50ee9ad4ac5746b048506f2e65aefd8934889dd5
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2015 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/ecoff.h"
44 #include "coff/mips.h"
45
46 #include "hashtab.h"
47
48 /* Types of TLS GOT entry. */
49 enum mips_got_tls_type {
50 GOT_TLS_NONE,
51 GOT_TLS_GD,
52 GOT_TLS_LDM,
53 GOT_TLS_IE
54 };
55
56 /* This structure is used to hold information about one GOT entry.
57 There are four types of entry:
58
59 (1) an absolute address
60 requires: abfd == NULL
61 fields: d.address
62
63 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
64 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
65 fields: abfd, symndx, d.addend, tls_type
66
67 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
68 requires: abfd != NULL, symndx == -1
69 fields: d.h, tls_type
70
71 (4) a TLS LDM slot
72 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
73 fields: none; there's only one of these per GOT. */
74 struct mips_got_entry
75 {
76 /* One input bfd that needs the GOT entry. */
77 bfd *abfd;
78 /* The index of the symbol, as stored in the relocation r_info, if
79 we have a local symbol; -1 otherwise. */
80 long symndx;
81 union
82 {
83 /* If abfd == NULL, an address that must be stored in the got. */
84 bfd_vma address;
85 /* If abfd != NULL && symndx != -1, the addend of the relocation
86 that should be added to the symbol value. */
87 bfd_vma addend;
88 /* If abfd != NULL && symndx == -1, the hash table entry
89 corresponding to a symbol in the GOT. The symbol's entry
90 is in the local area if h->global_got_area is GGA_NONE,
91 otherwise it is in the global area. */
92 struct mips_elf_link_hash_entry *h;
93 } d;
94
95 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
96 symbol entry with r_symndx == 0. */
97 unsigned char tls_type;
98
99 /* True if we have filled in the GOT contents for a TLS entry,
100 and created the associated relocations. */
101 unsigned char tls_initialized;
102
103 /* The offset from the beginning of the .got section to the entry
104 corresponding to this symbol+addend. If it's a global symbol
105 whose offset is yet to be decided, it's going to be -1. */
106 long gotidx;
107 };
108
109 /* This structure represents a GOT page reference from an input bfd.
110 Each instance represents a symbol + ADDEND, where the representation
111 of the symbol depends on whether it is local to the input bfd.
112 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
113 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
114
115 Page references with SYMNDX >= 0 always become page references
116 in the output. Page references with SYMNDX < 0 only become page
117 references if the symbol binds locally; in other cases, the page
118 reference decays to a global GOT reference. */
119 struct mips_got_page_ref
120 {
121 long symndx;
122 union
123 {
124 struct mips_elf_link_hash_entry *h;
125 bfd *abfd;
126 } u;
127 bfd_vma addend;
128 };
129
130 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
131 The structures form a non-overlapping list that is sorted by increasing
132 MIN_ADDEND. */
133 struct mips_got_page_range
134 {
135 struct mips_got_page_range *next;
136 bfd_signed_vma min_addend;
137 bfd_signed_vma max_addend;
138 };
139
140 /* This structure describes the range of addends that are applied to page
141 relocations against a given section. */
142 struct mips_got_page_entry
143 {
144 /* The section that these entries are based on. */
145 asection *sec;
146 /* The ranges for this page entry. */
147 struct mips_got_page_range *ranges;
148 /* The maximum number of page entries needed for RANGES. */
149 bfd_vma num_pages;
150 };
151
152 /* This structure is used to hold .got information when linking. */
153
154 struct mips_got_info
155 {
156 /* The number of global .got entries. */
157 unsigned int global_gotno;
158 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
159 unsigned int reloc_only_gotno;
160 /* The number of .got slots used for TLS. */
161 unsigned int tls_gotno;
162 /* The first unused TLS .got entry. Used only during
163 mips_elf_initialize_tls_index. */
164 unsigned int tls_assigned_gotno;
165 /* The number of local .got entries, eventually including page entries. */
166 unsigned int local_gotno;
167 /* The maximum number of page entries needed. */
168 unsigned int page_gotno;
169 /* The number of relocations needed for the GOT entries. */
170 unsigned int relocs;
171 /* The first unused local .got entry. */
172 unsigned int assigned_low_gotno;
173 /* The last unused local .got entry. */
174 unsigned int assigned_high_gotno;
175 /* A hash table holding members of the got. */
176 struct htab *got_entries;
177 /* A hash table holding mips_got_page_ref structures. */
178 struct htab *got_page_refs;
179 /* A hash table of mips_got_page_entry structures. */
180 struct htab *got_page_entries;
181 /* In multi-got links, a pointer to the next got (err, rather, most
182 of the time, it points to the previous got). */
183 struct mips_got_info *next;
184 };
185
186 /* Structure passed when merging bfds' gots. */
187
188 struct mips_elf_got_per_bfd_arg
189 {
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
211 };
212
213 /* A structure used to pass information to htab_traverse callbacks
214 when laying out the GOT. */
215
216 struct mips_elf_traverse_got_arg
217 {
218 struct bfd_link_info *info;
219 struct mips_got_info *g;
220 int value;
221 };
222
223 struct _mips_elf_section_data
224 {
225 struct bfd_elf_section_data elf;
226 union
227 {
228 bfd_byte *tdata;
229 } u;
230 };
231
232 #define mips_elf_section_data(sec) \
233 ((struct _mips_elf_section_data *) elf_section_data (sec))
234
235 #define is_mips_elf(bfd) \
236 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
237 && elf_tdata (bfd) != NULL \
238 && elf_object_id (bfd) == MIPS_ELF_DATA)
239
240 /* The ABI says that every symbol used by dynamic relocations must have
241 a global GOT entry. Among other things, this provides the dynamic
242 linker with a free, directly-indexed cache. The GOT can therefore
243 contain symbols that are not referenced by GOT relocations themselves
244 (in other words, it may have symbols that are not referenced by things
245 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
246
247 GOT relocations are less likely to overflow if we put the associated
248 GOT entries towards the beginning. We therefore divide the global
249 GOT entries into two areas: "normal" and "reloc-only". Entries in
250 the first area can be used for both dynamic relocations and GP-relative
251 accesses, while those in the "reloc-only" area are for dynamic
252 relocations only.
253
254 These GGA_* ("Global GOT Area") values are organised so that lower
255 values are more general than higher values. Also, non-GGA_NONE
256 values are ordered by the position of the area in the GOT. */
257 #define GGA_NORMAL 0
258 #define GGA_RELOC_ONLY 1
259 #define GGA_NONE 2
260
261 /* Information about a non-PIC interface to a PIC function. There are
262 two ways of creating these interfaces. The first is to add:
263
264 lui $25,%hi(func)
265 addiu $25,$25,%lo(func)
266
267 immediately before a PIC function "func". The second is to add:
268
269 lui $25,%hi(func)
270 j func
271 addiu $25,$25,%lo(func)
272
273 to a separate trampoline section.
274
275 Stubs of the first kind go in a new section immediately before the
276 target function. Stubs of the second kind go in a single section
277 pointed to by the hash table's "strampoline" field. */
278 struct mips_elf_la25_stub {
279 /* The generated section that contains this stub. */
280 asection *stub_section;
281
282 /* The offset of the stub from the start of STUB_SECTION. */
283 bfd_vma offset;
284
285 /* One symbol for the original function. Its location is available
286 in H->root.root.u.def. */
287 struct mips_elf_link_hash_entry *h;
288 };
289
290 /* Macros for populating a mips_elf_la25_stub. */
291
292 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
293 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
294 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
295 #define LA25_LUI_MICROMIPS(VAL) \
296 (0x41b90000 | (VAL)) /* lui t9,VAL */
297 #define LA25_J_MICROMIPS(VAL) \
298 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
299 #define LA25_ADDIU_MICROMIPS(VAL) \
300 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
301
302 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
303 the dynamic symbols. */
304
305 struct mips_elf_hash_sort_data
306 {
307 /* The symbol in the global GOT with the lowest dynamic symbol table
308 index. */
309 struct elf_link_hash_entry *low;
310 /* The least dynamic symbol table index corresponding to a non-TLS
311 symbol with a GOT entry. */
312 long min_got_dynindx;
313 /* The greatest dynamic symbol table index corresponding to a symbol
314 with a GOT entry that is not referenced (e.g., a dynamic symbol
315 with dynamic relocations pointing to it from non-primary GOTs). */
316 long max_unref_got_dynindx;
317 /* The greatest dynamic symbol table index not corresponding to a
318 symbol without a GOT entry. */
319 long max_non_got_dynindx;
320 };
321
322 /* We make up to two PLT entries if needed, one for standard MIPS code
323 and one for compressed code, either a MIPS16 or microMIPS one. We
324 keep a separate record of traditional lazy-binding stubs, for easier
325 processing. */
326
327 struct plt_entry
328 {
329 /* Traditional SVR4 stub offset, or -1 if none. */
330 bfd_vma stub_offset;
331
332 /* Standard PLT entry offset, or -1 if none. */
333 bfd_vma mips_offset;
334
335 /* Compressed PLT entry offset, or -1 if none. */
336 bfd_vma comp_offset;
337
338 /* The corresponding .got.plt index, or -1 if none. */
339 bfd_vma gotplt_index;
340
341 /* Whether we need a standard PLT entry. */
342 unsigned int need_mips : 1;
343
344 /* Whether we need a compressed PLT entry. */
345 unsigned int need_comp : 1;
346 };
347
348 /* The MIPS ELF linker needs additional information for each symbol in
349 the global hash table. */
350
351 struct mips_elf_link_hash_entry
352 {
353 struct elf_link_hash_entry root;
354
355 /* External symbol information. */
356 EXTR esym;
357
358 /* The la25 stub we have created for ths symbol, if any. */
359 struct mips_elf_la25_stub *la25_stub;
360
361 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
362 this symbol. */
363 unsigned int possibly_dynamic_relocs;
364
365 /* If there is a stub that 32 bit functions should use to call this
366 16 bit function, this points to the section containing the stub. */
367 asection *fn_stub;
368
369 /* If there is a stub that 16 bit functions should use to call this
370 32 bit function, this points to the section containing the stub. */
371 asection *call_stub;
372
373 /* This is like the call_stub field, but it is used if the function
374 being called returns a floating point value. */
375 asection *call_fp_stub;
376
377 /* The highest GGA_* value that satisfies all references to this symbol. */
378 unsigned int global_got_area : 2;
379
380 /* True if all GOT relocations against this symbol are for calls. This is
381 a looser condition than no_fn_stub below, because there may be other
382 non-call non-GOT relocations against the symbol. */
383 unsigned int got_only_for_calls : 1;
384
385 /* True if one of the relocations described by possibly_dynamic_relocs
386 is against a readonly section. */
387 unsigned int readonly_reloc : 1;
388
389 /* True if there is a relocation against this symbol that must be
390 resolved by the static linker (in other words, if the relocation
391 cannot possibly be made dynamic). */
392 unsigned int has_static_relocs : 1;
393
394 /* True if we must not create a .MIPS.stubs entry for this symbol.
395 This is set, for example, if there are relocations related to
396 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
397 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
398 unsigned int no_fn_stub : 1;
399
400 /* Whether we need the fn_stub; this is true if this symbol appears
401 in any relocs other than a 16 bit call. */
402 unsigned int need_fn_stub : 1;
403
404 /* True if this symbol is referenced by branch relocations from
405 any non-PIC input file. This is used to determine whether an
406 la25 stub is required. */
407 unsigned int has_nonpic_branches : 1;
408
409 /* Does this symbol need a traditional MIPS lazy-binding stub
410 (as opposed to a PLT entry)? */
411 unsigned int needs_lazy_stub : 1;
412
413 /* Does this symbol resolve to a PLT entry? */
414 unsigned int use_plt_entry : 1;
415 };
416
417 /* MIPS ELF linker hash table. */
418
419 struct mips_elf_link_hash_table
420 {
421 struct elf_link_hash_table root;
422
423 /* The number of .rtproc entries. */
424 bfd_size_type procedure_count;
425
426 /* The size of the .compact_rel section (if SGI_COMPAT). */
427 bfd_size_type compact_rel_size;
428
429 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
430 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
431 bfd_boolean use_rld_obj_head;
432
433 /* The __rld_map or __rld_obj_head symbol. */
434 struct elf_link_hash_entry *rld_symbol;
435
436 /* This is set if we see any mips16 stub sections. */
437 bfd_boolean mips16_stubs_seen;
438
439 /* True if we can generate copy relocs and PLTs. */
440 bfd_boolean use_plts_and_copy_relocs;
441
442 /* True if we can only use 32-bit microMIPS instructions. */
443 bfd_boolean insn32;
444
445 /* True if we're generating code for VxWorks. */
446 bfd_boolean is_vxworks;
447
448 /* True if we already reported the small-data section overflow. */
449 bfd_boolean small_data_overflow_reported;
450
451 /* Shortcuts to some dynamic sections, or NULL if they are not
452 being used. */
453 asection *srelbss;
454 asection *sdynbss;
455 asection *srelplt;
456 asection *srelplt2;
457 asection *sgotplt;
458 asection *splt;
459 asection *sstubs;
460 asection *sgot;
461
462 /* The master GOT information. */
463 struct mips_got_info *got_info;
464
465 /* The global symbol in the GOT with the lowest index in the dynamic
466 symbol table. */
467 struct elf_link_hash_entry *global_gotsym;
468
469 /* The size of the PLT header in bytes. */
470 bfd_vma plt_header_size;
471
472 /* The size of a standard PLT entry in bytes. */
473 bfd_vma plt_mips_entry_size;
474
475 /* The size of a compressed PLT entry in bytes. */
476 bfd_vma plt_comp_entry_size;
477
478 /* The offset of the next standard PLT entry to create. */
479 bfd_vma plt_mips_offset;
480
481 /* The offset of the next compressed PLT entry to create. */
482 bfd_vma plt_comp_offset;
483
484 /* The index of the next .got.plt entry to create. */
485 bfd_vma plt_got_index;
486
487 /* The number of functions that need a lazy-binding stub. */
488 bfd_vma lazy_stub_count;
489
490 /* The size of a function stub entry in bytes. */
491 bfd_vma function_stub_size;
492
493 /* The number of reserved entries at the beginning of the GOT. */
494 unsigned int reserved_gotno;
495
496 /* The section used for mips_elf_la25_stub trampolines.
497 See the comment above that structure for details. */
498 asection *strampoline;
499
500 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
501 pairs. */
502 htab_t la25_stubs;
503
504 /* A function FN (NAME, IS, OS) that creates a new input section
505 called NAME and links it to output section OS. If IS is nonnull,
506 the new section should go immediately before it, otherwise it
507 should go at the (current) beginning of OS.
508
509 The function returns the new section on success, otherwise it
510 returns null. */
511 asection *(*add_stub_section) (const char *, asection *, asection *);
512
513 /* Small local sym cache. */
514 struct sym_cache sym_cache;
515
516 /* Is the PLT header compressed? */
517 unsigned int plt_header_is_comp : 1;
518 };
519
520 /* Get the MIPS ELF linker hash table from a link_info structure. */
521
522 #define mips_elf_hash_table(p) \
523 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
524 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
525
526 /* A structure used to communicate with htab_traverse callbacks. */
527 struct mips_htab_traverse_info
528 {
529 /* The usual link-wide information. */
530 struct bfd_link_info *info;
531 bfd *output_bfd;
532
533 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
534 bfd_boolean error;
535 };
536
537 /* MIPS ELF private object data. */
538
539 struct mips_elf_obj_tdata
540 {
541 /* Generic ELF private object data. */
542 struct elf_obj_tdata root;
543
544 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
545 bfd *abi_fp_bfd;
546
547 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
548 bfd *abi_msa_bfd;
549
550 /* The abiflags for this object. */
551 Elf_Internal_ABIFlags_v0 abiflags;
552 bfd_boolean abiflags_valid;
553
554 /* The GOT requirements of input bfds. */
555 struct mips_got_info *got;
556
557 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
558 included directly in this one, but there's no point to wasting
559 the memory just for the infrequently called find_nearest_line. */
560 struct mips_elf_find_line *find_line_info;
561
562 /* An array of stub sections indexed by symbol number. */
563 asection **local_stubs;
564 asection **local_call_stubs;
565
566 /* The Irix 5 support uses two virtual sections, which represent
567 text/data symbols defined in dynamic objects. */
568 asymbol *elf_data_symbol;
569 asymbol *elf_text_symbol;
570 asection *elf_data_section;
571 asection *elf_text_section;
572 };
573
574 /* Get MIPS ELF private object data from BFD's tdata. */
575
576 #define mips_elf_tdata(bfd) \
577 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
578
579 #define TLS_RELOC_P(r_type) \
580 (r_type == R_MIPS_TLS_DTPMOD32 \
581 || r_type == R_MIPS_TLS_DTPMOD64 \
582 || r_type == R_MIPS_TLS_DTPREL32 \
583 || r_type == R_MIPS_TLS_DTPREL64 \
584 || r_type == R_MIPS_TLS_GD \
585 || r_type == R_MIPS_TLS_LDM \
586 || r_type == R_MIPS_TLS_DTPREL_HI16 \
587 || r_type == R_MIPS_TLS_DTPREL_LO16 \
588 || r_type == R_MIPS_TLS_GOTTPREL \
589 || r_type == R_MIPS_TLS_TPREL32 \
590 || r_type == R_MIPS_TLS_TPREL64 \
591 || r_type == R_MIPS_TLS_TPREL_HI16 \
592 || r_type == R_MIPS_TLS_TPREL_LO16 \
593 || r_type == R_MIPS16_TLS_GD \
594 || r_type == R_MIPS16_TLS_LDM \
595 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
596 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
597 || r_type == R_MIPS16_TLS_GOTTPREL \
598 || r_type == R_MIPS16_TLS_TPREL_HI16 \
599 || r_type == R_MIPS16_TLS_TPREL_LO16 \
600 || r_type == R_MICROMIPS_TLS_GD \
601 || r_type == R_MICROMIPS_TLS_LDM \
602 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
603 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
604 || r_type == R_MICROMIPS_TLS_GOTTPREL \
605 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
606 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
607
608 /* Structure used to pass information to mips_elf_output_extsym. */
609
610 struct extsym_info
611 {
612 bfd *abfd;
613 struct bfd_link_info *info;
614 struct ecoff_debug_info *debug;
615 const struct ecoff_debug_swap *swap;
616 bfd_boolean failed;
617 };
618
619 /* The names of the runtime procedure table symbols used on IRIX5. */
620
621 static const char * const mips_elf_dynsym_rtproc_names[] =
622 {
623 "_procedure_table",
624 "_procedure_string_table",
625 "_procedure_table_size",
626 NULL
627 };
628
629 /* These structures are used to generate the .compact_rel section on
630 IRIX5. */
631
632 typedef struct
633 {
634 unsigned long id1; /* Always one? */
635 unsigned long num; /* Number of compact relocation entries. */
636 unsigned long id2; /* Always two? */
637 unsigned long offset; /* The file offset of the first relocation. */
638 unsigned long reserved0; /* Zero? */
639 unsigned long reserved1; /* Zero? */
640 } Elf32_compact_rel;
641
642 typedef struct
643 {
644 bfd_byte id1[4];
645 bfd_byte num[4];
646 bfd_byte id2[4];
647 bfd_byte offset[4];
648 bfd_byte reserved0[4];
649 bfd_byte reserved1[4];
650 } Elf32_External_compact_rel;
651
652 typedef struct
653 {
654 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
655 unsigned int rtype : 4; /* Relocation types. See below. */
656 unsigned int dist2to : 8;
657 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
658 unsigned long konst; /* KONST field. See below. */
659 unsigned long vaddr; /* VADDR to be relocated. */
660 } Elf32_crinfo;
661
662 typedef struct
663 {
664 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
665 unsigned int rtype : 4; /* Relocation types. See below. */
666 unsigned int dist2to : 8;
667 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
668 unsigned long konst; /* KONST field. See below. */
669 } Elf32_crinfo2;
670
671 typedef struct
672 {
673 bfd_byte info[4];
674 bfd_byte konst[4];
675 bfd_byte vaddr[4];
676 } Elf32_External_crinfo;
677
678 typedef struct
679 {
680 bfd_byte info[4];
681 bfd_byte konst[4];
682 } Elf32_External_crinfo2;
683
684 /* These are the constants used to swap the bitfields in a crinfo. */
685
686 #define CRINFO_CTYPE (0x1)
687 #define CRINFO_CTYPE_SH (31)
688 #define CRINFO_RTYPE (0xf)
689 #define CRINFO_RTYPE_SH (27)
690 #define CRINFO_DIST2TO (0xff)
691 #define CRINFO_DIST2TO_SH (19)
692 #define CRINFO_RELVADDR (0x7ffff)
693 #define CRINFO_RELVADDR_SH (0)
694
695 /* A compact relocation info has long (3 words) or short (2 words)
696 formats. A short format doesn't have VADDR field and relvaddr
697 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
698 #define CRF_MIPS_LONG 1
699 #define CRF_MIPS_SHORT 0
700
701 /* There are 4 types of compact relocation at least. The value KONST
702 has different meaning for each type:
703
704 (type) (konst)
705 CT_MIPS_REL32 Address in data
706 CT_MIPS_WORD Address in word (XXX)
707 CT_MIPS_GPHI_LO GP - vaddr
708 CT_MIPS_JMPAD Address to jump
709 */
710
711 #define CRT_MIPS_REL32 0xa
712 #define CRT_MIPS_WORD 0xb
713 #define CRT_MIPS_GPHI_LO 0xc
714 #define CRT_MIPS_JMPAD 0xd
715
716 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
717 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
718 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
719 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
720 \f
721 /* The structure of the runtime procedure descriptor created by the
722 loader for use by the static exception system. */
723
724 typedef struct runtime_pdr {
725 bfd_vma adr; /* Memory address of start of procedure. */
726 long regmask; /* Save register mask. */
727 long regoffset; /* Save register offset. */
728 long fregmask; /* Save floating point register mask. */
729 long fregoffset; /* Save floating point register offset. */
730 long frameoffset; /* Frame size. */
731 short framereg; /* Frame pointer register. */
732 short pcreg; /* Offset or reg of return pc. */
733 long irpss; /* Index into the runtime string table. */
734 long reserved;
735 struct exception_info *exception_info;/* Pointer to exception array. */
736 } RPDR, *pRPDR;
737 #define cbRPDR sizeof (RPDR)
738 #define rpdNil ((pRPDR) 0)
739 \f
740 static struct mips_got_entry *mips_elf_create_local_got_entry
741 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
742 struct mips_elf_link_hash_entry *, int);
743 static bfd_boolean mips_elf_sort_hash_table_f
744 (struct mips_elf_link_hash_entry *, void *);
745 static bfd_vma mips_elf_high
746 (bfd_vma);
747 static bfd_boolean mips_elf_create_dynamic_relocation
748 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
749 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
750 bfd_vma *, asection *);
751 static bfd_vma mips_elf_adjust_gp
752 (bfd *, struct mips_got_info *, bfd *);
753
754 /* This will be used when we sort the dynamic relocation records. */
755 static bfd *reldyn_sorting_bfd;
756
757 /* True if ABFD is for CPUs with load interlocking that include
758 non-MIPS1 CPUs and R3900. */
759 #define LOAD_INTERLOCKS_P(abfd) \
760 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
761 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
762
763 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
764 This should be safe for all architectures. We enable this predicate
765 for RM9000 for now. */
766 #define JAL_TO_BAL_P(abfd) \
767 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
768
769 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
770 This should be safe for all architectures. We enable this predicate for
771 all CPUs. */
772 #define JALR_TO_BAL_P(abfd) 1
773
774 /* True if ABFD is for CPUs that are faster if JR is converted to B.
775 This should be safe for all architectures. We enable this predicate for
776 all CPUs. */
777 #define JR_TO_B_P(abfd) 1
778
779 /* True if ABFD is a PIC object. */
780 #define PIC_OBJECT_P(abfd) \
781 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
782
783 /* Nonzero if ABFD is using the O32 ABI. */
784 #define ABI_O32_P(abfd) \
785 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
786
787 /* Nonzero if ABFD is using the N32 ABI. */
788 #define ABI_N32_P(abfd) \
789 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
790
791 /* Nonzero if ABFD is using the N64 ABI. */
792 #define ABI_64_P(abfd) \
793 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
794
795 /* Nonzero if ABFD is using NewABI conventions. */
796 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
797
798 /* Nonzero if ABFD has microMIPS code. */
799 #define MICROMIPS_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
801
802 /* Nonzero if ABFD is MIPS R6. */
803 #define MIPSR6_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
805 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
806
807 /* The IRIX compatibility level we are striving for. */
808 #define IRIX_COMPAT(abfd) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
810
811 /* Whether we are trying to be compatible with IRIX at all. */
812 #define SGI_COMPAT(abfd) \
813 (IRIX_COMPAT (abfd) != ict_none)
814
815 /* The name of the options section. */
816 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
817 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
818
819 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
820 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
821 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
822 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
823
824 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
825 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
826 (strcmp (NAME, ".MIPS.abiflags") == 0)
827
828 /* Whether the section is readonly. */
829 #define MIPS_ELF_READONLY_SECTION(sec) \
830 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
831 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
832
833 /* The name of the stub section. */
834 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
835
836 /* The size of an external REL relocation. */
837 #define MIPS_ELF_REL_SIZE(abfd) \
838 (get_elf_backend_data (abfd)->s->sizeof_rel)
839
840 /* The size of an external RELA relocation. */
841 #define MIPS_ELF_RELA_SIZE(abfd) \
842 (get_elf_backend_data (abfd)->s->sizeof_rela)
843
844 /* The size of an external dynamic table entry. */
845 #define MIPS_ELF_DYN_SIZE(abfd) \
846 (get_elf_backend_data (abfd)->s->sizeof_dyn)
847
848 /* The size of a GOT entry. */
849 #define MIPS_ELF_GOT_SIZE(abfd) \
850 (get_elf_backend_data (abfd)->s->arch_size / 8)
851
852 /* The size of the .rld_map section. */
853 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
854 (get_elf_backend_data (abfd)->s->arch_size / 8)
855
856 /* The size of a symbol-table entry. */
857 #define MIPS_ELF_SYM_SIZE(abfd) \
858 (get_elf_backend_data (abfd)->s->sizeof_sym)
859
860 /* The default alignment for sections, as a power of two. */
861 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
862 (get_elf_backend_data (abfd)->s->log_file_align)
863
864 /* Get word-sized data. */
865 #define MIPS_ELF_GET_WORD(abfd, ptr) \
866 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
867
868 /* Put out word-sized data. */
869 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
870 (ABI_64_P (abfd) \
871 ? bfd_put_64 (abfd, val, ptr) \
872 : bfd_put_32 (abfd, val, ptr))
873
874 /* The opcode for word-sized loads (LW or LD). */
875 #define MIPS_ELF_LOAD_WORD(abfd) \
876 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
877
878 /* Add a dynamic symbol table-entry. */
879 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
880 _bfd_elf_add_dynamic_entry (info, tag, val)
881
882 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
883 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
884
885 /* The name of the dynamic relocation section. */
886 #define MIPS_ELF_REL_DYN_NAME(INFO) \
887 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
888
889 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
890 from smaller values. Start with zero, widen, *then* decrement. */
891 #define MINUS_ONE (((bfd_vma)0) - 1)
892 #define MINUS_TWO (((bfd_vma)0) - 2)
893
894 /* The value to write into got[1] for SVR4 targets, to identify it is
895 a GNU object. The dynamic linker can then use got[1] to store the
896 module pointer. */
897 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
898 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
899
900 /* The offset of $gp from the beginning of the .got section. */
901 #define ELF_MIPS_GP_OFFSET(INFO) \
902 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
903
904 /* The maximum size of the GOT for it to be addressable using 16-bit
905 offsets from $gp. */
906 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
907
908 /* Instructions which appear in a stub. */
909 #define STUB_LW(abfd) \
910 ((ABI_64_P (abfd) \
911 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
912 : 0x8f998010)) /* lw t9,0x8010(gp) */
913 #define STUB_MOVE(abfd) \
914 ((ABI_64_P (abfd) \
915 ? 0x03e0782d /* daddu t7,ra */ \
916 : 0x03e07821)) /* addu t7,ra */
917 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
918 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
919 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
920 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
921 #define STUB_LI16S(abfd, VAL) \
922 ((ABI_64_P (abfd) \
923 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
924 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
925
926 /* Likewise for the microMIPS ASE. */
927 #define STUB_LW_MICROMIPS(abfd) \
928 (ABI_64_P (abfd) \
929 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
930 : 0xff3c8010) /* lw t9,0x8010(gp) */
931 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
932 #define STUB_MOVE32_MICROMIPS(abfd) \
933 (ABI_64_P (abfd) \
934 ? 0x581f7950 /* daddu t7,ra,zero */ \
935 : 0x001f7950) /* addu t7,ra,zero */
936 #define STUB_LUI_MICROMIPS(VAL) \
937 (0x41b80000 + (VAL)) /* lui t8,VAL */
938 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
939 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
940 #define STUB_ORI_MICROMIPS(VAL) \
941 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
942 #define STUB_LI16U_MICROMIPS(VAL) \
943 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
944 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
945 (ABI_64_P (abfd) \
946 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
947 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
948
949 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
950 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
951 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
952 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
953 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
954 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
955
956 /* The name of the dynamic interpreter. This is put in the .interp
957 section. */
958
959 #define ELF_DYNAMIC_INTERPRETER(abfd) \
960 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
961 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
962 : "/usr/lib/libc.so.1")
963
964 #ifdef BFD64
965 #define MNAME(bfd,pre,pos) \
966 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
967 #define ELF_R_SYM(bfd, i) \
968 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
969 #define ELF_R_TYPE(bfd, i) \
970 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
971 #define ELF_R_INFO(bfd, s, t) \
972 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
973 #else
974 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
975 #define ELF_R_SYM(bfd, i) \
976 (ELF32_R_SYM (i))
977 #define ELF_R_TYPE(bfd, i) \
978 (ELF32_R_TYPE (i))
979 #define ELF_R_INFO(bfd, s, t) \
980 (ELF32_R_INFO (s, t))
981 #endif
982 \f
983 /* The mips16 compiler uses a couple of special sections to handle
984 floating point arguments.
985
986 Section names that look like .mips16.fn.FNNAME contain stubs that
987 copy floating point arguments from the fp regs to the gp regs and
988 then jump to FNNAME. If any 32 bit function calls FNNAME, the
989 call should be redirected to the stub instead. If no 32 bit
990 function calls FNNAME, the stub should be discarded. We need to
991 consider any reference to the function, not just a call, because
992 if the address of the function is taken we will need the stub,
993 since the address might be passed to a 32 bit function.
994
995 Section names that look like .mips16.call.FNNAME contain stubs
996 that copy floating point arguments from the gp regs to the fp
997 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
998 then any 16 bit function that calls FNNAME should be redirected
999 to the stub instead. If FNNAME is not a 32 bit function, the
1000 stub should be discarded.
1001
1002 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1003 which call FNNAME and then copy the return value from the fp regs
1004 to the gp regs. These stubs store the return value in $18 while
1005 calling FNNAME; any function which might call one of these stubs
1006 must arrange to save $18 around the call. (This case is not
1007 needed for 32 bit functions that call 16 bit functions, because
1008 16 bit functions always return floating point values in both
1009 $f0/$f1 and $2/$3.)
1010
1011 Note that in all cases FNNAME might be defined statically.
1012 Therefore, FNNAME is not used literally. Instead, the relocation
1013 information will indicate which symbol the section is for.
1014
1015 We record any stubs that we find in the symbol table. */
1016
1017 #define FN_STUB ".mips16.fn."
1018 #define CALL_STUB ".mips16.call."
1019 #define CALL_FP_STUB ".mips16.call.fp."
1020
1021 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1022 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1023 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1024 \f
1025 /* The format of the first PLT entry in an O32 executable. */
1026 static const bfd_vma mips_o32_exec_plt0_entry[] =
1027 {
1028 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1029 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1030 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1031 0x031cc023, /* subu $24, $24, $28 */
1032 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1033 0x0018c082, /* srl $24, $24, 2 */
1034 0x0320f809, /* jalr $25 */
1035 0x2718fffe /* subu $24, $24, 2 */
1036 };
1037
1038 /* The format of the first PLT entry in an N32 executable. Different
1039 because gp ($28) is not available; we use t2 ($14) instead. */
1040 static const bfd_vma mips_n32_exec_plt0_entry[] =
1041 {
1042 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1043 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1044 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1045 0x030ec023, /* subu $24, $24, $14 */
1046 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1047 0x0018c082, /* srl $24, $24, 2 */
1048 0x0320f809, /* jalr $25 */
1049 0x2718fffe /* subu $24, $24, 2 */
1050 };
1051
1052 /* The format of the first PLT entry in an N64 executable. Different
1053 from N32 because of the increased size of GOT entries. */
1054 static const bfd_vma mips_n64_exec_plt0_entry[] =
1055 {
1056 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1057 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1058 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1059 0x030ec023, /* subu $24, $24, $14 */
1060 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1061 0x0018c0c2, /* srl $24, $24, 3 */
1062 0x0320f809, /* jalr $25 */
1063 0x2718fffe /* subu $24, $24, 2 */
1064 };
1065
1066 /* The format of the microMIPS first PLT entry in an O32 executable.
1067 We rely on v0 ($2) rather than t8 ($24) to contain the address
1068 of the GOTPLT entry handled, so this stub may only be used when
1069 all the subsequent PLT entries are microMIPS code too.
1070
1071 The trailing NOP is for alignment and correct disassembly only. */
1072 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1073 {
1074 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1075 0xff23, 0x0000, /* lw $25, 0($3) */
1076 0x0535, /* subu $2, $2, $3 */
1077 0x2525, /* srl $2, $2, 2 */
1078 0x3302, 0xfffe, /* subu $24, $2, 2 */
1079 0x0dff, /* move $15, $31 */
1080 0x45f9, /* jalrs $25 */
1081 0x0f83, /* move $28, $3 */
1082 0x0c00 /* nop */
1083 };
1084
1085 /* The format of the microMIPS first PLT entry in an O32 executable
1086 in the insn32 mode. */
1087 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1088 {
1089 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1090 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1091 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1092 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1093 0x001f, 0x7950, /* move $15, $31 */
1094 0x0318, 0x1040, /* srl $24, $24, 2 */
1095 0x03f9, 0x0f3c, /* jalr $25 */
1096 0x3318, 0xfffe /* subu $24, $24, 2 */
1097 };
1098
1099 /* The format of subsequent standard PLT entries. */
1100 static const bfd_vma mips_exec_plt_entry[] =
1101 {
1102 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1103 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1104 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1105 0x03200008 /* jr $25 */
1106 };
1107
1108 /* In the following PLT entry the JR and ADDIU instructions will
1109 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1110 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1111 static const bfd_vma mipsr6_exec_plt_entry[] =
1112 {
1113 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1114 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1115 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1116 0x03200009 /* jr $25 */
1117 };
1118
1119 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1120 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1121 directly addressable. */
1122 static const bfd_vma mips16_o32_exec_plt_entry[] =
1123 {
1124 0xb203, /* lw $2, 12($pc) */
1125 0x9a60, /* lw $3, 0($2) */
1126 0x651a, /* move $24, $2 */
1127 0xeb00, /* jr $3 */
1128 0x653b, /* move $25, $3 */
1129 0x6500, /* nop */
1130 0x0000, 0x0000 /* .word (.got.plt entry) */
1131 };
1132
1133 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1134 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1135 static const bfd_vma micromips_o32_exec_plt_entry[] =
1136 {
1137 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1138 0xff22, 0x0000, /* lw $25, 0($2) */
1139 0x4599, /* jr $25 */
1140 0x0f02 /* move $24, $2 */
1141 };
1142
1143 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1144 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1145 {
1146 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1147 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1148 0x0019, 0x0f3c, /* jr $25 */
1149 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1150 };
1151
1152 /* The format of the first PLT entry in a VxWorks executable. */
1153 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1154 {
1155 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1156 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1157 0x8f390008, /* lw t9, 8(t9) */
1158 0x00000000, /* nop */
1159 0x03200008, /* jr t9 */
1160 0x00000000 /* nop */
1161 };
1162
1163 /* The format of subsequent PLT entries. */
1164 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1165 {
1166 0x10000000, /* b .PLT_resolver */
1167 0x24180000, /* li t8, <pltindex> */
1168 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1169 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1170 0x8f390000, /* lw t9, 0(t9) */
1171 0x00000000, /* nop */
1172 0x03200008, /* jr t9 */
1173 0x00000000 /* nop */
1174 };
1175
1176 /* The format of the first PLT entry in a VxWorks shared object. */
1177 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1178 {
1179 0x8f990008, /* lw t9, 8(gp) */
1180 0x00000000, /* nop */
1181 0x03200008, /* jr t9 */
1182 0x00000000, /* nop */
1183 0x00000000, /* nop */
1184 0x00000000 /* nop */
1185 };
1186
1187 /* The format of subsequent PLT entries. */
1188 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1189 {
1190 0x10000000, /* b .PLT_resolver */
1191 0x24180000 /* li t8, <pltindex> */
1192 };
1193 \f
1194 /* microMIPS 32-bit opcode helper installer. */
1195
1196 static void
1197 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1198 {
1199 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1200 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1201 }
1202
1203 /* microMIPS 32-bit opcode helper retriever. */
1204
1205 static bfd_vma
1206 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1207 {
1208 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1209 }
1210 \f
1211 /* Look up an entry in a MIPS ELF linker hash table. */
1212
1213 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1214 ((struct mips_elf_link_hash_entry *) \
1215 elf_link_hash_lookup (&(table)->root, (string), (create), \
1216 (copy), (follow)))
1217
1218 /* Traverse a MIPS ELF linker hash table. */
1219
1220 #define mips_elf_link_hash_traverse(table, func, info) \
1221 (elf_link_hash_traverse \
1222 (&(table)->root, \
1223 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1224 (info)))
1225
1226 /* Find the base offsets for thread-local storage in this object,
1227 for GD/LD and IE/LE respectively. */
1228
1229 #define TP_OFFSET 0x7000
1230 #define DTP_OFFSET 0x8000
1231
1232 static bfd_vma
1233 dtprel_base (struct bfd_link_info *info)
1234 {
1235 /* If tls_sec is NULL, we should have signalled an error already. */
1236 if (elf_hash_table (info)->tls_sec == NULL)
1237 return 0;
1238 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1239 }
1240
1241 static bfd_vma
1242 tprel_base (struct bfd_link_info *info)
1243 {
1244 /* If tls_sec is NULL, we should have signalled an error already. */
1245 if (elf_hash_table (info)->tls_sec == NULL)
1246 return 0;
1247 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1248 }
1249
1250 /* Create an entry in a MIPS ELF linker hash table. */
1251
1252 static struct bfd_hash_entry *
1253 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1254 struct bfd_hash_table *table, const char *string)
1255 {
1256 struct mips_elf_link_hash_entry *ret =
1257 (struct mips_elf_link_hash_entry *) entry;
1258
1259 /* Allocate the structure if it has not already been allocated by a
1260 subclass. */
1261 if (ret == NULL)
1262 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1263 if (ret == NULL)
1264 return (struct bfd_hash_entry *) ret;
1265
1266 /* Call the allocation method of the superclass. */
1267 ret = ((struct mips_elf_link_hash_entry *)
1268 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1269 table, string));
1270 if (ret != NULL)
1271 {
1272 /* Set local fields. */
1273 memset (&ret->esym, 0, sizeof (EXTR));
1274 /* We use -2 as a marker to indicate that the information has
1275 not been set. -1 means there is no associated ifd. */
1276 ret->esym.ifd = -2;
1277 ret->la25_stub = 0;
1278 ret->possibly_dynamic_relocs = 0;
1279 ret->fn_stub = NULL;
1280 ret->call_stub = NULL;
1281 ret->call_fp_stub = NULL;
1282 ret->global_got_area = GGA_NONE;
1283 ret->got_only_for_calls = TRUE;
1284 ret->readonly_reloc = FALSE;
1285 ret->has_static_relocs = FALSE;
1286 ret->no_fn_stub = FALSE;
1287 ret->need_fn_stub = FALSE;
1288 ret->has_nonpic_branches = FALSE;
1289 ret->needs_lazy_stub = FALSE;
1290 ret->use_plt_entry = FALSE;
1291 }
1292
1293 return (struct bfd_hash_entry *) ret;
1294 }
1295
1296 /* Allocate MIPS ELF private object data. */
1297
1298 bfd_boolean
1299 _bfd_mips_elf_mkobject (bfd *abfd)
1300 {
1301 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1302 MIPS_ELF_DATA);
1303 }
1304
1305 bfd_boolean
1306 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1307 {
1308 if (!sec->used_by_bfd)
1309 {
1310 struct _mips_elf_section_data *sdata;
1311 bfd_size_type amt = sizeof (*sdata);
1312
1313 sdata = bfd_zalloc (abfd, amt);
1314 if (sdata == NULL)
1315 return FALSE;
1316 sec->used_by_bfd = sdata;
1317 }
1318
1319 return _bfd_elf_new_section_hook (abfd, sec);
1320 }
1321 \f
1322 /* Read ECOFF debugging information from a .mdebug section into a
1323 ecoff_debug_info structure. */
1324
1325 bfd_boolean
1326 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1327 struct ecoff_debug_info *debug)
1328 {
1329 HDRR *symhdr;
1330 const struct ecoff_debug_swap *swap;
1331 char *ext_hdr;
1332
1333 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1334 memset (debug, 0, sizeof (*debug));
1335
1336 ext_hdr = bfd_malloc (swap->external_hdr_size);
1337 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1338 goto error_return;
1339
1340 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1341 swap->external_hdr_size))
1342 goto error_return;
1343
1344 symhdr = &debug->symbolic_header;
1345 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1346
1347 /* The symbolic header contains absolute file offsets and sizes to
1348 read. */
1349 #define READ(ptr, offset, count, size, type) \
1350 if (symhdr->count == 0) \
1351 debug->ptr = NULL; \
1352 else \
1353 { \
1354 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1355 debug->ptr = bfd_malloc (amt); \
1356 if (debug->ptr == NULL) \
1357 goto error_return; \
1358 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1359 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1360 goto error_return; \
1361 }
1362
1363 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1364 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1365 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1366 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1367 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1368 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1369 union aux_ext *);
1370 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1371 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1372 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1373 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1374 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1375 #undef READ
1376
1377 debug->fdr = NULL;
1378
1379 return TRUE;
1380
1381 error_return:
1382 if (ext_hdr != NULL)
1383 free (ext_hdr);
1384 if (debug->line != NULL)
1385 free (debug->line);
1386 if (debug->external_dnr != NULL)
1387 free (debug->external_dnr);
1388 if (debug->external_pdr != NULL)
1389 free (debug->external_pdr);
1390 if (debug->external_sym != NULL)
1391 free (debug->external_sym);
1392 if (debug->external_opt != NULL)
1393 free (debug->external_opt);
1394 if (debug->external_aux != NULL)
1395 free (debug->external_aux);
1396 if (debug->ss != NULL)
1397 free (debug->ss);
1398 if (debug->ssext != NULL)
1399 free (debug->ssext);
1400 if (debug->external_fdr != NULL)
1401 free (debug->external_fdr);
1402 if (debug->external_rfd != NULL)
1403 free (debug->external_rfd);
1404 if (debug->external_ext != NULL)
1405 free (debug->external_ext);
1406 return FALSE;
1407 }
1408 \f
1409 /* Swap RPDR (runtime procedure table entry) for output. */
1410
1411 static void
1412 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1413 {
1414 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1415 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1416 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1417 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1418 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1419 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1420
1421 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1422 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1423
1424 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1425 }
1426
1427 /* Create a runtime procedure table from the .mdebug section. */
1428
1429 static bfd_boolean
1430 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1431 struct bfd_link_info *info, asection *s,
1432 struct ecoff_debug_info *debug)
1433 {
1434 const struct ecoff_debug_swap *swap;
1435 HDRR *hdr = &debug->symbolic_header;
1436 RPDR *rpdr, *rp;
1437 struct rpdr_ext *erp;
1438 void *rtproc;
1439 struct pdr_ext *epdr;
1440 struct sym_ext *esym;
1441 char *ss, **sv;
1442 char *str;
1443 bfd_size_type size;
1444 bfd_size_type count;
1445 unsigned long sindex;
1446 unsigned long i;
1447 PDR pdr;
1448 SYMR sym;
1449 const char *no_name_func = _("static procedure (no name)");
1450
1451 epdr = NULL;
1452 rpdr = NULL;
1453 esym = NULL;
1454 ss = NULL;
1455 sv = NULL;
1456
1457 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1458
1459 sindex = strlen (no_name_func) + 1;
1460 count = hdr->ipdMax;
1461 if (count > 0)
1462 {
1463 size = swap->external_pdr_size;
1464
1465 epdr = bfd_malloc (size * count);
1466 if (epdr == NULL)
1467 goto error_return;
1468
1469 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1470 goto error_return;
1471
1472 size = sizeof (RPDR);
1473 rp = rpdr = bfd_malloc (size * count);
1474 if (rpdr == NULL)
1475 goto error_return;
1476
1477 size = sizeof (char *);
1478 sv = bfd_malloc (size * count);
1479 if (sv == NULL)
1480 goto error_return;
1481
1482 count = hdr->isymMax;
1483 size = swap->external_sym_size;
1484 esym = bfd_malloc (size * count);
1485 if (esym == NULL)
1486 goto error_return;
1487
1488 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1489 goto error_return;
1490
1491 count = hdr->issMax;
1492 ss = bfd_malloc (count);
1493 if (ss == NULL)
1494 goto error_return;
1495 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1496 goto error_return;
1497
1498 count = hdr->ipdMax;
1499 for (i = 0; i < (unsigned long) count; i++, rp++)
1500 {
1501 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1502 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1503 rp->adr = sym.value;
1504 rp->regmask = pdr.regmask;
1505 rp->regoffset = pdr.regoffset;
1506 rp->fregmask = pdr.fregmask;
1507 rp->fregoffset = pdr.fregoffset;
1508 rp->frameoffset = pdr.frameoffset;
1509 rp->framereg = pdr.framereg;
1510 rp->pcreg = pdr.pcreg;
1511 rp->irpss = sindex;
1512 sv[i] = ss + sym.iss;
1513 sindex += strlen (sv[i]) + 1;
1514 }
1515 }
1516
1517 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1518 size = BFD_ALIGN (size, 16);
1519 rtproc = bfd_alloc (abfd, size);
1520 if (rtproc == NULL)
1521 {
1522 mips_elf_hash_table (info)->procedure_count = 0;
1523 goto error_return;
1524 }
1525
1526 mips_elf_hash_table (info)->procedure_count = count + 2;
1527
1528 erp = rtproc;
1529 memset (erp, 0, sizeof (struct rpdr_ext));
1530 erp++;
1531 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1532 strcpy (str, no_name_func);
1533 str += strlen (no_name_func) + 1;
1534 for (i = 0; i < count; i++)
1535 {
1536 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1537 strcpy (str, sv[i]);
1538 str += strlen (sv[i]) + 1;
1539 }
1540 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1541
1542 /* Set the size and contents of .rtproc section. */
1543 s->size = size;
1544 s->contents = rtproc;
1545
1546 /* Skip this section later on (I don't think this currently
1547 matters, but someday it might). */
1548 s->map_head.link_order = NULL;
1549
1550 if (epdr != NULL)
1551 free (epdr);
1552 if (rpdr != NULL)
1553 free (rpdr);
1554 if (esym != NULL)
1555 free (esym);
1556 if (ss != NULL)
1557 free (ss);
1558 if (sv != NULL)
1559 free (sv);
1560
1561 return TRUE;
1562
1563 error_return:
1564 if (epdr != NULL)
1565 free (epdr);
1566 if (rpdr != NULL)
1567 free (rpdr);
1568 if (esym != NULL)
1569 free (esym);
1570 if (ss != NULL)
1571 free (ss);
1572 if (sv != NULL)
1573 free (sv);
1574 return FALSE;
1575 }
1576 \f
1577 /* We're going to create a stub for H. Create a symbol for the stub's
1578 value and size, to help make the disassembly easier to read. */
1579
1580 static bfd_boolean
1581 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1582 struct mips_elf_link_hash_entry *h,
1583 const char *prefix, asection *s, bfd_vma value,
1584 bfd_vma size)
1585 {
1586 struct bfd_link_hash_entry *bh;
1587 struct elf_link_hash_entry *elfh;
1588 const char *name;
1589
1590 if (ELF_ST_IS_MICROMIPS (h->root.other))
1591 value |= 1;
1592
1593 /* Create a new symbol. */
1594 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1595 bh = NULL;
1596 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1597 BSF_LOCAL, s, value, NULL,
1598 TRUE, FALSE, &bh))
1599 return FALSE;
1600
1601 /* Make it a local function. */
1602 elfh = (struct elf_link_hash_entry *) bh;
1603 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1604 elfh->size = size;
1605 elfh->forced_local = 1;
1606 return TRUE;
1607 }
1608
1609 /* We're about to redefine H. Create a symbol to represent H's
1610 current value and size, to help make the disassembly easier
1611 to read. */
1612
1613 static bfd_boolean
1614 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1615 struct mips_elf_link_hash_entry *h,
1616 const char *prefix)
1617 {
1618 struct bfd_link_hash_entry *bh;
1619 struct elf_link_hash_entry *elfh;
1620 const char *name;
1621 asection *s;
1622 bfd_vma value;
1623
1624 /* Read the symbol's value. */
1625 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1626 || h->root.root.type == bfd_link_hash_defweak);
1627 s = h->root.root.u.def.section;
1628 value = h->root.root.u.def.value;
1629
1630 /* Create a new symbol. */
1631 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1632 bh = NULL;
1633 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1634 BSF_LOCAL, s, value, NULL,
1635 TRUE, FALSE, &bh))
1636 return FALSE;
1637
1638 /* Make it local and copy the other attributes from H. */
1639 elfh = (struct elf_link_hash_entry *) bh;
1640 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1641 elfh->other = h->root.other;
1642 elfh->size = h->root.size;
1643 elfh->forced_local = 1;
1644 return TRUE;
1645 }
1646
1647 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1648 function rather than to a hard-float stub. */
1649
1650 static bfd_boolean
1651 section_allows_mips16_refs_p (asection *section)
1652 {
1653 const char *name;
1654
1655 name = bfd_get_section_name (section->owner, section);
1656 return (FN_STUB_P (name)
1657 || CALL_STUB_P (name)
1658 || CALL_FP_STUB_P (name)
1659 || strcmp (name, ".pdr") == 0);
1660 }
1661
1662 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1663 stub section of some kind. Return the R_SYMNDX of the target
1664 function, or 0 if we can't decide which function that is. */
1665
1666 static unsigned long
1667 mips16_stub_symndx (const struct elf_backend_data *bed,
1668 asection *sec ATTRIBUTE_UNUSED,
1669 const Elf_Internal_Rela *relocs,
1670 const Elf_Internal_Rela *relend)
1671 {
1672 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1673 const Elf_Internal_Rela *rel;
1674
1675 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1676 one in a compound relocation. */
1677 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1678 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1679 return ELF_R_SYM (sec->owner, rel->r_info);
1680
1681 /* Otherwise trust the first relocation, whatever its kind. This is
1682 the traditional behavior. */
1683 if (relocs < relend)
1684 return ELF_R_SYM (sec->owner, relocs->r_info);
1685
1686 return 0;
1687 }
1688
1689 /* Check the mips16 stubs for a particular symbol, and see if we can
1690 discard them. */
1691
1692 static void
1693 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1694 struct mips_elf_link_hash_entry *h)
1695 {
1696 /* Dynamic symbols must use the standard call interface, in case other
1697 objects try to call them. */
1698 if (h->fn_stub != NULL
1699 && h->root.dynindx != -1)
1700 {
1701 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1702 h->need_fn_stub = TRUE;
1703 }
1704
1705 if (h->fn_stub != NULL
1706 && ! h->need_fn_stub)
1707 {
1708 /* We don't need the fn_stub; the only references to this symbol
1709 are 16 bit calls. Clobber the size to 0 to prevent it from
1710 being included in the link. */
1711 h->fn_stub->size = 0;
1712 h->fn_stub->flags &= ~SEC_RELOC;
1713 h->fn_stub->reloc_count = 0;
1714 h->fn_stub->flags |= SEC_EXCLUDE;
1715 }
1716
1717 if (h->call_stub != NULL
1718 && ELF_ST_IS_MIPS16 (h->root.other))
1719 {
1720 /* We don't need the call_stub; this is a 16 bit function, so
1721 calls from other 16 bit functions are OK. Clobber the size
1722 to 0 to prevent it from being included in the link. */
1723 h->call_stub->size = 0;
1724 h->call_stub->flags &= ~SEC_RELOC;
1725 h->call_stub->reloc_count = 0;
1726 h->call_stub->flags |= SEC_EXCLUDE;
1727 }
1728
1729 if (h->call_fp_stub != NULL
1730 && ELF_ST_IS_MIPS16 (h->root.other))
1731 {
1732 /* We don't need the call_stub; this is a 16 bit function, so
1733 calls from other 16 bit functions are OK. Clobber the size
1734 to 0 to prevent it from being included in the link. */
1735 h->call_fp_stub->size = 0;
1736 h->call_fp_stub->flags &= ~SEC_RELOC;
1737 h->call_fp_stub->reloc_count = 0;
1738 h->call_fp_stub->flags |= SEC_EXCLUDE;
1739 }
1740 }
1741
1742 /* Hashtable callbacks for mips_elf_la25_stubs. */
1743
1744 static hashval_t
1745 mips_elf_la25_stub_hash (const void *entry_)
1746 {
1747 const struct mips_elf_la25_stub *entry;
1748
1749 entry = (struct mips_elf_la25_stub *) entry_;
1750 return entry->h->root.root.u.def.section->id
1751 + entry->h->root.root.u.def.value;
1752 }
1753
1754 static int
1755 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1756 {
1757 const struct mips_elf_la25_stub *entry1, *entry2;
1758
1759 entry1 = (struct mips_elf_la25_stub *) entry1_;
1760 entry2 = (struct mips_elf_la25_stub *) entry2_;
1761 return ((entry1->h->root.root.u.def.section
1762 == entry2->h->root.root.u.def.section)
1763 && (entry1->h->root.root.u.def.value
1764 == entry2->h->root.root.u.def.value));
1765 }
1766
1767 /* Called by the linker to set up the la25 stub-creation code. FN is
1768 the linker's implementation of add_stub_function. Return true on
1769 success. */
1770
1771 bfd_boolean
1772 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1773 asection *(*fn) (const char *, asection *,
1774 asection *))
1775 {
1776 struct mips_elf_link_hash_table *htab;
1777
1778 htab = mips_elf_hash_table (info);
1779 if (htab == NULL)
1780 return FALSE;
1781
1782 htab->add_stub_section = fn;
1783 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1784 mips_elf_la25_stub_eq, NULL);
1785 if (htab->la25_stubs == NULL)
1786 return FALSE;
1787
1788 return TRUE;
1789 }
1790
1791 /* Return true if H is a locally-defined PIC function, in the sense
1792 that it or its fn_stub might need $25 to be valid on entry.
1793 Note that MIPS16 functions set up $gp using PC-relative instructions,
1794 so they themselves never need $25 to be valid. Only non-MIPS16
1795 entry points are of interest here. */
1796
1797 static bfd_boolean
1798 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1799 {
1800 return ((h->root.root.type == bfd_link_hash_defined
1801 || h->root.root.type == bfd_link_hash_defweak)
1802 && h->root.def_regular
1803 && !bfd_is_abs_section (h->root.root.u.def.section)
1804 && (!ELF_ST_IS_MIPS16 (h->root.other)
1805 || (h->fn_stub && h->need_fn_stub))
1806 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1807 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1808 }
1809
1810 /* Set *SEC to the input section that contains the target of STUB.
1811 Return the offset of the target from the start of that section. */
1812
1813 static bfd_vma
1814 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1815 asection **sec)
1816 {
1817 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1818 {
1819 BFD_ASSERT (stub->h->need_fn_stub);
1820 *sec = stub->h->fn_stub;
1821 return 0;
1822 }
1823 else
1824 {
1825 *sec = stub->h->root.root.u.def.section;
1826 return stub->h->root.root.u.def.value;
1827 }
1828 }
1829
1830 /* STUB describes an la25 stub that we have decided to implement
1831 by inserting an LUI/ADDIU pair before the target function.
1832 Create the section and redirect the function symbol to it. */
1833
1834 static bfd_boolean
1835 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1836 struct bfd_link_info *info)
1837 {
1838 struct mips_elf_link_hash_table *htab;
1839 char *name;
1840 asection *s, *input_section;
1841 unsigned int align;
1842
1843 htab = mips_elf_hash_table (info);
1844 if (htab == NULL)
1845 return FALSE;
1846
1847 /* Create a unique name for the new section. */
1848 name = bfd_malloc (11 + sizeof (".text.stub."));
1849 if (name == NULL)
1850 return FALSE;
1851 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1852
1853 /* Create the section. */
1854 mips_elf_get_la25_target (stub, &input_section);
1855 s = htab->add_stub_section (name, input_section,
1856 input_section->output_section);
1857 if (s == NULL)
1858 return FALSE;
1859
1860 /* Make sure that any padding goes before the stub. */
1861 align = input_section->alignment_power;
1862 if (!bfd_set_section_alignment (s->owner, s, align))
1863 return FALSE;
1864 if (align > 3)
1865 s->size = (1 << align) - 8;
1866
1867 /* Create a symbol for the stub. */
1868 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1869 stub->stub_section = s;
1870 stub->offset = s->size;
1871
1872 /* Allocate room for it. */
1873 s->size += 8;
1874 return TRUE;
1875 }
1876
1877 /* STUB describes an la25 stub that we have decided to implement
1878 with a separate trampoline. Allocate room for it and redirect
1879 the function symbol to it. */
1880
1881 static bfd_boolean
1882 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1883 struct bfd_link_info *info)
1884 {
1885 struct mips_elf_link_hash_table *htab;
1886 asection *s;
1887
1888 htab = mips_elf_hash_table (info);
1889 if (htab == NULL)
1890 return FALSE;
1891
1892 /* Create a trampoline section, if we haven't already. */
1893 s = htab->strampoline;
1894 if (s == NULL)
1895 {
1896 asection *input_section = stub->h->root.root.u.def.section;
1897 s = htab->add_stub_section (".text", NULL,
1898 input_section->output_section);
1899 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1900 return FALSE;
1901 htab->strampoline = s;
1902 }
1903
1904 /* Create a symbol for the stub. */
1905 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1906 stub->stub_section = s;
1907 stub->offset = s->size;
1908
1909 /* Allocate room for it. */
1910 s->size += 16;
1911 return TRUE;
1912 }
1913
1914 /* H describes a symbol that needs an la25 stub. Make sure that an
1915 appropriate stub exists and point H at it. */
1916
1917 static bfd_boolean
1918 mips_elf_add_la25_stub (struct bfd_link_info *info,
1919 struct mips_elf_link_hash_entry *h)
1920 {
1921 struct mips_elf_link_hash_table *htab;
1922 struct mips_elf_la25_stub search, *stub;
1923 bfd_boolean use_trampoline_p;
1924 asection *s;
1925 bfd_vma value;
1926 void **slot;
1927
1928 /* Describe the stub we want. */
1929 search.stub_section = NULL;
1930 search.offset = 0;
1931 search.h = h;
1932
1933 /* See if we've already created an equivalent stub. */
1934 htab = mips_elf_hash_table (info);
1935 if (htab == NULL)
1936 return FALSE;
1937
1938 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1939 if (slot == NULL)
1940 return FALSE;
1941
1942 stub = (struct mips_elf_la25_stub *) *slot;
1943 if (stub != NULL)
1944 {
1945 /* We can reuse the existing stub. */
1946 h->la25_stub = stub;
1947 return TRUE;
1948 }
1949
1950 /* Create a permanent copy of ENTRY and add it to the hash table. */
1951 stub = bfd_malloc (sizeof (search));
1952 if (stub == NULL)
1953 return FALSE;
1954 *stub = search;
1955 *slot = stub;
1956
1957 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1958 of the section and if we would need no more than 2 nops. */
1959 value = mips_elf_get_la25_target (stub, &s);
1960 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1961
1962 h->la25_stub = stub;
1963 return (use_trampoline_p
1964 ? mips_elf_add_la25_trampoline (stub, info)
1965 : mips_elf_add_la25_intro (stub, info));
1966 }
1967
1968 /* A mips_elf_link_hash_traverse callback that is called before sizing
1969 sections. DATA points to a mips_htab_traverse_info structure. */
1970
1971 static bfd_boolean
1972 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1973 {
1974 struct mips_htab_traverse_info *hti;
1975
1976 hti = (struct mips_htab_traverse_info *) data;
1977 if (!hti->info->relocatable)
1978 mips_elf_check_mips16_stubs (hti->info, h);
1979
1980 if (mips_elf_local_pic_function_p (h))
1981 {
1982 /* PR 12845: If H is in a section that has been garbage
1983 collected it will have its output section set to *ABS*. */
1984 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1985 return TRUE;
1986
1987 /* H is a function that might need $25 to be valid on entry.
1988 If we're creating a non-PIC relocatable object, mark H as
1989 being PIC. If we're creating a non-relocatable object with
1990 non-PIC branches and jumps to H, make sure that H has an la25
1991 stub. */
1992 if (hti->info->relocatable)
1993 {
1994 if (!PIC_OBJECT_P (hti->output_bfd))
1995 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1996 }
1997 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1998 {
1999 hti->error = TRUE;
2000 return FALSE;
2001 }
2002 }
2003 return TRUE;
2004 }
2005 \f
2006 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2007 Most mips16 instructions are 16 bits, but these instructions
2008 are 32 bits.
2009
2010 The format of these instructions is:
2011
2012 +--------------+--------------------------------+
2013 | JALX | X| Imm 20:16 | Imm 25:21 |
2014 +--------------+--------------------------------+
2015 | Immediate 15:0 |
2016 +-----------------------------------------------+
2017
2018 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2019 Note that the immediate value in the first word is swapped.
2020
2021 When producing a relocatable object file, R_MIPS16_26 is
2022 handled mostly like R_MIPS_26. In particular, the addend is
2023 stored as a straight 26-bit value in a 32-bit instruction.
2024 (gas makes life simpler for itself by never adjusting a
2025 R_MIPS16_26 reloc to be against a section, so the addend is
2026 always zero). However, the 32 bit instruction is stored as 2
2027 16-bit values, rather than a single 32-bit value. In a
2028 big-endian file, the result is the same; in a little-endian
2029 file, the two 16-bit halves of the 32 bit value are swapped.
2030 This is so that a disassembler can recognize the jal
2031 instruction.
2032
2033 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2034 instruction stored as two 16-bit values. The addend A is the
2035 contents of the targ26 field. The calculation is the same as
2036 R_MIPS_26. When storing the calculated value, reorder the
2037 immediate value as shown above, and don't forget to store the
2038 value as two 16-bit values.
2039
2040 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2041 defined as
2042
2043 big-endian:
2044 +--------+----------------------+
2045 | | |
2046 | | targ26-16 |
2047 |31 26|25 0|
2048 +--------+----------------------+
2049
2050 little-endian:
2051 +----------+------+-------------+
2052 | | | |
2053 | sub1 | | sub2 |
2054 |0 9|10 15|16 31|
2055 +----------+--------------------+
2056 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2057 ((sub1 << 16) | sub2)).
2058
2059 When producing a relocatable object file, the calculation is
2060 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2061 When producing a fully linked file, the calculation is
2062 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2063 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2064
2065 The table below lists the other MIPS16 instruction relocations.
2066 Each one is calculated in the same way as the non-MIPS16 relocation
2067 given on the right, but using the extended MIPS16 layout of 16-bit
2068 immediate fields:
2069
2070 R_MIPS16_GPREL R_MIPS_GPREL16
2071 R_MIPS16_GOT16 R_MIPS_GOT16
2072 R_MIPS16_CALL16 R_MIPS_CALL16
2073 R_MIPS16_HI16 R_MIPS_HI16
2074 R_MIPS16_LO16 R_MIPS_LO16
2075
2076 A typical instruction will have a format like this:
2077
2078 +--------------+--------------------------------+
2079 | EXTEND | Imm 10:5 | Imm 15:11 |
2080 +--------------+--------------------------------+
2081 | Major | rx | ry | Imm 4:0 |
2082 +--------------+--------------------------------+
2083
2084 EXTEND is the five bit value 11110. Major is the instruction
2085 opcode.
2086
2087 All we need to do here is shuffle the bits appropriately.
2088 As above, the two 16-bit halves must be swapped on a
2089 little-endian system. */
2090
2091 static inline bfd_boolean
2092 mips16_reloc_p (int r_type)
2093 {
2094 switch (r_type)
2095 {
2096 case R_MIPS16_26:
2097 case R_MIPS16_GPREL:
2098 case R_MIPS16_GOT16:
2099 case R_MIPS16_CALL16:
2100 case R_MIPS16_HI16:
2101 case R_MIPS16_LO16:
2102 case R_MIPS16_TLS_GD:
2103 case R_MIPS16_TLS_LDM:
2104 case R_MIPS16_TLS_DTPREL_HI16:
2105 case R_MIPS16_TLS_DTPREL_LO16:
2106 case R_MIPS16_TLS_GOTTPREL:
2107 case R_MIPS16_TLS_TPREL_HI16:
2108 case R_MIPS16_TLS_TPREL_LO16:
2109 return TRUE;
2110
2111 default:
2112 return FALSE;
2113 }
2114 }
2115
2116 /* Check if a microMIPS reloc. */
2117
2118 static inline bfd_boolean
2119 micromips_reloc_p (unsigned int r_type)
2120 {
2121 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2122 }
2123
2124 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2125 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2126 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2127
2128 static inline bfd_boolean
2129 micromips_reloc_shuffle_p (unsigned int r_type)
2130 {
2131 return (micromips_reloc_p (r_type)
2132 && r_type != R_MICROMIPS_PC7_S1
2133 && r_type != R_MICROMIPS_PC10_S1);
2134 }
2135
2136 static inline bfd_boolean
2137 got16_reloc_p (int r_type)
2138 {
2139 return (r_type == R_MIPS_GOT16
2140 || r_type == R_MIPS16_GOT16
2141 || r_type == R_MICROMIPS_GOT16);
2142 }
2143
2144 static inline bfd_boolean
2145 call16_reloc_p (int r_type)
2146 {
2147 return (r_type == R_MIPS_CALL16
2148 || r_type == R_MIPS16_CALL16
2149 || r_type == R_MICROMIPS_CALL16);
2150 }
2151
2152 static inline bfd_boolean
2153 got_disp_reloc_p (unsigned int r_type)
2154 {
2155 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2156 }
2157
2158 static inline bfd_boolean
2159 got_page_reloc_p (unsigned int r_type)
2160 {
2161 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2162 }
2163
2164 static inline bfd_boolean
2165 got_ofst_reloc_p (unsigned int r_type)
2166 {
2167 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2168 }
2169
2170 static inline bfd_boolean
2171 got_hi16_reloc_p (unsigned int r_type)
2172 {
2173 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2174 }
2175
2176 static inline bfd_boolean
2177 got_lo16_reloc_p (unsigned int r_type)
2178 {
2179 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2180 }
2181
2182 static inline bfd_boolean
2183 call_hi16_reloc_p (unsigned int r_type)
2184 {
2185 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2186 }
2187
2188 static inline bfd_boolean
2189 call_lo16_reloc_p (unsigned int r_type)
2190 {
2191 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2192 }
2193
2194 static inline bfd_boolean
2195 hi16_reloc_p (int r_type)
2196 {
2197 return (r_type == R_MIPS_HI16
2198 || r_type == R_MIPS16_HI16
2199 || r_type == R_MICROMIPS_HI16
2200 || r_type == R_MIPS_PCHI16);
2201 }
2202
2203 static inline bfd_boolean
2204 lo16_reloc_p (int r_type)
2205 {
2206 return (r_type == R_MIPS_LO16
2207 || r_type == R_MIPS16_LO16
2208 || r_type == R_MICROMIPS_LO16
2209 || r_type == R_MIPS_PCLO16);
2210 }
2211
2212 static inline bfd_boolean
2213 mips16_call_reloc_p (int r_type)
2214 {
2215 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2216 }
2217
2218 static inline bfd_boolean
2219 jal_reloc_p (int r_type)
2220 {
2221 return (r_type == R_MIPS_26
2222 || r_type == R_MIPS16_26
2223 || r_type == R_MICROMIPS_26_S1);
2224 }
2225
2226 static inline bfd_boolean
2227 aligned_pcrel_reloc_p (int r_type)
2228 {
2229 return (r_type == R_MIPS_PC18_S3
2230 || r_type == R_MIPS_PC19_S2);
2231 }
2232
2233 static inline bfd_boolean
2234 micromips_branch_reloc_p (int r_type)
2235 {
2236 return (r_type == R_MICROMIPS_26_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 tls_gd_reloc_p (unsigned int r_type)
2244 {
2245 return (r_type == R_MIPS_TLS_GD
2246 || r_type == R_MIPS16_TLS_GD
2247 || r_type == R_MICROMIPS_TLS_GD);
2248 }
2249
2250 static inline bfd_boolean
2251 tls_ldm_reloc_p (unsigned int r_type)
2252 {
2253 return (r_type == R_MIPS_TLS_LDM
2254 || r_type == R_MIPS16_TLS_LDM
2255 || r_type == R_MICROMIPS_TLS_LDM);
2256 }
2257
2258 static inline bfd_boolean
2259 tls_gottprel_reloc_p (unsigned int r_type)
2260 {
2261 return (r_type == R_MIPS_TLS_GOTTPREL
2262 || r_type == R_MIPS16_TLS_GOTTPREL
2263 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2264 }
2265
2266 void
2267 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2268 bfd_boolean jal_shuffle, bfd_byte *data)
2269 {
2270 bfd_vma first, second, val;
2271
2272 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2273 return;
2274
2275 /* Pick up the first and second halfwords of the instruction. */
2276 first = bfd_get_16 (abfd, data);
2277 second = bfd_get_16 (abfd, data + 2);
2278 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2279 val = first << 16 | second;
2280 else if (r_type != R_MIPS16_26)
2281 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2282 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2283 else
2284 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2285 | ((first & 0x1f) << 21) | second);
2286 bfd_put_32 (abfd, val, data);
2287 }
2288
2289 void
2290 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2291 bfd_boolean jal_shuffle, bfd_byte *data)
2292 {
2293 bfd_vma first, second, val;
2294
2295 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2296 return;
2297
2298 val = bfd_get_32 (abfd, data);
2299 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2300 {
2301 second = val & 0xffff;
2302 first = val >> 16;
2303 }
2304 else if (r_type != R_MIPS16_26)
2305 {
2306 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2307 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2308 }
2309 else
2310 {
2311 second = val & 0xffff;
2312 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2313 | ((val >> 21) & 0x1f);
2314 }
2315 bfd_put_16 (abfd, second, data + 2);
2316 bfd_put_16 (abfd, first, data);
2317 }
2318
2319 bfd_reloc_status_type
2320 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2321 arelent *reloc_entry, asection *input_section,
2322 bfd_boolean relocatable, void *data, bfd_vma gp)
2323 {
2324 bfd_vma relocation;
2325 bfd_signed_vma val;
2326 bfd_reloc_status_type status;
2327
2328 if (bfd_is_com_section (symbol->section))
2329 relocation = 0;
2330 else
2331 relocation = symbol->value;
2332
2333 relocation += symbol->section->output_section->vma;
2334 relocation += symbol->section->output_offset;
2335
2336 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2337 return bfd_reloc_outofrange;
2338
2339 /* Set val to the offset into the section or symbol. */
2340 val = reloc_entry->addend;
2341
2342 _bfd_mips_elf_sign_extend (val, 16);
2343
2344 /* Adjust val for the final section location and GP value. If we
2345 are producing relocatable output, we don't want to do this for
2346 an external symbol. */
2347 if (! relocatable
2348 || (symbol->flags & BSF_SECTION_SYM) != 0)
2349 val += relocation - gp;
2350
2351 if (reloc_entry->howto->partial_inplace)
2352 {
2353 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2354 (bfd_byte *) data
2355 + reloc_entry->address);
2356 if (status != bfd_reloc_ok)
2357 return status;
2358 }
2359 else
2360 reloc_entry->addend = val;
2361
2362 if (relocatable)
2363 reloc_entry->address += input_section->output_offset;
2364
2365 return bfd_reloc_ok;
2366 }
2367
2368 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2369 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2370 that contains the relocation field and DATA points to the start of
2371 INPUT_SECTION. */
2372
2373 struct mips_hi16
2374 {
2375 struct mips_hi16 *next;
2376 bfd_byte *data;
2377 asection *input_section;
2378 arelent rel;
2379 };
2380
2381 /* FIXME: This should not be a static variable. */
2382
2383 static struct mips_hi16 *mips_hi16_list;
2384
2385 /* A howto special_function for REL *HI16 relocations. We can only
2386 calculate the correct value once we've seen the partnering
2387 *LO16 relocation, so just save the information for later.
2388
2389 The ABI requires that the *LO16 immediately follow the *HI16.
2390 However, as a GNU extension, we permit an arbitrary number of
2391 *HI16s to be associated with a single *LO16. This significantly
2392 simplies the relocation handling in gcc. */
2393
2394 bfd_reloc_status_type
2395 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2396 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2397 asection *input_section, bfd *output_bfd,
2398 char **error_message ATTRIBUTE_UNUSED)
2399 {
2400 struct mips_hi16 *n;
2401
2402 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2403 return bfd_reloc_outofrange;
2404
2405 n = bfd_malloc (sizeof *n);
2406 if (n == NULL)
2407 return bfd_reloc_outofrange;
2408
2409 n->next = mips_hi16_list;
2410 n->data = data;
2411 n->input_section = input_section;
2412 n->rel = *reloc_entry;
2413 mips_hi16_list = n;
2414
2415 if (output_bfd != NULL)
2416 reloc_entry->address += input_section->output_offset;
2417
2418 return bfd_reloc_ok;
2419 }
2420
2421 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2422 like any other 16-bit relocation when applied to global symbols, but is
2423 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2424
2425 bfd_reloc_status_type
2426 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2427 void *data, asection *input_section,
2428 bfd *output_bfd, char **error_message)
2429 {
2430 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2431 || bfd_is_und_section (bfd_get_section (symbol))
2432 || bfd_is_com_section (bfd_get_section (symbol)))
2433 /* The relocation is against a global symbol. */
2434 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2435 input_section, output_bfd,
2436 error_message);
2437
2438 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2439 input_section, output_bfd, error_message);
2440 }
2441
2442 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2443 is a straightforward 16 bit inplace relocation, but we must deal with
2444 any partnering high-part relocations as well. */
2445
2446 bfd_reloc_status_type
2447 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2448 void *data, asection *input_section,
2449 bfd *output_bfd, char **error_message)
2450 {
2451 bfd_vma vallo;
2452 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2453
2454 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2455 return bfd_reloc_outofrange;
2456
2457 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2458 location);
2459 vallo = bfd_get_32 (abfd, location);
2460 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2461 location);
2462
2463 while (mips_hi16_list != NULL)
2464 {
2465 bfd_reloc_status_type ret;
2466 struct mips_hi16 *hi;
2467
2468 hi = mips_hi16_list;
2469
2470 /* R_MIPS*_GOT16 relocations are something of a special case. We
2471 want to install the addend in the same way as for a R_MIPS*_HI16
2472 relocation (with a rightshift of 16). However, since GOT16
2473 relocations can also be used with global symbols, their howto
2474 has a rightshift of 0. */
2475 if (hi->rel.howto->type == R_MIPS_GOT16)
2476 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2477 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2478 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2479 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2480 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2481
2482 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2483 carry or borrow will induce a change of +1 or -1 in the high part. */
2484 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2485
2486 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2487 hi->input_section, output_bfd,
2488 error_message);
2489 if (ret != bfd_reloc_ok)
2490 return ret;
2491
2492 mips_hi16_list = hi->next;
2493 free (hi);
2494 }
2495
2496 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2497 input_section, output_bfd,
2498 error_message);
2499 }
2500
2501 /* A generic howto special_function. This calculates and installs the
2502 relocation itself, thus avoiding the oft-discussed problems in
2503 bfd_perform_relocation and bfd_install_relocation. */
2504
2505 bfd_reloc_status_type
2506 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2507 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2508 asection *input_section, bfd *output_bfd,
2509 char **error_message ATTRIBUTE_UNUSED)
2510 {
2511 bfd_signed_vma val;
2512 bfd_reloc_status_type status;
2513 bfd_boolean relocatable;
2514
2515 relocatable = (output_bfd != NULL);
2516
2517 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2518 return bfd_reloc_outofrange;
2519
2520 /* Build up the field adjustment in VAL. */
2521 val = 0;
2522 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2523 {
2524 /* Either we're calculating the final field value or we have a
2525 relocation against a section symbol. Add in the section's
2526 offset or address. */
2527 val += symbol->section->output_section->vma;
2528 val += symbol->section->output_offset;
2529 }
2530
2531 if (!relocatable)
2532 {
2533 /* We're calculating the final field value. Add in the symbol's value
2534 and, if pc-relative, subtract the address of the field itself. */
2535 val += symbol->value;
2536 if (reloc_entry->howto->pc_relative)
2537 {
2538 val -= input_section->output_section->vma;
2539 val -= input_section->output_offset;
2540 val -= reloc_entry->address;
2541 }
2542 }
2543
2544 /* VAL is now the final adjustment. If we're keeping this relocation
2545 in the output file, and if the relocation uses a separate addend,
2546 we just need to add VAL to that addend. Otherwise we need to add
2547 VAL to the relocation field itself. */
2548 if (relocatable && !reloc_entry->howto->partial_inplace)
2549 reloc_entry->addend += val;
2550 else
2551 {
2552 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2553
2554 /* Add in the separate addend, if any. */
2555 val += reloc_entry->addend;
2556
2557 /* Add VAL to the relocation field. */
2558 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2559 location);
2560 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2561 location);
2562 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2563 location);
2564
2565 if (status != bfd_reloc_ok)
2566 return status;
2567 }
2568
2569 if (relocatable)
2570 reloc_entry->address += input_section->output_offset;
2571
2572 return bfd_reloc_ok;
2573 }
2574 \f
2575 /* Swap an entry in a .gptab section. Note that these routines rely
2576 on the equivalence of the two elements of the union. */
2577
2578 static void
2579 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2580 Elf32_gptab *in)
2581 {
2582 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2583 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2584 }
2585
2586 static void
2587 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2588 Elf32_External_gptab *ex)
2589 {
2590 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2591 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2592 }
2593
2594 static void
2595 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2596 Elf32_External_compact_rel *ex)
2597 {
2598 H_PUT_32 (abfd, in->id1, ex->id1);
2599 H_PUT_32 (abfd, in->num, ex->num);
2600 H_PUT_32 (abfd, in->id2, ex->id2);
2601 H_PUT_32 (abfd, in->offset, ex->offset);
2602 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2603 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2604 }
2605
2606 static void
2607 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2608 Elf32_External_crinfo *ex)
2609 {
2610 unsigned long l;
2611
2612 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2613 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2614 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2615 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2616 H_PUT_32 (abfd, l, ex->info);
2617 H_PUT_32 (abfd, in->konst, ex->konst);
2618 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2619 }
2620 \f
2621 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2622 routines swap this structure in and out. They are used outside of
2623 BFD, so they are globally visible. */
2624
2625 void
2626 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2627 Elf32_RegInfo *in)
2628 {
2629 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2630 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2631 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2632 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2633 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2634 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2635 }
2636
2637 void
2638 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2639 Elf32_External_RegInfo *ex)
2640 {
2641 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2642 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2643 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2644 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2645 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2646 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2647 }
2648
2649 /* In the 64 bit ABI, the .MIPS.options section holds register
2650 information in an Elf64_Reginfo structure. These routines swap
2651 them in and out. They are globally visible because they are used
2652 outside of BFD. These routines are here so that gas can call them
2653 without worrying about whether the 64 bit ABI has been included. */
2654
2655 void
2656 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2657 Elf64_Internal_RegInfo *in)
2658 {
2659 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2660 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2661 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2662 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2663 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2664 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2665 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2666 }
2667
2668 void
2669 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2670 Elf64_External_RegInfo *ex)
2671 {
2672 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2673 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2674 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2675 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2676 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2677 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2678 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2679 }
2680
2681 /* Swap in an options header. */
2682
2683 void
2684 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2685 Elf_Internal_Options *in)
2686 {
2687 in->kind = H_GET_8 (abfd, ex->kind);
2688 in->size = H_GET_8 (abfd, ex->size);
2689 in->section = H_GET_16 (abfd, ex->section);
2690 in->info = H_GET_32 (abfd, ex->info);
2691 }
2692
2693 /* Swap out an options header. */
2694
2695 void
2696 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2697 Elf_External_Options *ex)
2698 {
2699 H_PUT_8 (abfd, in->kind, ex->kind);
2700 H_PUT_8 (abfd, in->size, ex->size);
2701 H_PUT_16 (abfd, in->section, ex->section);
2702 H_PUT_32 (abfd, in->info, ex->info);
2703 }
2704
2705 /* Swap in an abiflags structure. */
2706
2707 void
2708 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2709 const Elf_External_ABIFlags_v0 *ex,
2710 Elf_Internal_ABIFlags_v0 *in)
2711 {
2712 in->version = H_GET_16 (abfd, ex->version);
2713 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2714 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2715 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2716 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2717 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2718 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2719 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2720 in->ases = H_GET_32 (abfd, ex->ases);
2721 in->flags1 = H_GET_32 (abfd, ex->flags1);
2722 in->flags2 = H_GET_32 (abfd, ex->flags2);
2723 }
2724
2725 /* Swap out an abiflags structure. */
2726
2727 void
2728 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2729 const Elf_Internal_ABIFlags_v0 *in,
2730 Elf_External_ABIFlags_v0 *ex)
2731 {
2732 H_PUT_16 (abfd, in->version, ex->version);
2733 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2734 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2735 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2736 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2737 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2738 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2739 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2740 H_PUT_32 (abfd, in->ases, ex->ases);
2741 H_PUT_32 (abfd, in->flags1, ex->flags1);
2742 H_PUT_32 (abfd, in->flags2, ex->flags2);
2743 }
2744 \f
2745 /* This function is called via qsort() to sort the dynamic relocation
2746 entries by increasing r_symndx value. */
2747
2748 static int
2749 sort_dynamic_relocs (const void *arg1, const void *arg2)
2750 {
2751 Elf_Internal_Rela int_reloc1;
2752 Elf_Internal_Rela int_reloc2;
2753 int diff;
2754
2755 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2756 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2757
2758 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2759 if (diff != 0)
2760 return diff;
2761
2762 if (int_reloc1.r_offset < int_reloc2.r_offset)
2763 return -1;
2764 if (int_reloc1.r_offset > int_reloc2.r_offset)
2765 return 1;
2766 return 0;
2767 }
2768
2769 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2770
2771 static int
2772 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2773 const void *arg2 ATTRIBUTE_UNUSED)
2774 {
2775 #ifdef BFD64
2776 Elf_Internal_Rela int_reloc1[3];
2777 Elf_Internal_Rela int_reloc2[3];
2778
2779 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2780 (reldyn_sorting_bfd, arg1, int_reloc1);
2781 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2782 (reldyn_sorting_bfd, arg2, int_reloc2);
2783
2784 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2785 return -1;
2786 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2787 return 1;
2788
2789 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2790 return -1;
2791 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2792 return 1;
2793 return 0;
2794 #else
2795 abort ();
2796 #endif
2797 }
2798
2799
2800 /* This routine is used to write out ECOFF debugging external symbol
2801 information. It is called via mips_elf_link_hash_traverse. The
2802 ECOFF external symbol information must match the ELF external
2803 symbol information. Unfortunately, at this point we don't know
2804 whether a symbol is required by reloc information, so the two
2805 tables may wind up being different. We must sort out the external
2806 symbol information before we can set the final size of the .mdebug
2807 section, and we must set the size of the .mdebug section before we
2808 can relocate any sections, and we can't know which symbols are
2809 required by relocation until we relocate the sections.
2810 Fortunately, it is relatively unlikely that any symbol will be
2811 stripped but required by a reloc. In particular, it can not happen
2812 when generating a final executable. */
2813
2814 static bfd_boolean
2815 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2816 {
2817 struct extsym_info *einfo = data;
2818 bfd_boolean strip;
2819 asection *sec, *output_section;
2820
2821 if (h->root.indx == -2)
2822 strip = FALSE;
2823 else if ((h->root.def_dynamic
2824 || h->root.ref_dynamic
2825 || h->root.type == bfd_link_hash_new)
2826 && !h->root.def_regular
2827 && !h->root.ref_regular)
2828 strip = TRUE;
2829 else if (einfo->info->strip == strip_all
2830 || (einfo->info->strip == strip_some
2831 && bfd_hash_lookup (einfo->info->keep_hash,
2832 h->root.root.root.string,
2833 FALSE, FALSE) == NULL))
2834 strip = TRUE;
2835 else
2836 strip = FALSE;
2837
2838 if (strip)
2839 return TRUE;
2840
2841 if (h->esym.ifd == -2)
2842 {
2843 h->esym.jmptbl = 0;
2844 h->esym.cobol_main = 0;
2845 h->esym.weakext = 0;
2846 h->esym.reserved = 0;
2847 h->esym.ifd = ifdNil;
2848 h->esym.asym.value = 0;
2849 h->esym.asym.st = stGlobal;
2850
2851 if (h->root.root.type == bfd_link_hash_undefined
2852 || h->root.root.type == bfd_link_hash_undefweak)
2853 {
2854 const char *name;
2855
2856 /* Use undefined class. Also, set class and type for some
2857 special symbols. */
2858 name = h->root.root.root.string;
2859 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2860 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2861 {
2862 h->esym.asym.sc = scData;
2863 h->esym.asym.st = stLabel;
2864 h->esym.asym.value = 0;
2865 }
2866 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2867 {
2868 h->esym.asym.sc = scAbs;
2869 h->esym.asym.st = stLabel;
2870 h->esym.asym.value =
2871 mips_elf_hash_table (einfo->info)->procedure_count;
2872 }
2873 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2874 {
2875 h->esym.asym.sc = scAbs;
2876 h->esym.asym.st = stLabel;
2877 h->esym.asym.value = elf_gp (einfo->abfd);
2878 }
2879 else
2880 h->esym.asym.sc = scUndefined;
2881 }
2882 else if (h->root.root.type != bfd_link_hash_defined
2883 && h->root.root.type != bfd_link_hash_defweak)
2884 h->esym.asym.sc = scAbs;
2885 else
2886 {
2887 const char *name;
2888
2889 sec = h->root.root.u.def.section;
2890 output_section = sec->output_section;
2891
2892 /* When making a shared library and symbol h is the one from
2893 the another shared library, OUTPUT_SECTION may be null. */
2894 if (output_section == NULL)
2895 h->esym.asym.sc = scUndefined;
2896 else
2897 {
2898 name = bfd_section_name (output_section->owner, output_section);
2899
2900 if (strcmp (name, ".text") == 0)
2901 h->esym.asym.sc = scText;
2902 else if (strcmp (name, ".data") == 0)
2903 h->esym.asym.sc = scData;
2904 else if (strcmp (name, ".sdata") == 0)
2905 h->esym.asym.sc = scSData;
2906 else if (strcmp (name, ".rodata") == 0
2907 || strcmp (name, ".rdata") == 0)
2908 h->esym.asym.sc = scRData;
2909 else if (strcmp (name, ".bss") == 0)
2910 h->esym.asym.sc = scBss;
2911 else if (strcmp (name, ".sbss") == 0)
2912 h->esym.asym.sc = scSBss;
2913 else if (strcmp (name, ".init") == 0)
2914 h->esym.asym.sc = scInit;
2915 else if (strcmp (name, ".fini") == 0)
2916 h->esym.asym.sc = scFini;
2917 else
2918 h->esym.asym.sc = scAbs;
2919 }
2920 }
2921
2922 h->esym.asym.reserved = 0;
2923 h->esym.asym.index = indexNil;
2924 }
2925
2926 if (h->root.root.type == bfd_link_hash_common)
2927 h->esym.asym.value = h->root.root.u.c.size;
2928 else if (h->root.root.type == bfd_link_hash_defined
2929 || h->root.root.type == bfd_link_hash_defweak)
2930 {
2931 if (h->esym.asym.sc == scCommon)
2932 h->esym.asym.sc = scBss;
2933 else if (h->esym.asym.sc == scSCommon)
2934 h->esym.asym.sc = scSBss;
2935
2936 sec = h->root.root.u.def.section;
2937 output_section = sec->output_section;
2938 if (output_section != NULL)
2939 h->esym.asym.value = (h->root.root.u.def.value
2940 + sec->output_offset
2941 + output_section->vma);
2942 else
2943 h->esym.asym.value = 0;
2944 }
2945 else
2946 {
2947 struct mips_elf_link_hash_entry *hd = h;
2948
2949 while (hd->root.root.type == bfd_link_hash_indirect)
2950 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2951
2952 if (hd->needs_lazy_stub)
2953 {
2954 BFD_ASSERT (hd->root.plt.plist != NULL);
2955 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2956 /* Set type and value for a symbol with a function stub. */
2957 h->esym.asym.st = stProc;
2958 sec = hd->root.root.u.def.section;
2959 if (sec == NULL)
2960 h->esym.asym.value = 0;
2961 else
2962 {
2963 output_section = sec->output_section;
2964 if (output_section != NULL)
2965 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2966 + sec->output_offset
2967 + output_section->vma);
2968 else
2969 h->esym.asym.value = 0;
2970 }
2971 }
2972 }
2973
2974 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2975 h->root.root.root.string,
2976 &h->esym))
2977 {
2978 einfo->failed = TRUE;
2979 return FALSE;
2980 }
2981
2982 return TRUE;
2983 }
2984
2985 /* A comparison routine used to sort .gptab entries. */
2986
2987 static int
2988 gptab_compare (const void *p1, const void *p2)
2989 {
2990 const Elf32_gptab *a1 = p1;
2991 const Elf32_gptab *a2 = p2;
2992
2993 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2994 }
2995 \f
2996 /* Functions to manage the got entry hash table. */
2997
2998 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2999 hash number. */
3000
3001 static INLINE hashval_t
3002 mips_elf_hash_bfd_vma (bfd_vma addr)
3003 {
3004 #ifdef BFD64
3005 return addr + (addr >> 32);
3006 #else
3007 return addr;
3008 #endif
3009 }
3010
3011 static hashval_t
3012 mips_elf_got_entry_hash (const void *entry_)
3013 {
3014 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3015
3016 return (entry->symndx
3017 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3018 + (entry->tls_type == GOT_TLS_LDM ? 0
3019 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3020 : entry->symndx >= 0 ? (entry->abfd->id
3021 + mips_elf_hash_bfd_vma (entry->d.addend))
3022 : entry->d.h->root.root.root.hash));
3023 }
3024
3025 static int
3026 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3027 {
3028 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3029 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3030
3031 return (e1->symndx == e2->symndx
3032 && e1->tls_type == e2->tls_type
3033 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3034 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3035 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3036 && e1->d.addend == e2->d.addend)
3037 : e2->abfd && e1->d.h == e2->d.h));
3038 }
3039
3040 static hashval_t
3041 mips_got_page_ref_hash (const void *ref_)
3042 {
3043 const struct mips_got_page_ref *ref;
3044
3045 ref = (const struct mips_got_page_ref *) ref_;
3046 return ((ref->symndx >= 0
3047 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3048 : ref->u.h->root.root.root.hash)
3049 + mips_elf_hash_bfd_vma (ref->addend));
3050 }
3051
3052 static int
3053 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3054 {
3055 const struct mips_got_page_ref *ref1, *ref2;
3056
3057 ref1 = (const struct mips_got_page_ref *) ref1_;
3058 ref2 = (const struct mips_got_page_ref *) ref2_;
3059 return (ref1->symndx == ref2->symndx
3060 && (ref1->symndx < 0
3061 ? ref1->u.h == ref2->u.h
3062 : ref1->u.abfd == ref2->u.abfd)
3063 && ref1->addend == ref2->addend);
3064 }
3065
3066 static hashval_t
3067 mips_got_page_entry_hash (const void *entry_)
3068 {
3069 const struct mips_got_page_entry *entry;
3070
3071 entry = (const struct mips_got_page_entry *) entry_;
3072 return entry->sec->id;
3073 }
3074
3075 static int
3076 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3077 {
3078 const struct mips_got_page_entry *entry1, *entry2;
3079
3080 entry1 = (const struct mips_got_page_entry *) entry1_;
3081 entry2 = (const struct mips_got_page_entry *) entry2_;
3082 return entry1->sec == entry2->sec;
3083 }
3084 \f
3085 /* Create and return a new mips_got_info structure. */
3086
3087 static struct mips_got_info *
3088 mips_elf_create_got_info (bfd *abfd)
3089 {
3090 struct mips_got_info *g;
3091
3092 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3093 if (g == NULL)
3094 return NULL;
3095
3096 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3097 mips_elf_got_entry_eq, NULL);
3098 if (g->got_entries == NULL)
3099 return NULL;
3100
3101 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3102 mips_got_page_ref_eq, NULL);
3103 if (g->got_page_refs == NULL)
3104 return NULL;
3105
3106 return g;
3107 }
3108
3109 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3110 CREATE_P and if ABFD doesn't already have a GOT. */
3111
3112 static struct mips_got_info *
3113 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3114 {
3115 struct mips_elf_obj_tdata *tdata;
3116
3117 if (!is_mips_elf (abfd))
3118 return NULL;
3119
3120 tdata = mips_elf_tdata (abfd);
3121 if (!tdata->got && create_p)
3122 tdata->got = mips_elf_create_got_info (abfd);
3123 return tdata->got;
3124 }
3125
3126 /* Record that ABFD should use output GOT G. */
3127
3128 static void
3129 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3130 {
3131 struct mips_elf_obj_tdata *tdata;
3132
3133 BFD_ASSERT (is_mips_elf (abfd));
3134 tdata = mips_elf_tdata (abfd);
3135 if (tdata->got)
3136 {
3137 /* The GOT structure itself and the hash table entries are
3138 allocated to a bfd, but the hash tables aren't. */
3139 htab_delete (tdata->got->got_entries);
3140 htab_delete (tdata->got->got_page_refs);
3141 if (tdata->got->got_page_entries)
3142 htab_delete (tdata->got->got_page_entries);
3143 }
3144 tdata->got = g;
3145 }
3146
3147 /* Return the dynamic relocation section. If it doesn't exist, try to
3148 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3149 if creation fails. */
3150
3151 static asection *
3152 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3153 {
3154 const char *dname;
3155 asection *sreloc;
3156 bfd *dynobj;
3157
3158 dname = MIPS_ELF_REL_DYN_NAME (info);
3159 dynobj = elf_hash_table (info)->dynobj;
3160 sreloc = bfd_get_linker_section (dynobj, dname);
3161 if (sreloc == NULL && create_p)
3162 {
3163 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3164 (SEC_ALLOC
3165 | SEC_LOAD
3166 | SEC_HAS_CONTENTS
3167 | SEC_IN_MEMORY
3168 | SEC_LINKER_CREATED
3169 | SEC_READONLY));
3170 if (sreloc == NULL
3171 || ! bfd_set_section_alignment (dynobj, sreloc,
3172 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3173 return NULL;
3174 }
3175 return sreloc;
3176 }
3177
3178 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3179
3180 static int
3181 mips_elf_reloc_tls_type (unsigned int r_type)
3182 {
3183 if (tls_gd_reloc_p (r_type))
3184 return GOT_TLS_GD;
3185
3186 if (tls_ldm_reloc_p (r_type))
3187 return GOT_TLS_LDM;
3188
3189 if (tls_gottprel_reloc_p (r_type))
3190 return GOT_TLS_IE;
3191
3192 return GOT_TLS_NONE;
3193 }
3194
3195 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3196
3197 static int
3198 mips_tls_got_entries (unsigned int type)
3199 {
3200 switch (type)
3201 {
3202 case GOT_TLS_GD:
3203 case GOT_TLS_LDM:
3204 return 2;
3205
3206 case GOT_TLS_IE:
3207 return 1;
3208
3209 case GOT_TLS_NONE:
3210 return 0;
3211 }
3212 abort ();
3213 }
3214
3215 /* Count the number of relocations needed for a TLS GOT entry, with
3216 access types from TLS_TYPE, and symbol H (or a local symbol if H
3217 is NULL). */
3218
3219 static int
3220 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3221 struct elf_link_hash_entry *h)
3222 {
3223 int indx = 0;
3224 bfd_boolean need_relocs = FALSE;
3225 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3226
3227 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3228 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3229 indx = h->dynindx;
3230
3231 if ((info->shared || indx != 0)
3232 && (h == NULL
3233 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3234 || h->root.type != bfd_link_hash_undefweak))
3235 need_relocs = TRUE;
3236
3237 if (!need_relocs)
3238 return 0;
3239
3240 switch (tls_type)
3241 {
3242 case GOT_TLS_GD:
3243 return indx != 0 ? 2 : 1;
3244
3245 case GOT_TLS_IE:
3246 return 1;
3247
3248 case GOT_TLS_LDM:
3249 return info->shared ? 1 : 0;
3250
3251 default:
3252 return 0;
3253 }
3254 }
3255
3256 /* Add the number of GOT entries and TLS relocations required by ENTRY
3257 to G. */
3258
3259 static void
3260 mips_elf_count_got_entry (struct bfd_link_info *info,
3261 struct mips_got_info *g,
3262 struct mips_got_entry *entry)
3263 {
3264 if (entry->tls_type)
3265 {
3266 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3267 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3268 entry->symndx < 0
3269 ? &entry->d.h->root : NULL);
3270 }
3271 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3272 g->local_gotno += 1;
3273 else
3274 g->global_gotno += 1;
3275 }
3276
3277 /* Output a simple dynamic relocation into SRELOC. */
3278
3279 static void
3280 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3281 asection *sreloc,
3282 unsigned long reloc_index,
3283 unsigned long indx,
3284 int r_type,
3285 bfd_vma offset)
3286 {
3287 Elf_Internal_Rela rel[3];
3288
3289 memset (rel, 0, sizeof (rel));
3290
3291 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3292 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3293
3294 if (ABI_64_P (output_bfd))
3295 {
3296 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3297 (output_bfd, &rel[0],
3298 (sreloc->contents
3299 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3300 }
3301 else
3302 bfd_elf32_swap_reloc_out
3303 (output_bfd, &rel[0],
3304 (sreloc->contents
3305 + reloc_index * sizeof (Elf32_External_Rel)));
3306 }
3307
3308 /* Initialize a set of TLS GOT entries for one symbol. */
3309
3310 static void
3311 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3312 struct mips_got_entry *entry,
3313 struct mips_elf_link_hash_entry *h,
3314 bfd_vma value)
3315 {
3316 struct mips_elf_link_hash_table *htab;
3317 int indx;
3318 asection *sreloc, *sgot;
3319 bfd_vma got_offset, got_offset2;
3320 bfd_boolean need_relocs = FALSE;
3321
3322 htab = mips_elf_hash_table (info);
3323 if (htab == NULL)
3324 return;
3325
3326 sgot = htab->sgot;
3327
3328 indx = 0;
3329 if (h != NULL)
3330 {
3331 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3332
3333 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3334 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3335 indx = h->root.dynindx;
3336 }
3337
3338 if (entry->tls_initialized)
3339 return;
3340
3341 if ((info->shared || indx != 0)
3342 && (h == NULL
3343 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3344 || h->root.type != bfd_link_hash_undefweak))
3345 need_relocs = TRUE;
3346
3347 /* MINUS_ONE means the symbol is not defined in this object. It may not
3348 be defined at all; assume that the value doesn't matter in that
3349 case. Otherwise complain if we would use the value. */
3350 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3351 || h->root.root.type == bfd_link_hash_undefweak);
3352
3353 /* Emit necessary relocations. */
3354 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3355 got_offset = entry->gotidx;
3356
3357 switch (entry->tls_type)
3358 {
3359 case GOT_TLS_GD:
3360 /* General Dynamic. */
3361 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3362
3363 if (need_relocs)
3364 {
3365 mips_elf_output_dynamic_relocation
3366 (abfd, sreloc, sreloc->reloc_count++, indx,
3367 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3368 sgot->output_offset + sgot->output_section->vma + got_offset);
3369
3370 if (indx)
3371 mips_elf_output_dynamic_relocation
3372 (abfd, sreloc, sreloc->reloc_count++, indx,
3373 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3374 sgot->output_offset + sgot->output_section->vma + got_offset2);
3375 else
3376 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3377 sgot->contents + got_offset2);
3378 }
3379 else
3380 {
3381 MIPS_ELF_PUT_WORD (abfd, 1,
3382 sgot->contents + got_offset);
3383 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3384 sgot->contents + got_offset2);
3385 }
3386 break;
3387
3388 case GOT_TLS_IE:
3389 /* Initial Exec model. */
3390 if (need_relocs)
3391 {
3392 if (indx == 0)
3393 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3394 sgot->contents + got_offset);
3395 else
3396 MIPS_ELF_PUT_WORD (abfd, 0,
3397 sgot->contents + got_offset);
3398
3399 mips_elf_output_dynamic_relocation
3400 (abfd, sreloc, sreloc->reloc_count++, indx,
3401 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3402 sgot->output_offset + sgot->output_section->vma + got_offset);
3403 }
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3406 sgot->contents + got_offset);
3407 break;
3408
3409 case GOT_TLS_LDM:
3410 /* The initial offset is zero, and the LD offsets will include the
3411 bias by DTP_OFFSET. */
3412 MIPS_ELF_PUT_WORD (abfd, 0,
3413 sgot->contents + got_offset
3414 + MIPS_ELF_GOT_SIZE (abfd));
3415
3416 if (!info->shared)
3417 MIPS_ELF_PUT_WORD (abfd, 1,
3418 sgot->contents + got_offset);
3419 else
3420 mips_elf_output_dynamic_relocation
3421 (abfd, sreloc, sreloc->reloc_count++, indx,
3422 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3423 sgot->output_offset + sgot->output_section->vma + got_offset);
3424 break;
3425
3426 default:
3427 abort ();
3428 }
3429
3430 entry->tls_initialized = TRUE;
3431 }
3432
3433 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3434 for global symbol H. .got.plt comes before the GOT, so the offset
3435 will be negative. */
3436
3437 static bfd_vma
3438 mips_elf_gotplt_index (struct bfd_link_info *info,
3439 struct elf_link_hash_entry *h)
3440 {
3441 bfd_vma got_address, got_value;
3442 struct mips_elf_link_hash_table *htab;
3443
3444 htab = mips_elf_hash_table (info);
3445 BFD_ASSERT (htab != NULL);
3446
3447 BFD_ASSERT (h->plt.plist != NULL);
3448 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3449
3450 /* Calculate the address of the associated .got.plt entry. */
3451 got_address = (htab->sgotplt->output_section->vma
3452 + htab->sgotplt->output_offset
3453 + (h->plt.plist->gotplt_index
3454 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3455
3456 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3457 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3458 + htab->root.hgot->root.u.def.section->output_offset
3459 + htab->root.hgot->root.u.def.value);
3460
3461 return got_address - got_value;
3462 }
3463
3464 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3465 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3466 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3467 offset can be found. */
3468
3469 static bfd_vma
3470 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3471 bfd_vma value, unsigned long r_symndx,
3472 struct mips_elf_link_hash_entry *h, int r_type)
3473 {
3474 struct mips_elf_link_hash_table *htab;
3475 struct mips_got_entry *entry;
3476
3477 htab = mips_elf_hash_table (info);
3478 BFD_ASSERT (htab != NULL);
3479
3480 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3481 r_symndx, h, r_type);
3482 if (!entry)
3483 return MINUS_ONE;
3484
3485 if (entry->tls_type)
3486 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3487 return entry->gotidx;
3488 }
3489
3490 /* Return the GOT index of global symbol H in the primary GOT. */
3491
3492 static bfd_vma
3493 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3494 struct elf_link_hash_entry *h)
3495 {
3496 struct mips_elf_link_hash_table *htab;
3497 long global_got_dynindx;
3498 struct mips_got_info *g;
3499 bfd_vma got_index;
3500
3501 htab = mips_elf_hash_table (info);
3502 BFD_ASSERT (htab != NULL);
3503
3504 global_got_dynindx = 0;
3505 if (htab->global_gotsym != NULL)
3506 global_got_dynindx = htab->global_gotsym->dynindx;
3507
3508 /* Once we determine the global GOT entry with the lowest dynamic
3509 symbol table index, we must put all dynamic symbols with greater
3510 indices into the primary GOT. That makes it easy to calculate the
3511 GOT offset. */
3512 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3513 g = mips_elf_bfd_got (obfd, FALSE);
3514 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3515 * MIPS_ELF_GOT_SIZE (obfd));
3516 BFD_ASSERT (got_index < htab->sgot->size);
3517
3518 return got_index;
3519 }
3520
3521 /* Return the GOT index for the global symbol indicated by H, which is
3522 referenced by a relocation of type R_TYPE in IBFD. */
3523
3524 static bfd_vma
3525 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3526 struct elf_link_hash_entry *h, int r_type)
3527 {
3528 struct mips_elf_link_hash_table *htab;
3529 struct mips_got_info *g;
3530 struct mips_got_entry lookup, *entry;
3531 bfd_vma gotidx;
3532
3533 htab = mips_elf_hash_table (info);
3534 BFD_ASSERT (htab != NULL);
3535
3536 g = mips_elf_bfd_got (ibfd, FALSE);
3537 BFD_ASSERT (g);
3538
3539 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3540 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3541 return mips_elf_primary_global_got_index (obfd, info, h);
3542
3543 lookup.abfd = ibfd;
3544 lookup.symndx = -1;
3545 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3546 entry = htab_find (g->got_entries, &lookup);
3547 BFD_ASSERT (entry);
3548
3549 gotidx = entry->gotidx;
3550 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3551
3552 if (lookup.tls_type)
3553 {
3554 bfd_vma value = MINUS_ONE;
3555
3556 if ((h->root.type == bfd_link_hash_defined
3557 || h->root.type == bfd_link_hash_defweak)
3558 && h->root.u.def.section->output_section)
3559 value = (h->root.u.def.value
3560 + h->root.u.def.section->output_offset
3561 + h->root.u.def.section->output_section->vma);
3562
3563 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3564 }
3565 return gotidx;
3566 }
3567
3568 /* Find a GOT page entry that points to within 32KB of VALUE. These
3569 entries are supposed to be placed at small offsets in the GOT, i.e.,
3570 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3571 entry could be created. If OFFSETP is nonnull, use it to return the
3572 offset of the GOT entry from VALUE. */
3573
3574 static bfd_vma
3575 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3576 bfd_vma value, bfd_vma *offsetp)
3577 {
3578 bfd_vma page, got_index;
3579 struct mips_got_entry *entry;
3580
3581 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3582 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3583 NULL, R_MIPS_GOT_PAGE);
3584
3585 if (!entry)
3586 return MINUS_ONE;
3587
3588 got_index = entry->gotidx;
3589
3590 if (offsetp)
3591 *offsetp = value - entry->d.address;
3592
3593 return got_index;
3594 }
3595
3596 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3597 EXTERNAL is true if the relocation was originally against a global
3598 symbol that binds locally. */
3599
3600 static bfd_vma
3601 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3602 bfd_vma value, bfd_boolean external)
3603 {
3604 struct mips_got_entry *entry;
3605
3606 /* GOT16 relocations against local symbols are followed by a LO16
3607 relocation; those against global symbols are not. Thus if the
3608 symbol was originally local, the GOT16 relocation should load the
3609 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3610 if (! external)
3611 value = mips_elf_high (value) << 16;
3612
3613 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3614 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3615 same in all cases. */
3616 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3617 NULL, R_MIPS_GOT16);
3618 if (entry)
3619 return entry->gotidx;
3620 else
3621 return MINUS_ONE;
3622 }
3623
3624 /* Returns the offset for the entry at the INDEXth position
3625 in the GOT. */
3626
3627 static bfd_vma
3628 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3629 bfd *input_bfd, bfd_vma got_index)
3630 {
3631 struct mips_elf_link_hash_table *htab;
3632 asection *sgot;
3633 bfd_vma gp;
3634
3635 htab = mips_elf_hash_table (info);
3636 BFD_ASSERT (htab != NULL);
3637
3638 sgot = htab->sgot;
3639 gp = _bfd_get_gp_value (output_bfd)
3640 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3641
3642 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3643 }
3644
3645 /* Create and return a local GOT entry for VALUE, which was calculated
3646 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3647 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3648 instead. */
3649
3650 static struct mips_got_entry *
3651 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3652 bfd *ibfd, bfd_vma value,
3653 unsigned long r_symndx,
3654 struct mips_elf_link_hash_entry *h,
3655 int r_type)
3656 {
3657 struct mips_got_entry lookup, *entry;
3658 void **loc;
3659 struct mips_got_info *g;
3660 struct mips_elf_link_hash_table *htab;
3661 bfd_vma gotidx;
3662
3663 htab = mips_elf_hash_table (info);
3664 BFD_ASSERT (htab != NULL);
3665
3666 g = mips_elf_bfd_got (ibfd, FALSE);
3667 if (g == NULL)
3668 {
3669 g = mips_elf_bfd_got (abfd, FALSE);
3670 BFD_ASSERT (g != NULL);
3671 }
3672
3673 /* This function shouldn't be called for symbols that live in the global
3674 area of the GOT. */
3675 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3676
3677 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3678 if (lookup.tls_type)
3679 {
3680 lookup.abfd = ibfd;
3681 if (tls_ldm_reloc_p (r_type))
3682 {
3683 lookup.symndx = 0;
3684 lookup.d.addend = 0;
3685 }
3686 else if (h == NULL)
3687 {
3688 lookup.symndx = r_symndx;
3689 lookup.d.addend = 0;
3690 }
3691 else
3692 {
3693 lookup.symndx = -1;
3694 lookup.d.h = h;
3695 }
3696
3697 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3698 BFD_ASSERT (entry);
3699
3700 gotidx = entry->gotidx;
3701 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3702
3703 return entry;
3704 }
3705
3706 lookup.abfd = NULL;
3707 lookup.symndx = -1;
3708 lookup.d.address = value;
3709 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3710 if (!loc)
3711 return NULL;
3712
3713 entry = (struct mips_got_entry *) *loc;
3714 if (entry)
3715 return entry;
3716
3717 if (g->assigned_low_gotno > g->assigned_high_gotno)
3718 {
3719 /* We didn't allocate enough space in the GOT. */
3720 (*_bfd_error_handler)
3721 (_("not enough GOT space for local GOT entries"));
3722 bfd_set_error (bfd_error_bad_value);
3723 return NULL;
3724 }
3725
3726 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3727 if (!entry)
3728 return NULL;
3729
3730 if (got16_reloc_p (r_type)
3731 || call16_reloc_p (r_type)
3732 || got_page_reloc_p (r_type)
3733 || got_disp_reloc_p (r_type))
3734 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3735 else
3736 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3737
3738 *entry = lookup;
3739 *loc = entry;
3740
3741 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3742
3743 /* These GOT entries need a dynamic relocation on VxWorks. */
3744 if (htab->is_vxworks)
3745 {
3746 Elf_Internal_Rela outrel;
3747 asection *s;
3748 bfd_byte *rloc;
3749 bfd_vma got_address;
3750
3751 s = mips_elf_rel_dyn_section (info, FALSE);
3752 got_address = (htab->sgot->output_section->vma
3753 + htab->sgot->output_offset
3754 + entry->gotidx);
3755
3756 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3757 outrel.r_offset = got_address;
3758 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3759 outrel.r_addend = value;
3760 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3761 }
3762
3763 return entry;
3764 }
3765
3766 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3767 The number might be exact or a worst-case estimate, depending on how
3768 much information is available to elf_backend_omit_section_dynsym at
3769 the current linking stage. */
3770
3771 static bfd_size_type
3772 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3773 {
3774 bfd_size_type count;
3775
3776 count = 0;
3777 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3778 {
3779 asection *p;
3780 const struct elf_backend_data *bed;
3781
3782 bed = get_elf_backend_data (output_bfd);
3783 for (p = output_bfd->sections; p ; p = p->next)
3784 if ((p->flags & SEC_EXCLUDE) == 0
3785 && (p->flags & SEC_ALLOC) != 0
3786 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3787 ++count;
3788 }
3789 return count;
3790 }
3791
3792 /* Sort the dynamic symbol table so that symbols that need GOT entries
3793 appear towards the end. */
3794
3795 static bfd_boolean
3796 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3797 {
3798 struct mips_elf_link_hash_table *htab;
3799 struct mips_elf_hash_sort_data hsd;
3800 struct mips_got_info *g;
3801
3802 if (elf_hash_table (info)->dynsymcount == 0)
3803 return TRUE;
3804
3805 htab = mips_elf_hash_table (info);
3806 BFD_ASSERT (htab != NULL);
3807
3808 g = htab->got_info;
3809 if (g == NULL)
3810 return TRUE;
3811
3812 hsd.low = NULL;
3813 hsd.max_unref_got_dynindx
3814 = hsd.min_got_dynindx
3815 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3816 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3817 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3818 elf_hash_table (info)),
3819 mips_elf_sort_hash_table_f,
3820 &hsd);
3821
3822 /* There should have been enough room in the symbol table to
3823 accommodate both the GOT and non-GOT symbols. */
3824 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3825 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3826 == elf_hash_table (info)->dynsymcount);
3827 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3828 == g->global_gotno);
3829
3830 /* Now we know which dynamic symbol has the lowest dynamic symbol
3831 table index in the GOT. */
3832 htab->global_gotsym = hsd.low;
3833
3834 return TRUE;
3835 }
3836
3837 /* If H needs a GOT entry, assign it the highest available dynamic
3838 index. Otherwise, assign it the lowest available dynamic
3839 index. */
3840
3841 static bfd_boolean
3842 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3843 {
3844 struct mips_elf_hash_sort_data *hsd = data;
3845
3846 /* Symbols without dynamic symbol table entries aren't interesting
3847 at all. */
3848 if (h->root.dynindx == -1)
3849 return TRUE;
3850
3851 switch (h->global_got_area)
3852 {
3853 case GGA_NONE:
3854 h->root.dynindx = hsd->max_non_got_dynindx++;
3855 break;
3856
3857 case GGA_NORMAL:
3858 h->root.dynindx = --hsd->min_got_dynindx;
3859 hsd->low = (struct elf_link_hash_entry *) h;
3860 break;
3861
3862 case GGA_RELOC_ONLY:
3863 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3864 hsd->low = (struct elf_link_hash_entry *) h;
3865 h->root.dynindx = hsd->max_unref_got_dynindx++;
3866 break;
3867 }
3868
3869 return TRUE;
3870 }
3871
3872 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3873 (which is owned by the caller and shouldn't be added to the
3874 hash table directly). */
3875
3876 static bfd_boolean
3877 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3878 struct mips_got_entry *lookup)
3879 {
3880 struct mips_elf_link_hash_table *htab;
3881 struct mips_got_entry *entry;
3882 struct mips_got_info *g;
3883 void **loc, **bfd_loc;
3884
3885 /* Make sure there's a slot for this entry in the master GOT. */
3886 htab = mips_elf_hash_table (info);
3887 g = htab->got_info;
3888 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3889 if (!loc)
3890 return FALSE;
3891
3892 /* Populate the entry if it isn't already. */
3893 entry = (struct mips_got_entry *) *loc;
3894 if (!entry)
3895 {
3896 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3897 if (!entry)
3898 return FALSE;
3899
3900 lookup->tls_initialized = FALSE;
3901 lookup->gotidx = -1;
3902 *entry = *lookup;
3903 *loc = entry;
3904 }
3905
3906 /* Reuse the same GOT entry for the BFD's GOT. */
3907 g = mips_elf_bfd_got (abfd, TRUE);
3908 if (!g)
3909 return FALSE;
3910
3911 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3912 if (!bfd_loc)
3913 return FALSE;
3914
3915 if (!*bfd_loc)
3916 *bfd_loc = entry;
3917 return TRUE;
3918 }
3919
3920 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3921 entry for it. FOR_CALL is true if the caller is only interested in
3922 using the GOT entry for calls. */
3923
3924 static bfd_boolean
3925 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3926 bfd *abfd, struct bfd_link_info *info,
3927 bfd_boolean for_call, int r_type)
3928 {
3929 struct mips_elf_link_hash_table *htab;
3930 struct mips_elf_link_hash_entry *hmips;
3931 struct mips_got_entry entry;
3932 unsigned char tls_type;
3933
3934 htab = mips_elf_hash_table (info);
3935 BFD_ASSERT (htab != NULL);
3936
3937 hmips = (struct mips_elf_link_hash_entry *) h;
3938 if (!for_call)
3939 hmips->got_only_for_calls = FALSE;
3940
3941 /* A global symbol in the GOT must also be in the dynamic symbol
3942 table. */
3943 if (h->dynindx == -1)
3944 {
3945 switch (ELF_ST_VISIBILITY (h->other))
3946 {
3947 case STV_INTERNAL:
3948 case STV_HIDDEN:
3949 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3950 break;
3951 }
3952 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3953 return FALSE;
3954 }
3955
3956 tls_type = mips_elf_reloc_tls_type (r_type);
3957 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3958 hmips->global_got_area = GGA_NORMAL;
3959
3960 entry.abfd = abfd;
3961 entry.symndx = -1;
3962 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3963 entry.tls_type = tls_type;
3964 return mips_elf_record_got_entry (info, abfd, &entry);
3965 }
3966
3967 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3968 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3969
3970 static bfd_boolean
3971 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3972 struct bfd_link_info *info, int r_type)
3973 {
3974 struct mips_elf_link_hash_table *htab;
3975 struct mips_got_info *g;
3976 struct mips_got_entry entry;
3977
3978 htab = mips_elf_hash_table (info);
3979 BFD_ASSERT (htab != NULL);
3980
3981 g = htab->got_info;
3982 BFD_ASSERT (g != NULL);
3983
3984 entry.abfd = abfd;
3985 entry.symndx = symndx;
3986 entry.d.addend = addend;
3987 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3988 return mips_elf_record_got_entry (info, abfd, &entry);
3989 }
3990
3991 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3992 H is the symbol's hash table entry, or null if SYMNDX is local
3993 to ABFD. */
3994
3995 static bfd_boolean
3996 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3997 long symndx, struct elf_link_hash_entry *h,
3998 bfd_signed_vma addend)
3999 {
4000 struct mips_elf_link_hash_table *htab;
4001 struct mips_got_info *g1, *g2;
4002 struct mips_got_page_ref lookup, *entry;
4003 void **loc, **bfd_loc;
4004
4005 htab = mips_elf_hash_table (info);
4006 BFD_ASSERT (htab != NULL);
4007
4008 g1 = htab->got_info;
4009 BFD_ASSERT (g1 != NULL);
4010
4011 if (h)
4012 {
4013 lookup.symndx = -1;
4014 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4015 }
4016 else
4017 {
4018 lookup.symndx = symndx;
4019 lookup.u.abfd = abfd;
4020 }
4021 lookup.addend = addend;
4022 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4023 if (loc == NULL)
4024 return FALSE;
4025
4026 entry = (struct mips_got_page_ref *) *loc;
4027 if (!entry)
4028 {
4029 entry = bfd_alloc (abfd, sizeof (*entry));
4030 if (!entry)
4031 return FALSE;
4032
4033 *entry = lookup;
4034 *loc = entry;
4035 }
4036
4037 /* Add the same entry to the BFD's GOT. */
4038 g2 = mips_elf_bfd_got (abfd, TRUE);
4039 if (!g2)
4040 return FALSE;
4041
4042 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4043 if (!bfd_loc)
4044 return FALSE;
4045
4046 if (!*bfd_loc)
4047 *bfd_loc = entry;
4048
4049 return TRUE;
4050 }
4051
4052 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4053
4054 static void
4055 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4056 unsigned int n)
4057 {
4058 asection *s;
4059 struct mips_elf_link_hash_table *htab;
4060
4061 htab = mips_elf_hash_table (info);
4062 BFD_ASSERT (htab != NULL);
4063
4064 s = mips_elf_rel_dyn_section (info, FALSE);
4065 BFD_ASSERT (s != NULL);
4066
4067 if (htab->is_vxworks)
4068 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4069 else
4070 {
4071 if (s->size == 0)
4072 {
4073 /* Make room for a null element. */
4074 s->size += MIPS_ELF_REL_SIZE (abfd);
4075 ++s->reloc_count;
4076 }
4077 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4078 }
4079 }
4080 \f
4081 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4082 mips_elf_traverse_got_arg structure. Count the number of GOT
4083 entries and TLS relocs. Set DATA->value to true if we need
4084 to resolve indirect or warning symbols and then recreate the GOT. */
4085
4086 static int
4087 mips_elf_check_recreate_got (void **entryp, void *data)
4088 {
4089 struct mips_got_entry *entry;
4090 struct mips_elf_traverse_got_arg *arg;
4091
4092 entry = (struct mips_got_entry *) *entryp;
4093 arg = (struct mips_elf_traverse_got_arg *) data;
4094 if (entry->abfd != NULL && entry->symndx == -1)
4095 {
4096 struct mips_elf_link_hash_entry *h;
4097
4098 h = entry->d.h;
4099 if (h->root.root.type == bfd_link_hash_indirect
4100 || h->root.root.type == bfd_link_hash_warning)
4101 {
4102 arg->value = TRUE;
4103 return 0;
4104 }
4105 }
4106 mips_elf_count_got_entry (arg->info, arg->g, entry);
4107 return 1;
4108 }
4109
4110 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4111 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4112 converting entries for indirect and warning symbols into entries
4113 for the target symbol. Set DATA->g to null on error. */
4114
4115 static int
4116 mips_elf_recreate_got (void **entryp, void *data)
4117 {
4118 struct mips_got_entry new_entry, *entry;
4119 struct mips_elf_traverse_got_arg *arg;
4120 void **slot;
4121
4122 entry = (struct mips_got_entry *) *entryp;
4123 arg = (struct mips_elf_traverse_got_arg *) data;
4124 if (entry->abfd != NULL
4125 && entry->symndx == -1
4126 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4127 || entry->d.h->root.root.type == bfd_link_hash_warning))
4128 {
4129 struct mips_elf_link_hash_entry *h;
4130
4131 new_entry = *entry;
4132 entry = &new_entry;
4133 h = entry->d.h;
4134 do
4135 {
4136 BFD_ASSERT (h->global_got_area == GGA_NONE);
4137 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4138 }
4139 while (h->root.root.type == bfd_link_hash_indirect
4140 || h->root.root.type == bfd_link_hash_warning);
4141 entry->d.h = h;
4142 }
4143 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4144 if (slot == NULL)
4145 {
4146 arg->g = NULL;
4147 return 0;
4148 }
4149 if (*slot == NULL)
4150 {
4151 if (entry == &new_entry)
4152 {
4153 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4154 if (!entry)
4155 {
4156 arg->g = NULL;
4157 return 0;
4158 }
4159 *entry = new_entry;
4160 }
4161 *slot = entry;
4162 mips_elf_count_got_entry (arg->info, arg->g, entry);
4163 }
4164 return 1;
4165 }
4166
4167 /* Return the maximum number of GOT page entries required for RANGE. */
4168
4169 static bfd_vma
4170 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4171 {
4172 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4173 }
4174
4175 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4176
4177 static bfd_boolean
4178 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4179 asection *sec, bfd_signed_vma addend)
4180 {
4181 struct mips_got_info *g = arg->g;
4182 struct mips_got_page_entry lookup, *entry;
4183 struct mips_got_page_range **range_ptr, *range;
4184 bfd_vma old_pages, new_pages;
4185 void **loc;
4186
4187 /* Find the mips_got_page_entry hash table entry for this section. */
4188 lookup.sec = sec;
4189 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4190 if (loc == NULL)
4191 return FALSE;
4192
4193 /* Create a mips_got_page_entry if this is the first time we've
4194 seen the section. */
4195 entry = (struct mips_got_page_entry *) *loc;
4196 if (!entry)
4197 {
4198 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4199 if (!entry)
4200 return FALSE;
4201
4202 entry->sec = sec;
4203 *loc = entry;
4204 }
4205
4206 /* Skip over ranges whose maximum extent cannot share a page entry
4207 with ADDEND. */
4208 range_ptr = &entry->ranges;
4209 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4210 range_ptr = &(*range_ptr)->next;
4211
4212 /* If we scanned to the end of the list, or found a range whose
4213 minimum extent cannot share a page entry with ADDEND, create
4214 a new singleton range. */
4215 range = *range_ptr;
4216 if (!range || addend < range->min_addend - 0xffff)
4217 {
4218 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4219 if (!range)
4220 return FALSE;
4221
4222 range->next = *range_ptr;
4223 range->min_addend = addend;
4224 range->max_addend = addend;
4225
4226 *range_ptr = range;
4227 entry->num_pages++;
4228 g->page_gotno++;
4229 return TRUE;
4230 }
4231
4232 /* Remember how many pages the old range contributed. */
4233 old_pages = mips_elf_pages_for_range (range);
4234
4235 /* Update the ranges. */
4236 if (addend < range->min_addend)
4237 range->min_addend = addend;
4238 else if (addend > range->max_addend)
4239 {
4240 if (range->next && addend >= range->next->min_addend - 0xffff)
4241 {
4242 old_pages += mips_elf_pages_for_range (range->next);
4243 range->max_addend = range->next->max_addend;
4244 range->next = range->next->next;
4245 }
4246 else
4247 range->max_addend = addend;
4248 }
4249
4250 /* Record any change in the total estimate. */
4251 new_pages = mips_elf_pages_for_range (range);
4252 if (old_pages != new_pages)
4253 {
4254 entry->num_pages += new_pages - old_pages;
4255 g->page_gotno += new_pages - old_pages;
4256 }
4257
4258 return TRUE;
4259 }
4260
4261 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4262 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4263 whether the page reference described by *REFP needs a GOT page entry,
4264 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4265
4266 static bfd_boolean
4267 mips_elf_resolve_got_page_ref (void **refp, void *data)
4268 {
4269 struct mips_got_page_ref *ref;
4270 struct mips_elf_traverse_got_arg *arg;
4271 struct mips_elf_link_hash_table *htab;
4272 asection *sec;
4273 bfd_vma addend;
4274
4275 ref = (struct mips_got_page_ref *) *refp;
4276 arg = (struct mips_elf_traverse_got_arg *) data;
4277 htab = mips_elf_hash_table (arg->info);
4278
4279 if (ref->symndx < 0)
4280 {
4281 struct mips_elf_link_hash_entry *h;
4282
4283 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4284 h = ref->u.h;
4285 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4286 return 1;
4287
4288 /* Ignore undefined symbols; we'll issue an error later if
4289 appropriate. */
4290 if (!((h->root.root.type == bfd_link_hash_defined
4291 || h->root.root.type == bfd_link_hash_defweak)
4292 && h->root.root.u.def.section))
4293 return 1;
4294
4295 sec = h->root.root.u.def.section;
4296 addend = h->root.root.u.def.value + ref->addend;
4297 }
4298 else
4299 {
4300 Elf_Internal_Sym *isym;
4301
4302 /* Read in the symbol. */
4303 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4304 ref->symndx);
4305 if (isym == NULL)
4306 {
4307 arg->g = NULL;
4308 return 0;
4309 }
4310
4311 /* Get the associated input section. */
4312 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4313 if (sec == NULL)
4314 {
4315 arg->g = NULL;
4316 return 0;
4317 }
4318
4319 /* If this is a mergable section, work out the section and offset
4320 of the merged data. For section symbols, the addend specifies
4321 of the offset _of_ the first byte in the data, otherwise it
4322 specifies the offset _from_ the first byte. */
4323 if (sec->flags & SEC_MERGE)
4324 {
4325 void *secinfo;
4326
4327 secinfo = elf_section_data (sec)->sec_info;
4328 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4329 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4330 isym->st_value + ref->addend);
4331 else
4332 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4333 isym->st_value) + ref->addend;
4334 }
4335 else
4336 addend = isym->st_value + ref->addend;
4337 }
4338 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4339 {
4340 arg->g = NULL;
4341 return 0;
4342 }
4343 return 1;
4344 }
4345
4346 /* If any entries in G->got_entries are for indirect or warning symbols,
4347 replace them with entries for the target symbol. Convert g->got_page_refs
4348 into got_page_entry structures and estimate the number of page entries
4349 that they require. */
4350
4351 static bfd_boolean
4352 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4353 struct mips_got_info *g)
4354 {
4355 struct mips_elf_traverse_got_arg tga;
4356 struct mips_got_info oldg;
4357
4358 oldg = *g;
4359
4360 tga.info = info;
4361 tga.g = g;
4362 tga.value = FALSE;
4363 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4364 if (tga.value)
4365 {
4366 *g = oldg;
4367 g->got_entries = htab_create (htab_size (oldg.got_entries),
4368 mips_elf_got_entry_hash,
4369 mips_elf_got_entry_eq, NULL);
4370 if (!g->got_entries)
4371 return FALSE;
4372
4373 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4374 if (!tga.g)
4375 return FALSE;
4376
4377 htab_delete (oldg.got_entries);
4378 }
4379
4380 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4381 mips_got_page_entry_eq, NULL);
4382 if (g->got_page_entries == NULL)
4383 return FALSE;
4384
4385 tga.info = info;
4386 tga.g = g;
4387 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4388
4389 return TRUE;
4390 }
4391
4392 /* Return true if a GOT entry for H should live in the local rather than
4393 global GOT area. */
4394
4395 static bfd_boolean
4396 mips_use_local_got_p (struct bfd_link_info *info,
4397 struct mips_elf_link_hash_entry *h)
4398 {
4399 /* Symbols that aren't in the dynamic symbol table must live in the
4400 local GOT. This includes symbols that are completely undefined
4401 and which therefore don't bind locally. We'll report undefined
4402 symbols later if appropriate. */
4403 if (h->root.dynindx == -1)
4404 return TRUE;
4405
4406 /* Symbols that bind locally can (and in the case of forced-local
4407 symbols, must) live in the local GOT. */
4408 if (h->got_only_for_calls
4409 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4410 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4411 return TRUE;
4412
4413 /* If this is an executable that must provide a definition of the symbol,
4414 either though PLTs or copy relocations, then that address should go in
4415 the local rather than global GOT. */
4416 if (info->executable && h->has_static_relocs)
4417 return TRUE;
4418
4419 return FALSE;
4420 }
4421
4422 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4423 link_info structure. Decide whether the hash entry needs an entry in
4424 the global part of the primary GOT, setting global_got_area accordingly.
4425 Count the number of global symbols that are in the primary GOT only
4426 because they have relocations against them (reloc_only_gotno). */
4427
4428 static int
4429 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4430 {
4431 struct bfd_link_info *info;
4432 struct mips_elf_link_hash_table *htab;
4433 struct mips_got_info *g;
4434
4435 info = (struct bfd_link_info *) data;
4436 htab = mips_elf_hash_table (info);
4437 g = htab->got_info;
4438 if (h->global_got_area != GGA_NONE)
4439 {
4440 /* Make a final decision about whether the symbol belongs in the
4441 local or global GOT. */
4442 if (mips_use_local_got_p (info, h))
4443 /* The symbol belongs in the local GOT. We no longer need this
4444 entry if it was only used for relocations; those relocations
4445 will be against the null or section symbol instead of H. */
4446 h->global_got_area = GGA_NONE;
4447 else if (htab->is_vxworks
4448 && h->got_only_for_calls
4449 && h->root.plt.plist->mips_offset != MINUS_ONE)
4450 /* On VxWorks, calls can refer directly to the .got.plt entry;
4451 they don't need entries in the regular GOT. .got.plt entries
4452 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4453 h->global_got_area = GGA_NONE;
4454 else if (h->global_got_area == GGA_RELOC_ONLY)
4455 {
4456 g->reloc_only_gotno++;
4457 g->global_gotno++;
4458 }
4459 }
4460 return 1;
4461 }
4462 \f
4463 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4464 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4465
4466 static int
4467 mips_elf_add_got_entry (void **entryp, void *data)
4468 {
4469 struct mips_got_entry *entry;
4470 struct mips_elf_traverse_got_arg *arg;
4471 void **slot;
4472
4473 entry = (struct mips_got_entry *) *entryp;
4474 arg = (struct mips_elf_traverse_got_arg *) data;
4475 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4476 if (!slot)
4477 {
4478 arg->g = NULL;
4479 return 0;
4480 }
4481 if (!*slot)
4482 {
4483 *slot = entry;
4484 mips_elf_count_got_entry (arg->info, arg->g, entry);
4485 }
4486 return 1;
4487 }
4488
4489 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4490 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4491
4492 static int
4493 mips_elf_add_got_page_entry (void **entryp, void *data)
4494 {
4495 struct mips_got_page_entry *entry;
4496 struct mips_elf_traverse_got_arg *arg;
4497 void **slot;
4498
4499 entry = (struct mips_got_page_entry *) *entryp;
4500 arg = (struct mips_elf_traverse_got_arg *) data;
4501 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4502 if (!slot)
4503 {
4504 arg->g = NULL;
4505 return 0;
4506 }
4507 if (!*slot)
4508 {
4509 *slot = entry;
4510 arg->g->page_gotno += entry->num_pages;
4511 }
4512 return 1;
4513 }
4514
4515 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4516 this would lead to overflow, 1 if they were merged successfully,
4517 and 0 if a merge failed due to lack of memory. (These values are chosen
4518 so that nonnegative return values can be returned by a htab_traverse
4519 callback.) */
4520
4521 static int
4522 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4523 struct mips_got_info *to,
4524 struct mips_elf_got_per_bfd_arg *arg)
4525 {
4526 struct mips_elf_traverse_got_arg tga;
4527 unsigned int estimate;
4528
4529 /* Work out how many page entries we would need for the combined GOT. */
4530 estimate = arg->max_pages;
4531 if (estimate >= from->page_gotno + to->page_gotno)
4532 estimate = from->page_gotno + to->page_gotno;
4533
4534 /* And conservatively estimate how many local and TLS entries
4535 would be needed. */
4536 estimate += from->local_gotno + to->local_gotno;
4537 estimate += from->tls_gotno + to->tls_gotno;
4538
4539 /* If we're merging with the primary got, any TLS relocations will
4540 come after the full set of global entries. Otherwise estimate those
4541 conservatively as well. */
4542 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4543 estimate += arg->global_count;
4544 else
4545 estimate += from->global_gotno + to->global_gotno;
4546
4547 /* Bail out if the combined GOT might be too big. */
4548 if (estimate > arg->max_count)
4549 return -1;
4550
4551 /* Transfer the bfd's got information from FROM to TO. */
4552 tga.info = arg->info;
4553 tga.g = to;
4554 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4555 if (!tga.g)
4556 return 0;
4557
4558 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4559 if (!tga.g)
4560 return 0;
4561
4562 mips_elf_replace_bfd_got (abfd, to);
4563 return 1;
4564 }
4565
4566 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4567 as possible of the primary got, since it doesn't require explicit
4568 dynamic relocations, but don't use bfds that would reference global
4569 symbols out of the addressable range. Failing the primary got,
4570 attempt to merge with the current got, or finish the current got
4571 and then make make the new got current. */
4572
4573 static bfd_boolean
4574 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4575 struct mips_elf_got_per_bfd_arg *arg)
4576 {
4577 unsigned int estimate;
4578 int result;
4579
4580 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4581 return FALSE;
4582
4583 /* Work out the number of page, local and TLS entries. */
4584 estimate = arg->max_pages;
4585 if (estimate > g->page_gotno)
4586 estimate = g->page_gotno;
4587 estimate += g->local_gotno + g->tls_gotno;
4588
4589 /* We place TLS GOT entries after both locals and globals. The globals
4590 for the primary GOT may overflow the normal GOT size limit, so be
4591 sure not to merge a GOT which requires TLS with the primary GOT in that
4592 case. This doesn't affect non-primary GOTs. */
4593 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4594
4595 if (estimate <= arg->max_count)
4596 {
4597 /* If we don't have a primary GOT, use it as
4598 a starting point for the primary GOT. */
4599 if (!arg->primary)
4600 {
4601 arg->primary = g;
4602 return TRUE;
4603 }
4604
4605 /* Try merging with the primary GOT. */
4606 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4607 if (result >= 0)
4608 return result;
4609 }
4610
4611 /* If we can merge with the last-created got, do it. */
4612 if (arg->current)
4613 {
4614 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4615 if (result >= 0)
4616 return result;
4617 }
4618
4619 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4620 fits; if it turns out that it doesn't, we'll get relocation
4621 overflows anyway. */
4622 g->next = arg->current;
4623 arg->current = g;
4624
4625 return TRUE;
4626 }
4627
4628 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4629 to GOTIDX, duplicating the entry if it has already been assigned
4630 an index in a different GOT. */
4631
4632 static bfd_boolean
4633 mips_elf_set_gotidx (void **entryp, long gotidx)
4634 {
4635 struct mips_got_entry *entry;
4636
4637 entry = (struct mips_got_entry *) *entryp;
4638 if (entry->gotidx > 0)
4639 {
4640 struct mips_got_entry *new_entry;
4641
4642 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4643 if (!new_entry)
4644 return FALSE;
4645
4646 *new_entry = *entry;
4647 *entryp = new_entry;
4648 entry = new_entry;
4649 }
4650 entry->gotidx = gotidx;
4651 return TRUE;
4652 }
4653
4654 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4655 mips_elf_traverse_got_arg in which DATA->value is the size of one
4656 GOT entry. Set DATA->g to null on failure. */
4657
4658 static int
4659 mips_elf_initialize_tls_index (void **entryp, void *data)
4660 {
4661 struct mips_got_entry *entry;
4662 struct mips_elf_traverse_got_arg *arg;
4663
4664 /* We're only interested in TLS symbols. */
4665 entry = (struct mips_got_entry *) *entryp;
4666 if (entry->tls_type == GOT_TLS_NONE)
4667 return 1;
4668
4669 arg = (struct mips_elf_traverse_got_arg *) data;
4670 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4671 {
4672 arg->g = NULL;
4673 return 0;
4674 }
4675
4676 /* Account for the entries we've just allocated. */
4677 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4678 return 1;
4679 }
4680
4681 /* A htab_traverse callback for GOT entries, where DATA points to a
4682 mips_elf_traverse_got_arg. Set the global_got_area of each global
4683 symbol to DATA->value. */
4684
4685 static int
4686 mips_elf_set_global_got_area (void **entryp, void *data)
4687 {
4688 struct mips_got_entry *entry;
4689 struct mips_elf_traverse_got_arg *arg;
4690
4691 entry = (struct mips_got_entry *) *entryp;
4692 arg = (struct mips_elf_traverse_got_arg *) data;
4693 if (entry->abfd != NULL
4694 && entry->symndx == -1
4695 && entry->d.h->global_got_area != GGA_NONE)
4696 entry->d.h->global_got_area = arg->value;
4697 return 1;
4698 }
4699
4700 /* A htab_traverse callback for secondary GOT entries, where DATA points
4701 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4702 and record the number of relocations they require. DATA->value is
4703 the size of one GOT entry. Set DATA->g to null on failure. */
4704
4705 static int
4706 mips_elf_set_global_gotidx (void **entryp, void *data)
4707 {
4708 struct mips_got_entry *entry;
4709 struct mips_elf_traverse_got_arg *arg;
4710
4711 entry = (struct mips_got_entry *) *entryp;
4712 arg = (struct mips_elf_traverse_got_arg *) data;
4713 if (entry->abfd != NULL
4714 && entry->symndx == -1
4715 && entry->d.h->global_got_area != GGA_NONE)
4716 {
4717 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4718 {
4719 arg->g = NULL;
4720 return 0;
4721 }
4722 arg->g->assigned_low_gotno += 1;
4723
4724 if (arg->info->shared
4725 || (elf_hash_table (arg->info)->dynamic_sections_created
4726 && entry->d.h->root.def_dynamic
4727 && !entry->d.h->root.def_regular))
4728 arg->g->relocs += 1;
4729 }
4730
4731 return 1;
4732 }
4733
4734 /* A htab_traverse callback for GOT entries for which DATA is the
4735 bfd_link_info. Forbid any global symbols from having traditional
4736 lazy-binding stubs. */
4737
4738 static int
4739 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4740 {
4741 struct bfd_link_info *info;
4742 struct mips_elf_link_hash_table *htab;
4743 struct mips_got_entry *entry;
4744
4745 entry = (struct mips_got_entry *) *entryp;
4746 info = (struct bfd_link_info *) data;
4747 htab = mips_elf_hash_table (info);
4748 BFD_ASSERT (htab != NULL);
4749
4750 if (entry->abfd != NULL
4751 && entry->symndx == -1
4752 && entry->d.h->needs_lazy_stub)
4753 {
4754 entry->d.h->needs_lazy_stub = FALSE;
4755 htab->lazy_stub_count--;
4756 }
4757
4758 return 1;
4759 }
4760
4761 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4762 the primary GOT. */
4763 static bfd_vma
4764 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4765 {
4766 if (!g->next)
4767 return 0;
4768
4769 g = mips_elf_bfd_got (ibfd, FALSE);
4770 if (! g)
4771 return 0;
4772
4773 BFD_ASSERT (g->next);
4774
4775 g = g->next;
4776
4777 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4778 * MIPS_ELF_GOT_SIZE (abfd);
4779 }
4780
4781 /* Turn a single GOT that is too big for 16-bit addressing into
4782 a sequence of GOTs, each one 16-bit addressable. */
4783
4784 static bfd_boolean
4785 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4786 asection *got, bfd_size_type pages)
4787 {
4788 struct mips_elf_link_hash_table *htab;
4789 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4790 struct mips_elf_traverse_got_arg tga;
4791 struct mips_got_info *g, *gg;
4792 unsigned int assign, needed_relocs;
4793 bfd *dynobj, *ibfd;
4794
4795 dynobj = elf_hash_table (info)->dynobj;
4796 htab = mips_elf_hash_table (info);
4797 BFD_ASSERT (htab != NULL);
4798
4799 g = htab->got_info;
4800
4801 got_per_bfd_arg.obfd = abfd;
4802 got_per_bfd_arg.info = info;
4803 got_per_bfd_arg.current = NULL;
4804 got_per_bfd_arg.primary = NULL;
4805 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4806 / MIPS_ELF_GOT_SIZE (abfd))
4807 - htab->reserved_gotno);
4808 got_per_bfd_arg.max_pages = pages;
4809 /* The number of globals that will be included in the primary GOT.
4810 See the calls to mips_elf_set_global_got_area below for more
4811 information. */
4812 got_per_bfd_arg.global_count = g->global_gotno;
4813
4814 /* Try to merge the GOTs of input bfds together, as long as they
4815 don't seem to exceed the maximum GOT size, choosing one of them
4816 to be the primary GOT. */
4817 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4818 {
4819 gg = mips_elf_bfd_got (ibfd, FALSE);
4820 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4821 return FALSE;
4822 }
4823
4824 /* If we do not find any suitable primary GOT, create an empty one. */
4825 if (got_per_bfd_arg.primary == NULL)
4826 g->next = mips_elf_create_got_info (abfd);
4827 else
4828 g->next = got_per_bfd_arg.primary;
4829 g->next->next = got_per_bfd_arg.current;
4830
4831 /* GG is now the master GOT, and G is the primary GOT. */
4832 gg = g;
4833 g = g->next;
4834
4835 /* Map the output bfd to the primary got. That's what we're going
4836 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4837 didn't mark in check_relocs, and we want a quick way to find it.
4838 We can't just use gg->next because we're going to reverse the
4839 list. */
4840 mips_elf_replace_bfd_got (abfd, g);
4841
4842 /* Every symbol that is referenced in a dynamic relocation must be
4843 present in the primary GOT, so arrange for them to appear after
4844 those that are actually referenced. */
4845 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4846 g->global_gotno = gg->global_gotno;
4847
4848 tga.info = info;
4849 tga.value = GGA_RELOC_ONLY;
4850 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4851 tga.value = GGA_NORMAL;
4852 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4853
4854 /* Now go through the GOTs assigning them offset ranges.
4855 [assigned_low_gotno, local_gotno[ will be set to the range of local
4856 entries in each GOT. We can then compute the end of a GOT by
4857 adding local_gotno to global_gotno. We reverse the list and make
4858 it circular since then we'll be able to quickly compute the
4859 beginning of a GOT, by computing the end of its predecessor. To
4860 avoid special cases for the primary GOT, while still preserving
4861 assertions that are valid for both single- and multi-got links,
4862 we arrange for the main got struct to have the right number of
4863 global entries, but set its local_gotno such that the initial
4864 offset of the primary GOT is zero. Remember that the primary GOT
4865 will become the last item in the circular linked list, so it
4866 points back to the master GOT. */
4867 gg->local_gotno = -g->global_gotno;
4868 gg->global_gotno = g->global_gotno;
4869 gg->tls_gotno = 0;
4870 assign = 0;
4871 gg->next = gg;
4872
4873 do
4874 {
4875 struct mips_got_info *gn;
4876
4877 assign += htab->reserved_gotno;
4878 g->assigned_low_gotno = assign;
4879 g->local_gotno += assign;
4880 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4881 g->assigned_high_gotno = g->local_gotno - 1;
4882 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4883
4884 /* Take g out of the direct list, and push it onto the reversed
4885 list that gg points to. g->next is guaranteed to be nonnull after
4886 this operation, as required by mips_elf_initialize_tls_index. */
4887 gn = g->next;
4888 g->next = gg->next;
4889 gg->next = g;
4890
4891 /* Set up any TLS entries. We always place the TLS entries after
4892 all non-TLS entries. */
4893 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4894 tga.g = g;
4895 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4896 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4897 if (!tga.g)
4898 return FALSE;
4899 BFD_ASSERT (g->tls_assigned_gotno == assign);
4900
4901 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4902 g = gn;
4903
4904 /* Forbid global symbols in every non-primary GOT from having
4905 lazy-binding stubs. */
4906 if (g)
4907 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4908 }
4909 while (g);
4910
4911 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4912
4913 needed_relocs = 0;
4914 for (g = gg->next; g && g->next != gg; g = g->next)
4915 {
4916 unsigned int save_assign;
4917
4918 /* Assign offsets to global GOT entries and count how many
4919 relocations they need. */
4920 save_assign = g->assigned_low_gotno;
4921 g->assigned_low_gotno = g->local_gotno;
4922 tga.info = info;
4923 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4924 tga.g = g;
4925 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4926 if (!tga.g)
4927 return FALSE;
4928 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4929 g->assigned_low_gotno = save_assign;
4930
4931 if (info->shared)
4932 {
4933 g->relocs += g->local_gotno - g->assigned_low_gotno;
4934 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4935 + g->next->global_gotno
4936 + g->next->tls_gotno
4937 + htab->reserved_gotno);
4938 }
4939 needed_relocs += g->relocs;
4940 }
4941 needed_relocs += g->relocs;
4942
4943 if (needed_relocs)
4944 mips_elf_allocate_dynamic_relocations (dynobj, info,
4945 needed_relocs);
4946
4947 return TRUE;
4948 }
4949
4950 \f
4951 /* Returns the first relocation of type r_type found, beginning with
4952 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4953
4954 static const Elf_Internal_Rela *
4955 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4956 const Elf_Internal_Rela *relocation,
4957 const Elf_Internal_Rela *relend)
4958 {
4959 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4960
4961 while (relocation < relend)
4962 {
4963 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4964 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4965 return relocation;
4966
4967 ++relocation;
4968 }
4969
4970 /* We didn't find it. */
4971 return NULL;
4972 }
4973
4974 /* Return whether an input relocation is against a local symbol. */
4975
4976 static bfd_boolean
4977 mips_elf_local_relocation_p (bfd *input_bfd,
4978 const Elf_Internal_Rela *relocation,
4979 asection **local_sections)
4980 {
4981 unsigned long r_symndx;
4982 Elf_Internal_Shdr *symtab_hdr;
4983 size_t extsymoff;
4984
4985 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4986 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4987 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4988
4989 if (r_symndx < extsymoff)
4990 return TRUE;
4991 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4992 return TRUE;
4993
4994 return FALSE;
4995 }
4996 \f
4997 /* Sign-extend VALUE, which has the indicated number of BITS. */
4998
4999 bfd_vma
5000 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5001 {
5002 if (value & ((bfd_vma) 1 << (bits - 1)))
5003 /* VALUE is negative. */
5004 value |= ((bfd_vma) - 1) << bits;
5005
5006 return value;
5007 }
5008
5009 /* Return non-zero if the indicated VALUE has overflowed the maximum
5010 range expressible by a signed number with the indicated number of
5011 BITS. */
5012
5013 static bfd_boolean
5014 mips_elf_overflow_p (bfd_vma value, int bits)
5015 {
5016 bfd_signed_vma svalue = (bfd_signed_vma) value;
5017
5018 if (svalue > (1 << (bits - 1)) - 1)
5019 /* The value is too big. */
5020 return TRUE;
5021 else if (svalue < -(1 << (bits - 1)))
5022 /* The value is too small. */
5023 return TRUE;
5024
5025 /* All is well. */
5026 return FALSE;
5027 }
5028
5029 /* Calculate the %high function. */
5030
5031 static bfd_vma
5032 mips_elf_high (bfd_vma value)
5033 {
5034 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5035 }
5036
5037 /* Calculate the %higher function. */
5038
5039 static bfd_vma
5040 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5041 {
5042 #ifdef BFD64
5043 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5044 #else
5045 abort ();
5046 return MINUS_ONE;
5047 #endif
5048 }
5049
5050 /* Calculate the %highest function. */
5051
5052 static bfd_vma
5053 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5054 {
5055 #ifdef BFD64
5056 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5057 #else
5058 abort ();
5059 return MINUS_ONE;
5060 #endif
5061 }
5062 \f
5063 /* Create the .compact_rel section. */
5064
5065 static bfd_boolean
5066 mips_elf_create_compact_rel_section
5067 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5068 {
5069 flagword flags;
5070 register asection *s;
5071
5072 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5073 {
5074 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5075 | SEC_READONLY);
5076
5077 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5078 if (s == NULL
5079 || ! bfd_set_section_alignment (abfd, s,
5080 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5081 return FALSE;
5082
5083 s->size = sizeof (Elf32_External_compact_rel);
5084 }
5085
5086 return TRUE;
5087 }
5088
5089 /* Create the .got section to hold the global offset table. */
5090
5091 static bfd_boolean
5092 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5093 {
5094 flagword flags;
5095 register asection *s;
5096 struct elf_link_hash_entry *h;
5097 struct bfd_link_hash_entry *bh;
5098 struct mips_elf_link_hash_table *htab;
5099
5100 htab = mips_elf_hash_table (info);
5101 BFD_ASSERT (htab != NULL);
5102
5103 /* This function may be called more than once. */
5104 if (htab->sgot)
5105 return TRUE;
5106
5107 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5108 | SEC_LINKER_CREATED);
5109
5110 /* We have to use an alignment of 2**4 here because this is hardcoded
5111 in the function stub generation and in the linker script. */
5112 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5113 if (s == NULL
5114 || ! bfd_set_section_alignment (abfd, s, 4))
5115 return FALSE;
5116 htab->sgot = s;
5117
5118 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5119 linker script because we don't want to define the symbol if we
5120 are not creating a global offset table. */
5121 bh = NULL;
5122 if (! (_bfd_generic_link_add_one_symbol
5123 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5124 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5125 return FALSE;
5126
5127 h = (struct elf_link_hash_entry *) bh;
5128 h->non_elf = 0;
5129 h->def_regular = 1;
5130 h->type = STT_OBJECT;
5131 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5132 elf_hash_table (info)->hgot = h;
5133
5134 if (info->shared
5135 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5136 return FALSE;
5137
5138 htab->got_info = mips_elf_create_got_info (abfd);
5139 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5140 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5141
5142 /* We also need a .got.plt section when generating PLTs. */
5143 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5144 SEC_ALLOC | SEC_LOAD
5145 | SEC_HAS_CONTENTS
5146 | SEC_IN_MEMORY
5147 | SEC_LINKER_CREATED);
5148 if (s == NULL)
5149 return FALSE;
5150 htab->sgotplt = s;
5151
5152 return TRUE;
5153 }
5154 \f
5155 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5156 __GOTT_INDEX__ symbols. These symbols are only special for
5157 shared objects; they are not used in executables. */
5158
5159 static bfd_boolean
5160 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5161 {
5162 return (mips_elf_hash_table (info)->is_vxworks
5163 && info->shared
5164 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5165 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5166 }
5167
5168 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5169 require an la25 stub. See also mips_elf_local_pic_function_p,
5170 which determines whether the destination function ever requires a
5171 stub. */
5172
5173 static bfd_boolean
5174 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5175 bfd_boolean target_is_16_bit_code_p)
5176 {
5177 /* We specifically ignore branches and jumps from EF_PIC objects,
5178 where the onus is on the compiler or programmer to perform any
5179 necessary initialization of $25. Sometimes such initialization
5180 is unnecessary; for example, -mno-shared functions do not use
5181 the incoming value of $25, and may therefore be called directly. */
5182 if (PIC_OBJECT_P (input_bfd))
5183 return FALSE;
5184
5185 switch (r_type)
5186 {
5187 case R_MIPS_26:
5188 case R_MIPS_PC16:
5189 case R_MIPS_PC21_S2:
5190 case R_MIPS_PC26_S2:
5191 case R_MICROMIPS_26_S1:
5192 case R_MICROMIPS_PC7_S1:
5193 case R_MICROMIPS_PC10_S1:
5194 case R_MICROMIPS_PC16_S1:
5195 case R_MICROMIPS_PC23_S2:
5196 return TRUE;
5197
5198 case R_MIPS16_26:
5199 return !target_is_16_bit_code_p;
5200
5201 default:
5202 return FALSE;
5203 }
5204 }
5205 \f
5206 /* Calculate the value produced by the RELOCATION (which comes from
5207 the INPUT_BFD). The ADDEND is the addend to use for this
5208 RELOCATION; RELOCATION->R_ADDEND is ignored.
5209
5210 The result of the relocation calculation is stored in VALUEP.
5211 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5212 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5213
5214 This function returns bfd_reloc_continue if the caller need take no
5215 further action regarding this relocation, bfd_reloc_notsupported if
5216 something goes dramatically wrong, bfd_reloc_overflow if an
5217 overflow occurs, and bfd_reloc_ok to indicate success. */
5218
5219 static bfd_reloc_status_type
5220 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5221 asection *input_section,
5222 struct bfd_link_info *info,
5223 const Elf_Internal_Rela *relocation,
5224 bfd_vma addend, reloc_howto_type *howto,
5225 Elf_Internal_Sym *local_syms,
5226 asection **local_sections, bfd_vma *valuep,
5227 const char **namep,
5228 bfd_boolean *cross_mode_jump_p,
5229 bfd_boolean save_addend)
5230 {
5231 /* The eventual value we will return. */
5232 bfd_vma value;
5233 /* The address of the symbol against which the relocation is
5234 occurring. */
5235 bfd_vma symbol = 0;
5236 /* The final GP value to be used for the relocatable, executable, or
5237 shared object file being produced. */
5238 bfd_vma gp;
5239 /* The place (section offset or address) of the storage unit being
5240 relocated. */
5241 bfd_vma p;
5242 /* The value of GP used to create the relocatable object. */
5243 bfd_vma gp0;
5244 /* The offset into the global offset table at which the address of
5245 the relocation entry symbol, adjusted by the addend, resides
5246 during execution. */
5247 bfd_vma g = MINUS_ONE;
5248 /* The section in which the symbol referenced by the relocation is
5249 located. */
5250 asection *sec = NULL;
5251 struct mips_elf_link_hash_entry *h = NULL;
5252 /* TRUE if the symbol referred to by this relocation is a local
5253 symbol. */
5254 bfd_boolean local_p, was_local_p;
5255 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5256 bfd_boolean gp_disp_p = FALSE;
5257 /* TRUE if the symbol referred to by this relocation is
5258 "__gnu_local_gp". */
5259 bfd_boolean gnu_local_gp_p = FALSE;
5260 Elf_Internal_Shdr *symtab_hdr;
5261 size_t extsymoff;
5262 unsigned long r_symndx;
5263 int r_type;
5264 /* TRUE if overflow occurred during the calculation of the
5265 relocation value. */
5266 bfd_boolean overflowed_p;
5267 /* TRUE if this relocation refers to a MIPS16 function. */
5268 bfd_boolean target_is_16_bit_code_p = FALSE;
5269 bfd_boolean target_is_micromips_code_p = FALSE;
5270 struct mips_elf_link_hash_table *htab;
5271 bfd *dynobj;
5272
5273 dynobj = elf_hash_table (info)->dynobj;
5274 htab = mips_elf_hash_table (info);
5275 BFD_ASSERT (htab != NULL);
5276
5277 /* Parse the relocation. */
5278 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5279 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5280 p = (input_section->output_section->vma
5281 + input_section->output_offset
5282 + relocation->r_offset);
5283
5284 /* Assume that there will be no overflow. */
5285 overflowed_p = FALSE;
5286
5287 /* Figure out whether or not the symbol is local, and get the offset
5288 used in the array of hash table entries. */
5289 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5290 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5291 local_sections);
5292 was_local_p = local_p;
5293 if (! elf_bad_symtab (input_bfd))
5294 extsymoff = symtab_hdr->sh_info;
5295 else
5296 {
5297 /* The symbol table does not follow the rule that local symbols
5298 must come before globals. */
5299 extsymoff = 0;
5300 }
5301
5302 /* Figure out the value of the symbol. */
5303 if (local_p)
5304 {
5305 Elf_Internal_Sym *sym;
5306
5307 sym = local_syms + r_symndx;
5308 sec = local_sections[r_symndx];
5309
5310 symbol = sec->output_section->vma + sec->output_offset;
5311 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5312 || (sec->flags & SEC_MERGE))
5313 symbol += sym->st_value;
5314 if ((sec->flags & SEC_MERGE)
5315 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5316 {
5317 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5318 addend -= symbol;
5319 addend += sec->output_section->vma + sec->output_offset;
5320 }
5321
5322 /* MIPS16/microMIPS text labels should be treated as odd. */
5323 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5324 ++symbol;
5325
5326 /* Record the name of this symbol, for our caller. */
5327 *namep = bfd_elf_string_from_elf_section (input_bfd,
5328 symtab_hdr->sh_link,
5329 sym->st_name);
5330 if (*namep == '\0')
5331 *namep = bfd_section_name (input_bfd, sec);
5332
5333 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5334 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5335 }
5336 else
5337 {
5338 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5339
5340 /* For global symbols we look up the symbol in the hash-table. */
5341 h = ((struct mips_elf_link_hash_entry *)
5342 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5343 /* Find the real hash-table entry for this symbol. */
5344 while (h->root.root.type == bfd_link_hash_indirect
5345 || h->root.root.type == bfd_link_hash_warning)
5346 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5347
5348 /* Record the name of this symbol, for our caller. */
5349 *namep = h->root.root.root.string;
5350
5351 /* See if this is the special _gp_disp symbol. Note that such a
5352 symbol must always be a global symbol. */
5353 if (strcmp (*namep, "_gp_disp") == 0
5354 && ! NEWABI_P (input_bfd))
5355 {
5356 /* Relocations against _gp_disp are permitted only with
5357 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5358 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5359 return bfd_reloc_notsupported;
5360
5361 gp_disp_p = TRUE;
5362 }
5363 /* See if this is the special _gp symbol. Note that such a
5364 symbol must always be a global symbol. */
5365 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5366 gnu_local_gp_p = TRUE;
5367
5368
5369 /* If this symbol is defined, calculate its address. Note that
5370 _gp_disp is a magic symbol, always implicitly defined by the
5371 linker, so it's inappropriate to check to see whether or not
5372 its defined. */
5373 else if ((h->root.root.type == bfd_link_hash_defined
5374 || h->root.root.type == bfd_link_hash_defweak)
5375 && h->root.root.u.def.section)
5376 {
5377 sec = h->root.root.u.def.section;
5378 if (sec->output_section)
5379 symbol = (h->root.root.u.def.value
5380 + sec->output_section->vma
5381 + sec->output_offset);
5382 else
5383 symbol = h->root.root.u.def.value;
5384 }
5385 else if (h->root.root.type == bfd_link_hash_undefweak)
5386 /* We allow relocations against undefined weak symbols, giving
5387 it the value zero, so that you can undefined weak functions
5388 and check to see if they exist by looking at their
5389 addresses. */
5390 symbol = 0;
5391 else if (info->unresolved_syms_in_objects == RM_IGNORE
5392 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5393 symbol = 0;
5394 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5395 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5396 {
5397 /* If this is a dynamic link, we should have created a
5398 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5399 in in _bfd_mips_elf_create_dynamic_sections.
5400 Otherwise, we should define the symbol with a value of 0.
5401 FIXME: It should probably get into the symbol table
5402 somehow as well. */
5403 BFD_ASSERT (! info->shared);
5404 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5405 symbol = 0;
5406 }
5407 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5408 {
5409 /* This is an optional symbol - an Irix specific extension to the
5410 ELF spec. Ignore it for now.
5411 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5412 than simply ignoring them, but we do not handle this for now.
5413 For information see the "64-bit ELF Object File Specification"
5414 which is available from here:
5415 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5416 symbol = 0;
5417 }
5418 else if ((*info->callbacks->undefined_symbol)
5419 (info, h->root.root.root.string, input_bfd,
5420 input_section, relocation->r_offset,
5421 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5422 || ELF_ST_VISIBILITY (h->root.other)))
5423 {
5424 return bfd_reloc_undefined;
5425 }
5426 else
5427 {
5428 return bfd_reloc_notsupported;
5429 }
5430
5431 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5432 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5433 }
5434
5435 /* If this is a reference to a 16-bit function with a stub, we need
5436 to redirect the relocation to the stub unless:
5437
5438 (a) the relocation is for a MIPS16 JAL;
5439
5440 (b) the relocation is for a MIPS16 PIC call, and there are no
5441 non-MIPS16 uses of the GOT slot; or
5442
5443 (c) the section allows direct references to MIPS16 functions. */
5444 if (r_type != R_MIPS16_26
5445 && !info->relocatable
5446 && ((h != NULL
5447 && h->fn_stub != NULL
5448 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5449 || (local_p
5450 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5451 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5452 && !section_allows_mips16_refs_p (input_section))
5453 {
5454 /* This is a 32- or 64-bit call to a 16-bit function. We should
5455 have already noticed that we were going to need the
5456 stub. */
5457 if (local_p)
5458 {
5459 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5460 value = 0;
5461 }
5462 else
5463 {
5464 BFD_ASSERT (h->need_fn_stub);
5465 if (h->la25_stub)
5466 {
5467 /* If a LA25 header for the stub itself exists, point to the
5468 prepended LUI/ADDIU sequence. */
5469 sec = h->la25_stub->stub_section;
5470 value = h->la25_stub->offset;
5471 }
5472 else
5473 {
5474 sec = h->fn_stub;
5475 value = 0;
5476 }
5477 }
5478
5479 symbol = sec->output_section->vma + sec->output_offset + value;
5480 /* The target is 16-bit, but the stub isn't. */
5481 target_is_16_bit_code_p = FALSE;
5482 }
5483 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5484 to a standard MIPS function, we need to redirect the call to the stub.
5485 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5486 indirect calls should use an indirect stub instead. */
5487 else if (r_type == R_MIPS16_26 && !info->relocatable
5488 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5489 || (local_p
5490 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5491 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5492 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5493 {
5494 if (local_p)
5495 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5496 else
5497 {
5498 /* If both call_stub and call_fp_stub are defined, we can figure
5499 out which one to use by checking which one appears in the input
5500 file. */
5501 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5502 {
5503 asection *o;
5504
5505 sec = NULL;
5506 for (o = input_bfd->sections; o != NULL; o = o->next)
5507 {
5508 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5509 {
5510 sec = h->call_fp_stub;
5511 break;
5512 }
5513 }
5514 if (sec == NULL)
5515 sec = h->call_stub;
5516 }
5517 else if (h->call_stub != NULL)
5518 sec = h->call_stub;
5519 else
5520 sec = h->call_fp_stub;
5521 }
5522
5523 BFD_ASSERT (sec->size > 0);
5524 symbol = sec->output_section->vma + sec->output_offset;
5525 }
5526 /* If this is a direct call to a PIC function, redirect to the
5527 non-PIC stub. */
5528 else if (h != NULL && h->la25_stub
5529 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5530 target_is_16_bit_code_p))
5531 symbol = (h->la25_stub->stub_section->output_section->vma
5532 + h->la25_stub->stub_section->output_offset
5533 + h->la25_stub->offset);
5534 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5535 entry is used if a standard PLT entry has also been made. In this
5536 case the symbol will have been set by mips_elf_set_plt_sym_value
5537 to point to the standard PLT entry, so redirect to the compressed
5538 one. */
5539 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5540 && !info->relocatable
5541 && h != NULL
5542 && h->use_plt_entry
5543 && h->root.plt.plist->comp_offset != MINUS_ONE
5544 && h->root.plt.plist->mips_offset != MINUS_ONE)
5545 {
5546 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5547
5548 sec = htab->splt;
5549 symbol = (sec->output_section->vma
5550 + sec->output_offset
5551 + htab->plt_header_size
5552 + htab->plt_mips_offset
5553 + h->root.plt.plist->comp_offset
5554 + 1);
5555
5556 target_is_16_bit_code_p = !micromips_p;
5557 target_is_micromips_code_p = micromips_p;
5558 }
5559
5560 /* Make sure MIPS16 and microMIPS are not used together. */
5561 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5562 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5563 {
5564 (*_bfd_error_handler)
5565 (_("MIPS16 and microMIPS functions cannot call each other"));
5566 return bfd_reloc_notsupported;
5567 }
5568
5569 /* Calls from 16-bit code to 32-bit code and vice versa require the
5570 mode change. However, we can ignore calls to undefined weak symbols,
5571 which should never be executed at runtime. This exception is important
5572 because the assembly writer may have "known" that any definition of the
5573 symbol would be 16-bit code, and that direct jumps were therefore
5574 acceptable. */
5575 *cross_mode_jump_p = (!info->relocatable
5576 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5577 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5578 || (r_type == R_MICROMIPS_26_S1
5579 && !target_is_micromips_code_p)
5580 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5581 && (target_is_16_bit_code_p
5582 || target_is_micromips_code_p))));
5583
5584 local_p = (h == NULL || mips_use_local_got_p (info, h));
5585
5586 gp0 = _bfd_get_gp_value (input_bfd);
5587 gp = _bfd_get_gp_value (abfd);
5588 if (htab->got_info)
5589 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5590
5591 if (gnu_local_gp_p)
5592 symbol = gp;
5593
5594 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5595 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5596 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5597 if (got_page_reloc_p (r_type) && !local_p)
5598 {
5599 r_type = (micromips_reloc_p (r_type)
5600 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5601 addend = 0;
5602 }
5603
5604 /* If we haven't already determined the GOT offset, and we're going
5605 to need it, get it now. */
5606 switch (r_type)
5607 {
5608 case R_MIPS16_CALL16:
5609 case R_MIPS16_GOT16:
5610 case R_MIPS_CALL16:
5611 case R_MIPS_GOT16:
5612 case R_MIPS_GOT_DISP:
5613 case R_MIPS_GOT_HI16:
5614 case R_MIPS_CALL_HI16:
5615 case R_MIPS_GOT_LO16:
5616 case R_MIPS_CALL_LO16:
5617 case R_MICROMIPS_CALL16:
5618 case R_MICROMIPS_GOT16:
5619 case R_MICROMIPS_GOT_DISP:
5620 case R_MICROMIPS_GOT_HI16:
5621 case R_MICROMIPS_CALL_HI16:
5622 case R_MICROMIPS_GOT_LO16:
5623 case R_MICROMIPS_CALL_LO16:
5624 case R_MIPS_TLS_GD:
5625 case R_MIPS_TLS_GOTTPREL:
5626 case R_MIPS_TLS_LDM:
5627 case R_MIPS16_TLS_GD:
5628 case R_MIPS16_TLS_GOTTPREL:
5629 case R_MIPS16_TLS_LDM:
5630 case R_MICROMIPS_TLS_GD:
5631 case R_MICROMIPS_TLS_GOTTPREL:
5632 case R_MICROMIPS_TLS_LDM:
5633 /* Find the index into the GOT where this value is located. */
5634 if (tls_ldm_reloc_p (r_type))
5635 {
5636 g = mips_elf_local_got_index (abfd, input_bfd, info,
5637 0, 0, NULL, r_type);
5638 if (g == MINUS_ONE)
5639 return bfd_reloc_outofrange;
5640 }
5641 else if (!local_p)
5642 {
5643 /* On VxWorks, CALL relocations should refer to the .got.plt
5644 entry, which is initialized to point at the PLT stub. */
5645 if (htab->is_vxworks
5646 && (call_hi16_reloc_p (r_type)
5647 || call_lo16_reloc_p (r_type)
5648 || call16_reloc_p (r_type)))
5649 {
5650 BFD_ASSERT (addend == 0);
5651 BFD_ASSERT (h->root.needs_plt);
5652 g = mips_elf_gotplt_index (info, &h->root);
5653 }
5654 else
5655 {
5656 BFD_ASSERT (addend == 0);
5657 g = mips_elf_global_got_index (abfd, info, input_bfd,
5658 &h->root, r_type);
5659 if (!TLS_RELOC_P (r_type)
5660 && !elf_hash_table (info)->dynamic_sections_created)
5661 /* This is a static link. We must initialize the GOT entry. */
5662 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5663 }
5664 }
5665 else if (!htab->is_vxworks
5666 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5667 /* The calculation below does not involve "g". */
5668 break;
5669 else
5670 {
5671 g = mips_elf_local_got_index (abfd, input_bfd, info,
5672 symbol + addend, r_symndx, h, r_type);
5673 if (g == MINUS_ONE)
5674 return bfd_reloc_outofrange;
5675 }
5676
5677 /* Convert GOT indices to actual offsets. */
5678 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5679 break;
5680 }
5681
5682 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5683 symbols are resolved by the loader. Add them to .rela.dyn. */
5684 if (h != NULL && is_gott_symbol (info, &h->root))
5685 {
5686 Elf_Internal_Rela outrel;
5687 bfd_byte *loc;
5688 asection *s;
5689
5690 s = mips_elf_rel_dyn_section (info, FALSE);
5691 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5692
5693 outrel.r_offset = (input_section->output_section->vma
5694 + input_section->output_offset
5695 + relocation->r_offset);
5696 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5697 outrel.r_addend = addend;
5698 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5699
5700 /* If we've written this relocation for a readonly section,
5701 we need to set DF_TEXTREL again, so that we do not delete the
5702 DT_TEXTREL tag. */
5703 if (MIPS_ELF_READONLY_SECTION (input_section))
5704 info->flags |= DF_TEXTREL;
5705
5706 *valuep = 0;
5707 return bfd_reloc_ok;
5708 }
5709
5710 /* Figure out what kind of relocation is being performed. */
5711 switch (r_type)
5712 {
5713 case R_MIPS_NONE:
5714 return bfd_reloc_continue;
5715
5716 case R_MIPS_16:
5717 if (howto->partial_inplace)
5718 addend = _bfd_mips_elf_sign_extend (addend, 16);
5719 value = symbol + addend;
5720 overflowed_p = mips_elf_overflow_p (value, 16);
5721 break;
5722
5723 case R_MIPS_32:
5724 case R_MIPS_REL32:
5725 case R_MIPS_64:
5726 if ((info->shared
5727 || (htab->root.dynamic_sections_created
5728 && h != NULL
5729 && h->root.def_dynamic
5730 && !h->root.def_regular
5731 && !h->has_static_relocs))
5732 && r_symndx != STN_UNDEF
5733 && (h == NULL
5734 || h->root.root.type != bfd_link_hash_undefweak
5735 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5736 && (input_section->flags & SEC_ALLOC) != 0)
5737 {
5738 /* If we're creating a shared library, then we can't know
5739 where the symbol will end up. So, we create a relocation
5740 record in the output, and leave the job up to the dynamic
5741 linker. We must do the same for executable references to
5742 shared library symbols, unless we've decided to use copy
5743 relocs or PLTs instead. */
5744 value = addend;
5745 if (!mips_elf_create_dynamic_relocation (abfd,
5746 info,
5747 relocation,
5748 h,
5749 sec,
5750 symbol,
5751 &value,
5752 input_section))
5753 return bfd_reloc_undefined;
5754 }
5755 else
5756 {
5757 if (r_type != R_MIPS_REL32)
5758 value = symbol + addend;
5759 else
5760 value = addend;
5761 }
5762 value &= howto->dst_mask;
5763 break;
5764
5765 case R_MIPS_PC32:
5766 value = symbol + addend - p;
5767 value &= howto->dst_mask;
5768 break;
5769
5770 case R_MIPS16_26:
5771 /* The calculation for R_MIPS16_26 is just the same as for an
5772 R_MIPS_26. It's only the storage of the relocated field into
5773 the output file that's different. That's handled in
5774 mips_elf_perform_relocation. So, we just fall through to the
5775 R_MIPS_26 case here. */
5776 case R_MIPS_26:
5777 case R_MICROMIPS_26_S1:
5778 {
5779 unsigned int shift;
5780
5781 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5782 the correct ISA mode selector and bit 1 must be 0. */
5783 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5784 return bfd_reloc_outofrange;
5785
5786 /* Shift is 2, unusually, for microMIPS JALX. */
5787 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5788
5789 if (was_local_p)
5790 value = addend | ((p + 4) & (0xfc000000 << shift));
5791 else if (howto->partial_inplace)
5792 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5793 else
5794 value = addend;
5795 value = (value + symbol) >> shift;
5796 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5797 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5798 value &= howto->dst_mask;
5799 }
5800 break;
5801
5802 case R_MIPS_TLS_DTPREL_HI16:
5803 case R_MIPS16_TLS_DTPREL_HI16:
5804 case R_MICROMIPS_TLS_DTPREL_HI16:
5805 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5806 & howto->dst_mask);
5807 break;
5808
5809 case R_MIPS_TLS_DTPREL_LO16:
5810 case R_MIPS_TLS_DTPREL32:
5811 case R_MIPS_TLS_DTPREL64:
5812 case R_MIPS16_TLS_DTPREL_LO16:
5813 case R_MICROMIPS_TLS_DTPREL_LO16:
5814 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5815 break;
5816
5817 case R_MIPS_TLS_TPREL_HI16:
5818 case R_MIPS16_TLS_TPREL_HI16:
5819 case R_MICROMIPS_TLS_TPREL_HI16:
5820 value = (mips_elf_high (addend + symbol - tprel_base (info))
5821 & howto->dst_mask);
5822 break;
5823
5824 case R_MIPS_TLS_TPREL_LO16:
5825 case R_MIPS_TLS_TPREL32:
5826 case R_MIPS_TLS_TPREL64:
5827 case R_MIPS16_TLS_TPREL_LO16:
5828 case R_MICROMIPS_TLS_TPREL_LO16:
5829 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5830 break;
5831
5832 case R_MIPS_HI16:
5833 case R_MIPS16_HI16:
5834 case R_MICROMIPS_HI16:
5835 if (!gp_disp_p)
5836 {
5837 value = mips_elf_high (addend + symbol);
5838 value &= howto->dst_mask;
5839 }
5840 else
5841 {
5842 /* For MIPS16 ABI code we generate this sequence
5843 0: li $v0,%hi(_gp_disp)
5844 4: addiupc $v1,%lo(_gp_disp)
5845 8: sll $v0,16
5846 12: addu $v0,$v1
5847 14: move $gp,$v0
5848 So the offsets of hi and lo relocs are the same, but the
5849 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5850 ADDIUPC clears the low two bits of the instruction address,
5851 so the base is ($t9 + 4) & ~3. */
5852 if (r_type == R_MIPS16_HI16)
5853 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5854 /* The microMIPS .cpload sequence uses the same assembly
5855 instructions as the traditional psABI version, but the
5856 incoming $t9 has the low bit set. */
5857 else if (r_type == R_MICROMIPS_HI16)
5858 value = mips_elf_high (addend + gp - p - 1);
5859 else
5860 value = mips_elf_high (addend + gp - p);
5861 overflowed_p = mips_elf_overflow_p (value, 16);
5862 }
5863 break;
5864
5865 case R_MIPS_LO16:
5866 case R_MIPS16_LO16:
5867 case R_MICROMIPS_LO16:
5868 case R_MICROMIPS_HI0_LO16:
5869 if (!gp_disp_p)
5870 value = (symbol + addend) & howto->dst_mask;
5871 else
5872 {
5873 /* See the comment for R_MIPS16_HI16 above for the reason
5874 for this conditional. */
5875 if (r_type == R_MIPS16_LO16)
5876 value = addend + gp - (p & ~(bfd_vma) 0x3);
5877 else if (r_type == R_MICROMIPS_LO16
5878 || r_type == R_MICROMIPS_HI0_LO16)
5879 value = addend + gp - p + 3;
5880 else
5881 value = addend + gp - p + 4;
5882 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5883 for overflow. But, on, say, IRIX5, relocations against
5884 _gp_disp are normally generated from the .cpload
5885 pseudo-op. It generates code that normally looks like
5886 this:
5887
5888 lui $gp,%hi(_gp_disp)
5889 addiu $gp,$gp,%lo(_gp_disp)
5890 addu $gp,$gp,$t9
5891
5892 Here $t9 holds the address of the function being called,
5893 as required by the MIPS ELF ABI. The R_MIPS_LO16
5894 relocation can easily overflow in this situation, but the
5895 R_MIPS_HI16 relocation will handle the overflow.
5896 Therefore, we consider this a bug in the MIPS ABI, and do
5897 not check for overflow here. */
5898 }
5899 break;
5900
5901 case R_MIPS_LITERAL:
5902 case R_MICROMIPS_LITERAL:
5903 /* Because we don't merge literal sections, we can handle this
5904 just like R_MIPS_GPREL16. In the long run, we should merge
5905 shared literals, and then we will need to additional work
5906 here. */
5907
5908 /* Fall through. */
5909
5910 case R_MIPS16_GPREL:
5911 /* The R_MIPS16_GPREL performs the same calculation as
5912 R_MIPS_GPREL16, but stores the relocated bits in a different
5913 order. We don't need to do anything special here; the
5914 differences are handled in mips_elf_perform_relocation. */
5915 case R_MIPS_GPREL16:
5916 case R_MICROMIPS_GPREL7_S2:
5917 case R_MICROMIPS_GPREL16:
5918 /* Only sign-extend the addend if it was extracted from the
5919 instruction. If the addend was separate, leave it alone,
5920 otherwise we may lose significant bits. */
5921 if (howto->partial_inplace)
5922 addend = _bfd_mips_elf_sign_extend (addend, 16);
5923 value = symbol + addend - gp;
5924 /* If the symbol was local, any earlier relocatable links will
5925 have adjusted its addend with the gp offset, so compensate
5926 for that now. Don't do it for symbols forced local in this
5927 link, though, since they won't have had the gp offset applied
5928 to them before. */
5929 if (was_local_p)
5930 value += gp0;
5931 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5932 overflowed_p = mips_elf_overflow_p (value, 16);
5933 break;
5934
5935 case R_MIPS16_GOT16:
5936 case R_MIPS16_CALL16:
5937 case R_MIPS_GOT16:
5938 case R_MIPS_CALL16:
5939 case R_MICROMIPS_GOT16:
5940 case R_MICROMIPS_CALL16:
5941 /* VxWorks does not have separate local and global semantics for
5942 R_MIPS*_GOT16; every relocation evaluates to "G". */
5943 if (!htab->is_vxworks && local_p)
5944 {
5945 value = mips_elf_got16_entry (abfd, input_bfd, info,
5946 symbol + addend, !was_local_p);
5947 if (value == MINUS_ONE)
5948 return bfd_reloc_outofrange;
5949 value
5950 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5951 overflowed_p = mips_elf_overflow_p (value, 16);
5952 break;
5953 }
5954
5955 /* Fall through. */
5956
5957 case R_MIPS_TLS_GD:
5958 case R_MIPS_TLS_GOTTPREL:
5959 case R_MIPS_TLS_LDM:
5960 case R_MIPS_GOT_DISP:
5961 case R_MIPS16_TLS_GD:
5962 case R_MIPS16_TLS_GOTTPREL:
5963 case R_MIPS16_TLS_LDM:
5964 case R_MICROMIPS_TLS_GD:
5965 case R_MICROMIPS_TLS_GOTTPREL:
5966 case R_MICROMIPS_TLS_LDM:
5967 case R_MICROMIPS_GOT_DISP:
5968 value = g;
5969 overflowed_p = mips_elf_overflow_p (value, 16);
5970 break;
5971
5972 case R_MIPS_GPREL32:
5973 value = (addend + symbol + gp0 - gp);
5974 if (!save_addend)
5975 value &= howto->dst_mask;
5976 break;
5977
5978 case R_MIPS_PC16:
5979 case R_MIPS_GNU_REL16_S2:
5980 if (howto->partial_inplace)
5981 addend = _bfd_mips_elf_sign_extend (addend, 18);
5982
5983 if ((symbol + addend) & 3)
5984 return bfd_reloc_outofrange;
5985
5986 value = symbol + addend - p;
5987 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5988 overflowed_p = mips_elf_overflow_p (value, 18);
5989 value >>= howto->rightshift;
5990 value &= howto->dst_mask;
5991 break;
5992
5993 case R_MIPS_PC21_S2:
5994 if (howto->partial_inplace)
5995 addend = _bfd_mips_elf_sign_extend (addend, 23);
5996
5997 if ((symbol + addend) & 3)
5998 return bfd_reloc_outofrange;
5999
6000 value = symbol + addend - p;
6001 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6002 overflowed_p = mips_elf_overflow_p (value, 23);
6003 value >>= howto->rightshift;
6004 value &= howto->dst_mask;
6005 break;
6006
6007 case R_MIPS_PC26_S2:
6008 if (howto->partial_inplace)
6009 addend = _bfd_mips_elf_sign_extend (addend, 28);
6010
6011 if ((symbol + addend) & 3)
6012 return bfd_reloc_outofrange;
6013
6014 value = symbol + addend - p;
6015 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6016 overflowed_p = mips_elf_overflow_p (value, 28);
6017 value >>= howto->rightshift;
6018 value &= howto->dst_mask;
6019 break;
6020
6021 case R_MIPS_PC18_S3:
6022 if (howto->partial_inplace)
6023 addend = _bfd_mips_elf_sign_extend (addend, 21);
6024
6025 if ((symbol + addend) & 7)
6026 return bfd_reloc_outofrange;
6027
6028 value = symbol + addend - ((p | 7) ^ 7);
6029 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6030 overflowed_p = mips_elf_overflow_p (value, 21);
6031 value >>= howto->rightshift;
6032 value &= howto->dst_mask;
6033 break;
6034
6035 case R_MIPS_PC19_S2:
6036 if (howto->partial_inplace)
6037 addend = _bfd_mips_elf_sign_extend (addend, 21);
6038
6039 if ((symbol + addend) & 3)
6040 return bfd_reloc_outofrange;
6041
6042 value = symbol + addend - p;
6043 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6044 overflowed_p = mips_elf_overflow_p (value, 21);
6045 value >>= howto->rightshift;
6046 value &= howto->dst_mask;
6047 break;
6048
6049 case R_MIPS_PCHI16:
6050 value = mips_elf_high (symbol + addend - p);
6051 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6052 overflowed_p = mips_elf_overflow_p (value, 16);
6053 value &= howto->dst_mask;
6054 break;
6055
6056 case R_MIPS_PCLO16:
6057 if (howto->partial_inplace)
6058 addend = _bfd_mips_elf_sign_extend (addend, 16);
6059 value = symbol + addend - p;
6060 value &= howto->dst_mask;
6061 break;
6062
6063 case R_MICROMIPS_PC7_S1:
6064 if (howto->partial_inplace)
6065 addend = _bfd_mips_elf_sign_extend (addend, 8);
6066 value = symbol + addend - p;
6067 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6068 overflowed_p = mips_elf_overflow_p (value, 8);
6069 value >>= howto->rightshift;
6070 value &= howto->dst_mask;
6071 break;
6072
6073 case R_MICROMIPS_PC10_S1:
6074 if (howto->partial_inplace)
6075 addend = _bfd_mips_elf_sign_extend (addend, 11);
6076 value = symbol + addend - p;
6077 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6078 overflowed_p = mips_elf_overflow_p (value, 11);
6079 value >>= howto->rightshift;
6080 value &= howto->dst_mask;
6081 break;
6082
6083 case R_MICROMIPS_PC16_S1:
6084 if (howto->partial_inplace)
6085 addend = _bfd_mips_elf_sign_extend (addend, 17);
6086 value = symbol + addend - p;
6087 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6088 overflowed_p = mips_elf_overflow_p (value, 17);
6089 value >>= howto->rightshift;
6090 value &= howto->dst_mask;
6091 break;
6092
6093 case R_MICROMIPS_PC23_S2:
6094 if (howto->partial_inplace)
6095 addend = _bfd_mips_elf_sign_extend (addend, 25);
6096 value = symbol + addend - ((p | 3) ^ 3);
6097 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6098 overflowed_p = mips_elf_overflow_p (value, 25);
6099 value >>= howto->rightshift;
6100 value &= howto->dst_mask;
6101 break;
6102
6103 case R_MIPS_GOT_HI16:
6104 case R_MIPS_CALL_HI16:
6105 case R_MICROMIPS_GOT_HI16:
6106 case R_MICROMIPS_CALL_HI16:
6107 /* We're allowed to handle these two relocations identically.
6108 The dynamic linker is allowed to handle the CALL relocations
6109 differently by creating a lazy evaluation stub. */
6110 value = g;
6111 value = mips_elf_high (value);
6112 value &= howto->dst_mask;
6113 break;
6114
6115 case R_MIPS_GOT_LO16:
6116 case R_MIPS_CALL_LO16:
6117 case R_MICROMIPS_GOT_LO16:
6118 case R_MICROMIPS_CALL_LO16:
6119 value = g & howto->dst_mask;
6120 break;
6121
6122 case R_MIPS_GOT_PAGE:
6123 case R_MICROMIPS_GOT_PAGE:
6124 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6125 if (value == MINUS_ONE)
6126 return bfd_reloc_outofrange;
6127 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6128 overflowed_p = mips_elf_overflow_p (value, 16);
6129 break;
6130
6131 case R_MIPS_GOT_OFST:
6132 case R_MICROMIPS_GOT_OFST:
6133 if (local_p)
6134 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6135 else
6136 value = addend;
6137 overflowed_p = mips_elf_overflow_p (value, 16);
6138 break;
6139
6140 case R_MIPS_SUB:
6141 case R_MICROMIPS_SUB:
6142 value = symbol - addend;
6143 value &= howto->dst_mask;
6144 break;
6145
6146 case R_MIPS_HIGHER:
6147 case R_MICROMIPS_HIGHER:
6148 value = mips_elf_higher (addend + symbol);
6149 value &= howto->dst_mask;
6150 break;
6151
6152 case R_MIPS_HIGHEST:
6153 case R_MICROMIPS_HIGHEST:
6154 value = mips_elf_highest (addend + symbol);
6155 value &= howto->dst_mask;
6156 break;
6157
6158 case R_MIPS_SCN_DISP:
6159 case R_MICROMIPS_SCN_DISP:
6160 value = symbol + addend - sec->output_offset;
6161 value &= howto->dst_mask;
6162 break;
6163
6164 case R_MIPS_JALR:
6165 case R_MICROMIPS_JALR:
6166 /* This relocation is only a hint. In some cases, we optimize
6167 it into a bal instruction. But we don't try to optimize
6168 when the symbol does not resolve locally. */
6169 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6170 return bfd_reloc_continue;
6171 value = symbol + addend;
6172 break;
6173
6174 case R_MIPS_PJUMP:
6175 case R_MIPS_GNU_VTINHERIT:
6176 case R_MIPS_GNU_VTENTRY:
6177 /* We don't do anything with these at present. */
6178 return bfd_reloc_continue;
6179
6180 default:
6181 /* An unrecognized relocation type. */
6182 return bfd_reloc_notsupported;
6183 }
6184
6185 /* Store the VALUE for our caller. */
6186 *valuep = value;
6187 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6188 }
6189
6190 /* Obtain the field relocated by RELOCATION. */
6191
6192 static bfd_vma
6193 mips_elf_obtain_contents (reloc_howto_type *howto,
6194 const Elf_Internal_Rela *relocation,
6195 bfd *input_bfd, bfd_byte *contents)
6196 {
6197 bfd_vma x = 0;
6198 bfd_byte *location = contents + relocation->r_offset;
6199 unsigned int size = bfd_get_reloc_size (howto);
6200
6201 /* Obtain the bytes. */
6202 if (size != 0)
6203 x = bfd_get (8 * size, input_bfd, location);
6204
6205 return x;
6206 }
6207
6208 /* It has been determined that the result of the RELOCATION is the
6209 VALUE. Use HOWTO to place VALUE into the output file at the
6210 appropriate position. The SECTION is the section to which the
6211 relocation applies.
6212 CROSS_MODE_JUMP_P is true if the relocation field
6213 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6214
6215 Returns FALSE if anything goes wrong. */
6216
6217 static bfd_boolean
6218 mips_elf_perform_relocation (struct bfd_link_info *info,
6219 reloc_howto_type *howto,
6220 const Elf_Internal_Rela *relocation,
6221 bfd_vma value, bfd *input_bfd,
6222 asection *input_section, bfd_byte *contents,
6223 bfd_boolean cross_mode_jump_p)
6224 {
6225 bfd_vma x;
6226 bfd_byte *location;
6227 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6228 unsigned int size;
6229
6230 /* Figure out where the relocation is occurring. */
6231 location = contents + relocation->r_offset;
6232
6233 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6234
6235 /* Obtain the current value. */
6236 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6237
6238 /* Clear the field we are setting. */
6239 x &= ~howto->dst_mask;
6240
6241 /* Set the field. */
6242 x |= (value & howto->dst_mask);
6243
6244 /* If required, turn JAL into JALX. */
6245 if (cross_mode_jump_p && jal_reloc_p (r_type))
6246 {
6247 bfd_boolean ok;
6248 bfd_vma opcode = x >> 26;
6249 bfd_vma jalx_opcode;
6250
6251 /* Check to see if the opcode is already JAL or JALX. */
6252 if (r_type == R_MIPS16_26)
6253 {
6254 ok = ((opcode == 0x6) || (opcode == 0x7));
6255 jalx_opcode = 0x7;
6256 }
6257 else if (r_type == R_MICROMIPS_26_S1)
6258 {
6259 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6260 jalx_opcode = 0x3c;
6261 }
6262 else
6263 {
6264 ok = ((opcode == 0x3) || (opcode == 0x1d));
6265 jalx_opcode = 0x1d;
6266 }
6267
6268 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6269 convert J or JALS to JALX. */
6270 if (!ok)
6271 {
6272 (*_bfd_error_handler)
6273 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6274 input_bfd,
6275 input_section,
6276 (unsigned long) relocation->r_offset);
6277 bfd_set_error (bfd_error_bad_value);
6278 return FALSE;
6279 }
6280
6281 /* Make this the JALX opcode. */
6282 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6283 }
6284
6285 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6286 range. */
6287 if (!info->relocatable
6288 && !cross_mode_jump_p
6289 && ((JAL_TO_BAL_P (input_bfd)
6290 && r_type == R_MIPS_26
6291 && (x >> 26) == 0x3) /* jal addr */
6292 || (JALR_TO_BAL_P (input_bfd)
6293 && r_type == R_MIPS_JALR
6294 && x == 0x0320f809) /* jalr t9 */
6295 || (JR_TO_B_P (input_bfd)
6296 && r_type == R_MIPS_JALR
6297 && x == 0x03200008))) /* jr t9 */
6298 {
6299 bfd_vma addr;
6300 bfd_vma dest;
6301 bfd_signed_vma off;
6302
6303 addr = (input_section->output_section->vma
6304 + input_section->output_offset
6305 + relocation->r_offset
6306 + 4);
6307 if (r_type == R_MIPS_26)
6308 dest = (value << 2) | ((addr >> 28) << 28);
6309 else
6310 dest = value;
6311 off = dest - addr;
6312 if (off <= 0x1ffff && off >= -0x20000)
6313 {
6314 if (x == 0x03200008) /* jr t9 */
6315 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6316 else
6317 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6318 }
6319 }
6320
6321 /* Put the value into the output. */
6322 size = bfd_get_reloc_size (howto);
6323 if (size != 0)
6324 bfd_put (8 * size, input_bfd, x, location);
6325
6326 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6327 location);
6328
6329 return TRUE;
6330 }
6331 \f
6332 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6333 is the original relocation, which is now being transformed into a
6334 dynamic relocation. The ADDENDP is adjusted if necessary; the
6335 caller should store the result in place of the original addend. */
6336
6337 static bfd_boolean
6338 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6339 struct bfd_link_info *info,
6340 const Elf_Internal_Rela *rel,
6341 struct mips_elf_link_hash_entry *h,
6342 asection *sec, bfd_vma symbol,
6343 bfd_vma *addendp, asection *input_section)
6344 {
6345 Elf_Internal_Rela outrel[3];
6346 asection *sreloc;
6347 bfd *dynobj;
6348 int r_type;
6349 long indx;
6350 bfd_boolean defined_p;
6351 struct mips_elf_link_hash_table *htab;
6352
6353 htab = mips_elf_hash_table (info);
6354 BFD_ASSERT (htab != NULL);
6355
6356 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6357 dynobj = elf_hash_table (info)->dynobj;
6358 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6359 BFD_ASSERT (sreloc != NULL);
6360 BFD_ASSERT (sreloc->contents != NULL);
6361 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6362 < sreloc->size);
6363
6364 outrel[0].r_offset =
6365 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6366 if (ABI_64_P (output_bfd))
6367 {
6368 outrel[1].r_offset =
6369 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6370 outrel[2].r_offset =
6371 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6372 }
6373
6374 if (outrel[0].r_offset == MINUS_ONE)
6375 /* The relocation field has been deleted. */
6376 return TRUE;
6377
6378 if (outrel[0].r_offset == MINUS_TWO)
6379 {
6380 /* The relocation field has been converted into a relative value of
6381 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6382 the field to be fully relocated, so add in the symbol's value. */
6383 *addendp += symbol;
6384 return TRUE;
6385 }
6386
6387 /* We must now calculate the dynamic symbol table index to use
6388 in the relocation. */
6389 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6390 {
6391 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6392 indx = h->root.dynindx;
6393 if (SGI_COMPAT (output_bfd))
6394 defined_p = h->root.def_regular;
6395 else
6396 /* ??? glibc's ld.so just adds the final GOT entry to the
6397 relocation field. It therefore treats relocs against
6398 defined symbols in the same way as relocs against
6399 undefined symbols. */
6400 defined_p = FALSE;
6401 }
6402 else
6403 {
6404 if (sec != NULL && bfd_is_abs_section (sec))
6405 indx = 0;
6406 else if (sec == NULL || sec->owner == NULL)
6407 {
6408 bfd_set_error (bfd_error_bad_value);
6409 return FALSE;
6410 }
6411 else
6412 {
6413 indx = elf_section_data (sec->output_section)->dynindx;
6414 if (indx == 0)
6415 {
6416 asection *osec = htab->root.text_index_section;
6417 indx = elf_section_data (osec)->dynindx;
6418 }
6419 if (indx == 0)
6420 abort ();
6421 }
6422
6423 /* Instead of generating a relocation using the section
6424 symbol, we may as well make it a fully relative
6425 relocation. We want to avoid generating relocations to
6426 local symbols because we used to generate them
6427 incorrectly, without adding the original symbol value,
6428 which is mandated by the ABI for section symbols. In
6429 order to give dynamic loaders and applications time to
6430 phase out the incorrect use, we refrain from emitting
6431 section-relative relocations. It's not like they're
6432 useful, after all. This should be a bit more efficient
6433 as well. */
6434 /* ??? Although this behavior is compatible with glibc's ld.so,
6435 the ABI says that relocations against STN_UNDEF should have
6436 a symbol value of 0. Irix rld honors this, so relocations
6437 against STN_UNDEF have no effect. */
6438 if (!SGI_COMPAT (output_bfd))
6439 indx = 0;
6440 defined_p = TRUE;
6441 }
6442
6443 /* If the relocation was previously an absolute relocation and
6444 this symbol will not be referred to by the relocation, we must
6445 adjust it by the value we give it in the dynamic symbol table.
6446 Otherwise leave the job up to the dynamic linker. */
6447 if (defined_p && r_type != R_MIPS_REL32)
6448 *addendp += symbol;
6449
6450 if (htab->is_vxworks)
6451 /* VxWorks uses non-relative relocations for this. */
6452 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6453 else
6454 /* The relocation is always an REL32 relocation because we don't
6455 know where the shared library will wind up at load-time. */
6456 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6457 R_MIPS_REL32);
6458
6459 /* For strict adherence to the ABI specification, we should
6460 generate a R_MIPS_64 relocation record by itself before the
6461 _REL32/_64 record as well, such that the addend is read in as
6462 a 64-bit value (REL32 is a 32-bit relocation, after all).
6463 However, since none of the existing ELF64 MIPS dynamic
6464 loaders seems to care, we don't waste space with these
6465 artificial relocations. If this turns out to not be true,
6466 mips_elf_allocate_dynamic_relocation() should be tweaked so
6467 as to make room for a pair of dynamic relocations per
6468 invocation if ABI_64_P, and here we should generate an
6469 additional relocation record with R_MIPS_64 by itself for a
6470 NULL symbol before this relocation record. */
6471 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6472 ABI_64_P (output_bfd)
6473 ? R_MIPS_64
6474 : R_MIPS_NONE);
6475 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6476
6477 /* Adjust the output offset of the relocation to reference the
6478 correct location in the output file. */
6479 outrel[0].r_offset += (input_section->output_section->vma
6480 + input_section->output_offset);
6481 outrel[1].r_offset += (input_section->output_section->vma
6482 + input_section->output_offset);
6483 outrel[2].r_offset += (input_section->output_section->vma
6484 + input_section->output_offset);
6485
6486 /* Put the relocation back out. We have to use the special
6487 relocation outputter in the 64-bit case since the 64-bit
6488 relocation format is non-standard. */
6489 if (ABI_64_P (output_bfd))
6490 {
6491 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6492 (output_bfd, &outrel[0],
6493 (sreloc->contents
6494 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6495 }
6496 else if (htab->is_vxworks)
6497 {
6498 /* VxWorks uses RELA rather than REL dynamic relocations. */
6499 outrel[0].r_addend = *addendp;
6500 bfd_elf32_swap_reloca_out
6501 (output_bfd, &outrel[0],
6502 (sreloc->contents
6503 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6504 }
6505 else
6506 bfd_elf32_swap_reloc_out
6507 (output_bfd, &outrel[0],
6508 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6509
6510 /* We've now added another relocation. */
6511 ++sreloc->reloc_count;
6512
6513 /* Make sure the output section is writable. The dynamic linker
6514 will be writing to it. */
6515 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6516 |= SHF_WRITE;
6517
6518 /* On IRIX5, make an entry of compact relocation info. */
6519 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6520 {
6521 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6522 bfd_byte *cr;
6523
6524 if (scpt)
6525 {
6526 Elf32_crinfo cptrel;
6527
6528 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6529 cptrel.vaddr = (rel->r_offset
6530 + input_section->output_section->vma
6531 + input_section->output_offset);
6532 if (r_type == R_MIPS_REL32)
6533 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6534 else
6535 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6536 mips_elf_set_cr_dist2to (cptrel, 0);
6537 cptrel.konst = *addendp;
6538
6539 cr = (scpt->contents
6540 + sizeof (Elf32_External_compact_rel));
6541 mips_elf_set_cr_relvaddr (cptrel, 0);
6542 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6543 ((Elf32_External_crinfo *) cr
6544 + scpt->reloc_count));
6545 ++scpt->reloc_count;
6546 }
6547 }
6548
6549 /* If we've written this relocation for a readonly section,
6550 we need to set DF_TEXTREL again, so that we do not delete the
6551 DT_TEXTREL tag. */
6552 if (MIPS_ELF_READONLY_SECTION (input_section))
6553 info->flags |= DF_TEXTREL;
6554
6555 return TRUE;
6556 }
6557 \f
6558 /* Return the MACH for a MIPS e_flags value. */
6559
6560 unsigned long
6561 _bfd_elf_mips_mach (flagword flags)
6562 {
6563 switch (flags & EF_MIPS_MACH)
6564 {
6565 case E_MIPS_MACH_3900:
6566 return bfd_mach_mips3900;
6567
6568 case E_MIPS_MACH_4010:
6569 return bfd_mach_mips4010;
6570
6571 case E_MIPS_MACH_4100:
6572 return bfd_mach_mips4100;
6573
6574 case E_MIPS_MACH_4111:
6575 return bfd_mach_mips4111;
6576
6577 case E_MIPS_MACH_4120:
6578 return bfd_mach_mips4120;
6579
6580 case E_MIPS_MACH_4650:
6581 return bfd_mach_mips4650;
6582
6583 case E_MIPS_MACH_5400:
6584 return bfd_mach_mips5400;
6585
6586 case E_MIPS_MACH_5500:
6587 return bfd_mach_mips5500;
6588
6589 case E_MIPS_MACH_5900:
6590 return bfd_mach_mips5900;
6591
6592 case E_MIPS_MACH_9000:
6593 return bfd_mach_mips9000;
6594
6595 case E_MIPS_MACH_SB1:
6596 return bfd_mach_mips_sb1;
6597
6598 case E_MIPS_MACH_LS2E:
6599 return bfd_mach_mips_loongson_2e;
6600
6601 case E_MIPS_MACH_LS2F:
6602 return bfd_mach_mips_loongson_2f;
6603
6604 case E_MIPS_MACH_LS3A:
6605 return bfd_mach_mips_loongson_3a;
6606
6607 case E_MIPS_MACH_OCTEON3:
6608 return bfd_mach_mips_octeon3;
6609
6610 case E_MIPS_MACH_OCTEON2:
6611 return bfd_mach_mips_octeon2;
6612
6613 case E_MIPS_MACH_OCTEON:
6614 return bfd_mach_mips_octeon;
6615
6616 case E_MIPS_MACH_XLR:
6617 return bfd_mach_mips_xlr;
6618
6619 default:
6620 switch (flags & EF_MIPS_ARCH)
6621 {
6622 default:
6623 case E_MIPS_ARCH_1:
6624 return bfd_mach_mips3000;
6625
6626 case E_MIPS_ARCH_2:
6627 return bfd_mach_mips6000;
6628
6629 case E_MIPS_ARCH_3:
6630 return bfd_mach_mips4000;
6631
6632 case E_MIPS_ARCH_4:
6633 return bfd_mach_mips8000;
6634
6635 case E_MIPS_ARCH_5:
6636 return bfd_mach_mips5;
6637
6638 case E_MIPS_ARCH_32:
6639 return bfd_mach_mipsisa32;
6640
6641 case E_MIPS_ARCH_64:
6642 return bfd_mach_mipsisa64;
6643
6644 case E_MIPS_ARCH_32R2:
6645 return bfd_mach_mipsisa32r2;
6646
6647 case E_MIPS_ARCH_64R2:
6648 return bfd_mach_mipsisa64r2;
6649
6650 case E_MIPS_ARCH_32R6:
6651 return bfd_mach_mipsisa32r6;
6652
6653 case E_MIPS_ARCH_64R6:
6654 return bfd_mach_mipsisa64r6;
6655 }
6656 }
6657
6658 return 0;
6659 }
6660
6661 /* Return printable name for ABI. */
6662
6663 static INLINE char *
6664 elf_mips_abi_name (bfd *abfd)
6665 {
6666 flagword flags;
6667
6668 flags = elf_elfheader (abfd)->e_flags;
6669 switch (flags & EF_MIPS_ABI)
6670 {
6671 case 0:
6672 if (ABI_N32_P (abfd))
6673 return "N32";
6674 else if (ABI_64_P (abfd))
6675 return "64";
6676 else
6677 return "none";
6678 case E_MIPS_ABI_O32:
6679 return "O32";
6680 case E_MIPS_ABI_O64:
6681 return "O64";
6682 case E_MIPS_ABI_EABI32:
6683 return "EABI32";
6684 case E_MIPS_ABI_EABI64:
6685 return "EABI64";
6686 default:
6687 return "unknown abi";
6688 }
6689 }
6690 \f
6691 /* MIPS ELF uses two common sections. One is the usual one, and the
6692 other is for small objects. All the small objects are kept
6693 together, and then referenced via the gp pointer, which yields
6694 faster assembler code. This is what we use for the small common
6695 section. This approach is copied from ecoff.c. */
6696 static asection mips_elf_scom_section;
6697 static asymbol mips_elf_scom_symbol;
6698 static asymbol *mips_elf_scom_symbol_ptr;
6699
6700 /* MIPS ELF also uses an acommon section, which represents an
6701 allocated common symbol which may be overridden by a
6702 definition in a shared library. */
6703 static asection mips_elf_acom_section;
6704 static asymbol mips_elf_acom_symbol;
6705 static asymbol *mips_elf_acom_symbol_ptr;
6706
6707 /* This is used for both the 32-bit and the 64-bit ABI. */
6708
6709 void
6710 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6711 {
6712 elf_symbol_type *elfsym;
6713
6714 /* Handle the special MIPS section numbers that a symbol may use. */
6715 elfsym = (elf_symbol_type *) asym;
6716 switch (elfsym->internal_elf_sym.st_shndx)
6717 {
6718 case SHN_MIPS_ACOMMON:
6719 /* This section is used in a dynamically linked executable file.
6720 It is an allocated common section. The dynamic linker can
6721 either resolve these symbols to something in a shared
6722 library, or it can just leave them here. For our purposes,
6723 we can consider these symbols to be in a new section. */
6724 if (mips_elf_acom_section.name == NULL)
6725 {
6726 /* Initialize the acommon section. */
6727 mips_elf_acom_section.name = ".acommon";
6728 mips_elf_acom_section.flags = SEC_ALLOC;
6729 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6730 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6731 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6732 mips_elf_acom_symbol.name = ".acommon";
6733 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6734 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6735 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6736 }
6737 asym->section = &mips_elf_acom_section;
6738 break;
6739
6740 case SHN_COMMON:
6741 /* Common symbols less than the GP size are automatically
6742 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6743 if (asym->value > elf_gp_size (abfd)
6744 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6745 || IRIX_COMPAT (abfd) == ict_irix6)
6746 break;
6747 /* Fall through. */
6748 case SHN_MIPS_SCOMMON:
6749 if (mips_elf_scom_section.name == NULL)
6750 {
6751 /* Initialize the small common section. */
6752 mips_elf_scom_section.name = ".scommon";
6753 mips_elf_scom_section.flags = SEC_IS_COMMON;
6754 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6755 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6756 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6757 mips_elf_scom_symbol.name = ".scommon";
6758 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6759 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6760 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6761 }
6762 asym->section = &mips_elf_scom_section;
6763 asym->value = elfsym->internal_elf_sym.st_size;
6764 break;
6765
6766 case SHN_MIPS_SUNDEFINED:
6767 asym->section = bfd_und_section_ptr;
6768 break;
6769
6770 case SHN_MIPS_TEXT:
6771 {
6772 asection *section = bfd_get_section_by_name (abfd, ".text");
6773
6774 if (section != NULL)
6775 {
6776 asym->section = section;
6777 /* MIPS_TEXT is a bit special, the address is not an offset
6778 to the base of the .text section. So substract the section
6779 base address to make it an offset. */
6780 asym->value -= section->vma;
6781 }
6782 }
6783 break;
6784
6785 case SHN_MIPS_DATA:
6786 {
6787 asection *section = bfd_get_section_by_name (abfd, ".data");
6788
6789 if (section != NULL)
6790 {
6791 asym->section = section;
6792 /* MIPS_DATA is a bit special, the address is not an offset
6793 to the base of the .data section. So substract the section
6794 base address to make it an offset. */
6795 asym->value -= section->vma;
6796 }
6797 }
6798 break;
6799 }
6800
6801 /* If this is an odd-valued function symbol, assume it's a MIPS16
6802 or microMIPS one. */
6803 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6804 && (asym->value & 1) != 0)
6805 {
6806 asym->value--;
6807 if (MICROMIPS_P (abfd))
6808 elfsym->internal_elf_sym.st_other
6809 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6810 else
6811 elfsym->internal_elf_sym.st_other
6812 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6813 }
6814 }
6815 \f
6816 /* Implement elf_backend_eh_frame_address_size. This differs from
6817 the default in the way it handles EABI64.
6818
6819 EABI64 was originally specified as an LP64 ABI, and that is what
6820 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6821 historically accepted the combination of -mabi=eabi and -mlong32,
6822 and this ILP32 variation has become semi-official over time.
6823 Both forms use elf32 and have pointer-sized FDE addresses.
6824
6825 If an EABI object was generated by GCC 4.0 or above, it will have
6826 an empty .gcc_compiled_longXX section, where XX is the size of longs
6827 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6828 have no special marking to distinguish them from LP64 objects.
6829
6830 We don't want users of the official LP64 ABI to be punished for the
6831 existence of the ILP32 variant, but at the same time, we don't want
6832 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6833 We therefore take the following approach:
6834
6835 - If ABFD contains a .gcc_compiled_longXX section, use it to
6836 determine the pointer size.
6837
6838 - Otherwise check the type of the first relocation. Assume that
6839 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6840
6841 - Otherwise punt.
6842
6843 The second check is enough to detect LP64 objects generated by pre-4.0
6844 compilers because, in the kind of output generated by those compilers,
6845 the first relocation will be associated with either a CIE personality
6846 routine or an FDE start address. Furthermore, the compilers never
6847 used a special (non-pointer) encoding for this ABI.
6848
6849 Checking the relocation type should also be safe because there is no
6850 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6851 did so. */
6852
6853 unsigned int
6854 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6855 {
6856 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6857 return 8;
6858 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6859 {
6860 bfd_boolean long32_p, long64_p;
6861
6862 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6863 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6864 if (long32_p && long64_p)
6865 return 0;
6866 if (long32_p)
6867 return 4;
6868 if (long64_p)
6869 return 8;
6870
6871 if (sec->reloc_count > 0
6872 && elf_section_data (sec)->relocs != NULL
6873 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6874 == R_MIPS_64))
6875 return 8;
6876
6877 return 0;
6878 }
6879 return 4;
6880 }
6881 \f
6882 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6883 relocations against two unnamed section symbols to resolve to the
6884 same address. For example, if we have code like:
6885
6886 lw $4,%got_disp(.data)($gp)
6887 lw $25,%got_disp(.text)($gp)
6888 jalr $25
6889
6890 then the linker will resolve both relocations to .data and the program
6891 will jump there rather than to .text.
6892
6893 We can work around this problem by giving names to local section symbols.
6894 This is also what the MIPSpro tools do. */
6895
6896 bfd_boolean
6897 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6898 {
6899 return SGI_COMPAT (abfd);
6900 }
6901 \f
6902 /* Work over a section just before writing it out. This routine is
6903 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6904 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6905 a better way. */
6906
6907 bfd_boolean
6908 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6909 {
6910 if (hdr->sh_type == SHT_MIPS_REGINFO
6911 && hdr->sh_size > 0)
6912 {
6913 bfd_byte buf[4];
6914
6915 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6916 BFD_ASSERT (hdr->contents == NULL);
6917
6918 if (bfd_seek (abfd,
6919 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6920 SEEK_SET) != 0)
6921 return FALSE;
6922 H_PUT_32 (abfd, elf_gp (abfd), buf);
6923 if (bfd_bwrite (buf, 4, abfd) != 4)
6924 return FALSE;
6925 }
6926
6927 if (hdr->sh_type == SHT_MIPS_OPTIONS
6928 && hdr->bfd_section != NULL
6929 && mips_elf_section_data (hdr->bfd_section) != NULL
6930 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6931 {
6932 bfd_byte *contents, *l, *lend;
6933
6934 /* We stored the section contents in the tdata field in the
6935 set_section_contents routine. We save the section contents
6936 so that we don't have to read them again.
6937 At this point we know that elf_gp is set, so we can look
6938 through the section contents to see if there is an
6939 ODK_REGINFO structure. */
6940
6941 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6942 l = contents;
6943 lend = contents + hdr->sh_size;
6944 while (l + sizeof (Elf_External_Options) <= lend)
6945 {
6946 Elf_Internal_Options intopt;
6947
6948 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6949 &intopt);
6950 if (intopt.size < sizeof (Elf_External_Options))
6951 {
6952 (*_bfd_error_handler)
6953 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6954 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6955 break;
6956 }
6957 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6958 {
6959 bfd_byte buf[8];
6960
6961 if (bfd_seek (abfd,
6962 (hdr->sh_offset
6963 + (l - contents)
6964 + sizeof (Elf_External_Options)
6965 + (sizeof (Elf64_External_RegInfo) - 8)),
6966 SEEK_SET) != 0)
6967 return FALSE;
6968 H_PUT_64 (abfd, elf_gp (abfd), buf);
6969 if (bfd_bwrite (buf, 8, abfd) != 8)
6970 return FALSE;
6971 }
6972 else if (intopt.kind == ODK_REGINFO)
6973 {
6974 bfd_byte buf[4];
6975
6976 if (bfd_seek (abfd,
6977 (hdr->sh_offset
6978 + (l - contents)
6979 + sizeof (Elf_External_Options)
6980 + (sizeof (Elf32_External_RegInfo) - 4)),
6981 SEEK_SET) != 0)
6982 return FALSE;
6983 H_PUT_32 (abfd, elf_gp (abfd), buf);
6984 if (bfd_bwrite (buf, 4, abfd) != 4)
6985 return FALSE;
6986 }
6987 l += intopt.size;
6988 }
6989 }
6990
6991 if (hdr->bfd_section != NULL)
6992 {
6993 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6994
6995 /* .sbss is not handled specially here because the GNU/Linux
6996 prelinker can convert .sbss from NOBITS to PROGBITS and
6997 changing it back to NOBITS breaks the binary. The entry in
6998 _bfd_mips_elf_special_sections will ensure the correct flags
6999 are set on .sbss if BFD creates it without reading it from an
7000 input file, and without special handling here the flags set
7001 on it in an input file will be followed. */
7002 if (strcmp (name, ".sdata") == 0
7003 || strcmp (name, ".lit8") == 0
7004 || strcmp (name, ".lit4") == 0)
7005 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7006 else if (strcmp (name, ".srdata") == 0)
7007 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7008 else if (strcmp (name, ".compact_rel") == 0)
7009 hdr->sh_flags = 0;
7010 else if (strcmp (name, ".rtproc") == 0)
7011 {
7012 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7013 {
7014 unsigned int adjust;
7015
7016 adjust = hdr->sh_size % hdr->sh_addralign;
7017 if (adjust != 0)
7018 hdr->sh_size += hdr->sh_addralign - adjust;
7019 }
7020 }
7021 }
7022
7023 return TRUE;
7024 }
7025
7026 /* Handle a MIPS specific section when reading an object file. This
7027 is called when elfcode.h finds a section with an unknown type.
7028 This routine supports both the 32-bit and 64-bit ELF ABI.
7029
7030 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7031 how to. */
7032
7033 bfd_boolean
7034 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7035 Elf_Internal_Shdr *hdr,
7036 const char *name,
7037 int shindex)
7038 {
7039 flagword flags = 0;
7040
7041 /* There ought to be a place to keep ELF backend specific flags, but
7042 at the moment there isn't one. We just keep track of the
7043 sections by their name, instead. Fortunately, the ABI gives
7044 suggested names for all the MIPS specific sections, so we will
7045 probably get away with this. */
7046 switch (hdr->sh_type)
7047 {
7048 case SHT_MIPS_LIBLIST:
7049 if (strcmp (name, ".liblist") != 0)
7050 return FALSE;
7051 break;
7052 case SHT_MIPS_MSYM:
7053 if (strcmp (name, ".msym") != 0)
7054 return FALSE;
7055 break;
7056 case SHT_MIPS_CONFLICT:
7057 if (strcmp (name, ".conflict") != 0)
7058 return FALSE;
7059 break;
7060 case SHT_MIPS_GPTAB:
7061 if (! CONST_STRNEQ (name, ".gptab."))
7062 return FALSE;
7063 break;
7064 case SHT_MIPS_UCODE:
7065 if (strcmp (name, ".ucode") != 0)
7066 return FALSE;
7067 break;
7068 case SHT_MIPS_DEBUG:
7069 if (strcmp (name, ".mdebug") != 0)
7070 return FALSE;
7071 flags = SEC_DEBUGGING;
7072 break;
7073 case SHT_MIPS_REGINFO:
7074 if (strcmp (name, ".reginfo") != 0
7075 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7076 return FALSE;
7077 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7078 break;
7079 case SHT_MIPS_IFACE:
7080 if (strcmp (name, ".MIPS.interfaces") != 0)
7081 return FALSE;
7082 break;
7083 case SHT_MIPS_CONTENT:
7084 if (! CONST_STRNEQ (name, ".MIPS.content"))
7085 return FALSE;
7086 break;
7087 case SHT_MIPS_OPTIONS:
7088 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7089 return FALSE;
7090 break;
7091 case SHT_MIPS_ABIFLAGS:
7092 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7093 return FALSE;
7094 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7095 break;
7096 case SHT_MIPS_DWARF:
7097 if (! CONST_STRNEQ (name, ".debug_")
7098 && ! CONST_STRNEQ (name, ".zdebug_"))
7099 return FALSE;
7100 break;
7101 case SHT_MIPS_SYMBOL_LIB:
7102 if (strcmp (name, ".MIPS.symlib") != 0)
7103 return FALSE;
7104 break;
7105 case SHT_MIPS_EVENTS:
7106 if (! CONST_STRNEQ (name, ".MIPS.events")
7107 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7108 return FALSE;
7109 break;
7110 default:
7111 break;
7112 }
7113
7114 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7115 return FALSE;
7116
7117 if (flags)
7118 {
7119 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7120 (bfd_get_section_flags (abfd,
7121 hdr->bfd_section)
7122 | flags)))
7123 return FALSE;
7124 }
7125
7126 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7127 {
7128 Elf_External_ABIFlags_v0 ext;
7129
7130 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7131 &ext, 0, sizeof ext))
7132 return FALSE;
7133 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7134 &mips_elf_tdata (abfd)->abiflags);
7135 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7136 return FALSE;
7137 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7138 }
7139
7140 /* FIXME: We should record sh_info for a .gptab section. */
7141
7142 /* For a .reginfo section, set the gp value in the tdata information
7143 from the contents of this section. We need the gp value while
7144 processing relocs, so we just get it now. The .reginfo section
7145 is not used in the 64-bit MIPS ELF ABI. */
7146 if (hdr->sh_type == SHT_MIPS_REGINFO)
7147 {
7148 Elf32_External_RegInfo ext;
7149 Elf32_RegInfo s;
7150
7151 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7152 &ext, 0, sizeof ext))
7153 return FALSE;
7154 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7155 elf_gp (abfd) = s.ri_gp_value;
7156 }
7157
7158 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7159 set the gp value based on what we find. We may see both
7160 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7161 they should agree. */
7162 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7163 {
7164 bfd_byte *contents, *l, *lend;
7165
7166 contents = bfd_malloc (hdr->sh_size);
7167 if (contents == NULL)
7168 return FALSE;
7169 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7170 0, hdr->sh_size))
7171 {
7172 free (contents);
7173 return FALSE;
7174 }
7175 l = contents;
7176 lend = contents + hdr->sh_size;
7177 while (l + sizeof (Elf_External_Options) <= lend)
7178 {
7179 Elf_Internal_Options intopt;
7180
7181 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7182 &intopt);
7183 if (intopt.size < sizeof (Elf_External_Options))
7184 {
7185 (*_bfd_error_handler)
7186 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7187 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7188 break;
7189 }
7190 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7191 {
7192 Elf64_Internal_RegInfo intreg;
7193
7194 bfd_mips_elf64_swap_reginfo_in
7195 (abfd,
7196 ((Elf64_External_RegInfo *)
7197 (l + sizeof (Elf_External_Options))),
7198 &intreg);
7199 elf_gp (abfd) = intreg.ri_gp_value;
7200 }
7201 else if (intopt.kind == ODK_REGINFO)
7202 {
7203 Elf32_RegInfo intreg;
7204
7205 bfd_mips_elf32_swap_reginfo_in
7206 (abfd,
7207 ((Elf32_External_RegInfo *)
7208 (l + sizeof (Elf_External_Options))),
7209 &intreg);
7210 elf_gp (abfd) = intreg.ri_gp_value;
7211 }
7212 l += intopt.size;
7213 }
7214 free (contents);
7215 }
7216
7217 return TRUE;
7218 }
7219
7220 /* Set the correct type for a MIPS ELF section. We do this by the
7221 section name, which is a hack, but ought to work. This routine is
7222 used by both the 32-bit and the 64-bit ABI. */
7223
7224 bfd_boolean
7225 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7226 {
7227 const char *name = bfd_get_section_name (abfd, sec);
7228
7229 if (strcmp (name, ".liblist") == 0)
7230 {
7231 hdr->sh_type = SHT_MIPS_LIBLIST;
7232 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7233 /* The sh_link field is set in final_write_processing. */
7234 }
7235 else if (strcmp (name, ".conflict") == 0)
7236 hdr->sh_type = SHT_MIPS_CONFLICT;
7237 else if (CONST_STRNEQ (name, ".gptab."))
7238 {
7239 hdr->sh_type = SHT_MIPS_GPTAB;
7240 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7241 /* The sh_info field is set in final_write_processing. */
7242 }
7243 else if (strcmp (name, ".ucode") == 0)
7244 hdr->sh_type = SHT_MIPS_UCODE;
7245 else if (strcmp (name, ".mdebug") == 0)
7246 {
7247 hdr->sh_type = SHT_MIPS_DEBUG;
7248 /* In a shared object on IRIX 5.3, the .mdebug section has an
7249 entsize of 0. FIXME: Does this matter? */
7250 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7251 hdr->sh_entsize = 0;
7252 else
7253 hdr->sh_entsize = 1;
7254 }
7255 else if (strcmp (name, ".reginfo") == 0)
7256 {
7257 hdr->sh_type = SHT_MIPS_REGINFO;
7258 /* In a shared object on IRIX 5.3, the .reginfo section has an
7259 entsize of 0x18. FIXME: Does this matter? */
7260 if (SGI_COMPAT (abfd))
7261 {
7262 if ((abfd->flags & DYNAMIC) != 0)
7263 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7264 else
7265 hdr->sh_entsize = 1;
7266 }
7267 else
7268 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7269 }
7270 else if (SGI_COMPAT (abfd)
7271 && (strcmp (name, ".hash") == 0
7272 || strcmp (name, ".dynamic") == 0
7273 || strcmp (name, ".dynstr") == 0))
7274 {
7275 if (SGI_COMPAT (abfd))
7276 hdr->sh_entsize = 0;
7277 #if 0
7278 /* This isn't how the IRIX6 linker behaves. */
7279 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7280 #endif
7281 }
7282 else if (strcmp (name, ".got") == 0
7283 || strcmp (name, ".srdata") == 0
7284 || strcmp (name, ".sdata") == 0
7285 || strcmp (name, ".sbss") == 0
7286 || strcmp (name, ".lit4") == 0
7287 || strcmp (name, ".lit8") == 0)
7288 hdr->sh_flags |= SHF_MIPS_GPREL;
7289 else if (strcmp (name, ".MIPS.interfaces") == 0)
7290 {
7291 hdr->sh_type = SHT_MIPS_IFACE;
7292 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7293 }
7294 else if (CONST_STRNEQ (name, ".MIPS.content"))
7295 {
7296 hdr->sh_type = SHT_MIPS_CONTENT;
7297 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7298 /* The sh_info field is set in final_write_processing. */
7299 }
7300 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7301 {
7302 hdr->sh_type = SHT_MIPS_OPTIONS;
7303 hdr->sh_entsize = 1;
7304 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7305 }
7306 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7307 {
7308 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7309 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7310 }
7311 else if (CONST_STRNEQ (name, ".debug_")
7312 || CONST_STRNEQ (name, ".zdebug_"))
7313 {
7314 hdr->sh_type = SHT_MIPS_DWARF;
7315
7316 /* Irix facilities such as libexc expect a single .debug_frame
7317 per executable, the system ones have NOSTRIP set and the linker
7318 doesn't merge sections with different flags so ... */
7319 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7320 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7321 }
7322 else if (strcmp (name, ".MIPS.symlib") == 0)
7323 {
7324 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7325 /* The sh_link and sh_info fields are set in
7326 final_write_processing. */
7327 }
7328 else if (CONST_STRNEQ (name, ".MIPS.events")
7329 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7330 {
7331 hdr->sh_type = SHT_MIPS_EVENTS;
7332 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7333 /* The sh_link field is set in final_write_processing. */
7334 }
7335 else if (strcmp (name, ".msym") == 0)
7336 {
7337 hdr->sh_type = SHT_MIPS_MSYM;
7338 hdr->sh_flags |= SHF_ALLOC;
7339 hdr->sh_entsize = 8;
7340 }
7341
7342 /* The generic elf_fake_sections will set up REL_HDR using the default
7343 kind of relocations. We used to set up a second header for the
7344 non-default kind of relocations here, but only NewABI would use
7345 these, and the IRIX ld doesn't like resulting empty RELA sections.
7346 Thus we create those header only on demand now. */
7347
7348 return TRUE;
7349 }
7350
7351 /* Given a BFD section, try to locate the corresponding ELF section
7352 index. This is used by both the 32-bit and the 64-bit ABI.
7353 Actually, it's not clear to me that the 64-bit ABI supports these,
7354 but for non-PIC objects we will certainly want support for at least
7355 the .scommon section. */
7356
7357 bfd_boolean
7358 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7359 asection *sec, int *retval)
7360 {
7361 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7362 {
7363 *retval = SHN_MIPS_SCOMMON;
7364 return TRUE;
7365 }
7366 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7367 {
7368 *retval = SHN_MIPS_ACOMMON;
7369 return TRUE;
7370 }
7371 return FALSE;
7372 }
7373 \f
7374 /* Hook called by the linker routine which adds symbols from an object
7375 file. We must handle the special MIPS section numbers here. */
7376
7377 bfd_boolean
7378 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7379 Elf_Internal_Sym *sym, const char **namep,
7380 flagword *flagsp ATTRIBUTE_UNUSED,
7381 asection **secp, bfd_vma *valp)
7382 {
7383 if (SGI_COMPAT (abfd)
7384 && (abfd->flags & DYNAMIC) != 0
7385 && strcmp (*namep, "_rld_new_interface") == 0)
7386 {
7387 /* Skip IRIX5 rld entry name. */
7388 *namep = NULL;
7389 return TRUE;
7390 }
7391
7392 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7393 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7394 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7395 a magic symbol resolved by the linker, we ignore this bogus definition
7396 of _gp_disp. New ABI objects do not suffer from this problem so this
7397 is not done for them. */
7398 if (!NEWABI_P(abfd)
7399 && (sym->st_shndx == SHN_ABS)
7400 && (strcmp (*namep, "_gp_disp") == 0))
7401 {
7402 *namep = NULL;
7403 return TRUE;
7404 }
7405
7406 switch (sym->st_shndx)
7407 {
7408 case SHN_COMMON:
7409 /* Common symbols less than the GP size are automatically
7410 treated as SHN_MIPS_SCOMMON symbols. */
7411 if (sym->st_size > elf_gp_size (abfd)
7412 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7413 || IRIX_COMPAT (abfd) == ict_irix6)
7414 break;
7415 /* Fall through. */
7416 case SHN_MIPS_SCOMMON:
7417 *secp = bfd_make_section_old_way (abfd, ".scommon");
7418 (*secp)->flags |= SEC_IS_COMMON;
7419 *valp = sym->st_size;
7420 break;
7421
7422 case SHN_MIPS_TEXT:
7423 /* This section is used in a shared object. */
7424 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7425 {
7426 asymbol *elf_text_symbol;
7427 asection *elf_text_section;
7428 bfd_size_type amt = sizeof (asection);
7429
7430 elf_text_section = bfd_zalloc (abfd, amt);
7431 if (elf_text_section == NULL)
7432 return FALSE;
7433
7434 amt = sizeof (asymbol);
7435 elf_text_symbol = bfd_zalloc (abfd, amt);
7436 if (elf_text_symbol == NULL)
7437 return FALSE;
7438
7439 /* Initialize the section. */
7440
7441 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7442 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7443
7444 elf_text_section->symbol = elf_text_symbol;
7445 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7446
7447 elf_text_section->name = ".text";
7448 elf_text_section->flags = SEC_NO_FLAGS;
7449 elf_text_section->output_section = NULL;
7450 elf_text_section->owner = abfd;
7451 elf_text_symbol->name = ".text";
7452 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7453 elf_text_symbol->section = elf_text_section;
7454 }
7455 /* This code used to do *secp = bfd_und_section_ptr if
7456 info->shared. I don't know why, and that doesn't make sense,
7457 so I took it out. */
7458 *secp = mips_elf_tdata (abfd)->elf_text_section;
7459 break;
7460
7461 case SHN_MIPS_ACOMMON:
7462 /* Fall through. XXX Can we treat this as allocated data? */
7463 case SHN_MIPS_DATA:
7464 /* This section is used in a shared object. */
7465 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7466 {
7467 asymbol *elf_data_symbol;
7468 asection *elf_data_section;
7469 bfd_size_type amt = sizeof (asection);
7470
7471 elf_data_section = bfd_zalloc (abfd, amt);
7472 if (elf_data_section == NULL)
7473 return FALSE;
7474
7475 amt = sizeof (asymbol);
7476 elf_data_symbol = bfd_zalloc (abfd, amt);
7477 if (elf_data_symbol == NULL)
7478 return FALSE;
7479
7480 /* Initialize the section. */
7481
7482 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7483 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7484
7485 elf_data_section->symbol = elf_data_symbol;
7486 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7487
7488 elf_data_section->name = ".data";
7489 elf_data_section->flags = SEC_NO_FLAGS;
7490 elf_data_section->output_section = NULL;
7491 elf_data_section->owner = abfd;
7492 elf_data_symbol->name = ".data";
7493 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7494 elf_data_symbol->section = elf_data_section;
7495 }
7496 /* This code used to do *secp = bfd_und_section_ptr if
7497 info->shared. I don't know why, and that doesn't make sense,
7498 so I took it out. */
7499 *secp = mips_elf_tdata (abfd)->elf_data_section;
7500 break;
7501
7502 case SHN_MIPS_SUNDEFINED:
7503 *secp = bfd_und_section_ptr;
7504 break;
7505 }
7506
7507 if (SGI_COMPAT (abfd)
7508 && ! info->shared
7509 && info->output_bfd->xvec == abfd->xvec
7510 && strcmp (*namep, "__rld_obj_head") == 0)
7511 {
7512 struct elf_link_hash_entry *h;
7513 struct bfd_link_hash_entry *bh;
7514
7515 /* Mark __rld_obj_head as dynamic. */
7516 bh = NULL;
7517 if (! (_bfd_generic_link_add_one_symbol
7518 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7519 get_elf_backend_data (abfd)->collect, &bh)))
7520 return FALSE;
7521
7522 h = (struct elf_link_hash_entry *) bh;
7523 h->non_elf = 0;
7524 h->def_regular = 1;
7525 h->type = STT_OBJECT;
7526
7527 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7528 return FALSE;
7529
7530 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7531 mips_elf_hash_table (info)->rld_symbol = h;
7532 }
7533
7534 /* If this is a mips16 text symbol, add 1 to the value to make it
7535 odd. This will cause something like .word SYM to come up with
7536 the right value when it is loaded into the PC. */
7537 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7538 ++*valp;
7539
7540 return TRUE;
7541 }
7542
7543 /* This hook function is called before the linker writes out a global
7544 symbol. We mark symbols as small common if appropriate. This is
7545 also where we undo the increment of the value for a mips16 symbol. */
7546
7547 int
7548 _bfd_mips_elf_link_output_symbol_hook
7549 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7550 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7551 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7552 {
7553 /* If we see a common symbol, which implies a relocatable link, then
7554 if a symbol was small common in an input file, mark it as small
7555 common in the output file. */
7556 if (sym->st_shndx == SHN_COMMON
7557 && strcmp (input_sec->name, ".scommon") == 0)
7558 sym->st_shndx = SHN_MIPS_SCOMMON;
7559
7560 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7561 sym->st_value &= ~1;
7562
7563 return 1;
7564 }
7565 \f
7566 /* Functions for the dynamic linker. */
7567
7568 /* Create dynamic sections when linking against a dynamic object. */
7569
7570 bfd_boolean
7571 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7572 {
7573 struct elf_link_hash_entry *h;
7574 struct bfd_link_hash_entry *bh;
7575 flagword flags;
7576 register asection *s;
7577 const char * const *namep;
7578 struct mips_elf_link_hash_table *htab;
7579
7580 htab = mips_elf_hash_table (info);
7581 BFD_ASSERT (htab != NULL);
7582
7583 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7584 | SEC_LINKER_CREATED | SEC_READONLY);
7585
7586 /* The psABI requires a read-only .dynamic section, but the VxWorks
7587 EABI doesn't. */
7588 if (!htab->is_vxworks)
7589 {
7590 s = bfd_get_linker_section (abfd, ".dynamic");
7591 if (s != NULL)
7592 {
7593 if (! bfd_set_section_flags (abfd, s, flags))
7594 return FALSE;
7595 }
7596 }
7597
7598 /* We need to create .got section. */
7599 if (!mips_elf_create_got_section (abfd, info))
7600 return FALSE;
7601
7602 if (! mips_elf_rel_dyn_section (info, TRUE))
7603 return FALSE;
7604
7605 /* Create .stub section. */
7606 s = bfd_make_section_anyway_with_flags (abfd,
7607 MIPS_ELF_STUB_SECTION_NAME (abfd),
7608 flags | SEC_CODE);
7609 if (s == NULL
7610 || ! bfd_set_section_alignment (abfd, s,
7611 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7612 return FALSE;
7613 htab->sstubs = s;
7614
7615 if (!mips_elf_hash_table (info)->use_rld_obj_head
7616 && !info->shared
7617 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7618 {
7619 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7620 flags &~ (flagword) SEC_READONLY);
7621 if (s == NULL
7622 || ! bfd_set_section_alignment (abfd, s,
7623 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7624 return FALSE;
7625 }
7626
7627 /* On IRIX5, we adjust add some additional symbols and change the
7628 alignments of several sections. There is no ABI documentation
7629 indicating that this is necessary on IRIX6, nor any evidence that
7630 the linker takes such action. */
7631 if (IRIX_COMPAT (abfd) == ict_irix5)
7632 {
7633 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7634 {
7635 bh = NULL;
7636 if (! (_bfd_generic_link_add_one_symbol
7637 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7638 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7639 return FALSE;
7640
7641 h = (struct elf_link_hash_entry *) bh;
7642 h->non_elf = 0;
7643 h->def_regular = 1;
7644 h->type = STT_SECTION;
7645
7646 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7647 return FALSE;
7648 }
7649
7650 /* We need to create a .compact_rel section. */
7651 if (SGI_COMPAT (abfd))
7652 {
7653 if (!mips_elf_create_compact_rel_section (abfd, info))
7654 return FALSE;
7655 }
7656
7657 /* Change alignments of some sections. */
7658 s = bfd_get_linker_section (abfd, ".hash");
7659 if (s != NULL)
7660 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7661
7662 s = bfd_get_linker_section (abfd, ".dynsym");
7663 if (s != NULL)
7664 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7665
7666 s = bfd_get_linker_section (abfd, ".dynstr");
7667 if (s != NULL)
7668 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7669
7670 /* ??? */
7671 s = bfd_get_section_by_name (abfd, ".reginfo");
7672 if (s != NULL)
7673 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7674
7675 s = bfd_get_linker_section (abfd, ".dynamic");
7676 if (s != NULL)
7677 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7678 }
7679
7680 if (!info->shared)
7681 {
7682 const char *name;
7683
7684 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7685 bh = NULL;
7686 if (!(_bfd_generic_link_add_one_symbol
7687 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7688 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7689 return FALSE;
7690
7691 h = (struct elf_link_hash_entry *) bh;
7692 h->non_elf = 0;
7693 h->def_regular = 1;
7694 h->type = STT_SECTION;
7695
7696 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7697 return FALSE;
7698
7699 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7700 {
7701 /* __rld_map is a four byte word located in the .data section
7702 and is filled in by the rtld to contain a pointer to
7703 the _r_debug structure. Its symbol value will be set in
7704 _bfd_mips_elf_finish_dynamic_symbol. */
7705 s = bfd_get_linker_section (abfd, ".rld_map");
7706 BFD_ASSERT (s != NULL);
7707
7708 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7709 bh = NULL;
7710 if (!(_bfd_generic_link_add_one_symbol
7711 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7712 get_elf_backend_data (abfd)->collect, &bh)))
7713 return FALSE;
7714
7715 h = (struct elf_link_hash_entry *) bh;
7716 h->non_elf = 0;
7717 h->def_regular = 1;
7718 h->type = STT_OBJECT;
7719
7720 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7721 return FALSE;
7722 mips_elf_hash_table (info)->rld_symbol = h;
7723 }
7724 }
7725
7726 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7727 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7728 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7729 return FALSE;
7730
7731 /* Cache the sections created above. */
7732 htab->splt = bfd_get_linker_section (abfd, ".plt");
7733 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7734 if (htab->is_vxworks)
7735 {
7736 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7737 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7738 }
7739 else
7740 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7741 if (!htab->sdynbss
7742 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7743 || !htab->srelplt
7744 || !htab->splt)
7745 abort ();
7746
7747 /* Do the usual VxWorks handling. */
7748 if (htab->is_vxworks
7749 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7750 return FALSE;
7751
7752 return TRUE;
7753 }
7754 \f
7755 /* Return true if relocation REL against section SEC is a REL rather than
7756 RELA relocation. RELOCS is the first relocation in the section and
7757 ABFD is the bfd that contains SEC. */
7758
7759 static bfd_boolean
7760 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7761 const Elf_Internal_Rela *relocs,
7762 const Elf_Internal_Rela *rel)
7763 {
7764 Elf_Internal_Shdr *rel_hdr;
7765 const struct elf_backend_data *bed;
7766
7767 /* To determine which flavor of relocation this is, we depend on the
7768 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7769 rel_hdr = elf_section_data (sec)->rel.hdr;
7770 if (rel_hdr == NULL)
7771 return FALSE;
7772 bed = get_elf_backend_data (abfd);
7773 return ((size_t) (rel - relocs)
7774 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7775 }
7776
7777 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7778 HOWTO is the relocation's howto and CONTENTS points to the contents
7779 of the section that REL is against. */
7780
7781 static bfd_vma
7782 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7783 reloc_howto_type *howto, bfd_byte *contents)
7784 {
7785 bfd_byte *location;
7786 unsigned int r_type;
7787 bfd_vma addend;
7788
7789 r_type = ELF_R_TYPE (abfd, rel->r_info);
7790 location = contents + rel->r_offset;
7791
7792 /* Get the addend, which is stored in the input file. */
7793 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7794 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7795 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7796
7797 return addend & howto->src_mask;
7798 }
7799
7800 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7801 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7802 and update *ADDEND with the final addend. Return true on success
7803 or false if the LO16 could not be found. RELEND is the exclusive
7804 upper bound on the relocations for REL's section. */
7805
7806 static bfd_boolean
7807 mips_elf_add_lo16_rel_addend (bfd *abfd,
7808 const Elf_Internal_Rela *rel,
7809 const Elf_Internal_Rela *relend,
7810 bfd_byte *contents, bfd_vma *addend)
7811 {
7812 unsigned int r_type, lo16_type;
7813 const Elf_Internal_Rela *lo16_relocation;
7814 reloc_howto_type *lo16_howto;
7815 bfd_vma l;
7816
7817 r_type = ELF_R_TYPE (abfd, rel->r_info);
7818 if (mips16_reloc_p (r_type))
7819 lo16_type = R_MIPS16_LO16;
7820 else if (micromips_reloc_p (r_type))
7821 lo16_type = R_MICROMIPS_LO16;
7822 else if (r_type == R_MIPS_PCHI16)
7823 lo16_type = R_MIPS_PCLO16;
7824 else
7825 lo16_type = R_MIPS_LO16;
7826
7827 /* The combined value is the sum of the HI16 addend, left-shifted by
7828 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7829 code does a `lui' of the HI16 value, and then an `addiu' of the
7830 LO16 value.)
7831
7832 Scan ahead to find a matching LO16 relocation.
7833
7834 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7835 be immediately following. However, for the IRIX6 ABI, the next
7836 relocation may be a composed relocation consisting of several
7837 relocations for the same address. In that case, the R_MIPS_LO16
7838 relocation may occur as one of these. We permit a similar
7839 extension in general, as that is useful for GCC.
7840
7841 In some cases GCC dead code elimination removes the LO16 but keeps
7842 the corresponding HI16. This is strictly speaking a violation of
7843 the ABI but not immediately harmful. */
7844 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7845 if (lo16_relocation == NULL)
7846 return FALSE;
7847
7848 /* Obtain the addend kept there. */
7849 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7850 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7851
7852 l <<= lo16_howto->rightshift;
7853 l = _bfd_mips_elf_sign_extend (l, 16);
7854
7855 *addend <<= 16;
7856 *addend += l;
7857 return TRUE;
7858 }
7859
7860 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7861 store the contents in *CONTENTS on success. Assume that *CONTENTS
7862 already holds the contents if it is nonull on entry. */
7863
7864 static bfd_boolean
7865 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7866 {
7867 if (*contents)
7868 return TRUE;
7869
7870 /* Get cached copy if it exists. */
7871 if (elf_section_data (sec)->this_hdr.contents != NULL)
7872 {
7873 *contents = elf_section_data (sec)->this_hdr.contents;
7874 return TRUE;
7875 }
7876
7877 return bfd_malloc_and_get_section (abfd, sec, contents);
7878 }
7879
7880 /* Make a new PLT record to keep internal data. */
7881
7882 static struct plt_entry *
7883 mips_elf_make_plt_record (bfd *abfd)
7884 {
7885 struct plt_entry *entry;
7886
7887 entry = bfd_zalloc (abfd, sizeof (*entry));
7888 if (entry == NULL)
7889 return NULL;
7890
7891 entry->stub_offset = MINUS_ONE;
7892 entry->mips_offset = MINUS_ONE;
7893 entry->comp_offset = MINUS_ONE;
7894 entry->gotplt_index = MINUS_ONE;
7895 return entry;
7896 }
7897
7898 /* Look through the relocs for a section during the first phase, and
7899 allocate space in the global offset table and record the need for
7900 standard MIPS and compressed procedure linkage table entries. */
7901
7902 bfd_boolean
7903 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7904 asection *sec, const Elf_Internal_Rela *relocs)
7905 {
7906 const char *name;
7907 bfd *dynobj;
7908 Elf_Internal_Shdr *symtab_hdr;
7909 struct elf_link_hash_entry **sym_hashes;
7910 size_t extsymoff;
7911 const Elf_Internal_Rela *rel;
7912 const Elf_Internal_Rela *rel_end;
7913 asection *sreloc;
7914 const struct elf_backend_data *bed;
7915 struct mips_elf_link_hash_table *htab;
7916 bfd_byte *contents;
7917 bfd_vma addend;
7918 reloc_howto_type *howto;
7919
7920 if (info->relocatable)
7921 return TRUE;
7922
7923 htab = mips_elf_hash_table (info);
7924 BFD_ASSERT (htab != NULL);
7925
7926 dynobj = elf_hash_table (info)->dynobj;
7927 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7928 sym_hashes = elf_sym_hashes (abfd);
7929 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7930
7931 bed = get_elf_backend_data (abfd);
7932 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7933
7934 /* Check for the mips16 stub sections. */
7935
7936 name = bfd_get_section_name (abfd, sec);
7937 if (FN_STUB_P (name))
7938 {
7939 unsigned long r_symndx;
7940
7941 /* Look at the relocation information to figure out which symbol
7942 this is for. */
7943
7944 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7945 if (r_symndx == 0)
7946 {
7947 (*_bfd_error_handler)
7948 (_("%B: Warning: cannot determine the target function for"
7949 " stub section `%s'"),
7950 abfd, name);
7951 bfd_set_error (bfd_error_bad_value);
7952 return FALSE;
7953 }
7954
7955 if (r_symndx < extsymoff
7956 || sym_hashes[r_symndx - extsymoff] == NULL)
7957 {
7958 asection *o;
7959
7960 /* This stub is for a local symbol. This stub will only be
7961 needed if there is some relocation in this BFD, other
7962 than a 16 bit function call, which refers to this symbol. */
7963 for (o = abfd->sections; o != NULL; o = o->next)
7964 {
7965 Elf_Internal_Rela *sec_relocs;
7966 const Elf_Internal_Rela *r, *rend;
7967
7968 /* We can ignore stub sections when looking for relocs. */
7969 if ((o->flags & SEC_RELOC) == 0
7970 || o->reloc_count == 0
7971 || section_allows_mips16_refs_p (o))
7972 continue;
7973
7974 sec_relocs
7975 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7976 info->keep_memory);
7977 if (sec_relocs == NULL)
7978 return FALSE;
7979
7980 rend = sec_relocs + o->reloc_count;
7981 for (r = sec_relocs; r < rend; r++)
7982 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7983 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7984 break;
7985
7986 if (elf_section_data (o)->relocs != sec_relocs)
7987 free (sec_relocs);
7988
7989 if (r < rend)
7990 break;
7991 }
7992
7993 if (o == NULL)
7994 {
7995 /* There is no non-call reloc for this stub, so we do
7996 not need it. Since this function is called before
7997 the linker maps input sections to output sections, we
7998 can easily discard it by setting the SEC_EXCLUDE
7999 flag. */
8000 sec->flags |= SEC_EXCLUDE;
8001 return TRUE;
8002 }
8003
8004 /* Record this stub in an array of local symbol stubs for
8005 this BFD. */
8006 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8007 {
8008 unsigned long symcount;
8009 asection **n;
8010 bfd_size_type amt;
8011
8012 if (elf_bad_symtab (abfd))
8013 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8014 else
8015 symcount = symtab_hdr->sh_info;
8016 amt = symcount * sizeof (asection *);
8017 n = bfd_zalloc (abfd, amt);
8018 if (n == NULL)
8019 return FALSE;
8020 mips_elf_tdata (abfd)->local_stubs = n;
8021 }
8022
8023 sec->flags |= SEC_KEEP;
8024 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8025
8026 /* We don't need to set mips16_stubs_seen in this case.
8027 That flag is used to see whether we need to look through
8028 the global symbol table for stubs. We don't need to set
8029 it here, because we just have a local stub. */
8030 }
8031 else
8032 {
8033 struct mips_elf_link_hash_entry *h;
8034
8035 h = ((struct mips_elf_link_hash_entry *)
8036 sym_hashes[r_symndx - extsymoff]);
8037
8038 while (h->root.root.type == bfd_link_hash_indirect
8039 || h->root.root.type == bfd_link_hash_warning)
8040 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8041
8042 /* H is the symbol this stub is for. */
8043
8044 /* If we already have an appropriate stub for this function, we
8045 don't need another one, so we can discard this one. Since
8046 this function is called before the linker maps input sections
8047 to output sections, we can easily discard it by setting the
8048 SEC_EXCLUDE flag. */
8049 if (h->fn_stub != NULL)
8050 {
8051 sec->flags |= SEC_EXCLUDE;
8052 return TRUE;
8053 }
8054
8055 sec->flags |= SEC_KEEP;
8056 h->fn_stub = sec;
8057 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8058 }
8059 }
8060 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8061 {
8062 unsigned long r_symndx;
8063 struct mips_elf_link_hash_entry *h;
8064 asection **loc;
8065
8066 /* Look at the relocation information to figure out which symbol
8067 this is for. */
8068
8069 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8070 if (r_symndx == 0)
8071 {
8072 (*_bfd_error_handler)
8073 (_("%B: Warning: cannot determine the target function for"
8074 " stub section `%s'"),
8075 abfd, name);
8076 bfd_set_error (bfd_error_bad_value);
8077 return FALSE;
8078 }
8079
8080 if (r_symndx < extsymoff
8081 || sym_hashes[r_symndx - extsymoff] == NULL)
8082 {
8083 asection *o;
8084
8085 /* This stub is for a local symbol. This stub will only be
8086 needed if there is some relocation (R_MIPS16_26) in this BFD
8087 that refers to this symbol. */
8088 for (o = abfd->sections; o != NULL; o = o->next)
8089 {
8090 Elf_Internal_Rela *sec_relocs;
8091 const Elf_Internal_Rela *r, *rend;
8092
8093 /* We can ignore stub sections when looking for relocs. */
8094 if ((o->flags & SEC_RELOC) == 0
8095 || o->reloc_count == 0
8096 || section_allows_mips16_refs_p (o))
8097 continue;
8098
8099 sec_relocs
8100 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8101 info->keep_memory);
8102 if (sec_relocs == NULL)
8103 return FALSE;
8104
8105 rend = sec_relocs + o->reloc_count;
8106 for (r = sec_relocs; r < rend; r++)
8107 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8108 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8109 break;
8110
8111 if (elf_section_data (o)->relocs != sec_relocs)
8112 free (sec_relocs);
8113
8114 if (r < rend)
8115 break;
8116 }
8117
8118 if (o == NULL)
8119 {
8120 /* There is no non-call reloc for this stub, so we do
8121 not need it. Since this function is called before
8122 the linker maps input sections to output sections, we
8123 can easily discard it by setting the SEC_EXCLUDE
8124 flag. */
8125 sec->flags |= SEC_EXCLUDE;
8126 return TRUE;
8127 }
8128
8129 /* Record this stub in an array of local symbol call_stubs for
8130 this BFD. */
8131 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8132 {
8133 unsigned long symcount;
8134 asection **n;
8135 bfd_size_type amt;
8136
8137 if (elf_bad_symtab (abfd))
8138 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8139 else
8140 symcount = symtab_hdr->sh_info;
8141 amt = symcount * sizeof (asection *);
8142 n = bfd_zalloc (abfd, amt);
8143 if (n == NULL)
8144 return FALSE;
8145 mips_elf_tdata (abfd)->local_call_stubs = n;
8146 }
8147
8148 sec->flags |= SEC_KEEP;
8149 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8150
8151 /* We don't need to set mips16_stubs_seen in this case.
8152 That flag is used to see whether we need to look through
8153 the global symbol table for stubs. We don't need to set
8154 it here, because we just have a local stub. */
8155 }
8156 else
8157 {
8158 h = ((struct mips_elf_link_hash_entry *)
8159 sym_hashes[r_symndx - extsymoff]);
8160
8161 /* H is the symbol this stub is for. */
8162
8163 if (CALL_FP_STUB_P (name))
8164 loc = &h->call_fp_stub;
8165 else
8166 loc = &h->call_stub;
8167
8168 /* If we already have an appropriate stub for this function, we
8169 don't need another one, so we can discard this one. Since
8170 this function is called before the linker maps input sections
8171 to output sections, we can easily discard it by setting the
8172 SEC_EXCLUDE flag. */
8173 if (*loc != NULL)
8174 {
8175 sec->flags |= SEC_EXCLUDE;
8176 return TRUE;
8177 }
8178
8179 sec->flags |= SEC_KEEP;
8180 *loc = sec;
8181 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8182 }
8183 }
8184
8185 sreloc = NULL;
8186 contents = NULL;
8187 for (rel = relocs; rel < rel_end; ++rel)
8188 {
8189 unsigned long r_symndx;
8190 unsigned int r_type;
8191 struct elf_link_hash_entry *h;
8192 bfd_boolean can_make_dynamic_p;
8193 bfd_boolean call_reloc_p;
8194 bfd_boolean constrain_symbol_p;
8195
8196 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8197 r_type = ELF_R_TYPE (abfd, rel->r_info);
8198
8199 if (r_symndx < extsymoff)
8200 h = NULL;
8201 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8202 {
8203 (*_bfd_error_handler)
8204 (_("%B: Malformed reloc detected for section %s"),
8205 abfd, name);
8206 bfd_set_error (bfd_error_bad_value);
8207 return FALSE;
8208 }
8209 else
8210 {
8211 h = sym_hashes[r_symndx - extsymoff];
8212 if (h != NULL)
8213 {
8214 while (h->root.type == bfd_link_hash_indirect
8215 || h->root.type == bfd_link_hash_warning)
8216 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8217
8218 /* PR15323, ref flags aren't set for references in the
8219 same object. */
8220 h->root.non_ir_ref = 1;
8221 }
8222 }
8223
8224 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8225 relocation into a dynamic one. */
8226 can_make_dynamic_p = FALSE;
8227
8228 /* Set CALL_RELOC_P to true if the relocation is for a call,
8229 and if pointer equality therefore doesn't matter. */
8230 call_reloc_p = FALSE;
8231
8232 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8233 into account when deciding how to define the symbol.
8234 Relocations in nonallocatable sections such as .pdr and
8235 .debug* should have no effect. */
8236 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8237
8238 switch (r_type)
8239 {
8240 case R_MIPS_CALL16:
8241 case R_MIPS_CALL_HI16:
8242 case R_MIPS_CALL_LO16:
8243 case R_MIPS16_CALL16:
8244 case R_MICROMIPS_CALL16:
8245 case R_MICROMIPS_CALL_HI16:
8246 case R_MICROMIPS_CALL_LO16:
8247 call_reloc_p = TRUE;
8248 /* Fall through. */
8249
8250 case R_MIPS_GOT16:
8251 case R_MIPS_GOT_HI16:
8252 case R_MIPS_GOT_LO16:
8253 case R_MIPS_GOT_PAGE:
8254 case R_MIPS_GOT_OFST:
8255 case R_MIPS_GOT_DISP:
8256 case R_MIPS_TLS_GOTTPREL:
8257 case R_MIPS_TLS_GD:
8258 case R_MIPS_TLS_LDM:
8259 case R_MIPS16_GOT16:
8260 case R_MIPS16_TLS_GOTTPREL:
8261 case R_MIPS16_TLS_GD:
8262 case R_MIPS16_TLS_LDM:
8263 case R_MICROMIPS_GOT16:
8264 case R_MICROMIPS_GOT_HI16:
8265 case R_MICROMIPS_GOT_LO16:
8266 case R_MICROMIPS_GOT_PAGE:
8267 case R_MICROMIPS_GOT_OFST:
8268 case R_MICROMIPS_GOT_DISP:
8269 case R_MICROMIPS_TLS_GOTTPREL:
8270 case R_MICROMIPS_TLS_GD:
8271 case R_MICROMIPS_TLS_LDM:
8272 if (dynobj == NULL)
8273 elf_hash_table (info)->dynobj = dynobj = abfd;
8274 if (!mips_elf_create_got_section (dynobj, info))
8275 return FALSE;
8276 if (htab->is_vxworks && !info->shared)
8277 {
8278 (*_bfd_error_handler)
8279 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8280 abfd, (unsigned long) rel->r_offset);
8281 bfd_set_error (bfd_error_bad_value);
8282 return FALSE;
8283 }
8284 can_make_dynamic_p = TRUE;
8285 break;
8286
8287 case R_MIPS_NONE:
8288 case R_MIPS_JALR:
8289 case R_MICROMIPS_JALR:
8290 /* These relocations have empty fields and are purely there to
8291 provide link information. The symbol value doesn't matter. */
8292 constrain_symbol_p = FALSE;
8293 break;
8294
8295 case R_MIPS_GPREL16:
8296 case R_MIPS_GPREL32:
8297 case R_MIPS16_GPREL:
8298 case R_MICROMIPS_GPREL16:
8299 /* GP-relative relocations always resolve to a definition in a
8300 regular input file, ignoring the one-definition rule. This is
8301 important for the GP setup sequence in NewABI code, which
8302 always resolves to a local function even if other relocations
8303 against the symbol wouldn't. */
8304 constrain_symbol_p = FALSE;
8305 break;
8306
8307 case R_MIPS_32:
8308 case R_MIPS_REL32:
8309 case R_MIPS_64:
8310 /* In VxWorks executables, references to external symbols
8311 must be handled using copy relocs or PLT entries; it is not
8312 possible to convert this relocation into a dynamic one.
8313
8314 For executables that use PLTs and copy-relocs, we have a
8315 choice between converting the relocation into a dynamic
8316 one or using copy relocations or PLT entries. It is
8317 usually better to do the former, unless the relocation is
8318 against a read-only section. */
8319 if ((info->shared
8320 || (h != NULL
8321 && !htab->is_vxworks
8322 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8323 && !(!info->nocopyreloc
8324 && !PIC_OBJECT_P (abfd)
8325 && MIPS_ELF_READONLY_SECTION (sec))))
8326 && (sec->flags & SEC_ALLOC) != 0)
8327 {
8328 can_make_dynamic_p = TRUE;
8329 if (dynobj == NULL)
8330 elf_hash_table (info)->dynobj = dynobj = abfd;
8331 }
8332 break;
8333
8334 case R_MIPS_26:
8335 case R_MIPS_PC16:
8336 case R_MIPS_PC21_S2:
8337 case R_MIPS_PC26_S2:
8338 case R_MIPS16_26:
8339 case R_MICROMIPS_26_S1:
8340 case R_MICROMIPS_PC7_S1:
8341 case R_MICROMIPS_PC10_S1:
8342 case R_MICROMIPS_PC16_S1:
8343 case R_MICROMIPS_PC23_S2:
8344 call_reloc_p = TRUE;
8345 break;
8346 }
8347
8348 if (h)
8349 {
8350 if (constrain_symbol_p)
8351 {
8352 if (!can_make_dynamic_p)
8353 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8354
8355 if (!call_reloc_p)
8356 h->pointer_equality_needed = 1;
8357
8358 /* We must not create a stub for a symbol that has
8359 relocations related to taking the function's address.
8360 This doesn't apply to VxWorks, where CALL relocs refer
8361 to a .got.plt entry instead of a normal .got entry. */
8362 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8363 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8364 }
8365
8366 /* Relocations against the special VxWorks __GOTT_BASE__ and
8367 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8368 room for them in .rela.dyn. */
8369 if (is_gott_symbol (info, h))
8370 {
8371 if (sreloc == NULL)
8372 {
8373 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8374 if (sreloc == NULL)
8375 return FALSE;
8376 }
8377 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8378 if (MIPS_ELF_READONLY_SECTION (sec))
8379 /* We tell the dynamic linker that there are
8380 relocations against the text segment. */
8381 info->flags |= DF_TEXTREL;
8382 }
8383 }
8384 else if (call_lo16_reloc_p (r_type)
8385 || got_lo16_reloc_p (r_type)
8386 || got_disp_reloc_p (r_type)
8387 || (got16_reloc_p (r_type) && htab->is_vxworks))
8388 {
8389 /* We may need a local GOT entry for this relocation. We
8390 don't count R_MIPS_GOT_PAGE because we can estimate the
8391 maximum number of pages needed by looking at the size of
8392 the segment. Similar comments apply to R_MIPS*_GOT16 and
8393 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8394 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8395 R_MIPS_CALL_HI16 because these are always followed by an
8396 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8397 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8398 rel->r_addend, info, r_type))
8399 return FALSE;
8400 }
8401
8402 if (h != NULL
8403 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8404 ELF_ST_IS_MIPS16 (h->other)))
8405 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8406
8407 switch (r_type)
8408 {
8409 case R_MIPS_CALL16:
8410 case R_MIPS16_CALL16:
8411 case R_MICROMIPS_CALL16:
8412 if (h == NULL)
8413 {
8414 (*_bfd_error_handler)
8415 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8416 abfd, (unsigned long) rel->r_offset);
8417 bfd_set_error (bfd_error_bad_value);
8418 return FALSE;
8419 }
8420 /* Fall through. */
8421
8422 case R_MIPS_CALL_HI16:
8423 case R_MIPS_CALL_LO16:
8424 case R_MICROMIPS_CALL_HI16:
8425 case R_MICROMIPS_CALL_LO16:
8426 if (h != NULL)
8427 {
8428 /* Make sure there is room in the regular GOT to hold the
8429 function's address. We may eliminate it in favour of
8430 a .got.plt entry later; see mips_elf_count_got_symbols. */
8431 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8432 r_type))
8433 return FALSE;
8434
8435 /* We need a stub, not a plt entry for the undefined
8436 function. But we record it as if it needs plt. See
8437 _bfd_elf_adjust_dynamic_symbol. */
8438 h->needs_plt = 1;
8439 h->type = STT_FUNC;
8440 }
8441 break;
8442
8443 case R_MIPS_GOT_PAGE:
8444 case R_MICROMIPS_GOT_PAGE:
8445 case R_MIPS16_GOT16:
8446 case R_MIPS_GOT16:
8447 case R_MIPS_GOT_HI16:
8448 case R_MIPS_GOT_LO16:
8449 case R_MICROMIPS_GOT16:
8450 case R_MICROMIPS_GOT_HI16:
8451 case R_MICROMIPS_GOT_LO16:
8452 if (!h || got_page_reloc_p (r_type))
8453 {
8454 /* This relocation needs (or may need, if h != NULL) a
8455 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8456 know for sure until we know whether the symbol is
8457 preemptible. */
8458 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8459 {
8460 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8461 return FALSE;
8462 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8463 addend = mips_elf_read_rel_addend (abfd, rel,
8464 howto, contents);
8465 if (got16_reloc_p (r_type))
8466 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8467 contents, &addend);
8468 else
8469 addend <<= howto->rightshift;
8470 }
8471 else
8472 addend = rel->r_addend;
8473 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8474 h, addend))
8475 return FALSE;
8476
8477 if (h)
8478 {
8479 struct mips_elf_link_hash_entry *hmips =
8480 (struct mips_elf_link_hash_entry *) h;
8481
8482 /* This symbol is definitely not overridable. */
8483 if (hmips->root.def_regular
8484 && ! (info->shared && ! info->symbolic
8485 && ! hmips->root.forced_local))
8486 h = NULL;
8487 }
8488 }
8489 /* If this is a global, overridable symbol, GOT_PAGE will
8490 decay to GOT_DISP, so we'll need a GOT entry for it. */
8491 /* Fall through. */
8492
8493 case R_MIPS_GOT_DISP:
8494 case R_MICROMIPS_GOT_DISP:
8495 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8496 FALSE, r_type))
8497 return FALSE;
8498 break;
8499
8500 case R_MIPS_TLS_GOTTPREL:
8501 case R_MIPS16_TLS_GOTTPREL:
8502 case R_MICROMIPS_TLS_GOTTPREL:
8503 if (info->shared)
8504 info->flags |= DF_STATIC_TLS;
8505 /* Fall through */
8506
8507 case R_MIPS_TLS_LDM:
8508 case R_MIPS16_TLS_LDM:
8509 case R_MICROMIPS_TLS_LDM:
8510 if (tls_ldm_reloc_p (r_type))
8511 {
8512 r_symndx = STN_UNDEF;
8513 h = NULL;
8514 }
8515 /* Fall through */
8516
8517 case R_MIPS_TLS_GD:
8518 case R_MIPS16_TLS_GD:
8519 case R_MICROMIPS_TLS_GD:
8520 /* This symbol requires a global offset table entry, or two
8521 for TLS GD relocations. */
8522 if (h != NULL)
8523 {
8524 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8525 FALSE, r_type))
8526 return FALSE;
8527 }
8528 else
8529 {
8530 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8531 rel->r_addend,
8532 info, r_type))
8533 return FALSE;
8534 }
8535 break;
8536
8537 case R_MIPS_32:
8538 case R_MIPS_REL32:
8539 case R_MIPS_64:
8540 /* In VxWorks executables, references to external symbols
8541 are handled using copy relocs or PLT stubs, so there's
8542 no need to add a .rela.dyn entry for this relocation. */
8543 if (can_make_dynamic_p)
8544 {
8545 if (sreloc == NULL)
8546 {
8547 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8548 if (sreloc == NULL)
8549 return FALSE;
8550 }
8551 if (info->shared && h == NULL)
8552 {
8553 /* When creating a shared object, we must copy these
8554 reloc types into the output file as R_MIPS_REL32
8555 relocs. Make room for this reloc in .rel(a).dyn. */
8556 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8557 if (MIPS_ELF_READONLY_SECTION (sec))
8558 /* We tell the dynamic linker that there are
8559 relocations against the text segment. */
8560 info->flags |= DF_TEXTREL;
8561 }
8562 else
8563 {
8564 struct mips_elf_link_hash_entry *hmips;
8565
8566 /* For a shared object, we must copy this relocation
8567 unless the symbol turns out to be undefined and
8568 weak with non-default visibility, in which case
8569 it will be left as zero.
8570
8571 We could elide R_MIPS_REL32 for locally binding symbols
8572 in shared libraries, but do not yet do so.
8573
8574 For an executable, we only need to copy this
8575 reloc if the symbol is defined in a dynamic
8576 object. */
8577 hmips = (struct mips_elf_link_hash_entry *) h;
8578 ++hmips->possibly_dynamic_relocs;
8579 if (MIPS_ELF_READONLY_SECTION (sec))
8580 /* We need it to tell the dynamic linker if there
8581 are relocations against the text segment. */
8582 hmips->readonly_reloc = TRUE;
8583 }
8584 }
8585
8586 if (SGI_COMPAT (abfd))
8587 mips_elf_hash_table (info)->compact_rel_size +=
8588 sizeof (Elf32_External_crinfo);
8589 break;
8590
8591 case R_MIPS_26:
8592 case R_MIPS_GPREL16:
8593 case R_MIPS_LITERAL:
8594 case R_MIPS_GPREL32:
8595 case R_MICROMIPS_26_S1:
8596 case R_MICROMIPS_GPREL16:
8597 case R_MICROMIPS_LITERAL:
8598 case R_MICROMIPS_GPREL7_S2:
8599 if (SGI_COMPAT (abfd))
8600 mips_elf_hash_table (info)->compact_rel_size +=
8601 sizeof (Elf32_External_crinfo);
8602 break;
8603
8604 /* This relocation describes the C++ object vtable hierarchy.
8605 Reconstruct it for later use during GC. */
8606 case R_MIPS_GNU_VTINHERIT:
8607 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8608 return FALSE;
8609 break;
8610
8611 /* This relocation describes which C++ vtable entries are actually
8612 used. Record for later use during GC. */
8613 case R_MIPS_GNU_VTENTRY:
8614 BFD_ASSERT (h != NULL);
8615 if (h != NULL
8616 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8617 return FALSE;
8618 break;
8619
8620 default:
8621 break;
8622 }
8623
8624 /* Record the need for a PLT entry. At this point we don't know
8625 yet if we are going to create a PLT in the first place, but
8626 we only record whether the relocation requires a standard MIPS
8627 or a compressed code entry anyway. If we don't make a PLT after
8628 all, then we'll just ignore these arrangements. Likewise if
8629 a PLT entry is not created because the symbol is satisfied
8630 locally. */
8631 if (h != NULL
8632 && jal_reloc_p (r_type)
8633 && !SYMBOL_CALLS_LOCAL (info, h))
8634 {
8635 if (h->plt.plist == NULL)
8636 h->plt.plist = mips_elf_make_plt_record (abfd);
8637 if (h->plt.plist == NULL)
8638 return FALSE;
8639
8640 if (r_type == R_MIPS_26)
8641 h->plt.plist->need_mips = TRUE;
8642 else
8643 h->plt.plist->need_comp = TRUE;
8644 }
8645
8646 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8647 if there is one. We only need to handle global symbols here;
8648 we decide whether to keep or delete stubs for local symbols
8649 when processing the stub's relocations. */
8650 if (h != NULL
8651 && !mips16_call_reloc_p (r_type)
8652 && !section_allows_mips16_refs_p (sec))
8653 {
8654 struct mips_elf_link_hash_entry *mh;
8655
8656 mh = (struct mips_elf_link_hash_entry *) h;
8657 mh->need_fn_stub = TRUE;
8658 }
8659
8660 /* Refuse some position-dependent relocations when creating a
8661 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8662 not PIC, but we can create dynamic relocations and the result
8663 will be fine. Also do not refuse R_MIPS_LO16, which can be
8664 combined with R_MIPS_GOT16. */
8665 if (info->shared)
8666 {
8667 switch (r_type)
8668 {
8669 case R_MIPS16_HI16:
8670 case R_MIPS_HI16:
8671 case R_MIPS_HIGHER:
8672 case R_MIPS_HIGHEST:
8673 case R_MICROMIPS_HI16:
8674 case R_MICROMIPS_HIGHER:
8675 case R_MICROMIPS_HIGHEST:
8676 /* Don't refuse a high part relocation if it's against
8677 no symbol (e.g. part of a compound relocation). */
8678 if (r_symndx == STN_UNDEF)
8679 break;
8680
8681 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8682 and has a special meaning. */
8683 if (!NEWABI_P (abfd) && h != NULL
8684 && strcmp (h->root.root.string, "_gp_disp") == 0)
8685 break;
8686
8687 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8688 if (is_gott_symbol (info, h))
8689 break;
8690
8691 /* FALLTHROUGH */
8692
8693 case R_MIPS16_26:
8694 case R_MIPS_26:
8695 case R_MICROMIPS_26_S1:
8696 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8697 (*_bfd_error_handler)
8698 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8699 abfd, howto->name,
8700 (h) ? h->root.root.string : "a local symbol");
8701 bfd_set_error (bfd_error_bad_value);
8702 return FALSE;
8703 default:
8704 break;
8705 }
8706 }
8707 }
8708
8709 return TRUE;
8710 }
8711 \f
8712 bfd_boolean
8713 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8714 struct bfd_link_info *link_info,
8715 bfd_boolean *again)
8716 {
8717 Elf_Internal_Rela *internal_relocs;
8718 Elf_Internal_Rela *irel, *irelend;
8719 Elf_Internal_Shdr *symtab_hdr;
8720 bfd_byte *contents = NULL;
8721 size_t extsymoff;
8722 bfd_boolean changed_contents = FALSE;
8723 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8724 Elf_Internal_Sym *isymbuf = NULL;
8725
8726 /* We are not currently changing any sizes, so only one pass. */
8727 *again = FALSE;
8728
8729 if (link_info->relocatable)
8730 return TRUE;
8731
8732 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8733 link_info->keep_memory);
8734 if (internal_relocs == NULL)
8735 return TRUE;
8736
8737 irelend = internal_relocs + sec->reloc_count
8738 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8739 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8740 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8741
8742 for (irel = internal_relocs; irel < irelend; irel++)
8743 {
8744 bfd_vma symval;
8745 bfd_signed_vma sym_offset;
8746 unsigned int r_type;
8747 unsigned long r_symndx;
8748 asection *sym_sec;
8749 unsigned long instruction;
8750
8751 /* Turn jalr into bgezal, and jr into beq, if they're marked
8752 with a JALR relocation, that indicate where they jump to.
8753 This saves some pipeline bubbles. */
8754 r_type = ELF_R_TYPE (abfd, irel->r_info);
8755 if (r_type != R_MIPS_JALR)
8756 continue;
8757
8758 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8759 /* Compute the address of the jump target. */
8760 if (r_symndx >= extsymoff)
8761 {
8762 struct mips_elf_link_hash_entry *h
8763 = ((struct mips_elf_link_hash_entry *)
8764 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8765
8766 while (h->root.root.type == bfd_link_hash_indirect
8767 || h->root.root.type == bfd_link_hash_warning)
8768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8769
8770 /* If a symbol is undefined, or if it may be overridden,
8771 skip it. */
8772 if (! ((h->root.root.type == bfd_link_hash_defined
8773 || h->root.root.type == bfd_link_hash_defweak)
8774 && h->root.root.u.def.section)
8775 || (link_info->shared && ! link_info->symbolic
8776 && !h->root.forced_local))
8777 continue;
8778
8779 sym_sec = h->root.root.u.def.section;
8780 if (sym_sec->output_section)
8781 symval = (h->root.root.u.def.value
8782 + sym_sec->output_section->vma
8783 + sym_sec->output_offset);
8784 else
8785 symval = h->root.root.u.def.value;
8786 }
8787 else
8788 {
8789 Elf_Internal_Sym *isym;
8790
8791 /* Read this BFD's symbols if we haven't done so already. */
8792 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8793 {
8794 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8795 if (isymbuf == NULL)
8796 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8797 symtab_hdr->sh_info, 0,
8798 NULL, NULL, NULL);
8799 if (isymbuf == NULL)
8800 goto relax_return;
8801 }
8802
8803 isym = isymbuf + r_symndx;
8804 if (isym->st_shndx == SHN_UNDEF)
8805 continue;
8806 else if (isym->st_shndx == SHN_ABS)
8807 sym_sec = bfd_abs_section_ptr;
8808 else if (isym->st_shndx == SHN_COMMON)
8809 sym_sec = bfd_com_section_ptr;
8810 else
8811 sym_sec
8812 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8813 symval = isym->st_value
8814 + sym_sec->output_section->vma
8815 + sym_sec->output_offset;
8816 }
8817
8818 /* Compute branch offset, from delay slot of the jump to the
8819 branch target. */
8820 sym_offset = (symval + irel->r_addend)
8821 - (sec_start + irel->r_offset + 4);
8822
8823 /* Branch offset must be properly aligned. */
8824 if ((sym_offset & 3) != 0)
8825 continue;
8826
8827 sym_offset >>= 2;
8828
8829 /* Check that it's in range. */
8830 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8831 continue;
8832
8833 /* Get the section contents if we haven't done so already. */
8834 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8835 goto relax_return;
8836
8837 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8838
8839 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8840 if ((instruction & 0xfc1fffff) == 0x0000f809)
8841 instruction = 0x04110000;
8842 /* If it was jr <reg>, turn it into b <target>. */
8843 else if ((instruction & 0xfc1fffff) == 0x00000008)
8844 instruction = 0x10000000;
8845 else
8846 continue;
8847
8848 instruction |= (sym_offset & 0xffff);
8849 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8850 changed_contents = TRUE;
8851 }
8852
8853 if (contents != NULL
8854 && elf_section_data (sec)->this_hdr.contents != contents)
8855 {
8856 if (!changed_contents && !link_info->keep_memory)
8857 free (contents);
8858 else
8859 {
8860 /* Cache the section contents for elf_link_input_bfd. */
8861 elf_section_data (sec)->this_hdr.contents = contents;
8862 }
8863 }
8864 return TRUE;
8865
8866 relax_return:
8867 if (contents != NULL
8868 && elf_section_data (sec)->this_hdr.contents != contents)
8869 free (contents);
8870 return FALSE;
8871 }
8872 \f
8873 /* Allocate space for global sym dynamic relocs. */
8874
8875 static bfd_boolean
8876 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8877 {
8878 struct bfd_link_info *info = inf;
8879 bfd *dynobj;
8880 struct mips_elf_link_hash_entry *hmips;
8881 struct mips_elf_link_hash_table *htab;
8882
8883 htab = mips_elf_hash_table (info);
8884 BFD_ASSERT (htab != NULL);
8885
8886 dynobj = elf_hash_table (info)->dynobj;
8887 hmips = (struct mips_elf_link_hash_entry *) h;
8888
8889 /* VxWorks executables are handled elsewhere; we only need to
8890 allocate relocations in shared objects. */
8891 if (htab->is_vxworks && !info->shared)
8892 return TRUE;
8893
8894 /* Ignore indirect symbols. All relocations against such symbols
8895 will be redirected to the target symbol. */
8896 if (h->root.type == bfd_link_hash_indirect)
8897 return TRUE;
8898
8899 /* If this symbol is defined in a dynamic object, or we are creating
8900 a shared library, we will need to copy any R_MIPS_32 or
8901 R_MIPS_REL32 relocs against it into the output file. */
8902 if (! info->relocatable
8903 && hmips->possibly_dynamic_relocs != 0
8904 && (h->root.type == bfd_link_hash_defweak
8905 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8906 || info->shared))
8907 {
8908 bfd_boolean do_copy = TRUE;
8909
8910 if (h->root.type == bfd_link_hash_undefweak)
8911 {
8912 /* Do not copy relocations for undefined weak symbols with
8913 non-default visibility. */
8914 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8915 do_copy = FALSE;
8916
8917 /* Make sure undefined weak symbols are output as a dynamic
8918 symbol in PIEs. */
8919 else if (h->dynindx == -1 && !h->forced_local)
8920 {
8921 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8922 return FALSE;
8923 }
8924 }
8925
8926 if (do_copy)
8927 {
8928 /* Even though we don't directly need a GOT entry for this symbol,
8929 the SVR4 psABI requires it to have a dynamic symbol table
8930 index greater that DT_MIPS_GOTSYM if there are dynamic
8931 relocations against it.
8932
8933 VxWorks does not enforce the same mapping between the GOT
8934 and the symbol table, so the same requirement does not
8935 apply there. */
8936 if (!htab->is_vxworks)
8937 {
8938 if (hmips->global_got_area > GGA_RELOC_ONLY)
8939 hmips->global_got_area = GGA_RELOC_ONLY;
8940 hmips->got_only_for_calls = FALSE;
8941 }
8942
8943 mips_elf_allocate_dynamic_relocations
8944 (dynobj, info, hmips->possibly_dynamic_relocs);
8945 if (hmips->readonly_reloc)
8946 /* We tell the dynamic linker that there are relocations
8947 against the text segment. */
8948 info->flags |= DF_TEXTREL;
8949 }
8950 }
8951
8952 return TRUE;
8953 }
8954
8955 /* Adjust a symbol defined by a dynamic object and referenced by a
8956 regular object. The current definition is in some section of the
8957 dynamic object, but we're not including those sections. We have to
8958 change the definition to something the rest of the link can
8959 understand. */
8960
8961 bfd_boolean
8962 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8963 struct elf_link_hash_entry *h)
8964 {
8965 bfd *dynobj;
8966 struct mips_elf_link_hash_entry *hmips;
8967 struct mips_elf_link_hash_table *htab;
8968
8969 htab = mips_elf_hash_table (info);
8970 BFD_ASSERT (htab != NULL);
8971
8972 dynobj = elf_hash_table (info)->dynobj;
8973 hmips = (struct mips_elf_link_hash_entry *) h;
8974
8975 /* Make sure we know what is going on here. */
8976 BFD_ASSERT (dynobj != NULL
8977 && (h->needs_plt
8978 || h->u.weakdef != NULL
8979 || (h->def_dynamic
8980 && h->ref_regular
8981 && !h->def_regular)));
8982
8983 hmips = (struct mips_elf_link_hash_entry *) h;
8984
8985 /* If there are call relocations against an externally-defined symbol,
8986 see whether we can create a MIPS lazy-binding stub for it. We can
8987 only do this if all references to the function are through call
8988 relocations, and in that case, the traditional lazy-binding stubs
8989 are much more efficient than PLT entries.
8990
8991 Traditional stubs are only available on SVR4 psABI-based systems;
8992 VxWorks always uses PLTs instead. */
8993 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8994 {
8995 if (! elf_hash_table (info)->dynamic_sections_created)
8996 return TRUE;
8997
8998 /* If this symbol is not defined in a regular file, then set
8999 the symbol to the stub location. This is required to make
9000 function pointers compare as equal between the normal
9001 executable and the shared library. */
9002 if (!h->def_regular)
9003 {
9004 hmips->needs_lazy_stub = TRUE;
9005 htab->lazy_stub_count++;
9006 return TRUE;
9007 }
9008 }
9009 /* As above, VxWorks requires PLT entries for externally-defined
9010 functions that are only accessed through call relocations.
9011
9012 Both VxWorks and non-VxWorks targets also need PLT entries if there
9013 are static-only relocations against an externally-defined function.
9014 This can technically occur for shared libraries if there are
9015 branches to the symbol, although it is unlikely that this will be
9016 used in practice due to the short ranges involved. It can occur
9017 for any relative or absolute relocation in executables; in that
9018 case, the PLT entry becomes the function's canonical address. */
9019 else if (((h->needs_plt && !hmips->no_fn_stub)
9020 || (h->type == STT_FUNC && hmips->has_static_relocs))
9021 && htab->use_plts_and_copy_relocs
9022 && !SYMBOL_CALLS_LOCAL (info, h)
9023 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9024 && h->root.type == bfd_link_hash_undefweak))
9025 {
9026 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9027 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9028
9029 /* If this is the first symbol to need a PLT entry, then make some
9030 basic setup. Also work out PLT entry sizes. We'll need them
9031 for PLT offset calculations. */
9032 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9033 {
9034 BFD_ASSERT (htab->sgotplt->size == 0);
9035 BFD_ASSERT (htab->plt_got_index == 0);
9036
9037 /* If we're using the PLT additions to the psABI, each PLT
9038 entry is 16 bytes and the PLT0 entry is 32 bytes.
9039 Encourage better cache usage by aligning. We do this
9040 lazily to avoid pessimizing traditional objects. */
9041 if (!htab->is_vxworks
9042 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9043 return FALSE;
9044
9045 /* Make sure that .got.plt is word-aligned. We do this lazily
9046 for the same reason as above. */
9047 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9048 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9049 return FALSE;
9050
9051 /* On non-VxWorks targets, the first two entries in .got.plt
9052 are reserved. */
9053 if (!htab->is_vxworks)
9054 htab->plt_got_index
9055 += (get_elf_backend_data (dynobj)->got_header_size
9056 / MIPS_ELF_GOT_SIZE (dynobj));
9057
9058 /* On VxWorks, also allocate room for the header's
9059 .rela.plt.unloaded entries. */
9060 if (htab->is_vxworks && !info->shared)
9061 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9062
9063 /* Now work out the sizes of individual PLT entries. */
9064 if (htab->is_vxworks && info->shared)
9065 htab->plt_mips_entry_size
9066 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9067 else if (htab->is_vxworks)
9068 htab->plt_mips_entry_size
9069 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9070 else if (newabi_p)
9071 htab->plt_mips_entry_size
9072 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9073 else if (!micromips_p)
9074 {
9075 htab->plt_mips_entry_size
9076 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9077 htab->plt_comp_entry_size
9078 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9079 }
9080 else if (htab->insn32)
9081 {
9082 htab->plt_mips_entry_size
9083 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9084 htab->plt_comp_entry_size
9085 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9086 }
9087 else
9088 {
9089 htab->plt_mips_entry_size
9090 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9091 htab->plt_comp_entry_size
9092 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9093 }
9094 }
9095
9096 if (h->plt.plist == NULL)
9097 h->plt.plist = mips_elf_make_plt_record (dynobj);
9098 if (h->plt.plist == NULL)
9099 return FALSE;
9100
9101 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9102 n32 or n64, so always use a standard entry there.
9103
9104 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9105 all MIPS16 calls will go via that stub, and there is no benefit
9106 to having a MIPS16 entry. And in the case of call_stub a
9107 standard entry actually has to be used as the stub ends with a J
9108 instruction. */
9109 if (newabi_p
9110 || htab->is_vxworks
9111 || hmips->call_stub
9112 || hmips->call_fp_stub)
9113 {
9114 h->plt.plist->need_mips = TRUE;
9115 h->plt.plist->need_comp = FALSE;
9116 }
9117
9118 /* Otherwise, if there are no direct calls to the function, we
9119 have a free choice of whether to use standard or compressed
9120 entries. Prefer microMIPS entries if the object is known to
9121 contain microMIPS code, so that it becomes possible to create
9122 pure microMIPS binaries. Prefer standard entries otherwise,
9123 because MIPS16 ones are no smaller and are usually slower. */
9124 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9125 {
9126 if (micromips_p)
9127 h->plt.plist->need_comp = TRUE;
9128 else
9129 h->plt.plist->need_mips = TRUE;
9130 }
9131
9132 if (h->plt.plist->need_mips)
9133 {
9134 h->plt.plist->mips_offset = htab->plt_mips_offset;
9135 htab->plt_mips_offset += htab->plt_mips_entry_size;
9136 }
9137 if (h->plt.plist->need_comp)
9138 {
9139 h->plt.plist->comp_offset = htab->plt_comp_offset;
9140 htab->plt_comp_offset += htab->plt_comp_entry_size;
9141 }
9142
9143 /* Reserve the corresponding .got.plt entry now too. */
9144 h->plt.plist->gotplt_index = htab->plt_got_index++;
9145
9146 /* If the output file has no definition of the symbol, set the
9147 symbol's value to the address of the stub. */
9148 if (!info->shared && !h->def_regular)
9149 hmips->use_plt_entry = TRUE;
9150
9151 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9152 htab->srelplt->size += (htab->is_vxworks
9153 ? MIPS_ELF_RELA_SIZE (dynobj)
9154 : MIPS_ELF_REL_SIZE (dynobj));
9155
9156 /* Make room for the .rela.plt.unloaded relocations. */
9157 if (htab->is_vxworks && !info->shared)
9158 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9159
9160 /* All relocations against this symbol that could have been made
9161 dynamic will now refer to the PLT entry instead. */
9162 hmips->possibly_dynamic_relocs = 0;
9163
9164 return TRUE;
9165 }
9166
9167 /* If this is a weak symbol, and there is a real definition, the
9168 processor independent code will have arranged for us to see the
9169 real definition first, and we can just use the same value. */
9170 if (h->u.weakdef != NULL)
9171 {
9172 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9173 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9174 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9175 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9176 return TRUE;
9177 }
9178
9179 /* Otherwise, there is nothing further to do for symbols defined
9180 in regular objects. */
9181 if (h->def_regular)
9182 return TRUE;
9183
9184 /* There's also nothing more to do if we'll convert all relocations
9185 against this symbol into dynamic relocations. */
9186 if (!hmips->has_static_relocs)
9187 return TRUE;
9188
9189 /* We're now relying on copy relocations. Complain if we have
9190 some that we can't convert. */
9191 if (!htab->use_plts_and_copy_relocs || info->shared)
9192 {
9193 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9194 "dynamic symbol %s"),
9195 h->root.root.string);
9196 bfd_set_error (bfd_error_bad_value);
9197 return FALSE;
9198 }
9199
9200 /* We must allocate the symbol in our .dynbss section, which will
9201 become part of the .bss section of the executable. There will be
9202 an entry for this symbol in the .dynsym section. The dynamic
9203 object will contain position independent code, so all references
9204 from the dynamic object to this symbol will go through the global
9205 offset table. The dynamic linker will use the .dynsym entry to
9206 determine the address it must put in the global offset table, so
9207 both the dynamic object and the regular object will refer to the
9208 same memory location for the variable. */
9209
9210 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9211 {
9212 if (htab->is_vxworks)
9213 htab->srelbss->size += sizeof (Elf32_External_Rela);
9214 else
9215 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9216 h->needs_copy = 1;
9217 }
9218
9219 /* All relocations against this symbol that could have been made
9220 dynamic will now refer to the local copy instead. */
9221 hmips->possibly_dynamic_relocs = 0;
9222
9223 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9224 }
9225 \f
9226 /* This function is called after all the input files have been read,
9227 and the input sections have been assigned to output sections. We
9228 check for any mips16 stub sections that we can discard. */
9229
9230 bfd_boolean
9231 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9232 struct bfd_link_info *info)
9233 {
9234 asection *sect;
9235 struct mips_elf_link_hash_table *htab;
9236 struct mips_htab_traverse_info hti;
9237
9238 htab = mips_elf_hash_table (info);
9239 BFD_ASSERT (htab != NULL);
9240
9241 /* The .reginfo section has a fixed size. */
9242 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9243 if (sect != NULL)
9244 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9245
9246 /* The .MIPS.abiflags section has a fixed size. */
9247 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9248 if (sect != NULL)
9249 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9250
9251 hti.info = info;
9252 hti.output_bfd = output_bfd;
9253 hti.error = FALSE;
9254 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9255 mips_elf_check_symbols, &hti);
9256 if (hti.error)
9257 return FALSE;
9258
9259 return TRUE;
9260 }
9261
9262 /* If the link uses a GOT, lay it out and work out its size. */
9263
9264 static bfd_boolean
9265 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9266 {
9267 bfd *dynobj;
9268 asection *s;
9269 struct mips_got_info *g;
9270 bfd_size_type loadable_size = 0;
9271 bfd_size_type page_gotno;
9272 bfd *ibfd;
9273 struct mips_elf_traverse_got_arg tga;
9274 struct mips_elf_link_hash_table *htab;
9275
9276 htab = mips_elf_hash_table (info);
9277 BFD_ASSERT (htab != NULL);
9278
9279 s = htab->sgot;
9280 if (s == NULL)
9281 return TRUE;
9282
9283 dynobj = elf_hash_table (info)->dynobj;
9284 g = htab->got_info;
9285
9286 /* Allocate room for the reserved entries. VxWorks always reserves
9287 3 entries; other objects only reserve 2 entries. */
9288 BFD_ASSERT (g->assigned_low_gotno == 0);
9289 if (htab->is_vxworks)
9290 htab->reserved_gotno = 3;
9291 else
9292 htab->reserved_gotno = 2;
9293 g->local_gotno += htab->reserved_gotno;
9294 g->assigned_low_gotno = htab->reserved_gotno;
9295
9296 /* Decide which symbols need to go in the global part of the GOT and
9297 count the number of reloc-only GOT symbols. */
9298 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9299
9300 if (!mips_elf_resolve_final_got_entries (info, g))
9301 return FALSE;
9302
9303 /* Calculate the total loadable size of the output. That
9304 will give us the maximum number of GOT_PAGE entries
9305 required. */
9306 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9307 {
9308 asection *subsection;
9309
9310 for (subsection = ibfd->sections;
9311 subsection;
9312 subsection = subsection->next)
9313 {
9314 if ((subsection->flags & SEC_ALLOC) == 0)
9315 continue;
9316 loadable_size += ((subsection->size + 0xf)
9317 &~ (bfd_size_type) 0xf);
9318 }
9319 }
9320
9321 if (htab->is_vxworks)
9322 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9323 relocations against local symbols evaluate to "G", and the EABI does
9324 not include R_MIPS_GOT_PAGE. */
9325 page_gotno = 0;
9326 else
9327 /* Assume there are two loadable segments consisting of contiguous
9328 sections. Is 5 enough? */
9329 page_gotno = (loadable_size >> 16) + 5;
9330
9331 /* Choose the smaller of the two page estimates; both are intended to be
9332 conservative. */
9333 if (page_gotno > g->page_gotno)
9334 page_gotno = g->page_gotno;
9335
9336 g->local_gotno += page_gotno;
9337 g->assigned_high_gotno = g->local_gotno - 1;
9338
9339 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9340 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9341 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9342
9343 /* VxWorks does not support multiple GOTs. It initializes $gp to
9344 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9345 dynamic loader. */
9346 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9347 {
9348 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9349 return FALSE;
9350 }
9351 else
9352 {
9353 /* Record that all bfds use G. This also has the effect of freeing
9354 the per-bfd GOTs, which we no longer need. */
9355 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9356 if (mips_elf_bfd_got (ibfd, FALSE))
9357 mips_elf_replace_bfd_got (ibfd, g);
9358 mips_elf_replace_bfd_got (output_bfd, g);
9359
9360 /* Set up TLS entries. */
9361 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9362 tga.info = info;
9363 tga.g = g;
9364 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9365 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9366 if (!tga.g)
9367 return FALSE;
9368 BFD_ASSERT (g->tls_assigned_gotno
9369 == g->global_gotno + g->local_gotno + g->tls_gotno);
9370
9371 /* Each VxWorks GOT entry needs an explicit relocation. */
9372 if (htab->is_vxworks && info->shared)
9373 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9374
9375 /* Allocate room for the TLS relocations. */
9376 if (g->relocs)
9377 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9378 }
9379
9380 return TRUE;
9381 }
9382
9383 /* Estimate the size of the .MIPS.stubs section. */
9384
9385 static void
9386 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9387 {
9388 struct mips_elf_link_hash_table *htab;
9389 bfd_size_type dynsymcount;
9390
9391 htab = mips_elf_hash_table (info);
9392 BFD_ASSERT (htab != NULL);
9393
9394 if (htab->lazy_stub_count == 0)
9395 return;
9396
9397 /* IRIX rld assumes that a function stub isn't at the end of the .text
9398 section, so add a dummy entry to the end. */
9399 htab->lazy_stub_count++;
9400
9401 /* Get a worst-case estimate of the number of dynamic symbols needed.
9402 At this point, dynsymcount does not account for section symbols
9403 and count_section_dynsyms may overestimate the number that will
9404 be needed. */
9405 dynsymcount = (elf_hash_table (info)->dynsymcount
9406 + count_section_dynsyms (output_bfd, info));
9407
9408 /* Determine the size of one stub entry. There's no disadvantage
9409 from using microMIPS code here, so for the sake of pure-microMIPS
9410 binaries we prefer it whenever there's any microMIPS code in
9411 output produced at all. This has a benefit of stubs being
9412 shorter by 4 bytes each too, unless in the insn32 mode. */
9413 if (!MICROMIPS_P (output_bfd))
9414 htab->function_stub_size = (dynsymcount > 0x10000
9415 ? MIPS_FUNCTION_STUB_BIG_SIZE
9416 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9417 else if (htab->insn32)
9418 htab->function_stub_size = (dynsymcount > 0x10000
9419 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9420 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9421 else
9422 htab->function_stub_size = (dynsymcount > 0x10000
9423 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9424 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9425
9426 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9427 }
9428
9429 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9430 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9431 stub, allocate an entry in the stubs section. */
9432
9433 static bfd_boolean
9434 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9435 {
9436 struct mips_htab_traverse_info *hti = data;
9437 struct mips_elf_link_hash_table *htab;
9438 struct bfd_link_info *info;
9439 bfd *output_bfd;
9440
9441 info = hti->info;
9442 output_bfd = hti->output_bfd;
9443 htab = mips_elf_hash_table (info);
9444 BFD_ASSERT (htab != NULL);
9445
9446 if (h->needs_lazy_stub)
9447 {
9448 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9449 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9450 bfd_vma isa_bit = micromips_p;
9451
9452 BFD_ASSERT (htab->root.dynobj != NULL);
9453 if (h->root.plt.plist == NULL)
9454 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9455 if (h->root.plt.plist == NULL)
9456 {
9457 hti->error = TRUE;
9458 return FALSE;
9459 }
9460 h->root.root.u.def.section = htab->sstubs;
9461 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9462 h->root.plt.plist->stub_offset = htab->sstubs->size;
9463 h->root.other = other;
9464 htab->sstubs->size += htab->function_stub_size;
9465 }
9466 return TRUE;
9467 }
9468
9469 /* Allocate offsets in the stubs section to each symbol that needs one.
9470 Set the final size of the .MIPS.stub section. */
9471
9472 static bfd_boolean
9473 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9474 {
9475 bfd *output_bfd = info->output_bfd;
9476 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9477 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9478 bfd_vma isa_bit = micromips_p;
9479 struct mips_elf_link_hash_table *htab;
9480 struct mips_htab_traverse_info hti;
9481 struct elf_link_hash_entry *h;
9482 bfd *dynobj;
9483
9484 htab = mips_elf_hash_table (info);
9485 BFD_ASSERT (htab != NULL);
9486
9487 if (htab->lazy_stub_count == 0)
9488 return TRUE;
9489
9490 htab->sstubs->size = 0;
9491 hti.info = info;
9492 hti.output_bfd = output_bfd;
9493 hti.error = FALSE;
9494 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9495 if (hti.error)
9496 return FALSE;
9497 htab->sstubs->size += htab->function_stub_size;
9498 BFD_ASSERT (htab->sstubs->size
9499 == htab->lazy_stub_count * htab->function_stub_size);
9500
9501 dynobj = elf_hash_table (info)->dynobj;
9502 BFD_ASSERT (dynobj != NULL);
9503 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9504 if (h == NULL)
9505 return FALSE;
9506 h->root.u.def.value = isa_bit;
9507 h->other = other;
9508 h->type = STT_FUNC;
9509
9510 return TRUE;
9511 }
9512
9513 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9514 bfd_link_info. If H uses the address of a PLT entry as the value
9515 of the symbol, then set the entry in the symbol table now. Prefer
9516 a standard MIPS PLT entry. */
9517
9518 static bfd_boolean
9519 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9520 {
9521 struct bfd_link_info *info = data;
9522 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9523 struct mips_elf_link_hash_table *htab;
9524 unsigned int other;
9525 bfd_vma isa_bit;
9526 bfd_vma val;
9527
9528 htab = mips_elf_hash_table (info);
9529 BFD_ASSERT (htab != NULL);
9530
9531 if (h->use_plt_entry)
9532 {
9533 BFD_ASSERT (h->root.plt.plist != NULL);
9534 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9535 || h->root.plt.plist->comp_offset != MINUS_ONE);
9536
9537 val = htab->plt_header_size;
9538 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9539 {
9540 isa_bit = 0;
9541 val += h->root.plt.plist->mips_offset;
9542 other = 0;
9543 }
9544 else
9545 {
9546 isa_bit = 1;
9547 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9548 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9549 }
9550 val += isa_bit;
9551 /* For VxWorks, point at the PLT load stub rather than the lazy
9552 resolution stub; this stub will become the canonical function
9553 address. */
9554 if (htab->is_vxworks)
9555 val += 8;
9556
9557 h->root.root.u.def.section = htab->splt;
9558 h->root.root.u.def.value = val;
9559 h->root.other = other;
9560 }
9561
9562 return TRUE;
9563 }
9564
9565 /* Set the sizes of the dynamic sections. */
9566
9567 bfd_boolean
9568 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9569 struct bfd_link_info *info)
9570 {
9571 bfd *dynobj;
9572 asection *s, *sreldyn;
9573 bfd_boolean reltext;
9574 struct mips_elf_link_hash_table *htab;
9575
9576 htab = mips_elf_hash_table (info);
9577 BFD_ASSERT (htab != NULL);
9578 dynobj = elf_hash_table (info)->dynobj;
9579 BFD_ASSERT (dynobj != NULL);
9580
9581 if (elf_hash_table (info)->dynamic_sections_created)
9582 {
9583 /* Set the contents of the .interp section to the interpreter. */
9584 if (info->executable)
9585 {
9586 s = bfd_get_linker_section (dynobj, ".interp");
9587 BFD_ASSERT (s != NULL);
9588 s->size
9589 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9590 s->contents
9591 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9592 }
9593
9594 /* Figure out the size of the PLT header if we know that we
9595 are using it. For the sake of cache alignment always use
9596 a standard header whenever any standard entries are present
9597 even if microMIPS entries are present as well. This also
9598 lets the microMIPS header rely on the value of $v0 only set
9599 by microMIPS entries, for a small size reduction.
9600
9601 Set symbol table entry values for symbols that use the
9602 address of their PLT entry now that we can calculate it.
9603
9604 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9605 haven't already in _bfd_elf_create_dynamic_sections. */
9606 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9607 {
9608 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9609 && !htab->plt_mips_offset);
9610 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9611 bfd_vma isa_bit = micromips_p;
9612 struct elf_link_hash_entry *h;
9613 bfd_vma size;
9614
9615 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9616 BFD_ASSERT (htab->sgotplt->size == 0);
9617 BFD_ASSERT (htab->splt->size == 0);
9618
9619 if (htab->is_vxworks && info->shared)
9620 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9621 else if (htab->is_vxworks)
9622 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9623 else if (ABI_64_P (output_bfd))
9624 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9625 else if (ABI_N32_P (output_bfd))
9626 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9627 else if (!micromips_p)
9628 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9629 else if (htab->insn32)
9630 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9631 else
9632 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9633
9634 htab->plt_header_is_comp = micromips_p;
9635 htab->plt_header_size = size;
9636 htab->splt->size = (size
9637 + htab->plt_mips_offset
9638 + htab->plt_comp_offset);
9639 htab->sgotplt->size = (htab->plt_got_index
9640 * MIPS_ELF_GOT_SIZE (dynobj));
9641
9642 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9643
9644 if (htab->root.hplt == NULL)
9645 {
9646 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9647 "_PROCEDURE_LINKAGE_TABLE_");
9648 htab->root.hplt = h;
9649 if (h == NULL)
9650 return FALSE;
9651 }
9652
9653 h = htab->root.hplt;
9654 h->root.u.def.value = isa_bit;
9655 h->other = other;
9656 h->type = STT_FUNC;
9657 }
9658 }
9659
9660 /* Allocate space for global sym dynamic relocs. */
9661 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9662
9663 mips_elf_estimate_stub_size (output_bfd, info);
9664
9665 if (!mips_elf_lay_out_got (output_bfd, info))
9666 return FALSE;
9667
9668 mips_elf_lay_out_lazy_stubs (info);
9669
9670 /* The check_relocs and adjust_dynamic_symbol entry points have
9671 determined the sizes of the various dynamic sections. Allocate
9672 memory for them. */
9673 reltext = FALSE;
9674 for (s = dynobj->sections; s != NULL; s = s->next)
9675 {
9676 const char *name;
9677
9678 /* It's OK to base decisions on the section name, because none
9679 of the dynobj section names depend upon the input files. */
9680 name = bfd_get_section_name (dynobj, s);
9681
9682 if ((s->flags & SEC_LINKER_CREATED) == 0)
9683 continue;
9684
9685 if (CONST_STRNEQ (name, ".rel"))
9686 {
9687 if (s->size != 0)
9688 {
9689 const char *outname;
9690 asection *target;
9691
9692 /* If this relocation section applies to a read only
9693 section, then we probably need a DT_TEXTREL entry.
9694 If the relocation section is .rel(a).dyn, we always
9695 assert a DT_TEXTREL entry rather than testing whether
9696 there exists a relocation to a read only section or
9697 not. */
9698 outname = bfd_get_section_name (output_bfd,
9699 s->output_section);
9700 target = bfd_get_section_by_name (output_bfd, outname + 4);
9701 if ((target != NULL
9702 && (target->flags & SEC_READONLY) != 0
9703 && (target->flags & SEC_ALLOC) != 0)
9704 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9705 reltext = TRUE;
9706
9707 /* We use the reloc_count field as a counter if we need
9708 to copy relocs into the output file. */
9709 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9710 s->reloc_count = 0;
9711
9712 /* If combreloc is enabled, elf_link_sort_relocs() will
9713 sort relocations, but in a different way than we do,
9714 and before we're done creating relocations. Also, it
9715 will move them around between input sections'
9716 relocation's contents, so our sorting would be
9717 broken, so don't let it run. */
9718 info->combreloc = 0;
9719 }
9720 }
9721 else if (! info->shared
9722 && ! mips_elf_hash_table (info)->use_rld_obj_head
9723 && CONST_STRNEQ (name, ".rld_map"))
9724 {
9725 /* We add a room for __rld_map. It will be filled in by the
9726 rtld to contain a pointer to the _r_debug structure. */
9727 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9728 }
9729 else if (SGI_COMPAT (output_bfd)
9730 && CONST_STRNEQ (name, ".compact_rel"))
9731 s->size += mips_elf_hash_table (info)->compact_rel_size;
9732 else if (s == htab->splt)
9733 {
9734 /* If the last PLT entry has a branch delay slot, allocate
9735 room for an extra nop to fill the delay slot. This is
9736 for CPUs without load interlocking. */
9737 if (! LOAD_INTERLOCKS_P (output_bfd)
9738 && ! htab->is_vxworks && s->size > 0)
9739 s->size += 4;
9740 }
9741 else if (! CONST_STRNEQ (name, ".init")
9742 && s != htab->sgot
9743 && s != htab->sgotplt
9744 && s != htab->sstubs
9745 && s != htab->sdynbss)
9746 {
9747 /* It's not one of our sections, so don't allocate space. */
9748 continue;
9749 }
9750
9751 if (s->size == 0)
9752 {
9753 s->flags |= SEC_EXCLUDE;
9754 continue;
9755 }
9756
9757 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9758 continue;
9759
9760 /* Allocate memory for the section contents. */
9761 s->contents = bfd_zalloc (dynobj, s->size);
9762 if (s->contents == NULL)
9763 {
9764 bfd_set_error (bfd_error_no_memory);
9765 return FALSE;
9766 }
9767 }
9768
9769 if (elf_hash_table (info)->dynamic_sections_created)
9770 {
9771 /* Add some entries to the .dynamic section. We fill in the
9772 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9773 must add the entries now so that we get the correct size for
9774 the .dynamic section. */
9775
9776 /* SGI object has the equivalence of DT_DEBUG in the
9777 DT_MIPS_RLD_MAP entry. This must come first because glibc
9778 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9779 may only look at the first one they see. */
9780 if (!info->shared
9781 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9782 return FALSE;
9783
9784 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9785 used by the debugger. */
9786 if (info->executable
9787 && !SGI_COMPAT (output_bfd)
9788 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9789 return FALSE;
9790
9791 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9792 info->flags |= DF_TEXTREL;
9793
9794 if ((info->flags & DF_TEXTREL) != 0)
9795 {
9796 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9797 return FALSE;
9798
9799 /* Clear the DF_TEXTREL flag. It will be set again if we
9800 write out an actual text relocation; we may not, because
9801 at this point we do not know whether e.g. any .eh_frame
9802 absolute relocations have been converted to PC-relative. */
9803 info->flags &= ~DF_TEXTREL;
9804 }
9805
9806 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9807 return FALSE;
9808
9809 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9810 if (htab->is_vxworks)
9811 {
9812 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9813 use any of the DT_MIPS_* tags. */
9814 if (sreldyn && sreldyn->size > 0)
9815 {
9816 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9817 return FALSE;
9818
9819 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9820 return FALSE;
9821
9822 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9823 return FALSE;
9824 }
9825 }
9826 else
9827 {
9828 if (sreldyn && sreldyn->size > 0)
9829 {
9830 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9831 return FALSE;
9832
9833 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9834 return FALSE;
9835
9836 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9837 return FALSE;
9838 }
9839
9840 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9841 return FALSE;
9842
9843 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9844 return FALSE;
9845
9846 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9847 return FALSE;
9848
9849 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9850 return FALSE;
9851
9852 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9853 return FALSE;
9854
9855 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9856 return FALSE;
9857
9858 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9859 return FALSE;
9860
9861 if (IRIX_COMPAT (dynobj) == ict_irix5
9862 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9863 return FALSE;
9864
9865 if (IRIX_COMPAT (dynobj) == ict_irix6
9866 && (bfd_get_section_by_name
9867 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9868 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9869 return FALSE;
9870 }
9871 if (htab->splt->size > 0)
9872 {
9873 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9874 return FALSE;
9875
9876 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9877 return FALSE;
9878
9879 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9880 return FALSE;
9881
9882 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9883 return FALSE;
9884 }
9885 if (htab->is_vxworks
9886 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9887 return FALSE;
9888 }
9889
9890 return TRUE;
9891 }
9892 \f
9893 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9894 Adjust its R_ADDEND field so that it is correct for the output file.
9895 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9896 and sections respectively; both use symbol indexes. */
9897
9898 static void
9899 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9900 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9901 asection **local_sections, Elf_Internal_Rela *rel)
9902 {
9903 unsigned int r_type, r_symndx;
9904 Elf_Internal_Sym *sym;
9905 asection *sec;
9906
9907 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9908 {
9909 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9910 if (gprel16_reloc_p (r_type)
9911 || r_type == R_MIPS_GPREL32
9912 || literal_reloc_p (r_type))
9913 {
9914 rel->r_addend += _bfd_get_gp_value (input_bfd);
9915 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9916 }
9917
9918 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9919 sym = local_syms + r_symndx;
9920
9921 /* Adjust REL's addend to account for section merging. */
9922 if (!info->relocatable)
9923 {
9924 sec = local_sections[r_symndx];
9925 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9926 }
9927
9928 /* This would normally be done by the rela_normal code in elflink.c. */
9929 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9930 rel->r_addend += local_sections[r_symndx]->output_offset;
9931 }
9932 }
9933
9934 /* Handle relocations against symbols from removed linkonce sections,
9935 or sections discarded by a linker script. We use this wrapper around
9936 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9937 on 64-bit ELF targets. In this case for any relocation handled, which
9938 always be the first in a triplet, the remaining two have to be processed
9939 together with the first, even if they are R_MIPS_NONE. It is the symbol
9940 index referred by the first reloc that applies to all the three and the
9941 remaining two never refer to an object symbol. And it is the final
9942 relocation (the last non-null one) that determines the output field of
9943 the whole relocation so retrieve the corresponding howto structure for
9944 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9945
9946 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9947 and therefore requires to be pasted in a loop. It also defines a block
9948 and does not protect any of its arguments, hence the extra brackets. */
9949
9950 static void
9951 mips_reloc_against_discarded_section (bfd *output_bfd,
9952 struct bfd_link_info *info,
9953 bfd *input_bfd, asection *input_section,
9954 Elf_Internal_Rela **rel,
9955 const Elf_Internal_Rela **relend,
9956 bfd_boolean rel_reloc,
9957 reloc_howto_type *howto,
9958 bfd_byte *contents)
9959 {
9960 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9961 int count = bed->s->int_rels_per_ext_rel;
9962 unsigned int r_type;
9963 int i;
9964
9965 for (i = count - 1; i > 0; i--)
9966 {
9967 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9968 if (r_type != R_MIPS_NONE)
9969 {
9970 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9971 break;
9972 }
9973 }
9974 do
9975 {
9976 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9977 (*rel), count, (*relend),
9978 howto, i, contents);
9979 }
9980 while (0);
9981 }
9982
9983 /* Relocate a MIPS ELF section. */
9984
9985 bfd_boolean
9986 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9987 bfd *input_bfd, asection *input_section,
9988 bfd_byte *contents, Elf_Internal_Rela *relocs,
9989 Elf_Internal_Sym *local_syms,
9990 asection **local_sections)
9991 {
9992 Elf_Internal_Rela *rel;
9993 const Elf_Internal_Rela *relend;
9994 bfd_vma addend = 0;
9995 bfd_boolean use_saved_addend_p = FALSE;
9996 const struct elf_backend_data *bed;
9997
9998 bed = get_elf_backend_data (output_bfd);
9999 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10000 for (rel = relocs; rel < relend; ++rel)
10001 {
10002 const char *name;
10003 bfd_vma value = 0;
10004 reloc_howto_type *howto;
10005 bfd_boolean cross_mode_jump_p = FALSE;
10006 /* TRUE if the relocation is a RELA relocation, rather than a
10007 REL relocation. */
10008 bfd_boolean rela_relocation_p = TRUE;
10009 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10010 const char *msg;
10011 unsigned long r_symndx;
10012 asection *sec;
10013 Elf_Internal_Shdr *symtab_hdr;
10014 struct elf_link_hash_entry *h;
10015 bfd_boolean rel_reloc;
10016
10017 rel_reloc = (NEWABI_P (input_bfd)
10018 && mips_elf_rel_relocation_p (input_bfd, input_section,
10019 relocs, rel));
10020 /* Find the relocation howto for this relocation. */
10021 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10022
10023 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10025 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10026 {
10027 sec = local_sections[r_symndx];
10028 h = NULL;
10029 }
10030 else
10031 {
10032 unsigned long extsymoff;
10033
10034 extsymoff = 0;
10035 if (!elf_bad_symtab (input_bfd))
10036 extsymoff = symtab_hdr->sh_info;
10037 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10038 while (h->root.type == bfd_link_hash_indirect
10039 || h->root.type == bfd_link_hash_warning)
10040 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10041
10042 sec = NULL;
10043 if (h->root.type == bfd_link_hash_defined
10044 || h->root.type == bfd_link_hash_defweak)
10045 sec = h->root.u.def.section;
10046 }
10047
10048 if (sec != NULL && discarded_section (sec))
10049 {
10050 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10051 input_section, &rel, &relend,
10052 rel_reloc, howto, contents);
10053 continue;
10054 }
10055
10056 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10057 {
10058 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10059 64-bit code, but make sure all their addresses are in the
10060 lowermost or uppermost 32-bit section of the 64-bit address
10061 space. Thus, when they use an R_MIPS_64 they mean what is
10062 usually meant by R_MIPS_32, with the exception that the
10063 stored value is sign-extended to 64 bits. */
10064 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10065
10066 /* On big-endian systems, we need to lie about the position
10067 of the reloc. */
10068 if (bfd_big_endian (input_bfd))
10069 rel->r_offset += 4;
10070 }
10071
10072 if (!use_saved_addend_p)
10073 {
10074 /* If these relocations were originally of the REL variety,
10075 we must pull the addend out of the field that will be
10076 relocated. Otherwise, we simply use the contents of the
10077 RELA relocation. */
10078 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10079 relocs, rel))
10080 {
10081 rela_relocation_p = FALSE;
10082 addend = mips_elf_read_rel_addend (input_bfd, rel,
10083 howto, contents);
10084 if (hi16_reloc_p (r_type)
10085 || (got16_reloc_p (r_type)
10086 && mips_elf_local_relocation_p (input_bfd, rel,
10087 local_sections)))
10088 {
10089 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10090 contents, &addend))
10091 {
10092 if (h)
10093 name = h->root.root.string;
10094 else
10095 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10096 local_syms + r_symndx,
10097 sec);
10098 (*_bfd_error_handler)
10099 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10100 input_bfd, input_section, name, howto->name,
10101 rel->r_offset);
10102 }
10103 }
10104 else
10105 addend <<= howto->rightshift;
10106 }
10107 else
10108 addend = rel->r_addend;
10109 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10110 local_syms, local_sections, rel);
10111 }
10112
10113 if (info->relocatable)
10114 {
10115 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10116 && bfd_big_endian (input_bfd))
10117 rel->r_offset -= 4;
10118
10119 if (!rela_relocation_p && rel->r_addend)
10120 {
10121 addend += rel->r_addend;
10122 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10123 addend = mips_elf_high (addend);
10124 else if (r_type == R_MIPS_HIGHER)
10125 addend = mips_elf_higher (addend);
10126 else if (r_type == R_MIPS_HIGHEST)
10127 addend = mips_elf_highest (addend);
10128 else
10129 addend >>= howto->rightshift;
10130
10131 /* We use the source mask, rather than the destination
10132 mask because the place to which we are writing will be
10133 source of the addend in the final link. */
10134 addend &= howto->src_mask;
10135
10136 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10137 /* See the comment above about using R_MIPS_64 in the 32-bit
10138 ABI. Here, we need to update the addend. It would be
10139 possible to get away with just using the R_MIPS_32 reloc
10140 but for endianness. */
10141 {
10142 bfd_vma sign_bits;
10143 bfd_vma low_bits;
10144 bfd_vma high_bits;
10145
10146 if (addend & ((bfd_vma) 1 << 31))
10147 #ifdef BFD64
10148 sign_bits = ((bfd_vma) 1 << 32) - 1;
10149 #else
10150 sign_bits = -1;
10151 #endif
10152 else
10153 sign_bits = 0;
10154
10155 /* If we don't know that we have a 64-bit type,
10156 do two separate stores. */
10157 if (bfd_big_endian (input_bfd))
10158 {
10159 /* Store the sign-bits (which are most significant)
10160 first. */
10161 low_bits = sign_bits;
10162 high_bits = addend;
10163 }
10164 else
10165 {
10166 low_bits = addend;
10167 high_bits = sign_bits;
10168 }
10169 bfd_put_32 (input_bfd, low_bits,
10170 contents + rel->r_offset);
10171 bfd_put_32 (input_bfd, high_bits,
10172 contents + rel->r_offset + 4);
10173 continue;
10174 }
10175
10176 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10177 input_bfd, input_section,
10178 contents, FALSE))
10179 return FALSE;
10180 }
10181
10182 /* Go on to the next relocation. */
10183 continue;
10184 }
10185
10186 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10187 relocations for the same offset. In that case we are
10188 supposed to treat the output of each relocation as the addend
10189 for the next. */
10190 if (rel + 1 < relend
10191 && rel->r_offset == rel[1].r_offset
10192 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10193 use_saved_addend_p = TRUE;
10194 else
10195 use_saved_addend_p = FALSE;
10196
10197 /* Figure out what value we are supposed to relocate. */
10198 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10199 input_section, info, rel,
10200 addend, howto, local_syms,
10201 local_sections, &value,
10202 &name, &cross_mode_jump_p,
10203 use_saved_addend_p))
10204 {
10205 case bfd_reloc_continue:
10206 /* There's nothing to do. */
10207 continue;
10208
10209 case bfd_reloc_undefined:
10210 /* mips_elf_calculate_relocation already called the
10211 undefined_symbol callback. There's no real point in
10212 trying to perform the relocation at this point, so we
10213 just skip ahead to the next relocation. */
10214 continue;
10215
10216 case bfd_reloc_notsupported:
10217 msg = _("internal error: unsupported relocation error");
10218 info->callbacks->warning
10219 (info, msg, name, input_bfd, input_section, rel->r_offset);
10220 return FALSE;
10221
10222 case bfd_reloc_overflow:
10223 if (use_saved_addend_p)
10224 /* Ignore overflow until we reach the last relocation for
10225 a given location. */
10226 ;
10227 else
10228 {
10229 struct mips_elf_link_hash_table *htab;
10230
10231 htab = mips_elf_hash_table (info);
10232 BFD_ASSERT (htab != NULL);
10233 BFD_ASSERT (name != NULL);
10234 if (!htab->small_data_overflow_reported
10235 && (gprel16_reloc_p (howto->type)
10236 || literal_reloc_p (howto->type)))
10237 {
10238 msg = _("small-data section exceeds 64KB;"
10239 " lower small-data size limit (see option -G)");
10240
10241 htab->small_data_overflow_reported = TRUE;
10242 (*info->callbacks->einfo) ("%P: %s\n", msg);
10243 }
10244 if (! ((*info->callbacks->reloc_overflow)
10245 (info, NULL, name, howto->name, (bfd_vma) 0,
10246 input_bfd, input_section, rel->r_offset)))
10247 return FALSE;
10248 }
10249 break;
10250
10251 case bfd_reloc_ok:
10252 break;
10253
10254 case bfd_reloc_outofrange:
10255 if (jal_reloc_p (howto->type))
10256 {
10257 msg = _("JALX to a non-word-aligned address");
10258 info->callbacks->warning
10259 (info, msg, name, input_bfd, input_section, rel->r_offset);
10260 return FALSE;
10261 }
10262 if (aligned_pcrel_reloc_p (howto->type))
10263 {
10264 msg = _("PC-relative load from unaligned address");
10265 info->callbacks->warning
10266 (info, msg, name, input_bfd, input_section, rel->r_offset);
10267 return FALSE;
10268 }
10269 /* Fall through. */
10270
10271 default:
10272 abort ();
10273 break;
10274 }
10275
10276 /* If we've got another relocation for the address, keep going
10277 until we reach the last one. */
10278 if (use_saved_addend_p)
10279 {
10280 addend = value;
10281 continue;
10282 }
10283
10284 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10285 /* See the comment above about using R_MIPS_64 in the 32-bit
10286 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10287 that calculated the right value. Now, however, we
10288 sign-extend the 32-bit result to 64-bits, and store it as a
10289 64-bit value. We are especially generous here in that we
10290 go to extreme lengths to support this usage on systems with
10291 only a 32-bit VMA. */
10292 {
10293 bfd_vma sign_bits;
10294 bfd_vma low_bits;
10295 bfd_vma high_bits;
10296
10297 if (value & ((bfd_vma) 1 << 31))
10298 #ifdef BFD64
10299 sign_bits = ((bfd_vma) 1 << 32) - 1;
10300 #else
10301 sign_bits = -1;
10302 #endif
10303 else
10304 sign_bits = 0;
10305
10306 /* If we don't know that we have a 64-bit type,
10307 do two separate stores. */
10308 if (bfd_big_endian (input_bfd))
10309 {
10310 /* Undo what we did above. */
10311 rel->r_offset -= 4;
10312 /* Store the sign-bits (which are most significant)
10313 first. */
10314 low_bits = sign_bits;
10315 high_bits = value;
10316 }
10317 else
10318 {
10319 low_bits = value;
10320 high_bits = sign_bits;
10321 }
10322 bfd_put_32 (input_bfd, low_bits,
10323 contents + rel->r_offset);
10324 bfd_put_32 (input_bfd, high_bits,
10325 contents + rel->r_offset + 4);
10326 continue;
10327 }
10328
10329 /* Actually perform the relocation. */
10330 if (! mips_elf_perform_relocation (info, howto, rel, value,
10331 input_bfd, input_section,
10332 contents, cross_mode_jump_p))
10333 return FALSE;
10334 }
10335
10336 return TRUE;
10337 }
10338 \f
10339 /* A function that iterates over each entry in la25_stubs and fills
10340 in the code for each one. DATA points to a mips_htab_traverse_info. */
10341
10342 static int
10343 mips_elf_create_la25_stub (void **slot, void *data)
10344 {
10345 struct mips_htab_traverse_info *hti;
10346 struct mips_elf_link_hash_table *htab;
10347 struct mips_elf_la25_stub *stub;
10348 asection *s;
10349 bfd_byte *loc;
10350 bfd_vma offset, target, target_high, target_low;
10351
10352 stub = (struct mips_elf_la25_stub *) *slot;
10353 hti = (struct mips_htab_traverse_info *) data;
10354 htab = mips_elf_hash_table (hti->info);
10355 BFD_ASSERT (htab != NULL);
10356
10357 /* Create the section contents, if we haven't already. */
10358 s = stub->stub_section;
10359 loc = s->contents;
10360 if (loc == NULL)
10361 {
10362 loc = bfd_malloc (s->size);
10363 if (loc == NULL)
10364 {
10365 hti->error = TRUE;
10366 return FALSE;
10367 }
10368 s->contents = loc;
10369 }
10370
10371 /* Work out where in the section this stub should go. */
10372 offset = stub->offset;
10373
10374 /* Work out the target address. */
10375 target = mips_elf_get_la25_target (stub, &s);
10376 target += s->output_section->vma + s->output_offset;
10377
10378 target_high = ((target + 0x8000) >> 16) & 0xffff;
10379 target_low = (target & 0xffff);
10380
10381 if (stub->stub_section != htab->strampoline)
10382 {
10383 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10384 of the section and write the two instructions at the end. */
10385 memset (loc, 0, offset);
10386 loc += offset;
10387 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10388 {
10389 bfd_put_micromips_32 (hti->output_bfd,
10390 LA25_LUI_MICROMIPS (target_high),
10391 loc);
10392 bfd_put_micromips_32 (hti->output_bfd,
10393 LA25_ADDIU_MICROMIPS (target_low),
10394 loc + 4);
10395 }
10396 else
10397 {
10398 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10399 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10400 }
10401 }
10402 else
10403 {
10404 /* This is trampoline. */
10405 loc += offset;
10406 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10407 {
10408 bfd_put_micromips_32 (hti->output_bfd,
10409 LA25_LUI_MICROMIPS (target_high), loc);
10410 bfd_put_micromips_32 (hti->output_bfd,
10411 LA25_J_MICROMIPS (target), loc + 4);
10412 bfd_put_micromips_32 (hti->output_bfd,
10413 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10414 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10415 }
10416 else
10417 {
10418 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10419 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10420 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10421 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10422 }
10423 }
10424 return TRUE;
10425 }
10426
10427 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10428 adjust it appropriately now. */
10429
10430 static void
10431 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10432 const char *name, Elf_Internal_Sym *sym)
10433 {
10434 /* The linker script takes care of providing names and values for
10435 these, but we must place them into the right sections. */
10436 static const char* const text_section_symbols[] = {
10437 "_ftext",
10438 "_etext",
10439 "__dso_displacement",
10440 "__elf_header",
10441 "__program_header_table",
10442 NULL
10443 };
10444
10445 static const char* const data_section_symbols[] = {
10446 "_fdata",
10447 "_edata",
10448 "_end",
10449 "_fbss",
10450 NULL
10451 };
10452
10453 const char* const *p;
10454 int i;
10455
10456 for (i = 0; i < 2; ++i)
10457 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10458 *p;
10459 ++p)
10460 if (strcmp (*p, name) == 0)
10461 {
10462 /* All of these symbols are given type STT_SECTION by the
10463 IRIX6 linker. */
10464 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10465 sym->st_other = STO_PROTECTED;
10466
10467 /* The IRIX linker puts these symbols in special sections. */
10468 if (i == 0)
10469 sym->st_shndx = SHN_MIPS_TEXT;
10470 else
10471 sym->st_shndx = SHN_MIPS_DATA;
10472
10473 break;
10474 }
10475 }
10476
10477 /* Finish up dynamic symbol handling. We set the contents of various
10478 dynamic sections here. */
10479
10480 bfd_boolean
10481 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10482 struct bfd_link_info *info,
10483 struct elf_link_hash_entry *h,
10484 Elf_Internal_Sym *sym)
10485 {
10486 bfd *dynobj;
10487 asection *sgot;
10488 struct mips_got_info *g, *gg;
10489 const char *name;
10490 int idx;
10491 struct mips_elf_link_hash_table *htab;
10492 struct mips_elf_link_hash_entry *hmips;
10493
10494 htab = mips_elf_hash_table (info);
10495 BFD_ASSERT (htab != NULL);
10496 dynobj = elf_hash_table (info)->dynobj;
10497 hmips = (struct mips_elf_link_hash_entry *) h;
10498
10499 BFD_ASSERT (!htab->is_vxworks);
10500
10501 if (h->plt.plist != NULL
10502 && (h->plt.plist->mips_offset != MINUS_ONE
10503 || h->plt.plist->comp_offset != MINUS_ONE))
10504 {
10505 /* We've decided to create a PLT entry for this symbol. */
10506 bfd_byte *loc;
10507 bfd_vma header_address, got_address;
10508 bfd_vma got_address_high, got_address_low, load;
10509 bfd_vma got_index;
10510 bfd_vma isa_bit;
10511
10512 got_index = h->plt.plist->gotplt_index;
10513
10514 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10515 BFD_ASSERT (h->dynindx != -1);
10516 BFD_ASSERT (htab->splt != NULL);
10517 BFD_ASSERT (got_index != MINUS_ONE);
10518 BFD_ASSERT (!h->def_regular);
10519
10520 /* Calculate the address of the PLT header. */
10521 isa_bit = htab->plt_header_is_comp;
10522 header_address = (htab->splt->output_section->vma
10523 + htab->splt->output_offset + isa_bit);
10524
10525 /* Calculate the address of the .got.plt entry. */
10526 got_address = (htab->sgotplt->output_section->vma
10527 + htab->sgotplt->output_offset
10528 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10529
10530 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10531 got_address_low = got_address & 0xffff;
10532
10533 /* Initially point the .got.plt entry at the PLT header. */
10534 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10535 if (ABI_64_P (output_bfd))
10536 bfd_put_64 (output_bfd, header_address, loc);
10537 else
10538 bfd_put_32 (output_bfd, header_address, loc);
10539
10540 /* Now handle the PLT itself. First the standard entry (the order
10541 does not matter, we just have to pick one). */
10542 if (h->plt.plist->mips_offset != MINUS_ONE)
10543 {
10544 const bfd_vma *plt_entry;
10545 bfd_vma plt_offset;
10546
10547 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10548
10549 BFD_ASSERT (plt_offset <= htab->splt->size);
10550
10551 /* Find out where the .plt entry should go. */
10552 loc = htab->splt->contents + plt_offset;
10553
10554 /* Pick the load opcode. */
10555 load = MIPS_ELF_LOAD_WORD (output_bfd);
10556
10557 /* Fill in the PLT entry itself. */
10558
10559 if (MIPSR6_P (output_bfd))
10560 plt_entry = mipsr6_exec_plt_entry;
10561 else
10562 plt_entry = mips_exec_plt_entry;
10563 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10564 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10565 loc + 4);
10566
10567 if (! LOAD_INTERLOCKS_P (output_bfd))
10568 {
10569 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10570 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10571 }
10572 else
10573 {
10574 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10575 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10576 loc + 12);
10577 }
10578 }
10579
10580 /* Now the compressed entry. They come after any standard ones. */
10581 if (h->plt.plist->comp_offset != MINUS_ONE)
10582 {
10583 bfd_vma plt_offset;
10584
10585 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10586 + h->plt.plist->comp_offset);
10587
10588 BFD_ASSERT (plt_offset <= htab->splt->size);
10589
10590 /* Find out where the .plt entry should go. */
10591 loc = htab->splt->contents + plt_offset;
10592
10593 /* Fill in the PLT entry itself. */
10594 if (!MICROMIPS_P (output_bfd))
10595 {
10596 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10597
10598 bfd_put_16 (output_bfd, plt_entry[0], loc);
10599 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10600 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10601 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10602 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10603 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10604 bfd_put_32 (output_bfd, got_address, loc + 12);
10605 }
10606 else if (htab->insn32)
10607 {
10608 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10609
10610 bfd_put_16 (output_bfd, plt_entry[0], loc);
10611 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10612 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10613 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10614 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10615 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10616 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10617 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10618 }
10619 else
10620 {
10621 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10622 bfd_signed_vma gotpc_offset;
10623 bfd_vma loc_address;
10624
10625 BFD_ASSERT (got_address % 4 == 0);
10626
10627 loc_address = (htab->splt->output_section->vma
10628 + htab->splt->output_offset + plt_offset);
10629 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10630
10631 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10632 if (gotpc_offset + 0x1000000 >= 0x2000000)
10633 {
10634 (*_bfd_error_handler)
10635 (_("%B: `%A' offset of %ld from `%A' "
10636 "beyond the range of ADDIUPC"),
10637 output_bfd,
10638 htab->sgotplt->output_section,
10639 htab->splt->output_section,
10640 (long) gotpc_offset);
10641 bfd_set_error (bfd_error_no_error);
10642 return FALSE;
10643 }
10644 bfd_put_16 (output_bfd,
10645 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10646 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10647 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10648 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10649 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10650 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10651 }
10652 }
10653
10654 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10655 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10656 got_index - 2, h->dynindx,
10657 R_MIPS_JUMP_SLOT, got_address);
10658
10659 /* We distinguish between PLT entries and lazy-binding stubs by
10660 giving the former an st_other value of STO_MIPS_PLT. Set the
10661 flag and leave the value if there are any relocations in the
10662 binary where pointer equality matters. */
10663 sym->st_shndx = SHN_UNDEF;
10664 if (h->pointer_equality_needed)
10665 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10666 else
10667 {
10668 sym->st_value = 0;
10669 sym->st_other = 0;
10670 }
10671 }
10672
10673 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10674 {
10675 /* We've decided to create a lazy-binding stub. */
10676 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10677 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10678 bfd_vma stub_size = htab->function_stub_size;
10679 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10680 bfd_vma isa_bit = micromips_p;
10681 bfd_vma stub_big_size;
10682
10683 if (!micromips_p)
10684 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10685 else if (htab->insn32)
10686 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10687 else
10688 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10689
10690 /* This symbol has a stub. Set it up. */
10691
10692 BFD_ASSERT (h->dynindx != -1);
10693
10694 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10695
10696 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10697 sign extension at runtime in the stub, resulting in a negative
10698 index value. */
10699 if (h->dynindx & ~0x7fffffff)
10700 return FALSE;
10701
10702 /* Fill the stub. */
10703 if (micromips_p)
10704 {
10705 idx = 0;
10706 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10707 stub + idx);
10708 idx += 4;
10709 if (htab->insn32)
10710 {
10711 bfd_put_micromips_32 (output_bfd,
10712 STUB_MOVE32_MICROMIPS (output_bfd),
10713 stub + idx);
10714 idx += 4;
10715 }
10716 else
10717 {
10718 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10719 idx += 2;
10720 }
10721 if (stub_size == stub_big_size)
10722 {
10723 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10724
10725 bfd_put_micromips_32 (output_bfd,
10726 STUB_LUI_MICROMIPS (dynindx_hi),
10727 stub + idx);
10728 idx += 4;
10729 }
10730 if (htab->insn32)
10731 {
10732 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10733 stub + idx);
10734 idx += 4;
10735 }
10736 else
10737 {
10738 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10739 idx += 2;
10740 }
10741
10742 /* If a large stub is not required and sign extension is not a
10743 problem, then use legacy code in the stub. */
10744 if (stub_size == stub_big_size)
10745 bfd_put_micromips_32 (output_bfd,
10746 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10747 stub + idx);
10748 else if (h->dynindx & ~0x7fff)
10749 bfd_put_micromips_32 (output_bfd,
10750 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10751 stub + idx);
10752 else
10753 bfd_put_micromips_32 (output_bfd,
10754 STUB_LI16S_MICROMIPS (output_bfd,
10755 h->dynindx),
10756 stub + idx);
10757 }
10758 else
10759 {
10760 idx = 0;
10761 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10762 idx += 4;
10763 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10764 idx += 4;
10765 if (stub_size == stub_big_size)
10766 {
10767 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10768 stub + idx);
10769 idx += 4;
10770 }
10771 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10772 idx += 4;
10773
10774 /* If a large stub is not required and sign extension is not a
10775 problem, then use legacy code in the stub. */
10776 if (stub_size == stub_big_size)
10777 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10778 stub + idx);
10779 else if (h->dynindx & ~0x7fff)
10780 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10781 stub + idx);
10782 else
10783 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10784 stub + idx);
10785 }
10786
10787 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10788 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10789 stub, stub_size);
10790
10791 /* Mark the symbol as undefined. stub_offset != -1 occurs
10792 only for the referenced symbol. */
10793 sym->st_shndx = SHN_UNDEF;
10794
10795 /* The run-time linker uses the st_value field of the symbol
10796 to reset the global offset table entry for this external
10797 to its stub address when unlinking a shared object. */
10798 sym->st_value = (htab->sstubs->output_section->vma
10799 + htab->sstubs->output_offset
10800 + h->plt.plist->stub_offset
10801 + isa_bit);
10802 sym->st_other = other;
10803 }
10804
10805 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10806 refer to the stub, since only the stub uses the standard calling
10807 conventions. */
10808 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10809 {
10810 BFD_ASSERT (hmips->need_fn_stub);
10811 sym->st_value = (hmips->fn_stub->output_section->vma
10812 + hmips->fn_stub->output_offset);
10813 sym->st_size = hmips->fn_stub->size;
10814 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10815 }
10816
10817 BFD_ASSERT (h->dynindx != -1
10818 || h->forced_local);
10819
10820 sgot = htab->sgot;
10821 g = htab->got_info;
10822 BFD_ASSERT (g != NULL);
10823
10824 /* Run through the global symbol table, creating GOT entries for all
10825 the symbols that need them. */
10826 if (hmips->global_got_area != GGA_NONE)
10827 {
10828 bfd_vma offset;
10829 bfd_vma value;
10830
10831 value = sym->st_value;
10832 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10833 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10834 }
10835
10836 if (hmips->global_got_area != GGA_NONE && g->next)
10837 {
10838 struct mips_got_entry e, *p;
10839 bfd_vma entry;
10840 bfd_vma offset;
10841
10842 gg = g;
10843
10844 e.abfd = output_bfd;
10845 e.symndx = -1;
10846 e.d.h = hmips;
10847 e.tls_type = GOT_TLS_NONE;
10848
10849 for (g = g->next; g->next != gg; g = g->next)
10850 {
10851 if (g->got_entries
10852 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10853 &e)))
10854 {
10855 offset = p->gotidx;
10856 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10857 if (info->shared
10858 || (elf_hash_table (info)->dynamic_sections_created
10859 && p->d.h != NULL
10860 && p->d.h->root.def_dynamic
10861 && !p->d.h->root.def_regular))
10862 {
10863 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10864 the various compatibility problems, it's easier to mock
10865 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10866 mips_elf_create_dynamic_relocation to calculate the
10867 appropriate addend. */
10868 Elf_Internal_Rela rel[3];
10869
10870 memset (rel, 0, sizeof (rel));
10871 if (ABI_64_P (output_bfd))
10872 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10873 else
10874 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10875 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10876
10877 entry = 0;
10878 if (! (mips_elf_create_dynamic_relocation
10879 (output_bfd, info, rel,
10880 e.d.h, NULL, sym->st_value, &entry, sgot)))
10881 return FALSE;
10882 }
10883 else
10884 entry = sym->st_value;
10885 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10886 }
10887 }
10888 }
10889
10890 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10891 name = h->root.root.string;
10892 if (h == elf_hash_table (info)->hdynamic
10893 || h == elf_hash_table (info)->hgot)
10894 sym->st_shndx = SHN_ABS;
10895 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10896 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10897 {
10898 sym->st_shndx = SHN_ABS;
10899 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10900 sym->st_value = 1;
10901 }
10902 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10903 {
10904 sym->st_shndx = SHN_ABS;
10905 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10906 sym->st_value = elf_gp (output_bfd);
10907 }
10908 else if (SGI_COMPAT (output_bfd))
10909 {
10910 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10911 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10912 {
10913 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10914 sym->st_other = STO_PROTECTED;
10915 sym->st_value = 0;
10916 sym->st_shndx = SHN_MIPS_DATA;
10917 }
10918 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10919 {
10920 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10921 sym->st_other = STO_PROTECTED;
10922 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10923 sym->st_shndx = SHN_ABS;
10924 }
10925 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10926 {
10927 if (h->type == STT_FUNC)
10928 sym->st_shndx = SHN_MIPS_TEXT;
10929 else if (h->type == STT_OBJECT)
10930 sym->st_shndx = SHN_MIPS_DATA;
10931 }
10932 }
10933
10934 /* Emit a copy reloc, if needed. */
10935 if (h->needs_copy)
10936 {
10937 asection *s;
10938 bfd_vma symval;
10939
10940 BFD_ASSERT (h->dynindx != -1);
10941 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10942
10943 s = mips_elf_rel_dyn_section (info, FALSE);
10944 symval = (h->root.u.def.section->output_section->vma
10945 + h->root.u.def.section->output_offset
10946 + h->root.u.def.value);
10947 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10948 h->dynindx, R_MIPS_COPY, symval);
10949 }
10950
10951 /* Handle the IRIX6-specific symbols. */
10952 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10953 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10954
10955 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10956 to treat compressed symbols like any other. */
10957 if (ELF_ST_IS_MIPS16 (sym->st_other))
10958 {
10959 BFD_ASSERT (sym->st_value & 1);
10960 sym->st_other -= STO_MIPS16;
10961 }
10962 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10963 {
10964 BFD_ASSERT (sym->st_value & 1);
10965 sym->st_other -= STO_MICROMIPS;
10966 }
10967
10968 return TRUE;
10969 }
10970
10971 /* Likewise, for VxWorks. */
10972
10973 bfd_boolean
10974 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10975 struct bfd_link_info *info,
10976 struct elf_link_hash_entry *h,
10977 Elf_Internal_Sym *sym)
10978 {
10979 bfd *dynobj;
10980 asection *sgot;
10981 struct mips_got_info *g;
10982 struct mips_elf_link_hash_table *htab;
10983 struct mips_elf_link_hash_entry *hmips;
10984
10985 htab = mips_elf_hash_table (info);
10986 BFD_ASSERT (htab != NULL);
10987 dynobj = elf_hash_table (info)->dynobj;
10988 hmips = (struct mips_elf_link_hash_entry *) h;
10989
10990 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10991 {
10992 bfd_byte *loc;
10993 bfd_vma plt_address, got_address, got_offset, branch_offset;
10994 Elf_Internal_Rela rel;
10995 static const bfd_vma *plt_entry;
10996 bfd_vma gotplt_index;
10997 bfd_vma plt_offset;
10998
10999 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11000 gotplt_index = h->plt.plist->gotplt_index;
11001
11002 BFD_ASSERT (h->dynindx != -1);
11003 BFD_ASSERT (htab->splt != NULL);
11004 BFD_ASSERT (gotplt_index != MINUS_ONE);
11005 BFD_ASSERT (plt_offset <= htab->splt->size);
11006
11007 /* Calculate the address of the .plt entry. */
11008 plt_address = (htab->splt->output_section->vma
11009 + htab->splt->output_offset
11010 + plt_offset);
11011
11012 /* Calculate the address of the .got.plt entry. */
11013 got_address = (htab->sgotplt->output_section->vma
11014 + htab->sgotplt->output_offset
11015 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11016
11017 /* Calculate the offset of the .got.plt entry from
11018 _GLOBAL_OFFSET_TABLE_. */
11019 got_offset = mips_elf_gotplt_index (info, h);
11020
11021 /* Calculate the offset for the branch at the start of the PLT
11022 entry. The branch jumps to the beginning of .plt. */
11023 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11024
11025 /* Fill in the initial value of the .got.plt entry. */
11026 bfd_put_32 (output_bfd, plt_address,
11027 (htab->sgotplt->contents
11028 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11029
11030 /* Find out where the .plt entry should go. */
11031 loc = htab->splt->contents + plt_offset;
11032
11033 if (info->shared)
11034 {
11035 plt_entry = mips_vxworks_shared_plt_entry;
11036 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11037 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11038 }
11039 else
11040 {
11041 bfd_vma got_address_high, got_address_low;
11042
11043 plt_entry = mips_vxworks_exec_plt_entry;
11044 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11045 got_address_low = got_address & 0xffff;
11046
11047 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11048 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11049 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11050 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11051 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11052 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11053 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11054 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11055
11056 loc = (htab->srelplt2->contents
11057 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11058
11059 /* Emit a relocation for the .got.plt entry. */
11060 rel.r_offset = got_address;
11061 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11062 rel.r_addend = plt_offset;
11063 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11064
11065 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11066 loc += sizeof (Elf32_External_Rela);
11067 rel.r_offset = plt_address + 8;
11068 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11069 rel.r_addend = got_offset;
11070 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11071
11072 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11073 loc += sizeof (Elf32_External_Rela);
11074 rel.r_offset += 4;
11075 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11076 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11077 }
11078
11079 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11080 loc = (htab->srelplt->contents
11081 + gotplt_index * sizeof (Elf32_External_Rela));
11082 rel.r_offset = got_address;
11083 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11084 rel.r_addend = 0;
11085 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11086
11087 if (!h->def_regular)
11088 sym->st_shndx = SHN_UNDEF;
11089 }
11090
11091 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11092
11093 sgot = htab->sgot;
11094 g = htab->got_info;
11095 BFD_ASSERT (g != NULL);
11096
11097 /* See if this symbol has an entry in the GOT. */
11098 if (hmips->global_got_area != GGA_NONE)
11099 {
11100 bfd_vma offset;
11101 Elf_Internal_Rela outrel;
11102 bfd_byte *loc;
11103 asection *s;
11104
11105 /* Install the symbol value in the GOT. */
11106 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11107 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11108
11109 /* Add a dynamic relocation for it. */
11110 s = mips_elf_rel_dyn_section (info, FALSE);
11111 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11112 outrel.r_offset = (sgot->output_section->vma
11113 + sgot->output_offset
11114 + offset);
11115 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11116 outrel.r_addend = 0;
11117 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11118 }
11119
11120 /* Emit a copy reloc, if needed. */
11121 if (h->needs_copy)
11122 {
11123 Elf_Internal_Rela rel;
11124
11125 BFD_ASSERT (h->dynindx != -1);
11126
11127 rel.r_offset = (h->root.u.def.section->output_section->vma
11128 + h->root.u.def.section->output_offset
11129 + h->root.u.def.value);
11130 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11131 rel.r_addend = 0;
11132 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11133 htab->srelbss->contents
11134 + (htab->srelbss->reloc_count
11135 * sizeof (Elf32_External_Rela)));
11136 ++htab->srelbss->reloc_count;
11137 }
11138
11139 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11140 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11141 sym->st_value &= ~1;
11142
11143 return TRUE;
11144 }
11145
11146 /* Write out a plt0 entry to the beginning of .plt. */
11147
11148 static bfd_boolean
11149 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11150 {
11151 bfd_byte *loc;
11152 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11153 static const bfd_vma *plt_entry;
11154 struct mips_elf_link_hash_table *htab;
11155
11156 htab = mips_elf_hash_table (info);
11157 BFD_ASSERT (htab != NULL);
11158
11159 if (ABI_64_P (output_bfd))
11160 plt_entry = mips_n64_exec_plt0_entry;
11161 else if (ABI_N32_P (output_bfd))
11162 plt_entry = mips_n32_exec_plt0_entry;
11163 else if (!htab->plt_header_is_comp)
11164 plt_entry = mips_o32_exec_plt0_entry;
11165 else if (htab->insn32)
11166 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11167 else
11168 plt_entry = micromips_o32_exec_plt0_entry;
11169
11170 /* Calculate the value of .got.plt. */
11171 gotplt_value = (htab->sgotplt->output_section->vma
11172 + htab->sgotplt->output_offset);
11173 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11174 gotplt_value_low = gotplt_value & 0xffff;
11175
11176 /* The PLT sequence is not safe for N64 if .got.plt's address can
11177 not be loaded in two instructions. */
11178 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11179 || ~(gotplt_value | 0x7fffffff) == 0);
11180
11181 /* Install the PLT header. */
11182 loc = htab->splt->contents;
11183 if (plt_entry == micromips_o32_exec_plt0_entry)
11184 {
11185 bfd_vma gotpc_offset;
11186 bfd_vma loc_address;
11187 size_t i;
11188
11189 BFD_ASSERT (gotplt_value % 4 == 0);
11190
11191 loc_address = (htab->splt->output_section->vma
11192 + htab->splt->output_offset);
11193 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11194
11195 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11196 if (gotpc_offset + 0x1000000 >= 0x2000000)
11197 {
11198 (*_bfd_error_handler)
11199 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11200 output_bfd,
11201 htab->sgotplt->output_section,
11202 htab->splt->output_section,
11203 (long) gotpc_offset);
11204 bfd_set_error (bfd_error_no_error);
11205 return FALSE;
11206 }
11207 bfd_put_16 (output_bfd,
11208 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11209 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11210 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11211 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11212 }
11213 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11214 {
11215 size_t i;
11216
11217 bfd_put_16 (output_bfd, plt_entry[0], loc);
11218 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11219 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11220 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11221 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11222 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11223 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11224 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11225 }
11226 else
11227 {
11228 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11229 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11230 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11231 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11232 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11233 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11234 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11235 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11236 }
11237
11238 return TRUE;
11239 }
11240
11241 /* Install the PLT header for a VxWorks executable and finalize the
11242 contents of .rela.plt.unloaded. */
11243
11244 static void
11245 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11246 {
11247 Elf_Internal_Rela rela;
11248 bfd_byte *loc;
11249 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11250 static const bfd_vma *plt_entry;
11251 struct mips_elf_link_hash_table *htab;
11252
11253 htab = mips_elf_hash_table (info);
11254 BFD_ASSERT (htab != NULL);
11255
11256 plt_entry = mips_vxworks_exec_plt0_entry;
11257
11258 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11259 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11260 + htab->root.hgot->root.u.def.section->output_offset
11261 + htab->root.hgot->root.u.def.value);
11262
11263 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11264 got_value_low = got_value & 0xffff;
11265
11266 /* Calculate the address of the PLT header. */
11267 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11268
11269 /* Install the PLT header. */
11270 loc = htab->splt->contents;
11271 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11272 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11273 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11274 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11275 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11276 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11277
11278 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11279 loc = htab->srelplt2->contents;
11280 rela.r_offset = plt_address;
11281 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11282 rela.r_addend = 0;
11283 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11284 loc += sizeof (Elf32_External_Rela);
11285
11286 /* Output the relocation for the following addiu of
11287 %lo(_GLOBAL_OFFSET_TABLE_). */
11288 rela.r_offset += 4;
11289 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11290 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11291 loc += sizeof (Elf32_External_Rela);
11292
11293 /* Fix up the remaining relocations. They may have the wrong
11294 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11295 in which symbols were output. */
11296 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11297 {
11298 Elf_Internal_Rela rel;
11299
11300 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11301 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11302 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11303 loc += sizeof (Elf32_External_Rela);
11304
11305 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11306 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11307 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11308 loc += sizeof (Elf32_External_Rela);
11309
11310 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11311 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11312 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11313 loc += sizeof (Elf32_External_Rela);
11314 }
11315 }
11316
11317 /* Install the PLT header for a VxWorks shared library. */
11318
11319 static void
11320 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11321 {
11322 unsigned int i;
11323 struct mips_elf_link_hash_table *htab;
11324
11325 htab = mips_elf_hash_table (info);
11326 BFD_ASSERT (htab != NULL);
11327
11328 /* We just need to copy the entry byte-by-byte. */
11329 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11330 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11331 htab->splt->contents + i * 4);
11332 }
11333
11334 /* Finish up the dynamic sections. */
11335
11336 bfd_boolean
11337 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11338 struct bfd_link_info *info)
11339 {
11340 bfd *dynobj;
11341 asection *sdyn;
11342 asection *sgot;
11343 struct mips_got_info *gg, *g;
11344 struct mips_elf_link_hash_table *htab;
11345
11346 htab = mips_elf_hash_table (info);
11347 BFD_ASSERT (htab != NULL);
11348
11349 dynobj = elf_hash_table (info)->dynobj;
11350
11351 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11352
11353 sgot = htab->sgot;
11354 gg = htab->got_info;
11355
11356 if (elf_hash_table (info)->dynamic_sections_created)
11357 {
11358 bfd_byte *b;
11359 int dyn_to_skip = 0, dyn_skipped = 0;
11360
11361 BFD_ASSERT (sdyn != NULL);
11362 BFD_ASSERT (gg != NULL);
11363
11364 g = mips_elf_bfd_got (output_bfd, FALSE);
11365 BFD_ASSERT (g != NULL);
11366
11367 for (b = sdyn->contents;
11368 b < sdyn->contents + sdyn->size;
11369 b += MIPS_ELF_DYN_SIZE (dynobj))
11370 {
11371 Elf_Internal_Dyn dyn;
11372 const char *name;
11373 size_t elemsize;
11374 asection *s;
11375 bfd_boolean swap_out_p;
11376
11377 /* Read in the current dynamic entry. */
11378 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11379
11380 /* Assume that we're going to modify it and write it out. */
11381 swap_out_p = TRUE;
11382
11383 switch (dyn.d_tag)
11384 {
11385 case DT_RELENT:
11386 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11387 break;
11388
11389 case DT_RELAENT:
11390 BFD_ASSERT (htab->is_vxworks);
11391 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11392 break;
11393
11394 case DT_STRSZ:
11395 /* Rewrite DT_STRSZ. */
11396 dyn.d_un.d_val =
11397 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11398 break;
11399
11400 case DT_PLTGOT:
11401 s = htab->sgot;
11402 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11403 break;
11404
11405 case DT_MIPS_PLTGOT:
11406 s = htab->sgotplt;
11407 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11408 break;
11409
11410 case DT_MIPS_RLD_VERSION:
11411 dyn.d_un.d_val = 1; /* XXX */
11412 break;
11413
11414 case DT_MIPS_FLAGS:
11415 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11416 break;
11417
11418 case DT_MIPS_TIME_STAMP:
11419 {
11420 time_t t;
11421 time (&t);
11422 dyn.d_un.d_val = t;
11423 }
11424 break;
11425
11426 case DT_MIPS_ICHECKSUM:
11427 /* XXX FIXME: */
11428 swap_out_p = FALSE;
11429 break;
11430
11431 case DT_MIPS_IVERSION:
11432 /* XXX FIXME: */
11433 swap_out_p = FALSE;
11434 break;
11435
11436 case DT_MIPS_BASE_ADDRESS:
11437 s = output_bfd->sections;
11438 BFD_ASSERT (s != NULL);
11439 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11440 break;
11441
11442 case DT_MIPS_LOCAL_GOTNO:
11443 dyn.d_un.d_val = g->local_gotno;
11444 break;
11445
11446 case DT_MIPS_UNREFEXTNO:
11447 /* The index into the dynamic symbol table which is the
11448 entry of the first external symbol that is not
11449 referenced within the same object. */
11450 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11451 break;
11452
11453 case DT_MIPS_GOTSYM:
11454 if (htab->global_gotsym)
11455 {
11456 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11457 break;
11458 }
11459 /* In case if we don't have global got symbols we default
11460 to setting DT_MIPS_GOTSYM to the same value as
11461 DT_MIPS_SYMTABNO, so we just fall through. */
11462
11463 case DT_MIPS_SYMTABNO:
11464 name = ".dynsym";
11465 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11466 s = bfd_get_section_by_name (output_bfd, name);
11467
11468 if (s != NULL)
11469 dyn.d_un.d_val = s->size / elemsize;
11470 else
11471 dyn.d_un.d_val = 0;
11472 break;
11473
11474 case DT_MIPS_HIPAGENO:
11475 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11476 break;
11477
11478 case DT_MIPS_RLD_MAP:
11479 {
11480 struct elf_link_hash_entry *h;
11481 h = mips_elf_hash_table (info)->rld_symbol;
11482 if (!h)
11483 {
11484 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11485 swap_out_p = FALSE;
11486 break;
11487 }
11488 s = h->root.u.def.section;
11489 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11490 + h->root.u.def.value);
11491 }
11492 break;
11493
11494 case DT_MIPS_OPTIONS:
11495 s = (bfd_get_section_by_name
11496 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11497 dyn.d_un.d_ptr = s->vma;
11498 break;
11499
11500 case DT_RELASZ:
11501 BFD_ASSERT (htab->is_vxworks);
11502 /* The count does not include the JUMP_SLOT relocations. */
11503 if (htab->srelplt)
11504 dyn.d_un.d_val -= htab->srelplt->size;
11505 break;
11506
11507 case DT_PLTREL:
11508 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11509 if (htab->is_vxworks)
11510 dyn.d_un.d_val = DT_RELA;
11511 else
11512 dyn.d_un.d_val = DT_REL;
11513 break;
11514
11515 case DT_PLTRELSZ:
11516 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11517 dyn.d_un.d_val = htab->srelplt->size;
11518 break;
11519
11520 case DT_JMPREL:
11521 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11522 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11523 + htab->srelplt->output_offset);
11524 break;
11525
11526 case DT_TEXTREL:
11527 /* If we didn't need any text relocations after all, delete
11528 the dynamic tag. */
11529 if (!(info->flags & DF_TEXTREL))
11530 {
11531 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11532 swap_out_p = FALSE;
11533 }
11534 break;
11535
11536 case DT_FLAGS:
11537 /* If we didn't need any text relocations after all, clear
11538 DF_TEXTREL from DT_FLAGS. */
11539 if (!(info->flags & DF_TEXTREL))
11540 dyn.d_un.d_val &= ~DF_TEXTREL;
11541 else
11542 swap_out_p = FALSE;
11543 break;
11544
11545 default:
11546 swap_out_p = FALSE;
11547 if (htab->is_vxworks
11548 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11549 swap_out_p = TRUE;
11550 break;
11551 }
11552
11553 if (swap_out_p || dyn_skipped)
11554 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11555 (dynobj, &dyn, b - dyn_skipped);
11556
11557 if (dyn_to_skip)
11558 {
11559 dyn_skipped += dyn_to_skip;
11560 dyn_to_skip = 0;
11561 }
11562 }
11563
11564 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11565 if (dyn_skipped > 0)
11566 memset (b - dyn_skipped, 0, dyn_skipped);
11567 }
11568
11569 if (sgot != NULL && sgot->size > 0
11570 && !bfd_is_abs_section (sgot->output_section))
11571 {
11572 if (htab->is_vxworks)
11573 {
11574 /* The first entry of the global offset table points to the
11575 ".dynamic" section. The second is initialized by the
11576 loader and contains the shared library identifier.
11577 The third is also initialized by the loader and points
11578 to the lazy resolution stub. */
11579 MIPS_ELF_PUT_WORD (output_bfd,
11580 sdyn->output_offset + sdyn->output_section->vma,
11581 sgot->contents);
11582 MIPS_ELF_PUT_WORD (output_bfd, 0,
11583 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11584 MIPS_ELF_PUT_WORD (output_bfd, 0,
11585 sgot->contents
11586 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11587 }
11588 else
11589 {
11590 /* The first entry of the global offset table will be filled at
11591 runtime. The second entry will be used by some runtime loaders.
11592 This isn't the case of IRIX rld. */
11593 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11594 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11595 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11596 }
11597
11598 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11599 = MIPS_ELF_GOT_SIZE (output_bfd);
11600 }
11601
11602 /* Generate dynamic relocations for the non-primary gots. */
11603 if (gg != NULL && gg->next)
11604 {
11605 Elf_Internal_Rela rel[3];
11606 bfd_vma addend = 0;
11607
11608 memset (rel, 0, sizeof (rel));
11609 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11610
11611 for (g = gg->next; g->next != gg; g = g->next)
11612 {
11613 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11614 + g->next->tls_gotno;
11615
11616 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11617 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11618 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11619 sgot->contents
11620 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11621
11622 if (! info->shared)
11623 continue;
11624
11625 for (; got_index < g->local_gotno; got_index++)
11626 {
11627 if (got_index >= g->assigned_low_gotno
11628 && got_index <= g->assigned_high_gotno)
11629 continue;
11630
11631 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11632 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11633 if (!(mips_elf_create_dynamic_relocation
11634 (output_bfd, info, rel, NULL,
11635 bfd_abs_section_ptr,
11636 0, &addend, sgot)))
11637 return FALSE;
11638 BFD_ASSERT (addend == 0);
11639 }
11640 }
11641 }
11642
11643 /* The generation of dynamic relocations for the non-primary gots
11644 adds more dynamic relocations. We cannot count them until
11645 here. */
11646
11647 if (elf_hash_table (info)->dynamic_sections_created)
11648 {
11649 bfd_byte *b;
11650 bfd_boolean swap_out_p;
11651
11652 BFD_ASSERT (sdyn != NULL);
11653
11654 for (b = sdyn->contents;
11655 b < sdyn->contents + sdyn->size;
11656 b += MIPS_ELF_DYN_SIZE (dynobj))
11657 {
11658 Elf_Internal_Dyn dyn;
11659 asection *s;
11660
11661 /* Read in the current dynamic entry. */
11662 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11663
11664 /* Assume that we're going to modify it and write it out. */
11665 swap_out_p = TRUE;
11666
11667 switch (dyn.d_tag)
11668 {
11669 case DT_RELSZ:
11670 /* Reduce DT_RELSZ to account for any relocations we
11671 decided not to make. This is for the n64 irix rld,
11672 which doesn't seem to apply any relocations if there
11673 are trailing null entries. */
11674 s = mips_elf_rel_dyn_section (info, FALSE);
11675 dyn.d_un.d_val = (s->reloc_count
11676 * (ABI_64_P (output_bfd)
11677 ? sizeof (Elf64_Mips_External_Rel)
11678 : sizeof (Elf32_External_Rel)));
11679 /* Adjust the section size too. Tools like the prelinker
11680 can reasonably expect the values to the same. */
11681 elf_section_data (s->output_section)->this_hdr.sh_size
11682 = dyn.d_un.d_val;
11683 break;
11684
11685 default:
11686 swap_out_p = FALSE;
11687 break;
11688 }
11689
11690 if (swap_out_p)
11691 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11692 (dynobj, &dyn, b);
11693 }
11694 }
11695
11696 {
11697 asection *s;
11698 Elf32_compact_rel cpt;
11699
11700 if (SGI_COMPAT (output_bfd))
11701 {
11702 /* Write .compact_rel section out. */
11703 s = bfd_get_linker_section (dynobj, ".compact_rel");
11704 if (s != NULL)
11705 {
11706 cpt.id1 = 1;
11707 cpt.num = s->reloc_count;
11708 cpt.id2 = 2;
11709 cpt.offset = (s->output_section->filepos
11710 + sizeof (Elf32_External_compact_rel));
11711 cpt.reserved0 = 0;
11712 cpt.reserved1 = 0;
11713 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11714 ((Elf32_External_compact_rel *)
11715 s->contents));
11716
11717 /* Clean up a dummy stub function entry in .text. */
11718 if (htab->sstubs != NULL)
11719 {
11720 file_ptr dummy_offset;
11721
11722 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11723 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11724 memset (htab->sstubs->contents + dummy_offset, 0,
11725 htab->function_stub_size);
11726 }
11727 }
11728 }
11729
11730 /* The psABI says that the dynamic relocations must be sorted in
11731 increasing order of r_symndx. The VxWorks EABI doesn't require
11732 this, and because the code below handles REL rather than RELA
11733 relocations, using it for VxWorks would be outright harmful. */
11734 if (!htab->is_vxworks)
11735 {
11736 s = mips_elf_rel_dyn_section (info, FALSE);
11737 if (s != NULL
11738 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11739 {
11740 reldyn_sorting_bfd = output_bfd;
11741
11742 if (ABI_64_P (output_bfd))
11743 qsort ((Elf64_External_Rel *) s->contents + 1,
11744 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11745 sort_dynamic_relocs_64);
11746 else
11747 qsort ((Elf32_External_Rel *) s->contents + 1,
11748 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11749 sort_dynamic_relocs);
11750 }
11751 }
11752 }
11753
11754 if (htab->splt && htab->splt->size > 0)
11755 {
11756 if (htab->is_vxworks)
11757 {
11758 if (info->shared)
11759 mips_vxworks_finish_shared_plt (output_bfd, info);
11760 else
11761 mips_vxworks_finish_exec_plt (output_bfd, info);
11762 }
11763 else
11764 {
11765 BFD_ASSERT (!info->shared);
11766 if (!mips_finish_exec_plt (output_bfd, info))
11767 return FALSE;
11768 }
11769 }
11770 return TRUE;
11771 }
11772
11773
11774 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11775
11776 static void
11777 mips_set_isa_flags (bfd *abfd)
11778 {
11779 flagword val;
11780
11781 switch (bfd_get_mach (abfd))
11782 {
11783 default:
11784 case bfd_mach_mips3000:
11785 val = E_MIPS_ARCH_1;
11786 break;
11787
11788 case bfd_mach_mips3900:
11789 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11790 break;
11791
11792 case bfd_mach_mips6000:
11793 val = E_MIPS_ARCH_2;
11794 break;
11795
11796 case bfd_mach_mips4000:
11797 case bfd_mach_mips4300:
11798 case bfd_mach_mips4400:
11799 case bfd_mach_mips4600:
11800 val = E_MIPS_ARCH_3;
11801 break;
11802
11803 case bfd_mach_mips4010:
11804 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11805 break;
11806
11807 case bfd_mach_mips4100:
11808 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11809 break;
11810
11811 case bfd_mach_mips4111:
11812 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11813 break;
11814
11815 case bfd_mach_mips4120:
11816 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11817 break;
11818
11819 case bfd_mach_mips4650:
11820 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11821 break;
11822
11823 case bfd_mach_mips5400:
11824 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11825 break;
11826
11827 case bfd_mach_mips5500:
11828 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11829 break;
11830
11831 case bfd_mach_mips5900:
11832 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11833 break;
11834
11835 case bfd_mach_mips9000:
11836 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11837 break;
11838
11839 case bfd_mach_mips5000:
11840 case bfd_mach_mips7000:
11841 case bfd_mach_mips8000:
11842 case bfd_mach_mips10000:
11843 case bfd_mach_mips12000:
11844 case bfd_mach_mips14000:
11845 case bfd_mach_mips16000:
11846 val = E_MIPS_ARCH_4;
11847 break;
11848
11849 case bfd_mach_mips5:
11850 val = E_MIPS_ARCH_5;
11851 break;
11852
11853 case bfd_mach_mips_loongson_2e:
11854 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11855 break;
11856
11857 case bfd_mach_mips_loongson_2f:
11858 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11859 break;
11860
11861 case bfd_mach_mips_sb1:
11862 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11863 break;
11864
11865 case bfd_mach_mips_loongson_3a:
11866 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11867 break;
11868
11869 case bfd_mach_mips_octeon:
11870 case bfd_mach_mips_octeonp:
11871 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11872 break;
11873
11874 case bfd_mach_mips_octeon3:
11875 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11876 break;
11877
11878 case bfd_mach_mips_xlr:
11879 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11880 break;
11881
11882 case bfd_mach_mips_octeon2:
11883 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11884 break;
11885
11886 case bfd_mach_mipsisa32:
11887 val = E_MIPS_ARCH_32;
11888 break;
11889
11890 case bfd_mach_mipsisa64:
11891 val = E_MIPS_ARCH_64;
11892 break;
11893
11894 case bfd_mach_mipsisa32r2:
11895 case bfd_mach_mipsisa32r3:
11896 case bfd_mach_mipsisa32r5:
11897 val = E_MIPS_ARCH_32R2;
11898 break;
11899
11900 case bfd_mach_mipsisa64r2:
11901 case bfd_mach_mipsisa64r3:
11902 case bfd_mach_mipsisa64r5:
11903 val = E_MIPS_ARCH_64R2;
11904 break;
11905
11906 case bfd_mach_mipsisa32r6:
11907 val = E_MIPS_ARCH_32R6;
11908 break;
11909
11910 case bfd_mach_mipsisa64r6:
11911 val = E_MIPS_ARCH_64R6;
11912 break;
11913 }
11914 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11915 elf_elfheader (abfd)->e_flags |= val;
11916
11917 }
11918
11919
11920 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11921 Don't do so for code sections. We want to keep ordering of HI16/LO16
11922 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
11923 relocs to be sorted. */
11924
11925 bfd_boolean
11926 _bfd_mips_elf_sort_relocs_p (asection *sec)
11927 {
11928 return (sec->flags & SEC_CODE) == 0;
11929 }
11930
11931
11932 /* The final processing done just before writing out a MIPS ELF object
11933 file. This gets the MIPS architecture right based on the machine
11934 number. This is used by both the 32-bit and the 64-bit ABI. */
11935
11936 void
11937 _bfd_mips_elf_final_write_processing (bfd *abfd,
11938 bfd_boolean linker ATTRIBUTE_UNUSED)
11939 {
11940 unsigned int i;
11941 Elf_Internal_Shdr **hdrpp;
11942 const char *name;
11943 asection *sec;
11944
11945 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11946 is nonzero. This is for compatibility with old objects, which used
11947 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11948 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11949 mips_set_isa_flags (abfd);
11950
11951 /* Set the sh_info field for .gptab sections and other appropriate
11952 info for each special section. */
11953 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11954 i < elf_numsections (abfd);
11955 i++, hdrpp++)
11956 {
11957 switch ((*hdrpp)->sh_type)
11958 {
11959 case SHT_MIPS_MSYM:
11960 case SHT_MIPS_LIBLIST:
11961 sec = bfd_get_section_by_name (abfd, ".dynstr");
11962 if (sec != NULL)
11963 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11964 break;
11965
11966 case SHT_MIPS_GPTAB:
11967 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11968 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11969 BFD_ASSERT (name != NULL
11970 && CONST_STRNEQ (name, ".gptab."));
11971 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11972 BFD_ASSERT (sec != NULL);
11973 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11974 break;
11975
11976 case SHT_MIPS_CONTENT:
11977 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11978 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11979 BFD_ASSERT (name != NULL
11980 && CONST_STRNEQ (name, ".MIPS.content"));
11981 sec = bfd_get_section_by_name (abfd,
11982 name + sizeof ".MIPS.content" - 1);
11983 BFD_ASSERT (sec != NULL);
11984 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11985 break;
11986
11987 case SHT_MIPS_SYMBOL_LIB:
11988 sec = bfd_get_section_by_name (abfd, ".dynsym");
11989 if (sec != NULL)
11990 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11991 sec = bfd_get_section_by_name (abfd, ".liblist");
11992 if (sec != NULL)
11993 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11994 break;
11995
11996 case SHT_MIPS_EVENTS:
11997 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11998 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11999 BFD_ASSERT (name != NULL);
12000 if (CONST_STRNEQ (name, ".MIPS.events"))
12001 sec = bfd_get_section_by_name (abfd,
12002 name + sizeof ".MIPS.events" - 1);
12003 else
12004 {
12005 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12006 sec = bfd_get_section_by_name (abfd,
12007 (name
12008 + sizeof ".MIPS.post_rel" - 1));
12009 }
12010 BFD_ASSERT (sec != NULL);
12011 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12012 break;
12013
12014 }
12015 }
12016 }
12017 \f
12018 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12019 segments. */
12020
12021 int
12022 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12023 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12024 {
12025 asection *s;
12026 int ret = 0;
12027
12028 /* See if we need a PT_MIPS_REGINFO segment. */
12029 s = bfd_get_section_by_name (abfd, ".reginfo");
12030 if (s && (s->flags & SEC_LOAD))
12031 ++ret;
12032
12033 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12034 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12035 ++ret;
12036
12037 /* See if we need a PT_MIPS_OPTIONS segment. */
12038 if (IRIX_COMPAT (abfd) == ict_irix6
12039 && bfd_get_section_by_name (abfd,
12040 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12041 ++ret;
12042
12043 /* See if we need a PT_MIPS_RTPROC segment. */
12044 if (IRIX_COMPAT (abfd) == ict_irix5
12045 && bfd_get_section_by_name (abfd, ".dynamic")
12046 && bfd_get_section_by_name (abfd, ".mdebug"))
12047 ++ret;
12048
12049 /* Allocate a PT_NULL header in dynamic objects. See
12050 _bfd_mips_elf_modify_segment_map for details. */
12051 if (!SGI_COMPAT (abfd)
12052 && bfd_get_section_by_name (abfd, ".dynamic"))
12053 ++ret;
12054
12055 return ret;
12056 }
12057
12058 /* Modify the segment map for an IRIX5 executable. */
12059
12060 bfd_boolean
12061 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12062 struct bfd_link_info *info)
12063 {
12064 asection *s;
12065 struct elf_segment_map *m, **pm;
12066 bfd_size_type amt;
12067
12068 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12069 segment. */
12070 s = bfd_get_section_by_name (abfd, ".reginfo");
12071 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12072 {
12073 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12074 if (m->p_type == PT_MIPS_REGINFO)
12075 break;
12076 if (m == NULL)
12077 {
12078 amt = sizeof *m;
12079 m = bfd_zalloc (abfd, amt);
12080 if (m == NULL)
12081 return FALSE;
12082
12083 m->p_type = PT_MIPS_REGINFO;
12084 m->count = 1;
12085 m->sections[0] = s;
12086
12087 /* We want to put it after the PHDR and INTERP segments. */
12088 pm = &elf_seg_map (abfd);
12089 while (*pm != NULL
12090 && ((*pm)->p_type == PT_PHDR
12091 || (*pm)->p_type == PT_INTERP))
12092 pm = &(*pm)->next;
12093
12094 m->next = *pm;
12095 *pm = m;
12096 }
12097 }
12098
12099 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12100 segment. */
12101 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12102 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12103 {
12104 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12105 if (m->p_type == PT_MIPS_ABIFLAGS)
12106 break;
12107 if (m == NULL)
12108 {
12109 amt = sizeof *m;
12110 m = bfd_zalloc (abfd, amt);
12111 if (m == NULL)
12112 return FALSE;
12113
12114 m->p_type = PT_MIPS_ABIFLAGS;
12115 m->count = 1;
12116 m->sections[0] = s;
12117
12118 /* We want to put it after the PHDR and INTERP segments. */
12119 pm = &elf_seg_map (abfd);
12120 while (*pm != NULL
12121 && ((*pm)->p_type == PT_PHDR
12122 || (*pm)->p_type == PT_INTERP))
12123 pm = &(*pm)->next;
12124
12125 m->next = *pm;
12126 *pm = m;
12127 }
12128 }
12129
12130 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12131 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12132 PT_MIPS_OPTIONS segment immediately following the program header
12133 table. */
12134 if (NEWABI_P (abfd)
12135 /* On non-IRIX6 new abi, we'll have already created a segment
12136 for this section, so don't create another. I'm not sure this
12137 is not also the case for IRIX 6, but I can't test it right
12138 now. */
12139 && IRIX_COMPAT (abfd) == ict_irix6)
12140 {
12141 for (s = abfd->sections; s; s = s->next)
12142 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12143 break;
12144
12145 if (s)
12146 {
12147 struct elf_segment_map *options_segment;
12148
12149 pm = &elf_seg_map (abfd);
12150 while (*pm != NULL
12151 && ((*pm)->p_type == PT_PHDR
12152 || (*pm)->p_type == PT_INTERP))
12153 pm = &(*pm)->next;
12154
12155 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12156 {
12157 amt = sizeof (struct elf_segment_map);
12158 options_segment = bfd_zalloc (abfd, amt);
12159 options_segment->next = *pm;
12160 options_segment->p_type = PT_MIPS_OPTIONS;
12161 options_segment->p_flags = PF_R;
12162 options_segment->p_flags_valid = TRUE;
12163 options_segment->count = 1;
12164 options_segment->sections[0] = s;
12165 *pm = options_segment;
12166 }
12167 }
12168 }
12169 else
12170 {
12171 if (IRIX_COMPAT (abfd) == ict_irix5)
12172 {
12173 /* If there are .dynamic and .mdebug sections, we make a room
12174 for the RTPROC header. FIXME: Rewrite without section names. */
12175 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12176 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12177 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12178 {
12179 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12180 if (m->p_type == PT_MIPS_RTPROC)
12181 break;
12182 if (m == NULL)
12183 {
12184 amt = sizeof *m;
12185 m = bfd_zalloc (abfd, amt);
12186 if (m == NULL)
12187 return FALSE;
12188
12189 m->p_type = PT_MIPS_RTPROC;
12190
12191 s = bfd_get_section_by_name (abfd, ".rtproc");
12192 if (s == NULL)
12193 {
12194 m->count = 0;
12195 m->p_flags = 0;
12196 m->p_flags_valid = 1;
12197 }
12198 else
12199 {
12200 m->count = 1;
12201 m->sections[0] = s;
12202 }
12203
12204 /* We want to put it after the DYNAMIC segment. */
12205 pm = &elf_seg_map (abfd);
12206 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12207 pm = &(*pm)->next;
12208 if (*pm != NULL)
12209 pm = &(*pm)->next;
12210
12211 m->next = *pm;
12212 *pm = m;
12213 }
12214 }
12215 }
12216 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12217 .dynstr, .dynsym, and .hash sections, and everything in
12218 between. */
12219 for (pm = &elf_seg_map (abfd); *pm != NULL;
12220 pm = &(*pm)->next)
12221 if ((*pm)->p_type == PT_DYNAMIC)
12222 break;
12223 m = *pm;
12224 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12225 glibc's dynamic linker has traditionally derived the number of
12226 tags from the p_filesz field, and sometimes allocates stack
12227 arrays of that size. An overly-big PT_DYNAMIC segment can
12228 be actively harmful in such cases. Making PT_DYNAMIC contain
12229 other sections can also make life hard for the prelinker,
12230 which might move one of the other sections to a different
12231 PT_LOAD segment. */
12232 if (SGI_COMPAT (abfd)
12233 && m != NULL
12234 && m->count == 1
12235 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12236 {
12237 static const char *sec_names[] =
12238 {
12239 ".dynamic", ".dynstr", ".dynsym", ".hash"
12240 };
12241 bfd_vma low, high;
12242 unsigned int i, c;
12243 struct elf_segment_map *n;
12244
12245 low = ~(bfd_vma) 0;
12246 high = 0;
12247 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12248 {
12249 s = bfd_get_section_by_name (abfd, sec_names[i]);
12250 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12251 {
12252 bfd_size_type sz;
12253
12254 if (low > s->vma)
12255 low = s->vma;
12256 sz = s->size;
12257 if (high < s->vma + sz)
12258 high = s->vma + sz;
12259 }
12260 }
12261
12262 c = 0;
12263 for (s = abfd->sections; s != NULL; s = s->next)
12264 if ((s->flags & SEC_LOAD) != 0
12265 && s->vma >= low
12266 && s->vma + s->size <= high)
12267 ++c;
12268
12269 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12270 n = bfd_zalloc (abfd, amt);
12271 if (n == NULL)
12272 return FALSE;
12273 *n = *m;
12274 n->count = c;
12275
12276 i = 0;
12277 for (s = abfd->sections; s != NULL; s = s->next)
12278 {
12279 if ((s->flags & SEC_LOAD) != 0
12280 && s->vma >= low
12281 && s->vma + s->size <= high)
12282 {
12283 n->sections[i] = s;
12284 ++i;
12285 }
12286 }
12287
12288 *pm = n;
12289 }
12290 }
12291
12292 /* Allocate a spare program header in dynamic objects so that tools
12293 like the prelinker can add an extra PT_LOAD entry.
12294
12295 If the prelinker needs to make room for a new PT_LOAD entry, its
12296 standard procedure is to move the first (read-only) sections into
12297 the new (writable) segment. However, the MIPS ABI requires
12298 .dynamic to be in a read-only segment, and the section will often
12299 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12300
12301 Although the prelinker could in principle move .dynamic to a
12302 writable segment, it seems better to allocate a spare program
12303 header instead, and avoid the need to move any sections.
12304 There is a long tradition of allocating spare dynamic tags,
12305 so allocating a spare program header seems like a natural
12306 extension.
12307
12308 If INFO is NULL, we may be copying an already prelinked binary
12309 with objcopy or strip, so do not add this header. */
12310 if (info != NULL
12311 && !SGI_COMPAT (abfd)
12312 && bfd_get_section_by_name (abfd, ".dynamic"))
12313 {
12314 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12315 if ((*pm)->p_type == PT_NULL)
12316 break;
12317 if (*pm == NULL)
12318 {
12319 m = bfd_zalloc (abfd, sizeof (*m));
12320 if (m == NULL)
12321 return FALSE;
12322
12323 m->p_type = PT_NULL;
12324 *pm = m;
12325 }
12326 }
12327
12328 return TRUE;
12329 }
12330 \f
12331 /* Return the section that should be marked against GC for a given
12332 relocation. */
12333
12334 asection *
12335 _bfd_mips_elf_gc_mark_hook (asection *sec,
12336 struct bfd_link_info *info,
12337 Elf_Internal_Rela *rel,
12338 struct elf_link_hash_entry *h,
12339 Elf_Internal_Sym *sym)
12340 {
12341 /* ??? Do mips16 stub sections need to be handled special? */
12342
12343 if (h != NULL)
12344 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12345 {
12346 case R_MIPS_GNU_VTINHERIT:
12347 case R_MIPS_GNU_VTENTRY:
12348 return NULL;
12349 }
12350
12351 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12352 }
12353
12354 /* Update the got entry reference counts for the section being removed. */
12355
12356 bfd_boolean
12357 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12358 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12359 asection *sec ATTRIBUTE_UNUSED,
12360 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12361 {
12362 #if 0
12363 Elf_Internal_Shdr *symtab_hdr;
12364 struct elf_link_hash_entry **sym_hashes;
12365 bfd_signed_vma *local_got_refcounts;
12366 const Elf_Internal_Rela *rel, *relend;
12367 unsigned long r_symndx;
12368 struct elf_link_hash_entry *h;
12369
12370 if (info->relocatable)
12371 return TRUE;
12372
12373 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12374 sym_hashes = elf_sym_hashes (abfd);
12375 local_got_refcounts = elf_local_got_refcounts (abfd);
12376
12377 relend = relocs + sec->reloc_count;
12378 for (rel = relocs; rel < relend; rel++)
12379 switch (ELF_R_TYPE (abfd, rel->r_info))
12380 {
12381 case R_MIPS16_GOT16:
12382 case R_MIPS16_CALL16:
12383 case R_MIPS_GOT16:
12384 case R_MIPS_CALL16:
12385 case R_MIPS_CALL_HI16:
12386 case R_MIPS_CALL_LO16:
12387 case R_MIPS_GOT_HI16:
12388 case R_MIPS_GOT_LO16:
12389 case R_MIPS_GOT_DISP:
12390 case R_MIPS_GOT_PAGE:
12391 case R_MIPS_GOT_OFST:
12392 case R_MICROMIPS_GOT16:
12393 case R_MICROMIPS_CALL16:
12394 case R_MICROMIPS_CALL_HI16:
12395 case R_MICROMIPS_CALL_LO16:
12396 case R_MICROMIPS_GOT_HI16:
12397 case R_MICROMIPS_GOT_LO16:
12398 case R_MICROMIPS_GOT_DISP:
12399 case R_MICROMIPS_GOT_PAGE:
12400 case R_MICROMIPS_GOT_OFST:
12401 /* ??? It would seem that the existing MIPS code does no sort
12402 of reference counting or whatnot on its GOT and PLT entries,
12403 so it is not possible to garbage collect them at this time. */
12404 break;
12405
12406 default:
12407 break;
12408 }
12409 #endif
12410
12411 return TRUE;
12412 }
12413
12414 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12415
12416 bfd_boolean
12417 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12418 elf_gc_mark_hook_fn gc_mark_hook)
12419 {
12420 bfd *sub;
12421
12422 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12423
12424 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12425 {
12426 asection *o;
12427
12428 if (! is_mips_elf (sub))
12429 continue;
12430
12431 for (o = sub->sections; o != NULL; o = o->next)
12432 if (!o->gc_mark
12433 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12434 (bfd_get_section_name (sub, o)))
12435 {
12436 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12437 return FALSE;
12438 }
12439 }
12440
12441 return TRUE;
12442 }
12443 \f
12444 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12445 hiding the old indirect symbol. Process additional relocation
12446 information. Also called for weakdefs, in which case we just let
12447 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12448
12449 void
12450 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12451 struct elf_link_hash_entry *dir,
12452 struct elf_link_hash_entry *ind)
12453 {
12454 struct mips_elf_link_hash_entry *dirmips, *indmips;
12455
12456 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12457
12458 dirmips = (struct mips_elf_link_hash_entry *) dir;
12459 indmips = (struct mips_elf_link_hash_entry *) ind;
12460 /* Any absolute non-dynamic relocations against an indirect or weak
12461 definition will be against the target symbol. */
12462 if (indmips->has_static_relocs)
12463 dirmips->has_static_relocs = TRUE;
12464
12465 if (ind->root.type != bfd_link_hash_indirect)
12466 return;
12467
12468 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12469 if (indmips->readonly_reloc)
12470 dirmips->readonly_reloc = TRUE;
12471 if (indmips->no_fn_stub)
12472 dirmips->no_fn_stub = TRUE;
12473 if (indmips->fn_stub)
12474 {
12475 dirmips->fn_stub = indmips->fn_stub;
12476 indmips->fn_stub = NULL;
12477 }
12478 if (indmips->need_fn_stub)
12479 {
12480 dirmips->need_fn_stub = TRUE;
12481 indmips->need_fn_stub = FALSE;
12482 }
12483 if (indmips->call_stub)
12484 {
12485 dirmips->call_stub = indmips->call_stub;
12486 indmips->call_stub = NULL;
12487 }
12488 if (indmips->call_fp_stub)
12489 {
12490 dirmips->call_fp_stub = indmips->call_fp_stub;
12491 indmips->call_fp_stub = NULL;
12492 }
12493 if (indmips->global_got_area < dirmips->global_got_area)
12494 dirmips->global_got_area = indmips->global_got_area;
12495 if (indmips->global_got_area < GGA_NONE)
12496 indmips->global_got_area = GGA_NONE;
12497 if (indmips->has_nonpic_branches)
12498 dirmips->has_nonpic_branches = TRUE;
12499 }
12500 \f
12501 #define PDR_SIZE 32
12502
12503 bfd_boolean
12504 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12505 struct bfd_link_info *info)
12506 {
12507 asection *o;
12508 bfd_boolean ret = FALSE;
12509 unsigned char *tdata;
12510 size_t i, skip;
12511
12512 o = bfd_get_section_by_name (abfd, ".pdr");
12513 if (! o)
12514 return FALSE;
12515 if (o->size == 0)
12516 return FALSE;
12517 if (o->size % PDR_SIZE != 0)
12518 return FALSE;
12519 if (o->output_section != NULL
12520 && bfd_is_abs_section (o->output_section))
12521 return FALSE;
12522
12523 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12524 if (! tdata)
12525 return FALSE;
12526
12527 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12528 info->keep_memory);
12529 if (!cookie->rels)
12530 {
12531 free (tdata);
12532 return FALSE;
12533 }
12534
12535 cookie->rel = cookie->rels;
12536 cookie->relend = cookie->rels + o->reloc_count;
12537
12538 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12539 {
12540 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12541 {
12542 tdata[i] = 1;
12543 skip ++;
12544 }
12545 }
12546
12547 if (skip != 0)
12548 {
12549 mips_elf_section_data (o)->u.tdata = tdata;
12550 if (o->rawsize == 0)
12551 o->rawsize = o->size;
12552 o->size -= skip * PDR_SIZE;
12553 ret = TRUE;
12554 }
12555 else
12556 free (tdata);
12557
12558 if (! info->keep_memory)
12559 free (cookie->rels);
12560
12561 return ret;
12562 }
12563
12564 bfd_boolean
12565 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12566 {
12567 if (strcmp (sec->name, ".pdr") == 0)
12568 return TRUE;
12569 return FALSE;
12570 }
12571
12572 bfd_boolean
12573 _bfd_mips_elf_write_section (bfd *output_bfd,
12574 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12575 asection *sec, bfd_byte *contents)
12576 {
12577 bfd_byte *to, *from, *end;
12578 int i;
12579
12580 if (strcmp (sec->name, ".pdr") != 0)
12581 return FALSE;
12582
12583 if (mips_elf_section_data (sec)->u.tdata == NULL)
12584 return FALSE;
12585
12586 to = contents;
12587 end = contents + sec->size;
12588 for (from = contents, i = 0;
12589 from < end;
12590 from += PDR_SIZE, i++)
12591 {
12592 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12593 continue;
12594 if (to != from)
12595 memcpy (to, from, PDR_SIZE);
12596 to += PDR_SIZE;
12597 }
12598 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12599 sec->output_offset, sec->size);
12600 return TRUE;
12601 }
12602 \f
12603 /* microMIPS code retains local labels for linker relaxation. Omit them
12604 from output by default for clarity. */
12605
12606 bfd_boolean
12607 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12608 {
12609 return _bfd_elf_is_local_label_name (abfd, sym->name);
12610 }
12611
12612 /* MIPS ELF uses a special find_nearest_line routine in order the
12613 handle the ECOFF debugging information. */
12614
12615 struct mips_elf_find_line
12616 {
12617 struct ecoff_debug_info d;
12618 struct ecoff_find_line i;
12619 };
12620
12621 bfd_boolean
12622 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12623 asection *section, bfd_vma offset,
12624 const char **filename_ptr,
12625 const char **functionname_ptr,
12626 unsigned int *line_ptr,
12627 unsigned int *discriminator_ptr)
12628 {
12629 asection *msec;
12630
12631 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12632 filename_ptr, functionname_ptr,
12633 line_ptr, discriminator_ptr,
12634 dwarf_debug_sections,
12635 ABI_64_P (abfd) ? 8 : 0,
12636 &elf_tdata (abfd)->dwarf2_find_line_info))
12637 return TRUE;
12638
12639 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12640 filename_ptr, functionname_ptr,
12641 line_ptr))
12642 return TRUE;
12643
12644 msec = bfd_get_section_by_name (abfd, ".mdebug");
12645 if (msec != NULL)
12646 {
12647 flagword origflags;
12648 struct mips_elf_find_line *fi;
12649 const struct ecoff_debug_swap * const swap =
12650 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12651
12652 /* If we are called during a link, mips_elf_final_link may have
12653 cleared the SEC_HAS_CONTENTS field. We force it back on here
12654 if appropriate (which it normally will be). */
12655 origflags = msec->flags;
12656 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12657 msec->flags |= SEC_HAS_CONTENTS;
12658
12659 fi = mips_elf_tdata (abfd)->find_line_info;
12660 if (fi == NULL)
12661 {
12662 bfd_size_type external_fdr_size;
12663 char *fraw_src;
12664 char *fraw_end;
12665 struct fdr *fdr_ptr;
12666 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12667
12668 fi = bfd_zalloc (abfd, amt);
12669 if (fi == NULL)
12670 {
12671 msec->flags = origflags;
12672 return FALSE;
12673 }
12674
12675 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12676 {
12677 msec->flags = origflags;
12678 return FALSE;
12679 }
12680
12681 /* Swap in the FDR information. */
12682 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12683 fi->d.fdr = bfd_alloc (abfd, amt);
12684 if (fi->d.fdr == NULL)
12685 {
12686 msec->flags = origflags;
12687 return FALSE;
12688 }
12689 external_fdr_size = swap->external_fdr_size;
12690 fdr_ptr = fi->d.fdr;
12691 fraw_src = (char *) fi->d.external_fdr;
12692 fraw_end = (fraw_src
12693 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12694 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12695 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12696
12697 mips_elf_tdata (abfd)->find_line_info = fi;
12698
12699 /* Note that we don't bother to ever free this information.
12700 find_nearest_line is either called all the time, as in
12701 objdump -l, so the information should be saved, or it is
12702 rarely called, as in ld error messages, so the memory
12703 wasted is unimportant. Still, it would probably be a
12704 good idea for free_cached_info to throw it away. */
12705 }
12706
12707 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12708 &fi->i, filename_ptr, functionname_ptr,
12709 line_ptr))
12710 {
12711 msec->flags = origflags;
12712 return TRUE;
12713 }
12714
12715 msec->flags = origflags;
12716 }
12717
12718 /* Fall back on the generic ELF find_nearest_line routine. */
12719
12720 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12721 filename_ptr, functionname_ptr,
12722 line_ptr, discriminator_ptr);
12723 }
12724
12725 bfd_boolean
12726 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12727 const char **filename_ptr,
12728 const char **functionname_ptr,
12729 unsigned int *line_ptr)
12730 {
12731 bfd_boolean found;
12732 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12733 functionname_ptr, line_ptr,
12734 & elf_tdata (abfd)->dwarf2_find_line_info);
12735 return found;
12736 }
12737
12738 \f
12739 /* When are writing out the .options or .MIPS.options section,
12740 remember the bytes we are writing out, so that we can install the
12741 GP value in the section_processing routine. */
12742
12743 bfd_boolean
12744 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12745 const void *location,
12746 file_ptr offset, bfd_size_type count)
12747 {
12748 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12749 {
12750 bfd_byte *c;
12751
12752 if (elf_section_data (section) == NULL)
12753 {
12754 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12755 section->used_by_bfd = bfd_zalloc (abfd, amt);
12756 if (elf_section_data (section) == NULL)
12757 return FALSE;
12758 }
12759 c = mips_elf_section_data (section)->u.tdata;
12760 if (c == NULL)
12761 {
12762 c = bfd_zalloc (abfd, section->size);
12763 if (c == NULL)
12764 return FALSE;
12765 mips_elf_section_data (section)->u.tdata = c;
12766 }
12767
12768 memcpy (c + offset, location, count);
12769 }
12770
12771 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12772 count);
12773 }
12774
12775 /* This is almost identical to bfd_generic_get_... except that some
12776 MIPS relocations need to be handled specially. Sigh. */
12777
12778 bfd_byte *
12779 _bfd_elf_mips_get_relocated_section_contents
12780 (bfd *abfd,
12781 struct bfd_link_info *link_info,
12782 struct bfd_link_order *link_order,
12783 bfd_byte *data,
12784 bfd_boolean relocatable,
12785 asymbol **symbols)
12786 {
12787 /* Get enough memory to hold the stuff */
12788 bfd *input_bfd = link_order->u.indirect.section->owner;
12789 asection *input_section = link_order->u.indirect.section;
12790 bfd_size_type sz;
12791
12792 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12793 arelent **reloc_vector = NULL;
12794 long reloc_count;
12795
12796 if (reloc_size < 0)
12797 goto error_return;
12798
12799 reloc_vector = bfd_malloc (reloc_size);
12800 if (reloc_vector == NULL && reloc_size != 0)
12801 goto error_return;
12802
12803 /* read in the section */
12804 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12805 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12806 goto error_return;
12807
12808 reloc_count = bfd_canonicalize_reloc (input_bfd,
12809 input_section,
12810 reloc_vector,
12811 symbols);
12812 if (reloc_count < 0)
12813 goto error_return;
12814
12815 if (reloc_count > 0)
12816 {
12817 arelent **parent;
12818 /* for mips */
12819 int gp_found;
12820 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12821
12822 {
12823 struct bfd_hash_entry *h;
12824 struct bfd_link_hash_entry *lh;
12825 /* Skip all this stuff if we aren't mixing formats. */
12826 if (abfd && input_bfd
12827 && abfd->xvec == input_bfd->xvec)
12828 lh = 0;
12829 else
12830 {
12831 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12832 lh = (struct bfd_link_hash_entry *) h;
12833 }
12834 lookup:
12835 if (lh)
12836 {
12837 switch (lh->type)
12838 {
12839 case bfd_link_hash_undefined:
12840 case bfd_link_hash_undefweak:
12841 case bfd_link_hash_common:
12842 gp_found = 0;
12843 break;
12844 case bfd_link_hash_defined:
12845 case bfd_link_hash_defweak:
12846 gp_found = 1;
12847 gp = lh->u.def.value;
12848 break;
12849 case bfd_link_hash_indirect:
12850 case bfd_link_hash_warning:
12851 lh = lh->u.i.link;
12852 /* @@FIXME ignoring warning for now */
12853 goto lookup;
12854 case bfd_link_hash_new:
12855 default:
12856 abort ();
12857 }
12858 }
12859 else
12860 gp_found = 0;
12861 }
12862 /* end mips */
12863 for (parent = reloc_vector; *parent != NULL; parent++)
12864 {
12865 char *error_message = NULL;
12866 bfd_reloc_status_type r;
12867
12868 /* Specific to MIPS: Deal with relocation types that require
12869 knowing the gp of the output bfd. */
12870 asymbol *sym = *(*parent)->sym_ptr_ptr;
12871
12872 /* If we've managed to find the gp and have a special
12873 function for the relocation then go ahead, else default
12874 to the generic handling. */
12875 if (gp_found
12876 && (*parent)->howto->special_function
12877 == _bfd_mips_elf32_gprel16_reloc)
12878 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12879 input_section, relocatable,
12880 data, gp);
12881 else
12882 r = bfd_perform_relocation (input_bfd, *parent, data,
12883 input_section,
12884 relocatable ? abfd : NULL,
12885 &error_message);
12886
12887 if (relocatable)
12888 {
12889 asection *os = input_section->output_section;
12890
12891 /* A partial link, so keep the relocs */
12892 os->orelocation[os->reloc_count] = *parent;
12893 os->reloc_count++;
12894 }
12895
12896 if (r != bfd_reloc_ok)
12897 {
12898 switch (r)
12899 {
12900 case bfd_reloc_undefined:
12901 if (!((*link_info->callbacks->undefined_symbol)
12902 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12903 input_bfd, input_section, (*parent)->address, TRUE)))
12904 goto error_return;
12905 break;
12906 case bfd_reloc_dangerous:
12907 BFD_ASSERT (error_message != NULL);
12908 if (!((*link_info->callbacks->reloc_dangerous)
12909 (link_info, error_message, input_bfd, input_section,
12910 (*parent)->address)))
12911 goto error_return;
12912 break;
12913 case bfd_reloc_overflow:
12914 if (!((*link_info->callbacks->reloc_overflow)
12915 (link_info, NULL,
12916 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12917 (*parent)->howto->name, (*parent)->addend,
12918 input_bfd, input_section, (*parent)->address)))
12919 goto error_return;
12920 break;
12921 case bfd_reloc_outofrange:
12922 default:
12923 abort ();
12924 break;
12925 }
12926
12927 }
12928 }
12929 }
12930 if (reloc_vector != NULL)
12931 free (reloc_vector);
12932 return data;
12933
12934 error_return:
12935 if (reloc_vector != NULL)
12936 free (reloc_vector);
12937 return NULL;
12938 }
12939 \f
12940 static bfd_boolean
12941 mips_elf_relax_delete_bytes (bfd *abfd,
12942 asection *sec, bfd_vma addr, int count)
12943 {
12944 Elf_Internal_Shdr *symtab_hdr;
12945 unsigned int sec_shndx;
12946 bfd_byte *contents;
12947 Elf_Internal_Rela *irel, *irelend;
12948 Elf_Internal_Sym *isym;
12949 Elf_Internal_Sym *isymend;
12950 struct elf_link_hash_entry **sym_hashes;
12951 struct elf_link_hash_entry **end_hashes;
12952 struct elf_link_hash_entry **start_hashes;
12953 unsigned int symcount;
12954
12955 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12956 contents = elf_section_data (sec)->this_hdr.contents;
12957
12958 irel = elf_section_data (sec)->relocs;
12959 irelend = irel + sec->reloc_count;
12960
12961 /* Actually delete the bytes. */
12962 memmove (contents + addr, contents + addr + count,
12963 (size_t) (sec->size - addr - count));
12964 sec->size -= count;
12965
12966 /* Adjust all the relocs. */
12967 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12968 {
12969 /* Get the new reloc address. */
12970 if (irel->r_offset > addr)
12971 irel->r_offset -= count;
12972 }
12973
12974 BFD_ASSERT (addr % 2 == 0);
12975 BFD_ASSERT (count % 2 == 0);
12976
12977 /* Adjust the local symbols defined in this section. */
12978 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12979 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12980 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12981 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12982 isym->st_value -= count;
12983
12984 /* Now adjust the global symbols defined in this section. */
12985 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12986 - symtab_hdr->sh_info);
12987 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12988 end_hashes = sym_hashes + symcount;
12989
12990 for (; sym_hashes < end_hashes; sym_hashes++)
12991 {
12992 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12993
12994 if ((sym_hash->root.type == bfd_link_hash_defined
12995 || sym_hash->root.type == bfd_link_hash_defweak)
12996 && sym_hash->root.u.def.section == sec)
12997 {
12998 bfd_vma value = sym_hash->root.u.def.value;
12999
13000 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13001 value &= MINUS_TWO;
13002 if (value > addr)
13003 sym_hash->root.u.def.value -= count;
13004 }
13005 }
13006
13007 return TRUE;
13008 }
13009
13010
13011 /* Opcodes needed for microMIPS relaxation as found in
13012 opcodes/micromips-opc.c. */
13013
13014 struct opcode_descriptor {
13015 unsigned long match;
13016 unsigned long mask;
13017 };
13018
13019 /* The $ra register aka $31. */
13020
13021 #define RA 31
13022
13023 /* 32-bit instruction format register fields. */
13024
13025 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13026 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13027
13028 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13029
13030 #define OP16_VALID_REG(r) \
13031 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13032
13033
13034 /* 32-bit and 16-bit branches. */
13035
13036 static const struct opcode_descriptor b_insns_32[] = {
13037 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13038 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13039 { 0, 0 } /* End marker for find_match(). */
13040 };
13041
13042 static const struct opcode_descriptor bc_insn_32 =
13043 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13044
13045 static const struct opcode_descriptor bz_insn_32 =
13046 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13047
13048 static const struct opcode_descriptor bzal_insn_32 =
13049 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13050
13051 static const struct opcode_descriptor beq_insn_32 =
13052 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13053
13054 static const struct opcode_descriptor b_insn_16 =
13055 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13056
13057 static const struct opcode_descriptor bz_insn_16 =
13058 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13059
13060
13061 /* 32-bit and 16-bit branch EQ and NE zero. */
13062
13063 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13064 eq and second the ne. This convention is used when replacing a
13065 32-bit BEQ/BNE with the 16-bit version. */
13066
13067 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13068
13069 static const struct opcode_descriptor bz_rs_insns_32[] = {
13070 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13071 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13072 { 0, 0 } /* End marker for find_match(). */
13073 };
13074
13075 static const struct opcode_descriptor bz_rt_insns_32[] = {
13076 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13077 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13078 { 0, 0 } /* End marker for find_match(). */
13079 };
13080
13081 static const struct opcode_descriptor bzc_insns_32[] = {
13082 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13083 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13084 { 0, 0 } /* End marker for find_match(). */
13085 };
13086
13087 static const struct opcode_descriptor bz_insns_16[] = {
13088 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13089 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13090 { 0, 0 } /* End marker for find_match(). */
13091 };
13092
13093 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13094
13095 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
13096 #define BZ16_REG_FIELD(r) \
13097 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
13098
13099
13100 /* 32-bit instructions with a delay slot. */
13101
13102 static const struct opcode_descriptor jal_insn_32_bd16 =
13103 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13104
13105 static const struct opcode_descriptor jal_insn_32_bd32 =
13106 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13107
13108 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13109 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13110
13111 static const struct opcode_descriptor j_insn_32 =
13112 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13113
13114 static const struct opcode_descriptor jalr_insn_32 =
13115 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13116
13117 /* This table can be compacted, because no opcode replacement is made. */
13118
13119 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13120 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13121
13122 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13123 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13124
13125 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13126 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13127 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13128 { 0, 0 } /* End marker for find_match(). */
13129 };
13130
13131 /* This table can be compacted, because no opcode replacement is made. */
13132
13133 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13134 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13135
13136 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13137 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13138 { 0, 0 } /* End marker for find_match(). */
13139 };
13140
13141
13142 /* 16-bit instructions with a delay slot. */
13143
13144 static const struct opcode_descriptor jalr_insn_16_bd16 =
13145 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13146
13147 static const struct opcode_descriptor jalr_insn_16_bd32 =
13148 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13149
13150 static const struct opcode_descriptor jr_insn_16 =
13151 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13152
13153 #define JR16_REG(opcode) ((opcode) & 0x1f)
13154
13155 /* This table can be compacted, because no opcode replacement is made. */
13156
13157 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13158 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13159
13160 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13161 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13162 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13163 { 0, 0 } /* End marker for find_match(). */
13164 };
13165
13166
13167 /* LUI instruction. */
13168
13169 static const struct opcode_descriptor lui_insn =
13170 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13171
13172
13173 /* ADDIU instruction. */
13174
13175 static const struct opcode_descriptor addiu_insn =
13176 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13177
13178 static const struct opcode_descriptor addiupc_insn =
13179 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13180
13181 #define ADDIUPC_REG_FIELD(r) \
13182 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13183
13184
13185 /* Relaxable instructions in a JAL delay slot: MOVE. */
13186
13187 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13188 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13189 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13190 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13191
13192 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13193 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13194
13195 static const struct opcode_descriptor move_insns_32[] = {
13196 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13197 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13198 { 0, 0 } /* End marker for find_match(). */
13199 };
13200
13201 static const struct opcode_descriptor move_insn_16 =
13202 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13203
13204
13205 /* NOP instructions. */
13206
13207 static const struct opcode_descriptor nop_insn_32 =
13208 { /* "nop", "", */ 0x00000000, 0xffffffff };
13209
13210 static const struct opcode_descriptor nop_insn_16 =
13211 { /* "nop", "", */ 0x0c00, 0xffff };
13212
13213
13214 /* Instruction match support. */
13215
13216 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13217
13218 static int
13219 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13220 {
13221 unsigned long indx;
13222
13223 for (indx = 0; insn[indx].mask != 0; indx++)
13224 if (MATCH (opcode, insn[indx]))
13225 return indx;
13226
13227 return -1;
13228 }
13229
13230
13231 /* Branch and delay slot decoding support. */
13232
13233 /* If PTR points to what *might* be a 16-bit branch or jump, then
13234 return the minimum length of its delay slot, otherwise return 0.
13235 Non-zero results are not definitive as we might be checking against
13236 the second half of another instruction. */
13237
13238 static int
13239 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13240 {
13241 unsigned long opcode;
13242 int bdsize;
13243
13244 opcode = bfd_get_16 (abfd, ptr);
13245 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13246 /* 16-bit branch/jump with a 32-bit delay slot. */
13247 bdsize = 4;
13248 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13249 || find_match (opcode, ds_insns_16_bd16) >= 0)
13250 /* 16-bit branch/jump with a 16-bit delay slot. */
13251 bdsize = 2;
13252 else
13253 /* No delay slot. */
13254 bdsize = 0;
13255
13256 return bdsize;
13257 }
13258
13259 /* If PTR points to what *might* be a 32-bit branch or jump, then
13260 return the minimum length of its delay slot, otherwise return 0.
13261 Non-zero results are not definitive as we might be checking against
13262 the second half of another instruction. */
13263
13264 static int
13265 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13266 {
13267 unsigned long opcode;
13268 int bdsize;
13269
13270 opcode = bfd_get_micromips_32 (abfd, ptr);
13271 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13272 /* 32-bit branch/jump with a 32-bit delay slot. */
13273 bdsize = 4;
13274 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13275 /* 32-bit branch/jump with a 16-bit delay slot. */
13276 bdsize = 2;
13277 else
13278 /* No delay slot. */
13279 bdsize = 0;
13280
13281 return bdsize;
13282 }
13283
13284 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13285 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13286
13287 static bfd_boolean
13288 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13289 {
13290 unsigned long opcode;
13291
13292 opcode = bfd_get_16 (abfd, ptr);
13293 if (MATCH (opcode, b_insn_16)
13294 /* B16 */
13295 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13296 /* JR16 */
13297 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13298 /* BEQZ16, BNEZ16 */
13299 || (MATCH (opcode, jalr_insn_16_bd32)
13300 /* JALR16 */
13301 && reg != JR16_REG (opcode) && reg != RA))
13302 return TRUE;
13303
13304 return FALSE;
13305 }
13306
13307 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13308 then return TRUE, otherwise FALSE. */
13309
13310 static bfd_boolean
13311 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13312 {
13313 unsigned long opcode;
13314
13315 opcode = bfd_get_micromips_32 (abfd, ptr);
13316 if (MATCH (opcode, j_insn_32)
13317 /* J */
13318 || MATCH (opcode, bc_insn_32)
13319 /* BC1F, BC1T, BC2F, BC2T */
13320 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13321 /* JAL, JALX */
13322 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13323 /* BGEZ, BGTZ, BLEZ, BLTZ */
13324 || (MATCH (opcode, bzal_insn_32)
13325 /* BGEZAL, BLTZAL */
13326 && reg != OP32_SREG (opcode) && reg != RA)
13327 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13328 /* JALR, JALR.HB, BEQ, BNE */
13329 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13330 return TRUE;
13331
13332 return FALSE;
13333 }
13334
13335 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13336 IRELEND) at OFFSET indicate that there must be a compact branch there,
13337 then return TRUE, otherwise FALSE. */
13338
13339 static bfd_boolean
13340 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13341 const Elf_Internal_Rela *internal_relocs,
13342 const Elf_Internal_Rela *irelend)
13343 {
13344 const Elf_Internal_Rela *irel;
13345 unsigned long opcode;
13346
13347 opcode = bfd_get_micromips_32 (abfd, ptr);
13348 if (find_match (opcode, bzc_insns_32) < 0)
13349 return FALSE;
13350
13351 for (irel = internal_relocs; irel < irelend; irel++)
13352 if (irel->r_offset == offset
13353 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13354 return TRUE;
13355
13356 return FALSE;
13357 }
13358
13359 /* Bitsize checking. */
13360 #define IS_BITSIZE(val, N) \
13361 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13362 - (1ULL << ((N) - 1))) == (val))
13363
13364 \f
13365 bfd_boolean
13366 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13367 struct bfd_link_info *link_info,
13368 bfd_boolean *again)
13369 {
13370 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13371 Elf_Internal_Shdr *symtab_hdr;
13372 Elf_Internal_Rela *internal_relocs;
13373 Elf_Internal_Rela *irel, *irelend;
13374 bfd_byte *contents = NULL;
13375 Elf_Internal_Sym *isymbuf = NULL;
13376
13377 /* Assume nothing changes. */
13378 *again = FALSE;
13379
13380 /* We don't have to do anything for a relocatable link, if
13381 this section does not have relocs, or if this is not a
13382 code section. */
13383
13384 if (link_info->relocatable
13385 || (sec->flags & SEC_RELOC) == 0
13386 || sec->reloc_count == 0
13387 || (sec->flags & SEC_CODE) == 0)
13388 return TRUE;
13389
13390 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13391
13392 /* Get a copy of the native relocations. */
13393 internal_relocs = (_bfd_elf_link_read_relocs
13394 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13395 link_info->keep_memory));
13396 if (internal_relocs == NULL)
13397 goto error_return;
13398
13399 /* Walk through them looking for relaxing opportunities. */
13400 irelend = internal_relocs + sec->reloc_count;
13401 for (irel = internal_relocs; irel < irelend; irel++)
13402 {
13403 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13404 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13405 bfd_boolean target_is_micromips_code_p;
13406 unsigned long opcode;
13407 bfd_vma symval;
13408 bfd_vma pcrval;
13409 bfd_byte *ptr;
13410 int fndopc;
13411
13412 /* The number of bytes to delete for relaxation and from where
13413 to delete these bytes starting at irel->r_offset. */
13414 int delcnt = 0;
13415 int deloff = 0;
13416
13417 /* If this isn't something that can be relaxed, then ignore
13418 this reloc. */
13419 if (r_type != R_MICROMIPS_HI16
13420 && r_type != R_MICROMIPS_PC16_S1
13421 && r_type != R_MICROMIPS_26_S1)
13422 continue;
13423
13424 /* Get the section contents if we haven't done so already. */
13425 if (contents == NULL)
13426 {
13427 /* Get cached copy if it exists. */
13428 if (elf_section_data (sec)->this_hdr.contents != NULL)
13429 contents = elf_section_data (sec)->this_hdr.contents;
13430 /* Go get them off disk. */
13431 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13432 goto error_return;
13433 }
13434 ptr = contents + irel->r_offset;
13435
13436 /* Read this BFD's local symbols if we haven't done so already. */
13437 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13438 {
13439 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13440 if (isymbuf == NULL)
13441 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13442 symtab_hdr->sh_info, 0,
13443 NULL, NULL, NULL);
13444 if (isymbuf == NULL)
13445 goto error_return;
13446 }
13447
13448 /* Get the value of the symbol referred to by the reloc. */
13449 if (r_symndx < symtab_hdr->sh_info)
13450 {
13451 /* A local symbol. */
13452 Elf_Internal_Sym *isym;
13453 asection *sym_sec;
13454
13455 isym = isymbuf + r_symndx;
13456 if (isym->st_shndx == SHN_UNDEF)
13457 sym_sec = bfd_und_section_ptr;
13458 else if (isym->st_shndx == SHN_ABS)
13459 sym_sec = bfd_abs_section_ptr;
13460 else if (isym->st_shndx == SHN_COMMON)
13461 sym_sec = bfd_com_section_ptr;
13462 else
13463 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13464 symval = (isym->st_value
13465 + sym_sec->output_section->vma
13466 + sym_sec->output_offset);
13467 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13468 }
13469 else
13470 {
13471 unsigned long indx;
13472 struct elf_link_hash_entry *h;
13473
13474 /* An external symbol. */
13475 indx = r_symndx - symtab_hdr->sh_info;
13476 h = elf_sym_hashes (abfd)[indx];
13477 BFD_ASSERT (h != NULL);
13478
13479 if (h->root.type != bfd_link_hash_defined
13480 && h->root.type != bfd_link_hash_defweak)
13481 /* This appears to be a reference to an undefined
13482 symbol. Just ignore it -- it will be caught by the
13483 regular reloc processing. */
13484 continue;
13485
13486 symval = (h->root.u.def.value
13487 + h->root.u.def.section->output_section->vma
13488 + h->root.u.def.section->output_offset);
13489 target_is_micromips_code_p = (!h->needs_plt
13490 && ELF_ST_IS_MICROMIPS (h->other));
13491 }
13492
13493
13494 /* For simplicity of coding, we are going to modify the
13495 section contents, the section relocs, and the BFD symbol
13496 table. We must tell the rest of the code not to free up this
13497 information. It would be possible to instead create a table
13498 of changes which have to be made, as is done in coff-mips.c;
13499 that would be more work, but would require less memory when
13500 the linker is run. */
13501
13502 /* Only 32-bit instructions relaxed. */
13503 if (irel->r_offset + 4 > sec->size)
13504 continue;
13505
13506 opcode = bfd_get_micromips_32 (abfd, ptr);
13507
13508 /* This is the pc-relative distance from the instruction the
13509 relocation is applied to, to the symbol referred. */
13510 pcrval = (symval
13511 - (sec->output_section->vma + sec->output_offset)
13512 - irel->r_offset);
13513
13514 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13515 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13516 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13517
13518 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13519
13520 where pcrval has first to be adjusted to apply against the LO16
13521 location (we make the adjustment later on, when we have figured
13522 out the offset). */
13523 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13524 {
13525 bfd_boolean bzc = FALSE;
13526 unsigned long nextopc;
13527 unsigned long reg;
13528 bfd_vma offset;
13529
13530 /* Give up if the previous reloc was a HI16 against this symbol
13531 too. */
13532 if (irel > internal_relocs
13533 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13534 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13535 continue;
13536
13537 /* Or if the next reloc is not a LO16 against this symbol. */
13538 if (irel + 1 >= irelend
13539 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13540 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13541 continue;
13542
13543 /* Or if the second next reloc is a LO16 against this symbol too. */
13544 if (irel + 2 >= irelend
13545 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13546 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13547 continue;
13548
13549 /* See if the LUI instruction *might* be in a branch delay slot.
13550 We check whether what looks like a 16-bit branch or jump is
13551 actually an immediate argument to a compact branch, and let
13552 it through if so. */
13553 if (irel->r_offset >= 2
13554 && check_br16_dslot (abfd, ptr - 2)
13555 && !(irel->r_offset >= 4
13556 && (bzc = check_relocated_bzc (abfd,
13557 ptr - 4, irel->r_offset - 4,
13558 internal_relocs, irelend))))
13559 continue;
13560 if (irel->r_offset >= 4
13561 && !bzc
13562 && check_br32_dslot (abfd, ptr - 4))
13563 continue;
13564
13565 reg = OP32_SREG (opcode);
13566
13567 /* We only relax adjacent instructions or ones separated with
13568 a branch or jump that has a delay slot. The branch or jump
13569 must not fiddle with the register used to hold the address.
13570 Subtract 4 for the LUI itself. */
13571 offset = irel[1].r_offset - irel[0].r_offset;
13572 switch (offset - 4)
13573 {
13574 case 0:
13575 break;
13576 case 2:
13577 if (check_br16 (abfd, ptr + 4, reg))
13578 break;
13579 continue;
13580 case 4:
13581 if (check_br32 (abfd, ptr + 4, reg))
13582 break;
13583 continue;
13584 default:
13585 continue;
13586 }
13587
13588 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13589
13590 /* Give up unless the same register is used with both
13591 relocations. */
13592 if (OP32_SREG (nextopc) != reg)
13593 continue;
13594
13595 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13596 and rounding up to take masking of the two LSBs into account. */
13597 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13598
13599 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13600 if (IS_BITSIZE (symval, 16))
13601 {
13602 /* Fix the relocation's type. */
13603 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13604
13605 /* Instructions using R_MICROMIPS_LO16 have the base or
13606 source register in bits 20:16. This register becomes $0
13607 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13608 nextopc &= ~0x001f0000;
13609 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13610 contents + irel[1].r_offset);
13611 }
13612
13613 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13614 We add 4 to take LUI deletion into account while checking
13615 the PC-relative distance. */
13616 else if (symval % 4 == 0
13617 && IS_BITSIZE (pcrval + 4, 25)
13618 && MATCH (nextopc, addiu_insn)
13619 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13620 && OP16_VALID_REG (OP32_TREG (nextopc)))
13621 {
13622 /* Fix the relocation's type. */
13623 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13624
13625 /* Replace ADDIU with the ADDIUPC version. */
13626 nextopc = (addiupc_insn.match
13627 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13628
13629 bfd_put_micromips_32 (abfd, nextopc,
13630 contents + irel[1].r_offset);
13631 }
13632
13633 /* Can't do anything, give up, sigh... */
13634 else
13635 continue;
13636
13637 /* Fix the relocation's type. */
13638 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13639
13640 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13641 delcnt = 4;
13642 deloff = 0;
13643 }
13644
13645 /* Compact branch relaxation -- due to the multitude of macros
13646 employed by the compiler/assembler, compact branches are not
13647 always generated. Obviously, this can/will be fixed elsewhere,
13648 but there is no drawback in double checking it here. */
13649 else if (r_type == R_MICROMIPS_PC16_S1
13650 && irel->r_offset + 5 < sec->size
13651 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13652 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13653 && ((!insn32
13654 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13655 nop_insn_16) ? 2 : 0))
13656 || (irel->r_offset + 7 < sec->size
13657 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13658 ptr + 4),
13659 nop_insn_32) ? 4 : 0))))
13660 {
13661 unsigned long reg;
13662
13663 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13664
13665 /* Replace BEQZ/BNEZ with the compact version. */
13666 opcode = (bzc_insns_32[fndopc].match
13667 | BZC32_REG_FIELD (reg)
13668 | (opcode & 0xffff)); /* Addend value. */
13669
13670 bfd_put_micromips_32 (abfd, opcode, ptr);
13671
13672 /* Delete the delay slot NOP: two or four bytes from
13673 irel->offset + 4; delcnt has already been set above. */
13674 deloff = 4;
13675 }
13676
13677 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13678 to check the distance from the next instruction, so subtract 2. */
13679 else if (!insn32
13680 && r_type == R_MICROMIPS_PC16_S1
13681 && IS_BITSIZE (pcrval - 2, 11)
13682 && find_match (opcode, b_insns_32) >= 0)
13683 {
13684 /* Fix the relocation's type. */
13685 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13686
13687 /* Replace the 32-bit opcode with a 16-bit opcode. */
13688 bfd_put_16 (abfd,
13689 (b_insn_16.match
13690 | (opcode & 0x3ff)), /* Addend value. */
13691 ptr);
13692
13693 /* Delete 2 bytes from irel->r_offset + 2. */
13694 delcnt = 2;
13695 deloff = 2;
13696 }
13697
13698 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13699 to check the distance from the next instruction, so subtract 2. */
13700 else if (!insn32
13701 && r_type == R_MICROMIPS_PC16_S1
13702 && IS_BITSIZE (pcrval - 2, 8)
13703 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13704 && OP16_VALID_REG (OP32_SREG (opcode)))
13705 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13706 && OP16_VALID_REG (OP32_TREG (opcode)))))
13707 {
13708 unsigned long reg;
13709
13710 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13711
13712 /* Fix the relocation's type. */
13713 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13714
13715 /* Replace the 32-bit opcode with a 16-bit opcode. */
13716 bfd_put_16 (abfd,
13717 (bz_insns_16[fndopc].match
13718 | BZ16_REG_FIELD (reg)
13719 | (opcode & 0x7f)), /* Addend value. */
13720 ptr);
13721
13722 /* Delete 2 bytes from irel->r_offset + 2. */
13723 delcnt = 2;
13724 deloff = 2;
13725 }
13726
13727 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13728 else if (!insn32
13729 && r_type == R_MICROMIPS_26_S1
13730 && target_is_micromips_code_p
13731 && irel->r_offset + 7 < sec->size
13732 && MATCH (opcode, jal_insn_32_bd32))
13733 {
13734 unsigned long n32opc;
13735 bfd_boolean relaxed = FALSE;
13736
13737 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13738
13739 if (MATCH (n32opc, nop_insn_32))
13740 {
13741 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13742 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13743
13744 relaxed = TRUE;
13745 }
13746 else if (find_match (n32opc, move_insns_32) >= 0)
13747 {
13748 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13749 bfd_put_16 (abfd,
13750 (move_insn_16.match
13751 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13752 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13753 ptr + 4);
13754
13755 relaxed = TRUE;
13756 }
13757 /* Other 32-bit instructions relaxable to 16-bit
13758 instructions will be handled here later. */
13759
13760 if (relaxed)
13761 {
13762 /* JAL with 32-bit delay slot that is changed to a JALS
13763 with 16-bit delay slot. */
13764 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13765
13766 /* Delete 2 bytes from irel->r_offset + 6. */
13767 delcnt = 2;
13768 deloff = 6;
13769 }
13770 }
13771
13772 if (delcnt != 0)
13773 {
13774 /* Note that we've changed the relocs, section contents, etc. */
13775 elf_section_data (sec)->relocs = internal_relocs;
13776 elf_section_data (sec)->this_hdr.contents = contents;
13777 symtab_hdr->contents = (unsigned char *) isymbuf;
13778
13779 /* Delete bytes depending on the delcnt and deloff. */
13780 if (!mips_elf_relax_delete_bytes (abfd, sec,
13781 irel->r_offset + deloff, delcnt))
13782 goto error_return;
13783
13784 /* That will change things, so we should relax again.
13785 Note that this is not required, and it may be slow. */
13786 *again = TRUE;
13787 }
13788 }
13789
13790 if (isymbuf != NULL
13791 && symtab_hdr->contents != (unsigned char *) isymbuf)
13792 {
13793 if (! link_info->keep_memory)
13794 free (isymbuf);
13795 else
13796 {
13797 /* Cache the symbols for elf_link_input_bfd. */
13798 symtab_hdr->contents = (unsigned char *) isymbuf;
13799 }
13800 }
13801
13802 if (contents != NULL
13803 && elf_section_data (sec)->this_hdr.contents != contents)
13804 {
13805 if (! link_info->keep_memory)
13806 free (contents);
13807 else
13808 {
13809 /* Cache the section contents for elf_link_input_bfd. */
13810 elf_section_data (sec)->this_hdr.contents = contents;
13811 }
13812 }
13813
13814 if (internal_relocs != NULL
13815 && elf_section_data (sec)->relocs != internal_relocs)
13816 free (internal_relocs);
13817
13818 return TRUE;
13819
13820 error_return:
13821 if (isymbuf != NULL
13822 && symtab_hdr->contents != (unsigned char *) isymbuf)
13823 free (isymbuf);
13824 if (contents != NULL
13825 && elf_section_data (sec)->this_hdr.contents != contents)
13826 free (contents);
13827 if (internal_relocs != NULL
13828 && elf_section_data (sec)->relocs != internal_relocs)
13829 free (internal_relocs);
13830
13831 return FALSE;
13832 }
13833 \f
13834 /* Create a MIPS ELF linker hash table. */
13835
13836 struct bfd_link_hash_table *
13837 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13838 {
13839 struct mips_elf_link_hash_table *ret;
13840 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13841
13842 ret = bfd_zmalloc (amt);
13843 if (ret == NULL)
13844 return NULL;
13845
13846 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13847 mips_elf_link_hash_newfunc,
13848 sizeof (struct mips_elf_link_hash_entry),
13849 MIPS_ELF_DATA))
13850 {
13851 free (ret);
13852 return NULL;
13853 }
13854 ret->root.init_plt_refcount.plist = NULL;
13855 ret->root.init_plt_offset.plist = NULL;
13856
13857 return &ret->root.root;
13858 }
13859
13860 /* Likewise, but indicate that the target is VxWorks. */
13861
13862 struct bfd_link_hash_table *
13863 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13864 {
13865 struct bfd_link_hash_table *ret;
13866
13867 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13868 if (ret)
13869 {
13870 struct mips_elf_link_hash_table *htab;
13871
13872 htab = (struct mips_elf_link_hash_table *) ret;
13873 htab->use_plts_and_copy_relocs = TRUE;
13874 htab->is_vxworks = TRUE;
13875 }
13876 return ret;
13877 }
13878
13879 /* A function that the linker calls if we are allowed to use PLTs
13880 and copy relocs. */
13881
13882 void
13883 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13884 {
13885 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13886 }
13887
13888 /* A function that the linker calls to select between all or only
13889 32-bit microMIPS instructions. */
13890
13891 void
13892 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13893 {
13894 mips_elf_hash_table (info)->insn32 = on;
13895 }
13896 \f
13897 /* Return the .MIPS.abiflags value representing each ISA Extension. */
13898
13899 unsigned int
13900 bfd_mips_isa_ext (bfd *abfd)
13901 {
13902 switch (bfd_get_mach (abfd))
13903 {
13904 case bfd_mach_mips3900:
13905 return AFL_EXT_3900;
13906 case bfd_mach_mips4010:
13907 return AFL_EXT_4010;
13908 case bfd_mach_mips4100:
13909 return AFL_EXT_4100;
13910 case bfd_mach_mips4111:
13911 return AFL_EXT_4111;
13912 case bfd_mach_mips4120:
13913 return AFL_EXT_4120;
13914 case bfd_mach_mips4650:
13915 return AFL_EXT_4650;
13916 case bfd_mach_mips5400:
13917 return AFL_EXT_5400;
13918 case bfd_mach_mips5500:
13919 return AFL_EXT_5500;
13920 case bfd_mach_mips5900:
13921 return AFL_EXT_5900;
13922 case bfd_mach_mips10000:
13923 return AFL_EXT_10000;
13924 case bfd_mach_mips_loongson_2e:
13925 return AFL_EXT_LOONGSON_2E;
13926 case bfd_mach_mips_loongson_2f:
13927 return AFL_EXT_LOONGSON_2F;
13928 case bfd_mach_mips_loongson_3a:
13929 return AFL_EXT_LOONGSON_3A;
13930 case bfd_mach_mips_sb1:
13931 return AFL_EXT_SB1;
13932 case bfd_mach_mips_octeon:
13933 return AFL_EXT_OCTEON;
13934 case bfd_mach_mips_octeonp:
13935 return AFL_EXT_OCTEONP;
13936 case bfd_mach_mips_octeon3:
13937 return AFL_EXT_OCTEON3;
13938 case bfd_mach_mips_octeon2:
13939 return AFL_EXT_OCTEON2;
13940 case bfd_mach_mips_xlr:
13941 return AFL_EXT_XLR;
13942 }
13943 return 0;
13944 }
13945
13946 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
13947
13948 static void
13949 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
13950 {
13951 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
13952 {
13953 case E_MIPS_ARCH_1:
13954 abiflags->isa_level = 1;
13955 abiflags->isa_rev = 0;
13956 break;
13957 case E_MIPS_ARCH_2:
13958 abiflags->isa_level = 2;
13959 abiflags->isa_rev = 0;
13960 break;
13961 case E_MIPS_ARCH_3:
13962 abiflags->isa_level = 3;
13963 abiflags->isa_rev = 0;
13964 break;
13965 case E_MIPS_ARCH_4:
13966 abiflags->isa_level = 4;
13967 abiflags->isa_rev = 0;
13968 break;
13969 case E_MIPS_ARCH_5:
13970 abiflags->isa_level = 5;
13971 abiflags->isa_rev = 0;
13972 break;
13973 case E_MIPS_ARCH_32:
13974 abiflags->isa_level = 32;
13975 abiflags->isa_rev = 1;
13976 break;
13977 case E_MIPS_ARCH_32R2:
13978 abiflags->isa_level = 32;
13979 /* Handle MIPS32r3 and MIPS32r5 which do not have a header flag. */
13980 if (abiflags->isa_rev < 2)
13981 abiflags->isa_rev = 2;
13982 break;
13983 case E_MIPS_ARCH_32R6:
13984 abiflags->isa_level = 32;
13985 abiflags->isa_rev = 6;
13986 break;
13987 case E_MIPS_ARCH_64:
13988 abiflags->isa_level = 64;
13989 abiflags->isa_rev = 1;
13990 break;
13991 case E_MIPS_ARCH_64R2:
13992 /* Handle MIPS64r3 and MIPS64r5 which do not have a header flag. */
13993 abiflags->isa_level = 64;
13994 if (abiflags->isa_rev < 2)
13995 abiflags->isa_rev = 2;
13996 break;
13997 case E_MIPS_ARCH_64R6:
13998 abiflags->isa_level = 64;
13999 abiflags->isa_rev = 6;
14000 break;
14001 default:
14002 (*_bfd_error_handler)
14003 (_("%B: Unknown architecture %s"),
14004 abfd, bfd_printable_name (abfd));
14005 }
14006
14007 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14008 }
14009
14010 /* Return true if the given ELF header flags describe a 32-bit binary. */
14011
14012 static bfd_boolean
14013 mips_32bit_flags_p (flagword flags)
14014 {
14015 return ((flags & EF_MIPS_32BITMODE) != 0
14016 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14017 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14018 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14019 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14020 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14021 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14022 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14023 }
14024
14025 /* Infer the content of the ABI flags based on the elf header. */
14026
14027 static void
14028 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14029 {
14030 obj_attribute *in_attr;
14031
14032 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14033 update_mips_abiflags_isa (abfd, abiflags);
14034
14035 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14036 abiflags->gpr_size = AFL_REG_32;
14037 else
14038 abiflags->gpr_size = AFL_REG_64;
14039
14040 abiflags->cpr1_size = AFL_REG_NONE;
14041
14042 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14043 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14044
14045 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14046 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14047 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14048 && abiflags->gpr_size == AFL_REG_32))
14049 abiflags->cpr1_size = AFL_REG_32;
14050 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14051 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14052 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14053 abiflags->cpr1_size = AFL_REG_64;
14054
14055 abiflags->cpr2_size = AFL_REG_NONE;
14056
14057 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14058 abiflags->ases |= AFL_ASE_MDMX;
14059 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14060 abiflags->ases |= AFL_ASE_MIPS16;
14061 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14062 abiflags->ases |= AFL_ASE_MICROMIPS;
14063
14064 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14065 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14066 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14067 && abiflags->isa_level >= 32
14068 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14069 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14070 }
14071
14072 /* We need to use a special link routine to handle the .reginfo and
14073 the .mdebug sections. We need to merge all instances of these
14074 sections together, not write them all out sequentially. */
14075
14076 bfd_boolean
14077 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14078 {
14079 asection *o;
14080 struct bfd_link_order *p;
14081 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14082 asection *rtproc_sec, *abiflags_sec;
14083 Elf32_RegInfo reginfo;
14084 struct ecoff_debug_info debug;
14085 struct mips_htab_traverse_info hti;
14086 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14087 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14088 HDRR *symhdr = &debug.symbolic_header;
14089 void *mdebug_handle = NULL;
14090 asection *s;
14091 EXTR esym;
14092 unsigned int i;
14093 bfd_size_type amt;
14094 struct mips_elf_link_hash_table *htab;
14095
14096 static const char * const secname[] =
14097 {
14098 ".text", ".init", ".fini", ".data",
14099 ".rodata", ".sdata", ".sbss", ".bss"
14100 };
14101 static const int sc[] =
14102 {
14103 scText, scInit, scFini, scData,
14104 scRData, scSData, scSBss, scBss
14105 };
14106
14107 /* Sort the dynamic symbols so that those with GOT entries come after
14108 those without. */
14109 htab = mips_elf_hash_table (info);
14110 BFD_ASSERT (htab != NULL);
14111
14112 if (!mips_elf_sort_hash_table (abfd, info))
14113 return FALSE;
14114
14115 /* Create any scheduled LA25 stubs. */
14116 hti.info = info;
14117 hti.output_bfd = abfd;
14118 hti.error = FALSE;
14119 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14120 if (hti.error)
14121 return FALSE;
14122
14123 /* Get a value for the GP register. */
14124 if (elf_gp (abfd) == 0)
14125 {
14126 struct bfd_link_hash_entry *h;
14127
14128 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14129 if (h != NULL && h->type == bfd_link_hash_defined)
14130 elf_gp (abfd) = (h->u.def.value
14131 + h->u.def.section->output_section->vma
14132 + h->u.def.section->output_offset);
14133 else if (htab->is_vxworks
14134 && (h = bfd_link_hash_lookup (info->hash,
14135 "_GLOBAL_OFFSET_TABLE_",
14136 FALSE, FALSE, TRUE))
14137 && h->type == bfd_link_hash_defined)
14138 elf_gp (abfd) = (h->u.def.section->output_section->vma
14139 + h->u.def.section->output_offset
14140 + h->u.def.value);
14141 else if (info->relocatable)
14142 {
14143 bfd_vma lo = MINUS_ONE;
14144
14145 /* Find the GP-relative section with the lowest offset. */
14146 for (o = abfd->sections; o != NULL; o = o->next)
14147 if (o->vma < lo
14148 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14149 lo = o->vma;
14150
14151 /* And calculate GP relative to that. */
14152 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14153 }
14154 else
14155 {
14156 /* If the relocate_section function needs to do a reloc
14157 involving the GP value, it should make a reloc_dangerous
14158 callback to warn that GP is not defined. */
14159 }
14160 }
14161
14162 /* Go through the sections and collect the .reginfo and .mdebug
14163 information. */
14164 abiflags_sec = NULL;
14165 reginfo_sec = NULL;
14166 mdebug_sec = NULL;
14167 gptab_data_sec = NULL;
14168 gptab_bss_sec = NULL;
14169 for (o = abfd->sections; o != NULL; o = o->next)
14170 {
14171 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14172 {
14173 /* We have found the .MIPS.abiflags section in the output file.
14174 Look through all the link_orders comprising it and remove them.
14175 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14176 for (p = o->map_head.link_order; p != NULL; p = p->next)
14177 {
14178 asection *input_section;
14179
14180 if (p->type != bfd_indirect_link_order)
14181 {
14182 if (p->type == bfd_data_link_order)
14183 continue;
14184 abort ();
14185 }
14186
14187 input_section = p->u.indirect.section;
14188
14189 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14190 elf_link_input_bfd ignores this section. */
14191 input_section->flags &= ~SEC_HAS_CONTENTS;
14192 }
14193
14194 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14195 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14196
14197 /* Skip this section later on (I don't think this currently
14198 matters, but someday it might). */
14199 o->map_head.link_order = NULL;
14200
14201 abiflags_sec = o;
14202 }
14203
14204 if (strcmp (o->name, ".reginfo") == 0)
14205 {
14206 memset (&reginfo, 0, sizeof reginfo);
14207
14208 /* We have found the .reginfo section in the output file.
14209 Look through all the link_orders comprising it and merge
14210 the information together. */
14211 for (p = o->map_head.link_order; p != NULL; p = p->next)
14212 {
14213 asection *input_section;
14214 bfd *input_bfd;
14215 Elf32_External_RegInfo ext;
14216 Elf32_RegInfo sub;
14217
14218 if (p->type != bfd_indirect_link_order)
14219 {
14220 if (p->type == bfd_data_link_order)
14221 continue;
14222 abort ();
14223 }
14224
14225 input_section = p->u.indirect.section;
14226 input_bfd = input_section->owner;
14227
14228 if (! bfd_get_section_contents (input_bfd, input_section,
14229 &ext, 0, sizeof ext))
14230 return FALSE;
14231
14232 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14233
14234 reginfo.ri_gprmask |= sub.ri_gprmask;
14235 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14236 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14237 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14238 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14239
14240 /* ri_gp_value is set by the function
14241 mips_elf32_section_processing when the section is
14242 finally written out. */
14243
14244 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14245 elf_link_input_bfd ignores this section. */
14246 input_section->flags &= ~SEC_HAS_CONTENTS;
14247 }
14248
14249 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14250 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14251
14252 /* Skip this section later on (I don't think this currently
14253 matters, but someday it might). */
14254 o->map_head.link_order = NULL;
14255
14256 reginfo_sec = o;
14257 }
14258
14259 if (strcmp (o->name, ".mdebug") == 0)
14260 {
14261 struct extsym_info einfo;
14262 bfd_vma last;
14263
14264 /* We have found the .mdebug section in the output file.
14265 Look through all the link_orders comprising it and merge
14266 the information together. */
14267 symhdr->magic = swap->sym_magic;
14268 /* FIXME: What should the version stamp be? */
14269 symhdr->vstamp = 0;
14270 symhdr->ilineMax = 0;
14271 symhdr->cbLine = 0;
14272 symhdr->idnMax = 0;
14273 symhdr->ipdMax = 0;
14274 symhdr->isymMax = 0;
14275 symhdr->ioptMax = 0;
14276 symhdr->iauxMax = 0;
14277 symhdr->issMax = 0;
14278 symhdr->issExtMax = 0;
14279 symhdr->ifdMax = 0;
14280 symhdr->crfd = 0;
14281 symhdr->iextMax = 0;
14282
14283 /* We accumulate the debugging information itself in the
14284 debug_info structure. */
14285 debug.line = NULL;
14286 debug.external_dnr = NULL;
14287 debug.external_pdr = NULL;
14288 debug.external_sym = NULL;
14289 debug.external_opt = NULL;
14290 debug.external_aux = NULL;
14291 debug.ss = NULL;
14292 debug.ssext = debug.ssext_end = NULL;
14293 debug.external_fdr = NULL;
14294 debug.external_rfd = NULL;
14295 debug.external_ext = debug.external_ext_end = NULL;
14296
14297 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14298 if (mdebug_handle == NULL)
14299 return FALSE;
14300
14301 esym.jmptbl = 0;
14302 esym.cobol_main = 0;
14303 esym.weakext = 0;
14304 esym.reserved = 0;
14305 esym.ifd = ifdNil;
14306 esym.asym.iss = issNil;
14307 esym.asym.st = stLocal;
14308 esym.asym.reserved = 0;
14309 esym.asym.index = indexNil;
14310 last = 0;
14311 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14312 {
14313 esym.asym.sc = sc[i];
14314 s = bfd_get_section_by_name (abfd, secname[i]);
14315 if (s != NULL)
14316 {
14317 esym.asym.value = s->vma;
14318 last = s->vma + s->size;
14319 }
14320 else
14321 esym.asym.value = last;
14322 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14323 secname[i], &esym))
14324 return FALSE;
14325 }
14326
14327 for (p = o->map_head.link_order; p != NULL; p = p->next)
14328 {
14329 asection *input_section;
14330 bfd *input_bfd;
14331 const struct ecoff_debug_swap *input_swap;
14332 struct ecoff_debug_info input_debug;
14333 char *eraw_src;
14334 char *eraw_end;
14335
14336 if (p->type != bfd_indirect_link_order)
14337 {
14338 if (p->type == bfd_data_link_order)
14339 continue;
14340 abort ();
14341 }
14342
14343 input_section = p->u.indirect.section;
14344 input_bfd = input_section->owner;
14345
14346 if (!is_mips_elf (input_bfd))
14347 {
14348 /* I don't know what a non MIPS ELF bfd would be
14349 doing with a .mdebug section, but I don't really
14350 want to deal with it. */
14351 continue;
14352 }
14353
14354 input_swap = (get_elf_backend_data (input_bfd)
14355 ->elf_backend_ecoff_debug_swap);
14356
14357 BFD_ASSERT (p->size == input_section->size);
14358
14359 /* The ECOFF linking code expects that we have already
14360 read in the debugging information and set up an
14361 ecoff_debug_info structure, so we do that now. */
14362 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14363 &input_debug))
14364 return FALSE;
14365
14366 if (! (bfd_ecoff_debug_accumulate
14367 (mdebug_handle, abfd, &debug, swap, input_bfd,
14368 &input_debug, input_swap, info)))
14369 return FALSE;
14370
14371 /* Loop through the external symbols. For each one with
14372 interesting information, try to find the symbol in
14373 the linker global hash table and save the information
14374 for the output external symbols. */
14375 eraw_src = input_debug.external_ext;
14376 eraw_end = (eraw_src
14377 + (input_debug.symbolic_header.iextMax
14378 * input_swap->external_ext_size));
14379 for (;
14380 eraw_src < eraw_end;
14381 eraw_src += input_swap->external_ext_size)
14382 {
14383 EXTR ext;
14384 const char *name;
14385 struct mips_elf_link_hash_entry *h;
14386
14387 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14388 if (ext.asym.sc == scNil
14389 || ext.asym.sc == scUndefined
14390 || ext.asym.sc == scSUndefined)
14391 continue;
14392
14393 name = input_debug.ssext + ext.asym.iss;
14394 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14395 name, FALSE, FALSE, TRUE);
14396 if (h == NULL || h->esym.ifd != -2)
14397 continue;
14398
14399 if (ext.ifd != -1)
14400 {
14401 BFD_ASSERT (ext.ifd
14402 < input_debug.symbolic_header.ifdMax);
14403 ext.ifd = input_debug.ifdmap[ext.ifd];
14404 }
14405
14406 h->esym = ext;
14407 }
14408
14409 /* Free up the information we just read. */
14410 free (input_debug.line);
14411 free (input_debug.external_dnr);
14412 free (input_debug.external_pdr);
14413 free (input_debug.external_sym);
14414 free (input_debug.external_opt);
14415 free (input_debug.external_aux);
14416 free (input_debug.ss);
14417 free (input_debug.ssext);
14418 free (input_debug.external_fdr);
14419 free (input_debug.external_rfd);
14420 free (input_debug.external_ext);
14421
14422 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14423 elf_link_input_bfd ignores this section. */
14424 input_section->flags &= ~SEC_HAS_CONTENTS;
14425 }
14426
14427 if (SGI_COMPAT (abfd) && info->shared)
14428 {
14429 /* Create .rtproc section. */
14430 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14431 if (rtproc_sec == NULL)
14432 {
14433 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14434 | SEC_LINKER_CREATED | SEC_READONLY);
14435
14436 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14437 ".rtproc",
14438 flags);
14439 if (rtproc_sec == NULL
14440 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14441 return FALSE;
14442 }
14443
14444 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14445 info, rtproc_sec,
14446 &debug))
14447 return FALSE;
14448 }
14449
14450 /* Build the external symbol information. */
14451 einfo.abfd = abfd;
14452 einfo.info = info;
14453 einfo.debug = &debug;
14454 einfo.swap = swap;
14455 einfo.failed = FALSE;
14456 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14457 mips_elf_output_extsym, &einfo);
14458 if (einfo.failed)
14459 return FALSE;
14460
14461 /* Set the size of the .mdebug section. */
14462 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14463
14464 /* Skip this section later on (I don't think this currently
14465 matters, but someday it might). */
14466 o->map_head.link_order = NULL;
14467
14468 mdebug_sec = o;
14469 }
14470
14471 if (CONST_STRNEQ (o->name, ".gptab."))
14472 {
14473 const char *subname;
14474 unsigned int c;
14475 Elf32_gptab *tab;
14476 Elf32_External_gptab *ext_tab;
14477 unsigned int j;
14478
14479 /* The .gptab.sdata and .gptab.sbss sections hold
14480 information describing how the small data area would
14481 change depending upon the -G switch. These sections
14482 not used in executables files. */
14483 if (! info->relocatable)
14484 {
14485 for (p = o->map_head.link_order; p != NULL; p = p->next)
14486 {
14487 asection *input_section;
14488
14489 if (p->type != bfd_indirect_link_order)
14490 {
14491 if (p->type == bfd_data_link_order)
14492 continue;
14493 abort ();
14494 }
14495
14496 input_section = p->u.indirect.section;
14497
14498 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14499 elf_link_input_bfd ignores this section. */
14500 input_section->flags &= ~SEC_HAS_CONTENTS;
14501 }
14502
14503 /* Skip this section later on (I don't think this
14504 currently matters, but someday it might). */
14505 o->map_head.link_order = NULL;
14506
14507 /* Really remove the section. */
14508 bfd_section_list_remove (abfd, o);
14509 --abfd->section_count;
14510
14511 continue;
14512 }
14513
14514 /* There is one gptab for initialized data, and one for
14515 uninitialized data. */
14516 if (strcmp (o->name, ".gptab.sdata") == 0)
14517 gptab_data_sec = o;
14518 else if (strcmp (o->name, ".gptab.sbss") == 0)
14519 gptab_bss_sec = o;
14520 else
14521 {
14522 (*_bfd_error_handler)
14523 (_("%s: illegal section name `%s'"),
14524 bfd_get_filename (abfd), o->name);
14525 bfd_set_error (bfd_error_nonrepresentable_section);
14526 return FALSE;
14527 }
14528
14529 /* The linker script always combines .gptab.data and
14530 .gptab.sdata into .gptab.sdata, and likewise for
14531 .gptab.bss and .gptab.sbss. It is possible that there is
14532 no .sdata or .sbss section in the output file, in which
14533 case we must change the name of the output section. */
14534 subname = o->name + sizeof ".gptab" - 1;
14535 if (bfd_get_section_by_name (abfd, subname) == NULL)
14536 {
14537 if (o == gptab_data_sec)
14538 o->name = ".gptab.data";
14539 else
14540 o->name = ".gptab.bss";
14541 subname = o->name + sizeof ".gptab" - 1;
14542 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14543 }
14544
14545 /* Set up the first entry. */
14546 c = 1;
14547 amt = c * sizeof (Elf32_gptab);
14548 tab = bfd_malloc (amt);
14549 if (tab == NULL)
14550 return FALSE;
14551 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14552 tab[0].gt_header.gt_unused = 0;
14553
14554 /* Combine the input sections. */
14555 for (p = o->map_head.link_order; p != NULL; p = p->next)
14556 {
14557 asection *input_section;
14558 bfd *input_bfd;
14559 bfd_size_type size;
14560 unsigned long last;
14561 bfd_size_type gpentry;
14562
14563 if (p->type != bfd_indirect_link_order)
14564 {
14565 if (p->type == bfd_data_link_order)
14566 continue;
14567 abort ();
14568 }
14569
14570 input_section = p->u.indirect.section;
14571 input_bfd = input_section->owner;
14572
14573 /* Combine the gptab entries for this input section one
14574 by one. We know that the input gptab entries are
14575 sorted by ascending -G value. */
14576 size = input_section->size;
14577 last = 0;
14578 for (gpentry = sizeof (Elf32_External_gptab);
14579 gpentry < size;
14580 gpentry += sizeof (Elf32_External_gptab))
14581 {
14582 Elf32_External_gptab ext_gptab;
14583 Elf32_gptab int_gptab;
14584 unsigned long val;
14585 unsigned long add;
14586 bfd_boolean exact;
14587 unsigned int look;
14588
14589 if (! (bfd_get_section_contents
14590 (input_bfd, input_section, &ext_gptab, gpentry,
14591 sizeof (Elf32_External_gptab))))
14592 {
14593 free (tab);
14594 return FALSE;
14595 }
14596
14597 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14598 &int_gptab);
14599 val = int_gptab.gt_entry.gt_g_value;
14600 add = int_gptab.gt_entry.gt_bytes - last;
14601
14602 exact = FALSE;
14603 for (look = 1; look < c; look++)
14604 {
14605 if (tab[look].gt_entry.gt_g_value >= val)
14606 tab[look].gt_entry.gt_bytes += add;
14607
14608 if (tab[look].gt_entry.gt_g_value == val)
14609 exact = TRUE;
14610 }
14611
14612 if (! exact)
14613 {
14614 Elf32_gptab *new_tab;
14615 unsigned int max;
14616
14617 /* We need a new table entry. */
14618 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14619 new_tab = bfd_realloc (tab, amt);
14620 if (new_tab == NULL)
14621 {
14622 free (tab);
14623 return FALSE;
14624 }
14625 tab = new_tab;
14626 tab[c].gt_entry.gt_g_value = val;
14627 tab[c].gt_entry.gt_bytes = add;
14628
14629 /* Merge in the size for the next smallest -G
14630 value, since that will be implied by this new
14631 value. */
14632 max = 0;
14633 for (look = 1; look < c; look++)
14634 {
14635 if (tab[look].gt_entry.gt_g_value < val
14636 && (max == 0
14637 || (tab[look].gt_entry.gt_g_value
14638 > tab[max].gt_entry.gt_g_value)))
14639 max = look;
14640 }
14641 if (max != 0)
14642 tab[c].gt_entry.gt_bytes +=
14643 tab[max].gt_entry.gt_bytes;
14644
14645 ++c;
14646 }
14647
14648 last = int_gptab.gt_entry.gt_bytes;
14649 }
14650
14651 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14652 elf_link_input_bfd ignores this section. */
14653 input_section->flags &= ~SEC_HAS_CONTENTS;
14654 }
14655
14656 /* The table must be sorted by -G value. */
14657 if (c > 2)
14658 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14659
14660 /* Swap out the table. */
14661 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14662 ext_tab = bfd_alloc (abfd, amt);
14663 if (ext_tab == NULL)
14664 {
14665 free (tab);
14666 return FALSE;
14667 }
14668
14669 for (j = 0; j < c; j++)
14670 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14671 free (tab);
14672
14673 o->size = c * sizeof (Elf32_External_gptab);
14674 o->contents = (bfd_byte *) ext_tab;
14675
14676 /* Skip this section later on (I don't think this currently
14677 matters, but someday it might). */
14678 o->map_head.link_order = NULL;
14679 }
14680 }
14681
14682 /* Invoke the regular ELF backend linker to do all the work. */
14683 if (!bfd_elf_final_link (abfd, info))
14684 return FALSE;
14685
14686 /* Now write out the computed sections. */
14687
14688 if (abiflags_sec != NULL)
14689 {
14690 Elf_External_ABIFlags_v0 ext;
14691 Elf_Internal_ABIFlags_v0 *abiflags;
14692
14693 abiflags = &mips_elf_tdata (abfd)->abiflags;
14694
14695 /* Set up the abiflags if no valid input sections were found. */
14696 if (!mips_elf_tdata (abfd)->abiflags_valid)
14697 {
14698 infer_mips_abiflags (abfd, abiflags);
14699 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14700 }
14701 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14702 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14703 return FALSE;
14704 }
14705
14706 if (reginfo_sec != NULL)
14707 {
14708 Elf32_External_RegInfo ext;
14709
14710 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14711 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14712 return FALSE;
14713 }
14714
14715 if (mdebug_sec != NULL)
14716 {
14717 BFD_ASSERT (abfd->output_has_begun);
14718 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14719 swap, info,
14720 mdebug_sec->filepos))
14721 return FALSE;
14722
14723 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14724 }
14725
14726 if (gptab_data_sec != NULL)
14727 {
14728 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14729 gptab_data_sec->contents,
14730 0, gptab_data_sec->size))
14731 return FALSE;
14732 }
14733
14734 if (gptab_bss_sec != NULL)
14735 {
14736 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14737 gptab_bss_sec->contents,
14738 0, gptab_bss_sec->size))
14739 return FALSE;
14740 }
14741
14742 if (SGI_COMPAT (abfd))
14743 {
14744 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14745 if (rtproc_sec != NULL)
14746 {
14747 if (! bfd_set_section_contents (abfd, rtproc_sec,
14748 rtproc_sec->contents,
14749 0, rtproc_sec->size))
14750 return FALSE;
14751 }
14752 }
14753
14754 return TRUE;
14755 }
14756 \f
14757 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14758
14759 struct mips_mach_extension
14760 {
14761 unsigned long extension, base;
14762 };
14763
14764
14765 /* An array describing how BFD machines relate to one another. The entries
14766 are ordered topologically with MIPS I extensions listed last. */
14767
14768 static const struct mips_mach_extension mips_mach_extensions[] =
14769 {
14770 /* MIPS64r2 extensions. */
14771 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14772 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14773 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14774 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14775 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14776
14777 /* MIPS64 extensions. */
14778 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14779 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14780 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14781
14782 /* MIPS V extensions. */
14783 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14784
14785 /* R10000 extensions. */
14786 { bfd_mach_mips12000, bfd_mach_mips10000 },
14787 { bfd_mach_mips14000, bfd_mach_mips10000 },
14788 { bfd_mach_mips16000, bfd_mach_mips10000 },
14789
14790 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14791 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14792 better to allow vr5400 and vr5500 code to be merged anyway, since
14793 many libraries will just use the core ISA. Perhaps we could add
14794 some sort of ASE flag if this ever proves a problem. */
14795 { bfd_mach_mips5500, bfd_mach_mips5400 },
14796 { bfd_mach_mips5400, bfd_mach_mips5000 },
14797
14798 /* MIPS IV extensions. */
14799 { bfd_mach_mips5, bfd_mach_mips8000 },
14800 { bfd_mach_mips10000, bfd_mach_mips8000 },
14801 { bfd_mach_mips5000, bfd_mach_mips8000 },
14802 { bfd_mach_mips7000, bfd_mach_mips8000 },
14803 { bfd_mach_mips9000, bfd_mach_mips8000 },
14804
14805 /* VR4100 extensions. */
14806 { bfd_mach_mips4120, bfd_mach_mips4100 },
14807 { bfd_mach_mips4111, bfd_mach_mips4100 },
14808
14809 /* MIPS III extensions. */
14810 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14811 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14812 { bfd_mach_mips8000, bfd_mach_mips4000 },
14813 { bfd_mach_mips4650, bfd_mach_mips4000 },
14814 { bfd_mach_mips4600, bfd_mach_mips4000 },
14815 { bfd_mach_mips4400, bfd_mach_mips4000 },
14816 { bfd_mach_mips4300, bfd_mach_mips4000 },
14817 { bfd_mach_mips4100, bfd_mach_mips4000 },
14818 { bfd_mach_mips4010, bfd_mach_mips4000 },
14819 { bfd_mach_mips5900, bfd_mach_mips4000 },
14820
14821 /* MIPS32 extensions. */
14822 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14823
14824 /* MIPS II extensions. */
14825 { bfd_mach_mips4000, bfd_mach_mips6000 },
14826 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14827
14828 /* MIPS I extensions. */
14829 { bfd_mach_mips6000, bfd_mach_mips3000 },
14830 { bfd_mach_mips3900, bfd_mach_mips3000 }
14831 };
14832
14833
14834 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14835
14836 static bfd_boolean
14837 mips_mach_extends_p (unsigned long base, unsigned long extension)
14838 {
14839 size_t i;
14840
14841 if (extension == base)
14842 return TRUE;
14843
14844 if (base == bfd_mach_mipsisa32
14845 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14846 return TRUE;
14847
14848 if (base == bfd_mach_mipsisa32r2
14849 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14850 return TRUE;
14851
14852 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14853 if (extension == mips_mach_extensions[i].extension)
14854 {
14855 extension = mips_mach_extensions[i].base;
14856 if (extension == base)
14857 return TRUE;
14858 }
14859
14860 return FALSE;
14861 }
14862
14863
14864 /* Merge object attributes from IBFD into OBFD. Raise an error if
14865 there are conflicting attributes. */
14866 static bfd_boolean
14867 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
14868 {
14869 obj_attribute *in_attr;
14870 obj_attribute *out_attr;
14871 bfd *abi_fp_bfd;
14872 bfd *abi_msa_bfd;
14873
14874 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
14875 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
14876 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
14877 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14878
14879 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
14880 if (!abi_msa_bfd
14881 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14882 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
14883
14884 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14885 {
14886 /* This is the first object. Copy the attributes. */
14887 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14888
14889 /* Use the Tag_null value to indicate the attributes have been
14890 initialized. */
14891 elf_known_obj_attributes_proc (obfd)[0].i = 1;
14892
14893 return TRUE;
14894 }
14895
14896 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
14897 non-conflicting ones. */
14898 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14899 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
14900 {
14901 int out_fp, in_fp;
14902
14903 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
14904 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14905 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
14906 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
14907 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
14908 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
14909 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14910 || in_fp == Val_GNU_MIPS_ABI_FP_64
14911 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
14912 {
14913 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14914 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14915 }
14916 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
14917 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14918 || out_fp == Val_GNU_MIPS_ABI_FP_64
14919 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
14920 /* Keep the current setting. */;
14921 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
14922 && in_fp == Val_GNU_MIPS_ABI_FP_64)
14923 {
14924 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14925 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14926 }
14927 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
14928 && out_fp == Val_GNU_MIPS_ABI_FP_64)
14929 /* Keep the current setting. */;
14930 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
14931 {
14932 const char *out_string, *in_string;
14933
14934 out_string = _bfd_mips_fp_abi_string (out_fp);
14935 in_string = _bfd_mips_fp_abi_string (in_fp);
14936 /* First warn about cases involving unrecognised ABIs. */
14937 if (!out_string && !in_string)
14938 _bfd_error_handler
14939 (_("Warning: %B uses unknown floating point ABI %d "
14940 "(set by %B), %B uses unknown floating point ABI %d"),
14941 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
14942 else if (!out_string)
14943 _bfd_error_handler
14944 (_("Warning: %B uses unknown floating point ABI %d "
14945 "(set by %B), %B uses %s"),
14946 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
14947 else if (!in_string)
14948 _bfd_error_handler
14949 (_("Warning: %B uses %s (set by %B), "
14950 "%B uses unknown floating point ABI %d"),
14951 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
14952 else
14953 {
14954 /* If one of the bfds is soft-float, the other must be
14955 hard-float. The exact choice of hard-float ABI isn't
14956 really relevant to the error message. */
14957 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14958 out_string = "-mhard-float";
14959 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14960 in_string = "-mhard-float";
14961 _bfd_error_handler
14962 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14963 obfd, abi_fp_bfd, ibfd, out_string, in_string);
14964 }
14965 }
14966 }
14967
14968 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
14969 non-conflicting ones. */
14970 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14971 {
14972 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
14973 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
14974 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
14975 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14976 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14977 {
14978 case Val_GNU_MIPS_ABI_MSA_128:
14979 _bfd_error_handler
14980 (_("Warning: %B uses %s (set by %B), "
14981 "%B uses unknown MSA ABI %d"),
14982 obfd, abi_msa_bfd, ibfd,
14983 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14984 break;
14985
14986 default:
14987 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
14988 {
14989 case Val_GNU_MIPS_ABI_MSA_128:
14990 _bfd_error_handler
14991 (_("Warning: %B uses unknown MSA ABI %d "
14992 "(set by %B), %B uses %s"),
14993 obfd, abi_msa_bfd, ibfd,
14994 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
14995 break;
14996
14997 default:
14998 _bfd_error_handler
14999 (_("Warning: %B uses unknown MSA ABI %d "
15000 "(set by %B), %B uses unknown MSA ABI %d"),
15001 obfd, abi_msa_bfd, ibfd,
15002 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15003 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15004 break;
15005 }
15006 }
15007 }
15008
15009 /* Merge Tag_compatibility attributes and any common GNU ones. */
15010 _bfd_elf_merge_object_attributes (ibfd, obfd);
15011
15012 return TRUE;
15013 }
15014
15015 /* Merge backend specific data from an object file to the output
15016 object file when linking. */
15017
15018 bfd_boolean
15019 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15020 {
15021 flagword old_flags;
15022 flagword new_flags;
15023 bfd_boolean ok;
15024 bfd_boolean null_input_bfd = TRUE;
15025 asection *sec;
15026 obj_attribute *out_attr;
15027
15028 /* Check if we have the same endianness. */
15029 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15030 {
15031 (*_bfd_error_handler)
15032 (_("%B: endianness incompatible with that of the selected emulation"),
15033 ibfd);
15034 return FALSE;
15035 }
15036
15037 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15038 return TRUE;
15039
15040 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15041 {
15042 (*_bfd_error_handler)
15043 (_("%B: ABI is incompatible with that of the selected emulation"),
15044 ibfd);
15045 return FALSE;
15046 }
15047
15048 /* Set up the FP ABI attribute from the abiflags if it is not already
15049 set. */
15050 if (mips_elf_tdata (ibfd)->abiflags_valid)
15051 {
15052 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15053 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15054 in_attr[Tag_GNU_MIPS_ABI_FP].i =
15055 mips_elf_tdata (ibfd)->abiflags.fp_abi;
15056 }
15057
15058 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
15059 return FALSE;
15060
15061 /* Check to see if the input BFD actually contains any sections.
15062 If not, its flags may not have been initialised either, but it cannot
15063 actually cause any incompatibility. */
15064 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15065 {
15066 /* Ignore synthetic sections and empty .text, .data and .bss sections
15067 which are automatically generated by gas. Also ignore fake
15068 (s)common sections, since merely defining a common symbol does
15069 not affect compatibility. */
15070 if ((sec->flags & SEC_IS_COMMON) == 0
15071 && strcmp (sec->name, ".reginfo")
15072 && strcmp (sec->name, ".mdebug")
15073 && (sec->size != 0
15074 || (strcmp (sec->name, ".text")
15075 && strcmp (sec->name, ".data")
15076 && strcmp (sec->name, ".bss"))))
15077 {
15078 null_input_bfd = FALSE;
15079 break;
15080 }
15081 }
15082 if (null_input_bfd)
15083 return TRUE;
15084
15085 /* Populate abiflags using existing information. */
15086 if (!mips_elf_tdata (ibfd)->abiflags_valid)
15087 {
15088 infer_mips_abiflags (ibfd, &mips_elf_tdata (ibfd)->abiflags);
15089 mips_elf_tdata (ibfd)->abiflags_valid = TRUE;
15090 }
15091 else
15092 {
15093 Elf_Internal_ABIFlags_v0 abiflags;
15094 Elf_Internal_ABIFlags_v0 in_abiflags;
15095 infer_mips_abiflags (ibfd, &abiflags);
15096 in_abiflags = mips_elf_tdata (ibfd)->abiflags;
15097
15098 /* It is not possible to infer the correct ISA revision
15099 for R3 or R5 so drop down to R2 for the checks. */
15100 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15101 in_abiflags.isa_rev = 2;
15102
15103 if (in_abiflags.isa_level != abiflags.isa_level
15104 || in_abiflags.isa_rev != abiflags.isa_rev
15105 || in_abiflags.isa_ext != abiflags.isa_ext)
15106 (*_bfd_error_handler)
15107 (_("%B: warning: Inconsistent ISA between e_flags and "
15108 ".MIPS.abiflags"), ibfd);
15109 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15110 && in_abiflags.fp_abi != abiflags.fp_abi)
15111 (*_bfd_error_handler)
15112 (_("%B: warning: Inconsistent FP ABI between e_flags and "
15113 ".MIPS.abiflags"), ibfd);
15114 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15115 (*_bfd_error_handler)
15116 (_("%B: warning: Inconsistent ASEs between e_flags and "
15117 ".MIPS.abiflags"), ibfd);
15118 if (in_abiflags.isa_ext != abiflags.isa_ext)
15119 (*_bfd_error_handler)
15120 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15121 ".MIPS.abiflags"), ibfd);
15122 if (in_abiflags.flags2 != 0)
15123 (*_bfd_error_handler)
15124 (_("%B: warning: Unexpected flag in the flags2 field of "
15125 ".MIPS.abiflags (0x%lx)"), ibfd,
15126 (unsigned long) in_abiflags.flags2);
15127 }
15128
15129 if (!mips_elf_tdata (obfd)->abiflags_valid)
15130 {
15131 /* Copy input abiflags if output abiflags are not already valid. */
15132 mips_elf_tdata (obfd)->abiflags = mips_elf_tdata (ibfd)->abiflags;
15133 mips_elf_tdata (obfd)->abiflags_valid = TRUE;
15134 }
15135
15136 if (! elf_flags_init (obfd))
15137 {
15138 elf_flags_init (obfd) = TRUE;
15139 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15140 elf_elfheader (obfd)->e_ident[EI_CLASS]
15141 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15142
15143 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15144 && (bfd_get_arch_info (obfd)->the_default
15145 || mips_mach_extends_p (bfd_get_mach (obfd),
15146 bfd_get_mach (ibfd))))
15147 {
15148 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15149 bfd_get_mach (ibfd)))
15150 return FALSE;
15151
15152 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15153 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15154 }
15155
15156 return TRUE;
15157 }
15158
15159 /* Update the output abiflags fp_abi using the computed fp_abi. */
15160 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15161 mips_elf_tdata (obfd)->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15162
15163 #define max(a,b) ((a) > (b) ? (a) : (b))
15164 /* Merge abiflags. */
15165 mips_elf_tdata (obfd)->abiflags.isa_rev
15166 = max (mips_elf_tdata (obfd)->abiflags.isa_rev,
15167 mips_elf_tdata (ibfd)->abiflags.isa_rev);
15168 mips_elf_tdata (obfd)->abiflags.gpr_size
15169 = max (mips_elf_tdata (obfd)->abiflags.gpr_size,
15170 mips_elf_tdata (ibfd)->abiflags.gpr_size);
15171 mips_elf_tdata (obfd)->abiflags.cpr1_size
15172 = max (mips_elf_tdata (obfd)->abiflags.cpr1_size,
15173 mips_elf_tdata (ibfd)->abiflags.cpr1_size);
15174 mips_elf_tdata (obfd)->abiflags.cpr2_size
15175 = max (mips_elf_tdata (obfd)->abiflags.cpr2_size,
15176 mips_elf_tdata (ibfd)->abiflags.cpr2_size);
15177 #undef max
15178 mips_elf_tdata (obfd)->abiflags.ases
15179 |= mips_elf_tdata (ibfd)->abiflags.ases;
15180 mips_elf_tdata (obfd)->abiflags.flags1
15181 |= mips_elf_tdata (ibfd)->abiflags.flags1;
15182
15183 new_flags = elf_elfheader (ibfd)->e_flags;
15184 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15185 old_flags = elf_elfheader (obfd)->e_flags;
15186
15187 /* Check flag compatibility. */
15188
15189 new_flags &= ~EF_MIPS_NOREORDER;
15190 old_flags &= ~EF_MIPS_NOREORDER;
15191
15192 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15193 doesn't seem to matter. */
15194 new_flags &= ~EF_MIPS_XGOT;
15195 old_flags &= ~EF_MIPS_XGOT;
15196
15197 /* MIPSpro generates ucode info in n64 objects. Again, we should
15198 just be able to ignore this. */
15199 new_flags &= ~EF_MIPS_UCODE;
15200 old_flags &= ~EF_MIPS_UCODE;
15201
15202 /* DSOs should only be linked with CPIC code. */
15203 if ((ibfd->flags & DYNAMIC) != 0)
15204 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15205
15206 if (new_flags == old_flags)
15207 return TRUE;
15208
15209 ok = TRUE;
15210
15211 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15212 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15213 {
15214 (*_bfd_error_handler)
15215 (_("%B: warning: linking abicalls files with non-abicalls files"),
15216 ibfd);
15217 ok = TRUE;
15218 }
15219
15220 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15221 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15222 if (! (new_flags & EF_MIPS_PIC))
15223 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15224
15225 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15226 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15227
15228 /* Compare the ISAs. */
15229 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15230 {
15231 (*_bfd_error_handler)
15232 (_("%B: linking 32-bit code with 64-bit code"),
15233 ibfd);
15234 ok = FALSE;
15235 }
15236 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15237 {
15238 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15239 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15240 {
15241 /* Copy the architecture info from IBFD to OBFD. Also copy
15242 the 32-bit flag (if set) so that we continue to recognise
15243 OBFD as a 32-bit binary. */
15244 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15245 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15246 elf_elfheader (obfd)->e_flags
15247 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15248
15249 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15250 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15251
15252 /* Copy across the ABI flags if OBFD doesn't use them
15253 and if that was what caused us to treat IBFD as 32-bit. */
15254 if ((old_flags & EF_MIPS_ABI) == 0
15255 && mips_32bit_flags_p (new_flags)
15256 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15257 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15258 }
15259 else
15260 {
15261 /* The ISAs aren't compatible. */
15262 (*_bfd_error_handler)
15263 (_("%B: linking %s module with previous %s modules"),
15264 ibfd,
15265 bfd_printable_name (ibfd),
15266 bfd_printable_name (obfd));
15267 ok = FALSE;
15268 }
15269 }
15270
15271 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15272 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15273
15274 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15275 does set EI_CLASS differently from any 32-bit ABI. */
15276 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15277 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15278 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15279 {
15280 /* Only error if both are set (to different values). */
15281 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15282 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15283 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15284 {
15285 (*_bfd_error_handler)
15286 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15287 ibfd,
15288 elf_mips_abi_name (ibfd),
15289 elf_mips_abi_name (obfd));
15290 ok = FALSE;
15291 }
15292 new_flags &= ~EF_MIPS_ABI;
15293 old_flags &= ~EF_MIPS_ABI;
15294 }
15295
15296 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15297 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15298 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15299 {
15300 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15301 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15302 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15303 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15304 int micro_mis = old_m16 && new_micro;
15305 int m16_mis = old_micro && new_m16;
15306
15307 if (m16_mis || micro_mis)
15308 {
15309 (*_bfd_error_handler)
15310 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15311 ibfd,
15312 m16_mis ? "MIPS16" : "microMIPS",
15313 m16_mis ? "microMIPS" : "MIPS16");
15314 ok = FALSE;
15315 }
15316
15317 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15318
15319 new_flags &= ~ EF_MIPS_ARCH_ASE;
15320 old_flags &= ~ EF_MIPS_ARCH_ASE;
15321 }
15322
15323 /* Compare NaN encodings. */
15324 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15325 {
15326 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15327 ibfd,
15328 (new_flags & EF_MIPS_NAN2008
15329 ? "-mnan=2008" : "-mnan=legacy"),
15330 (old_flags & EF_MIPS_NAN2008
15331 ? "-mnan=2008" : "-mnan=legacy"));
15332 ok = FALSE;
15333 new_flags &= ~EF_MIPS_NAN2008;
15334 old_flags &= ~EF_MIPS_NAN2008;
15335 }
15336
15337 /* Compare FP64 state. */
15338 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15339 {
15340 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15341 ibfd,
15342 (new_flags & EF_MIPS_FP64
15343 ? "-mfp64" : "-mfp32"),
15344 (old_flags & EF_MIPS_FP64
15345 ? "-mfp64" : "-mfp32"));
15346 ok = FALSE;
15347 new_flags &= ~EF_MIPS_FP64;
15348 old_flags &= ~EF_MIPS_FP64;
15349 }
15350
15351 /* Warn about any other mismatches */
15352 if (new_flags != old_flags)
15353 {
15354 (*_bfd_error_handler)
15355 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
15356 ibfd, (unsigned long) new_flags,
15357 (unsigned long) old_flags);
15358 ok = FALSE;
15359 }
15360
15361 if (! ok)
15362 {
15363 bfd_set_error (bfd_error_bad_value);
15364 return FALSE;
15365 }
15366
15367 return TRUE;
15368 }
15369
15370 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15371
15372 bfd_boolean
15373 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15374 {
15375 BFD_ASSERT (!elf_flags_init (abfd)
15376 || elf_elfheader (abfd)->e_flags == flags);
15377
15378 elf_elfheader (abfd)->e_flags = flags;
15379 elf_flags_init (abfd) = TRUE;
15380 return TRUE;
15381 }
15382
15383 char *
15384 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15385 {
15386 switch (dtag)
15387 {
15388 default: return "";
15389 case DT_MIPS_RLD_VERSION:
15390 return "MIPS_RLD_VERSION";
15391 case DT_MIPS_TIME_STAMP:
15392 return "MIPS_TIME_STAMP";
15393 case DT_MIPS_ICHECKSUM:
15394 return "MIPS_ICHECKSUM";
15395 case DT_MIPS_IVERSION:
15396 return "MIPS_IVERSION";
15397 case DT_MIPS_FLAGS:
15398 return "MIPS_FLAGS";
15399 case DT_MIPS_BASE_ADDRESS:
15400 return "MIPS_BASE_ADDRESS";
15401 case DT_MIPS_MSYM:
15402 return "MIPS_MSYM";
15403 case DT_MIPS_CONFLICT:
15404 return "MIPS_CONFLICT";
15405 case DT_MIPS_LIBLIST:
15406 return "MIPS_LIBLIST";
15407 case DT_MIPS_LOCAL_GOTNO:
15408 return "MIPS_LOCAL_GOTNO";
15409 case DT_MIPS_CONFLICTNO:
15410 return "MIPS_CONFLICTNO";
15411 case DT_MIPS_LIBLISTNO:
15412 return "MIPS_LIBLISTNO";
15413 case DT_MIPS_SYMTABNO:
15414 return "MIPS_SYMTABNO";
15415 case DT_MIPS_UNREFEXTNO:
15416 return "MIPS_UNREFEXTNO";
15417 case DT_MIPS_GOTSYM:
15418 return "MIPS_GOTSYM";
15419 case DT_MIPS_HIPAGENO:
15420 return "MIPS_HIPAGENO";
15421 case DT_MIPS_RLD_MAP:
15422 return "MIPS_RLD_MAP";
15423 case DT_MIPS_DELTA_CLASS:
15424 return "MIPS_DELTA_CLASS";
15425 case DT_MIPS_DELTA_CLASS_NO:
15426 return "MIPS_DELTA_CLASS_NO";
15427 case DT_MIPS_DELTA_INSTANCE:
15428 return "MIPS_DELTA_INSTANCE";
15429 case DT_MIPS_DELTA_INSTANCE_NO:
15430 return "MIPS_DELTA_INSTANCE_NO";
15431 case DT_MIPS_DELTA_RELOC:
15432 return "MIPS_DELTA_RELOC";
15433 case DT_MIPS_DELTA_RELOC_NO:
15434 return "MIPS_DELTA_RELOC_NO";
15435 case DT_MIPS_DELTA_SYM:
15436 return "MIPS_DELTA_SYM";
15437 case DT_MIPS_DELTA_SYM_NO:
15438 return "MIPS_DELTA_SYM_NO";
15439 case DT_MIPS_DELTA_CLASSSYM:
15440 return "MIPS_DELTA_CLASSSYM";
15441 case DT_MIPS_DELTA_CLASSSYM_NO:
15442 return "MIPS_DELTA_CLASSSYM_NO";
15443 case DT_MIPS_CXX_FLAGS:
15444 return "MIPS_CXX_FLAGS";
15445 case DT_MIPS_PIXIE_INIT:
15446 return "MIPS_PIXIE_INIT";
15447 case DT_MIPS_SYMBOL_LIB:
15448 return "MIPS_SYMBOL_LIB";
15449 case DT_MIPS_LOCALPAGE_GOTIDX:
15450 return "MIPS_LOCALPAGE_GOTIDX";
15451 case DT_MIPS_LOCAL_GOTIDX:
15452 return "MIPS_LOCAL_GOTIDX";
15453 case DT_MIPS_HIDDEN_GOTIDX:
15454 return "MIPS_HIDDEN_GOTIDX";
15455 case DT_MIPS_PROTECTED_GOTIDX:
15456 return "MIPS_PROTECTED_GOT_IDX";
15457 case DT_MIPS_OPTIONS:
15458 return "MIPS_OPTIONS";
15459 case DT_MIPS_INTERFACE:
15460 return "MIPS_INTERFACE";
15461 case DT_MIPS_DYNSTR_ALIGN:
15462 return "DT_MIPS_DYNSTR_ALIGN";
15463 case DT_MIPS_INTERFACE_SIZE:
15464 return "DT_MIPS_INTERFACE_SIZE";
15465 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15466 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15467 case DT_MIPS_PERF_SUFFIX:
15468 return "DT_MIPS_PERF_SUFFIX";
15469 case DT_MIPS_COMPACT_SIZE:
15470 return "DT_MIPS_COMPACT_SIZE";
15471 case DT_MIPS_GP_VALUE:
15472 return "DT_MIPS_GP_VALUE";
15473 case DT_MIPS_AUX_DYNAMIC:
15474 return "DT_MIPS_AUX_DYNAMIC";
15475 case DT_MIPS_PLTGOT:
15476 return "DT_MIPS_PLTGOT";
15477 case DT_MIPS_RWPLT:
15478 return "DT_MIPS_RWPLT";
15479 }
15480 }
15481
15482 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15483 not known. */
15484
15485 const char *
15486 _bfd_mips_fp_abi_string (int fp)
15487 {
15488 switch (fp)
15489 {
15490 /* These strings aren't translated because they're simply
15491 option lists. */
15492 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15493 return "-mdouble-float";
15494
15495 case Val_GNU_MIPS_ABI_FP_SINGLE:
15496 return "-msingle-float";
15497
15498 case Val_GNU_MIPS_ABI_FP_SOFT:
15499 return "-msoft-float";
15500
15501 case Val_GNU_MIPS_ABI_FP_OLD_64:
15502 return _("-mips32r2 -mfp64 (12 callee-saved)");
15503
15504 case Val_GNU_MIPS_ABI_FP_XX:
15505 return "-mfpxx";
15506
15507 case Val_GNU_MIPS_ABI_FP_64:
15508 return "-mgp32 -mfp64";
15509
15510 case Val_GNU_MIPS_ABI_FP_64A:
15511 return "-mgp32 -mfp64 -mno-odd-spreg";
15512
15513 default:
15514 return 0;
15515 }
15516 }
15517
15518 static void
15519 print_mips_ases (FILE *file, unsigned int mask)
15520 {
15521 if (mask & AFL_ASE_DSP)
15522 fputs ("\n\tDSP ASE", file);
15523 if (mask & AFL_ASE_DSPR2)
15524 fputs ("\n\tDSP R2 ASE", file);
15525 if (mask & AFL_ASE_EVA)
15526 fputs ("\n\tEnhanced VA Scheme", file);
15527 if (mask & AFL_ASE_MCU)
15528 fputs ("\n\tMCU (MicroController) ASE", file);
15529 if (mask & AFL_ASE_MDMX)
15530 fputs ("\n\tMDMX ASE", file);
15531 if (mask & AFL_ASE_MIPS3D)
15532 fputs ("\n\tMIPS-3D ASE", file);
15533 if (mask & AFL_ASE_MT)
15534 fputs ("\n\tMT ASE", file);
15535 if (mask & AFL_ASE_SMARTMIPS)
15536 fputs ("\n\tSmartMIPS ASE", file);
15537 if (mask & AFL_ASE_VIRT)
15538 fputs ("\n\tVZ ASE", file);
15539 if (mask & AFL_ASE_MSA)
15540 fputs ("\n\tMSA ASE", file);
15541 if (mask & AFL_ASE_MIPS16)
15542 fputs ("\n\tMIPS16 ASE", file);
15543 if (mask & AFL_ASE_MICROMIPS)
15544 fputs ("\n\tMICROMIPS ASE", file);
15545 if (mask & AFL_ASE_XPA)
15546 fputs ("\n\tXPA ASE", file);
15547 if (mask == 0)
15548 fprintf (file, "\n\t%s", _("None"));
15549 else if ((mask & ~AFL_ASE_MASK) != 0)
15550 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15551 }
15552
15553 static void
15554 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15555 {
15556 switch (isa_ext)
15557 {
15558 case 0:
15559 fputs (_("None"), file);
15560 break;
15561 case AFL_EXT_XLR:
15562 fputs ("RMI XLR", file);
15563 break;
15564 case AFL_EXT_OCTEON3:
15565 fputs ("Cavium Networks Octeon3", file);
15566 break;
15567 case AFL_EXT_OCTEON2:
15568 fputs ("Cavium Networks Octeon2", file);
15569 break;
15570 case AFL_EXT_OCTEONP:
15571 fputs ("Cavium Networks OcteonP", file);
15572 break;
15573 case AFL_EXT_LOONGSON_3A:
15574 fputs ("Loongson 3A", file);
15575 break;
15576 case AFL_EXT_OCTEON:
15577 fputs ("Cavium Networks Octeon", file);
15578 break;
15579 case AFL_EXT_5900:
15580 fputs ("Toshiba R5900", file);
15581 break;
15582 case AFL_EXT_4650:
15583 fputs ("MIPS R4650", file);
15584 break;
15585 case AFL_EXT_4010:
15586 fputs ("LSI R4010", file);
15587 break;
15588 case AFL_EXT_4100:
15589 fputs ("NEC VR4100", file);
15590 break;
15591 case AFL_EXT_3900:
15592 fputs ("Toshiba R3900", file);
15593 break;
15594 case AFL_EXT_10000:
15595 fputs ("MIPS R10000", file);
15596 break;
15597 case AFL_EXT_SB1:
15598 fputs ("Broadcom SB-1", file);
15599 break;
15600 case AFL_EXT_4111:
15601 fputs ("NEC VR4111/VR4181", file);
15602 break;
15603 case AFL_EXT_4120:
15604 fputs ("NEC VR4120", file);
15605 break;
15606 case AFL_EXT_5400:
15607 fputs ("NEC VR5400", file);
15608 break;
15609 case AFL_EXT_5500:
15610 fputs ("NEC VR5500", file);
15611 break;
15612 case AFL_EXT_LOONGSON_2E:
15613 fputs ("ST Microelectronics Loongson 2E", file);
15614 break;
15615 case AFL_EXT_LOONGSON_2F:
15616 fputs ("ST Microelectronics Loongson 2F", file);
15617 break;
15618 default:
15619 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15620 break;
15621 }
15622 }
15623
15624 static void
15625 print_mips_fp_abi_value (FILE *file, int val)
15626 {
15627 switch (val)
15628 {
15629 case Val_GNU_MIPS_ABI_FP_ANY:
15630 fprintf (file, _("Hard or soft float\n"));
15631 break;
15632 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15633 fprintf (file, _("Hard float (double precision)\n"));
15634 break;
15635 case Val_GNU_MIPS_ABI_FP_SINGLE:
15636 fprintf (file, _("Hard float (single precision)\n"));
15637 break;
15638 case Val_GNU_MIPS_ABI_FP_SOFT:
15639 fprintf (file, _("Soft float\n"));
15640 break;
15641 case Val_GNU_MIPS_ABI_FP_OLD_64:
15642 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15643 break;
15644 case Val_GNU_MIPS_ABI_FP_XX:
15645 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15646 break;
15647 case Val_GNU_MIPS_ABI_FP_64:
15648 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15649 break;
15650 case Val_GNU_MIPS_ABI_FP_64A:
15651 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15652 break;
15653 default:
15654 fprintf (file, "??? (%d)\n", val);
15655 break;
15656 }
15657 }
15658
15659 static int
15660 get_mips_reg_size (int reg_size)
15661 {
15662 return (reg_size == AFL_REG_NONE) ? 0
15663 : (reg_size == AFL_REG_32) ? 32
15664 : (reg_size == AFL_REG_64) ? 64
15665 : (reg_size == AFL_REG_128) ? 128
15666 : -1;
15667 }
15668
15669 bfd_boolean
15670 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15671 {
15672 FILE *file = ptr;
15673
15674 BFD_ASSERT (abfd != NULL && ptr != NULL);
15675
15676 /* Print normal ELF private data. */
15677 _bfd_elf_print_private_bfd_data (abfd, ptr);
15678
15679 /* xgettext:c-format */
15680 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15681
15682 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15683 fprintf (file, _(" [abi=O32]"));
15684 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15685 fprintf (file, _(" [abi=O64]"));
15686 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15687 fprintf (file, _(" [abi=EABI32]"));
15688 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15689 fprintf (file, _(" [abi=EABI64]"));
15690 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15691 fprintf (file, _(" [abi unknown]"));
15692 else if (ABI_N32_P (abfd))
15693 fprintf (file, _(" [abi=N32]"));
15694 else if (ABI_64_P (abfd))
15695 fprintf (file, _(" [abi=64]"));
15696 else
15697 fprintf (file, _(" [no abi set]"));
15698
15699 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15700 fprintf (file, " [mips1]");
15701 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15702 fprintf (file, " [mips2]");
15703 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15704 fprintf (file, " [mips3]");
15705 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15706 fprintf (file, " [mips4]");
15707 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15708 fprintf (file, " [mips5]");
15709 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15710 fprintf (file, " [mips32]");
15711 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15712 fprintf (file, " [mips64]");
15713 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15714 fprintf (file, " [mips32r2]");
15715 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15716 fprintf (file, " [mips64r2]");
15717 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15718 fprintf (file, " [mips32r6]");
15719 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15720 fprintf (file, " [mips64r6]");
15721 else
15722 fprintf (file, _(" [unknown ISA]"));
15723
15724 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15725 fprintf (file, " [mdmx]");
15726
15727 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15728 fprintf (file, " [mips16]");
15729
15730 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15731 fprintf (file, " [micromips]");
15732
15733 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15734 fprintf (file, " [nan2008]");
15735
15736 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15737 fprintf (file, " [old fp64]");
15738
15739 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15740 fprintf (file, " [32bitmode]");
15741 else
15742 fprintf (file, _(" [not 32bitmode]"));
15743
15744 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15745 fprintf (file, " [noreorder]");
15746
15747 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15748 fprintf (file, " [PIC]");
15749
15750 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15751 fprintf (file, " [CPIC]");
15752
15753 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15754 fprintf (file, " [XGOT]");
15755
15756 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15757 fprintf (file, " [UCODE]");
15758
15759 fputc ('\n', file);
15760
15761 if (mips_elf_tdata (abfd)->abiflags_valid)
15762 {
15763 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15764 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15765 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15766 if (abiflags->isa_rev > 1)
15767 fprintf (file, "r%d", abiflags->isa_rev);
15768 fprintf (file, "\nGPR size: %d",
15769 get_mips_reg_size (abiflags->gpr_size));
15770 fprintf (file, "\nCPR1 size: %d",
15771 get_mips_reg_size (abiflags->cpr1_size));
15772 fprintf (file, "\nCPR2 size: %d",
15773 get_mips_reg_size (abiflags->cpr2_size));
15774 fputs ("\nFP ABI: ", file);
15775 print_mips_fp_abi_value (file, abiflags->fp_abi);
15776 fputs ("ISA Extension: ", file);
15777 print_mips_isa_ext (file, abiflags->isa_ext);
15778 fputs ("\nASEs:", file);
15779 print_mips_ases (file, abiflags->ases);
15780 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15781 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15782 fputc ('\n', file);
15783 }
15784
15785 return TRUE;
15786 }
15787
15788 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15789 {
15790 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15791 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15792 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15793 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15794 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15795 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15796 { NULL, 0, 0, 0, 0 }
15797 };
15798
15799 /* Merge non visibility st_other attributes. Ensure that the
15800 STO_OPTIONAL flag is copied into h->other, even if this is not a
15801 definiton of the symbol. */
15802 void
15803 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15804 const Elf_Internal_Sym *isym,
15805 bfd_boolean definition,
15806 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15807 {
15808 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15809 {
15810 unsigned char other;
15811
15812 other = (definition ? isym->st_other : h->other);
15813 other &= ~ELF_ST_VISIBILITY (-1);
15814 h->other = other | ELF_ST_VISIBILITY (h->other);
15815 }
15816
15817 if (!definition
15818 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15819 h->other |= STO_OPTIONAL;
15820 }
15821
15822 /* Decide whether an undefined symbol is special and can be ignored.
15823 This is the case for OPTIONAL symbols on IRIX. */
15824 bfd_boolean
15825 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15826 {
15827 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15828 }
15829
15830 bfd_boolean
15831 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15832 {
15833 return (sym->st_shndx == SHN_COMMON
15834 || sym->st_shndx == SHN_MIPS_ACOMMON
15835 || sym->st_shndx == SHN_MIPS_SCOMMON);
15836 }
15837
15838 /* Return address for Ith PLT stub in section PLT, for relocation REL
15839 or (bfd_vma) -1 if it should not be included. */
15840
15841 bfd_vma
15842 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15843 const arelent *rel ATTRIBUTE_UNUSED)
15844 {
15845 return (plt->vma
15846 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15847 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15848 }
15849
15850 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15851 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15852 and .got.plt and also the slots may be of a different size each we walk
15853 the PLT manually fetching instructions and matching them against known
15854 patterns. To make things easier standard MIPS slots, if any, always come
15855 first. As we don't create proper ELF symbols we use the UDATA.I member
15856 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15857 with the ST_OTHER member of the ELF symbol. */
15858
15859 long
15860 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15861 long symcount ATTRIBUTE_UNUSED,
15862 asymbol **syms ATTRIBUTE_UNUSED,
15863 long dynsymcount, asymbol **dynsyms,
15864 asymbol **ret)
15865 {
15866 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15867 static const char microsuffix[] = "@micromipsplt";
15868 static const char m16suffix[] = "@mips16plt";
15869 static const char mipssuffix[] = "@plt";
15870
15871 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15872 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15873 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15874 Elf_Internal_Shdr *hdr;
15875 bfd_byte *plt_data;
15876 bfd_vma plt_offset;
15877 unsigned int other;
15878 bfd_vma entry_size;
15879 bfd_vma plt0_size;
15880 asection *relplt;
15881 bfd_vma opcode;
15882 asection *plt;
15883 asymbol *send;
15884 size_t size;
15885 char *names;
15886 long counti;
15887 arelent *p;
15888 asymbol *s;
15889 char *nend;
15890 long count;
15891 long pi;
15892 long i;
15893 long n;
15894
15895 *ret = NULL;
15896
15897 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15898 return 0;
15899
15900 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15901 if (relplt == NULL)
15902 return 0;
15903
15904 hdr = &elf_section_data (relplt)->this_hdr;
15905 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15906 return 0;
15907
15908 plt = bfd_get_section_by_name (abfd, ".plt");
15909 if (plt == NULL)
15910 return 0;
15911
15912 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15913 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15914 return -1;
15915 p = relplt->relocation;
15916
15917 /* Calculating the exact amount of space required for symbols would
15918 require two passes over the PLT, so just pessimise assuming two
15919 PLT slots per relocation. */
15920 count = relplt->size / hdr->sh_entsize;
15921 counti = count * bed->s->int_rels_per_ext_rel;
15922 size = 2 * count * sizeof (asymbol);
15923 size += count * (sizeof (mipssuffix) +
15924 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15925 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15926 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15927
15928 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15929 size += sizeof (asymbol) + sizeof (pltname);
15930
15931 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15932 return -1;
15933
15934 if (plt->size < 16)
15935 return -1;
15936
15937 s = *ret = bfd_malloc (size);
15938 if (s == NULL)
15939 return -1;
15940 send = s + 2 * count + 1;
15941
15942 names = (char *) send;
15943 nend = (char *) s + size;
15944 n = 0;
15945
15946 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15947 if (opcode == 0x3302fffe)
15948 {
15949 if (!micromips_p)
15950 return -1;
15951 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15952 other = STO_MICROMIPS;
15953 }
15954 else if (opcode == 0x0398c1d0)
15955 {
15956 if (!micromips_p)
15957 return -1;
15958 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15959 other = STO_MICROMIPS;
15960 }
15961 else
15962 {
15963 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
15964 other = 0;
15965 }
15966
15967 s->the_bfd = abfd;
15968 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
15969 s->section = plt;
15970 s->value = 0;
15971 s->name = names;
15972 s->udata.i = other;
15973 memcpy (names, pltname, sizeof (pltname));
15974 names += sizeof (pltname);
15975 ++s, ++n;
15976
15977 pi = 0;
15978 for (plt_offset = plt0_size;
15979 plt_offset + 8 <= plt->size && s < send;
15980 plt_offset += entry_size)
15981 {
15982 bfd_vma gotplt_addr;
15983 const char *suffix;
15984 bfd_vma gotplt_hi;
15985 bfd_vma gotplt_lo;
15986 size_t suffixlen;
15987
15988 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
15989
15990 /* Check if the second word matches the expected MIPS16 instruction. */
15991 if (opcode == 0x651aeb00)
15992 {
15993 if (micromips_p)
15994 return -1;
15995 /* Truncated table??? */
15996 if (plt_offset + 16 > plt->size)
15997 break;
15998 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
15999 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16000 suffixlen = sizeof (m16suffix);
16001 suffix = m16suffix;
16002 other = STO_MIPS16;
16003 }
16004 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16005 else if (opcode == 0xff220000)
16006 {
16007 if (!micromips_p)
16008 return -1;
16009 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16010 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16011 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16012 gotplt_lo <<= 2;
16013 gotplt_addr = gotplt_hi + gotplt_lo;
16014 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16015 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16016 suffixlen = sizeof (microsuffix);
16017 suffix = microsuffix;
16018 other = STO_MICROMIPS;
16019 }
16020 /* Likewise the expected microMIPS instruction (insn32 mode). */
16021 else if ((opcode & 0xffff0000) == 0xff2f0000)
16022 {
16023 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16024 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16025 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16026 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16027 gotplt_addr = gotplt_hi + gotplt_lo;
16028 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16029 suffixlen = sizeof (microsuffix);
16030 suffix = microsuffix;
16031 other = STO_MICROMIPS;
16032 }
16033 /* Otherwise assume standard MIPS code. */
16034 else
16035 {
16036 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16037 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16038 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16039 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16040 gotplt_addr = gotplt_hi + gotplt_lo;
16041 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16042 suffixlen = sizeof (mipssuffix);
16043 suffix = mipssuffix;
16044 other = 0;
16045 }
16046 /* Truncated table??? */
16047 if (plt_offset + entry_size > plt->size)
16048 break;
16049
16050 for (i = 0;
16051 i < count && p[pi].address != gotplt_addr;
16052 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16053
16054 if (i < count)
16055 {
16056 size_t namelen;
16057 size_t len;
16058
16059 *s = **p[pi].sym_ptr_ptr;
16060 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16061 we are defining a symbol, ensure one of them is set. */
16062 if ((s->flags & BSF_LOCAL) == 0)
16063 s->flags |= BSF_GLOBAL;
16064 s->flags |= BSF_SYNTHETIC;
16065 s->section = plt;
16066 s->value = plt_offset;
16067 s->name = names;
16068 s->udata.i = other;
16069
16070 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16071 namelen = len + suffixlen;
16072 if (names + namelen > nend)
16073 break;
16074
16075 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16076 names += len;
16077 memcpy (names, suffix, suffixlen);
16078 names += suffixlen;
16079
16080 ++s, ++n;
16081 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16082 }
16083 }
16084
16085 free (plt_data);
16086
16087 return n;
16088 }
16089
16090 void
16091 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16092 {
16093 struct mips_elf_link_hash_table *htab;
16094 Elf_Internal_Ehdr *i_ehdrp;
16095
16096 i_ehdrp = elf_elfheader (abfd);
16097 if (link_info)
16098 {
16099 htab = mips_elf_hash_table (link_info);
16100 BFD_ASSERT (htab != NULL);
16101
16102 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16103 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16104 }
16105
16106 _bfd_elf_post_process_headers (abfd, link_info);
16107
16108 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16109 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16110 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16111 }
This page took 0.348801 seconds and 3 git commands to generate.