bfd:
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29
30 /* This file handles functionality common to the different MIPS ABI's. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
82 struct mips_got_entry
83 {
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
113 };
114
115 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118 struct mips_got_page_range
119 {
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
123 };
124
125 /* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127 struct mips_got_page_entry
128 {
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
137 };
138
139 /* This structure is used to hold .got information when linking. */
140
141 struct mips_got_info
142 {
143 /* The global symbol in the GOT with the lowest index in the dynamic
144 symbol table. */
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
148 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
149 unsigned int reloc_only_gotno;
150 /* The number of .got slots used for TLS. */
151 unsigned int tls_gotno;
152 /* The first unused TLS .got entry. Used only during
153 mips_elf_initialize_tls_index. */
154 unsigned int tls_assigned_gotno;
155 /* The number of local .got entries, eventually including page entries. */
156 unsigned int local_gotno;
157 /* The maximum number of page entries needed. */
158 unsigned int page_gotno;
159 /* The number of local .got entries we have used. */
160 unsigned int assigned_gotno;
161 /* A hash table holding members of the got. */
162 struct htab *got_entries;
163 /* A hash table of mips_got_page_entry structures. */
164 struct htab *got_page_entries;
165 /* A hash table mapping input bfds to other mips_got_info. NULL
166 unless multi-got was necessary. */
167 struct htab *bfd2got;
168 /* In multi-got links, a pointer to the next got (err, rather, most
169 of the time, it points to the previous got). */
170 struct mips_got_info *next;
171 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
172 for none, or MINUS_TWO for not yet assigned. This is needed
173 because a single-GOT link may have multiple hash table entries
174 for the LDM. It does not get initialized in multi-GOT mode. */
175 bfd_vma tls_ldm_offset;
176 };
177
178 /* Map an input bfd to a got in a multi-got link. */
179
180 struct mips_elf_bfd2got_hash {
181 bfd *bfd;
182 struct mips_got_info *g;
183 };
184
185 /* Structure passed when traversing the bfd2got hash table, used to
186 create and merge bfd's gots. */
187
188 struct mips_elf_got_per_bfd_arg
189 {
190 /* A hashtable that maps bfds to gots. */
191 htab_t bfd2got;
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
213 };
214
215 /* Another structure used to pass arguments for got entries traversal. */
216
217 struct mips_elf_set_global_got_offset_arg
218 {
219 struct mips_got_info *g;
220 int value;
221 unsigned int needed_relocs;
222 struct bfd_link_info *info;
223 };
224
225 /* A structure used to count TLS relocations or GOT entries, for GOT
226 entry or ELF symbol table traversal. */
227
228 struct mips_elf_count_tls_arg
229 {
230 struct bfd_link_info *info;
231 unsigned int needed;
232 };
233
234 struct _mips_elf_section_data
235 {
236 struct bfd_elf_section_data elf;
237 union
238 {
239 bfd_byte *tdata;
240 } u;
241 };
242
243 #define mips_elf_section_data(sec) \
244 ((struct _mips_elf_section_data *) elf_section_data (sec))
245
246 #define is_mips_elf(bfd) \
247 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
248 && elf_tdata (bfd) != NULL \
249 && elf_object_id (bfd) == MIPS_ELF_TDATA)
250
251 /* The ABI says that every symbol used by dynamic relocations must have
252 a global GOT entry. Among other things, this provides the dynamic
253 linker with a free, directly-indexed cache. The GOT can therefore
254 contain symbols that are not referenced by GOT relocations themselves
255 (in other words, it may have symbols that are not referenced by things
256 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
257
258 GOT relocations are less likely to overflow if we put the associated
259 GOT entries towards the beginning. We therefore divide the global
260 GOT entries into two areas: "normal" and "reloc-only". Entries in
261 the first area can be used for both dynamic relocations and GP-relative
262 accesses, while those in the "reloc-only" area are for dynamic
263 relocations only.
264
265 These GGA_* ("Global GOT Area") values are organised so that lower
266 values are more general than higher values. Also, non-GGA_NONE
267 values are ordered by the position of the area in the GOT. */
268 #define GGA_NORMAL 0
269 #define GGA_RELOC_ONLY 1
270 #define GGA_NONE 2
271
272 /* Information about a non-PIC interface to a PIC function. There are
273 two ways of creating these interfaces. The first is to add:
274
275 lui $25,%hi(func)
276 addiu $25,$25,%lo(func)
277
278 immediately before a PIC function "func". The second is to add:
279
280 lui $25,%hi(func)
281 j func
282 addiu $25,$25,%lo(func)
283
284 to a separate trampoline section.
285
286 Stubs of the first kind go in a new section immediately before the
287 target function. Stubs of the second kind go in a single section
288 pointed to by the hash table's "strampoline" field. */
289 struct mips_elf_la25_stub {
290 /* The generated section that contains this stub. */
291 asection *stub_section;
292
293 /* The offset of the stub from the start of STUB_SECTION. */
294 bfd_vma offset;
295
296 /* One symbol for the original function. Its location is available
297 in H->root.root.u.def. */
298 struct mips_elf_link_hash_entry *h;
299 };
300
301 /* Macros for populating a mips_elf_la25_stub. */
302
303 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
304 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
305 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
306
307 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
308 the dynamic symbols. */
309
310 struct mips_elf_hash_sort_data
311 {
312 /* The symbol in the global GOT with the lowest dynamic symbol table
313 index. */
314 struct elf_link_hash_entry *low;
315 /* The least dynamic symbol table index corresponding to a non-TLS
316 symbol with a GOT entry. */
317 long min_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a symbol
319 with a GOT entry that is not referenced (e.g., a dynamic symbol
320 with dynamic relocations pointing to it from non-primary GOTs). */
321 long max_unref_got_dynindx;
322 /* The greatest dynamic symbol table index not corresponding to a
323 symbol without a GOT entry. */
324 long max_non_got_dynindx;
325 };
326
327 /* The MIPS ELF linker needs additional information for each symbol in
328 the global hash table. */
329
330 struct mips_elf_link_hash_entry
331 {
332 struct elf_link_hash_entry root;
333
334 /* External symbol information. */
335 EXTR esym;
336
337 /* The la25 stub we have created for ths symbol, if any. */
338 struct mips_elf_la25_stub *la25_stub;
339
340 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
341 this symbol. */
342 unsigned int possibly_dynamic_relocs;
343
344 /* If there is a stub that 32 bit functions should use to call this
345 16 bit function, this points to the section containing the stub. */
346 asection *fn_stub;
347
348 /* If there is a stub that 16 bit functions should use to call this
349 32 bit function, this points to the section containing the stub. */
350 asection *call_stub;
351
352 /* This is like the call_stub field, but it is used if the function
353 being called returns a floating point value. */
354 asection *call_fp_stub;
355
356 #define GOT_NORMAL 0
357 #define GOT_TLS_GD 1
358 #define GOT_TLS_LDM 2
359 #define GOT_TLS_IE 4
360 #define GOT_TLS_OFFSET_DONE 0x40
361 #define GOT_TLS_DONE 0x80
362 unsigned char tls_type;
363
364 /* This is only used in single-GOT mode; in multi-GOT mode there
365 is one mips_got_entry per GOT entry, so the offset is stored
366 there. In single-GOT mode there may be many mips_got_entry
367 structures all referring to the same GOT slot. It might be
368 possible to use root.got.offset instead, but that field is
369 overloaded already. */
370 bfd_vma tls_got_offset;
371
372 /* The highest GGA_* value that satisfies all references to this symbol. */
373 unsigned int global_got_area : 2;
374
375 /* True if one of the relocations described by possibly_dynamic_relocs
376 is against a readonly section. */
377 unsigned int readonly_reloc : 1;
378
379 /* True if there is a relocation against this symbol that must be
380 resolved by the static linker (in other words, if the relocation
381 cannot possibly be made dynamic). */
382 unsigned int has_static_relocs : 1;
383
384 /* True if we must not create a .MIPS.stubs entry for this symbol.
385 This is set, for example, if there are relocations related to
386 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
387 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
388 unsigned int no_fn_stub : 1;
389
390 /* Whether we need the fn_stub; this is true if this symbol appears
391 in any relocs other than a 16 bit call. */
392 unsigned int need_fn_stub : 1;
393
394 /* True if this symbol is referenced by branch relocations from
395 any non-PIC input file. This is used to determine whether an
396 la25 stub is required. */
397 unsigned int has_nonpic_branches : 1;
398
399 /* Does this symbol need a traditional MIPS lazy-binding stub
400 (as opposed to a PLT entry)? */
401 unsigned int needs_lazy_stub : 1;
402 };
403
404 /* MIPS ELF linker hash table. */
405
406 struct mips_elf_link_hash_table
407 {
408 struct elf_link_hash_table root;
409 #if 0
410 /* We no longer use this. */
411 /* String section indices for the dynamic section symbols. */
412 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
413 #endif
414
415 /* The number of .rtproc entries. */
416 bfd_size_type procedure_count;
417
418 /* The size of the .compact_rel section (if SGI_COMPAT). */
419 bfd_size_type compact_rel_size;
420
421 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
422 entry is set to the address of __rld_obj_head as in IRIX5. */
423 bfd_boolean use_rld_obj_head;
424
425 /* This is the value of the __rld_map or __rld_obj_head symbol. */
426 bfd_vma rld_value;
427
428 /* This is set if we see any mips16 stub sections. */
429 bfd_boolean mips16_stubs_seen;
430
431 /* True if we can generate copy relocs and PLTs. */
432 bfd_boolean use_plts_and_copy_relocs;
433
434 /* True if we're generating code for VxWorks. */
435 bfd_boolean is_vxworks;
436
437 /* True if we already reported the small-data section overflow. */
438 bfd_boolean small_data_overflow_reported;
439
440 /* Shortcuts to some dynamic sections, or NULL if they are not
441 being used. */
442 asection *srelbss;
443 asection *sdynbss;
444 asection *srelplt;
445 asection *srelplt2;
446 asection *sgotplt;
447 asection *splt;
448 asection *sstubs;
449 asection *sgot;
450
451 /* The master GOT information. */
452 struct mips_got_info *got_info;
453
454 /* The size of the PLT header in bytes. */
455 bfd_vma plt_header_size;
456
457 /* The size of a PLT entry in bytes. */
458 bfd_vma plt_entry_size;
459
460 /* The number of functions that need a lazy-binding stub. */
461 bfd_vma lazy_stub_count;
462
463 /* The size of a function stub entry in bytes. */
464 bfd_vma function_stub_size;
465
466 /* The number of reserved entries at the beginning of the GOT. */
467 unsigned int reserved_gotno;
468
469 /* The section used for mips_elf_la25_stub trampolines.
470 See the comment above that structure for details. */
471 asection *strampoline;
472
473 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
474 pairs. */
475 htab_t la25_stubs;
476
477 /* A function FN (NAME, IS, OS) that creates a new input section
478 called NAME and links it to output section OS. If IS is nonnull,
479 the new section should go immediately before it, otherwise it
480 should go at the (current) beginning of OS.
481
482 The function returns the new section on success, otherwise it
483 returns null. */
484 asection *(*add_stub_section) (const char *, asection *, asection *);
485 };
486
487 /* A structure used to communicate with htab_traverse callbacks. */
488 struct mips_htab_traverse_info {
489 /* The usual link-wide information. */
490 struct bfd_link_info *info;
491 bfd *output_bfd;
492
493 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
494 bfd_boolean error;
495 };
496
497 #define TLS_RELOC_P(r_type) \
498 (r_type == R_MIPS_TLS_DTPMOD32 \
499 || r_type == R_MIPS_TLS_DTPMOD64 \
500 || r_type == R_MIPS_TLS_DTPREL32 \
501 || r_type == R_MIPS_TLS_DTPREL64 \
502 || r_type == R_MIPS_TLS_GD \
503 || r_type == R_MIPS_TLS_LDM \
504 || r_type == R_MIPS_TLS_DTPREL_HI16 \
505 || r_type == R_MIPS_TLS_DTPREL_LO16 \
506 || r_type == R_MIPS_TLS_GOTTPREL \
507 || r_type == R_MIPS_TLS_TPREL32 \
508 || r_type == R_MIPS_TLS_TPREL64 \
509 || r_type == R_MIPS_TLS_TPREL_HI16 \
510 || r_type == R_MIPS_TLS_TPREL_LO16)
511
512 /* Structure used to pass information to mips_elf_output_extsym. */
513
514 struct extsym_info
515 {
516 bfd *abfd;
517 struct bfd_link_info *info;
518 struct ecoff_debug_info *debug;
519 const struct ecoff_debug_swap *swap;
520 bfd_boolean failed;
521 };
522
523 /* The names of the runtime procedure table symbols used on IRIX5. */
524
525 static const char * const mips_elf_dynsym_rtproc_names[] =
526 {
527 "_procedure_table",
528 "_procedure_string_table",
529 "_procedure_table_size",
530 NULL
531 };
532
533 /* These structures are used to generate the .compact_rel section on
534 IRIX5. */
535
536 typedef struct
537 {
538 unsigned long id1; /* Always one? */
539 unsigned long num; /* Number of compact relocation entries. */
540 unsigned long id2; /* Always two? */
541 unsigned long offset; /* The file offset of the first relocation. */
542 unsigned long reserved0; /* Zero? */
543 unsigned long reserved1; /* Zero? */
544 } Elf32_compact_rel;
545
546 typedef struct
547 {
548 bfd_byte id1[4];
549 bfd_byte num[4];
550 bfd_byte id2[4];
551 bfd_byte offset[4];
552 bfd_byte reserved0[4];
553 bfd_byte reserved1[4];
554 } Elf32_External_compact_rel;
555
556 typedef struct
557 {
558 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
559 unsigned int rtype : 4; /* Relocation types. See below. */
560 unsigned int dist2to : 8;
561 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
562 unsigned long konst; /* KONST field. See below. */
563 unsigned long vaddr; /* VADDR to be relocated. */
564 } Elf32_crinfo;
565
566 typedef struct
567 {
568 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
569 unsigned int rtype : 4; /* Relocation types. See below. */
570 unsigned int dist2to : 8;
571 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
572 unsigned long konst; /* KONST field. See below. */
573 } Elf32_crinfo2;
574
575 typedef struct
576 {
577 bfd_byte info[4];
578 bfd_byte konst[4];
579 bfd_byte vaddr[4];
580 } Elf32_External_crinfo;
581
582 typedef struct
583 {
584 bfd_byte info[4];
585 bfd_byte konst[4];
586 } Elf32_External_crinfo2;
587
588 /* These are the constants used to swap the bitfields in a crinfo. */
589
590 #define CRINFO_CTYPE (0x1)
591 #define CRINFO_CTYPE_SH (31)
592 #define CRINFO_RTYPE (0xf)
593 #define CRINFO_RTYPE_SH (27)
594 #define CRINFO_DIST2TO (0xff)
595 #define CRINFO_DIST2TO_SH (19)
596 #define CRINFO_RELVADDR (0x7ffff)
597 #define CRINFO_RELVADDR_SH (0)
598
599 /* A compact relocation info has long (3 words) or short (2 words)
600 formats. A short format doesn't have VADDR field and relvaddr
601 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
602 #define CRF_MIPS_LONG 1
603 #define CRF_MIPS_SHORT 0
604
605 /* There are 4 types of compact relocation at least. The value KONST
606 has different meaning for each type:
607
608 (type) (konst)
609 CT_MIPS_REL32 Address in data
610 CT_MIPS_WORD Address in word (XXX)
611 CT_MIPS_GPHI_LO GP - vaddr
612 CT_MIPS_JMPAD Address to jump
613 */
614
615 #define CRT_MIPS_REL32 0xa
616 #define CRT_MIPS_WORD 0xb
617 #define CRT_MIPS_GPHI_LO 0xc
618 #define CRT_MIPS_JMPAD 0xd
619
620 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
621 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
622 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
623 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
624 \f
625 /* The structure of the runtime procedure descriptor created by the
626 loader for use by the static exception system. */
627
628 typedef struct runtime_pdr {
629 bfd_vma adr; /* Memory address of start of procedure. */
630 long regmask; /* Save register mask. */
631 long regoffset; /* Save register offset. */
632 long fregmask; /* Save floating point register mask. */
633 long fregoffset; /* Save floating point register offset. */
634 long frameoffset; /* Frame size. */
635 short framereg; /* Frame pointer register. */
636 short pcreg; /* Offset or reg of return pc. */
637 long irpss; /* Index into the runtime string table. */
638 long reserved;
639 struct exception_info *exception_info;/* Pointer to exception array. */
640 } RPDR, *pRPDR;
641 #define cbRPDR sizeof (RPDR)
642 #define rpdNil ((pRPDR) 0)
643 \f
644 static struct mips_got_entry *mips_elf_create_local_got_entry
645 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
646 struct mips_elf_link_hash_entry *, int);
647 static bfd_boolean mips_elf_sort_hash_table_f
648 (struct mips_elf_link_hash_entry *, void *);
649 static bfd_vma mips_elf_high
650 (bfd_vma);
651 static bfd_boolean mips_elf_create_dynamic_relocation
652 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
653 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
654 bfd_vma *, asection *);
655 static hashval_t mips_elf_got_entry_hash
656 (const void *);
657 static bfd_vma mips_elf_adjust_gp
658 (bfd *, struct mips_got_info *, bfd *);
659 static struct mips_got_info *mips_elf_got_for_ibfd
660 (struct mips_got_info *, bfd *);
661
662 /* This will be used when we sort the dynamic relocation records. */
663 static bfd *reldyn_sorting_bfd;
664
665 /* True if ABFD is a PIC object. */
666 #define PIC_OBJECT_P(abfd) \
667 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
668
669 /* Nonzero if ABFD is using the N32 ABI. */
670 #define ABI_N32_P(abfd) \
671 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
672
673 /* Nonzero if ABFD is using the N64 ABI. */
674 #define ABI_64_P(abfd) \
675 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
676
677 /* Nonzero if ABFD is using NewABI conventions. */
678 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
679
680 /* The IRIX compatibility level we are striving for. */
681 #define IRIX_COMPAT(abfd) \
682 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
683
684 /* Whether we are trying to be compatible with IRIX at all. */
685 #define SGI_COMPAT(abfd) \
686 (IRIX_COMPAT (abfd) != ict_none)
687
688 /* The name of the options section. */
689 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
690 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
691
692 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
693 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
694 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
695 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
696
697 /* Whether the section is readonly. */
698 #define MIPS_ELF_READONLY_SECTION(sec) \
699 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
700 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
701
702 /* The name of the stub section. */
703 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
704
705 /* The size of an external REL relocation. */
706 #define MIPS_ELF_REL_SIZE(abfd) \
707 (get_elf_backend_data (abfd)->s->sizeof_rel)
708
709 /* The size of an external RELA relocation. */
710 #define MIPS_ELF_RELA_SIZE(abfd) \
711 (get_elf_backend_data (abfd)->s->sizeof_rela)
712
713 /* The size of an external dynamic table entry. */
714 #define MIPS_ELF_DYN_SIZE(abfd) \
715 (get_elf_backend_data (abfd)->s->sizeof_dyn)
716
717 /* The size of a GOT entry. */
718 #define MIPS_ELF_GOT_SIZE(abfd) \
719 (get_elf_backend_data (abfd)->s->arch_size / 8)
720
721 /* The size of a symbol-table entry. */
722 #define MIPS_ELF_SYM_SIZE(abfd) \
723 (get_elf_backend_data (abfd)->s->sizeof_sym)
724
725 /* The default alignment for sections, as a power of two. */
726 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
727 (get_elf_backend_data (abfd)->s->log_file_align)
728
729 /* Get word-sized data. */
730 #define MIPS_ELF_GET_WORD(abfd, ptr) \
731 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
732
733 /* Put out word-sized data. */
734 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
735 (ABI_64_P (abfd) \
736 ? bfd_put_64 (abfd, val, ptr) \
737 : bfd_put_32 (abfd, val, ptr))
738
739 /* The opcode for word-sized loads (LW or LD). */
740 #define MIPS_ELF_LOAD_WORD(abfd) \
741 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
742
743 /* Add a dynamic symbol table-entry. */
744 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
745 _bfd_elf_add_dynamic_entry (info, tag, val)
746
747 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
748 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
749
750 /* Determine whether the internal relocation of index REL_IDX is REL
751 (zero) or RELA (non-zero). The assumption is that, if there are
752 two relocation sections for this section, one of them is REL and
753 the other is RELA. If the index of the relocation we're testing is
754 in range for the first relocation section, check that the external
755 relocation size is that for RELA. It is also assumed that, if
756 rel_idx is not in range for the first section, and this first
757 section contains REL relocs, then the relocation is in the second
758 section, that is RELA. */
759 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
760 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
761 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
762 > (bfd_vma)(rel_idx)) \
763 == (elf_section_data (sec)->rel_hdr.sh_entsize \
764 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
765 : sizeof (Elf32_External_Rela))))
766
767 /* The name of the dynamic relocation section. */
768 #define MIPS_ELF_REL_DYN_NAME(INFO) \
769 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
770
771 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
772 from smaller values. Start with zero, widen, *then* decrement. */
773 #define MINUS_ONE (((bfd_vma)0) - 1)
774 #define MINUS_TWO (((bfd_vma)0) - 2)
775
776 /* The value to write into got[1] for SVR4 targets, to identify it is
777 a GNU object. The dynamic linker can then use got[1] to store the
778 module pointer. */
779 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
780 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
781
782 /* The offset of $gp from the beginning of the .got section. */
783 #define ELF_MIPS_GP_OFFSET(INFO) \
784 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
785
786 /* The maximum size of the GOT for it to be addressable using 16-bit
787 offsets from $gp. */
788 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
789
790 /* Instructions which appear in a stub. */
791 #define STUB_LW(abfd) \
792 ((ABI_64_P (abfd) \
793 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
794 : 0x8f998010)) /* lw t9,0x8010(gp) */
795 #define STUB_MOVE(abfd) \
796 ((ABI_64_P (abfd) \
797 ? 0x03e0782d /* daddu t7,ra */ \
798 : 0x03e07821)) /* addu t7,ra */
799 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
800 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
801 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
802 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
803 #define STUB_LI16S(abfd, VAL) \
804 ((ABI_64_P (abfd) \
805 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
806 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
807
808 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
809 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
810
811 /* The name of the dynamic interpreter. This is put in the .interp
812 section. */
813
814 #define ELF_DYNAMIC_INTERPRETER(abfd) \
815 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
816 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
817 : "/usr/lib/libc.so.1")
818
819 #ifdef BFD64
820 #define MNAME(bfd,pre,pos) \
821 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
822 #define ELF_R_SYM(bfd, i) \
823 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
824 #define ELF_R_TYPE(bfd, i) \
825 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
826 #define ELF_R_INFO(bfd, s, t) \
827 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
828 #else
829 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
830 #define ELF_R_SYM(bfd, i) \
831 (ELF32_R_SYM (i))
832 #define ELF_R_TYPE(bfd, i) \
833 (ELF32_R_TYPE (i))
834 #define ELF_R_INFO(bfd, s, t) \
835 (ELF32_R_INFO (s, t))
836 #endif
837 \f
838 /* The mips16 compiler uses a couple of special sections to handle
839 floating point arguments.
840
841 Section names that look like .mips16.fn.FNNAME contain stubs that
842 copy floating point arguments from the fp regs to the gp regs and
843 then jump to FNNAME. If any 32 bit function calls FNNAME, the
844 call should be redirected to the stub instead. If no 32 bit
845 function calls FNNAME, the stub should be discarded. We need to
846 consider any reference to the function, not just a call, because
847 if the address of the function is taken we will need the stub,
848 since the address might be passed to a 32 bit function.
849
850 Section names that look like .mips16.call.FNNAME contain stubs
851 that copy floating point arguments from the gp regs to the fp
852 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
853 then any 16 bit function that calls FNNAME should be redirected
854 to the stub instead. If FNNAME is not a 32 bit function, the
855 stub should be discarded.
856
857 .mips16.call.fp.FNNAME sections are similar, but contain stubs
858 which call FNNAME and then copy the return value from the fp regs
859 to the gp regs. These stubs store the return value in $18 while
860 calling FNNAME; any function which might call one of these stubs
861 must arrange to save $18 around the call. (This case is not
862 needed for 32 bit functions that call 16 bit functions, because
863 16 bit functions always return floating point values in both
864 $f0/$f1 and $2/$3.)
865
866 Note that in all cases FNNAME might be defined statically.
867 Therefore, FNNAME is not used literally. Instead, the relocation
868 information will indicate which symbol the section is for.
869
870 We record any stubs that we find in the symbol table. */
871
872 #define FN_STUB ".mips16.fn."
873 #define CALL_STUB ".mips16.call."
874 #define CALL_FP_STUB ".mips16.call.fp."
875
876 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
877 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
878 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
879 \f
880 /* The format of the first PLT entry in an O32 executable. */
881 static const bfd_vma mips_o32_exec_plt0_entry[] = {
882 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
883 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
884 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
885 0x031cc023, /* subu $24, $24, $28 */
886 0x03e07821, /* move $15, $31 */
887 0x0018c082, /* srl $24, $24, 2 */
888 0x0320f809, /* jalr $25 */
889 0x2718fffe /* subu $24, $24, 2 */
890 };
891
892 /* The format of the first PLT entry in an N32 executable. Different
893 because gp ($28) is not available; we use t2 ($14) instead. */
894 static const bfd_vma mips_n32_exec_plt0_entry[] = {
895 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
896 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
897 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
898 0x030ec023, /* subu $24, $24, $14 */
899 0x03e07821, /* move $15, $31 */
900 0x0018c082, /* srl $24, $24, 2 */
901 0x0320f809, /* jalr $25 */
902 0x2718fffe /* subu $24, $24, 2 */
903 };
904
905 /* The format of the first PLT entry in an N64 executable. Different
906 from N32 because of the increased size of GOT entries. */
907 static const bfd_vma mips_n64_exec_plt0_entry[] = {
908 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
909 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
910 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
911 0x030ec023, /* subu $24, $24, $14 */
912 0x03e07821, /* move $15, $31 */
913 0x0018c0c2, /* srl $24, $24, 3 */
914 0x0320f809, /* jalr $25 */
915 0x2718fffe /* subu $24, $24, 2 */
916 };
917
918 /* The format of subsequent PLT entries. */
919 static const bfd_vma mips_exec_plt_entry[] = {
920 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
921 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
922 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
923 0x03200008 /* jr $25 */
924 };
925
926 /* The format of the first PLT entry in a VxWorks executable. */
927 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
928 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
929 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
930 0x8f390008, /* lw t9, 8(t9) */
931 0x00000000, /* nop */
932 0x03200008, /* jr t9 */
933 0x00000000 /* nop */
934 };
935
936 /* The format of subsequent PLT entries. */
937 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
938 0x10000000, /* b .PLT_resolver */
939 0x24180000, /* li t8, <pltindex> */
940 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
941 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
942 0x8f390000, /* lw t9, 0(t9) */
943 0x00000000, /* nop */
944 0x03200008, /* jr t9 */
945 0x00000000 /* nop */
946 };
947
948 /* The format of the first PLT entry in a VxWorks shared object. */
949 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
950 0x8f990008, /* lw t9, 8(gp) */
951 0x00000000, /* nop */
952 0x03200008, /* jr t9 */
953 0x00000000, /* nop */
954 0x00000000, /* nop */
955 0x00000000 /* nop */
956 };
957
958 /* The format of subsequent PLT entries. */
959 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
960 0x10000000, /* b .PLT_resolver */
961 0x24180000 /* li t8, <pltindex> */
962 };
963 \f
964 /* Look up an entry in a MIPS ELF linker hash table. */
965
966 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
967 ((struct mips_elf_link_hash_entry *) \
968 elf_link_hash_lookup (&(table)->root, (string), (create), \
969 (copy), (follow)))
970
971 /* Traverse a MIPS ELF linker hash table. */
972
973 #define mips_elf_link_hash_traverse(table, func, info) \
974 (elf_link_hash_traverse \
975 (&(table)->root, \
976 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
977 (info)))
978
979 /* Get the MIPS ELF linker hash table from a link_info structure. */
980
981 #define mips_elf_hash_table(p) \
982 ((struct mips_elf_link_hash_table *) ((p)->hash))
983
984 /* Find the base offsets for thread-local storage in this object,
985 for GD/LD and IE/LE respectively. */
986
987 #define TP_OFFSET 0x7000
988 #define DTP_OFFSET 0x8000
989
990 static bfd_vma
991 dtprel_base (struct bfd_link_info *info)
992 {
993 /* If tls_sec is NULL, we should have signalled an error already. */
994 if (elf_hash_table (info)->tls_sec == NULL)
995 return 0;
996 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
997 }
998
999 static bfd_vma
1000 tprel_base (struct bfd_link_info *info)
1001 {
1002 /* If tls_sec is NULL, we should have signalled an error already. */
1003 if (elf_hash_table (info)->tls_sec == NULL)
1004 return 0;
1005 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1006 }
1007
1008 /* Create an entry in a MIPS ELF linker hash table. */
1009
1010 static struct bfd_hash_entry *
1011 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1012 struct bfd_hash_table *table, const char *string)
1013 {
1014 struct mips_elf_link_hash_entry *ret =
1015 (struct mips_elf_link_hash_entry *) entry;
1016
1017 /* Allocate the structure if it has not already been allocated by a
1018 subclass. */
1019 if (ret == NULL)
1020 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1021 if (ret == NULL)
1022 return (struct bfd_hash_entry *) ret;
1023
1024 /* Call the allocation method of the superclass. */
1025 ret = ((struct mips_elf_link_hash_entry *)
1026 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1027 table, string));
1028 if (ret != NULL)
1029 {
1030 /* Set local fields. */
1031 memset (&ret->esym, 0, sizeof (EXTR));
1032 /* We use -2 as a marker to indicate that the information has
1033 not been set. -1 means there is no associated ifd. */
1034 ret->esym.ifd = -2;
1035 ret->la25_stub = 0;
1036 ret->possibly_dynamic_relocs = 0;
1037 ret->fn_stub = NULL;
1038 ret->call_stub = NULL;
1039 ret->call_fp_stub = NULL;
1040 ret->tls_type = GOT_NORMAL;
1041 ret->global_got_area = GGA_NONE;
1042 ret->readonly_reloc = FALSE;
1043 ret->has_static_relocs = FALSE;
1044 ret->no_fn_stub = FALSE;
1045 ret->need_fn_stub = FALSE;
1046 ret->has_nonpic_branches = FALSE;
1047 ret->needs_lazy_stub = FALSE;
1048 }
1049
1050 return (struct bfd_hash_entry *) ret;
1051 }
1052
1053 bfd_boolean
1054 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1055 {
1056 if (!sec->used_by_bfd)
1057 {
1058 struct _mips_elf_section_data *sdata;
1059 bfd_size_type amt = sizeof (*sdata);
1060
1061 sdata = bfd_zalloc (abfd, amt);
1062 if (sdata == NULL)
1063 return FALSE;
1064 sec->used_by_bfd = sdata;
1065 }
1066
1067 return _bfd_elf_new_section_hook (abfd, sec);
1068 }
1069 \f
1070 /* Read ECOFF debugging information from a .mdebug section into a
1071 ecoff_debug_info structure. */
1072
1073 bfd_boolean
1074 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1075 struct ecoff_debug_info *debug)
1076 {
1077 HDRR *symhdr;
1078 const struct ecoff_debug_swap *swap;
1079 char *ext_hdr;
1080
1081 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1082 memset (debug, 0, sizeof (*debug));
1083
1084 ext_hdr = bfd_malloc (swap->external_hdr_size);
1085 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1086 goto error_return;
1087
1088 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1089 swap->external_hdr_size))
1090 goto error_return;
1091
1092 symhdr = &debug->symbolic_header;
1093 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1094
1095 /* The symbolic header contains absolute file offsets and sizes to
1096 read. */
1097 #define READ(ptr, offset, count, size, type) \
1098 if (symhdr->count == 0) \
1099 debug->ptr = NULL; \
1100 else \
1101 { \
1102 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1103 debug->ptr = bfd_malloc (amt); \
1104 if (debug->ptr == NULL) \
1105 goto error_return; \
1106 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1107 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1108 goto error_return; \
1109 }
1110
1111 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1112 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1113 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1114 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1115 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1116 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1117 union aux_ext *);
1118 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1119 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1120 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1121 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1122 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1123 #undef READ
1124
1125 debug->fdr = NULL;
1126
1127 return TRUE;
1128
1129 error_return:
1130 if (ext_hdr != NULL)
1131 free (ext_hdr);
1132 if (debug->line != NULL)
1133 free (debug->line);
1134 if (debug->external_dnr != NULL)
1135 free (debug->external_dnr);
1136 if (debug->external_pdr != NULL)
1137 free (debug->external_pdr);
1138 if (debug->external_sym != NULL)
1139 free (debug->external_sym);
1140 if (debug->external_opt != NULL)
1141 free (debug->external_opt);
1142 if (debug->external_aux != NULL)
1143 free (debug->external_aux);
1144 if (debug->ss != NULL)
1145 free (debug->ss);
1146 if (debug->ssext != NULL)
1147 free (debug->ssext);
1148 if (debug->external_fdr != NULL)
1149 free (debug->external_fdr);
1150 if (debug->external_rfd != NULL)
1151 free (debug->external_rfd);
1152 if (debug->external_ext != NULL)
1153 free (debug->external_ext);
1154 return FALSE;
1155 }
1156 \f
1157 /* Swap RPDR (runtime procedure table entry) for output. */
1158
1159 static void
1160 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1161 {
1162 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1163 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1164 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1165 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1166 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1167 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1168
1169 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1170 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1171
1172 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1173 }
1174
1175 /* Create a runtime procedure table from the .mdebug section. */
1176
1177 static bfd_boolean
1178 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1179 struct bfd_link_info *info, asection *s,
1180 struct ecoff_debug_info *debug)
1181 {
1182 const struct ecoff_debug_swap *swap;
1183 HDRR *hdr = &debug->symbolic_header;
1184 RPDR *rpdr, *rp;
1185 struct rpdr_ext *erp;
1186 void *rtproc;
1187 struct pdr_ext *epdr;
1188 struct sym_ext *esym;
1189 char *ss, **sv;
1190 char *str;
1191 bfd_size_type size;
1192 bfd_size_type count;
1193 unsigned long sindex;
1194 unsigned long i;
1195 PDR pdr;
1196 SYMR sym;
1197 const char *no_name_func = _("static procedure (no name)");
1198
1199 epdr = NULL;
1200 rpdr = NULL;
1201 esym = NULL;
1202 ss = NULL;
1203 sv = NULL;
1204
1205 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1206
1207 sindex = strlen (no_name_func) + 1;
1208 count = hdr->ipdMax;
1209 if (count > 0)
1210 {
1211 size = swap->external_pdr_size;
1212
1213 epdr = bfd_malloc (size * count);
1214 if (epdr == NULL)
1215 goto error_return;
1216
1217 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1218 goto error_return;
1219
1220 size = sizeof (RPDR);
1221 rp = rpdr = bfd_malloc (size * count);
1222 if (rpdr == NULL)
1223 goto error_return;
1224
1225 size = sizeof (char *);
1226 sv = bfd_malloc (size * count);
1227 if (sv == NULL)
1228 goto error_return;
1229
1230 count = hdr->isymMax;
1231 size = swap->external_sym_size;
1232 esym = bfd_malloc (size * count);
1233 if (esym == NULL)
1234 goto error_return;
1235
1236 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1237 goto error_return;
1238
1239 count = hdr->issMax;
1240 ss = bfd_malloc (count);
1241 if (ss == NULL)
1242 goto error_return;
1243 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1244 goto error_return;
1245
1246 count = hdr->ipdMax;
1247 for (i = 0; i < (unsigned long) count; i++, rp++)
1248 {
1249 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1250 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1251 rp->adr = sym.value;
1252 rp->regmask = pdr.regmask;
1253 rp->regoffset = pdr.regoffset;
1254 rp->fregmask = pdr.fregmask;
1255 rp->fregoffset = pdr.fregoffset;
1256 rp->frameoffset = pdr.frameoffset;
1257 rp->framereg = pdr.framereg;
1258 rp->pcreg = pdr.pcreg;
1259 rp->irpss = sindex;
1260 sv[i] = ss + sym.iss;
1261 sindex += strlen (sv[i]) + 1;
1262 }
1263 }
1264
1265 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1266 size = BFD_ALIGN (size, 16);
1267 rtproc = bfd_alloc (abfd, size);
1268 if (rtproc == NULL)
1269 {
1270 mips_elf_hash_table (info)->procedure_count = 0;
1271 goto error_return;
1272 }
1273
1274 mips_elf_hash_table (info)->procedure_count = count + 2;
1275
1276 erp = rtproc;
1277 memset (erp, 0, sizeof (struct rpdr_ext));
1278 erp++;
1279 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1280 strcpy (str, no_name_func);
1281 str += strlen (no_name_func) + 1;
1282 for (i = 0; i < count; i++)
1283 {
1284 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1285 strcpy (str, sv[i]);
1286 str += strlen (sv[i]) + 1;
1287 }
1288 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1289
1290 /* Set the size and contents of .rtproc section. */
1291 s->size = size;
1292 s->contents = rtproc;
1293
1294 /* Skip this section later on (I don't think this currently
1295 matters, but someday it might). */
1296 s->map_head.link_order = NULL;
1297
1298 if (epdr != NULL)
1299 free (epdr);
1300 if (rpdr != NULL)
1301 free (rpdr);
1302 if (esym != NULL)
1303 free (esym);
1304 if (ss != NULL)
1305 free (ss);
1306 if (sv != NULL)
1307 free (sv);
1308
1309 return TRUE;
1310
1311 error_return:
1312 if (epdr != NULL)
1313 free (epdr);
1314 if (rpdr != NULL)
1315 free (rpdr);
1316 if (esym != NULL)
1317 free (esym);
1318 if (ss != NULL)
1319 free (ss);
1320 if (sv != NULL)
1321 free (sv);
1322 return FALSE;
1323 }
1324 \f
1325 /* We're going to create a stub for H. Create a symbol for the stub's
1326 value and size, to help make the disassembly easier to read. */
1327
1328 static bfd_boolean
1329 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1330 struct mips_elf_link_hash_entry *h,
1331 const char *prefix, asection *s, bfd_vma value,
1332 bfd_vma size)
1333 {
1334 struct bfd_link_hash_entry *bh;
1335 struct elf_link_hash_entry *elfh;
1336 const char *name;
1337
1338 /* Create a new symbol. */
1339 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1340 bh = NULL;
1341 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1342 BSF_LOCAL, s, value, NULL,
1343 TRUE, FALSE, &bh))
1344 return FALSE;
1345
1346 /* Make it a local function. */
1347 elfh = (struct elf_link_hash_entry *) bh;
1348 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1349 elfh->size = size;
1350 elfh->forced_local = 1;
1351 return TRUE;
1352 }
1353
1354 /* We're about to redefine H. Create a symbol to represent H's
1355 current value and size, to help make the disassembly easier
1356 to read. */
1357
1358 static bfd_boolean
1359 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1360 struct mips_elf_link_hash_entry *h,
1361 const char *prefix)
1362 {
1363 struct bfd_link_hash_entry *bh;
1364 struct elf_link_hash_entry *elfh;
1365 const char *name;
1366 asection *s;
1367 bfd_vma value;
1368
1369 /* Read the symbol's value. */
1370 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1371 || h->root.root.type == bfd_link_hash_defweak);
1372 s = h->root.root.u.def.section;
1373 value = h->root.root.u.def.value;
1374
1375 /* Create a new symbol. */
1376 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1377 bh = NULL;
1378 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1379 BSF_LOCAL, s, value, NULL,
1380 TRUE, FALSE, &bh))
1381 return FALSE;
1382
1383 /* Make it local and copy the other attributes from H. */
1384 elfh = (struct elf_link_hash_entry *) bh;
1385 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1386 elfh->other = h->root.other;
1387 elfh->size = h->root.size;
1388 elfh->forced_local = 1;
1389 return TRUE;
1390 }
1391
1392 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1393 function rather than to a hard-float stub. */
1394
1395 static bfd_boolean
1396 section_allows_mips16_refs_p (asection *section)
1397 {
1398 const char *name;
1399
1400 name = bfd_get_section_name (section->owner, section);
1401 return (FN_STUB_P (name)
1402 || CALL_STUB_P (name)
1403 || CALL_FP_STUB_P (name)
1404 || strcmp (name, ".pdr") == 0);
1405 }
1406
1407 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1408 stub section of some kind. Return the R_SYMNDX of the target
1409 function, or 0 if we can't decide which function that is. */
1410
1411 static unsigned long
1412 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1413 const Elf_Internal_Rela *relocs,
1414 const Elf_Internal_Rela *relend)
1415 {
1416 const Elf_Internal_Rela *rel;
1417
1418 /* Trust the first R_MIPS_NONE relocation, if any. */
1419 for (rel = relocs; rel < relend; rel++)
1420 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1421 return ELF_R_SYM (sec->owner, rel->r_info);
1422
1423 /* Otherwise trust the first relocation, whatever its kind. This is
1424 the traditional behavior. */
1425 if (relocs < relend)
1426 return ELF_R_SYM (sec->owner, relocs->r_info);
1427
1428 return 0;
1429 }
1430
1431 /* Check the mips16 stubs for a particular symbol, and see if we can
1432 discard them. */
1433
1434 static void
1435 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1436 struct mips_elf_link_hash_entry *h)
1437 {
1438 /* Dynamic symbols must use the standard call interface, in case other
1439 objects try to call them. */
1440 if (h->fn_stub != NULL
1441 && h->root.dynindx != -1)
1442 {
1443 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1444 h->need_fn_stub = TRUE;
1445 }
1446
1447 if (h->fn_stub != NULL
1448 && ! h->need_fn_stub)
1449 {
1450 /* We don't need the fn_stub; the only references to this symbol
1451 are 16 bit calls. Clobber the size to 0 to prevent it from
1452 being included in the link. */
1453 h->fn_stub->size = 0;
1454 h->fn_stub->flags &= ~SEC_RELOC;
1455 h->fn_stub->reloc_count = 0;
1456 h->fn_stub->flags |= SEC_EXCLUDE;
1457 }
1458
1459 if (h->call_stub != NULL
1460 && ELF_ST_IS_MIPS16 (h->root.other))
1461 {
1462 /* We don't need the call_stub; this is a 16 bit function, so
1463 calls from other 16 bit functions are OK. Clobber the size
1464 to 0 to prevent it from being included in the link. */
1465 h->call_stub->size = 0;
1466 h->call_stub->flags &= ~SEC_RELOC;
1467 h->call_stub->reloc_count = 0;
1468 h->call_stub->flags |= SEC_EXCLUDE;
1469 }
1470
1471 if (h->call_fp_stub != NULL
1472 && ELF_ST_IS_MIPS16 (h->root.other))
1473 {
1474 /* We don't need the call_stub; this is a 16 bit function, so
1475 calls from other 16 bit functions are OK. Clobber the size
1476 to 0 to prevent it from being included in the link. */
1477 h->call_fp_stub->size = 0;
1478 h->call_fp_stub->flags &= ~SEC_RELOC;
1479 h->call_fp_stub->reloc_count = 0;
1480 h->call_fp_stub->flags |= SEC_EXCLUDE;
1481 }
1482 }
1483
1484 /* Hashtable callbacks for mips_elf_la25_stubs. */
1485
1486 static hashval_t
1487 mips_elf_la25_stub_hash (const void *entry_)
1488 {
1489 const struct mips_elf_la25_stub *entry;
1490
1491 entry = (struct mips_elf_la25_stub *) entry_;
1492 return entry->h->root.root.u.def.section->id
1493 + entry->h->root.root.u.def.value;
1494 }
1495
1496 static int
1497 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1498 {
1499 const struct mips_elf_la25_stub *entry1, *entry2;
1500
1501 entry1 = (struct mips_elf_la25_stub *) entry1_;
1502 entry2 = (struct mips_elf_la25_stub *) entry2_;
1503 return ((entry1->h->root.root.u.def.section
1504 == entry2->h->root.root.u.def.section)
1505 && (entry1->h->root.root.u.def.value
1506 == entry2->h->root.root.u.def.value));
1507 }
1508
1509 /* Called by the linker to set up the la25 stub-creation code. FN is
1510 the linker's implementation of add_stub_function. Return true on
1511 success. */
1512
1513 bfd_boolean
1514 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1515 asection *(*fn) (const char *, asection *,
1516 asection *))
1517 {
1518 struct mips_elf_link_hash_table *htab;
1519
1520 htab = mips_elf_hash_table (info);
1521 htab->add_stub_section = fn;
1522 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1523 mips_elf_la25_stub_eq, NULL);
1524 if (htab->la25_stubs == NULL)
1525 return FALSE;
1526
1527 return TRUE;
1528 }
1529
1530 /* Return true if H is a locally-defined PIC function, in the sense
1531 that it might need $25 to be valid on entry. Note that MIPS16
1532 functions never need $25 to be valid on entry; they set up $gp
1533 using PC-relative instructions instead. */
1534
1535 static bfd_boolean
1536 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1537 {
1538 return ((h->root.root.type == bfd_link_hash_defined
1539 || h->root.root.type == bfd_link_hash_defweak)
1540 && h->root.def_regular
1541 && !bfd_is_abs_section (h->root.root.u.def.section)
1542 && !ELF_ST_IS_MIPS16 (h->root.other)
1543 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1544 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1545 }
1546
1547 /* STUB describes an la25 stub that we have decided to implement
1548 by inserting an LUI/ADDIU pair before the target function.
1549 Create the section and redirect the function symbol to it. */
1550
1551 static bfd_boolean
1552 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1553 struct bfd_link_info *info)
1554 {
1555 struct mips_elf_link_hash_table *htab;
1556 char *name;
1557 asection *s, *input_section;
1558 unsigned int align;
1559
1560 htab = mips_elf_hash_table (info);
1561
1562 /* Create a unique name for the new section. */
1563 name = bfd_malloc (11 + sizeof (".text.stub."));
1564 if (name == NULL)
1565 return FALSE;
1566 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1567
1568 /* Create the section. */
1569 input_section = stub->h->root.root.u.def.section;
1570 s = htab->add_stub_section (name, input_section,
1571 input_section->output_section);
1572 if (s == NULL)
1573 return FALSE;
1574
1575 /* Make sure that any padding goes before the stub. */
1576 align = input_section->alignment_power;
1577 if (!bfd_set_section_alignment (s->owner, s, align))
1578 return FALSE;
1579 if (align > 3)
1580 s->size = (1 << align) - 8;
1581
1582 /* Create a symbol for the stub. */
1583 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1584 stub->stub_section = s;
1585 stub->offset = s->size;
1586
1587 /* Allocate room for it. */
1588 s->size += 8;
1589 return TRUE;
1590 }
1591
1592 /* STUB describes an la25 stub that we have decided to implement
1593 with a separate trampoline. Allocate room for it and redirect
1594 the function symbol to it. */
1595
1596 static bfd_boolean
1597 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1598 struct bfd_link_info *info)
1599 {
1600 struct mips_elf_link_hash_table *htab;
1601 asection *s;
1602
1603 htab = mips_elf_hash_table (info);
1604
1605 /* Create a trampoline section, if we haven't already. */
1606 s = htab->strampoline;
1607 if (s == NULL)
1608 {
1609 asection *input_section = stub->h->root.root.u.def.section;
1610 s = htab->add_stub_section (".text", NULL,
1611 input_section->output_section);
1612 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1613 return FALSE;
1614 htab->strampoline = s;
1615 }
1616
1617 /* Create a symbol for the stub. */
1618 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1619 stub->stub_section = s;
1620 stub->offset = s->size;
1621
1622 /* Allocate room for it. */
1623 s->size += 16;
1624 return TRUE;
1625 }
1626
1627 /* H describes a symbol that needs an la25 stub. Make sure that an
1628 appropriate stub exists and point H at it. */
1629
1630 static bfd_boolean
1631 mips_elf_add_la25_stub (struct bfd_link_info *info,
1632 struct mips_elf_link_hash_entry *h)
1633 {
1634 struct mips_elf_link_hash_table *htab;
1635 struct mips_elf_la25_stub search, *stub;
1636 bfd_boolean use_trampoline_p;
1637 asection *s;
1638 bfd_vma value;
1639 void **slot;
1640
1641 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1642 of the section and if we would need no more than 2 nops. */
1643 s = h->root.root.u.def.section;
1644 value = h->root.root.u.def.value;
1645 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1646
1647 /* Describe the stub we want. */
1648 search.stub_section = NULL;
1649 search.offset = 0;
1650 search.h = h;
1651
1652 /* See if we've already created an equivalent stub. */
1653 htab = mips_elf_hash_table (info);
1654 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1655 if (slot == NULL)
1656 return FALSE;
1657
1658 stub = (struct mips_elf_la25_stub *) *slot;
1659 if (stub != NULL)
1660 {
1661 /* We can reuse the existing stub. */
1662 h->la25_stub = stub;
1663 return TRUE;
1664 }
1665
1666 /* Create a permanent copy of ENTRY and add it to the hash table. */
1667 stub = bfd_malloc (sizeof (search));
1668 if (stub == NULL)
1669 return FALSE;
1670 *stub = search;
1671 *slot = stub;
1672
1673 h->la25_stub = stub;
1674 return (use_trampoline_p
1675 ? mips_elf_add_la25_trampoline (stub, info)
1676 : mips_elf_add_la25_intro (stub, info));
1677 }
1678
1679 /* A mips_elf_link_hash_traverse callback that is called before sizing
1680 sections. DATA points to a mips_htab_traverse_info structure. */
1681
1682 static bfd_boolean
1683 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1684 {
1685 struct mips_htab_traverse_info *hti;
1686
1687 hti = (struct mips_htab_traverse_info *) data;
1688 if (h->root.root.type == bfd_link_hash_warning)
1689 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1690
1691 if (!hti->info->relocatable)
1692 mips_elf_check_mips16_stubs (hti->info, h);
1693
1694 if (mips_elf_local_pic_function_p (h))
1695 {
1696 /* H is a function that might need $25 to be valid on entry.
1697 If we're creating a non-PIC relocatable object, mark H as
1698 being PIC. If we're creating a non-relocatable object with
1699 non-PIC branches and jumps to H, make sure that H has an la25
1700 stub. */
1701 if (hti->info->relocatable)
1702 {
1703 if (!PIC_OBJECT_P (hti->output_bfd))
1704 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1705 }
1706 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1707 {
1708 hti->error = TRUE;
1709 return FALSE;
1710 }
1711 }
1712 return TRUE;
1713 }
1714 \f
1715 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1716 Most mips16 instructions are 16 bits, but these instructions
1717 are 32 bits.
1718
1719 The format of these instructions is:
1720
1721 +--------------+--------------------------------+
1722 | JALX | X| Imm 20:16 | Imm 25:21 |
1723 +--------------+--------------------------------+
1724 | Immediate 15:0 |
1725 +-----------------------------------------------+
1726
1727 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1728 Note that the immediate value in the first word is swapped.
1729
1730 When producing a relocatable object file, R_MIPS16_26 is
1731 handled mostly like R_MIPS_26. In particular, the addend is
1732 stored as a straight 26-bit value in a 32-bit instruction.
1733 (gas makes life simpler for itself by never adjusting a
1734 R_MIPS16_26 reloc to be against a section, so the addend is
1735 always zero). However, the 32 bit instruction is stored as 2
1736 16-bit values, rather than a single 32-bit value. In a
1737 big-endian file, the result is the same; in a little-endian
1738 file, the two 16-bit halves of the 32 bit value are swapped.
1739 This is so that a disassembler can recognize the jal
1740 instruction.
1741
1742 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1743 instruction stored as two 16-bit values. The addend A is the
1744 contents of the targ26 field. The calculation is the same as
1745 R_MIPS_26. When storing the calculated value, reorder the
1746 immediate value as shown above, and don't forget to store the
1747 value as two 16-bit values.
1748
1749 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1750 defined as
1751
1752 big-endian:
1753 +--------+----------------------+
1754 | | |
1755 | | targ26-16 |
1756 |31 26|25 0|
1757 +--------+----------------------+
1758
1759 little-endian:
1760 +----------+------+-------------+
1761 | | | |
1762 | sub1 | | sub2 |
1763 |0 9|10 15|16 31|
1764 +----------+--------------------+
1765 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1766 ((sub1 << 16) | sub2)).
1767
1768 When producing a relocatable object file, the calculation is
1769 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1770 When producing a fully linked file, the calculation is
1771 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1772 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1773
1774 The table below lists the other MIPS16 instruction relocations.
1775 Each one is calculated in the same way as the non-MIPS16 relocation
1776 given on the right, but using the extended MIPS16 layout of 16-bit
1777 immediate fields:
1778
1779 R_MIPS16_GPREL R_MIPS_GPREL16
1780 R_MIPS16_GOT16 R_MIPS_GOT16
1781 R_MIPS16_CALL16 R_MIPS_CALL16
1782 R_MIPS16_HI16 R_MIPS_HI16
1783 R_MIPS16_LO16 R_MIPS_LO16
1784
1785 A typical instruction will have a format like this:
1786
1787 +--------------+--------------------------------+
1788 | EXTEND | Imm 10:5 | Imm 15:11 |
1789 +--------------+--------------------------------+
1790 | Major | rx | ry | Imm 4:0 |
1791 +--------------+--------------------------------+
1792
1793 EXTEND is the five bit value 11110. Major is the instruction
1794 opcode.
1795
1796 All we need to do here is shuffle the bits appropriately.
1797 As above, the two 16-bit halves must be swapped on a
1798 little-endian system. */
1799
1800 static inline bfd_boolean
1801 mips16_reloc_p (int r_type)
1802 {
1803 switch (r_type)
1804 {
1805 case R_MIPS16_26:
1806 case R_MIPS16_GPREL:
1807 case R_MIPS16_GOT16:
1808 case R_MIPS16_CALL16:
1809 case R_MIPS16_HI16:
1810 case R_MIPS16_LO16:
1811 return TRUE;
1812
1813 default:
1814 return FALSE;
1815 }
1816 }
1817
1818 static inline bfd_boolean
1819 got16_reloc_p (int r_type)
1820 {
1821 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1822 }
1823
1824 static inline bfd_boolean
1825 call16_reloc_p (int r_type)
1826 {
1827 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1828 }
1829
1830 static inline bfd_boolean
1831 hi16_reloc_p (int r_type)
1832 {
1833 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1834 }
1835
1836 static inline bfd_boolean
1837 lo16_reloc_p (int r_type)
1838 {
1839 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1840 }
1841
1842 static inline bfd_boolean
1843 mips16_call_reloc_p (int r_type)
1844 {
1845 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1846 }
1847
1848 void
1849 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1850 bfd_boolean jal_shuffle, bfd_byte *data)
1851 {
1852 bfd_vma extend, insn, val;
1853
1854 if (!mips16_reloc_p (r_type))
1855 return;
1856
1857 /* Pick up the mips16 extend instruction and the real instruction. */
1858 extend = bfd_get_16 (abfd, data);
1859 insn = bfd_get_16 (abfd, data + 2);
1860 if (r_type == R_MIPS16_26)
1861 {
1862 if (jal_shuffle)
1863 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1864 | ((extend & 0x1f) << 21) | insn;
1865 else
1866 val = extend << 16 | insn;
1867 }
1868 else
1869 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1870 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1871 bfd_put_32 (abfd, val, data);
1872 }
1873
1874 void
1875 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1876 bfd_boolean jal_shuffle, bfd_byte *data)
1877 {
1878 bfd_vma extend, insn, val;
1879
1880 if (!mips16_reloc_p (r_type))
1881 return;
1882
1883 val = bfd_get_32 (abfd, data);
1884 if (r_type == R_MIPS16_26)
1885 {
1886 if (jal_shuffle)
1887 {
1888 insn = val & 0xffff;
1889 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1890 | ((val >> 21) & 0x1f);
1891 }
1892 else
1893 {
1894 insn = val & 0xffff;
1895 extend = val >> 16;
1896 }
1897 }
1898 else
1899 {
1900 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1901 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1902 }
1903 bfd_put_16 (abfd, insn, data + 2);
1904 bfd_put_16 (abfd, extend, data);
1905 }
1906
1907 bfd_reloc_status_type
1908 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1909 arelent *reloc_entry, asection *input_section,
1910 bfd_boolean relocatable, void *data, bfd_vma gp)
1911 {
1912 bfd_vma relocation;
1913 bfd_signed_vma val;
1914 bfd_reloc_status_type status;
1915
1916 if (bfd_is_com_section (symbol->section))
1917 relocation = 0;
1918 else
1919 relocation = symbol->value;
1920
1921 relocation += symbol->section->output_section->vma;
1922 relocation += symbol->section->output_offset;
1923
1924 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1925 return bfd_reloc_outofrange;
1926
1927 /* Set val to the offset into the section or symbol. */
1928 val = reloc_entry->addend;
1929
1930 _bfd_mips_elf_sign_extend (val, 16);
1931
1932 /* Adjust val for the final section location and GP value. If we
1933 are producing relocatable output, we don't want to do this for
1934 an external symbol. */
1935 if (! relocatable
1936 || (symbol->flags & BSF_SECTION_SYM) != 0)
1937 val += relocation - gp;
1938
1939 if (reloc_entry->howto->partial_inplace)
1940 {
1941 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1942 (bfd_byte *) data
1943 + reloc_entry->address);
1944 if (status != bfd_reloc_ok)
1945 return status;
1946 }
1947 else
1948 reloc_entry->addend = val;
1949
1950 if (relocatable)
1951 reloc_entry->address += input_section->output_offset;
1952
1953 return bfd_reloc_ok;
1954 }
1955
1956 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1957 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1958 that contains the relocation field and DATA points to the start of
1959 INPUT_SECTION. */
1960
1961 struct mips_hi16
1962 {
1963 struct mips_hi16 *next;
1964 bfd_byte *data;
1965 asection *input_section;
1966 arelent rel;
1967 };
1968
1969 /* FIXME: This should not be a static variable. */
1970
1971 static struct mips_hi16 *mips_hi16_list;
1972
1973 /* A howto special_function for REL *HI16 relocations. We can only
1974 calculate the correct value once we've seen the partnering
1975 *LO16 relocation, so just save the information for later.
1976
1977 The ABI requires that the *LO16 immediately follow the *HI16.
1978 However, as a GNU extension, we permit an arbitrary number of
1979 *HI16s to be associated with a single *LO16. This significantly
1980 simplies the relocation handling in gcc. */
1981
1982 bfd_reloc_status_type
1983 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1984 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1985 asection *input_section, bfd *output_bfd,
1986 char **error_message ATTRIBUTE_UNUSED)
1987 {
1988 struct mips_hi16 *n;
1989
1990 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1991 return bfd_reloc_outofrange;
1992
1993 n = bfd_malloc (sizeof *n);
1994 if (n == NULL)
1995 return bfd_reloc_outofrange;
1996
1997 n->next = mips_hi16_list;
1998 n->data = data;
1999 n->input_section = input_section;
2000 n->rel = *reloc_entry;
2001 mips_hi16_list = n;
2002
2003 if (output_bfd != NULL)
2004 reloc_entry->address += input_section->output_offset;
2005
2006 return bfd_reloc_ok;
2007 }
2008
2009 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2010 like any other 16-bit relocation when applied to global symbols, but is
2011 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2012
2013 bfd_reloc_status_type
2014 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2015 void *data, asection *input_section,
2016 bfd *output_bfd, char **error_message)
2017 {
2018 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2019 || bfd_is_und_section (bfd_get_section (symbol))
2020 || bfd_is_com_section (bfd_get_section (symbol)))
2021 /* The relocation is against a global symbol. */
2022 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2023 input_section, output_bfd,
2024 error_message);
2025
2026 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2027 input_section, output_bfd, error_message);
2028 }
2029
2030 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2031 is a straightforward 16 bit inplace relocation, but we must deal with
2032 any partnering high-part relocations as well. */
2033
2034 bfd_reloc_status_type
2035 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2036 void *data, asection *input_section,
2037 bfd *output_bfd, char **error_message)
2038 {
2039 bfd_vma vallo;
2040 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2041
2042 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2043 return bfd_reloc_outofrange;
2044
2045 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2046 location);
2047 vallo = bfd_get_32 (abfd, location);
2048 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2049 location);
2050
2051 while (mips_hi16_list != NULL)
2052 {
2053 bfd_reloc_status_type ret;
2054 struct mips_hi16 *hi;
2055
2056 hi = mips_hi16_list;
2057
2058 /* R_MIPS*_GOT16 relocations are something of a special case. We
2059 want to install the addend in the same way as for a R_MIPS*_HI16
2060 relocation (with a rightshift of 16). However, since GOT16
2061 relocations can also be used with global symbols, their howto
2062 has a rightshift of 0. */
2063 if (hi->rel.howto->type == R_MIPS_GOT16)
2064 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2065 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2066 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2067
2068 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2069 carry or borrow will induce a change of +1 or -1 in the high part. */
2070 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2071
2072 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2073 hi->input_section, output_bfd,
2074 error_message);
2075 if (ret != bfd_reloc_ok)
2076 return ret;
2077
2078 mips_hi16_list = hi->next;
2079 free (hi);
2080 }
2081
2082 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2083 input_section, output_bfd,
2084 error_message);
2085 }
2086
2087 /* A generic howto special_function. This calculates and installs the
2088 relocation itself, thus avoiding the oft-discussed problems in
2089 bfd_perform_relocation and bfd_install_relocation. */
2090
2091 bfd_reloc_status_type
2092 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2093 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2094 asection *input_section, bfd *output_bfd,
2095 char **error_message ATTRIBUTE_UNUSED)
2096 {
2097 bfd_signed_vma val;
2098 bfd_reloc_status_type status;
2099 bfd_boolean relocatable;
2100
2101 relocatable = (output_bfd != NULL);
2102
2103 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2104 return bfd_reloc_outofrange;
2105
2106 /* Build up the field adjustment in VAL. */
2107 val = 0;
2108 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2109 {
2110 /* Either we're calculating the final field value or we have a
2111 relocation against a section symbol. Add in the section's
2112 offset or address. */
2113 val += symbol->section->output_section->vma;
2114 val += symbol->section->output_offset;
2115 }
2116
2117 if (!relocatable)
2118 {
2119 /* We're calculating the final field value. Add in the symbol's value
2120 and, if pc-relative, subtract the address of the field itself. */
2121 val += symbol->value;
2122 if (reloc_entry->howto->pc_relative)
2123 {
2124 val -= input_section->output_section->vma;
2125 val -= input_section->output_offset;
2126 val -= reloc_entry->address;
2127 }
2128 }
2129
2130 /* VAL is now the final adjustment. If we're keeping this relocation
2131 in the output file, and if the relocation uses a separate addend,
2132 we just need to add VAL to that addend. Otherwise we need to add
2133 VAL to the relocation field itself. */
2134 if (relocatable && !reloc_entry->howto->partial_inplace)
2135 reloc_entry->addend += val;
2136 else
2137 {
2138 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2139
2140 /* Add in the separate addend, if any. */
2141 val += reloc_entry->addend;
2142
2143 /* Add VAL to the relocation field. */
2144 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2145 location);
2146 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2147 location);
2148 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2149 location);
2150
2151 if (status != bfd_reloc_ok)
2152 return status;
2153 }
2154
2155 if (relocatable)
2156 reloc_entry->address += input_section->output_offset;
2157
2158 return bfd_reloc_ok;
2159 }
2160 \f
2161 /* Swap an entry in a .gptab section. Note that these routines rely
2162 on the equivalence of the two elements of the union. */
2163
2164 static void
2165 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2166 Elf32_gptab *in)
2167 {
2168 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2169 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2170 }
2171
2172 static void
2173 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2174 Elf32_External_gptab *ex)
2175 {
2176 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2177 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2178 }
2179
2180 static void
2181 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2182 Elf32_External_compact_rel *ex)
2183 {
2184 H_PUT_32 (abfd, in->id1, ex->id1);
2185 H_PUT_32 (abfd, in->num, ex->num);
2186 H_PUT_32 (abfd, in->id2, ex->id2);
2187 H_PUT_32 (abfd, in->offset, ex->offset);
2188 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2189 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2190 }
2191
2192 static void
2193 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2194 Elf32_External_crinfo *ex)
2195 {
2196 unsigned long l;
2197
2198 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2199 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2200 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2201 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2202 H_PUT_32 (abfd, l, ex->info);
2203 H_PUT_32 (abfd, in->konst, ex->konst);
2204 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2205 }
2206 \f
2207 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2208 routines swap this structure in and out. They are used outside of
2209 BFD, so they are globally visible. */
2210
2211 void
2212 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2213 Elf32_RegInfo *in)
2214 {
2215 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2216 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2217 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2218 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2219 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2220 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2221 }
2222
2223 void
2224 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2225 Elf32_External_RegInfo *ex)
2226 {
2227 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2228 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2229 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2230 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2231 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2232 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2233 }
2234
2235 /* In the 64 bit ABI, the .MIPS.options section holds register
2236 information in an Elf64_Reginfo structure. These routines swap
2237 them in and out. They are globally visible because they are used
2238 outside of BFD. These routines are here so that gas can call them
2239 without worrying about whether the 64 bit ABI has been included. */
2240
2241 void
2242 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2243 Elf64_Internal_RegInfo *in)
2244 {
2245 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2246 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2247 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2248 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2249 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2250 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2251 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2252 }
2253
2254 void
2255 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2256 Elf64_External_RegInfo *ex)
2257 {
2258 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2259 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2260 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2261 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2262 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2263 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2264 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2265 }
2266
2267 /* Swap in an options header. */
2268
2269 void
2270 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2271 Elf_Internal_Options *in)
2272 {
2273 in->kind = H_GET_8 (abfd, ex->kind);
2274 in->size = H_GET_8 (abfd, ex->size);
2275 in->section = H_GET_16 (abfd, ex->section);
2276 in->info = H_GET_32 (abfd, ex->info);
2277 }
2278
2279 /* Swap out an options header. */
2280
2281 void
2282 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2283 Elf_External_Options *ex)
2284 {
2285 H_PUT_8 (abfd, in->kind, ex->kind);
2286 H_PUT_8 (abfd, in->size, ex->size);
2287 H_PUT_16 (abfd, in->section, ex->section);
2288 H_PUT_32 (abfd, in->info, ex->info);
2289 }
2290 \f
2291 /* This function is called via qsort() to sort the dynamic relocation
2292 entries by increasing r_symndx value. */
2293
2294 static int
2295 sort_dynamic_relocs (const void *arg1, const void *arg2)
2296 {
2297 Elf_Internal_Rela int_reloc1;
2298 Elf_Internal_Rela int_reloc2;
2299 int diff;
2300
2301 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2302 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2303
2304 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2305 if (diff != 0)
2306 return diff;
2307
2308 if (int_reloc1.r_offset < int_reloc2.r_offset)
2309 return -1;
2310 if (int_reloc1.r_offset > int_reloc2.r_offset)
2311 return 1;
2312 return 0;
2313 }
2314
2315 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2316
2317 static int
2318 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2319 const void *arg2 ATTRIBUTE_UNUSED)
2320 {
2321 #ifdef BFD64
2322 Elf_Internal_Rela int_reloc1[3];
2323 Elf_Internal_Rela int_reloc2[3];
2324
2325 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2326 (reldyn_sorting_bfd, arg1, int_reloc1);
2327 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2328 (reldyn_sorting_bfd, arg2, int_reloc2);
2329
2330 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2331 return -1;
2332 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2333 return 1;
2334
2335 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2336 return -1;
2337 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2338 return 1;
2339 return 0;
2340 #else
2341 abort ();
2342 #endif
2343 }
2344
2345
2346 /* This routine is used to write out ECOFF debugging external symbol
2347 information. It is called via mips_elf_link_hash_traverse. The
2348 ECOFF external symbol information must match the ELF external
2349 symbol information. Unfortunately, at this point we don't know
2350 whether a symbol is required by reloc information, so the two
2351 tables may wind up being different. We must sort out the external
2352 symbol information before we can set the final size of the .mdebug
2353 section, and we must set the size of the .mdebug section before we
2354 can relocate any sections, and we can't know which symbols are
2355 required by relocation until we relocate the sections.
2356 Fortunately, it is relatively unlikely that any symbol will be
2357 stripped but required by a reloc. In particular, it can not happen
2358 when generating a final executable. */
2359
2360 static bfd_boolean
2361 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2362 {
2363 struct extsym_info *einfo = data;
2364 bfd_boolean strip;
2365 asection *sec, *output_section;
2366
2367 if (h->root.root.type == bfd_link_hash_warning)
2368 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2369
2370 if (h->root.indx == -2)
2371 strip = FALSE;
2372 else if ((h->root.def_dynamic
2373 || h->root.ref_dynamic
2374 || h->root.type == bfd_link_hash_new)
2375 && !h->root.def_regular
2376 && !h->root.ref_regular)
2377 strip = TRUE;
2378 else if (einfo->info->strip == strip_all
2379 || (einfo->info->strip == strip_some
2380 && bfd_hash_lookup (einfo->info->keep_hash,
2381 h->root.root.root.string,
2382 FALSE, FALSE) == NULL))
2383 strip = TRUE;
2384 else
2385 strip = FALSE;
2386
2387 if (strip)
2388 return TRUE;
2389
2390 if (h->esym.ifd == -2)
2391 {
2392 h->esym.jmptbl = 0;
2393 h->esym.cobol_main = 0;
2394 h->esym.weakext = 0;
2395 h->esym.reserved = 0;
2396 h->esym.ifd = ifdNil;
2397 h->esym.asym.value = 0;
2398 h->esym.asym.st = stGlobal;
2399
2400 if (h->root.root.type == bfd_link_hash_undefined
2401 || h->root.root.type == bfd_link_hash_undefweak)
2402 {
2403 const char *name;
2404
2405 /* Use undefined class. Also, set class and type for some
2406 special symbols. */
2407 name = h->root.root.root.string;
2408 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2409 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2410 {
2411 h->esym.asym.sc = scData;
2412 h->esym.asym.st = stLabel;
2413 h->esym.asym.value = 0;
2414 }
2415 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2416 {
2417 h->esym.asym.sc = scAbs;
2418 h->esym.asym.st = stLabel;
2419 h->esym.asym.value =
2420 mips_elf_hash_table (einfo->info)->procedure_count;
2421 }
2422 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2423 {
2424 h->esym.asym.sc = scAbs;
2425 h->esym.asym.st = stLabel;
2426 h->esym.asym.value = elf_gp (einfo->abfd);
2427 }
2428 else
2429 h->esym.asym.sc = scUndefined;
2430 }
2431 else if (h->root.root.type != bfd_link_hash_defined
2432 && h->root.root.type != bfd_link_hash_defweak)
2433 h->esym.asym.sc = scAbs;
2434 else
2435 {
2436 const char *name;
2437
2438 sec = h->root.root.u.def.section;
2439 output_section = sec->output_section;
2440
2441 /* When making a shared library and symbol h is the one from
2442 the another shared library, OUTPUT_SECTION may be null. */
2443 if (output_section == NULL)
2444 h->esym.asym.sc = scUndefined;
2445 else
2446 {
2447 name = bfd_section_name (output_section->owner, output_section);
2448
2449 if (strcmp (name, ".text") == 0)
2450 h->esym.asym.sc = scText;
2451 else if (strcmp (name, ".data") == 0)
2452 h->esym.asym.sc = scData;
2453 else if (strcmp (name, ".sdata") == 0)
2454 h->esym.asym.sc = scSData;
2455 else if (strcmp (name, ".rodata") == 0
2456 || strcmp (name, ".rdata") == 0)
2457 h->esym.asym.sc = scRData;
2458 else if (strcmp (name, ".bss") == 0)
2459 h->esym.asym.sc = scBss;
2460 else if (strcmp (name, ".sbss") == 0)
2461 h->esym.asym.sc = scSBss;
2462 else if (strcmp (name, ".init") == 0)
2463 h->esym.asym.sc = scInit;
2464 else if (strcmp (name, ".fini") == 0)
2465 h->esym.asym.sc = scFini;
2466 else
2467 h->esym.asym.sc = scAbs;
2468 }
2469 }
2470
2471 h->esym.asym.reserved = 0;
2472 h->esym.asym.index = indexNil;
2473 }
2474
2475 if (h->root.root.type == bfd_link_hash_common)
2476 h->esym.asym.value = h->root.root.u.c.size;
2477 else if (h->root.root.type == bfd_link_hash_defined
2478 || h->root.root.type == bfd_link_hash_defweak)
2479 {
2480 if (h->esym.asym.sc == scCommon)
2481 h->esym.asym.sc = scBss;
2482 else if (h->esym.asym.sc == scSCommon)
2483 h->esym.asym.sc = scSBss;
2484
2485 sec = h->root.root.u.def.section;
2486 output_section = sec->output_section;
2487 if (output_section != NULL)
2488 h->esym.asym.value = (h->root.root.u.def.value
2489 + sec->output_offset
2490 + output_section->vma);
2491 else
2492 h->esym.asym.value = 0;
2493 }
2494 else
2495 {
2496 struct mips_elf_link_hash_entry *hd = h;
2497
2498 while (hd->root.root.type == bfd_link_hash_indirect)
2499 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2500
2501 if (hd->needs_lazy_stub)
2502 {
2503 /* Set type and value for a symbol with a function stub. */
2504 h->esym.asym.st = stProc;
2505 sec = hd->root.root.u.def.section;
2506 if (sec == NULL)
2507 h->esym.asym.value = 0;
2508 else
2509 {
2510 output_section = sec->output_section;
2511 if (output_section != NULL)
2512 h->esym.asym.value = (hd->root.plt.offset
2513 + sec->output_offset
2514 + output_section->vma);
2515 else
2516 h->esym.asym.value = 0;
2517 }
2518 }
2519 }
2520
2521 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2522 h->root.root.root.string,
2523 &h->esym))
2524 {
2525 einfo->failed = TRUE;
2526 return FALSE;
2527 }
2528
2529 return TRUE;
2530 }
2531
2532 /* A comparison routine used to sort .gptab entries. */
2533
2534 static int
2535 gptab_compare (const void *p1, const void *p2)
2536 {
2537 const Elf32_gptab *a1 = p1;
2538 const Elf32_gptab *a2 = p2;
2539
2540 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2541 }
2542 \f
2543 /* Functions to manage the got entry hash table. */
2544
2545 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2546 hash number. */
2547
2548 static INLINE hashval_t
2549 mips_elf_hash_bfd_vma (bfd_vma addr)
2550 {
2551 #ifdef BFD64
2552 return addr + (addr >> 32);
2553 #else
2554 return addr;
2555 #endif
2556 }
2557
2558 /* got_entries only match if they're identical, except for gotidx, so
2559 use all fields to compute the hash, and compare the appropriate
2560 union members. */
2561
2562 static hashval_t
2563 mips_elf_got_entry_hash (const void *entry_)
2564 {
2565 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2566
2567 return entry->symndx
2568 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2569 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2570 : entry->abfd->id
2571 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2572 : entry->d.h->root.root.root.hash));
2573 }
2574
2575 static int
2576 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2577 {
2578 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2579 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2580
2581 /* An LDM entry can only match another LDM entry. */
2582 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2583 return 0;
2584
2585 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2586 && (! e1->abfd ? e1->d.address == e2->d.address
2587 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2588 : e1->d.h == e2->d.h);
2589 }
2590
2591 /* multi_got_entries are still a match in the case of global objects,
2592 even if the input bfd in which they're referenced differs, so the
2593 hash computation and compare functions are adjusted
2594 accordingly. */
2595
2596 static hashval_t
2597 mips_elf_multi_got_entry_hash (const void *entry_)
2598 {
2599 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2600
2601 return entry->symndx
2602 + (! entry->abfd
2603 ? mips_elf_hash_bfd_vma (entry->d.address)
2604 : entry->symndx >= 0
2605 ? ((entry->tls_type & GOT_TLS_LDM)
2606 ? (GOT_TLS_LDM << 17)
2607 : (entry->abfd->id
2608 + mips_elf_hash_bfd_vma (entry->d.addend)))
2609 : entry->d.h->root.root.root.hash);
2610 }
2611
2612 static int
2613 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2614 {
2615 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2616 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2617
2618 /* Any two LDM entries match. */
2619 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2620 return 1;
2621
2622 /* Nothing else matches an LDM entry. */
2623 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2624 return 0;
2625
2626 return e1->symndx == e2->symndx
2627 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2628 : e1->abfd == NULL || e2->abfd == NULL
2629 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2630 : e1->d.h == e2->d.h);
2631 }
2632
2633 static hashval_t
2634 mips_got_page_entry_hash (const void *entry_)
2635 {
2636 const struct mips_got_page_entry *entry;
2637
2638 entry = (const struct mips_got_page_entry *) entry_;
2639 return entry->abfd->id + entry->symndx;
2640 }
2641
2642 static int
2643 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2644 {
2645 const struct mips_got_page_entry *entry1, *entry2;
2646
2647 entry1 = (const struct mips_got_page_entry *) entry1_;
2648 entry2 = (const struct mips_got_page_entry *) entry2_;
2649 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2650 }
2651 \f
2652 /* Return the dynamic relocation section. If it doesn't exist, try to
2653 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2654 if creation fails. */
2655
2656 static asection *
2657 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2658 {
2659 const char *dname;
2660 asection *sreloc;
2661 bfd *dynobj;
2662
2663 dname = MIPS_ELF_REL_DYN_NAME (info);
2664 dynobj = elf_hash_table (info)->dynobj;
2665 sreloc = bfd_get_section_by_name (dynobj, dname);
2666 if (sreloc == NULL && create_p)
2667 {
2668 sreloc = bfd_make_section_with_flags (dynobj, dname,
2669 (SEC_ALLOC
2670 | SEC_LOAD
2671 | SEC_HAS_CONTENTS
2672 | SEC_IN_MEMORY
2673 | SEC_LINKER_CREATED
2674 | SEC_READONLY));
2675 if (sreloc == NULL
2676 || ! bfd_set_section_alignment (dynobj, sreloc,
2677 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2678 return NULL;
2679 }
2680 return sreloc;
2681 }
2682
2683 /* Count the number of relocations needed for a TLS GOT entry, with
2684 access types from TLS_TYPE, and symbol H (or a local symbol if H
2685 is NULL). */
2686
2687 static int
2688 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2689 struct elf_link_hash_entry *h)
2690 {
2691 int indx = 0;
2692 int ret = 0;
2693 bfd_boolean need_relocs = FALSE;
2694 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2695
2696 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2697 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2698 indx = h->dynindx;
2699
2700 if ((info->shared || indx != 0)
2701 && (h == NULL
2702 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2703 || h->root.type != bfd_link_hash_undefweak))
2704 need_relocs = TRUE;
2705
2706 if (!need_relocs)
2707 return FALSE;
2708
2709 if (tls_type & GOT_TLS_GD)
2710 {
2711 ret++;
2712 if (indx != 0)
2713 ret++;
2714 }
2715
2716 if (tls_type & GOT_TLS_IE)
2717 ret++;
2718
2719 if ((tls_type & GOT_TLS_LDM) && info->shared)
2720 ret++;
2721
2722 return ret;
2723 }
2724
2725 /* Count the number of TLS relocations required for the GOT entry in
2726 ARG1, if it describes a local symbol. */
2727
2728 static int
2729 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2730 {
2731 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2732 struct mips_elf_count_tls_arg *arg = arg2;
2733
2734 if (entry->abfd != NULL && entry->symndx != -1)
2735 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2736
2737 return 1;
2738 }
2739
2740 /* Count the number of TLS GOT entries required for the global (or
2741 forced-local) symbol in ARG1. */
2742
2743 static int
2744 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2745 {
2746 struct mips_elf_link_hash_entry *hm
2747 = (struct mips_elf_link_hash_entry *) arg1;
2748 struct mips_elf_count_tls_arg *arg = arg2;
2749
2750 if (hm->tls_type & GOT_TLS_GD)
2751 arg->needed += 2;
2752 if (hm->tls_type & GOT_TLS_IE)
2753 arg->needed += 1;
2754
2755 return 1;
2756 }
2757
2758 /* Count the number of TLS relocations required for the global (or
2759 forced-local) symbol in ARG1. */
2760
2761 static int
2762 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2763 {
2764 struct mips_elf_link_hash_entry *hm
2765 = (struct mips_elf_link_hash_entry *) arg1;
2766 struct mips_elf_count_tls_arg *arg = arg2;
2767
2768 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2769
2770 return 1;
2771 }
2772
2773 /* Output a simple dynamic relocation into SRELOC. */
2774
2775 static void
2776 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2777 asection *sreloc,
2778 unsigned long reloc_index,
2779 unsigned long indx,
2780 int r_type,
2781 bfd_vma offset)
2782 {
2783 Elf_Internal_Rela rel[3];
2784
2785 memset (rel, 0, sizeof (rel));
2786
2787 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2788 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2789
2790 if (ABI_64_P (output_bfd))
2791 {
2792 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2793 (output_bfd, &rel[0],
2794 (sreloc->contents
2795 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2796 }
2797 else
2798 bfd_elf32_swap_reloc_out
2799 (output_bfd, &rel[0],
2800 (sreloc->contents
2801 + reloc_index * sizeof (Elf32_External_Rel)));
2802 }
2803
2804 /* Initialize a set of TLS GOT entries for one symbol. */
2805
2806 static void
2807 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2808 unsigned char *tls_type_p,
2809 struct bfd_link_info *info,
2810 struct mips_elf_link_hash_entry *h,
2811 bfd_vma value)
2812 {
2813 struct mips_elf_link_hash_table *htab;
2814 int indx;
2815 asection *sreloc, *sgot;
2816 bfd_vma offset, offset2;
2817 bfd_boolean need_relocs = FALSE;
2818
2819 htab = mips_elf_hash_table (info);
2820 sgot = htab->sgot;
2821
2822 indx = 0;
2823 if (h != NULL)
2824 {
2825 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2826
2827 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2828 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2829 indx = h->root.dynindx;
2830 }
2831
2832 if (*tls_type_p & GOT_TLS_DONE)
2833 return;
2834
2835 if ((info->shared || indx != 0)
2836 && (h == NULL
2837 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2838 || h->root.type != bfd_link_hash_undefweak))
2839 need_relocs = TRUE;
2840
2841 /* MINUS_ONE means the symbol is not defined in this object. It may not
2842 be defined at all; assume that the value doesn't matter in that
2843 case. Otherwise complain if we would use the value. */
2844 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2845 || h->root.root.type == bfd_link_hash_undefweak);
2846
2847 /* Emit necessary relocations. */
2848 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2849
2850 /* General Dynamic. */
2851 if (*tls_type_p & GOT_TLS_GD)
2852 {
2853 offset = got_offset;
2854 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2855
2856 if (need_relocs)
2857 {
2858 mips_elf_output_dynamic_relocation
2859 (abfd, sreloc, sreloc->reloc_count++, indx,
2860 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2861 sgot->output_offset + sgot->output_section->vma + offset);
2862
2863 if (indx)
2864 mips_elf_output_dynamic_relocation
2865 (abfd, sreloc, sreloc->reloc_count++, indx,
2866 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2867 sgot->output_offset + sgot->output_section->vma + offset2);
2868 else
2869 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2870 sgot->contents + offset2);
2871 }
2872 else
2873 {
2874 MIPS_ELF_PUT_WORD (abfd, 1,
2875 sgot->contents + offset);
2876 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2877 sgot->contents + offset2);
2878 }
2879
2880 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2881 }
2882
2883 /* Initial Exec model. */
2884 if (*tls_type_p & GOT_TLS_IE)
2885 {
2886 offset = got_offset;
2887
2888 if (need_relocs)
2889 {
2890 if (indx == 0)
2891 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2892 sgot->contents + offset);
2893 else
2894 MIPS_ELF_PUT_WORD (abfd, 0,
2895 sgot->contents + offset);
2896
2897 mips_elf_output_dynamic_relocation
2898 (abfd, sreloc, sreloc->reloc_count++, indx,
2899 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2900 sgot->output_offset + sgot->output_section->vma + offset);
2901 }
2902 else
2903 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2904 sgot->contents + offset);
2905 }
2906
2907 if (*tls_type_p & GOT_TLS_LDM)
2908 {
2909 /* The initial offset is zero, and the LD offsets will include the
2910 bias by DTP_OFFSET. */
2911 MIPS_ELF_PUT_WORD (abfd, 0,
2912 sgot->contents + got_offset
2913 + MIPS_ELF_GOT_SIZE (abfd));
2914
2915 if (!info->shared)
2916 MIPS_ELF_PUT_WORD (abfd, 1,
2917 sgot->contents + got_offset);
2918 else
2919 mips_elf_output_dynamic_relocation
2920 (abfd, sreloc, sreloc->reloc_count++, indx,
2921 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2922 sgot->output_offset + sgot->output_section->vma + got_offset);
2923 }
2924
2925 *tls_type_p |= GOT_TLS_DONE;
2926 }
2927
2928 /* Return the GOT index to use for a relocation of type R_TYPE against
2929 a symbol accessed using TLS_TYPE models. The GOT entries for this
2930 symbol in this GOT start at GOT_INDEX. This function initializes the
2931 GOT entries and corresponding relocations. */
2932
2933 static bfd_vma
2934 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2935 int r_type, struct bfd_link_info *info,
2936 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2937 {
2938 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2939 || r_type == R_MIPS_TLS_LDM);
2940
2941 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2942
2943 if (r_type == R_MIPS_TLS_GOTTPREL)
2944 {
2945 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2946 if (*tls_type & GOT_TLS_GD)
2947 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2948 else
2949 return got_index;
2950 }
2951
2952 if (r_type == R_MIPS_TLS_GD)
2953 {
2954 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2955 return got_index;
2956 }
2957
2958 if (r_type == R_MIPS_TLS_LDM)
2959 {
2960 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2961 return got_index;
2962 }
2963
2964 return got_index;
2965 }
2966
2967 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2968 for global symbol H. .got.plt comes before the GOT, so the offset
2969 will be negative. */
2970
2971 static bfd_vma
2972 mips_elf_gotplt_index (struct bfd_link_info *info,
2973 struct elf_link_hash_entry *h)
2974 {
2975 bfd_vma plt_index, got_address, got_value;
2976 struct mips_elf_link_hash_table *htab;
2977
2978 htab = mips_elf_hash_table (info);
2979 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2980
2981 /* This function only works for VxWorks, because a non-VxWorks .got.plt
2982 section starts with reserved entries. */
2983 BFD_ASSERT (htab->is_vxworks);
2984
2985 /* Calculate the index of the symbol's PLT entry. */
2986 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2987
2988 /* Calculate the address of the associated .got.plt entry. */
2989 got_address = (htab->sgotplt->output_section->vma
2990 + htab->sgotplt->output_offset
2991 + plt_index * 4);
2992
2993 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2994 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2995 + htab->root.hgot->root.u.def.section->output_offset
2996 + htab->root.hgot->root.u.def.value);
2997
2998 return got_address - got_value;
2999 }
3000
3001 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3002 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3003 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3004 offset can be found. */
3005
3006 static bfd_vma
3007 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3008 bfd_vma value, unsigned long r_symndx,
3009 struct mips_elf_link_hash_entry *h, int r_type)
3010 {
3011 struct mips_elf_link_hash_table *htab;
3012 struct mips_got_entry *entry;
3013
3014 htab = mips_elf_hash_table (info);
3015 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3016 r_symndx, h, r_type);
3017 if (!entry)
3018 return MINUS_ONE;
3019
3020 if (TLS_RELOC_P (r_type))
3021 {
3022 if (entry->symndx == -1 && htab->got_info->next == NULL)
3023 /* A type (3) entry in the single-GOT case. We use the symbol's
3024 hash table entry to track the index. */
3025 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3026 r_type, info, h, value);
3027 else
3028 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3029 r_type, info, h, value);
3030 }
3031 else
3032 return entry->gotidx;
3033 }
3034
3035 /* Returns the GOT index for the global symbol indicated by H. */
3036
3037 static bfd_vma
3038 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3039 int r_type, struct bfd_link_info *info)
3040 {
3041 struct mips_elf_link_hash_table *htab;
3042 bfd_vma index;
3043 struct mips_got_info *g, *gg;
3044 long global_got_dynindx = 0;
3045
3046 htab = mips_elf_hash_table (info);
3047 gg = g = htab->got_info;
3048 if (g->bfd2got && ibfd)
3049 {
3050 struct mips_got_entry e, *p;
3051
3052 BFD_ASSERT (h->dynindx >= 0);
3053
3054 g = mips_elf_got_for_ibfd (g, ibfd);
3055 if (g->next != gg || TLS_RELOC_P (r_type))
3056 {
3057 e.abfd = ibfd;
3058 e.symndx = -1;
3059 e.d.h = (struct mips_elf_link_hash_entry *)h;
3060 e.tls_type = 0;
3061
3062 p = htab_find (g->got_entries, &e);
3063
3064 BFD_ASSERT (p->gotidx > 0);
3065
3066 if (TLS_RELOC_P (r_type))
3067 {
3068 bfd_vma value = MINUS_ONE;
3069 if ((h->root.type == bfd_link_hash_defined
3070 || h->root.type == bfd_link_hash_defweak)
3071 && h->root.u.def.section->output_section)
3072 value = (h->root.u.def.value
3073 + h->root.u.def.section->output_offset
3074 + h->root.u.def.section->output_section->vma);
3075
3076 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3077 info, e.d.h, value);
3078 }
3079 else
3080 return p->gotidx;
3081 }
3082 }
3083
3084 if (gg->global_gotsym != NULL)
3085 global_got_dynindx = gg->global_gotsym->dynindx;
3086
3087 if (TLS_RELOC_P (r_type))
3088 {
3089 struct mips_elf_link_hash_entry *hm
3090 = (struct mips_elf_link_hash_entry *) h;
3091 bfd_vma value = MINUS_ONE;
3092
3093 if ((h->root.type == bfd_link_hash_defined
3094 || h->root.type == bfd_link_hash_defweak)
3095 && h->root.u.def.section->output_section)
3096 value = (h->root.u.def.value
3097 + h->root.u.def.section->output_offset
3098 + h->root.u.def.section->output_section->vma);
3099
3100 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3101 r_type, info, hm, value);
3102 }
3103 else
3104 {
3105 /* Once we determine the global GOT entry with the lowest dynamic
3106 symbol table index, we must put all dynamic symbols with greater
3107 indices into the GOT. That makes it easy to calculate the GOT
3108 offset. */
3109 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3110 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3111 * MIPS_ELF_GOT_SIZE (abfd));
3112 }
3113 BFD_ASSERT (index < htab->sgot->size);
3114
3115 return index;
3116 }
3117
3118 /* Find a GOT page entry that points to within 32KB of VALUE. These
3119 entries are supposed to be placed at small offsets in the GOT, i.e.,
3120 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3121 entry could be created. If OFFSETP is nonnull, use it to return the
3122 offset of the GOT entry from VALUE. */
3123
3124 static bfd_vma
3125 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3126 bfd_vma value, bfd_vma *offsetp)
3127 {
3128 bfd_vma page, index;
3129 struct mips_got_entry *entry;
3130
3131 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3132 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3133 NULL, R_MIPS_GOT_PAGE);
3134
3135 if (!entry)
3136 return MINUS_ONE;
3137
3138 index = entry->gotidx;
3139
3140 if (offsetp)
3141 *offsetp = value - entry->d.address;
3142
3143 return index;
3144 }
3145
3146 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3147 EXTERNAL is true if the relocation was against a global symbol
3148 that has been forced local. */
3149
3150 static bfd_vma
3151 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3152 bfd_vma value, bfd_boolean external)
3153 {
3154 struct mips_got_entry *entry;
3155
3156 /* GOT16 relocations against local symbols are followed by a LO16
3157 relocation; those against global symbols are not. Thus if the
3158 symbol was originally local, the GOT16 relocation should load the
3159 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3160 if (! external)
3161 value = mips_elf_high (value) << 16;
3162
3163 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3164 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3165 same in all cases. */
3166 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3167 NULL, R_MIPS_GOT16);
3168 if (entry)
3169 return entry->gotidx;
3170 else
3171 return MINUS_ONE;
3172 }
3173
3174 /* Returns the offset for the entry at the INDEXth position
3175 in the GOT. */
3176
3177 static bfd_vma
3178 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3179 bfd *input_bfd, bfd_vma index)
3180 {
3181 struct mips_elf_link_hash_table *htab;
3182 asection *sgot;
3183 bfd_vma gp;
3184
3185 htab = mips_elf_hash_table (info);
3186 sgot = htab->sgot;
3187 gp = _bfd_get_gp_value (output_bfd)
3188 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3189
3190 return sgot->output_section->vma + sgot->output_offset + index - gp;
3191 }
3192
3193 /* Create and return a local GOT entry for VALUE, which was calculated
3194 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3195 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3196 instead. */
3197
3198 static struct mips_got_entry *
3199 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3200 bfd *ibfd, bfd_vma value,
3201 unsigned long r_symndx,
3202 struct mips_elf_link_hash_entry *h,
3203 int r_type)
3204 {
3205 struct mips_got_entry entry, **loc;
3206 struct mips_got_info *g;
3207 struct mips_elf_link_hash_table *htab;
3208
3209 htab = mips_elf_hash_table (info);
3210
3211 entry.abfd = NULL;
3212 entry.symndx = -1;
3213 entry.d.address = value;
3214 entry.tls_type = 0;
3215
3216 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3217 if (g == NULL)
3218 {
3219 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3220 BFD_ASSERT (g != NULL);
3221 }
3222
3223 /* We might have a symbol, H, if it has been forced local. Use the
3224 global entry then. It doesn't matter whether an entry is local
3225 or global for TLS, since the dynamic linker does not
3226 automatically relocate TLS GOT entries. */
3227 BFD_ASSERT (h == NULL || h->root.forced_local);
3228 if (TLS_RELOC_P (r_type))
3229 {
3230 struct mips_got_entry *p;
3231
3232 entry.abfd = ibfd;
3233 if (r_type == R_MIPS_TLS_LDM)
3234 {
3235 entry.tls_type = GOT_TLS_LDM;
3236 entry.symndx = 0;
3237 entry.d.addend = 0;
3238 }
3239 else if (h == NULL)
3240 {
3241 entry.symndx = r_symndx;
3242 entry.d.addend = 0;
3243 }
3244 else
3245 entry.d.h = h;
3246
3247 p = (struct mips_got_entry *)
3248 htab_find (g->got_entries, &entry);
3249
3250 BFD_ASSERT (p);
3251 return p;
3252 }
3253
3254 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3255 INSERT);
3256 if (*loc)
3257 return *loc;
3258
3259 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3260 entry.tls_type = 0;
3261
3262 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3263
3264 if (! *loc)
3265 return NULL;
3266
3267 memcpy (*loc, &entry, sizeof entry);
3268
3269 if (g->assigned_gotno > g->local_gotno)
3270 {
3271 (*loc)->gotidx = -1;
3272 /* We didn't allocate enough space in the GOT. */
3273 (*_bfd_error_handler)
3274 (_("not enough GOT space for local GOT entries"));
3275 bfd_set_error (bfd_error_bad_value);
3276 return NULL;
3277 }
3278
3279 MIPS_ELF_PUT_WORD (abfd, value,
3280 (htab->sgot->contents + entry.gotidx));
3281
3282 /* These GOT entries need a dynamic relocation on VxWorks. */
3283 if (htab->is_vxworks)
3284 {
3285 Elf_Internal_Rela outrel;
3286 asection *s;
3287 bfd_byte *loc;
3288 bfd_vma got_address;
3289
3290 s = mips_elf_rel_dyn_section (info, FALSE);
3291 got_address = (htab->sgot->output_section->vma
3292 + htab->sgot->output_offset
3293 + entry.gotidx);
3294
3295 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3296 outrel.r_offset = got_address;
3297 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3298 outrel.r_addend = value;
3299 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
3300 }
3301
3302 return *loc;
3303 }
3304
3305 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3306 The number might be exact or a worst-case estimate, depending on how
3307 much information is available to elf_backend_omit_section_dynsym at
3308 the current linking stage. */
3309
3310 static bfd_size_type
3311 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3312 {
3313 bfd_size_type count;
3314
3315 count = 0;
3316 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3317 {
3318 asection *p;
3319 const struct elf_backend_data *bed;
3320
3321 bed = get_elf_backend_data (output_bfd);
3322 for (p = output_bfd->sections; p ; p = p->next)
3323 if ((p->flags & SEC_EXCLUDE) == 0
3324 && (p->flags & SEC_ALLOC) != 0
3325 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3326 ++count;
3327 }
3328 return count;
3329 }
3330
3331 /* Sort the dynamic symbol table so that symbols that need GOT entries
3332 appear towards the end. */
3333
3334 static bfd_boolean
3335 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3336 {
3337 struct mips_elf_link_hash_table *htab;
3338 struct mips_elf_hash_sort_data hsd;
3339 struct mips_got_info *g;
3340
3341 if (elf_hash_table (info)->dynsymcount == 0)
3342 return TRUE;
3343
3344 htab = mips_elf_hash_table (info);
3345 g = htab->got_info;
3346 if (g == NULL)
3347 return TRUE;
3348
3349 hsd.low = NULL;
3350 hsd.max_unref_got_dynindx
3351 = hsd.min_got_dynindx
3352 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3353 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3354 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3355 elf_hash_table (info)),
3356 mips_elf_sort_hash_table_f,
3357 &hsd);
3358
3359 /* There should have been enough room in the symbol table to
3360 accommodate both the GOT and non-GOT symbols. */
3361 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3362 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3363 == elf_hash_table (info)->dynsymcount);
3364 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3365 == g->global_gotno);
3366
3367 /* Now we know which dynamic symbol has the lowest dynamic symbol
3368 table index in the GOT. */
3369 g->global_gotsym = hsd.low;
3370
3371 return TRUE;
3372 }
3373
3374 /* If H needs a GOT entry, assign it the highest available dynamic
3375 index. Otherwise, assign it the lowest available dynamic
3376 index. */
3377
3378 static bfd_boolean
3379 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3380 {
3381 struct mips_elf_hash_sort_data *hsd = data;
3382
3383 if (h->root.root.type == bfd_link_hash_warning)
3384 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3385
3386 /* Symbols without dynamic symbol table entries aren't interesting
3387 at all. */
3388 if (h->root.dynindx == -1)
3389 return TRUE;
3390
3391 switch (h->global_got_area)
3392 {
3393 case GGA_NONE:
3394 h->root.dynindx = hsd->max_non_got_dynindx++;
3395 break;
3396
3397 case GGA_NORMAL:
3398 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3399
3400 h->root.dynindx = --hsd->min_got_dynindx;
3401 hsd->low = (struct elf_link_hash_entry *) h;
3402 break;
3403
3404 case GGA_RELOC_ONLY:
3405 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3406
3407 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3408 hsd->low = (struct elf_link_hash_entry *) h;
3409 h->root.dynindx = hsd->max_unref_got_dynindx++;
3410 break;
3411 }
3412
3413 return TRUE;
3414 }
3415
3416 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3417 symbol table index lower than any we've seen to date, record it for
3418 posterity. */
3419
3420 static bfd_boolean
3421 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3422 bfd *abfd, struct bfd_link_info *info,
3423 unsigned char tls_flag)
3424 {
3425 struct mips_elf_link_hash_table *htab;
3426 struct mips_elf_link_hash_entry *hmips;
3427 struct mips_got_entry entry, **loc;
3428 struct mips_got_info *g;
3429
3430 htab = mips_elf_hash_table (info);
3431 hmips = (struct mips_elf_link_hash_entry *) h;
3432
3433 /* A global symbol in the GOT must also be in the dynamic symbol
3434 table. */
3435 if (h->dynindx == -1)
3436 {
3437 switch (ELF_ST_VISIBILITY (h->other))
3438 {
3439 case STV_INTERNAL:
3440 case STV_HIDDEN:
3441 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3442 break;
3443 }
3444 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3445 return FALSE;
3446 }
3447
3448 /* Make sure we have a GOT to put this entry into. */
3449 g = htab->got_info;
3450 BFD_ASSERT (g != NULL);
3451
3452 entry.abfd = abfd;
3453 entry.symndx = -1;
3454 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3455 entry.tls_type = 0;
3456
3457 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3458 INSERT);
3459
3460 /* If we've already marked this entry as needing GOT space, we don't
3461 need to do it again. */
3462 if (*loc)
3463 {
3464 (*loc)->tls_type |= tls_flag;
3465 return TRUE;
3466 }
3467
3468 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3469
3470 if (! *loc)
3471 return FALSE;
3472
3473 entry.gotidx = -1;
3474 entry.tls_type = tls_flag;
3475
3476 memcpy (*loc, &entry, sizeof entry);
3477
3478 if (tls_flag == 0)
3479 hmips->global_got_area = GGA_NORMAL;
3480
3481 return TRUE;
3482 }
3483
3484 /* Reserve space in G for a GOT entry containing the value of symbol
3485 SYMNDX in input bfd ABDF, plus ADDEND. */
3486
3487 static bfd_boolean
3488 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3489 struct bfd_link_info *info,
3490 unsigned char tls_flag)
3491 {
3492 struct mips_elf_link_hash_table *htab;
3493 struct mips_got_info *g;
3494 struct mips_got_entry entry, **loc;
3495
3496 htab = mips_elf_hash_table (info);
3497 g = htab->got_info;
3498 BFD_ASSERT (g != NULL);
3499
3500 entry.abfd = abfd;
3501 entry.symndx = symndx;
3502 entry.d.addend = addend;
3503 entry.tls_type = tls_flag;
3504 loc = (struct mips_got_entry **)
3505 htab_find_slot (g->got_entries, &entry, INSERT);
3506
3507 if (*loc)
3508 {
3509 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3510 {
3511 g->tls_gotno += 2;
3512 (*loc)->tls_type |= tls_flag;
3513 }
3514 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3515 {
3516 g->tls_gotno += 1;
3517 (*loc)->tls_type |= tls_flag;
3518 }
3519 return TRUE;
3520 }
3521
3522 if (tls_flag != 0)
3523 {
3524 entry.gotidx = -1;
3525 entry.tls_type = tls_flag;
3526 if (tls_flag == GOT_TLS_IE)
3527 g->tls_gotno += 1;
3528 else if (tls_flag == GOT_TLS_GD)
3529 g->tls_gotno += 2;
3530 else if (g->tls_ldm_offset == MINUS_ONE)
3531 {
3532 g->tls_ldm_offset = MINUS_TWO;
3533 g->tls_gotno += 2;
3534 }
3535 }
3536 else
3537 {
3538 entry.gotidx = g->local_gotno++;
3539 entry.tls_type = 0;
3540 }
3541
3542 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3543
3544 if (! *loc)
3545 return FALSE;
3546
3547 memcpy (*loc, &entry, sizeof entry);
3548
3549 return TRUE;
3550 }
3551
3552 /* Return the maximum number of GOT page entries required for RANGE. */
3553
3554 static bfd_vma
3555 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3556 {
3557 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3558 }
3559
3560 /* Record that ABFD has a page relocation against symbol SYMNDX and
3561 that ADDEND is the addend for that relocation.
3562
3563 This function creates an upper bound on the number of GOT slots
3564 required; no attempt is made to combine references to non-overridable
3565 global symbols across multiple input files. */
3566
3567 static bfd_boolean
3568 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3569 long symndx, bfd_signed_vma addend)
3570 {
3571 struct mips_elf_link_hash_table *htab;
3572 struct mips_got_info *g;
3573 struct mips_got_page_entry lookup, *entry;
3574 struct mips_got_page_range **range_ptr, *range;
3575 bfd_vma old_pages, new_pages;
3576 void **loc;
3577
3578 htab = mips_elf_hash_table (info);
3579 g = htab->got_info;
3580 BFD_ASSERT (g != NULL);
3581
3582 /* Find the mips_got_page_entry hash table entry for this symbol. */
3583 lookup.abfd = abfd;
3584 lookup.symndx = symndx;
3585 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3586 if (loc == NULL)
3587 return FALSE;
3588
3589 /* Create a mips_got_page_entry if this is the first time we've
3590 seen the symbol. */
3591 entry = (struct mips_got_page_entry *) *loc;
3592 if (!entry)
3593 {
3594 entry = bfd_alloc (abfd, sizeof (*entry));
3595 if (!entry)
3596 return FALSE;
3597
3598 entry->abfd = abfd;
3599 entry->symndx = symndx;
3600 entry->ranges = NULL;
3601 entry->num_pages = 0;
3602 *loc = entry;
3603 }
3604
3605 /* Skip over ranges whose maximum extent cannot share a page entry
3606 with ADDEND. */
3607 range_ptr = &entry->ranges;
3608 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3609 range_ptr = &(*range_ptr)->next;
3610
3611 /* If we scanned to the end of the list, or found a range whose
3612 minimum extent cannot share a page entry with ADDEND, create
3613 a new singleton range. */
3614 range = *range_ptr;
3615 if (!range || addend < range->min_addend - 0xffff)
3616 {
3617 range = bfd_alloc (abfd, sizeof (*range));
3618 if (!range)
3619 return FALSE;
3620
3621 range->next = *range_ptr;
3622 range->min_addend = addend;
3623 range->max_addend = addend;
3624
3625 *range_ptr = range;
3626 entry->num_pages++;
3627 g->page_gotno++;
3628 return TRUE;
3629 }
3630
3631 /* Remember how many pages the old range contributed. */
3632 old_pages = mips_elf_pages_for_range (range);
3633
3634 /* Update the ranges. */
3635 if (addend < range->min_addend)
3636 range->min_addend = addend;
3637 else if (addend > range->max_addend)
3638 {
3639 if (range->next && addend >= range->next->min_addend - 0xffff)
3640 {
3641 old_pages += mips_elf_pages_for_range (range->next);
3642 range->max_addend = range->next->max_addend;
3643 range->next = range->next->next;
3644 }
3645 else
3646 range->max_addend = addend;
3647 }
3648
3649 /* Record any change in the total estimate. */
3650 new_pages = mips_elf_pages_for_range (range);
3651 if (old_pages != new_pages)
3652 {
3653 entry->num_pages += new_pages - old_pages;
3654 g->page_gotno += new_pages - old_pages;
3655 }
3656
3657 return TRUE;
3658 }
3659
3660 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3661
3662 static void
3663 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3664 unsigned int n)
3665 {
3666 asection *s;
3667 struct mips_elf_link_hash_table *htab;
3668
3669 htab = mips_elf_hash_table (info);
3670 s = mips_elf_rel_dyn_section (info, FALSE);
3671 BFD_ASSERT (s != NULL);
3672
3673 if (htab->is_vxworks)
3674 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3675 else
3676 {
3677 if (s->size == 0)
3678 {
3679 /* Make room for a null element. */
3680 s->size += MIPS_ELF_REL_SIZE (abfd);
3681 ++s->reloc_count;
3682 }
3683 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3684 }
3685 }
3686 \f
3687 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3688 if the GOT entry is for an indirect or warning symbol. */
3689
3690 static int
3691 mips_elf_check_recreate_got (void **entryp, void *data)
3692 {
3693 struct mips_got_entry *entry;
3694 bfd_boolean *must_recreate;
3695
3696 entry = (struct mips_got_entry *) *entryp;
3697 must_recreate = (bfd_boolean *) data;
3698 if (entry->abfd != NULL && entry->symndx == -1)
3699 {
3700 struct mips_elf_link_hash_entry *h;
3701
3702 h = entry->d.h;
3703 if (h->root.root.type == bfd_link_hash_indirect
3704 || h->root.root.type == bfd_link_hash_warning)
3705 {
3706 *must_recreate = TRUE;
3707 return 0;
3708 }
3709 }
3710 return 1;
3711 }
3712
3713 /* A htab_traverse callback for GOT entries. Add all entries to
3714 hash table *DATA, converting entries for indirect and warning
3715 symbols into entries for the target symbol. Set *DATA to null
3716 on error. */
3717
3718 static int
3719 mips_elf_recreate_got (void **entryp, void *data)
3720 {
3721 htab_t *new_got;
3722 struct mips_got_entry *entry;
3723 void **slot;
3724
3725 new_got = (htab_t *) data;
3726 entry = (struct mips_got_entry *) *entryp;
3727 if (entry->abfd != NULL && entry->symndx == -1)
3728 {
3729 struct mips_elf_link_hash_entry *h;
3730
3731 h = entry->d.h;
3732 while (h->root.root.type == bfd_link_hash_indirect
3733 || h->root.root.type == bfd_link_hash_warning)
3734 {
3735 BFD_ASSERT (h->global_got_area == GGA_NONE);
3736 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3737 }
3738 entry->d.h = h;
3739 }
3740 slot = htab_find_slot (*new_got, entry, INSERT);
3741 if (slot == NULL)
3742 {
3743 *new_got = NULL;
3744 return 0;
3745 }
3746 if (*slot == NULL)
3747 *slot = entry;
3748 else
3749 free (entry);
3750 return 1;
3751 }
3752
3753 /* If any entries in G->got_entries are for indirect or warning symbols,
3754 replace them with entries for the target symbol. */
3755
3756 static bfd_boolean
3757 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3758 {
3759 bfd_boolean must_recreate;
3760 htab_t new_got;
3761
3762 must_recreate = FALSE;
3763 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3764 if (must_recreate)
3765 {
3766 new_got = htab_create (htab_size (g->got_entries),
3767 mips_elf_got_entry_hash,
3768 mips_elf_got_entry_eq, NULL);
3769 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3770 if (new_got == NULL)
3771 return FALSE;
3772
3773 /* Each entry in g->got_entries has either been copied to new_got
3774 or freed. Now delete the hash table itself. */
3775 htab_delete (g->got_entries);
3776 g->got_entries = new_got;
3777 }
3778 return TRUE;
3779 }
3780
3781 /* A mips_elf_link_hash_traverse callback for which DATA points
3782 to a mips_got_info. Count the number of type (3) entries. */
3783
3784 static int
3785 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3786 {
3787 struct mips_got_info *g;
3788
3789 g = (struct mips_got_info *) data;
3790 if (h->global_got_area != GGA_NONE)
3791 {
3792 if (h->root.forced_local || h->root.dynindx == -1)
3793 {
3794 /* We no longer need this entry if it was only used for
3795 relocations; those relocations will be against the
3796 null or section symbol instead of H. */
3797 if (h->global_got_area != GGA_RELOC_ONLY)
3798 g->local_gotno++;
3799 h->global_got_area = GGA_NONE;
3800 }
3801 else
3802 {
3803 g->global_gotno++;
3804 if (h->global_got_area == GGA_RELOC_ONLY)
3805 g->reloc_only_gotno++;
3806 }
3807 }
3808 return 1;
3809 }
3810 \f
3811 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3812
3813 static hashval_t
3814 mips_elf_bfd2got_entry_hash (const void *entry_)
3815 {
3816 const struct mips_elf_bfd2got_hash *entry
3817 = (struct mips_elf_bfd2got_hash *)entry_;
3818
3819 return entry->bfd->id;
3820 }
3821
3822 /* Check whether two hash entries have the same bfd. */
3823
3824 static int
3825 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3826 {
3827 const struct mips_elf_bfd2got_hash *e1
3828 = (const struct mips_elf_bfd2got_hash *)entry1;
3829 const struct mips_elf_bfd2got_hash *e2
3830 = (const struct mips_elf_bfd2got_hash *)entry2;
3831
3832 return e1->bfd == e2->bfd;
3833 }
3834
3835 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3836 be the master GOT data. */
3837
3838 static struct mips_got_info *
3839 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3840 {
3841 struct mips_elf_bfd2got_hash e, *p;
3842
3843 if (! g->bfd2got)
3844 return g;
3845
3846 e.bfd = ibfd;
3847 p = htab_find (g->bfd2got, &e);
3848 return p ? p->g : NULL;
3849 }
3850
3851 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3852 Return NULL if an error occured. */
3853
3854 static struct mips_got_info *
3855 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3856 bfd *input_bfd)
3857 {
3858 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3859 struct mips_got_info *g;
3860 void **bfdgotp;
3861
3862 bfdgot_entry.bfd = input_bfd;
3863 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3864 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3865
3866 if (bfdgot == NULL)
3867 {
3868 bfdgot = ((struct mips_elf_bfd2got_hash *)
3869 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3870 if (bfdgot == NULL)
3871 return NULL;
3872
3873 *bfdgotp = bfdgot;
3874
3875 g = ((struct mips_got_info *)
3876 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3877 if (g == NULL)
3878 return NULL;
3879
3880 bfdgot->bfd = input_bfd;
3881 bfdgot->g = g;
3882
3883 g->global_gotsym = NULL;
3884 g->global_gotno = 0;
3885 g->reloc_only_gotno = 0;
3886 g->local_gotno = 0;
3887 g->page_gotno = 0;
3888 g->assigned_gotno = -1;
3889 g->tls_gotno = 0;
3890 g->tls_assigned_gotno = 0;
3891 g->tls_ldm_offset = MINUS_ONE;
3892 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3893 mips_elf_multi_got_entry_eq, NULL);
3894 if (g->got_entries == NULL)
3895 return NULL;
3896
3897 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3898 mips_got_page_entry_eq, NULL);
3899 if (g->got_page_entries == NULL)
3900 return NULL;
3901
3902 g->bfd2got = NULL;
3903 g->next = NULL;
3904 }
3905
3906 return bfdgot->g;
3907 }
3908
3909 /* A htab_traverse callback for the entries in the master got.
3910 Create one separate got for each bfd that has entries in the global
3911 got, such that we can tell how many local and global entries each
3912 bfd requires. */
3913
3914 static int
3915 mips_elf_make_got_per_bfd (void **entryp, void *p)
3916 {
3917 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3918 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3919 struct mips_got_info *g;
3920
3921 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3922 if (g == NULL)
3923 {
3924 arg->obfd = NULL;
3925 return 0;
3926 }
3927
3928 /* Insert the GOT entry in the bfd's got entry hash table. */
3929 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3930 if (*entryp != NULL)
3931 return 1;
3932
3933 *entryp = entry;
3934
3935 if (entry->tls_type)
3936 {
3937 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3938 g->tls_gotno += 2;
3939 if (entry->tls_type & GOT_TLS_IE)
3940 g->tls_gotno += 1;
3941 }
3942 else if (entry->symndx >= 0 || entry->d.h->root.forced_local)
3943 ++g->local_gotno;
3944 else
3945 ++g->global_gotno;
3946
3947 return 1;
3948 }
3949
3950 /* A htab_traverse callback for the page entries in the master got.
3951 Associate each page entry with the bfd's got. */
3952
3953 static int
3954 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
3955 {
3956 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
3957 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
3958 struct mips_got_info *g;
3959
3960 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3961 if (g == NULL)
3962 {
3963 arg->obfd = NULL;
3964 return 0;
3965 }
3966
3967 /* Insert the GOT entry in the bfd's got entry hash table. */
3968 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
3969 if (*entryp != NULL)
3970 return 1;
3971
3972 *entryp = entry;
3973 g->page_gotno += entry->num_pages;
3974 return 1;
3975 }
3976
3977 /* Consider merging the got described by BFD2GOT with TO, using the
3978 information given by ARG. Return -1 if this would lead to overflow,
3979 1 if they were merged successfully, and 0 if a merge failed due to
3980 lack of memory. (These values are chosen so that nonnegative return
3981 values can be returned by a htab_traverse callback.) */
3982
3983 static int
3984 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
3985 struct mips_got_info *to,
3986 struct mips_elf_got_per_bfd_arg *arg)
3987 {
3988 struct mips_got_info *from = bfd2got->g;
3989 unsigned int estimate;
3990
3991 /* Work out how many page entries we would need for the combined GOT. */
3992 estimate = arg->max_pages;
3993 if (estimate >= from->page_gotno + to->page_gotno)
3994 estimate = from->page_gotno + to->page_gotno;
3995
3996 /* And conservatively estimate how many local, global and TLS entries
3997 would be needed. */
3998 estimate += (from->local_gotno
3999 + from->global_gotno
4000 + from->tls_gotno
4001 + to->local_gotno
4002 + to->global_gotno
4003 + to->tls_gotno);
4004
4005 /* Bail out if the combined GOT might be too big. */
4006 if (estimate > arg->max_count)
4007 return -1;
4008
4009 /* Commit to the merge. Record that TO is now the bfd for this got. */
4010 bfd2got->g = to;
4011
4012 /* Transfer the bfd's got information from FROM to TO. */
4013 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4014 if (arg->obfd == NULL)
4015 return 0;
4016
4017 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4018 if (arg->obfd == NULL)
4019 return 0;
4020
4021 /* We don't have to worry about releasing memory of the actual
4022 got entries, since they're all in the master got_entries hash
4023 table anyway. */
4024 htab_delete (from->got_entries);
4025 htab_delete (from->got_page_entries);
4026 return 1;
4027 }
4028
4029 /* Attempt to merge gots of different input bfds. Try to use as much
4030 as possible of the primary got, since it doesn't require explicit
4031 dynamic relocations, but don't use bfds that would reference global
4032 symbols out of the addressable range. Failing the primary got,
4033 attempt to merge with the current got, or finish the current got
4034 and then make make the new got current. */
4035
4036 static int
4037 mips_elf_merge_gots (void **bfd2got_, void *p)
4038 {
4039 struct mips_elf_bfd2got_hash *bfd2got
4040 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4041 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4042 struct mips_got_info *g;
4043 unsigned int estimate;
4044 int result;
4045
4046 g = bfd2got->g;
4047
4048 /* Work out the number of page, local and TLS entries. */
4049 estimate = arg->max_pages;
4050 if (estimate > g->page_gotno)
4051 estimate = g->page_gotno;
4052 estimate += g->local_gotno + g->tls_gotno;
4053
4054 /* We place TLS GOT entries after both locals and globals. The globals
4055 for the primary GOT may overflow the normal GOT size limit, so be
4056 sure not to merge a GOT which requires TLS with the primary GOT in that
4057 case. This doesn't affect non-primary GOTs. */
4058 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4059
4060 if (estimate <= arg->max_count)
4061 {
4062 /* If we don't have a primary GOT, use it as
4063 a starting point for the primary GOT. */
4064 if (!arg->primary)
4065 {
4066 arg->primary = bfd2got->g;
4067 return 1;
4068 }
4069
4070 /* Try merging with the primary GOT. */
4071 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4072 if (result >= 0)
4073 return result;
4074 }
4075
4076 /* If we can merge with the last-created got, do it. */
4077 if (arg->current)
4078 {
4079 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4080 if (result >= 0)
4081 return result;
4082 }
4083
4084 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4085 fits; if it turns out that it doesn't, we'll get relocation
4086 overflows anyway. */
4087 g->next = arg->current;
4088 arg->current = g;
4089
4090 return 1;
4091 }
4092
4093 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4094 is null iff there is just a single GOT. */
4095
4096 static int
4097 mips_elf_initialize_tls_index (void **entryp, void *p)
4098 {
4099 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4100 struct mips_got_info *g = p;
4101 bfd_vma next_index;
4102 unsigned char tls_type;
4103
4104 /* We're only interested in TLS symbols. */
4105 if (entry->tls_type == 0)
4106 return 1;
4107
4108 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4109
4110 if (entry->symndx == -1 && g->next == NULL)
4111 {
4112 /* A type (3) got entry in the single-GOT case. We use the symbol's
4113 hash table entry to track its index. */
4114 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4115 return 1;
4116 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4117 entry->d.h->tls_got_offset = next_index;
4118 tls_type = entry->d.h->tls_type;
4119 }
4120 else
4121 {
4122 if (entry->tls_type & GOT_TLS_LDM)
4123 {
4124 /* There are separate mips_got_entry objects for each input bfd
4125 that requires an LDM entry. Make sure that all LDM entries in
4126 a GOT resolve to the same index. */
4127 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4128 {
4129 entry->gotidx = g->tls_ldm_offset;
4130 return 1;
4131 }
4132 g->tls_ldm_offset = next_index;
4133 }
4134 entry->gotidx = next_index;
4135 tls_type = entry->tls_type;
4136 }
4137
4138 /* Account for the entries we've just allocated. */
4139 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4140 g->tls_assigned_gotno += 2;
4141 if (tls_type & GOT_TLS_IE)
4142 g->tls_assigned_gotno += 1;
4143
4144 return 1;
4145 }
4146
4147 /* If passed a NULL mips_got_info in the argument, set the marker used
4148 to tell whether a global symbol needs a got entry (in the primary
4149 got) to the given VALUE.
4150
4151 If passed a pointer G to a mips_got_info in the argument (it must
4152 not be the primary GOT), compute the offset from the beginning of
4153 the (primary) GOT section to the entry in G corresponding to the
4154 global symbol. G's assigned_gotno must contain the index of the
4155 first available global GOT entry in G. VALUE must contain the size
4156 of a GOT entry in bytes. For each global GOT entry that requires a
4157 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4158 marked as not eligible for lazy resolution through a function
4159 stub. */
4160 static int
4161 mips_elf_set_global_got_offset (void **entryp, void *p)
4162 {
4163 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4164 struct mips_elf_set_global_got_offset_arg *arg
4165 = (struct mips_elf_set_global_got_offset_arg *)p;
4166 struct mips_got_info *g = arg->g;
4167
4168 if (g && entry->tls_type != GOT_NORMAL)
4169 arg->needed_relocs +=
4170 mips_tls_got_relocs (arg->info, entry->tls_type,
4171 entry->symndx == -1 ? &entry->d.h->root : NULL);
4172
4173 if (entry->abfd != NULL
4174 && entry->symndx == -1
4175 && entry->d.h->global_got_area != GGA_NONE)
4176 {
4177 if (g)
4178 {
4179 BFD_ASSERT (g->global_gotsym == NULL);
4180
4181 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4182 if (arg->info->shared
4183 || (elf_hash_table (arg->info)->dynamic_sections_created
4184 && entry->d.h->root.def_dynamic
4185 && !entry->d.h->root.def_regular))
4186 ++arg->needed_relocs;
4187 }
4188 else
4189 entry->d.h->global_got_area = arg->value;
4190 }
4191
4192 return 1;
4193 }
4194
4195 /* A htab_traverse callback for GOT entries for which DATA is the
4196 bfd_link_info. Forbid any global symbols from having traditional
4197 lazy-binding stubs. */
4198
4199 static int
4200 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4201 {
4202 struct bfd_link_info *info;
4203 struct mips_elf_link_hash_table *htab;
4204 struct mips_got_entry *entry;
4205
4206 entry = (struct mips_got_entry *) *entryp;
4207 info = (struct bfd_link_info *) data;
4208 htab = mips_elf_hash_table (info);
4209 if (entry->abfd != NULL
4210 && entry->symndx == -1
4211 && entry->d.h->needs_lazy_stub)
4212 {
4213 entry->d.h->needs_lazy_stub = FALSE;
4214 htab->lazy_stub_count--;
4215 }
4216
4217 return 1;
4218 }
4219
4220 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4221 the primary GOT. */
4222 static bfd_vma
4223 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4224 {
4225 if (g->bfd2got == NULL)
4226 return 0;
4227
4228 g = mips_elf_got_for_ibfd (g, ibfd);
4229 if (! g)
4230 return 0;
4231
4232 BFD_ASSERT (g->next);
4233
4234 g = g->next;
4235
4236 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4237 * MIPS_ELF_GOT_SIZE (abfd);
4238 }
4239
4240 /* Turn a single GOT that is too big for 16-bit addressing into
4241 a sequence of GOTs, each one 16-bit addressable. */
4242
4243 static bfd_boolean
4244 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4245 asection *got, bfd_size_type pages)
4246 {
4247 struct mips_elf_link_hash_table *htab;
4248 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4249 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4250 struct mips_got_info *g, *gg;
4251 unsigned int assign, needed_relocs;
4252 bfd *dynobj;
4253
4254 dynobj = elf_hash_table (info)->dynobj;
4255 htab = mips_elf_hash_table (info);
4256 g = htab->got_info;
4257 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4258 mips_elf_bfd2got_entry_eq, NULL);
4259 if (g->bfd2got == NULL)
4260 return FALSE;
4261
4262 got_per_bfd_arg.bfd2got = g->bfd2got;
4263 got_per_bfd_arg.obfd = abfd;
4264 got_per_bfd_arg.info = info;
4265
4266 /* Count how many GOT entries each input bfd requires, creating a
4267 map from bfd to got info while at that. */
4268 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4269 if (got_per_bfd_arg.obfd == NULL)
4270 return FALSE;
4271
4272 /* Also count how many page entries each input bfd requires. */
4273 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4274 &got_per_bfd_arg);
4275 if (got_per_bfd_arg.obfd == NULL)
4276 return FALSE;
4277
4278 got_per_bfd_arg.current = NULL;
4279 got_per_bfd_arg.primary = NULL;
4280 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4281 / MIPS_ELF_GOT_SIZE (abfd))
4282 - htab->reserved_gotno);
4283 got_per_bfd_arg.max_pages = pages;
4284 /* The number of globals that will be included in the primary GOT.
4285 See the calls to mips_elf_set_global_got_offset below for more
4286 information. */
4287 got_per_bfd_arg.global_count = g->global_gotno;
4288
4289 /* Try to merge the GOTs of input bfds together, as long as they
4290 don't seem to exceed the maximum GOT size, choosing one of them
4291 to be the primary GOT. */
4292 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4293 if (got_per_bfd_arg.obfd == NULL)
4294 return FALSE;
4295
4296 /* If we do not find any suitable primary GOT, create an empty one. */
4297 if (got_per_bfd_arg.primary == NULL)
4298 {
4299 g->next = (struct mips_got_info *)
4300 bfd_alloc (abfd, sizeof (struct mips_got_info));
4301 if (g->next == NULL)
4302 return FALSE;
4303
4304 g->next->global_gotsym = NULL;
4305 g->next->global_gotno = 0;
4306 g->next->reloc_only_gotno = 0;
4307 g->next->local_gotno = 0;
4308 g->next->page_gotno = 0;
4309 g->next->tls_gotno = 0;
4310 g->next->assigned_gotno = 0;
4311 g->next->tls_assigned_gotno = 0;
4312 g->next->tls_ldm_offset = MINUS_ONE;
4313 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4314 mips_elf_multi_got_entry_eq,
4315 NULL);
4316 if (g->next->got_entries == NULL)
4317 return FALSE;
4318 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4319 mips_got_page_entry_eq,
4320 NULL);
4321 if (g->next->got_page_entries == NULL)
4322 return FALSE;
4323 g->next->bfd2got = NULL;
4324 }
4325 else
4326 g->next = got_per_bfd_arg.primary;
4327 g->next->next = got_per_bfd_arg.current;
4328
4329 /* GG is now the master GOT, and G is the primary GOT. */
4330 gg = g;
4331 g = g->next;
4332
4333 /* Map the output bfd to the primary got. That's what we're going
4334 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4335 didn't mark in check_relocs, and we want a quick way to find it.
4336 We can't just use gg->next because we're going to reverse the
4337 list. */
4338 {
4339 struct mips_elf_bfd2got_hash *bfdgot;
4340 void **bfdgotp;
4341
4342 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4343 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4344
4345 if (bfdgot == NULL)
4346 return FALSE;
4347
4348 bfdgot->bfd = abfd;
4349 bfdgot->g = g;
4350 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4351
4352 BFD_ASSERT (*bfdgotp == NULL);
4353 *bfdgotp = bfdgot;
4354 }
4355
4356 /* Every symbol that is referenced in a dynamic relocation must be
4357 present in the primary GOT, so arrange for them to appear after
4358 those that are actually referenced. */
4359 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4360 g->global_gotno = gg->global_gotno;
4361
4362 set_got_offset_arg.g = NULL;
4363 set_got_offset_arg.value = GGA_RELOC_ONLY;
4364 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4365 &set_got_offset_arg);
4366 set_got_offset_arg.value = GGA_NORMAL;
4367 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4368 &set_got_offset_arg);
4369
4370 /* Now go through the GOTs assigning them offset ranges.
4371 [assigned_gotno, local_gotno[ will be set to the range of local
4372 entries in each GOT. We can then compute the end of a GOT by
4373 adding local_gotno to global_gotno. We reverse the list and make
4374 it circular since then we'll be able to quickly compute the
4375 beginning of a GOT, by computing the end of its predecessor. To
4376 avoid special cases for the primary GOT, while still preserving
4377 assertions that are valid for both single- and multi-got links,
4378 we arrange for the main got struct to have the right number of
4379 global entries, but set its local_gotno such that the initial
4380 offset of the primary GOT is zero. Remember that the primary GOT
4381 will become the last item in the circular linked list, so it
4382 points back to the master GOT. */
4383 gg->local_gotno = -g->global_gotno;
4384 gg->global_gotno = g->global_gotno;
4385 gg->tls_gotno = 0;
4386 assign = 0;
4387 gg->next = gg;
4388
4389 do
4390 {
4391 struct mips_got_info *gn;
4392
4393 assign += htab->reserved_gotno;
4394 g->assigned_gotno = assign;
4395 g->local_gotno += assign;
4396 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4397 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4398
4399 /* Take g out of the direct list, and push it onto the reversed
4400 list that gg points to. g->next is guaranteed to be nonnull after
4401 this operation, as required by mips_elf_initialize_tls_index. */
4402 gn = g->next;
4403 g->next = gg->next;
4404 gg->next = g;
4405
4406 /* Set up any TLS entries. We always place the TLS entries after
4407 all non-TLS entries. */
4408 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4409 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4410
4411 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4412 g = gn;
4413
4414 /* Forbid global symbols in every non-primary GOT from having
4415 lazy-binding stubs. */
4416 if (g)
4417 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4418 }
4419 while (g);
4420
4421 got->size = (gg->next->local_gotno
4422 + gg->next->global_gotno
4423 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4424
4425 needed_relocs = 0;
4426 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4427 set_got_offset_arg.info = info;
4428 for (g = gg->next; g && g->next != gg; g = g->next)
4429 {
4430 unsigned int save_assign;
4431
4432 /* Assign offsets to global GOT entries. */
4433 save_assign = g->assigned_gotno;
4434 g->assigned_gotno = g->local_gotno;
4435 set_got_offset_arg.g = g;
4436 set_got_offset_arg.needed_relocs = 0;
4437 htab_traverse (g->got_entries,
4438 mips_elf_set_global_got_offset,
4439 &set_got_offset_arg);
4440 needed_relocs += set_got_offset_arg.needed_relocs;
4441 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4442
4443 g->assigned_gotno = save_assign;
4444 if (info->shared)
4445 {
4446 needed_relocs += g->local_gotno - g->assigned_gotno;
4447 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4448 + g->next->global_gotno
4449 + g->next->tls_gotno
4450 + htab->reserved_gotno);
4451 }
4452 }
4453
4454 if (needed_relocs)
4455 mips_elf_allocate_dynamic_relocations (dynobj, info,
4456 needed_relocs);
4457
4458 return TRUE;
4459 }
4460
4461 \f
4462 /* Returns the first relocation of type r_type found, beginning with
4463 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4464
4465 static const Elf_Internal_Rela *
4466 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4467 const Elf_Internal_Rela *relocation,
4468 const Elf_Internal_Rela *relend)
4469 {
4470 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4471
4472 while (relocation < relend)
4473 {
4474 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4475 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4476 return relocation;
4477
4478 ++relocation;
4479 }
4480
4481 /* We didn't find it. */
4482 return NULL;
4483 }
4484
4485 /* Return whether a relocation is against a local symbol. */
4486
4487 static bfd_boolean
4488 mips_elf_local_relocation_p (bfd *input_bfd,
4489 const Elf_Internal_Rela *relocation,
4490 asection **local_sections,
4491 bfd_boolean check_forced)
4492 {
4493 unsigned long r_symndx;
4494 Elf_Internal_Shdr *symtab_hdr;
4495 struct mips_elf_link_hash_entry *h;
4496 size_t extsymoff;
4497
4498 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4499 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4500 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4501
4502 if (r_symndx < extsymoff)
4503 return TRUE;
4504 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4505 return TRUE;
4506
4507 if (check_forced)
4508 {
4509 /* Look up the hash table to check whether the symbol
4510 was forced local. */
4511 h = (struct mips_elf_link_hash_entry *)
4512 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
4513 /* Find the real hash-table entry for this symbol. */
4514 while (h->root.root.type == bfd_link_hash_indirect
4515 || h->root.root.type == bfd_link_hash_warning)
4516 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4517 if (h->root.forced_local)
4518 return TRUE;
4519 }
4520
4521 return FALSE;
4522 }
4523 \f
4524 /* Sign-extend VALUE, which has the indicated number of BITS. */
4525
4526 bfd_vma
4527 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4528 {
4529 if (value & ((bfd_vma) 1 << (bits - 1)))
4530 /* VALUE is negative. */
4531 value |= ((bfd_vma) - 1) << bits;
4532
4533 return value;
4534 }
4535
4536 /* Return non-zero if the indicated VALUE has overflowed the maximum
4537 range expressible by a signed number with the indicated number of
4538 BITS. */
4539
4540 static bfd_boolean
4541 mips_elf_overflow_p (bfd_vma value, int bits)
4542 {
4543 bfd_signed_vma svalue = (bfd_signed_vma) value;
4544
4545 if (svalue > (1 << (bits - 1)) - 1)
4546 /* The value is too big. */
4547 return TRUE;
4548 else if (svalue < -(1 << (bits - 1)))
4549 /* The value is too small. */
4550 return TRUE;
4551
4552 /* All is well. */
4553 return FALSE;
4554 }
4555
4556 /* Calculate the %high function. */
4557
4558 static bfd_vma
4559 mips_elf_high (bfd_vma value)
4560 {
4561 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4562 }
4563
4564 /* Calculate the %higher function. */
4565
4566 static bfd_vma
4567 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4568 {
4569 #ifdef BFD64
4570 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4571 #else
4572 abort ();
4573 return MINUS_ONE;
4574 #endif
4575 }
4576
4577 /* Calculate the %highest function. */
4578
4579 static bfd_vma
4580 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4581 {
4582 #ifdef BFD64
4583 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4584 #else
4585 abort ();
4586 return MINUS_ONE;
4587 #endif
4588 }
4589 \f
4590 /* Create the .compact_rel section. */
4591
4592 static bfd_boolean
4593 mips_elf_create_compact_rel_section
4594 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4595 {
4596 flagword flags;
4597 register asection *s;
4598
4599 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4600 {
4601 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4602 | SEC_READONLY);
4603
4604 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4605 if (s == NULL
4606 || ! bfd_set_section_alignment (abfd, s,
4607 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4608 return FALSE;
4609
4610 s->size = sizeof (Elf32_External_compact_rel);
4611 }
4612
4613 return TRUE;
4614 }
4615
4616 /* Create the .got section to hold the global offset table. */
4617
4618 static bfd_boolean
4619 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4620 {
4621 flagword flags;
4622 register asection *s;
4623 struct elf_link_hash_entry *h;
4624 struct bfd_link_hash_entry *bh;
4625 struct mips_got_info *g;
4626 bfd_size_type amt;
4627 struct mips_elf_link_hash_table *htab;
4628
4629 htab = mips_elf_hash_table (info);
4630
4631 /* This function may be called more than once. */
4632 if (htab->sgot)
4633 return TRUE;
4634
4635 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4636 | SEC_LINKER_CREATED);
4637
4638 /* We have to use an alignment of 2**4 here because this is hardcoded
4639 in the function stub generation and in the linker script. */
4640 s = bfd_make_section_with_flags (abfd, ".got", flags);
4641 if (s == NULL
4642 || ! bfd_set_section_alignment (abfd, s, 4))
4643 return FALSE;
4644 htab->sgot = s;
4645
4646 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4647 linker script because we don't want to define the symbol if we
4648 are not creating a global offset table. */
4649 bh = NULL;
4650 if (! (_bfd_generic_link_add_one_symbol
4651 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4652 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4653 return FALSE;
4654
4655 h = (struct elf_link_hash_entry *) bh;
4656 h->non_elf = 0;
4657 h->def_regular = 1;
4658 h->type = STT_OBJECT;
4659 elf_hash_table (info)->hgot = h;
4660
4661 if (info->shared
4662 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4663 return FALSE;
4664
4665 amt = sizeof (struct mips_got_info);
4666 g = bfd_alloc (abfd, amt);
4667 if (g == NULL)
4668 return FALSE;
4669 g->global_gotsym = NULL;
4670 g->global_gotno = 0;
4671 g->reloc_only_gotno = 0;
4672 g->tls_gotno = 0;
4673 g->local_gotno = 0;
4674 g->page_gotno = 0;
4675 g->assigned_gotno = 0;
4676 g->bfd2got = NULL;
4677 g->next = NULL;
4678 g->tls_ldm_offset = MINUS_ONE;
4679 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4680 mips_elf_got_entry_eq, NULL);
4681 if (g->got_entries == NULL)
4682 return FALSE;
4683 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4684 mips_got_page_entry_eq, NULL);
4685 if (g->got_page_entries == NULL)
4686 return FALSE;
4687 htab->got_info = g;
4688 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4689 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4690
4691 /* We also need a .got.plt section when generating PLTs. */
4692 s = bfd_make_section_with_flags (abfd, ".got.plt",
4693 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4694 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4695 if (s == NULL)
4696 return FALSE;
4697 htab->sgotplt = s;
4698
4699 return TRUE;
4700 }
4701 \f
4702 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4703 __GOTT_INDEX__ symbols. These symbols are only special for
4704 shared objects; they are not used in executables. */
4705
4706 static bfd_boolean
4707 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4708 {
4709 return (mips_elf_hash_table (info)->is_vxworks
4710 && info->shared
4711 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4712 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4713 }
4714
4715 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4716 require an la25 stub. See also mips_elf_local_pic_function_p,
4717 which determines whether the destination function ever requires a
4718 stub. */
4719
4720 static bfd_boolean
4721 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4722 {
4723 /* We specifically ignore branches and jumps from EF_PIC objects,
4724 where the onus is on the compiler or programmer to perform any
4725 necessary initialization of $25. Sometimes such initialization
4726 is unnecessary; for example, -mno-shared functions do not use
4727 the incoming value of $25, and may therefore be called directly. */
4728 if (PIC_OBJECT_P (input_bfd))
4729 return FALSE;
4730
4731 switch (r_type)
4732 {
4733 case R_MIPS_26:
4734 case R_MIPS_PC16:
4735 case R_MIPS16_26:
4736 return TRUE;
4737
4738 default:
4739 return FALSE;
4740 }
4741 }
4742 \f
4743 /* Calculate the value produced by the RELOCATION (which comes from
4744 the INPUT_BFD). The ADDEND is the addend to use for this
4745 RELOCATION; RELOCATION->R_ADDEND is ignored.
4746
4747 The result of the relocation calculation is stored in VALUEP.
4748 REQUIRE_JALXP indicates whether or not the opcode used with this
4749 relocation must be JALX.
4750
4751 This function returns bfd_reloc_continue if the caller need take no
4752 further action regarding this relocation, bfd_reloc_notsupported if
4753 something goes dramatically wrong, bfd_reloc_overflow if an
4754 overflow occurs, and bfd_reloc_ok to indicate success. */
4755
4756 static bfd_reloc_status_type
4757 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4758 asection *input_section,
4759 struct bfd_link_info *info,
4760 const Elf_Internal_Rela *relocation,
4761 bfd_vma addend, reloc_howto_type *howto,
4762 Elf_Internal_Sym *local_syms,
4763 asection **local_sections, bfd_vma *valuep,
4764 const char **namep, bfd_boolean *require_jalxp,
4765 bfd_boolean save_addend)
4766 {
4767 /* The eventual value we will return. */
4768 bfd_vma value;
4769 /* The address of the symbol against which the relocation is
4770 occurring. */
4771 bfd_vma symbol = 0;
4772 /* The final GP value to be used for the relocatable, executable, or
4773 shared object file being produced. */
4774 bfd_vma gp;
4775 /* The place (section offset or address) of the storage unit being
4776 relocated. */
4777 bfd_vma p;
4778 /* The value of GP used to create the relocatable object. */
4779 bfd_vma gp0;
4780 /* The offset into the global offset table at which the address of
4781 the relocation entry symbol, adjusted by the addend, resides
4782 during execution. */
4783 bfd_vma g = MINUS_ONE;
4784 /* The section in which the symbol referenced by the relocation is
4785 located. */
4786 asection *sec = NULL;
4787 struct mips_elf_link_hash_entry *h = NULL;
4788 /* TRUE if the symbol referred to by this relocation is a local
4789 symbol. */
4790 bfd_boolean local_p, was_local_p;
4791 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4792 bfd_boolean gp_disp_p = FALSE;
4793 /* TRUE if the symbol referred to by this relocation is
4794 "__gnu_local_gp". */
4795 bfd_boolean gnu_local_gp_p = FALSE;
4796 Elf_Internal_Shdr *symtab_hdr;
4797 size_t extsymoff;
4798 unsigned long r_symndx;
4799 int r_type;
4800 /* TRUE if overflow occurred during the calculation of the
4801 relocation value. */
4802 bfd_boolean overflowed_p;
4803 /* TRUE if this relocation refers to a MIPS16 function. */
4804 bfd_boolean target_is_16_bit_code_p = FALSE;
4805 struct mips_elf_link_hash_table *htab;
4806 bfd *dynobj;
4807
4808 dynobj = elf_hash_table (info)->dynobj;
4809 htab = mips_elf_hash_table (info);
4810
4811 /* Parse the relocation. */
4812 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4813 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4814 p = (input_section->output_section->vma
4815 + input_section->output_offset
4816 + relocation->r_offset);
4817
4818 /* Assume that there will be no overflow. */
4819 overflowed_p = FALSE;
4820
4821 /* Figure out whether or not the symbol is local, and get the offset
4822 used in the array of hash table entries. */
4823 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4824 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4825 local_sections, FALSE);
4826 was_local_p = local_p;
4827 if (! elf_bad_symtab (input_bfd))
4828 extsymoff = symtab_hdr->sh_info;
4829 else
4830 {
4831 /* The symbol table does not follow the rule that local symbols
4832 must come before globals. */
4833 extsymoff = 0;
4834 }
4835
4836 /* Figure out the value of the symbol. */
4837 if (local_p)
4838 {
4839 Elf_Internal_Sym *sym;
4840
4841 sym = local_syms + r_symndx;
4842 sec = local_sections[r_symndx];
4843
4844 symbol = sec->output_section->vma + sec->output_offset;
4845 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4846 || (sec->flags & SEC_MERGE))
4847 symbol += sym->st_value;
4848 if ((sec->flags & SEC_MERGE)
4849 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4850 {
4851 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4852 addend -= symbol;
4853 addend += sec->output_section->vma + sec->output_offset;
4854 }
4855
4856 /* MIPS16 text labels should be treated as odd. */
4857 if (ELF_ST_IS_MIPS16 (sym->st_other))
4858 ++symbol;
4859
4860 /* Record the name of this symbol, for our caller. */
4861 *namep = bfd_elf_string_from_elf_section (input_bfd,
4862 symtab_hdr->sh_link,
4863 sym->st_name);
4864 if (*namep == '\0')
4865 *namep = bfd_section_name (input_bfd, sec);
4866
4867 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4868 }
4869 else
4870 {
4871 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4872
4873 /* For global symbols we look up the symbol in the hash-table. */
4874 h = ((struct mips_elf_link_hash_entry *)
4875 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4876 /* Find the real hash-table entry for this symbol. */
4877 while (h->root.root.type == bfd_link_hash_indirect
4878 || h->root.root.type == bfd_link_hash_warning)
4879 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4880
4881 /* Record the name of this symbol, for our caller. */
4882 *namep = h->root.root.root.string;
4883
4884 /* See if this is the special _gp_disp symbol. Note that such a
4885 symbol must always be a global symbol. */
4886 if (strcmp (*namep, "_gp_disp") == 0
4887 && ! NEWABI_P (input_bfd))
4888 {
4889 /* Relocations against _gp_disp are permitted only with
4890 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4891 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4892 return bfd_reloc_notsupported;
4893
4894 gp_disp_p = TRUE;
4895 }
4896 /* See if this is the special _gp symbol. Note that such a
4897 symbol must always be a global symbol. */
4898 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4899 gnu_local_gp_p = TRUE;
4900
4901
4902 /* If this symbol is defined, calculate its address. Note that
4903 _gp_disp is a magic symbol, always implicitly defined by the
4904 linker, so it's inappropriate to check to see whether or not
4905 its defined. */
4906 else if ((h->root.root.type == bfd_link_hash_defined
4907 || h->root.root.type == bfd_link_hash_defweak)
4908 && h->root.root.u.def.section)
4909 {
4910 sec = h->root.root.u.def.section;
4911 if (sec->output_section)
4912 symbol = (h->root.root.u.def.value
4913 + sec->output_section->vma
4914 + sec->output_offset);
4915 else
4916 symbol = h->root.root.u.def.value;
4917 }
4918 else if (h->root.root.type == bfd_link_hash_undefweak)
4919 /* We allow relocations against undefined weak symbols, giving
4920 it the value zero, so that you can undefined weak functions
4921 and check to see if they exist by looking at their
4922 addresses. */
4923 symbol = 0;
4924 else if (info->unresolved_syms_in_objects == RM_IGNORE
4925 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4926 symbol = 0;
4927 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4928 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4929 {
4930 /* If this is a dynamic link, we should have created a
4931 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4932 in in _bfd_mips_elf_create_dynamic_sections.
4933 Otherwise, we should define the symbol with a value of 0.
4934 FIXME: It should probably get into the symbol table
4935 somehow as well. */
4936 BFD_ASSERT (! info->shared);
4937 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4938 symbol = 0;
4939 }
4940 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4941 {
4942 /* This is an optional symbol - an Irix specific extension to the
4943 ELF spec. Ignore it for now.
4944 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4945 than simply ignoring them, but we do not handle this for now.
4946 For information see the "64-bit ELF Object File Specification"
4947 which is available from here:
4948 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4949 symbol = 0;
4950 }
4951 else
4952 {
4953 if (! ((*info->callbacks->undefined_symbol)
4954 (info, h->root.root.root.string, input_bfd,
4955 input_section, relocation->r_offset,
4956 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4957 || ELF_ST_VISIBILITY (h->root.other))))
4958 return bfd_reloc_undefined;
4959 symbol = 0;
4960 }
4961
4962 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
4963 }
4964
4965 /* If this is a reference to a 16-bit function with a stub, we need
4966 to redirect the relocation to the stub unless:
4967
4968 (a) the relocation is for a MIPS16 JAL;
4969
4970 (b) the relocation is for a MIPS16 PIC call, and there are no
4971 non-MIPS16 uses of the GOT slot; or
4972
4973 (c) the section allows direct references to MIPS16 functions. */
4974 if (r_type != R_MIPS16_26
4975 && !info->relocatable
4976 && ((h != NULL
4977 && h->fn_stub != NULL
4978 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
4979 || (local_p
4980 && elf_tdata (input_bfd)->local_stubs != NULL
4981 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4982 && !section_allows_mips16_refs_p (input_section))
4983 {
4984 /* This is a 32- or 64-bit call to a 16-bit function. We should
4985 have already noticed that we were going to need the
4986 stub. */
4987 if (local_p)
4988 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4989 else
4990 {
4991 BFD_ASSERT (h->need_fn_stub);
4992 sec = h->fn_stub;
4993 }
4994
4995 symbol = sec->output_section->vma + sec->output_offset;
4996 /* The target is 16-bit, but the stub isn't. */
4997 target_is_16_bit_code_p = FALSE;
4998 }
4999 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5000 need to redirect the call to the stub. Note that we specifically
5001 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5002 use an indirect stub instead. */
5003 else if (r_type == R_MIPS16_26 && !info->relocatable
5004 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5005 || (local_p
5006 && elf_tdata (input_bfd)->local_call_stubs != NULL
5007 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5008 && !target_is_16_bit_code_p)
5009 {
5010 if (local_p)
5011 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5012 else
5013 {
5014 /* If both call_stub and call_fp_stub are defined, we can figure
5015 out which one to use by checking which one appears in the input
5016 file. */
5017 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5018 {
5019 asection *o;
5020
5021 sec = NULL;
5022 for (o = input_bfd->sections; o != NULL; o = o->next)
5023 {
5024 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5025 {
5026 sec = h->call_fp_stub;
5027 break;
5028 }
5029 }
5030 if (sec == NULL)
5031 sec = h->call_stub;
5032 }
5033 else if (h->call_stub != NULL)
5034 sec = h->call_stub;
5035 else
5036 sec = h->call_fp_stub;
5037 }
5038
5039 BFD_ASSERT (sec->size > 0);
5040 symbol = sec->output_section->vma + sec->output_offset;
5041 }
5042 /* If this is a direct call to a PIC function, redirect to the
5043 non-PIC stub. */
5044 else if (h != NULL && h->la25_stub
5045 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5046 symbol = (h->la25_stub->stub_section->output_section->vma
5047 + h->la25_stub->stub_section->output_offset
5048 + h->la25_stub->offset);
5049
5050 /* Calls from 16-bit code to 32-bit code and vice versa require the
5051 special jalx instruction. */
5052 *require_jalxp = (!info->relocatable
5053 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
5054 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
5055
5056 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5057 local_sections, TRUE);
5058
5059 gp0 = _bfd_get_gp_value (input_bfd);
5060 gp = _bfd_get_gp_value (abfd);
5061 if (htab->got_info)
5062 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5063
5064 if (gnu_local_gp_p)
5065 symbol = gp;
5066
5067 /* If we haven't already determined the GOT offset, oand we're going
5068 to need it, get it now. */
5069 switch (r_type)
5070 {
5071 case R_MIPS_GOT_PAGE:
5072 case R_MIPS_GOT_OFST:
5073 /* We need to decay to GOT_DISP/addend if the symbol doesn't
5074 bind locally. */
5075 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
5076 if (local_p || r_type == R_MIPS_GOT_OFST)
5077 break;
5078 /* Fall through. */
5079
5080 case R_MIPS16_CALL16:
5081 case R_MIPS16_GOT16:
5082 case R_MIPS_CALL16:
5083 case R_MIPS_GOT16:
5084 case R_MIPS_GOT_DISP:
5085 case R_MIPS_GOT_HI16:
5086 case R_MIPS_CALL_HI16:
5087 case R_MIPS_GOT_LO16:
5088 case R_MIPS_CALL_LO16:
5089 case R_MIPS_TLS_GD:
5090 case R_MIPS_TLS_GOTTPREL:
5091 case R_MIPS_TLS_LDM:
5092 /* Find the index into the GOT where this value is located. */
5093 if (r_type == R_MIPS_TLS_LDM)
5094 {
5095 g = mips_elf_local_got_index (abfd, input_bfd, info,
5096 0, 0, NULL, r_type);
5097 if (g == MINUS_ONE)
5098 return bfd_reloc_outofrange;
5099 }
5100 else if (!local_p)
5101 {
5102 /* On VxWorks, CALL relocations should refer to the .got.plt
5103 entry, which is initialized to point at the PLT stub. */
5104 if (htab->is_vxworks
5105 && (r_type == R_MIPS_CALL_HI16
5106 || r_type == R_MIPS_CALL_LO16
5107 || call16_reloc_p (r_type)))
5108 {
5109 BFD_ASSERT (addend == 0);
5110 BFD_ASSERT (h->root.needs_plt);
5111 g = mips_elf_gotplt_index (info, &h->root);
5112 }
5113 else
5114 {
5115 /* GOT_PAGE may take a non-zero addend, that is ignored in a
5116 GOT_PAGE relocation that decays to GOT_DISP because the
5117 symbol turns out to be global. The addend is then added
5118 as GOT_OFST. */
5119 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
5120 g = mips_elf_global_got_index (dynobj, input_bfd,
5121 &h->root, r_type, info);
5122 if (h->tls_type == GOT_NORMAL
5123 && (! elf_hash_table(info)->dynamic_sections_created
5124 || (info->shared
5125 && (info->symbolic || h->root.forced_local)
5126 && h->root.def_regular)))
5127 /* This is a static link or a -Bsymbolic link. The
5128 symbol is defined locally, or was forced to be local.
5129 We must initialize this entry in the GOT. */
5130 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5131 }
5132 }
5133 else if (!htab->is_vxworks
5134 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5135 /* The calculation below does not involve "g". */
5136 break;
5137 else
5138 {
5139 g = mips_elf_local_got_index (abfd, input_bfd, info,
5140 symbol + addend, r_symndx, h, r_type);
5141 if (g == MINUS_ONE)
5142 return bfd_reloc_outofrange;
5143 }
5144
5145 /* Convert GOT indices to actual offsets. */
5146 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5147 break;
5148 }
5149
5150 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5151 symbols are resolved by the loader. Add them to .rela.dyn. */
5152 if (h != NULL && is_gott_symbol (info, &h->root))
5153 {
5154 Elf_Internal_Rela outrel;
5155 bfd_byte *loc;
5156 asection *s;
5157
5158 s = mips_elf_rel_dyn_section (info, FALSE);
5159 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5160
5161 outrel.r_offset = (input_section->output_section->vma
5162 + input_section->output_offset
5163 + relocation->r_offset);
5164 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5165 outrel.r_addend = addend;
5166 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5167
5168 /* If we've written this relocation for a readonly section,
5169 we need to set DF_TEXTREL again, so that we do not delete the
5170 DT_TEXTREL tag. */
5171 if (MIPS_ELF_READONLY_SECTION (input_section))
5172 info->flags |= DF_TEXTREL;
5173
5174 *valuep = 0;
5175 return bfd_reloc_ok;
5176 }
5177
5178 /* Figure out what kind of relocation is being performed. */
5179 switch (r_type)
5180 {
5181 case R_MIPS_NONE:
5182 return bfd_reloc_continue;
5183
5184 case R_MIPS_16:
5185 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5186 overflowed_p = mips_elf_overflow_p (value, 16);
5187 break;
5188
5189 case R_MIPS_32:
5190 case R_MIPS_REL32:
5191 case R_MIPS_64:
5192 if ((info->shared
5193 || (htab->root.dynamic_sections_created
5194 && h != NULL
5195 && h->root.def_dynamic
5196 && !h->root.def_regular
5197 && !h->has_static_relocs))
5198 && r_symndx != 0
5199 && (h == NULL
5200 || h->root.root.type != bfd_link_hash_undefweak
5201 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5202 && (input_section->flags & SEC_ALLOC) != 0)
5203 {
5204 /* If we're creating a shared library, then we can't know
5205 where the symbol will end up. So, we create a relocation
5206 record in the output, and leave the job up to the dynamic
5207 linker. We must do the same for executable references to
5208 shared library symbols, unless we've decided to use copy
5209 relocs or PLTs instead. */
5210 value = addend;
5211 if (!mips_elf_create_dynamic_relocation (abfd,
5212 info,
5213 relocation,
5214 h,
5215 sec,
5216 symbol,
5217 &value,
5218 input_section))
5219 return bfd_reloc_undefined;
5220 }
5221 else
5222 {
5223 if (r_type != R_MIPS_REL32)
5224 value = symbol + addend;
5225 else
5226 value = addend;
5227 }
5228 value &= howto->dst_mask;
5229 break;
5230
5231 case R_MIPS_PC32:
5232 value = symbol + addend - p;
5233 value &= howto->dst_mask;
5234 break;
5235
5236 case R_MIPS16_26:
5237 /* The calculation for R_MIPS16_26 is just the same as for an
5238 R_MIPS_26. It's only the storage of the relocated field into
5239 the output file that's different. That's handled in
5240 mips_elf_perform_relocation. So, we just fall through to the
5241 R_MIPS_26 case here. */
5242 case R_MIPS_26:
5243 if (local_p)
5244 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
5245 else
5246 {
5247 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
5248 if (h->root.root.type != bfd_link_hash_undefweak)
5249 overflowed_p = (value >> 26) != ((p + 4) >> 28);
5250 }
5251 value &= howto->dst_mask;
5252 break;
5253
5254 case R_MIPS_TLS_DTPREL_HI16:
5255 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5256 & howto->dst_mask);
5257 break;
5258
5259 case R_MIPS_TLS_DTPREL_LO16:
5260 case R_MIPS_TLS_DTPREL32:
5261 case R_MIPS_TLS_DTPREL64:
5262 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5263 break;
5264
5265 case R_MIPS_TLS_TPREL_HI16:
5266 value = (mips_elf_high (addend + symbol - tprel_base (info))
5267 & howto->dst_mask);
5268 break;
5269
5270 case R_MIPS_TLS_TPREL_LO16:
5271 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5272 break;
5273
5274 case R_MIPS_HI16:
5275 case R_MIPS16_HI16:
5276 if (!gp_disp_p)
5277 {
5278 value = mips_elf_high (addend + symbol);
5279 value &= howto->dst_mask;
5280 }
5281 else
5282 {
5283 /* For MIPS16 ABI code we generate this sequence
5284 0: li $v0,%hi(_gp_disp)
5285 4: addiupc $v1,%lo(_gp_disp)
5286 8: sll $v0,16
5287 12: addu $v0,$v1
5288 14: move $gp,$v0
5289 So the offsets of hi and lo relocs are the same, but the
5290 $pc is four higher than $t9 would be, so reduce
5291 both reloc addends by 4. */
5292 if (r_type == R_MIPS16_HI16)
5293 value = mips_elf_high (addend + gp - p - 4);
5294 else
5295 value = mips_elf_high (addend + gp - p);
5296 overflowed_p = mips_elf_overflow_p (value, 16);
5297 }
5298 break;
5299
5300 case R_MIPS_LO16:
5301 case R_MIPS16_LO16:
5302 if (!gp_disp_p)
5303 value = (symbol + addend) & howto->dst_mask;
5304 else
5305 {
5306 /* See the comment for R_MIPS16_HI16 above for the reason
5307 for this conditional. */
5308 if (r_type == R_MIPS16_LO16)
5309 value = addend + gp - p;
5310 else
5311 value = addend + gp - p + 4;
5312 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5313 for overflow. But, on, say, IRIX5, relocations against
5314 _gp_disp are normally generated from the .cpload
5315 pseudo-op. It generates code that normally looks like
5316 this:
5317
5318 lui $gp,%hi(_gp_disp)
5319 addiu $gp,$gp,%lo(_gp_disp)
5320 addu $gp,$gp,$t9
5321
5322 Here $t9 holds the address of the function being called,
5323 as required by the MIPS ELF ABI. The R_MIPS_LO16
5324 relocation can easily overflow in this situation, but the
5325 R_MIPS_HI16 relocation will handle the overflow.
5326 Therefore, we consider this a bug in the MIPS ABI, and do
5327 not check for overflow here. */
5328 }
5329 break;
5330
5331 case R_MIPS_LITERAL:
5332 /* Because we don't merge literal sections, we can handle this
5333 just like R_MIPS_GPREL16. In the long run, we should merge
5334 shared literals, and then we will need to additional work
5335 here. */
5336
5337 /* Fall through. */
5338
5339 case R_MIPS16_GPREL:
5340 /* The R_MIPS16_GPREL performs the same calculation as
5341 R_MIPS_GPREL16, but stores the relocated bits in a different
5342 order. We don't need to do anything special here; the
5343 differences are handled in mips_elf_perform_relocation. */
5344 case R_MIPS_GPREL16:
5345 /* Only sign-extend the addend if it was extracted from the
5346 instruction. If the addend was separate, leave it alone,
5347 otherwise we may lose significant bits. */
5348 if (howto->partial_inplace)
5349 addend = _bfd_mips_elf_sign_extend (addend, 16);
5350 value = symbol + addend - gp;
5351 /* If the symbol was local, any earlier relocatable links will
5352 have adjusted its addend with the gp offset, so compensate
5353 for that now. Don't do it for symbols forced local in this
5354 link, though, since they won't have had the gp offset applied
5355 to them before. */
5356 if (was_local_p)
5357 value += gp0;
5358 overflowed_p = mips_elf_overflow_p (value, 16);
5359 break;
5360
5361 case R_MIPS16_GOT16:
5362 case R_MIPS16_CALL16:
5363 case R_MIPS_GOT16:
5364 case R_MIPS_CALL16:
5365 /* VxWorks does not have separate local and global semantics for
5366 R_MIPS*_GOT16; every relocation evaluates to "G". */
5367 if (!htab->is_vxworks && local_p)
5368 {
5369 bfd_boolean forced;
5370
5371 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
5372 local_sections, FALSE);
5373 value = mips_elf_got16_entry (abfd, input_bfd, info,
5374 symbol + addend, forced);
5375 if (value == MINUS_ONE)
5376 return bfd_reloc_outofrange;
5377 value
5378 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5379 overflowed_p = mips_elf_overflow_p (value, 16);
5380 break;
5381 }
5382
5383 /* Fall through. */
5384
5385 case R_MIPS_TLS_GD:
5386 case R_MIPS_TLS_GOTTPREL:
5387 case R_MIPS_TLS_LDM:
5388 case R_MIPS_GOT_DISP:
5389 got_disp:
5390 value = g;
5391 overflowed_p = mips_elf_overflow_p (value, 16);
5392 break;
5393
5394 case R_MIPS_GPREL32:
5395 value = (addend + symbol + gp0 - gp);
5396 if (!save_addend)
5397 value &= howto->dst_mask;
5398 break;
5399
5400 case R_MIPS_PC16:
5401 case R_MIPS_GNU_REL16_S2:
5402 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5403 overflowed_p = mips_elf_overflow_p (value, 18);
5404 value >>= howto->rightshift;
5405 value &= howto->dst_mask;
5406 break;
5407
5408 case R_MIPS_GOT_HI16:
5409 case R_MIPS_CALL_HI16:
5410 /* We're allowed to handle these two relocations identically.
5411 The dynamic linker is allowed to handle the CALL relocations
5412 differently by creating a lazy evaluation stub. */
5413 value = g;
5414 value = mips_elf_high (value);
5415 value &= howto->dst_mask;
5416 break;
5417
5418 case R_MIPS_GOT_LO16:
5419 case R_MIPS_CALL_LO16:
5420 value = g & howto->dst_mask;
5421 break;
5422
5423 case R_MIPS_GOT_PAGE:
5424 /* GOT_PAGE relocations that reference non-local symbols decay
5425 to GOT_DISP. The corresponding GOT_OFST relocation decays to
5426 0. */
5427 if (! local_p)
5428 goto got_disp;
5429 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5430 if (value == MINUS_ONE)
5431 return bfd_reloc_outofrange;
5432 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5433 overflowed_p = mips_elf_overflow_p (value, 16);
5434 break;
5435
5436 case R_MIPS_GOT_OFST:
5437 if (local_p)
5438 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5439 else
5440 value = addend;
5441 overflowed_p = mips_elf_overflow_p (value, 16);
5442 break;
5443
5444 case R_MIPS_SUB:
5445 value = symbol - addend;
5446 value &= howto->dst_mask;
5447 break;
5448
5449 case R_MIPS_HIGHER:
5450 value = mips_elf_higher (addend + symbol);
5451 value &= howto->dst_mask;
5452 break;
5453
5454 case R_MIPS_HIGHEST:
5455 value = mips_elf_highest (addend + symbol);
5456 value &= howto->dst_mask;
5457 break;
5458
5459 case R_MIPS_SCN_DISP:
5460 value = symbol + addend - sec->output_offset;
5461 value &= howto->dst_mask;
5462 break;
5463
5464 case R_MIPS_JALR:
5465 /* This relocation is only a hint. In some cases, we optimize
5466 it into a bal instruction. But we don't try to optimize
5467 branches to the PLT; that will wind up wasting time. */
5468 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
5469 return bfd_reloc_continue;
5470 value = symbol + addend;
5471 break;
5472
5473 case R_MIPS_PJUMP:
5474 case R_MIPS_GNU_VTINHERIT:
5475 case R_MIPS_GNU_VTENTRY:
5476 /* We don't do anything with these at present. */
5477 return bfd_reloc_continue;
5478
5479 default:
5480 /* An unrecognized relocation type. */
5481 return bfd_reloc_notsupported;
5482 }
5483
5484 /* Store the VALUE for our caller. */
5485 *valuep = value;
5486 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5487 }
5488
5489 /* Obtain the field relocated by RELOCATION. */
5490
5491 static bfd_vma
5492 mips_elf_obtain_contents (reloc_howto_type *howto,
5493 const Elf_Internal_Rela *relocation,
5494 bfd *input_bfd, bfd_byte *contents)
5495 {
5496 bfd_vma x;
5497 bfd_byte *location = contents + relocation->r_offset;
5498
5499 /* Obtain the bytes. */
5500 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5501
5502 return x;
5503 }
5504
5505 /* It has been determined that the result of the RELOCATION is the
5506 VALUE. Use HOWTO to place VALUE into the output file at the
5507 appropriate position. The SECTION is the section to which the
5508 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
5509 for the relocation must be either JAL or JALX, and it is
5510 unconditionally converted to JALX.
5511
5512 Returns FALSE if anything goes wrong. */
5513
5514 static bfd_boolean
5515 mips_elf_perform_relocation (struct bfd_link_info *info,
5516 reloc_howto_type *howto,
5517 const Elf_Internal_Rela *relocation,
5518 bfd_vma value, bfd *input_bfd,
5519 asection *input_section, bfd_byte *contents,
5520 bfd_boolean require_jalx)
5521 {
5522 bfd_vma x;
5523 bfd_byte *location;
5524 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5525
5526 /* Figure out where the relocation is occurring. */
5527 location = contents + relocation->r_offset;
5528
5529 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5530
5531 /* Obtain the current value. */
5532 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5533
5534 /* Clear the field we are setting. */
5535 x &= ~howto->dst_mask;
5536
5537 /* Set the field. */
5538 x |= (value & howto->dst_mask);
5539
5540 /* If required, turn JAL into JALX. */
5541 if (require_jalx)
5542 {
5543 bfd_boolean ok;
5544 bfd_vma opcode = x >> 26;
5545 bfd_vma jalx_opcode;
5546
5547 /* Check to see if the opcode is already JAL or JALX. */
5548 if (r_type == R_MIPS16_26)
5549 {
5550 ok = ((opcode == 0x6) || (opcode == 0x7));
5551 jalx_opcode = 0x7;
5552 }
5553 else
5554 {
5555 ok = ((opcode == 0x3) || (opcode == 0x1d));
5556 jalx_opcode = 0x1d;
5557 }
5558
5559 /* If the opcode is not JAL or JALX, there's a problem. */
5560 if (!ok)
5561 {
5562 (*_bfd_error_handler)
5563 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
5564 input_bfd,
5565 input_section,
5566 (unsigned long) relocation->r_offset);
5567 bfd_set_error (bfd_error_bad_value);
5568 return FALSE;
5569 }
5570
5571 /* Make this the JALX opcode. */
5572 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5573 }
5574
5575 /* On the RM9000, bal is faster than jal, because bal uses branch
5576 prediction hardware. If we are linking for the RM9000, and we
5577 see jal, and bal fits, use it instead. Note that this
5578 transformation should be safe for all architectures. */
5579 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
5580 && !info->relocatable
5581 && !require_jalx
5582 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
5583 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
5584 {
5585 bfd_vma addr;
5586 bfd_vma dest;
5587 bfd_signed_vma off;
5588
5589 addr = (input_section->output_section->vma
5590 + input_section->output_offset
5591 + relocation->r_offset
5592 + 4);
5593 if (r_type == R_MIPS_26)
5594 dest = (value << 2) | ((addr >> 28) << 28);
5595 else
5596 dest = value;
5597 off = dest - addr;
5598 if (off <= 0x1ffff && off >= -0x20000)
5599 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5600 }
5601
5602 /* Put the value into the output. */
5603 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5604
5605 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5606 location);
5607
5608 return TRUE;
5609 }
5610 \f
5611 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5612 is the original relocation, which is now being transformed into a
5613 dynamic relocation. The ADDENDP is adjusted if necessary; the
5614 caller should store the result in place of the original addend. */
5615
5616 static bfd_boolean
5617 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5618 struct bfd_link_info *info,
5619 const Elf_Internal_Rela *rel,
5620 struct mips_elf_link_hash_entry *h,
5621 asection *sec, bfd_vma symbol,
5622 bfd_vma *addendp, asection *input_section)
5623 {
5624 Elf_Internal_Rela outrel[3];
5625 asection *sreloc;
5626 bfd *dynobj;
5627 int r_type;
5628 long indx;
5629 bfd_boolean defined_p;
5630 struct mips_elf_link_hash_table *htab;
5631
5632 htab = mips_elf_hash_table (info);
5633 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5634 dynobj = elf_hash_table (info)->dynobj;
5635 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5636 BFD_ASSERT (sreloc != NULL);
5637 BFD_ASSERT (sreloc->contents != NULL);
5638 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5639 < sreloc->size);
5640
5641 outrel[0].r_offset =
5642 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5643 if (ABI_64_P (output_bfd))
5644 {
5645 outrel[1].r_offset =
5646 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5647 outrel[2].r_offset =
5648 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5649 }
5650
5651 if (outrel[0].r_offset == MINUS_ONE)
5652 /* The relocation field has been deleted. */
5653 return TRUE;
5654
5655 if (outrel[0].r_offset == MINUS_TWO)
5656 {
5657 /* The relocation field has been converted into a relative value of
5658 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5659 the field to be fully relocated, so add in the symbol's value. */
5660 *addendp += symbol;
5661 return TRUE;
5662 }
5663
5664 /* We must now calculate the dynamic symbol table index to use
5665 in the relocation. */
5666 if (h != NULL
5667 && (!h->root.def_regular
5668 || (info->shared && !info->symbolic && !h->root.forced_local)))
5669 {
5670 indx = h->root.dynindx;
5671 if (SGI_COMPAT (output_bfd))
5672 defined_p = h->root.def_regular;
5673 else
5674 /* ??? glibc's ld.so just adds the final GOT entry to the
5675 relocation field. It therefore treats relocs against
5676 defined symbols in the same way as relocs against
5677 undefined symbols. */
5678 defined_p = FALSE;
5679 }
5680 else
5681 {
5682 if (sec != NULL && bfd_is_abs_section (sec))
5683 indx = 0;
5684 else if (sec == NULL || sec->owner == NULL)
5685 {
5686 bfd_set_error (bfd_error_bad_value);
5687 return FALSE;
5688 }
5689 else
5690 {
5691 indx = elf_section_data (sec->output_section)->dynindx;
5692 if (indx == 0)
5693 {
5694 asection *osec = htab->root.text_index_section;
5695 indx = elf_section_data (osec)->dynindx;
5696 }
5697 if (indx == 0)
5698 abort ();
5699 }
5700
5701 /* Instead of generating a relocation using the section
5702 symbol, we may as well make it a fully relative
5703 relocation. We want to avoid generating relocations to
5704 local symbols because we used to generate them
5705 incorrectly, without adding the original symbol value,
5706 which is mandated by the ABI for section symbols. In
5707 order to give dynamic loaders and applications time to
5708 phase out the incorrect use, we refrain from emitting
5709 section-relative relocations. It's not like they're
5710 useful, after all. This should be a bit more efficient
5711 as well. */
5712 /* ??? Although this behavior is compatible with glibc's ld.so,
5713 the ABI says that relocations against STN_UNDEF should have
5714 a symbol value of 0. Irix rld honors this, so relocations
5715 against STN_UNDEF have no effect. */
5716 if (!SGI_COMPAT (output_bfd))
5717 indx = 0;
5718 defined_p = TRUE;
5719 }
5720
5721 /* If the relocation was previously an absolute relocation and
5722 this symbol will not be referred to by the relocation, we must
5723 adjust it by the value we give it in the dynamic symbol table.
5724 Otherwise leave the job up to the dynamic linker. */
5725 if (defined_p && r_type != R_MIPS_REL32)
5726 *addendp += symbol;
5727
5728 if (htab->is_vxworks)
5729 /* VxWorks uses non-relative relocations for this. */
5730 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5731 else
5732 /* The relocation is always an REL32 relocation because we don't
5733 know where the shared library will wind up at load-time. */
5734 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5735 R_MIPS_REL32);
5736
5737 /* For strict adherence to the ABI specification, we should
5738 generate a R_MIPS_64 relocation record by itself before the
5739 _REL32/_64 record as well, such that the addend is read in as
5740 a 64-bit value (REL32 is a 32-bit relocation, after all).
5741 However, since none of the existing ELF64 MIPS dynamic
5742 loaders seems to care, we don't waste space with these
5743 artificial relocations. If this turns out to not be true,
5744 mips_elf_allocate_dynamic_relocation() should be tweaked so
5745 as to make room for a pair of dynamic relocations per
5746 invocation if ABI_64_P, and here we should generate an
5747 additional relocation record with R_MIPS_64 by itself for a
5748 NULL symbol before this relocation record. */
5749 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5750 ABI_64_P (output_bfd)
5751 ? R_MIPS_64
5752 : R_MIPS_NONE);
5753 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5754
5755 /* Adjust the output offset of the relocation to reference the
5756 correct location in the output file. */
5757 outrel[0].r_offset += (input_section->output_section->vma
5758 + input_section->output_offset);
5759 outrel[1].r_offset += (input_section->output_section->vma
5760 + input_section->output_offset);
5761 outrel[2].r_offset += (input_section->output_section->vma
5762 + input_section->output_offset);
5763
5764 /* Put the relocation back out. We have to use the special
5765 relocation outputter in the 64-bit case since the 64-bit
5766 relocation format is non-standard. */
5767 if (ABI_64_P (output_bfd))
5768 {
5769 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5770 (output_bfd, &outrel[0],
5771 (sreloc->contents
5772 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5773 }
5774 else if (htab->is_vxworks)
5775 {
5776 /* VxWorks uses RELA rather than REL dynamic relocations. */
5777 outrel[0].r_addend = *addendp;
5778 bfd_elf32_swap_reloca_out
5779 (output_bfd, &outrel[0],
5780 (sreloc->contents
5781 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5782 }
5783 else
5784 bfd_elf32_swap_reloc_out
5785 (output_bfd, &outrel[0],
5786 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5787
5788 /* We've now added another relocation. */
5789 ++sreloc->reloc_count;
5790
5791 /* Make sure the output section is writable. The dynamic linker
5792 will be writing to it. */
5793 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5794 |= SHF_WRITE;
5795
5796 /* On IRIX5, make an entry of compact relocation info. */
5797 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5798 {
5799 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5800 bfd_byte *cr;
5801
5802 if (scpt)
5803 {
5804 Elf32_crinfo cptrel;
5805
5806 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5807 cptrel.vaddr = (rel->r_offset
5808 + input_section->output_section->vma
5809 + input_section->output_offset);
5810 if (r_type == R_MIPS_REL32)
5811 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5812 else
5813 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5814 mips_elf_set_cr_dist2to (cptrel, 0);
5815 cptrel.konst = *addendp;
5816
5817 cr = (scpt->contents
5818 + sizeof (Elf32_External_compact_rel));
5819 mips_elf_set_cr_relvaddr (cptrel, 0);
5820 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5821 ((Elf32_External_crinfo *) cr
5822 + scpt->reloc_count));
5823 ++scpt->reloc_count;
5824 }
5825 }
5826
5827 /* If we've written this relocation for a readonly section,
5828 we need to set DF_TEXTREL again, so that we do not delete the
5829 DT_TEXTREL tag. */
5830 if (MIPS_ELF_READONLY_SECTION (input_section))
5831 info->flags |= DF_TEXTREL;
5832
5833 return TRUE;
5834 }
5835 \f
5836 /* Return the MACH for a MIPS e_flags value. */
5837
5838 unsigned long
5839 _bfd_elf_mips_mach (flagword flags)
5840 {
5841 switch (flags & EF_MIPS_MACH)
5842 {
5843 case E_MIPS_MACH_3900:
5844 return bfd_mach_mips3900;
5845
5846 case E_MIPS_MACH_4010:
5847 return bfd_mach_mips4010;
5848
5849 case E_MIPS_MACH_4100:
5850 return bfd_mach_mips4100;
5851
5852 case E_MIPS_MACH_4111:
5853 return bfd_mach_mips4111;
5854
5855 case E_MIPS_MACH_4120:
5856 return bfd_mach_mips4120;
5857
5858 case E_MIPS_MACH_4650:
5859 return bfd_mach_mips4650;
5860
5861 case E_MIPS_MACH_5400:
5862 return bfd_mach_mips5400;
5863
5864 case E_MIPS_MACH_5500:
5865 return bfd_mach_mips5500;
5866
5867 case E_MIPS_MACH_9000:
5868 return bfd_mach_mips9000;
5869
5870 case E_MIPS_MACH_SB1:
5871 return bfd_mach_mips_sb1;
5872
5873 case E_MIPS_MACH_LS2E:
5874 return bfd_mach_mips_loongson_2e;
5875
5876 case E_MIPS_MACH_LS2F:
5877 return bfd_mach_mips_loongson_2f;
5878
5879 case E_MIPS_MACH_OCTEON:
5880 return bfd_mach_mips_octeon;
5881
5882 case E_MIPS_MACH_XLR:
5883 return bfd_mach_mips_xlr;
5884
5885 default:
5886 switch (flags & EF_MIPS_ARCH)
5887 {
5888 default:
5889 case E_MIPS_ARCH_1:
5890 return bfd_mach_mips3000;
5891
5892 case E_MIPS_ARCH_2:
5893 return bfd_mach_mips6000;
5894
5895 case E_MIPS_ARCH_3:
5896 return bfd_mach_mips4000;
5897
5898 case E_MIPS_ARCH_4:
5899 return bfd_mach_mips8000;
5900
5901 case E_MIPS_ARCH_5:
5902 return bfd_mach_mips5;
5903
5904 case E_MIPS_ARCH_32:
5905 return bfd_mach_mipsisa32;
5906
5907 case E_MIPS_ARCH_64:
5908 return bfd_mach_mipsisa64;
5909
5910 case E_MIPS_ARCH_32R2:
5911 return bfd_mach_mipsisa32r2;
5912
5913 case E_MIPS_ARCH_64R2:
5914 return bfd_mach_mipsisa64r2;
5915 }
5916 }
5917
5918 return 0;
5919 }
5920
5921 /* Return printable name for ABI. */
5922
5923 static INLINE char *
5924 elf_mips_abi_name (bfd *abfd)
5925 {
5926 flagword flags;
5927
5928 flags = elf_elfheader (abfd)->e_flags;
5929 switch (flags & EF_MIPS_ABI)
5930 {
5931 case 0:
5932 if (ABI_N32_P (abfd))
5933 return "N32";
5934 else if (ABI_64_P (abfd))
5935 return "64";
5936 else
5937 return "none";
5938 case E_MIPS_ABI_O32:
5939 return "O32";
5940 case E_MIPS_ABI_O64:
5941 return "O64";
5942 case E_MIPS_ABI_EABI32:
5943 return "EABI32";
5944 case E_MIPS_ABI_EABI64:
5945 return "EABI64";
5946 default:
5947 return "unknown abi";
5948 }
5949 }
5950 \f
5951 /* MIPS ELF uses two common sections. One is the usual one, and the
5952 other is for small objects. All the small objects are kept
5953 together, and then referenced via the gp pointer, which yields
5954 faster assembler code. This is what we use for the small common
5955 section. This approach is copied from ecoff.c. */
5956 static asection mips_elf_scom_section;
5957 static asymbol mips_elf_scom_symbol;
5958 static asymbol *mips_elf_scom_symbol_ptr;
5959
5960 /* MIPS ELF also uses an acommon section, which represents an
5961 allocated common symbol which may be overridden by a
5962 definition in a shared library. */
5963 static asection mips_elf_acom_section;
5964 static asymbol mips_elf_acom_symbol;
5965 static asymbol *mips_elf_acom_symbol_ptr;
5966
5967 /* This is used for both the 32-bit and the 64-bit ABI. */
5968
5969 void
5970 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5971 {
5972 elf_symbol_type *elfsym;
5973
5974 /* Handle the special MIPS section numbers that a symbol may use. */
5975 elfsym = (elf_symbol_type *) asym;
5976 switch (elfsym->internal_elf_sym.st_shndx)
5977 {
5978 case SHN_MIPS_ACOMMON:
5979 /* This section is used in a dynamically linked executable file.
5980 It is an allocated common section. The dynamic linker can
5981 either resolve these symbols to something in a shared
5982 library, or it can just leave them here. For our purposes,
5983 we can consider these symbols to be in a new section. */
5984 if (mips_elf_acom_section.name == NULL)
5985 {
5986 /* Initialize the acommon section. */
5987 mips_elf_acom_section.name = ".acommon";
5988 mips_elf_acom_section.flags = SEC_ALLOC;
5989 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5990 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5991 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5992 mips_elf_acom_symbol.name = ".acommon";
5993 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5994 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5995 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5996 }
5997 asym->section = &mips_elf_acom_section;
5998 break;
5999
6000 case SHN_COMMON:
6001 /* Common symbols less than the GP size are automatically
6002 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6003 if (asym->value > elf_gp_size (abfd)
6004 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6005 || IRIX_COMPAT (abfd) == ict_irix6)
6006 break;
6007 /* Fall through. */
6008 case SHN_MIPS_SCOMMON:
6009 if (mips_elf_scom_section.name == NULL)
6010 {
6011 /* Initialize the small common section. */
6012 mips_elf_scom_section.name = ".scommon";
6013 mips_elf_scom_section.flags = SEC_IS_COMMON;
6014 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6015 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6016 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6017 mips_elf_scom_symbol.name = ".scommon";
6018 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6019 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6020 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6021 }
6022 asym->section = &mips_elf_scom_section;
6023 asym->value = elfsym->internal_elf_sym.st_size;
6024 break;
6025
6026 case SHN_MIPS_SUNDEFINED:
6027 asym->section = bfd_und_section_ptr;
6028 break;
6029
6030 case SHN_MIPS_TEXT:
6031 {
6032 asection *section = bfd_get_section_by_name (abfd, ".text");
6033
6034 BFD_ASSERT (SGI_COMPAT (abfd));
6035 if (section != NULL)
6036 {
6037 asym->section = section;
6038 /* MIPS_TEXT is a bit special, the address is not an offset
6039 to the base of the .text section. So substract the section
6040 base address to make it an offset. */
6041 asym->value -= section->vma;
6042 }
6043 }
6044 break;
6045
6046 case SHN_MIPS_DATA:
6047 {
6048 asection *section = bfd_get_section_by_name (abfd, ".data");
6049
6050 BFD_ASSERT (SGI_COMPAT (abfd));
6051 if (section != NULL)
6052 {
6053 asym->section = section;
6054 /* MIPS_DATA is a bit special, the address is not an offset
6055 to the base of the .data section. So substract the section
6056 base address to make it an offset. */
6057 asym->value -= section->vma;
6058 }
6059 }
6060 break;
6061 }
6062
6063 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6064 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6065 && (asym->value & 1) != 0)
6066 {
6067 asym->value--;
6068 elfsym->internal_elf_sym.st_other
6069 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6070 }
6071 }
6072 \f
6073 /* Implement elf_backend_eh_frame_address_size. This differs from
6074 the default in the way it handles EABI64.
6075
6076 EABI64 was originally specified as an LP64 ABI, and that is what
6077 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6078 historically accepted the combination of -mabi=eabi and -mlong32,
6079 and this ILP32 variation has become semi-official over time.
6080 Both forms use elf32 and have pointer-sized FDE addresses.
6081
6082 If an EABI object was generated by GCC 4.0 or above, it will have
6083 an empty .gcc_compiled_longXX section, where XX is the size of longs
6084 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6085 have no special marking to distinguish them from LP64 objects.
6086
6087 We don't want users of the official LP64 ABI to be punished for the
6088 existence of the ILP32 variant, but at the same time, we don't want
6089 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6090 We therefore take the following approach:
6091
6092 - If ABFD contains a .gcc_compiled_longXX section, use it to
6093 determine the pointer size.
6094
6095 - Otherwise check the type of the first relocation. Assume that
6096 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6097
6098 - Otherwise punt.
6099
6100 The second check is enough to detect LP64 objects generated by pre-4.0
6101 compilers because, in the kind of output generated by those compilers,
6102 the first relocation will be associated with either a CIE personality
6103 routine or an FDE start address. Furthermore, the compilers never
6104 used a special (non-pointer) encoding for this ABI.
6105
6106 Checking the relocation type should also be safe because there is no
6107 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6108 did so. */
6109
6110 unsigned int
6111 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6112 {
6113 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6114 return 8;
6115 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6116 {
6117 bfd_boolean long32_p, long64_p;
6118
6119 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6120 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6121 if (long32_p && long64_p)
6122 return 0;
6123 if (long32_p)
6124 return 4;
6125 if (long64_p)
6126 return 8;
6127
6128 if (sec->reloc_count > 0
6129 && elf_section_data (sec)->relocs != NULL
6130 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6131 == R_MIPS_64))
6132 return 8;
6133
6134 return 0;
6135 }
6136 return 4;
6137 }
6138 \f
6139 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6140 relocations against two unnamed section symbols to resolve to the
6141 same address. For example, if we have code like:
6142
6143 lw $4,%got_disp(.data)($gp)
6144 lw $25,%got_disp(.text)($gp)
6145 jalr $25
6146
6147 then the linker will resolve both relocations to .data and the program
6148 will jump there rather than to .text.
6149
6150 We can work around this problem by giving names to local section symbols.
6151 This is also what the MIPSpro tools do. */
6152
6153 bfd_boolean
6154 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6155 {
6156 return SGI_COMPAT (abfd);
6157 }
6158 \f
6159 /* Work over a section just before writing it out. This routine is
6160 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6161 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6162 a better way. */
6163
6164 bfd_boolean
6165 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6166 {
6167 if (hdr->sh_type == SHT_MIPS_REGINFO
6168 && hdr->sh_size > 0)
6169 {
6170 bfd_byte buf[4];
6171
6172 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6173 BFD_ASSERT (hdr->contents == NULL);
6174
6175 if (bfd_seek (abfd,
6176 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6177 SEEK_SET) != 0)
6178 return FALSE;
6179 H_PUT_32 (abfd, elf_gp (abfd), buf);
6180 if (bfd_bwrite (buf, 4, abfd) != 4)
6181 return FALSE;
6182 }
6183
6184 if (hdr->sh_type == SHT_MIPS_OPTIONS
6185 && hdr->bfd_section != NULL
6186 && mips_elf_section_data (hdr->bfd_section) != NULL
6187 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6188 {
6189 bfd_byte *contents, *l, *lend;
6190
6191 /* We stored the section contents in the tdata field in the
6192 set_section_contents routine. We save the section contents
6193 so that we don't have to read them again.
6194 At this point we know that elf_gp is set, so we can look
6195 through the section contents to see if there is an
6196 ODK_REGINFO structure. */
6197
6198 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6199 l = contents;
6200 lend = contents + hdr->sh_size;
6201 while (l + sizeof (Elf_External_Options) <= lend)
6202 {
6203 Elf_Internal_Options intopt;
6204
6205 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6206 &intopt);
6207 if (intopt.size < sizeof (Elf_External_Options))
6208 {
6209 (*_bfd_error_handler)
6210 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6211 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6212 break;
6213 }
6214 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6215 {
6216 bfd_byte buf[8];
6217
6218 if (bfd_seek (abfd,
6219 (hdr->sh_offset
6220 + (l - contents)
6221 + sizeof (Elf_External_Options)
6222 + (sizeof (Elf64_External_RegInfo) - 8)),
6223 SEEK_SET) != 0)
6224 return FALSE;
6225 H_PUT_64 (abfd, elf_gp (abfd), buf);
6226 if (bfd_bwrite (buf, 8, abfd) != 8)
6227 return FALSE;
6228 }
6229 else if (intopt.kind == ODK_REGINFO)
6230 {
6231 bfd_byte buf[4];
6232
6233 if (bfd_seek (abfd,
6234 (hdr->sh_offset
6235 + (l - contents)
6236 + sizeof (Elf_External_Options)
6237 + (sizeof (Elf32_External_RegInfo) - 4)),
6238 SEEK_SET) != 0)
6239 return FALSE;
6240 H_PUT_32 (abfd, elf_gp (abfd), buf);
6241 if (bfd_bwrite (buf, 4, abfd) != 4)
6242 return FALSE;
6243 }
6244 l += intopt.size;
6245 }
6246 }
6247
6248 if (hdr->bfd_section != NULL)
6249 {
6250 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6251
6252 if (strcmp (name, ".sdata") == 0
6253 || strcmp (name, ".lit8") == 0
6254 || strcmp (name, ".lit4") == 0)
6255 {
6256 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6257 hdr->sh_type = SHT_PROGBITS;
6258 }
6259 else if (strcmp (name, ".sbss") == 0)
6260 {
6261 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6262 hdr->sh_type = SHT_NOBITS;
6263 }
6264 else if (strcmp (name, ".srdata") == 0)
6265 {
6266 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6267 hdr->sh_type = SHT_PROGBITS;
6268 }
6269 else if (strcmp (name, ".compact_rel") == 0)
6270 {
6271 hdr->sh_flags = 0;
6272 hdr->sh_type = SHT_PROGBITS;
6273 }
6274 else if (strcmp (name, ".rtproc") == 0)
6275 {
6276 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6277 {
6278 unsigned int adjust;
6279
6280 adjust = hdr->sh_size % hdr->sh_addralign;
6281 if (adjust != 0)
6282 hdr->sh_size += hdr->sh_addralign - adjust;
6283 }
6284 }
6285 }
6286
6287 return TRUE;
6288 }
6289
6290 /* Handle a MIPS specific section when reading an object file. This
6291 is called when elfcode.h finds a section with an unknown type.
6292 This routine supports both the 32-bit and 64-bit ELF ABI.
6293
6294 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6295 how to. */
6296
6297 bfd_boolean
6298 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6299 Elf_Internal_Shdr *hdr,
6300 const char *name,
6301 int shindex)
6302 {
6303 flagword flags = 0;
6304
6305 /* There ought to be a place to keep ELF backend specific flags, but
6306 at the moment there isn't one. We just keep track of the
6307 sections by their name, instead. Fortunately, the ABI gives
6308 suggested names for all the MIPS specific sections, so we will
6309 probably get away with this. */
6310 switch (hdr->sh_type)
6311 {
6312 case SHT_MIPS_LIBLIST:
6313 if (strcmp (name, ".liblist") != 0)
6314 return FALSE;
6315 break;
6316 case SHT_MIPS_MSYM:
6317 if (strcmp (name, ".msym") != 0)
6318 return FALSE;
6319 break;
6320 case SHT_MIPS_CONFLICT:
6321 if (strcmp (name, ".conflict") != 0)
6322 return FALSE;
6323 break;
6324 case SHT_MIPS_GPTAB:
6325 if (! CONST_STRNEQ (name, ".gptab."))
6326 return FALSE;
6327 break;
6328 case SHT_MIPS_UCODE:
6329 if (strcmp (name, ".ucode") != 0)
6330 return FALSE;
6331 break;
6332 case SHT_MIPS_DEBUG:
6333 if (strcmp (name, ".mdebug") != 0)
6334 return FALSE;
6335 flags = SEC_DEBUGGING;
6336 break;
6337 case SHT_MIPS_REGINFO:
6338 if (strcmp (name, ".reginfo") != 0
6339 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6340 return FALSE;
6341 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6342 break;
6343 case SHT_MIPS_IFACE:
6344 if (strcmp (name, ".MIPS.interfaces") != 0)
6345 return FALSE;
6346 break;
6347 case SHT_MIPS_CONTENT:
6348 if (! CONST_STRNEQ (name, ".MIPS.content"))
6349 return FALSE;
6350 break;
6351 case SHT_MIPS_OPTIONS:
6352 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6353 return FALSE;
6354 break;
6355 case SHT_MIPS_DWARF:
6356 if (! CONST_STRNEQ (name, ".debug_")
6357 && ! CONST_STRNEQ (name, ".zdebug_"))
6358 return FALSE;
6359 break;
6360 case SHT_MIPS_SYMBOL_LIB:
6361 if (strcmp (name, ".MIPS.symlib") != 0)
6362 return FALSE;
6363 break;
6364 case SHT_MIPS_EVENTS:
6365 if (! CONST_STRNEQ (name, ".MIPS.events")
6366 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6367 return FALSE;
6368 break;
6369 default:
6370 break;
6371 }
6372
6373 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6374 return FALSE;
6375
6376 if (flags)
6377 {
6378 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6379 (bfd_get_section_flags (abfd,
6380 hdr->bfd_section)
6381 | flags)))
6382 return FALSE;
6383 }
6384
6385 /* FIXME: We should record sh_info for a .gptab section. */
6386
6387 /* For a .reginfo section, set the gp value in the tdata information
6388 from the contents of this section. We need the gp value while
6389 processing relocs, so we just get it now. The .reginfo section
6390 is not used in the 64-bit MIPS ELF ABI. */
6391 if (hdr->sh_type == SHT_MIPS_REGINFO)
6392 {
6393 Elf32_External_RegInfo ext;
6394 Elf32_RegInfo s;
6395
6396 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6397 &ext, 0, sizeof ext))
6398 return FALSE;
6399 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6400 elf_gp (abfd) = s.ri_gp_value;
6401 }
6402
6403 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6404 set the gp value based on what we find. We may see both
6405 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6406 they should agree. */
6407 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6408 {
6409 bfd_byte *contents, *l, *lend;
6410
6411 contents = bfd_malloc (hdr->sh_size);
6412 if (contents == NULL)
6413 return FALSE;
6414 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6415 0, hdr->sh_size))
6416 {
6417 free (contents);
6418 return FALSE;
6419 }
6420 l = contents;
6421 lend = contents + hdr->sh_size;
6422 while (l + sizeof (Elf_External_Options) <= lend)
6423 {
6424 Elf_Internal_Options intopt;
6425
6426 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6427 &intopt);
6428 if (intopt.size < sizeof (Elf_External_Options))
6429 {
6430 (*_bfd_error_handler)
6431 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6432 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6433 break;
6434 }
6435 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6436 {
6437 Elf64_Internal_RegInfo intreg;
6438
6439 bfd_mips_elf64_swap_reginfo_in
6440 (abfd,
6441 ((Elf64_External_RegInfo *)
6442 (l + sizeof (Elf_External_Options))),
6443 &intreg);
6444 elf_gp (abfd) = intreg.ri_gp_value;
6445 }
6446 else if (intopt.kind == ODK_REGINFO)
6447 {
6448 Elf32_RegInfo intreg;
6449
6450 bfd_mips_elf32_swap_reginfo_in
6451 (abfd,
6452 ((Elf32_External_RegInfo *)
6453 (l + sizeof (Elf_External_Options))),
6454 &intreg);
6455 elf_gp (abfd) = intreg.ri_gp_value;
6456 }
6457 l += intopt.size;
6458 }
6459 free (contents);
6460 }
6461
6462 return TRUE;
6463 }
6464
6465 /* Set the correct type for a MIPS ELF section. We do this by the
6466 section name, which is a hack, but ought to work. This routine is
6467 used by both the 32-bit and the 64-bit ABI. */
6468
6469 bfd_boolean
6470 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6471 {
6472 const char *name = bfd_get_section_name (abfd, sec);
6473
6474 if (strcmp (name, ".liblist") == 0)
6475 {
6476 hdr->sh_type = SHT_MIPS_LIBLIST;
6477 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6478 /* The sh_link field is set in final_write_processing. */
6479 }
6480 else if (strcmp (name, ".conflict") == 0)
6481 hdr->sh_type = SHT_MIPS_CONFLICT;
6482 else if (CONST_STRNEQ (name, ".gptab."))
6483 {
6484 hdr->sh_type = SHT_MIPS_GPTAB;
6485 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6486 /* The sh_info field is set in final_write_processing. */
6487 }
6488 else if (strcmp (name, ".ucode") == 0)
6489 hdr->sh_type = SHT_MIPS_UCODE;
6490 else if (strcmp (name, ".mdebug") == 0)
6491 {
6492 hdr->sh_type = SHT_MIPS_DEBUG;
6493 /* In a shared object on IRIX 5.3, the .mdebug section has an
6494 entsize of 0. FIXME: Does this matter? */
6495 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6496 hdr->sh_entsize = 0;
6497 else
6498 hdr->sh_entsize = 1;
6499 }
6500 else if (strcmp (name, ".reginfo") == 0)
6501 {
6502 hdr->sh_type = SHT_MIPS_REGINFO;
6503 /* In a shared object on IRIX 5.3, the .reginfo section has an
6504 entsize of 0x18. FIXME: Does this matter? */
6505 if (SGI_COMPAT (abfd))
6506 {
6507 if ((abfd->flags & DYNAMIC) != 0)
6508 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6509 else
6510 hdr->sh_entsize = 1;
6511 }
6512 else
6513 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6514 }
6515 else if (SGI_COMPAT (abfd)
6516 && (strcmp (name, ".hash") == 0
6517 || strcmp (name, ".dynamic") == 0
6518 || strcmp (name, ".dynstr") == 0))
6519 {
6520 if (SGI_COMPAT (abfd))
6521 hdr->sh_entsize = 0;
6522 #if 0
6523 /* This isn't how the IRIX6 linker behaves. */
6524 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6525 #endif
6526 }
6527 else if (strcmp (name, ".got") == 0
6528 || strcmp (name, ".srdata") == 0
6529 || strcmp (name, ".sdata") == 0
6530 || strcmp (name, ".sbss") == 0
6531 || strcmp (name, ".lit4") == 0
6532 || strcmp (name, ".lit8") == 0)
6533 hdr->sh_flags |= SHF_MIPS_GPREL;
6534 else if (strcmp (name, ".MIPS.interfaces") == 0)
6535 {
6536 hdr->sh_type = SHT_MIPS_IFACE;
6537 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6538 }
6539 else if (CONST_STRNEQ (name, ".MIPS.content"))
6540 {
6541 hdr->sh_type = SHT_MIPS_CONTENT;
6542 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6543 /* The sh_info field is set in final_write_processing. */
6544 }
6545 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6546 {
6547 hdr->sh_type = SHT_MIPS_OPTIONS;
6548 hdr->sh_entsize = 1;
6549 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6550 }
6551 else if (CONST_STRNEQ (name, ".debug_")
6552 || CONST_STRNEQ (name, ".zdebug_"))
6553 {
6554 hdr->sh_type = SHT_MIPS_DWARF;
6555
6556 /* Irix facilities such as libexc expect a single .debug_frame
6557 per executable, the system ones have NOSTRIP set and the linker
6558 doesn't merge sections with different flags so ... */
6559 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6560 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6561 }
6562 else if (strcmp (name, ".MIPS.symlib") == 0)
6563 {
6564 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6565 /* The sh_link and sh_info fields are set in
6566 final_write_processing. */
6567 }
6568 else if (CONST_STRNEQ (name, ".MIPS.events")
6569 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6570 {
6571 hdr->sh_type = SHT_MIPS_EVENTS;
6572 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6573 /* The sh_link field is set in final_write_processing. */
6574 }
6575 else if (strcmp (name, ".msym") == 0)
6576 {
6577 hdr->sh_type = SHT_MIPS_MSYM;
6578 hdr->sh_flags |= SHF_ALLOC;
6579 hdr->sh_entsize = 8;
6580 }
6581
6582 /* The generic elf_fake_sections will set up REL_HDR using the default
6583 kind of relocations. We used to set up a second header for the
6584 non-default kind of relocations here, but only NewABI would use
6585 these, and the IRIX ld doesn't like resulting empty RELA sections.
6586 Thus we create those header only on demand now. */
6587
6588 return TRUE;
6589 }
6590
6591 /* Given a BFD section, try to locate the corresponding ELF section
6592 index. This is used by both the 32-bit and the 64-bit ABI.
6593 Actually, it's not clear to me that the 64-bit ABI supports these,
6594 but for non-PIC objects we will certainly want support for at least
6595 the .scommon section. */
6596
6597 bfd_boolean
6598 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6599 asection *sec, int *retval)
6600 {
6601 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6602 {
6603 *retval = SHN_MIPS_SCOMMON;
6604 return TRUE;
6605 }
6606 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6607 {
6608 *retval = SHN_MIPS_ACOMMON;
6609 return TRUE;
6610 }
6611 return FALSE;
6612 }
6613 \f
6614 /* Hook called by the linker routine which adds symbols from an object
6615 file. We must handle the special MIPS section numbers here. */
6616
6617 bfd_boolean
6618 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6619 Elf_Internal_Sym *sym, const char **namep,
6620 flagword *flagsp ATTRIBUTE_UNUSED,
6621 asection **secp, bfd_vma *valp)
6622 {
6623 if (SGI_COMPAT (abfd)
6624 && (abfd->flags & DYNAMIC) != 0
6625 && strcmp (*namep, "_rld_new_interface") == 0)
6626 {
6627 /* Skip IRIX5 rld entry name. */
6628 *namep = NULL;
6629 return TRUE;
6630 }
6631
6632 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6633 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6634 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6635 a magic symbol resolved by the linker, we ignore this bogus definition
6636 of _gp_disp. New ABI objects do not suffer from this problem so this
6637 is not done for them. */
6638 if (!NEWABI_P(abfd)
6639 && (sym->st_shndx == SHN_ABS)
6640 && (strcmp (*namep, "_gp_disp") == 0))
6641 {
6642 *namep = NULL;
6643 return TRUE;
6644 }
6645
6646 switch (sym->st_shndx)
6647 {
6648 case SHN_COMMON:
6649 /* Common symbols less than the GP size are automatically
6650 treated as SHN_MIPS_SCOMMON symbols. */
6651 if (sym->st_size > elf_gp_size (abfd)
6652 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6653 || IRIX_COMPAT (abfd) == ict_irix6)
6654 break;
6655 /* Fall through. */
6656 case SHN_MIPS_SCOMMON:
6657 *secp = bfd_make_section_old_way (abfd, ".scommon");
6658 (*secp)->flags |= SEC_IS_COMMON;
6659 *valp = sym->st_size;
6660 break;
6661
6662 case SHN_MIPS_TEXT:
6663 /* This section is used in a shared object. */
6664 if (elf_tdata (abfd)->elf_text_section == NULL)
6665 {
6666 asymbol *elf_text_symbol;
6667 asection *elf_text_section;
6668 bfd_size_type amt = sizeof (asection);
6669
6670 elf_text_section = bfd_zalloc (abfd, amt);
6671 if (elf_text_section == NULL)
6672 return FALSE;
6673
6674 amt = sizeof (asymbol);
6675 elf_text_symbol = bfd_zalloc (abfd, amt);
6676 if (elf_text_symbol == NULL)
6677 return FALSE;
6678
6679 /* Initialize the section. */
6680
6681 elf_tdata (abfd)->elf_text_section = elf_text_section;
6682 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6683
6684 elf_text_section->symbol = elf_text_symbol;
6685 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6686
6687 elf_text_section->name = ".text";
6688 elf_text_section->flags = SEC_NO_FLAGS;
6689 elf_text_section->output_section = NULL;
6690 elf_text_section->owner = abfd;
6691 elf_text_symbol->name = ".text";
6692 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6693 elf_text_symbol->section = elf_text_section;
6694 }
6695 /* This code used to do *secp = bfd_und_section_ptr if
6696 info->shared. I don't know why, and that doesn't make sense,
6697 so I took it out. */
6698 *secp = elf_tdata (abfd)->elf_text_section;
6699 break;
6700
6701 case SHN_MIPS_ACOMMON:
6702 /* Fall through. XXX Can we treat this as allocated data? */
6703 case SHN_MIPS_DATA:
6704 /* This section is used in a shared object. */
6705 if (elf_tdata (abfd)->elf_data_section == NULL)
6706 {
6707 asymbol *elf_data_symbol;
6708 asection *elf_data_section;
6709 bfd_size_type amt = sizeof (asection);
6710
6711 elf_data_section = bfd_zalloc (abfd, amt);
6712 if (elf_data_section == NULL)
6713 return FALSE;
6714
6715 amt = sizeof (asymbol);
6716 elf_data_symbol = bfd_zalloc (abfd, amt);
6717 if (elf_data_symbol == NULL)
6718 return FALSE;
6719
6720 /* Initialize the section. */
6721
6722 elf_tdata (abfd)->elf_data_section = elf_data_section;
6723 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6724
6725 elf_data_section->symbol = elf_data_symbol;
6726 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6727
6728 elf_data_section->name = ".data";
6729 elf_data_section->flags = SEC_NO_FLAGS;
6730 elf_data_section->output_section = NULL;
6731 elf_data_section->owner = abfd;
6732 elf_data_symbol->name = ".data";
6733 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6734 elf_data_symbol->section = elf_data_section;
6735 }
6736 /* This code used to do *secp = bfd_und_section_ptr if
6737 info->shared. I don't know why, and that doesn't make sense,
6738 so I took it out. */
6739 *secp = elf_tdata (abfd)->elf_data_section;
6740 break;
6741
6742 case SHN_MIPS_SUNDEFINED:
6743 *secp = bfd_und_section_ptr;
6744 break;
6745 }
6746
6747 if (SGI_COMPAT (abfd)
6748 && ! info->shared
6749 && info->output_bfd->xvec == abfd->xvec
6750 && strcmp (*namep, "__rld_obj_head") == 0)
6751 {
6752 struct elf_link_hash_entry *h;
6753 struct bfd_link_hash_entry *bh;
6754
6755 /* Mark __rld_obj_head as dynamic. */
6756 bh = NULL;
6757 if (! (_bfd_generic_link_add_one_symbol
6758 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6759 get_elf_backend_data (abfd)->collect, &bh)))
6760 return FALSE;
6761
6762 h = (struct elf_link_hash_entry *) bh;
6763 h->non_elf = 0;
6764 h->def_regular = 1;
6765 h->type = STT_OBJECT;
6766
6767 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6768 return FALSE;
6769
6770 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6771 }
6772
6773 /* If this is a mips16 text symbol, add 1 to the value to make it
6774 odd. This will cause something like .word SYM to come up with
6775 the right value when it is loaded into the PC. */
6776 if (ELF_ST_IS_MIPS16 (sym->st_other))
6777 ++*valp;
6778
6779 return TRUE;
6780 }
6781
6782 /* This hook function is called before the linker writes out a global
6783 symbol. We mark symbols as small common if appropriate. This is
6784 also where we undo the increment of the value for a mips16 symbol. */
6785
6786 bfd_boolean
6787 _bfd_mips_elf_link_output_symbol_hook
6788 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6789 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6790 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6791 {
6792 /* If we see a common symbol, which implies a relocatable link, then
6793 if a symbol was small common in an input file, mark it as small
6794 common in the output file. */
6795 if (sym->st_shndx == SHN_COMMON
6796 && strcmp (input_sec->name, ".scommon") == 0)
6797 sym->st_shndx = SHN_MIPS_SCOMMON;
6798
6799 if (ELF_ST_IS_MIPS16 (sym->st_other))
6800 sym->st_value &= ~1;
6801
6802 return TRUE;
6803 }
6804 \f
6805 /* Functions for the dynamic linker. */
6806
6807 /* Create dynamic sections when linking against a dynamic object. */
6808
6809 bfd_boolean
6810 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6811 {
6812 struct elf_link_hash_entry *h;
6813 struct bfd_link_hash_entry *bh;
6814 flagword flags;
6815 register asection *s;
6816 const char * const *namep;
6817 struct mips_elf_link_hash_table *htab;
6818
6819 htab = mips_elf_hash_table (info);
6820 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6821 | SEC_LINKER_CREATED | SEC_READONLY);
6822
6823 /* The psABI requires a read-only .dynamic section, but the VxWorks
6824 EABI doesn't. */
6825 if (!htab->is_vxworks)
6826 {
6827 s = bfd_get_section_by_name (abfd, ".dynamic");
6828 if (s != NULL)
6829 {
6830 if (! bfd_set_section_flags (abfd, s, flags))
6831 return FALSE;
6832 }
6833 }
6834
6835 /* We need to create .got section. */
6836 if (!mips_elf_create_got_section (abfd, info))
6837 return FALSE;
6838
6839 if (! mips_elf_rel_dyn_section (info, TRUE))
6840 return FALSE;
6841
6842 /* Create .stub section. */
6843 s = bfd_make_section_with_flags (abfd,
6844 MIPS_ELF_STUB_SECTION_NAME (abfd),
6845 flags | SEC_CODE);
6846 if (s == NULL
6847 || ! bfd_set_section_alignment (abfd, s,
6848 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6849 return FALSE;
6850 htab->sstubs = s;
6851
6852 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6853 && !info->shared
6854 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6855 {
6856 s = bfd_make_section_with_flags (abfd, ".rld_map",
6857 flags &~ (flagword) SEC_READONLY);
6858 if (s == NULL
6859 || ! bfd_set_section_alignment (abfd, s,
6860 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6861 return FALSE;
6862 }
6863
6864 /* On IRIX5, we adjust add some additional symbols and change the
6865 alignments of several sections. There is no ABI documentation
6866 indicating that this is necessary on IRIX6, nor any evidence that
6867 the linker takes such action. */
6868 if (IRIX_COMPAT (abfd) == ict_irix5)
6869 {
6870 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6871 {
6872 bh = NULL;
6873 if (! (_bfd_generic_link_add_one_symbol
6874 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6875 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6876 return FALSE;
6877
6878 h = (struct elf_link_hash_entry *) bh;
6879 h->non_elf = 0;
6880 h->def_regular = 1;
6881 h->type = STT_SECTION;
6882
6883 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6884 return FALSE;
6885 }
6886
6887 /* We need to create a .compact_rel section. */
6888 if (SGI_COMPAT (abfd))
6889 {
6890 if (!mips_elf_create_compact_rel_section (abfd, info))
6891 return FALSE;
6892 }
6893
6894 /* Change alignments of some sections. */
6895 s = bfd_get_section_by_name (abfd, ".hash");
6896 if (s != NULL)
6897 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6898 s = bfd_get_section_by_name (abfd, ".dynsym");
6899 if (s != NULL)
6900 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6901 s = bfd_get_section_by_name (abfd, ".dynstr");
6902 if (s != NULL)
6903 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6904 s = bfd_get_section_by_name (abfd, ".reginfo");
6905 if (s != NULL)
6906 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6907 s = bfd_get_section_by_name (abfd, ".dynamic");
6908 if (s != NULL)
6909 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6910 }
6911
6912 if (!info->shared)
6913 {
6914 const char *name;
6915
6916 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6917 bh = NULL;
6918 if (!(_bfd_generic_link_add_one_symbol
6919 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6920 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6921 return FALSE;
6922
6923 h = (struct elf_link_hash_entry *) bh;
6924 h->non_elf = 0;
6925 h->def_regular = 1;
6926 h->type = STT_SECTION;
6927
6928 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6929 return FALSE;
6930
6931 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6932 {
6933 /* __rld_map is a four byte word located in the .data section
6934 and is filled in by the rtld to contain a pointer to
6935 the _r_debug structure. Its symbol value will be set in
6936 _bfd_mips_elf_finish_dynamic_symbol. */
6937 s = bfd_get_section_by_name (abfd, ".rld_map");
6938 BFD_ASSERT (s != NULL);
6939
6940 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6941 bh = NULL;
6942 if (!(_bfd_generic_link_add_one_symbol
6943 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6944 get_elf_backend_data (abfd)->collect, &bh)))
6945 return FALSE;
6946
6947 h = (struct elf_link_hash_entry *) bh;
6948 h->non_elf = 0;
6949 h->def_regular = 1;
6950 h->type = STT_OBJECT;
6951
6952 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6953 return FALSE;
6954 }
6955 }
6956
6957 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
6958 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6959 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6960 return FALSE;
6961
6962 /* Cache the sections created above. */
6963 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6964 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6965 if (htab->is_vxworks)
6966 {
6967 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6968 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6969 }
6970 else
6971 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
6972 if (!htab->sdynbss
6973 || (htab->is_vxworks && !htab->srelbss && !info->shared)
6974 || !htab->srelplt
6975 || !htab->splt)
6976 abort ();
6977
6978 if (htab->is_vxworks)
6979 {
6980 /* Do the usual VxWorks handling. */
6981 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6982 return FALSE;
6983
6984 /* Work out the PLT sizes. */
6985 if (info->shared)
6986 {
6987 htab->plt_header_size
6988 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6989 htab->plt_entry_size
6990 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6991 }
6992 else
6993 {
6994 htab->plt_header_size
6995 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6996 htab->plt_entry_size
6997 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6998 }
6999 }
7000 else if (!info->shared)
7001 {
7002 /* All variants of the plt0 entry are the same size. */
7003 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7004 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7005 }
7006
7007 return TRUE;
7008 }
7009 \f
7010 /* Return true if relocation REL against section SEC is a REL rather than
7011 RELA relocation. RELOCS is the first relocation in the section and
7012 ABFD is the bfd that contains SEC. */
7013
7014 static bfd_boolean
7015 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7016 const Elf_Internal_Rela *relocs,
7017 const Elf_Internal_Rela *rel)
7018 {
7019 Elf_Internal_Shdr *rel_hdr;
7020 const struct elf_backend_data *bed;
7021
7022 /* To determine which flavor or relocation this is, we depend on the
7023 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
7024 rel_hdr = &elf_section_data (sec)->rel_hdr;
7025 bed = get_elf_backend_data (abfd);
7026 if ((size_t) (rel - relocs)
7027 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7028 rel_hdr = elf_section_data (sec)->rel_hdr2;
7029 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
7030 }
7031
7032 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7033 HOWTO is the relocation's howto and CONTENTS points to the contents
7034 of the section that REL is against. */
7035
7036 static bfd_vma
7037 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7038 reloc_howto_type *howto, bfd_byte *contents)
7039 {
7040 bfd_byte *location;
7041 unsigned int r_type;
7042 bfd_vma addend;
7043
7044 r_type = ELF_R_TYPE (abfd, rel->r_info);
7045 location = contents + rel->r_offset;
7046
7047 /* Get the addend, which is stored in the input file. */
7048 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7049 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7050 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7051
7052 return addend & howto->src_mask;
7053 }
7054
7055 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7056 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7057 and update *ADDEND with the final addend. Return true on success
7058 or false if the LO16 could not be found. RELEND is the exclusive
7059 upper bound on the relocations for REL's section. */
7060
7061 static bfd_boolean
7062 mips_elf_add_lo16_rel_addend (bfd *abfd,
7063 const Elf_Internal_Rela *rel,
7064 const Elf_Internal_Rela *relend,
7065 bfd_byte *contents, bfd_vma *addend)
7066 {
7067 unsigned int r_type, lo16_type;
7068 const Elf_Internal_Rela *lo16_relocation;
7069 reloc_howto_type *lo16_howto;
7070 bfd_vma l;
7071
7072 r_type = ELF_R_TYPE (abfd, rel->r_info);
7073 if (mips16_reloc_p (r_type))
7074 lo16_type = R_MIPS16_LO16;
7075 else
7076 lo16_type = R_MIPS_LO16;
7077
7078 /* The combined value is the sum of the HI16 addend, left-shifted by
7079 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7080 code does a `lui' of the HI16 value, and then an `addiu' of the
7081 LO16 value.)
7082
7083 Scan ahead to find a matching LO16 relocation.
7084
7085 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7086 be immediately following. However, for the IRIX6 ABI, the next
7087 relocation may be a composed relocation consisting of several
7088 relocations for the same address. In that case, the R_MIPS_LO16
7089 relocation may occur as one of these. We permit a similar
7090 extension in general, as that is useful for GCC.
7091
7092 In some cases GCC dead code elimination removes the LO16 but keeps
7093 the corresponding HI16. This is strictly speaking a violation of
7094 the ABI but not immediately harmful. */
7095 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7096 if (lo16_relocation == NULL)
7097 return FALSE;
7098
7099 /* Obtain the addend kept there. */
7100 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7101 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7102
7103 l <<= lo16_howto->rightshift;
7104 l = _bfd_mips_elf_sign_extend (l, 16);
7105
7106 *addend <<= 16;
7107 *addend += l;
7108 return TRUE;
7109 }
7110
7111 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7112 store the contents in *CONTENTS on success. Assume that *CONTENTS
7113 already holds the contents if it is nonull on entry. */
7114
7115 static bfd_boolean
7116 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7117 {
7118 if (*contents)
7119 return TRUE;
7120
7121 /* Get cached copy if it exists. */
7122 if (elf_section_data (sec)->this_hdr.contents != NULL)
7123 {
7124 *contents = elf_section_data (sec)->this_hdr.contents;
7125 return TRUE;
7126 }
7127
7128 return bfd_malloc_and_get_section (abfd, sec, contents);
7129 }
7130
7131 /* Look through the relocs for a section during the first phase, and
7132 allocate space in the global offset table. */
7133
7134 bfd_boolean
7135 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7136 asection *sec, const Elf_Internal_Rela *relocs)
7137 {
7138 const char *name;
7139 bfd *dynobj;
7140 Elf_Internal_Shdr *symtab_hdr;
7141 struct elf_link_hash_entry **sym_hashes;
7142 size_t extsymoff;
7143 const Elf_Internal_Rela *rel;
7144 const Elf_Internal_Rela *rel_end;
7145 asection *sreloc;
7146 const struct elf_backend_data *bed;
7147 struct mips_elf_link_hash_table *htab;
7148 bfd_byte *contents;
7149 bfd_vma addend;
7150 reloc_howto_type *howto;
7151
7152 if (info->relocatable)
7153 return TRUE;
7154
7155 htab = mips_elf_hash_table (info);
7156 dynobj = elf_hash_table (info)->dynobj;
7157 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7158 sym_hashes = elf_sym_hashes (abfd);
7159 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7160
7161 bed = get_elf_backend_data (abfd);
7162 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7163
7164 /* Check for the mips16 stub sections. */
7165
7166 name = bfd_get_section_name (abfd, sec);
7167 if (FN_STUB_P (name))
7168 {
7169 unsigned long r_symndx;
7170
7171 /* Look at the relocation information to figure out which symbol
7172 this is for. */
7173
7174 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7175 if (r_symndx == 0)
7176 {
7177 (*_bfd_error_handler)
7178 (_("%B: Warning: cannot determine the target function for"
7179 " stub section `%s'"),
7180 abfd, name);
7181 bfd_set_error (bfd_error_bad_value);
7182 return FALSE;
7183 }
7184
7185 if (r_symndx < extsymoff
7186 || sym_hashes[r_symndx - extsymoff] == NULL)
7187 {
7188 asection *o;
7189
7190 /* This stub is for a local symbol. This stub will only be
7191 needed if there is some relocation in this BFD, other
7192 than a 16 bit function call, which refers to this symbol. */
7193 for (o = abfd->sections; o != NULL; o = o->next)
7194 {
7195 Elf_Internal_Rela *sec_relocs;
7196 const Elf_Internal_Rela *r, *rend;
7197
7198 /* We can ignore stub sections when looking for relocs. */
7199 if ((o->flags & SEC_RELOC) == 0
7200 || o->reloc_count == 0
7201 || section_allows_mips16_refs_p (o))
7202 continue;
7203
7204 sec_relocs
7205 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7206 info->keep_memory);
7207 if (sec_relocs == NULL)
7208 return FALSE;
7209
7210 rend = sec_relocs + o->reloc_count;
7211 for (r = sec_relocs; r < rend; r++)
7212 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7213 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7214 break;
7215
7216 if (elf_section_data (o)->relocs != sec_relocs)
7217 free (sec_relocs);
7218
7219 if (r < rend)
7220 break;
7221 }
7222
7223 if (o == NULL)
7224 {
7225 /* There is no non-call reloc for this stub, so we do
7226 not need it. Since this function is called before
7227 the linker maps input sections to output sections, we
7228 can easily discard it by setting the SEC_EXCLUDE
7229 flag. */
7230 sec->flags |= SEC_EXCLUDE;
7231 return TRUE;
7232 }
7233
7234 /* Record this stub in an array of local symbol stubs for
7235 this BFD. */
7236 if (elf_tdata (abfd)->local_stubs == NULL)
7237 {
7238 unsigned long symcount;
7239 asection **n;
7240 bfd_size_type amt;
7241
7242 if (elf_bad_symtab (abfd))
7243 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7244 else
7245 symcount = symtab_hdr->sh_info;
7246 amt = symcount * sizeof (asection *);
7247 n = bfd_zalloc (abfd, amt);
7248 if (n == NULL)
7249 return FALSE;
7250 elf_tdata (abfd)->local_stubs = n;
7251 }
7252
7253 sec->flags |= SEC_KEEP;
7254 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7255
7256 /* We don't need to set mips16_stubs_seen in this case.
7257 That flag is used to see whether we need to look through
7258 the global symbol table for stubs. We don't need to set
7259 it here, because we just have a local stub. */
7260 }
7261 else
7262 {
7263 struct mips_elf_link_hash_entry *h;
7264
7265 h = ((struct mips_elf_link_hash_entry *)
7266 sym_hashes[r_symndx - extsymoff]);
7267
7268 while (h->root.root.type == bfd_link_hash_indirect
7269 || h->root.root.type == bfd_link_hash_warning)
7270 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7271
7272 /* H is the symbol this stub is for. */
7273
7274 /* If we already have an appropriate stub for this function, we
7275 don't need another one, so we can discard this one. Since
7276 this function is called before the linker maps input sections
7277 to output sections, we can easily discard it by setting the
7278 SEC_EXCLUDE flag. */
7279 if (h->fn_stub != NULL)
7280 {
7281 sec->flags |= SEC_EXCLUDE;
7282 return TRUE;
7283 }
7284
7285 sec->flags |= SEC_KEEP;
7286 h->fn_stub = sec;
7287 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7288 }
7289 }
7290 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7291 {
7292 unsigned long r_symndx;
7293 struct mips_elf_link_hash_entry *h;
7294 asection **loc;
7295
7296 /* Look at the relocation information to figure out which symbol
7297 this is for. */
7298
7299 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7300 if (r_symndx == 0)
7301 {
7302 (*_bfd_error_handler)
7303 (_("%B: Warning: cannot determine the target function for"
7304 " stub section `%s'"),
7305 abfd, name);
7306 bfd_set_error (bfd_error_bad_value);
7307 return FALSE;
7308 }
7309
7310 if (r_symndx < extsymoff
7311 || sym_hashes[r_symndx - extsymoff] == NULL)
7312 {
7313 asection *o;
7314
7315 /* This stub is for a local symbol. This stub will only be
7316 needed if there is some relocation (R_MIPS16_26) in this BFD
7317 that refers to this symbol. */
7318 for (o = abfd->sections; o != NULL; o = o->next)
7319 {
7320 Elf_Internal_Rela *sec_relocs;
7321 const Elf_Internal_Rela *r, *rend;
7322
7323 /* We can ignore stub sections when looking for relocs. */
7324 if ((o->flags & SEC_RELOC) == 0
7325 || o->reloc_count == 0
7326 || section_allows_mips16_refs_p (o))
7327 continue;
7328
7329 sec_relocs
7330 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7331 info->keep_memory);
7332 if (sec_relocs == NULL)
7333 return FALSE;
7334
7335 rend = sec_relocs + o->reloc_count;
7336 for (r = sec_relocs; r < rend; r++)
7337 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7338 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7339 break;
7340
7341 if (elf_section_data (o)->relocs != sec_relocs)
7342 free (sec_relocs);
7343
7344 if (r < rend)
7345 break;
7346 }
7347
7348 if (o == NULL)
7349 {
7350 /* There is no non-call reloc for this stub, so we do
7351 not need it. Since this function is called before
7352 the linker maps input sections to output sections, we
7353 can easily discard it by setting the SEC_EXCLUDE
7354 flag. */
7355 sec->flags |= SEC_EXCLUDE;
7356 return TRUE;
7357 }
7358
7359 /* Record this stub in an array of local symbol call_stubs for
7360 this BFD. */
7361 if (elf_tdata (abfd)->local_call_stubs == NULL)
7362 {
7363 unsigned long symcount;
7364 asection **n;
7365 bfd_size_type amt;
7366
7367 if (elf_bad_symtab (abfd))
7368 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7369 else
7370 symcount = symtab_hdr->sh_info;
7371 amt = symcount * sizeof (asection *);
7372 n = bfd_zalloc (abfd, amt);
7373 if (n == NULL)
7374 return FALSE;
7375 elf_tdata (abfd)->local_call_stubs = n;
7376 }
7377
7378 sec->flags |= SEC_KEEP;
7379 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7380
7381 /* We don't need to set mips16_stubs_seen in this case.
7382 That flag is used to see whether we need to look through
7383 the global symbol table for stubs. We don't need to set
7384 it here, because we just have a local stub. */
7385 }
7386 else
7387 {
7388 h = ((struct mips_elf_link_hash_entry *)
7389 sym_hashes[r_symndx - extsymoff]);
7390
7391 /* H is the symbol this stub is for. */
7392
7393 if (CALL_FP_STUB_P (name))
7394 loc = &h->call_fp_stub;
7395 else
7396 loc = &h->call_stub;
7397
7398 /* If we already have an appropriate stub for this function, we
7399 don't need another one, so we can discard this one. Since
7400 this function is called before the linker maps input sections
7401 to output sections, we can easily discard it by setting the
7402 SEC_EXCLUDE flag. */
7403 if (*loc != NULL)
7404 {
7405 sec->flags |= SEC_EXCLUDE;
7406 return TRUE;
7407 }
7408
7409 sec->flags |= SEC_KEEP;
7410 *loc = sec;
7411 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7412 }
7413 }
7414
7415 sreloc = NULL;
7416 contents = NULL;
7417 for (rel = relocs; rel < rel_end; ++rel)
7418 {
7419 unsigned long r_symndx;
7420 unsigned int r_type;
7421 struct elf_link_hash_entry *h;
7422 bfd_boolean can_make_dynamic_p;
7423
7424 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7425 r_type = ELF_R_TYPE (abfd, rel->r_info);
7426
7427 if (r_symndx < extsymoff)
7428 h = NULL;
7429 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7430 {
7431 (*_bfd_error_handler)
7432 (_("%B: Malformed reloc detected for section %s"),
7433 abfd, name);
7434 bfd_set_error (bfd_error_bad_value);
7435 return FALSE;
7436 }
7437 else
7438 {
7439 h = sym_hashes[r_symndx - extsymoff];
7440 while (h != NULL
7441 && (h->root.type == bfd_link_hash_indirect
7442 || h->root.type == bfd_link_hash_warning))
7443 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7444 }
7445
7446 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7447 relocation into a dynamic one. */
7448 can_make_dynamic_p = FALSE;
7449 switch (r_type)
7450 {
7451 case R_MIPS16_GOT16:
7452 case R_MIPS16_CALL16:
7453 case R_MIPS_GOT16:
7454 case R_MIPS_CALL16:
7455 case R_MIPS_CALL_HI16:
7456 case R_MIPS_CALL_LO16:
7457 case R_MIPS_GOT_HI16:
7458 case R_MIPS_GOT_LO16:
7459 case R_MIPS_GOT_PAGE:
7460 case R_MIPS_GOT_OFST:
7461 case R_MIPS_GOT_DISP:
7462 case R_MIPS_TLS_GOTTPREL:
7463 case R_MIPS_TLS_GD:
7464 case R_MIPS_TLS_LDM:
7465 if (dynobj == NULL)
7466 elf_hash_table (info)->dynobj = dynobj = abfd;
7467 if (!mips_elf_create_got_section (dynobj, info))
7468 return FALSE;
7469 if (htab->is_vxworks && !info->shared)
7470 {
7471 (*_bfd_error_handler)
7472 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7473 abfd, (unsigned long) rel->r_offset);
7474 bfd_set_error (bfd_error_bad_value);
7475 return FALSE;
7476 }
7477 break;
7478
7479 case R_MIPS_32:
7480 case R_MIPS_REL32:
7481 case R_MIPS_64:
7482 /* In VxWorks executables, references to external symbols
7483 must be handled using copy relocs or PLT entries; it is not
7484 possible to convert this relocation into a dynamic one.
7485
7486 For executables that use PLTs and copy-relocs, we have a
7487 choice between converting the relocation into a dynamic
7488 one or using copy relocations or PLT entries. It is
7489 usually better to do the former, unless the relocation is
7490 against a read-only section. */
7491 if ((info->shared
7492 || (h != NULL
7493 && !htab->is_vxworks
7494 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7495 && !(!info->nocopyreloc
7496 && !PIC_OBJECT_P (abfd)
7497 && MIPS_ELF_READONLY_SECTION (sec))))
7498 && (sec->flags & SEC_ALLOC) != 0)
7499 {
7500 can_make_dynamic_p = TRUE;
7501 if (dynobj == NULL)
7502 elf_hash_table (info)->dynobj = dynobj = abfd;
7503 break;
7504 }
7505 /* Fall through. */
7506
7507 default:
7508 /* Most static relocations require pointer equality, except
7509 for branches. */
7510 if (h)
7511 h->pointer_equality_needed = TRUE;
7512 /* Fall through. */
7513
7514 case R_MIPS_26:
7515 case R_MIPS_PC16:
7516 case R_MIPS16_26:
7517 if (h)
7518 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7519 break;
7520 }
7521
7522 if (h)
7523 {
7524 /* Relocations against the special VxWorks __GOTT_BASE__ and
7525 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7526 room for them in .rela.dyn. */
7527 if (is_gott_symbol (info, h))
7528 {
7529 if (sreloc == NULL)
7530 {
7531 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7532 if (sreloc == NULL)
7533 return FALSE;
7534 }
7535 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7536 if (MIPS_ELF_READONLY_SECTION (sec))
7537 /* We tell the dynamic linker that there are
7538 relocations against the text segment. */
7539 info->flags |= DF_TEXTREL;
7540 }
7541 }
7542 else if (r_type == R_MIPS_CALL_LO16
7543 || r_type == R_MIPS_GOT_LO16
7544 || r_type == R_MIPS_GOT_DISP
7545 || (got16_reloc_p (r_type) && htab->is_vxworks))
7546 {
7547 /* We may need a local GOT entry for this relocation. We
7548 don't count R_MIPS_GOT_PAGE because we can estimate the
7549 maximum number of pages needed by looking at the size of
7550 the segment. Similar comments apply to R_MIPS*_GOT16 and
7551 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7552 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7553 R_MIPS_CALL_HI16 because these are always followed by an
7554 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7555 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7556 rel->r_addend, info, 0))
7557 return FALSE;
7558 }
7559
7560 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7561 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7562
7563 switch (r_type)
7564 {
7565 case R_MIPS_CALL16:
7566 case R_MIPS16_CALL16:
7567 if (h == NULL)
7568 {
7569 (*_bfd_error_handler)
7570 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7571 abfd, (unsigned long) rel->r_offset);
7572 bfd_set_error (bfd_error_bad_value);
7573 return FALSE;
7574 }
7575 /* Fall through. */
7576
7577 case R_MIPS_CALL_HI16:
7578 case R_MIPS_CALL_LO16:
7579 if (h != NULL)
7580 {
7581 /* VxWorks call relocations point at the function's .got.plt
7582 entry, which will be allocated by adjust_dynamic_symbol.
7583 Otherwise, this symbol requires a global GOT entry. */
7584 if ((!htab->is_vxworks || h->forced_local)
7585 && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
7586 return FALSE;
7587
7588 /* We need a stub, not a plt entry for the undefined
7589 function. But we record it as if it needs plt. See
7590 _bfd_elf_adjust_dynamic_symbol. */
7591 h->needs_plt = 1;
7592 h->type = STT_FUNC;
7593 }
7594 break;
7595
7596 case R_MIPS_GOT_PAGE:
7597 /* If this is a global, overridable symbol, GOT_PAGE will
7598 decay to GOT_DISP, so we'll need a GOT entry for it. */
7599 if (h)
7600 {
7601 struct mips_elf_link_hash_entry *hmips =
7602 (struct mips_elf_link_hash_entry *) h;
7603
7604 /* This symbol is definitely not overridable. */
7605 if (hmips->root.def_regular
7606 && ! (info->shared && ! info->symbolic
7607 && ! hmips->root.forced_local))
7608 h = NULL;
7609 }
7610 /* Fall through. */
7611
7612 case R_MIPS16_GOT16:
7613 case R_MIPS_GOT16:
7614 case R_MIPS_GOT_HI16:
7615 case R_MIPS_GOT_LO16:
7616 if (!h || r_type == R_MIPS_GOT_PAGE)
7617 {
7618 /* This relocation needs (or may need, if h != NULL) a
7619 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7620 know for sure until we know whether the symbol is
7621 preemptible. */
7622 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7623 {
7624 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7625 return FALSE;
7626 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7627 addend = mips_elf_read_rel_addend (abfd, rel,
7628 howto, contents);
7629 if (r_type == R_MIPS_GOT16)
7630 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7631 contents, &addend);
7632 else
7633 addend <<= howto->rightshift;
7634 }
7635 else
7636 addend = rel->r_addend;
7637 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7638 addend))
7639 return FALSE;
7640 break;
7641 }
7642 /* Fall through. */
7643
7644 case R_MIPS_GOT_DISP:
7645 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
7646 return FALSE;
7647 break;
7648
7649 case R_MIPS_TLS_GOTTPREL:
7650 if (info->shared)
7651 info->flags |= DF_STATIC_TLS;
7652 /* Fall through */
7653
7654 case R_MIPS_TLS_LDM:
7655 if (r_type == R_MIPS_TLS_LDM)
7656 {
7657 r_symndx = 0;
7658 h = NULL;
7659 }
7660 /* Fall through */
7661
7662 case R_MIPS_TLS_GD:
7663 /* This symbol requires a global offset table entry, or two
7664 for TLS GD relocations. */
7665 {
7666 unsigned char flag = (r_type == R_MIPS_TLS_GD
7667 ? GOT_TLS_GD
7668 : r_type == R_MIPS_TLS_LDM
7669 ? GOT_TLS_LDM
7670 : GOT_TLS_IE);
7671 if (h != NULL)
7672 {
7673 struct mips_elf_link_hash_entry *hmips =
7674 (struct mips_elf_link_hash_entry *) h;
7675 hmips->tls_type |= flag;
7676
7677 if (h && !mips_elf_record_global_got_symbol (h, abfd,
7678 info, flag))
7679 return FALSE;
7680 }
7681 else
7682 {
7683 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
7684
7685 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7686 rel->r_addend,
7687 info, flag))
7688 return FALSE;
7689 }
7690 }
7691 break;
7692
7693 case R_MIPS_32:
7694 case R_MIPS_REL32:
7695 case R_MIPS_64:
7696 /* In VxWorks executables, references to external symbols
7697 are handled using copy relocs or PLT stubs, so there's
7698 no need to add a .rela.dyn entry for this relocation. */
7699 if (can_make_dynamic_p)
7700 {
7701 if (sreloc == NULL)
7702 {
7703 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7704 if (sreloc == NULL)
7705 return FALSE;
7706 }
7707 if (info->shared && h == NULL)
7708 {
7709 /* When creating a shared object, we must copy these
7710 reloc types into the output file as R_MIPS_REL32
7711 relocs. Make room for this reloc in .rel(a).dyn. */
7712 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7713 if (MIPS_ELF_READONLY_SECTION (sec))
7714 /* We tell the dynamic linker that there are
7715 relocations against the text segment. */
7716 info->flags |= DF_TEXTREL;
7717 }
7718 else
7719 {
7720 struct mips_elf_link_hash_entry *hmips;
7721
7722 /* For a shared object, we must copy this relocation
7723 unless the symbol turns out to be undefined and
7724 weak with non-default visibility, in which case
7725 it will be left as zero.
7726
7727 We could elide R_MIPS_REL32 for locally binding symbols
7728 in shared libraries, but do not yet do so.
7729
7730 For an executable, we only need to copy this
7731 reloc if the symbol is defined in a dynamic
7732 object. */
7733 hmips = (struct mips_elf_link_hash_entry *) h;
7734 ++hmips->possibly_dynamic_relocs;
7735 if (MIPS_ELF_READONLY_SECTION (sec))
7736 /* We need it to tell the dynamic linker if there
7737 are relocations against the text segment. */
7738 hmips->readonly_reloc = TRUE;
7739 }
7740 }
7741
7742 if (SGI_COMPAT (abfd))
7743 mips_elf_hash_table (info)->compact_rel_size +=
7744 sizeof (Elf32_External_crinfo);
7745 break;
7746
7747 case R_MIPS_26:
7748 case R_MIPS_GPREL16:
7749 case R_MIPS_LITERAL:
7750 case R_MIPS_GPREL32:
7751 if (SGI_COMPAT (abfd))
7752 mips_elf_hash_table (info)->compact_rel_size +=
7753 sizeof (Elf32_External_crinfo);
7754 break;
7755
7756 /* This relocation describes the C++ object vtable hierarchy.
7757 Reconstruct it for later use during GC. */
7758 case R_MIPS_GNU_VTINHERIT:
7759 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7760 return FALSE;
7761 break;
7762
7763 /* This relocation describes which C++ vtable entries are actually
7764 used. Record for later use during GC. */
7765 case R_MIPS_GNU_VTENTRY:
7766 BFD_ASSERT (h != NULL);
7767 if (h != NULL
7768 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7769 return FALSE;
7770 break;
7771
7772 default:
7773 break;
7774 }
7775
7776 /* We must not create a stub for a symbol that has relocations
7777 related to taking the function's address. This doesn't apply to
7778 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7779 a normal .got entry. */
7780 if (!htab->is_vxworks && h != NULL)
7781 switch (r_type)
7782 {
7783 default:
7784 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7785 break;
7786 case R_MIPS16_CALL16:
7787 case R_MIPS_CALL16:
7788 case R_MIPS_CALL_HI16:
7789 case R_MIPS_CALL_LO16:
7790 case R_MIPS_JALR:
7791 break;
7792 }
7793
7794 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7795 if there is one. We only need to handle global symbols here;
7796 we decide whether to keep or delete stubs for local symbols
7797 when processing the stub's relocations. */
7798 if (h != NULL
7799 && !mips16_call_reloc_p (r_type)
7800 && !section_allows_mips16_refs_p (sec))
7801 {
7802 struct mips_elf_link_hash_entry *mh;
7803
7804 mh = (struct mips_elf_link_hash_entry *) h;
7805 mh->need_fn_stub = TRUE;
7806 }
7807
7808 /* Refuse some position-dependent relocations when creating a
7809 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7810 not PIC, but we can create dynamic relocations and the result
7811 will be fine. Also do not refuse R_MIPS_LO16, which can be
7812 combined with R_MIPS_GOT16. */
7813 if (info->shared)
7814 {
7815 switch (r_type)
7816 {
7817 case R_MIPS16_HI16:
7818 case R_MIPS_HI16:
7819 case R_MIPS_HIGHER:
7820 case R_MIPS_HIGHEST:
7821 /* Don't refuse a high part relocation if it's against
7822 no symbol (e.g. part of a compound relocation). */
7823 if (r_symndx == 0)
7824 break;
7825
7826 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7827 and has a special meaning. */
7828 if (!NEWABI_P (abfd) && h != NULL
7829 && strcmp (h->root.root.string, "_gp_disp") == 0)
7830 break;
7831
7832 /* FALLTHROUGH */
7833
7834 case R_MIPS16_26:
7835 case R_MIPS_26:
7836 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7837 (*_bfd_error_handler)
7838 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7839 abfd, howto->name,
7840 (h) ? h->root.root.string : "a local symbol");
7841 bfd_set_error (bfd_error_bad_value);
7842 return FALSE;
7843 default:
7844 break;
7845 }
7846 }
7847 }
7848
7849 return TRUE;
7850 }
7851 \f
7852 bfd_boolean
7853 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7854 struct bfd_link_info *link_info,
7855 bfd_boolean *again)
7856 {
7857 Elf_Internal_Rela *internal_relocs;
7858 Elf_Internal_Rela *irel, *irelend;
7859 Elf_Internal_Shdr *symtab_hdr;
7860 bfd_byte *contents = NULL;
7861 size_t extsymoff;
7862 bfd_boolean changed_contents = FALSE;
7863 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7864 Elf_Internal_Sym *isymbuf = NULL;
7865
7866 /* We are not currently changing any sizes, so only one pass. */
7867 *again = FALSE;
7868
7869 if (link_info->relocatable)
7870 return TRUE;
7871
7872 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7873 link_info->keep_memory);
7874 if (internal_relocs == NULL)
7875 return TRUE;
7876
7877 irelend = internal_relocs + sec->reloc_count
7878 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7879 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7880 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7881
7882 for (irel = internal_relocs; irel < irelend; irel++)
7883 {
7884 bfd_vma symval;
7885 bfd_signed_vma sym_offset;
7886 unsigned int r_type;
7887 unsigned long r_symndx;
7888 asection *sym_sec;
7889 unsigned long instruction;
7890
7891 /* Turn jalr into bgezal, and jr into beq, if they're marked
7892 with a JALR relocation, that indicate where they jump to.
7893 This saves some pipeline bubbles. */
7894 r_type = ELF_R_TYPE (abfd, irel->r_info);
7895 if (r_type != R_MIPS_JALR)
7896 continue;
7897
7898 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7899 /* Compute the address of the jump target. */
7900 if (r_symndx >= extsymoff)
7901 {
7902 struct mips_elf_link_hash_entry *h
7903 = ((struct mips_elf_link_hash_entry *)
7904 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7905
7906 while (h->root.root.type == bfd_link_hash_indirect
7907 || h->root.root.type == bfd_link_hash_warning)
7908 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7909
7910 /* If a symbol is undefined, or if it may be overridden,
7911 skip it. */
7912 if (! ((h->root.root.type == bfd_link_hash_defined
7913 || h->root.root.type == bfd_link_hash_defweak)
7914 && h->root.root.u.def.section)
7915 || (link_info->shared && ! link_info->symbolic
7916 && !h->root.forced_local))
7917 continue;
7918
7919 sym_sec = h->root.root.u.def.section;
7920 if (sym_sec->output_section)
7921 symval = (h->root.root.u.def.value
7922 + sym_sec->output_section->vma
7923 + sym_sec->output_offset);
7924 else
7925 symval = h->root.root.u.def.value;
7926 }
7927 else
7928 {
7929 Elf_Internal_Sym *isym;
7930
7931 /* Read this BFD's symbols if we haven't done so already. */
7932 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
7933 {
7934 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
7935 if (isymbuf == NULL)
7936 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
7937 symtab_hdr->sh_info, 0,
7938 NULL, NULL, NULL);
7939 if (isymbuf == NULL)
7940 goto relax_return;
7941 }
7942
7943 isym = isymbuf + r_symndx;
7944 if (isym->st_shndx == SHN_UNDEF)
7945 continue;
7946 else if (isym->st_shndx == SHN_ABS)
7947 sym_sec = bfd_abs_section_ptr;
7948 else if (isym->st_shndx == SHN_COMMON)
7949 sym_sec = bfd_com_section_ptr;
7950 else
7951 sym_sec
7952 = bfd_section_from_elf_index (abfd, isym->st_shndx);
7953 symval = isym->st_value
7954 + sym_sec->output_section->vma
7955 + sym_sec->output_offset;
7956 }
7957
7958 /* Compute branch offset, from delay slot of the jump to the
7959 branch target. */
7960 sym_offset = (symval + irel->r_addend)
7961 - (sec_start + irel->r_offset + 4);
7962
7963 /* Branch offset must be properly aligned. */
7964 if ((sym_offset & 3) != 0)
7965 continue;
7966
7967 sym_offset >>= 2;
7968
7969 /* Check that it's in range. */
7970 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
7971 continue;
7972
7973 /* Get the section contents if we haven't done so already. */
7974 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7975 goto relax_return;
7976
7977 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
7978
7979 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
7980 if ((instruction & 0xfc1fffff) == 0x0000f809)
7981 instruction = 0x04110000;
7982 /* If it was jr <reg>, turn it into b <target>. */
7983 else if ((instruction & 0xfc1fffff) == 0x00000008)
7984 instruction = 0x10000000;
7985 else
7986 continue;
7987
7988 instruction |= (sym_offset & 0xffff);
7989 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
7990 changed_contents = TRUE;
7991 }
7992
7993 if (contents != NULL
7994 && elf_section_data (sec)->this_hdr.contents != contents)
7995 {
7996 if (!changed_contents && !link_info->keep_memory)
7997 free (contents);
7998 else
7999 {
8000 /* Cache the section contents for elf_link_input_bfd. */
8001 elf_section_data (sec)->this_hdr.contents = contents;
8002 }
8003 }
8004 return TRUE;
8005
8006 relax_return:
8007 if (contents != NULL
8008 && elf_section_data (sec)->this_hdr.contents != contents)
8009 free (contents);
8010 return FALSE;
8011 }
8012 \f
8013 /* Allocate space for global sym dynamic relocs. */
8014
8015 static bfd_boolean
8016 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8017 {
8018 struct bfd_link_info *info = inf;
8019 bfd *dynobj;
8020 struct mips_elf_link_hash_entry *hmips;
8021 struct mips_elf_link_hash_table *htab;
8022
8023 htab = mips_elf_hash_table (info);
8024 dynobj = elf_hash_table (info)->dynobj;
8025 hmips = (struct mips_elf_link_hash_entry *) h;
8026
8027 /* VxWorks executables are handled elsewhere; we only need to
8028 allocate relocations in shared objects. */
8029 if (htab->is_vxworks && !info->shared)
8030 return TRUE;
8031
8032 /* Ignore indirect and warning symbols. All relocations against
8033 such symbols will be redirected to the target symbol. */
8034 if (h->root.type == bfd_link_hash_indirect
8035 || h->root.type == bfd_link_hash_warning)
8036 return TRUE;
8037
8038 /* If this symbol is defined in a dynamic object, or we are creating
8039 a shared library, we will need to copy any R_MIPS_32 or
8040 R_MIPS_REL32 relocs against it into the output file. */
8041 if (! info->relocatable
8042 && hmips->possibly_dynamic_relocs != 0
8043 && (h->root.type == bfd_link_hash_defweak
8044 || !h->def_regular
8045 || info->shared))
8046 {
8047 bfd_boolean do_copy = TRUE;
8048
8049 if (h->root.type == bfd_link_hash_undefweak)
8050 {
8051 /* Do not copy relocations for undefined weak symbols with
8052 non-default visibility. */
8053 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8054 do_copy = FALSE;
8055
8056 /* Make sure undefined weak symbols are output as a dynamic
8057 symbol in PIEs. */
8058 else if (h->dynindx == -1 && !h->forced_local)
8059 {
8060 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8061 return FALSE;
8062 }
8063 }
8064
8065 if (do_copy)
8066 {
8067 /* Even though we don't directly need a GOT entry for this symbol,
8068 a symbol must have a dynamic symbol table index greater that
8069 DT_MIPS_GOTSYM if there are dynamic relocations against it. */
8070 if (hmips->global_got_area > GGA_RELOC_ONLY)
8071 hmips->global_got_area = GGA_RELOC_ONLY;
8072
8073 mips_elf_allocate_dynamic_relocations
8074 (dynobj, info, hmips->possibly_dynamic_relocs);
8075 if (hmips->readonly_reloc)
8076 /* We tell the dynamic linker that there are relocations
8077 against the text segment. */
8078 info->flags |= DF_TEXTREL;
8079 }
8080 }
8081
8082 return TRUE;
8083 }
8084
8085 /* Adjust a symbol defined by a dynamic object and referenced by a
8086 regular object. The current definition is in some section of the
8087 dynamic object, but we're not including those sections. We have to
8088 change the definition to something the rest of the link can
8089 understand. */
8090
8091 bfd_boolean
8092 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8093 struct elf_link_hash_entry *h)
8094 {
8095 bfd *dynobj;
8096 struct mips_elf_link_hash_entry *hmips;
8097 struct mips_elf_link_hash_table *htab;
8098
8099 htab = mips_elf_hash_table (info);
8100 dynobj = elf_hash_table (info)->dynobj;
8101 hmips = (struct mips_elf_link_hash_entry *) h;
8102
8103 /* Make sure we know what is going on here. */
8104 BFD_ASSERT (dynobj != NULL
8105 && (h->needs_plt
8106 || h->u.weakdef != NULL
8107 || (h->def_dynamic
8108 && h->ref_regular
8109 && !h->def_regular)));
8110
8111 hmips = (struct mips_elf_link_hash_entry *) h;
8112
8113 /* If there are call relocations against an externally-defined symbol,
8114 see whether we can create a MIPS lazy-binding stub for it. We can
8115 only do this if all references to the function are through call
8116 relocations, and in that case, the traditional lazy-binding stubs
8117 are much more efficient than PLT entries.
8118
8119 Traditional stubs are only available on SVR4 psABI-based systems;
8120 VxWorks always uses PLTs instead. */
8121 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8122 {
8123 if (! elf_hash_table (info)->dynamic_sections_created)
8124 return TRUE;
8125
8126 /* If this symbol is not defined in a regular file, then set
8127 the symbol to the stub location. This is required to make
8128 function pointers compare as equal between the normal
8129 executable and the shared library. */
8130 if (!h->def_regular)
8131 {
8132 hmips->needs_lazy_stub = TRUE;
8133 htab->lazy_stub_count++;
8134 return TRUE;
8135 }
8136 }
8137 /* As above, VxWorks requires PLT entries for externally-defined
8138 functions that are only accessed through call relocations.
8139
8140 Both VxWorks and non-VxWorks targets also need PLT entries if there
8141 are static-only relocations against an externally-defined function.
8142 This can technically occur for shared libraries if there are
8143 branches to the symbol, although it is unlikely that this will be
8144 used in practice due to the short ranges involved. It can occur
8145 for any relative or absolute relocation in executables; in that
8146 case, the PLT entry becomes the function's canonical address. */
8147 else if (((h->needs_plt && !hmips->no_fn_stub)
8148 || (h->type == STT_FUNC && hmips->has_static_relocs))
8149 && htab->use_plts_and_copy_relocs
8150 && !SYMBOL_CALLS_LOCAL (info, h)
8151 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8152 && h->root.type == bfd_link_hash_undefweak))
8153 {
8154 /* If this is the first symbol to need a PLT entry, allocate room
8155 for the header. */
8156 if (htab->splt->size == 0)
8157 {
8158 BFD_ASSERT (htab->sgotplt->size == 0);
8159
8160 /* If we're using the PLT additions to the psABI, each PLT
8161 entry is 16 bytes and the PLT0 entry is 32 bytes.
8162 Encourage better cache usage by aligning. We do this
8163 lazily to avoid pessimizing traditional objects. */
8164 if (!htab->is_vxworks
8165 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8166 return FALSE;
8167
8168 /* Make sure that .got.plt is word-aligned. We do this lazily
8169 for the same reason as above. */
8170 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8171 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8172 return FALSE;
8173
8174 htab->splt->size += htab->plt_header_size;
8175
8176 /* On non-VxWorks targets, the first two entries in .got.plt
8177 are reserved. */
8178 if (!htab->is_vxworks)
8179 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8180
8181 /* On VxWorks, also allocate room for the header's
8182 .rela.plt.unloaded entries. */
8183 if (htab->is_vxworks && !info->shared)
8184 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8185 }
8186
8187 /* Assign the next .plt entry to this symbol. */
8188 h->plt.offset = htab->splt->size;
8189 htab->splt->size += htab->plt_entry_size;
8190
8191 /* If the output file has no definition of the symbol, set the
8192 symbol's value to the address of the stub. */
8193 if (!info->shared && !h->def_regular)
8194 {
8195 h->root.u.def.section = htab->splt;
8196 h->root.u.def.value = h->plt.offset;
8197 /* For VxWorks, point at the PLT load stub rather than the
8198 lazy resolution stub; this stub will become the canonical
8199 function address. */
8200 if (htab->is_vxworks)
8201 h->root.u.def.value += 8;
8202 }
8203
8204 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8205 relocation. */
8206 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8207 htab->srelplt->size += (htab->is_vxworks
8208 ? MIPS_ELF_RELA_SIZE (dynobj)
8209 : MIPS_ELF_REL_SIZE (dynobj));
8210
8211 /* Make room for the .rela.plt.unloaded relocations. */
8212 if (htab->is_vxworks && !info->shared)
8213 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8214
8215 /* All relocations against this symbol that could have been made
8216 dynamic will now refer to the PLT entry instead. */
8217 hmips->possibly_dynamic_relocs = 0;
8218
8219 return TRUE;
8220 }
8221
8222 /* If this is a weak symbol, and there is a real definition, the
8223 processor independent code will have arranged for us to see the
8224 real definition first, and we can just use the same value. */
8225 if (h->u.weakdef != NULL)
8226 {
8227 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8228 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8229 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8230 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8231 return TRUE;
8232 }
8233
8234 /* Otherwise, there is nothing further to do for symbols defined
8235 in regular objects. */
8236 if (h->def_regular)
8237 return TRUE;
8238
8239 /* There's also nothing more to do if we'll convert all relocations
8240 against this symbol into dynamic relocations. */
8241 if (!hmips->has_static_relocs)
8242 return TRUE;
8243
8244 /* We're now relying on copy relocations. Complain if we have
8245 some that we can't convert. */
8246 if (!htab->use_plts_and_copy_relocs || info->shared)
8247 {
8248 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8249 "dynamic symbol %s"),
8250 h->root.root.string);
8251 bfd_set_error (bfd_error_bad_value);
8252 return FALSE;
8253 }
8254
8255 /* We must allocate the symbol in our .dynbss section, which will
8256 become part of the .bss section of the executable. There will be
8257 an entry for this symbol in the .dynsym section. The dynamic
8258 object will contain position independent code, so all references
8259 from the dynamic object to this symbol will go through the global
8260 offset table. The dynamic linker will use the .dynsym entry to
8261 determine the address it must put in the global offset table, so
8262 both the dynamic object and the regular object will refer to the
8263 same memory location for the variable. */
8264
8265 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8266 {
8267 if (htab->is_vxworks)
8268 htab->srelbss->size += sizeof (Elf32_External_Rela);
8269 else
8270 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8271 h->needs_copy = 1;
8272 }
8273
8274 /* All relocations against this symbol that could have been made
8275 dynamic will now refer to the local copy instead. */
8276 hmips->possibly_dynamic_relocs = 0;
8277
8278 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8279 }
8280 \f
8281 /* This function is called after all the input files have been read,
8282 and the input sections have been assigned to output sections. We
8283 check for any mips16 stub sections that we can discard. */
8284
8285 bfd_boolean
8286 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8287 struct bfd_link_info *info)
8288 {
8289 asection *ri;
8290 struct mips_elf_link_hash_table *htab;
8291 struct mips_htab_traverse_info hti;
8292
8293 htab = mips_elf_hash_table (info);
8294
8295 /* The .reginfo section has a fixed size. */
8296 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8297 if (ri != NULL)
8298 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8299
8300 hti.info = info;
8301 hti.output_bfd = output_bfd;
8302 hti.error = FALSE;
8303 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8304 mips_elf_check_symbols, &hti);
8305 if (hti.error)
8306 return FALSE;
8307
8308 return TRUE;
8309 }
8310
8311 /* If the link uses a GOT, lay it out and work out its size. */
8312
8313 static bfd_boolean
8314 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8315 {
8316 bfd *dynobj;
8317 asection *s;
8318 struct mips_got_info *g;
8319 bfd_size_type loadable_size = 0;
8320 bfd_size_type page_gotno;
8321 bfd *sub;
8322 struct mips_elf_count_tls_arg count_tls_arg;
8323 struct mips_elf_link_hash_table *htab;
8324
8325 htab = mips_elf_hash_table (info);
8326 s = htab->sgot;
8327 if (s == NULL)
8328 return TRUE;
8329
8330 dynobj = elf_hash_table (info)->dynobj;
8331 g = htab->got_info;
8332
8333 /* Allocate room for the reserved entries. VxWorks always reserves
8334 3 entries; other objects only reserve 2 entries. */
8335 BFD_ASSERT (g->assigned_gotno == 0);
8336 if (htab->is_vxworks)
8337 htab->reserved_gotno = 3;
8338 else
8339 htab->reserved_gotno = 2;
8340 g->local_gotno += htab->reserved_gotno;
8341 g->assigned_gotno = htab->reserved_gotno;
8342
8343 /* Replace entries for indirect and warning symbols with entries for
8344 the target symbol. */
8345 if (!mips_elf_resolve_final_got_entries (g))
8346 return FALSE;
8347
8348 /* Count the number of GOT symbols. */
8349 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, g);
8350
8351 /* Calculate the total loadable size of the output. That
8352 will give us the maximum number of GOT_PAGE entries
8353 required. */
8354 for (sub = info->input_bfds; sub; sub = sub->link_next)
8355 {
8356 asection *subsection;
8357
8358 for (subsection = sub->sections;
8359 subsection;
8360 subsection = subsection->next)
8361 {
8362 if ((subsection->flags & SEC_ALLOC) == 0)
8363 continue;
8364 loadable_size += ((subsection->size + 0xf)
8365 &~ (bfd_size_type) 0xf);
8366 }
8367 }
8368
8369 if (htab->is_vxworks)
8370 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8371 relocations against local symbols evaluate to "G", and the EABI does
8372 not include R_MIPS_GOT_PAGE. */
8373 page_gotno = 0;
8374 else
8375 /* Assume there are two loadable segments consisting of contiguous
8376 sections. Is 5 enough? */
8377 page_gotno = (loadable_size >> 16) + 5;
8378
8379 /* Choose the smaller of the two estimates; both are intended to be
8380 conservative. */
8381 if (page_gotno > g->page_gotno)
8382 page_gotno = g->page_gotno;
8383
8384 g->local_gotno += page_gotno;
8385 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8386 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8387
8388 /* We need to calculate tls_gotno for global symbols at this point
8389 instead of building it up earlier, to avoid doublecounting
8390 entries for one global symbol from multiple input files. */
8391 count_tls_arg.info = info;
8392 count_tls_arg.needed = 0;
8393 elf_link_hash_traverse (elf_hash_table (info),
8394 mips_elf_count_global_tls_entries,
8395 &count_tls_arg);
8396 g->tls_gotno += count_tls_arg.needed;
8397 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8398
8399 /* VxWorks does not support multiple GOTs. It initializes $gp to
8400 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8401 dynamic loader. */
8402 if (htab->is_vxworks)
8403 {
8404 /* VxWorks executables do not need a GOT. */
8405 if (info->shared)
8406 {
8407 /* Each VxWorks GOT entry needs an explicit relocation. */
8408 unsigned int count;
8409
8410 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8411 if (count)
8412 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8413 }
8414 }
8415 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8416 {
8417 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8418 return FALSE;
8419 }
8420 else
8421 {
8422 struct mips_elf_count_tls_arg arg;
8423
8424 /* Set up TLS entries. */
8425 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8426 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8427
8428 /* Allocate room for the TLS relocations. */
8429 arg.info = info;
8430 arg.needed = 0;
8431 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8432 elf_link_hash_traverse (elf_hash_table (info),
8433 mips_elf_count_global_tls_relocs,
8434 &arg);
8435 if (arg.needed)
8436 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8437 }
8438
8439 return TRUE;
8440 }
8441
8442 /* Estimate the size of the .MIPS.stubs section. */
8443
8444 static void
8445 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8446 {
8447 struct mips_elf_link_hash_table *htab;
8448 bfd_size_type dynsymcount;
8449
8450 htab = mips_elf_hash_table (info);
8451 if (htab->lazy_stub_count == 0)
8452 return;
8453
8454 /* IRIX rld assumes that a function stub isn't at the end of the .text
8455 section, so add a dummy entry to the end. */
8456 htab->lazy_stub_count++;
8457
8458 /* Get a worst-case estimate of the number of dynamic symbols needed.
8459 At this point, dynsymcount does not account for section symbols
8460 and count_section_dynsyms may overestimate the number that will
8461 be needed. */
8462 dynsymcount = (elf_hash_table (info)->dynsymcount
8463 + count_section_dynsyms (output_bfd, info));
8464
8465 /* Determine the size of one stub entry. */
8466 htab->function_stub_size = (dynsymcount > 0x10000
8467 ? MIPS_FUNCTION_STUB_BIG_SIZE
8468 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8469
8470 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8471 }
8472
8473 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8474 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8475 allocate an entry in the stubs section. */
8476
8477 static bfd_boolean
8478 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8479 {
8480 struct mips_elf_link_hash_table *htab;
8481
8482 htab = (struct mips_elf_link_hash_table *) data;
8483 if (h->needs_lazy_stub)
8484 {
8485 h->root.root.u.def.section = htab->sstubs;
8486 h->root.root.u.def.value = htab->sstubs->size;
8487 h->root.plt.offset = htab->sstubs->size;
8488 htab->sstubs->size += htab->function_stub_size;
8489 }
8490 return TRUE;
8491 }
8492
8493 /* Allocate offsets in the stubs section to each symbol that needs one.
8494 Set the final size of the .MIPS.stub section. */
8495
8496 static void
8497 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8498 {
8499 struct mips_elf_link_hash_table *htab;
8500
8501 htab = mips_elf_hash_table (info);
8502 if (htab->lazy_stub_count == 0)
8503 return;
8504
8505 htab->sstubs->size = 0;
8506 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8507 mips_elf_allocate_lazy_stub, htab);
8508 htab->sstubs->size += htab->function_stub_size;
8509 BFD_ASSERT (htab->sstubs->size
8510 == htab->lazy_stub_count * htab->function_stub_size);
8511 }
8512
8513 /* Set the sizes of the dynamic sections. */
8514
8515 bfd_boolean
8516 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8517 struct bfd_link_info *info)
8518 {
8519 bfd *dynobj;
8520 asection *s, *sreldyn;
8521 bfd_boolean reltext;
8522 struct mips_elf_link_hash_table *htab;
8523
8524 htab = mips_elf_hash_table (info);
8525 dynobj = elf_hash_table (info)->dynobj;
8526 BFD_ASSERT (dynobj != NULL);
8527
8528 if (elf_hash_table (info)->dynamic_sections_created)
8529 {
8530 /* Set the contents of the .interp section to the interpreter. */
8531 if (info->executable)
8532 {
8533 s = bfd_get_section_by_name (dynobj, ".interp");
8534 BFD_ASSERT (s != NULL);
8535 s->size
8536 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8537 s->contents
8538 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8539 }
8540
8541 /* Create a symbol for the PLT, if we know that we are using it. */
8542 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8543 {
8544 struct elf_link_hash_entry *h;
8545
8546 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8547
8548 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8549 "_PROCEDURE_LINKAGE_TABLE_");
8550 htab->root.hplt = h;
8551 if (h == NULL)
8552 return FALSE;
8553 h->type = STT_FUNC;
8554 }
8555 }
8556
8557 /* Allocate space for global sym dynamic relocs. */
8558 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8559
8560 mips_elf_estimate_stub_size (output_bfd, info);
8561
8562 if (!mips_elf_lay_out_got (output_bfd, info))
8563 return FALSE;
8564
8565 mips_elf_lay_out_lazy_stubs (info);
8566
8567 /* The check_relocs and adjust_dynamic_symbol entry points have
8568 determined the sizes of the various dynamic sections. Allocate
8569 memory for them. */
8570 reltext = FALSE;
8571 for (s = dynobj->sections; s != NULL; s = s->next)
8572 {
8573 const char *name;
8574
8575 /* It's OK to base decisions on the section name, because none
8576 of the dynobj section names depend upon the input files. */
8577 name = bfd_get_section_name (dynobj, s);
8578
8579 if ((s->flags & SEC_LINKER_CREATED) == 0)
8580 continue;
8581
8582 if (CONST_STRNEQ (name, ".rel"))
8583 {
8584 if (s->size != 0)
8585 {
8586 const char *outname;
8587 asection *target;
8588
8589 /* If this relocation section applies to a read only
8590 section, then we probably need a DT_TEXTREL entry.
8591 If the relocation section is .rel(a).dyn, we always
8592 assert a DT_TEXTREL entry rather than testing whether
8593 there exists a relocation to a read only section or
8594 not. */
8595 outname = bfd_get_section_name (output_bfd,
8596 s->output_section);
8597 target = bfd_get_section_by_name (output_bfd, outname + 4);
8598 if ((target != NULL
8599 && (target->flags & SEC_READONLY) != 0
8600 && (target->flags & SEC_ALLOC) != 0)
8601 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8602 reltext = TRUE;
8603
8604 /* We use the reloc_count field as a counter if we need
8605 to copy relocs into the output file. */
8606 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8607 s->reloc_count = 0;
8608
8609 /* If combreloc is enabled, elf_link_sort_relocs() will
8610 sort relocations, but in a different way than we do,
8611 and before we're done creating relocations. Also, it
8612 will move them around between input sections'
8613 relocation's contents, so our sorting would be
8614 broken, so don't let it run. */
8615 info->combreloc = 0;
8616 }
8617 }
8618 else if (! info->shared
8619 && ! mips_elf_hash_table (info)->use_rld_obj_head
8620 && CONST_STRNEQ (name, ".rld_map"))
8621 {
8622 /* We add a room for __rld_map. It will be filled in by the
8623 rtld to contain a pointer to the _r_debug structure. */
8624 s->size += 4;
8625 }
8626 else if (SGI_COMPAT (output_bfd)
8627 && CONST_STRNEQ (name, ".compact_rel"))
8628 s->size += mips_elf_hash_table (info)->compact_rel_size;
8629 else if (s == htab->splt)
8630 {
8631 /* If the last PLT entry has a branch delay slot, allocate
8632 room for an extra nop to fill the delay slot. */
8633 if (!htab->is_vxworks && s->size > 0)
8634 s->size += 4;
8635 }
8636 else if (! CONST_STRNEQ (name, ".init")
8637 && s != htab->sgot
8638 && s != htab->sgotplt
8639 && s != htab->sstubs
8640 && s != htab->sdynbss)
8641 {
8642 /* It's not one of our sections, so don't allocate space. */
8643 continue;
8644 }
8645
8646 if (s->size == 0)
8647 {
8648 s->flags |= SEC_EXCLUDE;
8649 continue;
8650 }
8651
8652 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8653 continue;
8654
8655 /* Allocate memory for the section contents. */
8656 s->contents = bfd_zalloc (dynobj, s->size);
8657 if (s->contents == NULL)
8658 {
8659 bfd_set_error (bfd_error_no_memory);
8660 return FALSE;
8661 }
8662 }
8663
8664 if (elf_hash_table (info)->dynamic_sections_created)
8665 {
8666 /* Add some entries to the .dynamic section. We fill in the
8667 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8668 must add the entries now so that we get the correct size for
8669 the .dynamic section. */
8670
8671 /* SGI object has the equivalence of DT_DEBUG in the
8672 DT_MIPS_RLD_MAP entry. This must come first because glibc
8673 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8674 looks at the first one it sees. */
8675 if (!info->shared
8676 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8677 return FALSE;
8678
8679 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8680 used by the debugger. */
8681 if (info->executable
8682 && !SGI_COMPAT (output_bfd)
8683 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8684 return FALSE;
8685
8686 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8687 info->flags |= DF_TEXTREL;
8688
8689 if ((info->flags & DF_TEXTREL) != 0)
8690 {
8691 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8692 return FALSE;
8693
8694 /* Clear the DF_TEXTREL flag. It will be set again if we
8695 write out an actual text relocation; we may not, because
8696 at this point we do not know whether e.g. any .eh_frame
8697 absolute relocations have been converted to PC-relative. */
8698 info->flags &= ~DF_TEXTREL;
8699 }
8700
8701 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8702 return FALSE;
8703
8704 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
8705 if (htab->is_vxworks)
8706 {
8707 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8708 use any of the DT_MIPS_* tags. */
8709 if (sreldyn && sreldyn->size > 0)
8710 {
8711 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8712 return FALSE;
8713
8714 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8715 return FALSE;
8716
8717 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8718 return FALSE;
8719 }
8720 }
8721 else
8722 {
8723 if (sreldyn && sreldyn->size > 0)
8724 {
8725 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8726 return FALSE;
8727
8728 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8729 return FALSE;
8730
8731 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8732 return FALSE;
8733 }
8734
8735 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8736 return FALSE;
8737
8738 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8739 return FALSE;
8740
8741 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8742 return FALSE;
8743
8744 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8745 return FALSE;
8746
8747 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8748 return FALSE;
8749
8750 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8751 return FALSE;
8752
8753 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8754 return FALSE;
8755
8756 if (IRIX_COMPAT (dynobj) == ict_irix5
8757 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8758 return FALSE;
8759
8760 if (IRIX_COMPAT (dynobj) == ict_irix6
8761 && (bfd_get_section_by_name
8762 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8763 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8764 return FALSE;
8765 }
8766 if (htab->splt->size > 0)
8767 {
8768 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8769 return FALSE;
8770
8771 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8772 return FALSE;
8773
8774 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8775 return FALSE;
8776
8777 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
8778 return FALSE;
8779 }
8780 if (htab->is_vxworks
8781 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8782 return FALSE;
8783 }
8784
8785 return TRUE;
8786 }
8787 \f
8788 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8789 Adjust its R_ADDEND field so that it is correct for the output file.
8790 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8791 and sections respectively; both use symbol indexes. */
8792
8793 static void
8794 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8795 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8796 asection **local_sections, Elf_Internal_Rela *rel)
8797 {
8798 unsigned int r_type, r_symndx;
8799 Elf_Internal_Sym *sym;
8800 asection *sec;
8801
8802 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8803 {
8804 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8805 if (r_type == R_MIPS16_GPREL
8806 || r_type == R_MIPS_GPREL16
8807 || r_type == R_MIPS_GPREL32
8808 || r_type == R_MIPS_LITERAL)
8809 {
8810 rel->r_addend += _bfd_get_gp_value (input_bfd);
8811 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8812 }
8813
8814 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8815 sym = local_syms + r_symndx;
8816
8817 /* Adjust REL's addend to account for section merging. */
8818 if (!info->relocatable)
8819 {
8820 sec = local_sections[r_symndx];
8821 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8822 }
8823
8824 /* This would normally be done by the rela_normal code in elflink.c. */
8825 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8826 rel->r_addend += local_sections[r_symndx]->output_offset;
8827 }
8828 }
8829
8830 /* Relocate a MIPS ELF section. */
8831
8832 bfd_boolean
8833 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8834 bfd *input_bfd, asection *input_section,
8835 bfd_byte *contents, Elf_Internal_Rela *relocs,
8836 Elf_Internal_Sym *local_syms,
8837 asection **local_sections)
8838 {
8839 Elf_Internal_Rela *rel;
8840 const Elf_Internal_Rela *relend;
8841 bfd_vma addend = 0;
8842 bfd_boolean use_saved_addend_p = FALSE;
8843 const struct elf_backend_data *bed;
8844
8845 bed = get_elf_backend_data (output_bfd);
8846 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8847 for (rel = relocs; rel < relend; ++rel)
8848 {
8849 const char *name;
8850 bfd_vma value = 0;
8851 reloc_howto_type *howto;
8852 bfd_boolean require_jalx;
8853 /* TRUE if the relocation is a RELA relocation, rather than a
8854 REL relocation. */
8855 bfd_boolean rela_relocation_p = TRUE;
8856 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8857 const char *msg;
8858 unsigned long r_symndx;
8859 asection *sec;
8860 Elf_Internal_Shdr *symtab_hdr;
8861 struct elf_link_hash_entry *h;
8862
8863 /* Find the relocation howto for this relocation. */
8864 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8865 NEWABI_P (input_bfd)
8866 && (MIPS_RELOC_RELA_P
8867 (input_bfd, input_section,
8868 rel - relocs)));
8869
8870 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
8871 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8872 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8873 {
8874 sec = local_sections[r_symndx];
8875 h = NULL;
8876 }
8877 else
8878 {
8879 unsigned long extsymoff;
8880
8881 extsymoff = 0;
8882 if (!elf_bad_symtab (input_bfd))
8883 extsymoff = symtab_hdr->sh_info;
8884 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8885 while (h->root.type == bfd_link_hash_indirect
8886 || h->root.type == bfd_link_hash_warning)
8887 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8888
8889 sec = NULL;
8890 if (h->root.type == bfd_link_hash_defined
8891 || h->root.type == bfd_link_hash_defweak)
8892 sec = h->root.u.def.section;
8893 }
8894
8895 if (sec != NULL && elf_discarded_section (sec))
8896 {
8897 /* For relocs against symbols from removed linkonce sections,
8898 or sections discarded by a linker script, we just want the
8899 section contents zeroed. Avoid any special processing. */
8900 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8901 rel->r_info = 0;
8902 rel->r_addend = 0;
8903 continue;
8904 }
8905
8906 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
8907 {
8908 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8909 64-bit code, but make sure all their addresses are in the
8910 lowermost or uppermost 32-bit section of the 64-bit address
8911 space. Thus, when they use an R_MIPS_64 they mean what is
8912 usually meant by R_MIPS_32, with the exception that the
8913 stored value is sign-extended to 64 bits. */
8914 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
8915
8916 /* On big-endian systems, we need to lie about the position
8917 of the reloc. */
8918 if (bfd_big_endian (input_bfd))
8919 rel->r_offset += 4;
8920 }
8921
8922 if (!use_saved_addend_p)
8923 {
8924 /* If these relocations were originally of the REL variety,
8925 we must pull the addend out of the field that will be
8926 relocated. Otherwise, we simply use the contents of the
8927 RELA relocation. */
8928 if (mips_elf_rel_relocation_p (input_bfd, input_section,
8929 relocs, rel))
8930 {
8931 rela_relocation_p = FALSE;
8932 addend = mips_elf_read_rel_addend (input_bfd, rel,
8933 howto, contents);
8934 if (hi16_reloc_p (r_type)
8935 || (got16_reloc_p (r_type)
8936 && mips_elf_local_relocation_p (input_bfd, rel,
8937 local_sections, FALSE)))
8938 {
8939 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
8940 contents, &addend))
8941 {
8942 const char *name;
8943
8944 if (h)
8945 name = h->root.root.string;
8946 else
8947 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
8948 local_syms + r_symndx,
8949 sec);
8950 (*_bfd_error_handler)
8951 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8952 input_bfd, input_section, name, howto->name,
8953 rel->r_offset);
8954 }
8955 }
8956 else
8957 addend <<= howto->rightshift;
8958 }
8959 else
8960 addend = rel->r_addend;
8961 mips_elf_adjust_addend (output_bfd, info, input_bfd,
8962 local_syms, local_sections, rel);
8963 }
8964
8965 if (info->relocatable)
8966 {
8967 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
8968 && bfd_big_endian (input_bfd))
8969 rel->r_offset -= 4;
8970
8971 if (!rela_relocation_p && rel->r_addend)
8972 {
8973 addend += rel->r_addend;
8974 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
8975 addend = mips_elf_high (addend);
8976 else if (r_type == R_MIPS_HIGHER)
8977 addend = mips_elf_higher (addend);
8978 else if (r_type == R_MIPS_HIGHEST)
8979 addend = mips_elf_highest (addend);
8980 else
8981 addend >>= howto->rightshift;
8982
8983 /* We use the source mask, rather than the destination
8984 mask because the place to which we are writing will be
8985 source of the addend in the final link. */
8986 addend &= howto->src_mask;
8987
8988 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8989 /* See the comment above about using R_MIPS_64 in the 32-bit
8990 ABI. Here, we need to update the addend. It would be
8991 possible to get away with just using the R_MIPS_32 reloc
8992 but for endianness. */
8993 {
8994 bfd_vma sign_bits;
8995 bfd_vma low_bits;
8996 bfd_vma high_bits;
8997
8998 if (addend & ((bfd_vma) 1 << 31))
8999 #ifdef BFD64
9000 sign_bits = ((bfd_vma) 1 << 32) - 1;
9001 #else
9002 sign_bits = -1;
9003 #endif
9004 else
9005 sign_bits = 0;
9006
9007 /* If we don't know that we have a 64-bit type,
9008 do two separate stores. */
9009 if (bfd_big_endian (input_bfd))
9010 {
9011 /* Store the sign-bits (which are most significant)
9012 first. */
9013 low_bits = sign_bits;
9014 high_bits = addend;
9015 }
9016 else
9017 {
9018 low_bits = addend;
9019 high_bits = sign_bits;
9020 }
9021 bfd_put_32 (input_bfd, low_bits,
9022 contents + rel->r_offset);
9023 bfd_put_32 (input_bfd, high_bits,
9024 contents + rel->r_offset + 4);
9025 continue;
9026 }
9027
9028 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9029 input_bfd, input_section,
9030 contents, FALSE))
9031 return FALSE;
9032 }
9033
9034 /* Go on to the next relocation. */
9035 continue;
9036 }
9037
9038 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9039 relocations for the same offset. In that case we are
9040 supposed to treat the output of each relocation as the addend
9041 for the next. */
9042 if (rel + 1 < relend
9043 && rel->r_offset == rel[1].r_offset
9044 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9045 use_saved_addend_p = TRUE;
9046 else
9047 use_saved_addend_p = FALSE;
9048
9049 /* Figure out what value we are supposed to relocate. */
9050 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9051 input_section, info, rel,
9052 addend, howto, local_syms,
9053 local_sections, &value,
9054 &name, &require_jalx,
9055 use_saved_addend_p))
9056 {
9057 case bfd_reloc_continue:
9058 /* There's nothing to do. */
9059 continue;
9060
9061 case bfd_reloc_undefined:
9062 /* mips_elf_calculate_relocation already called the
9063 undefined_symbol callback. There's no real point in
9064 trying to perform the relocation at this point, so we
9065 just skip ahead to the next relocation. */
9066 continue;
9067
9068 case bfd_reloc_notsupported:
9069 msg = _("internal error: unsupported relocation error");
9070 info->callbacks->warning
9071 (info, msg, name, input_bfd, input_section, rel->r_offset);
9072 return FALSE;
9073
9074 case bfd_reloc_overflow:
9075 if (use_saved_addend_p)
9076 /* Ignore overflow until we reach the last relocation for
9077 a given location. */
9078 ;
9079 else
9080 {
9081 struct mips_elf_link_hash_table *htab;
9082
9083 htab = mips_elf_hash_table (info);
9084 BFD_ASSERT (name != NULL);
9085 if (!htab->small_data_overflow_reported
9086 && (howto->type == R_MIPS_GPREL16
9087 || howto->type == R_MIPS_LITERAL))
9088 {
9089 const char *msg =
9090 _("small-data section exceeds 64KB;"
9091 " lower small-data size limit (see option -G)");
9092
9093 htab->small_data_overflow_reported = TRUE;
9094 (*info->callbacks->einfo) ("%P: %s\n", msg);
9095 }
9096 if (! ((*info->callbacks->reloc_overflow)
9097 (info, NULL, name, howto->name, (bfd_vma) 0,
9098 input_bfd, input_section, rel->r_offset)))
9099 return FALSE;
9100 }
9101 break;
9102
9103 case bfd_reloc_ok:
9104 break;
9105
9106 default:
9107 abort ();
9108 break;
9109 }
9110
9111 /* If we've got another relocation for the address, keep going
9112 until we reach the last one. */
9113 if (use_saved_addend_p)
9114 {
9115 addend = value;
9116 continue;
9117 }
9118
9119 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9120 /* See the comment above about using R_MIPS_64 in the 32-bit
9121 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9122 that calculated the right value. Now, however, we
9123 sign-extend the 32-bit result to 64-bits, and store it as a
9124 64-bit value. We are especially generous here in that we
9125 go to extreme lengths to support this usage on systems with
9126 only a 32-bit VMA. */
9127 {
9128 bfd_vma sign_bits;
9129 bfd_vma low_bits;
9130 bfd_vma high_bits;
9131
9132 if (value & ((bfd_vma) 1 << 31))
9133 #ifdef BFD64
9134 sign_bits = ((bfd_vma) 1 << 32) - 1;
9135 #else
9136 sign_bits = -1;
9137 #endif
9138 else
9139 sign_bits = 0;
9140
9141 /* If we don't know that we have a 64-bit type,
9142 do two separate stores. */
9143 if (bfd_big_endian (input_bfd))
9144 {
9145 /* Undo what we did above. */
9146 rel->r_offset -= 4;
9147 /* Store the sign-bits (which are most significant)
9148 first. */
9149 low_bits = sign_bits;
9150 high_bits = value;
9151 }
9152 else
9153 {
9154 low_bits = value;
9155 high_bits = sign_bits;
9156 }
9157 bfd_put_32 (input_bfd, low_bits,
9158 contents + rel->r_offset);
9159 bfd_put_32 (input_bfd, high_bits,
9160 contents + rel->r_offset + 4);
9161 continue;
9162 }
9163
9164 /* Actually perform the relocation. */
9165 if (! mips_elf_perform_relocation (info, howto, rel, value,
9166 input_bfd, input_section,
9167 contents, require_jalx))
9168 return FALSE;
9169 }
9170
9171 return TRUE;
9172 }
9173 \f
9174 /* A function that iterates over each entry in la25_stubs and fills
9175 in the code for each one. DATA points to a mips_htab_traverse_info. */
9176
9177 static int
9178 mips_elf_create_la25_stub (void **slot, void *data)
9179 {
9180 struct mips_htab_traverse_info *hti;
9181 struct mips_elf_link_hash_table *htab;
9182 struct mips_elf_la25_stub *stub;
9183 asection *s;
9184 bfd_byte *loc;
9185 bfd_vma offset, target, target_high, target_low;
9186
9187 stub = (struct mips_elf_la25_stub *) *slot;
9188 hti = (struct mips_htab_traverse_info *) data;
9189 htab = mips_elf_hash_table (hti->info);
9190
9191 /* Create the section contents, if we haven't already. */
9192 s = stub->stub_section;
9193 loc = s->contents;
9194 if (loc == NULL)
9195 {
9196 loc = bfd_malloc (s->size);
9197 if (loc == NULL)
9198 {
9199 hti->error = TRUE;
9200 return FALSE;
9201 }
9202 s->contents = loc;
9203 }
9204
9205 /* Work out where in the section this stub should go. */
9206 offset = stub->offset;
9207
9208 /* Work out the target address. */
9209 target = (stub->h->root.root.u.def.section->output_section->vma
9210 + stub->h->root.root.u.def.section->output_offset
9211 + stub->h->root.root.u.def.value);
9212 target_high = ((target + 0x8000) >> 16) & 0xffff;
9213 target_low = (target & 0xffff);
9214
9215 if (stub->stub_section != htab->strampoline)
9216 {
9217 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9218 of the section and write the two instructions at the end. */
9219 memset (loc, 0, offset);
9220 loc += offset;
9221 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9222 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9223 }
9224 else
9225 {
9226 /* This is trampoline. */
9227 loc += offset;
9228 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9229 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9230 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9231 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9232 }
9233 return TRUE;
9234 }
9235
9236 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9237 adjust it appropriately now. */
9238
9239 static void
9240 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9241 const char *name, Elf_Internal_Sym *sym)
9242 {
9243 /* The linker script takes care of providing names and values for
9244 these, but we must place them into the right sections. */
9245 static const char* const text_section_symbols[] = {
9246 "_ftext",
9247 "_etext",
9248 "__dso_displacement",
9249 "__elf_header",
9250 "__program_header_table",
9251 NULL
9252 };
9253
9254 static const char* const data_section_symbols[] = {
9255 "_fdata",
9256 "_edata",
9257 "_end",
9258 "_fbss",
9259 NULL
9260 };
9261
9262 const char* const *p;
9263 int i;
9264
9265 for (i = 0; i < 2; ++i)
9266 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9267 *p;
9268 ++p)
9269 if (strcmp (*p, name) == 0)
9270 {
9271 /* All of these symbols are given type STT_SECTION by the
9272 IRIX6 linker. */
9273 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9274 sym->st_other = STO_PROTECTED;
9275
9276 /* The IRIX linker puts these symbols in special sections. */
9277 if (i == 0)
9278 sym->st_shndx = SHN_MIPS_TEXT;
9279 else
9280 sym->st_shndx = SHN_MIPS_DATA;
9281
9282 break;
9283 }
9284 }
9285
9286 /* Finish up dynamic symbol handling. We set the contents of various
9287 dynamic sections here. */
9288
9289 bfd_boolean
9290 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9291 struct bfd_link_info *info,
9292 struct elf_link_hash_entry *h,
9293 Elf_Internal_Sym *sym)
9294 {
9295 bfd *dynobj;
9296 asection *sgot;
9297 struct mips_got_info *g, *gg;
9298 const char *name;
9299 int idx;
9300 struct mips_elf_link_hash_table *htab;
9301 struct mips_elf_link_hash_entry *hmips;
9302
9303 htab = mips_elf_hash_table (info);
9304 dynobj = elf_hash_table (info)->dynobj;
9305 hmips = (struct mips_elf_link_hash_entry *) h;
9306
9307 BFD_ASSERT (!htab->is_vxworks);
9308
9309 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9310 {
9311 /* We've decided to create a PLT entry for this symbol. */
9312 bfd_byte *loc;
9313 bfd_vma header_address, plt_index, got_address;
9314 bfd_vma got_address_high, got_address_low, load;
9315 const bfd_vma *plt_entry;
9316
9317 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9318 BFD_ASSERT (h->dynindx != -1);
9319 BFD_ASSERT (htab->splt != NULL);
9320 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9321 BFD_ASSERT (!h->def_regular);
9322
9323 /* Calculate the address of the PLT header. */
9324 header_address = (htab->splt->output_section->vma
9325 + htab->splt->output_offset);
9326
9327 /* Calculate the index of the entry. */
9328 plt_index = ((h->plt.offset - htab->plt_header_size)
9329 / htab->plt_entry_size);
9330
9331 /* Calculate the address of the .got.plt entry. */
9332 got_address = (htab->sgotplt->output_section->vma
9333 + htab->sgotplt->output_offset
9334 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9335 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9336 got_address_low = got_address & 0xffff;
9337
9338 /* Initially point the .got.plt entry at the PLT header. */
9339 loc = (htab->sgotplt->contents
9340 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9341 if (ABI_64_P (output_bfd))
9342 bfd_put_64 (output_bfd, header_address, loc);
9343 else
9344 bfd_put_32 (output_bfd, header_address, loc);
9345
9346 /* Find out where the .plt entry should go. */
9347 loc = htab->splt->contents + h->plt.offset;
9348
9349 /* Pick the load opcode. */
9350 load = MIPS_ELF_LOAD_WORD (output_bfd);
9351
9352 /* Fill in the PLT entry itself. */
9353 plt_entry = mips_exec_plt_entry;
9354 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9355 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9356 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9357 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9358
9359 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9360 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9361 plt_index, h->dynindx,
9362 R_MIPS_JUMP_SLOT, got_address);
9363
9364 /* We distinguish between PLT entries and lazy-binding stubs by
9365 giving the former an st_other value of STO_MIPS_PLT. Set the
9366 flag and leave the value if there are any relocations in the
9367 binary where pointer equality matters. */
9368 sym->st_shndx = SHN_UNDEF;
9369 if (h->pointer_equality_needed)
9370 sym->st_other = STO_MIPS_PLT;
9371 else
9372 sym->st_value = 0;
9373 }
9374 else if (h->plt.offset != MINUS_ONE)
9375 {
9376 /* We've decided to create a lazy-binding stub. */
9377 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9378
9379 /* This symbol has a stub. Set it up. */
9380
9381 BFD_ASSERT (h->dynindx != -1);
9382
9383 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9384 || (h->dynindx <= 0xffff));
9385
9386 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9387 sign extension at runtime in the stub, resulting in a negative
9388 index value. */
9389 if (h->dynindx & ~0x7fffffff)
9390 return FALSE;
9391
9392 /* Fill the stub. */
9393 idx = 0;
9394 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9395 idx += 4;
9396 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9397 idx += 4;
9398 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9399 {
9400 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9401 stub + idx);
9402 idx += 4;
9403 }
9404 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9405 idx += 4;
9406
9407 /* If a large stub is not required and sign extension is not a
9408 problem, then use legacy code in the stub. */
9409 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9410 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9411 else if (h->dynindx & ~0x7fff)
9412 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9413 else
9414 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9415 stub + idx);
9416
9417 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9418 memcpy (htab->sstubs->contents + h->plt.offset,
9419 stub, htab->function_stub_size);
9420
9421 /* Mark the symbol as undefined. plt.offset != -1 occurs
9422 only for the referenced symbol. */
9423 sym->st_shndx = SHN_UNDEF;
9424
9425 /* The run-time linker uses the st_value field of the symbol
9426 to reset the global offset table entry for this external
9427 to its stub address when unlinking a shared object. */
9428 sym->st_value = (htab->sstubs->output_section->vma
9429 + htab->sstubs->output_offset
9430 + h->plt.offset);
9431 }
9432
9433 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9434 refer to the stub, since only the stub uses the standard calling
9435 conventions. */
9436 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9437 {
9438 BFD_ASSERT (hmips->need_fn_stub);
9439 sym->st_value = (hmips->fn_stub->output_section->vma
9440 + hmips->fn_stub->output_offset);
9441 sym->st_size = hmips->fn_stub->size;
9442 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9443 }
9444
9445 BFD_ASSERT (h->dynindx != -1
9446 || h->forced_local);
9447
9448 sgot = htab->sgot;
9449 g = htab->got_info;
9450 BFD_ASSERT (g != NULL);
9451
9452 /* Run through the global symbol table, creating GOT entries for all
9453 the symbols that need them. */
9454 if (g->global_gotsym != NULL
9455 && h->dynindx >= g->global_gotsym->dynindx)
9456 {
9457 bfd_vma offset;
9458 bfd_vma value;
9459
9460 value = sym->st_value;
9461 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9462 R_MIPS_GOT16, info);
9463 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9464 }
9465
9466 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
9467 {
9468 struct mips_got_entry e, *p;
9469 bfd_vma entry;
9470 bfd_vma offset;
9471
9472 gg = g;
9473
9474 e.abfd = output_bfd;
9475 e.symndx = -1;
9476 e.d.h = hmips;
9477 e.tls_type = 0;
9478
9479 for (g = g->next; g->next != gg; g = g->next)
9480 {
9481 if (g->got_entries
9482 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9483 &e)))
9484 {
9485 offset = p->gotidx;
9486 if (info->shared
9487 || (elf_hash_table (info)->dynamic_sections_created
9488 && p->d.h != NULL
9489 && p->d.h->root.def_dynamic
9490 && !p->d.h->root.def_regular))
9491 {
9492 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9493 the various compatibility problems, it's easier to mock
9494 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9495 mips_elf_create_dynamic_relocation to calculate the
9496 appropriate addend. */
9497 Elf_Internal_Rela rel[3];
9498
9499 memset (rel, 0, sizeof (rel));
9500 if (ABI_64_P (output_bfd))
9501 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9502 else
9503 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9504 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9505
9506 entry = 0;
9507 if (! (mips_elf_create_dynamic_relocation
9508 (output_bfd, info, rel,
9509 e.d.h, NULL, sym->st_value, &entry, sgot)))
9510 return FALSE;
9511 }
9512 else
9513 entry = sym->st_value;
9514 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9515 }
9516 }
9517 }
9518
9519 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9520 name = h->root.root.string;
9521 if (strcmp (name, "_DYNAMIC") == 0
9522 || h == elf_hash_table (info)->hgot)
9523 sym->st_shndx = SHN_ABS;
9524 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9525 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9526 {
9527 sym->st_shndx = SHN_ABS;
9528 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9529 sym->st_value = 1;
9530 }
9531 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9532 {
9533 sym->st_shndx = SHN_ABS;
9534 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9535 sym->st_value = elf_gp (output_bfd);
9536 }
9537 else if (SGI_COMPAT (output_bfd))
9538 {
9539 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9540 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9541 {
9542 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9543 sym->st_other = STO_PROTECTED;
9544 sym->st_value = 0;
9545 sym->st_shndx = SHN_MIPS_DATA;
9546 }
9547 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9548 {
9549 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9550 sym->st_other = STO_PROTECTED;
9551 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9552 sym->st_shndx = SHN_ABS;
9553 }
9554 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9555 {
9556 if (h->type == STT_FUNC)
9557 sym->st_shndx = SHN_MIPS_TEXT;
9558 else if (h->type == STT_OBJECT)
9559 sym->st_shndx = SHN_MIPS_DATA;
9560 }
9561 }
9562
9563 /* Emit a copy reloc, if needed. */
9564 if (h->needs_copy)
9565 {
9566 asection *s;
9567 bfd_vma symval;
9568
9569 BFD_ASSERT (h->dynindx != -1);
9570 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9571
9572 s = mips_elf_rel_dyn_section (info, FALSE);
9573 symval = (h->root.u.def.section->output_section->vma
9574 + h->root.u.def.section->output_offset
9575 + h->root.u.def.value);
9576 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9577 h->dynindx, R_MIPS_COPY, symval);
9578 }
9579
9580 /* Handle the IRIX6-specific symbols. */
9581 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9582 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9583
9584 if (! info->shared)
9585 {
9586 if (! mips_elf_hash_table (info)->use_rld_obj_head
9587 && (strcmp (name, "__rld_map") == 0
9588 || strcmp (name, "__RLD_MAP") == 0))
9589 {
9590 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9591 BFD_ASSERT (s != NULL);
9592 sym->st_value = s->output_section->vma + s->output_offset;
9593 bfd_put_32 (output_bfd, 0, s->contents);
9594 if (mips_elf_hash_table (info)->rld_value == 0)
9595 mips_elf_hash_table (info)->rld_value = sym->st_value;
9596 }
9597 else if (mips_elf_hash_table (info)->use_rld_obj_head
9598 && strcmp (name, "__rld_obj_head") == 0)
9599 {
9600 /* IRIX6 does not use a .rld_map section. */
9601 if (IRIX_COMPAT (output_bfd) == ict_irix5
9602 || IRIX_COMPAT (output_bfd) == ict_none)
9603 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9604 != NULL);
9605 mips_elf_hash_table (info)->rld_value = sym->st_value;
9606 }
9607 }
9608
9609 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9610 treat MIPS16 symbols like any other. */
9611 if (ELF_ST_IS_MIPS16 (sym->st_other))
9612 {
9613 BFD_ASSERT (sym->st_value & 1);
9614 sym->st_other -= STO_MIPS16;
9615 }
9616
9617 return TRUE;
9618 }
9619
9620 /* Likewise, for VxWorks. */
9621
9622 bfd_boolean
9623 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9624 struct bfd_link_info *info,
9625 struct elf_link_hash_entry *h,
9626 Elf_Internal_Sym *sym)
9627 {
9628 bfd *dynobj;
9629 asection *sgot;
9630 struct mips_got_info *g;
9631 struct mips_elf_link_hash_table *htab;
9632
9633 htab = mips_elf_hash_table (info);
9634 dynobj = elf_hash_table (info)->dynobj;
9635
9636 if (h->plt.offset != (bfd_vma) -1)
9637 {
9638 bfd_byte *loc;
9639 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9640 Elf_Internal_Rela rel;
9641 static const bfd_vma *plt_entry;
9642
9643 BFD_ASSERT (h->dynindx != -1);
9644 BFD_ASSERT (htab->splt != NULL);
9645 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9646
9647 /* Calculate the address of the .plt entry. */
9648 plt_address = (htab->splt->output_section->vma
9649 + htab->splt->output_offset
9650 + h->plt.offset);
9651
9652 /* Calculate the index of the entry. */
9653 plt_index = ((h->plt.offset - htab->plt_header_size)
9654 / htab->plt_entry_size);
9655
9656 /* Calculate the address of the .got.plt entry. */
9657 got_address = (htab->sgotplt->output_section->vma
9658 + htab->sgotplt->output_offset
9659 + plt_index * 4);
9660
9661 /* Calculate the offset of the .got.plt entry from
9662 _GLOBAL_OFFSET_TABLE_. */
9663 got_offset = mips_elf_gotplt_index (info, h);
9664
9665 /* Calculate the offset for the branch at the start of the PLT
9666 entry. The branch jumps to the beginning of .plt. */
9667 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9668
9669 /* Fill in the initial value of the .got.plt entry. */
9670 bfd_put_32 (output_bfd, plt_address,
9671 htab->sgotplt->contents + plt_index * 4);
9672
9673 /* Find out where the .plt entry should go. */
9674 loc = htab->splt->contents + h->plt.offset;
9675
9676 if (info->shared)
9677 {
9678 plt_entry = mips_vxworks_shared_plt_entry;
9679 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9680 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9681 }
9682 else
9683 {
9684 bfd_vma got_address_high, got_address_low;
9685
9686 plt_entry = mips_vxworks_exec_plt_entry;
9687 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9688 got_address_low = got_address & 0xffff;
9689
9690 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9691 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9692 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9693 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9694 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9695 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9696 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9697 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9698
9699 loc = (htab->srelplt2->contents
9700 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9701
9702 /* Emit a relocation for the .got.plt entry. */
9703 rel.r_offset = got_address;
9704 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9705 rel.r_addend = h->plt.offset;
9706 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9707
9708 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9709 loc += sizeof (Elf32_External_Rela);
9710 rel.r_offset = plt_address + 8;
9711 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9712 rel.r_addend = got_offset;
9713 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9714
9715 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9716 loc += sizeof (Elf32_External_Rela);
9717 rel.r_offset += 4;
9718 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9719 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9720 }
9721
9722 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9723 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9724 rel.r_offset = got_address;
9725 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9726 rel.r_addend = 0;
9727 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9728
9729 if (!h->def_regular)
9730 sym->st_shndx = SHN_UNDEF;
9731 }
9732
9733 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9734
9735 sgot = htab->sgot;
9736 g = htab->got_info;
9737 BFD_ASSERT (g != NULL);
9738
9739 /* See if this symbol has an entry in the GOT. */
9740 if (g->global_gotsym != NULL
9741 && h->dynindx >= g->global_gotsym->dynindx)
9742 {
9743 bfd_vma offset;
9744 Elf_Internal_Rela outrel;
9745 bfd_byte *loc;
9746 asection *s;
9747
9748 /* Install the symbol value in the GOT. */
9749 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9750 R_MIPS_GOT16, info);
9751 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9752
9753 /* Add a dynamic relocation for it. */
9754 s = mips_elf_rel_dyn_section (info, FALSE);
9755 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9756 outrel.r_offset = (sgot->output_section->vma
9757 + sgot->output_offset
9758 + offset);
9759 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9760 outrel.r_addend = 0;
9761 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9762 }
9763
9764 /* Emit a copy reloc, if needed. */
9765 if (h->needs_copy)
9766 {
9767 Elf_Internal_Rela rel;
9768
9769 BFD_ASSERT (h->dynindx != -1);
9770
9771 rel.r_offset = (h->root.u.def.section->output_section->vma
9772 + h->root.u.def.section->output_offset
9773 + h->root.u.def.value);
9774 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9775 rel.r_addend = 0;
9776 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9777 htab->srelbss->contents
9778 + (htab->srelbss->reloc_count
9779 * sizeof (Elf32_External_Rela)));
9780 ++htab->srelbss->reloc_count;
9781 }
9782
9783 /* If this is a mips16 symbol, force the value to be even. */
9784 if (ELF_ST_IS_MIPS16 (sym->st_other))
9785 sym->st_value &= ~1;
9786
9787 return TRUE;
9788 }
9789
9790 /* Write out a plt0 entry to the beginning of .plt. */
9791
9792 static void
9793 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9794 {
9795 bfd_byte *loc;
9796 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
9797 static const bfd_vma *plt_entry;
9798 struct mips_elf_link_hash_table *htab;
9799
9800 htab = mips_elf_hash_table (info);
9801 if (ABI_64_P (output_bfd))
9802 plt_entry = mips_n64_exec_plt0_entry;
9803 else if (ABI_N32_P (output_bfd))
9804 plt_entry = mips_n32_exec_plt0_entry;
9805 else
9806 plt_entry = mips_o32_exec_plt0_entry;
9807
9808 /* Calculate the value of .got.plt. */
9809 gotplt_value = (htab->sgotplt->output_section->vma
9810 + htab->sgotplt->output_offset);
9811 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
9812 gotplt_value_low = gotplt_value & 0xffff;
9813
9814 /* The PLT sequence is not safe for N64 if .got.plt's address can
9815 not be loaded in two instructions. */
9816 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
9817 || ~(gotplt_value | 0x7fffffff) == 0);
9818
9819 /* Install the PLT header. */
9820 loc = htab->splt->contents;
9821 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
9822 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
9823 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
9824 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9825 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9826 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9827 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9828 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9829 }
9830
9831 /* Install the PLT header for a VxWorks executable and finalize the
9832 contents of .rela.plt.unloaded. */
9833
9834 static void
9835 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9836 {
9837 Elf_Internal_Rela rela;
9838 bfd_byte *loc;
9839 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9840 static const bfd_vma *plt_entry;
9841 struct mips_elf_link_hash_table *htab;
9842
9843 htab = mips_elf_hash_table (info);
9844 plt_entry = mips_vxworks_exec_plt0_entry;
9845
9846 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9847 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9848 + htab->root.hgot->root.u.def.section->output_offset
9849 + htab->root.hgot->root.u.def.value);
9850
9851 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9852 got_value_low = got_value & 0xffff;
9853
9854 /* Calculate the address of the PLT header. */
9855 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9856
9857 /* Install the PLT header. */
9858 loc = htab->splt->contents;
9859 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9860 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9861 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9862 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9863 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9864 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9865
9866 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9867 loc = htab->srelplt2->contents;
9868 rela.r_offset = plt_address;
9869 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9870 rela.r_addend = 0;
9871 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9872 loc += sizeof (Elf32_External_Rela);
9873
9874 /* Output the relocation for the following addiu of
9875 %lo(_GLOBAL_OFFSET_TABLE_). */
9876 rela.r_offset += 4;
9877 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9878 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9879 loc += sizeof (Elf32_External_Rela);
9880
9881 /* Fix up the remaining relocations. They may have the wrong
9882 symbol index for _G_O_T_ or _P_L_T_ depending on the order
9883 in which symbols were output. */
9884 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
9885 {
9886 Elf_Internal_Rela rel;
9887
9888 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9889 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9890 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9891 loc += sizeof (Elf32_External_Rela);
9892
9893 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9894 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9895 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9896 loc += sizeof (Elf32_External_Rela);
9897
9898 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9899 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9900 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9901 loc += sizeof (Elf32_External_Rela);
9902 }
9903 }
9904
9905 /* Install the PLT header for a VxWorks shared library. */
9906
9907 static void
9908 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
9909 {
9910 unsigned int i;
9911 struct mips_elf_link_hash_table *htab;
9912
9913 htab = mips_elf_hash_table (info);
9914
9915 /* We just need to copy the entry byte-by-byte. */
9916 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
9917 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
9918 htab->splt->contents + i * 4);
9919 }
9920
9921 /* Finish up the dynamic sections. */
9922
9923 bfd_boolean
9924 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
9925 struct bfd_link_info *info)
9926 {
9927 bfd *dynobj;
9928 asection *sdyn;
9929 asection *sgot;
9930 struct mips_got_info *gg, *g;
9931 struct mips_elf_link_hash_table *htab;
9932
9933 htab = mips_elf_hash_table (info);
9934 dynobj = elf_hash_table (info)->dynobj;
9935
9936 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9937
9938 sgot = htab->sgot;
9939 gg = htab->got_info;
9940
9941 if (elf_hash_table (info)->dynamic_sections_created)
9942 {
9943 bfd_byte *b;
9944 int dyn_to_skip = 0, dyn_skipped = 0;
9945
9946 BFD_ASSERT (sdyn != NULL);
9947 BFD_ASSERT (gg != NULL);
9948
9949 g = mips_elf_got_for_ibfd (gg, output_bfd);
9950 BFD_ASSERT (g != NULL);
9951
9952 for (b = sdyn->contents;
9953 b < sdyn->contents + sdyn->size;
9954 b += MIPS_ELF_DYN_SIZE (dynobj))
9955 {
9956 Elf_Internal_Dyn dyn;
9957 const char *name;
9958 size_t elemsize;
9959 asection *s;
9960 bfd_boolean swap_out_p;
9961
9962 /* Read in the current dynamic entry. */
9963 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9964
9965 /* Assume that we're going to modify it and write it out. */
9966 swap_out_p = TRUE;
9967
9968 switch (dyn.d_tag)
9969 {
9970 case DT_RELENT:
9971 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
9972 break;
9973
9974 case DT_RELAENT:
9975 BFD_ASSERT (htab->is_vxworks);
9976 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
9977 break;
9978
9979 case DT_STRSZ:
9980 /* Rewrite DT_STRSZ. */
9981 dyn.d_un.d_val =
9982 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
9983 break;
9984
9985 case DT_PLTGOT:
9986 s = htab->sgot;
9987 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9988 break;
9989
9990 case DT_MIPS_PLTGOT:
9991 s = htab->sgotplt;
9992 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9993 break;
9994
9995 case DT_MIPS_RLD_VERSION:
9996 dyn.d_un.d_val = 1; /* XXX */
9997 break;
9998
9999 case DT_MIPS_FLAGS:
10000 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10001 break;
10002
10003 case DT_MIPS_TIME_STAMP:
10004 {
10005 time_t t;
10006 time (&t);
10007 dyn.d_un.d_val = t;
10008 }
10009 break;
10010
10011 case DT_MIPS_ICHECKSUM:
10012 /* XXX FIXME: */
10013 swap_out_p = FALSE;
10014 break;
10015
10016 case DT_MIPS_IVERSION:
10017 /* XXX FIXME: */
10018 swap_out_p = FALSE;
10019 break;
10020
10021 case DT_MIPS_BASE_ADDRESS:
10022 s = output_bfd->sections;
10023 BFD_ASSERT (s != NULL);
10024 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10025 break;
10026
10027 case DT_MIPS_LOCAL_GOTNO:
10028 dyn.d_un.d_val = g->local_gotno;
10029 break;
10030
10031 case DT_MIPS_UNREFEXTNO:
10032 /* The index into the dynamic symbol table which is the
10033 entry of the first external symbol that is not
10034 referenced within the same object. */
10035 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10036 break;
10037
10038 case DT_MIPS_GOTSYM:
10039 if (gg->global_gotsym)
10040 {
10041 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10042 break;
10043 }
10044 /* In case if we don't have global got symbols we default
10045 to setting DT_MIPS_GOTSYM to the same value as
10046 DT_MIPS_SYMTABNO, so we just fall through. */
10047
10048 case DT_MIPS_SYMTABNO:
10049 name = ".dynsym";
10050 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10051 s = bfd_get_section_by_name (output_bfd, name);
10052 BFD_ASSERT (s != NULL);
10053
10054 dyn.d_un.d_val = s->size / elemsize;
10055 break;
10056
10057 case DT_MIPS_HIPAGENO:
10058 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10059 break;
10060
10061 case DT_MIPS_RLD_MAP:
10062 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10063 break;
10064
10065 case DT_MIPS_OPTIONS:
10066 s = (bfd_get_section_by_name
10067 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10068 dyn.d_un.d_ptr = s->vma;
10069 break;
10070
10071 case DT_RELASZ:
10072 BFD_ASSERT (htab->is_vxworks);
10073 /* The count does not include the JUMP_SLOT relocations. */
10074 if (htab->srelplt)
10075 dyn.d_un.d_val -= htab->srelplt->size;
10076 break;
10077
10078 case DT_PLTREL:
10079 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10080 if (htab->is_vxworks)
10081 dyn.d_un.d_val = DT_RELA;
10082 else
10083 dyn.d_un.d_val = DT_REL;
10084 break;
10085
10086 case DT_PLTRELSZ:
10087 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10088 dyn.d_un.d_val = htab->srelplt->size;
10089 break;
10090
10091 case DT_JMPREL:
10092 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10093 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10094 + htab->srelplt->output_offset);
10095 break;
10096
10097 case DT_TEXTREL:
10098 /* If we didn't need any text relocations after all, delete
10099 the dynamic tag. */
10100 if (!(info->flags & DF_TEXTREL))
10101 {
10102 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10103 swap_out_p = FALSE;
10104 }
10105 break;
10106
10107 case DT_FLAGS:
10108 /* If we didn't need any text relocations after all, clear
10109 DF_TEXTREL from DT_FLAGS. */
10110 if (!(info->flags & DF_TEXTREL))
10111 dyn.d_un.d_val &= ~DF_TEXTREL;
10112 else
10113 swap_out_p = FALSE;
10114 break;
10115
10116 default:
10117 swap_out_p = FALSE;
10118 if (htab->is_vxworks
10119 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10120 swap_out_p = TRUE;
10121 break;
10122 }
10123
10124 if (swap_out_p || dyn_skipped)
10125 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10126 (dynobj, &dyn, b - dyn_skipped);
10127
10128 if (dyn_to_skip)
10129 {
10130 dyn_skipped += dyn_to_skip;
10131 dyn_to_skip = 0;
10132 }
10133 }
10134
10135 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10136 if (dyn_skipped > 0)
10137 memset (b - dyn_skipped, 0, dyn_skipped);
10138 }
10139
10140 if (sgot != NULL && sgot->size > 0
10141 && !bfd_is_abs_section (sgot->output_section))
10142 {
10143 if (htab->is_vxworks)
10144 {
10145 /* The first entry of the global offset table points to the
10146 ".dynamic" section. The second is initialized by the
10147 loader and contains the shared library identifier.
10148 The third is also initialized by the loader and points
10149 to the lazy resolution stub. */
10150 MIPS_ELF_PUT_WORD (output_bfd,
10151 sdyn->output_offset + sdyn->output_section->vma,
10152 sgot->contents);
10153 MIPS_ELF_PUT_WORD (output_bfd, 0,
10154 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10155 MIPS_ELF_PUT_WORD (output_bfd, 0,
10156 sgot->contents
10157 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10158 }
10159 else
10160 {
10161 /* The first entry of the global offset table will be filled at
10162 runtime. The second entry will be used by some runtime loaders.
10163 This isn't the case of IRIX rld. */
10164 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10165 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10166 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10167 }
10168
10169 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10170 = MIPS_ELF_GOT_SIZE (output_bfd);
10171 }
10172
10173 /* Generate dynamic relocations for the non-primary gots. */
10174 if (gg != NULL && gg->next)
10175 {
10176 Elf_Internal_Rela rel[3];
10177 bfd_vma addend = 0;
10178
10179 memset (rel, 0, sizeof (rel));
10180 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10181
10182 for (g = gg->next; g->next != gg; g = g->next)
10183 {
10184 bfd_vma index = g->next->local_gotno + g->next->global_gotno
10185 + g->next->tls_gotno;
10186
10187 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10188 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10189 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10190 sgot->contents
10191 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10192
10193 if (! info->shared)
10194 continue;
10195
10196 while (index < g->assigned_gotno)
10197 {
10198 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10199 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10200 if (!(mips_elf_create_dynamic_relocation
10201 (output_bfd, info, rel, NULL,
10202 bfd_abs_section_ptr,
10203 0, &addend, sgot)))
10204 return FALSE;
10205 BFD_ASSERT (addend == 0);
10206 }
10207 }
10208 }
10209
10210 /* The generation of dynamic relocations for the non-primary gots
10211 adds more dynamic relocations. We cannot count them until
10212 here. */
10213
10214 if (elf_hash_table (info)->dynamic_sections_created)
10215 {
10216 bfd_byte *b;
10217 bfd_boolean swap_out_p;
10218
10219 BFD_ASSERT (sdyn != NULL);
10220
10221 for (b = sdyn->contents;
10222 b < sdyn->contents + sdyn->size;
10223 b += MIPS_ELF_DYN_SIZE (dynobj))
10224 {
10225 Elf_Internal_Dyn dyn;
10226 asection *s;
10227
10228 /* Read in the current dynamic entry. */
10229 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10230
10231 /* Assume that we're going to modify it and write it out. */
10232 swap_out_p = TRUE;
10233
10234 switch (dyn.d_tag)
10235 {
10236 case DT_RELSZ:
10237 /* Reduce DT_RELSZ to account for any relocations we
10238 decided not to make. This is for the n64 irix rld,
10239 which doesn't seem to apply any relocations if there
10240 are trailing null entries. */
10241 s = mips_elf_rel_dyn_section (info, FALSE);
10242 dyn.d_un.d_val = (s->reloc_count
10243 * (ABI_64_P (output_bfd)
10244 ? sizeof (Elf64_Mips_External_Rel)
10245 : sizeof (Elf32_External_Rel)));
10246 /* Adjust the section size too. Tools like the prelinker
10247 can reasonably expect the values to the same. */
10248 elf_section_data (s->output_section)->this_hdr.sh_size
10249 = dyn.d_un.d_val;
10250 break;
10251
10252 default:
10253 swap_out_p = FALSE;
10254 break;
10255 }
10256
10257 if (swap_out_p)
10258 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10259 (dynobj, &dyn, b);
10260 }
10261 }
10262
10263 {
10264 asection *s;
10265 Elf32_compact_rel cpt;
10266
10267 if (SGI_COMPAT (output_bfd))
10268 {
10269 /* Write .compact_rel section out. */
10270 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10271 if (s != NULL)
10272 {
10273 cpt.id1 = 1;
10274 cpt.num = s->reloc_count;
10275 cpt.id2 = 2;
10276 cpt.offset = (s->output_section->filepos
10277 + sizeof (Elf32_External_compact_rel));
10278 cpt.reserved0 = 0;
10279 cpt.reserved1 = 0;
10280 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10281 ((Elf32_External_compact_rel *)
10282 s->contents));
10283
10284 /* Clean up a dummy stub function entry in .text. */
10285 if (htab->sstubs != NULL)
10286 {
10287 file_ptr dummy_offset;
10288
10289 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10290 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10291 memset (htab->sstubs->contents + dummy_offset, 0,
10292 htab->function_stub_size);
10293 }
10294 }
10295 }
10296
10297 /* The psABI says that the dynamic relocations must be sorted in
10298 increasing order of r_symndx. The VxWorks EABI doesn't require
10299 this, and because the code below handles REL rather than RELA
10300 relocations, using it for VxWorks would be outright harmful. */
10301 if (!htab->is_vxworks)
10302 {
10303 s = mips_elf_rel_dyn_section (info, FALSE);
10304 if (s != NULL
10305 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10306 {
10307 reldyn_sorting_bfd = output_bfd;
10308
10309 if (ABI_64_P (output_bfd))
10310 qsort ((Elf64_External_Rel *) s->contents + 1,
10311 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10312 sort_dynamic_relocs_64);
10313 else
10314 qsort ((Elf32_External_Rel *) s->contents + 1,
10315 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10316 sort_dynamic_relocs);
10317 }
10318 }
10319 }
10320
10321 if (htab->splt && htab->splt->size > 0)
10322 {
10323 if (htab->is_vxworks)
10324 {
10325 if (info->shared)
10326 mips_vxworks_finish_shared_plt (output_bfd, info);
10327 else
10328 mips_vxworks_finish_exec_plt (output_bfd, info);
10329 }
10330 else
10331 {
10332 BFD_ASSERT (!info->shared);
10333 mips_finish_exec_plt (output_bfd, info);
10334 }
10335 }
10336 return TRUE;
10337 }
10338
10339
10340 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10341
10342 static void
10343 mips_set_isa_flags (bfd *abfd)
10344 {
10345 flagword val;
10346
10347 switch (bfd_get_mach (abfd))
10348 {
10349 default:
10350 case bfd_mach_mips3000:
10351 val = E_MIPS_ARCH_1;
10352 break;
10353
10354 case bfd_mach_mips3900:
10355 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10356 break;
10357
10358 case bfd_mach_mips6000:
10359 val = E_MIPS_ARCH_2;
10360 break;
10361
10362 case bfd_mach_mips4000:
10363 case bfd_mach_mips4300:
10364 case bfd_mach_mips4400:
10365 case bfd_mach_mips4600:
10366 val = E_MIPS_ARCH_3;
10367 break;
10368
10369 case bfd_mach_mips4010:
10370 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10371 break;
10372
10373 case bfd_mach_mips4100:
10374 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10375 break;
10376
10377 case bfd_mach_mips4111:
10378 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10379 break;
10380
10381 case bfd_mach_mips4120:
10382 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10383 break;
10384
10385 case bfd_mach_mips4650:
10386 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10387 break;
10388
10389 case bfd_mach_mips5400:
10390 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10391 break;
10392
10393 case bfd_mach_mips5500:
10394 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10395 break;
10396
10397 case bfd_mach_mips9000:
10398 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10399 break;
10400
10401 case bfd_mach_mips5000:
10402 case bfd_mach_mips7000:
10403 case bfd_mach_mips8000:
10404 case bfd_mach_mips10000:
10405 case bfd_mach_mips12000:
10406 case bfd_mach_mips14000:
10407 case bfd_mach_mips16000:
10408 val = E_MIPS_ARCH_4;
10409 break;
10410
10411 case bfd_mach_mips5:
10412 val = E_MIPS_ARCH_5;
10413 break;
10414
10415 case bfd_mach_mips_loongson_2e:
10416 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10417 break;
10418
10419 case bfd_mach_mips_loongson_2f:
10420 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10421 break;
10422
10423 case bfd_mach_mips_sb1:
10424 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10425 break;
10426
10427 case bfd_mach_mips_octeon:
10428 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10429 break;
10430
10431 case bfd_mach_mips_xlr:
10432 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10433 break;
10434
10435 case bfd_mach_mipsisa32:
10436 val = E_MIPS_ARCH_32;
10437 break;
10438
10439 case bfd_mach_mipsisa64:
10440 val = E_MIPS_ARCH_64;
10441 break;
10442
10443 case bfd_mach_mipsisa32r2:
10444 val = E_MIPS_ARCH_32R2;
10445 break;
10446
10447 case bfd_mach_mipsisa64r2:
10448 val = E_MIPS_ARCH_64R2;
10449 break;
10450 }
10451 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10452 elf_elfheader (abfd)->e_flags |= val;
10453
10454 }
10455
10456
10457 /* The final processing done just before writing out a MIPS ELF object
10458 file. This gets the MIPS architecture right based on the machine
10459 number. This is used by both the 32-bit and the 64-bit ABI. */
10460
10461 void
10462 _bfd_mips_elf_final_write_processing (bfd *abfd,
10463 bfd_boolean linker ATTRIBUTE_UNUSED)
10464 {
10465 unsigned int i;
10466 Elf_Internal_Shdr **hdrpp;
10467 const char *name;
10468 asection *sec;
10469
10470 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10471 is nonzero. This is for compatibility with old objects, which used
10472 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10473 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10474 mips_set_isa_flags (abfd);
10475
10476 /* Set the sh_info field for .gptab sections and other appropriate
10477 info for each special section. */
10478 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10479 i < elf_numsections (abfd);
10480 i++, hdrpp++)
10481 {
10482 switch ((*hdrpp)->sh_type)
10483 {
10484 case SHT_MIPS_MSYM:
10485 case SHT_MIPS_LIBLIST:
10486 sec = bfd_get_section_by_name (abfd, ".dynstr");
10487 if (sec != NULL)
10488 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10489 break;
10490
10491 case SHT_MIPS_GPTAB:
10492 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10493 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10494 BFD_ASSERT (name != NULL
10495 && CONST_STRNEQ (name, ".gptab."));
10496 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10497 BFD_ASSERT (sec != NULL);
10498 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10499 break;
10500
10501 case SHT_MIPS_CONTENT:
10502 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10503 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10504 BFD_ASSERT (name != NULL
10505 && CONST_STRNEQ (name, ".MIPS.content"));
10506 sec = bfd_get_section_by_name (abfd,
10507 name + sizeof ".MIPS.content" - 1);
10508 BFD_ASSERT (sec != NULL);
10509 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10510 break;
10511
10512 case SHT_MIPS_SYMBOL_LIB:
10513 sec = bfd_get_section_by_name (abfd, ".dynsym");
10514 if (sec != NULL)
10515 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10516 sec = bfd_get_section_by_name (abfd, ".liblist");
10517 if (sec != NULL)
10518 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10519 break;
10520
10521 case SHT_MIPS_EVENTS:
10522 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10523 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10524 BFD_ASSERT (name != NULL);
10525 if (CONST_STRNEQ (name, ".MIPS.events"))
10526 sec = bfd_get_section_by_name (abfd,
10527 name + sizeof ".MIPS.events" - 1);
10528 else
10529 {
10530 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10531 sec = bfd_get_section_by_name (abfd,
10532 (name
10533 + sizeof ".MIPS.post_rel" - 1));
10534 }
10535 BFD_ASSERT (sec != NULL);
10536 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10537 break;
10538
10539 }
10540 }
10541 }
10542 \f
10543 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10544 segments. */
10545
10546 int
10547 _bfd_mips_elf_additional_program_headers (bfd *abfd,
10548 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10549 {
10550 asection *s;
10551 int ret = 0;
10552
10553 /* See if we need a PT_MIPS_REGINFO segment. */
10554 s = bfd_get_section_by_name (abfd, ".reginfo");
10555 if (s && (s->flags & SEC_LOAD))
10556 ++ret;
10557
10558 /* See if we need a PT_MIPS_OPTIONS segment. */
10559 if (IRIX_COMPAT (abfd) == ict_irix6
10560 && bfd_get_section_by_name (abfd,
10561 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10562 ++ret;
10563
10564 /* See if we need a PT_MIPS_RTPROC segment. */
10565 if (IRIX_COMPAT (abfd) == ict_irix5
10566 && bfd_get_section_by_name (abfd, ".dynamic")
10567 && bfd_get_section_by_name (abfd, ".mdebug"))
10568 ++ret;
10569
10570 /* Allocate a PT_NULL header in dynamic objects. See
10571 _bfd_mips_elf_modify_segment_map for details. */
10572 if (!SGI_COMPAT (abfd)
10573 && bfd_get_section_by_name (abfd, ".dynamic"))
10574 ++ret;
10575
10576 return ret;
10577 }
10578
10579 /* Modify the segment map for an IRIX5 executable. */
10580
10581 bfd_boolean
10582 _bfd_mips_elf_modify_segment_map (bfd *abfd,
10583 struct bfd_link_info *info)
10584 {
10585 asection *s;
10586 struct elf_segment_map *m, **pm;
10587 bfd_size_type amt;
10588
10589 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10590 segment. */
10591 s = bfd_get_section_by_name (abfd, ".reginfo");
10592 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10593 {
10594 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10595 if (m->p_type == PT_MIPS_REGINFO)
10596 break;
10597 if (m == NULL)
10598 {
10599 amt = sizeof *m;
10600 m = bfd_zalloc (abfd, amt);
10601 if (m == NULL)
10602 return FALSE;
10603
10604 m->p_type = PT_MIPS_REGINFO;
10605 m->count = 1;
10606 m->sections[0] = s;
10607
10608 /* We want to put it after the PHDR and INTERP segments. */
10609 pm = &elf_tdata (abfd)->segment_map;
10610 while (*pm != NULL
10611 && ((*pm)->p_type == PT_PHDR
10612 || (*pm)->p_type == PT_INTERP))
10613 pm = &(*pm)->next;
10614
10615 m->next = *pm;
10616 *pm = m;
10617 }
10618 }
10619
10620 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10621 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10622 PT_MIPS_OPTIONS segment immediately following the program header
10623 table. */
10624 if (NEWABI_P (abfd)
10625 /* On non-IRIX6 new abi, we'll have already created a segment
10626 for this section, so don't create another. I'm not sure this
10627 is not also the case for IRIX 6, but I can't test it right
10628 now. */
10629 && IRIX_COMPAT (abfd) == ict_irix6)
10630 {
10631 for (s = abfd->sections; s; s = s->next)
10632 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10633 break;
10634
10635 if (s)
10636 {
10637 struct elf_segment_map *options_segment;
10638
10639 pm = &elf_tdata (abfd)->segment_map;
10640 while (*pm != NULL
10641 && ((*pm)->p_type == PT_PHDR
10642 || (*pm)->p_type == PT_INTERP))
10643 pm = &(*pm)->next;
10644
10645 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10646 {
10647 amt = sizeof (struct elf_segment_map);
10648 options_segment = bfd_zalloc (abfd, amt);
10649 options_segment->next = *pm;
10650 options_segment->p_type = PT_MIPS_OPTIONS;
10651 options_segment->p_flags = PF_R;
10652 options_segment->p_flags_valid = TRUE;
10653 options_segment->count = 1;
10654 options_segment->sections[0] = s;
10655 *pm = options_segment;
10656 }
10657 }
10658 }
10659 else
10660 {
10661 if (IRIX_COMPAT (abfd) == ict_irix5)
10662 {
10663 /* If there are .dynamic and .mdebug sections, we make a room
10664 for the RTPROC header. FIXME: Rewrite without section names. */
10665 if (bfd_get_section_by_name (abfd, ".interp") == NULL
10666 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10667 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10668 {
10669 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10670 if (m->p_type == PT_MIPS_RTPROC)
10671 break;
10672 if (m == NULL)
10673 {
10674 amt = sizeof *m;
10675 m = bfd_zalloc (abfd, amt);
10676 if (m == NULL)
10677 return FALSE;
10678
10679 m->p_type = PT_MIPS_RTPROC;
10680
10681 s = bfd_get_section_by_name (abfd, ".rtproc");
10682 if (s == NULL)
10683 {
10684 m->count = 0;
10685 m->p_flags = 0;
10686 m->p_flags_valid = 1;
10687 }
10688 else
10689 {
10690 m->count = 1;
10691 m->sections[0] = s;
10692 }
10693
10694 /* We want to put it after the DYNAMIC segment. */
10695 pm = &elf_tdata (abfd)->segment_map;
10696 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10697 pm = &(*pm)->next;
10698 if (*pm != NULL)
10699 pm = &(*pm)->next;
10700
10701 m->next = *pm;
10702 *pm = m;
10703 }
10704 }
10705 }
10706 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10707 .dynstr, .dynsym, and .hash sections, and everything in
10708 between. */
10709 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10710 pm = &(*pm)->next)
10711 if ((*pm)->p_type == PT_DYNAMIC)
10712 break;
10713 m = *pm;
10714 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10715 {
10716 /* For a normal mips executable the permissions for the PT_DYNAMIC
10717 segment are read, write and execute. We do that here since
10718 the code in elf.c sets only the read permission. This matters
10719 sometimes for the dynamic linker. */
10720 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10721 {
10722 m->p_flags = PF_R | PF_W | PF_X;
10723 m->p_flags_valid = 1;
10724 }
10725 }
10726 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10727 glibc's dynamic linker has traditionally derived the number of
10728 tags from the p_filesz field, and sometimes allocates stack
10729 arrays of that size. An overly-big PT_DYNAMIC segment can
10730 be actively harmful in such cases. Making PT_DYNAMIC contain
10731 other sections can also make life hard for the prelinker,
10732 which might move one of the other sections to a different
10733 PT_LOAD segment. */
10734 if (SGI_COMPAT (abfd)
10735 && m != NULL
10736 && m->count == 1
10737 && strcmp (m->sections[0]->name, ".dynamic") == 0)
10738 {
10739 static const char *sec_names[] =
10740 {
10741 ".dynamic", ".dynstr", ".dynsym", ".hash"
10742 };
10743 bfd_vma low, high;
10744 unsigned int i, c;
10745 struct elf_segment_map *n;
10746
10747 low = ~(bfd_vma) 0;
10748 high = 0;
10749 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10750 {
10751 s = bfd_get_section_by_name (abfd, sec_names[i]);
10752 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10753 {
10754 bfd_size_type sz;
10755
10756 if (low > s->vma)
10757 low = s->vma;
10758 sz = s->size;
10759 if (high < s->vma + sz)
10760 high = s->vma + sz;
10761 }
10762 }
10763
10764 c = 0;
10765 for (s = abfd->sections; s != NULL; s = s->next)
10766 if ((s->flags & SEC_LOAD) != 0
10767 && s->vma >= low
10768 && s->vma + s->size <= high)
10769 ++c;
10770
10771 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
10772 n = bfd_zalloc (abfd, amt);
10773 if (n == NULL)
10774 return FALSE;
10775 *n = *m;
10776 n->count = c;
10777
10778 i = 0;
10779 for (s = abfd->sections; s != NULL; s = s->next)
10780 {
10781 if ((s->flags & SEC_LOAD) != 0
10782 && s->vma >= low
10783 && s->vma + s->size <= high)
10784 {
10785 n->sections[i] = s;
10786 ++i;
10787 }
10788 }
10789
10790 *pm = n;
10791 }
10792 }
10793
10794 /* Allocate a spare program header in dynamic objects so that tools
10795 like the prelinker can add an extra PT_LOAD entry.
10796
10797 If the prelinker needs to make room for a new PT_LOAD entry, its
10798 standard procedure is to move the first (read-only) sections into
10799 the new (writable) segment. However, the MIPS ABI requires
10800 .dynamic to be in a read-only segment, and the section will often
10801 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10802
10803 Although the prelinker could in principle move .dynamic to a
10804 writable segment, it seems better to allocate a spare program
10805 header instead, and avoid the need to move any sections.
10806 There is a long tradition of allocating spare dynamic tags,
10807 so allocating a spare program header seems like a natural
10808 extension.
10809
10810 If INFO is NULL, we may be copying an already prelinked binary
10811 with objcopy or strip, so do not add this header. */
10812 if (info != NULL
10813 && !SGI_COMPAT (abfd)
10814 && bfd_get_section_by_name (abfd, ".dynamic"))
10815 {
10816 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10817 if ((*pm)->p_type == PT_NULL)
10818 break;
10819 if (*pm == NULL)
10820 {
10821 m = bfd_zalloc (abfd, sizeof (*m));
10822 if (m == NULL)
10823 return FALSE;
10824
10825 m->p_type = PT_NULL;
10826 *pm = m;
10827 }
10828 }
10829
10830 return TRUE;
10831 }
10832 \f
10833 /* Return the section that should be marked against GC for a given
10834 relocation. */
10835
10836 asection *
10837 _bfd_mips_elf_gc_mark_hook (asection *sec,
10838 struct bfd_link_info *info,
10839 Elf_Internal_Rela *rel,
10840 struct elf_link_hash_entry *h,
10841 Elf_Internal_Sym *sym)
10842 {
10843 /* ??? Do mips16 stub sections need to be handled special? */
10844
10845 if (h != NULL)
10846 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10847 {
10848 case R_MIPS_GNU_VTINHERIT:
10849 case R_MIPS_GNU_VTENTRY:
10850 return NULL;
10851 }
10852
10853 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10854 }
10855
10856 /* Update the got entry reference counts for the section being removed. */
10857
10858 bfd_boolean
10859 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
10860 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10861 asection *sec ATTRIBUTE_UNUSED,
10862 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
10863 {
10864 #if 0
10865 Elf_Internal_Shdr *symtab_hdr;
10866 struct elf_link_hash_entry **sym_hashes;
10867 bfd_signed_vma *local_got_refcounts;
10868 const Elf_Internal_Rela *rel, *relend;
10869 unsigned long r_symndx;
10870 struct elf_link_hash_entry *h;
10871
10872 if (info->relocatable)
10873 return TRUE;
10874
10875 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10876 sym_hashes = elf_sym_hashes (abfd);
10877 local_got_refcounts = elf_local_got_refcounts (abfd);
10878
10879 relend = relocs + sec->reloc_count;
10880 for (rel = relocs; rel < relend; rel++)
10881 switch (ELF_R_TYPE (abfd, rel->r_info))
10882 {
10883 case R_MIPS16_GOT16:
10884 case R_MIPS16_CALL16:
10885 case R_MIPS_GOT16:
10886 case R_MIPS_CALL16:
10887 case R_MIPS_CALL_HI16:
10888 case R_MIPS_CALL_LO16:
10889 case R_MIPS_GOT_HI16:
10890 case R_MIPS_GOT_LO16:
10891 case R_MIPS_GOT_DISP:
10892 case R_MIPS_GOT_PAGE:
10893 case R_MIPS_GOT_OFST:
10894 /* ??? It would seem that the existing MIPS code does no sort
10895 of reference counting or whatnot on its GOT and PLT entries,
10896 so it is not possible to garbage collect them at this time. */
10897 break;
10898
10899 default:
10900 break;
10901 }
10902 #endif
10903
10904 return TRUE;
10905 }
10906 \f
10907 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
10908 hiding the old indirect symbol. Process additional relocation
10909 information. Also called for weakdefs, in which case we just let
10910 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
10911
10912 void
10913 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
10914 struct elf_link_hash_entry *dir,
10915 struct elf_link_hash_entry *ind)
10916 {
10917 struct mips_elf_link_hash_entry *dirmips, *indmips;
10918
10919 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
10920
10921 dirmips = (struct mips_elf_link_hash_entry *) dir;
10922 indmips = (struct mips_elf_link_hash_entry *) ind;
10923 /* Any absolute non-dynamic relocations against an indirect or weak
10924 definition will be against the target symbol. */
10925 if (indmips->has_static_relocs)
10926 dirmips->has_static_relocs = TRUE;
10927
10928 if (ind->root.type != bfd_link_hash_indirect)
10929 return;
10930
10931 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
10932 if (indmips->readonly_reloc)
10933 dirmips->readonly_reloc = TRUE;
10934 if (indmips->no_fn_stub)
10935 dirmips->no_fn_stub = TRUE;
10936 if (indmips->fn_stub)
10937 {
10938 dirmips->fn_stub = indmips->fn_stub;
10939 indmips->fn_stub = NULL;
10940 }
10941 if (indmips->need_fn_stub)
10942 {
10943 dirmips->need_fn_stub = TRUE;
10944 indmips->need_fn_stub = FALSE;
10945 }
10946 if (indmips->call_stub)
10947 {
10948 dirmips->call_stub = indmips->call_stub;
10949 indmips->call_stub = NULL;
10950 }
10951 if (indmips->call_fp_stub)
10952 {
10953 dirmips->call_fp_stub = indmips->call_fp_stub;
10954 indmips->call_fp_stub = NULL;
10955 }
10956 if (indmips->global_got_area < dirmips->global_got_area)
10957 dirmips->global_got_area = indmips->global_got_area;
10958 if (indmips->global_got_area < GGA_NONE)
10959 indmips->global_got_area = GGA_NONE;
10960 if (indmips->has_nonpic_branches)
10961 dirmips->has_nonpic_branches = TRUE;
10962
10963 if (dirmips->tls_type == 0)
10964 dirmips->tls_type = indmips->tls_type;
10965 }
10966 \f
10967 #define PDR_SIZE 32
10968
10969 bfd_boolean
10970 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
10971 struct bfd_link_info *info)
10972 {
10973 asection *o;
10974 bfd_boolean ret = FALSE;
10975 unsigned char *tdata;
10976 size_t i, skip;
10977
10978 o = bfd_get_section_by_name (abfd, ".pdr");
10979 if (! o)
10980 return FALSE;
10981 if (o->size == 0)
10982 return FALSE;
10983 if (o->size % PDR_SIZE != 0)
10984 return FALSE;
10985 if (o->output_section != NULL
10986 && bfd_is_abs_section (o->output_section))
10987 return FALSE;
10988
10989 tdata = bfd_zmalloc (o->size / PDR_SIZE);
10990 if (! tdata)
10991 return FALSE;
10992
10993 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
10994 info->keep_memory);
10995 if (!cookie->rels)
10996 {
10997 free (tdata);
10998 return FALSE;
10999 }
11000
11001 cookie->rel = cookie->rels;
11002 cookie->relend = cookie->rels + o->reloc_count;
11003
11004 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11005 {
11006 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11007 {
11008 tdata[i] = 1;
11009 skip ++;
11010 }
11011 }
11012
11013 if (skip != 0)
11014 {
11015 mips_elf_section_data (o)->u.tdata = tdata;
11016 o->size -= skip * PDR_SIZE;
11017 ret = TRUE;
11018 }
11019 else
11020 free (tdata);
11021
11022 if (! info->keep_memory)
11023 free (cookie->rels);
11024
11025 return ret;
11026 }
11027
11028 bfd_boolean
11029 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11030 {
11031 if (strcmp (sec->name, ".pdr") == 0)
11032 return TRUE;
11033 return FALSE;
11034 }
11035
11036 bfd_boolean
11037 _bfd_mips_elf_write_section (bfd *output_bfd,
11038 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11039 asection *sec, bfd_byte *contents)
11040 {
11041 bfd_byte *to, *from, *end;
11042 int i;
11043
11044 if (strcmp (sec->name, ".pdr") != 0)
11045 return FALSE;
11046
11047 if (mips_elf_section_data (sec)->u.tdata == NULL)
11048 return FALSE;
11049
11050 to = contents;
11051 end = contents + sec->size;
11052 for (from = contents, i = 0;
11053 from < end;
11054 from += PDR_SIZE, i++)
11055 {
11056 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11057 continue;
11058 if (to != from)
11059 memcpy (to, from, PDR_SIZE);
11060 to += PDR_SIZE;
11061 }
11062 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11063 sec->output_offset, sec->size);
11064 return TRUE;
11065 }
11066 \f
11067 /* MIPS ELF uses a special find_nearest_line routine in order the
11068 handle the ECOFF debugging information. */
11069
11070 struct mips_elf_find_line
11071 {
11072 struct ecoff_debug_info d;
11073 struct ecoff_find_line i;
11074 };
11075
11076 bfd_boolean
11077 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11078 asymbol **symbols, bfd_vma offset,
11079 const char **filename_ptr,
11080 const char **functionname_ptr,
11081 unsigned int *line_ptr)
11082 {
11083 asection *msec;
11084
11085 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11086 filename_ptr, functionname_ptr,
11087 line_ptr))
11088 return TRUE;
11089
11090 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11091 filename_ptr, functionname_ptr,
11092 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11093 &elf_tdata (abfd)->dwarf2_find_line_info))
11094 return TRUE;
11095
11096 msec = bfd_get_section_by_name (abfd, ".mdebug");
11097 if (msec != NULL)
11098 {
11099 flagword origflags;
11100 struct mips_elf_find_line *fi;
11101 const struct ecoff_debug_swap * const swap =
11102 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11103
11104 /* If we are called during a link, mips_elf_final_link may have
11105 cleared the SEC_HAS_CONTENTS field. We force it back on here
11106 if appropriate (which it normally will be). */
11107 origflags = msec->flags;
11108 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11109 msec->flags |= SEC_HAS_CONTENTS;
11110
11111 fi = elf_tdata (abfd)->find_line_info;
11112 if (fi == NULL)
11113 {
11114 bfd_size_type external_fdr_size;
11115 char *fraw_src;
11116 char *fraw_end;
11117 struct fdr *fdr_ptr;
11118 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11119
11120 fi = bfd_zalloc (abfd, amt);
11121 if (fi == NULL)
11122 {
11123 msec->flags = origflags;
11124 return FALSE;
11125 }
11126
11127 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11128 {
11129 msec->flags = origflags;
11130 return FALSE;
11131 }
11132
11133 /* Swap in the FDR information. */
11134 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11135 fi->d.fdr = bfd_alloc (abfd, amt);
11136 if (fi->d.fdr == NULL)
11137 {
11138 msec->flags = origflags;
11139 return FALSE;
11140 }
11141 external_fdr_size = swap->external_fdr_size;
11142 fdr_ptr = fi->d.fdr;
11143 fraw_src = (char *) fi->d.external_fdr;
11144 fraw_end = (fraw_src
11145 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11146 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11147 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11148
11149 elf_tdata (abfd)->find_line_info = fi;
11150
11151 /* Note that we don't bother to ever free this information.
11152 find_nearest_line is either called all the time, as in
11153 objdump -l, so the information should be saved, or it is
11154 rarely called, as in ld error messages, so the memory
11155 wasted is unimportant. Still, it would probably be a
11156 good idea for free_cached_info to throw it away. */
11157 }
11158
11159 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11160 &fi->i, filename_ptr, functionname_ptr,
11161 line_ptr))
11162 {
11163 msec->flags = origflags;
11164 return TRUE;
11165 }
11166
11167 msec->flags = origflags;
11168 }
11169
11170 /* Fall back on the generic ELF find_nearest_line routine. */
11171
11172 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11173 filename_ptr, functionname_ptr,
11174 line_ptr);
11175 }
11176
11177 bfd_boolean
11178 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11179 const char **filename_ptr,
11180 const char **functionname_ptr,
11181 unsigned int *line_ptr)
11182 {
11183 bfd_boolean found;
11184 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11185 functionname_ptr, line_ptr,
11186 & elf_tdata (abfd)->dwarf2_find_line_info);
11187 return found;
11188 }
11189
11190 \f
11191 /* When are writing out the .options or .MIPS.options section,
11192 remember the bytes we are writing out, so that we can install the
11193 GP value in the section_processing routine. */
11194
11195 bfd_boolean
11196 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11197 const void *location,
11198 file_ptr offset, bfd_size_type count)
11199 {
11200 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11201 {
11202 bfd_byte *c;
11203
11204 if (elf_section_data (section) == NULL)
11205 {
11206 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11207 section->used_by_bfd = bfd_zalloc (abfd, amt);
11208 if (elf_section_data (section) == NULL)
11209 return FALSE;
11210 }
11211 c = mips_elf_section_data (section)->u.tdata;
11212 if (c == NULL)
11213 {
11214 c = bfd_zalloc (abfd, section->size);
11215 if (c == NULL)
11216 return FALSE;
11217 mips_elf_section_data (section)->u.tdata = c;
11218 }
11219
11220 memcpy (c + offset, location, count);
11221 }
11222
11223 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11224 count);
11225 }
11226
11227 /* This is almost identical to bfd_generic_get_... except that some
11228 MIPS relocations need to be handled specially. Sigh. */
11229
11230 bfd_byte *
11231 _bfd_elf_mips_get_relocated_section_contents
11232 (bfd *abfd,
11233 struct bfd_link_info *link_info,
11234 struct bfd_link_order *link_order,
11235 bfd_byte *data,
11236 bfd_boolean relocatable,
11237 asymbol **symbols)
11238 {
11239 /* Get enough memory to hold the stuff */
11240 bfd *input_bfd = link_order->u.indirect.section->owner;
11241 asection *input_section = link_order->u.indirect.section;
11242 bfd_size_type sz;
11243
11244 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11245 arelent **reloc_vector = NULL;
11246 long reloc_count;
11247
11248 if (reloc_size < 0)
11249 goto error_return;
11250
11251 reloc_vector = bfd_malloc (reloc_size);
11252 if (reloc_vector == NULL && reloc_size != 0)
11253 goto error_return;
11254
11255 /* read in the section */
11256 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11257 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11258 goto error_return;
11259
11260 reloc_count = bfd_canonicalize_reloc (input_bfd,
11261 input_section,
11262 reloc_vector,
11263 symbols);
11264 if (reloc_count < 0)
11265 goto error_return;
11266
11267 if (reloc_count > 0)
11268 {
11269 arelent **parent;
11270 /* for mips */
11271 int gp_found;
11272 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11273
11274 {
11275 struct bfd_hash_entry *h;
11276 struct bfd_link_hash_entry *lh;
11277 /* Skip all this stuff if we aren't mixing formats. */
11278 if (abfd && input_bfd
11279 && abfd->xvec == input_bfd->xvec)
11280 lh = 0;
11281 else
11282 {
11283 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11284 lh = (struct bfd_link_hash_entry *) h;
11285 }
11286 lookup:
11287 if (lh)
11288 {
11289 switch (lh->type)
11290 {
11291 case bfd_link_hash_undefined:
11292 case bfd_link_hash_undefweak:
11293 case bfd_link_hash_common:
11294 gp_found = 0;
11295 break;
11296 case bfd_link_hash_defined:
11297 case bfd_link_hash_defweak:
11298 gp_found = 1;
11299 gp = lh->u.def.value;
11300 break;
11301 case bfd_link_hash_indirect:
11302 case bfd_link_hash_warning:
11303 lh = lh->u.i.link;
11304 /* @@FIXME ignoring warning for now */
11305 goto lookup;
11306 case bfd_link_hash_new:
11307 default:
11308 abort ();
11309 }
11310 }
11311 else
11312 gp_found = 0;
11313 }
11314 /* end mips */
11315 for (parent = reloc_vector; *parent != NULL; parent++)
11316 {
11317 char *error_message = NULL;
11318 bfd_reloc_status_type r;
11319
11320 /* Specific to MIPS: Deal with relocation types that require
11321 knowing the gp of the output bfd. */
11322 asymbol *sym = *(*parent)->sym_ptr_ptr;
11323
11324 /* If we've managed to find the gp and have a special
11325 function for the relocation then go ahead, else default
11326 to the generic handling. */
11327 if (gp_found
11328 && (*parent)->howto->special_function
11329 == _bfd_mips_elf32_gprel16_reloc)
11330 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11331 input_section, relocatable,
11332 data, gp);
11333 else
11334 r = bfd_perform_relocation (input_bfd, *parent, data,
11335 input_section,
11336 relocatable ? abfd : NULL,
11337 &error_message);
11338
11339 if (relocatable)
11340 {
11341 asection *os = input_section->output_section;
11342
11343 /* A partial link, so keep the relocs */
11344 os->orelocation[os->reloc_count] = *parent;
11345 os->reloc_count++;
11346 }
11347
11348 if (r != bfd_reloc_ok)
11349 {
11350 switch (r)
11351 {
11352 case bfd_reloc_undefined:
11353 if (!((*link_info->callbacks->undefined_symbol)
11354 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11355 input_bfd, input_section, (*parent)->address, TRUE)))
11356 goto error_return;
11357 break;
11358 case bfd_reloc_dangerous:
11359 BFD_ASSERT (error_message != NULL);
11360 if (!((*link_info->callbacks->reloc_dangerous)
11361 (link_info, error_message, input_bfd, input_section,
11362 (*parent)->address)))
11363 goto error_return;
11364 break;
11365 case bfd_reloc_overflow:
11366 if (!((*link_info->callbacks->reloc_overflow)
11367 (link_info, NULL,
11368 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11369 (*parent)->howto->name, (*parent)->addend,
11370 input_bfd, input_section, (*parent)->address)))
11371 goto error_return;
11372 break;
11373 case bfd_reloc_outofrange:
11374 default:
11375 abort ();
11376 break;
11377 }
11378
11379 }
11380 }
11381 }
11382 if (reloc_vector != NULL)
11383 free (reloc_vector);
11384 return data;
11385
11386 error_return:
11387 if (reloc_vector != NULL)
11388 free (reloc_vector);
11389 return NULL;
11390 }
11391 \f
11392 /* Allocate ABFD's target-dependent data. */
11393
11394 bfd_boolean
11395 _bfd_mips_elf_mkobject (bfd *abfd)
11396 {
11397 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
11398 MIPS_ELF_TDATA);
11399 }
11400
11401 /* Create a MIPS ELF linker hash table. */
11402
11403 struct bfd_link_hash_table *
11404 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
11405 {
11406 struct mips_elf_link_hash_table *ret;
11407 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
11408
11409 ret = bfd_malloc (amt);
11410 if (ret == NULL)
11411 return NULL;
11412
11413 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
11414 mips_elf_link_hash_newfunc,
11415 sizeof (struct mips_elf_link_hash_entry)))
11416 {
11417 free (ret);
11418 return NULL;
11419 }
11420
11421 #if 0
11422 /* We no longer use this. */
11423 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
11424 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
11425 #endif
11426 ret->procedure_count = 0;
11427 ret->compact_rel_size = 0;
11428 ret->use_rld_obj_head = FALSE;
11429 ret->rld_value = 0;
11430 ret->mips16_stubs_seen = FALSE;
11431 ret->use_plts_and_copy_relocs = FALSE;
11432 ret->is_vxworks = FALSE;
11433 ret->small_data_overflow_reported = FALSE;
11434 ret->srelbss = NULL;
11435 ret->sdynbss = NULL;
11436 ret->srelplt = NULL;
11437 ret->srelplt2 = NULL;
11438 ret->sgotplt = NULL;
11439 ret->splt = NULL;
11440 ret->sstubs = NULL;
11441 ret->sgot = NULL;
11442 ret->got_info = NULL;
11443 ret->plt_header_size = 0;
11444 ret->plt_entry_size = 0;
11445 ret->lazy_stub_count = 0;
11446 ret->function_stub_size = 0;
11447 ret->strampoline = NULL;
11448 ret->la25_stubs = NULL;
11449 ret->add_stub_section = NULL;
11450
11451 return &ret->root.root;
11452 }
11453
11454 /* Likewise, but indicate that the target is VxWorks. */
11455
11456 struct bfd_link_hash_table *
11457 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
11458 {
11459 struct bfd_link_hash_table *ret;
11460
11461 ret = _bfd_mips_elf_link_hash_table_create (abfd);
11462 if (ret)
11463 {
11464 struct mips_elf_link_hash_table *htab;
11465
11466 htab = (struct mips_elf_link_hash_table *) ret;
11467 htab->use_plts_and_copy_relocs = TRUE;
11468 htab->is_vxworks = TRUE;
11469 }
11470 return ret;
11471 }
11472
11473 /* A function that the linker calls if we are allowed to use PLTs
11474 and copy relocs. */
11475
11476 void
11477 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
11478 {
11479 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
11480 }
11481 \f
11482 /* We need to use a special link routine to handle the .reginfo and
11483 the .mdebug sections. We need to merge all instances of these
11484 sections together, not write them all out sequentially. */
11485
11486 bfd_boolean
11487 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11488 {
11489 asection *o;
11490 struct bfd_link_order *p;
11491 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
11492 asection *rtproc_sec;
11493 Elf32_RegInfo reginfo;
11494 struct ecoff_debug_info debug;
11495 struct mips_htab_traverse_info hti;
11496 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11497 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
11498 HDRR *symhdr = &debug.symbolic_header;
11499 void *mdebug_handle = NULL;
11500 asection *s;
11501 EXTR esym;
11502 unsigned int i;
11503 bfd_size_type amt;
11504 struct mips_elf_link_hash_table *htab;
11505
11506 static const char * const secname[] =
11507 {
11508 ".text", ".init", ".fini", ".data",
11509 ".rodata", ".sdata", ".sbss", ".bss"
11510 };
11511 static const int sc[] =
11512 {
11513 scText, scInit, scFini, scData,
11514 scRData, scSData, scSBss, scBss
11515 };
11516
11517 /* Sort the dynamic symbols so that those with GOT entries come after
11518 those without. */
11519 htab = mips_elf_hash_table (info);
11520 if (!mips_elf_sort_hash_table (abfd, info))
11521 return FALSE;
11522
11523 /* Create any scheduled LA25 stubs. */
11524 hti.info = info;
11525 hti.output_bfd = abfd;
11526 hti.error = FALSE;
11527 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
11528 if (hti.error)
11529 return FALSE;
11530
11531 /* Get a value for the GP register. */
11532 if (elf_gp (abfd) == 0)
11533 {
11534 struct bfd_link_hash_entry *h;
11535
11536 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
11537 if (h != NULL && h->type == bfd_link_hash_defined)
11538 elf_gp (abfd) = (h->u.def.value
11539 + h->u.def.section->output_section->vma
11540 + h->u.def.section->output_offset);
11541 else if (htab->is_vxworks
11542 && (h = bfd_link_hash_lookup (info->hash,
11543 "_GLOBAL_OFFSET_TABLE_",
11544 FALSE, FALSE, TRUE))
11545 && h->type == bfd_link_hash_defined)
11546 elf_gp (abfd) = (h->u.def.section->output_section->vma
11547 + h->u.def.section->output_offset
11548 + h->u.def.value);
11549 else if (info->relocatable)
11550 {
11551 bfd_vma lo = MINUS_ONE;
11552
11553 /* Find the GP-relative section with the lowest offset. */
11554 for (o = abfd->sections; o != NULL; o = o->next)
11555 if (o->vma < lo
11556 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
11557 lo = o->vma;
11558
11559 /* And calculate GP relative to that. */
11560 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
11561 }
11562 else
11563 {
11564 /* If the relocate_section function needs to do a reloc
11565 involving the GP value, it should make a reloc_dangerous
11566 callback to warn that GP is not defined. */
11567 }
11568 }
11569
11570 /* Go through the sections and collect the .reginfo and .mdebug
11571 information. */
11572 reginfo_sec = NULL;
11573 mdebug_sec = NULL;
11574 gptab_data_sec = NULL;
11575 gptab_bss_sec = NULL;
11576 for (o = abfd->sections; o != NULL; o = o->next)
11577 {
11578 if (strcmp (o->name, ".reginfo") == 0)
11579 {
11580 memset (&reginfo, 0, sizeof reginfo);
11581
11582 /* We have found the .reginfo section in the output file.
11583 Look through all the link_orders comprising it and merge
11584 the information together. */
11585 for (p = o->map_head.link_order; p != NULL; p = p->next)
11586 {
11587 asection *input_section;
11588 bfd *input_bfd;
11589 Elf32_External_RegInfo ext;
11590 Elf32_RegInfo sub;
11591
11592 if (p->type != bfd_indirect_link_order)
11593 {
11594 if (p->type == bfd_data_link_order)
11595 continue;
11596 abort ();
11597 }
11598
11599 input_section = p->u.indirect.section;
11600 input_bfd = input_section->owner;
11601
11602 if (! bfd_get_section_contents (input_bfd, input_section,
11603 &ext, 0, sizeof ext))
11604 return FALSE;
11605
11606 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
11607
11608 reginfo.ri_gprmask |= sub.ri_gprmask;
11609 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
11610 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
11611 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
11612 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
11613
11614 /* ri_gp_value is set by the function
11615 mips_elf32_section_processing when the section is
11616 finally written out. */
11617
11618 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11619 elf_link_input_bfd ignores this section. */
11620 input_section->flags &= ~SEC_HAS_CONTENTS;
11621 }
11622
11623 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11624 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
11625
11626 /* Skip this section later on (I don't think this currently
11627 matters, but someday it might). */
11628 o->map_head.link_order = NULL;
11629
11630 reginfo_sec = o;
11631 }
11632
11633 if (strcmp (o->name, ".mdebug") == 0)
11634 {
11635 struct extsym_info einfo;
11636 bfd_vma last;
11637
11638 /* We have found the .mdebug section in the output file.
11639 Look through all the link_orders comprising it and merge
11640 the information together. */
11641 symhdr->magic = swap->sym_magic;
11642 /* FIXME: What should the version stamp be? */
11643 symhdr->vstamp = 0;
11644 symhdr->ilineMax = 0;
11645 symhdr->cbLine = 0;
11646 symhdr->idnMax = 0;
11647 symhdr->ipdMax = 0;
11648 symhdr->isymMax = 0;
11649 symhdr->ioptMax = 0;
11650 symhdr->iauxMax = 0;
11651 symhdr->issMax = 0;
11652 symhdr->issExtMax = 0;
11653 symhdr->ifdMax = 0;
11654 symhdr->crfd = 0;
11655 symhdr->iextMax = 0;
11656
11657 /* We accumulate the debugging information itself in the
11658 debug_info structure. */
11659 debug.line = NULL;
11660 debug.external_dnr = NULL;
11661 debug.external_pdr = NULL;
11662 debug.external_sym = NULL;
11663 debug.external_opt = NULL;
11664 debug.external_aux = NULL;
11665 debug.ss = NULL;
11666 debug.ssext = debug.ssext_end = NULL;
11667 debug.external_fdr = NULL;
11668 debug.external_rfd = NULL;
11669 debug.external_ext = debug.external_ext_end = NULL;
11670
11671 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
11672 if (mdebug_handle == NULL)
11673 return FALSE;
11674
11675 esym.jmptbl = 0;
11676 esym.cobol_main = 0;
11677 esym.weakext = 0;
11678 esym.reserved = 0;
11679 esym.ifd = ifdNil;
11680 esym.asym.iss = issNil;
11681 esym.asym.st = stLocal;
11682 esym.asym.reserved = 0;
11683 esym.asym.index = indexNil;
11684 last = 0;
11685 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11686 {
11687 esym.asym.sc = sc[i];
11688 s = bfd_get_section_by_name (abfd, secname[i]);
11689 if (s != NULL)
11690 {
11691 esym.asym.value = s->vma;
11692 last = s->vma + s->size;
11693 }
11694 else
11695 esym.asym.value = last;
11696 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11697 secname[i], &esym))
11698 return FALSE;
11699 }
11700
11701 for (p = o->map_head.link_order; p != NULL; p = p->next)
11702 {
11703 asection *input_section;
11704 bfd *input_bfd;
11705 const struct ecoff_debug_swap *input_swap;
11706 struct ecoff_debug_info input_debug;
11707 char *eraw_src;
11708 char *eraw_end;
11709
11710 if (p->type != bfd_indirect_link_order)
11711 {
11712 if (p->type == bfd_data_link_order)
11713 continue;
11714 abort ();
11715 }
11716
11717 input_section = p->u.indirect.section;
11718 input_bfd = input_section->owner;
11719
11720 if (!is_mips_elf (input_bfd))
11721 {
11722 /* I don't know what a non MIPS ELF bfd would be
11723 doing with a .mdebug section, but I don't really
11724 want to deal with it. */
11725 continue;
11726 }
11727
11728 input_swap = (get_elf_backend_data (input_bfd)
11729 ->elf_backend_ecoff_debug_swap);
11730
11731 BFD_ASSERT (p->size == input_section->size);
11732
11733 /* The ECOFF linking code expects that we have already
11734 read in the debugging information and set up an
11735 ecoff_debug_info structure, so we do that now. */
11736 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11737 &input_debug))
11738 return FALSE;
11739
11740 if (! (bfd_ecoff_debug_accumulate
11741 (mdebug_handle, abfd, &debug, swap, input_bfd,
11742 &input_debug, input_swap, info)))
11743 return FALSE;
11744
11745 /* Loop through the external symbols. For each one with
11746 interesting information, try to find the symbol in
11747 the linker global hash table and save the information
11748 for the output external symbols. */
11749 eraw_src = input_debug.external_ext;
11750 eraw_end = (eraw_src
11751 + (input_debug.symbolic_header.iextMax
11752 * input_swap->external_ext_size));
11753 for (;
11754 eraw_src < eraw_end;
11755 eraw_src += input_swap->external_ext_size)
11756 {
11757 EXTR ext;
11758 const char *name;
11759 struct mips_elf_link_hash_entry *h;
11760
11761 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
11762 if (ext.asym.sc == scNil
11763 || ext.asym.sc == scUndefined
11764 || ext.asym.sc == scSUndefined)
11765 continue;
11766
11767 name = input_debug.ssext + ext.asym.iss;
11768 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
11769 name, FALSE, FALSE, TRUE);
11770 if (h == NULL || h->esym.ifd != -2)
11771 continue;
11772
11773 if (ext.ifd != -1)
11774 {
11775 BFD_ASSERT (ext.ifd
11776 < input_debug.symbolic_header.ifdMax);
11777 ext.ifd = input_debug.ifdmap[ext.ifd];
11778 }
11779
11780 h->esym = ext;
11781 }
11782
11783 /* Free up the information we just read. */
11784 free (input_debug.line);
11785 free (input_debug.external_dnr);
11786 free (input_debug.external_pdr);
11787 free (input_debug.external_sym);
11788 free (input_debug.external_opt);
11789 free (input_debug.external_aux);
11790 free (input_debug.ss);
11791 free (input_debug.ssext);
11792 free (input_debug.external_fdr);
11793 free (input_debug.external_rfd);
11794 free (input_debug.external_ext);
11795
11796 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11797 elf_link_input_bfd ignores this section. */
11798 input_section->flags &= ~SEC_HAS_CONTENTS;
11799 }
11800
11801 if (SGI_COMPAT (abfd) && info->shared)
11802 {
11803 /* Create .rtproc section. */
11804 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11805 if (rtproc_sec == NULL)
11806 {
11807 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11808 | SEC_LINKER_CREATED | SEC_READONLY);
11809
11810 rtproc_sec = bfd_make_section_with_flags (abfd,
11811 ".rtproc",
11812 flags);
11813 if (rtproc_sec == NULL
11814 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
11815 return FALSE;
11816 }
11817
11818 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11819 info, rtproc_sec,
11820 &debug))
11821 return FALSE;
11822 }
11823
11824 /* Build the external symbol information. */
11825 einfo.abfd = abfd;
11826 einfo.info = info;
11827 einfo.debug = &debug;
11828 einfo.swap = swap;
11829 einfo.failed = FALSE;
11830 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
11831 mips_elf_output_extsym, &einfo);
11832 if (einfo.failed)
11833 return FALSE;
11834
11835 /* Set the size of the .mdebug section. */
11836 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
11837
11838 /* Skip this section later on (I don't think this currently
11839 matters, but someday it might). */
11840 o->map_head.link_order = NULL;
11841
11842 mdebug_sec = o;
11843 }
11844
11845 if (CONST_STRNEQ (o->name, ".gptab."))
11846 {
11847 const char *subname;
11848 unsigned int c;
11849 Elf32_gptab *tab;
11850 Elf32_External_gptab *ext_tab;
11851 unsigned int j;
11852
11853 /* The .gptab.sdata and .gptab.sbss sections hold
11854 information describing how the small data area would
11855 change depending upon the -G switch. These sections
11856 not used in executables files. */
11857 if (! info->relocatable)
11858 {
11859 for (p = o->map_head.link_order; p != NULL; p = p->next)
11860 {
11861 asection *input_section;
11862
11863 if (p->type != bfd_indirect_link_order)
11864 {
11865 if (p->type == bfd_data_link_order)
11866 continue;
11867 abort ();
11868 }
11869
11870 input_section = p->u.indirect.section;
11871
11872 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11873 elf_link_input_bfd ignores this section. */
11874 input_section->flags &= ~SEC_HAS_CONTENTS;
11875 }
11876
11877 /* Skip this section later on (I don't think this
11878 currently matters, but someday it might). */
11879 o->map_head.link_order = NULL;
11880
11881 /* Really remove the section. */
11882 bfd_section_list_remove (abfd, o);
11883 --abfd->section_count;
11884
11885 continue;
11886 }
11887
11888 /* There is one gptab for initialized data, and one for
11889 uninitialized data. */
11890 if (strcmp (o->name, ".gptab.sdata") == 0)
11891 gptab_data_sec = o;
11892 else if (strcmp (o->name, ".gptab.sbss") == 0)
11893 gptab_bss_sec = o;
11894 else
11895 {
11896 (*_bfd_error_handler)
11897 (_("%s: illegal section name `%s'"),
11898 bfd_get_filename (abfd), o->name);
11899 bfd_set_error (bfd_error_nonrepresentable_section);
11900 return FALSE;
11901 }
11902
11903 /* The linker script always combines .gptab.data and
11904 .gptab.sdata into .gptab.sdata, and likewise for
11905 .gptab.bss and .gptab.sbss. It is possible that there is
11906 no .sdata or .sbss section in the output file, in which
11907 case we must change the name of the output section. */
11908 subname = o->name + sizeof ".gptab" - 1;
11909 if (bfd_get_section_by_name (abfd, subname) == NULL)
11910 {
11911 if (o == gptab_data_sec)
11912 o->name = ".gptab.data";
11913 else
11914 o->name = ".gptab.bss";
11915 subname = o->name + sizeof ".gptab" - 1;
11916 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
11917 }
11918
11919 /* Set up the first entry. */
11920 c = 1;
11921 amt = c * sizeof (Elf32_gptab);
11922 tab = bfd_malloc (amt);
11923 if (tab == NULL)
11924 return FALSE;
11925 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
11926 tab[0].gt_header.gt_unused = 0;
11927
11928 /* Combine the input sections. */
11929 for (p = o->map_head.link_order; p != NULL; p = p->next)
11930 {
11931 asection *input_section;
11932 bfd *input_bfd;
11933 bfd_size_type size;
11934 unsigned long last;
11935 bfd_size_type gpentry;
11936
11937 if (p->type != bfd_indirect_link_order)
11938 {
11939 if (p->type == bfd_data_link_order)
11940 continue;
11941 abort ();
11942 }
11943
11944 input_section = p->u.indirect.section;
11945 input_bfd = input_section->owner;
11946
11947 /* Combine the gptab entries for this input section one
11948 by one. We know that the input gptab entries are
11949 sorted by ascending -G value. */
11950 size = input_section->size;
11951 last = 0;
11952 for (gpentry = sizeof (Elf32_External_gptab);
11953 gpentry < size;
11954 gpentry += sizeof (Elf32_External_gptab))
11955 {
11956 Elf32_External_gptab ext_gptab;
11957 Elf32_gptab int_gptab;
11958 unsigned long val;
11959 unsigned long add;
11960 bfd_boolean exact;
11961 unsigned int look;
11962
11963 if (! (bfd_get_section_contents
11964 (input_bfd, input_section, &ext_gptab, gpentry,
11965 sizeof (Elf32_External_gptab))))
11966 {
11967 free (tab);
11968 return FALSE;
11969 }
11970
11971 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
11972 &int_gptab);
11973 val = int_gptab.gt_entry.gt_g_value;
11974 add = int_gptab.gt_entry.gt_bytes - last;
11975
11976 exact = FALSE;
11977 for (look = 1; look < c; look++)
11978 {
11979 if (tab[look].gt_entry.gt_g_value >= val)
11980 tab[look].gt_entry.gt_bytes += add;
11981
11982 if (tab[look].gt_entry.gt_g_value == val)
11983 exact = TRUE;
11984 }
11985
11986 if (! exact)
11987 {
11988 Elf32_gptab *new_tab;
11989 unsigned int max;
11990
11991 /* We need a new table entry. */
11992 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
11993 new_tab = bfd_realloc (tab, amt);
11994 if (new_tab == NULL)
11995 {
11996 free (tab);
11997 return FALSE;
11998 }
11999 tab = new_tab;
12000 tab[c].gt_entry.gt_g_value = val;
12001 tab[c].gt_entry.gt_bytes = add;
12002
12003 /* Merge in the size for the next smallest -G
12004 value, since that will be implied by this new
12005 value. */
12006 max = 0;
12007 for (look = 1; look < c; look++)
12008 {
12009 if (tab[look].gt_entry.gt_g_value < val
12010 && (max == 0
12011 || (tab[look].gt_entry.gt_g_value
12012 > tab[max].gt_entry.gt_g_value)))
12013 max = look;
12014 }
12015 if (max != 0)
12016 tab[c].gt_entry.gt_bytes +=
12017 tab[max].gt_entry.gt_bytes;
12018
12019 ++c;
12020 }
12021
12022 last = int_gptab.gt_entry.gt_bytes;
12023 }
12024
12025 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12026 elf_link_input_bfd ignores this section. */
12027 input_section->flags &= ~SEC_HAS_CONTENTS;
12028 }
12029
12030 /* The table must be sorted by -G value. */
12031 if (c > 2)
12032 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
12033
12034 /* Swap out the table. */
12035 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
12036 ext_tab = bfd_alloc (abfd, amt);
12037 if (ext_tab == NULL)
12038 {
12039 free (tab);
12040 return FALSE;
12041 }
12042
12043 for (j = 0; j < c; j++)
12044 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
12045 free (tab);
12046
12047 o->size = c * sizeof (Elf32_External_gptab);
12048 o->contents = (bfd_byte *) ext_tab;
12049
12050 /* Skip this section later on (I don't think this currently
12051 matters, but someday it might). */
12052 o->map_head.link_order = NULL;
12053 }
12054 }
12055
12056 /* Invoke the regular ELF backend linker to do all the work. */
12057 if (!bfd_elf_final_link (abfd, info))
12058 return FALSE;
12059
12060 /* Now write out the computed sections. */
12061
12062 if (reginfo_sec != NULL)
12063 {
12064 Elf32_External_RegInfo ext;
12065
12066 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
12067 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
12068 return FALSE;
12069 }
12070
12071 if (mdebug_sec != NULL)
12072 {
12073 BFD_ASSERT (abfd->output_has_begun);
12074 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
12075 swap, info,
12076 mdebug_sec->filepos))
12077 return FALSE;
12078
12079 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
12080 }
12081
12082 if (gptab_data_sec != NULL)
12083 {
12084 if (! bfd_set_section_contents (abfd, gptab_data_sec,
12085 gptab_data_sec->contents,
12086 0, gptab_data_sec->size))
12087 return FALSE;
12088 }
12089
12090 if (gptab_bss_sec != NULL)
12091 {
12092 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
12093 gptab_bss_sec->contents,
12094 0, gptab_bss_sec->size))
12095 return FALSE;
12096 }
12097
12098 if (SGI_COMPAT (abfd))
12099 {
12100 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
12101 if (rtproc_sec != NULL)
12102 {
12103 if (! bfd_set_section_contents (abfd, rtproc_sec,
12104 rtproc_sec->contents,
12105 0, rtproc_sec->size))
12106 return FALSE;
12107 }
12108 }
12109
12110 return TRUE;
12111 }
12112 \f
12113 /* Structure for saying that BFD machine EXTENSION extends BASE. */
12114
12115 struct mips_mach_extension {
12116 unsigned long extension, base;
12117 };
12118
12119
12120 /* An array describing how BFD machines relate to one another. The entries
12121 are ordered topologically with MIPS I extensions listed last. */
12122
12123 static const struct mips_mach_extension mips_mach_extensions[] = {
12124 /* MIPS64r2 extensions. */
12125 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
12126
12127 /* MIPS64 extensions. */
12128 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
12129 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
12130 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
12131
12132 /* MIPS V extensions. */
12133 { bfd_mach_mipsisa64, bfd_mach_mips5 },
12134
12135 /* R10000 extensions. */
12136 { bfd_mach_mips12000, bfd_mach_mips10000 },
12137 { bfd_mach_mips14000, bfd_mach_mips10000 },
12138 { bfd_mach_mips16000, bfd_mach_mips10000 },
12139
12140 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12141 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12142 better to allow vr5400 and vr5500 code to be merged anyway, since
12143 many libraries will just use the core ISA. Perhaps we could add
12144 some sort of ASE flag if this ever proves a problem. */
12145 { bfd_mach_mips5500, bfd_mach_mips5400 },
12146 { bfd_mach_mips5400, bfd_mach_mips5000 },
12147
12148 /* MIPS IV extensions. */
12149 { bfd_mach_mips5, bfd_mach_mips8000 },
12150 { bfd_mach_mips10000, bfd_mach_mips8000 },
12151 { bfd_mach_mips5000, bfd_mach_mips8000 },
12152 { bfd_mach_mips7000, bfd_mach_mips8000 },
12153 { bfd_mach_mips9000, bfd_mach_mips8000 },
12154
12155 /* VR4100 extensions. */
12156 { bfd_mach_mips4120, bfd_mach_mips4100 },
12157 { bfd_mach_mips4111, bfd_mach_mips4100 },
12158
12159 /* MIPS III extensions. */
12160 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
12161 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
12162 { bfd_mach_mips8000, bfd_mach_mips4000 },
12163 { bfd_mach_mips4650, bfd_mach_mips4000 },
12164 { bfd_mach_mips4600, bfd_mach_mips4000 },
12165 { bfd_mach_mips4400, bfd_mach_mips4000 },
12166 { bfd_mach_mips4300, bfd_mach_mips4000 },
12167 { bfd_mach_mips4100, bfd_mach_mips4000 },
12168 { bfd_mach_mips4010, bfd_mach_mips4000 },
12169
12170 /* MIPS32 extensions. */
12171 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
12172
12173 /* MIPS II extensions. */
12174 { bfd_mach_mips4000, bfd_mach_mips6000 },
12175 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
12176
12177 /* MIPS I extensions. */
12178 { bfd_mach_mips6000, bfd_mach_mips3000 },
12179 { bfd_mach_mips3900, bfd_mach_mips3000 }
12180 };
12181
12182
12183 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12184
12185 static bfd_boolean
12186 mips_mach_extends_p (unsigned long base, unsigned long extension)
12187 {
12188 size_t i;
12189
12190 if (extension == base)
12191 return TRUE;
12192
12193 if (base == bfd_mach_mipsisa32
12194 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
12195 return TRUE;
12196
12197 if (base == bfd_mach_mipsisa32r2
12198 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
12199 return TRUE;
12200
12201 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
12202 if (extension == mips_mach_extensions[i].extension)
12203 {
12204 extension = mips_mach_extensions[i].base;
12205 if (extension == base)
12206 return TRUE;
12207 }
12208
12209 return FALSE;
12210 }
12211
12212
12213 /* Return true if the given ELF header flags describe a 32-bit binary. */
12214
12215 static bfd_boolean
12216 mips_32bit_flags_p (flagword flags)
12217 {
12218 return ((flags & EF_MIPS_32BITMODE) != 0
12219 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
12220 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
12221 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
12222 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
12223 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
12224 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
12225 }
12226
12227
12228 /* Merge object attributes from IBFD into OBFD. Raise an error if
12229 there are conflicting attributes. */
12230 static bfd_boolean
12231 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
12232 {
12233 obj_attribute *in_attr;
12234 obj_attribute *out_attr;
12235
12236 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12237 {
12238 /* This is the first object. Copy the attributes. */
12239 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12240
12241 /* Use the Tag_null value to indicate the attributes have been
12242 initialized. */
12243 elf_known_obj_attributes_proc (obfd)[0].i = 1;
12244
12245 return TRUE;
12246 }
12247
12248 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12249 non-conflicting ones. */
12250 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
12251 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
12252 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
12253 {
12254 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
12255 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12256 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
12257 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12258 ;
12259 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12260 _bfd_error_handler
12261 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
12262 in_attr[Tag_GNU_MIPS_ABI_FP].i);
12263 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12264 _bfd_error_handler
12265 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
12266 out_attr[Tag_GNU_MIPS_ABI_FP].i);
12267 else
12268 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
12269 {
12270 case 1:
12271 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12272 {
12273 case 2:
12274 _bfd_error_handler
12275 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12276 obfd, ibfd);
12277 break;
12278
12279 case 3:
12280 _bfd_error_handler
12281 (_("Warning: %B uses hard float, %B uses soft float"),
12282 obfd, ibfd);
12283 break;
12284
12285 case 4:
12286 _bfd_error_handler
12287 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12288 obfd, ibfd);
12289 break;
12290
12291 default:
12292 abort ();
12293 }
12294 break;
12295
12296 case 2:
12297 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12298 {
12299 case 1:
12300 _bfd_error_handler
12301 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12302 ibfd, obfd);
12303 break;
12304
12305 case 3:
12306 _bfd_error_handler
12307 (_("Warning: %B uses hard float, %B uses soft float"),
12308 obfd, ibfd);
12309 break;
12310
12311 case 4:
12312 _bfd_error_handler
12313 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12314 obfd, ibfd);
12315 break;
12316
12317 default:
12318 abort ();
12319 }
12320 break;
12321
12322 case 3:
12323 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12324 {
12325 case 1:
12326 case 2:
12327 case 4:
12328 _bfd_error_handler
12329 (_("Warning: %B uses hard float, %B uses soft float"),
12330 ibfd, obfd);
12331 break;
12332
12333 default:
12334 abort ();
12335 }
12336 break;
12337
12338 case 4:
12339 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12340 {
12341 case 1:
12342 _bfd_error_handler
12343 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12344 ibfd, obfd);
12345 break;
12346
12347 case 2:
12348 _bfd_error_handler
12349 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12350 ibfd, obfd);
12351 break;
12352
12353 case 3:
12354 _bfd_error_handler
12355 (_("Warning: %B uses hard float, %B uses soft float"),
12356 obfd, ibfd);
12357 break;
12358
12359 default:
12360 abort ();
12361 }
12362 break;
12363
12364 default:
12365 abort ();
12366 }
12367 }
12368
12369 /* Merge Tag_compatibility attributes and any common GNU ones. */
12370 _bfd_elf_merge_object_attributes (ibfd, obfd);
12371
12372 return TRUE;
12373 }
12374
12375 /* Merge backend specific data from an object file to the output
12376 object file when linking. */
12377
12378 bfd_boolean
12379 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
12380 {
12381 flagword old_flags;
12382 flagword new_flags;
12383 bfd_boolean ok;
12384 bfd_boolean null_input_bfd = TRUE;
12385 asection *sec;
12386
12387 /* Check if we have the same endianess */
12388 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
12389 {
12390 (*_bfd_error_handler)
12391 (_("%B: endianness incompatible with that of the selected emulation"),
12392 ibfd);
12393 return FALSE;
12394 }
12395
12396 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
12397 return TRUE;
12398
12399 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
12400 {
12401 (*_bfd_error_handler)
12402 (_("%B: ABI is incompatible with that of the selected emulation"),
12403 ibfd);
12404 return FALSE;
12405 }
12406
12407 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
12408 return FALSE;
12409
12410 new_flags = elf_elfheader (ibfd)->e_flags;
12411 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
12412 old_flags = elf_elfheader (obfd)->e_flags;
12413
12414 if (! elf_flags_init (obfd))
12415 {
12416 elf_flags_init (obfd) = TRUE;
12417 elf_elfheader (obfd)->e_flags = new_flags;
12418 elf_elfheader (obfd)->e_ident[EI_CLASS]
12419 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
12420
12421 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
12422 && (bfd_get_arch_info (obfd)->the_default
12423 || mips_mach_extends_p (bfd_get_mach (obfd),
12424 bfd_get_mach (ibfd))))
12425 {
12426 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
12427 bfd_get_mach (ibfd)))
12428 return FALSE;
12429 }
12430
12431 return TRUE;
12432 }
12433
12434 /* Check flag compatibility. */
12435
12436 new_flags &= ~EF_MIPS_NOREORDER;
12437 old_flags &= ~EF_MIPS_NOREORDER;
12438
12439 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12440 doesn't seem to matter. */
12441 new_flags &= ~EF_MIPS_XGOT;
12442 old_flags &= ~EF_MIPS_XGOT;
12443
12444 /* MIPSpro generates ucode info in n64 objects. Again, we should
12445 just be able to ignore this. */
12446 new_flags &= ~EF_MIPS_UCODE;
12447 old_flags &= ~EF_MIPS_UCODE;
12448
12449 /* DSOs should only be linked with CPIC code. */
12450 if ((ibfd->flags & DYNAMIC) != 0)
12451 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
12452
12453 if (new_flags == old_flags)
12454 return TRUE;
12455
12456 /* Check to see if the input BFD actually contains any sections.
12457 If not, its flags may not have been initialised either, but it cannot
12458 actually cause any incompatibility. */
12459 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
12460 {
12461 /* Ignore synthetic sections and empty .text, .data and .bss sections
12462 which are automatically generated by gas. */
12463 if (strcmp (sec->name, ".reginfo")
12464 && strcmp (sec->name, ".mdebug")
12465 && (sec->size != 0
12466 || (strcmp (sec->name, ".text")
12467 && strcmp (sec->name, ".data")
12468 && strcmp (sec->name, ".bss"))))
12469 {
12470 null_input_bfd = FALSE;
12471 break;
12472 }
12473 }
12474 if (null_input_bfd)
12475 return TRUE;
12476
12477 ok = TRUE;
12478
12479 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
12480 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
12481 {
12482 (*_bfd_error_handler)
12483 (_("%B: warning: linking abicalls files with non-abicalls files"),
12484 ibfd);
12485 ok = TRUE;
12486 }
12487
12488 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
12489 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
12490 if (! (new_flags & EF_MIPS_PIC))
12491 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
12492
12493 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12494 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12495
12496 /* Compare the ISAs. */
12497 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
12498 {
12499 (*_bfd_error_handler)
12500 (_("%B: linking 32-bit code with 64-bit code"),
12501 ibfd);
12502 ok = FALSE;
12503 }
12504 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
12505 {
12506 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12507 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
12508 {
12509 /* Copy the architecture info from IBFD to OBFD. Also copy
12510 the 32-bit flag (if set) so that we continue to recognise
12511 OBFD as a 32-bit binary. */
12512 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
12513 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12514 elf_elfheader (obfd)->e_flags
12515 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12516
12517 /* Copy across the ABI flags if OBFD doesn't use them
12518 and if that was what caused us to treat IBFD as 32-bit. */
12519 if ((old_flags & EF_MIPS_ABI) == 0
12520 && mips_32bit_flags_p (new_flags)
12521 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
12522 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
12523 }
12524 else
12525 {
12526 /* The ISAs aren't compatible. */
12527 (*_bfd_error_handler)
12528 (_("%B: linking %s module with previous %s modules"),
12529 ibfd,
12530 bfd_printable_name (ibfd),
12531 bfd_printable_name (obfd));
12532 ok = FALSE;
12533 }
12534 }
12535
12536 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12537 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12538
12539 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12540 does set EI_CLASS differently from any 32-bit ABI. */
12541 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
12542 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12543 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12544 {
12545 /* Only error if both are set (to different values). */
12546 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
12547 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12548 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12549 {
12550 (*_bfd_error_handler)
12551 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12552 ibfd,
12553 elf_mips_abi_name (ibfd),
12554 elf_mips_abi_name (obfd));
12555 ok = FALSE;
12556 }
12557 new_flags &= ~EF_MIPS_ABI;
12558 old_flags &= ~EF_MIPS_ABI;
12559 }
12560
12561 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12562 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
12563 {
12564 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
12565
12566 new_flags &= ~ EF_MIPS_ARCH_ASE;
12567 old_flags &= ~ EF_MIPS_ARCH_ASE;
12568 }
12569
12570 /* Warn about any other mismatches */
12571 if (new_flags != old_flags)
12572 {
12573 (*_bfd_error_handler)
12574 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12575 ibfd, (unsigned long) new_flags,
12576 (unsigned long) old_flags);
12577 ok = FALSE;
12578 }
12579
12580 if (! ok)
12581 {
12582 bfd_set_error (bfd_error_bad_value);
12583 return FALSE;
12584 }
12585
12586 return TRUE;
12587 }
12588
12589 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12590
12591 bfd_boolean
12592 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
12593 {
12594 BFD_ASSERT (!elf_flags_init (abfd)
12595 || elf_elfheader (abfd)->e_flags == flags);
12596
12597 elf_elfheader (abfd)->e_flags = flags;
12598 elf_flags_init (abfd) = TRUE;
12599 return TRUE;
12600 }
12601
12602 char *
12603 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
12604 {
12605 switch (dtag)
12606 {
12607 default: return "";
12608 case DT_MIPS_RLD_VERSION:
12609 return "MIPS_RLD_VERSION";
12610 case DT_MIPS_TIME_STAMP:
12611 return "MIPS_TIME_STAMP";
12612 case DT_MIPS_ICHECKSUM:
12613 return "MIPS_ICHECKSUM";
12614 case DT_MIPS_IVERSION:
12615 return "MIPS_IVERSION";
12616 case DT_MIPS_FLAGS:
12617 return "MIPS_FLAGS";
12618 case DT_MIPS_BASE_ADDRESS:
12619 return "MIPS_BASE_ADDRESS";
12620 case DT_MIPS_MSYM:
12621 return "MIPS_MSYM";
12622 case DT_MIPS_CONFLICT:
12623 return "MIPS_CONFLICT";
12624 case DT_MIPS_LIBLIST:
12625 return "MIPS_LIBLIST";
12626 case DT_MIPS_LOCAL_GOTNO:
12627 return "MIPS_LOCAL_GOTNO";
12628 case DT_MIPS_CONFLICTNO:
12629 return "MIPS_CONFLICTNO";
12630 case DT_MIPS_LIBLISTNO:
12631 return "MIPS_LIBLISTNO";
12632 case DT_MIPS_SYMTABNO:
12633 return "MIPS_SYMTABNO";
12634 case DT_MIPS_UNREFEXTNO:
12635 return "MIPS_UNREFEXTNO";
12636 case DT_MIPS_GOTSYM:
12637 return "MIPS_GOTSYM";
12638 case DT_MIPS_HIPAGENO:
12639 return "MIPS_HIPAGENO";
12640 case DT_MIPS_RLD_MAP:
12641 return "MIPS_RLD_MAP";
12642 case DT_MIPS_DELTA_CLASS:
12643 return "MIPS_DELTA_CLASS";
12644 case DT_MIPS_DELTA_CLASS_NO:
12645 return "MIPS_DELTA_CLASS_NO";
12646 case DT_MIPS_DELTA_INSTANCE:
12647 return "MIPS_DELTA_INSTANCE";
12648 case DT_MIPS_DELTA_INSTANCE_NO:
12649 return "MIPS_DELTA_INSTANCE_NO";
12650 case DT_MIPS_DELTA_RELOC:
12651 return "MIPS_DELTA_RELOC";
12652 case DT_MIPS_DELTA_RELOC_NO:
12653 return "MIPS_DELTA_RELOC_NO";
12654 case DT_MIPS_DELTA_SYM:
12655 return "MIPS_DELTA_SYM";
12656 case DT_MIPS_DELTA_SYM_NO:
12657 return "MIPS_DELTA_SYM_NO";
12658 case DT_MIPS_DELTA_CLASSSYM:
12659 return "MIPS_DELTA_CLASSSYM";
12660 case DT_MIPS_DELTA_CLASSSYM_NO:
12661 return "MIPS_DELTA_CLASSSYM_NO";
12662 case DT_MIPS_CXX_FLAGS:
12663 return "MIPS_CXX_FLAGS";
12664 case DT_MIPS_PIXIE_INIT:
12665 return "MIPS_PIXIE_INIT";
12666 case DT_MIPS_SYMBOL_LIB:
12667 return "MIPS_SYMBOL_LIB";
12668 case DT_MIPS_LOCALPAGE_GOTIDX:
12669 return "MIPS_LOCALPAGE_GOTIDX";
12670 case DT_MIPS_LOCAL_GOTIDX:
12671 return "MIPS_LOCAL_GOTIDX";
12672 case DT_MIPS_HIDDEN_GOTIDX:
12673 return "MIPS_HIDDEN_GOTIDX";
12674 case DT_MIPS_PROTECTED_GOTIDX:
12675 return "MIPS_PROTECTED_GOT_IDX";
12676 case DT_MIPS_OPTIONS:
12677 return "MIPS_OPTIONS";
12678 case DT_MIPS_INTERFACE:
12679 return "MIPS_INTERFACE";
12680 case DT_MIPS_DYNSTR_ALIGN:
12681 return "DT_MIPS_DYNSTR_ALIGN";
12682 case DT_MIPS_INTERFACE_SIZE:
12683 return "DT_MIPS_INTERFACE_SIZE";
12684 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12685 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12686 case DT_MIPS_PERF_SUFFIX:
12687 return "DT_MIPS_PERF_SUFFIX";
12688 case DT_MIPS_COMPACT_SIZE:
12689 return "DT_MIPS_COMPACT_SIZE";
12690 case DT_MIPS_GP_VALUE:
12691 return "DT_MIPS_GP_VALUE";
12692 case DT_MIPS_AUX_DYNAMIC:
12693 return "DT_MIPS_AUX_DYNAMIC";
12694 case DT_MIPS_PLTGOT:
12695 return "DT_MIPS_PLTGOT";
12696 case DT_MIPS_RWPLT:
12697 return "DT_MIPS_RWPLT";
12698 }
12699 }
12700
12701 bfd_boolean
12702 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
12703 {
12704 FILE *file = ptr;
12705
12706 BFD_ASSERT (abfd != NULL && ptr != NULL);
12707
12708 /* Print normal ELF private data. */
12709 _bfd_elf_print_private_bfd_data (abfd, ptr);
12710
12711 /* xgettext:c-format */
12712 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12713
12714 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12715 fprintf (file, _(" [abi=O32]"));
12716 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12717 fprintf (file, _(" [abi=O64]"));
12718 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12719 fprintf (file, _(" [abi=EABI32]"));
12720 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12721 fprintf (file, _(" [abi=EABI64]"));
12722 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12723 fprintf (file, _(" [abi unknown]"));
12724 else if (ABI_N32_P (abfd))
12725 fprintf (file, _(" [abi=N32]"));
12726 else if (ABI_64_P (abfd))
12727 fprintf (file, _(" [abi=64]"));
12728 else
12729 fprintf (file, _(" [no abi set]"));
12730
12731 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
12732 fprintf (file, " [mips1]");
12733 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
12734 fprintf (file, " [mips2]");
12735 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
12736 fprintf (file, " [mips3]");
12737 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
12738 fprintf (file, " [mips4]");
12739 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
12740 fprintf (file, " [mips5]");
12741 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
12742 fprintf (file, " [mips32]");
12743 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
12744 fprintf (file, " [mips64]");
12745 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
12746 fprintf (file, " [mips32r2]");
12747 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
12748 fprintf (file, " [mips64r2]");
12749 else
12750 fprintf (file, _(" [unknown ISA]"));
12751
12752 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
12753 fprintf (file, " [mdmx]");
12754
12755 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
12756 fprintf (file, " [mips16]");
12757
12758 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
12759 fprintf (file, " [32bitmode]");
12760 else
12761 fprintf (file, _(" [not 32bitmode]"));
12762
12763 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
12764 fprintf (file, " [noreorder]");
12765
12766 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
12767 fprintf (file, " [PIC]");
12768
12769 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
12770 fprintf (file, " [CPIC]");
12771
12772 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
12773 fprintf (file, " [XGOT]");
12774
12775 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
12776 fprintf (file, " [UCODE]");
12777
12778 fputc ('\n', file);
12779
12780 return TRUE;
12781 }
12782
12783 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
12784 {
12785 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12786 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12787 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12788 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12789 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12790 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12791 { NULL, 0, 0, 0, 0 }
12792 };
12793
12794 /* Merge non visibility st_other attributes. Ensure that the
12795 STO_OPTIONAL flag is copied into h->other, even if this is not a
12796 definiton of the symbol. */
12797 void
12798 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12799 const Elf_Internal_Sym *isym,
12800 bfd_boolean definition,
12801 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12802 {
12803 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12804 {
12805 unsigned char other;
12806
12807 other = (definition ? isym->st_other : h->other);
12808 other &= ~ELF_ST_VISIBILITY (-1);
12809 h->other = other | ELF_ST_VISIBILITY (h->other);
12810 }
12811
12812 if (!definition
12813 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12814 h->other |= STO_OPTIONAL;
12815 }
12816
12817 /* Decide whether an undefined symbol is special and can be ignored.
12818 This is the case for OPTIONAL symbols on IRIX. */
12819 bfd_boolean
12820 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12821 {
12822 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12823 }
12824
12825 bfd_boolean
12826 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12827 {
12828 return (sym->st_shndx == SHN_COMMON
12829 || sym->st_shndx == SHN_MIPS_ACOMMON
12830 || sym->st_shndx == SHN_MIPS_SCOMMON);
12831 }
12832
12833 /* Return address for Ith PLT stub in section PLT, for relocation REL
12834 or (bfd_vma) -1 if it should not be included. */
12835
12836 bfd_vma
12837 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
12838 const arelent *rel ATTRIBUTE_UNUSED)
12839 {
12840 return (plt->vma
12841 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
12842 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
12843 }
12844
12845 void
12846 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
12847 {
12848 struct mips_elf_link_hash_table *htab;
12849 Elf_Internal_Ehdr *i_ehdrp;
12850
12851 i_ehdrp = elf_elfheader (abfd);
12852 if (link_info)
12853 {
12854 htab = mips_elf_hash_table (link_info);
12855 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
12856 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
12857 }
12858 }
This page took 0.313858 seconds and 4 git commands to generate.