* elf-bfd.h (RELOC_AGAINST_DISCARDED_SECTION): Handle compound
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS_1(VAL) (0x41b9) /* lui t9,VAL */
310 #define LA25_LUI_MICROMIPS_2(VAL) (VAL)
311 #define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
312 #define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
313 #define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339) /* addiu t9,t9,VAL */
314 #define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
315
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319 struct mips_elf_hash_sort_data
320 {
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334 };
335
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339 struct mips_elf_link_hash_entry
340 {
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
364
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
372
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423 #if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427 #endif
428
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
431
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
434
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head;
438
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
441
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
450
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
453
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
462 asection *sstubs;
463 asection *sgot;
464
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
467
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
470
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
473
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
476
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499 };
500
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
502
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
509 {
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
516 };
517
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MIPS16_TLS_GD \
533 || r_type == R_MIPS16_TLS_LDM \
534 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
535 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
536 || r_type == R_MIPS16_TLS_GOTTPREL \
537 || r_type == R_MIPS16_TLS_TPREL_HI16 \
538 || r_type == R_MIPS16_TLS_TPREL_LO16 \
539 || r_type == R_MICROMIPS_TLS_GD \
540 || r_type == R_MICROMIPS_TLS_LDM \
541 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
542 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
543 || r_type == R_MICROMIPS_TLS_GOTTPREL \
544 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
545 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
546
547 /* Structure used to pass information to mips_elf_output_extsym. */
548
549 struct extsym_info
550 {
551 bfd *abfd;
552 struct bfd_link_info *info;
553 struct ecoff_debug_info *debug;
554 const struct ecoff_debug_swap *swap;
555 bfd_boolean failed;
556 };
557
558 /* The names of the runtime procedure table symbols used on IRIX5. */
559
560 static const char * const mips_elf_dynsym_rtproc_names[] =
561 {
562 "_procedure_table",
563 "_procedure_string_table",
564 "_procedure_table_size",
565 NULL
566 };
567
568 /* These structures are used to generate the .compact_rel section on
569 IRIX5. */
570
571 typedef struct
572 {
573 unsigned long id1; /* Always one? */
574 unsigned long num; /* Number of compact relocation entries. */
575 unsigned long id2; /* Always two? */
576 unsigned long offset; /* The file offset of the first relocation. */
577 unsigned long reserved0; /* Zero? */
578 unsigned long reserved1; /* Zero? */
579 } Elf32_compact_rel;
580
581 typedef struct
582 {
583 bfd_byte id1[4];
584 bfd_byte num[4];
585 bfd_byte id2[4];
586 bfd_byte offset[4];
587 bfd_byte reserved0[4];
588 bfd_byte reserved1[4];
589 } Elf32_External_compact_rel;
590
591 typedef struct
592 {
593 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
594 unsigned int rtype : 4; /* Relocation types. See below. */
595 unsigned int dist2to : 8;
596 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
597 unsigned long konst; /* KONST field. See below. */
598 unsigned long vaddr; /* VADDR to be relocated. */
599 } Elf32_crinfo;
600
601 typedef struct
602 {
603 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
604 unsigned int rtype : 4; /* Relocation types. See below. */
605 unsigned int dist2to : 8;
606 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
607 unsigned long konst; /* KONST field. See below. */
608 } Elf32_crinfo2;
609
610 typedef struct
611 {
612 bfd_byte info[4];
613 bfd_byte konst[4];
614 bfd_byte vaddr[4];
615 } Elf32_External_crinfo;
616
617 typedef struct
618 {
619 bfd_byte info[4];
620 bfd_byte konst[4];
621 } Elf32_External_crinfo2;
622
623 /* These are the constants used to swap the bitfields in a crinfo. */
624
625 #define CRINFO_CTYPE (0x1)
626 #define CRINFO_CTYPE_SH (31)
627 #define CRINFO_RTYPE (0xf)
628 #define CRINFO_RTYPE_SH (27)
629 #define CRINFO_DIST2TO (0xff)
630 #define CRINFO_DIST2TO_SH (19)
631 #define CRINFO_RELVADDR (0x7ffff)
632 #define CRINFO_RELVADDR_SH (0)
633
634 /* A compact relocation info has long (3 words) or short (2 words)
635 formats. A short format doesn't have VADDR field and relvaddr
636 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
637 #define CRF_MIPS_LONG 1
638 #define CRF_MIPS_SHORT 0
639
640 /* There are 4 types of compact relocation at least. The value KONST
641 has different meaning for each type:
642
643 (type) (konst)
644 CT_MIPS_REL32 Address in data
645 CT_MIPS_WORD Address in word (XXX)
646 CT_MIPS_GPHI_LO GP - vaddr
647 CT_MIPS_JMPAD Address to jump
648 */
649
650 #define CRT_MIPS_REL32 0xa
651 #define CRT_MIPS_WORD 0xb
652 #define CRT_MIPS_GPHI_LO 0xc
653 #define CRT_MIPS_JMPAD 0xd
654
655 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
656 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
657 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
658 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
659 \f
660 /* The structure of the runtime procedure descriptor created by the
661 loader for use by the static exception system. */
662
663 typedef struct runtime_pdr {
664 bfd_vma adr; /* Memory address of start of procedure. */
665 long regmask; /* Save register mask. */
666 long regoffset; /* Save register offset. */
667 long fregmask; /* Save floating point register mask. */
668 long fregoffset; /* Save floating point register offset. */
669 long frameoffset; /* Frame size. */
670 short framereg; /* Frame pointer register. */
671 short pcreg; /* Offset or reg of return pc. */
672 long irpss; /* Index into the runtime string table. */
673 long reserved;
674 struct exception_info *exception_info;/* Pointer to exception array. */
675 } RPDR, *pRPDR;
676 #define cbRPDR sizeof (RPDR)
677 #define rpdNil ((pRPDR) 0)
678 \f
679 static struct mips_got_entry *mips_elf_create_local_got_entry
680 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
681 struct mips_elf_link_hash_entry *, int);
682 static bfd_boolean mips_elf_sort_hash_table_f
683 (struct mips_elf_link_hash_entry *, void *);
684 static bfd_vma mips_elf_high
685 (bfd_vma);
686 static bfd_boolean mips_elf_create_dynamic_relocation
687 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
688 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
689 bfd_vma *, asection *);
690 static hashval_t mips_elf_got_entry_hash
691 (const void *);
692 static bfd_vma mips_elf_adjust_gp
693 (bfd *, struct mips_got_info *, bfd *);
694 static struct mips_got_info *mips_elf_got_for_ibfd
695 (struct mips_got_info *, bfd *);
696
697 /* This will be used when we sort the dynamic relocation records. */
698 static bfd *reldyn_sorting_bfd;
699
700 /* True if ABFD is for CPUs with load interlocking that include
701 non-MIPS1 CPUs and R3900. */
702 #define LOAD_INTERLOCKS_P(abfd) \
703 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
704 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
705
706 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
707 This should be safe for all architectures. We enable this predicate
708 for RM9000 for now. */
709 #define JAL_TO_BAL_P(abfd) \
710 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
711
712 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
713 This should be safe for all architectures. We enable this predicate for
714 all CPUs. */
715 #define JALR_TO_BAL_P(abfd) 1
716
717 /* True if ABFD is for CPUs that are faster if JR is converted to B.
718 This should be safe for all architectures. We enable this predicate for
719 all CPUs. */
720 #define JR_TO_B_P(abfd) 1
721
722 /* True if ABFD is a PIC object. */
723 #define PIC_OBJECT_P(abfd) \
724 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
725
726 /* Nonzero if ABFD is using the N32 ABI. */
727 #define ABI_N32_P(abfd) \
728 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
729
730 /* Nonzero if ABFD is using the N64 ABI. */
731 #define ABI_64_P(abfd) \
732 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
733
734 /* Nonzero if ABFD is using NewABI conventions. */
735 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
736
737 /* The IRIX compatibility level we are striving for. */
738 #define IRIX_COMPAT(abfd) \
739 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
740
741 /* Whether we are trying to be compatible with IRIX at all. */
742 #define SGI_COMPAT(abfd) \
743 (IRIX_COMPAT (abfd) != ict_none)
744
745 /* The name of the options section. */
746 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
747 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
748
749 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
750 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
751 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
752 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
753
754 /* Whether the section is readonly. */
755 #define MIPS_ELF_READONLY_SECTION(sec) \
756 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
757 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
758
759 /* The name of the stub section. */
760 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
761
762 /* The size of an external REL relocation. */
763 #define MIPS_ELF_REL_SIZE(abfd) \
764 (get_elf_backend_data (abfd)->s->sizeof_rel)
765
766 /* The size of an external RELA relocation. */
767 #define MIPS_ELF_RELA_SIZE(abfd) \
768 (get_elf_backend_data (abfd)->s->sizeof_rela)
769
770 /* The size of an external dynamic table entry. */
771 #define MIPS_ELF_DYN_SIZE(abfd) \
772 (get_elf_backend_data (abfd)->s->sizeof_dyn)
773
774 /* The size of a GOT entry. */
775 #define MIPS_ELF_GOT_SIZE(abfd) \
776 (get_elf_backend_data (abfd)->s->arch_size / 8)
777
778 /* The size of the .rld_map section. */
779 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->arch_size / 8)
781
782 /* The size of a symbol-table entry. */
783 #define MIPS_ELF_SYM_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_sym)
785
786 /* The default alignment for sections, as a power of two. */
787 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
788 (get_elf_backend_data (abfd)->s->log_file_align)
789
790 /* Get word-sized data. */
791 #define MIPS_ELF_GET_WORD(abfd, ptr) \
792 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
793
794 /* Put out word-sized data. */
795 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
796 (ABI_64_P (abfd) \
797 ? bfd_put_64 (abfd, val, ptr) \
798 : bfd_put_32 (abfd, val, ptr))
799
800 /* The opcode for word-sized loads (LW or LD). */
801 #define MIPS_ELF_LOAD_WORD(abfd) \
802 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
803
804 /* Add a dynamic symbol table-entry. */
805 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
806 _bfd_elf_add_dynamic_entry (info, tag, val)
807
808 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
810
811 /* The name of the dynamic relocation section. */
812 #define MIPS_ELF_REL_DYN_NAME(INFO) \
813 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
814
815 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
816 from smaller values. Start with zero, widen, *then* decrement. */
817 #define MINUS_ONE (((bfd_vma)0) - 1)
818 #define MINUS_TWO (((bfd_vma)0) - 2)
819
820 /* The value to write into got[1] for SVR4 targets, to identify it is
821 a GNU object. The dynamic linker can then use got[1] to store the
822 module pointer. */
823 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
824 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
825
826 /* The offset of $gp from the beginning of the .got section. */
827 #define ELF_MIPS_GP_OFFSET(INFO) \
828 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
829
830 /* The maximum size of the GOT for it to be addressable using 16-bit
831 offsets from $gp. */
832 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
833
834 /* Instructions which appear in a stub. */
835 #define STUB_LW(abfd) \
836 ((ABI_64_P (abfd) \
837 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
838 : 0x8f998010)) /* lw t9,0x8010(gp) */
839 #define STUB_MOVE(abfd) \
840 ((ABI_64_P (abfd) \
841 ? 0x03e0782d /* daddu t7,ra */ \
842 : 0x03e07821)) /* addu t7,ra */
843 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
844 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
845 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
846 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
847 #define STUB_LI16S(abfd, VAL) \
848 ((ABI_64_P (abfd) \
849 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
850 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
851
852 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
853 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
854
855 /* The name of the dynamic interpreter. This is put in the .interp
856 section. */
857
858 #define ELF_DYNAMIC_INTERPRETER(abfd) \
859 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
860 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
861 : "/usr/lib/libc.so.1")
862
863 #ifdef BFD64
864 #define MNAME(bfd,pre,pos) \
865 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
866 #define ELF_R_SYM(bfd, i) \
867 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
868 #define ELF_R_TYPE(bfd, i) \
869 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
870 #define ELF_R_INFO(bfd, s, t) \
871 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
872 #else
873 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
874 #define ELF_R_SYM(bfd, i) \
875 (ELF32_R_SYM (i))
876 #define ELF_R_TYPE(bfd, i) \
877 (ELF32_R_TYPE (i))
878 #define ELF_R_INFO(bfd, s, t) \
879 (ELF32_R_INFO (s, t))
880 #endif
881 \f
882 /* The mips16 compiler uses a couple of special sections to handle
883 floating point arguments.
884
885 Section names that look like .mips16.fn.FNNAME contain stubs that
886 copy floating point arguments from the fp regs to the gp regs and
887 then jump to FNNAME. If any 32 bit function calls FNNAME, the
888 call should be redirected to the stub instead. If no 32 bit
889 function calls FNNAME, the stub should be discarded. We need to
890 consider any reference to the function, not just a call, because
891 if the address of the function is taken we will need the stub,
892 since the address might be passed to a 32 bit function.
893
894 Section names that look like .mips16.call.FNNAME contain stubs
895 that copy floating point arguments from the gp regs to the fp
896 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
897 then any 16 bit function that calls FNNAME should be redirected
898 to the stub instead. If FNNAME is not a 32 bit function, the
899 stub should be discarded.
900
901 .mips16.call.fp.FNNAME sections are similar, but contain stubs
902 which call FNNAME and then copy the return value from the fp regs
903 to the gp regs. These stubs store the return value in $18 while
904 calling FNNAME; any function which might call one of these stubs
905 must arrange to save $18 around the call. (This case is not
906 needed for 32 bit functions that call 16 bit functions, because
907 16 bit functions always return floating point values in both
908 $f0/$f1 and $2/$3.)
909
910 Note that in all cases FNNAME might be defined statically.
911 Therefore, FNNAME is not used literally. Instead, the relocation
912 information will indicate which symbol the section is for.
913
914 We record any stubs that we find in the symbol table. */
915
916 #define FN_STUB ".mips16.fn."
917 #define CALL_STUB ".mips16.call."
918 #define CALL_FP_STUB ".mips16.call.fp."
919
920 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
921 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
922 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
923 \f
924 /* The format of the first PLT entry in an O32 executable. */
925 static const bfd_vma mips_o32_exec_plt0_entry[] =
926 {
927 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
928 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
929 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
930 0x031cc023, /* subu $24, $24, $28 */
931 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
932 0x0018c082, /* srl $24, $24, 2 */
933 0x0320f809, /* jalr $25 */
934 0x2718fffe /* subu $24, $24, 2 */
935 };
936
937 /* The format of the first PLT entry in an N32 executable. Different
938 because gp ($28) is not available; we use t2 ($14) instead. */
939 static const bfd_vma mips_n32_exec_plt0_entry[] =
940 {
941 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
942 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
943 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
944 0x030ec023, /* subu $24, $24, $14 */
945 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
946 0x0018c082, /* srl $24, $24, 2 */
947 0x0320f809, /* jalr $25 */
948 0x2718fffe /* subu $24, $24, 2 */
949 };
950
951 /* The format of the first PLT entry in an N64 executable. Different
952 from N32 because of the increased size of GOT entries. */
953 static const bfd_vma mips_n64_exec_plt0_entry[] =
954 {
955 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
956 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
957 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
958 0x030ec023, /* subu $24, $24, $14 */
959 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
960 0x0018c0c2, /* srl $24, $24, 3 */
961 0x0320f809, /* jalr $25 */
962 0x2718fffe /* subu $24, $24, 2 */
963 };
964
965 /* The format of subsequent PLT entries. */
966 static const bfd_vma mips_exec_plt_entry[] =
967 {
968 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
969 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
970 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
971 0x03200008 /* jr $25 */
972 };
973
974 /* The format of the first PLT entry in a VxWorks executable. */
975 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
976 {
977 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
978 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
979 0x8f390008, /* lw t9, 8(t9) */
980 0x00000000, /* nop */
981 0x03200008, /* jr t9 */
982 0x00000000 /* nop */
983 };
984
985 /* The format of subsequent PLT entries. */
986 static const bfd_vma mips_vxworks_exec_plt_entry[] =
987 {
988 0x10000000, /* b .PLT_resolver */
989 0x24180000, /* li t8, <pltindex> */
990 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
991 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
992 0x8f390000, /* lw t9, 0(t9) */
993 0x00000000, /* nop */
994 0x03200008, /* jr t9 */
995 0x00000000 /* nop */
996 };
997
998 /* The format of the first PLT entry in a VxWorks shared object. */
999 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1000 {
1001 0x8f990008, /* lw t9, 8(gp) */
1002 0x00000000, /* nop */
1003 0x03200008, /* jr t9 */
1004 0x00000000, /* nop */
1005 0x00000000, /* nop */
1006 0x00000000 /* nop */
1007 };
1008
1009 /* The format of subsequent PLT entries. */
1010 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1011 {
1012 0x10000000, /* b .PLT_resolver */
1013 0x24180000 /* li t8, <pltindex> */
1014 };
1015 \f
1016 /* Look up an entry in a MIPS ELF linker hash table. */
1017
1018 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1019 ((struct mips_elf_link_hash_entry *) \
1020 elf_link_hash_lookup (&(table)->root, (string), (create), \
1021 (copy), (follow)))
1022
1023 /* Traverse a MIPS ELF linker hash table. */
1024
1025 #define mips_elf_link_hash_traverse(table, func, info) \
1026 (elf_link_hash_traverse \
1027 (&(table)->root, \
1028 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1029 (info)))
1030
1031 /* Find the base offsets for thread-local storage in this object,
1032 for GD/LD and IE/LE respectively. */
1033
1034 #define TP_OFFSET 0x7000
1035 #define DTP_OFFSET 0x8000
1036
1037 static bfd_vma
1038 dtprel_base (struct bfd_link_info *info)
1039 {
1040 /* If tls_sec is NULL, we should have signalled an error already. */
1041 if (elf_hash_table (info)->tls_sec == NULL)
1042 return 0;
1043 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1044 }
1045
1046 static bfd_vma
1047 tprel_base (struct bfd_link_info *info)
1048 {
1049 /* If tls_sec is NULL, we should have signalled an error already. */
1050 if (elf_hash_table (info)->tls_sec == NULL)
1051 return 0;
1052 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1053 }
1054
1055 /* Create an entry in a MIPS ELF linker hash table. */
1056
1057 static struct bfd_hash_entry *
1058 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1059 struct bfd_hash_table *table, const char *string)
1060 {
1061 struct mips_elf_link_hash_entry *ret =
1062 (struct mips_elf_link_hash_entry *) entry;
1063
1064 /* Allocate the structure if it has not already been allocated by a
1065 subclass. */
1066 if (ret == NULL)
1067 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1068 if (ret == NULL)
1069 return (struct bfd_hash_entry *) ret;
1070
1071 /* Call the allocation method of the superclass. */
1072 ret = ((struct mips_elf_link_hash_entry *)
1073 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1074 table, string));
1075 if (ret != NULL)
1076 {
1077 /* Set local fields. */
1078 memset (&ret->esym, 0, sizeof (EXTR));
1079 /* We use -2 as a marker to indicate that the information has
1080 not been set. -1 means there is no associated ifd. */
1081 ret->esym.ifd = -2;
1082 ret->la25_stub = 0;
1083 ret->possibly_dynamic_relocs = 0;
1084 ret->fn_stub = NULL;
1085 ret->call_stub = NULL;
1086 ret->call_fp_stub = NULL;
1087 ret->tls_type = GOT_NORMAL;
1088 ret->global_got_area = GGA_NONE;
1089 ret->got_only_for_calls = TRUE;
1090 ret->readonly_reloc = FALSE;
1091 ret->has_static_relocs = FALSE;
1092 ret->no_fn_stub = FALSE;
1093 ret->need_fn_stub = FALSE;
1094 ret->has_nonpic_branches = FALSE;
1095 ret->needs_lazy_stub = FALSE;
1096 }
1097
1098 return (struct bfd_hash_entry *) ret;
1099 }
1100
1101 bfd_boolean
1102 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1103 {
1104 if (!sec->used_by_bfd)
1105 {
1106 struct _mips_elf_section_data *sdata;
1107 bfd_size_type amt = sizeof (*sdata);
1108
1109 sdata = bfd_zalloc (abfd, amt);
1110 if (sdata == NULL)
1111 return FALSE;
1112 sec->used_by_bfd = sdata;
1113 }
1114
1115 return _bfd_elf_new_section_hook (abfd, sec);
1116 }
1117 \f
1118 /* Read ECOFF debugging information from a .mdebug section into a
1119 ecoff_debug_info structure. */
1120
1121 bfd_boolean
1122 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1123 struct ecoff_debug_info *debug)
1124 {
1125 HDRR *symhdr;
1126 const struct ecoff_debug_swap *swap;
1127 char *ext_hdr;
1128
1129 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1130 memset (debug, 0, sizeof (*debug));
1131
1132 ext_hdr = bfd_malloc (swap->external_hdr_size);
1133 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1134 goto error_return;
1135
1136 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1137 swap->external_hdr_size))
1138 goto error_return;
1139
1140 symhdr = &debug->symbolic_header;
1141 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1142
1143 /* The symbolic header contains absolute file offsets and sizes to
1144 read. */
1145 #define READ(ptr, offset, count, size, type) \
1146 if (symhdr->count == 0) \
1147 debug->ptr = NULL; \
1148 else \
1149 { \
1150 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1151 debug->ptr = bfd_malloc (amt); \
1152 if (debug->ptr == NULL) \
1153 goto error_return; \
1154 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1155 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1156 goto error_return; \
1157 }
1158
1159 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1160 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1161 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1162 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1163 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1164 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1165 union aux_ext *);
1166 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1167 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1168 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1169 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1170 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1171 #undef READ
1172
1173 debug->fdr = NULL;
1174
1175 return TRUE;
1176
1177 error_return:
1178 if (ext_hdr != NULL)
1179 free (ext_hdr);
1180 if (debug->line != NULL)
1181 free (debug->line);
1182 if (debug->external_dnr != NULL)
1183 free (debug->external_dnr);
1184 if (debug->external_pdr != NULL)
1185 free (debug->external_pdr);
1186 if (debug->external_sym != NULL)
1187 free (debug->external_sym);
1188 if (debug->external_opt != NULL)
1189 free (debug->external_opt);
1190 if (debug->external_aux != NULL)
1191 free (debug->external_aux);
1192 if (debug->ss != NULL)
1193 free (debug->ss);
1194 if (debug->ssext != NULL)
1195 free (debug->ssext);
1196 if (debug->external_fdr != NULL)
1197 free (debug->external_fdr);
1198 if (debug->external_rfd != NULL)
1199 free (debug->external_rfd);
1200 if (debug->external_ext != NULL)
1201 free (debug->external_ext);
1202 return FALSE;
1203 }
1204 \f
1205 /* Swap RPDR (runtime procedure table entry) for output. */
1206
1207 static void
1208 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1209 {
1210 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1211 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1212 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1213 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1214 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1215 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1216
1217 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1218 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1219
1220 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1221 }
1222
1223 /* Create a runtime procedure table from the .mdebug section. */
1224
1225 static bfd_boolean
1226 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1227 struct bfd_link_info *info, asection *s,
1228 struct ecoff_debug_info *debug)
1229 {
1230 const struct ecoff_debug_swap *swap;
1231 HDRR *hdr = &debug->symbolic_header;
1232 RPDR *rpdr, *rp;
1233 struct rpdr_ext *erp;
1234 void *rtproc;
1235 struct pdr_ext *epdr;
1236 struct sym_ext *esym;
1237 char *ss, **sv;
1238 char *str;
1239 bfd_size_type size;
1240 bfd_size_type count;
1241 unsigned long sindex;
1242 unsigned long i;
1243 PDR pdr;
1244 SYMR sym;
1245 const char *no_name_func = _("static procedure (no name)");
1246
1247 epdr = NULL;
1248 rpdr = NULL;
1249 esym = NULL;
1250 ss = NULL;
1251 sv = NULL;
1252
1253 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1254
1255 sindex = strlen (no_name_func) + 1;
1256 count = hdr->ipdMax;
1257 if (count > 0)
1258 {
1259 size = swap->external_pdr_size;
1260
1261 epdr = bfd_malloc (size * count);
1262 if (epdr == NULL)
1263 goto error_return;
1264
1265 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1266 goto error_return;
1267
1268 size = sizeof (RPDR);
1269 rp = rpdr = bfd_malloc (size * count);
1270 if (rpdr == NULL)
1271 goto error_return;
1272
1273 size = sizeof (char *);
1274 sv = bfd_malloc (size * count);
1275 if (sv == NULL)
1276 goto error_return;
1277
1278 count = hdr->isymMax;
1279 size = swap->external_sym_size;
1280 esym = bfd_malloc (size * count);
1281 if (esym == NULL)
1282 goto error_return;
1283
1284 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1285 goto error_return;
1286
1287 count = hdr->issMax;
1288 ss = bfd_malloc (count);
1289 if (ss == NULL)
1290 goto error_return;
1291 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1292 goto error_return;
1293
1294 count = hdr->ipdMax;
1295 for (i = 0; i < (unsigned long) count; i++, rp++)
1296 {
1297 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1298 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1299 rp->adr = sym.value;
1300 rp->regmask = pdr.regmask;
1301 rp->regoffset = pdr.regoffset;
1302 rp->fregmask = pdr.fregmask;
1303 rp->fregoffset = pdr.fregoffset;
1304 rp->frameoffset = pdr.frameoffset;
1305 rp->framereg = pdr.framereg;
1306 rp->pcreg = pdr.pcreg;
1307 rp->irpss = sindex;
1308 sv[i] = ss + sym.iss;
1309 sindex += strlen (sv[i]) + 1;
1310 }
1311 }
1312
1313 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1314 size = BFD_ALIGN (size, 16);
1315 rtproc = bfd_alloc (abfd, size);
1316 if (rtproc == NULL)
1317 {
1318 mips_elf_hash_table (info)->procedure_count = 0;
1319 goto error_return;
1320 }
1321
1322 mips_elf_hash_table (info)->procedure_count = count + 2;
1323
1324 erp = rtproc;
1325 memset (erp, 0, sizeof (struct rpdr_ext));
1326 erp++;
1327 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1328 strcpy (str, no_name_func);
1329 str += strlen (no_name_func) + 1;
1330 for (i = 0; i < count; i++)
1331 {
1332 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1333 strcpy (str, sv[i]);
1334 str += strlen (sv[i]) + 1;
1335 }
1336 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1337
1338 /* Set the size and contents of .rtproc section. */
1339 s->size = size;
1340 s->contents = rtproc;
1341
1342 /* Skip this section later on (I don't think this currently
1343 matters, but someday it might). */
1344 s->map_head.link_order = NULL;
1345
1346 if (epdr != NULL)
1347 free (epdr);
1348 if (rpdr != NULL)
1349 free (rpdr);
1350 if (esym != NULL)
1351 free (esym);
1352 if (ss != NULL)
1353 free (ss);
1354 if (sv != NULL)
1355 free (sv);
1356
1357 return TRUE;
1358
1359 error_return:
1360 if (epdr != NULL)
1361 free (epdr);
1362 if (rpdr != NULL)
1363 free (rpdr);
1364 if (esym != NULL)
1365 free (esym);
1366 if (ss != NULL)
1367 free (ss);
1368 if (sv != NULL)
1369 free (sv);
1370 return FALSE;
1371 }
1372 \f
1373 /* We're going to create a stub for H. Create a symbol for the stub's
1374 value and size, to help make the disassembly easier to read. */
1375
1376 static bfd_boolean
1377 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1378 struct mips_elf_link_hash_entry *h,
1379 const char *prefix, asection *s, bfd_vma value,
1380 bfd_vma size)
1381 {
1382 struct bfd_link_hash_entry *bh;
1383 struct elf_link_hash_entry *elfh;
1384 const char *name;
1385
1386 if (ELF_ST_IS_MICROMIPS (h->root.other))
1387 value |= 1;
1388
1389 /* Create a new symbol. */
1390 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1391 bh = NULL;
1392 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1393 BSF_LOCAL, s, value, NULL,
1394 TRUE, FALSE, &bh))
1395 return FALSE;
1396
1397 /* Make it a local function. */
1398 elfh = (struct elf_link_hash_entry *) bh;
1399 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1400 elfh->size = size;
1401 elfh->forced_local = 1;
1402 return TRUE;
1403 }
1404
1405 /* We're about to redefine H. Create a symbol to represent H's
1406 current value and size, to help make the disassembly easier
1407 to read. */
1408
1409 static bfd_boolean
1410 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1411 struct mips_elf_link_hash_entry *h,
1412 const char *prefix)
1413 {
1414 struct bfd_link_hash_entry *bh;
1415 struct elf_link_hash_entry *elfh;
1416 const char *name;
1417 asection *s;
1418 bfd_vma value;
1419
1420 /* Read the symbol's value. */
1421 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1422 || h->root.root.type == bfd_link_hash_defweak);
1423 s = h->root.root.u.def.section;
1424 value = h->root.root.u.def.value;
1425
1426 /* Create a new symbol. */
1427 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1428 bh = NULL;
1429 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1430 BSF_LOCAL, s, value, NULL,
1431 TRUE, FALSE, &bh))
1432 return FALSE;
1433
1434 /* Make it local and copy the other attributes from H. */
1435 elfh = (struct elf_link_hash_entry *) bh;
1436 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1437 elfh->other = h->root.other;
1438 elfh->size = h->root.size;
1439 elfh->forced_local = 1;
1440 return TRUE;
1441 }
1442
1443 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1444 function rather than to a hard-float stub. */
1445
1446 static bfd_boolean
1447 section_allows_mips16_refs_p (asection *section)
1448 {
1449 const char *name;
1450
1451 name = bfd_get_section_name (section->owner, section);
1452 return (FN_STUB_P (name)
1453 || CALL_STUB_P (name)
1454 || CALL_FP_STUB_P (name)
1455 || strcmp (name, ".pdr") == 0);
1456 }
1457
1458 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1459 stub section of some kind. Return the R_SYMNDX of the target
1460 function, or 0 if we can't decide which function that is. */
1461
1462 static unsigned long
1463 mips16_stub_symndx (const struct elf_backend_data *bed,
1464 asection *sec ATTRIBUTE_UNUSED,
1465 const Elf_Internal_Rela *relocs,
1466 const Elf_Internal_Rela *relend)
1467 {
1468 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1469 const Elf_Internal_Rela *rel;
1470
1471 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1472 one in a compound relocation. */
1473 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1474 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1475 return ELF_R_SYM (sec->owner, rel->r_info);
1476
1477 /* Otherwise trust the first relocation, whatever its kind. This is
1478 the traditional behavior. */
1479 if (relocs < relend)
1480 return ELF_R_SYM (sec->owner, relocs->r_info);
1481
1482 return 0;
1483 }
1484
1485 /* Check the mips16 stubs for a particular symbol, and see if we can
1486 discard them. */
1487
1488 static void
1489 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1490 struct mips_elf_link_hash_entry *h)
1491 {
1492 /* Dynamic symbols must use the standard call interface, in case other
1493 objects try to call them. */
1494 if (h->fn_stub != NULL
1495 && h->root.dynindx != -1)
1496 {
1497 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1498 h->need_fn_stub = TRUE;
1499 }
1500
1501 if (h->fn_stub != NULL
1502 && ! h->need_fn_stub)
1503 {
1504 /* We don't need the fn_stub; the only references to this symbol
1505 are 16 bit calls. Clobber the size to 0 to prevent it from
1506 being included in the link. */
1507 h->fn_stub->size = 0;
1508 h->fn_stub->flags &= ~SEC_RELOC;
1509 h->fn_stub->reloc_count = 0;
1510 h->fn_stub->flags |= SEC_EXCLUDE;
1511 }
1512
1513 if (h->call_stub != NULL
1514 && ELF_ST_IS_MIPS16 (h->root.other))
1515 {
1516 /* We don't need the call_stub; this is a 16 bit function, so
1517 calls from other 16 bit functions are OK. Clobber the size
1518 to 0 to prevent it from being included in the link. */
1519 h->call_stub->size = 0;
1520 h->call_stub->flags &= ~SEC_RELOC;
1521 h->call_stub->reloc_count = 0;
1522 h->call_stub->flags |= SEC_EXCLUDE;
1523 }
1524
1525 if (h->call_fp_stub != NULL
1526 && ELF_ST_IS_MIPS16 (h->root.other))
1527 {
1528 /* We don't need the call_stub; this is a 16 bit function, so
1529 calls from other 16 bit functions are OK. Clobber the size
1530 to 0 to prevent it from being included in the link. */
1531 h->call_fp_stub->size = 0;
1532 h->call_fp_stub->flags &= ~SEC_RELOC;
1533 h->call_fp_stub->reloc_count = 0;
1534 h->call_fp_stub->flags |= SEC_EXCLUDE;
1535 }
1536 }
1537
1538 /* Hashtable callbacks for mips_elf_la25_stubs. */
1539
1540 static hashval_t
1541 mips_elf_la25_stub_hash (const void *entry_)
1542 {
1543 const struct mips_elf_la25_stub *entry;
1544
1545 entry = (struct mips_elf_la25_stub *) entry_;
1546 return entry->h->root.root.u.def.section->id
1547 + entry->h->root.root.u.def.value;
1548 }
1549
1550 static int
1551 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1552 {
1553 const struct mips_elf_la25_stub *entry1, *entry2;
1554
1555 entry1 = (struct mips_elf_la25_stub *) entry1_;
1556 entry2 = (struct mips_elf_la25_stub *) entry2_;
1557 return ((entry1->h->root.root.u.def.section
1558 == entry2->h->root.root.u.def.section)
1559 && (entry1->h->root.root.u.def.value
1560 == entry2->h->root.root.u.def.value));
1561 }
1562
1563 /* Called by the linker to set up the la25 stub-creation code. FN is
1564 the linker's implementation of add_stub_function. Return true on
1565 success. */
1566
1567 bfd_boolean
1568 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1569 asection *(*fn) (const char *, asection *,
1570 asection *))
1571 {
1572 struct mips_elf_link_hash_table *htab;
1573
1574 htab = mips_elf_hash_table (info);
1575 if (htab == NULL)
1576 return FALSE;
1577
1578 htab->add_stub_section = fn;
1579 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1580 mips_elf_la25_stub_eq, NULL);
1581 if (htab->la25_stubs == NULL)
1582 return FALSE;
1583
1584 return TRUE;
1585 }
1586
1587 /* Return true if H is a locally-defined PIC function, in the sense
1588 that it or its fn_stub might need $25 to be valid on entry.
1589 Note that MIPS16 functions set up $gp using PC-relative instructions,
1590 so they themselves never need $25 to be valid. Only non-MIPS16
1591 entry points are of interest here. */
1592
1593 static bfd_boolean
1594 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1595 {
1596 return ((h->root.root.type == bfd_link_hash_defined
1597 || h->root.root.type == bfd_link_hash_defweak)
1598 && h->root.def_regular
1599 && !bfd_is_abs_section (h->root.root.u.def.section)
1600 && (!ELF_ST_IS_MIPS16 (h->root.other)
1601 || (h->fn_stub && h->need_fn_stub))
1602 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1603 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1604 }
1605
1606 /* Set *SEC to the input section that contains the target of STUB.
1607 Return the offset of the target from the start of that section. */
1608
1609 static bfd_vma
1610 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1611 asection **sec)
1612 {
1613 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1614 {
1615 BFD_ASSERT (stub->h->need_fn_stub);
1616 *sec = stub->h->fn_stub;
1617 return 0;
1618 }
1619 else
1620 {
1621 *sec = stub->h->root.root.u.def.section;
1622 return stub->h->root.root.u.def.value;
1623 }
1624 }
1625
1626 /* STUB describes an la25 stub that we have decided to implement
1627 by inserting an LUI/ADDIU pair before the target function.
1628 Create the section and redirect the function symbol to it. */
1629
1630 static bfd_boolean
1631 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1632 struct bfd_link_info *info)
1633 {
1634 struct mips_elf_link_hash_table *htab;
1635 char *name;
1636 asection *s, *input_section;
1637 unsigned int align;
1638
1639 htab = mips_elf_hash_table (info);
1640 if (htab == NULL)
1641 return FALSE;
1642
1643 /* Create a unique name for the new section. */
1644 name = bfd_malloc (11 + sizeof (".text.stub."));
1645 if (name == NULL)
1646 return FALSE;
1647 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1648
1649 /* Create the section. */
1650 mips_elf_get_la25_target (stub, &input_section);
1651 s = htab->add_stub_section (name, input_section,
1652 input_section->output_section);
1653 if (s == NULL)
1654 return FALSE;
1655
1656 /* Make sure that any padding goes before the stub. */
1657 align = input_section->alignment_power;
1658 if (!bfd_set_section_alignment (s->owner, s, align))
1659 return FALSE;
1660 if (align > 3)
1661 s->size = (1 << align) - 8;
1662
1663 /* Create a symbol for the stub. */
1664 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1665 stub->stub_section = s;
1666 stub->offset = s->size;
1667
1668 /* Allocate room for it. */
1669 s->size += 8;
1670 return TRUE;
1671 }
1672
1673 /* STUB describes an la25 stub that we have decided to implement
1674 with a separate trampoline. Allocate room for it and redirect
1675 the function symbol to it. */
1676
1677 static bfd_boolean
1678 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1679 struct bfd_link_info *info)
1680 {
1681 struct mips_elf_link_hash_table *htab;
1682 asection *s;
1683
1684 htab = mips_elf_hash_table (info);
1685 if (htab == NULL)
1686 return FALSE;
1687
1688 /* Create a trampoline section, if we haven't already. */
1689 s = htab->strampoline;
1690 if (s == NULL)
1691 {
1692 asection *input_section = stub->h->root.root.u.def.section;
1693 s = htab->add_stub_section (".text", NULL,
1694 input_section->output_section);
1695 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1696 return FALSE;
1697 htab->strampoline = s;
1698 }
1699
1700 /* Create a symbol for the stub. */
1701 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1702 stub->stub_section = s;
1703 stub->offset = s->size;
1704
1705 /* Allocate room for it. */
1706 s->size += 16;
1707 return TRUE;
1708 }
1709
1710 /* H describes a symbol that needs an la25 stub. Make sure that an
1711 appropriate stub exists and point H at it. */
1712
1713 static bfd_boolean
1714 mips_elf_add_la25_stub (struct bfd_link_info *info,
1715 struct mips_elf_link_hash_entry *h)
1716 {
1717 struct mips_elf_link_hash_table *htab;
1718 struct mips_elf_la25_stub search, *stub;
1719 bfd_boolean use_trampoline_p;
1720 asection *s;
1721 bfd_vma value;
1722 void **slot;
1723
1724 /* Describe the stub we want. */
1725 search.stub_section = NULL;
1726 search.offset = 0;
1727 search.h = h;
1728
1729 /* See if we've already created an equivalent stub. */
1730 htab = mips_elf_hash_table (info);
1731 if (htab == NULL)
1732 return FALSE;
1733
1734 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1735 if (slot == NULL)
1736 return FALSE;
1737
1738 stub = (struct mips_elf_la25_stub *) *slot;
1739 if (stub != NULL)
1740 {
1741 /* We can reuse the existing stub. */
1742 h->la25_stub = stub;
1743 return TRUE;
1744 }
1745
1746 /* Create a permanent copy of ENTRY and add it to the hash table. */
1747 stub = bfd_malloc (sizeof (search));
1748 if (stub == NULL)
1749 return FALSE;
1750 *stub = search;
1751 *slot = stub;
1752
1753 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1754 of the section and if we would need no more than 2 nops. */
1755 value = mips_elf_get_la25_target (stub, &s);
1756 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1757
1758 h->la25_stub = stub;
1759 return (use_trampoline_p
1760 ? mips_elf_add_la25_trampoline (stub, info)
1761 : mips_elf_add_la25_intro (stub, info));
1762 }
1763
1764 /* A mips_elf_link_hash_traverse callback that is called before sizing
1765 sections. DATA points to a mips_htab_traverse_info structure. */
1766
1767 static bfd_boolean
1768 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1769 {
1770 struct mips_htab_traverse_info *hti;
1771
1772 hti = (struct mips_htab_traverse_info *) data;
1773 if (!hti->info->relocatable)
1774 mips_elf_check_mips16_stubs (hti->info, h);
1775
1776 if (mips_elf_local_pic_function_p (h))
1777 {
1778 /* PR 12845: If H is in a section that has been garbage
1779 collected it will have its output section set to *ABS*. */
1780 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1781 return TRUE;
1782
1783 /* H is a function that might need $25 to be valid on entry.
1784 If we're creating a non-PIC relocatable object, mark H as
1785 being PIC. If we're creating a non-relocatable object with
1786 non-PIC branches and jumps to H, make sure that H has an la25
1787 stub. */
1788 if (hti->info->relocatable)
1789 {
1790 if (!PIC_OBJECT_P (hti->output_bfd))
1791 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1792 }
1793 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1794 {
1795 hti->error = TRUE;
1796 return FALSE;
1797 }
1798 }
1799 return TRUE;
1800 }
1801 \f
1802 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1803 Most mips16 instructions are 16 bits, but these instructions
1804 are 32 bits.
1805
1806 The format of these instructions is:
1807
1808 +--------------+--------------------------------+
1809 | JALX | X| Imm 20:16 | Imm 25:21 |
1810 +--------------+--------------------------------+
1811 | Immediate 15:0 |
1812 +-----------------------------------------------+
1813
1814 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1815 Note that the immediate value in the first word is swapped.
1816
1817 When producing a relocatable object file, R_MIPS16_26 is
1818 handled mostly like R_MIPS_26. In particular, the addend is
1819 stored as a straight 26-bit value in a 32-bit instruction.
1820 (gas makes life simpler for itself by never adjusting a
1821 R_MIPS16_26 reloc to be against a section, so the addend is
1822 always zero). However, the 32 bit instruction is stored as 2
1823 16-bit values, rather than a single 32-bit value. In a
1824 big-endian file, the result is the same; in a little-endian
1825 file, the two 16-bit halves of the 32 bit value are swapped.
1826 This is so that a disassembler can recognize the jal
1827 instruction.
1828
1829 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1830 instruction stored as two 16-bit values. The addend A is the
1831 contents of the targ26 field. The calculation is the same as
1832 R_MIPS_26. When storing the calculated value, reorder the
1833 immediate value as shown above, and don't forget to store the
1834 value as two 16-bit values.
1835
1836 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1837 defined as
1838
1839 big-endian:
1840 +--------+----------------------+
1841 | | |
1842 | | targ26-16 |
1843 |31 26|25 0|
1844 +--------+----------------------+
1845
1846 little-endian:
1847 +----------+------+-------------+
1848 | | | |
1849 | sub1 | | sub2 |
1850 |0 9|10 15|16 31|
1851 +----------+--------------------+
1852 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1853 ((sub1 << 16) | sub2)).
1854
1855 When producing a relocatable object file, the calculation is
1856 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1857 When producing a fully linked file, the calculation is
1858 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1859 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1860
1861 The table below lists the other MIPS16 instruction relocations.
1862 Each one is calculated in the same way as the non-MIPS16 relocation
1863 given on the right, but using the extended MIPS16 layout of 16-bit
1864 immediate fields:
1865
1866 R_MIPS16_GPREL R_MIPS_GPREL16
1867 R_MIPS16_GOT16 R_MIPS_GOT16
1868 R_MIPS16_CALL16 R_MIPS_CALL16
1869 R_MIPS16_HI16 R_MIPS_HI16
1870 R_MIPS16_LO16 R_MIPS_LO16
1871
1872 A typical instruction will have a format like this:
1873
1874 +--------------+--------------------------------+
1875 | EXTEND | Imm 10:5 | Imm 15:11 |
1876 +--------------+--------------------------------+
1877 | Major | rx | ry | Imm 4:0 |
1878 +--------------+--------------------------------+
1879
1880 EXTEND is the five bit value 11110. Major is the instruction
1881 opcode.
1882
1883 All we need to do here is shuffle the bits appropriately.
1884 As above, the two 16-bit halves must be swapped on a
1885 little-endian system. */
1886
1887 static inline bfd_boolean
1888 mips16_reloc_p (int r_type)
1889 {
1890 switch (r_type)
1891 {
1892 case R_MIPS16_26:
1893 case R_MIPS16_GPREL:
1894 case R_MIPS16_GOT16:
1895 case R_MIPS16_CALL16:
1896 case R_MIPS16_HI16:
1897 case R_MIPS16_LO16:
1898 case R_MIPS16_TLS_GD:
1899 case R_MIPS16_TLS_LDM:
1900 case R_MIPS16_TLS_DTPREL_HI16:
1901 case R_MIPS16_TLS_DTPREL_LO16:
1902 case R_MIPS16_TLS_GOTTPREL:
1903 case R_MIPS16_TLS_TPREL_HI16:
1904 case R_MIPS16_TLS_TPREL_LO16:
1905 return TRUE;
1906
1907 default:
1908 return FALSE;
1909 }
1910 }
1911
1912 /* Check if a microMIPS reloc. */
1913
1914 static inline bfd_boolean
1915 micromips_reloc_p (unsigned int r_type)
1916 {
1917 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1918 }
1919
1920 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1921 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1922 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1923
1924 static inline bfd_boolean
1925 micromips_reloc_shuffle_p (unsigned int r_type)
1926 {
1927 return (micromips_reloc_p (r_type)
1928 && r_type != R_MICROMIPS_PC7_S1
1929 && r_type != R_MICROMIPS_PC10_S1);
1930 }
1931
1932 static inline bfd_boolean
1933 got16_reloc_p (int r_type)
1934 {
1935 return (r_type == R_MIPS_GOT16
1936 || r_type == R_MIPS16_GOT16
1937 || r_type == R_MICROMIPS_GOT16);
1938 }
1939
1940 static inline bfd_boolean
1941 call16_reloc_p (int r_type)
1942 {
1943 return (r_type == R_MIPS_CALL16
1944 || r_type == R_MIPS16_CALL16
1945 || r_type == R_MICROMIPS_CALL16);
1946 }
1947
1948 static inline bfd_boolean
1949 got_disp_reloc_p (unsigned int r_type)
1950 {
1951 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1952 }
1953
1954 static inline bfd_boolean
1955 got_page_reloc_p (unsigned int r_type)
1956 {
1957 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1958 }
1959
1960 static inline bfd_boolean
1961 got_ofst_reloc_p (unsigned int r_type)
1962 {
1963 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1964 }
1965
1966 static inline bfd_boolean
1967 got_hi16_reloc_p (unsigned int r_type)
1968 {
1969 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1970 }
1971
1972 static inline bfd_boolean
1973 got_lo16_reloc_p (unsigned int r_type)
1974 {
1975 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1976 }
1977
1978 static inline bfd_boolean
1979 call_hi16_reloc_p (unsigned int r_type)
1980 {
1981 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1982 }
1983
1984 static inline bfd_boolean
1985 call_lo16_reloc_p (unsigned int r_type)
1986 {
1987 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1988 }
1989
1990 static inline bfd_boolean
1991 hi16_reloc_p (int r_type)
1992 {
1993 return (r_type == R_MIPS_HI16
1994 || r_type == R_MIPS16_HI16
1995 || r_type == R_MICROMIPS_HI16);
1996 }
1997
1998 static inline bfd_boolean
1999 lo16_reloc_p (int r_type)
2000 {
2001 return (r_type == R_MIPS_LO16
2002 || r_type == R_MIPS16_LO16
2003 || r_type == R_MICROMIPS_LO16);
2004 }
2005
2006 static inline bfd_boolean
2007 mips16_call_reloc_p (int r_type)
2008 {
2009 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2010 }
2011
2012 static inline bfd_boolean
2013 jal_reloc_p (int r_type)
2014 {
2015 return (r_type == R_MIPS_26
2016 || r_type == R_MIPS16_26
2017 || r_type == R_MICROMIPS_26_S1);
2018 }
2019
2020 static inline bfd_boolean
2021 micromips_branch_reloc_p (int r_type)
2022 {
2023 return (r_type == R_MICROMIPS_26_S1
2024 || r_type == R_MICROMIPS_PC16_S1
2025 || r_type == R_MICROMIPS_PC10_S1
2026 || r_type == R_MICROMIPS_PC7_S1);
2027 }
2028
2029 static inline bfd_boolean
2030 tls_gd_reloc_p (unsigned int r_type)
2031 {
2032 return (r_type == R_MIPS_TLS_GD
2033 || r_type == R_MIPS16_TLS_GD
2034 || r_type == R_MICROMIPS_TLS_GD);
2035 }
2036
2037 static inline bfd_boolean
2038 tls_ldm_reloc_p (unsigned int r_type)
2039 {
2040 return (r_type == R_MIPS_TLS_LDM
2041 || r_type == R_MIPS16_TLS_LDM
2042 || r_type == R_MICROMIPS_TLS_LDM);
2043 }
2044
2045 static inline bfd_boolean
2046 tls_gottprel_reloc_p (unsigned int r_type)
2047 {
2048 return (r_type == R_MIPS_TLS_GOTTPREL
2049 || r_type == R_MIPS16_TLS_GOTTPREL
2050 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2051 }
2052
2053 void
2054 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2055 bfd_boolean jal_shuffle, bfd_byte *data)
2056 {
2057 bfd_vma first, second, val;
2058
2059 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2060 return;
2061
2062 /* Pick up the first and second halfwords of the instruction. */
2063 first = bfd_get_16 (abfd, data);
2064 second = bfd_get_16 (abfd, data + 2);
2065 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2066 val = first << 16 | second;
2067 else if (r_type != R_MIPS16_26)
2068 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2069 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2070 else
2071 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2072 | ((first & 0x1f) << 21) | second);
2073 bfd_put_32 (abfd, val, data);
2074 }
2075
2076 void
2077 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2078 bfd_boolean jal_shuffle, bfd_byte *data)
2079 {
2080 bfd_vma first, second, val;
2081
2082 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2083 return;
2084
2085 val = bfd_get_32 (abfd, data);
2086 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2087 {
2088 second = val & 0xffff;
2089 first = val >> 16;
2090 }
2091 else if (r_type != R_MIPS16_26)
2092 {
2093 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2094 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2095 }
2096 else
2097 {
2098 second = val & 0xffff;
2099 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2100 | ((val >> 21) & 0x1f);
2101 }
2102 bfd_put_16 (abfd, second, data + 2);
2103 bfd_put_16 (abfd, first, data);
2104 }
2105
2106 bfd_reloc_status_type
2107 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2108 arelent *reloc_entry, asection *input_section,
2109 bfd_boolean relocatable, void *data, bfd_vma gp)
2110 {
2111 bfd_vma relocation;
2112 bfd_signed_vma val;
2113 bfd_reloc_status_type status;
2114
2115 if (bfd_is_com_section (symbol->section))
2116 relocation = 0;
2117 else
2118 relocation = symbol->value;
2119
2120 relocation += symbol->section->output_section->vma;
2121 relocation += symbol->section->output_offset;
2122
2123 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2124 return bfd_reloc_outofrange;
2125
2126 /* Set val to the offset into the section or symbol. */
2127 val = reloc_entry->addend;
2128
2129 _bfd_mips_elf_sign_extend (val, 16);
2130
2131 /* Adjust val for the final section location and GP value. If we
2132 are producing relocatable output, we don't want to do this for
2133 an external symbol. */
2134 if (! relocatable
2135 || (symbol->flags & BSF_SECTION_SYM) != 0)
2136 val += relocation - gp;
2137
2138 if (reloc_entry->howto->partial_inplace)
2139 {
2140 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2141 (bfd_byte *) data
2142 + reloc_entry->address);
2143 if (status != bfd_reloc_ok)
2144 return status;
2145 }
2146 else
2147 reloc_entry->addend = val;
2148
2149 if (relocatable)
2150 reloc_entry->address += input_section->output_offset;
2151
2152 return bfd_reloc_ok;
2153 }
2154
2155 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2156 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2157 that contains the relocation field and DATA points to the start of
2158 INPUT_SECTION. */
2159
2160 struct mips_hi16
2161 {
2162 struct mips_hi16 *next;
2163 bfd_byte *data;
2164 asection *input_section;
2165 arelent rel;
2166 };
2167
2168 /* FIXME: This should not be a static variable. */
2169
2170 static struct mips_hi16 *mips_hi16_list;
2171
2172 /* A howto special_function for REL *HI16 relocations. We can only
2173 calculate the correct value once we've seen the partnering
2174 *LO16 relocation, so just save the information for later.
2175
2176 The ABI requires that the *LO16 immediately follow the *HI16.
2177 However, as a GNU extension, we permit an arbitrary number of
2178 *HI16s to be associated with a single *LO16. This significantly
2179 simplies the relocation handling in gcc. */
2180
2181 bfd_reloc_status_type
2182 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2183 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2184 asection *input_section, bfd *output_bfd,
2185 char **error_message ATTRIBUTE_UNUSED)
2186 {
2187 struct mips_hi16 *n;
2188
2189 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2190 return bfd_reloc_outofrange;
2191
2192 n = bfd_malloc (sizeof *n);
2193 if (n == NULL)
2194 return bfd_reloc_outofrange;
2195
2196 n->next = mips_hi16_list;
2197 n->data = data;
2198 n->input_section = input_section;
2199 n->rel = *reloc_entry;
2200 mips_hi16_list = n;
2201
2202 if (output_bfd != NULL)
2203 reloc_entry->address += input_section->output_offset;
2204
2205 return bfd_reloc_ok;
2206 }
2207
2208 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2209 like any other 16-bit relocation when applied to global symbols, but is
2210 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2211
2212 bfd_reloc_status_type
2213 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2214 void *data, asection *input_section,
2215 bfd *output_bfd, char **error_message)
2216 {
2217 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2218 || bfd_is_und_section (bfd_get_section (symbol))
2219 || bfd_is_com_section (bfd_get_section (symbol)))
2220 /* The relocation is against a global symbol. */
2221 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2222 input_section, output_bfd,
2223 error_message);
2224
2225 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2226 input_section, output_bfd, error_message);
2227 }
2228
2229 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2230 is a straightforward 16 bit inplace relocation, but we must deal with
2231 any partnering high-part relocations as well. */
2232
2233 bfd_reloc_status_type
2234 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2235 void *data, asection *input_section,
2236 bfd *output_bfd, char **error_message)
2237 {
2238 bfd_vma vallo;
2239 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2240
2241 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2242 return bfd_reloc_outofrange;
2243
2244 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2245 location);
2246 vallo = bfd_get_32 (abfd, location);
2247 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2248 location);
2249
2250 while (mips_hi16_list != NULL)
2251 {
2252 bfd_reloc_status_type ret;
2253 struct mips_hi16 *hi;
2254
2255 hi = mips_hi16_list;
2256
2257 /* R_MIPS*_GOT16 relocations are something of a special case. We
2258 want to install the addend in the same way as for a R_MIPS*_HI16
2259 relocation (with a rightshift of 16). However, since GOT16
2260 relocations can also be used with global symbols, their howto
2261 has a rightshift of 0. */
2262 if (hi->rel.howto->type == R_MIPS_GOT16)
2263 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2264 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2265 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2266 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2267 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2268
2269 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2270 carry or borrow will induce a change of +1 or -1 in the high part. */
2271 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2272
2273 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2274 hi->input_section, output_bfd,
2275 error_message);
2276 if (ret != bfd_reloc_ok)
2277 return ret;
2278
2279 mips_hi16_list = hi->next;
2280 free (hi);
2281 }
2282
2283 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2284 input_section, output_bfd,
2285 error_message);
2286 }
2287
2288 /* A generic howto special_function. This calculates and installs the
2289 relocation itself, thus avoiding the oft-discussed problems in
2290 bfd_perform_relocation and bfd_install_relocation. */
2291
2292 bfd_reloc_status_type
2293 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2294 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2295 asection *input_section, bfd *output_bfd,
2296 char **error_message ATTRIBUTE_UNUSED)
2297 {
2298 bfd_signed_vma val;
2299 bfd_reloc_status_type status;
2300 bfd_boolean relocatable;
2301
2302 relocatable = (output_bfd != NULL);
2303
2304 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2305 return bfd_reloc_outofrange;
2306
2307 /* Build up the field adjustment in VAL. */
2308 val = 0;
2309 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2310 {
2311 /* Either we're calculating the final field value or we have a
2312 relocation against a section symbol. Add in the section's
2313 offset or address. */
2314 val += symbol->section->output_section->vma;
2315 val += symbol->section->output_offset;
2316 }
2317
2318 if (!relocatable)
2319 {
2320 /* We're calculating the final field value. Add in the symbol's value
2321 and, if pc-relative, subtract the address of the field itself. */
2322 val += symbol->value;
2323 if (reloc_entry->howto->pc_relative)
2324 {
2325 val -= input_section->output_section->vma;
2326 val -= input_section->output_offset;
2327 val -= reloc_entry->address;
2328 }
2329 }
2330
2331 /* VAL is now the final adjustment. If we're keeping this relocation
2332 in the output file, and if the relocation uses a separate addend,
2333 we just need to add VAL to that addend. Otherwise we need to add
2334 VAL to the relocation field itself. */
2335 if (relocatable && !reloc_entry->howto->partial_inplace)
2336 reloc_entry->addend += val;
2337 else
2338 {
2339 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2340
2341 /* Add in the separate addend, if any. */
2342 val += reloc_entry->addend;
2343
2344 /* Add VAL to the relocation field. */
2345 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2346 location);
2347 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2348 location);
2349 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2350 location);
2351
2352 if (status != bfd_reloc_ok)
2353 return status;
2354 }
2355
2356 if (relocatable)
2357 reloc_entry->address += input_section->output_offset;
2358
2359 return bfd_reloc_ok;
2360 }
2361 \f
2362 /* Swap an entry in a .gptab section. Note that these routines rely
2363 on the equivalence of the two elements of the union. */
2364
2365 static void
2366 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2367 Elf32_gptab *in)
2368 {
2369 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2370 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2371 }
2372
2373 static void
2374 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2375 Elf32_External_gptab *ex)
2376 {
2377 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2378 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2379 }
2380
2381 static void
2382 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2383 Elf32_External_compact_rel *ex)
2384 {
2385 H_PUT_32 (abfd, in->id1, ex->id1);
2386 H_PUT_32 (abfd, in->num, ex->num);
2387 H_PUT_32 (abfd, in->id2, ex->id2);
2388 H_PUT_32 (abfd, in->offset, ex->offset);
2389 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2390 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2391 }
2392
2393 static void
2394 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2395 Elf32_External_crinfo *ex)
2396 {
2397 unsigned long l;
2398
2399 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2400 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2401 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2402 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2403 H_PUT_32 (abfd, l, ex->info);
2404 H_PUT_32 (abfd, in->konst, ex->konst);
2405 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2406 }
2407 \f
2408 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2409 routines swap this structure in and out. They are used outside of
2410 BFD, so they are globally visible. */
2411
2412 void
2413 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2414 Elf32_RegInfo *in)
2415 {
2416 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2417 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2418 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2419 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2420 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2421 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2422 }
2423
2424 void
2425 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2426 Elf32_External_RegInfo *ex)
2427 {
2428 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2429 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2430 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2431 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2432 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2433 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2434 }
2435
2436 /* In the 64 bit ABI, the .MIPS.options section holds register
2437 information in an Elf64_Reginfo structure. These routines swap
2438 them in and out. They are globally visible because they are used
2439 outside of BFD. These routines are here so that gas can call them
2440 without worrying about whether the 64 bit ABI has been included. */
2441
2442 void
2443 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2444 Elf64_Internal_RegInfo *in)
2445 {
2446 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2447 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2448 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2449 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2450 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2451 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2452 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2453 }
2454
2455 void
2456 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2457 Elf64_External_RegInfo *ex)
2458 {
2459 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2460 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2461 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2462 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2463 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2464 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2465 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2466 }
2467
2468 /* Swap in an options header. */
2469
2470 void
2471 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2472 Elf_Internal_Options *in)
2473 {
2474 in->kind = H_GET_8 (abfd, ex->kind);
2475 in->size = H_GET_8 (abfd, ex->size);
2476 in->section = H_GET_16 (abfd, ex->section);
2477 in->info = H_GET_32 (abfd, ex->info);
2478 }
2479
2480 /* Swap out an options header. */
2481
2482 void
2483 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2484 Elf_External_Options *ex)
2485 {
2486 H_PUT_8 (abfd, in->kind, ex->kind);
2487 H_PUT_8 (abfd, in->size, ex->size);
2488 H_PUT_16 (abfd, in->section, ex->section);
2489 H_PUT_32 (abfd, in->info, ex->info);
2490 }
2491 \f
2492 /* This function is called via qsort() to sort the dynamic relocation
2493 entries by increasing r_symndx value. */
2494
2495 static int
2496 sort_dynamic_relocs (const void *arg1, const void *arg2)
2497 {
2498 Elf_Internal_Rela int_reloc1;
2499 Elf_Internal_Rela int_reloc2;
2500 int diff;
2501
2502 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2503 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2504
2505 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2506 if (diff != 0)
2507 return diff;
2508
2509 if (int_reloc1.r_offset < int_reloc2.r_offset)
2510 return -1;
2511 if (int_reloc1.r_offset > int_reloc2.r_offset)
2512 return 1;
2513 return 0;
2514 }
2515
2516 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2517
2518 static int
2519 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2520 const void *arg2 ATTRIBUTE_UNUSED)
2521 {
2522 #ifdef BFD64
2523 Elf_Internal_Rela int_reloc1[3];
2524 Elf_Internal_Rela int_reloc2[3];
2525
2526 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2527 (reldyn_sorting_bfd, arg1, int_reloc1);
2528 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2529 (reldyn_sorting_bfd, arg2, int_reloc2);
2530
2531 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2532 return -1;
2533 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2534 return 1;
2535
2536 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2537 return -1;
2538 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2539 return 1;
2540 return 0;
2541 #else
2542 abort ();
2543 #endif
2544 }
2545
2546
2547 /* This routine is used to write out ECOFF debugging external symbol
2548 information. It is called via mips_elf_link_hash_traverse. The
2549 ECOFF external symbol information must match the ELF external
2550 symbol information. Unfortunately, at this point we don't know
2551 whether a symbol is required by reloc information, so the two
2552 tables may wind up being different. We must sort out the external
2553 symbol information before we can set the final size of the .mdebug
2554 section, and we must set the size of the .mdebug section before we
2555 can relocate any sections, and we can't know which symbols are
2556 required by relocation until we relocate the sections.
2557 Fortunately, it is relatively unlikely that any symbol will be
2558 stripped but required by a reloc. In particular, it can not happen
2559 when generating a final executable. */
2560
2561 static bfd_boolean
2562 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2563 {
2564 struct extsym_info *einfo = data;
2565 bfd_boolean strip;
2566 asection *sec, *output_section;
2567
2568 if (h->root.indx == -2)
2569 strip = FALSE;
2570 else if ((h->root.def_dynamic
2571 || h->root.ref_dynamic
2572 || h->root.type == bfd_link_hash_new)
2573 && !h->root.def_regular
2574 && !h->root.ref_regular)
2575 strip = TRUE;
2576 else if (einfo->info->strip == strip_all
2577 || (einfo->info->strip == strip_some
2578 && bfd_hash_lookup (einfo->info->keep_hash,
2579 h->root.root.root.string,
2580 FALSE, FALSE) == NULL))
2581 strip = TRUE;
2582 else
2583 strip = FALSE;
2584
2585 if (strip)
2586 return TRUE;
2587
2588 if (h->esym.ifd == -2)
2589 {
2590 h->esym.jmptbl = 0;
2591 h->esym.cobol_main = 0;
2592 h->esym.weakext = 0;
2593 h->esym.reserved = 0;
2594 h->esym.ifd = ifdNil;
2595 h->esym.asym.value = 0;
2596 h->esym.asym.st = stGlobal;
2597
2598 if (h->root.root.type == bfd_link_hash_undefined
2599 || h->root.root.type == bfd_link_hash_undefweak)
2600 {
2601 const char *name;
2602
2603 /* Use undefined class. Also, set class and type for some
2604 special symbols. */
2605 name = h->root.root.root.string;
2606 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2607 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2608 {
2609 h->esym.asym.sc = scData;
2610 h->esym.asym.st = stLabel;
2611 h->esym.asym.value = 0;
2612 }
2613 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2614 {
2615 h->esym.asym.sc = scAbs;
2616 h->esym.asym.st = stLabel;
2617 h->esym.asym.value =
2618 mips_elf_hash_table (einfo->info)->procedure_count;
2619 }
2620 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2621 {
2622 h->esym.asym.sc = scAbs;
2623 h->esym.asym.st = stLabel;
2624 h->esym.asym.value = elf_gp (einfo->abfd);
2625 }
2626 else
2627 h->esym.asym.sc = scUndefined;
2628 }
2629 else if (h->root.root.type != bfd_link_hash_defined
2630 && h->root.root.type != bfd_link_hash_defweak)
2631 h->esym.asym.sc = scAbs;
2632 else
2633 {
2634 const char *name;
2635
2636 sec = h->root.root.u.def.section;
2637 output_section = sec->output_section;
2638
2639 /* When making a shared library and symbol h is the one from
2640 the another shared library, OUTPUT_SECTION may be null. */
2641 if (output_section == NULL)
2642 h->esym.asym.sc = scUndefined;
2643 else
2644 {
2645 name = bfd_section_name (output_section->owner, output_section);
2646
2647 if (strcmp (name, ".text") == 0)
2648 h->esym.asym.sc = scText;
2649 else if (strcmp (name, ".data") == 0)
2650 h->esym.asym.sc = scData;
2651 else if (strcmp (name, ".sdata") == 0)
2652 h->esym.asym.sc = scSData;
2653 else if (strcmp (name, ".rodata") == 0
2654 || strcmp (name, ".rdata") == 0)
2655 h->esym.asym.sc = scRData;
2656 else if (strcmp (name, ".bss") == 0)
2657 h->esym.asym.sc = scBss;
2658 else if (strcmp (name, ".sbss") == 0)
2659 h->esym.asym.sc = scSBss;
2660 else if (strcmp (name, ".init") == 0)
2661 h->esym.asym.sc = scInit;
2662 else if (strcmp (name, ".fini") == 0)
2663 h->esym.asym.sc = scFini;
2664 else
2665 h->esym.asym.sc = scAbs;
2666 }
2667 }
2668
2669 h->esym.asym.reserved = 0;
2670 h->esym.asym.index = indexNil;
2671 }
2672
2673 if (h->root.root.type == bfd_link_hash_common)
2674 h->esym.asym.value = h->root.root.u.c.size;
2675 else if (h->root.root.type == bfd_link_hash_defined
2676 || h->root.root.type == bfd_link_hash_defweak)
2677 {
2678 if (h->esym.asym.sc == scCommon)
2679 h->esym.asym.sc = scBss;
2680 else if (h->esym.asym.sc == scSCommon)
2681 h->esym.asym.sc = scSBss;
2682
2683 sec = h->root.root.u.def.section;
2684 output_section = sec->output_section;
2685 if (output_section != NULL)
2686 h->esym.asym.value = (h->root.root.u.def.value
2687 + sec->output_offset
2688 + output_section->vma);
2689 else
2690 h->esym.asym.value = 0;
2691 }
2692 else
2693 {
2694 struct mips_elf_link_hash_entry *hd = h;
2695
2696 while (hd->root.root.type == bfd_link_hash_indirect)
2697 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2698
2699 if (hd->needs_lazy_stub)
2700 {
2701 /* Set type and value for a symbol with a function stub. */
2702 h->esym.asym.st = stProc;
2703 sec = hd->root.root.u.def.section;
2704 if (sec == NULL)
2705 h->esym.asym.value = 0;
2706 else
2707 {
2708 output_section = sec->output_section;
2709 if (output_section != NULL)
2710 h->esym.asym.value = (hd->root.plt.offset
2711 + sec->output_offset
2712 + output_section->vma);
2713 else
2714 h->esym.asym.value = 0;
2715 }
2716 }
2717 }
2718
2719 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2720 h->root.root.root.string,
2721 &h->esym))
2722 {
2723 einfo->failed = TRUE;
2724 return FALSE;
2725 }
2726
2727 return TRUE;
2728 }
2729
2730 /* A comparison routine used to sort .gptab entries. */
2731
2732 static int
2733 gptab_compare (const void *p1, const void *p2)
2734 {
2735 const Elf32_gptab *a1 = p1;
2736 const Elf32_gptab *a2 = p2;
2737
2738 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2739 }
2740 \f
2741 /* Functions to manage the got entry hash table. */
2742
2743 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2744 hash number. */
2745
2746 static INLINE hashval_t
2747 mips_elf_hash_bfd_vma (bfd_vma addr)
2748 {
2749 #ifdef BFD64
2750 return addr + (addr >> 32);
2751 #else
2752 return addr;
2753 #endif
2754 }
2755
2756 /* got_entries only match if they're identical, except for gotidx, so
2757 use all fields to compute the hash, and compare the appropriate
2758 union members. */
2759
2760 static hashval_t
2761 mips_elf_got_entry_hash (const void *entry_)
2762 {
2763 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2764
2765 return entry->symndx
2766 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2767 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2768 : entry->abfd->id
2769 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2770 : entry->d.h->root.root.root.hash));
2771 }
2772
2773 static int
2774 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2775 {
2776 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2777 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2778
2779 /* An LDM entry can only match another LDM entry. */
2780 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2781 return 0;
2782
2783 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2784 && (! e1->abfd ? e1->d.address == e2->d.address
2785 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2786 : e1->d.h == e2->d.h);
2787 }
2788
2789 /* multi_got_entries are still a match in the case of global objects,
2790 even if the input bfd in which they're referenced differs, so the
2791 hash computation and compare functions are adjusted
2792 accordingly. */
2793
2794 static hashval_t
2795 mips_elf_multi_got_entry_hash (const void *entry_)
2796 {
2797 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2798
2799 return entry->symndx
2800 + (! entry->abfd
2801 ? mips_elf_hash_bfd_vma (entry->d.address)
2802 : entry->symndx >= 0
2803 ? ((entry->tls_type & GOT_TLS_LDM)
2804 ? (GOT_TLS_LDM << 17)
2805 : (entry->abfd->id
2806 + mips_elf_hash_bfd_vma (entry->d.addend)))
2807 : entry->d.h->root.root.root.hash);
2808 }
2809
2810 static int
2811 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2812 {
2813 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2814 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2815
2816 /* Any two LDM entries match. */
2817 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2818 return 1;
2819
2820 /* Nothing else matches an LDM entry. */
2821 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2822 return 0;
2823
2824 return e1->symndx == e2->symndx
2825 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2826 : e1->abfd == NULL || e2->abfd == NULL
2827 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2828 : e1->d.h == e2->d.h);
2829 }
2830
2831 static hashval_t
2832 mips_got_page_entry_hash (const void *entry_)
2833 {
2834 const struct mips_got_page_entry *entry;
2835
2836 entry = (const struct mips_got_page_entry *) entry_;
2837 return entry->abfd->id + entry->symndx;
2838 }
2839
2840 static int
2841 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2842 {
2843 const struct mips_got_page_entry *entry1, *entry2;
2844
2845 entry1 = (const struct mips_got_page_entry *) entry1_;
2846 entry2 = (const struct mips_got_page_entry *) entry2_;
2847 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2848 }
2849 \f
2850 /* Return the dynamic relocation section. If it doesn't exist, try to
2851 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2852 if creation fails. */
2853
2854 static asection *
2855 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2856 {
2857 const char *dname;
2858 asection *sreloc;
2859 bfd *dynobj;
2860
2861 dname = MIPS_ELF_REL_DYN_NAME (info);
2862 dynobj = elf_hash_table (info)->dynobj;
2863 sreloc = bfd_get_section_by_name (dynobj, dname);
2864 if (sreloc == NULL && create_p)
2865 {
2866 sreloc = bfd_make_section_with_flags (dynobj, dname,
2867 (SEC_ALLOC
2868 | SEC_LOAD
2869 | SEC_HAS_CONTENTS
2870 | SEC_IN_MEMORY
2871 | SEC_LINKER_CREATED
2872 | SEC_READONLY));
2873 if (sreloc == NULL
2874 || ! bfd_set_section_alignment (dynobj, sreloc,
2875 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2876 return NULL;
2877 }
2878 return sreloc;
2879 }
2880
2881 /* Count the number of relocations needed for a TLS GOT entry, with
2882 access types from TLS_TYPE, and symbol H (or a local symbol if H
2883 is NULL). */
2884
2885 static int
2886 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2887 struct elf_link_hash_entry *h)
2888 {
2889 int indx = 0;
2890 int ret = 0;
2891 bfd_boolean need_relocs = FALSE;
2892 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2893
2894 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2895 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2896 indx = h->dynindx;
2897
2898 if ((info->shared || indx != 0)
2899 && (h == NULL
2900 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2901 || h->root.type != bfd_link_hash_undefweak))
2902 need_relocs = TRUE;
2903
2904 if (!need_relocs)
2905 return FALSE;
2906
2907 if (tls_type & GOT_TLS_GD)
2908 {
2909 ret++;
2910 if (indx != 0)
2911 ret++;
2912 }
2913
2914 if (tls_type & GOT_TLS_IE)
2915 ret++;
2916
2917 if ((tls_type & GOT_TLS_LDM) && info->shared)
2918 ret++;
2919
2920 return ret;
2921 }
2922
2923 /* Count the number of TLS relocations required for the GOT entry in
2924 ARG1, if it describes a local symbol. */
2925
2926 static int
2927 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2928 {
2929 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2930 struct mips_elf_count_tls_arg *arg = arg2;
2931
2932 if (entry->abfd != NULL && entry->symndx != -1)
2933 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2934
2935 return 1;
2936 }
2937
2938 /* Count the number of TLS GOT entries required for the global (or
2939 forced-local) symbol in ARG1. */
2940
2941 static int
2942 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2943 {
2944 struct mips_elf_link_hash_entry *hm
2945 = (struct mips_elf_link_hash_entry *) arg1;
2946 struct mips_elf_count_tls_arg *arg = arg2;
2947
2948 if (hm->tls_type & GOT_TLS_GD)
2949 arg->needed += 2;
2950 if (hm->tls_type & GOT_TLS_IE)
2951 arg->needed += 1;
2952
2953 return 1;
2954 }
2955
2956 /* Count the number of TLS relocations required for the global (or
2957 forced-local) symbol in ARG1. */
2958
2959 static int
2960 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2961 {
2962 struct mips_elf_link_hash_entry *hm
2963 = (struct mips_elf_link_hash_entry *) arg1;
2964 struct mips_elf_count_tls_arg *arg = arg2;
2965
2966 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2967
2968 return 1;
2969 }
2970
2971 /* Output a simple dynamic relocation into SRELOC. */
2972
2973 static void
2974 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2975 asection *sreloc,
2976 unsigned long reloc_index,
2977 unsigned long indx,
2978 int r_type,
2979 bfd_vma offset)
2980 {
2981 Elf_Internal_Rela rel[3];
2982
2983 memset (rel, 0, sizeof (rel));
2984
2985 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2986 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2987
2988 if (ABI_64_P (output_bfd))
2989 {
2990 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2991 (output_bfd, &rel[0],
2992 (sreloc->contents
2993 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2994 }
2995 else
2996 bfd_elf32_swap_reloc_out
2997 (output_bfd, &rel[0],
2998 (sreloc->contents
2999 + reloc_index * sizeof (Elf32_External_Rel)));
3000 }
3001
3002 /* Initialize a set of TLS GOT entries for one symbol. */
3003
3004 static void
3005 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3006 unsigned char *tls_type_p,
3007 struct bfd_link_info *info,
3008 struct mips_elf_link_hash_entry *h,
3009 bfd_vma value)
3010 {
3011 struct mips_elf_link_hash_table *htab;
3012 int indx;
3013 asection *sreloc, *sgot;
3014 bfd_vma offset, offset2;
3015 bfd_boolean need_relocs = FALSE;
3016
3017 htab = mips_elf_hash_table (info);
3018 if (htab == NULL)
3019 return;
3020
3021 sgot = htab->sgot;
3022
3023 indx = 0;
3024 if (h != NULL)
3025 {
3026 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3027
3028 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3029 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3030 indx = h->root.dynindx;
3031 }
3032
3033 if (*tls_type_p & GOT_TLS_DONE)
3034 return;
3035
3036 if ((info->shared || indx != 0)
3037 && (h == NULL
3038 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3039 || h->root.type != bfd_link_hash_undefweak))
3040 need_relocs = TRUE;
3041
3042 /* MINUS_ONE means the symbol is not defined in this object. It may not
3043 be defined at all; assume that the value doesn't matter in that
3044 case. Otherwise complain if we would use the value. */
3045 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3046 || h->root.root.type == bfd_link_hash_undefweak);
3047
3048 /* Emit necessary relocations. */
3049 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3050
3051 /* General Dynamic. */
3052 if (*tls_type_p & GOT_TLS_GD)
3053 {
3054 offset = got_offset;
3055 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3056
3057 if (need_relocs)
3058 {
3059 mips_elf_output_dynamic_relocation
3060 (abfd, sreloc, sreloc->reloc_count++, indx,
3061 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3062 sgot->output_offset + sgot->output_section->vma + offset);
3063
3064 if (indx)
3065 mips_elf_output_dynamic_relocation
3066 (abfd, sreloc, sreloc->reloc_count++, indx,
3067 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3068 sgot->output_offset + sgot->output_section->vma + offset2);
3069 else
3070 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3071 sgot->contents + offset2);
3072 }
3073 else
3074 {
3075 MIPS_ELF_PUT_WORD (abfd, 1,
3076 sgot->contents + offset);
3077 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3078 sgot->contents + offset2);
3079 }
3080
3081 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3082 }
3083
3084 /* Initial Exec model. */
3085 if (*tls_type_p & GOT_TLS_IE)
3086 {
3087 offset = got_offset;
3088
3089 if (need_relocs)
3090 {
3091 if (indx == 0)
3092 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3093 sgot->contents + offset);
3094 else
3095 MIPS_ELF_PUT_WORD (abfd, 0,
3096 sgot->contents + offset);
3097
3098 mips_elf_output_dynamic_relocation
3099 (abfd, sreloc, sreloc->reloc_count++, indx,
3100 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3101 sgot->output_offset + sgot->output_section->vma + offset);
3102 }
3103 else
3104 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3105 sgot->contents + offset);
3106 }
3107
3108 if (*tls_type_p & GOT_TLS_LDM)
3109 {
3110 /* The initial offset is zero, and the LD offsets will include the
3111 bias by DTP_OFFSET. */
3112 MIPS_ELF_PUT_WORD (abfd, 0,
3113 sgot->contents + got_offset
3114 + MIPS_ELF_GOT_SIZE (abfd));
3115
3116 if (!info->shared)
3117 MIPS_ELF_PUT_WORD (abfd, 1,
3118 sgot->contents + got_offset);
3119 else
3120 mips_elf_output_dynamic_relocation
3121 (abfd, sreloc, sreloc->reloc_count++, indx,
3122 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3123 sgot->output_offset + sgot->output_section->vma + got_offset);
3124 }
3125
3126 *tls_type_p |= GOT_TLS_DONE;
3127 }
3128
3129 /* Return the GOT index to use for a relocation of type R_TYPE against
3130 a symbol accessed using TLS_TYPE models. The GOT entries for this
3131 symbol in this GOT start at GOT_INDEX. This function initializes the
3132 GOT entries and corresponding relocations. */
3133
3134 static bfd_vma
3135 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3136 int r_type, struct bfd_link_info *info,
3137 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3138 {
3139 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3140 || tls_gd_reloc_p (r_type)
3141 || tls_ldm_reloc_p (r_type));
3142
3143 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3144
3145 if (tls_gottprel_reloc_p (r_type))
3146 {
3147 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3148 if (*tls_type & GOT_TLS_GD)
3149 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3150 else
3151 return got_index;
3152 }
3153
3154 if (tls_gd_reloc_p (r_type))
3155 {
3156 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3157 return got_index;
3158 }
3159
3160 if (tls_ldm_reloc_p (r_type))
3161 {
3162 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3163 return got_index;
3164 }
3165
3166 return got_index;
3167 }
3168
3169 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3170 for global symbol H. .got.plt comes before the GOT, so the offset
3171 will be negative. */
3172
3173 static bfd_vma
3174 mips_elf_gotplt_index (struct bfd_link_info *info,
3175 struct elf_link_hash_entry *h)
3176 {
3177 bfd_vma plt_index, got_address, got_value;
3178 struct mips_elf_link_hash_table *htab;
3179
3180 htab = mips_elf_hash_table (info);
3181 BFD_ASSERT (htab != NULL);
3182
3183 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3184
3185 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3186 section starts with reserved entries. */
3187 BFD_ASSERT (htab->is_vxworks);
3188
3189 /* Calculate the index of the symbol's PLT entry. */
3190 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3191
3192 /* Calculate the address of the associated .got.plt entry. */
3193 got_address = (htab->sgotplt->output_section->vma
3194 + htab->sgotplt->output_offset
3195 + plt_index * 4);
3196
3197 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3198 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3199 + htab->root.hgot->root.u.def.section->output_offset
3200 + htab->root.hgot->root.u.def.value);
3201
3202 return got_address - got_value;
3203 }
3204
3205 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3206 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3207 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3208 offset can be found. */
3209
3210 static bfd_vma
3211 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3212 bfd_vma value, unsigned long r_symndx,
3213 struct mips_elf_link_hash_entry *h, int r_type)
3214 {
3215 struct mips_elf_link_hash_table *htab;
3216 struct mips_got_entry *entry;
3217
3218 htab = mips_elf_hash_table (info);
3219 BFD_ASSERT (htab != NULL);
3220
3221 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3222 r_symndx, h, r_type);
3223 if (!entry)
3224 return MINUS_ONE;
3225
3226 if (TLS_RELOC_P (r_type))
3227 {
3228 if (entry->symndx == -1 && htab->got_info->next == NULL)
3229 /* A type (3) entry in the single-GOT case. We use the symbol's
3230 hash table entry to track the index. */
3231 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3232 r_type, info, h, value);
3233 else
3234 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3235 r_type, info, h, value);
3236 }
3237 else
3238 return entry->gotidx;
3239 }
3240
3241 /* Returns the GOT index for the global symbol indicated by H. */
3242
3243 static bfd_vma
3244 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3245 int r_type, struct bfd_link_info *info)
3246 {
3247 struct mips_elf_link_hash_table *htab;
3248 bfd_vma got_index;
3249 struct mips_got_info *g, *gg;
3250 long global_got_dynindx = 0;
3251
3252 htab = mips_elf_hash_table (info);
3253 BFD_ASSERT (htab != NULL);
3254
3255 gg = g = htab->got_info;
3256 if (g->bfd2got && ibfd)
3257 {
3258 struct mips_got_entry e, *p;
3259
3260 BFD_ASSERT (h->dynindx >= 0);
3261
3262 g = mips_elf_got_for_ibfd (g, ibfd);
3263 if (g->next != gg || TLS_RELOC_P (r_type))
3264 {
3265 e.abfd = ibfd;
3266 e.symndx = -1;
3267 e.d.h = (struct mips_elf_link_hash_entry *)h;
3268 e.tls_type = 0;
3269
3270 p = htab_find (g->got_entries, &e);
3271
3272 BFD_ASSERT (p->gotidx > 0);
3273
3274 if (TLS_RELOC_P (r_type))
3275 {
3276 bfd_vma value = MINUS_ONE;
3277 if ((h->root.type == bfd_link_hash_defined
3278 || h->root.type == bfd_link_hash_defweak)
3279 && h->root.u.def.section->output_section)
3280 value = (h->root.u.def.value
3281 + h->root.u.def.section->output_offset
3282 + h->root.u.def.section->output_section->vma);
3283
3284 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3285 info, e.d.h, value);
3286 }
3287 else
3288 return p->gotidx;
3289 }
3290 }
3291
3292 if (gg->global_gotsym != NULL)
3293 global_got_dynindx = gg->global_gotsym->dynindx;
3294
3295 if (TLS_RELOC_P (r_type))
3296 {
3297 struct mips_elf_link_hash_entry *hm
3298 = (struct mips_elf_link_hash_entry *) h;
3299 bfd_vma value = MINUS_ONE;
3300
3301 if ((h->root.type == bfd_link_hash_defined
3302 || h->root.type == bfd_link_hash_defweak)
3303 && h->root.u.def.section->output_section)
3304 value = (h->root.u.def.value
3305 + h->root.u.def.section->output_offset
3306 + h->root.u.def.section->output_section->vma);
3307
3308 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3309 r_type, info, hm, value);
3310 }
3311 else
3312 {
3313 /* Once we determine the global GOT entry with the lowest dynamic
3314 symbol table index, we must put all dynamic symbols with greater
3315 indices into the GOT. That makes it easy to calculate the GOT
3316 offset. */
3317 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3318 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3319 * MIPS_ELF_GOT_SIZE (abfd));
3320 }
3321 BFD_ASSERT (got_index < htab->sgot->size);
3322
3323 return got_index;
3324 }
3325
3326 /* Find a GOT page entry that points to within 32KB of VALUE. These
3327 entries are supposed to be placed at small offsets in the GOT, i.e.,
3328 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3329 entry could be created. If OFFSETP is nonnull, use it to return the
3330 offset of the GOT entry from VALUE. */
3331
3332 static bfd_vma
3333 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3334 bfd_vma value, bfd_vma *offsetp)
3335 {
3336 bfd_vma page, got_index;
3337 struct mips_got_entry *entry;
3338
3339 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3340 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3341 NULL, R_MIPS_GOT_PAGE);
3342
3343 if (!entry)
3344 return MINUS_ONE;
3345
3346 got_index = entry->gotidx;
3347
3348 if (offsetp)
3349 *offsetp = value - entry->d.address;
3350
3351 return got_index;
3352 }
3353
3354 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3355 EXTERNAL is true if the relocation was originally against a global
3356 symbol that binds locally. */
3357
3358 static bfd_vma
3359 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3360 bfd_vma value, bfd_boolean external)
3361 {
3362 struct mips_got_entry *entry;
3363
3364 /* GOT16 relocations against local symbols are followed by a LO16
3365 relocation; those against global symbols are not. Thus if the
3366 symbol was originally local, the GOT16 relocation should load the
3367 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3368 if (! external)
3369 value = mips_elf_high (value) << 16;
3370
3371 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3372 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3373 same in all cases. */
3374 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3375 NULL, R_MIPS_GOT16);
3376 if (entry)
3377 return entry->gotidx;
3378 else
3379 return MINUS_ONE;
3380 }
3381
3382 /* Returns the offset for the entry at the INDEXth position
3383 in the GOT. */
3384
3385 static bfd_vma
3386 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3387 bfd *input_bfd, bfd_vma got_index)
3388 {
3389 struct mips_elf_link_hash_table *htab;
3390 asection *sgot;
3391 bfd_vma gp;
3392
3393 htab = mips_elf_hash_table (info);
3394 BFD_ASSERT (htab != NULL);
3395
3396 sgot = htab->sgot;
3397 gp = _bfd_get_gp_value (output_bfd)
3398 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3399
3400 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3401 }
3402
3403 /* Create and return a local GOT entry for VALUE, which was calculated
3404 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3405 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3406 instead. */
3407
3408 static struct mips_got_entry *
3409 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3410 bfd *ibfd, bfd_vma value,
3411 unsigned long r_symndx,
3412 struct mips_elf_link_hash_entry *h,
3413 int r_type)
3414 {
3415 struct mips_got_entry entry, **loc;
3416 struct mips_got_info *g;
3417 struct mips_elf_link_hash_table *htab;
3418
3419 htab = mips_elf_hash_table (info);
3420 BFD_ASSERT (htab != NULL);
3421
3422 entry.abfd = NULL;
3423 entry.symndx = -1;
3424 entry.d.address = value;
3425 entry.tls_type = 0;
3426
3427 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3428 if (g == NULL)
3429 {
3430 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3431 BFD_ASSERT (g != NULL);
3432 }
3433
3434 /* This function shouldn't be called for symbols that live in the global
3435 area of the GOT. */
3436 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3437 if (TLS_RELOC_P (r_type))
3438 {
3439 struct mips_got_entry *p;
3440
3441 entry.abfd = ibfd;
3442 if (tls_ldm_reloc_p (r_type))
3443 {
3444 entry.tls_type = GOT_TLS_LDM;
3445 entry.symndx = 0;
3446 entry.d.addend = 0;
3447 }
3448 else if (h == NULL)
3449 {
3450 entry.symndx = r_symndx;
3451 entry.d.addend = 0;
3452 }
3453 else
3454 entry.d.h = h;
3455
3456 p = (struct mips_got_entry *)
3457 htab_find (g->got_entries, &entry);
3458
3459 BFD_ASSERT (p);
3460 return p;
3461 }
3462
3463 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3464 INSERT);
3465 if (*loc)
3466 return *loc;
3467
3468 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3469 entry.tls_type = 0;
3470
3471 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3472
3473 if (! *loc)
3474 return NULL;
3475
3476 memcpy (*loc, &entry, sizeof entry);
3477
3478 if (g->assigned_gotno > g->local_gotno)
3479 {
3480 (*loc)->gotidx = -1;
3481 /* We didn't allocate enough space in the GOT. */
3482 (*_bfd_error_handler)
3483 (_("not enough GOT space for local GOT entries"));
3484 bfd_set_error (bfd_error_bad_value);
3485 return NULL;
3486 }
3487
3488 MIPS_ELF_PUT_WORD (abfd, value,
3489 (htab->sgot->contents + entry.gotidx));
3490
3491 /* These GOT entries need a dynamic relocation on VxWorks. */
3492 if (htab->is_vxworks)
3493 {
3494 Elf_Internal_Rela outrel;
3495 asection *s;
3496 bfd_byte *rloc;
3497 bfd_vma got_address;
3498
3499 s = mips_elf_rel_dyn_section (info, FALSE);
3500 got_address = (htab->sgot->output_section->vma
3501 + htab->sgot->output_offset
3502 + entry.gotidx);
3503
3504 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3505 outrel.r_offset = got_address;
3506 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3507 outrel.r_addend = value;
3508 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3509 }
3510
3511 return *loc;
3512 }
3513
3514 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3515 The number might be exact or a worst-case estimate, depending on how
3516 much information is available to elf_backend_omit_section_dynsym at
3517 the current linking stage. */
3518
3519 static bfd_size_type
3520 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3521 {
3522 bfd_size_type count;
3523
3524 count = 0;
3525 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3526 {
3527 asection *p;
3528 const struct elf_backend_data *bed;
3529
3530 bed = get_elf_backend_data (output_bfd);
3531 for (p = output_bfd->sections; p ; p = p->next)
3532 if ((p->flags & SEC_EXCLUDE) == 0
3533 && (p->flags & SEC_ALLOC) != 0
3534 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3535 ++count;
3536 }
3537 return count;
3538 }
3539
3540 /* Sort the dynamic symbol table so that symbols that need GOT entries
3541 appear towards the end. */
3542
3543 static bfd_boolean
3544 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3545 {
3546 struct mips_elf_link_hash_table *htab;
3547 struct mips_elf_hash_sort_data hsd;
3548 struct mips_got_info *g;
3549
3550 if (elf_hash_table (info)->dynsymcount == 0)
3551 return TRUE;
3552
3553 htab = mips_elf_hash_table (info);
3554 BFD_ASSERT (htab != NULL);
3555
3556 g = htab->got_info;
3557 if (g == NULL)
3558 return TRUE;
3559
3560 hsd.low = NULL;
3561 hsd.max_unref_got_dynindx
3562 = hsd.min_got_dynindx
3563 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3564 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3565 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3566 elf_hash_table (info)),
3567 mips_elf_sort_hash_table_f,
3568 &hsd);
3569
3570 /* There should have been enough room in the symbol table to
3571 accommodate both the GOT and non-GOT symbols. */
3572 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3573 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3574 == elf_hash_table (info)->dynsymcount);
3575 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3576 == g->global_gotno);
3577
3578 /* Now we know which dynamic symbol has the lowest dynamic symbol
3579 table index in the GOT. */
3580 g->global_gotsym = hsd.low;
3581
3582 return TRUE;
3583 }
3584
3585 /* If H needs a GOT entry, assign it the highest available dynamic
3586 index. Otherwise, assign it the lowest available dynamic
3587 index. */
3588
3589 static bfd_boolean
3590 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3591 {
3592 struct mips_elf_hash_sort_data *hsd = data;
3593
3594 /* Symbols without dynamic symbol table entries aren't interesting
3595 at all. */
3596 if (h->root.dynindx == -1)
3597 return TRUE;
3598
3599 switch (h->global_got_area)
3600 {
3601 case GGA_NONE:
3602 h->root.dynindx = hsd->max_non_got_dynindx++;
3603 break;
3604
3605 case GGA_NORMAL:
3606 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3607
3608 h->root.dynindx = --hsd->min_got_dynindx;
3609 hsd->low = (struct elf_link_hash_entry *) h;
3610 break;
3611
3612 case GGA_RELOC_ONLY:
3613 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3614
3615 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3616 hsd->low = (struct elf_link_hash_entry *) h;
3617 h->root.dynindx = hsd->max_unref_got_dynindx++;
3618 break;
3619 }
3620
3621 return TRUE;
3622 }
3623
3624 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3625 symbol table index lower than any we've seen to date, record it for
3626 posterity. FOR_CALL is true if the caller is only interested in
3627 using the GOT entry for calls. */
3628
3629 static bfd_boolean
3630 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3631 bfd *abfd, struct bfd_link_info *info,
3632 bfd_boolean for_call,
3633 unsigned char tls_flag)
3634 {
3635 struct mips_elf_link_hash_table *htab;
3636 struct mips_elf_link_hash_entry *hmips;
3637 struct mips_got_entry entry, **loc;
3638 struct mips_got_info *g;
3639
3640 htab = mips_elf_hash_table (info);
3641 BFD_ASSERT (htab != NULL);
3642
3643 hmips = (struct mips_elf_link_hash_entry *) h;
3644 if (!for_call)
3645 hmips->got_only_for_calls = FALSE;
3646
3647 /* A global symbol in the GOT must also be in the dynamic symbol
3648 table. */
3649 if (h->dynindx == -1)
3650 {
3651 switch (ELF_ST_VISIBILITY (h->other))
3652 {
3653 case STV_INTERNAL:
3654 case STV_HIDDEN:
3655 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3656 break;
3657 }
3658 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3659 return FALSE;
3660 }
3661
3662 /* Make sure we have a GOT to put this entry into. */
3663 g = htab->got_info;
3664 BFD_ASSERT (g != NULL);
3665
3666 entry.abfd = abfd;
3667 entry.symndx = -1;
3668 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3669 entry.tls_type = 0;
3670
3671 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3672 INSERT);
3673
3674 /* If we've already marked this entry as needing GOT space, we don't
3675 need to do it again. */
3676 if (*loc)
3677 {
3678 (*loc)->tls_type |= tls_flag;
3679 return TRUE;
3680 }
3681
3682 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3683
3684 if (! *loc)
3685 return FALSE;
3686
3687 entry.gotidx = -1;
3688 entry.tls_type = tls_flag;
3689
3690 memcpy (*loc, &entry, sizeof entry);
3691
3692 if (tls_flag == 0)
3693 hmips->global_got_area = GGA_NORMAL;
3694
3695 return TRUE;
3696 }
3697
3698 /* Reserve space in G for a GOT entry containing the value of symbol
3699 SYMNDX in input bfd ABDF, plus ADDEND. */
3700
3701 static bfd_boolean
3702 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3703 struct bfd_link_info *info,
3704 unsigned char tls_flag)
3705 {
3706 struct mips_elf_link_hash_table *htab;
3707 struct mips_got_info *g;
3708 struct mips_got_entry entry, **loc;
3709
3710 htab = mips_elf_hash_table (info);
3711 BFD_ASSERT (htab != NULL);
3712
3713 g = htab->got_info;
3714 BFD_ASSERT (g != NULL);
3715
3716 entry.abfd = abfd;
3717 entry.symndx = symndx;
3718 entry.d.addend = addend;
3719 entry.tls_type = tls_flag;
3720 loc = (struct mips_got_entry **)
3721 htab_find_slot (g->got_entries, &entry, INSERT);
3722
3723 if (*loc)
3724 {
3725 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3726 {
3727 g->tls_gotno += 2;
3728 (*loc)->tls_type |= tls_flag;
3729 }
3730 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3731 {
3732 g->tls_gotno += 1;
3733 (*loc)->tls_type |= tls_flag;
3734 }
3735 return TRUE;
3736 }
3737
3738 if (tls_flag != 0)
3739 {
3740 entry.gotidx = -1;
3741 entry.tls_type = tls_flag;
3742 if (tls_flag == GOT_TLS_IE)
3743 g->tls_gotno += 1;
3744 else if (tls_flag == GOT_TLS_GD)
3745 g->tls_gotno += 2;
3746 else if (g->tls_ldm_offset == MINUS_ONE)
3747 {
3748 g->tls_ldm_offset = MINUS_TWO;
3749 g->tls_gotno += 2;
3750 }
3751 }
3752 else
3753 {
3754 entry.gotidx = g->local_gotno++;
3755 entry.tls_type = 0;
3756 }
3757
3758 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3759
3760 if (! *loc)
3761 return FALSE;
3762
3763 memcpy (*loc, &entry, sizeof entry);
3764
3765 return TRUE;
3766 }
3767
3768 /* Return the maximum number of GOT page entries required for RANGE. */
3769
3770 static bfd_vma
3771 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3772 {
3773 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3774 }
3775
3776 /* Record that ABFD has a page relocation against symbol SYMNDX and
3777 that ADDEND is the addend for that relocation.
3778
3779 This function creates an upper bound on the number of GOT slots
3780 required; no attempt is made to combine references to non-overridable
3781 global symbols across multiple input files. */
3782
3783 static bfd_boolean
3784 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3785 long symndx, bfd_signed_vma addend)
3786 {
3787 struct mips_elf_link_hash_table *htab;
3788 struct mips_got_info *g;
3789 struct mips_got_page_entry lookup, *entry;
3790 struct mips_got_page_range **range_ptr, *range;
3791 bfd_vma old_pages, new_pages;
3792 void **loc;
3793
3794 htab = mips_elf_hash_table (info);
3795 BFD_ASSERT (htab != NULL);
3796
3797 g = htab->got_info;
3798 BFD_ASSERT (g != NULL);
3799
3800 /* Find the mips_got_page_entry hash table entry for this symbol. */
3801 lookup.abfd = abfd;
3802 lookup.symndx = symndx;
3803 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3804 if (loc == NULL)
3805 return FALSE;
3806
3807 /* Create a mips_got_page_entry if this is the first time we've
3808 seen the symbol. */
3809 entry = (struct mips_got_page_entry *) *loc;
3810 if (!entry)
3811 {
3812 entry = bfd_alloc (abfd, sizeof (*entry));
3813 if (!entry)
3814 return FALSE;
3815
3816 entry->abfd = abfd;
3817 entry->symndx = symndx;
3818 entry->ranges = NULL;
3819 entry->num_pages = 0;
3820 *loc = entry;
3821 }
3822
3823 /* Skip over ranges whose maximum extent cannot share a page entry
3824 with ADDEND. */
3825 range_ptr = &entry->ranges;
3826 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3827 range_ptr = &(*range_ptr)->next;
3828
3829 /* If we scanned to the end of the list, or found a range whose
3830 minimum extent cannot share a page entry with ADDEND, create
3831 a new singleton range. */
3832 range = *range_ptr;
3833 if (!range || addend < range->min_addend - 0xffff)
3834 {
3835 range = bfd_alloc (abfd, sizeof (*range));
3836 if (!range)
3837 return FALSE;
3838
3839 range->next = *range_ptr;
3840 range->min_addend = addend;
3841 range->max_addend = addend;
3842
3843 *range_ptr = range;
3844 entry->num_pages++;
3845 g->page_gotno++;
3846 return TRUE;
3847 }
3848
3849 /* Remember how many pages the old range contributed. */
3850 old_pages = mips_elf_pages_for_range (range);
3851
3852 /* Update the ranges. */
3853 if (addend < range->min_addend)
3854 range->min_addend = addend;
3855 else if (addend > range->max_addend)
3856 {
3857 if (range->next && addend >= range->next->min_addend - 0xffff)
3858 {
3859 old_pages += mips_elf_pages_for_range (range->next);
3860 range->max_addend = range->next->max_addend;
3861 range->next = range->next->next;
3862 }
3863 else
3864 range->max_addend = addend;
3865 }
3866
3867 /* Record any change in the total estimate. */
3868 new_pages = mips_elf_pages_for_range (range);
3869 if (old_pages != new_pages)
3870 {
3871 entry->num_pages += new_pages - old_pages;
3872 g->page_gotno += new_pages - old_pages;
3873 }
3874
3875 return TRUE;
3876 }
3877
3878 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3879
3880 static void
3881 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3882 unsigned int n)
3883 {
3884 asection *s;
3885 struct mips_elf_link_hash_table *htab;
3886
3887 htab = mips_elf_hash_table (info);
3888 BFD_ASSERT (htab != NULL);
3889
3890 s = mips_elf_rel_dyn_section (info, FALSE);
3891 BFD_ASSERT (s != NULL);
3892
3893 if (htab->is_vxworks)
3894 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3895 else
3896 {
3897 if (s->size == 0)
3898 {
3899 /* Make room for a null element. */
3900 s->size += MIPS_ELF_REL_SIZE (abfd);
3901 ++s->reloc_count;
3902 }
3903 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3904 }
3905 }
3906 \f
3907 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3908 if the GOT entry is for an indirect or warning symbol. */
3909
3910 static int
3911 mips_elf_check_recreate_got (void **entryp, void *data)
3912 {
3913 struct mips_got_entry *entry;
3914 bfd_boolean *must_recreate;
3915
3916 entry = (struct mips_got_entry *) *entryp;
3917 must_recreate = (bfd_boolean *) data;
3918 if (entry->abfd != NULL && entry->symndx == -1)
3919 {
3920 struct mips_elf_link_hash_entry *h;
3921
3922 h = entry->d.h;
3923 if (h->root.root.type == bfd_link_hash_indirect
3924 || h->root.root.type == bfd_link_hash_warning)
3925 {
3926 *must_recreate = TRUE;
3927 return 0;
3928 }
3929 }
3930 return 1;
3931 }
3932
3933 /* A htab_traverse callback for GOT entries. Add all entries to
3934 hash table *DATA, converting entries for indirect and warning
3935 symbols into entries for the target symbol. Set *DATA to null
3936 on error. */
3937
3938 static int
3939 mips_elf_recreate_got (void **entryp, void *data)
3940 {
3941 htab_t *new_got;
3942 struct mips_got_entry *entry;
3943 void **slot;
3944
3945 new_got = (htab_t *) data;
3946 entry = (struct mips_got_entry *) *entryp;
3947 if (entry->abfd != NULL && entry->symndx == -1)
3948 {
3949 struct mips_elf_link_hash_entry *h;
3950
3951 h = entry->d.h;
3952 while (h->root.root.type == bfd_link_hash_indirect
3953 || h->root.root.type == bfd_link_hash_warning)
3954 {
3955 BFD_ASSERT (h->global_got_area == GGA_NONE);
3956 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3957 }
3958 entry->d.h = h;
3959 }
3960 slot = htab_find_slot (*new_got, entry, INSERT);
3961 if (slot == NULL)
3962 {
3963 *new_got = NULL;
3964 return 0;
3965 }
3966 if (*slot == NULL)
3967 *slot = entry;
3968 else
3969 free (entry);
3970 return 1;
3971 }
3972
3973 /* If any entries in G->got_entries are for indirect or warning symbols,
3974 replace them with entries for the target symbol. */
3975
3976 static bfd_boolean
3977 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3978 {
3979 bfd_boolean must_recreate;
3980 htab_t new_got;
3981
3982 must_recreate = FALSE;
3983 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3984 if (must_recreate)
3985 {
3986 new_got = htab_create (htab_size (g->got_entries),
3987 mips_elf_got_entry_hash,
3988 mips_elf_got_entry_eq, NULL);
3989 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3990 if (new_got == NULL)
3991 return FALSE;
3992
3993 /* Each entry in g->got_entries has either been copied to new_got
3994 or freed. Now delete the hash table itself. */
3995 htab_delete (g->got_entries);
3996 g->got_entries = new_got;
3997 }
3998 return TRUE;
3999 }
4000
4001 /* A mips_elf_link_hash_traverse callback for which DATA points
4002 to the link_info structure. Count the number of type (3) entries
4003 in the master GOT. */
4004
4005 static int
4006 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4007 {
4008 struct bfd_link_info *info;
4009 struct mips_elf_link_hash_table *htab;
4010 struct mips_got_info *g;
4011
4012 info = (struct bfd_link_info *) data;
4013 htab = mips_elf_hash_table (info);
4014 g = htab->got_info;
4015 if (h->global_got_area != GGA_NONE)
4016 {
4017 /* Make a final decision about whether the symbol belongs in the
4018 local or global GOT. Symbols that bind locally can (and in the
4019 case of forced-local symbols, must) live in the local GOT.
4020 Those that are aren't in the dynamic symbol table must also
4021 live in the local GOT.
4022
4023 Note that the former condition does not always imply the
4024 latter: symbols do not bind locally if they are completely
4025 undefined. We'll report undefined symbols later if appropriate. */
4026 if (h->root.dynindx == -1
4027 || (h->got_only_for_calls
4028 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4029 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4030 {
4031 /* The symbol belongs in the local GOT. We no longer need this
4032 entry if it was only used for relocations; those relocations
4033 will be against the null or section symbol instead of H. */
4034 if (h->global_got_area != GGA_RELOC_ONLY)
4035 g->local_gotno++;
4036 h->global_got_area = GGA_NONE;
4037 }
4038 else if (htab->is_vxworks
4039 && h->got_only_for_calls
4040 && h->root.plt.offset != MINUS_ONE)
4041 /* On VxWorks, calls can refer directly to the .got.plt entry;
4042 they don't need entries in the regular GOT. .got.plt entries
4043 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4044 h->global_got_area = GGA_NONE;
4045 else
4046 {
4047 g->global_gotno++;
4048 if (h->global_got_area == GGA_RELOC_ONLY)
4049 g->reloc_only_gotno++;
4050 }
4051 }
4052 return 1;
4053 }
4054 \f
4055 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4056
4057 static hashval_t
4058 mips_elf_bfd2got_entry_hash (const void *entry_)
4059 {
4060 const struct mips_elf_bfd2got_hash *entry
4061 = (struct mips_elf_bfd2got_hash *)entry_;
4062
4063 return entry->bfd->id;
4064 }
4065
4066 /* Check whether two hash entries have the same bfd. */
4067
4068 static int
4069 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4070 {
4071 const struct mips_elf_bfd2got_hash *e1
4072 = (const struct mips_elf_bfd2got_hash *)entry1;
4073 const struct mips_elf_bfd2got_hash *e2
4074 = (const struct mips_elf_bfd2got_hash *)entry2;
4075
4076 return e1->bfd == e2->bfd;
4077 }
4078
4079 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4080 be the master GOT data. */
4081
4082 static struct mips_got_info *
4083 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4084 {
4085 struct mips_elf_bfd2got_hash e, *p;
4086
4087 if (! g->bfd2got)
4088 return g;
4089
4090 e.bfd = ibfd;
4091 p = htab_find (g->bfd2got, &e);
4092 return p ? p->g : NULL;
4093 }
4094
4095 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4096 Return NULL if an error occured. */
4097
4098 static struct mips_got_info *
4099 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4100 bfd *input_bfd)
4101 {
4102 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4103 struct mips_got_info *g;
4104 void **bfdgotp;
4105
4106 bfdgot_entry.bfd = input_bfd;
4107 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4108 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4109
4110 if (bfdgot == NULL)
4111 {
4112 bfdgot = ((struct mips_elf_bfd2got_hash *)
4113 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4114 if (bfdgot == NULL)
4115 return NULL;
4116
4117 *bfdgotp = bfdgot;
4118
4119 g = ((struct mips_got_info *)
4120 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4121 if (g == NULL)
4122 return NULL;
4123
4124 bfdgot->bfd = input_bfd;
4125 bfdgot->g = g;
4126
4127 g->global_gotsym = NULL;
4128 g->global_gotno = 0;
4129 g->reloc_only_gotno = 0;
4130 g->local_gotno = 0;
4131 g->page_gotno = 0;
4132 g->assigned_gotno = -1;
4133 g->tls_gotno = 0;
4134 g->tls_assigned_gotno = 0;
4135 g->tls_ldm_offset = MINUS_ONE;
4136 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4137 mips_elf_multi_got_entry_eq, NULL);
4138 if (g->got_entries == NULL)
4139 return NULL;
4140
4141 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4142 mips_got_page_entry_eq, NULL);
4143 if (g->got_page_entries == NULL)
4144 return NULL;
4145
4146 g->bfd2got = NULL;
4147 g->next = NULL;
4148 }
4149
4150 return bfdgot->g;
4151 }
4152
4153 /* A htab_traverse callback for the entries in the master got.
4154 Create one separate got for each bfd that has entries in the global
4155 got, such that we can tell how many local and global entries each
4156 bfd requires. */
4157
4158 static int
4159 mips_elf_make_got_per_bfd (void **entryp, void *p)
4160 {
4161 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4162 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4163 struct mips_got_info *g;
4164
4165 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4166 if (g == NULL)
4167 {
4168 arg->obfd = NULL;
4169 return 0;
4170 }
4171
4172 /* Insert the GOT entry in the bfd's got entry hash table. */
4173 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4174 if (*entryp != NULL)
4175 return 1;
4176
4177 *entryp = entry;
4178
4179 if (entry->tls_type)
4180 {
4181 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4182 g->tls_gotno += 2;
4183 if (entry->tls_type & GOT_TLS_IE)
4184 g->tls_gotno += 1;
4185 }
4186 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4187 ++g->local_gotno;
4188 else
4189 ++g->global_gotno;
4190
4191 return 1;
4192 }
4193
4194 /* A htab_traverse callback for the page entries in the master got.
4195 Associate each page entry with the bfd's got. */
4196
4197 static int
4198 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4199 {
4200 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4201 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4202 struct mips_got_info *g;
4203
4204 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4205 if (g == NULL)
4206 {
4207 arg->obfd = NULL;
4208 return 0;
4209 }
4210
4211 /* Insert the GOT entry in the bfd's got entry hash table. */
4212 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4213 if (*entryp != NULL)
4214 return 1;
4215
4216 *entryp = entry;
4217 g->page_gotno += entry->num_pages;
4218 return 1;
4219 }
4220
4221 /* Consider merging the got described by BFD2GOT with TO, using the
4222 information given by ARG. Return -1 if this would lead to overflow,
4223 1 if they were merged successfully, and 0 if a merge failed due to
4224 lack of memory. (These values are chosen so that nonnegative return
4225 values can be returned by a htab_traverse callback.) */
4226
4227 static int
4228 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4229 struct mips_got_info *to,
4230 struct mips_elf_got_per_bfd_arg *arg)
4231 {
4232 struct mips_got_info *from = bfd2got->g;
4233 unsigned int estimate;
4234
4235 /* Work out how many page entries we would need for the combined GOT. */
4236 estimate = arg->max_pages;
4237 if (estimate >= from->page_gotno + to->page_gotno)
4238 estimate = from->page_gotno + to->page_gotno;
4239
4240 /* And conservatively estimate how many local and TLS entries
4241 would be needed. */
4242 estimate += from->local_gotno + to->local_gotno;
4243 estimate += from->tls_gotno + to->tls_gotno;
4244
4245 /* If we're merging with the primary got, we will always have
4246 the full set of global entries. Otherwise estimate those
4247 conservatively as well. */
4248 if (to == arg->primary)
4249 estimate += arg->global_count;
4250 else
4251 estimate += from->global_gotno + to->global_gotno;
4252
4253 /* Bail out if the combined GOT might be too big. */
4254 if (estimate > arg->max_count)
4255 return -1;
4256
4257 /* Commit to the merge. Record that TO is now the bfd for this got. */
4258 bfd2got->g = to;
4259
4260 /* Transfer the bfd's got information from FROM to TO. */
4261 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4262 if (arg->obfd == NULL)
4263 return 0;
4264
4265 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4266 if (arg->obfd == NULL)
4267 return 0;
4268
4269 /* We don't have to worry about releasing memory of the actual
4270 got entries, since they're all in the master got_entries hash
4271 table anyway. */
4272 htab_delete (from->got_entries);
4273 htab_delete (from->got_page_entries);
4274 return 1;
4275 }
4276
4277 /* Attempt to merge gots of different input bfds. Try to use as much
4278 as possible of the primary got, since it doesn't require explicit
4279 dynamic relocations, but don't use bfds that would reference global
4280 symbols out of the addressable range. Failing the primary got,
4281 attempt to merge with the current got, or finish the current got
4282 and then make make the new got current. */
4283
4284 static int
4285 mips_elf_merge_gots (void **bfd2got_, void *p)
4286 {
4287 struct mips_elf_bfd2got_hash *bfd2got
4288 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4289 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4290 struct mips_got_info *g;
4291 unsigned int estimate;
4292 int result;
4293
4294 g = bfd2got->g;
4295
4296 /* Work out the number of page, local and TLS entries. */
4297 estimate = arg->max_pages;
4298 if (estimate > g->page_gotno)
4299 estimate = g->page_gotno;
4300 estimate += g->local_gotno + g->tls_gotno;
4301
4302 /* We place TLS GOT entries after both locals and globals. The globals
4303 for the primary GOT may overflow the normal GOT size limit, so be
4304 sure not to merge a GOT which requires TLS with the primary GOT in that
4305 case. This doesn't affect non-primary GOTs. */
4306 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4307
4308 if (estimate <= arg->max_count)
4309 {
4310 /* If we don't have a primary GOT, use it as
4311 a starting point for the primary GOT. */
4312 if (!arg->primary)
4313 {
4314 arg->primary = bfd2got->g;
4315 return 1;
4316 }
4317
4318 /* Try merging with the primary GOT. */
4319 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4320 if (result >= 0)
4321 return result;
4322 }
4323
4324 /* If we can merge with the last-created got, do it. */
4325 if (arg->current)
4326 {
4327 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4328 if (result >= 0)
4329 return result;
4330 }
4331
4332 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4333 fits; if it turns out that it doesn't, we'll get relocation
4334 overflows anyway. */
4335 g->next = arg->current;
4336 arg->current = g;
4337
4338 return 1;
4339 }
4340
4341 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4342 is null iff there is just a single GOT. */
4343
4344 static int
4345 mips_elf_initialize_tls_index (void **entryp, void *p)
4346 {
4347 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4348 struct mips_got_info *g = p;
4349 bfd_vma next_index;
4350 unsigned char tls_type;
4351
4352 /* We're only interested in TLS symbols. */
4353 if (entry->tls_type == 0)
4354 return 1;
4355
4356 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4357
4358 if (entry->symndx == -1 && g->next == NULL)
4359 {
4360 /* A type (3) got entry in the single-GOT case. We use the symbol's
4361 hash table entry to track its index. */
4362 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4363 return 1;
4364 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4365 entry->d.h->tls_got_offset = next_index;
4366 tls_type = entry->d.h->tls_type;
4367 }
4368 else
4369 {
4370 if (entry->tls_type & GOT_TLS_LDM)
4371 {
4372 /* There are separate mips_got_entry objects for each input bfd
4373 that requires an LDM entry. Make sure that all LDM entries in
4374 a GOT resolve to the same index. */
4375 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4376 {
4377 entry->gotidx = g->tls_ldm_offset;
4378 return 1;
4379 }
4380 g->tls_ldm_offset = next_index;
4381 }
4382 entry->gotidx = next_index;
4383 tls_type = entry->tls_type;
4384 }
4385
4386 /* Account for the entries we've just allocated. */
4387 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4388 g->tls_assigned_gotno += 2;
4389 if (tls_type & GOT_TLS_IE)
4390 g->tls_assigned_gotno += 1;
4391
4392 return 1;
4393 }
4394
4395 /* If passed a NULL mips_got_info in the argument, set the marker used
4396 to tell whether a global symbol needs a got entry (in the primary
4397 got) to the given VALUE.
4398
4399 If passed a pointer G to a mips_got_info in the argument (it must
4400 not be the primary GOT), compute the offset from the beginning of
4401 the (primary) GOT section to the entry in G corresponding to the
4402 global symbol. G's assigned_gotno must contain the index of the
4403 first available global GOT entry in G. VALUE must contain the size
4404 of a GOT entry in bytes. For each global GOT entry that requires a
4405 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4406 marked as not eligible for lazy resolution through a function
4407 stub. */
4408 static int
4409 mips_elf_set_global_got_offset (void **entryp, void *p)
4410 {
4411 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4412 struct mips_elf_set_global_got_offset_arg *arg
4413 = (struct mips_elf_set_global_got_offset_arg *)p;
4414 struct mips_got_info *g = arg->g;
4415
4416 if (g && entry->tls_type != GOT_NORMAL)
4417 arg->needed_relocs +=
4418 mips_tls_got_relocs (arg->info, entry->tls_type,
4419 entry->symndx == -1 ? &entry->d.h->root : NULL);
4420
4421 if (entry->abfd != NULL
4422 && entry->symndx == -1
4423 && entry->d.h->global_got_area != GGA_NONE)
4424 {
4425 if (g)
4426 {
4427 BFD_ASSERT (g->global_gotsym == NULL);
4428
4429 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4430 if (arg->info->shared
4431 || (elf_hash_table (arg->info)->dynamic_sections_created
4432 && entry->d.h->root.def_dynamic
4433 && !entry->d.h->root.def_regular))
4434 ++arg->needed_relocs;
4435 }
4436 else
4437 entry->d.h->global_got_area = arg->value;
4438 }
4439
4440 return 1;
4441 }
4442
4443 /* A htab_traverse callback for GOT entries for which DATA is the
4444 bfd_link_info. Forbid any global symbols from having traditional
4445 lazy-binding stubs. */
4446
4447 static int
4448 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4449 {
4450 struct bfd_link_info *info;
4451 struct mips_elf_link_hash_table *htab;
4452 struct mips_got_entry *entry;
4453
4454 entry = (struct mips_got_entry *) *entryp;
4455 info = (struct bfd_link_info *) data;
4456 htab = mips_elf_hash_table (info);
4457 BFD_ASSERT (htab != NULL);
4458
4459 if (entry->abfd != NULL
4460 && entry->symndx == -1
4461 && entry->d.h->needs_lazy_stub)
4462 {
4463 entry->d.h->needs_lazy_stub = FALSE;
4464 htab->lazy_stub_count--;
4465 }
4466
4467 return 1;
4468 }
4469
4470 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4471 the primary GOT. */
4472 static bfd_vma
4473 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4474 {
4475 if (g->bfd2got == NULL)
4476 return 0;
4477
4478 g = mips_elf_got_for_ibfd (g, ibfd);
4479 if (! g)
4480 return 0;
4481
4482 BFD_ASSERT (g->next);
4483
4484 g = g->next;
4485
4486 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4487 * MIPS_ELF_GOT_SIZE (abfd);
4488 }
4489
4490 /* Turn a single GOT that is too big for 16-bit addressing into
4491 a sequence of GOTs, each one 16-bit addressable. */
4492
4493 static bfd_boolean
4494 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4495 asection *got, bfd_size_type pages)
4496 {
4497 struct mips_elf_link_hash_table *htab;
4498 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4499 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4500 struct mips_got_info *g, *gg;
4501 unsigned int assign, needed_relocs;
4502 bfd *dynobj;
4503
4504 dynobj = elf_hash_table (info)->dynobj;
4505 htab = mips_elf_hash_table (info);
4506 BFD_ASSERT (htab != NULL);
4507
4508 g = htab->got_info;
4509 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4510 mips_elf_bfd2got_entry_eq, NULL);
4511 if (g->bfd2got == NULL)
4512 return FALSE;
4513
4514 got_per_bfd_arg.bfd2got = g->bfd2got;
4515 got_per_bfd_arg.obfd = abfd;
4516 got_per_bfd_arg.info = info;
4517
4518 /* Count how many GOT entries each input bfd requires, creating a
4519 map from bfd to got info while at that. */
4520 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4521 if (got_per_bfd_arg.obfd == NULL)
4522 return FALSE;
4523
4524 /* Also count how many page entries each input bfd requires. */
4525 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4526 &got_per_bfd_arg);
4527 if (got_per_bfd_arg.obfd == NULL)
4528 return FALSE;
4529
4530 got_per_bfd_arg.current = NULL;
4531 got_per_bfd_arg.primary = NULL;
4532 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4533 / MIPS_ELF_GOT_SIZE (abfd))
4534 - htab->reserved_gotno);
4535 got_per_bfd_arg.max_pages = pages;
4536 /* The number of globals that will be included in the primary GOT.
4537 See the calls to mips_elf_set_global_got_offset below for more
4538 information. */
4539 got_per_bfd_arg.global_count = g->global_gotno;
4540
4541 /* Try to merge the GOTs of input bfds together, as long as they
4542 don't seem to exceed the maximum GOT size, choosing one of them
4543 to be the primary GOT. */
4544 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4545 if (got_per_bfd_arg.obfd == NULL)
4546 return FALSE;
4547
4548 /* If we do not find any suitable primary GOT, create an empty one. */
4549 if (got_per_bfd_arg.primary == NULL)
4550 {
4551 g->next = (struct mips_got_info *)
4552 bfd_alloc (abfd, sizeof (struct mips_got_info));
4553 if (g->next == NULL)
4554 return FALSE;
4555
4556 g->next->global_gotsym = NULL;
4557 g->next->global_gotno = 0;
4558 g->next->reloc_only_gotno = 0;
4559 g->next->local_gotno = 0;
4560 g->next->page_gotno = 0;
4561 g->next->tls_gotno = 0;
4562 g->next->assigned_gotno = 0;
4563 g->next->tls_assigned_gotno = 0;
4564 g->next->tls_ldm_offset = MINUS_ONE;
4565 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4566 mips_elf_multi_got_entry_eq,
4567 NULL);
4568 if (g->next->got_entries == NULL)
4569 return FALSE;
4570 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4571 mips_got_page_entry_eq,
4572 NULL);
4573 if (g->next->got_page_entries == NULL)
4574 return FALSE;
4575 g->next->bfd2got = NULL;
4576 }
4577 else
4578 g->next = got_per_bfd_arg.primary;
4579 g->next->next = got_per_bfd_arg.current;
4580
4581 /* GG is now the master GOT, and G is the primary GOT. */
4582 gg = g;
4583 g = g->next;
4584
4585 /* Map the output bfd to the primary got. That's what we're going
4586 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4587 didn't mark in check_relocs, and we want a quick way to find it.
4588 We can't just use gg->next because we're going to reverse the
4589 list. */
4590 {
4591 struct mips_elf_bfd2got_hash *bfdgot;
4592 void **bfdgotp;
4593
4594 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4595 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4596
4597 if (bfdgot == NULL)
4598 return FALSE;
4599
4600 bfdgot->bfd = abfd;
4601 bfdgot->g = g;
4602 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4603
4604 BFD_ASSERT (*bfdgotp == NULL);
4605 *bfdgotp = bfdgot;
4606 }
4607
4608 /* Every symbol that is referenced in a dynamic relocation must be
4609 present in the primary GOT, so arrange for them to appear after
4610 those that are actually referenced. */
4611 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4612 g->global_gotno = gg->global_gotno;
4613
4614 set_got_offset_arg.g = NULL;
4615 set_got_offset_arg.value = GGA_RELOC_ONLY;
4616 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4617 &set_got_offset_arg);
4618 set_got_offset_arg.value = GGA_NORMAL;
4619 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4620 &set_got_offset_arg);
4621
4622 /* Now go through the GOTs assigning them offset ranges.
4623 [assigned_gotno, local_gotno[ will be set to the range of local
4624 entries in each GOT. We can then compute the end of a GOT by
4625 adding local_gotno to global_gotno. We reverse the list and make
4626 it circular since then we'll be able to quickly compute the
4627 beginning of a GOT, by computing the end of its predecessor. To
4628 avoid special cases for the primary GOT, while still preserving
4629 assertions that are valid for both single- and multi-got links,
4630 we arrange for the main got struct to have the right number of
4631 global entries, but set its local_gotno such that the initial
4632 offset of the primary GOT is zero. Remember that the primary GOT
4633 will become the last item in the circular linked list, so it
4634 points back to the master GOT. */
4635 gg->local_gotno = -g->global_gotno;
4636 gg->global_gotno = g->global_gotno;
4637 gg->tls_gotno = 0;
4638 assign = 0;
4639 gg->next = gg;
4640
4641 do
4642 {
4643 struct mips_got_info *gn;
4644
4645 assign += htab->reserved_gotno;
4646 g->assigned_gotno = assign;
4647 g->local_gotno += assign;
4648 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4649 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4650
4651 /* Take g out of the direct list, and push it onto the reversed
4652 list that gg points to. g->next is guaranteed to be nonnull after
4653 this operation, as required by mips_elf_initialize_tls_index. */
4654 gn = g->next;
4655 g->next = gg->next;
4656 gg->next = g;
4657
4658 /* Set up any TLS entries. We always place the TLS entries after
4659 all non-TLS entries. */
4660 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4661 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4662
4663 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4664 g = gn;
4665
4666 /* Forbid global symbols in every non-primary GOT from having
4667 lazy-binding stubs. */
4668 if (g)
4669 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4670 }
4671 while (g);
4672
4673 got->size = (gg->next->local_gotno
4674 + gg->next->global_gotno
4675 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4676
4677 needed_relocs = 0;
4678 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4679 set_got_offset_arg.info = info;
4680 for (g = gg->next; g && g->next != gg; g = g->next)
4681 {
4682 unsigned int save_assign;
4683
4684 /* Assign offsets to global GOT entries. */
4685 save_assign = g->assigned_gotno;
4686 g->assigned_gotno = g->local_gotno;
4687 set_got_offset_arg.g = g;
4688 set_got_offset_arg.needed_relocs = 0;
4689 htab_traverse (g->got_entries,
4690 mips_elf_set_global_got_offset,
4691 &set_got_offset_arg);
4692 needed_relocs += set_got_offset_arg.needed_relocs;
4693 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4694
4695 g->assigned_gotno = save_assign;
4696 if (info->shared)
4697 {
4698 needed_relocs += g->local_gotno - g->assigned_gotno;
4699 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4700 + g->next->global_gotno
4701 + g->next->tls_gotno
4702 + htab->reserved_gotno);
4703 }
4704 }
4705
4706 if (needed_relocs)
4707 mips_elf_allocate_dynamic_relocations (dynobj, info,
4708 needed_relocs);
4709
4710 return TRUE;
4711 }
4712
4713 \f
4714 /* Returns the first relocation of type r_type found, beginning with
4715 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4716
4717 static const Elf_Internal_Rela *
4718 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4719 const Elf_Internal_Rela *relocation,
4720 const Elf_Internal_Rela *relend)
4721 {
4722 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4723
4724 while (relocation < relend)
4725 {
4726 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4727 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4728 return relocation;
4729
4730 ++relocation;
4731 }
4732
4733 /* We didn't find it. */
4734 return NULL;
4735 }
4736
4737 /* Return whether an input relocation is against a local symbol. */
4738
4739 static bfd_boolean
4740 mips_elf_local_relocation_p (bfd *input_bfd,
4741 const Elf_Internal_Rela *relocation,
4742 asection **local_sections)
4743 {
4744 unsigned long r_symndx;
4745 Elf_Internal_Shdr *symtab_hdr;
4746 size_t extsymoff;
4747
4748 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4749 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4750 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4751
4752 if (r_symndx < extsymoff)
4753 return TRUE;
4754 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4755 return TRUE;
4756
4757 return FALSE;
4758 }
4759 \f
4760 /* Sign-extend VALUE, which has the indicated number of BITS. */
4761
4762 bfd_vma
4763 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4764 {
4765 if (value & ((bfd_vma) 1 << (bits - 1)))
4766 /* VALUE is negative. */
4767 value |= ((bfd_vma) - 1) << bits;
4768
4769 return value;
4770 }
4771
4772 /* Return non-zero if the indicated VALUE has overflowed the maximum
4773 range expressible by a signed number with the indicated number of
4774 BITS. */
4775
4776 static bfd_boolean
4777 mips_elf_overflow_p (bfd_vma value, int bits)
4778 {
4779 bfd_signed_vma svalue = (bfd_signed_vma) value;
4780
4781 if (svalue > (1 << (bits - 1)) - 1)
4782 /* The value is too big. */
4783 return TRUE;
4784 else if (svalue < -(1 << (bits - 1)))
4785 /* The value is too small. */
4786 return TRUE;
4787
4788 /* All is well. */
4789 return FALSE;
4790 }
4791
4792 /* Calculate the %high function. */
4793
4794 static bfd_vma
4795 mips_elf_high (bfd_vma value)
4796 {
4797 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4798 }
4799
4800 /* Calculate the %higher function. */
4801
4802 static bfd_vma
4803 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4804 {
4805 #ifdef BFD64
4806 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4807 #else
4808 abort ();
4809 return MINUS_ONE;
4810 #endif
4811 }
4812
4813 /* Calculate the %highest function. */
4814
4815 static bfd_vma
4816 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4817 {
4818 #ifdef BFD64
4819 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4820 #else
4821 abort ();
4822 return MINUS_ONE;
4823 #endif
4824 }
4825 \f
4826 /* Create the .compact_rel section. */
4827
4828 static bfd_boolean
4829 mips_elf_create_compact_rel_section
4830 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4831 {
4832 flagword flags;
4833 register asection *s;
4834
4835 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4836 {
4837 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4838 | SEC_READONLY);
4839
4840 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4841 if (s == NULL
4842 || ! bfd_set_section_alignment (abfd, s,
4843 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4844 return FALSE;
4845
4846 s->size = sizeof (Elf32_External_compact_rel);
4847 }
4848
4849 return TRUE;
4850 }
4851
4852 /* Create the .got section to hold the global offset table. */
4853
4854 static bfd_boolean
4855 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4856 {
4857 flagword flags;
4858 register asection *s;
4859 struct elf_link_hash_entry *h;
4860 struct bfd_link_hash_entry *bh;
4861 struct mips_got_info *g;
4862 bfd_size_type amt;
4863 struct mips_elf_link_hash_table *htab;
4864
4865 htab = mips_elf_hash_table (info);
4866 BFD_ASSERT (htab != NULL);
4867
4868 /* This function may be called more than once. */
4869 if (htab->sgot)
4870 return TRUE;
4871
4872 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4873 | SEC_LINKER_CREATED);
4874
4875 /* We have to use an alignment of 2**4 here because this is hardcoded
4876 in the function stub generation and in the linker script. */
4877 s = bfd_make_section_with_flags (abfd, ".got", flags);
4878 if (s == NULL
4879 || ! bfd_set_section_alignment (abfd, s, 4))
4880 return FALSE;
4881 htab->sgot = s;
4882
4883 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4884 linker script because we don't want to define the symbol if we
4885 are not creating a global offset table. */
4886 bh = NULL;
4887 if (! (_bfd_generic_link_add_one_symbol
4888 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4889 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4890 return FALSE;
4891
4892 h = (struct elf_link_hash_entry *) bh;
4893 h->non_elf = 0;
4894 h->def_regular = 1;
4895 h->type = STT_OBJECT;
4896 elf_hash_table (info)->hgot = h;
4897
4898 if (info->shared
4899 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4900 return FALSE;
4901
4902 amt = sizeof (struct mips_got_info);
4903 g = bfd_alloc (abfd, amt);
4904 if (g == NULL)
4905 return FALSE;
4906 g->global_gotsym = NULL;
4907 g->global_gotno = 0;
4908 g->reloc_only_gotno = 0;
4909 g->tls_gotno = 0;
4910 g->local_gotno = 0;
4911 g->page_gotno = 0;
4912 g->assigned_gotno = 0;
4913 g->bfd2got = NULL;
4914 g->next = NULL;
4915 g->tls_ldm_offset = MINUS_ONE;
4916 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4917 mips_elf_got_entry_eq, NULL);
4918 if (g->got_entries == NULL)
4919 return FALSE;
4920 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4921 mips_got_page_entry_eq, NULL);
4922 if (g->got_page_entries == NULL)
4923 return FALSE;
4924 htab->got_info = g;
4925 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4926 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4927
4928 /* We also need a .got.plt section when generating PLTs. */
4929 s = bfd_make_section_with_flags (abfd, ".got.plt",
4930 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4931 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4932 if (s == NULL)
4933 return FALSE;
4934 htab->sgotplt = s;
4935
4936 return TRUE;
4937 }
4938 \f
4939 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4940 __GOTT_INDEX__ symbols. These symbols are only special for
4941 shared objects; they are not used in executables. */
4942
4943 static bfd_boolean
4944 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4945 {
4946 return (mips_elf_hash_table (info)->is_vxworks
4947 && info->shared
4948 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4949 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4950 }
4951
4952 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4953 require an la25 stub. See also mips_elf_local_pic_function_p,
4954 which determines whether the destination function ever requires a
4955 stub. */
4956
4957 static bfd_boolean
4958 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4959 bfd_boolean target_is_16_bit_code_p)
4960 {
4961 /* We specifically ignore branches and jumps from EF_PIC objects,
4962 where the onus is on the compiler or programmer to perform any
4963 necessary initialization of $25. Sometimes such initialization
4964 is unnecessary; for example, -mno-shared functions do not use
4965 the incoming value of $25, and may therefore be called directly. */
4966 if (PIC_OBJECT_P (input_bfd))
4967 return FALSE;
4968
4969 switch (r_type)
4970 {
4971 case R_MIPS_26:
4972 case R_MIPS_PC16:
4973 case R_MICROMIPS_26_S1:
4974 case R_MICROMIPS_PC7_S1:
4975 case R_MICROMIPS_PC10_S1:
4976 case R_MICROMIPS_PC16_S1:
4977 case R_MICROMIPS_PC23_S2:
4978 return TRUE;
4979
4980 case R_MIPS16_26:
4981 return !target_is_16_bit_code_p;
4982
4983 default:
4984 return FALSE;
4985 }
4986 }
4987 \f
4988 /* Calculate the value produced by the RELOCATION (which comes from
4989 the INPUT_BFD). The ADDEND is the addend to use for this
4990 RELOCATION; RELOCATION->R_ADDEND is ignored.
4991
4992 The result of the relocation calculation is stored in VALUEP.
4993 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4994 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4995
4996 This function returns bfd_reloc_continue if the caller need take no
4997 further action regarding this relocation, bfd_reloc_notsupported if
4998 something goes dramatically wrong, bfd_reloc_overflow if an
4999 overflow occurs, and bfd_reloc_ok to indicate success. */
5000
5001 static bfd_reloc_status_type
5002 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5003 asection *input_section,
5004 struct bfd_link_info *info,
5005 const Elf_Internal_Rela *relocation,
5006 bfd_vma addend, reloc_howto_type *howto,
5007 Elf_Internal_Sym *local_syms,
5008 asection **local_sections, bfd_vma *valuep,
5009 const char **namep,
5010 bfd_boolean *cross_mode_jump_p,
5011 bfd_boolean save_addend)
5012 {
5013 /* The eventual value we will return. */
5014 bfd_vma value;
5015 /* The address of the symbol against which the relocation is
5016 occurring. */
5017 bfd_vma symbol = 0;
5018 /* The final GP value to be used for the relocatable, executable, or
5019 shared object file being produced. */
5020 bfd_vma gp;
5021 /* The place (section offset or address) of the storage unit being
5022 relocated. */
5023 bfd_vma p;
5024 /* The value of GP used to create the relocatable object. */
5025 bfd_vma gp0;
5026 /* The offset into the global offset table at which the address of
5027 the relocation entry symbol, adjusted by the addend, resides
5028 during execution. */
5029 bfd_vma g = MINUS_ONE;
5030 /* The section in which the symbol referenced by the relocation is
5031 located. */
5032 asection *sec = NULL;
5033 struct mips_elf_link_hash_entry *h = NULL;
5034 /* TRUE if the symbol referred to by this relocation is a local
5035 symbol. */
5036 bfd_boolean local_p, was_local_p;
5037 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5038 bfd_boolean gp_disp_p = FALSE;
5039 /* TRUE if the symbol referred to by this relocation is
5040 "__gnu_local_gp". */
5041 bfd_boolean gnu_local_gp_p = FALSE;
5042 Elf_Internal_Shdr *symtab_hdr;
5043 size_t extsymoff;
5044 unsigned long r_symndx;
5045 int r_type;
5046 /* TRUE if overflow occurred during the calculation of the
5047 relocation value. */
5048 bfd_boolean overflowed_p;
5049 /* TRUE if this relocation refers to a MIPS16 function. */
5050 bfd_boolean target_is_16_bit_code_p = FALSE;
5051 bfd_boolean target_is_micromips_code_p = FALSE;
5052 struct mips_elf_link_hash_table *htab;
5053 bfd *dynobj;
5054
5055 dynobj = elf_hash_table (info)->dynobj;
5056 htab = mips_elf_hash_table (info);
5057 BFD_ASSERT (htab != NULL);
5058
5059 /* Parse the relocation. */
5060 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5061 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5062 p = (input_section->output_section->vma
5063 + input_section->output_offset
5064 + relocation->r_offset);
5065
5066 /* Assume that there will be no overflow. */
5067 overflowed_p = FALSE;
5068
5069 /* Figure out whether or not the symbol is local, and get the offset
5070 used in the array of hash table entries. */
5071 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5072 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5073 local_sections);
5074 was_local_p = local_p;
5075 if (! elf_bad_symtab (input_bfd))
5076 extsymoff = symtab_hdr->sh_info;
5077 else
5078 {
5079 /* The symbol table does not follow the rule that local symbols
5080 must come before globals. */
5081 extsymoff = 0;
5082 }
5083
5084 /* Figure out the value of the symbol. */
5085 if (local_p)
5086 {
5087 Elf_Internal_Sym *sym;
5088
5089 sym = local_syms + r_symndx;
5090 sec = local_sections[r_symndx];
5091
5092 symbol = sec->output_section->vma + sec->output_offset;
5093 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5094 || (sec->flags & SEC_MERGE))
5095 symbol += sym->st_value;
5096 if ((sec->flags & SEC_MERGE)
5097 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5098 {
5099 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5100 addend -= symbol;
5101 addend += sec->output_section->vma + sec->output_offset;
5102 }
5103
5104 /* MIPS16/microMIPS text labels should be treated as odd. */
5105 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5106 ++symbol;
5107
5108 /* Record the name of this symbol, for our caller. */
5109 *namep = bfd_elf_string_from_elf_section (input_bfd,
5110 symtab_hdr->sh_link,
5111 sym->st_name);
5112 if (*namep == '\0')
5113 *namep = bfd_section_name (input_bfd, sec);
5114
5115 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5116 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5117 }
5118 else
5119 {
5120 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5121
5122 /* For global symbols we look up the symbol in the hash-table. */
5123 h = ((struct mips_elf_link_hash_entry *)
5124 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5125 /* Find the real hash-table entry for this symbol. */
5126 while (h->root.root.type == bfd_link_hash_indirect
5127 || h->root.root.type == bfd_link_hash_warning)
5128 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5129
5130 /* Record the name of this symbol, for our caller. */
5131 *namep = h->root.root.root.string;
5132
5133 /* See if this is the special _gp_disp symbol. Note that such a
5134 symbol must always be a global symbol. */
5135 if (strcmp (*namep, "_gp_disp") == 0
5136 && ! NEWABI_P (input_bfd))
5137 {
5138 /* Relocations against _gp_disp are permitted only with
5139 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5140 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5141 return bfd_reloc_notsupported;
5142
5143 gp_disp_p = TRUE;
5144 }
5145 /* See if this is the special _gp symbol. Note that such a
5146 symbol must always be a global symbol. */
5147 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5148 gnu_local_gp_p = TRUE;
5149
5150
5151 /* If this symbol is defined, calculate its address. Note that
5152 _gp_disp is a magic symbol, always implicitly defined by the
5153 linker, so it's inappropriate to check to see whether or not
5154 its defined. */
5155 else if ((h->root.root.type == bfd_link_hash_defined
5156 || h->root.root.type == bfd_link_hash_defweak)
5157 && h->root.root.u.def.section)
5158 {
5159 sec = h->root.root.u.def.section;
5160 if (sec->output_section)
5161 symbol = (h->root.root.u.def.value
5162 + sec->output_section->vma
5163 + sec->output_offset);
5164 else
5165 symbol = h->root.root.u.def.value;
5166 }
5167 else if (h->root.root.type == bfd_link_hash_undefweak)
5168 /* We allow relocations against undefined weak symbols, giving
5169 it the value zero, so that you can undefined weak functions
5170 and check to see if they exist by looking at their
5171 addresses. */
5172 symbol = 0;
5173 else if (info->unresolved_syms_in_objects == RM_IGNORE
5174 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5175 symbol = 0;
5176 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5177 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5178 {
5179 /* If this is a dynamic link, we should have created a
5180 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5181 in in _bfd_mips_elf_create_dynamic_sections.
5182 Otherwise, we should define the symbol with a value of 0.
5183 FIXME: It should probably get into the symbol table
5184 somehow as well. */
5185 BFD_ASSERT (! info->shared);
5186 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5187 symbol = 0;
5188 }
5189 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5190 {
5191 /* This is an optional symbol - an Irix specific extension to the
5192 ELF spec. Ignore it for now.
5193 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5194 than simply ignoring them, but we do not handle this for now.
5195 For information see the "64-bit ELF Object File Specification"
5196 which is available from here:
5197 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5198 symbol = 0;
5199 }
5200 else if ((*info->callbacks->undefined_symbol)
5201 (info, h->root.root.root.string, input_bfd,
5202 input_section, relocation->r_offset,
5203 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5204 || ELF_ST_VISIBILITY (h->root.other)))
5205 {
5206 return bfd_reloc_undefined;
5207 }
5208 else
5209 {
5210 return bfd_reloc_notsupported;
5211 }
5212
5213 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5214 /* If the output section is the PLT section,
5215 then the target is not microMIPS. */
5216 target_is_micromips_code_p = (htab->splt != sec
5217 && ELF_ST_IS_MICROMIPS (h->root.other));
5218 }
5219
5220 /* If this is a reference to a 16-bit function with a stub, we need
5221 to redirect the relocation to the stub unless:
5222
5223 (a) the relocation is for a MIPS16 JAL;
5224
5225 (b) the relocation is for a MIPS16 PIC call, and there are no
5226 non-MIPS16 uses of the GOT slot; or
5227
5228 (c) the section allows direct references to MIPS16 functions. */
5229 if (r_type != R_MIPS16_26
5230 && !info->relocatable
5231 && ((h != NULL
5232 && h->fn_stub != NULL
5233 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5234 || (local_p
5235 && elf_tdata (input_bfd)->local_stubs != NULL
5236 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5237 && !section_allows_mips16_refs_p (input_section))
5238 {
5239 /* This is a 32- or 64-bit call to a 16-bit function. We should
5240 have already noticed that we were going to need the
5241 stub. */
5242 if (local_p)
5243 {
5244 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5245 value = 0;
5246 }
5247 else
5248 {
5249 BFD_ASSERT (h->need_fn_stub);
5250 if (h->la25_stub)
5251 {
5252 /* If a LA25 header for the stub itself exists, point to the
5253 prepended LUI/ADDIU sequence. */
5254 sec = h->la25_stub->stub_section;
5255 value = h->la25_stub->offset;
5256 }
5257 else
5258 {
5259 sec = h->fn_stub;
5260 value = 0;
5261 }
5262 }
5263
5264 symbol = sec->output_section->vma + sec->output_offset + value;
5265 /* The target is 16-bit, but the stub isn't. */
5266 target_is_16_bit_code_p = FALSE;
5267 }
5268 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5269 need to redirect the call to the stub. Note that we specifically
5270 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5271 use an indirect stub instead. */
5272 else if (r_type == R_MIPS16_26 && !info->relocatable
5273 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5274 || (local_p
5275 && elf_tdata (input_bfd)->local_call_stubs != NULL
5276 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5277 && !target_is_16_bit_code_p)
5278 {
5279 if (local_p)
5280 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5281 else
5282 {
5283 /* If both call_stub and call_fp_stub are defined, we can figure
5284 out which one to use by checking which one appears in the input
5285 file. */
5286 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5287 {
5288 asection *o;
5289
5290 sec = NULL;
5291 for (o = input_bfd->sections; o != NULL; o = o->next)
5292 {
5293 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5294 {
5295 sec = h->call_fp_stub;
5296 break;
5297 }
5298 }
5299 if (sec == NULL)
5300 sec = h->call_stub;
5301 }
5302 else if (h->call_stub != NULL)
5303 sec = h->call_stub;
5304 else
5305 sec = h->call_fp_stub;
5306 }
5307
5308 BFD_ASSERT (sec->size > 0);
5309 symbol = sec->output_section->vma + sec->output_offset;
5310 }
5311 /* If this is a direct call to a PIC function, redirect to the
5312 non-PIC stub. */
5313 else if (h != NULL && h->la25_stub
5314 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5315 target_is_16_bit_code_p))
5316 symbol = (h->la25_stub->stub_section->output_section->vma
5317 + h->la25_stub->stub_section->output_offset
5318 + h->la25_stub->offset);
5319
5320 /* Make sure MIPS16 and microMIPS are not used together. */
5321 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5322 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5323 {
5324 (*_bfd_error_handler)
5325 (_("MIPS16 and microMIPS functions cannot call each other"));
5326 return bfd_reloc_notsupported;
5327 }
5328
5329 /* Calls from 16-bit code to 32-bit code and vice versa require the
5330 mode change. However, we can ignore calls to undefined weak symbols,
5331 which should never be executed at runtime. This exception is important
5332 because the assembly writer may have "known" that any definition of the
5333 symbol would be 16-bit code, and that direct jumps were therefore
5334 acceptable. */
5335 *cross_mode_jump_p = (!info->relocatable
5336 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5337 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5338 || (r_type == R_MICROMIPS_26_S1
5339 && !target_is_micromips_code_p)
5340 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5341 && (target_is_16_bit_code_p
5342 || target_is_micromips_code_p))));
5343
5344 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5345
5346 gp0 = _bfd_get_gp_value (input_bfd);
5347 gp = _bfd_get_gp_value (abfd);
5348 if (htab->got_info)
5349 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5350
5351 if (gnu_local_gp_p)
5352 symbol = gp;
5353
5354 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5355 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5356 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5357 if (got_page_reloc_p (r_type) && !local_p)
5358 {
5359 r_type = (micromips_reloc_p (r_type)
5360 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5361 addend = 0;
5362 }
5363
5364 /* If we haven't already determined the GOT offset, and we're going
5365 to need it, get it now. */
5366 switch (r_type)
5367 {
5368 case R_MIPS16_CALL16:
5369 case R_MIPS16_GOT16:
5370 case R_MIPS_CALL16:
5371 case R_MIPS_GOT16:
5372 case R_MIPS_GOT_DISP:
5373 case R_MIPS_GOT_HI16:
5374 case R_MIPS_CALL_HI16:
5375 case R_MIPS_GOT_LO16:
5376 case R_MIPS_CALL_LO16:
5377 case R_MICROMIPS_CALL16:
5378 case R_MICROMIPS_GOT16:
5379 case R_MICROMIPS_GOT_DISP:
5380 case R_MICROMIPS_GOT_HI16:
5381 case R_MICROMIPS_CALL_HI16:
5382 case R_MICROMIPS_GOT_LO16:
5383 case R_MICROMIPS_CALL_LO16:
5384 case R_MIPS_TLS_GD:
5385 case R_MIPS_TLS_GOTTPREL:
5386 case R_MIPS_TLS_LDM:
5387 case R_MIPS16_TLS_GD:
5388 case R_MIPS16_TLS_GOTTPREL:
5389 case R_MIPS16_TLS_LDM:
5390 case R_MICROMIPS_TLS_GD:
5391 case R_MICROMIPS_TLS_GOTTPREL:
5392 case R_MICROMIPS_TLS_LDM:
5393 /* Find the index into the GOT where this value is located. */
5394 if (tls_ldm_reloc_p (r_type))
5395 {
5396 g = mips_elf_local_got_index (abfd, input_bfd, info,
5397 0, 0, NULL, r_type);
5398 if (g == MINUS_ONE)
5399 return bfd_reloc_outofrange;
5400 }
5401 else if (!local_p)
5402 {
5403 /* On VxWorks, CALL relocations should refer to the .got.plt
5404 entry, which is initialized to point at the PLT stub. */
5405 if (htab->is_vxworks
5406 && (call_hi16_reloc_p (r_type)
5407 || call_lo16_reloc_p (r_type)
5408 || call16_reloc_p (r_type)))
5409 {
5410 BFD_ASSERT (addend == 0);
5411 BFD_ASSERT (h->root.needs_plt);
5412 g = mips_elf_gotplt_index (info, &h->root);
5413 }
5414 else
5415 {
5416 BFD_ASSERT (addend == 0);
5417 g = mips_elf_global_got_index (dynobj, input_bfd,
5418 &h->root, r_type, info);
5419 if (h->tls_type == GOT_NORMAL
5420 && !elf_hash_table (info)->dynamic_sections_created)
5421 /* This is a static link. We must initialize the GOT entry. */
5422 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5423 }
5424 }
5425 else if (!htab->is_vxworks
5426 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5427 /* The calculation below does not involve "g". */
5428 break;
5429 else
5430 {
5431 g = mips_elf_local_got_index (abfd, input_bfd, info,
5432 symbol + addend, r_symndx, h, r_type);
5433 if (g == MINUS_ONE)
5434 return bfd_reloc_outofrange;
5435 }
5436
5437 /* Convert GOT indices to actual offsets. */
5438 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5439 break;
5440 }
5441
5442 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5443 symbols are resolved by the loader. Add them to .rela.dyn. */
5444 if (h != NULL && is_gott_symbol (info, &h->root))
5445 {
5446 Elf_Internal_Rela outrel;
5447 bfd_byte *loc;
5448 asection *s;
5449
5450 s = mips_elf_rel_dyn_section (info, FALSE);
5451 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5452
5453 outrel.r_offset = (input_section->output_section->vma
5454 + input_section->output_offset
5455 + relocation->r_offset);
5456 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5457 outrel.r_addend = addend;
5458 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5459
5460 /* If we've written this relocation for a readonly section,
5461 we need to set DF_TEXTREL again, so that we do not delete the
5462 DT_TEXTREL tag. */
5463 if (MIPS_ELF_READONLY_SECTION (input_section))
5464 info->flags |= DF_TEXTREL;
5465
5466 *valuep = 0;
5467 return bfd_reloc_ok;
5468 }
5469
5470 /* Figure out what kind of relocation is being performed. */
5471 switch (r_type)
5472 {
5473 case R_MIPS_NONE:
5474 return bfd_reloc_continue;
5475
5476 case R_MIPS_16:
5477 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5478 overflowed_p = mips_elf_overflow_p (value, 16);
5479 break;
5480
5481 case R_MIPS_32:
5482 case R_MIPS_REL32:
5483 case R_MIPS_64:
5484 if ((info->shared
5485 || (htab->root.dynamic_sections_created
5486 && h != NULL
5487 && h->root.def_dynamic
5488 && !h->root.def_regular
5489 && !h->has_static_relocs))
5490 && r_symndx != STN_UNDEF
5491 && (h == NULL
5492 || h->root.root.type != bfd_link_hash_undefweak
5493 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5494 && (input_section->flags & SEC_ALLOC) != 0)
5495 {
5496 /* If we're creating a shared library, then we can't know
5497 where the symbol will end up. So, we create a relocation
5498 record in the output, and leave the job up to the dynamic
5499 linker. We must do the same for executable references to
5500 shared library symbols, unless we've decided to use copy
5501 relocs or PLTs instead. */
5502 value = addend;
5503 if (!mips_elf_create_dynamic_relocation (abfd,
5504 info,
5505 relocation,
5506 h,
5507 sec,
5508 symbol,
5509 &value,
5510 input_section))
5511 return bfd_reloc_undefined;
5512 }
5513 else
5514 {
5515 if (r_type != R_MIPS_REL32)
5516 value = symbol + addend;
5517 else
5518 value = addend;
5519 }
5520 value &= howto->dst_mask;
5521 break;
5522
5523 case R_MIPS_PC32:
5524 value = symbol + addend - p;
5525 value &= howto->dst_mask;
5526 break;
5527
5528 case R_MIPS16_26:
5529 /* The calculation for R_MIPS16_26 is just the same as for an
5530 R_MIPS_26. It's only the storage of the relocated field into
5531 the output file that's different. That's handled in
5532 mips_elf_perform_relocation. So, we just fall through to the
5533 R_MIPS_26 case here. */
5534 case R_MIPS_26:
5535 case R_MICROMIPS_26_S1:
5536 {
5537 unsigned int shift;
5538
5539 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5540 the correct ISA mode selector and bit 1 must be 0. */
5541 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5542 return bfd_reloc_outofrange;
5543
5544 /* Shift is 2, unusually, for microMIPS JALX. */
5545 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5546
5547 if (was_local_p)
5548 value = addend | ((p + 4) & (0xfc000000 << shift));
5549 else
5550 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5551 value = (value + symbol) >> shift;
5552 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5553 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5554 value &= howto->dst_mask;
5555 }
5556 break;
5557
5558 case R_MIPS_TLS_DTPREL_HI16:
5559 case R_MIPS16_TLS_DTPREL_HI16:
5560 case R_MICROMIPS_TLS_DTPREL_HI16:
5561 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5562 & howto->dst_mask);
5563 break;
5564
5565 case R_MIPS_TLS_DTPREL_LO16:
5566 case R_MIPS_TLS_DTPREL32:
5567 case R_MIPS_TLS_DTPREL64:
5568 case R_MIPS16_TLS_DTPREL_LO16:
5569 case R_MICROMIPS_TLS_DTPREL_LO16:
5570 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5571 break;
5572
5573 case R_MIPS_TLS_TPREL_HI16:
5574 case R_MIPS16_TLS_TPREL_HI16:
5575 case R_MICROMIPS_TLS_TPREL_HI16:
5576 value = (mips_elf_high (addend + symbol - tprel_base (info))
5577 & howto->dst_mask);
5578 break;
5579
5580 case R_MIPS_TLS_TPREL_LO16:
5581 case R_MIPS_TLS_TPREL32:
5582 case R_MIPS_TLS_TPREL64:
5583 case R_MIPS16_TLS_TPREL_LO16:
5584 case R_MICROMIPS_TLS_TPREL_LO16:
5585 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5586 break;
5587
5588 case R_MIPS_HI16:
5589 case R_MIPS16_HI16:
5590 case R_MICROMIPS_HI16:
5591 if (!gp_disp_p)
5592 {
5593 value = mips_elf_high (addend + symbol);
5594 value &= howto->dst_mask;
5595 }
5596 else
5597 {
5598 /* For MIPS16 ABI code we generate this sequence
5599 0: li $v0,%hi(_gp_disp)
5600 4: addiupc $v1,%lo(_gp_disp)
5601 8: sll $v0,16
5602 12: addu $v0,$v1
5603 14: move $gp,$v0
5604 So the offsets of hi and lo relocs are the same, but the
5605 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5606 ADDIUPC clears the low two bits of the instruction address,
5607 so the base is ($t9 + 4) & ~3. */
5608 if (r_type == R_MIPS16_HI16)
5609 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5610 /* The microMIPS .cpload sequence uses the same assembly
5611 instructions as the traditional psABI version, but the
5612 incoming $t9 has the low bit set. */
5613 else if (r_type == R_MICROMIPS_HI16)
5614 value = mips_elf_high (addend + gp - p - 1);
5615 else
5616 value = mips_elf_high (addend + gp - p);
5617 overflowed_p = mips_elf_overflow_p (value, 16);
5618 }
5619 break;
5620
5621 case R_MIPS_LO16:
5622 case R_MIPS16_LO16:
5623 case R_MICROMIPS_LO16:
5624 case R_MICROMIPS_HI0_LO16:
5625 if (!gp_disp_p)
5626 value = (symbol + addend) & howto->dst_mask;
5627 else
5628 {
5629 /* See the comment for R_MIPS16_HI16 above for the reason
5630 for this conditional. */
5631 if (r_type == R_MIPS16_LO16)
5632 value = addend + gp - (p & ~(bfd_vma) 0x3);
5633 else if (r_type == R_MICROMIPS_LO16
5634 || r_type == R_MICROMIPS_HI0_LO16)
5635 value = addend + gp - p + 3;
5636 else
5637 value = addend + gp - p + 4;
5638 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5639 for overflow. But, on, say, IRIX5, relocations against
5640 _gp_disp are normally generated from the .cpload
5641 pseudo-op. It generates code that normally looks like
5642 this:
5643
5644 lui $gp,%hi(_gp_disp)
5645 addiu $gp,$gp,%lo(_gp_disp)
5646 addu $gp,$gp,$t9
5647
5648 Here $t9 holds the address of the function being called,
5649 as required by the MIPS ELF ABI. The R_MIPS_LO16
5650 relocation can easily overflow in this situation, but the
5651 R_MIPS_HI16 relocation will handle the overflow.
5652 Therefore, we consider this a bug in the MIPS ABI, and do
5653 not check for overflow here. */
5654 }
5655 break;
5656
5657 case R_MIPS_LITERAL:
5658 case R_MICROMIPS_LITERAL:
5659 /* Because we don't merge literal sections, we can handle this
5660 just like R_MIPS_GPREL16. In the long run, we should merge
5661 shared literals, and then we will need to additional work
5662 here. */
5663
5664 /* Fall through. */
5665
5666 case R_MIPS16_GPREL:
5667 /* The R_MIPS16_GPREL performs the same calculation as
5668 R_MIPS_GPREL16, but stores the relocated bits in a different
5669 order. We don't need to do anything special here; the
5670 differences are handled in mips_elf_perform_relocation. */
5671 case R_MIPS_GPREL16:
5672 case R_MICROMIPS_GPREL7_S2:
5673 case R_MICROMIPS_GPREL16:
5674 /* Only sign-extend the addend if it was extracted from the
5675 instruction. If the addend was separate, leave it alone,
5676 otherwise we may lose significant bits. */
5677 if (howto->partial_inplace)
5678 addend = _bfd_mips_elf_sign_extend (addend, 16);
5679 value = symbol + addend - gp;
5680 /* If the symbol was local, any earlier relocatable links will
5681 have adjusted its addend with the gp offset, so compensate
5682 for that now. Don't do it for symbols forced local in this
5683 link, though, since they won't have had the gp offset applied
5684 to them before. */
5685 if (was_local_p)
5686 value += gp0;
5687 overflowed_p = mips_elf_overflow_p (value, 16);
5688 break;
5689
5690 case R_MIPS16_GOT16:
5691 case R_MIPS16_CALL16:
5692 case R_MIPS_GOT16:
5693 case R_MIPS_CALL16:
5694 case R_MICROMIPS_GOT16:
5695 case R_MICROMIPS_CALL16:
5696 /* VxWorks does not have separate local and global semantics for
5697 R_MIPS*_GOT16; every relocation evaluates to "G". */
5698 if (!htab->is_vxworks && local_p)
5699 {
5700 value = mips_elf_got16_entry (abfd, input_bfd, info,
5701 symbol + addend, !was_local_p);
5702 if (value == MINUS_ONE)
5703 return bfd_reloc_outofrange;
5704 value
5705 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5706 overflowed_p = mips_elf_overflow_p (value, 16);
5707 break;
5708 }
5709
5710 /* Fall through. */
5711
5712 case R_MIPS_TLS_GD:
5713 case R_MIPS_TLS_GOTTPREL:
5714 case R_MIPS_TLS_LDM:
5715 case R_MIPS_GOT_DISP:
5716 case R_MIPS16_TLS_GD:
5717 case R_MIPS16_TLS_GOTTPREL:
5718 case R_MIPS16_TLS_LDM:
5719 case R_MICROMIPS_TLS_GD:
5720 case R_MICROMIPS_TLS_GOTTPREL:
5721 case R_MICROMIPS_TLS_LDM:
5722 case R_MICROMIPS_GOT_DISP:
5723 value = g;
5724 overflowed_p = mips_elf_overflow_p (value, 16);
5725 break;
5726
5727 case R_MIPS_GPREL32:
5728 value = (addend + symbol + gp0 - gp);
5729 if (!save_addend)
5730 value &= howto->dst_mask;
5731 break;
5732
5733 case R_MIPS_PC16:
5734 case R_MIPS_GNU_REL16_S2:
5735 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5736 overflowed_p = mips_elf_overflow_p (value, 18);
5737 value >>= howto->rightshift;
5738 value &= howto->dst_mask;
5739 break;
5740
5741 case R_MICROMIPS_PC7_S1:
5742 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5743 overflowed_p = mips_elf_overflow_p (value, 8);
5744 value >>= howto->rightshift;
5745 value &= howto->dst_mask;
5746 break;
5747
5748 case R_MICROMIPS_PC10_S1:
5749 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5750 overflowed_p = mips_elf_overflow_p (value, 11);
5751 value >>= howto->rightshift;
5752 value &= howto->dst_mask;
5753 break;
5754
5755 case R_MICROMIPS_PC16_S1:
5756 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5757 overflowed_p = mips_elf_overflow_p (value, 17);
5758 value >>= howto->rightshift;
5759 value &= howto->dst_mask;
5760 break;
5761
5762 case R_MICROMIPS_PC23_S2:
5763 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5764 overflowed_p = mips_elf_overflow_p (value, 25);
5765 value >>= howto->rightshift;
5766 value &= howto->dst_mask;
5767 break;
5768
5769 case R_MIPS_GOT_HI16:
5770 case R_MIPS_CALL_HI16:
5771 case R_MICROMIPS_GOT_HI16:
5772 case R_MICROMIPS_CALL_HI16:
5773 /* We're allowed to handle these two relocations identically.
5774 The dynamic linker is allowed to handle the CALL relocations
5775 differently by creating a lazy evaluation stub. */
5776 value = g;
5777 value = mips_elf_high (value);
5778 value &= howto->dst_mask;
5779 break;
5780
5781 case R_MIPS_GOT_LO16:
5782 case R_MIPS_CALL_LO16:
5783 case R_MICROMIPS_GOT_LO16:
5784 case R_MICROMIPS_CALL_LO16:
5785 value = g & howto->dst_mask;
5786 break;
5787
5788 case R_MIPS_GOT_PAGE:
5789 case R_MICROMIPS_GOT_PAGE:
5790 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5791 if (value == MINUS_ONE)
5792 return bfd_reloc_outofrange;
5793 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5794 overflowed_p = mips_elf_overflow_p (value, 16);
5795 break;
5796
5797 case R_MIPS_GOT_OFST:
5798 case R_MICROMIPS_GOT_OFST:
5799 if (local_p)
5800 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5801 else
5802 value = addend;
5803 overflowed_p = mips_elf_overflow_p (value, 16);
5804 break;
5805
5806 case R_MIPS_SUB:
5807 case R_MICROMIPS_SUB:
5808 value = symbol - addend;
5809 value &= howto->dst_mask;
5810 break;
5811
5812 case R_MIPS_HIGHER:
5813 case R_MICROMIPS_HIGHER:
5814 value = mips_elf_higher (addend + symbol);
5815 value &= howto->dst_mask;
5816 break;
5817
5818 case R_MIPS_HIGHEST:
5819 case R_MICROMIPS_HIGHEST:
5820 value = mips_elf_highest (addend + symbol);
5821 value &= howto->dst_mask;
5822 break;
5823
5824 case R_MIPS_SCN_DISP:
5825 case R_MICROMIPS_SCN_DISP:
5826 value = symbol + addend - sec->output_offset;
5827 value &= howto->dst_mask;
5828 break;
5829
5830 case R_MIPS_JALR:
5831 case R_MICROMIPS_JALR:
5832 /* This relocation is only a hint. In some cases, we optimize
5833 it into a bal instruction. But we don't try to optimize
5834 when the symbol does not resolve locally. */
5835 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5836 return bfd_reloc_continue;
5837 value = symbol + addend;
5838 break;
5839
5840 case R_MIPS_PJUMP:
5841 case R_MIPS_GNU_VTINHERIT:
5842 case R_MIPS_GNU_VTENTRY:
5843 /* We don't do anything with these at present. */
5844 return bfd_reloc_continue;
5845
5846 default:
5847 /* An unrecognized relocation type. */
5848 return bfd_reloc_notsupported;
5849 }
5850
5851 /* Store the VALUE for our caller. */
5852 *valuep = value;
5853 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5854 }
5855
5856 /* Obtain the field relocated by RELOCATION. */
5857
5858 static bfd_vma
5859 mips_elf_obtain_contents (reloc_howto_type *howto,
5860 const Elf_Internal_Rela *relocation,
5861 bfd *input_bfd, bfd_byte *contents)
5862 {
5863 bfd_vma x;
5864 bfd_byte *location = contents + relocation->r_offset;
5865
5866 /* Obtain the bytes. */
5867 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5868
5869 return x;
5870 }
5871
5872 /* It has been determined that the result of the RELOCATION is the
5873 VALUE. Use HOWTO to place VALUE into the output file at the
5874 appropriate position. The SECTION is the section to which the
5875 relocation applies.
5876 CROSS_MODE_JUMP_P is true if the relocation field
5877 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5878
5879 Returns FALSE if anything goes wrong. */
5880
5881 static bfd_boolean
5882 mips_elf_perform_relocation (struct bfd_link_info *info,
5883 reloc_howto_type *howto,
5884 const Elf_Internal_Rela *relocation,
5885 bfd_vma value, bfd *input_bfd,
5886 asection *input_section, bfd_byte *contents,
5887 bfd_boolean cross_mode_jump_p)
5888 {
5889 bfd_vma x;
5890 bfd_byte *location;
5891 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5892
5893 /* Figure out where the relocation is occurring. */
5894 location = contents + relocation->r_offset;
5895
5896 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5897
5898 /* Obtain the current value. */
5899 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5900
5901 /* Clear the field we are setting. */
5902 x &= ~howto->dst_mask;
5903
5904 /* Set the field. */
5905 x |= (value & howto->dst_mask);
5906
5907 /* If required, turn JAL into JALX. */
5908 if (cross_mode_jump_p && jal_reloc_p (r_type))
5909 {
5910 bfd_boolean ok;
5911 bfd_vma opcode = x >> 26;
5912 bfd_vma jalx_opcode;
5913
5914 /* Check to see if the opcode is already JAL or JALX. */
5915 if (r_type == R_MIPS16_26)
5916 {
5917 ok = ((opcode == 0x6) || (opcode == 0x7));
5918 jalx_opcode = 0x7;
5919 }
5920 else if (r_type == R_MICROMIPS_26_S1)
5921 {
5922 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5923 jalx_opcode = 0x3c;
5924 }
5925 else
5926 {
5927 ok = ((opcode == 0x3) || (opcode == 0x1d));
5928 jalx_opcode = 0x1d;
5929 }
5930
5931 /* If the opcode is not JAL or JALX, there's a problem. */
5932 if (!ok)
5933 {
5934 (*_bfd_error_handler)
5935 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5936 input_bfd,
5937 input_section,
5938 (unsigned long) relocation->r_offset);
5939 bfd_set_error (bfd_error_bad_value);
5940 return FALSE;
5941 }
5942
5943 /* Make this the JALX opcode. */
5944 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5945 }
5946
5947 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5948 range. */
5949 if (!info->relocatable
5950 && !cross_mode_jump_p
5951 && ((JAL_TO_BAL_P (input_bfd)
5952 && r_type == R_MIPS_26
5953 && (x >> 26) == 0x3) /* jal addr */
5954 || (JALR_TO_BAL_P (input_bfd)
5955 && r_type == R_MIPS_JALR
5956 && x == 0x0320f809) /* jalr t9 */
5957 || (JR_TO_B_P (input_bfd)
5958 && r_type == R_MIPS_JALR
5959 && x == 0x03200008))) /* jr t9 */
5960 {
5961 bfd_vma addr;
5962 bfd_vma dest;
5963 bfd_signed_vma off;
5964
5965 addr = (input_section->output_section->vma
5966 + input_section->output_offset
5967 + relocation->r_offset
5968 + 4);
5969 if (r_type == R_MIPS_26)
5970 dest = (value << 2) | ((addr >> 28) << 28);
5971 else
5972 dest = value;
5973 off = dest - addr;
5974 if (off <= 0x1ffff && off >= -0x20000)
5975 {
5976 if (x == 0x03200008) /* jr t9 */
5977 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5978 else
5979 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5980 }
5981 }
5982
5983 /* Put the value into the output. */
5984 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5985
5986 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5987 location);
5988
5989 return TRUE;
5990 }
5991 \f
5992 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5993 is the original relocation, which is now being transformed into a
5994 dynamic relocation. The ADDENDP is adjusted if necessary; the
5995 caller should store the result in place of the original addend. */
5996
5997 static bfd_boolean
5998 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5999 struct bfd_link_info *info,
6000 const Elf_Internal_Rela *rel,
6001 struct mips_elf_link_hash_entry *h,
6002 asection *sec, bfd_vma symbol,
6003 bfd_vma *addendp, asection *input_section)
6004 {
6005 Elf_Internal_Rela outrel[3];
6006 asection *sreloc;
6007 bfd *dynobj;
6008 int r_type;
6009 long indx;
6010 bfd_boolean defined_p;
6011 struct mips_elf_link_hash_table *htab;
6012
6013 htab = mips_elf_hash_table (info);
6014 BFD_ASSERT (htab != NULL);
6015
6016 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6017 dynobj = elf_hash_table (info)->dynobj;
6018 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6019 BFD_ASSERT (sreloc != NULL);
6020 BFD_ASSERT (sreloc->contents != NULL);
6021 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6022 < sreloc->size);
6023
6024 outrel[0].r_offset =
6025 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6026 if (ABI_64_P (output_bfd))
6027 {
6028 outrel[1].r_offset =
6029 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6030 outrel[2].r_offset =
6031 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6032 }
6033
6034 if (outrel[0].r_offset == MINUS_ONE)
6035 /* The relocation field has been deleted. */
6036 return TRUE;
6037
6038 if (outrel[0].r_offset == MINUS_TWO)
6039 {
6040 /* The relocation field has been converted into a relative value of
6041 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6042 the field to be fully relocated, so add in the symbol's value. */
6043 *addendp += symbol;
6044 return TRUE;
6045 }
6046
6047 /* We must now calculate the dynamic symbol table index to use
6048 in the relocation. */
6049 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6050 {
6051 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6052 indx = h->root.dynindx;
6053 if (SGI_COMPAT (output_bfd))
6054 defined_p = h->root.def_regular;
6055 else
6056 /* ??? glibc's ld.so just adds the final GOT entry to the
6057 relocation field. It therefore treats relocs against
6058 defined symbols in the same way as relocs against
6059 undefined symbols. */
6060 defined_p = FALSE;
6061 }
6062 else
6063 {
6064 if (sec != NULL && bfd_is_abs_section (sec))
6065 indx = 0;
6066 else if (sec == NULL || sec->owner == NULL)
6067 {
6068 bfd_set_error (bfd_error_bad_value);
6069 return FALSE;
6070 }
6071 else
6072 {
6073 indx = elf_section_data (sec->output_section)->dynindx;
6074 if (indx == 0)
6075 {
6076 asection *osec = htab->root.text_index_section;
6077 indx = elf_section_data (osec)->dynindx;
6078 }
6079 if (indx == 0)
6080 abort ();
6081 }
6082
6083 /* Instead of generating a relocation using the section
6084 symbol, we may as well make it a fully relative
6085 relocation. We want to avoid generating relocations to
6086 local symbols because we used to generate them
6087 incorrectly, without adding the original symbol value,
6088 which is mandated by the ABI for section symbols. In
6089 order to give dynamic loaders and applications time to
6090 phase out the incorrect use, we refrain from emitting
6091 section-relative relocations. It's not like they're
6092 useful, after all. This should be a bit more efficient
6093 as well. */
6094 /* ??? Although this behavior is compatible with glibc's ld.so,
6095 the ABI says that relocations against STN_UNDEF should have
6096 a symbol value of 0. Irix rld honors this, so relocations
6097 against STN_UNDEF have no effect. */
6098 if (!SGI_COMPAT (output_bfd))
6099 indx = 0;
6100 defined_p = TRUE;
6101 }
6102
6103 /* If the relocation was previously an absolute relocation and
6104 this symbol will not be referred to by the relocation, we must
6105 adjust it by the value we give it in the dynamic symbol table.
6106 Otherwise leave the job up to the dynamic linker. */
6107 if (defined_p && r_type != R_MIPS_REL32)
6108 *addendp += symbol;
6109
6110 if (htab->is_vxworks)
6111 /* VxWorks uses non-relative relocations for this. */
6112 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6113 else
6114 /* The relocation is always an REL32 relocation because we don't
6115 know where the shared library will wind up at load-time. */
6116 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6117 R_MIPS_REL32);
6118
6119 /* For strict adherence to the ABI specification, we should
6120 generate a R_MIPS_64 relocation record by itself before the
6121 _REL32/_64 record as well, such that the addend is read in as
6122 a 64-bit value (REL32 is a 32-bit relocation, after all).
6123 However, since none of the existing ELF64 MIPS dynamic
6124 loaders seems to care, we don't waste space with these
6125 artificial relocations. If this turns out to not be true,
6126 mips_elf_allocate_dynamic_relocation() should be tweaked so
6127 as to make room for a pair of dynamic relocations per
6128 invocation if ABI_64_P, and here we should generate an
6129 additional relocation record with R_MIPS_64 by itself for a
6130 NULL symbol before this relocation record. */
6131 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6132 ABI_64_P (output_bfd)
6133 ? R_MIPS_64
6134 : R_MIPS_NONE);
6135 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6136
6137 /* Adjust the output offset of the relocation to reference the
6138 correct location in the output file. */
6139 outrel[0].r_offset += (input_section->output_section->vma
6140 + input_section->output_offset);
6141 outrel[1].r_offset += (input_section->output_section->vma
6142 + input_section->output_offset);
6143 outrel[2].r_offset += (input_section->output_section->vma
6144 + input_section->output_offset);
6145
6146 /* Put the relocation back out. We have to use the special
6147 relocation outputter in the 64-bit case since the 64-bit
6148 relocation format is non-standard. */
6149 if (ABI_64_P (output_bfd))
6150 {
6151 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6152 (output_bfd, &outrel[0],
6153 (sreloc->contents
6154 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6155 }
6156 else if (htab->is_vxworks)
6157 {
6158 /* VxWorks uses RELA rather than REL dynamic relocations. */
6159 outrel[0].r_addend = *addendp;
6160 bfd_elf32_swap_reloca_out
6161 (output_bfd, &outrel[0],
6162 (sreloc->contents
6163 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6164 }
6165 else
6166 bfd_elf32_swap_reloc_out
6167 (output_bfd, &outrel[0],
6168 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6169
6170 /* We've now added another relocation. */
6171 ++sreloc->reloc_count;
6172
6173 /* Make sure the output section is writable. The dynamic linker
6174 will be writing to it. */
6175 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6176 |= SHF_WRITE;
6177
6178 /* On IRIX5, make an entry of compact relocation info. */
6179 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6180 {
6181 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
6182 bfd_byte *cr;
6183
6184 if (scpt)
6185 {
6186 Elf32_crinfo cptrel;
6187
6188 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6189 cptrel.vaddr = (rel->r_offset
6190 + input_section->output_section->vma
6191 + input_section->output_offset);
6192 if (r_type == R_MIPS_REL32)
6193 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6194 else
6195 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6196 mips_elf_set_cr_dist2to (cptrel, 0);
6197 cptrel.konst = *addendp;
6198
6199 cr = (scpt->contents
6200 + sizeof (Elf32_External_compact_rel));
6201 mips_elf_set_cr_relvaddr (cptrel, 0);
6202 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6203 ((Elf32_External_crinfo *) cr
6204 + scpt->reloc_count));
6205 ++scpt->reloc_count;
6206 }
6207 }
6208
6209 /* If we've written this relocation for a readonly section,
6210 we need to set DF_TEXTREL again, so that we do not delete the
6211 DT_TEXTREL tag. */
6212 if (MIPS_ELF_READONLY_SECTION (input_section))
6213 info->flags |= DF_TEXTREL;
6214
6215 return TRUE;
6216 }
6217 \f
6218 /* Return the MACH for a MIPS e_flags value. */
6219
6220 unsigned long
6221 _bfd_elf_mips_mach (flagword flags)
6222 {
6223 switch (flags & EF_MIPS_MACH)
6224 {
6225 case E_MIPS_MACH_3900:
6226 return bfd_mach_mips3900;
6227
6228 case E_MIPS_MACH_4010:
6229 return bfd_mach_mips4010;
6230
6231 case E_MIPS_MACH_4100:
6232 return bfd_mach_mips4100;
6233
6234 case E_MIPS_MACH_4111:
6235 return bfd_mach_mips4111;
6236
6237 case E_MIPS_MACH_4120:
6238 return bfd_mach_mips4120;
6239
6240 case E_MIPS_MACH_4650:
6241 return bfd_mach_mips4650;
6242
6243 case E_MIPS_MACH_5400:
6244 return bfd_mach_mips5400;
6245
6246 case E_MIPS_MACH_5500:
6247 return bfd_mach_mips5500;
6248
6249 case E_MIPS_MACH_9000:
6250 return bfd_mach_mips9000;
6251
6252 case E_MIPS_MACH_SB1:
6253 return bfd_mach_mips_sb1;
6254
6255 case E_MIPS_MACH_LS2E:
6256 return bfd_mach_mips_loongson_2e;
6257
6258 case E_MIPS_MACH_LS2F:
6259 return bfd_mach_mips_loongson_2f;
6260
6261 case E_MIPS_MACH_LS3A:
6262 return bfd_mach_mips_loongson_3a;
6263
6264 case E_MIPS_MACH_OCTEON2:
6265 return bfd_mach_mips_octeon2;
6266
6267 case E_MIPS_MACH_OCTEON:
6268 return bfd_mach_mips_octeon;
6269
6270 case E_MIPS_MACH_XLR:
6271 return bfd_mach_mips_xlr;
6272
6273 default:
6274 switch (flags & EF_MIPS_ARCH)
6275 {
6276 default:
6277 case E_MIPS_ARCH_1:
6278 return bfd_mach_mips3000;
6279
6280 case E_MIPS_ARCH_2:
6281 return bfd_mach_mips6000;
6282
6283 case E_MIPS_ARCH_3:
6284 return bfd_mach_mips4000;
6285
6286 case E_MIPS_ARCH_4:
6287 return bfd_mach_mips8000;
6288
6289 case E_MIPS_ARCH_5:
6290 return bfd_mach_mips5;
6291
6292 case E_MIPS_ARCH_32:
6293 return bfd_mach_mipsisa32;
6294
6295 case E_MIPS_ARCH_64:
6296 return bfd_mach_mipsisa64;
6297
6298 case E_MIPS_ARCH_32R2:
6299 return bfd_mach_mipsisa32r2;
6300
6301 case E_MIPS_ARCH_64R2:
6302 return bfd_mach_mipsisa64r2;
6303 }
6304 }
6305
6306 return 0;
6307 }
6308
6309 /* Return printable name for ABI. */
6310
6311 static INLINE char *
6312 elf_mips_abi_name (bfd *abfd)
6313 {
6314 flagword flags;
6315
6316 flags = elf_elfheader (abfd)->e_flags;
6317 switch (flags & EF_MIPS_ABI)
6318 {
6319 case 0:
6320 if (ABI_N32_P (abfd))
6321 return "N32";
6322 else if (ABI_64_P (abfd))
6323 return "64";
6324 else
6325 return "none";
6326 case E_MIPS_ABI_O32:
6327 return "O32";
6328 case E_MIPS_ABI_O64:
6329 return "O64";
6330 case E_MIPS_ABI_EABI32:
6331 return "EABI32";
6332 case E_MIPS_ABI_EABI64:
6333 return "EABI64";
6334 default:
6335 return "unknown abi";
6336 }
6337 }
6338 \f
6339 /* MIPS ELF uses two common sections. One is the usual one, and the
6340 other is for small objects. All the small objects are kept
6341 together, and then referenced via the gp pointer, which yields
6342 faster assembler code. This is what we use for the small common
6343 section. This approach is copied from ecoff.c. */
6344 static asection mips_elf_scom_section;
6345 static asymbol mips_elf_scom_symbol;
6346 static asymbol *mips_elf_scom_symbol_ptr;
6347
6348 /* MIPS ELF also uses an acommon section, which represents an
6349 allocated common symbol which may be overridden by a
6350 definition in a shared library. */
6351 static asection mips_elf_acom_section;
6352 static asymbol mips_elf_acom_symbol;
6353 static asymbol *mips_elf_acom_symbol_ptr;
6354
6355 /* This is used for both the 32-bit and the 64-bit ABI. */
6356
6357 void
6358 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6359 {
6360 elf_symbol_type *elfsym;
6361
6362 /* Handle the special MIPS section numbers that a symbol may use. */
6363 elfsym = (elf_symbol_type *) asym;
6364 switch (elfsym->internal_elf_sym.st_shndx)
6365 {
6366 case SHN_MIPS_ACOMMON:
6367 /* This section is used in a dynamically linked executable file.
6368 It is an allocated common section. The dynamic linker can
6369 either resolve these symbols to something in a shared
6370 library, or it can just leave them here. For our purposes,
6371 we can consider these symbols to be in a new section. */
6372 if (mips_elf_acom_section.name == NULL)
6373 {
6374 /* Initialize the acommon section. */
6375 mips_elf_acom_section.name = ".acommon";
6376 mips_elf_acom_section.flags = SEC_ALLOC;
6377 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6378 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6379 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6380 mips_elf_acom_symbol.name = ".acommon";
6381 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6382 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6383 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6384 }
6385 asym->section = &mips_elf_acom_section;
6386 break;
6387
6388 case SHN_COMMON:
6389 /* Common symbols less than the GP size are automatically
6390 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6391 if (asym->value > elf_gp_size (abfd)
6392 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6393 || IRIX_COMPAT (abfd) == ict_irix6)
6394 break;
6395 /* Fall through. */
6396 case SHN_MIPS_SCOMMON:
6397 if (mips_elf_scom_section.name == NULL)
6398 {
6399 /* Initialize the small common section. */
6400 mips_elf_scom_section.name = ".scommon";
6401 mips_elf_scom_section.flags = SEC_IS_COMMON;
6402 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6403 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6404 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6405 mips_elf_scom_symbol.name = ".scommon";
6406 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6407 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6408 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6409 }
6410 asym->section = &mips_elf_scom_section;
6411 asym->value = elfsym->internal_elf_sym.st_size;
6412 break;
6413
6414 case SHN_MIPS_SUNDEFINED:
6415 asym->section = bfd_und_section_ptr;
6416 break;
6417
6418 case SHN_MIPS_TEXT:
6419 {
6420 asection *section = bfd_get_section_by_name (abfd, ".text");
6421
6422 if (section != NULL)
6423 {
6424 asym->section = section;
6425 /* MIPS_TEXT is a bit special, the address is not an offset
6426 to the base of the .text section. So substract the section
6427 base address to make it an offset. */
6428 asym->value -= section->vma;
6429 }
6430 }
6431 break;
6432
6433 case SHN_MIPS_DATA:
6434 {
6435 asection *section = bfd_get_section_by_name (abfd, ".data");
6436
6437 if (section != NULL)
6438 {
6439 asym->section = section;
6440 /* MIPS_DATA is a bit special, the address is not an offset
6441 to the base of the .data section. So substract the section
6442 base address to make it an offset. */
6443 asym->value -= section->vma;
6444 }
6445 }
6446 break;
6447 }
6448
6449 /* If this is an odd-valued function symbol, assume it's a MIPS16
6450 or microMIPS one. */
6451 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6452 && (asym->value & 1) != 0)
6453 {
6454 asym->value--;
6455 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6456 elfsym->internal_elf_sym.st_other
6457 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6458 else
6459 elfsym->internal_elf_sym.st_other
6460 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6461 }
6462 }
6463 \f
6464 /* Implement elf_backend_eh_frame_address_size. This differs from
6465 the default in the way it handles EABI64.
6466
6467 EABI64 was originally specified as an LP64 ABI, and that is what
6468 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6469 historically accepted the combination of -mabi=eabi and -mlong32,
6470 and this ILP32 variation has become semi-official over time.
6471 Both forms use elf32 and have pointer-sized FDE addresses.
6472
6473 If an EABI object was generated by GCC 4.0 or above, it will have
6474 an empty .gcc_compiled_longXX section, where XX is the size of longs
6475 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6476 have no special marking to distinguish them from LP64 objects.
6477
6478 We don't want users of the official LP64 ABI to be punished for the
6479 existence of the ILP32 variant, but at the same time, we don't want
6480 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6481 We therefore take the following approach:
6482
6483 - If ABFD contains a .gcc_compiled_longXX section, use it to
6484 determine the pointer size.
6485
6486 - Otherwise check the type of the first relocation. Assume that
6487 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6488
6489 - Otherwise punt.
6490
6491 The second check is enough to detect LP64 objects generated by pre-4.0
6492 compilers because, in the kind of output generated by those compilers,
6493 the first relocation will be associated with either a CIE personality
6494 routine or an FDE start address. Furthermore, the compilers never
6495 used a special (non-pointer) encoding for this ABI.
6496
6497 Checking the relocation type should also be safe because there is no
6498 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6499 did so. */
6500
6501 unsigned int
6502 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6503 {
6504 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6505 return 8;
6506 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6507 {
6508 bfd_boolean long32_p, long64_p;
6509
6510 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6511 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6512 if (long32_p && long64_p)
6513 return 0;
6514 if (long32_p)
6515 return 4;
6516 if (long64_p)
6517 return 8;
6518
6519 if (sec->reloc_count > 0
6520 && elf_section_data (sec)->relocs != NULL
6521 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6522 == R_MIPS_64))
6523 return 8;
6524
6525 return 0;
6526 }
6527 return 4;
6528 }
6529 \f
6530 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6531 relocations against two unnamed section symbols to resolve to the
6532 same address. For example, if we have code like:
6533
6534 lw $4,%got_disp(.data)($gp)
6535 lw $25,%got_disp(.text)($gp)
6536 jalr $25
6537
6538 then the linker will resolve both relocations to .data and the program
6539 will jump there rather than to .text.
6540
6541 We can work around this problem by giving names to local section symbols.
6542 This is also what the MIPSpro tools do. */
6543
6544 bfd_boolean
6545 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6546 {
6547 return SGI_COMPAT (abfd);
6548 }
6549 \f
6550 /* Work over a section just before writing it out. This routine is
6551 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6552 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6553 a better way. */
6554
6555 bfd_boolean
6556 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6557 {
6558 if (hdr->sh_type == SHT_MIPS_REGINFO
6559 && hdr->sh_size > 0)
6560 {
6561 bfd_byte buf[4];
6562
6563 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6564 BFD_ASSERT (hdr->contents == NULL);
6565
6566 if (bfd_seek (abfd,
6567 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6568 SEEK_SET) != 0)
6569 return FALSE;
6570 H_PUT_32 (abfd, elf_gp (abfd), buf);
6571 if (bfd_bwrite (buf, 4, abfd) != 4)
6572 return FALSE;
6573 }
6574
6575 if (hdr->sh_type == SHT_MIPS_OPTIONS
6576 && hdr->bfd_section != NULL
6577 && mips_elf_section_data (hdr->bfd_section) != NULL
6578 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6579 {
6580 bfd_byte *contents, *l, *lend;
6581
6582 /* We stored the section contents in the tdata field in the
6583 set_section_contents routine. We save the section contents
6584 so that we don't have to read them again.
6585 At this point we know that elf_gp is set, so we can look
6586 through the section contents to see if there is an
6587 ODK_REGINFO structure. */
6588
6589 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6590 l = contents;
6591 lend = contents + hdr->sh_size;
6592 while (l + sizeof (Elf_External_Options) <= lend)
6593 {
6594 Elf_Internal_Options intopt;
6595
6596 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6597 &intopt);
6598 if (intopt.size < sizeof (Elf_External_Options))
6599 {
6600 (*_bfd_error_handler)
6601 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6602 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6603 break;
6604 }
6605 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6606 {
6607 bfd_byte buf[8];
6608
6609 if (bfd_seek (abfd,
6610 (hdr->sh_offset
6611 + (l - contents)
6612 + sizeof (Elf_External_Options)
6613 + (sizeof (Elf64_External_RegInfo) - 8)),
6614 SEEK_SET) != 0)
6615 return FALSE;
6616 H_PUT_64 (abfd, elf_gp (abfd), buf);
6617 if (bfd_bwrite (buf, 8, abfd) != 8)
6618 return FALSE;
6619 }
6620 else if (intopt.kind == ODK_REGINFO)
6621 {
6622 bfd_byte buf[4];
6623
6624 if (bfd_seek (abfd,
6625 (hdr->sh_offset
6626 + (l - contents)
6627 + sizeof (Elf_External_Options)
6628 + (sizeof (Elf32_External_RegInfo) - 4)),
6629 SEEK_SET) != 0)
6630 return FALSE;
6631 H_PUT_32 (abfd, elf_gp (abfd), buf);
6632 if (bfd_bwrite (buf, 4, abfd) != 4)
6633 return FALSE;
6634 }
6635 l += intopt.size;
6636 }
6637 }
6638
6639 if (hdr->bfd_section != NULL)
6640 {
6641 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6642
6643 /* .sbss is not handled specially here because the GNU/Linux
6644 prelinker can convert .sbss from NOBITS to PROGBITS and
6645 changing it back to NOBITS breaks the binary. The entry in
6646 _bfd_mips_elf_special_sections will ensure the correct flags
6647 are set on .sbss if BFD creates it without reading it from an
6648 input file, and without special handling here the flags set
6649 on it in an input file will be followed. */
6650 if (strcmp (name, ".sdata") == 0
6651 || strcmp (name, ".lit8") == 0
6652 || strcmp (name, ".lit4") == 0)
6653 {
6654 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6655 hdr->sh_type = SHT_PROGBITS;
6656 }
6657 else if (strcmp (name, ".srdata") == 0)
6658 {
6659 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6660 hdr->sh_type = SHT_PROGBITS;
6661 }
6662 else if (strcmp (name, ".compact_rel") == 0)
6663 {
6664 hdr->sh_flags = 0;
6665 hdr->sh_type = SHT_PROGBITS;
6666 }
6667 else if (strcmp (name, ".rtproc") == 0)
6668 {
6669 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6670 {
6671 unsigned int adjust;
6672
6673 adjust = hdr->sh_size % hdr->sh_addralign;
6674 if (adjust != 0)
6675 hdr->sh_size += hdr->sh_addralign - adjust;
6676 }
6677 }
6678 }
6679
6680 return TRUE;
6681 }
6682
6683 /* Handle a MIPS specific section when reading an object file. This
6684 is called when elfcode.h finds a section with an unknown type.
6685 This routine supports both the 32-bit and 64-bit ELF ABI.
6686
6687 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6688 how to. */
6689
6690 bfd_boolean
6691 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6692 Elf_Internal_Shdr *hdr,
6693 const char *name,
6694 int shindex)
6695 {
6696 flagword flags = 0;
6697
6698 /* There ought to be a place to keep ELF backend specific flags, but
6699 at the moment there isn't one. We just keep track of the
6700 sections by their name, instead. Fortunately, the ABI gives
6701 suggested names for all the MIPS specific sections, so we will
6702 probably get away with this. */
6703 switch (hdr->sh_type)
6704 {
6705 case SHT_MIPS_LIBLIST:
6706 if (strcmp (name, ".liblist") != 0)
6707 return FALSE;
6708 break;
6709 case SHT_MIPS_MSYM:
6710 if (strcmp (name, ".msym") != 0)
6711 return FALSE;
6712 break;
6713 case SHT_MIPS_CONFLICT:
6714 if (strcmp (name, ".conflict") != 0)
6715 return FALSE;
6716 break;
6717 case SHT_MIPS_GPTAB:
6718 if (! CONST_STRNEQ (name, ".gptab."))
6719 return FALSE;
6720 break;
6721 case SHT_MIPS_UCODE:
6722 if (strcmp (name, ".ucode") != 0)
6723 return FALSE;
6724 break;
6725 case SHT_MIPS_DEBUG:
6726 if (strcmp (name, ".mdebug") != 0)
6727 return FALSE;
6728 flags = SEC_DEBUGGING;
6729 break;
6730 case SHT_MIPS_REGINFO:
6731 if (strcmp (name, ".reginfo") != 0
6732 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6733 return FALSE;
6734 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6735 break;
6736 case SHT_MIPS_IFACE:
6737 if (strcmp (name, ".MIPS.interfaces") != 0)
6738 return FALSE;
6739 break;
6740 case SHT_MIPS_CONTENT:
6741 if (! CONST_STRNEQ (name, ".MIPS.content"))
6742 return FALSE;
6743 break;
6744 case SHT_MIPS_OPTIONS:
6745 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6746 return FALSE;
6747 break;
6748 case SHT_MIPS_DWARF:
6749 if (! CONST_STRNEQ (name, ".debug_")
6750 && ! CONST_STRNEQ (name, ".zdebug_"))
6751 return FALSE;
6752 break;
6753 case SHT_MIPS_SYMBOL_LIB:
6754 if (strcmp (name, ".MIPS.symlib") != 0)
6755 return FALSE;
6756 break;
6757 case SHT_MIPS_EVENTS:
6758 if (! CONST_STRNEQ (name, ".MIPS.events")
6759 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6760 return FALSE;
6761 break;
6762 default:
6763 break;
6764 }
6765
6766 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6767 return FALSE;
6768
6769 if (flags)
6770 {
6771 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6772 (bfd_get_section_flags (abfd,
6773 hdr->bfd_section)
6774 | flags)))
6775 return FALSE;
6776 }
6777
6778 /* FIXME: We should record sh_info for a .gptab section. */
6779
6780 /* For a .reginfo section, set the gp value in the tdata information
6781 from the contents of this section. We need the gp value while
6782 processing relocs, so we just get it now. The .reginfo section
6783 is not used in the 64-bit MIPS ELF ABI. */
6784 if (hdr->sh_type == SHT_MIPS_REGINFO)
6785 {
6786 Elf32_External_RegInfo ext;
6787 Elf32_RegInfo s;
6788
6789 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6790 &ext, 0, sizeof ext))
6791 return FALSE;
6792 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6793 elf_gp (abfd) = s.ri_gp_value;
6794 }
6795
6796 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6797 set the gp value based on what we find. We may see both
6798 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6799 they should agree. */
6800 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6801 {
6802 bfd_byte *contents, *l, *lend;
6803
6804 contents = bfd_malloc (hdr->sh_size);
6805 if (contents == NULL)
6806 return FALSE;
6807 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6808 0, hdr->sh_size))
6809 {
6810 free (contents);
6811 return FALSE;
6812 }
6813 l = contents;
6814 lend = contents + hdr->sh_size;
6815 while (l + sizeof (Elf_External_Options) <= lend)
6816 {
6817 Elf_Internal_Options intopt;
6818
6819 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6820 &intopt);
6821 if (intopt.size < sizeof (Elf_External_Options))
6822 {
6823 (*_bfd_error_handler)
6824 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6825 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6826 break;
6827 }
6828 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6829 {
6830 Elf64_Internal_RegInfo intreg;
6831
6832 bfd_mips_elf64_swap_reginfo_in
6833 (abfd,
6834 ((Elf64_External_RegInfo *)
6835 (l + sizeof (Elf_External_Options))),
6836 &intreg);
6837 elf_gp (abfd) = intreg.ri_gp_value;
6838 }
6839 else if (intopt.kind == ODK_REGINFO)
6840 {
6841 Elf32_RegInfo intreg;
6842
6843 bfd_mips_elf32_swap_reginfo_in
6844 (abfd,
6845 ((Elf32_External_RegInfo *)
6846 (l + sizeof (Elf_External_Options))),
6847 &intreg);
6848 elf_gp (abfd) = intreg.ri_gp_value;
6849 }
6850 l += intopt.size;
6851 }
6852 free (contents);
6853 }
6854
6855 return TRUE;
6856 }
6857
6858 /* Set the correct type for a MIPS ELF section. We do this by the
6859 section name, which is a hack, but ought to work. This routine is
6860 used by both the 32-bit and the 64-bit ABI. */
6861
6862 bfd_boolean
6863 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6864 {
6865 const char *name = bfd_get_section_name (abfd, sec);
6866
6867 if (strcmp (name, ".liblist") == 0)
6868 {
6869 hdr->sh_type = SHT_MIPS_LIBLIST;
6870 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6871 /* The sh_link field is set in final_write_processing. */
6872 }
6873 else if (strcmp (name, ".conflict") == 0)
6874 hdr->sh_type = SHT_MIPS_CONFLICT;
6875 else if (CONST_STRNEQ (name, ".gptab."))
6876 {
6877 hdr->sh_type = SHT_MIPS_GPTAB;
6878 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6879 /* The sh_info field is set in final_write_processing. */
6880 }
6881 else if (strcmp (name, ".ucode") == 0)
6882 hdr->sh_type = SHT_MIPS_UCODE;
6883 else if (strcmp (name, ".mdebug") == 0)
6884 {
6885 hdr->sh_type = SHT_MIPS_DEBUG;
6886 /* In a shared object on IRIX 5.3, the .mdebug section has an
6887 entsize of 0. FIXME: Does this matter? */
6888 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6889 hdr->sh_entsize = 0;
6890 else
6891 hdr->sh_entsize = 1;
6892 }
6893 else if (strcmp (name, ".reginfo") == 0)
6894 {
6895 hdr->sh_type = SHT_MIPS_REGINFO;
6896 /* In a shared object on IRIX 5.3, the .reginfo section has an
6897 entsize of 0x18. FIXME: Does this matter? */
6898 if (SGI_COMPAT (abfd))
6899 {
6900 if ((abfd->flags & DYNAMIC) != 0)
6901 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6902 else
6903 hdr->sh_entsize = 1;
6904 }
6905 else
6906 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6907 }
6908 else if (SGI_COMPAT (abfd)
6909 && (strcmp (name, ".hash") == 0
6910 || strcmp (name, ".dynamic") == 0
6911 || strcmp (name, ".dynstr") == 0))
6912 {
6913 if (SGI_COMPAT (abfd))
6914 hdr->sh_entsize = 0;
6915 #if 0
6916 /* This isn't how the IRIX6 linker behaves. */
6917 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6918 #endif
6919 }
6920 else if (strcmp (name, ".got") == 0
6921 || strcmp (name, ".srdata") == 0
6922 || strcmp (name, ".sdata") == 0
6923 || strcmp (name, ".sbss") == 0
6924 || strcmp (name, ".lit4") == 0
6925 || strcmp (name, ".lit8") == 0)
6926 hdr->sh_flags |= SHF_MIPS_GPREL;
6927 else if (strcmp (name, ".MIPS.interfaces") == 0)
6928 {
6929 hdr->sh_type = SHT_MIPS_IFACE;
6930 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6931 }
6932 else if (CONST_STRNEQ (name, ".MIPS.content"))
6933 {
6934 hdr->sh_type = SHT_MIPS_CONTENT;
6935 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6936 /* The sh_info field is set in final_write_processing. */
6937 }
6938 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6939 {
6940 hdr->sh_type = SHT_MIPS_OPTIONS;
6941 hdr->sh_entsize = 1;
6942 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6943 }
6944 else if (CONST_STRNEQ (name, ".debug_")
6945 || CONST_STRNEQ (name, ".zdebug_"))
6946 {
6947 hdr->sh_type = SHT_MIPS_DWARF;
6948
6949 /* Irix facilities such as libexc expect a single .debug_frame
6950 per executable, the system ones have NOSTRIP set and the linker
6951 doesn't merge sections with different flags so ... */
6952 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6953 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6954 }
6955 else if (strcmp (name, ".MIPS.symlib") == 0)
6956 {
6957 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6958 /* The sh_link and sh_info fields are set in
6959 final_write_processing. */
6960 }
6961 else if (CONST_STRNEQ (name, ".MIPS.events")
6962 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6963 {
6964 hdr->sh_type = SHT_MIPS_EVENTS;
6965 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6966 /* The sh_link field is set in final_write_processing. */
6967 }
6968 else if (strcmp (name, ".msym") == 0)
6969 {
6970 hdr->sh_type = SHT_MIPS_MSYM;
6971 hdr->sh_flags |= SHF_ALLOC;
6972 hdr->sh_entsize = 8;
6973 }
6974
6975 /* The generic elf_fake_sections will set up REL_HDR using the default
6976 kind of relocations. We used to set up a second header for the
6977 non-default kind of relocations here, but only NewABI would use
6978 these, and the IRIX ld doesn't like resulting empty RELA sections.
6979 Thus we create those header only on demand now. */
6980
6981 return TRUE;
6982 }
6983
6984 /* Given a BFD section, try to locate the corresponding ELF section
6985 index. This is used by both the 32-bit and the 64-bit ABI.
6986 Actually, it's not clear to me that the 64-bit ABI supports these,
6987 but for non-PIC objects we will certainly want support for at least
6988 the .scommon section. */
6989
6990 bfd_boolean
6991 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6992 asection *sec, int *retval)
6993 {
6994 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6995 {
6996 *retval = SHN_MIPS_SCOMMON;
6997 return TRUE;
6998 }
6999 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7000 {
7001 *retval = SHN_MIPS_ACOMMON;
7002 return TRUE;
7003 }
7004 return FALSE;
7005 }
7006 \f
7007 /* Hook called by the linker routine which adds symbols from an object
7008 file. We must handle the special MIPS section numbers here. */
7009
7010 bfd_boolean
7011 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7012 Elf_Internal_Sym *sym, const char **namep,
7013 flagword *flagsp ATTRIBUTE_UNUSED,
7014 asection **secp, bfd_vma *valp)
7015 {
7016 if (SGI_COMPAT (abfd)
7017 && (abfd->flags & DYNAMIC) != 0
7018 && strcmp (*namep, "_rld_new_interface") == 0)
7019 {
7020 /* Skip IRIX5 rld entry name. */
7021 *namep = NULL;
7022 return TRUE;
7023 }
7024
7025 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7026 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7027 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7028 a magic symbol resolved by the linker, we ignore this bogus definition
7029 of _gp_disp. New ABI objects do not suffer from this problem so this
7030 is not done for them. */
7031 if (!NEWABI_P(abfd)
7032 && (sym->st_shndx == SHN_ABS)
7033 && (strcmp (*namep, "_gp_disp") == 0))
7034 {
7035 *namep = NULL;
7036 return TRUE;
7037 }
7038
7039 switch (sym->st_shndx)
7040 {
7041 case SHN_COMMON:
7042 /* Common symbols less than the GP size are automatically
7043 treated as SHN_MIPS_SCOMMON symbols. */
7044 if (sym->st_size > elf_gp_size (abfd)
7045 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7046 || IRIX_COMPAT (abfd) == ict_irix6)
7047 break;
7048 /* Fall through. */
7049 case SHN_MIPS_SCOMMON:
7050 *secp = bfd_make_section_old_way (abfd, ".scommon");
7051 (*secp)->flags |= SEC_IS_COMMON;
7052 *valp = sym->st_size;
7053 break;
7054
7055 case SHN_MIPS_TEXT:
7056 /* This section is used in a shared object. */
7057 if (elf_tdata (abfd)->elf_text_section == NULL)
7058 {
7059 asymbol *elf_text_symbol;
7060 asection *elf_text_section;
7061 bfd_size_type amt = sizeof (asection);
7062
7063 elf_text_section = bfd_zalloc (abfd, amt);
7064 if (elf_text_section == NULL)
7065 return FALSE;
7066
7067 amt = sizeof (asymbol);
7068 elf_text_symbol = bfd_zalloc (abfd, amt);
7069 if (elf_text_symbol == NULL)
7070 return FALSE;
7071
7072 /* Initialize the section. */
7073
7074 elf_tdata (abfd)->elf_text_section = elf_text_section;
7075 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7076
7077 elf_text_section->symbol = elf_text_symbol;
7078 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7079
7080 elf_text_section->name = ".text";
7081 elf_text_section->flags = SEC_NO_FLAGS;
7082 elf_text_section->output_section = NULL;
7083 elf_text_section->owner = abfd;
7084 elf_text_symbol->name = ".text";
7085 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7086 elf_text_symbol->section = elf_text_section;
7087 }
7088 /* This code used to do *secp = bfd_und_section_ptr if
7089 info->shared. I don't know why, and that doesn't make sense,
7090 so I took it out. */
7091 *secp = elf_tdata (abfd)->elf_text_section;
7092 break;
7093
7094 case SHN_MIPS_ACOMMON:
7095 /* Fall through. XXX Can we treat this as allocated data? */
7096 case SHN_MIPS_DATA:
7097 /* This section is used in a shared object. */
7098 if (elf_tdata (abfd)->elf_data_section == NULL)
7099 {
7100 asymbol *elf_data_symbol;
7101 asection *elf_data_section;
7102 bfd_size_type amt = sizeof (asection);
7103
7104 elf_data_section = bfd_zalloc (abfd, amt);
7105 if (elf_data_section == NULL)
7106 return FALSE;
7107
7108 amt = sizeof (asymbol);
7109 elf_data_symbol = bfd_zalloc (abfd, amt);
7110 if (elf_data_symbol == NULL)
7111 return FALSE;
7112
7113 /* Initialize the section. */
7114
7115 elf_tdata (abfd)->elf_data_section = elf_data_section;
7116 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7117
7118 elf_data_section->symbol = elf_data_symbol;
7119 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7120
7121 elf_data_section->name = ".data";
7122 elf_data_section->flags = SEC_NO_FLAGS;
7123 elf_data_section->output_section = NULL;
7124 elf_data_section->owner = abfd;
7125 elf_data_symbol->name = ".data";
7126 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7127 elf_data_symbol->section = elf_data_section;
7128 }
7129 /* This code used to do *secp = bfd_und_section_ptr if
7130 info->shared. I don't know why, and that doesn't make sense,
7131 so I took it out. */
7132 *secp = elf_tdata (abfd)->elf_data_section;
7133 break;
7134
7135 case SHN_MIPS_SUNDEFINED:
7136 *secp = bfd_und_section_ptr;
7137 break;
7138 }
7139
7140 if (SGI_COMPAT (abfd)
7141 && ! info->shared
7142 && info->output_bfd->xvec == abfd->xvec
7143 && strcmp (*namep, "__rld_obj_head") == 0)
7144 {
7145 struct elf_link_hash_entry *h;
7146 struct bfd_link_hash_entry *bh;
7147
7148 /* Mark __rld_obj_head as dynamic. */
7149 bh = NULL;
7150 if (! (_bfd_generic_link_add_one_symbol
7151 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7152 get_elf_backend_data (abfd)->collect, &bh)))
7153 return FALSE;
7154
7155 h = (struct elf_link_hash_entry *) bh;
7156 h->non_elf = 0;
7157 h->def_regular = 1;
7158 h->type = STT_OBJECT;
7159
7160 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7161 return FALSE;
7162
7163 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7164 mips_elf_hash_table (info)->rld_symbol = h;
7165 }
7166
7167 /* If this is a mips16 text symbol, add 1 to the value to make it
7168 odd. This will cause something like .word SYM to come up with
7169 the right value when it is loaded into the PC. */
7170 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7171 ++*valp;
7172
7173 return TRUE;
7174 }
7175
7176 /* This hook function is called before the linker writes out a global
7177 symbol. We mark symbols as small common if appropriate. This is
7178 also where we undo the increment of the value for a mips16 symbol. */
7179
7180 int
7181 _bfd_mips_elf_link_output_symbol_hook
7182 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7183 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7184 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7185 {
7186 /* If we see a common symbol, which implies a relocatable link, then
7187 if a symbol was small common in an input file, mark it as small
7188 common in the output file. */
7189 if (sym->st_shndx == SHN_COMMON
7190 && strcmp (input_sec->name, ".scommon") == 0)
7191 sym->st_shndx = SHN_MIPS_SCOMMON;
7192
7193 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7194 sym->st_value &= ~1;
7195
7196 return 1;
7197 }
7198 \f
7199 /* Functions for the dynamic linker. */
7200
7201 /* Create dynamic sections when linking against a dynamic object. */
7202
7203 bfd_boolean
7204 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7205 {
7206 struct elf_link_hash_entry *h;
7207 struct bfd_link_hash_entry *bh;
7208 flagword flags;
7209 register asection *s;
7210 const char * const *namep;
7211 struct mips_elf_link_hash_table *htab;
7212
7213 htab = mips_elf_hash_table (info);
7214 BFD_ASSERT (htab != NULL);
7215
7216 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7217 | SEC_LINKER_CREATED | SEC_READONLY);
7218
7219 /* The psABI requires a read-only .dynamic section, but the VxWorks
7220 EABI doesn't. */
7221 if (!htab->is_vxworks)
7222 {
7223 s = bfd_get_section_by_name (abfd, ".dynamic");
7224 if (s != NULL)
7225 {
7226 if (! bfd_set_section_flags (abfd, s, flags))
7227 return FALSE;
7228 }
7229 }
7230
7231 /* We need to create .got section. */
7232 if (!mips_elf_create_got_section (abfd, info))
7233 return FALSE;
7234
7235 if (! mips_elf_rel_dyn_section (info, TRUE))
7236 return FALSE;
7237
7238 /* Create .stub section. */
7239 s = bfd_make_section_with_flags (abfd,
7240 MIPS_ELF_STUB_SECTION_NAME (abfd),
7241 flags | SEC_CODE);
7242 if (s == NULL
7243 || ! bfd_set_section_alignment (abfd, s,
7244 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7245 return FALSE;
7246 htab->sstubs = s;
7247
7248 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7249 && !info->shared
7250 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7251 {
7252 s = bfd_make_section_with_flags (abfd, ".rld_map",
7253 flags &~ (flagword) SEC_READONLY);
7254 if (s == NULL
7255 || ! bfd_set_section_alignment (abfd, s,
7256 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7257 return FALSE;
7258 }
7259
7260 /* On IRIX5, we adjust add some additional symbols and change the
7261 alignments of several sections. There is no ABI documentation
7262 indicating that this is necessary on IRIX6, nor any evidence that
7263 the linker takes such action. */
7264 if (IRIX_COMPAT (abfd) == ict_irix5)
7265 {
7266 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7267 {
7268 bh = NULL;
7269 if (! (_bfd_generic_link_add_one_symbol
7270 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7271 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7272 return FALSE;
7273
7274 h = (struct elf_link_hash_entry *) bh;
7275 h->non_elf = 0;
7276 h->def_regular = 1;
7277 h->type = STT_SECTION;
7278
7279 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7280 return FALSE;
7281 }
7282
7283 /* We need to create a .compact_rel section. */
7284 if (SGI_COMPAT (abfd))
7285 {
7286 if (!mips_elf_create_compact_rel_section (abfd, info))
7287 return FALSE;
7288 }
7289
7290 /* Change alignments of some sections. */
7291 s = bfd_get_section_by_name (abfd, ".hash");
7292 if (s != NULL)
7293 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7294 s = bfd_get_section_by_name (abfd, ".dynsym");
7295 if (s != NULL)
7296 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7297 s = bfd_get_section_by_name (abfd, ".dynstr");
7298 if (s != NULL)
7299 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7300 s = bfd_get_section_by_name (abfd, ".reginfo");
7301 if (s != NULL)
7302 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7303 s = bfd_get_section_by_name (abfd, ".dynamic");
7304 if (s != NULL)
7305 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7306 }
7307
7308 if (!info->shared)
7309 {
7310 const char *name;
7311
7312 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7313 bh = NULL;
7314 if (!(_bfd_generic_link_add_one_symbol
7315 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7316 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7317 return FALSE;
7318
7319 h = (struct elf_link_hash_entry *) bh;
7320 h->non_elf = 0;
7321 h->def_regular = 1;
7322 h->type = STT_SECTION;
7323
7324 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7325 return FALSE;
7326
7327 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7328 {
7329 /* __rld_map is a four byte word located in the .data section
7330 and is filled in by the rtld to contain a pointer to
7331 the _r_debug structure. Its symbol value will be set in
7332 _bfd_mips_elf_finish_dynamic_symbol. */
7333 s = bfd_get_section_by_name (abfd, ".rld_map");
7334 BFD_ASSERT (s != NULL);
7335
7336 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7337 bh = NULL;
7338 if (!(_bfd_generic_link_add_one_symbol
7339 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7340 get_elf_backend_data (abfd)->collect, &bh)))
7341 return FALSE;
7342
7343 h = (struct elf_link_hash_entry *) bh;
7344 h->non_elf = 0;
7345 h->def_regular = 1;
7346 h->type = STT_OBJECT;
7347
7348 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7349 return FALSE;
7350 mips_elf_hash_table (info)->rld_symbol = h;
7351 }
7352 }
7353
7354 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7355 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7356 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7357 return FALSE;
7358
7359 /* Cache the sections created above. */
7360 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7361 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7362 if (htab->is_vxworks)
7363 {
7364 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7365 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7366 }
7367 else
7368 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7369 if (!htab->sdynbss
7370 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7371 || !htab->srelplt
7372 || !htab->splt)
7373 abort ();
7374
7375 if (htab->is_vxworks)
7376 {
7377 /* Do the usual VxWorks handling. */
7378 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7379 return FALSE;
7380
7381 /* Work out the PLT sizes. */
7382 if (info->shared)
7383 {
7384 htab->plt_header_size
7385 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7386 htab->plt_entry_size
7387 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7388 }
7389 else
7390 {
7391 htab->plt_header_size
7392 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7393 htab->plt_entry_size
7394 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7395 }
7396 }
7397 else if (!info->shared)
7398 {
7399 /* All variants of the plt0 entry are the same size. */
7400 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7401 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7402 }
7403
7404 return TRUE;
7405 }
7406 \f
7407 /* Return true if relocation REL against section SEC is a REL rather than
7408 RELA relocation. RELOCS is the first relocation in the section and
7409 ABFD is the bfd that contains SEC. */
7410
7411 static bfd_boolean
7412 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7413 const Elf_Internal_Rela *relocs,
7414 const Elf_Internal_Rela *rel)
7415 {
7416 Elf_Internal_Shdr *rel_hdr;
7417 const struct elf_backend_data *bed;
7418
7419 /* To determine which flavor of relocation this is, we depend on the
7420 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7421 rel_hdr = elf_section_data (sec)->rel.hdr;
7422 if (rel_hdr == NULL)
7423 return FALSE;
7424 bed = get_elf_backend_data (abfd);
7425 return ((size_t) (rel - relocs)
7426 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7427 }
7428
7429 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7430 HOWTO is the relocation's howto and CONTENTS points to the contents
7431 of the section that REL is against. */
7432
7433 static bfd_vma
7434 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7435 reloc_howto_type *howto, bfd_byte *contents)
7436 {
7437 bfd_byte *location;
7438 unsigned int r_type;
7439 bfd_vma addend;
7440
7441 r_type = ELF_R_TYPE (abfd, rel->r_info);
7442 location = contents + rel->r_offset;
7443
7444 /* Get the addend, which is stored in the input file. */
7445 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7446 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7447 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7448
7449 return addend & howto->src_mask;
7450 }
7451
7452 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7453 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7454 and update *ADDEND with the final addend. Return true on success
7455 or false if the LO16 could not be found. RELEND is the exclusive
7456 upper bound on the relocations for REL's section. */
7457
7458 static bfd_boolean
7459 mips_elf_add_lo16_rel_addend (bfd *abfd,
7460 const Elf_Internal_Rela *rel,
7461 const Elf_Internal_Rela *relend,
7462 bfd_byte *contents, bfd_vma *addend)
7463 {
7464 unsigned int r_type, lo16_type;
7465 const Elf_Internal_Rela *lo16_relocation;
7466 reloc_howto_type *lo16_howto;
7467 bfd_vma l;
7468
7469 r_type = ELF_R_TYPE (abfd, rel->r_info);
7470 if (mips16_reloc_p (r_type))
7471 lo16_type = R_MIPS16_LO16;
7472 else if (micromips_reloc_p (r_type))
7473 lo16_type = R_MICROMIPS_LO16;
7474 else
7475 lo16_type = R_MIPS_LO16;
7476
7477 /* The combined value is the sum of the HI16 addend, left-shifted by
7478 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7479 code does a `lui' of the HI16 value, and then an `addiu' of the
7480 LO16 value.)
7481
7482 Scan ahead to find a matching LO16 relocation.
7483
7484 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7485 be immediately following. However, for the IRIX6 ABI, the next
7486 relocation may be a composed relocation consisting of several
7487 relocations for the same address. In that case, the R_MIPS_LO16
7488 relocation may occur as one of these. We permit a similar
7489 extension in general, as that is useful for GCC.
7490
7491 In some cases GCC dead code elimination removes the LO16 but keeps
7492 the corresponding HI16. This is strictly speaking a violation of
7493 the ABI but not immediately harmful. */
7494 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7495 if (lo16_relocation == NULL)
7496 return FALSE;
7497
7498 /* Obtain the addend kept there. */
7499 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7500 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7501
7502 l <<= lo16_howto->rightshift;
7503 l = _bfd_mips_elf_sign_extend (l, 16);
7504
7505 *addend <<= 16;
7506 *addend += l;
7507 return TRUE;
7508 }
7509
7510 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7511 store the contents in *CONTENTS on success. Assume that *CONTENTS
7512 already holds the contents if it is nonull on entry. */
7513
7514 static bfd_boolean
7515 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7516 {
7517 if (*contents)
7518 return TRUE;
7519
7520 /* Get cached copy if it exists. */
7521 if (elf_section_data (sec)->this_hdr.contents != NULL)
7522 {
7523 *contents = elf_section_data (sec)->this_hdr.contents;
7524 return TRUE;
7525 }
7526
7527 return bfd_malloc_and_get_section (abfd, sec, contents);
7528 }
7529
7530 /* Look through the relocs for a section during the first phase, and
7531 allocate space in the global offset table. */
7532
7533 bfd_boolean
7534 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7535 asection *sec, const Elf_Internal_Rela *relocs)
7536 {
7537 const char *name;
7538 bfd *dynobj;
7539 Elf_Internal_Shdr *symtab_hdr;
7540 struct elf_link_hash_entry **sym_hashes;
7541 size_t extsymoff;
7542 const Elf_Internal_Rela *rel;
7543 const Elf_Internal_Rela *rel_end;
7544 asection *sreloc;
7545 const struct elf_backend_data *bed;
7546 struct mips_elf_link_hash_table *htab;
7547 bfd_byte *contents;
7548 bfd_vma addend;
7549 reloc_howto_type *howto;
7550
7551 if (info->relocatable)
7552 return TRUE;
7553
7554 htab = mips_elf_hash_table (info);
7555 BFD_ASSERT (htab != NULL);
7556
7557 dynobj = elf_hash_table (info)->dynobj;
7558 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7559 sym_hashes = elf_sym_hashes (abfd);
7560 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7561
7562 bed = get_elf_backend_data (abfd);
7563 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7564
7565 /* Check for the mips16 stub sections. */
7566
7567 name = bfd_get_section_name (abfd, sec);
7568 if (FN_STUB_P (name))
7569 {
7570 unsigned long r_symndx;
7571
7572 /* Look at the relocation information to figure out which symbol
7573 this is for. */
7574
7575 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7576 if (r_symndx == 0)
7577 {
7578 (*_bfd_error_handler)
7579 (_("%B: Warning: cannot determine the target function for"
7580 " stub section `%s'"),
7581 abfd, name);
7582 bfd_set_error (bfd_error_bad_value);
7583 return FALSE;
7584 }
7585
7586 if (r_symndx < extsymoff
7587 || sym_hashes[r_symndx - extsymoff] == NULL)
7588 {
7589 asection *o;
7590
7591 /* This stub is for a local symbol. This stub will only be
7592 needed if there is some relocation in this BFD, other
7593 than a 16 bit function call, which refers to this symbol. */
7594 for (o = abfd->sections; o != NULL; o = o->next)
7595 {
7596 Elf_Internal_Rela *sec_relocs;
7597 const Elf_Internal_Rela *r, *rend;
7598
7599 /* We can ignore stub sections when looking for relocs. */
7600 if ((o->flags & SEC_RELOC) == 0
7601 || o->reloc_count == 0
7602 || section_allows_mips16_refs_p (o))
7603 continue;
7604
7605 sec_relocs
7606 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7607 info->keep_memory);
7608 if (sec_relocs == NULL)
7609 return FALSE;
7610
7611 rend = sec_relocs + o->reloc_count;
7612 for (r = sec_relocs; r < rend; r++)
7613 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7614 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7615 break;
7616
7617 if (elf_section_data (o)->relocs != sec_relocs)
7618 free (sec_relocs);
7619
7620 if (r < rend)
7621 break;
7622 }
7623
7624 if (o == NULL)
7625 {
7626 /* There is no non-call reloc for this stub, so we do
7627 not need it. Since this function is called before
7628 the linker maps input sections to output sections, we
7629 can easily discard it by setting the SEC_EXCLUDE
7630 flag. */
7631 sec->flags |= SEC_EXCLUDE;
7632 return TRUE;
7633 }
7634
7635 /* Record this stub in an array of local symbol stubs for
7636 this BFD. */
7637 if (elf_tdata (abfd)->local_stubs == NULL)
7638 {
7639 unsigned long symcount;
7640 asection **n;
7641 bfd_size_type amt;
7642
7643 if (elf_bad_symtab (abfd))
7644 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7645 else
7646 symcount = symtab_hdr->sh_info;
7647 amt = symcount * sizeof (asection *);
7648 n = bfd_zalloc (abfd, amt);
7649 if (n == NULL)
7650 return FALSE;
7651 elf_tdata (abfd)->local_stubs = n;
7652 }
7653
7654 sec->flags |= SEC_KEEP;
7655 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7656
7657 /* We don't need to set mips16_stubs_seen in this case.
7658 That flag is used to see whether we need to look through
7659 the global symbol table for stubs. We don't need to set
7660 it here, because we just have a local stub. */
7661 }
7662 else
7663 {
7664 struct mips_elf_link_hash_entry *h;
7665
7666 h = ((struct mips_elf_link_hash_entry *)
7667 sym_hashes[r_symndx - extsymoff]);
7668
7669 while (h->root.root.type == bfd_link_hash_indirect
7670 || h->root.root.type == bfd_link_hash_warning)
7671 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7672
7673 /* H is the symbol this stub is for. */
7674
7675 /* If we already have an appropriate stub for this function, we
7676 don't need another one, so we can discard this one. Since
7677 this function is called before the linker maps input sections
7678 to output sections, we can easily discard it by setting the
7679 SEC_EXCLUDE flag. */
7680 if (h->fn_stub != NULL)
7681 {
7682 sec->flags |= SEC_EXCLUDE;
7683 return TRUE;
7684 }
7685
7686 sec->flags |= SEC_KEEP;
7687 h->fn_stub = sec;
7688 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7689 }
7690 }
7691 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7692 {
7693 unsigned long r_symndx;
7694 struct mips_elf_link_hash_entry *h;
7695 asection **loc;
7696
7697 /* Look at the relocation information to figure out which symbol
7698 this is for. */
7699
7700 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7701 if (r_symndx == 0)
7702 {
7703 (*_bfd_error_handler)
7704 (_("%B: Warning: cannot determine the target function for"
7705 " stub section `%s'"),
7706 abfd, name);
7707 bfd_set_error (bfd_error_bad_value);
7708 return FALSE;
7709 }
7710
7711 if (r_symndx < extsymoff
7712 || sym_hashes[r_symndx - extsymoff] == NULL)
7713 {
7714 asection *o;
7715
7716 /* This stub is for a local symbol. This stub will only be
7717 needed if there is some relocation (R_MIPS16_26) in this BFD
7718 that refers to this symbol. */
7719 for (o = abfd->sections; o != NULL; o = o->next)
7720 {
7721 Elf_Internal_Rela *sec_relocs;
7722 const Elf_Internal_Rela *r, *rend;
7723
7724 /* We can ignore stub sections when looking for relocs. */
7725 if ((o->flags & SEC_RELOC) == 0
7726 || o->reloc_count == 0
7727 || section_allows_mips16_refs_p (o))
7728 continue;
7729
7730 sec_relocs
7731 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7732 info->keep_memory);
7733 if (sec_relocs == NULL)
7734 return FALSE;
7735
7736 rend = sec_relocs + o->reloc_count;
7737 for (r = sec_relocs; r < rend; r++)
7738 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7739 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7740 break;
7741
7742 if (elf_section_data (o)->relocs != sec_relocs)
7743 free (sec_relocs);
7744
7745 if (r < rend)
7746 break;
7747 }
7748
7749 if (o == NULL)
7750 {
7751 /* There is no non-call reloc for this stub, so we do
7752 not need it. Since this function is called before
7753 the linker maps input sections to output sections, we
7754 can easily discard it by setting the SEC_EXCLUDE
7755 flag. */
7756 sec->flags |= SEC_EXCLUDE;
7757 return TRUE;
7758 }
7759
7760 /* Record this stub in an array of local symbol call_stubs for
7761 this BFD. */
7762 if (elf_tdata (abfd)->local_call_stubs == NULL)
7763 {
7764 unsigned long symcount;
7765 asection **n;
7766 bfd_size_type amt;
7767
7768 if (elf_bad_symtab (abfd))
7769 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7770 else
7771 symcount = symtab_hdr->sh_info;
7772 amt = symcount * sizeof (asection *);
7773 n = bfd_zalloc (abfd, amt);
7774 if (n == NULL)
7775 return FALSE;
7776 elf_tdata (abfd)->local_call_stubs = n;
7777 }
7778
7779 sec->flags |= SEC_KEEP;
7780 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7781
7782 /* We don't need to set mips16_stubs_seen in this case.
7783 That flag is used to see whether we need to look through
7784 the global symbol table for stubs. We don't need to set
7785 it here, because we just have a local stub. */
7786 }
7787 else
7788 {
7789 h = ((struct mips_elf_link_hash_entry *)
7790 sym_hashes[r_symndx - extsymoff]);
7791
7792 /* H is the symbol this stub is for. */
7793
7794 if (CALL_FP_STUB_P (name))
7795 loc = &h->call_fp_stub;
7796 else
7797 loc = &h->call_stub;
7798
7799 /* If we already have an appropriate stub for this function, we
7800 don't need another one, so we can discard this one. Since
7801 this function is called before the linker maps input sections
7802 to output sections, we can easily discard it by setting the
7803 SEC_EXCLUDE flag. */
7804 if (*loc != NULL)
7805 {
7806 sec->flags |= SEC_EXCLUDE;
7807 return TRUE;
7808 }
7809
7810 sec->flags |= SEC_KEEP;
7811 *loc = sec;
7812 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7813 }
7814 }
7815
7816 sreloc = NULL;
7817 contents = NULL;
7818 for (rel = relocs; rel < rel_end; ++rel)
7819 {
7820 unsigned long r_symndx;
7821 unsigned int r_type;
7822 struct elf_link_hash_entry *h;
7823 bfd_boolean can_make_dynamic_p;
7824
7825 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7826 r_type = ELF_R_TYPE (abfd, rel->r_info);
7827
7828 if (r_symndx < extsymoff)
7829 h = NULL;
7830 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7831 {
7832 (*_bfd_error_handler)
7833 (_("%B: Malformed reloc detected for section %s"),
7834 abfd, name);
7835 bfd_set_error (bfd_error_bad_value);
7836 return FALSE;
7837 }
7838 else
7839 {
7840 h = sym_hashes[r_symndx - extsymoff];
7841 while (h != NULL
7842 && (h->root.type == bfd_link_hash_indirect
7843 || h->root.type == bfd_link_hash_warning))
7844 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7845 }
7846
7847 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7848 relocation into a dynamic one. */
7849 can_make_dynamic_p = FALSE;
7850 switch (r_type)
7851 {
7852 case R_MIPS_GOT16:
7853 case R_MIPS_CALL16:
7854 case R_MIPS_CALL_HI16:
7855 case R_MIPS_CALL_LO16:
7856 case R_MIPS_GOT_HI16:
7857 case R_MIPS_GOT_LO16:
7858 case R_MIPS_GOT_PAGE:
7859 case R_MIPS_GOT_OFST:
7860 case R_MIPS_GOT_DISP:
7861 case R_MIPS_TLS_GOTTPREL:
7862 case R_MIPS_TLS_GD:
7863 case R_MIPS_TLS_LDM:
7864 case R_MIPS16_GOT16:
7865 case R_MIPS16_CALL16:
7866 case R_MIPS16_TLS_GOTTPREL:
7867 case R_MIPS16_TLS_GD:
7868 case R_MIPS16_TLS_LDM:
7869 case R_MICROMIPS_GOT16:
7870 case R_MICROMIPS_CALL16:
7871 case R_MICROMIPS_CALL_HI16:
7872 case R_MICROMIPS_CALL_LO16:
7873 case R_MICROMIPS_GOT_HI16:
7874 case R_MICROMIPS_GOT_LO16:
7875 case R_MICROMIPS_GOT_PAGE:
7876 case R_MICROMIPS_GOT_OFST:
7877 case R_MICROMIPS_GOT_DISP:
7878 case R_MICROMIPS_TLS_GOTTPREL:
7879 case R_MICROMIPS_TLS_GD:
7880 case R_MICROMIPS_TLS_LDM:
7881 if (dynobj == NULL)
7882 elf_hash_table (info)->dynobj = dynobj = abfd;
7883 if (!mips_elf_create_got_section (dynobj, info))
7884 return FALSE;
7885 if (htab->is_vxworks && !info->shared)
7886 {
7887 (*_bfd_error_handler)
7888 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7889 abfd, (unsigned long) rel->r_offset);
7890 bfd_set_error (bfd_error_bad_value);
7891 return FALSE;
7892 }
7893 break;
7894
7895 /* This is just a hint; it can safely be ignored. Don't set
7896 has_static_relocs for the corresponding symbol. */
7897 case R_MIPS_JALR:
7898 case R_MICROMIPS_JALR:
7899 break;
7900
7901 case R_MIPS_32:
7902 case R_MIPS_REL32:
7903 case R_MIPS_64:
7904 /* In VxWorks executables, references to external symbols
7905 must be handled using copy relocs or PLT entries; it is not
7906 possible to convert this relocation into a dynamic one.
7907
7908 For executables that use PLTs and copy-relocs, we have a
7909 choice between converting the relocation into a dynamic
7910 one or using copy relocations or PLT entries. It is
7911 usually better to do the former, unless the relocation is
7912 against a read-only section. */
7913 if ((info->shared
7914 || (h != NULL
7915 && !htab->is_vxworks
7916 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7917 && !(!info->nocopyreloc
7918 && !PIC_OBJECT_P (abfd)
7919 && MIPS_ELF_READONLY_SECTION (sec))))
7920 && (sec->flags & SEC_ALLOC) != 0)
7921 {
7922 can_make_dynamic_p = TRUE;
7923 if (dynobj == NULL)
7924 elf_hash_table (info)->dynobj = dynobj = abfd;
7925 break;
7926 }
7927 /* For sections that are not SEC_ALLOC a copy reloc would be
7928 output if possible (implying questionable semantics for
7929 read-only data objects) or otherwise the final link would
7930 fail as ld.so will not process them and could not therefore
7931 handle any outstanding dynamic relocations.
7932
7933 For such sections that are also SEC_DEBUGGING, we can avoid
7934 these problems by simply ignoring any relocs as these
7935 sections have a predefined use and we know it is safe to do
7936 so.
7937
7938 This is needed in cases such as a global symbol definition
7939 in a shared library causing a common symbol from an object
7940 file to be converted to an undefined reference. If that
7941 happens, then all the relocations against this symbol from
7942 SEC_DEBUGGING sections in the object file will resolve to
7943 nil. */
7944 if ((sec->flags & SEC_DEBUGGING) != 0)
7945 break;
7946 /* Fall through. */
7947
7948 default:
7949 /* Most static relocations require pointer equality, except
7950 for branches. */
7951 if (h)
7952 h->pointer_equality_needed = TRUE;
7953 /* Fall through. */
7954
7955 case R_MIPS_26:
7956 case R_MIPS_PC16:
7957 case R_MIPS16_26:
7958 case R_MICROMIPS_26_S1:
7959 case R_MICROMIPS_PC7_S1:
7960 case R_MICROMIPS_PC10_S1:
7961 case R_MICROMIPS_PC16_S1:
7962 case R_MICROMIPS_PC23_S2:
7963 if (h)
7964 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7965 break;
7966 }
7967
7968 if (h)
7969 {
7970 /* Relocations against the special VxWorks __GOTT_BASE__ and
7971 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7972 room for them in .rela.dyn. */
7973 if (is_gott_symbol (info, h))
7974 {
7975 if (sreloc == NULL)
7976 {
7977 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7978 if (sreloc == NULL)
7979 return FALSE;
7980 }
7981 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7982 if (MIPS_ELF_READONLY_SECTION (sec))
7983 /* We tell the dynamic linker that there are
7984 relocations against the text segment. */
7985 info->flags |= DF_TEXTREL;
7986 }
7987 }
7988 else if (call_lo16_reloc_p (r_type)
7989 || got_lo16_reloc_p (r_type)
7990 || got_disp_reloc_p (r_type)
7991 || (got16_reloc_p (r_type) && htab->is_vxworks))
7992 {
7993 /* We may need a local GOT entry for this relocation. We
7994 don't count R_MIPS_GOT_PAGE because we can estimate the
7995 maximum number of pages needed by looking at the size of
7996 the segment. Similar comments apply to R_MIPS*_GOT16 and
7997 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7998 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7999 R_MIPS_CALL_HI16 because these are always followed by an
8000 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8001 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8002 rel->r_addend, info, 0))
8003 return FALSE;
8004 }
8005
8006 if (h != NULL
8007 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8008 ELF_ST_IS_MIPS16 (h->other)))
8009 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8010
8011 switch (r_type)
8012 {
8013 case R_MIPS_CALL16:
8014 case R_MIPS16_CALL16:
8015 case R_MICROMIPS_CALL16:
8016 if (h == NULL)
8017 {
8018 (*_bfd_error_handler)
8019 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8020 abfd, (unsigned long) rel->r_offset);
8021 bfd_set_error (bfd_error_bad_value);
8022 return FALSE;
8023 }
8024 /* Fall through. */
8025
8026 case R_MIPS_CALL_HI16:
8027 case R_MIPS_CALL_LO16:
8028 case R_MICROMIPS_CALL_HI16:
8029 case R_MICROMIPS_CALL_LO16:
8030 if (h != NULL)
8031 {
8032 /* Make sure there is room in the regular GOT to hold the
8033 function's address. We may eliminate it in favour of
8034 a .got.plt entry later; see mips_elf_count_got_symbols. */
8035 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
8036 return FALSE;
8037
8038 /* We need a stub, not a plt entry for the undefined
8039 function. But we record it as if it needs plt. See
8040 _bfd_elf_adjust_dynamic_symbol. */
8041 h->needs_plt = 1;
8042 h->type = STT_FUNC;
8043 }
8044 break;
8045
8046 case R_MIPS_GOT_PAGE:
8047 case R_MICROMIPS_GOT_PAGE:
8048 /* If this is a global, overridable symbol, GOT_PAGE will
8049 decay to GOT_DISP, so we'll need a GOT entry for it. */
8050 if (h)
8051 {
8052 struct mips_elf_link_hash_entry *hmips =
8053 (struct mips_elf_link_hash_entry *) h;
8054
8055 /* This symbol is definitely not overridable. */
8056 if (hmips->root.def_regular
8057 && ! (info->shared && ! info->symbolic
8058 && ! hmips->root.forced_local))
8059 h = NULL;
8060 }
8061 /* Fall through. */
8062
8063 case R_MIPS16_GOT16:
8064 case R_MIPS_GOT16:
8065 case R_MIPS_GOT_HI16:
8066 case R_MIPS_GOT_LO16:
8067 case R_MICROMIPS_GOT16:
8068 case R_MICROMIPS_GOT_HI16:
8069 case R_MICROMIPS_GOT_LO16:
8070 if (!h || got_page_reloc_p (r_type))
8071 {
8072 /* This relocation needs (or may need, if h != NULL) a
8073 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8074 know for sure until we know whether the symbol is
8075 preemptible. */
8076 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8077 {
8078 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8079 return FALSE;
8080 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8081 addend = mips_elf_read_rel_addend (abfd, rel,
8082 howto, contents);
8083 if (got16_reloc_p (r_type))
8084 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8085 contents, &addend);
8086 else
8087 addend <<= howto->rightshift;
8088 }
8089 else
8090 addend = rel->r_addend;
8091 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8092 addend))
8093 return FALSE;
8094 }
8095 /* Fall through. */
8096
8097 case R_MIPS_GOT_DISP:
8098 case R_MICROMIPS_GOT_DISP:
8099 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8100 FALSE, 0))
8101 return FALSE;
8102 break;
8103
8104 case R_MIPS_TLS_GOTTPREL:
8105 case R_MIPS16_TLS_GOTTPREL:
8106 case R_MICROMIPS_TLS_GOTTPREL:
8107 if (info->shared)
8108 info->flags |= DF_STATIC_TLS;
8109 /* Fall through */
8110
8111 case R_MIPS_TLS_LDM:
8112 case R_MIPS16_TLS_LDM:
8113 case R_MICROMIPS_TLS_LDM:
8114 if (tls_ldm_reloc_p (r_type))
8115 {
8116 r_symndx = STN_UNDEF;
8117 h = NULL;
8118 }
8119 /* Fall through */
8120
8121 case R_MIPS_TLS_GD:
8122 case R_MIPS16_TLS_GD:
8123 case R_MICROMIPS_TLS_GD:
8124 /* This symbol requires a global offset table entry, or two
8125 for TLS GD relocations. */
8126 {
8127 unsigned char flag;
8128
8129 flag = (tls_gd_reloc_p (r_type)
8130 ? GOT_TLS_GD
8131 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8132 if (h != NULL)
8133 {
8134 struct mips_elf_link_hash_entry *hmips =
8135 (struct mips_elf_link_hash_entry *) h;
8136 hmips->tls_type |= flag;
8137
8138 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8139 FALSE, flag))
8140 return FALSE;
8141 }
8142 else
8143 {
8144 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8145
8146 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8147 rel->r_addend,
8148 info, flag))
8149 return FALSE;
8150 }
8151 }
8152 break;
8153
8154 case R_MIPS_32:
8155 case R_MIPS_REL32:
8156 case R_MIPS_64:
8157 /* In VxWorks executables, references to external symbols
8158 are handled using copy relocs or PLT stubs, so there's
8159 no need to add a .rela.dyn entry for this relocation. */
8160 if (can_make_dynamic_p)
8161 {
8162 if (sreloc == NULL)
8163 {
8164 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8165 if (sreloc == NULL)
8166 return FALSE;
8167 }
8168 if (info->shared && h == NULL)
8169 {
8170 /* When creating a shared object, we must copy these
8171 reloc types into the output file as R_MIPS_REL32
8172 relocs. Make room for this reloc in .rel(a).dyn. */
8173 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8174 if (MIPS_ELF_READONLY_SECTION (sec))
8175 /* We tell the dynamic linker that there are
8176 relocations against the text segment. */
8177 info->flags |= DF_TEXTREL;
8178 }
8179 else
8180 {
8181 struct mips_elf_link_hash_entry *hmips;
8182
8183 /* For a shared object, we must copy this relocation
8184 unless the symbol turns out to be undefined and
8185 weak with non-default visibility, in which case
8186 it will be left as zero.
8187
8188 We could elide R_MIPS_REL32 for locally binding symbols
8189 in shared libraries, but do not yet do so.
8190
8191 For an executable, we only need to copy this
8192 reloc if the symbol is defined in a dynamic
8193 object. */
8194 hmips = (struct mips_elf_link_hash_entry *) h;
8195 ++hmips->possibly_dynamic_relocs;
8196 if (MIPS_ELF_READONLY_SECTION (sec))
8197 /* We need it to tell the dynamic linker if there
8198 are relocations against the text segment. */
8199 hmips->readonly_reloc = TRUE;
8200 }
8201 }
8202
8203 if (SGI_COMPAT (abfd))
8204 mips_elf_hash_table (info)->compact_rel_size +=
8205 sizeof (Elf32_External_crinfo);
8206 break;
8207
8208 case R_MIPS_26:
8209 case R_MIPS_GPREL16:
8210 case R_MIPS_LITERAL:
8211 case R_MIPS_GPREL32:
8212 case R_MICROMIPS_26_S1:
8213 case R_MICROMIPS_GPREL16:
8214 case R_MICROMIPS_LITERAL:
8215 case R_MICROMIPS_GPREL7_S2:
8216 if (SGI_COMPAT (abfd))
8217 mips_elf_hash_table (info)->compact_rel_size +=
8218 sizeof (Elf32_External_crinfo);
8219 break;
8220
8221 /* This relocation describes the C++ object vtable hierarchy.
8222 Reconstruct it for later use during GC. */
8223 case R_MIPS_GNU_VTINHERIT:
8224 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8225 return FALSE;
8226 break;
8227
8228 /* This relocation describes which C++ vtable entries are actually
8229 used. Record for later use during GC. */
8230 case R_MIPS_GNU_VTENTRY:
8231 BFD_ASSERT (h != NULL);
8232 if (h != NULL
8233 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8234 return FALSE;
8235 break;
8236
8237 default:
8238 break;
8239 }
8240
8241 /* We must not create a stub for a symbol that has relocations
8242 related to taking the function's address. This doesn't apply to
8243 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8244 a normal .got entry. */
8245 if (!htab->is_vxworks && h != NULL)
8246 switch (r_type)
8247 {
8248 default:
8249 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8250 break;
8251 case R_MIPS16_CALL16:
8252 case R_MIPS_CALL16:
8253 case R_MIPS_CALL_HI16:
8254 case R_MIPS_CALL_LO16:
8255 case R_MIPS_JALR:
8256 case R_MICROMIPS_CALL16:
8257 case R_MICROMIPS_CALL_HI16:
8258 case R_MICROMIPS_CALL_LO16:
8259 case R_MICROMIPS_JALR:
8260 break;
8261 }
8262
8263 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8264 if there is one. We only need to handle global symbols here;
8265 we decide whether to keep or delete stubs for local symbols
8266 when processing the stub's relocations. */
8267 if (h != NULL
8268 && !mips16_call_reloc_p (r_type)
8269 && !section_allows_mips16_refs_p (sec))
8270 {
8271 struct mips_elf_link_hash_entry *mh;
8272
8273 mh = (struct mips_elf_link_hash_entry *) h;
8274 mh->need_fn_stub = TRUE;
8275 }
8276
8277 /* Refuse some position-dependent relocations when creating a
8278 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8279 not PIC, but we can create dynamic relocations and the result
8280 will be fine. Also do not refuse R_MIPS_LO16, which can be
8281 combined with R_MIPS_GOT16. */
8282 if (info->shared)
8283 {
8284 switch (r_type)
8285 {
8286 case R_MIPS16_HI16:
8287 case R_MIPS_HI16:
8288 case R_MIPS_HIGHER:
8289 case R_MIPS_HIGHEST:
8290 case R_MICROMIPS_HI16:
8291 case R_MICROMIPS_HIGHER:
8292 case R_MICROMIPS_HIGHEST:
8293 /* Don't refuse a high part relocation if it's against
8294 no symbol (e.g. part of a compound relocation). */
8295 if (r_symndx == STN_UNDEF)
8296 break;
8297
8298 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8299 and has a special meaning. */
8300 if (!NEWABI_P (abfd) && h != NULL
8301 && strcmp (h->root.root.string, "_gp_disp") == 0)
8302 break;
8303
8304 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8305 if (is_gott_symbol (info, h))
8306 break;
8307
8308 /* FALLTHROUGH */
8309
8310 case R_MIPS16_26:
8311 case R_MIPS_26:
8312 case R_MICROMIPS_26_S1:
8313 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8314 (*_bfd_error_handler)
8315 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8316 abfd, howto->name,
8317 (h) ? h->root.root.string : "a local symbol");
8318 bfd_set_error (bfd_error_bad_value);
8319 return FALSE;
8320 default:
8321 break;
8322 }
8323 }
8324 }
8325
8326 return TRUE;
8327 }
8328 \f
8329 bfd_boolean
8330 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8331 struct bfd_link_info *link_info,
8332 bfd_boolean *again)
8333 {
8334 Elf_Internal_Rela *internal_relocs;
8335 Elf_Internal_Rela *irel, *irelend;
8336 Elf_Internal_Shdr *symtab_hdr;
8337 bfd_byte *contents = NULL;
8338 size_t extsymoff;
8339 bfd_boolean changed_contents = FALSE;
8340 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8341 Elf_Internal_Sym *isymbuf = NULL;
8342
8343 /* We are not currently changing any sizes, so only one pass. */
8344 *again = FALSE;
8345
8346 if (link_info->relocatable)
8347 return TRUE;
8348
8349 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8350 link_info->keep_memory);
8351 if (internal_relocs == NULL)
8352 return TRUE;
8353
8354 irelend = internal_relocs + sec->reloc_count
8355 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8356 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8357 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8358
8359 for (irel = internal_relocs; irel < irelend; irel++)
8360 {
8361 bfd_vma symval;
8362 bfd_signed_vma sym_offset;
8363 unsigned int r_type;
8364 unsigned long r_symndx;
8365 asection *sym_sec;
8366 unsigned long instruction;
8367
8368 /* Turn jalr into bgezal, and jr into beq, if they're marked
8369 with a JALR relocation, that indicate where they jump to.
8370 This saves some pipeline bubbles. */
8371 r_type = ELF_R_TYPE (abfd, irel->r_info);
8372 if (r_type != R_MIPS_JALR)
8373 continue;
8374
8375 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8376 /* Compute the address of the jump target. */
8377 if (r_symndx >= extsymoff)
8378 {
8379 struct mips_elf_link_hash_entry *h
8380 = ((struct mips_elf_link_hash_entry *)
8381 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8382
8383 while (h->root.root.type == bfd_link_hash_indirect
8384 || h->root.root.type == bfd_link_hash_warning)
8385 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8386
8387 /* If a symbol is undefined, or if it may be overridden,
8388 skip it. */
8389 if (! ((h->root.root.type == bfd_link_hash_defined
8390 || h->root.root.type == bfd_link_hash_defweak)
8391 && h->root.root.u.def.section)
8392 || (link_info->shared && ! link_info->symbolic
8393 && !h->root.forced_local))
8394 continue;
8395
8396 sym_sec = h->root.root.u.def.section;
8397 if (sym_sec->output_section)
8398 symval = (h->root.root.u.def.value
8399 + sym_sec->output_section->vma
8400 + sym_sec->output_offset);
8401 else
8402 symval = h->root.root.u.def.value;
8403 }
8404 else
8405 {
8406 Elf_Internal_Sym *isym;
8407
8408 /* Read this BFD's symbols if we haven't done so already. */
8409 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8410 {
8411 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8412 if (isymbuf == NULL)
8413 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8414 symtab_hdr->sh_info, 0,
8415 NULL, NULL, NULL);
8416 if (isymbuf == NULL)
8417 goto relax_return;
8418 }
8419
8420 isym = isymbuf + r_symndx;
8421 if (isym->st_shndx == SHN_UNDEF)
8422 continue;
8423 else if (isym->st_shndx == SHN_ABS)
8424 sym_sec = bfd_abs_section_ptr;
8425 else if (isym->st_shndx == SHN_COMMON)
8426 sym_sec = bfd_com_section_ptr;
8427 else
8428 sym_sec
8429 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8430 symval = isym->st_value
8431 + sym_sec->output_section->vma
8432 + sym_sec->output_offset;
8433 }
8434
8435 /* Compute branch offset, from delay slot of the jump to the
8436 branch target. */
8437 sym_offset = (symval + irel->r_addend)
8438 - (sec_start + irel->r_offset + 4);
8439
8440 /* Branch offset must be properly aligned. */
8441 if ((sym_offset & 3) != 0)
8442 continue;
8443
8444 sym_offset >>= 2;
8445
8446 /* Check that it's in range. */
8447 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8448 continue;
8449
8450 /* Get the section contents if we haven't done so already. */
8451 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8452 goto relax_return;
8453
8454 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8455
8456 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8457 if ((instruction & 0xfc1fffff) == 0x0000f809)
8458 instruction = 0x04110000;
8459 /* If it was jr <reg>, turn it into b <target>. */
8460 else if ((instruction & 0xfc1fffff) == 0x00000008)
8461 instruction = 0x10000000;
8462 else
8463 continue;
8464
8465 instruction |= (sym_offset & 0xffff);
8466 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8467 changed_contents = TRUE;
8468 }
8469
8470 if (contents != NULL
8471 && elf_section_data (sec)->this_hdr.contents != contents)
8472 {
8473 if (!changed_contents && !link_info->keep_memory)
8474 free (contents);
8475 else
8476 {
8477 /* Cache the section contents for elf_link_input_bfd. */
8478 elf_section_data (sec)->this_hdr.contents = contents;
8479 }
8480 }
8481 return TRUE;
8482
8483 relax_return:
8484 if (contents != NULL
8485 && elf_section_data (sec)->this_hdr.contents != contents)
8486 free (contents);
8487 return FALSE;
8488 }
8489 \f
8490 /* Allocate space for global sym dynamic relocs. */
8491
8492 static bfd_boolean
8493 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8494 {
8495 struct bfd_link_info *info = inf;
8496 bfd *dynobj;
8497 struct mips_elf_link_hash_entry *hmips;
8498 struct mips_elf_link_hash_table *htab;
8499
8500 htab = mips_elf_hash_table (info);
8501 BFD_ASSERT (htab != NULL);
8502
8503 dynobj = elf_hash_table (info)->dynobj;
8504 hmips = (struct mips_elf_link_hash_entry *) h;
8505
8506 /* VxWorks executables are handled elsewhere; we only need to
8507 allocate relocations in shared objects. */
8508 if (htab->is_vxworks && !info->shared)
8509 return TRUE;
8510
8511 /* Ignore indirect symbols. All relocations against such symbols
8512 will be redirected to the target symbol. */
8513 if (h->root.type == bfd_link_hash_indirect)
8514 return TRUE;
8515
8516 /* If this symbol is defined in a dynamic object, or we are creating
8517 a shared library, we will need to copy any R_MIPS_32 or
8518 R_MIPS_REL32 relocs against it into the output file. */
8519 if (! info->relocatable
8520 && hmips->possibly_dynamic_relocs != 0
8521 && (h->root.type == bfd_link_hash_defweak
8522 || !h->def_regular
8523 || info->shared))
8524 {
8525 bfd_boolean do_copy = TRUE;
8526
8527 if (h->root.type == bfd_link_hash_undefweak)
8528 {
8529 /* Do not copy relocations for undefined weak symbols with
8530 non-default visibility. */
8531 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8532 do_copy = FALSE;
8533
8534 /* Make sure undefined weak symbols are output as a dynamic
8535 symbol in PIEs. */
8536 else if (h->dynindx == -1 && !h->forced_local)
8537 {
8538 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8539 return FALSE;
8540 }
8541 }
8542
8543 if (do_copy)
8544 {
8545 /* Even though we don't directly need a GOT entry for this symbol,
8546 the SVR4 psABI requires it to have a dynamic symbol table
8547 index greater that DT_MIPS_GOTSYM if there are dynamic
8548 relocations against it.
8549
8550 VxWorks does not enforce the same mapping between the GOT
8551 and the symbol table, so the same requirement does not
8552 apply there. */
8553 if (!htab->is_vxworks)
8554 {
8555 if (hmips->global_got_area > GGA_RELOC_ONLY)
8556 hmips->global_got_area = GGA_RELOC_ONLY;
8557 hmips->got_only_for_calls = FALSE;
8558 }
8559
8560 mips_elf_allocate_dynamic_relocations
8561 (dynobj, info, hmips->possibly_dynamic_relocs);
8562 if (hmips->readonly_reloc)
8563 /* We tell the dynamic linker that there are relocations
8564 against the text segment. */
8565 info->flags |= DF_TEXTREL;
8566 }
8567 }
8568
8569 return TRUE;
8570 }
8571
8572 /* Adjust a symbol defined by a dynamic object and referenced by a
8573 regular object. The current definition is in some section of the
8574 dynamic object, but we're not including those sections. We have to
8575 change the definition to something the rest of the link can
8576 understand. */
8577
8578 bfd_boolean
8579 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8580 struct elf_link_hash_entry *h)
8581 {
8582 bfd *dynobj;
8583 struct mips_elf_link_hash_entry *hmips;
8584 struct mips_elf_link_hash_table *htab;
8585
8586 htab = mips_elf_hash_table (info);
8587 BFD_ASSERT (htab != NULL);
8588
8589 dynobj = elf_hash_table (info)->dynobj;
8590 hmips = (struct mips_elf_link_hash_entry *) h;
8591
8592 /* Make sure we know what is going on here. */
8593 BFD_ASSERT (dynobj != NULL
8594 && (h->needs_plt
8595 || h->u.weakdef != NULL
8596 || (h->def_dynamic
8597 && h->ref_regular
8598 && !h->def_regular)));
8599
8600 hmips = (struct mips_elf_link_hash_entry *) h;
8601
8602 /* If there are call relocations against an externally-defined symbol,
8603 see whether we can create a MIPS lazy-binding stub for it. We can
8604 only do this if all references to the function are through call
8605 relocations, and in that case, the traditional lazy-binding stubs
8606 are much more efficient than PLT entries.
8607
8608 Traditional stubs are only available on SVR4 psABI-based systems;
8609 VxWorks always uses PLTs instead. */
8610 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8611 {
8612 if (! elf_hash_table (info)->dynamic_sections_created)
8613 return TRUE;
8614
8615 /* If this symbol is not defined in a regular file, then set
8616 the symbol to the stub location. This is required to make
8617 function pointers compare as equal between the normal
8618 executable and the shared library. */
8619 if (!h->def_regular)
8620 {
8621 hmips->needs_lazy_stub = TRUE;
8622 htab->lazy_stub_count++;
8623 return TRUE;
8624 }
8625 }
8626 /* As above, VxWorks requires PLT entries for externally-defined
8627 functions that are only accessed through call relocations.
8628
8629 Both VxWorks and non-VxWorks targets also need PLT entries if there
8630 are static-only relocations against an externally-defined function.
8631 This can technically occur for shared libraries if there are
8632 branches to the symbol, although it is unlikely that this will be
8633 used in practice due to the short ranges involved. It can occur
8634 for any relative or absolute relocation in executables; in that
8635 case, the PLT entry becomes the function's canonical address. */
8636 else if (((h->needs_plt && !hmips->no_fn_stub)
8637 || (h->type == STT_FUNC && hmips->has_static_relocs))
8638 && htab->use_plts_and_copy_relocs
8639 && !SYMBOL_CALLS_LOCAL (info, h)
8640 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8641 && h->root.type == bfd_link_hash_undefweak))
8642 {
8643 /* If this is the first symbol to need a PLT entry, allocate room
8644 for the header. */
8645 if (htab->splt->size == 0)
8646 {
8647 BFD_ASSERT (htab->sgotplt->size == 0);
8648
8649 /* If we're using the PLT additions to the psABI, each PLT
8650 entry is 16 bytes and the PLT0 entry is 32 bytes.
8651 Encourage better cache usage by aligning. We do this
8652 lazily to avoid pessimizing traditional objects. */
8653 if (!htab->is_vxworks
8654 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8655 return FALSE;
8656
8657 /* Make sure that .got.plt is word-aligned. We do this lazily
8658 for the same reason as above. */
8659 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8660 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8661 return FALSE;
8662
8663 htab->splt->size += htab->plt_header_size;
8664
8665 /* On non-VxWorks targets, the first two entries in .got.plt
8666 are reserved. */
8667 if (!htab->is_vxworks)
8668 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8669
8670 /* On VxWorks, also allocate room for the header's
8671 .rela.plt.unloaded entries. */
8672 if (htab->is_vxworks && !info->shared)
8673 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8674 }
8675
8676 /* Assign the next .plt entry to this symbol. */
8677 h->plt.offset = htab->splt->size;
8678 htab->splt->size += htab->plt_entry_size;
8679
8680 /* If the output file has no definition of the symbol, set the
8681 symbol's value to the address of the stub. */
8682 if (!info->shared && !h->def_regular)
8683 {
8684 h->root.u.def.section = htab->splt;
8685 h->root.u.def.value = h->plt.offset;
8686 /* For VxWorks, point at the PLT load stub rather than the
8687 lazy resolution stub; this stub will become the canonical
8688 function address. */
8689 if (htab->is_vxworks)
8690 h->root.u.def.value += 8;
8691 }
8692
8693 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8694 relocation. */
8695 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8696 htab->srelplt->size += (htab->is_vxworks
8697 ? MIPS_ELF_RELA_SIZE (dynobj)
8698 : MIPS_ELF_REL_SIZE (dynobj));
8699
8700 /* Make room for the .rela.plt.unloaded relocations. */
8701 if (htab->is_vxworks && !info->shared)
8702 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8703
8704 /* All relocations against this symbol that could have been made
8705 dynamic will now refer to the PLT entry instead. */
8706 hmips->possibly_dynamic_relocs = 0;
8707
8708 return TRUE;
8709 }
8710
8711 /* If this is a weak symbol, and there is a real definition, the
8712 processor independent code will have arranged for us to see the
8713 real definition first, and we can just use the same value. */
8714 if (h->u.weakdef != NULL)
8715 {
8716 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8717 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8718 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8719 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8720 return TRUE;
8721 }
8722
8723 /* Otherwise, there is nothing further to do for symbols defined
8724 in regular objects. */
8725 if (h->def_regular)
8726 return TRUE;
8727
8728 /* There's also nothing more to do if we'll convert all relocations
8729 against this symbol into dynamic relocations. */
8730 if (!hmips->has_static_relocs)
8731 return TRUE;
8732
8733 /* We're now relying on copy relocations. Complain if we have
8734 some that we can't convert. */
8735 if (!htab->use_plts_and_copy_relocs || info->shared)
8736 {
8737 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8738 "dynamic symbol %s"),
8739 h->root.root.string);
8740 bfd_set_error (bfd_error_bad_value);
8741 return FALSE;
8742 }
8743
8744 /* We must allocate the symbol in our .dynbss section, which will
8745 become part of the .bss section of the executable. There will be
8746 an entry for this symbol in the .dynsym section. The dynamic
8747 object will contain position independent code, so all references
8748 from the dynamic object to this symbol will go through the global
8749 offset table. The dynamic linker will use the .dynsym entry to
8750 determine the address it must put in the global offset table, so
8751 both the dynamic object and the regular object will refer to the
8752 same memory location for the variable. */
8753
8754 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8755 {
8756 if (htab->is_vxworks)
8757 htab->srelbss->size += sizeof (Elf32_External_Rela);
8758 else
8759 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8760 h->needs_copy = 1;
8761 }
8762
8763 /* All relocations against this symbol that could have been made
8764 dynamic will now refer to the local copy instead. */
8765 hmips->possibly_dynamic_relocs = 0;
8766
8767 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8768 }
8769 \f
8770 /* This function is called after all the input files have been read,
8771 and the input sections have been assigned to output sections. We
8772 check for any mips16 stub sections that we can discard. */
8773
8774 bfd_boolean
8775 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8776 struct bfd_link_info *info)
8777 {
8778 asection *ri;
8779 struct mips_elf_link_hash_table *htab;
8780 struct mips_htab_traverse_info hti;
8781
8782 htab = mips_elf_hash_table (info);
8783 BFD_ASSERT (htab != NULL);
8784
8785 /* The .reginfo section has a fixed size. */
8786 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8787 if (ri != NULL)
8788 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8789
8790 hti.info = info;
8791 hti.output_bfd = output_bfd;
8792 hti.error = FALSE;
8793 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8794 mips_elf_check_symbols, &hti);
8795 if (hti.error)
8796 return FALSE;
8797
8798 return TRUE;
8799 }
8800
8801 /* If the link uses a GOT, lay it out and work out its size. */
8802
8803 static bfd_boolean
8804 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8805 {
8806 bfd *dynobj;
8807 asection *s;
8808 struct mips_got_info *g;
8809 bfd_size_type loadable_size = 0;
8810 bfd_size_type page_gotno;
8811 bfd *sub;
8812 struct mips_elf_count_tls_arg count_tls_arg;
8813 struct mips_elf_link_hash_table *htab;
8814
8815 htab = mips_elf_hash_table (info);
8816 BFD_ASSERT (htab != NULL);
8817
8818 s = htab->sgot;
8819 if (s == NULL)
8820 return TRUE;
8821
8822 dynobj = elf_hash_table (info)->dynobj;
8823 g = htab->got_info;
8824
8825 /* Allocate room for the reserved entries. VxWorks always reserves
8826 3 entries; other objects only reserve 2 entries. */
8827 BFD_ASSERT (g->assigned_gotno == 0);
8828 if (htab->is_vxworks)
8829 htab->reserved_gotno = 3;
8830 else
8831 htab->reserved_gotno = 2;
8832 g->local_gotno += htab->reserved_gotno;
8833 g->assigned_gotno = htab->reserved_gotno;
8834
8835 /* Replace entries for indirect and warning symbols with entries for
8836 the target symbol. */
8837 if (!mips_elf_resolve_final_got_entries (g))
8838 return FALSE;
8839
8840 /* Count the number of GOT symbols. */
8841 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8842
8843 /* Calculate the total loadable size of the output. That
8844 will give us the maximum number of GOT_PAGE entries
8845 required. */
8846 for (sub = info->input_bfds; sub; sub = sub->link_next)
8847 {
8848 asection *subsection;
8849
8850 for (subsection = sub->sections;
8851 subsection;
8852 subsection = subsection->next)
8853 {
8854 if ((subsection->flags & SEC_ALLOC) == 0)
8855 continue;
8856 loadable_size += ((subsection->size + 0xf)
8857 &~ (bfd_size_type) 0xf);
8858 }
8859 }
8860
8861 if (htab->is_vxworks)
8862 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8863 relocations against local symbols evaluate to "G", and the EABI does
8864 not include R_MIPS_GOT_PAGE. */
8865 page_gotno = 0;
8866 else
8867 /* Assume there are two loadable segments consisting of contiguous
8868 sections. Is 5 enough? */
8869 page_gotno = (loadable_size >> 16) + 5;
8870
8871 /* Choose the smaller of the two estimates; both are intended to be
8872 conservative. */
8873 if (page_gotno > g->page_gotno)
8874 page_gotno = g->page_gotno;
8875
8876 g->local_gotno += page_gotno;
8877 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8878 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8879
8880 /* We need to calculate tls_gotno for global symbols at this point
8881 instead of building it up earlier, to avoid doublecounting
8882 entries for one global symbol from multiple input files. */
8883 count_tls_arg.info = info;
8884 count_tls_arg.needed = 0;
8885 elf_link_hash_traverse (elf_hash_table (info),
8886 mips_elf_count_global_tls_entries,
8887 &count_tls_arg);
8888 g->tls_gotno += count_tls_arg.needed;
8889 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8890
8891 /* VxWorks does not support multiple GOTs. It initializes $gp to
8892 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8893 dynamic loader. */
8894 if (htab->is_vxworks)
8895 {
8896 /* VxWorks executables do not need a GOT. */
8897 if (info->shared)
8898 {
8899 /* Each VxWorks GOT entry needs an explicit relocation. */
8900 unsigned int count;
8901
8902 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8903 if (count)
8904 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8905 }
8906 }
8907 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8908 {
8909 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8910 return FALSE;
8911 }
8912 else
8913 {
8914 struct mips_elf_count_tls_arg arg;
8915
8916 /* Set up TLS entries. */
8917 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8918 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8919
8920 /* Allocate room for the TLS relocations. */
8921 arg.info = info;
8922 arg.needed = 0;
8923 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8924 elf_link_hash_traverse (elf_hash_table (info),
8925 mips_elf_count_global_tls_relocs,
8926 &arg);
8927 if (arg.needed)
8928 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8929 }
8930
8931 return TRUE;
8932 }
8933
8934 /* Estimate the size of the .MIPS.stubs section. */
8935
8936 static void
8937 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8938 {
8939 struct mips_elf_link_hash_table *htab;
8940 bfd_size_type dynsymcount;
8941
8942 htab = mips_elf_hash_table (info);
8943 BFD_ASSERT (htab != NULL);
8944
8945 if (htab->lazy_stub_count == 0)
8946 return;
8947
8948 /* IRIX rld assumes that a function stub isn't at the end of the .text
8949 section, so add a dummy entry to the end. */
8950 htab->lazy_stub_count++;
8951
8952 /* Get a worst-case estimate of the number of dynamic symbols needed.
8953 At this point, dynsymcount does not account for section symbols
8954 and count_section_dynsyms may overestimate the number that will
8955 be needed. */
8956 dynsymcount = (elf_hash_table (info)->dynsymcount
8957 + count_section_dynsyms (output_bfd, info));
8958
8959 /* Determine the size of one stub entry. */
8960 htab->function_stub_size = (dynsymcount > 0x10000
8961 ? MIPS_FUNCTION_STUB_BIG_SIZE
8962 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8963
8964 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8965 }
8966
8967 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8968 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8969 allocate an entry in the stubs section. */
8970
8971 static bfd_boolean
8972 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8973 {
8974 struct mips_elf_link_hash_table *htab;
8975
8976 htab = (struct mips_elf_link_hash_table *) data;
8977 if (h->needs_lazy_stub)
8978 {
8979 h->root.root.u.def.section = htab->sstubs;
8980 h->root.root.u.def.value = htab->sstubs->size;
8981 h->root.plt.offset = htab->sstubs->size;
8982 htab->sstubs->size += htab->function_stub_size;
8983 }
8984 return TRUE;
8985 }
8986
8987 /* Allocate offsets in the stubs section to each symbol that needs one.
8988 Set the final size of the .MIPS.stub section. */
8989
8990 static void
8991 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8992 {
8993 struct mips_elf_link_hash_table *htab;
8994
8995 htab = mips_elf_hash_table (info);
8996 BFD_ASSERT (htab != NULL);
8997
8998 if (htab->lazy_stub_count == 0)
8999 return;
9000
9001 htab->sstubs->size = 0;
9002 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
9003 htab->sstubs->size += htab->function_stub_size;
9004 BFD_ASSERT (htab->sstubs->size
9005 == htab->lazy_stub_count * htab->function_stub_size);
9006 }
9007
9008 /* Set the sizes of the dynamic sections. */
9009
9010 bfd_boolean
9011 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9012 struct bfd_link_info *info)
9013 {
9014 bfd *dynobj;
9015 asection *s, *sreldyn;
9016 bfd_boolean reltext;
9017 struct mips_elf_link_hash_table *htab;
9018
9019 htab = mips_elf_hash_table (info);
9020 BFD_ASSERT (htab != NULL);
9021 dynobj = elf_hash_table (info)->dynobj;
9022 BFD_ASSERT (dynobj != NULL);
9023
9024 if (elf_hash_table (info)->dynamic_sections_created)
9025 {
9026 /* Set the contents of the .interp section to the interpreter. */
9027 if (info->executable)
9028 {
9029 s = bfd_get_section_by_name (dynobj, ".interp");
9030 BFD_ASSERT (s != NULL);
9031 s->size
9032 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9033 s->contents
9034 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9035 }
9036
9037 /* Create a symbol for the PLT, if we know that we are using it. */
9038 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9039 {
9040 struct elf_link_hash_entry *h;
9041
9042 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9043
9044 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9045 "_PROCEDURE_LINKAGE_TABLE_");
9046 htab->root.hplt = h;
9047 if (h == NULL)
9048 return FALSE;
9049 h->type = STT_FUNC;
9050 }
9051 }
9052
9053 /* Allocate space for global sym dynamic relocs. */
9054 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
9055
9056 mips_elf_estimate_stub_size (output_bfd, info);
9057
9058 if (!mips_elf_lay_out_got (output_bfd, info))
9059 return FALSE;
9060
9061 mips_elf_lay_out_lazy_stubs (info);
9062
9063 /* The check_relocs and adjust_dynamic_symbol entry points have
9064 determined the sizes of the various dynamic sections. Allocate
9065 memory for them. */
9066 reltext = FALSE;
9067 for (s = dynobj->sections; s != NULL; s = s->next)
9068 {
9069 const char *name;
9070
9071 /* It's OK to base decisions on the section name, because none
9072 of the dynobj section names depend upon the input files. */
9073 name = bfd_get_section_name (dynobj, s);
9074
9075 if ((s->flags & SEC_LINKER_CREATED) == 0)
9076 continue;
9077
9078 if (CONST_STRNEQ (name, ".rel"))
9079 {
9080 if (s->size != 0)
9081 {
9082 const char *outname;
9083 asection *target;
9084
9085 /* If this relocation section applies to a read only
9086 section, then we probably need a DT_TEXTREL entry.
9087 If the relocation section is .rel(a).dyn, we always
9088 assert a DT_TEXTREL entry rather than testing whether
9089 there exists a relocation to a read only section or
9090 not. */
9091 outname = bfd_get_section_name (output_bfd,
9092 s->output_section);
9093 target = bfd_get_section_by_name (output_bfd, outname + 4);
9094 if ((target != NULL
9095 && (target->flags & SEC_READONLY) != 0
9096 && (target->flags & SEC_ALLOC) != 0)
9097 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9098 reltext = TRUE;
9099
9100 /* We use the reloc_count field as a counter if we need
9101 to copy relocs into the output file. */
9102 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9103 s->reloc_count = 0;
9104
9105 /* If combreloc is enabled, elf_link_sort_relocs() will
9106 sort relocations, but in a different way than we do,
9107 and before we're done creating relocations. Also, it
9108 will move them around between input sections'
9109 relocation's contents, so our sorting would be
9110 broken, so don't let it run. */
9111 info->combreloc = 0;
9112 }
9113 }
9114 else if (! info->shared
9115 && ! mips_elf_hash_table (info)->use_rld_obj_head
9116 && CONST_STRNEQ (name, ".rld_map"))
9117 {
9118 /* We add a room for __rld_map. It will be filled in by the
9119 rtld to contain a pointer to the _r_debug structure. */
9120 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9121 }
9122 else if (SGI_COMPAT (output_bfd)
9123 && CONST_STRNEQ (name, ".compact_rel"))
9124 s->size += mips_elf_hash_table (info)->compact_rel_size;
9125 else if (s == htab->splt)
9126 {
9127 /* If the last PLT entry has a branch delay slot, allocate
9128 room for an extra nop to fill the delay slot. This is
9129 for CPUs without load interlocking. */
9130 if (! LOAD_INTERLOCKS_P (output_bfd)
9131 && ! htab->is_vxworks && s->size > 0)
9132 s->size += 4;
9133 }
9134 else if (! CONST_STRNEQ (name, ".init")
9135 && s != htab->sgot
9136 && s != htab->sgotplt
9137 && s != htab->sstubs
9138 && s != htab->sdynbss)
9139 {
9140 /* It's not one of our sections, so don't allocate space. */
9141 continue;
9142 }
9143
9144 if (s->size == 0)
9145 {
9146 s->flags |= SEC_EXCLUDE;
9147 continue;
9148 }
9149
9150 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9151 continue;
9152
9153 /* Allocate memory for the section contents. */
9154 s->contents = bfd_zalloc (dynobj, s->size);
9155 if (s->contents == NULL)
9156 {
9157 bfd_set_error (bfd_error_no_memory);
9158 return FALSE;
9159 }
9160 }
9161
9162 if (elf_hash_table (info)->dynamic_sections_created)
9163 {
9164 /* Add some entries to the .dynamic section. We fill in the
9165 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9166 must add the entries now so that we get the correct size for
9167 the .dynamic section. */
9168
9169 /* SGI object has the equivalence of DT_DEBUG in the
9170 DT_MIPS_RLD_MAP entry. This must come first because glibc
9171 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
9172 looks at the first one it sees. */
9173 if (!info->shared
9174 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9175 return FALSE;
9176
9177 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9178 used by the debugger. */
9179 if (info->executable
9180 && !SGI_COMPAT (output_bfd)
9181 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9182 return FALSE;
9183
9184 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9185 info->flags |= DF_TEXTREL;
9186
9187 if ((info->flags & DF_TEXTREL) != 0)
9188 {
9189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9190 return FALSE;
9191
9192 /* Clear the DF_TEXTREL flag. It will be set again if we
9193 write out an actual text relocation; we may not, because
9194 at this point we do not know whether e.g. any .eh_frame
9195 absolute relocations have been converted to PC-relative. */
9196 info->flags &= ~DF_TEXTREL;
9197 }
9198
9199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9200 return FALSE;
9201
9202 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9203 if (htab->is_vxworks)
9204 {
9205 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9206 use any of the DT_MIPS_* tags. */
9207 if (sreldyn && sreldyn->size > 0)
9208 {
9209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9210 return FALSE;
9211
9212 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9213 return FALSE;
9214
9215 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9216 return FALSE;
9217 }
9218 }
9219 else
9220 {
9221 if (sreldyn && sreldyn->size > 0)
9222 {
9223 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9224 return FALSE;
9225
9226 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9227 return FALSE;
9228
9229 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9230 return FALSE;
9231 }
9232
9233 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9234 return FALSE;
9235
9236 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9237 return FALSE;
9238
9239 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9240 return FALSE;
9241
9242 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9243 return FALSE;
9244
9245 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9246 return FALSE;
9247
9248 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9249 return FALSE;
9250
9251 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9252 return FALSE;
9253
9254 if (IRIX_COMPAT (dynobj) == ict_irix5
9255 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9256 return FALSE;
9257
9258 if (IRIX_COMPAT (dynobj) == ict_irix6
9259 && (bfd_get_section_by_name
9260 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9261 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9262 return FALSE;
9263 }
9264 if (htab->splt->size > 0)
9265 {
9266 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9267 return FALSE;
9268
9269 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9270 return FALSE;
9271
9272 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9273 return FALSE;
9274
9275 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9276 return FALSE;
9277 }
9278 if (htab->is_vxworks
9279 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9280 return FALSE;
9281 }
9282
9283 return TRUE;
9284 }
9285 \f
9286 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9287 Adjust its R_ADDEND field so that it is correct for the output file.
9288 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9289 and sections respectively; both use symbol indexes. */
9290
9291 static void
9292 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9293 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9294 asection **local_sections, Elf_Internal_Rela *rel)
9295 {
9296 unsigned int r_type, r_symndx;
9297 Elf_Internal_Sym *sym;
9298 asection *sec;
9299
9300 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9301 {
9302 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9303 if (gprel16_reloc_p (r_type)
9304 || r_type == R_MIPS_GPREL32
9305 || literal_reloc_p (r_type))
9306 {
9307 rel->r_addend += _bfd_get_gp_value (input_bfd);
9308 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9309 }
9310
9311 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9312 sym = local_syms + r_symndx;
9313
9314 /* Adjust REL's addend to account for section merging. */
9315 if (!info->relocatable)
9316 {
9317 sec = local_sections[r_symndx];
9318 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9319 }
9320
9321 /* This would normally be done by the rela_normal code in elflink.c. */
9322 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9323 rel->r_addend += local_sections[r_symndx]->output_offset;
9324 }
9325 }
9326
9327 /* Handle relocations against symbols from removed linkonce sections,
9328 or sections discarded by a linker script. We use this wrapper around
9329 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9330 on 64-bit ELF targets. In this case for any relocation handled, which
9331 always be the first in a triplet, the remaining two have to be processed
9332 together with the first, even if they are R_MIPS_NONE. It is the symbol
9333 index referred by the first reloc that applies to all the three and the
9334 remaining two never refer to an object symbol. And it is the final
9335 relocation (the last non-null one) that determines the output field of
9336 the whole relocation so retrieve the corresponding howto structure for
9337 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9338
9339 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9340 and therefore requires to be pasted in a loop. It also defines a block
9341 and does not protect any of its arguments, hence the extra brackets. */
9342
9343 static void
9344 mips_reloc_against_discarded_section (bfd *output_bfd,
9345 struct bfd_link_info *info,
9346 bfd *input_bfd, asection *input_section,
9347 Elf_Internal_Rela **rel,
9348 const Elf_Internal_Rela **relend,
9349 bfd_boolean rel_reloc,
9350 reloc_howto_type *howto,
9351 bfd_byte *contents)
9352 {
9353 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9354 int count = bed->s->int_rels_per_ext_rel;
9355 unsigned int r_type;
9356 int i;
9357
9358 for (i = count - 1; i > 0; i--)
9359 {
9360 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9361 if (r_type != R_MIPS_NONE)
9362 {
9363 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9364 break;
9365 }
9366 }
9367 do
9368 {
9369 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9370 (*rel), count, (*relend),
9371 howto, i, contents);
9372 }
9373 while (0);
9374 }
9375
9376 /* Relocate a MIPS ELF section. */
9377
9378 bfd_boolean
9379 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9380 bfd *input_bfd, asection *input_section,
9381 bfd_byte *contents, Elf_Internal_Rela *relocs,
9382 Elf_Internal_Sym *local_syms,
9383 asection **local_sections)
9384 {
9385 Elf_Internal_Rela *rel;
9386 const Elf_Internal_Rela *relend;
9387 bfd_vma addend = 0;
9388 bfd_boolean use_saved_addend_p = FALSE;
9389 const struct elf_backend_data *bed;
9390
9391 bed = get_elf_backend_data (output_bfd);
9392 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9393 for (rel = relocs; rel < relend; ++rel)
9394 {
9395 const char *name;
9396 bfd_vma value = 0;
9397 reloc_howto_type *howto;
9398 bfd_boolean cross_mode_jump_p;
9399 /* TRUE if the relocation is a RELA relocation, rather than a
9400 REL relocation. */
9401 bfd_boolean rela_relocation_p = TRUE;
9402 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9403 const char *msg;
9404 unsigned long r_symndx;
9405 asection *sec;
9406 Elf_Internal_Shdr *symtab_hdr;
9407 struct elf_link_hash_entry *h;
9408 bfd_boolean rel_reloc;
9409
9410 rel_reloc = (NEWABI_P (input_bfd)
9411 && mips_elf_rel_relocation_p (input_bfd, input_section,
9412 relocs, rel));
9413 /* Find the relocation howto for this relocation. */
9414 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9415
9416 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9417 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9418 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9419 {
9420 sec = local_sections[r_symndx];
9421 h = NULL;
9422 }
9423 else
9424 {
9425 unsigned long extsymoff;
9426
9427 extsymoff = 0;
9428 if (!elf_bad_symtab (input_bfd))
9429 extsymoff = symtab_hdr->sh_info;
9430 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9431 while (h->root.type == bfd_link_hash_indirect
9432 || h->root.type == bfd_link_hash_warning)
9433 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9434
9435 sec = NULL;
9436 if (h->root.type == bfd_link_hash_defined
9437 || h->root.type == bfd_link_hash_defweak)
9438 sec = h->root.u.def.section;
9439 }
9440
9441 if (sec != NULL && discarded_section (sec))
9442 {
9443 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9444 input_section, &rel, &relend,
9445 rel_reloc, howto, contents);
9446 continue;
9447 }
9448
9449 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9450 {
9451 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9452 64-bit code, but make sure all their addresses are in the
9453 lowermost or uppermost 32-bit section of the 64-bit address
9454 space. Thus, when they use an R_MIPS_64 they mean what is
9455 usually meant by R_MIPS_32, with the exception that the
9456 stored value is sign-extended to 64 bits. */
9457 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9458
9459 /* On big-endian systems, we need to lie about the position
9460 of the reloc. */
9461 if (bfd_big_endian (input_bfd))
9462 rel->r_offset += 4;
9463 }
9464
9465 if (!use_saved_addend_p)
9466 {
9467 /* If these relocations were originally of the REL variety,
9468 we must pull the addend out of the field that will be
9469 relocated. Otherwise, we simply use the contents of the
9470 RELA relocation. */
9471 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9472 relocs, rel))
9473 {
9474 rela_relocation_p = FALSE;
9475 addend = mips_elf_read_rel_addend (input_bfd, rel,
9476 howto, contents);
9477 if (hi16_reloc_p (r_type)
9478 || (got16_reloc_p (r_type)
9479 && mips_elf_local_relocation_p (input_bfd, rel,
9480 local_sections)))
9481 {
9482 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9483 contents, &addend))
9484 {
9485 if (h)
9486 name = h->root.root.string;
9487 else
9488 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9489 local_syms + r_symndx,
9490 sec);
9491 (*_bfd_error_handler)
9492 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9493 input_bfd, input_section, name, howto->name,
9494 rel->r_offset);
9495 }
9496 }
9497 else
9498 addend <<= howto->rightshift;
9499 }
9500 else
9501 addend = rel->r_addend;
9502 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9503 local_syms, local_sections, rel);
9504 }
9505
9506 if (info->relocatable)
9507 {
9508 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9509 && bfd_big_endian (input_bfd))
9510 rel->r_offset -= 4;
9511
9512 if (!rela_relocation_p && rel->r_addend)
9513 {
9514 addend += rel->r_addend;
9515 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9516 addend = mips_elf_high (addend);
9517 else if (r_type == R_MIPS_HIGHER)
9518 addend = mips_elf_higher (addend);
9519 else if (r_type == R_MIPS_HIGHEST)
9520 addend = mips_elf_highest (addend);
9521 else
9522 addend >>= howto->rightshift;
9523
9524 /* We use the source mask, rather than the destination
9525 mask because the place to which we are writing will be
9526 source of the addend in the final link. */
9527 addend &= howto->src_mask;
9528
9529 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9530 /* See the comment above about using R_MIPS_64 in the 32-bit
9531 ABI. Here, we need to update the addend. It would be
9532 possible to get away with just using the R_MIPS_32 reloc
9533 but for endianness. */
9534 {
9535 bfd_vma sign_bits;
9536 bfd_vma low_bits;
9537 bfd_vma high_bits;
9538
9539 if (addend & ((bfd_vma) 1 << 31))
9540 #ifdef BFD64
9541 sign_bits = ((bfd_vma) 1 << 32) - 1;
9542 #else
9543 sign_bits = -1;
9544 #endif
9545 else
9546 sign_bits = 0;
9547
9548 /* If we don't know that we have a 64-bit type,
9549 do two separate stores. */
9550 if (bfd_big_endian (input_bfd))
9551 {
9552 /* Store the sign-bits (which are most significant)
9553 first. */
9554 low_bits = sign_bits;
9555 high_bits = addend;
9556 }
9557 else
9558 {
9559 low_bits = addend;
9560 high_bits = sign_bits;
9561 }
9562 bfd_put_32 (input_bfd, low_bits,
9563 contents + rel->r_offset);
9564 bfd_put_32 (input_bfd, high_bits,
9565 contents + rel->r_offset + 4);
9566 continue;
9567 }
9568
9569 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9570 input_bfd, input_section,
9571 contents, FALSE))
9572 return FALSE;
9573 }
9574
9575 /* Go on to the next relocation. */
9576 continue;
9577 }
9578
9579 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9580 relocations for the same offset. In that case we are
9581 supposed to treat the output of each relocation as the addend
9582 for the next. */
9583 if (rel + 1 < relend
9584 && rel->r_offset == rel[1].r_offset
9585 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9586 use_saved_addend_p = TRUE;
9587 else
9588 use_saved_addend_p = FALSE;
9589
9590 /* Figure out what value we are supposed to relocate. */
9591 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9592 input_section, info, rel,
9593 addend, howto, local_syms,
9594 local_sections, &value,
9595 &name, &cross_mode_jump_p,
9596 use_saved_addend_p))
9597 {
9598 case bfd_reloc_continue:
9599 /* There's nothing to do. */
9600 continue;
9601
9602 case bfd_reloc_undefined:
9603 /* mips_elf_calculate_relocation already called the
9604 undefined_symbol callback. There's no real point in
9605 trying to perform the relocation at this point, so we
9606 just skip ahead to the next relocation. */
9607 continue;
9608
9609 case bfd_reloc_notsupported:
9610 msg = _("internal error: unsupported relocation error");
9611 info->callbacks->warning
9612 (info, msg, name, input_bfd, input_section, rel->r_offset);
9613 return FALSE;
9614
9615 case bfd_reloc_overflow:
9616 if (use_saved_addend_p)
9617 /* Ignore overflow until we reach the last relocation for
9618 a given location. */
9619 ;
9620 else
9621 {
9622 struct mips_elf_link_hash_table *htab;
9623
9624 htab = mips_elf_hash_table (info);
9625 BFD_ASSERT (htab != NULL);
9626 BFD_ASSERT (name != NULL);
9627 if (!htab->small_data_overflow_reported
9628 && (gprel16_reloc_p (howto->type)
9629 || literal_reloc_p (howto->type)))
9630 {
9631 msg = _("small-data section exceeds 64KB;"
9632 " lower small-data size limit (see option -G)");
9633
9634 htab->small_data_overflow_reported = TRUE;
9635 (*info->callbacks->einfo) ("%P: %s\n", msg);
9636 }
9637 if (! ((*info->callbacks->reloc_overflow)
9638 (info, NULL, name, howto->name, (bfd_vma) 0,
9639 input_bfd, input_section, rel->r_offset)))
9640 return FALSE;
9641 }
9642 break;
9643
9644 case bfd_reloc_ok:
9645 break;
9646
9647 case bfd_reloc_outofrange:
9648 if (jal_reloc_p (howto->type))
9649 {
9650 msg = _("JALX to a non-word-aligned address");
9651 info->callbacks->warning
9652 (info, msg, name, input_bfd, input_section, rel->r_offset);
9653 return FALSE;
9654 }
9655 /* Fall through. */
9656
9657 default:
9658 abort ();
9659 break;
9660 }
9661
9662 /* If we've got another relocation for the address, keep going
9663 until we reach the last one. */
9664 if (use_saved_addend_p)
9665 {
9666 addend = value;
9667 continue;
9668 }
9669
9670 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9671 /* See the comment above about using R_MIPS_64 in the 32-bit
9672 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9673 that calculated the right value. Now, however, we
9674 sign-extend the 32-bit result to 64-bits, and store it as a
9675 64-bit value. We are especially generous here in that we
9676 go to extreme lengths to support this usage on systems with
9677 only a 32-bit VMA. */
9678 {
9679 bfd_vma sign_bits;
9680 bfd_vma low_bits;
9681 bfd_vma high_bits;
9682
9683 if (value & ((bfd_vma) 1 << 31))
9684 #ifdef BFD64
9685 sign_bits = ((bfd_vma) 1 << 32) - 1;
9686 #else
9687 sign_bits = -1;
9688 #endif
9689 else
9690 sign_bits = 0;
9691
9692 /* If we don't know that we have a 64-bit type,
9693 do two separate stores. */
9694 if (bfd_big_endian (input_bfd))
9695 {
9696 /* Undo what we did above. */
9697 rel->r_offset -= 4;
9698 /* Store the sign-bits (which are most significant)
9699 first. */
9700 low_bits = sign_bits;
9701 high_bits = value;
9702 }
9703 else
9704 {
9705 low_bits = value;
9706 high_bits = sign_bits;
9707 }
9708 bfd_put_32 (input_bfd, low_bits,
9709 contents + rel->r_offset);
9710 bfd_put_32 (input_bfd, high_bits,
9711 contents + rel->r_offset + 4);
9712 continue;
9713 }
9714
9715 /* Actually perform the relocation. */
9716 if (! mips_elf_perform_relocation (info, howto, rel, value,
9717 input_bfd, input_section,
9718 contents, cross_mode_jump_p))
9719 return FALSE;
9720 }
9721
9722 return TRUE;
9723 }
9724 \f
9725 /* A function that iterates over each entry in la25_stubs and fills
9726 in the code for each one. DATA points to a mips_htab_traverse_info. */
9727
9728 static int
9729 mips_elf_create_la25_stub (void **slot, void *data)
9730 {
9731 struct mips_htab_traverse_info *hti;
9732 struct mips_elf_link_hash_table *htab;
9733 struct mips_elf_la25_stub *stub;
9734 asection *s;
9735 bfd_byte *loc;
9736 bfd_vma offset, target, target_high, target_low;
9737
9738 stub = (struct mips_elf_la25_stub *) *slot;
9739 hti = (struct mips_htab_traverse_info *) data;
9740 htab = mips_elf_hash_table (hti->info);
9741 BFD_ASSERT (htab != NULL);
9742
9743 /* Create the section contents, if we haven't already. */
9744 s = stub->stub_section;
9745 loc = s->contents;
9746 if (loc == NULL)
9747 {
9748 loc = bfd_malloc (s->size);
9749 if (loc == NULL)
9750 {
9751 hti->error = TRUE;
9752 return FALSE;
9753 }
9754 s->contents = loc;
9755 }
9756
9757 /* Work out where in the section this stub should go. */
9758 offset = stub->offset;
9759
9760 /* Work out the target address. */
9761 target = mips_elf_get_la25_target (stub, &s);
9762 target += s->output_section->vma + s->output_offset;
9763
9764 target_high = ((target + 0x8000) >> 16) & 0xffff;
9765 target_low = (target & 0xffff);
9766
9767 if (stub->stub_section != htab->strampoline)
9768 {
9769 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9770 of the section and write the two instructions at the end. */
9771 memset (loc, 0, offset);
9772 loc += offset;
9773 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9774 {
9775 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9776 loc);
9777 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9778 loc + 2);
9779 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9780 loc + 4);
9781 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9782 loc + 6);
9783 }
9784 else
9785 {
9786 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9787 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9788 }
9789 }
9790 else
9791 {
9792 /* This is trampoline. */
9793 loc += offset;
9794 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9795 {
9796 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9797 loc);
9798 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9799 loc + 2);
9800 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
9801 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
9802 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9803 loc + 8);
9804 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9805 loc + 10);
9806 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9807 }
9808 else
9809 {
9810 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9811 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9812 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9813 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9814 }
9815 }
9816 return TRUE;
9817 }
9818
9819 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9820 adjust it appropriately now. */
9821
9822 static void
9823 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9824 const char *name, Elf_Internal_Sym *sym)
9825 {
9826 /* The linker script takes care of providing names and values for
9827 these, but we must place them into the right sections. */
9828 static const char* const text_section_symbols[] = {
9829 "_ftext",
9830 "_etext",
9831 "__dso_displacement",
9832 "__elf_header",
9833 "__program_header_table",
9834 NULL
9835 };
9836
9837 static const char* const data_section_symbols[] = {
9838 "_fdata",
9839 "_edata",
9840 "_end",
9841 "_fbss",
9842 NULL
9843 };
9844
9845 const char* const *p;
9846 int i;
9847
9848 for (i = 0; i < 2; ++i)
9849 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9850 *p;
9851 ++p)
9852 if (strcmp (*p, name) == 0)
9853 {
9854 /* All of these symbols are given type STT_SECTION by the
9855 IRIX6 linker. */
9856 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9857 sym->st_other = STO_PROTECTED;
9858
9859 /* The IRIX linker puts these symbols in special sections. */
9860 if (i == 0)
9861 sym->st_shndx = SHN_MIPS_TEXT;
9862 else
9863 sym->st_shndx = SHN_MIPS_DATA;
9864
9865 break;
9866 }
9867 }
9868
9869 /* Finish up dynamic symbol handling. We set the contents of various
9870 dynamic sections here. */
9871
9872 bfd_boolean
9873 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9874 struct bfd_link_info *info,
9875 struct elf_link_hash_entry *h,
9876 Elf_Internal_Sym *sym)
9877 {
9878 bfd *dynobj;
9879 asection *sgot;
9880 struct mips_got_info *g, *gg;
9881 const char *name;
9882 int idx;
9883 struct mips_elf_link_hash_table *htab;
9884 struct mips_elf_link_hash_entry *hmips;
9885
9886 htab = mips_elf_hash_table (info);
9887 BFD_ASSERT (htab != NULL);
9888 dynobj = elf_hash_table (info)->dynobj;
9889 hmips = (struct mips_elf_link_hash_entry *) h;
9890
9891 BFD_ASSERT (!htab->is_vxworks);
9892
9893 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9894 {
9895 /* We've decided to create a PLT entry for this symbol. */
9896 bfd_byte *loc;
9897 bfd_vma header_address, plt_index, got_address;
9898 bfd_vma got_address_high, got_address_low, load;
9899 const bfd_vma *plt_entry;
9900
9901 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9902 BFD_ASSERT (h->dynindx != -1);
9903 BFD_ASSERT (htab->splt != NULL);
9904 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9905 BFD_ASSERT (!h->def_regular);
9906
9907 /* Calculate the address of the PLT header. */
9908 header_address = (htab->splt->output_section->vma
9909 + htab->splt->output_offset);
9910
9911 /* Calculate the index of the entry. */
9912 plt_index = ((h->plt.offset - htab->plt_header_size)
9913 / htab->plt_entry_size);
9914
9915 /* Calculate the address of the .got.plt entry. */
9916 got_address = (htab->sgotplt->output_section->vma
9917 + htab->sgotplt->output_offset
9918 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9919 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9920 got_address_low = got_address & 0xffff;
9921
9922 /* Initially point the .got.plt entry at the PLT header. */
9923 loc = (htab->sgotplt->contents
9924 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9925 if (ABI_64_P (output_bfd))
9926 bfd_put_64 (output_bfd, header_address, loc);
9927 else
9928 bfd_put_32 (output_bfd, header_address, loc);
9929
9930 /* Find out where the .plt entry should go. */
9931 loc = htab->splt->contents + h->plt.offset;
9932
9933 /* Pick the load opcode. */
9934 load = MIPS_ELF_LOAD_WORD (output_bfd);
9935
9936 /* Fill in the PLT entry itself. */
9937 plt_entry = mips_exec_plt_entry;
9938 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9939 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9940
9941 if (! LOAD_INTERLOCKS_P (output_bfd))
9942 {
9943 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9944 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9945 }
9946 else
9947 {
9948 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9949 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9950 }
9951
9952 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9953 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9954 plt_index, h->dynindx,
9955 R_MIPS_JUMP_SLOT, got_address);
9956
9957 /* We distinguish between PLT entries and lazy-binding stubs by
9958 giving the former an st_other value of STO_MIPS_PLT. Set the
9959 flag and leave the value if there are any relocations in the
9960 binary where pointer equality matters. */
9961 sym->st_shndx = SHN_UNDEF;
9962 if (h->pointer_equality_needed)
9963 sym->st_other = STO_MIPS_PLT;
9964 else
9965 sym->st_value = 0;
9966 }
9967 else if (h->plt.offset != MINUS_ONE)
9968 {
9969 /* We've decided to create a lazy-binding stub. */
9970 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9971
9972 /* This symbol has a stub. Set it up. */
9973
9974 BFD_ASSERT (h->dynindx != -1);
9975
9976 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9977 || (h->dynindx <= 0xffff));
9978
9979 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9980 sign extension at runtime in the stub, resulting in a negative
9981 index value. */
9982 if (h->dynindx & ~0x7fffffff)
9983 return FALSE;
9984
9985 /* Fill the stub. */
9986 idx = 0;
9987 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9988 idx += 4;
9989 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9990 idx += 4;
9991 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9992 {
9993 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9994 stub + idx);
9995 idx += 4;
9996 }
9997 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9998 idx += 4;
9999
10000 /* If a large stub is not required and sign extension is not a
10001 problem, then use legacy code in the stub. */
10002 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10003 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
10004 else if (h->dynindx & ~0x7fff)
10005 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
10006 else
10007 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10008 stub + idx);
10009
10010 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
10011 memcpy (htab->sstubs->contents + h->plt.offset,
10012 stub, htab->function_stub_size);
10013
10014 /* Mark the symbol as undefined. plt.offset != -1 occurs
10015 only for the referenced symbol. */
10016 sym->st_shndx = SHN_UNDEF;
10017
10018 /* The run-time linker uses the st_value field of the symbol
10019 to reset the global offset table entry for this external
10020 to its stub address when unlinking a shared object. */
10021 sym->st_value = (htab->sstubs->output_section->vma
10022 + htab->sstubs->output_offset
10023 + h->plt.offset);
10024 }
10025
10026 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10027 refer to the stub, since only the stub uses the standard calling
10028 conventions. */
10029 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10030 {
10031 BFD_ASSERT (hmips->need_fn_stub);
10032 sym->st_value = (hmips->fn_stub->output_section->vma
10033 + hmips->fn_stub->output_offset);
10034 sym->st_size = hmips->fn_stub->size;
10035 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10036 }
10037
10038 BFD_ASSERT (h->dynindx != -1
10039 || h->forced_local);
10040
10041 sgot = htab->sgot;
10042 g = htab->got_info;
10043 BFD_ASSERT (g != NULL);
10044
10045 /* Run through the global symbol table, creating GOT entries for all
10046 the symbols that need them. */
10047 if (hmips->global_got_area != GGA_NONE)
10048 {
10049 bfd_vma offset;
10050 bfd_vma value;
10051
10052 value = sym->st_value;
10053 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10054 R_MIPS_GOT16, info);
10055 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10056 }
10057
10058 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
10059 {
10060 struct mips_got_entry e, *p;
10061 bfd_vma entry;
10062 bfd_vma offset;
10063
10064 gg = g;
10065
10066 e.abfd = output_bfd;
10067 e.symndx = -1;
10068 e.d.h = hmips;
10069 e.tls_type = 0;
10070
10071 for (g = g->next; g->next != gg; g = g->next)
10072 {
10073 if (g->got_entries
10074 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10075 &e)))
10076 {
10077 offset = p->gotidx;
10078 if (info->shared
10079 || (elf_hash_table (info)->dynamic_sections_created
10080 && p->d.h != NULL
10081 && p->d.h->root.def_dynamic
10082 && !p->d.h->root.def_regular))
10083 {
10084 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10085 the various compatibility problems, it's easier to mock
10086 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10087 mips_elf_create_dynamic_relocation to calculate the
10088 appropriate addend. */
10089 Elf_Internal_Rela rel[3];
10090
10091 memset (rel, 0, sizeof (rel));
10092 if (ABI_64_P (output_bfd))
10093 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10094 else
10095 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10096 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10097
10098 entry = 0;
10099 if (! (mips_elf_create_dynamic_relocation
10100 (output_bfd, info, rel,
10101 e.d.h, NULL, sym->st_value, &entry, sgot)))
10102 return FALSE;
10103 }
10104 else
10105 entry = sym->st_value;
10106 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10107 }
10108 }
10109 }
10110
10111 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10112 name = h->root.root.string;
10113 if (strcmp (name, "_DYNAMIC") == 0
10114 || h == elf_hash_table (info)->hgot)
10115 sym->st_shndx = SHN_ABS;
10116 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10117 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10118 {
10119 sym->st_shndx = SHN_ABS;
10120 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10121 sym->st_value = 1;
10122 }
10123 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10124 {
10125 sym->st_shndx = SHN_ABS;
10126 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10127 sym->st_value = elf_gp (output_bfd);
10128 }
10129 else if (SGI_COMPAT (output_bfd))
10130 {
10131 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10132 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10133 {
10134 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10135 sym->st_other = STO_PROTECTED;
10136 sym->st_value = 0;
10137 sym->st_shndx = SHN_MIPS_DATA;
10138 }
10139 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10140 {
10141 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10142 sym->st_other = STO_PROTECTED;
10143 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10144 sym->st_shndx = SHN_ABS;
10145 }
10146 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10147 {
10148 if (h->type == STT_FUNC)
10149 sym->st_shndx = SHN_MIPS_TEXT;
10150 else if (h->type == STT_OBJECT)
10151 sym->st_shndx = SHN_MIPS_DATA;
10152 }
10153 }
10154
10155 /* Emit a copy reloc, if needed. */
10156 if (h->needs_copy)
10157 {
10158 asection *s;
10159 bfd_vma symval;
10160
10161 BFD_ASSERT (h->dynindx != -1);
10162 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10163
10164 s = mips_elf_rel_dyn_section (info, FALSE);
10165 symval = (h->root.u.def.section->output_section->vma
10166 + h->root.u.def.section->output_offset
10167 + h->root.u.def.value);
10168 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10169 h->dynindx, R_MIPS_COPY, symval);
10170 }
10171
10172 /* Handle the IRIX6-specific symbols. */
10173 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10174 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10175
10176 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10177 treat MIPS16 symbols like any other. */
10178 if (ELF_ST_IS_MIPS16 (sym->st_other))
10179 {
10180 BFD_ASSERT (sym->st_value & 1);
10181 sym->st_other -= STO_MIPS16;
10182 }
10183
10184 return TRUE;
10185 }
10186
10187 /* Likewise, for VxWorks. */
10188
10189 bfd_boolean
10190 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10191 struct bfd_link_info *info,
10192 struct elf_link_hash_entry *h,
10193 Elf_Internal_Sym *sym)
10194 {
10195 bfd *dynobj;
10196 asection *sgot;
10197 struct mips_got_info *g;
10198 struct mips_elf_link_hash_table *htab;
10199 struct mips_elf_link_hash_entry *hmips;
10200
10201 htab = mips_elf_hash_table (info);
10202 BFD_ASSERT (htab != NULL);
10203 dynobj = elf_hash_table (info)->dynobj;
10204 hmips = (struct mips_elf_link_hash_entry *) h;
10205
10206 if (h->plt.offset != (bfd_vma) -1)
10207 {
10208 bfd_byte *loc;
10209 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10210 Elf_Internal_Rela rel;
10211 static const bfd_vma *plt_entry;
10212
10213 BFD_ASSERT (h->dynindx != -1);
10214 BFD_ASSERT (htab->splt != NULL);
10215 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10216
10217 /* Calculate the address of the .plt entry. */
10218 plt_address = (htab->splt->output_section->vma
10219 + htab->splt->output_offset
10220 + h->plt.offset);
10221
10222 /* Calculate the index of the entry. */
10223 plt_index = ((h->plt.offset - htab->plt_header_size)
10224 / htab->plt_entry_size);
10225
10226 /* Calculate the address of the .got.plt entry. */
10227 got_address = (htab->sgotplt->output_section->vma
10228 + htab->sgotplt->output_offset
10229 + plt_index * 4);
10230
10231 /* Calculate the offset of the .got.plt entry from
10232 _GLOBAL_OFFSET_TABLE_. */
10233 got_offset = mips_elf_gotplt_index (info, h);
10234
10235 /* Calculate the offset for the branch at the start of the PLT
10236 entry. The branch jumps to the beginning of .plt. */
10237 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10238
10239 /* Fill in the initial value of the .got.plt entry. */
10240 bfd_put_32 (output_bfd, plt_address,
10241 htab->sgotplt->contents + plt_index * 4);
10242
10243 /* Find out where the .plt entry should go. */
10244 loc = htab->splt->contents + h->plt.offset;
10245
10246 if (info->shared)
10247 {
10248 plt_entry = mips_vxworks_shared_plt_entry;
10249 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10250 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10251 }
10252 else
10253 {
10254 bfd_vma got_address_high, got_address_low;
10255
10256 plt_entry = mips_vxworks_exec_plt_entry;
10257 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10258 got_address_low = got_address & 0xffff;
10259
10260 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10261 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10262 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10263 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10264 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10265 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10266 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10267 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10268
10269 loc = (htab->srelplt2->contents
10270 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10271
10272 /* Emit a relocation for the .got.plt entry. */
10273 rel.r_offset = got_address;
10274 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10275 rel.r_addend = h->plt.offset;
10276 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10277
10278 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10279 loc += sizeof (Elf32_External_Rela);
10280 rel.r_offset = plt_address + 8;
10281 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10282 rel.r_addend = got_offset;
10283 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10284
10285 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10286 loc += sizeof (Elf32_External_Rela);
10287 rel.r_offset += 4;
10288 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10289 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10290 }
10291
10292 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10293 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10294 rel.r_offset = got_address;
10295 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10296 rel.r_addend = 0;
10297 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10298
10299 if (!h->def_regular)
10300 sym->st_shndx = SHN_UNDEF;
10301 }
10302
10303 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10304
10305 sgot = htab->sgot;
10306 g = htab->got_info;
10307 BFD_ASSERT (g != NULL);
10308
10309 /* See if this symbol has an entry in the GOT. */
10310 if (hmips->global_got_area != GGA_NONE)
10311 {
10312 bfd_vma offset;
10313 Elf_Internal_Rela outrel;
10314 bfd_byte *loc;
10315 asection *s;
10316
10317 /* Install the symbol value in the GOT. */
10318 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10319 R_MIPS_GOT16, info);
10320 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10321
10322 /* Add a dynamic relocation for it. */
10323 s = mips_elf_rel_dyn_section (info, FALSE);
10324 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10325 outrel.r_offset = (sgot->output_section->vma
10326 + sgot->output_offset
10327 + offset);
10328 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10329 outrel.r_addend = 0;
10330 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10331 }
10332
10333 /* Emit a copy reloc, if needed. */
10334 if (h->needs_copy)
10335 {
10336 Elf_Internal_Rela rel;
10337
10338 BFD_ASSERT (h->dynindx != -1);
10339
10340 rel.r_offset = (h->root.u.def.section->output_section->vma
10341 + h->root.u.def.section->output_offset
10342 + h->root.u.def.value);
10343 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10344 rel.r_addend = 0;
10345 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10346 htab->srelbss->contents
10347 + (htab->srelbss->reloc_count
10348 * sizeof (Elf32_External_Rela)));
10349 ++htab->srelbss->reloc_count;
10350 }
10351
10352 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10353 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10354 sym->st_value &= ~1;
10355
10356 return TRUE;
10357 }
10358
10359 /* Write out a plt0 entry to the beginning of .plt. */
10360
10361 static void
10362 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10363 {
10364 bfd_byte *loc;
10365 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10366 static const bfd_vma *plt_entry;
10367 struct mips_elf_link_hash_table *htab;
10368
10369 htab = mips_elf_hash_table (info);
10370 BFD_ASSERT (htab != NULL);
10371
10372 if (ABI_64_P (output_bfd))
10373 plt_entry = mips_n64_exec_plt0_entry;
10374 else if (ABI_N32_P (output_bfd))
10375 plt_entry = mips_n32_exec_plt0_entry;
10376 else
10377 plt_entry = mips_o32_exec_plt0_entry;
10378
10379 /* Calculate the value of .got.plt. */
10380 gotplt_value = (htab->sgotplt->output_section->vma
10381 + htab->sgotplt->output_offset);
10382 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10383 gotplt_value_low = gotplt_value & 0xffff;
10384
10385 /* The PLT sequence is not safe for N64 if .got.plt's address can
10386 not be loaded in two instructions. */
10387 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10388 || ~(gotplt_value | 0x7fffffff) == 0);
10389
10390 /* Install the PLT header. */
10391 loc = htab->splt->contents;
10392 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10393 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10394 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10395 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10396 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10397 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10398 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10399 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10400 }
10401
10402 /* Install the PLT header for a VxWorks executable and finalize the
10403 contents of .rela.plt.unloaded. */
10404
10405 static void
10406 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10407 {
10408 Elf_Internal_Rela rela;
10409 bfd_byte *loc;
10410 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10411 static const bfd_vma *plt_entry;
10412 struct mips_elf_link_hash_table *htab;
10413
10414 htab = mips_elf_hash_table (info);
10415 BFD_ASSERT (htab != NULL);
10416
10417 plt_entry = mips_vxworks_exec_plt0_entry;
10418
10419 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10420 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10421 + htab->root.hgot->root.u.def.section->output_offset
10422 + htab->root.hgot->root.u.def.value);
10423
10424 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10425 got_value_low = got_value & 0xffff;
10426
10427 /* Calculate the address of the PLT header. */
10428 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10429
10430 /* Install the PLT header. */
10431 loc = htab->splt->contents;
10432 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10433 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10434 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10435 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10436 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10437 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10438
10439 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10440 loc = htab->srelplt2->contents;
10441 rela.r_offset = plt_address;
10442 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10443 rela.r_addend = 0;
10444 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10445 loc += sizeof (Elf32_External_Rela);
10446
10447 /* Output the relocation for the following addiu of
10448 %lo(_GLOBAL_OFFSET_TABLE_). */
10449 rela.r_offset += 4;
10450 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10451 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10452 loc += sizeof (Elf32_External_Rela);
10453
10454 /* Fix up the remaining relocations. They may have the wrong
10455 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10456 in which symbols were output. */
10457 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10458 {
10459 Elf_Internal_Rela rel;
10460
10461 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10462 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10463 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10464 loc += sizeof (Elf32_External_Rela);
10465
10466 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10467 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10468 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10469 loc += sizeof (Elf32_External_Rela);
10470
10471 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10472 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10473 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10474 loc += sizeof (Elf32_External_Rela);
10475 }
10476 }
10477
10478 /* Install the PLT header for a VxWorks shared library. */
10479
10480 static void
10481 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10482 {
10483 unsigned int i;
10484 struct mips_elf_link_hash_table *htab;
10485
10486 htab = mips_elf_hash_table (info);
10487 BFD_ASSERT (htab != NULL);
10488
10489 /* We just need to copy the entry byte-by-byte. */
10490 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10491 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10492 htab->splt->contents + i * 4);
10493 }
10494
10495 /* Finish up the dynamic sections. */
10496
10497 bfd_boolean
10498 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10499 struct bfd_link_info *info)
10500 {
10501 bfd *dynobj;
10502 asection *sdyn;
10503 asection *sgot;
10504 struct mips_got_info *gg, *g;
10505 struct mips_elf_link_hash_table *htab;
10506
10507 htab = mips_elf_hash_table (info);
10508 BFD_ASSERT (htab != NULL);
10509
10510 dynobj = elf_hash_table (info)->dynobj;
10511
10512 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10513
10514 sgot = htab->sgot;
10515 gg = htab->got_info;
10516
10517 if (elf_hash_table (info)->dynamic_sections_created)
10518 {
10519 bfd_byte *b;
10520 int dyn_to_skip = 0, dyn_skipped = 0;
10521
10522 BFD_ASSERT (sdyn != NULL);
10523 BFD_ASSERT (gg != NULL);
10524
10525 g = mips_elf_got_for_ibfd (gg, output_bfd);
10526 BFD_ASSERT (g != NULL);
10527
10528 for (b = sdyn->contents;
10529 b < sdyn->contents + sdyn->size;
10530 b += MIPS_ELF_DYN_SIZE (dynobj))
10531 {
10532 Elf_Internal_Dyn dyn;
10533 const char *name;
10534 size_t elemsize;
10535 asection *s;
10536 bfd_boolean swap_out_p;
10537
10538 /* Read in the current dynamic entry. */
10539 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10540
10541 /* Assume that we're going to modify it and write it out. */
10542 swap_out_p = TRUE;
10543
10544 switch (dyn.d_tag)
10545 {
10546 case DT_RELENT:
10547 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10548 break;
10549
10550 case DT_RELAENT:
10551 BFD_ASSERT (htab->is_vxworks);
10552 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10553 break;
10554
10555 case DT_STRSZ:
10556 /* Rewrite DT_STRSZ. */
10557 dyn.d_un.d_val =
10558 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10559 break;
10560
10561 case DT_PLTGOT:
10562 s = htab->sgot;
10563 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10564 break;
10565
10566 case DT_MIPS_PLTGOT:
10567 s = htab->sgotplt;
10568 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10569 break;
10570
10571 case DT_MIPS_RLD_VERSION:
10572 dyn.d_un.d_val = 1; /* XXX */
10573 break;
10574
10575 case DT_MIPS_FLAGS:
10576 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10577 break;
10578
10579 case DT_MIPS_TIME_STAMP:
10580 {
10581 time_t t;
10582 time (&t);
10583 dyn.d_un.d_val = t;
10584 }
10585 break;
10586
10587 case DT_MIPS_ICHECKSUM:
10588 /* XXX FIXME: */
10589 swap_out_p = FALSE;
10590 break;
10591
10592 case DT_MIPS_IVERSION:
10593 /* XXX FIXME: */
10594 swap_out_p = FALSE;
10595 break;
10596
10597 case DT_MIPS_BASE_ADDRESS:
10598 s = output_bfd->sections;
10599 BFD_ASSERT (s != NULL);
10600 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10601 break;
10602
10603 case DT_MIPS_LOCAL_GOTNO:
10604 dyn.d_un.d_val = g->local_gotno;
10605 break;
10606
10607 case DT_MIPS_UNREFEXTNO:
10608 /* The index into the dynamic symbol table which is the
10609 entry of the first external symbol that is not
10610 referenced within the same object. */
10611 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10612 break;
10613
10614 case DT_MIPS_GOTSYM:
10615 if (gg->global_gotsym)
10616 {
10617 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10618 break;
10619 }
10620 /* In case if we don't have global got symbols we default
10621 to setting DT_MIPS_GOTSYM to the same value as
10622 DT_MIPS_SYMTABNO, so we just fall through. */
10623
10624 case DT_MIPS_SYMTABNO:
10625 name = ".dynsym";
10626 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10627 s = bfd_get_section_by_name (output_bfd, name);
10628 BFD_ASSERT (s != NULL);
10629
10630 dyn.d_un.d_val = s->size / elemsize;
10631 break;
10632
10633 case DT_MIPS_HIPAGENO:
10634 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10635 break;
10636
10637 case DT_MIPS_RLD_MAP:
10638 {
10639 struct elf_link_hash_entry *h;
10640 h = mips_elf_hash_table (info)->rld_symbol;
10641 if (!h)
10642 {
10643 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10644 swap_out_p = FALSE;
10645 break;
10646 }
10647 s = h->root.u.def.section;
10648 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10649 + h->root.u.def.value);
10650 }
10651 break;
10652
10653 case DT_MIPS_OPTIONS:
10654 s = (bfd_get_section_by_name
10655 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10656 dyn.d_un.d_ptr = s->vma;
10657 break;
10658
10659 case DT_RELASZ:
10660 BFD_ASSERT (htab->is_vxworks);
10661 /* The count does not include the JUMP_SLOT relocations. */
10662 if (htab->srelplt)
10663 dyn.d_un.d_val -= htab->srelplt->size;
10664 break;
10665
10666 case DT_PLTREL:
10667 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10668 if (htab->is_vxworks)
10669 dyn.d_un.d_val = DT_RELA;
10670 else
10671 dyn.d_un.d_val = DT_REL;
10672 break;
10673
10674 case DT_PLTRELSZ:
10675 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10676 dyn.d_un.d_val = htab->srelplt->size;
10677 break;
10678
10679 case DT_JMPREL:
10680 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10681 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10682 + htab->srelplt->output_offset);
10683 break;
10684
10685 case DT_TEXTREL:
10686 /* If we didn't need any text relocations after all, delete
10687 the dynamic tag. */
10688 if (!(info->flags & DF_TEXTREL))
10689 {
10690 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10691 swap_out_p = FALSE;
10692 }
10693 break;
10694
10695 case DT_FLAGS:
10696 /* If we didn't need any text relocations after all, clear
10697 DF_TEXTREL from DT_FLAGS. */
10698 if (!(info->flags & DF_TEXTREL))
10699 dyn.d_un.d_val &= ~DF_TEXTREL;
10700 else
10701 swap_out_p = FALSE;
10702 break;
10703
10704 default:
10705 swap_out_p = FALSE;
10706 if (htab->is_vxworks
10707 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10708 swap_out_p = TRUE;
10709 break;
10710 }
10711
10712 if (swap_out_p || dyn_skipped)
10713 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10714 (dynobj, &dyn, b - dyn_skipped);
10715
10716 if (dyn_to_skip)
10717 {
10718 dyn_skipped += dyn_to_skip;
10719 dyn_to_skip = 0;
10720 }
10721 }
10722
10723 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10724 if (dyn_skipped > 0)
10725 memset (b - dyn_skipped, 0, dyn_skipped);
10726 }
10727
10728 if (sgot != NULL && sgot->size > 0
10729 && !bfd_is_abs_section (sgot->output_section))
10730 {
10731 if (htab->is_vxworks)
10732 {
10733 /* The first entry of the global offset table points to the
10734 ".dynamic" section. The second is initialized by the
10735 loader and contains the shared library identifier.
10736 The third is also initialized by the loader and points
10737 to the lazy resolution stub. */
10738 MIPS_ELF_PUT_WORD (output_bfd,
10739 sdyn->output_offset + sdyn->output_section->vma,
10740 sgot->contents);
10741 MIPS_ELF_PUT_WORD (output_bfd, 0,
10742 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10743 MIPS_ELF_PUT_WORD (output_bfd, 0,
10744 sgot->contents
10745 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10746 }
10747 else
10748 {
10749 /* The first entry of the global offset table will be filled at
10750 runtime. The second entry will be used by some runtime loaders.
10751 This isn't the case of IRIX rld. */
10752 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10753 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10754 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10755 }
10756
10757 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10758 = MIPS_ELF_GOT_SIZE (output_bfd);
10759 }
10760
10761 /* Generate dynamic relocations for the non-primary gots. */
10762 if (gg != NULL && gg->next)
10763 {
10764 Elf_Internal_Rela rel[3];
10765 bfd_vma addend = 0;
10766
10767 memset (rel, 0, sizeof (rel));
10768 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10769
10770 for (g = gg->next; g->next != gg; g = g->next)
10771 {
10772 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10773 + g->next->tls_gotno;
10774
10775 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10776 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10777 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10778 sgot->contents
10779 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10780
10781 if (! info->shared)
10782 continue;
10783
10784 while (got_index < g->assigned_gotno)
10785 {
10786 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10787 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10788 if (!(mips_elf_create_dynamic_relocation
10789 (output_bfd, info, rel, NULL,
10790 bfd_abs_section_ptr,
10791 0, &addend, sgot)))
10792 return FALSE;
10793 BFD_ASSERT (addend == 0);
10794 }
10795 }
10796 }
10797
10798 /* The generation of dynamic relocations for the non-primary gots
10799 adds more dynamic relocations. We cannot count them until
10800 here. */
10801
10802 if (elf_hash_table (info)->dynamic_sections_created)
10803 {
10804 bfd_byte *b;
10805 bfd_boolean swap_out_p;
10806
10807 BFD_ASSERT (sdyn != NULL);
10808
10809 for (b = sdyn->contents;
10810 b < sdyn->contents + sdyn->size;
10811 b += MIPS_ELF_DYN_SIZE (dynobj))
10812 {
10813 Elf_Internal_Dyn dyn;
10814 asection *s;
10815
10816 /* Read in the current dynamic entry. */
10817 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10818
10819 /* Assume that we're going to modify it and write it out. */
10820 swap_out_p = TRUE;
10821
10822 switch (dyn.d_tag)
10823 {
10824 case DT_RELSZ:
10825 /* Reduce DT_RELSZ to account for any relocations we
10826 decided not to make. This is for the n64 irix rld,
10827 which doesn't seem to apply any relocations if there
10828 are trailing null entries. */
10829 s = mips_elf_rel_dyn_section (info, FALSE);
10830 dyn.d_un.d_val = (s->reloc_count
10831 * (ABI_64_P (output_bfd)
10832 ? sizeof (Elf64_Mips_External_Rel)
10833 : sizeof (Elf32_External_Rel)));
10834 /* Adjust the section size too. Tools like the prelinker
10835 can reasonably expect the values to the same. */
10836 elf_section_data (s->output_section)->this_hdr.sh_size
10837 = dyn.d_un.d_val;
10838 break;
10839
10840 default:
10841 swap_out_p = FALSE;
10842 break;
10843 }
10844
10845 if (swap_out_p)
10846 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10847 (dynobj, &dyn, b);
10848 }
10849 }
10850
10851 {
10852 asection *s;
10853 Elf32_compact_rel cpt;
10854
10855 if (SGI_COMPAT (output_bfd))
10856 {
10857 /* Write .compact_rel section out. */
10858 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10859 if (s != NULL)
10860 {
10861 cpt.id1 = 1;
10862 cpt.num = s->reloc_count;
10863 cpt.id2 = 2;
10864 cpt.offset = (s->output_section->filepos
10865 + sizeof (Elf32_External_compact_rel));
10866 cpt.reserved0 = 0;
10867 cpt.reserved1 = 0;
10868 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10869 ((Elf32_External_compact_rel *)
10870 s->contents));
10871
10872 /* Clean up a dummy stub function entry in .text. */
10873 if (htab->sstubs != NULL)
10874 {
10875 file_ptr dummy_offset;
10876
10877 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10878 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10879 memset (htab->sstubs->contents + dummy_offset, 0,
10880 htab->function_stub_size);
10881 }
10882 }
10883 }
10884
10885 /* The psABI says that the dynamic relocations must be sorted in
10886 increasing order of r_symndx. The VxWorks EABI doesn't require
10887 this, and because the code below handles REL rather than RELA
10888 relocations, using it for VxWorks would be outright harmful. */
10889 if (!htab->is_vxworks)
10890 {
10891 s = mips_elf_rel_dyn_section (info, FALSE);
10892 if (s != NULL
10893 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10894 {
10895 reldyn_sorting_bfd = output_bfd;
10896
10897 if (ABI_64_P (output_bfd))
10898 qsort ((Elf64_External_Rel *) s->contents + 1,
10899 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10900 sort_dynamic_relocs_64);
10901 else
10902 qsort ((Elf32_External_Rel *) s->contents + 1,
10903 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10904 sort_dynamic_relocs);
10905 }
10906 }
10907 }
10908
10909 if (htab->splt && htab->splt->size > 0)
10910 {
10911 if (htab->is_vxworks)
10912 {
10913 if (info->shared)
10914 mips_vxworks_finish_shared_plt (output_bfd, info);
10915 else
10916 mips_vxworks_finish_exec_plt (output_bfd, info);
10917 }
10918 else
10919 {
10920 BFD_ASSERT (!info->shared);
10921 mips_finish_exec_plt (output_bfd, info);
10922 }
10923 }
10924 return TRUE;
10925 }
10926
10927
10928 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10929
10930 static void
10931 mips_set_isa_flags (bfd *abfd)
10932 {
10933 flagword val;
10934
10935 switch (bfd_get_mach (abfd))
10936 {
10937 default:
10938 case bfd_mach_mips3000:
10939 val = E_MIPS_ARCH_1;
10940 break;
10941
10942 case bfd_mach_mips3900:
10943 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10944 break;
10945
10946 case bfd_mach_mips6000:
10947 val = E_MIPS_ARCH_2;
10948 break;
10949
10950 case bfd_mach_mips4000:
10951 case bfd_mach_mips4300:
10952 case bfd_mach_mips4400:
10953 case bfd_mach_mips4600:
10954 val = E_MIPS_ARCH_3;
10955 break;
10956
10957 case bfd_mach_mips4010:
10958 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10959 break;
10960
10961 case bfd_mach_mips4100:
10962 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10963 break;
10964
10965 case bfd_mach_mips4111:
10966 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10967 break;
10968
10969 case bfd_mach_mips4120:
10970 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10971 break;
10972
10973 case bfd_mach_mips4650:
10974 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10975 break;
10976
10977 case bfd_mach_mips5400:
10978 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10979 break;
10980
10981 case bfd_mach_mips5500:
10982 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10983 break;
10984
10985 case bfd_mach_mips9000:
10986 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10987 break;
10988
10989 case bfd_mach_mips5000:
10990 case bfd_mach_mips7000:
10991 case bfd_mach_mips8000:
10992 case bfd_mach_mips10000:
10993 case bfd_mach_mips12000:
10994 case bfd_mach_mips14000:
10995 case bfd_mach_mips16000:
10996 val = E_MIPS_ARCH_4;
10997 break;
10998
10999 case bfd_mach_mips5:
11000 val = E_MIPS_ARCH_5;
11001 break;
11002
11003 case bfd_mach_mips_loongson_2e:
11004 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11005 break;
11006
11007 case bfd_mach_mips_loongson_2f:
11008 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11009 break;
11010
11011 case bfd_mach_mips_sb1:
11012 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11013 break;
11014
11015 case bfd_mach_mips_loongson_3a:
11016 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11017 break;
11018
11019 case bfd_mach_mips_octeon:
11020 case bfd_mach_mips_octeonp:
11021 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11022 break;
11023
11024 case bfd_mach_mips_xlr:
11025 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11026 break;
11027
11028 case bfd_mach_mips_octeon2:
11029 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11030 break;
11031
11032 case bfd_mach_mipsisa32:
11033 val = E_MIPS_ARCH_32;
11034 break;
11035
11036 case bfd_mach_mipsisa64:
11037 val = E_MIPS_ARCH_64;
11038 break;
11039
11040 case bfd_mach_mipsisa32r2:
11041 val = E_MIPS_ARCH_32R2;
11042 break;
11043
11044 case bfd_mach_mipsisa64r2:
11045 val = E_MIPS_ARCH_64R2;
11046 break;
11047 }
11048 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11049 elf_elfheader (abfd)->e_flags |= val;
11050
11051 }
11052
11053
11054 /* The final processing done just before writing out a MIPS ELF object
11055 file. This gets the MIPS architecture right based on the machine
11056 number. This is used by both the 32-bit and the 64-bit ABI. */
11057
11058 void
11059 _bfd_mips_elf_final_write_processing (bfd *abfd,
11060 bfd_boolean linker ATTRIBUTE_UNUSED)
11061 {
11062 unsigned int i;
11063 Elf_Internal_Shdr **hdrpp;
11064 const char *name;
11065 asection *sec;
11066
11067 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11068 is nonzero. This is for compatibility with old objects, which used
11069 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11070 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11071 mips_set_isa_flags (abfd);
11072
11073 /* Set the sh_info field for .gptab sections and other appropriate
11074 info for each special section. */
11075 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11076 i < elf_numsections (abfd);
11077 i++, hdrpp++)
11078 {
11079 switch ((*hdrpp)->sh_type)
11080 {
11081 case SHT_MIPS_MSYM:
11082 case SHT_MIPS_LIBLIST:
11083 sec = bfd_get_section_by_name (abfd, ".dynstr");
11084 if (sec != NULL)
11085 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11086 break;
11087
11088 case SHT_MIPS_GPTAB:
11089 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11090 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11091 BFD_ASSERT (name != NULL
11092 && CONST_STRNEQ (name, ".gptab."));
11093 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11094 BFD_ASSERT (sec != NULL);
11095 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11096 break;
11097
11098 case SHT_MIPS_CONTENT:
11099 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11100 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11101 BFD_ASSERT (name != NULL
11102 && CONST_STRNEQ (name, ".MIPS.content"));
11103 sec = bfd_get_section_by_name (abfd,
11104 name + sizeof ".MIPS.content" - 1);
11105 BFD_ASSERT (sec != NULL);
11106 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11107 break;
11108
11109 case SHT_MIPS_SYMBOL_LIB:
11110 sec = bfd_get_section_by_name (abfd, ".dynsym");
11111 if (sec != NULL)
11112 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11113 sec = bfd_get_section_by_name (abfd, ".liblist");
11114 if (sec != NULL)
11115 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11116 break;
11117
11118 case SHT_MIPS_EVENTS:
11119 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11120 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11121 BFD_ASSERT (name != NULL);
11122 if (CONST_STRNEQ (name, ".MIPS.events"))
11123 sec = bfd_get_section_by_name (abfd,
11124 name + sizeof ".MIPS.events" - 1);
11125 else
11126 {
11127 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11128 sec = bfd_get_section_by_name (abfd,
11129 (name
11130 + sizeof ".MIPS.post_rel" - 1));
11131 }
11132 BFD_ASSERT (sec != NULL);
11133 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11134 break;
11135
11136 }
11137 }
11138 }
11139 \f
11140 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11141 segments. */
11142
11143 int
11144 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11145 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11146 {
11147 asection *s;
11148 int ret = 0;
11149
11150 /* See if we need a PT_MIPS_REGINFO segment. */
11151 s = bfd_get_section_by_name (abfd, ".reginfo");
11152 if (s && (s->flags & SEC_LOAD))
11153 ++ret;
11154
11155 /* See if we need a PT_MIPS_OPTIONS segment. */
11156 if (IRIX_COMPAT (abfd) == ict_irix6
11157 && bfd_get_section_by_name (abfd,
11158 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11159 ++ret;
11160
11161 /* See if we need a PT_MIPS_RTPROC segment. */
11162 if (IRIX_COMPAT (abfd) == ict_irix5
11163 && bfd_get_section_by_name (abfd, ".dynamic")
11164 && bfd_get_section_by_name (abfd, ".mdebug"))
11165 ++ret;
11166
11167 /* Allocate a PT_NULL header in dynamic objects. See
11168 _bfd_mips_elf_modify_segment_map for details. */
11169 if (!SGI_COMPAT (abfd)
11170 && bfd_get_section_by_name (abfd, ".dynamic"))
11171 ++ret;
11172
11173 return ret;
11174 }
11175
11176 /* Modify the segment map for an IRIX5 executable. */
11177
11178 bfd_boolean
11179 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11180 struct bfd_link_info *info)
11181 {
11182 asection *s;
11183 struct elf_segment_map *m, **pm;
11184 bfd_size_type amt;
11185
11186 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11187 segment. */
11188 s = bfd_get_section_by_name (abfd, ".reginfo");
11189 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11190 {
11191 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11192 if (m->p_type == PT_MIPS_REGINFO)
11193 break;
11194 if (m == NULL)
11195 {
11196 amt = sizeof *m;
11197 m = bfd_zalloc (abfd, amt);
11198 if (m == NULL)
11199 return FALSE;
11200
11201 m->p_type = PT_MIPS_REGINFO;
11202 m->count = 1;
11203 m->sections[0] = s;
11204
11205 /* We want to put it after the PHDR and INTERP segments. */
11206 pm = &elf_tdata (abfd)->segment_map;
11207 while (*pm != NULL
11208 && ((*pm)->p_type == PT_PHDR
11209 || (*pm)->p_type == PT_INTERP))
11210 pm = &(*pm)->next;
11211
11212 m->next = *pm;
11213 *pm = m;
11214 }
11215 }
11216
11217 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11218 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11219 PT_MIPS_OPTIONS segment immediately following the program header
11220 table. */
11221 if (NEWABI_P (abfd)
11222 /* On non-IRIX6 new abi, we'll have already created a segment
11223 for this section, so don't create another. I'm not sure this
11224 is not also the case for IRIX 6, but I can't test it right
11225 now. */
11226 && IRIX_COMPAT (abfd) == ict_irix6)
11227 {
11228 for (s = abfd->sections; s; s = s->next)
11229 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11230 break;
11231
11232 if (s)
11233 {
11234 struct elf_segment_map *options_segment;
11235
11236 pm = &elf_tdata (abfd)->segment_map;
11237 while (*pm != NULL
11238 && ((*pm)->p_type == PT_PHDR
11239 || (*pm)->p_type == PT_INTERP))
11240 pm = &(*pm)->next;
11241
11242 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11243 {
11244 amt = sizeof (struct elf_segment_map);
11245 options_segment = bfd_zalloc (abfd, amt);
11246 options_segment->next = *pm;
11247 options_segment->p_type = PT_MIPS_OPTIONS;
11248 options_segment->p_flags = PF_R;
11249 options_segment->p_flags_valid = TRUE;
11250 options_segment->count = 1;
11251 options_segment->sections[0] = s;
11252 *pm = options_segment;
11253 }
11254 }
11255 }
11256 else
11257 {
11258 if (IRIX_COMPAT (abfd) == ict_irix5)
11259 {
11260 /* If there are .dynamic and .mdebug sections, we make a room
11261 for the RTPROC header. FIXME: Rewrite without section names. */
11262 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11263 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11264 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11265 {
11266 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11267 if (m->p_type == PT_MIPS_RTPROC)
11268 break;
11269 if (m == NULL)
11270 {
11271 amt = sizeof *m;
11272 m = bfd_zalloc (abfd, amt);
11273 if (m == NULL)
11274 return FALSE;
11275
11276 m->p_type = PT_MIPS_RTPROC;
11277
11278 s = bfd_get_section_by_name (abfd, ".rtproc");
11279 if (s == NULL)
11280 {
11281 m->count = 0;
11282 m->p_flags = 0;
11283 m->p_flags_valid = 1;
11284 }
11285 else
11286 {
11287 m->count = 1;
11288 m->sections[0] = s;
11289 }
11290
11291 /* We want to put it after the DYNAMIC segment. */
11292 pm = &elf_tdata (abfd)->segment_map;
11293 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11294 pm = &(*pm)->next;
11295 if (*pm != NULL)
11296 pm = &(*pm)->next;
11297
11298 m->next = *pm;
11299 *pm = m;
11300 }
11301 }
11302 }
11303 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11304 .dynstr, .dynsym, and .hash sections, and everything in
11305 between. */
11306 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11307 pm = &(*pm)->next)
11308 if ((*pm)->p_type == PT_DYNAMIC)
11309 break;
11310 m = *pm;
11311 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11312 {
11313 /* For a normal mips executable the permissions for the PT_DYNAMIC
11314 segment are read, write and execute. We do that here since
11315 the code in elf.c sets only the read permission. This matters
11316 sometimes for the dynamic linker. */
11317 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11318 {
11319 m->p_flags = PF_R | PF_W | PF_X;
11320 m->p_flags_valid = 1;
11321 }
11322 }
11323 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11324 glibc's dynamic linker has traditionally derived the number of
11325 tags from the p_filesz field, and sometimes allocates stack
11326 arrays of that size. An overly-big PT_DYNAMIC segment can
11327 be actively harmful in such cases. Making PT_DYNAMIC contain
11328 other sections can also make life hard for the prelinker,
11329 which might move one of the other sections to a different
11330 PT_LOAD segment. */
11331 if (SGI_COMPAT (abfd)
11332 && m != NULL
11333 && m->count == 1
11334 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11335 {
11336 static const char *sec_names[] =
11337 {
11338 ".dynamic", ".dynstr", ".dynsym", ".hash"
11339 };
11340 bfd_vma low, high;
11341 unsigned int i, c;
11342 struct elf_segment_map *n;
11343
11344 low = ~(bfd_vma) 0;
11345 high = 0;
11346 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11347 {
11348 s = bfd_get_section_by_name (abfd, sec_names[i]);
11349 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11350 {
11351 bfd_size_type sz;
11352
11353 if (low > s->vma)
11354 low = s->vma;
11355 sz = s->size;
11356 if (high < s->vma + sz)
11357 high = s->vma + sz;
11358 }
11359 }
11360
11361 c = 0;
11362 for (s = abfd->sections; s != NULL; s = s->next)
11363 if ((s->flags & SEC_LOAD) != 0
11364 && s->vma >= low
11365 && s->vma + s->size <= high)
11366 ++c;
11367
11368 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11369 n = bfd_zalloc (abfd, amt);
11370 if (n == NULL)
11371 return FALSE;
11372 *n = *m;
11373 n->count = c;
11374
11375 i = 0;
11376 for (s = abfd->sections; s != NULL; s = s->next)
11377 {
11378 if ((s->flags & SEC_LOAD) != 0
11379 && s->vma >= low
11380 && s->vma + s->size <= high)
11381 {
11382 n->sections[i] = s;
11383 ++i;
11384 }
11385 }
11386
11387 *pm = n;
11388 }
11389 }
11390
11391 /* Allocate a spare program header in dynamic objects so that tools
11392 like the prelinker can add an extra PT_LOAD entry.
11393
11394 If the prelinker needs to make room for a new PT_LOAD entry, its
11395 standard procedure is to move the first (read-only) sections into
11396 the new (writable) segment. However, the MIPS ABI requires
11397 .dynamic to be in a read-only segment, and the section will often
11398 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11399
11400 Although the prelinker could in principle move .dynamic to a
11401 writable segment, it seems better to allocate a spare program
11402 header instead, and avoid the need to move any sections.
11403 There is a long tradition of allocating spare dynamic tags,
11404 so allocating a spare program header seems like a natural
11405 extension.
11406
11407 If INFO is NULL, we may be copying an already prelinked binary
11408 with objcopy or strip, so do not add this header. */
11409 if (info != NULL
11410 && !SGI_COMPAT (abfd)
11411 && bfd_get_section_by_name (abfd, ".dynamic"))
11412 {
11413 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11414 if ((*pm)->p_type == PT_NULL)
11415 break;
11416 if (*pm == NULL)
11417 {
11418 m = bfd_zalloc (abfd, sizeof (*m));
11419 if (m == NULL)
11420 return FALSE;
11421
11422 m->p_type = PT_NULL;
11423 *pm = m;
11424 }
11425 }
11426
11427 return TRUE;
11428 }
11429 \f
11430 /* Return the section that should be marked against GC for a given
11431 relocation. */
11432
11433 asection *
11434 _bfd_mips_elf_gc_mark_hook (asection *sec,
11435 struct bfd_link_info *info,
11436 Elf_Internal_Rela *rel,
11437 struct elf_link_hash_entry *h,
11438 Elf_Internal_Sym *sym)
11439 {
11440 /* ??? Do mips16 stub sections need to be handled special? */
11441
11442 if (h != NULL)
11443 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11444 {
11445 case R_MIPS_GNU_VTINHERIT:
11446 case R_MIPS_GNU_VTENTRY:
11447 return NULL;
11448 }
11449
11450 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11451 }
11452
11453 /* Update the got entry reference counts for the section being removed. */
11454
11455 bfd_boolean
11456 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11457 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11458 asection *sec ATTRIBUTE_UNUSED,
11459 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11460 {
11461 #if 0
11462 Elf_Internal_Shdr *symtab_hdr;
11463 struct elf_link_hash_entry **sym_hashes;
11464 bfd_signed_vma *local_got_refcounts;
11465 const Elf_Internal_Rela *rel, *relend;
11466 unsigned long r_symndx;
11467 struct elf_link_hash_entry *h;
11468
11469 if (info->relocatable)
11470 return TRUE;
11471
11472 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11473 sym_hashes = elf_sym_hashes (abfd);
11474 local_got_refcounts = elf_local_got_refcounts (abfd);
11475
11476 relend = relocs + sec->reloc_count;
11477 for (rel = relocs; rel < relend; rel++)
11478 switch (ELF_R_TYPE (abfd, rel->r_info))
11479 {
11480 case R_MIPS16_GOT16:
11481 case R_MIPS16_CALL16:
11482 case R_MIPS_GOT16:
11483 case R_MIPS_CALL16:
11484 case R_MIPS_CALL_HI16:
11485 case R_MIPS_CALL_LO16:
11486 case R_MIPS_GOT_HI16:
11487 case R_MIPS_GOT_LO16:
11488 case R_MIPS_GOT_DISP:
11489 case R_MIPS_GOT_PAGE:
11490 case R_MIPS_GOT_OFST:
11491 case R_MICROMIPS_GOT16:
11492 case R_MICROMIPS_CALL16:
11493 case R_MICROMIPS_CALL_HI16:
11494 case R_MICROMIPS_CALL_LO16:
11495 case R_MICROMIPS_GOT_HI16:
11496 case R_MICROMIPS_GOT_LO16:
11497 case R_MICROMIPS_GOT_DISP:
11498 case R_MICROMIPS_GOT_PAGE:
11499 case R_MICROMIPS_GOT_OFST:
11500 /* ??? It would seem that the existing MIPS code does no sort
11501 of reference counting or whatnot on its GOT and PLT entries,
11502 so it is not possible to garbage collect them at this time. */
11503 break;
11504
11505 default:
11506 break;
11507 }
11508 #endif
11509
11510 return TRUE;
11511 }
11512 \f
11513 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11514 hiding the old indirect symbol. Process additional relocation
11515 information. Also called for weakdefs, in which case we just let
11516 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11517
11518 void
11519 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11520 struct elf_link_hash_entry *dir,
11521 struct elf_link_hash_entry *ind)
11522 {
11523 struct mips_elf_link_hash_entry *dirmips, *indmips;
11524
11525 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11526
11527 dirmips = (struct mips_elf_link_hash_entry *) dir;
11528 indmips = (struct mips_elf_link_hash_entry *) ind;
11529 /* Any absolute non-dynamic relocations against an indirect or weak
11530 definition will be against the target symbol. */
11531 if (indmips->has_static_relocs)
11532 dirmips->has_static_relocs = TRUE;
11533
11534 if (ind->root.type != bfd_link_hash_indirect)
11535 return;
11536
11537 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11538 if (indmips->readonly_reloc)
11539 dirmips->readonly_reloc = TRUE;
11540 if (indmips->no_fn_stub)
11541 dirmips->no_fn_stub = TRUE;
11542 if (indmips->fn_stub)
11543 {
11544 dirmips->fn_stub = indmips->fn_stub;
11545 indmips->fn_stub = NULL;
11546 }
11547 if (indmips->need_fn_stub)
11548 {
11549 dirmips->need_fn_stub = TRUE;
11550 indmips->need_fn_stub = FALSE;
11551 }
11552 if (indmips->call_stub)
11553 {
11554 dirmips->call_stub = indmips->call_stub;
11555 indmips->call_stub = NULL;
11556 }
11557 if (indmips->call_fp_stub)
11558 {
11559 dirmips->call_fp_stub = indmips->call_fp_stub;
11560 indmips->call_fp_stub = NULL;
11561 }
11562 if (indmips->global_got_area < dirmips->global_got_area)
11563 dirmips->global_got_area = indmips->global_got_area;
11564 if (indmips->global_got_area < GGA_NONE)
11565 indmips->global_got_area = GGA_NONE;
11566 if (indmips->has_nonpic_branches)
11567 dirmips->has_nonpic_branches = TRUE;
11568
11569 if (dirmips->tls_type == 0)
11570 dirmips->tls_type = indmips->tls_type;
11571 }
11572 \f
11573 #define PDR_SIZE 32
11574
11575 bfd_boolean
11576 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11577 struct bfd_link_info *info)
11578 {
11579 asection *o;
11580 bfd_boolean ret = FALSE;
11581 unsigned char *tdata;
11582 size_t i, skip;
11583
11584 o = bfd_get_section_by_name (abfd, ".pdr");
11585 if (! o)
11586 return FALSE;
11587 if (o->size == 0)
11588 return FALSE;
11589 if (o->size % PDR_SIZE != 0)
11590 return FALSE;
11591 if (o->output_section != NULL
11592 && bfd_is_abs_section (o->output_section))
11593 return FALSE;
11594
11595 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11596 if (! tdata)
11597 return FALSE;
11598
11599 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11600 info->keep_memory);
11601 if (!cookie->rels)
11602 {
11603 free (tdata);
11604 return FALSE;
11605 }
11606
11607 cookie->rel = cookie->rels;
11608 cookie->relend = cookie->rels + o->reloc_count;
11609
11610 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11611 {
11612 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11613 {
11614 tdata[i] = 1;
11615 skip ++;
11616 }
11617 }
11618
11619 if (skip != 0)
11620 {
11621 mips_elf_section_data (o)->u.tdata = tdata;
11622 o->size -= skip * PDR_SIZE;
11623 ret = TRUE;
11624 }
11625 else
11626 free (tdata);
11627
11628 if (! info->keep_memory)
11629 free (cookie->rels);
11630
11631 return ret;
11632 }
11633
11634 bfd_boolean
11635 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11636 {
11637 if (strcmp (sec->name, ".pdr") == 0)
11638 return TRUE;
11639 return FALSE;
11640 }
11641
11642 bfd_boolean
11643 _bfd_mips_elf_write_section (bfd *output_bfd,
11644 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11645 asection *sec, bfd_byte *contents)
11646 {
11647 bfd_byte *to, *from, *end;
11648 int i;
11649
11650 if (strcmp (sec->name, ".pdr") != 0)
11651 return FALSE;
11652
11653 if (mips_elf_section_data (sec)->u.tdata == NULL)
11654 return FALSE;
11655
11656 to = contents;
11657 end = contents + sec->size;
11658 for (from = contents, i = 0;
11659 from < end;
11660 from += PDR_SIZE, i++)
11661 {
11662 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11663 continue;
11664 if (to != from)
11665 memcpy (to, from, PDR_SIZE);
11666 to += PDR_SIZE;
11667 }
11668 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11669 sec->output_offset, sec->size);
11670 return TRUE;
11671 }
11672 \f
11673 /* microMIPS code retains local labels for linker relaxation. Omit them
11674 from output by default for clarity. */
11675
11676 bfd_boolean
11677 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11678 {
11679 return _bfd_elf_is_local_label_name (abfd, sym->name);
11680 }
11681
11682 /* MIPS ELF uses a special find_nearest_line routine in order the
11683 handle the ECOFF debugging information. */
11684
11685 struct mips_elf_find_line
11686 {
11687 struct ecoff_debug_info d;
11688 struct ecoff_find_line i;
11689 };
11690
11691 bfd_boolean
11692 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11693 asymbol **symbols, bfd_vma offset,
11694 const char **filename_ptr,
11695 const char **functionname_ptr,
11696 unsigned int *line_ptr)
11697 {
11698 asection *msec;
11699
11700 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11701 filename_ptr, functionname_ptr,
11702 line_ptr))
11703 return TRUE;
11704
11705 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11706 section, symbols, offset,
11707 filename_ptr, functionname_ptr,
11708 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11709 &elf_tdata (abfd)->dwarf2_find_line_info))
11710 return TRUE;
11711
11712 msec = bfd_get_section_by_name (abfd, ".mdebug");
11713 if (msec != NULL)
11714 {
11715 flagword origflags;
11716 struct mips_elf_find_line *fi;
11717 const struct ecoff_debug_swap * const swap =
11718 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11719
11720 /* If we are called during a link, mips_elf_final_link may have
11721 cleared the SEC_HAS_CONTENTS field. We force it back on here
11722 if appropriate (which it normally will be). */
11723 origflags = msec->flags;
11724 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11725 msec->flags |= SEC_HAS_CONTENTS;
11726
11727 fi = elf_tdata (abfd)->find_line_info;
11728 if (fi == NULL)
11729 {
11730 bfd_size_type external_fdr_size;
11731 char *fraw_src;
11732 char *fraw_end;
11733 struct fdr *fdr_ptr;
11734 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11735
11736 fi = bfd_zalloc (abfd, amt);
11737 if (fi == NULL)
11738 {
11739 msec->flags = origflags;
11740 return FALSE;
11741 }
11742
11743 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11744 {
11745 msec->flags = origflags;
11746 return FALSE;
11747 }
11748
11749 /* Swap in the FDR information. */
11750 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11751 fi->d.fdr = bfd_alloc (abfd, amt);
11752 if (fi->d.fdr == NULL)
11753 {
11754 msec->flags = origflags;
11755 return FALSE;
11756 }
11757 external_fdr_size = swap->external_fdr_size;
11758 fdr_ptr = fi->d.fdr;
11759 fraw_src = (char *) fi->d.external_fdr;
11760 fraw_end = (fraw_src
11761 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11762 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11763 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11764
11765 elf_tdata (abfd)->find_line_info = fi;
11766
11767 /* Note that we don't bother to ever free this information.
11768 find_nearest_line is either called all the time, as in
11769 objdump -l, so the information should be saved, or it is
11770 rarely called, as in ld error messages, so the memory
11771 wasted is unimportant. Still, it would probably be a
11772 good idea for free_cached_info to throw it away. */
11773 }
11774
11775 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11776 &fi->i, filename_ptr, functionname_ptr,
11777 line_ptr))
11778 {
11779 msec->flags = origflags;
11780 return TRUE;
11781 }
11782
11783 msec->flags = origflags;
11784 }
11785
11786 /* Fall back on the generic ELF find_nearest_line routine. */
11787
11788 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11789 filename_ptr, functionname_ptr,
11790 line_ptr);
11791 }
11792
11793 bfd_boolean
11794 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11795 const char **filename_ptr,
11796 const char **functionname_ptr,
11797 unsigned int *line_ptr)
11798 {
11799 bfd_boolean found;
11800 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11801 functionname_ptr, line_ptr,
11802 & elf_tdata (abfd)->dwarf2_find_line_info);
11803 return found;
11804 }
11805
11806 \f
11807 /* When are writing out the .options or .MIPS.options section,
11808 remember the bytes we are writing out, so that we can install the
11809 GP value in the section_processing routine. */
11810
11811 bfd_boolean
11812 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11813 const void *location,
11814 file_ptr offset, bfd_size_type count)
11815 {
11816 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11817 {
11818 bfd_byte *c;
11819
11820 if (elf_section_data (section) == NULL)
11821 {
11822 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11823 section->used_by_bfd = bfd_zalloc (abfd, amt);
11824 if (elf_section_data (section) == NULL)
11825 return FALSE;
11826 }
11827 c = mips_elf_section_data (section)->u.tdata;
11828 if (c == NULL)
11829 {
11830 c = bfd_zalloc (abfd, section->size);
11831 if (c == NULL)
11832 return FALSE;
11833 mips_elf_section_data (section)->u.tdata = c;
11834 }
11835
11836 memcpy (c + offset, location, count);
11837 }
11838
11839 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11840 count);
11841 }
11842
11843 /* This is almost identical to bfd_generic_get_... except that some
11844 MIPS relocations need to be handled specially. Sigh. */
11845
11846 bfd_byte *
11847 _bfd_elf_mips_get_relocated_section_contents
11848 (bfd *abfd,
11849 struct bfd_link_info *link_info,
11850 struct bfd_link_order *link_order,
11851 bfd_byte *data,
11852 bfd_boolean relocatable,
11853 asymbol **symbols)
11854 {
11855 /* Get enough memory to hold the stuff */
11856 bfd *input_bfd = link_order->u.indirect.section->owner;
11857 asection *input_section = link_order->u.indirect.section;
11858 bfd_size_type sz;
11859
11860 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11861 arelent **reloc_vector = NULL;
11862 long reloc_count;
11863
11864 if (reloc_size < 0)
11865 goto error_return;
11866
11867 reloc_vector = bfd_malloc (reloc_size);
11868 if (reloc_vector == NULL && reloc_size != 0)
11869 goto error_return;
11870
11871 /* read in the section */
11872 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11873 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11874 goto error_return;
11875
11876 reloc_count = bfd_canonicalize_reloc (input_bfd,
11877 input_section,
11878 reloc_vector,
11879 symbols);
11880 if (reloc_count < 0)
11881 goto error_return;
11882
11883 if (reloc_count > 0)
11884 {
11885 arelent **parent;
11886 /* for mips */
11887 int gp_found;
11888 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11889
11890 {
11891 struct bfd_hash_entry *h;
11892 struct bfd_link_hash_entry *lh;
11893 /* Skip all this stuff if we aren't mixing formats. */
11894 if (abfd && input_bfd
11895 && abfd->xvec == input_bfd->xvec)
11896 lh = 0;
11897 else
11898 {
11899 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11900 lh = (struct bfd_link_hash_entry *) h;
11901 }
11902 lookup:
11903 if (lh)
11904 {
11905 switch (lh->type)
11906 {
11907 case bfd_link_hash_undefined:
11908 case bfd_link_hash_undefweak:
11909 case bfd_link_hash_common:
11910 gp_found = 0;
11911 break;
11912 case bfd_link_hash_defined:
11913 case bfd_link_hash_defweak:
11914 gp_found = 1;
11915 gp = lh->u.def.value;
11916 break;
11917 case bfd_link_hash_indirect:
11918 case bfd_link_hash_warning:
11919 lh = lh->u.i.link;
11920 /* @@FIXME ignoring warning for now */
11921 goto lookup;
11922 case bfd_link_hash_new:
11923 default:
11924 abort ();
11925 }
11926 }
11927 else
11928 gp_found = 0;
11929 }
11930 /* end mips */
11931 for (parent = reloc_vector; *parent != NULL; parent++)
11932 {
11933 char *error_message = NULL;
11934 bfd_reloc_status_type r;
11935
11936 /* Specific to MIPS: Deal with relocation types that require
11937 knowing the gp of the output bfd. */
11938 asymbol *sym = *(*parent)->sym_ptr_ptr;
11939
11940 /* If we've managed to find the gp and have a special
11941 function for the relocation then go ahead, else default
11942 to the generic handling. */
11943 if (gp_found
11944 && (*parent)->howto->special_function
11945 == _bfd_mips_elf32_gprel16_reloc)
11946 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11947 input_section, relocatable,
11948 data, gp);
11949 else
11950 r = bfd_perform_relocation (input_bfd, *parent, data,
11951 input_section,
11952 relocatable ? abfd : NULL,
11953 &error_message);
11954
11955 if (relocatable)
11956 {
11957 asection *os = input_section->output_section;
11958
11959 /* A partial link, so keep the relocs */
11960 os->orelocation[os->reloc_count] = *parent;
11961 os->reloc_count++;
11962 }
11963
11964 if (r != bfd_reloc_ok)
11965 {
11966 switch (r)
11967 {
11968 case bfd_reloc_undefined:
11969 if (!((*link_info->callbacks->undefined_symbol)
11970 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11971 input_bfd, input_section, (*parent)->address, TRUE)))
11972 goto error_return;
11973 break;
11974 case bfd_reloc_dangerous:
11975 BFD_ASSERT (error_message != NULL);
11976 if (!((*link_info->callbacks->reloc_dangerous)
11977 (link_info, error_message, input_bfd, input_section,
11978 (*parent)->address)))
11979 goto error_return;
11980 break;
11981 case bfd_reloc_overflow:
11982 if (!((*link_info->callbacks->reloc_overflow)
11983 (link_info, NULL,
11984 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11985 (*parent)->howto->name, (*parent)->addend,
11986 input_bfd, input_section, (*parent)->address)))
11987 goto error_return;
11988 break;
11989 case bfd_reloc_outofrange:
11990 default:
11991 abort ();
11992 break;
11993 }
11994
11995 }
11996 }
11997 }
11998 if (reloc_vector != NULL)
11999 free (reloc_vector);
12000 return data;
12001
12002 error_return:
12003 if (reloc_vector != NULL)
12004 free (reloc_vector);
12005 return NULL;
12006 }
12007 \f
12008 static bfd_boolean
12009 mips_elf_relax_delete_bytes (bfd *abfd,
12010 asection *sec, bfd_vma addr, int count)
12011 {
12012 Elf_Internal_Shdr *symtab_hdr;
12013 unsigned int sec_shndx;
12014 bfd_byte *contents;
12015 Elf_Internal_Rela *irel, *irelend;
12016 Elf_Internal_Sym *isym;
12017 Elf_Internal_Sym *isymend;
12018 struct elf_link_hash_entry **sym_hashes;
12019 struct elf_link_hash_entry **end_hashes;
12020 struct elf_link_hash_entry **start_hashes;
12021 unsigned int symcount;
12022
12023 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12024 contents = elf_section_data (sec)->this_hdr.contents;
12025
12026 irel = elf_section_data (sec)->relocs;
12027 irelend = irel + sec->reloc_count;
12028
12029 /* Actually delete the bytes. */
12030 memmove (contents + addr, contents + addr + count,
12031 (size_t) (sec->size - addr - count));
12032 sec->size -= count;
12033
12034 /* Adjust all the relocs. */
12035 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12036 {
12037 /* Get the new reloc address. */
12038 if (irel->r_offset > addr)
12039 irel->r_offset -= count;
12040 }
12041
12042 BFD_ASSERT (addr % 2 == 0);
12043 BFD_ASSERT (count % 2 == 0);
12044
12045 /* Adjust the local symbols defined in this section. */
12046 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12047 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12048 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12049 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12050 isym->st_value -= count;
12051
12052 /* Now adjust the global symbols defined in this section. */
12053 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12054 - symtab_hdr->sh_info);
12055 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12056 end_hashes = sym_hashes + symcount;
12057
12058 for (; sym_hashes < end_hashes; sym_hashes++)
12059 {
12060 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12061
12062 if ((sym_hash->root.type == bfd_link_hash_defined
12063 || sym_hash->root.type == bfd_link_hash_defweak)
12064 && sym_hash->root.u.def.section == sec)
12065 {
12066 bfd_vma value = sym_hash->root.u.def.value;
12067
12068 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12069 value &= MINUS_TWO;
12070 if (value > addr)
12071 sym_hash->root.u.def.value -= count;
12072 }
12073 }
12074
12075 return TRUE;
12076 }
12077
12078
12079 /* Opcodes needed for microMIPS relaxation as found in
12080 opcodes/micromips-opc.c. */
12081
12082 struct opcode_descriptor {
12083 unsigned long match;
12084 unsigned long mask;
12085 };
12086
12087 /* The $ra register aka $31. */
12088
12089 #define RA 31
12090
12091 /* 32-bit instruction format register fields. */
12092
12093 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12094 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12095
12096 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12097
12098 #define OP16_VALID_REG(r) \
12099 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12100
12101
12102 /* 32-bit and 16-bit branches. */
12103
12104 static const struct opcode_descriptor b_insns_32[] = {
12105 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12106 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12107 { 0, 0 } /* End marker for find_match(). */
12108 };
12109
12110 static const struct opcode_descriptor bc_insn_32 =
12111 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12112
12113 static const struct opcode_descriptor bz_insn_32 =
12114 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12115
12116 static const struct opcode_descriptor bzal_insn_32 =
12117 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12118
12119 static const struct opcode_descriptor beq_insn_32 =
12120 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12121
12122 static const struct opcode_descriptor b_insn_16 =
12123 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12124
12125 static const struct opcode_descriptor bz_insn_16 =
12126 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12127
12128
12129 /* 32-bit and 16-bit branch EQ and NE zero. */
12130
12131 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12132 eq and second the ne. This convention is used when replacing a
12133 32-bit BEQ/BNE with the 16-bit version. */
12134
12135 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12136
12137 static const struct opcode_descriptor bz_rs_insns_32[] = {
12138 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12139 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12140 { 0, 0 } /* End marker for find_match(). */
12141 };
12142
12143 static const struct opcode_descriptor bz_rt_insns_32[] = {
12144 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12145 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12146 { 0, 0 } /* End marker for find_match(). */
12147 };
12148
12149 static const struct opcode_descriptor bzc_insns_32[] = {
12150 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12151 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12152 { 0, 0 } /* End marker for find_match(). */
12153 };
12154
12155 static const struct opcode_descriptor bz_insns_16[] = {
12156 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12157 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12158 { 0, 0 } /* End marker for find_match(). */
12159 };
12160
12161 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12162
12163 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12164 #define BZ16_REG_FIELD(r) \
12165 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12166
12167
12168 /* 32-bit instructions with a delay slot. */
12169
12170 static const struct opcode_descriptor jal_insn_32_bd16 =
12171 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12172
12173 static const struct opcode_descriptor jal_insn_32_bd32 =
12174 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12175
12176 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12177 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12178
12179 static const struct opcode_descriptor j_insn_32 =
12180 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12181
12182 static const struct opcode_descriptor jalr_insn_32 =
12183 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12184
12185 /* This table can be compacted, because no opcode replacement is made. */
12186
12187 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12188 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12189
12190 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12191 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12192
12193 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12194 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12195 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12196 { 0, 0 } /* End marker for find_match(). */
12197 };
12198
12199 /* This table can be compacted, because no opcode replacement is made. */
12200
12201 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12202 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12203
12204 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12205 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12206 { 0, 0 } /* End marker for find_match(). */
12207 };
12208
12209
12210 /* 16-bit instructions with a delay slot. */
12211
12212 static const struct opcode_descriptor jalr_insn_16_bd16 =
12213 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12214
12215 static const struct opcode_descriptor jalr_insn_16_bd32 =
12216 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12217
12218 static const struct opcode_descriptor jr_insn_16 =
12219 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12220
12221 #define JR16_REG(opcode) ((opcode) & 0x1f)
12222
12223 /* This table can be compacted, because no opcode replacement is made. */
12224
12225 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12226 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12227
12228 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12229 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12230 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12231 { 0, 0 } /* End marker for find_match(). */
12232 };
12233
12234
12235 /* LUI instruction. */
12236
12237 static const struct opcode_descriptor lui_insn =
12238 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12239
12240
12241 /* ADDIU instruction. */
12242
12243 static const struct opcode_descriptor addiu_insn =
12244 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12245
12246 static const struct opcode_descriptor addiupc_insn =
12247 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12248
12249 #define ADDIUPC_REG_FIELD(r) \
12250 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12251
12252
12253 /* Relaxable instructions in a JAL delay slot: MOVE. */
12254
12255 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12256 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12257 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12258 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12259
12260 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12261 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12262
12263 static const struct opcode_descriptor move_insns_32[] = {
12264 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12265 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12266 { 0, 0 } /* End marker for find_match(). */
12267 };
12268
12269 static const struct opcode_descriptor move_insn_16 =
12270 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12271
12272
12273 /* NOP instructions. */
12274
12275 static const struct opcode_descriptor nop_insn_32 =
12276 { /* "nop", "", */ 0x00000000, 0xffffffff };
12277
12278 static const struct opcode_descriptor nop_insn_16 =
12279 { /* "nop", "", */ 0x0c00, 0xffff };
12280
12281
12282 /* Instruction match support. */
12283
12284 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12285
12286 static int
12287 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12288 {
12289 unsigned long indx;
12290
12291 for (indx = 0; insn[indx].mask != 0; indx++)
12292 if (MATCH (opcode, insn[indx]))
12293 return indx;
12294
12295 return -1;
12296 }
12297
12298
12299 /* Branch and delay slot decoding support. */
12300
12301 /* If PTR points to what *might* be a 16-bit branch or jump, then
12302 return the minimum length of its delay slot, otherwise return 0.
12303 Non-zero results are not definitive as we might be checking against
12304 the second half of another instruction. */
12305
12306 static int
12307 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12308 {
12309 unsigned long opcode;
12310 int bdsize;
12311
12312 opcode = bfd_get_16 (abfd, ptr);
12313 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12314 /* 16-bit branch/jump with a 32-bit delay slot. */
12315 bdsize = 4;
12316 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12317 || find_match (opcode, ds_insns_16_bd16) >= 0)
12318 /* 16-bit branch/jump with a 16-bit delay slot. */
12319 bdsize = 2;
12320 else
12321 /* No delay slot. */
12322 bdsize = 0;
12323
12324 return bdsize;
12325 }
12326
12327 /* If PTR points to what *might* be a 32-bit branch or jump, then
12328 return the minimum length of its delay slot, otherwise return 0.
12329 Non-zero results are not definitive as we might be checking against
12330 the second half of another instruction. */
12331
12332 static int
12333 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12334 {
12335 unsigned long opcode;
12336 int bdsize;
12337
12338 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12339 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12340 /* 32-bit branch/jump with a 32-bit delay slot. */
12341 bdsize = 4;
12342 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12343 /* 32-bit branch/jump with a 16-bit delay slot. */
12344 bdsize = 2;
12345 else
12346 /* No delay slot. */
12347 bdsize = 0;
12348
12349 return bdsize;
12350 }
12351
12352 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12353 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12354
12355 static bfd_boolean
12356 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12357 {
12358 unsigned long opcode;
12359
12360 opcode = bfd_get_16 (abfd, ptr);
12361 if (MATCH (opcode, b_insn_16)
12362 /* B16 */
12363 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12364 /* JR16 */
12365 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12366 /* BEQZ16, BNEZ16 */
12367 || (MATCH (opcode, jalr_insn_16_bd32)
12368 /* JALR16 */
12369 && reg != JR16_REG (opcode) && reg != RA))
12370 return TRUE;
12371
12372 return FALSE;
12373 }
12374
12375 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12376 then return TRUE, otherwise FALSE. */
12377
12378 static bfd_boolean
12379 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12380 {
12381 unsigned long opcode;
12382
12383 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12384 if (MATCH (opcode, j_insn_32)
12385 /* J */
12386 || MATCH (opcode, bc_insn_32)
12387 /* BC1F, BC1T, BC2F, BC2T */
12388 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12389 /* JAL, JALX */
12390 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12391 /* BGEZ, BGTZ, BLEZ, BLTZ */
12392 || (MATCH (opcode, bzal_insn_32)
12393 /* BGEZAL, BLTZAL */
12394 && reg != OP32_SREG (opcode) && reg != RA)
12395 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12396 /* JALR, JALR.HB, BEQ, BNE */
12397 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12398 return TRUE;
12399
12400 return FALSE;
12401 }
12402
12403 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12404 IRELEND) at OFFSET indicate that there must be a compact branch there,
12405 then return TRUE, otherwise FALSE. */
12406
12407 static bfd_boolean
12408 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12409 const Elf_Internal_Rela *internal_relocs,
12410 const Elf_Internal_Rela *irelend)
12411 {
12412 const Elf_Internal_Rela *irel;
12413 unsigned long opcode;
12414
12415 opcode = bfd_get_16 (abfd, ptr);
12416 opcode <<= 16;
12417 opcode |= bfd_get_16 (abfd, ptr + 2);
12418 if (find_match (opcode, bzc_insns_32) < 0)
12419 return FALSE;
12420
12421 for (irel = internal_relocs; irel < irelend; irel++)
12422 if (irel->r_offset == offset
12423 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12424 return TRUE;
12425
12426 return FALSE;
12427 }
12428
12429 /* Bitsize checking. */
12430 #define IS_BITSIZE(val, N) \
12431 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12432 - (1ULL << ((N) - 1))) == (val))
12433
12434 \f
12435 bfd_boolean
12436 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12437 struct bfd_link_info *link_info,
12438 bfd_boolean *again)
12439 {
12440 Elf_Internal_Shdr *symtab_hdr;
12441 Elf_Internal_Rela *internal_relocs;
12442 Elf_Internal_Rela *irel, *irelend;
12443 bfd_byte *contents = NULL;
12444 Elf_Internal_Sym *isymbuf = NULL;
12445
12446 /* Assume nothing changes. */
12447 *again = FALSE;
12448
12449 /* We don't have to do anything for a relocatable link, if
12450 this section does not have relocs, or if this is not a
12451 code section. */
12452
12453 if (link_info->relocatable
12454 || (sec->flags & SEC_RELOC) == 0
12455 || sec->reloc_count == 0
12456 || (sec->flags & SEC_CODE) == 0)
12457 return TRUE;
12458
12459 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12460
12461 /* Get a copy of the native relocations. */
12462 internal_relocs = (_bfd_elf_link_read_relocs
12463 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
12464 link_info->keep_memory));
12465 if (internal_relocs == NULL)
12466 goto error_return;
12467
12468 /* Walk through them looking for relaxing opportunities. */
12469 irelend = internal_relocs + sec->reloc_count;
12470 for (irel = internal_relocs; irel < irelend; irel++)
12471 {
12472 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12473 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12474 bfd_boolean target_is_micromips_code_p;
12475 unsigned long opcode;
12476 bfd_vma symval;
12477 bfd_vma pcrval;
12478 bfd_byte *ptr;
12479 int fndopc;
12480
12481 /* The number of bytes to delete for relaxation and from where
12482 to delete these bytes starting at irel->r_offset. */
12483 int delcnt = 0;
12484 int deloff = 0;
12485
12486 /* If this isn't something that can be relaxed, then ignore
12487 this reloc. */
12488 if (r_type != R_MICROMIPS_HI16
12489 && r_type != R_MICROMIPS_PC16_S1
12490 && r_type != R_MICROMIPS_26_S1)
12491 continue;
12492
12493 /* Get the section contents if we haven't done so already. */
12494 if (contents == NULL)
12495 {
12496 /* Get cached copy if it exists. */
12497 if (elf_section_data (sec)->this_hdr.contents != NULL)
12498 contents = elf_section_data (sec)->this_hdr.contents;
12499 /* Go get them off disk. */
12500 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12501 goto error_return;
12502 }
12503 ptr = contents + irel->r_offset;
12504
12505 /* Read this BFD's local symbols if we haven't done so already. */
12506 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12507 {
12508 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12509 if (isymbuf == NULL)
12510 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12511 symtab_hdr->sh_info, 0,
12512 NULL, NULL, NULL);
12513 if (isymbuf == NULL)
12514 goto error_return;
12515 }
12516
12517 /* Get the value of the symbol referred to by the reloc. */
12518 if (r_symndx < symtab_hdr->sh_info)
12519 {
12520 /* A local symbol. */
12521 Elf_Internal_Sym *isym;
12522 asection *sym_sec;
12523
12524 isym = isymbuf + r_symndx;
12525 if (isym->st_shndx == SHN_UNDEF)
12526 sym_sec = bfd_und_section_ptr;
12527 else if (isym->st_shndx == SHN_ABS)
12528 sym_sec = bfd_abs_section_ptr;
12529 else if (isym->st_shndx == SHN_COMMON)
12530 sym_sec = bfd_com_section_ptr;
12531 else
12532 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12533 symval = (isym->st_value
12534 + sym_sec->output_section->vma
12535 + sym_sec->output_offset);
12536 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12537 }
12538 else
12539 {
12540 unsigned long indx;
12541 struct elf_link_hash_entry *h;
12542
12543 /* An external symbol. */
12544 indx = r_symndx - symtab_hdr->sh_info;
12545 h = elf_sym_hashes (abfd)[indx];
12546 BFD_ASSERT (h != NULL);
12547
12548 if (h->root.type != bfd_link_hash_defined
12549 && h->root.type != bfd_link_hash_defweak)
12550 /* This appears to be a reference to an undefined
12551 symbol. Just ignore it -- it will be caught by the
12552 regular reloc processing. */
12553 continue;
12554
12555 symval = (h->root.u.def.value
12556 + h->root.u.def.section->output_section->vma
12557 + h->root.u.def.section->output_offset);
12558 target_is_micromips_code_p = (!h->needs_plt
12559 && ELF_ST_IS_MICROMIPS (h->other));
12560 }
12561
12562
12563 /* For simplicity of coding, we are going to modify the
12564 section contents, the section relocs, and the BFD symbol
12565 table. We must tell the rest of the code not to free up this
12566 information. It would be possible to instead create a table
12567 of changes which have to be made, as is done in coff-mips.c;
12568 that would be more work, but would require less memory when
12569 the linker is run. */
12570
12571 /* Only 32-bit instructions relaxed. */
12572 if (irel->r_offset + 4 > sec->size)
12573 continue;
12574
12575 opcode = bfd_get_16 (abfd, ptr ) << 16;
12576 opcode |= bfd_get_16 (abfd, ptr + 2);
12577
12578 /* This is the pc-relative distance from the instruction the
12579 relocation is applied to, to the symbol referred. */
12580 pcrval = (symval
12581 - (sec->output_section->vma + sec->output_offset)
12582 - irel->r_offset);
12583
12584 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12585 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12586 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12587
12588 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12589
12590 where pcrval has first to be adjusted to apply against the LO16
12591 location (we make the adjustment later on, when we have figured
12592 out the offset). */
12593 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12594 {
12595 bfd_boolean bzc = FALSE;
12596 unsigned long nextopc;
12597 unsigned long reg;
12598 bfd_vma offset;
12599
12600 /* Give up if the previous reloc was a HI16 against this symbol
12601 too. */
12602 if (irel > internal_relocs
12603 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12604 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12605 continue;
12606
12607 /* Or if the next reloc is not a LO16 against this symbol. */
12608 if (irel + 1 >= irelend
12609 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12610 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12611 continue;
12612
12613 /* Or if the second next reloc is a LO16 against this symbol too. */
12614 if (irel + 2 >= irelend
12615 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12616 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12617 continue;
12618
12619 /* See if the LUI instruction *might* be in a branch delay slot.
12620 We check whether what looks like a 16-bit branch or jump is
12621 actually an immediate argument to a compact branch, and let
12622 it through if so. */
12623 if (irel->r_offset >= 2
12624 && check_br16_dslot (abfd, ptr - 2)
12625 && !(irel->r_offset >= 4
12626 && (bzc = check_relocated_bzc (abfd,
12627 ptr - 4, irel->r_offset - 4,
12628 internal_relocs, irelend))))
12629 continue;
12630 if (irel->r_offset >= 4
12631 && !bzc
12632 && check_br32_dslot (abfd, ptr - 4))
12633 continue;
12634
12635 reg = OP32_SREG (opcode);
12636
12637 /* We only relax adjacent instructions or ones separated with
12638 a branch or jump that has a delay slot. The branch or jump
12639 must not fiddle with the register used to hold the address.
12640 Subtract 4 for the LUI itself. */
12641 offset = irel[1].r_offset - irel[0].r_offset;
12642 switch (offset - 4)
12643 {
12644 case 0:
12645 break;
12646 case 2:
12647 if (check_br16 (abfd, ptr + 4, reg))
12648 break;
12649 continue;
12650 case 4:
12651 if (check_br32 (abfd, ptr + 4, reg))
12652 break;
12653 continue;
12654 default:
12655 continue;
12656 }
12657
12658 nextopc = bfd_get_16 (abfd, contents + irel[1].r_offset ) << 16;
12659 nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
12660
12661 /* Give up unless the same register is used with both
12662 relocations. */
12663 if (OP32_SREG (nextopc) != reg)
12664 continue;
12665
12666 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12667 and rounding up to take masking of the two LSBs into account. */
12668 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12669
12670 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12671 if (IS_BITSIZE (symval, 16))
12672 {
12673 /* Fix the relocation's type. */
12674 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12675
12676 /* Instructions using R_MICROMIPS_LO16 have the base or
12677 source register in bits 20:16. This register becomes $0
12678 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12679 nextopc &= ~0x001f0000;
12680 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12681 contents + irel[1].r_offset);
12682 }
12683
12684 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12685 We add 4 to take LUI deletion into account while checking
12686 the PC-relative distance. */
12687 else if (symval % 4 == 0
12688 && IS_BITSIZE (pcrval + 4, 25)
12689 && MATCH (nextopc, addiu_insn)
12690 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12691 && OP16_VALID_REG (OP32_TREG (nextopc)))
12692 {
12693 /* Fix the relocation's type. */
12694 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12695
12696 /* Replace ADDIU with the ADDIUPC version. */
12697 nextopc = (addiupc_insn.match
12698 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12699
12700 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12701 contents + irel[1].r_offset);
12702 bfd_put_16 (abfd, nextopc & 0xffff,
12703 contents + irel[1].r_offset + 2);
12704 }
12705
12706 /* Can't do anything, give up, sigh... */
12707 else
12708 continue;
12709
12710 /* Fix the relocation's type. */
12711 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12712
12713 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12714 delcnt = 4;
12715 deloff = 0;
12716 }
12717
12718 /* Compact branch relaxation -- due to the multitude of macros
12719 employed by the compiler/assembler, compact branches are not
12720 always generated. Obviously, this can/will be fixed elsewhere,
12721 but there is no drawback in double checking it here. */
12722 else if (r_type == R_MICROMIPS_PC16_S1
12723 && irel->r_offset + 5 < sec->size
12724 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12725 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12726 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12727 {
12728 unsigned long reg;
12729
12730 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12731
12732 /* Replace BEQZ/BNEZ with the compact version. */
12733 opcode = (bzc_insns_32[fndopc].match
12734 | BZC32_REG_FIELD (reg)
12735 | (opcode & 0xffff)); /* Addend value. */
12736
12737 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
12738 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
12739
12740 /* Delete the 16-bit delay slot NOP: two bytes from
12741 irel->offset + 4. */
12742 delcnt = 2;
12743 deloff = 4;
12744 }
12745
12746 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12747 to check the distance from the next instruction, so subtract 2. */
12748 else if (r_type == R_MICROMIPS_PC16_S1
12749 && IS_BITSIZE (pcrval - 2, 11)
12750 && find_match (opcode, b_insns_32) >= 0)
12751 {
12752 /* Fix the relocation's type. */
12753 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12754
12755 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12756 bfd_put_16 (abfd,
12757 (b_insn_16.match
12758 | (opcode & 0x3ff)), /* Addend value. */
12759 ptr);
12760
12761 /* Delete 2 bytes from irel->r_offset + 2. */
12762 delcnt = 2;
12763 deloff = 2;
12764 }
12765
12766 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12767 to check the distance from the next instruction, so subtract 2. */
12768 else if (r_type == R_MICROMIPS_PC16_S1
12769 && IS_BITSIZE (pcrval - 2, 8)
12770 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12771 && OP16_VALID_REG (OP32_SREG (opcode)))
12772 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12773 && OP16_VALID_REG (OP32_TREG (opcode)))))
12774 {
12775 unsigned long reg;
12776
12777 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12778
12779 /* Fix the relocation's type. */
12780 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12781
12782 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12783 bfd_put_16 (abfd,
12784 (bz_insns_16[fndopc].match
12785 | BZ16_REG_FIELD (reg)
12786 | (opcode & 0x7f)), /* Addend value. */
12787 ptr);
12788
12789 /* Delete 2 bytes from irel->r_offset + 2. */
12790 delcnt = 2;
12791 deloff = 2;
12792 }
12793
12794 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12795 else if (r_type == R_MICROMIPS_26_S1
12796 && target_is_micromips_code_p
12797 && irel->r_offset + 7 < sec->size
12798 && MATCH (opcode, jal_insn_32_bd32))
12799 {
12800 unsigned long n32opc;
12801 bfd_boolean relaxed = FALSE;
12802
12803 n32opc = bfd_get_16 (abfd, ptr + 4) << 16;
12804 n32opc |= bfd_get_16 (abfd, ptr + 6);
12805
12806 if (MATCH (n32opc, nop_insn_32))
12807 {
12808 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12809 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12810
12811 relaxed = TRUE;
12812 }
12813 else if (find_match (n32opc, move_insns_32) >= 0)
12814 {
12815 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12816 bfd_put_16 (abfd,
12817 (move_insn_16.match
12818 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12819 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12820 ptr + 4);
12821
12822 relaxed = TRUE;
12823 }
12824 /* Other 32-bit instructions relaxable to 16-bit
12825 instructions will be handled here later. */
12826
12827 if (relaxed)
12828 {
12829 /* JAL with 32-bit delay slot that is changed to a JALS
12830 with 16-bit delay slot. */
12831 bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
12832 ptr);
12833 bfd_put_16 (abfd, jal_insn_32_bd16.match & 0xffff,
12834 ptr + 2);
12835
12836 /* Delete 2 bytes from irel->r_offset + 6. */
12837 delcnt = 2;
12838 deloff = 6;
12839 }
12840 }
12841
12842 if (delcnt != 0)
12843 {
12844 /* Note that we've changed the relocs, section contents, etc. */
12845 elf_section_data (sec)->relocs = internal_relocs;
12846 elf_section_data (sec)->this_hdr.contents = contents;
12847 symtab_hdr->contents = (unsigned char *) isymbuf;
12848
12849 /* Delete bytes depending on the delcnt and deloff. */
12850 if (!mips_elf_relax_delete_bytes (abfd, sec,
12851 irel->r_offset + deloff, delcnt))
12852 goto error_return;
12853
12854 /* That will change things, so we should relax again.
12855 Note that this is not required, and it may be slow. */
12856 *again = TRUE;
12857 }
12858 }
12859
12860 if (isymbuf != NULL
12861 && symtab_hdr->contents != (unsigned char *) isymbuf)
12862 {
12863 if (! link_info->keep_memory)
12864 free (isymbuf);
12865 else
12866 {
12867 /* Cache the symbols for elf_link_input_bfd. */
12868 symtab_hdr->contents = (unsigned char *) isymbuf;
12869 }
12870 }
12871
12872 if (contents != NULL
12873 && elf_section_data (sec)->this_hdr.contents != contents)
12874 {
12875 if (! link_info->keep_memory)
12876 free (contents);
12877 else
12878 {
12879 /* Cache the section contents for elf_link_input_bfd. */
12880 elf_section_data (sec)->this_hdr.contents = contents;
12881 }
12882 }
12883
12884 if (internal_relocs != NULL
12885 && elf_section_data (sec)->relocs != internal_relocs)
12886 free (internal_relocs);
12887
12888 return TRUE;
12889
12890 error_return:
12891 if (isymbuf != NULL
12892 && symtab_hdr->contents != (unsigned char *) isymbuf)
12893 free (isymbuf);
12894 if (contents != NULL
12895 && elf_section_data (sec)->this_hdr.contents != contents)
12896 free (contents);
12897 if (internal_relocs != NULL
12898 && elf_section_data (sec)->relocs != internal_relocs)
12899 free (internal_relocs);
12900
12901 return FALSE;
12902 }
12903 \f
12904 /* Create a MIPS ELF linker hash table. */
12905
12906 struct bfd_link_hash_table *
12907 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12908 {
12909 struct mips_elf_link_hash_table *ret;
12910 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12911
12912 ret = bfd_malloc (amt);
12913 if (ret == NULL)
12914 return NULL;
12915
12916 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12917 mips_elf_link_hash_newfunc,
12918 sizeof (struct mips_elf_link_hash_entry),
12919 MIPS_ELF_DATA))
12920 {
12921 free (ret);
12922 return NULL;
12923 }
12924
12925 #if 0
12926 /* We no longer use this. */
12927 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12928 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12929 #endif
12930 ret->procedure_count = 0;
12931 ret->compact_rel_size = 0;
12932 ret->use_rld_obj_head = FALSE;
12933 ret->rld_symbol = NULL;
12934 ret->mips16_stubs_seen = FALSE;
12935 ret->use_plts_and_copy_relocs = FALSE;
12936 ret->is_vxworks = FALSE;
12937 ret->small_data_overflow_reported = FALSE;
12938 ret->srelbss = NULL;
12939 ret->sdynbss = NULL;
12940 ret->srelplt = NULL;
12941 ret->srelplt2 = NULL;
12942 ret->sgotplt = NULL;
12943 ret->splt = NULL;
12944 ret->sstubs = NULL;
12945 ret->sgot = NULL;
12946 ret->got_info = NULL;
12947 ret->plt_header_size = 0;
12948 ret->plt_entry_size = 0;
12949 ret->lazy_stub_count = 0;
12950 ret->function_stub_size = 0;
12951 ret->strampoline = NULL;
12952 ret->la25_stubs = NULL;
12953 ret->add_stub_section = NULL;
12954
12955 return &ret->root.root;
12956 }
12957
12958 /* Likewise, but indicate that the target is VxWorks. */
12959
12960 struct bfd_link_hash_table *
12961 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12962 {
12963 struct bfd_link_hash_table *ret;
12964
12965 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12966 if (ret)
12967 {
12968 struct mips_elf_link_hash_table *htab;
12969
12970 htab = (struct mips_elf_link_hash_table *) ret;
12971 htab->use_plts_and_copy_relocs = TRUE;
12972 htab->is_vxworks = TRUE;
12973 }
12974 return ret;
12975 }
12976
12977 /* A function that the linker calls if we are allowed to use PLTs
12978 and copy relocs. */
12979
12980 void
12981 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12982 {
12983 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12984 }
12985 \f
12986 /* We need to use a special link routine to handle the .reginfo and
12987 the .mdebug sections. We need to merge all instances of these
12988 sections together, not write them all out sequentially. */
12989
12990 bfd_boolean
12991 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12992 {
12993 asection *o;
12994 struct bfd_link_order *p;
12995 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12996 asection *rtproc_sec;
12997 Elf32_RegInfo reginfo;
12998 struct ecoff_debug_info debug;
12999 struct mips_htab_traverse_info hti;
13000 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13001 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
13002 HDRR *symhdr = &debug.symbolic_header;
13003 void *mdebug_handle = NULL;
13004 asection *s;
13005 EXTR esym;
13006 unsigned int i;
13007 bfd_size_type amt;
13008 struct mips_elf_link_hash_table *htab;
13009
13010 static const char * const secname[] =
13011 {
13012 ".text", ".init", ".fini", ".data",
13013 ".rodata", ".sdata", ".sbss", ".bss"
13014 };
13015 static const int sc[] =
13016 {
13017 scText, scInit, scFini, scData,
13018 scRData, scSData, scSBss, scBss
13019 };
13020
13021 /* Sort the dynamic symbols so that those with GOT entries come after
13022 those without. */
13023 htab = mips_elf_hash_table (info);
13024 BFD_ASSERT (htab != NULL);
13025
13026 if (!mips_elf_sort_hash_table (abfd, info))
13027 return FALSE;
13028
13029 /* Create any scheduled LA25 stubs. */
13030 hti.info = info;
13031 hti.output_bfd = abfd;
13032 hti.error = FALSE;
13033 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13034 if (hti.error)
13035 return FALSE;
13036
13037 /* Get a value for the GP register. */
13038 if (elf_gp (abfd) == 0)
13039 {
13040 struct bfd_link_hash_entry *h;
13041
13042 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
13043 if (h != NULL && h->type == bfd_link_hash_defined)
13044 elf_gp (abfd) = (h->u.def.value
13045 + h->u.def.section->output_section->vma
13046 + h->u.def.section->output_offset);
13047 else if (htab->is_vxworks
13048 && (h = bfd_link_hash_lookup (info->hash,
13049 "_GLOBAL_OFFSET_TABLE_",
13050 FALSE, FALSE, TRUE))
13051 && h->type == bfd_link_hash_defined)
13052 elf_gp (abfd) = (h->u.def.section->output_section->vma
13053 + h->u.def.section->output_offset
13054 + h->u.def.value);
13055 else if (info->relocatable)
13056 {
13057 bfd_vma lo = MINUS_ONE;
13058
13059 /* Find the GP-relative section with the lowest offset. */
13060 for (o = abfd->sections; o != NULL; o = o->next)
13061 if (o->vma < lo
13062 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13063 lo = o->vma;
13064
13065 /* And calculate GP relative to that. */
13066 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13067 }
13068 else
13069 {
13070 /* If the relocate_section function needs to do a reloc
13071 involving the GP value, it should make a reloc_dangerous
13072 callback to warn that GP is not defined. */
13073 }
13074 }
13075
13076 /* Go through the sections and collect the .reginfo and .mdebug
13077 information. */
13078 reginfo_sec = NULL;
13079 mdebug_sec = NULL;
13080 gptab_data_sec = NULL;
13081 gptab_bss_sec = NULL;
13082 for (o = abfd->sections; o != NULL; o = o->next)
13083 {
13084 if (strcmp (o->name, ".reginfo") == 0)
13085 {
13086 memset (&reginfo, 0, sizeof reginfo);
13087
13088 /* We have found the .reginfo section in the output file.
13089 Look through all the link_orders comprising it and merge
13090 the information together. */
13091 for (p = o->map_head.link_order; p != NULL; p = p->next)
13092 {
13093 asection *input_section;
13094 bfd *input_bfd;
13095 Elf32_External_RegInfo ext;
13096 Elf32_RegInfo sub;
13097
13098 if (p->type != bfd_indirect_link_order)
13099 {
13100 if (p->type == bfd_data_link_order)
13101 continue;
13102 abort ();
13103 }
13104
13105 input_section = p->u.indirect.section;
13106 input_bfd = input_section->owner;
13107
13108 if (! bfd_get_section_contents (input_bfd, input_section,
13109 &ext, 0, sizeof ext))
13110 return FALSE;
13111
13112 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13113
13114 reginfo.ri_gprmask |= sub.ri_gprmask;
13115 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13116 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13117 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13118 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13119
13120 /* ri_gp_value is set by the function
13121 mips_elf32_section_processing when the section is
13122 finally written out. */
13123
13124 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13125 elf_link_input_bfd ignores this section. */
13126 input_section->flags &= ~SEC_HAS_CONTENTS;
13127 }
13128
13129 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13130 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13131
13132 /* Skip this section later on (I don't think this currently
13133 matters, but someday it might). */
13134 o->map_head.link_order = NULL;
13135
13136 reginfo_sec = o;
13137 }
13138
13139 if (strcmp (o->name, ".mdebug") == 0)
13140 {
13141 struct extsym_info einfo;
13142 bfd_vma last;
13143
13144 /* We have found the .mdebug section in the output file.
13145 Look through all the link_orders comprising it and merge
13146 the information together. */
13147 symhdr->magic = swap->sym_magic;
13148 /* FIXME: What should the version stamp be? */
13149 symhdr->vstamp = 0;
13150 symhdr->ilineMax = 0;
13151 symhdr->cbLine = 0;
13152 symhdr->idnMax = 0;
13153 symhdr->ipdMax = 0;
13154 symhdr->isymMax = 0;
13155 symhdr->ioptMax = 0;
13156 symhdr->iauxMax = 0;
13157 symhdr->issMax = 0;
13158 symhdr->issExtMax = 0;
13159 symhdr->ifdMax = 0;
13160 symhdr->crfd = 0;
13161 symhdr->iextMax = 0;
13162
13163 /* We accumulate the debugging information itself in the
13164 debug_info structure. */
13165 debug.line = NULL;
13166 debug.external_dnr = NULL;
13167 debug.external_pdr = NULL;
13168 debug.external_sym = NULL;
13169 debug.external_opt = NULL;
13170 debug.external_aux = NULL;
13171 debug.ss = NULL;
13172 debug.ssext = debug.ssext_end = NULL;
13173 debug.external_fdr = NULL;
13174 debug.external_rfd = NULL;
13175 debug.external_ext = debug.external_ext_end = NULL;
13176
13177 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13178 if (mdebug_handle == NULL)
13179 return FALSE;
13180
13181 esym.jmptbl = 0;
13182 esym.cobol_main = 0;
13183 esym.weakext = 0;
13184 esym.reserved = 0;
13185 esym.ifd = ifdNil;
13186 esym.asym.iss = issNil;
13187 esym.asym.st = stLocal;
13188 esym.asym.reserved = 0;
13189 esym.asym.index = indexNil;
13190 last = 0;
13191 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13192 {
13193 esym.asym.sc = sc[i];
13194 s = bfd_get_section_by_name (abfd, secname[i]);
13195 if (s != NULL)
13196 {
13197 esym.asym.value = s->vma;
13198 last = s->vma + s->size;
13199 }
13200 else
13201 esym.asym.value = last;
13202 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13203 secname[i], &esym))
13204 return FALSE;
13205 }
13206
13207 for (p = o->map_head.link_order; p != NULL; p = p->next)
13208 {
13209 asection *input_section;
13210 bfd *input_bfd;
13211 const struct ecoff_debug_swap *input_swap;
13212 struct ecoff_debug_info input_debug;
13213 char *eraw_src;
13214 char *eraw_end;
13215
13216 if (p->type != bfd_indirect_link_order)
13217 {
13218 if (p->type == bfd_data_link_order)
13219 continue;
13220 abort ();
13221 }
13222
13223 input_section = p->u.indirect.section;
13224 input_bfd = input_section->owner;
13225
13226 if (!is_mips_elf (input_bfd))
13227 {
13228 /* I don't know what a non MIPS ELF bfd would be
13229 doing with a .mdebug section, but I don't really
13230 want to deal with it. */
13231 continue;
13232 }
13233
13234 input_swap = (get_elf_backend_data (input_bfd)
13235 ->elf_backend_ecoff_debug_swap);
13236
13237 BFD_ASSERT (p->size == input_section->size);
13238
13239 /* The ECOFF linking code expects that we have already
13240 read in the debugging information and set up an
13241 ecoff_debug_info structure, so we do that now. */
13242 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13243 &input_debug))
13244 return FALSE;
13245
13246 if (! (bfd_ecoff_debug_accumulate
13247 (mdebug_handle, abfd, &debug, swap, input_bfd,
13248 &input_debug, input_swap, info)))
13249 return FALSE;
13250
13251 /* Loop through the external symbols. For each one with
13252 interesting information, try to find the symbol in
13253 the linker global hash table and save the information
13254 for the output external symbols. */
13255 eraw_src = input_debug.external_ext;
13256 eraw_end = (eraw_src
13257 + (input_debug.symbolic_header.iextMax
13258 * input_swap->external_ext_size));
13259 for (;
13260 eraw_src < eraw_end;
13261 eraw_src += input_swap->external_ext_size)
13262 {
13263 EXTR ext;
13264 const char *name;
13265 struct mips_elf_link_hash_entry *h;
13266
13267 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13268 if (ext.asym.sc == scNil
13269 || ext.asym.sc == scUndefined
13270 || ext.asym.sc == scSUndefined)
13271 continue;
13272
13273 name = input_debug.ssext + ext.asym.iss;
13274 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13275 name, FALSE, FALSE, TRUE);
13276 if (h == NULL || h->esym.ifd != -2)
13277 continue;
13278
13279 if (ext.ifd != -1)
13280 {
13281 BFD_ASSERT (ext.ifd
13282 < input_debug.symbolic_header.ifdMax);
13283 ext.ifd = input_debug.ifdmap[ext.ifd];
13284 }
13285
13286 h->esym = ext;
13287 }
13288
13289 /* Free up the information we just read. */
13290 free (input_debug.line);
13291 free (input_debug.external_dnr);
13292 free (input_debug.external_pdr);
13293 free (input_debug.external_sym);
13294 free (input_debug.external_opt);
13295 free (input_debug.external_aux);
13296 free (input_debug.ss);
13297 free (input_debug.ssext);
13298 free (input_debug.external_fdr);
13299 free (input_debug.external_rfd);
13300 free (input_debug.external_ext);
13301
13302 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13303 elf_link_input_bfd ignores this section. */
13304 input_section->flags &= ~SEC_HAS_CONTENTS;
13305 }
13306
13307 if (SGI_COMPAT (abfd) && info->shared)
13308 {
13309 /* Create .rtproc section. */
13310 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13311 if (rtproc_sec == NULL)
13312 {
13313 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13314 | SEC_LINKER_CREATED | SEC_READONLY);
13315
13316 rtproc_sec = bfd_make_section_with_flags (abfd,
13317 ".rtproc",
13318 flags);
13319 if (rtproc_sec == NULL
13320 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13321 return FALSE;
13322 }
13323
13324 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13325 info, rtproc_sec,
13326 &debug))
13327 return FALSE;
13328 }
13329
13330 /* Build the external symbol information. */
13331 einfo.abfd = abfd;
13332 einfo.info = info;
13333 einfo.debug = &debug;
13334 einfo.swap = swap;
13335 einfo.failed = FALSE;
13336 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13337 mips_elf_output_extsym, &einfo);
13338 if (einfo.failed)
13339 return FALSE;
13340
13341 /* Set the size of the .mdebug section. */
13342 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13343
13344 /* Skip this section later on (I don't think this currently
13345 matters, but someday it might). */
13346 o->map_head.link_order = NULL;
13347
13348 mdebug_sec = o;
13349 }
13350
13351 if (CONST_STRNEQ (o->name, ".gptab."))
13352 {
13353 const char *subname;
13354 unsigned int c;
13355 Elf32_gptab *tab;
13356 Elf32_External_gptab *ext_tab;
13357 unsigned int j;
13358
13359 /* The .gptab.sdata and .gptab.sbss sections hold
13360 information describing how the small data area would
13361 change depending upon the -G switch. These sections
13362 not used in executables files. */
13363 if (! info->relocatable)
13364 {
13365 for (p = o->map_head.link_order; p != NULL; p = p->next)
13366 {
13367 asection *input_section;
13368
13369 if (p->type != bfd_indirect_link_order)
13370 {
13371 if (p->type == bfd_data_link_order)
13372 continue;
13373 abort ();
13374 }
13375
13376 input_section = p->u.indirect.section;
13377
13378 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13379 elf_link_input_bfd ignores this section. */
13380 input_section->flags &= ~SEC_HAS_CONTENTS;
13381 }
13382
13383 /* Skip this section later on (I don't think this
13384 currently matters, but someday it might). */
13385 o->map_head.link_order = NULL;
13386
13387 /* Really remove the section. */
13388 bfd_section_list_remove (abfd, o);
13389 --abfd->section_count;
13390
13391 continue;
13392 }
13393
13394 /* There is one gptab for initialized data, and one for
13395 uninitialized data. */
13396 if (strcmp (o->name, ".gptab.sdata") == 0)
13397 gptab_data_sec = o;
13398 else if (strcmp (o->name, ".gptab.sbss") == 0)
13399 gptab_bss_sec = o;
13400 else
13401 {
13402 (*_bfd_error_handler)
13403 (_("%s: illegal section name `%s'"),
13404 bfd_get_filename (abfd), o->name);
13405 bfd_set_error (bfd_error_nonrepresentable_section);
13406 return FALSE;
13407 }
13408
13409 /* The linker script always combines .gptab.data and
13410 .gptab.sdata into .gptab.sdata, and likewise for
13411 .gptab.bss and .gptab.sbss. It is possible that there is
13412 no .sdata or .sbss section in the output file, in which
13413 case we must change the name of the output section. */
13414 subname = o->name + sizeof ".gptab" - 1;
13415 if (bfd_get_section_by_name (abfd, subname) == NULL)
13416 {
13417 if (o == gptab_data_sec)
13418 o->name = ".gptab.data";
13419 else
13420 o->name = ".gptab.bss";
13421 subname = o->name + sizeof ".gptab" - 1;
13422 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13423 }
13424
13425 /* Set up the first entry. */
13426 c = 1;
13427 amt = c * sizeof (Elf32_gptab);
13428 tab = bfd_malloc (amt);
13429 if (tab == NULL)
13430 return FALSE;
13431 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13432 tab[0].gt_header.gt_unused = 0;
13433
13434 /* Combine the input sections. */
13435 for (p = o->map_head.link_order; p != NULL; p = p->next)
13436 {
13437 asection *input_section;
13438 bfd *input_bfd;
13439 bfd_size_type size;
13440 unsigned long last;
13441 bfd_size_type gpentry;
13442
13443 if (p->type != bfd_indirect_link_order)
13444 {
13445 if (p->type == bfd_data_link_order)
13446 continue;
13447 abort ();
13448 }
13449
13450 input_section = p->u.indirect.section;
13451 input_bfd = input_section->owner;
13452
13453 /* Combine the gptab entries for this input section one
13454 by one. We know that the input gptab entries are
13455 sorted by ascending -G value. */
13456 size = input_section->size;
13457 last = 0;
13458 for (gpentry = sizeof (Elf32_External_gptab);
13459 gpentry < size;
13460 gpentry += sizeof (Elf32_External_gptab))
13461 {
13462 Elf32_External_gptab ext_gptab;
13463 Elf32_gptab int_gptab;
13464 unsigned long val;
13465 unsigned long add;
13466 bfd_boolean exact;
13467 unsigned int look;
13468
13469 if (! (bfd_get_section_contents
13470 (input_bfd, input_section, &ext_gptab, gpentry,
13471 sizeof (Elf32_External_gptab))))
13472 {
13473 free (tab);
13474 return FALSE;
13475 }
13476
13477 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13478 &int_gptab);
13479 val = int_gptab.gt_entry.gt_g_value;
13480 add = int_gptab.gt_entry.gt_bytes - last;
13481
13482 exact = FALSE;
13483 for (look = 1; look < c; look++)
13484 {
13485 if (tab[look].gt_entry.gt_g_value >= val)
13486 tab[look].gt_entry.gt_bytes += add;
13487
13488 if (tab[look].gt_entry.gt_g_value == val)
13489 exact = TRUE;
13490 }
13491
13492 if (! exact)
13493 {
13494 Elf32_gptab *new_tab;
13495 unsigned int max;
13496
13497 /* We need a new table entry. */
13498 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13499 new_tab = bfd_realloc (tab, amt);
13500 if (new_tab == NULL)
13501 {
13502 free (tab);
13503 return FALSE;
13504 }
13505 tab = new_tab;
13506 tab[c].gt_entry.gt_g_value = val;
13507 tab[c].gt_entry.gt_bytes = add;
13508
13509 /* Merge in the size for the next smallest -G
13510 value, since that will be implied by this new
13511 value. */
13512 max = 0;
13513 for (look = 1; look < c; look++)
13514 {
13515 if (tab[look].gt_entry.gt_g_value < val
13516 && (max == 0
13517 || (tab[look].gt_entry.gt_g_value
13518 > tab[max].gt_entry.gt_g_value)))
13519 max = look;
13520 }
13521 if (max != 0)
13522 tab[c].gt_entry.gt_bytes +=
13523 tab[max].gt_entry.gt_bytes;
13524
13525 ++c;
13526 }
13527
13528 last = int_gptab.gt_entry.gt_bytes;
13529 }
13530
13531 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13532 elf_link_input_bfd ignores this section. */
13533 input_section->flags &= ~SEC_HAS_CONTENTS;
13534 }
13535
13536 /* The table must be sorted by -G value. */
13537 if (c > 2)
13538 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13539
13540 /* Swap out the table. */
13541 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13542 ext_tab = bfd_alloc (abfd, amt);
13543 if (ext_tab == NULL)
13544 {
13545 free (tab);
13546 return FALSE;
13547 }
13548
13549 for (j = 0; j < c; j++)
13550 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13551 free (tab);
13552
13553 o->size = c * sizeof (Elf32_External_gptab);
13554 o->contents = (bfd_byte *) ext_tab;
13555
13556 /* Skip this section later on (I don't think this currently
13557 matters, but someday it might). */
13558 o->map_head.link_order = NULL;
13559 }
13560 }
13561
13562 /* Invoke the regular ELF backend linker to do all the work. */
13563 if (!bfd_elf_final_link (abfd, info))
13564 return FALSE;
13565
13566 /* Now write out the computed sections. */
13567
13568 if (reginfo_sec != NULL)
13569 {
13570 Elf32_External_RegInfo ext;
13571
13572 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13573 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13574 return FALSE;
13575 }
13576
13577 if (mdebug_sec != NULL)
13578 {
13579 BFD_ASSERT (abfd->output_has_begun);
13580 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13581 swap, info,
13582 mdebug_sec->filepos))
13583 return FALSE;
13584
13585 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13586 }
13587
13588 if (gptab_data_sec != NULL)
13589 {
13590 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13591 gptab_data_sec->contents,
13592 0, gptab_data_sec->size))
13593 return FALSE;
13594 }
13595
13596 if (gptab_bss_sec != NULL)
13597 {
13598 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13599 gptab_bss_sec->contents,
13600 0, gptab_bss_sec->size))
13601 return FALSE;
13602 }
13603
13604 if (SGI_COMPAT (abfd))
13605 {
13606 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13607 if (rtproc_sec != NULL)
13608 {
13609 if (! bfd_set_section_contents (abfd, rtproc_sec,
13610 rtproc_sec->contents,
13611 0, rtproc_sec->size))
13612 return FALSE;
13613 }
13614 }
13615
13616 return TRUE;
13617 }
13618 \f
13619 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13620
13621 struct mips_mach_extension {
13622 unsigned long extension, base;
13623 };
13624
13625
13626 /* An array describing how BFD machines relate to one another. The entries
13627 are ordered topologically with MIPS I extensions listed last. */
13628
13629 static const struct mips_mach_extension mips_mach_extensions[] = {
13630 /* MIPS64r2 extensions. */
13631 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13632 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13633 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13634
13635 /* MIPS64 extensions. */
13636 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13637 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13638 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13639 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13640
13641 /* MIPS V extensions. */
13642 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13643
13644 /* R10000 extensions. */
13645 { bfd_mach_mips12000, bfd_mach_mips10000 },
13646 { bfd_mach_mips14000, bfd_mach_mips10000 },
13647 { bfd_mach_mips16000, bfd_mach_mips10000 },
13648
13649 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13650 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13651 better to allow vr5400 and vr5500 code to be merged anyway, since
13652 many libraries will just use the core ISA. Perhaps we could add
13653 some sort of ASE flag if this ever proves a problem. */
13654 { bfd_mach_mips5500, bfd_mach_mips5400 },
13655 { bfd_mach_mips5400, bfd_mach_mips5000 },
13656
13657 /* MIPS IV extensions. */
13658 { bfd_mach_mips5, bfd_mach_mips8000 },
13659 { bfd_mach_mips10000, bfd_mach_mips8000 },
13660 { bfd_mach_mips5000, bfd_mach_mips8000 },
13661 { bfd_mach_mips7000, bfd_mach_mips8000 },
13662 { bfd_mach_mips9000, bfd_mach_mips8000 },
13663
13664 /* VR4100 extensions. */
13665 { bfd_mach_mips4120, bfd_mach_mips4100 },
13666 { bfd_mach_mips4111, bfd_mach_mips4100 },
13667
13668 /* MIPS III extensions. */
13669 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13670 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13671 { bfd_mach_mips8000, bfd_mach_mips4000 },
13672 { bfd_mach_mips4650, bfd_mach_mips4000 },
13673 { bfd_mach_mips4600, bfd_mach_mips4000 },
13674 { bfd_mach_mips4400, bfd_mach_mips4000 },
13675 { bfd_mach_mips4300, bfd_mach_mips4000 },
13676 { bfd_mach_mips4100, bfd_mach_mips4000 },
13677 { bfd_mach_mips4010, bfd_mach_mips4000 },
13678
13679 /* MIPS32 extensions. */
13680 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13681
13682 /* MIPS II extensions. */
13683 { bfd_mach_mips4000, bfd_mach_mips6000 },
13684 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13685
13686 /* MIPS I extensions. */
13687 { bfd_mach_mips6000, bfd_mach_mips3000 },
13688 { bfd_mach_mips3900, bfd_mach_mips3000 }
13689 };
13690
13691
13692 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13693
13694 static bfd_boolean
13695 mips_mach_extends_p (unsigned long base, unsigned long extension)
13696 {
13697 size_t i;
13698
13699 if (extension == base)
13700 return TRUE;
13701
13702 if (base == bfd_mach_mipsisa32
13703 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13704 return TRUE;
13705
13706 if (base == bfd_mach_mipsisa32r2
13707 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13708 return TRUE;
13709
13710 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13711 if (extension == mips_mach_extensions[i].extension)
13712 {
13713 extension = mips_mach_extensions[i].base;
13714 if (extension == base)
13715 return TRUE;
13716 }
13717
13718 return FALSE;
13719 }
13720
13721
13722 /* Return true if the given ELF header flags describe a 32-bit binary. */
13723
13724 static bfd_boolean
13725 mips_32bit_flags_p (flagword flags)
13726 {
13727 return ((flags & EF_MIPS_32BITMODE) != 0
13728 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13729 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13730 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13731 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13732 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13733 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13734 }
13735
13736
13737 /* Merge object attributes from IBFD into OBFD. Raise an error if
13738 there are conflicting attributes. */
13739 static bfd_boolean
13740 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13741 {
13742 obj_attribute *in_attr;
13743 obj_attribute *out_attr;
13744
13745 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13746 {
13747 /* This is the first object. Copy the attributes. */
13748 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13749
13750 /* Use the Tag_null value to indicate the attributes have been
13751 initialized. */
13752 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13753
13754 return TRUE;
13755 }
13756
13757 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13758 non-conflicting ones. */
13759 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13760 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13761 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13762 {
13763 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13764 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13765 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13766 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13767 ;
13768 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13769 _bfd_error_handler
13770 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13771 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13772 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13773 _bfd_error_handler
13774 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13775 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13776 else
13777 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13778 {
13779 case 1:
13780 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13781 {
13782 case 2:
13783 _bfd_error_handler
13784 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13785 obfd, ibfd);
13786 break;
13787
13788 case 3:
13789 _bfd_error_handler
13790 (_("Warning: %B uses hard float, %B uses soft float"),
13791 obfd, ibfd);
13792 break;
13793
13794 case 4:
13795 _bfd_error_handler
13796 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13797 obfd, ibfd);
13798 break;
13799
13800 default:
13801 abort ();
13802 }
13803 break;
13804
13805 case 2:
13806 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13807 {
13808 case 1:
13809 _bfd_error_handler
13810 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13811 ibfd, obfd);
13812 break;
13813
13814 case 3:
13815 _bfd_error_handler
13816 (_("Warning: %B uses hard float, %B uses soft float"),
13817 obfd, ibfd);
13818 break;
13819
13820 case 4:
13821 _bfd_error_handler
13822 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13823 obfd, ibfd);
13824 break;
13825
13826 default:
13827 abort ();
13828 }
13829 break;
13830
13831 case 3:
13832 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13833 {
13834 case 1:
13835 case 2:
13836 case 4:
13837 _bfd_error_handler
13838 (_("Warning: %B uses hard float, %B uses soft float"),
13839 ibfd, obfd);
13840 break;
13841
13842 default:
13843 abort ();
13844 }
13845 break;
13846
13847 case 4:
13848 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13849 {
13850 case 1:
13851 _bfd_error_handler
13852 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13853 ibfd, obfd);
13854 break;
13855
13856 case 2:
13857 _bfd_error_handler
13858 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13859 ibfd, obfd);
13860 break;
13861
13862 case 3:
13863 _bfd_error_handler
13864 (_("Warning: %B uses hard float, %B uses soft float"),
13865 obfd, ibfd);
13866 break;
13867
13868 default:
13869 abort ();
13870 }
13871 break;
13872
13873 default:
13874 abort ();
13875 }
13876 }
13877
13878 /* Merge Tag_compatibility attributes and any common GNU ones. */
13879 _bfd_elf_merge_object_attributes (ibfd, obfd);
13880
13881 return TRUE;
13882 }
13883
13884 /* Merge backend specific data from an object file to the output
13885 object file when linking. */
13886
13887 bfd_boolean
13888 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13889 {
13890 flagword old_flags;
13891 flagword new_flags;
13892 bfd_boolean ok;
13893 bfd_boolean null_input_bfd = TRUE;
13894 asection *sec;
13895
13896 /* Check if we have the same endianness. */
13897 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13898 {
13899 (*_bfd_error_handler)
13900 (_("%B: endianness incompatible with that of the selected emulation"),
13901 ibfd);
13902 return FALSE;
13903 }
13904
13905 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13906 return TRUE;
13907
13908 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13909 {
13910 (*_bfd_error_handler)
13911 (_("%B: ABI is incompatible with that of the selected emulation"),
13912 ibfd);
13913 return FALSE;
13914 }
13915
13916 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13917 return FALSE;
13918
13919 new_flags = elf_elfheader (ibfd)->e_flags;
13920 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13921 old_flags = elf_elfheader (obfd)->e_flags;
13922
13923 if (! elf_flags_init (obfd))
13924 {
13925 elf_flags_init (obfd) = TRUE;
13926 elf_elfheader (obfd)->e_flags = new_flags;
13927 elf_elfheader (obfd)->e_ident[EI_CLASS]
13928 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13929
13930 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13931 && (bfd_get_arch_info (obfd)->the_default
13932 || mips_mach_extends_p (bfd_get_mach (obfd),
13933 bfd_get_mach (ibfd))))
13934 {
13935 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13936 bfd_get_mach (ibfd)))
13937 return FALSE;
13938 }
13939
13940 return TRUE;
13941 }
13942
13943 /* Check flag compatibility. */
13944
13945 new_flags &= ~EF_MIPS_NOREORDER;
13946 old_flags &= ~EF_MIPS_NOREORDER;
13947
13948 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13949 doesn't seem to matter. */
13950 new_flags &= ~EF_MIPS_XGOT;
13951 old_flags &= ~EF_MIPS_XGOT;
13952
13953 /* MIPSpro generates ucode info in n64 objects. Again, we should
13954 just be able to ignore this. */
13955 new_flags &= ~EF_MIPS_UCODE;
13956 old_flags &= ~EF_MIPS_UCODE;
13957
13958 /* DSOs should only be linked with CPIC code. */
13959 if ((ibfd->flags & DYNAMIC) != 0)
13960 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13961
13962 if (new_flags == old_flags)
13963 return TRUE;
13964
13965 /* Check to see if the input BFD actually contains any sections.
13966 If not, its flags may not have been initialised either, but it cannot
13967 actually cause any incompatibility. */
13968 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13969 {
13970 /* Ignore synthetic sections and empty .text, .data and .bss sections
13971 which are automatically generated by gas. Also ignore fake
13972 (s)common sections, since merely defining a common symbol does
13973 not affect compatibility. */
13974 if ((sec->flags & SEC_IS_COMMON) == 0
13975 && strcmp (sec->name, ".reginfo")
13976 && strcmp (sec->name, ".mdebug")
13977 && (sec->size != 0
13978 || (strcmp (sec->name, ".text")
13979 && strcmp (sec->name, ".data")
13980 && strcmp (sec->name, ".bss"))))
13981 {
13982 null_input_bfd = FALSE;
13983 break;
13984 }
13985 }
13986 if (null_input_bfd)
13987 return TRUE;
13988
13989 ok = TRUE;
13990
13991 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13992 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13993 {
13994 (*_bfd_error_handler)
13995 (_("%B: warning: linking abicalls files with non-abicalls files"),
13996 ibfd);
13997 ok = TRUE;
13998 }
13999
14000 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14001 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14002 if (! (new_flags & EF_MIPS_PIC))
14003 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14004
14005 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14006 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14007
14008 /* Compare the ISAs. */
14009 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14010 {
14011 (*_bfd_error_handler)
14012 (_("%B: linking 32-bit code with 64-bit code"),
14013 ibfd);
14014 ok = FALSE;
14015 }
14016 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14017 {
14018 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14019 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14020 {
14021 /* Copy the architecture info from IBFD to OBFD. Also copy
14022 the 32-bit flag (if set) so that we continue to recognise
14023 OBFD as a 32-bit binary. */
14024 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14025 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14026 elf_elfheader (obfd)->e_flags
14027 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14028
14029 /* Copy across the ABI flags if OBFD doesn't use them
14030 and if that was what caused us to treat IBFD as 32-bit. */
14031 if ((old_flags & EF_MIPS_ABI) == 0
14032 && mips_32bit_flags_p (new_flags)
14033 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14034 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14035 }
14036 else
14037 {
14038 /* The ISAs aren't compatible. */
14039 (*_bfd_error_handler)
14040 (_("%B: linking %s module with previous %s modules"),
14041 ibfd,
14042 bfd_printable_name (ibfd),
14043 bfd_printable_name (obfd));
14044 ok = FALSE;
14045 }
14046 }
14047
14048 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14049 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14050
14051 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14052 does set EI_CLASS differently from any 32-bit ABI. */
14053 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14054 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14055 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14056 {
14057 /* Only error if both are set (to different values). */
14058 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14059 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14060 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14061 {
14062 (*_bfd_error_handler)
14063 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14064 ibfd,
14065 elf_mips_abi_name (ibfd),
14066 elf_mips_abi_name (obfd));
14067 ok = FALSE;
14068 }
14069 new_flags &= ~EF_MIPS_ABI;
14070 old_flags &= ~EF_MIPS_ABI;
14071 }
14072
14073 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14074 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14075 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14076 {
14077 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14078 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14079 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14080 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14081 int micro_mis = old_m16 && new_micro;
14082 int m16_mis = old_micro && new_m16;
14083
14084 if (m16_mis || micro_mis)
14085 {
14086 (*_bfd_error_handler)
14087 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14088 ibfd,
14089 m16_mis ? "MIPS16" : "microMIPS",
14090 m16_mis ? "microMIPS" : "MIPS16");
14091 ok = FALSE;
14092 }
14093
14094 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14095
14096 new_flags &= ~ EF_MIPS_ARCH_ASE;
14097 old_flags &= ~ EF_MIPS_ARCH_ASE;
14098 }
14099
14100 /* Warn about any other mismatches */
14101 if (new_flags != old_flags)
14102 {
14103 (*_bfd_error_handler)
14104 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14105 ibfd, (unsigned long) new_flags,
14106 (unsigned long) old_flags);
14107 ok = FALSE;
14108 }
14109
14110 if (! ok)
14111 {
14112 bfd_set_error (bfd_error_bad_value);
14113 return FALSE;
14114 }
14115
14116 return TRUE;
14117 }
14118
14119 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14120
14121 bfd_boolean
14122 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14123 {
14124 BFD_ASSERT (!elf_flags_init (abfd)
14125 || elf_elfheader (abfd)->e_flags == flags);
14126
14127 elf_elfheader (abfd)->e_flags = flags;
14128 elf_flags_init (abfd) = TRUE;
14129 return TRUE;
14130 }
14131
14132 char *
14133 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14134 {
14135 switch (dtag)
14136 {
14137 default: return "";
14138 case DT_MIPS_RLD_VERSION:
14139 return "MIPS_RLD_VERSION";
14140 case DT_MIPS_TIME_STAMP:
14141 return "MIPS_TIME_STAMP";
14142 case DT_MIPS_ICHECKSUM:
14143 return "MIPS_ICHECKSUM";
14144 case DT_MIPS_IVERSION:
14145 return "MIPS_IVERSION";
14146 case DT_MIPS_FLAGS:
14147 return "MIPS_FLAGS";
14148 case DT_MIPS_BASE_ADDRESS:
14149 return "MIPS_BASE_ADDRESS";
14150 case DT_MIPS_MSYM:
14151 return "MIPS_MSYM";
14152 case DT_MIPS_CONFLICT:
14153 return "MIPS_CONFLICT";
14154 case DT_MIPS_LIBLIST:
14155 return "MIPS_LIBLIST";
14156 case DT_MIPS_LOCAL_GOTNO:
14157 return "MIPS_LOCAL_GOTNO";
14158 case DT_MIPS_CONFLICTNO:
14159 return "MIPS_CONFLICTNO";
14160 case DT_MIPS_LIBLISTNO:
14161 return "MIPS_LIBLISTNO";
14162 case DT_MIPS_SYMTABNO:
14163 return "MIPS_SYMTABNO";
14164 case DT_MIPS_UNREFEXTNO:
14165 return "MIPS_UNREFEXTNO";
14166 case DT_MIPS_GOTSYM:
14167 return "MIPS_GOTSYM";
14168 case DT_MIPS_HIPAGENO:
14169 return "MIPS_HIPAGENO";
14170 case DT_MIPS_RLD_MAP:
14171 return "MIPS_RLD_MAP";
14172 case DT_MIPS_DELTA_CLASS:
14173 return "MIPS_DELTA_CLASS";
14174 case DT_MIPS_DELTA_CLASS_NO:
14175 return "MIPS_DELTA_CLASS_NO";
14176 case DT_MIPS_DELTA_INSTANCE:
14177 return "MIPS_DELTA_INSTANCE";
14178 case DT_MIPS_DELTA_INSTANCE_NO:
14179 return "MIPS_DELTA_INSTANCE_NO";
14180 case DT_MIPS_DELTA_RELOC:
14181 return "MIPS_DELTA_RELOC";
14182 case DT_MIPS_DELTA_RELOC_NO:
14183 return "MIPS_DELTA_RELOC_NO";
14184 case DT_MIPS_DELTA_SYM:
14185 return "MIPS_DELTA_SYM";
14186 case DT_MIPS_DELTA_SYM_NO:
14187 return "MIPS_DELTA_SYM_NO";
14188 case DT_MIPS_DELTA_CLASSSYM:
14189 return "MIPS_DELTA_CLASSSYM";
14190 case DT_MIPS_DELTA_CLASSSYM_NO:
14191 return "MIPS_DELTA_CLASSSYM_NO";
14192 case DT_MIPS_CXX_FLAGS:
14193 return "MIPS_CXX_FLAGS";
14194 case DT_MIPS_PIXIE_INIT:
14195 return "MIPS_PIXIE_INIT";
14196 case DT_MIPS_SYMBOL_LIB:
14197 return "MIPS_SYMBOL_LIB";
14198 case DT_MIPS_LOCALPAGE_GOTIDX:
14199 return "MIPS_LOCALPAGE_GOTIDX";
14200 case DT_MIPS_LOCAL_GOTIDX:
14201 return "MIPS_LOCAL_GOTIDX";
14202 case DT_MIPS_HIDDEN_GOTIDX:
14203 return "MIPS_HIDDEN_GOTIDX";
14204 case DT_MIPS_PROTECTED_GOTIDX:
14205 return "MIPS_PROTECTED_GOT_IDX";
14206 case DT_MIPS_OPTIONS:
14207 return "MIPS_OPTIONS";
14208 case DT_MIPS_INTERFACE:
14209 return "MIPS_INTERFACE";
14210 case DT_MIPS_DYNSTR_ALIGN:
14211 return "DT_MIPS_DYNSTR_ALIGN";
14212 case DT_MIPS_INTERFACE_SIZE:
14213 return "DT_MIPS_INTERFACE_SIZE";
14214 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14215 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14216 case DT_MIPS_PERF_SUFFIX:
14217 return "DT_MIPS_PERF_SUFFIX";
14218 case DT_MIPS_COMPACT_SIZE:
14219 return "DT_MIPS_COMPACT_SIZE";
14220 case DT_MIPS_GP_VALUE:
14221 return "DT_MIPS_GP_VALUE";
14222 case DT_MIPS_AUX_DYNAMIC:
14223 return "DT_MIPS_AUX_DYNAMIC";
14224 case DT_MIPS_PLTGOT:
14225 return "DT_MIPS_PLTGOT";
14226 case DT_MIPS_RWPLT:
14227 return "DT_MIPS_RWPLT";
14228 }
14229 }
14230
14231 bfd_boolean
14232 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14233 {
14234 FILE *file = ptr;
14235
14236 BFD_ASSERT (abfd != NULL && ptr != NULL);
14237
14238 /* Print normal ELF private data. */
14239 _bfd_elf_print_private_bfd_data (abfd, ptr);
14240
14241 /* xgettext:c-format */
14242 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14243
14244 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14245 fprintf (file, _(" [abi=O32]"));
14246 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14247 fprintf (file, _(" [abi=O64]"));
14248 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14249 fprintf (file, _(" [abi=EABI32]"));
14250 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14251 fprintf (file, _(" [abi=EABI64]"));
14252 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14253 fprintf (file, _(" [abi unknown]"));
14254 else if (ABI_N32_P (abfd))
14255 fprintf (file, _(" [abi=N32]"));
14256 else if (ABI_64_P (abfd))
14257 fprintf (file, _(" [abi=64]"));
14258 else
14259 fprintf (file, _(" [no abi set]"));
14260
14261 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14262 fprintf (file, " [mips1]");
14263 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14264 fprintf (file, " [mips2]");
14265 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14266 fprintf (file, " [mips3]");
14267 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14268 fprintf (file, " [mips4]");
14269 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14270 fprintf (file, " [mips5]");
14271 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14272 fprintf (file, " [mips32]");
14273 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14274 fprintf (file, " [mips64]");
14275 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14276 fprintf (file, " [mips32r2]");
14277 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14278 fprintf (file, " [mips64r2]");
14279 else
14280 fprintf (file, _(" [unknown ISA]"));
14281
14282 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14283 fprintf (file, " [mdmx]");
14284
14285 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14286 fprintf (file, " [mips16]");
14287
14288 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14289 fprintf (file, " [micromips]");
14290
14291 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14292 fprintf (file, " [32bitmode]");
14293 else
14294 fprintf (file, _(" [not 32bitmode]"));
14295
14296 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14297 fprintf (file, " [noreorder]");
14298
14299 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14300 fprintf (file, " [PIC]");
14301
14302 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14303 fprintf (file, " [CPIC]");
14304
14305 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14306 fprintf (file, " [XGOT]");
14307
14308 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14309 fprintf (file, " [UCODE]");
14310
14311 fputc ('\n', file);
14312
14313 return TRUE;
14314 }
14315
14316 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14317 {
14318 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14319 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14320 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14321 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14322 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14323 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14324 { NULL, 0, 0, 0, 0 }
14325 };
14326
14327 /* Merge non visibility st_other attributes. Ensure that the
14328 STO_OPTIONAL flag is copied into h->other, even if this is not a
14329 definiton of the symbol. */
14330 void
14331 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14332 const Elf_Internal_Sym *isym,
14333 bfd_boolean definition,
14334 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14335 {
14336 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14337 {
14338 unsigned char other;
14339
14340 other = (definition ? isym->st_other : h->other);
14341 other &= ~ELF_ST_VISIBILITY (-1);
14342 h->other = other | ELF_ST_VISIBILITY (h->other);
14343 }
14344
14345 if (!definition
14346 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14347 h->other |= STO_OPTIONAL;
14348 }
14349
14350 /* Decide whether an undefined symbol is special and can be ignored.
14351 This is the case for OPTIONAL symbols on IRIX. */
14352 bfd_boolean
14353 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14354 {
14355 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14356 }
14357
14358 bfd_boolean
14359 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14360 {
14361 return (sym->st_shndx == SHN_COMMON
14362 || sym->st_shndx == SHN_MIPS_ACOMMON
14363 || sym->st_shndx == SHN_MIPS_SCOMMON);
14364 }
14365
14366 /* Return address for Ith PLT stub in section PLT, for relocation REL
14367 or (bfd_vma) -1 if it should not be included. */
14368
14369 bfd_vma
14370 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14371 const arelent *rel ATTRIBUTE_UNUSED)
14372 {
14373 return (plt->vma
14374 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14375 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14376 }
14377
14378 void
14379 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14380 {
14381 struct mips_elf_link_hash_table *htab;
14382 Elf_Internal_Ehdr *i_ehdrp;
14383
14384 i_ehdrp = elf_elfheader (abfd);
14385 if (link_info)
14386 {
14387 htab = mips_elf_hash_table (link_info);
14388 BFD_ASSERT (htab != NULL);
14389
14390 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14391 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14392 }
14393 }
This page took 0.671352 seconds and 4 git commands to generate.