary)
4152 {
4153 arg->primary = bfd2got->g;
4154 return 1;
4155 }
4156
4157 /* Try merging with the primary GOT. */
4158 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4159 if (result >= 0)
4160 return result;
4161 }
4162
4163 /* If we can merge with the last-created got, do it. */
4164 if (arg->current)
4165 {
4166 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4167 if (result >= 0)
4168 return result;
4169 }
4170
4171 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4172 fits; if it turns out that it doesn't, we'll get relocation
4173 overflows anyway. */
4174 g->next = arg->current;
4175 arg->current = g;
4176
4177 return 1;
4178 }
4179
4180 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4181 is null iff there is just a single GOT. */
4182
4183 static int
4184 mips_elf_initialize_tls_index (void **entryp, void *p)
4185 {
4186 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4187 struct mips_got_info *g = p;
4188 bfd_vma next_index;
4189 unsigned char tls_type;
4190
4191 /* We're only interested in TLS symbols. */
4192 if (entry->tls_type == 0)
4193 return 1;
4194
4195 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4196
4197 if (entry->symndx == -1 && g->next == NULL)
4198 {
4199 /* A type (3) got entry in the single-GOT case. We use the symbol's
4200 hash table entry to track its index. */
4201 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4202 return 1;
4203 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4204 entry->d.h->tls_got_offset = next_index;
4205 tls_type = entry->d.h->tls_type;
4206 }
4207 else
4208 {
4209 if (entry->tls_type & GOT_TLS_LDM)
4210 {
4211 /* There are separate mips_got_entry objects for each input bfd
4212 that requires an LDM entry. Make sure that all LDM entries in
4213 a GOT resolve to the same index. */
4214 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4215 {
4216 entry->gotidx = g->tls_ldm_offset;
4217 return 1;
4218 }
4219 g->tls_ldm_offset = next_index;
4220 }
4221 entry->gotidx = next_index;
4222 tls_type = entry->tls_type;
4223 }
4224
4225 /* Account for the entries we've just allocated. */
4226 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4227 g->tls_assigned_gotno += 2;
4228 if (tls_type & GOT_TLS_IE)
4229 g->tls_assigned_gotno += 1;
4230
4231 return 1;
4232 }
4233
4234 /* If passed a NULL mips_got_info in the argument, set the marker used
4235 to tell whether a global symbol needs a got entry (in the primary
4236 got) to the given VALUE.
4237
4238 If passed a pointer G to a mips_got_info in the argument (it must
4239 not be the primary GOT), compute the offset from the beginning of
4240 the (primary) GOT section to the entry in G corresponding to the
4241 global symbol. G's assigned_gotno must contain the index of the
4242 first available global GOT entry in G. VALUE must contain the size
4243 of a GOT entry in bytes. For each global GOT entry that requires a
4244 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4245 marked as not eligible for lazy resolution through a function
4246 stub. */
4247 static int
4248 mips_elf_set_global_got_offset (void **entryp, void *p)
4249 {
4250 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4251 struct mips_elf_set_global_got_offset_arg *arg
4252 = (struct mips_elf_set_global_got_offset_arg *)p;
4253 struct mips_got_info *g = arg->g;
4254
4255 if (g && entry->tls_type != GOT_NORMAL)
4256 arg->needed_relocs +=
4257 mips_tls_got_relocs (arg->info, entry->tls_type,
4258 entry->symndx == -1 ? &entry->d.h->root : NULL);
4259
4260 if (entry->abfd != NULL
4261 && entry->symndx == -1
4262 && entry->d.h->global_got_area != GGA_NONE)
4263 {
4264 if (g)
4265 {
4266 BFD_ASSERT (g->global_gotsym == NULL);
4267
4268 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4269 if (arg->info->shared
4270 || (elf_hash_table (arg->info)->dynamic_sections_created
4271 && entry->d.h->root.def_dynamic
4272 && !entry->d.h->root.def_regular))
4273 ++arg->needed_relocs;
4274 }
4275 else
4276 entry->d.h->global_got_area = arg->value;
4277 }
4278
4279 return 1;
4280 }
4281
4282 /* A htab_traverse callback for GOT entries for which DATA is the
4283 bfd_link_info. Forbid any global symbols from having traditional
4284 lazy-binding stubs. */
4285
4286 static int
4287 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4288 {
4289 struct bfd_link_info *info;
4290 struct mips_elf_link_hash_table *htab;
4291 struct mips_got_entry *entry;
4292
4293 entry = (struct mips_got_entry *) *entryp;
4294 info = (struct bfd_link_info *) data;
4295 htab = mips_elf_hash_table (info);
4296 BFD_ASSERT (htab != NULL);
4297
4298 if (entry->abfd != NULL
4299 && entry->symndx == -1
4300 && entry->d.h->needs_lazy_stub)
4301 {
4302 entry->d.h->needs_lazy_stub = FALSE;
4303 htab->lazy_stub_count--;
4304 }
4305
4306 return 1;
4307 }
4308
4309 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4310 the primary GOT. */
4311 static bfd_vma
4312 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4313 {
4314 if (g->bfd2got == NULL)
4315 return 0;
4316
4317 g = mips_elf_got_for_ibfd (g, ibfd);
4318 if (! g)
4319 return 0;
4320
4321 BFD_ASSERT (g->next);
4322
4323 g = g->next;
4324
4325 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4326 * MIPS_ELF_GOT_SIZE (abfd);
4327 }
4328
4329 /* Turn a single GOT that is too big for 16-bit addressing into
4330 a sequence of GOTs, each one 16-bit addressable. */
4331
4332 static bfd_boolean
4333 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4334 asection *got, bfd_size_type pages)
4335 {
4336 struct mips_elf_link_hash_table *htab;
4337 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4338 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4339 struct mips_got_info *g, *gg;
4340 unsigned int assign, needed_relocs;
4341 bfd *dynobj;
4342
4343 dynobj = elf_hash_table (info)->dynobj;
4344 htab = mips_elf_hash_table (info);
4345 BFD_ASSERT (htab != NULL);
4346
4347 g = htab->got_info;
4348 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4349 mips_elf_bfd2got_entry_eq, NULL);
4350 if (g->bfd2got == NULL)
4351 return FALSE;
4352
4353 got_per_bfd_arg.bfd2got = g->bfd2got;
4354 got_per_bfd_arg.obfd = abfd;
4355 got_per_bfd_arg.info = info;
4356
4357 /* Count how many GOT entries each input bfd requires, creating a
4358 map from bfd to got info while at that. */
4359 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4360 if (got_per_bfd_arg.obfd == NULL)
4361 return FALSE;
4362
4363 /* Also count how many page entries each input bfd requires. */
4364 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4365 &got_per_bfd_arg);
4366 if (got_per_bfd_arg.obfd == NULL)
4367 return FALSE;
4368
4369 got_per_bfd_arg.current = NULL;
4370 got_per_bfd_arg.primary = NULL;
4371 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4372 / MIPS_ELF_GOT_SIZE (abfd))
4373 - htab->reserved_gotno);
4374 got_per_bfd_arg.max_pages = pages;
4375 /* The number of globals that will be included in the primary GOT.
4376 See the calls to mips_elf_set_global_got_offset below for more
4377 information. */
4378 got_per_bfd_arg.global_count = g->global_gotno;
4379
4380 /* Try to merge the GOTs of input bfds together, as long as they
4381 don't seem to exceed the maximum GOT size, choosing one of them
4382 to be the primary GOT. */
4383 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4384 if (got_per_bfd_arg.obfd == NULL)
4385 return FALSE;
4386
4387 /* If we do not find any suitable primary GOT, create an empty one. */
4388 if (got_per_bfd_arg.primary == NULL)
4389 {
4390 g->next = (struct mips_got_info *)
4391 bfd_alloc (abfd, sizeof (struct mips_got_info));
4392 if (g->next == NULL)
4393 return FALSE;
4394
4395 g->next->global_gotsym = NULL;
4396 g->next->global_gotno = 0;
4397 g->next->reloc_only_gotno = 0;
4398 g->next->local_gotno = 0;
4399 g->next->page_gotno = 0;
4400 g->next->tls_gotno = 0;
4401 g->next->assigned_gotno = 0;
4402 g->next->tls_assigned_gotno = 0;
4403 g->next->tls_ldm_offset = MINUS_ONE;
4404 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4405 mips_elf_multi_got_entry_eq,
4406 NULL);
4407 if (g->next->got_entries == NULL)
4408 return FALSE;
4409 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4410 mips_got_page_entry_eq,
4411 NULL);
4412 if (g->next->got_page_entries == NULL)
4413 return FALSE;
4414 g->next->bfd2got = NULL;
4415 }
4416 else
4417 g->next = got_per_bfd_arg.primary;
4418 g->next->next = got_per_bfd_arg.current;
4419
4420 /* GG is now the master GOT, and G is the primary GOT. */
4421 gg = g;
4422 g = g->next;
4423
4424 /* Map the output bfd to the primary got. That's what we're going
4425 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4426 didn't mark in check_relocs, and we want a quick way to find it.
4427 We can't just use gg->next because we're going to reverse the
4428 list. */
4429 {
4430 struct mips_elf_bfd2got_hash *bfdgot;
4431 void **bfdgotp;
4432
4433 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4434 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4435
4436 if (bfdgot == NULL)
4437 return FALSE;
4438
4439 bfdgot->bfd = abfd;
4440 bfdgot->g = g;
4441 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4442
4443 BFD_ASSERT (*bfdgotp == NULL);
4444 *bfdgotp = bfdgot;
4445 }
4446
4447 /* Every symbol that is referenced in a dynamic relocation must be
4448 present in the primary GOT, so arrange for them to appear after
4449 those that are actually referenced. */
4450 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4451 g->global_gotno = gg->global_gotno;
4452
4453 set_got_offset_arg.g = NULL;
4454 set_got_offset_arg.value = GGA_RELOC_ONLY;
4455 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4456 &set_got_offset_arg);
4457 set_got_offset_arg.value = GGA_NORMAL;
4458 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4459 &set_got_offset_arg);
4460
4461 /* Now go through the GOTs assigning them offset ranges.
4462 [assigned_gotno, local_gotno[ will be set to the range of local
4463 entries in each GOT. We can then compute the end of a GOT by
4464 adding local_gotno to global_gotno. We reverse the list and make
4465 it circular since then we'll be able to quickly compute the
4466 beginning of a GOT, by computing the end of its predecessor. To
4467 avoid special cases for the primary GOT, while still preserving
4468 assertions that are valid for both single- and multi-got links,
4469 we arrange for the main got struct to have the right number of
4470 global entries, but set its local_gotno such that the initial
4471 offset of the primary GOT is zero. Remember that the primary GOT
4472 will become the last item in the circular linked list, so it
4473 points back to the master GOT. */
4474 gg->local_gotno = -g->global_gotno;
4475 gg->global_gotno = g->global_gotno;
4476 gg->tls_gotno = 0;
4477 assign = 0;
4478 gg->next = gg;
4479
4480 do
4481 {
4482 struct mips_got_info *gn;
4483
4484 assign += htab->reserved_gotno;
4485 g->assigned_gotno = assign;
4486 g->local_gotno += assign;
4487 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4488 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4489
4490 /* Take g out of the direct list, and push it onto the reversed
4491 list that gg points to. g->next is guaranteed to be nonnull after
4492 this operation, as required by mips_elf_initialize_tls_index. */
4493 gn = g->next;
4494 g->next = gg->next;
4495 gg->next = g;
4496
4497 /* Set up any TLS entries. We always place the TLS entries after
4498 all non-TLS entries. */
4499 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4500 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4501
4502 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4503 g = gn;
4504
4505 /* Forbid global symbols in every non-primary GOT from having
4506 lazy-binding stubs. */
4507 if (g)
4508 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4509 }
4510 while (g);
4511
4512 got->size = (gg->next->local_gotno
4513 + gg->next->global_gotno
4514 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4515
4516 needed_relocs = 0;
4517 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4518 set_got_offset_arg.info = info;
4519 for (g = gg->next; g && g->next != gg; g = g->next)
4520 {
4521 unsigned int save_assign;
4522
4523 /* Assign offsets to global GOT entries. */
4524 save_assign = g->assigned_gotno;
4525 g->assigned_gotno = g->local_gotno;
4526 set_got_offset_arg.g = g;
4527 set_got_offset_arg.needed_relocs = 0;
4528 htab_traverse (g->got_entries,
4529 mips_elf_set_global_got_offset,
4530 &set_got_offset_arg);
4531 needed_relocs += set_got_offset_arg.needed_relocs;
4532 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4533
4534 g->assigned_gotno = save_assign;
4535 if (info->shared)
4536 {
4537 needed_relocs += g->local_gotno - g->assigned_gotno;
4538 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4539 + g->next->global_gotno
4540 + g->next->tls_gotno
4541 + htab->reserved_gotno);
4542 }
4543 }
4544
4545 if (needed_relocs)
4546 mips_elf_allocate_dynamic_relocations (dynobj, info,
4547 needed_relocs);
4548
4549 return TRUE;
4550 }
4551
4552 \f
4553 /* Returns the first relocation of type r_type found, beginning with
4554 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4555
4556 static const Elf_Internal_Rela *
4557 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4558 const Elf_Internal_Rela *relocation,
4559 const Elf_Internal_Rela *relend)
4560 {
4561 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4562
4563 while (relocation < relend)
4564 {
4565 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4566 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4567 return relocation;
4568
4569 ++relocation;
4570 }
4571
4572 /* We didn't find it. */
4573 return NULL;
4574 }
4575
4576 /* Return whether an input relocation is against a local symbol. */
4577
4578 static bfd_boolean
4579 mips_elf_local_relocation_p (bfd *input_bfd,
4580 const Elf_Internal_Rela *relocation,
4581 asection **local_sections)
4582 {
4583 unsigned long r_symndx;
4584 Elf_Internal_Shdr *symtab_hdr;
4585 size_t extsymoff;
4586
4587 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4588 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4589 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4590
4591 if (r_symndx < extsymoff)
4592 return TRUE;
4593 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4594 return TRUE;
4595
4596 return FALSE;
4597 }
4598 \f
4599 /* Sign-extend VALUE, which has the indicated number of BITS. */
4600
4601 bfd_vma
4602 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4603 {
4604 if (value & ((bfd_vma) 1 << (bits - 1)))
4605 /* VALUE is negative. */
4606 value |= ((bfd_vma) - 1) << bits;
4607
4608 return value;
4609 }
4610
4611 /* Return non-zero if the indicated VALUE has overflowed the maximum
4612 range expressible by a signed number with the indicated number of
4613 BITS. */
4614
4615 static bfd_boolean
4616 mips_elf_overflow_p (bfd_vma value, int bits)
4617 {
4618 bfd_signed_vma svalue = (bfd_signed_vma) value;
4619
4620 if (svalue > (1 << (bits - 1)) - 1)
4621 /* The value is too big. */
4622 return TRUE;
4623 else if (svalue < -(1 << (bits - 1)))
4624 /* The value is too small. */
4625 return TRUE;
4626
4627 /* All is well. */
4628 return FALSE;
4629 }
4630
4631 /* Calculate the %high function. */
4632
4633 static bfd_vma
4634 mips_elf_high (bfd_vma value)
4635 {
4636 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4637 }
4638
4639 /* Calculate the %higher function. */
4640
4641 static bfd_vma
4642 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4643 {
4644 #ifdef BFD64
4645 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4646 #else
4647 abort ();
4648 return MINUS_ONE;
4649 #endif
4650 }
4651
4652 /* Calculate the %highest function. */
4653
4654 static bfd_vma
4655 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4656 {
4657 #ifdef BFD64
4658 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4659 #else
4660 abort ();
4661 return MINUS_ONE;
4662 #endif
4663 }
4664 \f
4665 /* Create the .compact_rel section. */
4666
4667 static bfd_boolean
4668 mips_elf_create_compact_rel_section
4669 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4670 {
4671 flagword flags;
4672 register asection *s;
4673
4674 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4675 {
4676 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4677 | SEC_READONLY);
4678
4679 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4680 if (s == NULL
4681 || ! bfd_set_section_alignment (abfd, s,
4682 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4683 return FALSE;
4684
4685 s->size = sizeof (Elf32_External_compact_rel);
4686 }
4687
4688 return TRUE;
4689 }
4690
4691 /* Create the .got section to hold the global offset table. */
4692
4693 static bfd_boolean
4694 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4695 {
4696 flagword flags;
4697 register asection *s;
4698 struct elf_link_hash_entry *h;
4699 struct bfd_link_hash_entry *bh;
4700 struct mips_got_info *g;
4701 bfd_size_type amt;
4702 struct mips_elf_link_hash_table *htab;
4703
4704 htab = mips_elf_hash_table (info);
4705 BFD_ASSERT (htab != NULL);
4706
4707 /* This function may be called more than once. */
4708 if (htab->sgot)
4709 return TRUE;
4710
4711 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4712 | SEC_LINKER_CREATED);
4713
4714 /* We have to use an alignment of 2**4 here because this is hardcoded
4715 in the function stub generation and in the linker script. */
4716 s = bfd_make_section_with_flags (abfd, ".got", flags);
4717 if (s == NULL
4718 || ! bfd_set_section_alignment (abfd, s, 4))
4719 return FALSE;
4720 htab->sgot = s;
4721
4722 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4723 linker script because we don't want to define the symbol if we
4724 are not creating a global offset table. */
4725 bh = NULL;
4726 if (! (_bfd_generic_link_add_one_symbol
4727 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4728 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4729 return FALSE;
4730
4731 h = (struct elf_link_hash_entry *) bh;
4732 h->non_elf = 0;
4733 h->def_regular = 1;
4734 h->type = STT_OBJECT;
4735 elf_hash_table (info)->hgot = h;
4736
4737 if (info->shared
4738 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4739 return FALSE;
4740
4741 amt = sizeof (struct mips_got_info);
4742 g = bfd_alloc (abfd, amt);
4743 if (g == NULL)
4744 return FALSE;
4745 g->global_gotsym = NULL;
4746 g->global_gotno = 0;
4747 g->reloc_only_gotno = 0;
4748 g->tls_gotno = 0;
4749 g->local_gotno = 0;
4750 g->page_gotno = 0;
4751 g->assigned_gotno = 0;
4752 g->bfd2got = NULL;
4753 g->next = NULL;
4754 g->tls_ldm_offset = MINUS_ONE;
4755 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4756 mips_elf_got_entry_eq, NULL);
4757 if (g->got_entries == NULL)
4758 return FALSE;
4759 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4760 mips_got_page_entry_eq, NULL);
4761 if (g->got_page_entries == NULL)
4762 return FALSE;
4763 htab->got_info = g;
4764 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4765 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4766
4767 /* We also need a .got.plt section when generating PLTs. */
4768 s = bfd_make_section_with_flags (abfd, ".got.plt",
4769 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4770 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4771 if (s == NULL)
4772 return FALSE;
4773 htab->sgotplt = s;
4774
4775 return TRUE;
4776 }
4777 \f
4778 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4779 __GOTT_INDEX__ symbols. These symbols are only special for
4780 shared objects; they are not used in executables. */
4781
4782 static bfd_boolean
4783 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4784 {
4785 return (mips_elf_hash_table (info)->is_vxworks
4786 && info->shared
4787 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4788 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4789 }
4790
4791 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4792 require an la25 stub. See also mips_elf_local_pic_function_p,
4793 which determines whether the destination function ever requires a
4794 stub. */
4795
4796 static bfd_boolean
4797 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4798 {
4799 /* We specifically ignore branches and jumps from EF_PIC objects,
4800 where the onus is on the compiler or programmer to perform any
4801 necessary initialization of $25. Sometimes such initialization
4802 is unnecessary; for example, -mno-shared functions do not use
4803 the incoming value of $25, and may therefore be called directly. */
4804 if (PIC_OBJECT_P (input_bfd))
4805 return FALSE;
4806
4807 switch (r_type)
4808 {
4809 case R_MIPS_26:
4810 case R_MIPS_PC16:
4811 case R_MIPS16_26:
4812 return TRUE;
4813
4814 default:
4815 return FALSE;
4816 }
4817 }
4818 \f
4819 /* Calculate the value produced by the RELOCATION (which comes from
4820 the INPUT_BFD). The ADDEND is the addend to use for this
4821 RELOCATION; RELOCATION->R_ADDEND is ignored.
4822
4823 The result of the relocation calculation is stored in VALUEP.
4824 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4825 is a MIPS16 jump to non-MIPS16 code, or vice versa.
4826
4827 This function returns bfd_reloc_continue if the caller need take no
4828 further action regarding this relocation, bfd_reloc_notsupported if
4829 something goes dramatically wrong, bfd_reloc_overflow if an
4830 overflow occurs, and bfd_reloc_ok to indicate success. */
4831
4832 static bfd_reloc_status_type
4833 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4834 asection *input_section,
4835 struct bfd_link_info *info,
4836 const Elf_Internal_Rela *relocation,
4837 bfd_vma addend, reloc_howto_type *howto,
4838 Elf_Internal_Sym *local_syms,
4839 asection **local_sections, bfd_vma *valuep,
4840 const char **namep,
4841 bfd_boolean *cross_mode_jump_p,
4842 bfd_boolean save_addend)
4843 {
4844 /* The eventual value we will return. */
4845 bfd_vma value;
4846 /* The address of the symbol against which the relocation is
4847 occurring. */
4848 bfd_vma symbol = 0;
4849 /* The final GP value to be used for the relocatable, executable, or
4850 shared object file being produced. */
4851 bfd_vma gp;
4852 /* The place (section offset or address) of the storage unit being
4853 relocated. */
4854 bfd_vma p;
4855 /* The value of GP used to create the relocatable object. */
4856 bfd_vma gp0;
4857 /* The offset into the global offset table at which the address of
4858 the relocation entry symbol, adjusted by the addend, resides
4859 during execution. */
4860 bfd_vma g = MINUS_ONE;
4861 /* The section in which the symbol referenced by the relocation is
4862 located. */
4863 asection *sec = NULL;
4864 struct mips_elf_link_hash_entry *h = NULL;
4865 /* TRUE if the symbol referred to by this relocation is a local
4866 symbol. */
4867 bfd_boolean local_p, was_local_p;
4868 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4869 bfd_boolean gp_disp_p = FALSE;
4870 /* TRUE if the symbol referred to by this relocation is
4871 "__gnu_local_gp". */
4872 bfd_boolean gnu_local_gp_p = FALSE;
4873 Elf_Internal_Shdr *symtab_hdr;
4874 size_t extsymoff;
4875 unsigned long r_symndx;
4876 int r_type;
4877 /* TRUE if overflow occurred during the calculation of the
4878 relocation value. */
4879 bfd_boolean overflowed_p;
4880 /* TRUE if this relocation refers to a MIPS16 function. */
4881 bfd_boolean target_is_16_bit_code_p = FALSE;
4882 struct mips_elf_link_hash_table *htab;
4883 bfd *dynobj;
4884
4885 dynobj = elf_hash_table (info)->dynobj;
4886 htab = mips_elf_hash_table (info);
4887 BFD_ASSERT (htab != NULL);
4888
4889 /* Parse the relocation. */
4890 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4891 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4892 p = (input_section->output_section->vma
4893 + input_section->output_offset
4894 + relocation->r_offset);
4895
4896 /* Assume that there will be no overflow. */
4897 overflowed_p = FALSE;
4898
4899 /* Figure out whether or not the symbol is local, and get the offset
4900 used in the array of hash table entries. */
4901 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4902 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4903 local_sections);
4904 was_local_p = local_p;
4905 if (! elf_bad_symtab (input_bfd))
4906 extsymoff = symtab_hdr->sh_info;
4907 else
4908 {
4909 /* The symbol table does not follow the rule that local symbols
4910 must come before globals. */
4911 extsymoff = 0;
4912 }
4913
4914 /* Figure out the value of the symbol. */
4915 if (local_p)
4916 {
4917 Elf_Internal_Sym *sym;
4918
4919 sym = local_syms + r_symndx;
4920 sec = local_sections[r_symndx];
4921
4922 symbol = sec->output_section->vma + sec->output_offset;
4923 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4924 || (sec->flags & SEC_MERGE))
4925 symbol += sym->st_value;
4926 if ((sec->flags & SEC_MERGE)
4927 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4928 {
4929 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4930 addend -= symbol;
4931 addend += sec->output_section->vma + sec->output_offset;
4932 }
4933
4934 /* MIPS16 text labels should be treated as odd. */
4935 if (ELF_ST_IS_MIPS16 (sym->st_other))
4936 ++symbol;
4937
4938 /* Record the name of this symbol, for our caller. */
4939 *namep = bfd_elf_string_from_elf_section (input_bfd,
4940 symtab_hdr->sh_link,
4941 sym->st_name);
4942 if (*namep == '\0')
4943 *namep = bfd_section_name (input_bfd, sec);
4944
4945 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4946 }
4947 else
4948 {
4949 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4950
4951 /* For global symbols we look up the symbol in the hash-table. */
4952 h = ((struct mips_elf_link_hash_entry *)
4953 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4954 /* Find the real hash-table entry for this symbol. */
4955 while (h->root.root.type == bfd_link_hash_indirect
4956 || h->root.root.type == bfd_link_hash_warning)
4957 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4958
4959 /* Record the name of this symbol, for our caller. */
4960 *namep = h->root.root.root.string;
4961
4962 /* See if this is the special _gp_disp symbol. Note that such a
4963 symbol must always be a global symbol. */
4964 if (strcmp (*namep, "_gp_disp") == 0
4965 && ! NEWABI_P (input_bfd))
4966 {
4967 /* Relocations against _gp_disp are permitted only with
4968 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4969 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4970 return bfd_reloc_notsupported;
4971
4972 gp_disp_p = TRUE;
4973 }
4974 /* See if this is the special _gp symbol. Note that such a
4975 symbol must always be a global symbol. */
4976 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4977 gnu_local_gp_p = TRUE;
4978
4979
4980 /* If this symbol is defined, calculate its address. Note that
4981 _gp_disp is a magic symbol, always implicitly defined by the
4982 linker, so it's inappropriate to check to see whether or not
4983 its defined. */
4984 else if ((h->root.root.type == bfd_link_hash_defined
4985 || h->root.root.type == bfd_link_hash_defweak)
4986 && h->root.root.u.def.section)
4987 {
4988 sec = h->root.root.u.def.section;
4989 if (sec->output_section)
4990 symbol = (h->root.root.u.def.value
4991 + sec->output_section->vma
4992 + sec->output_offset);
4993 else
4994 symbol = h->root.root.u.def.value;
4995 }
4996 else if (h->root.root.type == bfd_link_hash_undefweak)
4997 /* We allow relocations against undefined weak symbols, giving
4998 it the value zero, so that you can undefined weak functions
4999 and check to see if they exist by looking at their
5000 addresses. */
5001 symbol = 0;
5002 else if (info->unresolved_syms_in_objects == RM_IGNORE
5003 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5004 symbol = 0;
5005 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5006 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5007 {
5008 /* If this is a dynamic link, we should have created a
5009 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5010 in in _bfd_mips_elf_create_dynamic_sections.
5011 Otherwise, we should define the symbol with a value of 0.
5012 FIXME: It should probably get into the symbol table
5013 somehow as well. */
5014 BFD_ASSERT (! info->shared);
5015 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5016 symbol = 0;
5017 }
5018 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5019 {
5020 /* This is an optional symbol - an Irix specific extension to the
5021 ELF spec. Ignore it for now.
5022 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5023 than simply ignoring them, but we do not handle this for now.
5024 For information see the "64-bit ELF Object File Specification"
5025 which is available from here:
5026 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5027 symbol = 0;
5028 }
5029 else if ((*info->callbacks->undefined_symbol)
5030 (info, h->root.root.root.string, input_bfd,
5031 input_section, relocation->r_offset,
5032 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5033 || ELF_ST_VISIBILITY (h->root.other)))
5034 {
5035 return bfd_reloc_undefined;
5036 }
5037 else
5038 {
5039 return bfd_reloc_notsupported;
5040 }
5041
5042 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5043 }
5044
5045 /* If this is a reference to a 16-bit function with a stub, we need
5046 to redirect the relocation to the stub unless:
5047
5048 (a) the relocation is for a MIPS16 JAL;
5049
5050 (b) the relocation is for a MIPS16 PIC call, and there are no
5051 non-MIPS16 uses of the GOT slot; or
5052
5053 (c) the section allows direct references to MIPS16 functions. */
5054 if (r_type != R_MIPS16_26
5055 && !info->relocatable
5056 && ((h != NULL
5057 && h->fn_stub != NULL
5058 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5059 || (local_p
5060 && elf_tdata (input_bfd)->local_stubs != NULL
5061 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5062 && !section_allows_mips16_refs_p (input_section))
5063 {
5064 /* This is a 32- or 64-bit call to a 16-bit function. We should
5065 have already noticed that we were going to need the
5066 stub. */
5067 if (local_p)
5068 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5069 else
5070 {
5071 BFD_ASSERT (h->need_fn_stub);
5072 sec = h->fn_stub;
5073 }
5074
5075 symbol = sec->output_section->vma + sec->output_offset;
5076 /* The target is 16-bit, but the stub isn't. */
5077 target_is_16_bit_code_p = FALSE;
5078 }
5079 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5080 need to redirect the call to the stub. Note that we specifically
5081 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5082 use an indirect stub instead. */
5083 else if (r_type == R_MIPS16_26 && !info->relocatable
5084 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5085 || (local_p
5086 && elf_tdata (input_bfd)->local_call_stubs != NULL
5087 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5088 && !target_is_16_bit_code_p)
5089 {
5090 if (local_p)
5091 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5092 else
5093 {
5094 /* If both call_stub and call_fp_stub are defined, we can figure
5095 out which one to use by checking which one appears in the input
5096 file. */
5097 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5098 {
5099 asection *o;
5100
5101 sec = NULL;
5102 for (o = input_bfd->sections; o != NULL; o = o->next)
5103 {
5104 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5105 {
5106 sec = h->call_fp_stub;
5107 break;
5108 }
5109 }
5110 if (sec == NULL)
5111 sec = h->call_stub;
5112 }
5113 else if (h->call_stub != NULL)
5114 sec = h->call_stub;
5115 else
5116 sec = h->call_fp_stub;
5117 }
5118
5119 BFD_ASSERT (sec->size > 0);
5120 symbol = sec->output_section->vma + sec->output_offset;
5121 }
5122 /* If this is a direct call to a PIC function, redirect to the
5123 non-PIC stub. */
5124 else if (h != NULL && h->la25_stub
5125 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5126 symbol = (h->la25_stub->stub_section->output_section->vma
5127 + h->la25_stub->stub_section->output_offset
5128 + h->la25_stub->offset);
5129
5130 /* Calls from 16-bit code to 32-bit code and vice versa require the
5131 mode change. */
5132 *cross_mode_jump_p = !info->relocatable
5133 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5134 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5135 && target_is_16_bit_code_p));
5136
5137 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5138
5139 gp0 = _bfd_get_gp_value (input_bfd);
5140 gp = _bfd_get_gp_value (abfd);
5141 if (htab->got_info)
5142 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5143
5144 if (gnu_local_gp_p)
5145 symbol = gp;
5146
5147 /* Global R_MIPS_GOT_PAGE relocations are equivalent to R_MIPS_GOT_DISP.
5148 The addend is applied by the corresponding R_MIPS_GOT_OFST. */
5149 if (r_type == R_MIPS_GOT_PAGE && !local_p)
5150 {
5151 r_type = R_MIPS_GOT_DISP;
5152 addend = 0;
5153 }
5154
5155 /* If we haven't already determined the GOT offset, and we're going
5156 to need it, get it now. */
5157 switch (r_type)
5158 {
5159 case R_MIPS16_CALL16:
5160 case R_MIPS16_GOT16:
5161 case R_MIPS_CALL16:
5162 case R_MIPS_GOT16:
5163 case R_MIPS_GOT_DISP:
5164 case R_MIPS_GOT_HI16:
5165 case R_MIPS_CALL_HI16:
5166 case R_MIPS_GOT_LO16:
5167 case R_MIPS_CALL_LO16:
5168 case R_MIPS_TLS_GD:
5169 case R_MIPS_TLS_GOTTPREL:
5170 case R_MIPS_TLS_LDM:
5171 /* Find the index into the GOT where this value is located. */
5172 if (r_type == R_MIPS_TLS_LDM)
5173 {
5174 g = mips_elf_local_got_index (abfd, input_bfd, info,
5175 0, 0, NULL, r_type);
5176 if (g == MINUS_ONE)
5177 return bfd_reloc_outofrange;
5178 }
5179 else if (!local_p)
5180 {
5181 /* On VxWorks, CALL relocations should refer to the .got.plt
5182 entry, which is initialized to point at the PLT stub. */
5183 if (htab->is_vxworks
5184 && (r_type == R_MIPS_CALL_HI16
5185 || r_type == R_MIPS_CALL_LO16
5186 || call16_reloc_p (r_type)))
5187 {
5188 BFD_ASSERT (addend == 0);
5189 BFD_ASSERT (h->root.needs_plt);
5190 g = mips_elf_gotplt_index (info, &h->root);
5191 }
5192 else
5193 {
5194 BFD_ASSERT (addend == 0);
5195 g = mips_elf_global_got_index (dynobj, input_bfd,
5196 &h->root, r_type, info);
5197 if (h->tls_type == GOT_NORMAL
5198 && !elf_hash_table (info)->dynamic_sections_created)
5199 /* This is a static link. We must initialize the GOT entry. */
5200 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5201 }
5202 }
5203 else if (!htab->is_vxworks
5204 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5205 /* The calculation below does not involve "g". */
5206 break;
5207 else
5208 {
5209 g = mips_elf_local_got_index (abfd, input_bfd, info,
5210 symbol + addend, r_symndx, h, r_type);
5211 if (g == MINUS_ONE)
5212 return bfd_reloc_outofrange;
5213 }
5214
5215 /* Convert GOT indices to actual offsets. */
5216 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5217 break;
5218 }
5219
5220 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5221 symbols are resolved by the loader. Add them to .rela.dyn. */
5222 if (h != NULL && is_gott_symbol (info, &h->root))
5223 {
5224 Elf_Internal_Rela outrel;
5225 bfd_byte *loc;
5226 asection *s;
5227
5228 s = mips_elf_rel_dyn_section (info, FALSE);
5229 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5230
5231 outrel.r_offset = (input_section->output_section->vma
5232 + input_section->output_offset
5233 + relocation->r_offset);
5234 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5235 outrel.r_addend = addend;
5236 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5237
5238 /* If we've written this relocation for a readonly section,
5239 we need to set DF_TEXTREL again, so that we do not delete the
5240 DT_TEXTREL tag. */
5241 if (MIPS_ELF_READONLY_SECTION (input_section))
5242 info->flags |= DF_TEXTREL;
5243
5244 *valuep = 0;
5245 return bfd_reloc_ok;
5246 }
5247
5248 /* Figure out what kind of relocation is being performed. */
5249 switch (r_type)
5250 {
5251 case R_MIPS_NONE:
5252 return bfd_reloc_continue;
5253
5254 case R_MIPS_16:
5255 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5256 overflowed_p = mips_elf_overflow_p (value, 16);
5257 break;
5258
5259 case R_MIPS_32:
5260 case R_MIPS_REL32:
5261 case R_MIPS_64:
5262 if ((info->shared
5263 || (htab->root.dynamic_sections_created
5264 && h != NULL
5265 && h->root.def_dynamic
5266 && !h->root.def_regular
5267 && !h->has_static_relocs))
5268 && r_symndx != STN_UNDEF
5269 && (h == NULL
5270 || h->root.root.type != bfd_link_hash_undefweak
5271 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5272 && (input_section->flags & SEC_ALLOC) != 0)
5273 {
5274 /* If we're creating a shared library, then we can't know
5275 where the symbol will end up. So, we create a relocation
5276 record in the output, and leave the job up to the dynamic
5277 linker. We must do the same for executable references to
5278 shared library symbols, unless we've decided to use copy
5279 relocs or PLTs instead. */
5280 value = addend;
5281 if (!mips_elf_create_dynamic_relocation (abfd,
5282 info,
5283 relocation,
5284 h,
5285 sec,
5286 symbol,
5287 &value,
5288 input_section))
5289 return bfd_reloc_undefined;
5290 }
5291 else
5292 {
5293 if (r_type != R_MIPS_REL32)
5294 value = symbol + addend;
5295 else
5296 value = addend;
5297 }
5298 value &= howto->dst_mask;
5299 break;
5300
5301 case R_MIPS_PC32:
5302 value = symbol + addend - p;
5303 value &= howto->dst_mask;
5304 break;
5305
5306 case R_MIPS16_26:
5307 /* The calculation for R_MIPS16_26 is just the same as for an
5308 R_MIPS_26. It's only the storage of the relocated field into
5309 the output file that's different. That's handled in
5310 mips_elf_perform_relocation. So, we just fall through to the
5311 R_MIPS_26 case here. */
5312 case R_MIPS_26:
5313 if (was_local_p)
5314 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
5315 else
5316 {
5317 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
5318 if (h->root.root.type != bfd_link_hash_undefweak)
5319 overflowed_p = (value >> 26) != ((p + 4) >> 28);
5320 }
5321 value &= howto->dst_mask;
5322 break;
5323
5324 case R_MIPS_TLS_DTPREL_HI16:
5325 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5326 & howto->dst_mask);
5327 break;
5328
5329 case R_MIPS_TLS_DTPREL_LO16:
5330 case R_MIPS_TLS_DTPREL32:
5331 case R_MIPS_TLS_DTPREL64:
5332 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5333 break;
5334
5335 case R_MIPS_TLS_TPREL_HI16:
5336 value = (mips_elf_high (addend + symbol - tprel_base (info))
5337 & howto->dst_mask);
5338 break;
5339
5340 case R_MIPS_TLS_TPREL_LO16:
5341 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5342 break;
5343
5344 case R_MIPS_HI16:
5345 case R_MIPS16_HI16:
5346 if (!gp_disp_p)
5347 {
5348 value = mips_elf_high (addend + symbol);
5349 value &= howto->dst_mask;
5350 }
5351 else
5352 {
5353 /* For MIPS16 ABI code we generate this sequence
5354 0: li $v0,%hi(_gp_disp)
5355 4: addiupc $v1,%lo(_gp_disp)
5356 8: sll $v0,16
5357 12: addu $v0,$v1
5358 14: move $gp,$v0
5359 So the offsets of hi and lo relocs are the same, but the
5360 $pc is four higher than $t9 would be, so reduce
5361 both reloc addends by 4. */
5362 if (r_type == R_MIPS16_HI16)
5363 value = mips_elf_high (addend + gp - p - 4);
5364 else
5365 value = mips_elf_high (addend + gp - p);
5366 overflowed_p = mips_elf_overflow_p (value, 16);
5367 }
5368 break;
5369
5370 case R_MIPS_LO16:
5371 case R_MIPS16_LO16:
5372 if (!gp_disp_p)
5373 value = (symbol + addend) & howto->dst_mask;
5374 else
5375 {
5376 /* See the comment for R_MIPS16_HI16 above for the reason
5377 for this conditional. */
5378 if (r_type == R_MIPS16_LO16)
5379 value = addend + gp - p;
5380 else
5381 value = addend + gp - p + 4;
5382 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5383 for overflow. But, on, say, IRIX5, relocations against
5384 _gp_disp are normally generated from the .cpload
5385 pseudo-op. It generates code that normally looks like
5386 this:
5387
5388 lui $gp,%hi(_gp_disp)
5389 addiu $gp,$gp,%lo(_gp_disp)
5390 addu $gp,$gp,$t9
5391
5392 Here $t9 holds the address of the function being called,
5393 as required by the MIPS ELF ABI. The R_MIPS_LO16
5394 relocation can easily overflow in this situation, but the
5395 R_MIPS_HI16 relocation will handle the overflow.
5396 Therefore, we consider this a bug in the MIPS ABI, and do
5397 not check for overflow here. */
5398 }
5399 break;
5400
5401 case R_MIPS_LITERAL:
5402 /* Because we don't merge literal sections, we can handle this
5403 just like R_MIPS_GPREL16. In the long run, we should merge
5404 shared literals, and then we will need to additional work
5405 here. */
5406
5407 /* Fall through. */
5408
5409 case R_MIPS16_GPREL:
5410 /* The R_MIPS16_GPREL performs the same calculation as
5411 R_MIPS_GPREL16, but stores the relocated bits in a different
5412 order. We don't need to do anything special here; the
5413 differences are handled in mips_elf_perform_relocation. */
5414 case R_MIPS_GPREL16:
5415 /* Only sign-extend the addend if it was extracted from the
5416 instruction. If the addend was separate, leave it alone,
5417 otherwise we may lose significant bits. */
5418 if (howto->partial_inplace)
5419 addend = _bfd_mips_elf_sign_extend (addend, 16);
5420 value = symbol + addend - gp;
5421 /* If the symbol was local, any earlier relocatable links will
5422 have adjusted its addend with the gp offset, so compensate
5423 for that now. Don't do it for symbols forced local in this
5424 link, though, since they won't have had the gp offset applied
5425 to them before. */
5426 if (was_local_p)
5427 value += gp0;
5428 overflowed_p = mips_elf_overflow_p (value, 16);
5429 break;
5430
5431 case R_MIPS16_GOT16:
5432 case R_MIPS16_CALL16:
5433 case R_MIPS_GOT16:
5434 case R_MIPS_CALL16:
5435 /* VxWorks does not have separate local and global semantics for
5436 R_MIPS*_GOT16; every relocation evaluates to "G". */
5437 if (!htab->is_vxworks && local_p)
5438 {
5439 value = mips_elf_got16_entry (abfd, input_bfd, info,
5440 symbol + addend, !was_local_p);
5441 if (value == MINUS_ONE)
5442 return bfd_reloc_outofrange;
5443 value
5444 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5445 overflowed_p = mips_elf_overflow_p (value, 16);
5446 break;
5447 }
5448
5449 /* Fall through. */
5450
5451 case R_MIPS_TLS_GD:
5452 case R_MIPS_TLS_GOTTPREL:
5453 case R_MIPS_TLS_LDM:
5454 case R_MIPS_GOT_DISP:
5455 value = g;
5456 overflowed_p = mips_elf_overflow_p (value, 16);
5457 break;
5458
5459 case R_MIPS_GPREL32:
5460 value = (addend + symbol + gp0 - gp);
5461 if (!save_addend)
5462 value &= howto->dst_mask;
5463 break;
5464
5465 case R_MIPS_PC16:
5466 case R_MIPS_GNU_REL16_S2:
5467 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5468 overflowed_p = mips_elf_overflow_p (value, 18);
5469 value >>= howto->rightshift;
5470 value &= howto->dst_mask;
5471 break;
5472
5473 case R_MIPS_GOT_HI16:
5474 case R_MIPS_CALL_HI16:
5475 /* We're allowed to handle these two relocations identically.
5476 The dynamic linker is allowed to handle the CALL relocations
5477 differently by creating a lazy evaluation stub. */
5478 value = g;
5479 value = mips_elf_high (value);
5480 value &= howto->dst_mask;
5481 break;
5482
5483 case R_MIPS_GOT_LO16:
5484 case R_MIPS_CALL_LO16:
5485 value = g & howto->dst_mask;
5486 break;
5487
5488 case R_MIPS_GOT_PAGE:
5489 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5490 if (value == MINUS_ONE)
5491 return bfd_reloc_outofrange;
5492 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5493 overflowed_p = mips_elf_overflow_p (value, 16);
5494 break;
5495
5496 case R_MIPS_GOT_OFST:
5497 if (local_p)
5498 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5499 else
5500 value = addend;
5501 overflowed_p = mips_elf_overflow_p (value, 16);
5502 break;
5503
5504 case R_MIPS_SUB:
5505 value = symbol - addend;
5506 value &= howto->dst_mask;
5507 break;
5508
5509 case R_MIPS_HIGHER:
5510 value = mips_elf_higher (addend + symbol);
5511 value &= howto->dst_mask;
5512 break;
5513
5514 case R_MIPS_HIGHEST:
5515 value = mips_elf_highest (addend + symbol);
5516 value &= howto->dst_mask;
5517 break;
5518
5519 case R_MIPS_SCN_DISP:
5520 value = symbol + addend - sec->output_offset;
5521 value &= howto->dst_mask;
5522 break;
5523
5524 case R_MIPS_JALR:
5525 /* This relocation is only a hint. In some cases, we optimize
5526 it into a bal instruction. But we don't try to optimize
5527 when the symbol does not resolve locally. */
5528 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5529 return bfd_reloc_continue;
5530 value = symbol + addend;
5531 break;
5532
5533 case R_MIPS_PJUMP:
5534 case R_MIPS_GNU_VTINHERIT:
5535 case R_MIPS_GNU_VTENTRY:
5536 /* We don't do anything with these at present. */
5537 return bfd_reloc_continue;
5538
5539 default:
5540 /* An unrecognized relocation type. */
5541 return bfd_reloc_notsupported;
5542 }
5543
5544 /* Store the VALUE for our caller. */
5545 *valuep = value;
5546 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5547 }
5548
5549 /* Obtain the field relocated by RELOCATION. */
5550
5551 static bfd_vma
5552 mips_elf_obtain_contents (reloc_howto_type *howto,
5553 const Elf_Internal_Rela *relocation,
5554 bfd *input_bfd, bfd_byte *contents)
5555 {
5556 bfd_vma x;
5557 bfd_byte *location = contents + relocation->r_offset;
5558
5559 /* Obtain the bytes. */
5560 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5561
5562 return x;
5563 }
5564
5565 /* It has been determined that the result of the RELOCATION is the
5566 VALUE. Use HOWTO to place VALUE into the output file at the
5567 appropriate position. The SECTION is the section to which the
5568 relocation applies.
5569 CROSS_MODE_JUMP_P is true if the relocation field
5570 is a MIPS16 jump to non-MIPS16 code, or vice versa.
5571
5572 Returns FALSE if anything goes wrong. */
5573
5574 static bfd_boolean
5575 mips_elf_perform_relocation (struct bfd_link_info *info,
5576 reloc_howto_type *howto,
5577 const Elf_Internal_Rela *relocation,
5578 bfd_vma value, bfd *input_bfd,
5579 asection *input_section, bfd_byte *contents,
5580 bfd_boolean cross_mode_jump_p)
5581 {
5582 bfd_vma x;
5583 bfd_byte *location;
5584 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5585
5586 /* Figure out where the relocation is occurring. */
5587 location = contents + relocation->r_offset;
5588
5589 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5590
5591 /* Obtain the current value. */
5592 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5593
5594 /* Clear the field we are setting. */
5595 x &= ~howto->dst_mask;
5596
5597 /* Set the field. */
5598 x |= (value & howto->dst_mask);
5599
5600 /* If required, turn JAL into JALX. */
5601 if (cross_mode_jump_p && jal_reloc_p (r_type))
5602 {
5603 bfd_boolean ok;
5604 bfd_vma opcode = x >> 26;
5605 bfd_vma jalx_opcode;
5606
5607 /* Check to see if the opcode is already JAL or JALX. */
5608 if (r_type == R_MIPS16_26)
5609 {
5610 ok = ((opcode == 0x6) || (opcode == 0x7));
5611 jalx_opcode = 0x7;
5612 }
5613 else
5614 {
5615 ok = ((opcode == 0x3) || (opcode == 0x1d));
5616 jalx_opcode = 0x1d;
5617 }
5618
5619 /* If the opcode is not JAL or JALX, there's a problem. */
5620 if (!ok)
5621 {
5622 (*_bfd_error_handler)
5623 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5624 input_bfd,
5625 input_section,
5626 (unsigned long) relocation->r_offset);
5627 bfd_set_error (bfd_error_bad_value);
5628 return FALSE;
5629 }
5630
5631 /* Make this the JALX opcode. */
5632 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5633 }
5634
5635 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5636 range. */
5637 if (!info->relocatable
5638 && !cross_mode_jump_p
5639 && ((JAL_TO_BAL_P (input_bfd)
5640 && r_type == R_MIPS_26
5641 && (x >> 26) == 0x3) /* jal addr */
5642 || (JALR_TO_BAL_P (input_bfd)
5643 && r_type == R_MIPS_JALR
5644 && x == 0x0320f809) /* jalr t9 */
5645 || (JR_TO_B_P (input_bfd)
5646 && r_type == R_MIPS_JALR
5647 && x == 0x03200008))) /* jr t9 */
5648 {
5649 bfd_vma addr;
5650 bfd_vma dest;
5651 bfd_signed_vma off;
5652
5653 addr = (input_section->output_section->vma
5654 + input_section->output_offset
5655 + relocation->r_offset
5656 + 4);
5657 if (r_type == R_MIPS_26)
5658 dest = (value << 2) | ((addr >> 28) << 28);
5659 else
5660 dest = value;
5661 off = dest - addr;
5662 if (off <= 0x1ffff && off >= -0x20000)
5663 {
5664 if (x == 0x03200008) /* jr t9 */
5665 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5666 else
5667 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5668 }
5669 }
5670
5671 /* Put the value into the output. */
5672 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5673
5674 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5675 location);
5676
5677 return TRUE;
5678 }
5679 \f
5680 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5681 is the original relocation, which is now being transformed into a
5682 dynamic relocation. The ADDENDP is adjusted if necessary; the
5683 caller should store the result in place of the original addend. */
5684
5685 static bfd_boolean
5686 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5687 struct bfd_link_info *info,
5688 const Elf_Internal_Rela *rel,
5689 struct mips_elf_link_hash_entry *h,
5690 asection *sec, bfd_vma symbol,
5691 bfd_vma *addendp, asection *input_section)
5692 {
5693 Elf_Internal_Rela outrel[3];
5694 asection *sreloc;
5695 bfd *dynobj;
5696 int r_type;
5697 long indx;
5698 bfd_boolean defined_p;
5699 struct mips_elf_link_hash_table *htab;
5700
5701 htab = mips_elf_hash_table (info);
5702 BFD_ASSERT (htab != NULL);
5703
5704 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5705 dynobj = elf_hash_table (info)->dynobj;
5706 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5707 BFD_ASSERT (sreloc != NULL);
5708 BFD_ASSERT (sreloc->contents != NULL);
5709 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5710 < sreloc->size);
5711
5712 outrel[0].r_offset =
5713 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5714 if (ABI_64_P (output_bfd))
5715 {
5716 outrel[1].r_offset =
5717 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5718 outrel[2].r_offset =
5719 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5720 }
5721
5722 if (outrel[0].r_offset == MINUS_ONE)
5723 /* The relocation field has been deleted. */
5724 return TRUE;
5725
5726 if (outrel[0].r_offset == MINUS_TWO)
5727 {
5728 /* The relocation field has been converted into a relative value of
5729 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5730 the field to be fully relocated, so add in the symbol's value. */
5731 *addendp += symbol;
5732 return TRUE;
5733 }
5734
5735 /* We must now calculate the dynamic symbol table index to use
5736 in the relocation. */
5737 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5738 {
5739 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5740 indx = h->root.dynindx;
5741 if (SGI_COMPAT (output_bfd))
5742 defined_p = h->root.def_regular;
5743 else
5744 /* ??? glibc's ld.so just adds the final GOT entry to the
5745 relocation field. It therefore treats relocs against
5746 defined symbols in the same way as relocs against
5747 undefined symbols. */
5748 defined_p = FALSE;
5749 }
5750 else
5751 {
5752 if (sec != NULL && bfd_is_abs_section (sec))
5753 indx = 0;
5754 else if (sec == NULL || sec->owner == NULL)
5755 {
5756 bfd_set_error (bfd_error_bad_value);
5757 return FALSE;
5758 }
5759 else
5760 {
5761 indx = elf_section_data (sec->output_section)->dynindx;
5762 if (indx == 0)
5763 {
5764 asection *osec = htab->root.text_index_section;
5765 indx = elf_section_data (osec)->dynindx;
5766 }
5767 if (indx == 0)
5768 abort ();
5769 }
5770
5771 /* Instead of generating a relocation using the section
5772 symbol, we may as well make it a fully relative
5773 relocation. We want to avoid generating relocations to
5774 local symbols because we used to generate them
5775 incorrectly, without adding the original symbol value,
5776 which is mandated by the ABI for section symbols. In
5777 order to give dynamic loaders and applications time to
5778 phase out the incorrect use, we refrain from emitting
5779 section-relative relocations. It's not like they're
5780 useful, after all. This should be a bit more efficient
5781 as well. */
5782 /* ??? Although this behavior is compatible with glibc's ld.so,
5783 the ABI says that relocations against STN_UNDEF should have
5784 a symbol value of 0. Irix rld honors this, so relocations
5785 against STN_UNDEF have no effect. */
5786 if (!SGI_COMPAT (output_bfd))
5787 indx = 0;
5788 defined_p = TRUE;
5789 }
5790
5791 /* If the relocation was previously an absolute relocation and
5792 this symbol will not be referred to by the relocation, we must
5793 adjust it by the value we give it in the dynamic symbol table.
5794 Otherwise leave the job up to the dynamic linker. */
5795 if (defined_p && r_type != R_MIPS_REL32)
5796 *addendp += symbol;
5797
5798 if (htab->is_vxworks)
5799 /* VxWorks uses non-relative relocations for this. */
5800 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5801 else
5802 /* The relocation is always an REL32 relocation because we don't
5803 know where the shared library will wind up at load-time. */
5804 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5805 R_MIPS_REL32);
5806
5807 /* For strict adherence to the ABI specification, we should
5808 generate a R_MIPS_64 relocation record by itself before the
5809 _REL32/_64 record as well, such that the addend is read in as
5810 a 64-bit value (REL32 is a 32-bit relocation, after all).
5811 However, since none of the existing ELF64 MIPS dynamic
5812 loaders seems to care, we don't waste space with these
5813 artificial relocations. If this turns out to not be true,
5814 mips_elf_allocate_dynamic_relocation() should be tweaked so
5815 as to make room for a pair of dynamic relocations per
5816 invocation if ABI_64_P, and here we should generate an
5817 additional relocation record with R_MIPS_64 by itself for a
5818 NULL symbol before this relocation record. */
5819 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5820 ABI_64_P (output_bfd)
5821 ? R_MIPS_64
5822 : R_MIPS_NONE);
5823 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5824
5825 /* Adjust the output offset of the relocation to reference the
5826 correct location in the output file. */
5827 outrel[0].r_offset += (input_section->output_section->vma
5828 + input_section->output_offset);
5829 outrel[1].r_offset += (input_section->output_section->vma
5830 + input_section->output_offset);
5831 outrel[2].r_offset += (input_section->output_section->vma
5832 + input_section->output_offset);
5833
5834 /* Put the relocation back out. We have to use the special
5835 relocation outputter in the 64-bit case since the 64-bit
5836 relocation format is non-standard. */
5837 if (ABI_64_P (output_bfd))
5838 {
5839 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5840 (output_bfd, &outrel[0],
5841 (sreloc->contents
5842 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5843 }
5844 else if (htab->is_vxworks)
5845 {
5846 /* VxWorks uses RELA rather than REL dynamic relocations. */
5847 outrel[0].r_addend = *addendp;
5848 bfd_elf32_swap_reloca_out
5849 (output_bfd, &outrel[0],
5850 (sreloc->contents
5851 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5852 }
5853 else
5854 bfd_elf32_swap_reloc_out
5855 (output_bfd, &outrel[0],
5856 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5857
5858 /* We've now added another relocation. */
5859 ++sreloc->reloc_count;
5860
5861 /* Make sure the output section is writable. The dynamic linker
5862 will be writing to it. */
5863 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5864 |= SHF_WRITE;
5865
5866 /* On IRIX5, make an entry of compact relocation info. */
5867 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5868 {
5869 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5870 bfd_byte *cr;
5871
5872 if (scpt)
5873 {
5874 Elf32_crinfo cptrel;
5875
5876 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5877 cptrel.vaddr = (rel->r_offset
5878 + input_section->output_section->vma
5879 + input_section->output_offset);
5880 if (r_type == R_MIPS_REL32)
5881 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5882 else
5883 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5884 mips_elf_set_cr_dist2to (cptrel, 0);
5885 cptrel.konst = *addendp;
5886
5887 cr = (scpt->contents
5888 + sizeof (Elf32_External_compact_rel));
5889 mips_elf_set_cr_relvaddr (cptrel, 0);
5890 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5891 ((Elf32_External_crinfo *) cr
5892 + scpt->reloc_count));
5893 ++scpt->reloc_count;
5894 }
5895 }
5896
5897 /* If we've written this relocation for a readonly section,
5898 we need to set DF_TEXTREL again, so that we do not delete the
5899 DT_TEXTREL tag. */
5900 if (MIPS_ELF_READONLY_SECTION (input_section))
5901 info->flags |= DF_TEXTREL;
5902
5903 return TRUE;
5904 }
5905 \f
5906 /* Return the MACH for a MIPS e_flags value. */
5907
5908 unsigned long
5909 _bfd_elf_mips_mach (flagword flags)
5910 {
5911 switch (flags & EF_MIPS_MACH)
5912 {
5913 case E_MIPS_MACH_3900:
5914 return bfd_mach_mips3900;
5915
5916 case E_MIPS_MACH_4010:
5917 return bfd_mach_mips4010;
5918
5919 case E_MIPS_MACH_4100:
5920 return bfd_mach_mips4100;
5921
5922 case E_MIPS_MACH_4111:
5923 return bfd_mach_mips4111;
5924
5925 case E_MIPS_MACH_4120:
5926 return bfd_mach_mips4120;
5927
5928 case E_MIPS_MACH_4650:
5929 return bfd_mach_mips4650;
5930
5931 case E_MIPS_MACH_5400:
5932 return bfd_mach_mips5400;
5933
5934 case E_MIPS_MACH_5500:
5935 return bfd_mach_mips5500;
5936
5937 case E_MIPS_MACH_9000:
5938 return bfd_mach_mips9000;
5939
5940 case E_MIPS_MACH_SB1:
5941 return bfd_mach_mips_sb1;
5942
5943 case E_MIPS_MACH_LS2E:
5944 return bfd_mach_mips_loongson_2e;
5945
5946 case E_MIPS_MACH_LS2F:
5947 return bfd_mach_mips_loongson_2f;
5948
5949 case E_MIPS_MACH_OCTEON:
5950 return bfd_mach_mips_octeon;
5951
5952 case E_MIPS_MACH_XLR:
5953 return bfd_mach_mips_xlr;
5954
5955 default:
5956 switch (flags & EF_MIPS_ARCH)
5957 {
5958 default:
5959 case E_MIPS_ARCH_1:
5960 return bfd_mach_mips3000;
5961
5962 case E_MIPS_ARCH_2:
5963 return bfd_mach_mips6000;
5964
5965 case E_MIPS_ARCH_3:
5966 return bfd_mach_mips4000;
5967
5968 case E_MIPS_ARCH_4:
5969 return bfd_mach_mips8000;
5970
5971 case E_MIPS_ARCH_5:
5972 return bfd_mach_mips5;
5973
5974 case E_MIPS_ARCH_32:
5975 return bfd_mach_mipsisa32;
5976
5977 case E_MIPS_ARCH_64:
5978 return bfd_mach_mipsisa64;
5979
5980 case E_MIPS_ARCH_32R2:
5981 return bfd_mach_mipsisa32r2;
5982
5983 case E_MIPS_ARCH_64R2:
5984 return bfd_mach_mipsisa64r2;
5985 }
5986 }
5987
5988 return 0;
5989 }
5990
5991 /* Return printable name for ABI. */
5992
5993 static INLINE char *
5994 elf_mips_abi_name (bfd *abfd)
5995 {
5996 flagword flags;
5997
5998 flags = elf_elfheader (abfd)->e_flags;
5999 switch (flags & EF_MIPS_ABI)
6000 {
6001 case 0:
6002 if (ABI_N32_P (abfd))
6003 return "N32";
6004 else if (ABI_64_P (abfd))
6005 return "64";
6006 else
6007 return "none";
6008 case E_MIPS_ABI_O32:
6009 return "O32";
6010 case E_MIPS_ABI_O64:
6011 return "O64";
6012 case E_MIPS_ABI_EABI32:
6013 return "EABI32";
6014 case E_MIPS_ABI_EABI64:
6015 return "EABI64";
6016 default:
6017 return "unknown abi";
6018 }
6019 }
6020 \f
6021 /* MIPS ELF uses two common sections. One is the usual one, and the
6022 other is for small objects. All the small objects are kept
6023 together, and then referenced via the gp pointer, which yields
6024 faster assembler code. This is what we use for the small common
6025 section. This approach is copied from ecoff.c. */
6026 static asection mips_elf_scom_section;
6027 static asymbol mips_elf_scom_symbol;
6028 static asymbol *mips_elf_scom_symbol_ptr;
6029
6030 /* MIPS ELF also uses an acommon section, which represents an
6031 allocated common symbol which may be overridden by a
6032 definition in a shared library. */
6033 static asection mips_elf_acom_section;
6034 static asymbol mips_elf_acom_symbol;
6035 static asymbol *mips_elf_acom_symbol_ptr;
6036
6037 /* This is used for both the 32-bit and the 64-bit ABI. */
6038
6039 void
6040 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6041 {
6042 elf_symbol_type *elfsym;
6043
6044 /* Handle the special MIPS section numbers that a symbol may use. */
6045 elfsym = (elf_symbol_type *) asym;
6046 switch (elfsym->internal_elf_sym.st_shndx)
6047 {
6048 case SHN_MIPS_ACOMMON:
6049 /* This section is used in a dynamically linked executable file.
6050 It is an allocated common section. The dynamic linker can
6051 either resolve these symbols to something in a shared
6052 library, or it can just leave them here. For our purposes,
6053 we can consider these symbols to be in a new section. */
6054 if (mips_elf_acom_section.name == NULL)
6055 {
6056 /* Initialize the acommon section. */
6057 mips_elf_acom_section.name = ".acommon";
6058 mips_elf_acom_section.flags = SEC_ALLOC;
6059 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6060 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6061 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6062 mips_elf_acom_symbol.name = ".acommon";
6063 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6064 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6065 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6066 }
6067 asym->section = &mips_elf_acom_section;
6068 break;
6069
6070 case SHN_COMMON:
6071 /* Common symbols less than the GP size are automatically
6072 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6073 if (asym->value > elf_gp_size (abfd)
6074 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6075 || IRIX_COMPAT (abfd) == ict_irix6)
6076 break;
6077 /* Fall through. */
6078 case SHN_MIPS_SCOMMON:
6079 if (mips_elf_scom_section.name == NULL)
6080 {
6081 /* Initialize the small common section. */
6082 mips_elf_scom_section.name = ".scommon";
6083 mips_elf_scom_section.flags = SEC_IS_COMMON;
6084 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6085 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6086 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6087 mips_elf_scom_symbol.name = ".scommon";
6088 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6089 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6090 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6091 }
6092 asym->section = &mips_elf_scom_section;
6093 asym->value = elfsym->internal_elf_sym.st_size;
6094 break;
6095
6096 case SHN_MIPS_SUNDEFINED:
6097 asym->section = bfd_und_section_ptr;
6098 break;
6099
6100 case SHN_MIPS_TEXT:
6101 {
6102 asection *section = bfd_get_section_by_name (abfd, ".text");
6103
6104 BFD_ASSERT (SGI_COMPAT (abfd));
6105 if (section != NULL)
6106 {
6107 asym->section = section;
6108 /* MIPS_TEXT is a bit special, the address is not an offset
6109 to the base of the .text section. So substract the section
6110 base address to make it an offset. */
6111 asym->value -= section->vma;
6112 }
6113 }
6114 break;
6115
6116 case SHN_MIPS_DATA:
6117 {
6118 asection *section = bfd_get_section_by_name (abfd, ".data");
6119
6120 BFD_ASSERT (SGI_COMPAT (abfd));
6121 if (section != NULL)
6122 {
6123 asym->section = section;
6124 /* MIPS_DATA is a bit special, the address is not an offset
6125 to the base of the .data section. So substract the section
6126 base address to make it an offset. */
6127 asym->value -= section->vma;
6128 }
6129 }
6130 break;
6131 }
6132
6133 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6134 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6135 && (asym->value & 1) != 0)
6136 {
6137 asym->value--;
6138 elfsym->internal_elf_sym.st_other
6139 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6140 }
6141 }
6142 \f
6143 /* Implement elf_backend_eh_frame_address_size. This differs from
6144 the default in the way it handles EABI64.
6145
6146 EABI64 was originally specified as an LP64 ABI, and that is what
6147 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6148 historically accepted the combination of -mabi=eabi and -mlong32,
6149 and this ILP32 variation has become semi-official over time.
6150 Both forms use elf32 and have pointer-sized FDE addresses.
6151
6152 If an EABI object was generated by GCC 4.0 or above, it will have
6153 an empty .gcc_compiled_longXX section, where XX is the size of longs
6154 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6155 have no special marking to distinguish them from LP64 objects.
6156
6157 We don't want users of the official LP64 ABI to be punished for the
6158 existence of the ILP32 variant, but at the same time, we don't want
6159 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6160 We therefore take the following approach:
6161
6162 - If ABFD contains a .gcc_compiled_longXX section, use it to
6163 determine the pointer size.
6164
6165 - Otherwise check the type of the first relocation. Assume that
6166 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6167
6168 - Otherwise punt.
6169
6170 The second check is enough to detect LP64 objects generated by pre-4.0
6171 compilers because, in the kind of output generated by those compilers,
6172 the first relocation will be associated with either a CIE personality
6173 routine or an FDE start address. Furthermore, the compilers never
6174 used a special (non-pointer) encoding for this ABI.
6175
6176 Checking the relocation type should also be safe because there is no
6177 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6178 did so. */
6179
6180 unsigned int
6181 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6182 {
6183 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6184 return 8;
6185 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6186 {
6187 bfd_boolean long32_p, long64_p;
6188
6189 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6190 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6191 if (long32_p && long64_p)
6192 return 0;
6193 if (long32_p)
6194 return 4;
6195 if (long64_p)
6196 return 8;
6197
6198 if (sec->reloc_count > 0
6199 && elf_section_data (sec)->relocs != NULL
6200 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6201 == R_MIPS_64))
6202 return 8;
6203
6204 return 0;
6205 }
6206 return 4;
6207 }
6208 \f
6209 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6210 relocations against two unnamed section symbols to resolve to the
6211 same address. For example, if we have code like:
6212
6213 lw $4,%got_disp(.data)($gp)
6214 lw $25,%got_disp(.text)($gp)
6215 jalr $25
6216
6217 then the linker will resolve both relocations to .data and the program
6218 will jump there rather than to .text.
6219
6220 We can work around this problem by giving names to local section symbols.
6221 This is also what the MIPSpro tools do. */
6222
6223 bfd_boolean
6224 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6225 {
6226 return SGI_COMPAT (abfd);
6227 }
6228 \f
6229 /* Work over a section just before writing it out. This routine is
6230 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6231 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6232 a better way. */
6233
6234 bfd_boolean
6235 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6236 {
6237 if (hdr->sh_type == SHT_MIPS_REGINFO
6238 && hdr->sh_size > 0)
6239 {
6240 bfd_byte buf[4];
6241
6242 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6243 BFD_ASSERT (hdr->contents == NULL);
6244
6245 if (bfd_seek (abfd,
6246 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6247 SEEK_SET) != 0)
6248 return FALSE;
6249 H_PUT_32 (abfd, elf_gp (abfd), buf);
6250 if (bfd_bwrite (buf, 4, abfd) != 4)
6251 return FALSE;
6252 }
6253
6254 if (hdr->sh_type == SHT_MIPS_OPTIONS
6255 && hdr->bfd_section != NULL
6256 && mips_elf_section_data (hdr->bfd_section) != NULL
6257 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6258 {
6259 bfd_byte *contents, *l, *lend;
6260
6261 /* We stored the section contents in the tdata field in the
6262 set_section_contents routine. We save the section contents
6263 so that we don't have to read them again.
6264 At this point we know that elf_gp is set, so we can look
6265 through the section contents to see if there is an
6266 ODK_REGINFO structure. */
6267
6268 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6269 l = contents;
6270 lend = contents + hdr->sh_size;
6271 while (l + sizeof (Elf_External_Options) <= lend)
6272 {
6273 Elf_Internal_Options intopt;
6274
6275 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6276 &intopt);
6277 if (intopt.size < sizeof (Elf_External_Options))
6278 {
6279 (*_bfd_error_handler)
6280 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6281 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6282 break;
6283 }
6284 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6285 {
6286 bfd_byte buf[8];
6287
6288 if (bfd_seek (abfd,
6289 (hdr->sh_offset
6290 + (l - contents)
6291 + sizeof (Elf_External_Options)
6292 + (sizeof (Elf64_External_RegInfo) - 8)),
6293 SEEK_SET) != 0)
6294 return FALSE;
6295 H_PUT_64 (abfd, elf_gp (abfd), buf);
6296 if (bfd_bwrite (buf, 8, abfd) != 8)
6297 return FALSE;
6298 }
6299 else if (intopt.kind == ODK_REGINFO)
6300 {
6301 bfd_byte buf[4];
6302
6303 if (bfd_seek (abfd,
6304 (hdr->sh_offset
6305 + (l - contents)
6306 + sizeof (Elf_External_Options)
6307 + (sizeof (Elf32_External_RegInfo) - 4)),
6308 SEEK_SET) != 0)
6309 return FALSE;
6310 H_PUT_32 (abfd, elf_gp (abfd), buf);
6311 if (bfd_bwrite (buf, 4, abfd) != 4)
6312 return FALSE;
6313 }
6314 l += intopt.size;
6315 }
6316 }
6317
6318 if (hdr->bfd_section != NULL)
6319 {
6320 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6321
6322 /* .sbss is not handled specially here because the GNU/Linux
6323 prelinker can convert .sbss from NOBITS to PROGBITS and
6324 changing it back to NOBITS breaks the binary. The entry in
6325 _bfd_mips_elf_special_sections will ensure the correct flags
6326 are set on .sbss if BFD creates it without reading it from an
6327 input file, and without special handling here the flags set
6328 on it in an input file will be followed. */
6329 if (strcmp (name, ".sdata") == 0
6330 || strcmp (name, ".lit8") == 0
6331 || strcmp (name, ".lit4") == 0)
6332 {
6333 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6334 hdr->sh_type = SHT_PROGBITS;
6335 }
6336 else if (strcmp (name, ".srdata") == 0)
6337 {
6338 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6339 hdr->sh_type = SHT_PROGBITS;
6340 }
6341 else if (strcmp (name, ".compact_rel") == 0)
6342 {
6343 hdr->sh_flags = 0;
6344 hdr->sh_type = SHT_PROGBITS;
6345 }
6346 else if (strcmp (name, ".rtproc") == 0)
6347 {
6348 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6349 {
6350 unsigned int adjust;
6351
6352 adjust = hdr->sh_size % hdr->sh_addralign;
6353 if (adjust != 0)
6354 hdr->sh_size += hdr->sh_addralign - adjust;
6355 }
6356 }
6357 }
6358
6359 return TRUE;
6360 }
6361
6362 /* Handle a MIPS specific section when reading an object file. This
6363 is called when elfcode.h finds a section with an unknown type.
6364 This routine supports both the 32-bit and 64-bit ELF ABI.
6365
6366 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6367 how to. */
6368
6369 bfd_boolean
6370 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6371 Elf_Internal_Shdr *hdr,
6372 const char *name,
6373 int shindex)
6374 {
6375 flagword flags = 0;
6376
6377 /* There ought to be a place to keep ELF backend specific flags, but
6378 at the moment there isn't one. We just keep track of the
6379 sections by their name, instead. Fortunately, the ABI gives
6380 suggested names for all the MIPS specific sections, so we will
6381 probably get away with this. */
6382 switch (hdr->sh_type)
6383 {
6384 case SHT_MIPS_LIBLIST:
6385 if (strcmp (name, ".liblist") != 0)
6386 return FALSE;
6387 break;
6388 case SHT_MIPS_MSYM:
6389 if (strcmp (name, ".msym") != 0)
6390 return FALSE;
6391 break;
6392 case SHT_MIPS_CONFLICT:
6393 if (strcmp (name, ".conflict") != 0)
6394 return FALSE;
6395 break;
6396 case SHT_MIPS_GPTAB:
6397 if (! CONST_STRNEQ (name, ".gptab."))
6398 return FALSE;
6399 break;
6400 case SHT_MIPS_UCODE:
6401 if (strcmp (name, ".ucode") != 0)
6402 return FALSE;
6403 break;
6404 case SHT_MIPS_DEBUG:
6405 if (strcmp (name, ".mdebug") != 0)
6406 return FALSE;
6407 flags = SEC_DEBUGGING;
6408 break;
6409 case SHT_MIPS_REGINFO:
6410 if (strcmp (name, ".reginfo") != 0
6411 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6412 return FALSE;
6413 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6414 break;
6415 case SHT_MIPS_IFACE:
6416 if (strcmp (name, ".MIPS.interfaces") != 0)
6417 return FALSE;
6418 break;
6419 case SHT_MIPS_CONTENT:
6420 if (! CONST_STRNEQ (name, ".MIPS.content"))
6421 return FALSE;
6422 break;
6423 case SHT_MIPS_OPTIONS:
6424 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6425 return FALSE;
6426 break;
6427 case SHT_MIPS_DWARF:
6428 if (! CONST_STRNEQ (name, ".debug_")
6429 && ! CONST_STRNEQ (name, ".zdebug_"))
6430 return FALSE;
6431 break;
6432 case SHT_MIPS_SYMBOL_LIB:
6433 if (strcmp (name, ".MIPS.symlib") != 0)
6434 return FALSE;
6435 break;
6436 case SHT_MIPS_EVENTS:
6437 if (! CONST_STRNEQ (name, ".MIPS.events")
6438 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6439 return FALSE;
6440 break;
6441 default:
6442 break;
6443 }
6444
6445 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6446 return FALSE;
6447
6448 if (flags)
6449 {
6450 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6451 (bfd_get_section_flags (abfd,
6452 hdr->bfd_section)
6453 | flags)))
6454 return FALSE;
6455 }
6456
6457 /* FIXME: We should record sh_info for a .gptab section. */
6458
6459 /* For a .reginfo section, set the gp value in the tdata information
6460 from the contents of this section. We need the gp value while
6461 processing relocs, so we just get it now. The .reginfo section
6462 is not used in the 64-bit MIPS ELF ABI. */
6463 if (hdr->sh_type == SHT_MIPS_REGINFO)
6464 {
6465 Elf32_External_RegInfo ext;
6466 Elf32_RegInfo s;
6467
6468 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6469 &ext, 0, sizeof ext))
6470 return FALSE;
6471 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6472 elf_gp (abfd) = s.ri_gp_value;
6473 }
6474
6475 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6476 set the gp value based on what we find. We may see both
6477 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6478 they should agree. */
6479 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6480 {
6481 bfd_byte *contents, *l, *lend;
6482
6483 contents = bfd_malloc (hdr->sh_size);
6484 if (contents == NULL)
6485 return FALSE;
6486 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6487 0, hdr->sh_size))
6488 {
6489 free (contents);
6490 return FALSE;
6491 }
6492 l = contents;
6493 lend = contents + hdr->sh_size;
6494 while (l + sizeof (Elf_External_Options) <= lend)
6495 {
6496 Elf_Internal_Options intopt;
6497
6498 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6499 &intopt);
6500 if (intopt.size < sizeof (Elf_External_Options))
6501 {
6502 (*_bfd_error_handler)
6503 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6504 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6505 break;
6506 }
6507 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6508 {
6509 Elf64_Internal_RegInfo intreg;
6510
6511 bfd_mips_elf64_swap_reginfo_in
6512 (abfd,
6513 ((Elf64_External_RegInfo *)
6514 (l + sizeof (Elf_External_Options))),
6515 &intreg);
6516 elf_gp (abfd) = intreg.ri_gp_value;
6517 }
6518 else if (intopt.kind == ODK_REGINFO)
6519 {
6520 Elf32_RegInfo intreg;
6521
6522 bfd_mips_elf32_swap_reginfo_in
6523 (abfd,
6524 ((Elf32_External_RegInfo *)
6525 (l + sizeof (Elf_External_Options))),
6526 &intreg);
6527 elf_gp (abfd) = intreg.ri_gp_value;
6528 }
6529 l += intopt.size;
6530 }
6531 free (contents);
6532 }
6533
6534 return TRUE;
6535 }
6536
6537 /* Set the correct type for a MIPS ELF section. We do this by the
6538 section name, which is a hack, but ought to work. This routine is
6539 used by both the 32-bit and the 64-bit ABI. */
6540
6541 bfd_boolean
6542 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6543 {
6544 const char *name = bfd_get_section_name (abfd, sec);
6545
6546 if (strcmp (name, ".liblist") == 0)
6547 {
6548 hdr->sh_type = SHT_MIPS_LIBLIST;
6549 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6550 /* The sh_link field is set in final_write_processing. */
6551 }
6552 else if (strcmp (name, ".conflict") == 0)
6553 hdr->sh_type = SHT_MIPS_CONFLICT;
6554 else if (CONST_STRNEQ (name, ".gptab."))
6555 {
6556 hdr->sh_type = SHT_MIPS_GPTAB;
6557 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6558 /* The sh_info field is set in final_write_processing. */
6559 }
6560 else if (strcmp (name, ".ucode") == 0)
6561 hdr->sh_type = SHT_MIPS_UCODE;
6562 else if (strcmp (name, ".mdebug") == 0)
6563 {
6564 hdr->sh_type = SHT_MIPS_DEBUG;
6565 /* In a shared object on IRIX 5.3, the .mdebug section has an
6566 entsize of 0. FIXME: Does this matter? */
6567 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6568 hdr->sh_entsize = 0;
6569 else
6570 hdr->sh_entsize = 1;
6571 }
6572 else if (strcmp (name, ".reginfo") == 0)
6573 {
6574 hdr->sh_type = SHT_MIPS_REGINFO;
6575 /* In a shared object on IRIX 5.3, the .reginfo section has an
6576 entsize of 0x18. FIXME: Does this matter? */
6577 if (SGI_COMPAT (abfd))
6578 {
6579 if ((abfd->flags & DYNAMIC) != 0)
6580 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6581 else
6582 hdr->sh_entsize = 1;
6583 }
6584 else
6585 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6586 }
6587 else if (SGI_COMPAT (abfd)
6588 && (strcmp (name, ".hash") == 0
6589 || strcmp (name, ".dynamic") == 0
6590 || strcmp (name, ".dynstr") == 0))
6591 {
6592 if (SGI_COMPAT (abfd))
6593 hdr->sh_entsize = 0;
6594 #if 0
6595 /* This isn't how the IRIX6 linker behaves. */
6596 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6597 #endif
6598 }
6599 else if (strcmp (name, ".got") == 0
6600 || strcmp (name, ".srdata") == 0
6601 || strcmp (name, ".sdata") == 0
6602 || strcmp (name, ".sbss") == 0
6603 || strcmp (name, ".lit4") == 0
6604 || strcmp (name, ".lit8") == 0)
6605 hdr->sh_flags |= SHF_MIPS_GPREL;
6606 else if (strcmp (name, ".MIPS.interfaces") == 0)
6607 {
6608 hdr->sh_type = SHT_MIPS_IFACE;
6609 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6610 }
6611 else if (CONST_STRNEQ (name, ".MIPS.content"))
6612 {
6613 hdr->sh_type = SHT_MIPS_CONTENT;
6614 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6615 /* The sh_info field is set in final_write_processing. */
6616 }
6617 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6618 {
6619 hdr->sh_type = SHT_MIPS_OPTIONS;
6620 hdr->sh_entsize = 1;
6621 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6622 }
6623 else if (CONST_STRNEQ (name, ".debug_")
6624 || CONST_STRNEQ (name, ".zdebug_"))
6625 {
6626 hdr->sh_type = SHT_MIPS_DWARF;
6627
6628 /* Irix facilities such as libexc expect a single .debug_frame
6629 per executable, the system ones have NOSTRIP set and the linker
6630 doesn't merge sections with different flags so ... */
6631 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6632 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6633 }
6634 else if (strcmp (name, ".MIPS.symlib") == 0)
6635 {
6636 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6637 /* The sh_link and sh_info fields are set in
6638 final_write_processing. */
6639 }
6640 else if (CONST_STRNEQ (name, ".MIPS.events")
6641 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6642 {
6643 hdr->sh_type = SHT_MIPS_EVENTS;
6644 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6645 /* The sh_link field is set in final_write_processing. */
6646 }
6647 else if (strcmp (name, ".msym") == 0)
6648 {
6649 hdr->sh_type = SHT_MIPS_MSYM;
6650 hdr->sh_flags |= SHF_ALLOC;
6651 hdr->sh_entsize = 8;
6652 }
6653
6654 /* The generic elf_fake_sections will set up REL_HDR using the default
6655 kind of relocations. We used to set up a second header for the
6656 non-default kind of relocations here, but only NewABI would use
6657 these, and the IRIX ld doesn't like resulting empty RELA sections.
6658 Thus we create those header only on demand now. */
6659
6660 return TRUE;
6661 }
6662
6663 /* Given a BFD section, try to locate the corresponding ELF section
6664 index. This is used by both the 32-bit and the 64-bit ABI.
6665 Actually, it's not clear to me that the 64-bit ABI supports these,
6666 but for non-PIC objects we will certainly want support for at least
6667 the .scommon section. */
6668
6669 bfd_boolean
6670 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6671 asection *sec, int *retval)
6672 {
6673 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6674 {
6675 *retval = SHN_MIPS_SCOMMON;
6676 return TRUE;
6677 }
6678 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6679 {
6680 *retval = SHN_MIPS_ACOMMON;
6681 return TRUE;
6682 }
6683 return FALSE;
6684 }
6685 \f
6686 /* Hook called by the linker routine which adds symbols from an object
6687 file. We must handle the special MIPS section numbers here. */
6688
6689 bfd_boolean
6690 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6691 Elf_Internal_Sym *sym, const char **namep,
6692 flagword *flagsp ATTRIBUTE_UNUSED,
6693 asection **secp, bfd_vma *valp)
6694 {
6695 if (SGI_COMPAT (abfd)
6696 && (abfd->flags & DYNAMIC) != 0
6697 && strcmp (*namep, "_rld_new_interface") == 0)
6698 {
6699 /* Skip IRIX5 rld entry name. */
6700 *namep = NULL;
6701 return TRUE;
6702 }
6703
6704 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6705 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6706 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6707 a magic symbol resolved by the linker, we ignore this bogus definition
6708 of _gp_disp. New ABI objects do not suffer from this problem so this
6709 is not done for them. */
6710 if (!NEWABI_P(abfd)
6711 && (sym->st_shndx == SHN_ABS)
6712 && (strcmp (*namep, "_gp_disp") == 0))
6713 {
6714 *namep = NULL;
6715 return TRUE;
6716 }
6717
6718 switch (sym->st_shndx)
6719 {
6720 case SHN_COMMON:
6721 /* Common symbols less than the GP size are automatically
6722 treated as SHN_MIPS_SCOMMON symbols. */
6723 if (sym->st_size > elf_gp_size (abfd)
6724 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6725 || IRIX_COMPAT (abfd) == ict_irix6)
6726 break;
6727 /* Fall through. */
6728 case SHN_MIPS_SCOMMON:
6729 *secp = bfd_make_section_old_way (abfd, ".scommon");
6730 (*secp)->flags |= SEC_IS_COMMON;
6731 *valp = sym->st_size;
6732 break;
6733
6734 case SHN_MIPS_TEXT:
6735 /* This section is used in a shared object. */
6736 if (elf_tdata (abfd)->elf_text_section == NULL)
6737 {
6738 asymbol *elf_text_symbol;
6739 asection *elf_text_section;
6740 bfd_size_type amt = sizeof (asection);
6741
6742 elf_text_section = bfd_zalloc (abfd, amt);
6743 if (elf_text_section == NULL)
6744 return FALSE;
6745
6746 amt = sizeof (asymbol);
6747 elf_text_symbol = bfd_zalloc (abfd, amt);
6748 if (elf_text_symbol == NULL)
6749 return FALSE;
6750
6751 /* Initialize the section. */
6752
6753 elf_tdata (abfd)->elf_text_section = elf_text_section;
6754 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6755
6756 elf_text_section->symbol = elf_text_symbol;
6757 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6758
6759 elf_text_section->name = ".text";
6760 elf_text_section->flags = SEC_NO_FLAGS;
6761 elf_text_section->output_section = NULL;
6762 elf_text_section->owner = abfd;
6763 elf_text_symbol->name = ".text";
6764 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6765 elf_text_symbol->section = elf_text_section;
6766 }
6767 /* This code used to do *secp = bfd_und_section_ptr if
6768 info->shared. I don't know why, and that doesn't make sense,
6769 so I took it out. */
6770 *secp = elf_tdata (abfd)->elf_text_section;
6771 break;
6772
6773 case SHN_MIPS_ACOMMON:
6774 /* Fall through. XXX Can we treat this as allocated data? */
6775 case SHN_MIPS_DATA:
6776 /* This section is used in a shared object. */
6777 if (elf_tdata (abfd)->elf_data_section == NULL)
6778 {
6779 asymbol *elf_data_symbol;
6780 asection *elf_data_section;
6781 bfd_size_type amt = sizeof (asection);
6782
6783 elf_data_section = bfd_zalloc (abfd, amt);
6784 if (elf_data_section == NULL)
6785 return FALSE;
6786
6787 amt = sizeof (asymbol);
6788 elf_data_symbol = bfd_zalloc (abfd, amt);
6789 if (elf_data_symbol == NULL)
6790 return FALSE;
6791
6792 /* Initialize the section. */
6793
6794 elf_tdata (abfd)->elf_data_section = elf_data_section;
6795 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6796
6797 elf_data_section->symbol = elf_data_symbol;
6798 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6799
6800 elf_data_section->name = ".data";
6801 elf_data_section->flags = SEC_NO_FLAGS;
6802 elf_data_section->output_section = NULL;
6803 elf_data_section->owner = abfd;
6804 elf_data_symbol->name = ".data";
6805 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6806 elf_data_symbol->section = elf_data_section;
6807 }
6808 /* This code used to do *secp = bfd_und_section_ptr if
6809 info->shared. I don't know why, and that doesn't make sense,
6810 so I took it out. */
6811 *secp = elf_tdata (abfd)->elf_data_section;
6812 break;
6813
6814 case SHN_MIPS_SUNDEFINED:
6815 *secp = bfd_und_section_ptr;
6816 break;
6817 }
6818
6819 if (SGI_COMPAT (abfd)
6820 && ! info->shared
6821 && info->output_bfd->xvec == abfd->xvec
6822 && strcmp (*namep, "__rld_obj_head") == 0)
6823 {
6824 struct elf_link_hash_entry *h;
6825 struct bfd_link_hash_entry *bh;
6826
6827 /* Mark __rld_obj_head as dynamic. */
6828 bh = NULL;
6829 if (! (_bfd_generic_link_add_one_symbol
6830 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6831 get_elf_backend_data (abfd)->collect, &bh)))
6832 return FALSE;
6833
6834 h = (struct elf_link_hash_entry *) bh;
6835 h->non_elf = 0;
6836 h->def_regular = 1;
6837 h->type = STT_OBJECT;
6838
6839 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6840 return FALSE;
6841
6842 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6843 }
6844
6845 /* If this is a mips16 text symbol, add 1 to the value to make it
6846 odd. This will cause something like .word SYM to come up with
6847 the right value when it is loaded into the PC. */
6848 if (ELF_ST_IS_MIPS16 (sym->st_other))
6849 ++*valp;
6850
6851 return TRUE;
6852 }
6853
6854 /* This hook function is called before the linker writes out a global
6855 symbol. We mark symbols as small common if appropriate. This is
6856 also where we undo the increment of the value for a mips16 symbol. */
6857
6858 int
6859 _bfd_mips_elf_link_output_symbol_hook
6860 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6861 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6862 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6863 {
6864 /* If we see a common symbol, which implies a relocatable link, then
6865 if a symbol was small common in an input file, mark it as small
6866 common in the output file. */
6867 if (sym->st_shndx == SHN_COMMON
6868 && strcmp (input_sec->name, ".scommon") == 0)
6869 sym->st_shndx = SHN_MIPS_SCOMMON;
6870
6871 if (ELF_ST_IS_MIPS16 (sym->st_other))
6872 sym->st_value &= ~1;
6873
6874 return 1;
6875 }
6876 \f
6877 /* Functions for the dynamic linker. */
6878
6879 /* Create dynamic sections when linking against a dynamic object. */
6880
6881 bfd_boolean
6882 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6883 {
6884 struct elf_link_hash_entry *h;
6885 struct bfd_link_hash_entry *bh;
6886 flagword flags;
6887 register asection *s;
6888 const char * const *namep;
6889 struct mips_elf_link_hash_table *htab;
6890
6891 htab = mips_elf_hash_table (info);
6892 BFD_ASSERT (htab != NULL);
6893
6894 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6895 | SEC_LINKER_CREATED | SEC_READONLY);
6896
6897 /* The psABI requires a read-only .dynamic section, but the VxWorks
6898 EABI doesn't. */
6899 if (!htab->is_vxworks)
6900 {
6901 s = bfd_get_section_by_name (abfd, ".dynamic");
6902 if (s != NULL)
6903 {
6904 if (! bfd_set_section_flags (abfd, s, flags))
6905 return FALSE;
6906 }
6907 }
6908
6909 /* We need to create .got section. */
6910 if (!mips_elf_create_got_section (abfd, info))
6911 return FALSE;
6912
6913 if (! mips_elf_rel_dyn_section (info, TRUE))
6914 return FALSE;
6915
6916 /* Create .stub section. */
6917 s = bfd_make_section_with_flags (abfd,
6918 MIPS_ELF_STUB_SECTION_NAME (abfd),
6919 flags | SEC_CODE);
6920 if (s == NULL
6921 || ! bfd_set_section_alignment (abfd, s,
6922 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6923 return FALSE;
6924 htab->sstubs = s;
6925
6926 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6927 && !info->shared
6928 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6929 {
6930 s = bfd_make_section_with_flags (abfd, ".rld_map",
6931 flags &~ (flagword) SEC_READONLY);
6932 if (s == NULL
6933 || ! bfd_set_section_alignment (abfd, s,
6934 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6935 return FALSE;
6936 }
6937
6938 /* On IRIX5, we adjust add some additional symbols and change the
6939 alignments of several sections. There is no ABI documentation
6940 indicating that this is necessary on IRIX6, nor any evidence that
6941 the linker takes such action. */
6942 if (IRIX_COMPAT (abfd) == ict_irix5)
6943 {
6944 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6945 {
6946 bh = NULL;
6947 if (! (_bfd_generic_link_add_one_symbol
6948 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6949 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6950 return FALSE;
6951
6952 h = (struct elf_link_hash_entry *) bh;
6953 h->non_elf = 0;
6954 h->def_regular = 1;
6955 h->type = STT_SECTION;
6956
6957 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6958 return FALSE;
6959 }
6960
6961 /* We need to create a .compact_rel section. */
6962 if (SGI_COMPAT (abfd))
6963 {
6964 if (!mips_elf_create_compact_rel_section (abfd, info))
6965 return FALSE;
6966 }
6967
6968 /* Change alignments of some sections. */
6969 s = bfd_get_section_by_name (abfd, ".hash");
6970 if (s != NULL)
6971 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6972 s = bfd_get_section_by_name (abfd, ".dynsym");
6973 if (s != NULL)
6974 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6975 s = bfd_get_section_by_name (abfd, ".dynstr");
6976 if (s != NULL)
6977 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6978 s = bfd_get_section_by_name (abfd, ".reginfo");
6979 if (s != NULL)
6980 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6981 s = bfd_get_section_by_name (abfd, ".dynamic");
6982 if (s != NULL)
6983 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6984 }
6985
6986 if (!info->shared)
6987 {
6988 const char *name;
6989
6990 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6991 bh = NULL;
6992 if (!(_bfd_generic_link_add_one_symbol
6993 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6994 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6995 return FALSE;
6996
6997 h = (struct elf_link_hash_entry *) bh;
6998 h->non_elf = 0;
6999 h->def_regular = 1;
7000 h->type = STT_SECTION;
7001
7002 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7003 return FALSE;
7004
7005 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7006 {
7007 /* __rld_map is a four byte word located in the .data section
7008 and is filled in by the rtld to contain a pointer to
7009 the _r_debug structure. Its symbol value will be set in
7010 _bfd_mips_elf_finish_dynamic_symbol. */
7011 s = bfd_get_section_by_name (abfd, ".rld_map");
7012 BFD_ASSERT (s != NULL);
7013
7014 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7015 bh = NULL;
7016 if (!(_bfd_generic_link_add_one_symbol
7017 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7018 get_elf_backend_data (abfd)->collect, &bh)))
7019 return FALSE;
7020
7021 h = (struct elf_link_hash_entry *) bh;
7022 h->non_elf = 0;
7023 h->def_regular = 1;
7024 h->type = STT_OBJECT;
7025
7026 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7027 return FALSE;
7028 }
7029 }
7030
7031 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7032 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7033 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7034 return FALSE;
7035
7036 /* Cache the sections created above. */
7037 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7038 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7039 if (htab->is_vxworks)
7040 {
7041 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7042 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7043 }
7044 else
7045 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7046 if (!htab->sdynbss
7047 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7048 || !htab->srelplt
7049 || !htab->splt)
7050 abort ();
7051
7052 if (htab->is_vxworks)
7053 {
7054 /* Do the usual VxWorks handling. */
7055 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7056 return FALSE;
7057
7058 /* Work out the PLT sizes. */
7059 if (info->shared)
7060 {
7061 htab->plt_header_size
7062 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7063 htab->plt_entry_size
7064 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7065 }
7066 else
7067 {
7068 htab->plt_header_size
7069 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7070 htab->plt_entry_size
7071 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7072 }
7073 }
7074 else if (!info->shared)
7075 {
7076 /* All variants of the plt0 entry are the same size. */
7077 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7078 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7079 }
7080
7081 return TRUE;
7082 }
7083 \f
7084 /* Return true if relocation REL against section SEC is a REL rather than
7085 RELA relocation. RELOCS is the first relocation in the section and
7086 ABFD is the bfd that contains SEC. */
7087
7088 static bfd_boolean
7089 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7090 const Elf_Internal_Rela *relocs,
7091 const Elf_Internal_Rela *rel)
7092 {
7093 Elf_Internal_Shdr *rel_hdr;
7094 const struct elf_backend_data *bed;
7095
7096 /* To determine which flavor of relocation this is, we depend on the
7097 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7098 rel_hdr = elf_section_data (sec)->rel.hdr;
7099 if (rel_hdr == NULL)
7100 return FALSE;
7101 bed = get_elf_backend_data (abfd);
7102 return ((size_t) (rel - relocs)
7103 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7104 }
7105
7106 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7107 HOWTO is the relocation's howto and CONTENTS points to the contents
7108 of the section that REL is against. */
7109
7110 static bfd_vma
7111 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7112 reloc_howto_type *howto, bfd_byte *contents)
7113 {
7114 bfd_byte *location;
7115 unsigned int r_type;
7116 bfd_vma addend;
7117
7118 r_type = ELF_R_TYPE (abfd, rel->r_info);
7119 location = contents + rel->r_offset;
7120
7121 /* Get the addend, which is stored in the input file. */
7122 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7123 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7124 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7125
7126 return addend & howto->src_mask;
7127 }
7128
7129 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7130 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7131 and update *ADDEND with the final addend. Return true on success
7132 or false if the LO16 could not be found. RELEND is the exclusive
7133 upper bound on the relocations for REL's section. */
7134
7135 static bfd_boolean
7136 mips_elf_add_lo16_rel_addend (bfd *abfd,
7137 const Elf_Internal_Rela *rel,
7138 const Elf_Internal_Rela *relend,
7139 bfd_byte *contents, bfd_vma *addend)
7140 {
7141 unsigned int r_type, lo16_type;
7142 const Elf_Internal_Rela *lo16_relocation;
7143 reloc_howto_type *lo16_howto;
7144 bfd_vma l;
7145
7146 r_type = ELF_R_TYPE (abfd, rel->r_info);
7147 if (mips16_reloc_p (r_type))
7148 lo16_type = R_MIPS16_LO16;
7149 else
7150 lo16_type = R_MIPS_LO16;
7151
7152 /* The combined value is the sum of the HI16 addend, left-shifted by
7153 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7154 code does a `lui' of the HI16 value, and then an `addiu' of the
7155 LO16 value.)
7156
7157 Scan ahead to find a matching LO16 relocation.
7158
7159 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7160 be immediately following. However, for the IRIX6 ABI, the next
7161 relocation may be a composed relocation consisting of several
7162 relocations for the same address. In that case, the R_MIPS_LO16
7163 relocation may occur as one of these. We permit a similar
7164 extension in general, as that is useful for GCC.
7165
7166 In some cases GCC dead code elimination removes the LO16 but keeps
7167 the corresponding HI16. This is strictly speaking a violation of
7168 the ABI but not immediately harmful. */
7169 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7170 if (lo16_relocation == NULL)
7171 return FALSE;
7172
7173 /* Obtain the addend kept there. */
7174 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7175 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7176
7177 l <<= lo16_howto->rightshift;
7178 l = _bfd_mips_elf_sign_extend (l, 16);
7179
7180 *addend <<= 16;
7181 *addend += l;
7182 return TRUE;
7183 }
7184
7185 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7186 store the contents in *CONTENTS on success. Assume that *CONTENTS
7187 already holds the contents if it is nonull on entry. */
7188
7189 static bfd_boolean
7190 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7191 {
7192 if (*contents)
7193 return TRUE;
7194
7195 /* Get cached copy if it exists. */
7196 if (elf_section_data (sec)->this_hdr.contents != NULL)
7197 {
7198 *contents = elf_section_data (sec)->this_hdr.contents;
7199 return TRUE;
7200 }
7201
7202 return bfd_malloc_and_get_section (abfd, sec, contents);
7203 }
7204
7205 /* Look through the relocs for a section during the first phase, and
7206 allocate space in the global offset table. */
7207
7208 bfd_boolean
7209 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7210 asection *sec, const Elf_Internal_Rela *relocs)
7211 {
7212 const char *name;
7213 bfd *dynobj;
7214 Elf_Internal_Shdr *symtab_hdr;
7215 struct elf_link_hash_entry **sym_hashes;
7216 size_t extsymoff;
7217 const Elf_Internal_Rela *rel;
7218 const Elf_Internal_Rela *rel_end;
7219 asection *sreloc;
7220 const struct elf_backend_data *bed;
7221 struct mips_elf_link_hash_table *htab;
7222 bfd_byte *contents;
7223 bfd_vma addend;
7224 reloc_howto_type *howto;
7225
7226 if (info->relocatable)
7227 return TRUE;
7228
7229 htab = mips_elf_hash_table (info);
7230 BFD_ASSERT (htab != NULL);
7231
7232 dynobj = elf_hash_table (info)->dynobj;
7233 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7234 sym_hashes = elf_sym_hashes (abfd);
7235 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7236
7237 bed = get_elf_backend_data (abfd);
7238 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7239
7240 /* Check for the mips16 stub sections. */
7241
7242 name = bfd_get_section_name (abfd, sec);
7243 if (FN_STUB_P (name))
7244 {
7245 unsigned long r_symndx;
7246
7247 /* Look at the relocation information to figure out which symbol
7248 this is for. */
7249
7250 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7251 if (r_symndx == 0)
7252 {
7253 (*_bfd_error_handler)
7254 (_("%B: Warning: cannot determine the target function for"
7255 " stub section `%s'"),
7256 abfd, name);
7257 bfd_set_error (bfd_error_bad_value);
7258 return FALSE;
7259 }
7260
7261 if (r_symndx < extsymoff
7262 || sym_hashes[r_symndx - extsymoff] == NULL)
7263 {
7264 asection *o;
7265
7266 /* This stub is for a local symbol. This stub will only be
7267 needed if there is some relocation in this BFD, other
7268 than a 16 bit function call, which refers to this symbol. */
7269 for (o = abfd->sections; o != NULL; o = o->next)
7270 {
7271 Elf_Internal_Rela *sec_relocs;
7272 const Elf_Internal_Rela *r, *rend;
7273
7274 /* We can ignore stub sections when looking for relocs. */
7275 if ((o->flags & SEC_RELOC) == 0
7276 || o->reloc_count == 0
7277 || section_allows_mips16_refs_p (o))
7278 continue;
7279
7280 sec_relocs
7281 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7282 info->keep_memory);
7283 if (sec_relocs == NULL)
7284 return FALSE;
7285
7286 rend = sec_relocs + o->reloc_count;
7287 for (r = sec_relocs; r < rend; r++)
7288 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7289 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7290 break;
7291
7292 if (elf_section_data (o)->relocs != sec_relocs)
7293 free (sec_relocs);
7294
7295 if (r < rend)
7296 break;
7297 }
7298
7299 if (o == NULL)
7300 {
7301 /* There is no non-call reloc for this stub, so we do
7302 not need it. Since this function is called before
7303 the linker maps input sections to output sections, we
7304 can easily discard it by setting the SEC_EXCLUDE
7305 flag. */
7306 sec->flags |= SEC_EXCLUDE;
7307 return TRUE;
7308 }
7309
7310 /* Record this stub in an array of local symbol stubs for
7311 this BFD. */
7312 if (elf_tdata (abfd)->local_stubs == NULL)
7313 {
7314 unsigned long symcount;
7315 asection **n;
7316 bfd_size_type amt;
7317
7318 if (elf_bad_symtab (abfd))
7319 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7320 else
7321 symcount = symtab_hdr->sh_info;
7322 amt = symcount * sizeof (asection *);
7323 n = bfd_zalloc (abfd, amt);
7324 if (n == NULL)
7325 return FALSE;
7326 elf_tdata (abfd)->local_stubs = n;
7327 }
7328
7329 sec->flags |= SEC_KEEP;
7330 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7331
7332 /* We don't need to set mips16_stubs_seen in this case.
7333 That flag is used to see whether we need to look through
7334 the global symbol table for stubs. We don't need to set
7335 it here, because we just have a local stub. */
7336 }
7337 else
7338 {
7339 struct mips_elf_link_hash_entry *h;
7340
7341 h = ((struct mips_elf_link_hash_entry *)
7342 sym_hashes[r_symndx - extsymoff]);
7343
7344 while (h->root.root.type == bfd_link_hash_indirect
7345 || h->root.root.type == bfd_link_hash_warning)
7346 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7347
7348 /* H is the symbol this stub is for. */
7349
7350 /* If we already have an appropriate stub for this function, we
7351 don't need another one, so we can discard this one. Since
7352 this function is called before the linker maps input sections
7353 to output sections, we can easily discard it by setting the
7354 SEC_EXCLUDE flag. */
7355 if (h->fn_stub != NULL)
7356 {
7357 sec->flags |= SEC_EXCLUDE;
7358 return TRUE;
7359 }
7360
7361 sec->flags |= SEC_KEEP;
7362 h->fn_stub = sec;
7363 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7364 }
7365 }
7366 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7367 {
7368 unsigned long r_symndx;
7369 struct mips_elf_link_hash_entry *h;
7370 asection **loc;
7371
7372 /* Look at the relocation information to figure out which symbol
7373 this is for. */
7374
7375 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7376 if (r_symndx == 0)
7377 {
7378 (*_bfd_error_handler)
7379 (_("%B: Warning: cannot determine the target function for"
7380 " stub section `%s'"),
7381 abfd, name);
7382 bfd_set_error (bfd_error_bad_value);
7383 return FALSE;
7384 }
7385
7386 if (r_symndx < extsymoff
7387 || sym_hashes[r_symndx - extsymoff] == NULL)
7388 {
7389 asection *o;
7390
7391 /* This stub is for a local symbol. This stub will only be
7392 needed if there is some relocation (R_MIPS16_26) in this BFD
7393 that refers to this symbol. */
7394 for (o = abfd->sections; o != NULL; o = o->next)
7395 {
7396 Elf_Internal_Rela *sec_relocs;
7397 const Elf_Internal_Rela *r, *rend;
7398
7399 /* We can ignore stub sections when looking for relocs. */
7400 if ((o->flags & SEC_RELOC) == 0
7401 || o->reloc_count == 0
7402 || section_allows_mips16_refs_p (o))
7403 continue;
7404
7405 sec_relocs
7406 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7407 info->keep_memory);
7408 if (sec_relocs == NULL)
7409 return FALSE;
7410
7411 rend = sec_relocs + o->reloc_count;
7412 for (r = sec_relocs; r < rend; r++)
7413 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7414 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7415 break;
7416
7417 if (elf_section_data (o)->relocs != sec_relocs)
7418 free (sec_relocs);
7419
7420 if (r < rend)
7421 break;
7422 }
7423
7424 if (o == NULL)
7425 {
7426 /* There is no non-call reloc for this stub, so we do
7427 not need it. Since this function is called before
7428 the linker maps input sections to output sections, we
7429 can easily discard it by setting the SEC_EXCLUDE
7430 flag. */
7431 sec->flags |= SEC_EXCLUDE;
7432 return TRUE;
7433 }
7434
7435 /* Record this stub in an array of local symbol call_stubs for
7436 this BFD. */
7437 if (elf_tdata (abfd)->local_call_stubs == NULL)
7438 {
7439 unsigned long symcount;
7440 asection **n;
7441 bfd_size_type amt;
7442
7443 if (elf_bad_symtab (abfd))
7444 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7445 else
7446 symcount = symtab_hdr->sh_info;
7447 amt = symcount * sizeof (asection *);
7448 n = bfd_zalloc (abfd, amt);
7449 if (n == NULL)
7450 return FALSE;
7451 elf_tdata (abfd)->local_call_stubs = n;
7452 }
7453
7454 sec->flags |= SEC_KEEP;
7455 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7456
7457 /* We don't need to set mips16_stubs_seen in this case.
7458 That flag is used to see whether we need to look through
7459 the global symbol table for stubs. We don't need to set
7460 it here, because we just have a local stub. */
7461 }
7462 else
7463 {
7464 h = ((struct mips_elf_link_hash_entry *)
7465 sym_hashes[r_symndx - extsymoff]);
7466
7467 /* H is the symbol this stub is for. */
7468
7469 if (CALL_FP_STUB_P (name))
7470 loc = &h->call_fp_stub;
7471 else
7472 loc = &h->call_stub;
7473
7474 /* If we already have an appropriate stub for this function, we
7475 don't need another one, so we can discard this one. Since
7476 this function is called before the linker maps input sections
7477 to output sections, we can easily discard it by setting the
7478 SEC_EXCLUDE flag. */
7479 if (*loc != NULL)
7480 {
7481 sec->flags |= SEC_EXCLUDE;
7482 return TRUE;
7483 }
7484
7485 sec->flags |= SEC_KEEP;
7486 *loc = sec;
7487 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7488 }
7489 }
7490
7491 sreloc = NULL;
7492 contents = NULL;
7493 for (rel = relocs; rel < rel_end; ++rel)
7494 {
7495 unsigned long r_symndx;
7496 unsigned int r_type;
7497 struct elf_link_hash_entry *h;
7498 bfd_boolean can_make_dynamic_p;
7499
7500 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7501 r_type = ELF_R_TYPE (abfd, rel->r_info);
7502
7503 if (r_symndx < extsymoff)
7504 h = NULL;
7505 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7506 {
7507 (*_bfd_error_handler)
7508 (_("%B: Malformed reloc detected for section %s"),
7509 abfd, name);
7510 bfd_set_error (bfd_error_bad_value);
7511 return FALSE;
7512 }
7513 else
7514 {
7515 h = sym_hashes[r_symndx - extsymoff];
7516 while (h != NULL
7517 && (h->root.type == bfd_link_hash_indirect
7518 || h->root.type == bfd_link_hash_warning))
7519 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7520 }
7521
7522 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7523 relocation into a dynamic one. */
7524 can_make_dynamic_p = FALSE;
7525 switch (r_type)
7526 {
7527 case R_MIPS16_GOT16:
7528 case R_MIPS16_CALL16:
7529 case R_MIPS_GOT16:
7530 case R_MIPS_CALL16:
7531 case R_MIPS_CALL_HI16:
7532 case R_MIPS_CALL_LO16:
7533 case R_MIPS_GOT_HI16:
7534 case R_MIPS_GOT_LO16:
7535 case R_MIPS_GOT_PAGE:
7536 case R_MIPS_GOT_OFST:
7537 case R_MIPS_GOT_DISP:
7538 case R_MIPS_TLS_GOTTPREL:
7539 case R_MIPS_TLS_GD:
7540 case R_MIPS_TLS_LDM:
7541 if (dynobj == NULL)
7542 elf_hash_table (info)->dynobj = dynobj = abfd;
7543 if (!mips_elf_create_got_section (dynobj, info))
7544 return FALSE;
7545 if (htab->is_vxworks && !info->shared)
7546 {
7547 (*_bfd_error_handler)
7548 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7549 abfd, (unsigned long) rel->r_offset);
7550 bfd_set_error (bfd_error_bad_value);
7551 return FALSE;
7552 }
7553 break;
7554
7555 /* This is just a hint; it can safely be ignored. Don't set
7556 has_static_relocs for the corresponding symbol. */
7557 case R_MIPS_JALR:
7558 break;
7559
7560 case R_MIPS_32:
7561 case R_MIPS_REL32:
7562 case R_MIPS_64:
7563 /* In VxWorks executables, references to external symbols
7564 must be handled using copy relocs or PLT entries; it is not
7565 possible to convert this relocation into a dynamic one.
7566
7567 For executables that use PLTs and copy-relocs, we have a
7568 choice between converting the relocation into a dynamic
7569 one or using copy relocations or PLT entries. It is
7570 usually better to do the former, unless the relocation is
7571 against a read-only section. */
7572 if ((info->shared
7573 || (h != NULL
7574 && !htab->is_vxworks
7575 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7576 && !(!info->nocopyreloc
7577 && !PIC_OBJECT_P (abfd)
7578 && MIPS_ELF_READONLY_SECTION (sec))))
7579 && (sec->flags & SEC_ALLOC) != 0)
7580 {
7581 can_make_dynamic_p = TRUE;
7582 if (dynobj == NULL)
7583 elf_hash_table (info)->dynobj = dynobj = abfd;
7584 break;
7585 }
7586 /* For sections that are not SEC_ALLOC a copy reloc would be
7587 output if possible (implying questionable semantics for
7588 read-only data objects) or otherwise the final link would
7589 fail as ld.so will not process them and could not therefore
7590 handle any outstanding dynamic relocations.
7591
7592 For such sections that are also SEC_DEBUGGING, we can avoid
7593 these problems by simply ignoring any relocs as these
7594 sections have a predefined use and we know it is safe to do
7595 so.
7596
7597 This is needed in cases such as a global symbol definition
7598 in a shared library causing a common symbol from an object
7599 file to be converted to an undefined reference. If that
7600 happens, then all the relocations against this symbol from
7601 SEC_DEBUGGING sections in the object file will resolve to
7602 nil. */
7603 if ((sec->flags & SEC_DEBUGGING) != 0)
7604 break;
7605 /* Fall through. */
7606
7607 default:
7608 /* Most static relocations require pointer equality, except
7609 for branches. */
7610 if (h)
7611 h->pointer_equality_needed = TRUE;
7612 /* Fall through. */
7613
7614 case R_MIPS_26:
7615 case R_MIPS_PC16:
7616 case R_MIPS16_26:
7617 if (h)
7618 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7619 break;
7620 }
7621
7622 if (h)
7623 {
7624 /* Relocations against the special VxWorks __GOTT_BASE__ and
7625 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7626 room for them in .rela.dyn. */
7627 if (is_gott_symbol (info, h))
7628 {
7629 if (sreloc == NULL)
7630 {
7631 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7632 if (sreloc == NULL)
7633 return FALSE;
7634 }
7635 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7636 if (MIPS_ELF_READONLY_SECTION (sec))
7637 /* We tell the dynamic linker that there are
7638 relocations against the text segment. */
7639 info->flags |= DF_TEXTREL;
7640 }
7641 }
7642 else if (r_type == R_MIPS_CALL_LO16
7643 || r_type == R_MIPS_GOT_LO16
7644 || r_type == R_MIPS_GOT_DISP
7645 || (got16_reloc_p (r_type) && htab->is_vxworks))
7646 {
7647 /* We may need a local GOT entry for this relocation. We
7648 don't count R_MIPS_GOT_PAGE because we can estimate the
7649 maximum number of pages needed by looking at the size of
7650 the segment. Similar comments apply to R_MIPS*_GOT16 and
7651 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7652 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7653 R_MIPS_CALL_HI16 because these are always followed by an
7654 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7655 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7656 rel->r_addend, info, 0))
7657 return FALSE;
7658 }
7659
7660 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7661 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7662
7663 switch (r_type)
7664 {
7665 case R_MIPS_CALL16:
7666 case R_MIPS16_CALL16:
7667 if (h == NULL)
7668 {
7669 (*_bfd_error_handler)
7670 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7671 abfd, (unsigned long) rel->r_offset);
7672 bfd_set_error (bfd_error_bad_value);
7673 return FALSE;
7674 }
7675 /* Fall through. */
7676
7677 case R_MIPS_CALL_HI16:
7678 case R_MIPS_CALL_LO16:
7679 if (h != NULL)
7680 {
7681 /* Make sure there is room in the regular GOT to hold the
7682 function's address. We may eliminate it in favour of
7683 a .got.plt entry later; see mips_elf_count_got_symbols. */
7684 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
7685 return FALSE;
7686
7687 /* We need a stub, not a plt entry for the undefined
7688 function. But we record it as if it needs plt. See
7689 _bfd_elf_adjust_dynamic_symbol. */
7690 h->needs_plt = 1;
7691 h->type = STT_FUNC;
7692 }
7693 break;
7694
7695 case R_MIPS_GOT_PAGE:
7696 /* If this is a global, overridable symbol, GOT_PAGE will
7697 decay to GOT_DISP, so we'll need a GOT entry for it. */
7698 if (h)
7699 {
7700 struct mips_elf_link_hash_entry *hmips =
7701 (struct mips_elf_link_hash_entry *) h;
7702
7703 /* This symbol is definitely not overridable. */
7704 if (hmips->root.def_regular
7705 && ! (info->shared && ! info->symbolic
7706 && ! hmips->root.forced_local))
7707 h = NULL;
7708 }
7709 /* Fall through. */
7710
7711 case R_MIPS16_GOT16:
7712 case R_MIPS_GOT16:
7713 case R_MIPS_GOT_HI16:
7714 case R_MIPS_GOT_LO16:
7715 if (!h || r_type == R_MIPS_GOT_PAGE)
7716 {
7717 /* This relocation needs (or may need, if h != NULL) a
7718 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7719 know for sure until we know whether the symbol is
7720 preemptible. */
7721 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7722 {
7723 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7724 return FALSE;
7725 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7726 addend = mips_elf_read_rel_addend (abfd, rel,
7727 howto, contents);
7728 if (got16_reloc_p (r_type))
7729 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7730 contents, &addend);
7731 else
7732 addend <<= howto->rightshift;
7733 }
7734 else
7735 addend = rel->r_addend;
7736 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7737 addend))
7738 return FALSE;
7739 break;
7740 }
7741 /* Fall through. */
7742
7743 case R_MIPS_GOT_DISP:
7744 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7745 FALSE, 0))
7746 return FALSE;
7747 break;
7748
7749 case R_MIPS_TLS_GOTTPREL:
7750 if (info->shared)
7751 info->flags |= DF_STATIC_TLS;
7752 /* Fall through */
7753
7754 case R_MIPS_TLS_LDM:
7755 if (r_type == R_MIPS_TLS_LDM)
7756 {
7757 r_symndx = STN_UNDEF;
7758 h = NULL;
7759 }
7760 /* Fall through */
7761
7762 case R_MIPS_TLS_GD:
7763 /* This symbol requires a global offset table entry, or two
7764 for TLS GD relocations. */
7765 {
7766 unsigned char flag = (r_type == R_MIPS_TLS_GD
7767 ? GOT_TLS_GD
7768 : r_type == R_MIPS_TLS_LDM
7769 ? GOT_TLS_LDM
7770 : GOT_TLS_IE);
7771 if (h != NULL)
7772 {
7773 struct mips_elf_link_hash_entry *hmips =
7774 (struct mips_elf_link_hash_entry *) h;
7775 hmips->tls_type |= flag;
7776
7777 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7778 FALSE, flag))
7779 return FALSE;
7780 }
7781 else
7782 {
7783 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
7784
7785 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7786 rel->r_addend,
7787 info, flag))
7788 return FALSE;
7789 }
7790 }
7791 break;
7792
7793 case R_MIPS_32:
7794 case R_MIPS_REL32:
7795 case R_MIPS_64:
7796 /* In VxWorks executables, references to external symbols
7797 are handled using copy relocs or PLT stubs, so there's
7798 no need to add a .rela.dyn entry for this relocation. */
7799 if (can_make_dynamic_p)
7800 {
7801 if (sreloc == NULL)
7802 {
7803 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7804 if (sreloc == NULL)
7805 return FALSE;
7806 }
7807 if (info->shared && h == NULL)
7808 {
7809 /* When creating a shared object, we must copy these
7810 reloc types into the output file as R_MIPS_REL32
7811 relocs. Make room for this reloc in .rel(a).dyn. */
7812 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7813 if (MIPS_ELF_READONLY_SECTION (sec))
7814 /* We tell the dynamic linker that there are
7815 relocations against the text segment. */
7816 info->flags |= DF_TEXTREL;
7817 }
7818 else
7819 {
7820 struct mips_elf_link_hash_entry *hmips;
7821
7822 /* For a shared object, we must copy this relocation
7823 unless the symbol turns out to be undefined and
7824 weak with non-default visibility, in which case
7825 it will be left as zero.
7826
7827 We could elide R_MIPS_REL32 for locally binding symbols
7828 in shared libraries, but do not yet do so.
7829
7830 For an executable, we only need to copy this
7831 reloc if the symbol is defined in a dynamic
7832 object. */
7833 hmips = (struct mips_elf_link_hash_entry *) h;
7834 ++hmips->possibly_dynamic_relocs;
7835 if (MIPS_ELF_READONLY_SECTION (sec))
7836 /* We need it to tell the dynamic linker if there
7837 are relocations against the text segment. */
7838 hmips->readonly_reloc = TRUE;
7839 }
7840 }
7841
7842 if (SGI_COMPAT (abfd))
7843 mips_elf_hash_table (info)->compact_rel_size +=
7844 sizeof (Elf32_External_crinfo);
7845 break;
7846
7847 case R_MIPS_26:
7848 case R_MIPS_GPREL16:
7849 case R_MIPS_LITERAL:
7850 case R_MIPS_GPREL32:
7851 if (SGI_COMPAT (abfd))
7852 mips_elf_hash_table (info)->compact_rel_size +=
7853 sizeof (Elf32_External_crinfo);
7854 break;
7855
7856 /* This relocation describes the C++ object vtable hierarchy.
7857 Reconstruct it for later use during GC. */
7858 case R_MIPS_GNU_VTINHERIT:
7859 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7860 return FALSE;
7861 break;
7862
7863 /* This relocation describes which C++ vtable entries are actually
7864 used. Record for later use during GC. */
7865 case R_MIPS_GNU_VTENTRY:
7866 BFD_ASSERT (h != NULL);
7867 if (h != NULL
7868 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7869 return FALSE;
7870 break;
7871
7872 default:
7873 break;
7874 }
7875
7876 /* We must not create a stub for a symbol that has relocations
7877 related to taking the function's address. This doesn't apply to
7878 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7879 a normal .got entry. */
7880 if (!htab->is_vxworks && h != NULL)
7881 switch (r_type)
7882 {
7883 default:
7884 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7885 break;
7886 case R_MIPS16_CALL16:
7887 case R_MIPS_CALL16:
7888 case R_MIPS_CALL_HI16:
7889 case R_MIPS_CALL_LO16:
7890 case R_MIPS_JALR:
7891 break;
7892 }
7893
7894 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7895 if there is one. We only need to handle global symbols here;
7896 we decide whether to keep or delete stubs for local symbols
7897 when processing the stub's relocations. */
7898 if (h != NULL
7899 && !mips16_call_reloc_p (r_type)
7900 && !section_allows_mips16_refs_p (sec))
7901 {
7902 struct mips_elf_link_hash_entry *mh;
7903
7904 mh = (struct mips_elf_link_hash_entry *) h;
7905 mh->need_fn_stub = TRUE;
7906 }
7907
7908 /* Refuse some position-dependent relocations when creating a
7909 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7910 not PIC, but we can create dynamic relocations and the result
7911 will be fine. Also do not refuse R_MIPS_LO16, which can be
7912 combined with R_MIPS_GOT16. */
7913 if (info->shared)
7914 {
7915 switch (r_type)
7916 {
7917 case R_MIPS16_HI16:
7918 case R_MIPS_HI16:
7919 case R_MIPS_HIGHER:
7920 case R_MIPS_HIGHEST:
7921 /* Don't refuse a high part relocation if it's against
7922 no symbol (e.g. part of a compound relocation). */
7923 if (r_symndx == STN_UNDEF)
7924 break;
7925
7926 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7927 and has a special meaning. */
7928 if (!NEWABI_P (abfd) && h != NULL
7929 && strcmp (h->root.root.string, "_gp_disp") == 0)
7930 break;
7931
7932 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
7933 if (is_gott_symbol (info, h))
7934 break;
7935
7936 /* FALLTHROUGH */
7937
7938 case R_MIPS16_26:
7939 case R_MIPS_26:
7940 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7941 (*_bfd_error_handler)
7942 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7943 abfd, howto->name,
7944 (h) ? h->root.root.string : "a local symbol");
7945 bfd_set_error (bfd_error_bad_value);
7946 return FALSE;
7947 default:
7948 break;
7949 }
7950 }
7951 }
7952
7953 return TRUE;
7954 }
7955 \f
7956 bfd_boolean
7957 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7958 struct bfd_link_info *link_info,
7959 bfd_boolean *again)
7960 {
7961 Elf_Internal_Rela *internal_relocs;
7962 Elf_Internal_Rela *irel, *irelend;
7963 Elf_Internal_Shdr *symtab_hdr;
7964 bfd_byte *contents = NULL;
7965 size_t extsymoff;
7966 bfd_boolean changed_contents = FALSE;
7967 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7968 Elf_Internal_Sym *isymbuf = NULL;
7969
7970 /* We are not currently changing any sizes, so only one pass. */
7971 *again = FALSE;
7972
7973 if (link_info->relocatable)
7974 return TRUE;
7975
7976 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7977 link_info->keep_memory);
7978 if (internal_relocs == NULL)
7979 return TRUE;
7980
7981 irelend = internal_relocs + sec->reloc_count
7982 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7983 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7984 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7985
7986 for (irel = internal_relocs; irel < irelend; irel++)
7987 {
7988 bfd_vma symval;
7989 bfd_signed_vma sym_offset;
7990 unsigned int r_type;
7991 unsigned long r_symndx;
7992 asection *sym_sec;
7993 unsigned long instruction;
7994
7995 /* Turn jalr into bgezal, and jr into beq, if they're marked
7996 with a JALR relocation, that indicate where they jump to.
7997 This saves some pipeline bubbles. */
7998 r_type = ELF_R_TYPE (abfd, irel->r_info);
7999 if (r_type != R_MIPS_JALR)
8000 continue;
8001
8002 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8003 /* Compute the address of the jump target. */
8004 if (r_symndx >= extsymoff)
8005 {
8006 struct mips_elf_link_hash_entry *h
8007 = ((struct mips_elf_link_hash_entry *)
8008 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8009
8010 while (h->root.root.type == bfd_link_hash_indirect
8011 || h->root.root.type == bfd_link_hash_warning)
8012 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8013
8014 /* If a symbol is undefined, or if it may be overridden,
8015 skip it. */
8016 if (! ((h->root.root.type == bfd_link_hash_defined
8017 || h->root.root.type == bfd_link_hash_defweak)
8018 && h->root.root.u.def.section)
8019 || (link_info->shared && ! link_info->symbolic
8020 && !h->root.forced_local))
8021 continue;
8022
8023 sym_sec = h->root.root.u.def.section;
8024 if (sym_sec->output_section)
8025 symval = (h->root.root.u.def.value
8026 + sym_sec->output_section->vma
8027 + sym_sec->output_offset);
8028 else
8029 symval = h->root.root.u.def.value;
8030 }
8031 else
8032 {
8033 Elf_Internal_Sym *isym;
8034
8035 /* Read this BFD's symbols if we haven't done so already. */
8036 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8037 {
8038 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8039 if (isymbuf == NULL)
8040 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8041 symtab_hdr->sh_info, 0,
8042 NULL, NULL, NULL);
8043 if (isymbuf == NULL)
8044 goto relax_return;
8045 }
8046
8047 isym = isymbuf + r_symndx;
8048 if (isym->st_shndx == SHN_UNDEF)
8049 continue;
8050 else if (isym->st_shndx == SHN_ABS)
8051 sym_sec = bfd_abs_section_ptr;
8052 else if (isym->st_shndx == SHN_COMMON)
8053 sym_sec = bfd_com_section_ptr;
8054 else
8055 sym_sec
8056 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8057 symval = isym->st_value
8058 + sym_sec->output_section->vma
8059 + sym_sec->output_offset;
8060 }
8061
8062 /* Compute branch offset, from delay slot of the jump to the
8063 branch target. */
8064 sym_offset = (symval + irel->r_addend)
8065 - (sec_start + irel->r_offset + 4);
8066
8067 /* Branch offset must be properly aligned. */
8068 if ((sym_offset & 3) != 0)
8069 continue;
8070
8071 sym_offset >>= 2;
8072
8073 /* Check that it's in range. */
8074 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8075 continue;
8076
8077 /* Get the section contents if we haven't done so already. */
8078 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8079 goto relax_return;
8080
8081 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8082
8083 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8084 if ((instruction & 0xfc1fffff) == 0x0000f809)
8085 instruction = 0x04110000;
8086 /* If it was jr <reg>, turn it into b <target>. */
8087 else if ((instruction & 0xfc1fffff) == 0x00000008)
8088 instruction = 0x10000000;
8089 else
8090 continue;
8091
8092 instruction |= (sym_offset & 0xffff);
8093 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8094 changed_contents = TRUE;
8095 }
8096
8097 if (contents != NULL
8098 && elf_section_data (sec)->this_hdr.contents != contents)
8099 {
8100 if (!changed_contents && !link_info->keep_memory)
8101 free (contents);
8102 else
8103 {
8104 /* Cache the section contents for elf_link_input_bfd. */
8105 elf_section_data (sec)->this_hdr.contents = contents;
8106 }
8107 }
8108 return TRUE;
8109
8110 relax_return:
8111 if (contents != NULL
8112 && elf_section_data (sec)->this_hdr.contents != contents)
8113 free (contents);
8114 return FALSE;
8115 }
8116 \f
8117 /* Allocate space for global sym dynamic relocs. */
8118
8119 static bfd_boolean
8120 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8121 {
8122 struct bfd_link_info *info = inf;
8123 bfd *dynobj;
8124 struct mips_elf_link_hash_entry *hmips;
8125 struct mips_elf_link_hash_table *htab;
8126
8127 htab = mips_elf_hash_table (info);
8128 BFD_ASSERT (htab != NULL);
8129
8130 dynobj = elf_hash_table (info)->dynobj;
8131 hmips = (struct mips_elf_link_hash_entry *) h;
8132
8133 /* VxWorks executables are handled elsewhere; we only need to
8134 allocate relocations in shared objects. */
8135 if (htab->is_vxworks && !info->shared)
8136 return TRUE;
8137
8138 /* Ignore indirect and warning symbols. All relocations against
8139 such symbols will be redirected to the target symbol. */
8140 if (h->root.type == bfd_link_hash_indirect
8141 || h->root.type == bfd_link_hash_warning)
8142 return TRUE;
8143
8144 /* If this symbol is defined in a dynamic object, or we are creating
8145 a shared library, we will need to copy any R_MIPS_32 or
8146 R_MIPS_REL32 relocs against it into the output file. */
8147 if (! info->relocatable
8148 && hmips->possibly_dynamic_relocs != 0
8149 && (h->root.type == bfd_link_hash_defweak
8150 || !h->def_regular
8151 || info->shared))
8152 {
8153 bfd_boolean do_copy = TRUE;
8154
8155 if (h->root.type == bfd_link_hash_undefweak)
8156 {
8157 /* Do not copy relocations for undefined weak symbols with
8158 non-default visibility. */
8159 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8160 do_copy = FALSE;
8161
8162 /* Make sure undefined weak symbols are output as a dynamic
8163 symbol in PIEs. */
8164 else if (h->dynindx == -1 && !h->forced_local)
8165 {
8166 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8167 return FALSE;
8168 }
8169 }
8170
8171 if (do_copy)
8172 {
8173 /* Even though we don't directly need a GOT entry for this symbol,
8174 the SVR4 psABI requires it to have a dynamic symbol table
8175 index greater that DT_MIPS_GOTSYM if there are dynamic
8176 relocations against it.
8177
8178 VxWorks does not enforce the same mapping between the GOT
8179 and the symbol table, so the same requirement does not
8180 apply there. */
8181 if (!htab->is_vxworks)
8182 {
8183 if (hmips->global_got_area > GGA_RELOC_ONLY)
8184 hmips->global_got_area = GGA_RELOC_ONLY;
8185 hmips->got_only_for_calls = FALSE;
8186 }
8187
8188 mips_elf_allocate_dynamic_relocations
8189 (dynobj, info, hmips->possibly_dynamic_relocs);
8190 if (hmips->readonly_reloc)
8191 /* We tell the dynamic linker that there are relocations
8192 against the text segment. */
8193 info->flags |= DF_TEXTREL;
8194 }
8195 }
8196
8197 return TRUE;
8198 }
8199
8200 /* Adjust a symbol defined by a dynamic object and referenced by a
8201 regular object. The current definition is in some section of the
8202 dynamic object, but we're not including those sections. We have to
8203 change the definition to something the rest of the link can
8204 understand. */
8205
8206 bfd_boolean
8207 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8208 struct elf_link_hash_entry *h)
8209 {
8210 bfd *dynobj;
8211 struct mips_elf_link_hash_entry *hmips;
8212 struct mips_elf_link_hash_table *htab;
8213
8214 htab = mips_elf_hash_table (info);
8215 BFD_ASSERT (htab != NULL);
8216
8217 dynobj = elf_hash_table (info)->dynobj;
8218 hmips = (struct mips_elf_link_hash_entry *) h;
8219
8220 /* Make sure we know what is going on here. */
8221 BFD_ASSERT (dynobj != NULL
8222 && (h->needs_plt
8223 || h->u.weakdef != NULL
8224 || (h->def_dynamic
8225 && h->ref_regular
8226 && !h->def_regular)));
8227
8228 hmips = (struct mips_elf_link_hash_entry *) h;
8229
8230 /* If there are call relocations against an externally-defined symbol,
8231 see whether we can create a MIPS lazy-binding stub for it. We can
8232 only do this if all references to the function are through call
8233 relocations, and in that case, the traditional lazy-binding stubs
8234 are much more efficient than PLT entries.
8235
8236 Traditional stubs are only available on SVR4 psABI-based systems;
8237 VxWorks always uses PLTs instead. */
8238 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8239 {
8240 if (! elf_hash_table (info)->dynamic_sections_created)
8241 return TRUE;
8242
8243 /* If this symbol is not defined in a regular file, then set
8244 the symbol to the stub location. This is required to make
8245 function pointers compare as equal between the normal
8246 executable and the shared library. */
8247 if (!h->def_regular)
8248 {
8249 hmips->needs_lazy_stub = TRUE;
8250 htab->lazy_stub_count++;
8251 return TRUE;
8252 }
8253 }
8254 /* As above, VxWorks requires PLT entries for externally-defined
8255 functions that are only accessed through call relocations.
8256
8257 Both VxWorks and non-VxWorks targets also need PLT entries if there
8258 are static-only relocations against an externally-defined function.
8259 This can technically occur for shared libraries if there are
8260 branches to the symbol, although it is unlikely that this will be
8261 used in practice due to the short ranges involved. It can occur
8262 for any relative or absolute relocation in executables; in that
8263 case, the PLT entry becomes the function's canonical address. */
8264 else if (((h->needs_plt && !hmips->no_fn_stub)
8265 || (h->type == STT_FUNC && hmips->has_static_relocs))
8266 && htab->use_plts_and_copy_relocs
8267 && !SYMBOL_CALLS_LOCAL (info, h)
8268 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8269 && h->root.type == bfd_link_hash_undefweak))
8270 {
8271 /* If this is the first symbol to need a PLT entry, allocate room
8272 for the header. */
8273 if (htab->splt->size == 0)
8274 {
8275 BFD_ASSERT (htab->sgotplt->size == 0);
8276
8277 /* If we're using the PLT additions to the psABI, each PLT
8278 entry is 16 bytes and the PLT0 entry is 32 bytes.
8279 Encourage better cache usage by aligning. We do this
8280 lazily to avoid pessimizing traditional objects. */
8281 if (!htab->is_vxworks
8282 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8283 return FALSE;
8284
8285 /* Make sure that .got.plt is word-aligned. We do this lazily
8286 for the same reason as above. */
8287 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8288 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8289 return FALSE;
8290
8291 htab->splt->size += htab->plt_header_size;
8292
8293 /* On non-VxWorks targets, the first two entries in .got.plt
8294 are reserved. */
8295 if (!htab->is_vxworks)
8296 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8297
8298 /* On VxWorks, also allocate room for the header's
8299 .rela.plt.unloaded entries. */
8300 if (htab->is_vxworks && !info->shared)
8301 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8302 }
8303
8304 /* Assign the next .plt entry to this symbol. */
8305 h->plt.offset = htab->splt->size;
8306 htab->splt->size += htab->plt_entry_size;
8307
8308 /* If the output file has no definition of the symbol, set the
8309 symbol's value to the address of the stub. */
8310 if (!info->shared && !h->def_regular)
8311 {
8312 h->root.u.def.section = htab->splt;
8313 h->root.u.def.value = h->plt.offset;
8314 /* For VxWorks, point at the PLT load stub rather than the
8315 lazy resolution stub; this stub will become the canonical
8316 function address. */
8317 if (htab->is_vxworks)
8318 h->root.u.def.value += 8;
8319 }
8320
8321 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8322 relocation. */
8323 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8324 htab->srelplt->size += (htab->is_vxworks
8325 ? MIPS_ELF_RELA_SIZE (dynobj)
8326 : MIPS_ELF_REL_SIZE (dynobj));
8327
8328 /* Make room for the .rela.plt.unloaded relocations. */
8329 if (htab->is_vxworks && !info->shared)
8330 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8331
8332 /* All relocations against this symbol that could have been made
8333 dynamic will now refer to the PLT entry instead. */
8334 hmips->possibly_dynamic_relocs = 0;
8335
8336 return TRUE;
8337 }
8338
8339 /* If this is a weak symbol, and there is a real definition, the
8340 processor independent code will have arranged for us to see the
8341 real definition first, and we can just use the same value. */
8342 if (h->u.weakdef != NULL)
8343 {
8344 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8345 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8346 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8347 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8348 return TRUE;
8349 }
8350
8351 /* Otherwise, there is nothing further to do for symbols defined
8352 in regular objects. */
8353 if (h->def_regular)
8354 return TRUE;
8355
8356 /* There's also nothing more to do if we'll convert all relocations
8357 against this symbol into dynamic relocations. */
8358 if (!hmips->has_static_relocs)
8359 return TRUE;
8360
8361 /* We're now relying on copy relocations. Complain if we have
8362 some that we can't convert. */
8363 if (!htab->use_plts_and_copy_relocs || info->shared)
8364 {
8365 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8366 "dynamic symbol %s"),
8367 h->root.root.string);
8368 bfd_set_error (bfd_error_bad_value);
8369 return FALSE;
8370 }
8371
8372 /* We must allocate the symbol in our .dynbss section, which will
8373 become part of the .bss section of the executable. There will be
8374 an entry for this symbol in the .dynsym section. The dynamic
8375 object will contain position independent code, so all references
8376 from the dynamic object to this symbol will go through the global
8377 offset table. The dynamic linker will use the .dynsym entry to
8378 determine the address it must put in the global offset table, so
8379 both the dynamic object and the regular object will refer to the
8380 same memory location for the variable. */
8381
8382 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8383 {
8384 if (htab->is_vxworks)
8385 htab->srelbss->size += sizeof (Elf32_External_Rela);
8386 else
8387 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8388 h->needs_copy = 1;
8389 }
8390
8391 /* All relocations against this symbol that could have been made
8392 dynamic will now refer to the local copy instead. */
8393 hmips->possibly_dynamic_relocs = 0;
8394
8395 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8396 }
8397 \f
8398 /* This function is called after all the input files have been read,
8399 and the input sections have been assigned to output sections. We
8400 check for any mips16 stub sections that we can discard. */
8401
8402 bfd_boolean
8403 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8404 struct bfd_link_info *info)
8405 {
8406 asection *ri;
8407 struct mips_elf_link_hash_table *htab;
8408 struct mips_htab_traverse_info hti;
8409
8410 htab = mips_elf_hash_table (info);
8411 BFD_ASSERT (htab != NULL);
8412
8413 /* The .reginfo section has a fixed size. */
8414 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8415 if (ri != NULL)
8416 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8417
8418 hti.info = info;
8419 hti.output_bfd = output_bfd;
8420 hti.error = FALSE;
8421 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8422 mips_elf_check_symbols, &hti);
8423 if (hti.error)
8424 return FALSE;
8425
8426 return TRUE;
8427 }
8428
8429 /* If the link uses a GOT, lay it out and work out its size. */
8430
8431 static bfd_boolean
8432 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8433 {
8434 bfd *dynobj;
8435 asection *s;
8436 struct mips_got_info *g;
8437 bfd_size_type loadable_size = 0;
8438 bfd_size_type page_gotno;
8439 bfd *sub;
8440 struct mips_elf_count_tls_arg count_tls_arg;
8441 struct mips_elf_link_hash_table *htab;
8442
8443 htab = mips_elf_hash_table (info);
8444 BFD_ASSERT (htab != NULL);
8445
8446 s = htab->sgot;
8447 if (s == NULL)
8448 return TRUE;
8449
8450 dynobj = elf_hash_table (info)->dynobj;
8451 g = htab->got_info;
8452
8453 /* Allocate room for the reserved entries. VxWorks always reserves
8454 3 entries; other objects only reserve 2 entries. */
8455 BFD_ASSERT (g->assigned_gotno == 0);
8456 if (htab->is_vxworks)
8457 htab->reserved_gotno = 3;
8458 else
8459 htab->reserved_gotno = 2;
8460 g->local_gotno += htab->reserved_gotno;
8461 g->assigned_gotno = htab->reserved_gotno;
8462
8463 /* Replace entries for indirect and warning symbols with entries for
8464 the target symbol. */
8465 if (!mips_elf_resolve_final_got_entries (g))
8466 return FALSE;
8467
8468 /* Count the number of GOT symbols. */
8469 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8470
8471 /* Calculate the total loadable size of the output. That
8472 will give us the maximum number of GOT_PAGE entries
8473 required. */
8474 for (sub = info->input_bfds; sub; sub = sub->link_next)
8475 {
8476 asection *subsection;
8477
8478 for (subsection = sub->sections;
8479 subsection;
8480 subsection = subsection->next)
8481 {
8482 if ((subsection->flags & SEC_ALLOC) == 0)
8483 continue;
8484 loadable_size += ((subsection->size + 0xf)
8485 &~ (bfd_size_type) 0xf);
8486 }
8487 }
8488
8489 if (htab->is_vxworks)
8490 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8491 relocations against local symbols evaluate to "G", and the EABI does
8492 not include R_MIPS_GOT_PAGE. */
8493 page_gotno = 0;
8494 else
8495 /* Assume there are two loadable segments consisting of contiguous
8496 sections. Is 5 enough? */
8497 page_gotno = (loadable_size >> 16) + 5;
8498
8499 /* Choose the smaller of the two estimates; both are intended to be
8500 conservative. */
8501 if (page_gotno > g->page_gotno)
8502 page_gotno = g->page_gotno;
8503
8504 g->local_gotno += page_gotno;
8505 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8506 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8507
8508 /* We need to calculate tls_gotno for global symbols at this point
8509 instead of building it up earlier, to avoid doublecounting
8510 entries for one global symbol from multiple input files. */
8511 count_tls_arg.info = info;
8512 count_tls_arg.needed = 0;
8513 elf_link_hash_traverse (elf_hash_table (info),
8514 mips_elf_count_global_tls_entries,
8515 &count_tls_arg);
8516 g->tls_gotno += count_tls_arg.needed;
8517 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8518
8519 /* VxWorks does not support multiple GOTs. It initializes $gp to
8520 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8521 dynamic loader. */
8522 if (htab->is_vxworks)
8523 {
8524 /* VxWorks executables do not need a GOT. */
8525 if (info->shared)
8526 {
8527 /* Each VxWorks GOT entry needs an explicit relocation. */
8528 unsigned int count;
8529
8530 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8531 if (count)
8532 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8533 }
8534 }
8535 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8536 {
8537 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8538 return FALSE;
8539 }
8540 else
8541 {
8542 struct mips_elf_count_tls_arg arg;
8543
8544 /* Set up TLS entries. */
8545 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8546 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8547
8548 /* Allocate room for the TLS relocations. */
8549 arg.info = info;
8550 arg.needed = 0;
8551 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8552 elf_link_hash_traverse (elf_hash_table (info),
8553 mips_elf_count_global_tls_relocs,
8554 &arg);
8555 if (arg.needed)
8556 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8557 }
8558
8559 return TRUE;
8560 }
8561
8562 /* Estimate the size of the .MIPS.stubs section. */
8563
8564 static void
8565 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8566 {
8567 struct mips_elf_link_hash_table *htab;
8568 bfd_size_type dynsymcount;
8569
8570 htab = mips_elf_hash_table (info);
8571 BFD_ASSERT (htab != NULL);
8572
8573 if (htab->lazy_stub_count == 0)
8574 return;
8575
8576 /* IRIX rld assumes that a function stub isn't at the end of the .text
8577 section, so add a dummy entry to the end. */
8578 htab->lazy_stub_count++;
8579
8580 /* Get a worst-case estimate of the number of dynamic symbols needed.
8581 At this point, dynsymcount does not account for section symbols
8582 and count_section_dynsyms may overestimate the number that will
8583 be needed. */
8584 dynsymcount = (elf_hash_table (info)->dynsymcount
8585 + count_section_dynsyms (output_bfd, info));
8586
8587 /* Determine the size of one stub entry. */
8588 htab->function_stub_size = (dynsymcount > 0x10000
8589 ? MIPS_FUNCTION_STUB_BIG_SIZE
8590 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8591
8592 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8593 }
8594
8595 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8596 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8597 allocate an entry in the stubs section. */
8598
8599 static bfd_boolean
8600 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8601 {
8602 struct mips_elf_link_hash_table *htab;
8603
8604 htab = (struct mips_elf_link_hash_table *) data;
8605 if (h->needs_lazy_stub)
8606 {
8607 h->root.root.u.def.section = htab->sstubs;
8608 h->root.root.u.def.value = htab->sstubs->size;
8609 h->root.plt.offset = htab->sstubs->size;
8610 htab->sstubs->size += htab->function_stub_size;
8611 }
8612 return TRUE;
8613 }
8614
8615 /* Allocate offsets in the stubs section to each symbol that needs one.
8616 Set the final size of the .MIPS.stub section. */
8617
8618 static void
8619 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8620 {
8621 struct mips_elf_link_hash_table *htab;
8622
8623 htab = mips_elf_hash_table (info);
8624 BFD_ASSERT (htab != NULL);
8625
8626 if (htab->lazy_stub_count == 0)
8627 return;
8628
8629 htab->sstubs->size = 0;
8630 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8631 htab->sstubs->size += htab->function_stub_size;
8632 BFD_ASSERT (htab->sstubs->size
8633 == htab->lazy_stub_count * htab->function_stub_size);
8634 }
8635
8636 /* Set the sizes of the dynamic sections. */
8637
8638 bfd_boolean
8639 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8640 struct bfd_link_info *info)
8641 {
8642 bfd *dynobj;
8643 asection *s, *sreldyn;
8644 bfd_boolean reltext;
8645 struct mips_elf_link_hash_table *htab;
8646
8647 htab = mips_elf_hash_table (info);
8648 BFD_ASSERT (htab != NULL);
8649 dynobj = elf_hash_table (info)->dynobj;
8650 BFD_ASSERT (dynobj != NULL);
8651
8652 if (elf_hash_table (info)->dynamic_sections_created)
8653 {
8654 /* Set the contents of the .interp section to the interpreter. */
8655 if (info->executable)
8656 {
8657 s = bfd_get_section_by_name (dynobj, ".interp");
8658 BFD_ASSERT (s != NULL);
8659 s->size
8660 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8661 s->contents
8662 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8663 }
8664
8665 /* Create a symbol for the PLT, if we know that we are using it. */
8666 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8667 {
8668 struct elf_link_hash_entry *h;
8669
8670 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8671
8672 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8673 "_PROCEDURE_LINKAGE_TABLE_");
8674 htab->root.hplt = h;
8675 if (h == NULL)
8676 return FALSE;
8677 h->type = STT_FUNC;
8678 }
8679 }
8680
8681 /* Allocate space for global sym dynamic relocs. */
8682 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8683
8684 mips_elf_estimate_stub_size (output_bfd, info);
8685
8686 if (!mips_elf_lay_out_got (output_bfd, info))
8687 return FALSE;
8688
8689 mips_elf_lay_out_lazy_stubs (info);
8690
8691 /* The check_relocs and adjust_dynamic_symbol entry points have
8692 determined the sizes of the various dynamic sections. Allocate
8693 memory for them. */
8694 reltext = FALSE;
8695 for (s = dynobj->sections; s != NULL; s = s->next)
8696 {
8697 const char *name;
8698
8699 /* It's OK to base decisions on the section name, because none
8700 of the dynobj section names depend upon the input files. */
8701 name = bfd_get_section_name (dynobj, s);
8702
8703 if ((s->flags & SEC_LINKER_CREATED) == 0)
8704 continue;
8705
8706 if (CONST_STRNEQ (name, ".rel"))
8707 {
8708 if (s->size != 0)
8709 {
8710 const char *outname;
8711 asection *target;
8712
8713 /* If this relocation section applies to a read only
8714 section, then we probably need a DT_TEXTREL entry.
8715 If the relocation section is .rel(a).dyn, we always
8716 assert a DT_TEXTREL entry rather than testing whether
8717 there exists a relocation to a read only section or
8718 not. */
8719 outname = bfd_get_section_name (output_bfd,
8720 s->output_section);
8721 target = bfd_get_section_by_name (output_bfd, outname + 4);
8722 if ((target != NULL
8723 && (target->flags & SEC_READONLY) != 0
8724 && (target->flags & SEC_ALLOC) != 0)
8725 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8726 reltext = TRUE;
8727
8728 /* We use the reloc_count field as a counter if we need
8729 to copy relocs into the output file. */
8730 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8731 s->reloc_count = 0;
8732
8733 /* If combreloc is enabled, elf_link_sort_relocs() will
8734 sort relocations, but in a different way than we do,
8735 and before we're done creating relocations. Also, it
8736 will move them around between input sections'
8737 relocation's contents, so our sorting would be
8738 broken, so don't let it run. */
8739 info->combreloc = 0;
8740 }
8741 }
8742 else if (! info->shared
8743 && ! mips_elf_hash_table (info)->use_rld_obj_head
8744 && CONST_STRNEQ (name, ".rld_map"))
8745 {
8746 /* We add a room for __rld_map. It will be filled in by the
8747 rtld to contain a pointer to the _r_debug structure. */
8748 s->size += 4;
8749 }
8750 else if (SGI_COMPAT (output_bfd)
8751 && CONST_STRNEQ (name, ".compact_rel"))
8752 s->size += mips_elf_hash_table (info)->compact_rel_size;
8753 else if (s == htab->splt)
8754 {
8755 /* If the last PLT entry has a branch delay slot, allocate
8756 room for an extra nop to fill the delay slot. This is
8757 for CPUs without load interlocking. */
8758 if (! LOAD_INTERLOCKS_P (output_bfd)
8759 && ! htab->is_vxworks && s->size > 0)
8760 s->size += 4;
8761 }
8762 else if (! CONST_STRNEQ (name, ".init")
8763 && s != htab->sgot
8764 && s != htab->sgotplt
8765 && s != htab->sstubs
8766 && s != htab->sdynbss)
8767 {
8768 /* It's not one of our sections, so don't allocate space. */
8769 continue;
8770 }
8771
8772 if (s->size == 0)
8773 {
8774 s->flags |= SEC_EXCLUDE;
8775 continue;
8776 }
8777
8778 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8779 continue;
8780
8781 /* Allocate memory for the section contents. */
8782 s->contents = bfd_zalloc (dynobj, s->size);
8783 if (s->contents == NULL)
8784 {
8785 bfd_set_error (bfd_error_no_memory);
8786 return FALSE;
8787 }
8788 }
8789
8790 if (elf_hash_table (info)->dynamic_sections_created)
8791 {
8792 /* Add some entries to the .dynamic section. We fill in the
8793 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8794 must add the entries now so that we get the correct size for
8795 the .dynamic section. */
8796
8797 /* SGI object has the equivalence of DT_DEBUG in the
8798 DT_MIPS_RLD_MAP entry. This must come first because glibc
8799 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8800 looks at the first one it sees. */
8801 if (!info->shared
8802 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8803 return FALSE;
8804
8805 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8806 used by the debugger. */
8807 if (info->executable
8808 && !SGI_COMPAT (output_bfd)
8809 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8810 return FALSE;
8811
8812 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8813 info->flags |= DF_TEXTREL;
8814
8815 if ((info->flags & DF_TEXTREL) != 0)
8816 {
8817 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8818 return FALSE;
8819
8820 /* Clear the DF_TEXTREL flag. It will be set again if we
8821 write out an actual text relocation; we may not, because
8822 at this point we do not know whether e.g. any .eh_frame
8823 absolute relocations have been converted to PC-relative. */
8824 info->flags &= ~DF_TEXTREL;
8825 }
8826
8827 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8828 return FALSE;
8829
8830 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
8831 if (htab->is_vxworks)
8832 {
8833 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8834 use any of the DT_MIPS_* tags. */
8835 if (sreldyn && sreldyn->size > 0)
8836 {
8837 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8838 return FALSE;
8839
8840 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8841 return FALSE;
8842
8843 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8844 return FALSE;
8845 }
8846 }
8847 else
8848 {
8849 if (sreldyn && sreldyn->size > 0)
8850 {
8851 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8852 return FALSE;
8853
8854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8855 return FALSE;
8856
8857 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8858 return FALSE;
8859 }
8860
8861 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8862 return FALSE;
8863
8864 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8865 return FALSE;
8866
8867 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8868 return FALSE;
8869
8870 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8871 return FALSE;
8872
8873 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8874 return FALSE;
8875
8876 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8877 return FALSE;
8878
8879 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8880 return FALSE;
8881
8882 if (IRIX_COMPAT (dynobj) == ict_irix5
8883 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8884 return FALSE;
8885
8886 if (IRIX_COMPAT (dynobj) == ict_irix6
8887 && (bfd_get_section_by_name
8888 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8889 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8890 return FALSE;
8891 }
8892 if (htab->splt->size > 0)
8893 {
8894 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8895 return FALSE;
8896
8897 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8898 return FALSE;
8899
8900 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8901 return FALSE;
8902
8903 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
8904 return FALSE;
8905 }
8906 if (htab->is_vxworks
8907 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8908 return FALSE;
8909 }
8910
8911 return TRUE;
8912 }
8913 \f
8914 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8915 Adjust its R_ADDEND field so that it is correct for the output file.
8916 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8917 and sections respectively; both use symbol indexes. */
8918
8919 static void
8920 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8921 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8922 asection **local_sections, Elf_Internal_Rela *rel)
8923 {
8924 unsigned int r_type, r_symndx;
8925 Elf_Internal_Sym *sym;
8926 asection *sec;
8927
8928 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
8929 {
8930 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8931 if (r_type == R_MIPS16_GPREL
8932 || r_type == R_MIPS_GPREL16
8933 || r_type == R_MIPS_GPREL32
8934 || r_type == R_MIPS_LITERAL)
8935 {
8936 rel->r_addend += _bfd_get_gp_value (input_bfd);
8937 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8938 }
8939
8940 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8941 sym = local_syms + r_symndx;
8942
8943 /* Adjust REL's addend to account for section merging. */
8944 if (!info->relocatable)
8945 {
8946 sec = local_sections[r_symndx];
8947 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8948 }
8949
8950 /* This would normally be done by the rela_normal code in elflink.c. */
8951 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8952 rel->r_addend += local_sections[r_symndx]->output_offset;
8953 }
8954 }
8955
8956 /* Relocate a MIPS ELF section. */
8957
8958 bfd_boolean
8959 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8960 bfd *input_bfd, asection *input_section,
8961 bfd_byte *contents, Elf_Internal_Rela *relocs,
8962 Elf_Internal_Sym *local_syms,
8963 asection **local_sections)
8964 {
8965 Elf_Internal_Rela *rel;
8966 const Elf_Internal_Rela *relend;
8967 bfd_vma addend = 0;
8968 bfd_boolean use_saved_addend_p = FALSE;
8969 const struct elf_backend_data *bed;
8970
8971 bed = get_elf_backend_data (output_bfd);
8972 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8973 for (rel = relocs; rel < relend; ++rel)
8974 {
8975 const char *name;
8976 bfd_vma value = 0;
8977 reloc_howto_type *howto;
8978 bfd_boolean cross_mode_jump_p;
8979 /* TRUE if the relocation is a RELA relocation, rather than a
8980 REL relocation. */
8981 bfd_boolean rela_relocation_p = TRUE;
8982 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8983 const char *msg;
8984 unsigned long r_symndx;
8985 asection *sec;
8986 Elf_Internal_Shdr *symtab_hdr;
8987 struct elf_link_hash_entry *h;
8988 bfd_boolean rel_reloc;
8989
8990 rel_reloc = (NEWABI_P (input_bfd)
8991 && mips_elf_rel_relocation_p (input_bfd, input_section,
8992 relocs, rel));
8993 /* Find the relocation howto for this relocation. */
8994 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
8995
8996 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
8997 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8998 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
8999 {
9000 sec = local_sections[r_symndx];
9001 h = NULL;
9002 }
9003 else
9004 {
9005 unsigned long extsymoff;
9006
9007 extsymoff = 0;
9008 if (!elf_bad_symtab (input_bfd))
9009 extsymoff = symtab_hdr->sh_info;
9010 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9011 while (h->root.type == bfd_link_hash_indirect
9012 || h->root.type == bfd_link_hash_warning)
9013 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9014
9015 sec = NULL;
9016 if (h->root.type == bfd_link_hash_defined
9017 || h->root.type == bfd_link_hash_defweak)
9018 sec = h->root.u.def.section;
9019 }
9020
9021 if (sec != NULL && elf_discarded_section (sec))
9022 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9023 rel, relend, howto, contents);
9024
9025 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9026 {
9027 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9028 64-bit code, but make sure all their addresses are in the
9029 lowermost or uppermost 32-bit section of the 64-bit address
9030 space. Thus, when they use an R_MIPS_64 they mean what is
9031 usually meant by R_MIPS_32, with the exception that the
9032 stored value is sign-extended to 64 bits. */
9033 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9034
9035 /* On big-endian systems, we need to lie about the position
9036 of the reloc. */
9037 if (bfd_big_endian (input_bfd))
9038 rel->r_offset += 4;
9039 }
9040
9041 if (!use_saved_addend_p)
9042 {
9043 /* If these relocations were originally of the REL variety,
9044 we must pull the addend out of the field that will be
9045 relocated. Otherwise, we simply use the contents of the
9046 RELA relocation. */
9047 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9048 relocs, rel))
9049 {
9050 rela_relocation_p = FALSE;
9051 addend = mips_elf_read_rel_addend (input_bfd, rel,
9052 howto, contents);
9053 if (hi16_reloc_p (r_type)
9054 || (got16_reloc_p (r_type)
9055 && mips_elf_local_relocation_p (input_bfd, rel,
9056 local_sections)))
9057 {
9058 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9059 contents, &addend))
9060 {
9061 if (h)
9062 name = h->root.root.string;
9063 else
9064 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9065 local_syms + r_symndx,
9066 sec);
9067 (*_bfd_error_handler)
9068 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9069 input_bfd, input_section, name, howto->name,
9070 rel->r_offset);
9071 }
9072 }
9073 else
9074 addend <<= howto->rightshift;
9075 }
9076 else
9077 addend = rel->r_addend;
9078 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9079 local_syms, local_sections, rel);
9080 }
9081
9082 if (info->relocatable)
9083 {
9084 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9085 && bfd_big_endian (input_bfd))
9086 rel->r_offset -= 4;
9087
9088 if (!rela_relocation_p && rel->r_addend)
9089 {
9090 addend += rel->r_addend;
9091 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9092 addend = mips_elf_high (addend);
9093 else if (r_type == R_MIPS_HIGHER)
9094 addend = mips_elf_higher (addend);
9095 else if (r_type == R_MIPS_HIGHEST)
9096 addend = mips_elf_highest (addend);
9097 else
9098 addend >>= howto->rightshift;
9099
9100 /* We use the source mask, rather than the destination
9101 mask because the place to which we are writing will be
9102 source of the addend in the final link. */
9103 addend &= howto->src_mask;
9104
9105 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9106 /* See the comment above about using R_MIPS_64 in the 32-bit
9107 ABI. Here, we need to update the addend. It would be
9108 possible to get away with just using the R_MIPS_32 reloc
9109 but for endianness. */
9110 {
9111 bfd_vma sign_bits;
9112 bfd_vma low_bits;
9113 bfd_vma high_bits;
9114
9115 if (addend & ((bfd_vma) 1 << 31))
9116 #ifdef BFD64
9117 sign_bits = ((bfd_vma) 1 << 32) - 1;
9118 #else
9119 sign_bits = -1;
9120 #endif
9121 else
9122 sign_bits = 0;
9123
9124 /* If we don't know that we have a 64-bit type,
9125 do two separate stores. */
9126 if (bfd_big_endian (input_bfd))
9127 {
9128 /* Store the sign-bits (which are most significant)
9129 first. */
9130 low_bits = sign_bits;
9131 high_bits = addend;
9132 }
9133 else
9134 {
9135 low_bits = addend;
9136 high_bits = sign_bits;
9137 }
9138 bfd_put_32 (input_bfd, low_bits,
9139 contents + rel->r_offset);
9140 bfd_put_32 (input_bfd, high_bits,
9141 contents + rel->r_offset + 4);
9142 continue;
9143 }
9144
9145 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9146 input_bfd, input_section,
9147 contents, FALSE))
9148 return FALSE;
9149 }
9150
9151 /* Go on to the next relocation. */
9152 continue;
9153 }
9154
9155 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9156 relocations for the same offset. In that case we are
9157 supposed to treat the output of each relocation as the addend
9158 for the next. */
9159 if (rel + 1 < relend
9160 && rel->r_offset == rel[1].r_offset
9161 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9162 use_saved_addend_p = TRUE;
9163 else
9164 use_saved_addend_p = FALSE;
9165
9166 /* Figure out what value we are supposed to relocate. */
9167 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9168 input_section, info, rel,
9169 addend, howto, local_syms,
9170 local_sections, &value,
9171 &name, &cross_mode_jump_p,
9172 use_saved_addend_p))
9173 {
9174 case bfd_reloc_continue:
9175 /* There's nothing to do. */
9176 continue;
9177
9178 case bfd_reloc_undefined:
9179 /* mips_elf_calculate_relocation already called the
9180 undefined_symbol callback. There's no real point in
9181 trying to perform the relocation at this point, so we
9182 just skip ahead to the next relocation. */
9183 continue;
9184
9185 case bfd_reloc_notsupported:
9186 msg = _("internal error: unsupported relocation error");
9187 info->callbacks->warning
9188 (info, msg, name, input_bfd, input_section, rel->r_offset);
9189 return FALSE;
9190
9191 case bfd_reloc_overflow:
9192 if (use_saved_addend_p)
9193 /* Ignore overflow until we reach the last relocation for
9194 a given location. */
9195 ;
9196 else
9197 {
9198 struct mips_elf_link_hash_table *htab;
9199
9200 htab = mips_elf_hash_table (info);
9201 BFD_ASSERT (htab != NULL);
9202 BFD_ASSERT (name != NULL);
9203 if (!htab->small_data_overflow_reported
9204 && (gprel16_reloc_p (howto->type)
9205 || howto->type == R_MIPS_LITERAL))
9206 {
9207 msg = _("small-data section exceeds 64KB;"
9208 " lower small-data size limit (see option -G)");
9209
9210 htab->small_data_overflow_reported = TRUE;
9211 (*info->callbacks->einfo) ("%P: %s\n", msg);
9212 }
9213 if (! ((*info->callbacks->reloc_overflow)
9214 (info, NULL, name, howto->name, (bfd_vma) 0,
9215 input_bfd, input_section, rel->r_offset)))
9216 return FALSE;
9217 }
9218 break;
9219
9220 case bfd_reloc_ok:
9221 break;
9222
9223 default:
9224 abort ();
9225 break;
9226 }
9227
9228 /* If we've got another relocation for the address, keep going
9229 until we reach the last one. */
9230 if (use_saved_addend_p)
9231 {
9232 addend = value;
9233 continue;
9234 }
9235
9236 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9237 /* See the comment above about using R_MIPS_64 in the 32-bit
9238 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9239 that calculated the right value. Now, however, we
9240 sign-extend the 32-bit result to 64-bits, and store it as a
9241 64-bit value. We are especially generous here in that we
9242 go to extreme lengths to support this usage on systems with
9243 only a 32-bit VMA. */
9244 {
9245 bfd_vma sign_bits;
9246 bfd_vma low_bits;
9247 bfd_vma high_bits;
9248
9249 if (value & ((bfd_vma) 1 << 31))
9250 #ifdef BFD64
9251 sign_bits = ((bfd_vma) 1 << 32) - 1;
9252 #else
9253 sign_bits = -1;
9254 #endif
9255 else
9256 sign_bits = 0;
9257
9258 /* If we don't know that we have a 64-bit type,
9259 do two separate stores. */
9260 if (bfd_big_endian (input_bfd))
9261 {
9262 /* Undo what we did above. */
9263 rel->r_offset -= 4;
9264 /* Store the sign-bits (which are most significant)
9265 first. */
9266 low_bits = sign_bits;
9267 high_bits = value;
9268 }
9269 else
9270 {
9271 low_bits = value;
9272 high_bits = sign_bits;
9273 }
9274 bfd_put_32 (input_bfd, low_bits,
9275 contents + rel->r_offset);
9276 bfd_put_32 (input_bfd, high_bits,
9277 contents + rel->r_offset + 4);
9278 continue;
9279 }
9280
9281 /* Actually perform the relocation. */
9282 if (! mips_elf_perform_relocation (info, howto, rel, value,
9283 input_bfd, input_section,
9284 contents, cross_mode_jump_p))
9285 return FALSE;
9286 }
9287
9288 return TRUE;
9289 }
9290 \f
9291 /* A function that iterates over each entry in la25_stubs and fills
9292 in the code for each one. DATA points to a mips_htab_traverse_info. */
9293
9294 static int
9295 mips_elf_create_la25_stub (void **slot, void *data)
9296 {
9297 struct mips_htab_traverse_info *hti;
9298 struct mips_elf_link_hash_table *htab;
9299 struct mips_elf_la25_stub *stub;
9300 asection *s;
9301 bfd_byte *loc;
9302 bfd_vma offset, target, target_high, target_low;
9303
9304 stub = (struct mips_elf_la25_stub *) *slot;
9305 hti = (struct mips_htab_traverse_info *) data;
9306 htab = mips_elf_hash_table (hti->info);
9307 BFD_ASSERT (htab != NULL);
9308
9309 /* Create the section contents, if we haven't already. */
9310 s = stub->stub_section;
9311 loc = s->contents;
9312 if (loc == NULL)
9313 {
9314 loc = bfd_malloc (s->size);
9315 if (loc == NULL)
9316 {
9317 hti->error = TRUE;
9318 return FALSE;
9319 }
9320 s->contents = loc;
9321 }
9322
9323 /* Work out where in the section this stub should go. */
9324 offset = stub->offset;
9325
9326 /* Work out the target address. */
9327 target = (stub->h->root.root.u.def.section->output_section->vma
9328 + stub->h->root.root.u.def.section->output_offset
9329 + stub->h->root.root.u.def.value);
9330 target_high = ((target + 0x8000) >> 16) & 0xffff;
9331 target_low = (target & 0xffff);
9332
9333 if (stub->stub_section != htab->strampoline)
9334 {
9335 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9336 of the section and write the two instructions at the end. */
9337 memset (loc, 0, offset);
9338 loc += offset;
9339 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9340 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9341 }
9342 else
9343 {
9344 /* This is trampoline. */
9345 loc += offset;
9346 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9347 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9348 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9349 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9350 }
9351 return TRUE;
9352 }
9353
9354 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9355 adjust it appropriately now. */
9356
9357 static void
9358 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9359 const char *name, Elf_Internal_Sym *sym)
9360 {
9361 /* The linker script takes care of providing names and values for
9362 these, but we must place them into the right sections. */
9363 static const char* const text_section_symbols[] = {
9364 "_ftext",
9365 "_etext",
9366 "__dso_displacement",
9367 "__elf_header",
9368 "__program_header_table",
9369 NULL
9370 };
9371
9372 static const char* const data_section_symbols[] = {
9373 "_fdata",
9374 "_edata",
9375 "_end",
9376 "_fbss",
9377 NULL
9378 };
9379
9380 const char* const *p;
9381 int i;
9382
9383 for (i = 0; i < 2; ++i)
9384 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9385 *p;
9386 ++p)
9387 if (strcmp (*p, name) == 0)
9388 {
9389 /* All of these symbols are given type STT_SECTION by the
9390 IRIX6 linker. */
9391 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9392 sym->st_other = STO_PROTECTED;
9393
9394 /* The IRIX linker puts these symbols in special sections. */
9395 if (i == 0)
9396 sym->st_shndx = SHN_MIPS_TEXT;
9397 else
9398 sym->st_shndx = SHN_MIPS_DATA;
9399
9400 break;
9401 }
9402 }
9403
9404 /* Finish up dynamic symbol handling. We set the contents of various
9405 dynamic sections here. */
9406
9407 bfd_boolean
9408 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9409 struct bfd_link_info *info,
9410 struct elf_link_hash_entry *h,
9411 Elf_Internal_Sym *sym)
9412 {
9413 bfd *dynobj;
9414 asection *sgot;
9415 struct mips_got_info *g, *gg;
9416 const char *name;
9417 int idx;
9418 struct mips_elf_link_hash_table *htab;
9419 struct mips_elf_link_hash_entry *hmips;
9420
9421 htab = mips_elf_hash_table (info);
9422 BFD_ASSERT (htab != NULL);
9423 dynobj = elf_hash_table (info)->dynobj;
9424 hmips = (struct mips_elf_link_hash_entry *) h;
9425
9426 BFD_ASSERT (!htab->is_vxworks);
9427
9428 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9429 {
9430 /* We've decided to create a PLT entry for this symbol. */
9431 bfd_byte *loc;
9432 bfd_vma header_address, plt_index, got_address;
9433 bfd_vma got_address_high, got_address_low, load;
9434 const bfd_vma *plt_entry;
9435
9436 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9437 BFD_ASSERT (h->dynindx != -1);
9438 BFD_ASSERT (htab->splt != NULL);
9439 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9440 BFD_ASSERT (!h->def_regular);
9441
9442 /* Calculate the address of the PLT header. */
9443 header_address = (htab->splt->output_section->vma
9444 + htab->splt->output_offset);
9445
9446 /* Calculate the index of the entry. */
9447 plt_index = ((h->plt.offset - htab->plt_header_size)
9448 / htab->plt_entry_size);
9449
9450 /* Calculate the address of the .got.plt entry. */
9451 got_address = (htab->sgotplt->output_section->vma
9452 + htab->sgotplt->output_offset
9453 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9454 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9455 got_address_low = got_address & 0xffff;
9456
9457 /* Initially point the .got.plt entry at the PLT header. */
9458 loc = (htab->sgotplt->contents
9459 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9460 if (ABI_64_P (output_bfd))
9461 bfd_put_64 (output_bfd, header_address, loc);
9462 else
9463 bfd_put_32 (output_bfd, header_address, loc);
9464
9465 /* Find out where the .plt entry should go. */
9466 loc = htab->splt->contents + h->plt.offset;
9467
9468 /* Pick the load opcode. */
9469 load = MIPS_ELF_LOAD_WORD (output_bfd);
9470
9471 /* Fill in the PLT entry itself. */
9472 plt_entry = mips_exec_plt_entry;
9473 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9474 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9475
9476 if (! LOAD_INTERLOCKS_P (output_bfd))
9477 {
9478 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9479 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9480 }
9481 else
9482 {
9483 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9484 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9485 }
9486
9487 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9488 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9489 plt_index, h->dynindx,
9490 R_MIPS_JUMP_SLOT, got_address);
9491
9492 /* We distinguish between PLT entries and lazy-binding stubs by
9493 giving the former an st_other value of STO_MIPS_PLT. Set the
9494 flag and leave the value if there are any relocations in the
9495 binary where pointer equality matters. */
9496 sym->st_shndx = SHN_UNDEF;
9497 if (h->pointer_equality_needed)
9498 sym->st_other = STO_MIPS_PLT;
9499 else
9500 sym->st_value = 0;
9501 }
9502 else if (h->plt.offset != MINUS_ONE)
9503 {
9504 /* We've decided to create a lazy-binding stub. */
9505 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9506
9507 /* This symbol has a stub. Set it up. */
9508
9509 BFD_ASSERT (h->dynindx != -1);
9510
9511 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9512 || (h->dynindx <= 0xffff));
9513
9514 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9515 sign extension at runtime in the stub, resulting in a negative
9516 index value. */
9517 if (h->dynindx & ~0x7fffffff)
9518 return FALSE;
9519
9520 /* Fill the stub. */
9521 idx = 0;
9522 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9523 idx += 4;
9524 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9525 idx += 4;
9526 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9527 {
9528 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9529 stub + idx);
9530 idx += 4;
9531 }
9532 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9533 idx += 4;
9534
9535 /* If a large stub is not required and sign extension is not a
9536 problem, then use legacy code in the stub. */
9537 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9538 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9539 else if (h->dynindx & ~0x7fff)
9540 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9541 else
9542 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9543 stub + idx);
9544
9545 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9546 memcpy (htab->sstubs->contents + h->plt.offset,
9547 stub, htab->function_stub_size);
9548
9549 /* Mark the symbol as undefined. plt.offset != -1 occurs
9550 only for the referenced symbol. */
9551 sym->st_shndx = SHN_UNDEF;
9552
9553 /* The run-time linker uses the st_value field of the symbol
9554 to reset the global offset table entry for this external
9555 to its stub address when unlinking a shared object. */
9556 sym->st_value = (htab->sstubs->output_section->vma
9557 + htab->sstubs->output_offset
9558 + h->plt.offset);
9559 }
9560
9561 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9562 refer to the stub, since only the stub uses the standard calling
9563 conventions. */
9564 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9565 {
9566 BFD_ASSERT (hmips->need_fn_stub);
9567 sym->st_value = (hmips->fn_stub->output_section->vma
9568 + hmips->fn_stub->output_offset);
9569 sym->st_size = hmips->fn_stub->size;
9570 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9571 }
9572
9573 BFD_ASSERT (h->dynindx != -1
9574 || h->forced_local);
9575
9576 sgot = htab->sgot;
9577 g = htab->got_info;
9578 BFD_ASSERT (g != NULL);
9579
9580 /* Run through the global symbol table, creating GOT entries for all
9581 the symbols that need them. */
9582 if (hmips->global_got_area != GGA_NONE)
9583 {
9584 bfd_vma offset;
9585 bfd_vma value;
9586
9587 value = sym->st_value;
9588 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9589 R_MIPS_GOT16, info);
9590 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9591 }
9592
9593 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
9594 {
9595 struct mips_got_entry e, *p;
9596 bfd_vma entry;
9597 bfd_vma offset;
9598
9599 gg = g;
9600
9601 e.abfd = output_bfd;
9602 e.symndx = -1;
9603 e.d.h = hmips;
9604 e.tls_type = 0;
9605
9606 for (g = g->next; g->next != gg; g = g->next)
9607 {
9608 if (g->got_entries
9609 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9610 &e)))
9611 {
9612 offset = p->gotidx;
9613 if (info->shared
9614 || (elf_hash_table (info)->dynamic_sections_created
9615 && p->d.h != NULL
9616 && p->d.h->root.def_dynamic
9617 && !p->d.h->root.def_regular))
9618 {
9619 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9620 the various compatibility problems, it's easier to mock
9621 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9622 mips_elf_create_dynamic_relocation to calculate the
9623 appropriate addend. */
9624 Elf_Internal_Rela rel[3];
9625
9626 memset (rel, 0, sizeof (rel));
9627 if (ABI_64_P (output_bfd))
9628 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9629 else
9630 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9631 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9632
9633 entry = 0;
9634 if (! (mips_elf_create_dynamic_relocation
9635 (output_bfd, info, rel,
9636 e.d.h, NULL, sym->st_value, &entry, sgot)))
9637 return FALSE;
9638 }
9639 else
9640 entry = sym->st_value;
9641 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9642 }
9643 }
9644 }
9645
9646 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9647 name = h->root.root.string;
9648 if (strcmp (name, "_DYNAMIC") == 0
9649 || h == elf_hash_table (info)->hgot)
9650 sym->st_shndx = SHN_ABS;
9651 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9652 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9653 {
9654 sym->st_shndx = SHN_ABS;
9655 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9656 sym->st_value = 1;
9657 }
9658 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9659 {
9660 sym->st_shndx = SHN_ABS;
9661 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9662 sym->st_value = elf_gp (output_bfd);
9663 }
9664 else if (SGI_COMPAT (output_bfd))
9665 {
9666 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9667 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9668 {
9669 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9670 sym->st_other = STO_PROTECTED;
9671 sym->st_value = 0;
9672 sym->st_shndx = SHN_MIPS_DATA;
9673 }
9674 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9675 {
9676 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9677 sym->st_other = STO_PROTECTED;
9678 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9679 sym->st_shndx = SHN_ABS;
9680 }
9681 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9682 {
9683 if (h->type == STT_FUNC)
9684 sym->st_shndx = SHN_MIPS_TEXT;
9685 else if (h->type == STT_OBJECT)
9686 sym->st_shndx = SHN_MIPS_DATA;
9687 }
9688 }
9689
9690 /* Emit a copy reloc, if needed. */
9691 if (h->needs_copy)
9692 {
9693 asection *s;
9694 bfd_vma symval;
9695
9696 BFD_ASSERT (h->dynindx != -1);
9697 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9698
9699 s = mips_elf_rel_dyn_section (info, FALSE);
9700 symval = (h->root.u.def.section->output_section->vma
9701 + h->root.u.def.section->output_offset
9702 + h->root.u.def.value);
9703 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9704 h->dynindx, R_MIPS_COPY, symval);
9705 }
9706
9707 /* Handle the IRIX6-specific symbols. */
9708 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9709 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9710
9711 if (! info->shared)
9712 {
9713 if (! mips_elf_hash_table (info)->use_rld_obj_head
9714 && (strcmp (name, "__rld_map") == 0
9715 || strcmp (name, "__RLD_MAP") == 0))
9716 {
9717 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9718 BFD_ASSERT (s != NULL);
9719 sym->st_value = s->output_section->vma + s->output_offset;
9720 bfd_put_32 (output_bfd, 0, s->contents);
9721 if (mips_elf_hash_table (info)->rld_value == 0)
9722 mips_elf_hash_table (info)->rld_value = sym->st_value;
9723 }
9724 else if (mips_elf_hash_table (info)->use_rld_obj_head
9725 && strcmp (name, "__rld_obj_head") == 0)
9726 {
9727 /* IRIX6 does not use a .rld_map section. */
9728 if (IRIX_COMPAT (output_bfd) == ict_irix5
9729 || IRIX_COMPAT (output_bfd) == ict_none)
9730 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9731 != NULL);
9732 mips_elf_hash_table (info)->rld_value = sym->st_value;
9733 }
9734 }
9735
9736 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9737 treat MIPS16 symbols like any other. */
9738 if (ELF_ST_IS_MIPS16 (sym->st_other))
9739 {
9740 BFD_ASSERT (sym->st_value & 1);
9741 sym->st_other -= STO_MIPS16;
9742 }
9743
9744 return TRUE;
9745 }
9746
9747 /* Likewise, for VxWorks. */
9748
9749 bfd_boolean
9750 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9751 struct bfd_link_info *info,
9752 struct elf_link_hash_entry *h,
9753 Elf_Internal_Sym *sym)
9754 {
9755 bfd *dynobj;
9756 asection *sgot;
9757 struct mips_got_info *g;
9758 struct mips_elf_link_hash_table *htab;
9759 struct mips_elf_link_hash_entry *hmips;
9760
9761 htab = mips_elf_hash_table (info);
9762 BFD_ASSERT (htab != NULL);
9763 dynobj = elf_hash_table (info)->dynobj;
9764 hmips = (struct mips_elf_link_hash_entry *) h;
9765
9766 if (h->plt.offset != (bfd_vma) -1)
9767 {
9768 bfd_byte *loc;
9769 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9770 Elf_Internal_Rela rel;
9771 static const bfd_vma *plt_entry;
9772
9773 BFD_ASSERT (h->dynindx != -1);
9774 BFD_ASSERT (htab->splt != NULL);
9775 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9776
9777 /* Calculate the address of the .plt entry. */
9778 plt_address = (htab->splt->output_section->vma
9779 + htab->splt->output_offset
9780 + h->plt.offset);
9781
9782 /* Calculate the index of the entry. */
9783 plt_index = ((h->plt.offset - htab->plt_header_size)
9784 / htab->plt_entry_size);
9785
9786 /* Calculate the address of the .got.plt entry. */
9787 got_address = (htab->sgotplt->output_section->vma
9788 + htab->sgotplt->output_offset
9789 + plt_index * 4);
9790
9791 /* Calculate the offset of the .got.plt entry from
9792 _GLOBAL_OFFSET_TABLE_. */
9793 got_offset = mips_elf_gotplt_index (info, h);
9794
9795 /* Calculate the offset for the branch at the start of the PLT
9796 entry. The branch jumps to the beginning of .plt. */
9797 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9798
9799 /* Fill in the initial value of the .got.plt entry. */
9800 bfd_put_32 (output_bfd, plt_address,
9801 htab->sgotplt->contents + plt_index * 4);
9802
9803 /* Find out where the .plt entry should go. */
9804 loc = htab->splt->contents + h->plt.offset;
9805
9806 if (info->shared)
9807 {
9808 plt_entry = mips_vxworks_shared_plt_entry;
9809 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9810 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9811 }
9812 else
9813 {
9814 bfd_vma got_address_high, got_address_low;
9815
9816 plt_entry = mips_vxworks_exec_plt_entry;
9817 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9818 got_address_low = got_address & 0xffff;
9819
9820 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9821 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9822 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9823 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9824 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9825 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9826 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9827 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9828
9829 loc = (htab->srelplt2->contents
9830 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9831
9832 /* Emit a relocation for the .got.plt entry. */
9833 rel.r_offset = got_address;
9834 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9835 rel.r_addend = h->plt.offset;
9836 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9837
9838 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9839 loc += sizeof (Elf32_External_Rela);
9840 rel.r_offset = plt_address + 8;
9841 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9842 rel.r_addend = got_offset;
9843 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9844
9845 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9846 loc += sizeof (Elf32_External_Rela);
9847 rel.r_offset += 4;
9848 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9849 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9850 }
9851
9852 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9853 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9854 rel.r_offset = got_address;
9855 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9856 rel.r_addend = 0;
9857 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9858
9859 if (!h->def_regular)
9860 sym->st_shndx = SHN_UNDEF;
9861 }
9862
9863 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9864
9865 sgot = htab->sgot;
9866 g = htab->got_info;
9867 BFD_ASSERT (g != NULL);
9868
9869 /* See if this symbol has an entry in the GOT. */
9870 if (hmips->global_got_area != GGA_NONE)
9871 {
9872 bfd_vma offset;
9873 Elf_Internal_Rela outrel;
9874 bfd_byte *loc;
9875 asection *s;
9876
9877 /* Install the symbol value in the GOT. */
9878 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9879 R_MIPS_GOT16, info);
9880 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9881
9882 /* Add a dynamic relocation for it. */
9883 s = mips_elf_rel_dyn_section (info, FALSE);
9884 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9885 outrel.r_offset = (sgot->output_section->vma
9886 + sgot->output_offset
9887 + offset);
9888 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9889 outrel.r_addend = 0;
9890 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9891 }
9892
9893 /* Emit a copy reloc, if needed. */
9894 if (h->needs_copy)
9895 {
9896 Elf_Internal_Rela rel;
9897
9898 BFD_ASSERT (h->dynindx != -1);
9899
9900 rel.r_offset = (h->root.u.def.section->output_section->vma
9901 + h->root.u.def.section->output_offset
9902 + h->root.u.def.value);
9903 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9904 rel.r_addend = 0;
9905 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9906 htab->srelbss->contents
9907 + (htab->srelbss->reloc_count
9908 * sizeof (Elf32_External_Rela)));
9909 ++htab->srelbss->reloc_count;
9910 }
9911
9912 /* If this is a mips16 symbol, force the value to be even. */
9913 if (ELF_ST_IS_MIPS16 (sym->st_other))
9914 sym->st_value &= ~1;
9915
9916 return TRUE;
9917 }
9918
9919 /* Write out a plt0 entry to the beginning of .plt. */
9920
9921 static void
9922 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9923 {
9924 bfd_byte *loc;
9925 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
9926 static const bfd_vma *plt_entry;
9927 struct mips_elf_link_hash_table *htab;
9928
9929 htab = mips_elf_hash_table (info);
9930 BFD_ASSERT (htab != NULL);
9931
9932 if (ABI_64_P (output_bfd))
9933 plt_entry = mips_n64_exec_plt0_entry;
9934 else if (ABI_N32_P (output_bfd))
9935 plt_entry = mips_n32_exec_plt0_entry;
9936 else
9937 plt_entry = mips_o32_exec_plt0_entry;
9938
9939 /* Calculate the value of .got.plt. */
9940 gotplt_value = (htab->sgotplt->output_section->vma
9941 + htab->sgotplt->output_offset);
9942 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
9943 gotplt_value_low = gotplt_value & 0xffff;
9944
9945 /* The PLT sequence is not safe for N64 if .got.plt's address can
9946 not be loaded in two instructions. */
9947 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
9948 || ~(gotplt_value | 0x7fffffff) == 0);
9949
9950 /* Install the PLT header. */
9951 loc = htab->splt->contents;
9952 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
9953 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
9954 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
9955 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9956 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9957 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9958 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9959 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9960 }
9961
9962 /* Install the PLT header for a VxWorks executable and finalize the
9963 contents of .rela.plt.unloaded. */
9964
9965 static void
9966 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9967 {
9968 Elf_Internal_Rela rela;
9969 bfd_byte *loc;
9970 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9971 static const bfd_vma *plt_entry;
9972 struct mips_elf_link_hash_table *htab;
9973
9974 htab = mips_elf_hash_table (info);
9975 BFD_ASSERT (htab != NULL);
9976
9977 plt_entry = mips_vxworks_exec_plt0_entry;
9978
9979 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9980 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9981 + htab->root.hgot->root.u.def.section->output_offset
9982 + htab->root.hgot->root.u.def.value);
9983
9984 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9985 got_value_low = got_value & 0xffff;
9986
9987 /* Calculate the address of the PLT header. */
9988 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9989
9990 /* Install the PLT header. */
9991 loc = htab->splt->contents;
9992 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9993 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9994 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9995 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9996 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9997 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9998
9999 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10000 loc = htab->srelplt2->contents;
10001 rela.r_offset = plt_address;
10002 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10003 rela.r_addend = 0;
10004 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10005 loc += sizeof (Elf32_External_Rela);
10006
10007 /* Output the relocation for the following addiu of
10008 %lo(_GLOBAL_OFFSET_TABLE_). */
10009 rela.r_offset += 4;
10010 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10011 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10012 loc += sizeof (Elf32_External_Rela);
10013
10014 /* Fix up the remaining relocations. They may have the wrong
10015 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10016 in which symbols were output. */
10017 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10018 {
10019 Elf_Internal_Rela rel;
10020
10021 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10022 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10023 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10024 loc += sizeof (Elf32_External_Rela);
10025
10026 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10027 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10028 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10029 loc += sizeof (Elf32_External_Rela);
10030
10031 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10032 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10033 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10034 loc += sizeof (Elf32_External_Rela);
10035 }
10036 }
10037
10038 /* Install the PLT header for a VxWorks shared library. */
10039
10040 static void
10041 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10042 {
10043 unsigned int i;
10044 struct mips_elf_link_hash_table *htab;
10045
10046 htab = mips_elf_hash_table (info);
10047 BFD_ASSERT (htab != NULL);
10048
10049 /* We just need to copy the entry byte-by-byte. */
10050 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10051 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10052 htab->splt->contents + i * 4);
10053 }
10054
10055 /* Finish up the dynamic sections. */
10056
10057 bfd_boolean
10058 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10059 struct bfd_link_info *info)
10060 {
10061 bfd *dynobj;
10062 asection *sdyn;
10063 asection *sgot;
10064 struct mips_got_info *gg, *g;
10065 struct mips_elf_link_hash_table *htab;
10066
10067 htab = mips_elf_hash_table (info);
10068 BFD_ASSERT (htab != NULL);
10069
10070 dynobj = elf_hash_table (info)->dynobj;
10071
10072 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10073
10074 sgot = htab->sgot;
10075 gg = htab->got_info;
10076
10077 if (elf_hash_table (info)->dynamic_sections_created)
10078 {
10079 bfd_byte *b;
10080 int dyn_to_skip = 0, dyn_skipped = 0;
10081
10082 BFD_ASSERT (sdyn != NULL);
10083 BFD_ASSERT (gg != NULL);
10084
10085 g = mips_elf_got_for_ibfd (gg, output_bfd);
10086 BFD_ASSERT (g != NULL);
10087
10088 for (b = sdyn->contents;
10089 b < sdyn->contents + sdyn->size;
10090 b += MIPS_ELF_DYN_SIZE (dynobj))
10091 {
10092 Elf_Internal_Dyn dyn;
10093 const char *name;
10094 size_t elemsize;
10095 asection *s;
10096 bfd_boolean swap_out_p;
10097
10098 /* Read in the current dynamic entry. */
10099 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10100
10101 /* Assume that we're going to modify it and write it out. */
10102 swap_out_p = TRUE;
10103
10104 switch (dyn.d_tag)
10105 {
10106 case DT_RELENT:
10107 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10108 break;
10109
10110 case DT_RELAENT:
10111 BFD_ASSERT (htab->is_vxworks);
10112 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10113 break;
10114
10115 case DT_STRSZ:
10116 /* Rewrite DT_STRSZ. */
10117 dyn.d_un.d_val =
10118 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10119 break;
10120
10121 case DT_PLTGOT:
10122 s = htab->sgot;
10123 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10124 break;
10125
10126 case DT_MIPS_PLTGOT:
10127 s = htab->sgotplt;
10128 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10129 break;
10130
10131 case DT_MIPS_RLD_VERSION:
10132 dyn.d_un.d_val = 1; /* XXX */
10133 break;
10134
10135 case DT_MIPS_FLAGS:
10136 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10137 break;
10138
10139 case DT_MIPS_TIME_STAMP:
10140 {
10141 time_t t;
10142 time (&t);
10143 dyn.d_un.d_val = t;
10144 }
10145 break;
10146
10147 case DT_MIPS_ICHECKSUM:
10148 /* XXX FIXME: */
10149 swap_out_p = FALSE;
10150 break;
10151
10152 case DT_MIPS_IVERSION:
10153 /* XXX FIXME: */
10154 swap_out_p = FALSE;
10155 break;
10156
10157 case DT_MIPS_BASE_ADDRESS:
10158 s = output_bfd->sections;
10159 BFD_ASSERT (s != NULL);
10160 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10161 break;
10162
10163 case DT_MIPS_LOCAL_GOTNO:
10164 dyn.d_un.d_val = g->local_gotno;
10165 break;
10166
10167 case DT_MIPS_UNREFEXTNO:
10168 /* The index into the dynamic symbol table which is the
10169 entry of the first external symbol that is not
10170 referenced within the same object. */
10171 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10172 break;
10173
10174 case DT_MIPS_GOTSYM:
10175 if (gg->global_gotsym)
10176 {
10177 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10178 break;
10179 }
10180 /* In case if we don't have global got symbols we default
10181 to setting DT_MIPS_GOTSYM to the same value as
10182 DT_MIPS_SYMTABNO, so we just fall through. */
10183
10184 case DT_MIPS_SYMTABNO:
10185 name = ".dynsym";
10186 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10187 s = bfd_get_section_by_name (output_bfd, name);
10188 BFD_ASSERT (s != NULL);
10189
10190 dyn.d_un.d_val = s->size / elemsize;
10191 break;
10192
10193 case DT_MIPS_HIPAGENO:
10194 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10195 break;
10196
10197 case DT_MIPS_RLD_MAP:
10198 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10199 break;
10200
10201 case DT_MIPS_OPTIONS:
10202 s = (bfd_get_section_by_name
10203 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10204 dyn.d_un.d_ptr = s->vma;
10205 break;
10206
10207 case DT_RELASZ:
10208 BFD_ASSERT (htab->is_vxworks);
10209 /* The count does not include the JUMP_SLOT relocations. */
10210 if (htab->srelplt)
10211 dyn.d_un.d_val -= htab->srelplt->size;
10212 break;
10213
10214 case DT_PLTREL:
10215 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10216 if (htab->is_vxworks)
10217 dyn.d_un.d_val = DT_RELA;
10218 else
10219 dyn.d_un.d_val = DT_REL;
10220 break;
10221
10222 case DT_PLTRELSZ:
10223 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10224 dyn.d_un.d_val = htab->srelplt->size;
10225 break;
10226
10227 case DT_JMPREL:
10228 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10229 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10230 + htab->srelplt->output_offset);
10231 break;
10232
10233 case DT_TEXTREL:
10234 /* If we didn't need any text relocations after all, delete
10235 the dynamic tag. */
10236 if (!(info->flags & DF_TEXTREL))
10237 {
10238 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10239 swap_out_p = FALSE;
10240 }
10241 break;
10242
10243 case DT_FLAGS:
10244 /* If we didn't need any text relocations after all, clear
10245 DF_TEXTREL from DT_FLAGS. */
10246 if (!(info->flags & DF_TEXTREL))
10247 dyn.d_un.d_val &= ~DF_TEXTREL;
10248 else
10249 swap_out_p = FALSE;
10250 break;
10251
10252 default:
10253 swap_out_p = FALSE;
10254 if (htab->is_vxworks
10255 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10256 swap_out_p = TRUE;
10257 break;
10258 }
10259
10260 if (swap_out_p || dyn_skipped)
10261 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10262 (dynobj, &dyn, b - dyn_skipped);
10263
10264 if (dyn_to_skip)
10265 {
10266 dyn_skipped += dyn_to_skip;
10267 dyn_to_skip = 0;
10268 }
10269 }
10270
10271 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10272 if (dyn_skipped > 0)
10273 memset (b - dyn_skipped, 0, dyn_skipped);
10274 }
10275
10276 if (sgot != NULL && sgot->size > 0
10277 && !bfd_is_abs_section (sgot->output_section))
10278 {
10279 if (htab->is_vxworks)
10280 {
10281 /* The first entry of the global offset table points to the
10282 ".dynamic" section. The second is initialized by the
10283 loader and contains the shared library identifier.
10284 The third is also initialized by the loader and points
10285 to the lazy resolution stub. */
10286 MIPS_ELF_PUT_WORD (output_bfd,
10287 sdyn->output_offset + sdyn->output_section->vma,
10288 sgot->contents);
10289 MIPS_ELF_PUT_WORD (output_bfd, 0,
10290 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10291 MIPS_ELF_PUT_WORD (output_bfd, 0,
10292 sgot->contents
10293 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10294 }
10295 else
10296 {
10297 /* The first entry of the global offset table will be filled at
10298 runtime. The second entry will be used by some runtime loaders.
10299 This isn't the case of IRIX rld. */
10300 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10301 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10302 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10303 }
10304
10305 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10306 = MIPS_ELF_GOT_SIZE (output_bfd);
10307 }
10308
10309 /* Generate dynamic relocations for the non-primary gots. */
10310 if (gg != NULL && gg->next)
10311 {
10312 Elf_Internal_Rela rel[3];
10313 bfd_vma addend = 0;
10314
10315 memset (rel, 0, sizeof (rel));
10316 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10317
10318 for (g = gg->next; g->next != gg; g = g->next)
10319 {
10320 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10321 + g->next->tls_gotno;
10322
10323 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10324 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10325 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10326 sgot->contents
10327 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10328
10329 if (! info->shared)
10330 continue;
10331
10332 while (got_index < g->assigned_gotno)
10333 {
10334 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10335 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10336 if (!(mips_elf_create_dynamic_relocation
10337 (output_bfd, info, rel, NULL,
10338 bfd_abs_section_ptr,
10339 0, &addend, sgot)))
10340 return FALSE;
10341 BFD_ASSERT (addend == 0);
10342 }
10343 }
10344 }
10345
10346 /* The generation of dynamic relocations for the non-primary gots
10347 adds more dynamic relocations. We cannot count them until
10348 here. */
10349
10350 if (elf_hash_table (info)->dynamic_sections_created)
10351 {
10352 bfd_byte *b;
10353 bfd_boolean swap_out_p;
10354
10355 BFD_ASSERT (sdyn != NULL);
10356
10357 for (b = sdyn->contents;
10358 b < sdyn->contents + sdyn->size;
10359 b += MIPS_ELF_DYN_SIZE (dynobj))
10360 {
10361 Elf_Internal_Dyn dyn;
10362 asection *s;
10363
10364 /* Read in the current dynamic entry. */
10365 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10366
10367 /* Assume that we're going to modify it and write it out. */
10368 swap_out_p = TRUE;
10369
10370 switch (dyn.d_tag)
10371 {
10372 case DT_RELSZ:
10373 /* Reduce DT_RELSZ to account for any relocations we
10374 decided not to make. This is for the n64 irix rld,
10375 which doesn't seem to apply any relocations if there
10376 are trailing null entries. */
10377 s = mips_elf_rel_dyn_section (info, FALSE);
10378 dyn.d_un.d_val = (s->reloc_count
10379 * (ABI_64_P (output_bfd)
10380 ? sizeof (Elf64_Mips_External_Rel)
10381 : sizeof (Elf32_External_Rel)));
10382 /* Adjust the section size too. Tools like the prelinker
10383 can reasonably expect the values to the same. */
10384 elf_section_data (s->output_section)->this_hdr.sh_size
10385 = dyn.d_un.d_val;
10386 break;
10387
10388 default:
10389 swap_out_p = FALSE;
10390 break;
10391 }
10392
10393 if (swap_out_p)
10394 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10395 (dynobj, &dyn, b);
10396 }
10397 }
10398
10399 {
10400 asection *s;
10401 Elf32_compact_rel cpt;
10402
10403 if (SGI_COMPAT (output_bfd))
10404 {
10405 /* Write .compact_rel section out. */
10406 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10407 if (s != NULL)
10408 {
10409 cpt.id1 = 1;
10410 cpt.num = s->reloc_count;
10411 cpt.id2 = 2;
10412 cpt.offset = (s->output_section->filepos
10413 + sizeof (Elf32_External_compact_rel));
10414 cpt.reserved0 = 0;
10415 cpt.reserved1 = 0;
10416 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10417 ((Elf32_External_compact_rel *)
10418 s->contents));
10419
10420 /* Clean up a dummy stub function entry in .text. */
10421 if (htab->sstubs != NULL)
10422 {
10423 file_ptr dummy_offset;
10424
10425 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10426 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10427 memset (htab->sstubs->contents + dummy_offset, 0,
10428 htab->function_stub_size);
10429 }
10430 }
10431 }
10432
10433 /* The psABI says that the dynamic relocations must be sorted in
10434 increasing order of r_symndx. The VxWorks EABI doesn't require
10435 this, and because the code below handles REL rather than RELA
10436 relocations, using it for VxWorks would be outright harmful. */
10437 if (!htab->is_vxworks)
10438 {
10439 s = mips_elf_rel_dyn_section (info, FALSE);
10440 if (s != NULL
10441 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10442 {
10443 reldyn_sorting_bfd = output_bfd;
10444
10445 if (ABI_64_P (output_bfd))
10446 qsort ((Elf64_External_Rel *) s->contents + 1,
10447 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10448 sort_dynamic_relocs_64);
10449 else
10450 qsort ((Elf32_External_Rel *) s->contents + 1,
10451 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10452 sort_dynamic_relocs);
10453 }
10454 }
10455 }
10456
10457 if (htab->splt && htab->splt->size > 0)
10458 {
10459 if (htab->is_vxworks)
10460 {
10461 if (info->shared)
10462 mips_vxworks_finish_shared_plt (output_bfd, info);
10463 else
10464 mips_vxworks_finish_exec_plt (output_bfd, info);
10465 }
10466 else
10467 {
10468 BFD_ASSERT (!info->shared);
10469 mips_finish_exec_plt (output_bfd, info);
10470 }
10471 }
10472 return TRUE;
10473 }
10474
10475
10476 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10477
10478 static void
10479 mips_set_isa_flags (bfd *abfd)
10480 {
10481 flagword val;
10482
10483 switch (bfd_get_mach (abfd))
10484 {
10485 default:
10486 case bfd_mach_mips3000:
10487 val = E_MIPS_ARCH_1;
10488 break;
10489
10490 case bfd_mach_mips3900:
10491 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10492 break;
10493
10494 case bfd_mach_mips6000:
10495 val = E_MIPS_ARCH_2;
10496 break;
10497
10498 case bfd_mach_mips4000:
10499 case bfd_mach_mips4300:
10500 case bfd_mach_mips4400:
10501 case bfd_mach_mips4600:
10502 val = E_MIPS_ARCH_3;
10503 break;
10504
10505 case bfd_mach_mips4010:
10506 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10507 break;
10508
10509 case bfd_mach_mips4100:
10510 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10511 break;
10512
10513 case bfd_mach_mips4111:
10514 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10515 break;
10516
10517 case bfd_mach_mips4120:
10518 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10519 break;
10520
10521 case bfd_mach_mips4650:
10522 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10523 break;
10524
10525 case bfd_mach_mips5400:
10526 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10527 break;
10528
10529 case bfd_mach_mips5500:
10530 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10531 break;
10532
10533 case bfd_mach_mips9000:
10534 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10535 break;
10536
10537 case bfd_mach_mips5000:
10538 case bfd_mach_mips7000:
10539 case bfd_mach_mips8000:
10540 case bfd_mach_mips10000:
10541 case bfd_mach_mips12000:
10542 case bfd_mach_mips14000:
10543 case bfd_mach_mips16000:
10544 val = E_MIPS_ARCH_4;
10545 break;
10546
10547 case bfd_mach_mips5:
10548 val = E_MIPS_ARCH_5;
10549 break;
10550
10551 case bfd_mach_mips_loongson_2e:
10552 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10553 break;
10554
10555 case bfd_mach_mips_loongson_2f:
10556 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10557 break;
10558
10559 case bfd_mach_mips_sb1:
10560 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10561 break;
10562
10563 case bfd_mach_mips_octeon:
10564 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10565 break;
10566
10567 case bfd_mach_mips_xlr:
10568 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10569 break;
10570
10571 case bfd_mach_mipsisa32:
10572 val = E_MIPS_ARCH_32;
10573 break;
10574
10575 case bfd_mach_mipsisa64:
10576 val = E_MIPS_ARCH_64;
10577 break;
10578
10579 case bfd_mach_mipsisa32r2:
10580 val = E_MIPS_ARCH_32R2;
10581 break;
10582
10583 case bfd_mach_mipsisa64r2:
10584 val = E_MIPS_ARCH_64R2;
10585 break;
10586 }
10587 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10588 elf_elfheader (abfd)->e_flags |= val;
10589
10590 }
10591
10592
10593 /* The final processing done just before writing out a MIPS ELF object
10594 file. This gets the MIPS architecture right based on the machine
10595 number. This is used by both the 32-bit and the 64-bit ABI. */
10596
10597 void
10598 _bfd_mips_elf_final_write_processing (bfd *abfd,
10599 bfd_boolean linker ATTRIBUTE_UNUSED)
10600 {
10601 unsigned int i;
10602 Elf_Internal_Shdr **hdrpp;
10603 const char *name;
10604 asection *sec;
10605
10606 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10607 is nonzero. This is for compatibility with old objects, which used
10608 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10609 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10610 mips_set_isa_flags (abfd);
10611
10612 /* Set the sh_info field for .gptab sections and other appropriate
10613 info for each special section. */
10614 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10615 i < elf_numsections (abfd);
10616 i++, hdrpp++)
10617 {
10618 switch ((*hdrpp)->sh_type)
10619 {
10620 case SHT_MIPS_MSYM:
10621 case SHT_MIPS_LIBLIST:
10622 sec = bfd_get_section_by_name (abfd, ".dynstr");
10623 if (sec != NULL)
10624 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10625 break;
10626
10627 case SHT_MIPS_GPTAB:
10628 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10629 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10630 BFD_ASSERT (name != NULL
10631 && CONST_STRNEQ (name, ".gptab."));
10632 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10633 BFD_ASSERT (sec != NULL);
10634 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10635 break;
10636
10637 case SHT_MIPS_CONTENT:
10638 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10639 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10640 BFD_ASSERT (name != NULL
10641 && CONST_STRNEQ (name, ".MIPS.content"));
10642 sec = bfd_get_section_by_name (abfd,
10643 name + sizeof ".MIPS.content" - 1);
10644 BFD_ASSERT (sec != NULL);
10645 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10646 break;
10647
10648 case SHT_MIPS_SYMBOL_LIB:
10649 sec = bfd_get_section_by_name (abfd, ".dynsym");
10650 if (sec != NULL)
10651 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10652 sec = bfd_get_section_by_name (abfd, ".liblist");
10653 if (sec != NULL)
10654 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10655 break;
10656
10657 case SHT_MIPS_EVENTS:
10658 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10659 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10660 BFD_ASSERT (name != NULL);
10661 if (CONST_STRNEQ (name, ".MIPS.events"))
10662 sec = bfd_get_section_by_name (abfd,
10663 name + sizeof ".MIPS.events" - 1);
10664 else
10665 {
10666 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10667 sec = bfd_get_section_by_name (abfd,
10668 (name
10669 + sizeof ".MIPS.post_rel" - 1));
10670 }
10671 BFD_ASSERT (sec != NULL);
10672 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10673 break;
10674
10675 }
10676 }
10677 }
10678 \f
10679 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10680 segments. */
10681
10682 int
10683 _bfd_mips_elf_additional_program_headers (bfd *abfd,
10684 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10685 {
10686 asection *s;
10687 int ret = 0;
10688
10689 /* See if we need a PT_MIPS_REGINFO segment. */
10690 s = bfd_get_section_by_name (abfd, ".reginfo");
10691 if (s && (s->flags & SEC_LOAD))
10692 ++ret;
10693
10694 /* See if we need a PT_MIPS_OPTIONS segment. */
10695 if (IRIX_COMPAT (abfd) == ict_irix6
10696 && bfd_get_section_by_name (abfd,
10697 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10698 ++ret;
10699
10700 /* See if we need a PT_MIPS_RTPROC segment. */
10701 if (IRIX_COMPAT (abfd) == ict_irix5
10702 && bfd_get_section_by_name (abfd, ".dynamic")
10703 && bfd_get_section_by_name (abfd, ".mdebug"))
10704 ++ret;
10705
10706 /* Allocate a PT_NULL header in dynamic objects. See
10707 _bfd_mips_elf_modify_segment_map for details. */
10708 if (!SGI_COMPAT (abfd)
10709 && bfd_get_section_by_name (abfd, ".dynamic"))
10710 ++ret;
10711
10712 return ret;
10713 }
10714
10715 /* Modify the segment map for an IRIX5 executable. */
10716
10717 bfd_boolean
10718 _bfd_mips_elf_modify_segment_map (bfd *abfd,
10719 struct bfd_link_info *info)
10720 {
10721 asection *s;
10722 struct elf_segment_map *m, **pm;
10723 bfd_size_type amt;
10724
10725 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10726 segment. */
10727 s = bfd_get_section_by_name (abfd, ".reginfo");
10728 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10729 {
10730 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10731 if (m->p_type == PT_MIPS_REGINFO)
10732 break;
10733 if (m == NULL)
10734 {
10735 amt = sizeof *m;
10736 m = bfd_zalloc (abfd, amt);
10737 if (m == NULL)
10738 return FALSE;
10739
10740 m->p_type = PT_MIPS_REGINFO;
10741 m->count = 1;
10742 m->sections[0] = s;
10743
10744 /* We want to put it after the PHDR and INTERP segments. */
10745 pm = &elf_tdata (abfd)->segment_map;
10746 while (*pm != NULL
10747 && ((*pm)->p_type == PT_PHDR
10748 || (*pm)->p_type == PT_INTERP))
10749 pm = &(*pm)->next;
10750
10751 m->next = *pm;
10752 *pm = m;
10753 }
10754 }
10755
10756 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10757 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10758 PT_MIPS_OPTIONS segment immediately following the program header
10759 table. */
10760 if (NEWABI_P (abfd)
10761 /* On non-IRIX6 new abi, we'll have already created a segment
10762 for this section, so don't create another. I'm not sure this
10763 is not also the case for IRIX 6, but I can't test it right
10764 now. */
10765 && IRIX_COMPAT (abfd) == ict_irix6)
10766 {
10767 for (s = abfd->sections; s; s = s->next)
10768 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10769 break;
10770
10771 if (s)
10772 {
10773 struct elf_segment_map *options_segment;
10774
10775 pm = &elf_tdata (abfd)->segment_map;
10776 while (*pm != NULL
10777 && ((*pm)->p_type == PT_PHDR
10778 || (*pm)->p_type == PT_INTERP))
10779 pm = &(*pm)->next;
10780
10781 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10782 {
10783 amt = sizeof (struct elf_segment_map);
10784 options_segment = bfd_zalloc (abfd, amt);
10785 options_segment->next = *pm;
10786 options_segment->p_type = PT_MIPS_OPTIONS;
10787 options_segment->p_flags = PF_R;
10788 options_segment->p_flags_valid = TRUE;
10789 options_segment->count = 1;
10790 options_segment->sections[0] = s;
10791 *pm = options_segment;
10792 }
10793 }
10794 }
10795 else
10796 {
10797 if (IRIX_COMPAT (abfd) == ict_irix5)
10798 {
10799 /* If there are .dynamic and .mdebug sections, we make a room
10800 for the RTPROC header. FIXME: Rewrite without section names. */
10801 if (bfd_get_section_by_name (abfd, ".interp") == NULL
10802 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10803 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10804 {
10805 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10806 if (m->p_type == PT_MIPS_RTPROC)
10807 break;
10808 if (m == NULL)
10809 {
10810 amt = sizeof *m;
10811 m = bfd_zalloc (abfd, amt);
10812 if (m == NULL)
10813 return FALSE;
10814
10815 m->p_type = PT_MIPS_RTPROC;
10816
10817 s = bfd_get_section_by_name (abfd, ".rtproc");
10818 if (s == NULL)
10819 {
10820 m->count = 0;
10821 m->p_flags = 0;
10822 m->p_flags_valid = 1;
10823 }
10824 else
10825 {
10826 m->count = 1;
10827 m->sections[0] = s;
10828 }
10829
10830 /* We want to put it after the DYNAMIC segment. */
10831 pm = &elf_tdata (abfd)->segment_map;
10832 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10833 pm = &(*pm)->next;
10834 if (*pm != NULL)
10835 pm = &(*pm)->next;
10836
10837 m->next = *pm;
10838 *pm = m;
10839 }
10840 }
10841 }
10842 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10843 .dynstr, .dynsym, and .hash sections, and everything in
10844 between. */
10845 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10846 pm = &(*pm)->next)
10847 if ((*pm)->p_type == PT_DYNAMIC)
10848 break;
10849 m = *pm;
10850 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10851 {
10852 /* For a normal mips executable the permissions for the PT_DYNAMIC
10853 segment are read, write and execute. We do that here since
10854 the code in elf.c sets only the read permission. This matters
10855 sometimes for the dynamic linker. */
10856 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10857 {
10858 m->p_flags = PF_R | PF_W | PF_X;
10859 m->p_flags_valid = 1;
10860 }
10861 }
10862 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10863 glibc's dynamic linker has traditionally derived the number of
10864 tags from the p_filesz field, and sometimes allocates stack
10865 arrays of that size. An overly-big PT_DYNAMIC segment can
10866 be actively harmful in such cases. Making PT_DYNAMIC contain
10867 other sections can also make life hard for the prelinker,
10868 which might move one of the other sections to a different
10869 PT_LOAD segment. */
10870 if (SGI_COMPAT (abfd)
10871 && m != NULL
10872 && m->count == 1
10873 && strcmp (m->sections[0]->name, ".dynamic") == 0)
10874 {
10875 static const char *sec_names[] =
10876 {
10877 ".dynamic", ".dynstr", ".dynsym", ".hash"
10878 };
10879 bfd_vma low, high;
10880 unsigned int i, c;
10881 struct elf_segment_map *n;
10882
10883 low = ~(bfd_vma) 0;
10884 high = 0;
10885 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10886 {
10887 s = bfd_get_section_by_name (abfd, sec_names[i]);
10888 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10889 {
10890 bfd_size_type sz;
10891
10892 if (low > s->vma)
10893 low = s->vma;
10894 sz = s->size;
10895 if (high < s->vma + sz)
10896 high = s->vma + sz;
10897 }
10898 }
10899
10900 c = 0;
10901 for (s = abfd->sections; s != NULL; s = s->next)
10902 if ((s->flags & SEC_LOAD) != 0
10903 && s->vma >= low
10904 && s->vma + s->size <= high)
10905 ++c;
10906
10907 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
10908 n = bfd_zalloc (abfd, amt);
10909 if (n == NULL)
10910 return FALSE;
10911 *n = *m;
10912 n->count = c;
10913
10914 i = 0;
10915 for (s = abfd->sections; s != NULL; s = s->next)
10916 {
10917 if ((s->flags & SEC_LOAD) != 0
10918 && s->vma >= low
10919 && s->vma + s->size <= high)
10920 {
10921 n->sections[i] = s;
10922 ++i;
10923 }
10924 }
10925
10926 *pm = n;
10927 }
10928 }
10929
10930 /* Allocate a spare program header in dynamic objects so that tools
10931 like the prelinker can add an extra PT_LOAD entry.
10932
10933 If the prelinker needs to make room for a new PT_LOAD entry, its
10934 standard procedure is to move the first (read-only) sections into
10935 the new (writable) segment. However, the MIPS ABI requires
10936 .dynamic to be in a read-only segment, and the section will often
10937 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10938
10939 Although the prelinker could in principle move .dynamic to a
10940 writable segment, it seems better to allocate a spare program
10941 header instead, and avoid the need to move any sections.
10942 There is a long tradition of allocating spare dynamic tags,
10943 so allocating a spare program header seems like a natural
10944 extension.
10945
10946 If INFO is NULL, we may be copying an already prelinked binary
10947 with objcopy or strip, so do not add this header. */
10948 if (info != NULL
10949 && !SGI_COMPAT (abfd)
10950 && bfd_get_section_by_name (abfd, ".dynamic"))
10951 {
10952 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10953 if ((*pm)->p_type == PT_NULL)
10954 break;
10955 if (*pm == NULL)
10956 {
10957 m = bfd_zalloc (abfd, sizeof (*m));
10958 if (m == NULL)
10959 return FALSE;
10960
10961 m->p_type = PT_NULL;
10962 *pm = m;
10963 }
10964 }
10965
10966 return TRUE;
10967 }
10968 \f
10969 /* Return the section that should be marked against GC for a given
10970 relocation. */
10971
10972 asection *
10973 _bfd_mips_elf_gc_mark_hook (asection *sec,
10974 struct bfd_link_info *info,
10975 Elf_Internal_Rela *rel,
10976 struct elf_link_hash_entry *h,
10977 Elf_Internal_Sym *sym)
10978 {
10979 /* ??? Do mips16 stub sections need to be handled special? */
10980
10981 if (h != NULL)
10982 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10983 {
10984 case R_MIPS_GNU_VTINHERIT:
10985 case R_MIPS_GNU_VTENTRY:
10986 return NULL;
10987 }
10988
10989 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10990 }
10991
10992 /* Update the got entry reference counts for the section being removed. */
10993
10994 bfd_boolean
10995 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
10996 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10997 asection *sec ATTRIBUTE_UNUSED,
10998 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
10999 {
11000 #if 0
11001 Elf_Internal_Shdr *symtab_hdr;
11002 struct elf_link_hash_entry **sym_hashes;
11003 bfd_signed_vma *local_got_refcounts;
11004 const Elf_Internal_Rela *rel, *relend;
11005 unsigned long r_symndx;
11006 struct elf_link_hash_entry *h;
11007
11008 if (info->relocatable)
11009 return TRUE;
11010
11011 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11012 sym_hashes = elf_sym_hashes (abfd);
11013 local_got_refcounts = elf_local_got_refcounts (abfd);
11014
11015 relend = relocs + sec->reloc_count;
11016 for (rel = relocs; rel < relend; rel++)
11017 switch (ELF_R_TYPE (abfd, rel->r_info))
11018 {
11019 case R_MIPS16_GOT16:
11020 case R_MIPS16_CALL16:
11021 case R_MIPS_GOT16:
11022 case R_MIPS_CALL16:
11023 case R_MIPS_CALL_HI16:
11024 case R_MIPS_CALL_LO16:
11025 case R_MIPS_GOT_HI16:
11026 case R_MIPS_GOT_LO16:
11027 case R_MIPS_GOT_DISP:
11028 case R_MIPS_GOT_PAGE:
11029 case R_MIPS_GOT_OFST:
11030 /* ??? It would seem that the existing MIPS code does no sort
11031 of reference counting or whatnot on its GOT and PLT entries,
11032 so it is not possible to garbage collect them at this time. */
11033 break;
11034
11035 default:
11036 break;
11037 }
11038 #endif
11039
11040 return TRUE;
11041 }
11042 \f
11043 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11044 hiding the old indirect symbol. Process additional relocation
11045 information. Also called for weakdefs, in which case we just let
11046 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11047
11048 void
11049 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11050 struct elf_link_hash_entry *dir,
11051 struct elf_link_hash_entry *ind)
11052 {
11053 struct mips_elf_link_hash_entry *dirmips, *indmips;
11054
11055 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11056
11057 dirmips = (struct mips_elf_link_hash_entry *) dir;
11058 indmips = (struct mips_elf_link_hash_entry *) ind;
11059 /* Any absolute non-dynamic relocations against an indirect or weak
11060 definition will be against the target symbol. */
11061 if (indmips->has_static_relocs)
11062 dirmips->has_static_relocs = TRUE;
11063
11064 if (ind->root.type != bfd_link_hash_indirect)
11065 return;
11066
11067 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11068 if (indmips->readonly_reloc)
11069 dirmips->readonly_reloc = TRUE;
11070 if (indmips->no_fn_stub)
11071 dirmips->no_fn_stub = TRUE;
11072 if (indmips->fn_stub)
11073 {
11074 dirmips->fn_stub = indmips->fn_stub;
11075 indmips->fn_stub = NULL;
11076 }
11077 if (indmips->need_fn_stub)
11078 {
11079 dirmips->need_fn_stub = TRUE;
11080 indmips->need_fn_stub = FALSE;
11081 }
11082 if (indmips->call_stub)
11083 {
11084 dirmips->call_stub = indmips->call_stub;
11085 indmips->call_stub = NULL;
11086 }
11087 if (indmips->call_fp_stub)
11088 {
11089 dirmips->call_fp_stub = indmips->call_fp_stub;
11090 indmips->call_fp_stub = NULL;
11091 }
11092 if (indmips->global_got_area < dirmips->global_got_area)
11093 dirmips->global_got_area = indmips->global_got_area;
11094 if (indmips->global_got_area < GGA_NONE)
11095 indmips->global_got_area = GGA_NONE;
11096 if (indmips->has_nonpic_branches)
11097 dirmips->has_nonpic_branches = TRUE;
11098
11099 if (dirmips->tls_type == 0)
11100 dirmips->tls_type = indmips->tls_type;
11101 }
11102 \f
11103 #define PDR_SIZE 32
11104
11105 bfd_boolean
11106 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11107 struct bfd_link_info *info)
11108 {
11109 asection *o;
11110 bfd_boolean ret = FALSE;
11111 unsigned char *tdata;
11112 size_t i, skip;
11113
11114 o = bfd_get_section_by_name (abfd, ".pdr");
11115 if (! o)
11116 return FALSE;
11117 if (o->size == 0)
11118 return FALSE;
11119 if (o->size % PDR_SIZE != 0)
11120 return FALSE;
11121 if (o->output_section != NULL
11122 && bfd_is_abs_section (o->output_section))
11123 return FALSE;
11124
11125 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11126 if (! tdata)
11127 return FALSE;
11128
11129 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11130 info->keep_memory);
11131 if (!cookie->rels)
11132 {
11133 free (tdata);
11134 return FALSE;
11135 }
11136
11137 cookie->rel = cookie->rels;
11138 cookie->relend = cookie->rels + o->reloc_count;
11139
11140 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11141 {
11142 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11143 {
11144 tdata[i] = 1;
11145 skip ++;
11146 }
11147 }
11148
11149 if (skip != 0)
11150 {
11151 mips_elf_section_data (o)->u.tdata = tdata;
11152 o->size -= skip * PDR_SIZE;
11153 ret = TRUE;
11154 }
11155 else
11156 free (tdata);
11157
11158 if (! info->keep_memory)
11159 free (cookie->rels);
11160
11161 return ret;
11162 }
11163
11164 bfd_boolean
11165 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11166 {
11167 if (strcmp (sec->name, ".pdr") == 0)
11168 return TRUE;
11169 return FALSE;
11170 }
11171
11172 bfd_boolean
11173 _bfd_mips_elf_write_section (bfd *output_bfd,
11174 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11175 asection *sec, bfd_byte *contents)
11176 {
11177 bfd_byte *to, *from, *end;
11178 int i;
11179
11180 if (strcmp (sec->name, ".pdr") != 0)
11181 return FALSE;
11182
11183 if (mips_elf_section_data (sec)->u.tdata == NULL)
11184 return FALSE;
11185
11186 to = contents;
11187 end = contents + sec->size;
11188 for (from = contents, i = 0;
11189 from < end;
11190 from += PDR_SIZE, i++)
11191 {
11192 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11193 continue;
11194 if (to != from)
11195 memcpy (to, from, PDR_SIZE);
11196 to += PDR_SIZE;
11197 }
11198 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11199 sec->output_offset, sec->size);
11200 return TRUE;
11201 }
11202 \f
11203 /* MIPS ELF uses a special find_nearest_line routine in order the
11204 handle the ECOFF debugging information. */
11205
11206 struct mips_elf_find_line
11207 {
11208 struct ecoff_debug_info d;
11209 struct ecoff_find_line i;
11210 };
11211
11212 bfd_boolean
11213 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11214 asymbol **symbols, bfd_vma offset,
11215 const char **filename_ptr,
11216 const char **functionname_ptr,
11217 unsigned int *line_ptr)
11218 {
11219 asection *msec;
11220
11221 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11222 filename_ptr, functionname_ptr,
11223 line_ptr))
11224 return TRUE;
11225
11226 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11227 filename_ptr, functionname_ptr,
11228 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11229 &elf_tdata (abfd)->dwarf2_find_line_info))
11230 return TRUE;
11231
11232 msec = bfd_get_section_by_name (abfd, ".mdebug");
11233 if (msec != NULL)
11234 {
11235 flagword origflags;
11236 struct mips_elf_find_line *fi;
11237 const struct ecoff_debug_swap * const swap =
11238 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11239
11240 /* If we are called during a link, mips_elf_final_link may have
11241 cleared the SEC_HAS_CONTENTS field. We force it back on here
11242 if appropriate (which it normally will be). */
11243 origflags = msec->flags;
11244 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11245 msec->flags |= SEC_HAS_CONTENTS;
11246
11247 fi = elf_tdata (abfd)->find_line_info;
11248 if (fi == NULL)
11249 {
11250 bfd_size_type external_fdr_size;
11251 char *fraw_src;
11252 char *fraw_end;
11253 struct fdr *fdr_ptr;
11254 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11255
11256 fi = bfd_zalloc (abfd, amt);
11257 if (fi == NULL)
11258 {
11259 msec->flags = origflags;
11260 return FALSE;
11261 }
11262
11263 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11264 {
11265 msec->flags = origflags;
11266 return FALSE;
11267 }
11268
11269 /* Swap in the FDR information. */
11270 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11271 fi->d.fdr = bfd_alloc (abfd, amt);
11272 if (fi->d.fdr == NULL)
11273 {
11274 msec->flags = origflags;
11275 return FALSE;
11276 }
11277 external_fdr_size = swap->external_fdr_size;
11278 fdr_ptr = fi->d.fdr;
11279 fraw_src = (char *) fi->d.external_fdr;
11280 fraw_end = (fraw_src
11281 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11282 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11283 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11284
11285 elf_tdata (abfd)->find_line_info = fi;
11286
11287 /* Note that we don't bother to ever free this information.
11288 find_nearest_line is either called all the time, as in
11289 objdump -l, so the information should be saved, or it is
11290 rarely called, as in ld error messages, so the memory
11291 wasted is unimportant. Still, it would probably be a
11292 good idea for free_cached_info to throw it away. */
11293 }
11294
11295 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11296 &fi->i, filename_ptr, functionname_ptr,
11297 line_ptr))
11298 {
11299 msec->flags = origflags;
11300 return TRUE;
11301 }
11302
11303 msec->flags = origflags;
11304 }
11305
11306 /* Fall back on the generic ELF find_nearest_line routine. */
11307
11308 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11309 filename_ptr, functionname_ptr,
11310 line_ptr);
11311 }
11312
11313 bfd_boolean
11314 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11315 const char **filename_ptr,
11316 const char **functionname_ptr,
11317 unsigned int *line_ptr)
11318 {
11319 bfd_boolean found;
11320 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11321 functionname_ptr, line_ptr,
11322 & elf_tdata (abfd)->dwarf2_find_line_info);
11323 return found;
11324 }
11325
11326 \f
11327 /* When are writing out the .options or .MIPS.options section,
11328 remember the bytes we are writing out, so that we can install the
11329 GP value in the section_processing routine. */
11330
11331 bfd_boolean
11332 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11333 const void *location,
11334 file_ptr offset, bfd_size_type count)
11335 {
11336 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11337 {
11338 bfd_byte *c;
11339
11340 if (elf_section_data (section) == NULL)
11341 {
11342 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11343 section->used_by_bfd = bfd_zalloc (abfd, amt);
11344 if (elf_section_data (section) == NULL)
11345 return FALSE;
11346 }
11347 c = mips_elf_section_data (section)->u.tdata;
11348 if (c == NULL)
11349 {
11350 c = bfd_zalloc (abfd, section->size);
11351 if (c == NULL)
11352 return FALSE;
11353 mips_elf_section_data (section)->u.tdata = c;
11354 }
11355
11356 memcpy (c + offset, location, count);
11357 }
11358
11359 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11360 count);
11361 }
11362
11363 /* This is almost identical to bfd_generic_get_... except that some
11364 MIPS relocations need to be handled specially. Sigh. */
11365
11366 bfd_byte *
11367 _bfd_elf_mips_get_relocated_section_contents
11368 (bfd *abfd,
11369 struct bfd_link_info *link_info,
11370 struct bfd_link_order *link_order,
11371 bfd_byte *data,
11372 bfd_boolean relocatable,
11373 asymbol **symbols)
11374 {
11375 /* Get enough memory to hold the stuff */
11376 bfd *input_bfd = link_order->u.indirect.section->owner;
11377 asection *input_section = link_order->u.indirect.section;
11378 bfd_size_type sz;
11379
11380 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11381 arelent **reloc_vector = NULL;
11382 long reloc_count;
11383
11384 if (reloc_size < 0)
11385 goto error_return;
11386
11387 reloc_vector = bfd_malloc (reloc_size);
11388 if (reloc_vector == NULL && reloc_size != 0)
11389 goto error_return;
11390
11391 /* read in the section */
11392 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11393 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11394 goto error_return;
11395
11396 reloc_count = bfd_canonicalize_reloc (input_bfd,
11397 input_section,
11398 reloc_vector,
11399 symbols);
11400 if (reloc_count < 0)
11401 goto error_return;
11402
11403 if (reloc_count > 0)
11404 {
11405 arelent **parent;
11406 /* for mips */
11407 int gp_found;
11408 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11409
11410 {
11411 struct bfd_hash_entry *h;
11412 struct bfd_link_hash_entry *lh;
11413 /* Skip all this stuff if we aren't mixing formats. */
11414 if (abfd && input_bfd
11415 && abfd->xvec == input_bfd->xvec)
11416 lh = 0;
11417 else
11418 {
11419 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11420 lh = (struct bfd_link_hash_entry *) h;
11421 }
11422 lookup:
11423 if (lh)
11424 {
11425 switch (lh->type)
11426 {
11427 case bfd_link_hash_undefined:
11428 case bfd_link_hash_undefweak:
11429 case bfd_link_hash_common:
11430 gp_found = 0;
11431 break;
11432 case bfd_link_hash_defined:
11433 case bfd_link_hash_defweak:
11434 gp_found = 1;
11435 gp = lh->u.def.value;
11436 break;
11437 case bfd_link_hash_indirect:
11438 case bfd_link_hash_warning:
11439 lh = lh->u.i.link;
11440 /* @@FIXME ignoring warning for now */
11441 goto lookup;
11442 case bfd_link_hash_new:
11443 default:
11444 abort ();
11445 }
11446 }
11447 else
11448 gp_found = 0;
11449 }
11450 /* end mips */
11451 for (parent = reloc_vector; *parent != NULL; parent++)
11452 {
11453 char *error_message = NULL;
11454 bfd_reloc_status_type r;
11455
11456 /* Specific to MIPS: Deal with relocation types that require
11457 knowing the gp of the output bfd. */
11458 asymbol *sym = *(*parent)->sym_ptr_ptr;
11459
11460 /* If we've managed to find the gp and have a special
11461 function for the relocation then go ahead, else default
11462 to the generic handling. */
11463 if (gp_found
11464 && (*parent)->howto->special_function
11465 == _bfd_mips_elf32_gprel16_reloc)
11466 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11467 input_section, relocatable,
11468 data, gp);
11469 else
11470 r = bfd_perform_relocation (input_bfd, *parent, data,
11471 input_section,
11472 relocatable ? abfd : NULL,
11473 &error_message);
11474
11475 if (relocatable)
11476 {
11477 asection *os = input_section->output_section;
11478
11479 /* A partial link, so keep the relocs */
11480 os->orelocation[os->reloc_count] = *parent;
11481 os->reloc_count++;
11482 }
11483
11484 if (r != bfd_reloc_ok)
11485 {
11486 switch (r)
11487 {
11488 case bfd_reloc_undefined:
11489 if (!((*link_info->callbacks->undefined_symbol)
11490 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11491 input_bfd, input_section, (*parent)->address, TRUE)))
11492 goto error_return;
11493 break;
11494 case bfd_reloc_dangerous:
11495 BFD_ASSERT (error_message != NULL);
11496 if (!((*link_info->callbacks->reloc_dangerous)
11497 (link_info, error_message, input_bfd, input_section,
11498 (*parent)->address)))
11499 goto error_return;
11500 break;
11501 case bfd_reloc_overflow:
11502 if (!((*link_info->callbacks->reloc_overflow)
11503 (link_info, NULL,
11504 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11505 (*parent)->howto->name, (*parent)->addend,
11506 input_bfd, input_section, (*parent)->address)))
11507 goto error_return;
11508 break;
11509 case bfd_reloc_outofrange:
11510 default:
11511 abort ();
11512 break;
11513 }
11514
11515 }
11516 }
11517 }
11518 if (reloc_vector != NULL)
11519 free (reloc_vector);
11520 return data;
11521
11522 error_return:
11523 if (reloc_vector != NULL)
11524 free (reloc_vector);
11525 return NULL;
11526 }
11527 \f
11528 /* Create a MIPS ELF linker hash table. */
11529
11530 struct bfd_link_hash_table *
11531 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
11532 {
11533 struct mips_elf_link_hash_table *ret;
11534 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
11535
11536 ret = bfd_malloc (amt);
11537 if (ret == NULL)
11538 return NULL;
11539
11540 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
11541 mips_elf_link_hash_newfunc,
11542 sizeof (struct mips_elf_link_hash_entry),
11543 MIPS_ELF_DATA))
11544 {
11545 free (ret);
11546 return NULL;
11547 }
11548
11549 #if 0
11550 /* We no longer use this. */
11551 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
11552 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
11553 #endif
11554 ret->procedure_count = 0;
11555 ret->compact_rel_size = 0;
11556 ret->use_rld_obj_head = FALSE;
11557 ret->rld_value = 0;
11558 ret->mips16_stubs_seen = FALSE;
11559 ret->use_plts_and_copy_relocs = FALSE;
11560 ret->is_vxworks = FALSE;
11561 ret->small_data_overflow_reported = FALSE;
11562 ret->srelbss = NULL;
11563 ret->sdynbss = NULL;
11564 ret->srelplt = NULL;
11565 ret->srelplt2 = NULL;
11566 ret->sgotplt = NULL;
11567 ret->splt = NULL;
11568 ret->sstubs = NULL;
11569 ret->sgot = NULL;
11570 ret->got_info = NULL;
11571 ret->plt_header_size = 0;
11572 ret->plt_entry_size = 0;
11573 ret->lazy_stub_count = 0;
11574 ret->function_stub_size = 0;
11575 ret->strampoline = NULL;
11576 ret->la25_stubs = NULL;
11577 ret->add_stub_section = NULL;
11578
11579 return &ret->root.root;
11580 }
11581
11582 /* Likewise, but indicate that the target is VxWorks. */
11583
11584 struct bfd_link_hash_table *
11585 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
11586 {
11587 struct bfd_link_hash_table *ret;
11588
11589 ret = _bfd_mips_elf_link_hash_table_create (abfd);
11590 if (ret)
11591 {
11592 struct mips_elf_link_hash_table *htab;
11593
11594 htab = (struct mips_elf_link_hash_table *) ret;
11595 htab->use_plts_and_copy_relocs = TRUE;
11596 htab->is_vxworks = TRUE;
11597 }
11598 return ret;
11599 }
11600
11601 /* A function that the linker calls if we are allowed to use PLTs
11602 and copy relocs. */
11603
11604 void
11605 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
11606 {
11607 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
11608 }
11609 \f
11610 /* We need to use a special link routine to handle the .reginfo and
11611 the .mdebug sections. We need to merge all instances of these
11612 sections together, not write them all out sequentially. */
11613
11614 bfd_boolean
11615 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11616 {
11617 asection *o;
11618 struct bfd_link_order *p;
11619 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
11620 asection *rtproc_sec;
11621 Elf32_RegInfo reginfo;
11622 struct ecoff_debug_info debug;
11623 struct mips_htab_traverse_info hti;
11624 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11625 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
11626 HDRR *symhdr = &debug.symbolic_header;
11627 void *mdebug_handle = NULL;
11628 asection *s;
11629 EXTR esym;
11630 unsigned int i;
11631 bfd_size_type amt;
11632 struct mips_elf_link_hash_table *htab;
11633
11634 static const char * const secname[] =
11635 {
11636 ".text", ".init", ".fini", ".data",
11637 ".rodata", ".sdata", ".sbss", ".bss"
11638 };
11639 static const int sc[] =
11640 {
11641 scText, scInit, scFini, scData,
11642 scRData, scSData, scSBss, scBss
11643 };
11644
11645 /* Sort the dynamic symbols so that those with GOT entries come after
11646 those without. */
11647 htab = mips_elf_hash_table (info);
11648 BFD_ASSERT (htab != NULL);
11649
11650 if (!mips_elf_sort_hash_table (abfd, info))
11651 return FALSE;
11652
11653 /* Create any scheduled LA25 stubs. */
11654 hti.info = info;
11655 hti.output_bfd = abfd;
11656 hti.error = FALSE;
11657 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
11658 if (hti.error)
11659 return FALSE;
11660
11661 /* Get a value for the GP register. */
11662 if (elf_gp (abfd) == 0)
11663 {
11664 struct bfd_link_hash_entry *h;
11665
11666 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
11667 if (h != NULL && h->type == bfd_link_hash_defined)
11668 elf_gp (abfd) = (h->u.def.value
11669 + h->u.def.section->output_section->vma
11670 + h->u.def.section->output_offset);
11671 else if (htab->is_vxworks
11672 && (h = bfd_link_hash_lookup (info->hash,
11673 "_GLOBAL_OFFSET_TABLE_",
11674 FALSE, FALSE, TRUE))
11675 && h->type == bfd_link_hash_defined)
11676 elf_gp (abfd) = (h->u.def.section->output_section->vma
11677 + h->u.def.section->output_offset
11678 + h->u.def.value);
11679 else if (info->relocatable)
11680 {
11681 bfd_vma lo = MINUS_ONE;
11682
11683 /* Find the GP-relative section with the lowest offset. */
11684 for (o = abfd->sections; o != NULL; o = o->next)
11685 if (o->vma < lo
11686 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
11687 lo = o->vma;
11688
11689 /* And calculate GP relative to that. */
11690 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
11691 }
11692 else
11693 {
11694 /* If the relocate_section function needs to do a reloc
11695 involving the GP value, it should make a reloc_dangerous
11696 callback to warn that GP is not defined. */
11697 }
11698 }
11699
11700 /* Go through the sections and collect the .reginfo and .mdebug
11701 information. */
11702 reginfo_sec = NULL;
11703 mdebug_sec = NULL;
11704 gptab_data_sec = NULL;
11705 gptab_bss_sec = NULL;
11706 for (o = abfd->sections; o != NULL; o = o->next)
11707 {
11708 if (strcmp (o->name, ".reginfo") == 0)
11709 {
11710 memset (&reginfo, 0, sizeof reginfo);
11711
11712 /* We have found the .reginfo section in the output file.
11713 Look through all the link_orders comprising it and merge
11714 the information together. */
11715 for (p = o->map_head.link_order; p != NULL; p = p->next)
11716 {
11717 asection *input_section;
11718 bfd *input_bfd;
11719 Elf32_External_RegInfo ext;
11720 Elf32_RegInfo sub;
11721
11722 if (p->type != bfd_indirect_link_order)
11723 {
11724 if (p->type == bfd_data_link_order)
11725 continue;
11726 abort ();
11727 }
11728
11729 input_section = p->u.indirect.section;
11730 input_bfd = input_section->owner;
11731
11732 if (! bfd_get_section_contents (input_bfd, input_section,
11733 &ext, 0, sizeof ext))
11734 return FALSE;
11735
11736 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
11737
11738 reginfo.ri_gprmask |= sub.ri_gprmask;
11739 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
11740 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
11741 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
11742 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
11743
11744 /* ri_gp_value is set by the function
11745 mips_elf32_section_processing when the section is
11746 finally written out. */
11747
11748 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11749 elf_link_input_bfd ignores this section. */
11750 input_section->flags &= ~SEC_HAS_CONTENTS;
11751 }
11752
11753 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11754 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
11755
11756 /* Skip this section later on (I don't think this currently
11757 matters, but someday it might). */
11758 o->map_head.link_order = NULL;
11759
11760 reginfo_sec = o;
11761 }
11762
11763 if (strcmp (o->name, ".mdebug") == 0)
11764 {
11765 struct extsym_info einfo;
11766 bfd_vma last;
11767
11768 /* We have found the .mdebug section in the output file.
11769 Look through all the link_orders comprising it and merge
11770 the information together. */
11771 symhdr->magic = swap->sym_magic;
11772 /* FIXME: What should the version stamp be? */
11773 symhdr->vstamp = 0;
11774 symhdr->ilineMax = 0;
11775 symhdr->cbLine = 0;
11776 symhdr->idnMax = 0;
11777 symhdr->ipdMax = 0;
11778 symhdr->isymMax = 0;
11779 symhdr->ioptMax = 0;
11780 symhdr->iauxMax = 0;
11781 symhdr->issMax = 0;
11782 symhdr->issExtMax = 0;
11783 symhdr->ifdMax = 0;
11784 symhdr->crfd = 0;
11785 symhdr->iextMax = 0;
11786
11787 /* We accumulate the debugging information itself in the
11788 debug_info structure. */
11789 debug.line = NULL;
11790 debug.external_dnr = NULL;
11791 debug.external_pdr = NULL;
11792 debug.external_sym = NULL;
11793 debug.external_opt = NULL;
11794 debug.external_aux = NULL;
11795 debug.ss = NULL;
11796 debug.ssext = debug.ssext_end = NULL;
11797 debug.external_fdr = NULL;
11798 debug.external_rfd = NULL;
11799 debug.external_ext = debug.external_ext_end = NULL;
11800
11801 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
11802 if (mdebug_handle == NULL)
11803 return FALSE;
11804
11805 esym.jmptbl = 0;
11806 esym.cobol_main = 0;
11807 esym.weakext = 0;
11808 esym.reserved = 0;
11809 esym.ifd = ifdNil;
11810 esym.asym.iss = issNil;
11811 esym.asym.st = stLocal;
11812 esym.asym.reserved = 0;
11813 esym.asym.index = indexNil;
11814 last = 0;
11815 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11816 {
11817 esym.asym.sc = sc[i];
11818 s = bfd_get_section_by_name (abfd, secname[i]);
11819 if (s != NULL)
11820 {
11821 esym.asym.value = s->vma;
11822 last = s->vma + s->size;
11823 }
11824 else
11825 esym.asym.value = last;
11826 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11827 secname[i], &esym))
11828 return FALSE;
11829 }
11830
11831 for (p = o->map_head.link_order; p != NULL; p = p->next)
11832 {
11833 asection *input_section;
11834 bfd *input_bfd;
11835 const struct ecoff_debug_swap *input_swap;
11836 struct ecoff_debug_info input_debug;
11837 char *eraw_src;
11838 char *eraw_end;
11839
11840 if (p->type != bfd_indirect_link_order)
11841 {
11842 if (p->type == bfd_data_link_order)
11843 continue;
11844 abort ();
11845 }
11846
11847 input_section = p->u.indirect.section;
11848 input_bfd = input_section->owner;
11849
11850 if (!is_mips_elf (input_bfd))
11851 {
11852 /* I don't know what a non MIPS ELF bfd would be
11853 doing with a .mdebug section, but I don't really
11854 want to deal with it. */
11855 continue;
11856 }
11857
11858 input_swap = (get_elf_backend_data (input_bfd)
11859 ->elf_backend_ecoff_debug_swap);
11860
11861 BFD_ASSERT (p->size == input_section->size);
11862
11863 /* The ECOFF linking code expects that we have already
11864 read in the debugging information and set up an
11865 ecoff_debug_info structure, so we do that now. */
11866 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11867 &input_debug))
11868 return FALSE;
11869
11870 if (! (bfd_ecoff_debug_accumulate
11871 (mdebug_handle, abfd, &debug, swap, input_bfd,
11872 &input_debug, input_swap, info)))
11873 return FALSE;
11874
11875 /* Loop through the external symbols. For each one with
11876 interesting information, try to find the symbol in
11877 the linker global hash table and save the information
11878 for the output external symbols. */
11879 eraw_src = input_debug.external_ext;
11880 eraw_end = (eraw_src
11881 + (input_debug.symbolic_header.iextMax
11882 * input_swap->external_ext_size));
11883 for (;
11884 eraw_src < eraw_end;
11885 eraw_src += input_swap->external_ext_size)
11886 {
11887 EXTR ext;
11888 const char *name;
11889 struct mips_elf_link_hash_entry *h;
11890
11891 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
11892 if (ext.asym.sc == scNil
11893 || ext.asym.sc == scUndefined
11894 || ext.asym.sc == scSUndefined)
11895 continue;
11896
11897 name = input_debug.ssext + ext.asym.iss;
11898 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
11899 name, FALSE, FALSE, TRUE);
11900 if (h == NULL || h->esym.ifd != -2)
11901 continue;
11902
11903 if (ext.ifd != -1)
11904 {
11905 BFD_ASSERT (ext.ifd
11906 < input_debug.symbolic_header.ifdMax);
11907 ext.ifd = input_debug.ifdmap[ext.ifd];
11908 }
11909
11910 h->esym = ext;
11911 }
11912
11913 /* Free up the information we just read. */
11914 free (input_debug.line);
11915 free (input_debug.external_dnr);
11916 free (input_debug.external_pdr);
11917 free (input_debug.external_sym);
11918 free (input_debug.external_opt);
11919 free (input_debug.external_aux);
11920 free (input_debug.ss);
11921 free (input_debug.ssext);
11922 free (input_debug.external_fdr);
11923 free (input_debug.external_rfd);
11924 free (input_debug.external_ext);
11925
11926 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11927 elf_link_input_bfd ignores this section. */
11928 input_section->flags &= ~SEC_HAS_CONTENTS;
11929 }
11930
11931 if (SGI_COMPAT (abfd) && info->shared)
11932 {
11933 /* Create .rtproc section. */
11934 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11935 if (rtproc_sec == NULL)
11936 {
11937 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11938 | SEC_LINKER_CREATED | SEC_READONLY);
11939
11940 rtproc_sec = bfd_make_section_with_flags (abfd,
11941 ".rtproc",
11942 flags);
11943 if (rtproc_sec == NULL
11944 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
11945 return FALSE;
11946 }
11947
11948 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11949 info, rtproc_sec,
11950 &debug))
11951 return FALSE;
11952 }
11953
11954 /* Build the external symbol information. */
11955 einfo.abfd = abfd;
11956 einfo.info = info;
11957 einfo.debug = &debug;
11958 einfo.swap = swap;
11959 einfo.failed = FALSE;
11960 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
11961 mips_elf_output_extsym, &einfo);
11962 if (einfo.failed)
11963 return FALSE;
11964
11965 /* Set the size of the .mdebug section. */
11966 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
11967
11968 /* Skip this section later on (I don't think this currently
11969 matters, but someday it might). */
11970 o->map_head.link_order = NULL;
11971
11972 mdebug_sec = o;
11973 }
11974
11975 if (CONST_STRNEQ (o->name, ".gptab."))
11976 {
11977 const char *subname;
11978 unsigned int c;
11979 Elf32_gptab *tab;
11980 Elf32_External_gptab *ext_tab;
11981 unsigned int j;
11982
11983 /* The .gptab.sdata and .gptab.sbss sections hold
11984 information describing how the small data area would
11985 change depending upon the -G switch. These sections
11986 not used in executables files. */
11987 if (! info->relocatable)
11988 {
11989 for (p = o->map_head.link_order; p != NULL; p = p->next)
11990 {
11991 asection *input_section;
11992
11993 if (p->type != bfd_indirect_link_order)
11994 {
11995 if (p->type == bfd_data_link_order)
11996 continue;
11997 abort ();
11998 }
11999
12000 input_section = p->u.indirect.section;
12001
12002 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12003 elf_link_input_bfd ignores this section. */
12004 input_section->flags &= ~SEC_HAS_CONTENTS;
12005 }
12006
12007 /* Skip this section later on (I don't think this
12008 currently matters, but someday it might). */
12009 o->map_head.link_order = NULL;
12010
12011 /* Really remove the section. */
12012 bfd_section_list_remove (abfd, o);
12013 --abfd->section_count;
12014
12015 continue;
12016 }
12017
12018 /* There is one gptab for initialized data, and one for
12019 uninitialized data. */
12020 if (strcmp (o->name, ".gptab.sdata") == 0)
12021 gptab_data_sec = o;
12022 else if (strcmp (o->name, ".gptab.sbss") == 0)
12023 gptab_bss_sec = o;
12024 else
12025 {
12026 (*_bfd_error_handler)
12027 (_("%s: illegal section name `%s'"),
12028 bfd_get_filename (abfd), o->name);
12029 bfd_set_error (bfd_error_nonrepresentable_section);
12030 return FALSE;
12031 }
12032
12033 /* The linker script always combines .gptab.data and
12034 .gptab.sdata into .gptab.sdata, and likewise for
12035 .gptab.bss and .gptab.sbss. It is possible that there is
12036 no .sdata or .sbss section in the output file, in which
12037 case we must change the name of the output section. */
12038 subname = o->name + sizeof ".gptab" - 1;
12039 if (bfd_get_section_by_name (abfd, subname) == NULL)
12040 {
12041 if (o == gptab_data_sec)
12042 o->name = ".gptab.data";
12043 else
12044 o->name = ".gptab.bss";
12045 subname = o->name + sizeof ".gptab" - 1;
12046 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
12047 }
12048
12049 /* Set up the first entry. */
12050 c = 1;
12051 amt = c * sizeof (Elf32_gptab);
12052 tab = bfd_malloc (amt);
12053 if (tab == NULL)
12054 return FALSE;
12055 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
12056 tab[0].gt_header.gt_unused = 0;
12057
12058 /* Combine the input sections. */
12059 for (p = o->map_head.link_order; p != NULL; p = p->next)
12060 {
12061 asection *input_section;
12062 bfd *input_bfd;
12063 bfd_size_type size;
12064 unsigned long last;
12065 bfd_size_type gpentry;
12066
12067 if (p->type != bfd_indirect_link_order)
12068 {
12069 if (p->type == bfd_data_link_order)
12070 continue;
12071 abort ();
12072 }
12073
12074 input_section = p->u.indirect.section;
12075 input_bfd = input_section->owner;
12076
12077 /* Combine the gptab entries for this input section one
12078 by one. We know that the input gptab entries are
12079 sorted by ascending -G value. */
12080 size = input_section->size;
12081 last = 0;
12082 for (gpentry = sizeof (Elf32_External_gptab);
12083 gpentry < size;
12084 gpentry += sizeof (Elf32_External_gptab))
12085 {
12086 Elf32_External_gptab ext_gptab;
12087 Elf32_gptab int_gptab;
12088 unsigned long val;
12089 unsigned long add;
12090 bfd_boolean exact;
12091 unsigned int look;
12092
12093 if (! (bfd_get_section_contents
12094 (input_bfd, input_section, &ext_gptab, gpentry,
12095 sizeof (Elf32_External_gptab))))
12096 {
12097 free (tab);
12098 return FALSE;
12099 }
12100
12101 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
12102 &int_gptab);
12103 val = int_gptab.gt_entry.gt_g_value;
12104 add = int_gptab.gt_entry.gt_bytes - last;
12105
12106 exact = FALSE;
12107 for (look = 1; look < c; look++)
12108 {
12109 if (tab[look].gt_entry.gt_g_value >= val)
12110 tab[look].gt_entry.gt_bytes += add;
12111
12112 if (tab[look].gt_entry.gt_g_value == val)
12113 exact = TRUE;
12114 }
12115
12116 if (! exact)
12117 {
12118 Elf32_gptab *new_tab;
12119 unsigned int max;
12120
12121 /* We need a new table entry. */
12122 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
12123 new_tab = bfd_realloc (tab, amt);
12124 if (new_tab == NULL)
12125 {
12126 free (tab);
12127 return FALSE;
12128 }
12129 tab = new_tab;
12130 tab[c].gt_entry.gt_g_value = val;
12131 tab[c].gt_entry.gt_bytes = add;
12132
12133 /* Merge in the size for the next smallest -G
12134 value, since that will be implied by this new
12135 value. */
12136 max = 0;
12137 for (look = 1; look < c; look++)
12138 {
12139 if (tab[look].gt_entry.gt_g_value < val
12140 && (max == 0
12141 || (tab[look].gt_entry.gt_g_value
12142 > tab[max].gt_entry.gt_g_value)))
12143 max = look;
12144 }
12145 if (max != 0)
12146 tab[c].gt_entry.gt_bytes +=
12147 tab[max].gt_entry.gt_bytes;
12148
12149 ++c;
12150 }
12151
12152 last = int_gptab.gt_entry.gt_bytes;
12153 }
12154
12155 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12156 elf_link_input_bfd ignores this section. */
12157 input_section->flags &= ~SEC_HAS_CONTENTS;
12158 }
12159
12160 /* The table must be sorted by -G value. */
12161 if (c > 2)
12162 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
12163
12164 /* Swap out the table. */
12165 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
12166 ext_tab = bfd_alloc (abfd, amt);
12167 if (ext_tab == NULL)
12168 {
12169 free (tab);
12170 return FALSE;
12171 }
12172
12173 for (j = 0; j < c; j++)
12174 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
12175 free (tab);
12176
12177 o->size = c * sizeof (Elf32_External_gptab);
12178 o->contents = (bfd_byte *) ext_tab;
12179
12180 /* Skip this section later on (I don't think this currently
12181 matters, but someday it might). */
12182 o->map_head.link_order = NULL;
12183 }
12184 }
12185
12186 /* Invoke the regular ELF backend linker to do all the work. */
12187 if (!bfd_elf_final_link (abfd, info))
12188 return FALSE;
12189
12190 /* Now write out the computed sections. */
12191
12192 if (reginfo_sec != NULL)
12193 {
12194 Elf32_External_RegInfo ext;
12195
12196 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
12197 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
12198 return FALSE;
12199 }
12200
12201 if (mdebug_sec != NULL)
12202 {
12203 BFD_ASSERT (abfd->output_has_begun);
12204 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
12205 swap, info,
12206 mdebug_sec->filepos))
12207 return FALSE;
12208
12209 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
12210 }
12211
12212 if (gptab_data_sec != NULL)
12213 {
12214 if (! bfd_set_section_contents (abfd, gptab_data_sec,
12215 gptab_data_sec->contents,
12216 0, gptab_data_sec->size))
12217 return FALSE;
12218 }
12219
12220 if (gptab_bss_sec != NULL)
12221 {
12222 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
12223 gptab_bss_sec->contents,
12224 0, gptab_bss_sec->size))
12225 return FALSE;
12226 }
12227
12228 if (SGI_COMPAT (abfd))
12229 {
12230 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
12231 if (rtproc_sec != NULL)
12232 {
12233 if (! bfd_set_section_contents (abfd, rtproc_sec,
12234 rtproc_sec->contents,
12235 0, rtproc_sec->size))
12236 return FALSE;
12237 }
12238 }
12239
12240 return TRUE;
12241 }
12242 \f
12243 /* Structure for saying that BFD machine EXTENSION extends BASE. */
12244
12245 struct mips_mach_extension {
12246 unsigned long extension, base;
12247 };
12248
12249
12250 /* An array describing how BFD machines relate to one another. The entries
12251 are ordered topologically with MIPS I extensions listed last. */
12252
12253 static const struct mips_mach_extension mips_mach_extensions[] = {
12254 /* MIPS64r2 extensions. */
12255 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
12256
12257 /* MIPS64 extensions. */
12258 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
12259 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
12260 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
12261
12262 /* MIPS V extensions. */
12263 { bfd_mach_mipsisa64, bfd_mach_mips5 },
12264
12265 /* R10000 extensions. */
12266 { bfd_mach_mips12000, bfd_mach_mips10000 },
12267 { bfd_mach_mips14000, bfd_mach_mips10000 },
12268 { bfd_mach_mips16000, bfd_mach_mips10000 },
12269
12270 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12271 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12272 better to allow vr5400 and vr5500 code to be merged anyway, since
12273 many libraries will just use the core ISA. Perhaps we could add
12274 some sort of ASE flag if this ever proves a problem. */
12275 { bfd_mach_mips5500, bfd_mach_mips5400 },
12276 { bfd_mach_mips5400, bfd_mach_mips5000 },
12277
12278 /* MIPS IV extensions. */
12279 { bfd_mach_mips5, bfd_mach_mips8000 },
12280 { bfd_mach_mips10000, bfd_mach_mips8000 },
12281 { bfd_mach_mips5000, bfd_mach_mips8000 },
12282 { bfd_mach_mips7000, bfd_mach_mips8000 },
12283 { bfd_mach_mips9000, bfd_mach_mips8000 },
12284
12285 /* VR4100 extensions. */
12286 { bfd_mach_mips4120, bfd_mach_mips4100 },
12287 { bfd_mach_mips4111, bfd_mach_mips4100 },
12288
12289 /* MIPS III extensions. */
12290 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
12291 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
12292 { bfd_mach_mips8000, bfd_mach_mips4000 },
12293 { bfd_mach_mips4650, bfd_mach_mips4000 },
12294 { bfd_mach_mips4600, bfd_mach_mips4000 },
12295 { bfd_mach_mips4400, bfd_mach_mips4000 },
12296 { bfd_mach_mips4300, bfd_mach_mips4000 },
12297 { bfd_mach_mips4100, bfd_mach_mips4000 },
12298 { bfd_mach_mips4010, bfd_mach_mips4000 },
12299
12300 /* MIPS32 extensions. */
12301 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
12302
12303 /* MIPS II extensions. */
12304 { bfd_mach_mips4000, bfd_mach_mips6000 },
12305 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
12306
12307 /* MIPS I extensions. */
12308 { bfd_mach_mips6000, bfd_mach_mips3000 },
12309 { bfd_mach_mips3900, bfd_mach_mips3000 }
12310 };
12311
12312
12313 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12314
12315 static bfd_boolean
12316 mips_mach_extends_p (unsigned long base, unsigned long extension)
12317 {
12318 size_t i;
12319
12320 if (extension == base)
12321 return TRUE;
12322
12323 if (base == bfd_mach_mipsisa32
12324 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
12325 return TRUE;
12326
12327 if (base == bfd_mach_mipsisa32r2
12328 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
12329 return TRUE;
12330
12331 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
12332 if (extension == mips_mach_extensions[i].extension)
12333 {
12334 extension = mips_mach_extensions[i].base;
12335 if (extension == base)
12336 return TRUE;
12337 }
12338
12339 return FALSE;
12340 }
12341
12342
12343 /* Return true if the given ELF header flags describe a 32-bit binary. */
12344
12345 static bfd_boolean
12346 mips_32bit_flags_p (flagword flags)
12347 {
12348 return ((flags & EF_MIPS_32BITMODE) != 0
12349 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
12350 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
12351 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
12352 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
12353 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
12354 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
12355 }
12356
12357
12358 /* Merge object attributes from IBFD into OBFD. Raise an error if
12359 there are conflicting attributes. */
12360 static bfd_boolean
12361 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
12362 {
12363 obj_attribute *in_attr;
12364 obj_attribute *out_attr;
12365
12366 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12367 {
12368 /* This is the first object. Copy the attributes. */
12369 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12370
12371 /* Use the Tag_null value to indicate the attributes have been
12372 initialized. */
12373 elf_known_obj_attributes_proc (obfd)[0].i = 1;
12374
12375 return TRUE;
12376 }
12377
12378 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12379 non-conflicting ones. */
12380 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
12381 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
12382 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
12383 {
12384 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
12385 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12386 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
12387 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12388 ;
12389 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12390 _bfd_error_handler
12391 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
12392 in_attr[Tag_GNU_MIPS_ABI_FP].i);
12393 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12394 _bfd_error_handler
12395 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
12396 out_attr[Tag_GNU_MIPS_ABI_FP].i);
12397 else
12398 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
12399 {
12400 case 1:
12401 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12402 {
12403 case 2:
12404 _bfd_error_handler
12405 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12406 obfd, ibfd);
12407 break;
12408
12409 case 3:
12410 _bfd_error_handler
12411 (_("Warning: %B uses hard float, %B uses soft float"),
12412 obfd, ibfd);
12413 break;
12414
12415 case 4:
12416 _bfd_error_handler
12417 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12418 obfd, ibfd);
12419 break;
12420
12421 default:
12422 abort ();
12423 }
12424 break;
12425
12426 case 2:
12427 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12428 {
12429 case 1:
12430 _bfd_error_handler
12431 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12432 ibfd, obfd);
12433 break;
12434
12435 case 3:
12436 _bfd_error_handler
12437 (_("Warning: %B uses hard float, %B uses soft float"),
12438 obfd, ibfd);
12439 break;
12440
12441 case 4:
12442 _bfd_error_handler
12443 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12444 obfd, ibfd);
12445 break;
12446
12447 default:
12448 abort ();
12449 }
12450 break;
12451
12452 case 3:
12453 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12454 {
12455 case 1:
12456 case 2:
12457 case 4:
12458 _bfd_error_handler
12459 (_("Warning: %B uses hard float, %B uses soft float"),
12460 ibfd, obfd);
12461 break;
12462
12463 default:
12464 abort ();
12465 }
12466 break;
12467
12468 case 4:
12469 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12470 {
12471 case 1:
12472 _bfd_error_handler
12473 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12474 ibfd, obfd);
12475 break;
12476
12477 case 2:
12478 _bfd_error_handler
12479 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12480 ibfd, obfd);
12481 break;
12482
12483 case 3:
12484 _bfd_error_handler
12485 (_("Warning: %B uses hard float, %B uses soft float"),
12486 obfd, ibfd);
12487 break;
12488
12489 default:
12490 abort ();
12491 }
12492 break;
12493
12494 default:
12495 abort ();
12496 }
12497 }
12498
12499 /* Merge Tag_compatibility attributes and any common GNU ones. */
12500 _bfd_elf_merge_object_attributes (ibfd, obfd);
12501
12502 return TRUE;
12503 }
12504
12505 /* Merge backend specific data from an object file to the output
12506 object file when linking. */
12507
12508 bfd_boolean
12509 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
12510 {
12511 flagword old_flags;
12512 flagword new_flags;
12513 bfd_boolean ok;
12514 bfd_boolean null_input_bfd = TRUE;
12515 asection *sec;
12516
12517 /* Check if we have the same endianess */
12518 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
12519 {
12520 (*_bfd_error_handler)
12521 (_("%B: endianness incompatible with that of the selected emulation"),
12522 ibfd);
12523 return FALSE;
12524 }
12525
12526 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
12527 return TRUE;
12528
12529 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
12530 {
12531 (*_bfd_error_handler)
12532 (_("%B: ABI is incompatible with that of the selected emulation"),
12533 ibfd);
12534 return FALSE;
12535 }
12536
12537 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
12538 return FALSE;
12539
12540 new_flags = elf_elfheader (ibfd)->e_flags;
12541 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
12542 old_flags = elf_elfheader (obfd)->e_flags;
12543
12544 if (! elf_flags_init (obfd))
12545 {
12546 elf_flags_init (obfd) = TRUE;
12547 elf_elfheader (obfd)->e_flags = new_flags;
12548 elf_elfheader (obfd)->e_ident[EI_CLASS]
12549 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
12550
12551 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
12552 && (bfd_get_arch_info (obfd)->the_default
12553 || mips_mach_extends_p (bfd_get_mach (obfd),
12554 bfd_get_mach (ibfd))))
12555 {
12556 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
12557 bfd_get_mach (ibfd)))
12558 return FALSE;
12559 }
12560
12561 return TRUE;
12562 }
12563
12564 /* Check flag compatibility. */
12565
12566 new_flags &= ~EF_MIPS_NOREORDER;
12567 old_flags &= ~EF_MIPS_NOREORDER;
12568
12569 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12570 doesn't seem to matter. */
12571 new_flags &= ~EF_MIPS_XGOT;
12572 old_flags &= ~EF_MIPS_XGOT;
12573
12574 /* MIPSpro generates ucode info in n64 objects. Again, we should
12575 just be able to ignore this. */
12576 new_flags &= ~EF_MIPS_UCODE;
12577 old_flags &= ~EF_MIPS_UCODE;
12578
12579 /* DSOs should only be linked with CPIC code. */
12580 if ((ibfd->flags & DYNAMIC) != 0)
12581 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
12582
12583 if (new_flags == old_flags)
12584 return TRUE;
12585
12586 /* Check to see if the input BFD actually contains any sections.
12587 If not, its flags may not have been initialised either, but it cannot
12588 actually cause any incompatibility. */
12589 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
12590 {
12591 /* Ignore synthetic sections and empty .text, .data and .bss sections
12592 which are automatically generated by gas. */
12593 if (strcmp (sec->name, ".reginfo")
12594 && strcmp (sec->name, ".mdebug")
12595 && (sec->size != 0
12596 || (strcmp (sec->name, ".text")
12597 && strcmp (sec->name, ".data")
12598 && strcmp (sec->name, ".bss"))))
12599 {
12600 null_input_bfd = FALSE;
12601 break;
12602 }
12603 }
12604 if (null_input_bfd)
12605 return TRUE;
12606
12607 ok = TRUE;
12608
12609 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
12610 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
12611 {
12612 (*_bfd_error_handler)
12613 (_("%B: warning: linking abicalls files with non-abicalls files"),
12614 ibfd);
12615 ok = TRUE;
12616 }
12617
12618 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
12619 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
12620 if (! (new_flags & EF_MIPS_PIC))
12621 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
12622
12623 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12624 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12625
12626 /* Compare the ISAs. */
12627 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
12628 {
12629 (*_bfd_error_handler)
12630 (_("%B: linking 32-bit code with 64-bit code"),
12631 ibfd);
12632 ok = FALSE;
12633 }
12634 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
12635 {
12636 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12637 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
12638 {
12639 /* Copy the architecture info from IBFD to OBFD. Also copy
12640 the 32-bit flag (if set) so that we continue to recognise
12641 OBFD as a 32-bit binary. */
12642 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
12643 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12644 elf_elfheader (obfd)->e_flags
12645 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12646
12647 /* Copy across the ABI flags if OBFD doesn't use them
12648 and if that was what caused us to treat IBFD as 32-bit. */
12649 if ((old_flags & EF_MIPS_ABI) == 0
12650 && mips_32bit_flags_p (new_flags)
12651 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
12652 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
12653 }
12654 else
12655 {
12656 /* The ISAs aren't compatible. */
12657 (*_bfd_error_handler)
12658 (_("%B: linking %s module with previous %s modules"),
12659 ibfd,
12660 bfd_printable_name (ibfd),
12661 bfd_printable_name (obfd));
12662 ok = FALSE;
12663 }
12664 }
12665
12666 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12667 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12668
12669 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12670 does set EI_CLASS differently from any 32-bit ABI. */
12671 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
12672 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12673 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12674 {
12675 /* Only error if both are set (to different values). */
12676 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
12677 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12678 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12679 {
12680 (*_bfd_error_handler)
12681 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12682 ibfd,
12683 elf_mips_abi_name (ibfd),
12684 elf_mips_abi_name (obfd));
12685 ok = FALSE;
12686 }
12687 new_flags &= ~EF_MIPS_ABI;
12688 old_flags &= ~EF_MIPS_ABI;
12689 }
12690
12691 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12692 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
12693 {
12694 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
12695
12696 new_flags &= ~ EF_MIPS_ARCH_ASE;
12697 old_flags &= ~ EF_MIPS_ARCH_ASE;
12698 }
12699
12700 /* Warn about any other mismatches */
12701 if (new_flags != old_flags)
12702 {
12703 (*_bfd_error_handler)
12704 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12705 ibfd, (unsigned long) new_flags,
12706 (unsigned long) old_flags);
12707 ok = FALSE;
12708 }
12709
12710 if (! ok)
12711 {
12712 bfd_set_error (bfd_error_bad_value);
12713 return FALSE;
12714 }
12715
12716 return TRUE;
12717 }
12718
12719 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12720
12721 bfd_boolean
12722 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
12723 {
12724 BFD_ASSERT (!elf_flags_init (abfd)
12725 || elf_elfheader (abfd)->e_flags == flags);
12726
12727 elf_elfheader (abfd)->e_flags = flags;
12728 elf_flags_init (abfd) = TRUE;
12729 return TRUE;
12730 }
12731
12732 char *
12733 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
12734 {
12735 switch (dtag)
12736 {
12737 default: return "";
12738 case DT_MIPS_RLD_VERSION:
12739 return "MIPS_RLD_VERSION";
12740 case DT_MIPS_TIME_STAMP:
12741 return "MIPS_TIME_STAMP";
12742 case DT_MIPS_ICHECKSUM:
12743 return "MIPS_ICHECKSUM";
12744 case DT_MIPS_IVERSION:
12745 return "MIPS_IVERSION";
12746 case DT_MIPS_FLAGS:
12747 return "MIPS_FLAGS";
12748 case DT_MIPS_BASE_ADDRESS:
12749 return "MIPS_BASE_ADDRESS";
12750 case DT_MIPS_MSYM:
12751 return "MIPS_MSYM";
12752 case DT_MIPS_CONFLICT:
12753 return "MIPS_CONFLICT";
12754 case DT_MIPS_LIBLIST:
12755 return "MIPS_LIBLIST";
12756 case DT_MIPS_LOCAL_GOTNO:
12757 return "MIPS_LOCAL_GOTNO";
12758 case DT_MIPS_CONFLICTNO:
12759 return "MIPS_CONFLICTNO";
12760 case DT_MIPS_LIBLISTNO:
12761 return "MIPS_LIBLISTNO";
12762 case DT_MIPS_SYMTABNO:
12763 return "MIPS_SYMTABNO";
12764 case DT_MIPS_UNREFEXTNO:
12765 return "MIPS_UNREFEXTNO";
12766 case DT_MIPS_GOTSYM:
12767 return "MIPS_GOTSYM";
12768 case DT_MIPS_HIPAGENO:
12769 return "MIPS_HIPAGENO";
12770 case DT_MIPS_RLD_MAP:
12771 return "MIPS_RLD_MAP";
12772 case DT_MIPS_DELTA_CLASS:
12773 return "MIPS_DELTA_CLASS";
12774 case DT_MIPS_DELTA_CLASS_NO:
12775 return "MIPS_DELTA_CLASS_NO";
12776 case DT_MIPS_DELTA_INSTANCE:
12777 return "MIPS_DELTA_INSTANCE";
12778 case DT_MIPS_DELTA_INSTANCE_NO:
12779 return "MIPS_DELTA_INSTANCE_NO";
12780 case DT_MIPS_DELTA_RELOC:
12781 return "MIPS_DELTA_RELOC";
12782 case DT_MIPS_DELTA_RELOC_NO:
12783 return "MIPS_DELTA_RELOC_NO";
12784 case DT_MIPS_DELTA_SYM:
12785 return "MIPS_DELTA_SYM";
12786 case DT_MIPS_DELTA_SYM_NO:
12787 return "MIPS_DELTA_SYM_NO";
12788 case DT_MIPS_DELTA_CLASSSYM:
12789 return "MIPS_DELTA_CLASSSYM";
12790 case DT_MIPS_DELTA_CLASSSYM_NO:
12791 return "MIPS_DELTA_CLASSSYM_NO";
12792 case DT_MIPS_CXX_FLAGS:
12793 return "MIPS_CXX_FLAGS";
12794 case DT_MIPS_PIXIE_INIT:
12795 return "MIPS_PIXIE_INIT";
12796 case DT_MIPS_SYMBOL_LIB:
12797 return "MIPS_SYMBOL_LIB";
12798 case DT_MIPS_LOCALPAGE_GOTIDX:
12799 return "MIPS_LOCALPAGE_GOTIDX";
12800 case DT_MIPS_LOCAL_GOTIDX:
12801 return "MIPS_LOCAL_GOTIDX";
12802 case DT_MIPS_HIDDEN_GOTIDX:
12803 return "MIPS_HIDDEN_GOTIDX";
12804 case DT_MIPS_PROTECTED_GOTIDX:
12805 return "MIPS_PROTECTED_GOT_IDX";
12806 case DT_MIPS_OPTIONS:
12807 return "MIPS_OPTIONS";
12808 case DT_MIPS_INTERFACE:
12809 return "MIPS_INTERFACE";
12810 case DT_MIPS_DYNSTR_ALIGN:
12811 return "DT_MIPS_DYNSTR_ALIGN";
12812 case DT_MIPS_INTERFACE_SIZE:
12813 return "DT_MIPS_INTERFACE_SIZE";
12814 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12815 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12816 case DT_MIPS_PERF_SUFFIX:
12817 return "DT_MIPS_PERF_SUFFIX";
12818 case DT_MIPS_COMPACT_SIZE:
12819 return "DT_MIPS_COMPACT_SIZE";
12820 case DT_MIPS_GP_VALUE:
12821 return "DT_MIPS_GP_VALUE";
12822 case DT_MIPS_AUX_DYNAMIC:
12823 return "DT_MIPS_AUX_DYNAMIC";
12824 case DT_MIPS_PLTGOT:
12825 return "DT_MIPS_PLTGOT";
12826 case DT_MIPS_RWPLT:
12827 return "DT_MIPS_RWPLT";
12828 }
12829 }
12830
12831 bfd_boolean
12832 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
12833 {
12834 FILE *file = ptr;
12835
12836 BFD_ASSERT (abfd != NULL && ptr != NULL);
12837
12838 /* Print normal ELF private data. */
12839 _bfd_elf_print_private_bfd_data (abfd, ptr);
12840
12841 /* xgettext:c-format */
12842 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12843
12844 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12845 fprintf (file, _(" [abi=O32]"));
12846 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12847 fprintf (file, _(" [abi=O64]"));
12848 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12849 fprintf (file, _(" [abi=EABI32]"));
12850 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12851 fprintf (file, _(" [abi=EABI64]"));
12852 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12853 fprintf (file, _(" [abi unknown]"));
12854 else if (ABI_N32_P (abfd))
12855 fprintf (file, _(" [abi=N32]"));
12856 else if (ABI_64_P (abfd))
12857 fprintf (file, _(" [abi=64]"));
12858 else
12859 fprintf (file, _(" [no abi set]"));
12860
12861 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
12862 fprintf (file, " [mips1]");
12863 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
12864 fprintf (file, " [mips2]");
12865 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
12866 fprintf (file, " [mips3]");
12867 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
12868 fprintf (file, " [mips4]");
12869 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
12870 fprintf (file, " [mips5]");
12871 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
12872 fprintf (file, " [mips32]");
12873 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
12874 fprintf (file, " [mips64]");
12875 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
12876 fprintf (file, " [mips32r2]");
12877 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
12878 fprintf (file, " [mips64r2]");
12879 else
12880 fprintf (file, _(" [unknown ISA]"));
12881
12882 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
12883 fprintf (file, " [mdmx]");
12884
12885 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
12886 fprintf (file, " [mips16]");
12887
12888 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
12889 fprintf (file, " [32bitmode]");
12890 else
12891 fprintf (file, _(" [not 32bitmode]"));
12892
12893 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
12894 fprintf (file, " [noreorder]");
12895
12896 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
12897 fprintf (file, " [PIC]");
12898
12899 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
12900 fprintf (file, " [CPIC]");
12901
12902 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
12903 fprintf (file, " [XGOT]");
12904
12905 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
12906 fprintf (file, " [UCODE]");
12907
12908 fputc ('\n', file);
12909
12910 return TRUE;
12911 }
12912
12913 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
12914 {
12915 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12916 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12917 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12918 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12919 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12920 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12921 { NULL, 0, 0, 0, 0 }
12922 };
12923
12924 /* Merge non visibility st_other attributes. Ensure that the
12925 STO_OPTIONAL flag is copied into h->other, even if this is not a
12926 definiton of the symbol. */
12927 void
12928 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12929 const Elf_Internal_Sym *isym,
12930 bfd_boolean definition,
12931 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12932 {
12933 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12934 {
12935 unsigned char other;
12936
12937 other = (definition ? isym->st_other : h->other);
12938 other &= ~ELF_ST_VISIBILITY (-1);
12939 h->other = other | ELF_ST_VISIBILITY (h->other);
12940 }
12941
12942 if (!definition
12943 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12944 h->other |= STO_OPTIONAL;
12945 }
12946
12947 /* Decide whether an undefined symbol is special and can be ignored.
12948 This is the case for OPTIONAL symbols on IRIX. */
12949 bfd_boolean
12950 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12951 {
12952 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12953 }
12954
12955 bfd_boolean
12956 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12957 {
12958 return (sym->st_shndx == SHN_COMMON
12959 || sym->st_shndx == SHN_MIPS_ACOMMON
12960 || sym->st_shndx == SHN_MIPS_SCOMMON);
12961 }
12962
12963 /* Return address for Ith PLT stub in section PLT, for relocation REL
12964 or (bfd_vma) -1 if it should not be included. */
12965
12966 bfd_vma
12967 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
12968 const arelent *rel ATTRIBUTE_UNUSED)
12969 {
12970 return (plt->vma
12971 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
12972 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
12973 }
12974
12975 void
12976 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
12977 {
12978 struct mips_elf_link_hash_table *htab;
12979 Elf_Internal_Ehdr *i_ehdrp;
12980
12981 i_ehdrp = elf_elfheader (abfd);
12982 if (link_info)
12983 {
12984 htab = mips_elf_hash_table (link_info);
12985 BFD_ASSERT (htab != NULL);
12986
12987 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
12988 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
12989 }
12990 }
This page took 0.34211 seconds and 4 git commands to generate.