ELF dynsyms
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
2972 else
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2978
2979 if (hd->needs_lazy_stub)
2980 {
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
3005 einfo->failed = TRUE;
3006 return FALSE;
3007 }
3008
3009 return TRUE;
3010 }
3011
3012 /* A comparison routine used to sort .gptab entries. */
3013
3014 static int
3015 gptab_compare (const void *p1, const void *p2)
3016 {
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021 }
3022 \f
3023 /* Functions to manage the got entry hash table. */
3024
3025 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028 static INLINE hashval_t
3029 mips_elf_hash_bfd_vma (bfd_vma addr)
3030 {
3031 #ifdef BFD64
3032 return addr + (addr >> 32);
3033 #else
3034 return addr;
3035 #endif
3036 }
3037
3038 static hashval_t
3039 mips_elf_got_entry_hash (const void *entry_)
3040 {
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
3043 return (entry->symndx
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
3050 }
3051
3052 static int
3053 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3054 {
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
3058 return (e1->symndx == e2->symndx
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
3065 }
3066
3067 static hashval_t
3068 mips_got_page_ref_hash (const void *ref_)
3069 {
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077 }
3078
3079 static int
3080 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081 {
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091 }
3092
3093 static hashval_t
3094 mips_got_page_entry_hash (const void *entry_)
3095 {
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
3099 return entry->sec->id;
3100 }
3101
3102 static int
3103 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104 {
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
3109 return entry1->sec == entry2->sec;
3110 }
3111 \f
3112 /* Create and return a new mips_got_info structure. */
3113
3114 static struct mips_got_info *
3115 mips_elf_create_got_info (bfd *abfd)
3116 {
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
3131 return NULL;
3132
3133 return g;
3134 }
3135
3136 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139 static struct mips_got_info *
3140 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141 {
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3149 tdata->got = mips_elf_create_got_info (abfd);
3150 return tdata->got;
3151 }
3152
3153 /* Record that ABFD should use output GOT G. */
3154
3155 static void
3156 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157 {
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
3170 }
3171 tdata->got = g;
3172 }
3173
3174 /* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
3177
3178 static asection *
3179 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3180 {
3181 const char *dname;
3182 asection *sreloc;
3183 bfd *dynobj;
3184
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3187 sreloc = bfd_get_linker_section (dynobj, dname);
3188 if (sreloc == NULL && create_p)
3189 {
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
3197 if (sreloc == NULL
3198 || ! bfd_set_section_alignment (dynobj, sreloc,
3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3200 return NULL;
3201 }
3202 return sreloc;
3203 }
3204
3205 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207 static int
3208 mips_elf_reloc_tls_type (unsigned int r_type)
3209 {
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
3219 return GOT_TLS_NONE;
3220 }
3221
3222 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224 static int
3225 mips_tls_got_entries (unsigned int type)
3226 {
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
3236 case GOT_TLS_NONE:
3237 return 0;
3238 }
3239 abort ();
3240 }
3241
3242 /* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246 static int
3247 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249 {
3250 int indx = 0;
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
3254 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3255 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3256 indx = h->dynindx;
3257
3258 if ((bfd_link_pic (info) || indx != 0)
3259 && (h == NULL
3260 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3261 || h->root.type != bfd_link_hash_undefweak))
3262 need_relocs = TRUE;
3263
3264 if (!need_relocs)
3265 return 0;
3266
3267 switch (tls_type)
3268 {
3269 case GOT_TLS_GD:
3270 return indx != 0 ? 2 : 1;
3271
3272 case GOT_TLS_IE:
3273 return 1;
3274
3275 case GOT_TLS_LDM:
3276 return bfd_link_pic (info) ? 1 : 0;
3277
3278 default:
3279 return 0;
3280 }
3281 }
3282
3283 /* Add the number of GOT entries and TLS relocations required by ENTRY
3284 to G. */
3285
3286 static void
3287 mips_elf_count_got_entry (struct bfd_link_info *info,
3288 struct mips_got_info *g,
3289 struct mips_got_entry *entry)
3290 {
3291 if (entry->tls_type)
3292 {
3293 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3294 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3295 entry->symndx < 0
3296 ? &entry->d.h->root : NULL);
3297 }
3298 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3299 g->local_gotno += 1;
3300 else
3301 g->global_gotno += 1;
3302 }
3303
3304 /* Output a simple dynamic relocation into SRELOC. */
3305
3306 static void
3307 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3308 asection *sreloc,
3309 unsigned long reloc_index,
3310 unsigned long indx,
3311 int r_type,
3312 bfd_vma offset)
3313 {
3314 Elf_Internal_Rela rel[3];
3315
3316 memset (rel, 0, sizeof (rel));
3317
3318 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3319 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3320
3321 if (ABI_64_P (output_bfd))
3322 {
3323 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3324 (output_bfd, &rel[0],
3325 (sreloc->contents
3326 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3327 }
3328 else
3329 bfd_elf32_swap_reloc_out
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf32_External_Rel)));
3333 }
3334
3335 /* Initialize a set of TLS GOT entries for one symbol. */
3336
3337 static void
3338 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3339 struct mips_got_entry *entry,
3340 struct mips_elf_link_hash_entry *h,
3341 bfd_vma value)
3342 {
3343 struct mips_elf_link_hash_table *htab;
3344 int indx;
3345 asection *sreloc, *sgot;
3346 bfd_vma got_offset, got_offset2;
3347 bfd_boolean need_relocs = FALSE;
3348
3349 htab = mips_elf_hash_table (info);
3350 if (htab == NULL)
3351 return;
3352
3353 sgot = htab->root.sgot;
3354
3355 indx = 0;
3356 if (h != NULL)
3357 {
3358 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3359
3360 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3361 &h->root)
3362 && (!bfd_link_pic (info)
3363 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3364 indx = h->root.dynindx;
3365 }
3366
3367 if (entry->tls_initialized)
3368 return;
3369
3370 if ((bfd_link_pic (info) || indx != 0)
3371 && (h == NULL
3372 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3373 || h->root.type != bfd_link_hash_undefweak))
3374 need_relocs = TRUE;
3375
3376 /* MINUS_ONE means the symbol is not defined in this object. It may not
3377 be defined at all; assume that the value doesn't matter in that
3378 case. Otherwise complain if we would use the value. */
3379 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3380 || h->root.root.type == bfd_link_hash_undefweak);
3381
3382 /* Emit necessary relocations. */
3383 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3384 got_offset = entry->gotidx;
3385
3386 switch (entry->tls_type)
3387 {
3388 case GOT_TLS_GD:
3389 /* General Dynamic. */
3390 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3391
3392 if (need_relocs)
3393 {
3394 mips_elf_output_dynamic_relocation
3395 (abfd, sreloc, sreloc->reloc_count++, indx,
3396 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3397 sgot->output_offset + sgot->output_section->vma + got_offset);
3398
3399 if (indx)
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset2);
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3406 sgot->contents + got_offset2);
3407 }
3408 else
3409 {
3410 MIPS_ELF_PUT_WORD (abfd, 1,
3411 sgot->contents + got_offset);
3412 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3413 sgot->contents + got_offset2);
3414 }
3415 break;
3416
3417 case GOT_TLS_IE:
3418 /* Initial Exec model. */
3419 if (need_relocs)
3420 {
3421 if (indx == 0)
3422 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3423 sgot->contents + got_offset);
3424 else
3425 MIPS_ELF_PUT_WORD (abfd, 0,
3426 sgot->contents + got_offset);
3427
3428 mips_elf_output_dynamic_relocation
3429 (abfd, sreloc, sreloc->reloc_count++, indx,
3430 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3431 sgot->output_offset + sgot->output_section->vma + got_offset);
3432 }
3433 else
3434 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3435 sgot->contents + got_offset);
3436 break;
3437
3438 case GOT_TLS_LDM:
3439 /* The initial offset is zero, and the LD offsets will include the
3440 bias by DTP_OFFSET. */
3441 MIPS_ELF_PUT_WORD (abfd, 0,
3442 sgot->contents + got_offset
3443 + MIPS_ELF_GOT_SIZE (abfd));
3444
3445 if (!bfd_link_pic (info))
3446 MIPS_ELF_PUT_WORD (abfd, 1,
3447 sgot->contents + got_offset);
3448 else
3449 mips_elf_output_dynamic_relocation
3450 (abfd, sreloc, sreloc->reloc_count++, indx,
3451 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3452 sgot->output_offset + sgot->output_section->vma + got_offset);
3453 break;
3454
3455 default:
3456 abort ();
3457 }
3458
3459 entry->tls_initialized = TRUE;
3460 }
3461
3462 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3463 for global symbol H. .got.plt comes before the GOT, so the offset
3464 will be negative. */
3465
3466 static bfd_vma
3467 mips_elf_gotplt_index (struct bfd_link_info *info,
3468 struct elf_link_hash_entry *h)
3469 {
3470 bfd_vma got_address, got_value;
3471 struct mips_elf_link_hash_table *htab;
3472
3473 htab = mips_elf_hash_table (info);
3474 BFD_ASSERT (htab != NULL);
3475
3476 BFD_ASSERT (h->plt.plist != NULL);
3477 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3478
3479 /* Calculate the address of the associated .got.plt entry. */
3480 got_address = (htab->root.sgotplt->output_section->vma
3481 + htab->root.sgotplt->output_offset
3482 + (h->plt.plist->gotplt_index
3483 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3484
3485 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3486 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3487 + htab->root.hgot->root.u.def.section->output_offset
3488 + htab->root.hgot->root.u.def.value);
3489
3490 return got_address - got_value;
3491 }
3492
3493 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3494 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3495 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3496 offset can be found. */
3497
3498 static bfd_vma
3499 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3500 bfd_vma value, unsigned long r_symndx,
3501 struct mips_elf_link_hash_entry *h, int r_type)
3502 {
3503 struct mips_elf_link_hash_table *htab;
3504 struct mips_got_entry *entry;
3505
3506 htab = mips_elf_hash_table (info);
3507 BFD_ASSERT (htab != NULL);
3508
3509 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3510 r_symndx, h, r_type);
3511 if (!entry)
3512 return MINUS_ONE;
3513
3514 if (entry->tls_type)
3515 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3516 return entry->gotidx;
3517 }
3518
3519 /* Return the GOT index of global symbol H in the primary GOT. */
3520
3521 static bfd_vma
3522 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3523 struct elf_link_hash_entry *h)
3524 {
3525 struct mips_elf_link_hash_table *htab;
3526 long global_got_dynindx;
3527 struct mips_got_info *g;
3528 bfd_vma got_index;
3529
3530 htab = mips_elf_hash_table (info);
3531 BFD_ASSERT (htab != NULL);
3532
3533 global_got_dynindx = 0;
3534 if (htab->global_gotsym != NULL)
3535 global_got_dynindx = htab->global_gotsym->dynindx;
3536
3537 /* Once we determine the global GOT entry with the lowest dynamic
3538 symbol table index, we must put all dynamic symbols with greater
3539 indices into the primary GOT. That makes it easy to calculate the
3540 GOT offset. */
3541 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3542 g = mips_elf_bfd_got (obfd, FALSE);
3543 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3544 * MIPS_ELF_GOT_SIZE (obfd));
3545 BFD_ASSERT (got_index < htab->root.sgot->size);
3546
3547 return got_index;
3548 }
3549
3550 /* Return the GOT index for the global symbol indicated by H, which is
3551 referenced by a relocation of type R_TYPE in IBFD. */
3552
3553 static bfd_vma
3554 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3555 struct elf_link_hash_entry *h, int r_type)
3556 {
3557 struct mips_elf_link_hash_table *htab;
3558 struct mips_got_info *g;
3559 struct mips_got_entry lookup, *entry;
3560 bfd_vma gotidx;
3561
3562 htab = mips_elf_hash_table (info);
3563 BFD_ASSERT (htab != NULL);
3564
3565 g = mips_elf_bfd_got (ibfd, FALSE);
3566 BFD_ASSERT (g);
3567
3568 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3569 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3570 return mips_elf_primary_global_got_index (obfd, info, h);
3571
3572 lookup.abfd = ibfd;
3573 lookup.symndx = -1;
3574 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3575 entry = htab_find (g->got_entries, &lookup);
3576 BFD_ASSERT (entry);
3577
3578 gotidx = entry->gotidx;
3579 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3580
3581 if (lookup.tls_type)
3582 {
3583 bfd_vma value = MINUS_ONE;
3584
3585 if ((h->root.type == bfd_link_hash_defined
3586 || h->root.type == bfd_link_hash_defweak)
3587 && h->root.u.def.section->output_section)
3588 value = (h->root.u.def.value
3589 + h->root.u.def.section->output_offset
3590 + h->root.u.def.section->output_section->vma);
3591
3592 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3593 }
3594 return gotidx;
3595 }
3596
3597 /* Find a GOT page entry that points to within 32KB of VALUE. These
3598 entries are supposed to be placed at small offsets in the GOT, i.e.,
3599 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3600 entry could be created. If OFFSETP is nonnull, use it to return the
3601 offset of the GOT entry from VALUE. */
3602
3603 static bfd_vma
3604 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3605 bfd_vma value, bfd_vma *offsetp)
3606 {
3607 bfd_vma page, got_index;
3608 struct mips_got_entry *entry;
3609
3610 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3611 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3612 NULL, R_MIPS_GOT_PAGE);
3613
3614 if (!entry)
3615 return MINUS_ONE;
3616
3617 got_index = entry->gotidx;
3618
3619 if (offsetp)
3620 *offsetp = value - entry->d.address;
3621
3622 return got_index;
3623 }
3624
3625 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3626 EXTERNAL is true if the relocation was originally against a global
3627 symbol that binds locally. */
3628
3629 static bfd_vma
3630 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3631 bfd_vma value, bfd_boolean external)
3632 {
3633 struct mips_got_entry *entry;
3634
3635 /* GOT16 relocations against local symbols are followed by a LO16
3636 relocation; those against global symbols are not. Thus if the
3637 symbol was originally local, the GOT16 relocation should load the
3638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3639 if (! external)
3640 value = mips_elf_high (value) << 16;
3641
3642 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3643 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3644 same in all cases. */
3645 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3646 NULL, R_MIPS_GOT16);
3647 if (entry)
3648 return entry->gotidx;
3649 else
3650 return MINUS_ONE;
3651 }
3652
3653 /* Returns the offset for the entry at the INDEXth position
3654 in the GOT. */
3655
3656 static bfd_vma
3657 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3658 bfd *input_bfd, bfd_vma got_index)
3659 {
3660 struct mips_elf_link_hash_table *htab;
3661 asection *sgot;
3662 bfd_vma gp;
3663
3664 htab = mips_elf_hash_table (info);
3665 BFD_ASSERT (htab != NULL);
3666
3667 sgot = htab->root.sgot;
3668 gp = _bfd_get_gp_value (output_bfd)
3669 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3670
3671 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3672 }
3673
3674 /* Create and return a local GOT entry for VALUE, which was calculated
3675 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3676 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3677 instead. */
3678
3679 static struct mips_got_entry *
3680 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3681 bfd *ibfd, bfd_vma value,
3682 unsigned long r_symndx,
3683 struct mips_elf_link_hash_entry *h,
3684 int r_type)
3685 {
3686 struct mips_got_entry lookup, *entry;
3687 void **loc;
3688 struct mips_got_info *g;
3689 struct mips_elf_link_hash_table *htab;
3690 bfd_vma gotidx;
3691
3692 htab = mips_elf_hash_table (info);
3693 BFD_ASSERT (htab != NULL);
3694
3695 g = mips_elf_bfd_got (ibfd, FALSE);
3696 if (g == NULL)
3697 {
3698 g = mips_elf_bfd_got (abfd, FALSE);
3699 BFD_ASSERT (g != NULL);
3700 }
3701
3702 /* This function shouldn't be called for symbols that live in the global
3703 area of the GOT. */
3704 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3705
3706 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3707 if (lookup.tls_type)
3708 {
3709 lookup.abfd = ibfd;
3710 if (tls_ldm_reloc_p (r_type))
3711 {
3712 lookup.symndx = 0;
3713 lookup.d.addend = 0;
3714 }
3715 else if (h == NULL)
3716 {
3717 lookup.symndx = r_symndx;
3718 lookup.d.addend = 0;
3719 }
3720 else
3721 {
3722 lookup.symndx = -1;
3723 lookup.d.h = h;
3724 }
3725
3726 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3727 BFD_ASSERT (entry);
3728
3729 gotidx = entry->gotidx;
3730 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3731
3732 return entry;
3733 }
3734
3735 lookup.abfd = NULL;
3736 lookup.symndx = -1;
3737 lookup.d.address = value;
3738 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3739 if (!loc)
3740 return NULL;
3741
3742 entry = (struct mips_got_entry *) *loc;
3743 if (entry)
3744 return entry;
3745
3746 if (g->assigned_low_gotno > g->assigned_high_gotno)
3747 {
3748 /* We didn't allocate enough space in the GOT. */
3749 _bfd_error_handler
3750 (_("not enough GOT space for local GOT entries"));
3751 bfd_set_error (bfd_error_bad_value);
3752 return NULL;
3753 }
3754
3755 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3756 if (!entry)
3757 return NULL;
3758
3759 if (got16_reloc_p (r_type)
3760 || call16_reloc_p (r_type)
3761 || got_page_reloc_p (r_type)
3762 || got_disp_reloc_p (r_type))
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3764 else
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3766
3767 *entry = lookup;
3768 *loc = entry;
3769
3770 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3771
3772 /* These GOT entries need a dynamic relocation on VxWorks. */
3773 if (htab->is_vxworks)
3774 {
3775 Elf_Internal_Rela outrel;
3776 asection *s;
3777 bfd_byte *rloc;
3778 bfd_vma got_address;
3779
3780 s = mips_elf_rel_dyn_section (info, FALSE);
3781 got_address = (htab->root.sgot->output_section->vma
3782 + htab->root.sgot->output_offset
3783 + entry->gotidx);
3784
3785 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3786 outrel.r_offset = got_address;
3787 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3788 outrel.r_addend = value;
3789 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3790 }
3791
3792 return entry;
3793 }
3794
3795 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3796 The number might be exact or a worst-case estimate, depending on how
3797 much information is available to elf_backend_omit_section_dynsym at
3798 the current linking stage. */
3799
3800 static bfd_size_type
3801 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3802 {
3803 bfd_size_type count;
3804
3805 count = 0;
3806 if (bfd_link_pic (info)
3807 || elf_hash_table (info)->is_relocatable_executable)
3808 {
3809 asection *p;
3810 const struct elf_backend_data *bed;
3811
3812 bed = get_elf_backend_data (output_bfd);
3813 for (p = output_bfd->sections; p ; p = p->next)
3814 if ((p->flags & SEC_EXCLUDE) == 0
3815 && (p->flags & SEC_ALLOC) != 0
3816 && elf_hash_table (info)->dynamic_relocs
3817 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3818 ++count;
3819 }
3820 return count;
3821 }
3822
3823 /* Sort the dynamic symbol table so that symbols that need GOT entries
3824 appear towards the end. */
3825
3826 static bfd_boolean
3827 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3828 {
3829 struct mips_elf_link_hash_table *htab;
3830 struct mips_elf_hash_sort_data hsd;
3831 struct mips_got_info *g;
3832
3833 htab = mips_elf_hash_table (info);
3834 BFD_ASSERT (htab != NULL);
3835
3836 if (htab->root.dynsymcount == 0)
3837 return TRUE;
3838
3839 g = htab->got_info;
3840 if (g == NULL)
3841 return TRUE;
3842
3843 hsd.low = NULL;
3844 hsd.max_unref_got_dynindx
3845 = hsd.min_got_dynindx
3846 = (htab->root.dynsymcount - g->reloc_only_gotno);
3847 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3848 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3849 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3850 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3851 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3852
3853 /* There should have been enough room in the symbol table to
3854 accommodate both the GOT and non-GOT symbols. */
3855 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3856 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3857 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3858 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3859
3860 /* Now we know which dynamic symbol has the lowest dynamic symbol
3861 table index in the GOT. */
3862 htab->global_gotsym = hsd.low;
3863
3864 return TRUE;
3865 }
3866
3867 /* If H needs a GOT entry, assign it the highest available dynamic
3868 index. Otherwise, assign it the lowest available dynamic
3869 index. */
3870
3871 static bfd_boolean
3872 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3873 {
3874 struct mips_elf_hash_sort_data *hsd = data;
3875
3876 /* Symbols without dynamic symbol table entries aren't interesting
3877 at all. */
3878 if (h->root.dynindx == -1)
3879 return TRUE;
3880
3881 switch (h->global_got_area)
3882 {
3883 case GGA_NONE:
3884 if (h->root.forced_local)
3885 h->root.dynindx = hsd->max_local_dynindx++;
3886 else
3887 h->root.dynindx = hsd->max_non_got_dynindx++;
3888 break;
3889
3890 case GGA_NORMAL:
3891 h->root.dynindx = --hsd->min_got_dynindx;
3892 hsd->low = (struct elf_link_hash_entry *) h;
3893 break;
3894
3895 case GGA_RELOC_ONLY:
3896 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 h->root.dynindx = hsd->max_unref_got_dynindx++;
3899 break;
3900 }
3901
3902 return TRUE;
3903 }
3904
3905 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3906 (which is owned by the caller and shouldn't be added to the
3907 hash table directly). */
3908
3909 static bfd_boolean
3910 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3911 struct mips_got_entry *lookup)
3912 {
3913 struct mips_elf_link_hash_table *htab;
3914 struct mips_got_entry *entry;
3915 struct mips_got_info *g;
3916 void **loc, **bfd_loc;
3917
3918 /* Make sure there's a slot for this entry in the master GOT. */
3919 htab = mips_elf_hash_table (info);
3920 g = htab->got_info;
3921 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3922 if (!loc)
3923 return FALSE;
3924
3925 /* Populate the entry if it isn't already. */
3926 entry = (struct mips_got_entry *) *loc;
3927 if (!entry)
3928 {
3929 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3930 if (!entry)
3931 return FALSE;
3932
3933 lookup->tls_initialized = FALSE;
3934 lookup->gotidx = -1;
3935 *entry = *lookup;
3936 *loc = entry;
3937 }
3938
3939 /* Reuse the same GOT entry for the BFD's GOT. */
3940 g = mips_elf_bfd_got (abfd, TRUE);
3941 if (!g)
3942 return FALSE;
3943
3944 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3945 if (!bfd_loc)
3946 return FALSE;
3947
3948 if (!*bfd_loc)
3949 *bfd_loc = entry;
3950 return TRUE;
3951 }
3952
3953 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3954 entry for it. FOR_CALL is true if the caller is only interested in
3955 using the GOT entry for calls. */
3956
3957 static bfd_boolean
3958 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3959 bfd *abfd, struct bfd_link_info *info,
3960 bfd_boolean for_call, int r_type)
3961 {
3962 struct mips_elf_link_hash_table *htab;
3963 struct mips_elf_link_hash_entry *hmips;
3964 struct mips_got_entry entry;
3965 unsigned char tls_type;
3966
3967 htab = mips_elf_hash_table (info);
3968 BFD_ASSERT (htab != NULL);
3969
3970 hmips = (struct mips_elf_link_hash_entry *) h;
3971 if (!for_call)
3972 hmips->got_only_for_calls = FALSE;
3973
3974 /* A global symbol in the GOT must also be in the dynamic symbol
3975 table. */
3976 if (h->dynindx == -1)
3977 {
3978 switch (ELF_ST_VISIBILITY (h->other))
3979 {
3980 case STV_INTERNAL:
3981 case STV_HIDDEN:
3982 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3983 break;
3984 }
3985 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3986 return FALSE;
3987 }
3988
3989 tls_type = mips_elf_reloc_tls_type (r_type);
3990 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3991 hmips->global_got_area = GGA_NORMAL;
3992
3993 entry.abfd = abfd;
3994 entry.symndx = -1;
3995 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3996 entry.tls_type = tls_type;
3997 return mips_elf_record_got_entry (info, abfd, &entry);
3998 }
3999
4000 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4001 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4002
4003 static bfd_boolean
4004 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4005 struct bfd_link_info *info, int r_type)
4006 {
4007 struct mips_elf_link_hash_table *htab;
4008 struct mips_got_info *g;
4009 struct mips_got_entry entry;
4010
4011 htab = mips_elf_hash_table (info);
4012 BFD_ASSERT (htab != NULL);
4013
4014 g = htab->got_info;
4015 BFD_ASSERT (g != NULL);
4016
4017 entry.abfd = abfd;
4018 entry.symndx = symndx;
4019 entry.d.addend = addend;
4020 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4021 return mips_elf_record_got_entry (info, abfd, &entry);
4022 }
4023
4024 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4025 H is the symbol's hash table entry, or null if SYMNDX is local
4026 to ABFD. */
4027
4028 static bfd_boolean
4029 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4030 long symndx, struct elf_link_hash_entry *h,
4031 bfd_signed_vma addend)
4032 {
4033 struct mips_elf_link_hash_table *htab;
4034 struct mips_got_info *g1, *g2;
4035 struct mips_got_page_ref lookup, *entry;
4036 void **loc, **bfd_loc;
4037
4038 htab = mips_elf_hash_table (info);
4039 BFD_ASSERT (htab != NULL);
4040
4041 g1 = htab->got_info;
4042 BFD_ASSERT (g1 != NULL);
4043
4044 if (h)
4045 {
4046 lookup.symndx = -1;
4047 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4048 }
4049 else
4050 {
4051 lookup.symndx = symndx;
4052 lookup.u.abfd = abfd;
4053 }
4054 lookup.addend = addend;
4055 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4056 if (loc == NULL)
4057 return FALSE;
4058
4059 entry = (struct mips_got_page_ref *) *loc;
4060 if (!entry)
4061 {
4062 entry = bfd_alloc (abfd, sizeof (*entry));
4063 if (!entry)
4064 return FALSE;
4065
4066 *entry = lookup;
4067 *loc = entry;
4068 }
4069
4070 /* Add the same entry to the BFD's GOT. */
4071 g2 = mips_elf_bfd_got (abfd, TRUE);
4072 if (!g2)
4073 return FALSE;
4074
4075 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4076 if (!bfd_loc)
4077 return FALSE;
4078
4079 if (!*bfd_loc)
4080 *bfd_loc = entry;
4081
4082 return TRUE;
4083 }
4084
4085 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4086
4087 static void
4088 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4089 unsigned int n)
4090 {
4091 asection *s;
4092 struct mips_elf_link_hash_table *htab;
4093
4094 htab = mips_elf_hash_table (info);
4095 BFD_ASSERT (htab != NULL);
4096
4097 s = mips_elf_rel_dyn_section (info, FALSE);
4098 BFD_ASSERT (s != NULL);
4099
4100 if (htab->is_vxworks)
4101 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4102 else
4103 {
4104 if (s->size == 0)
4105 {
4106 /* Make room for a null element. */
4107 s->size += MIPS_ELF_REL_SIZE (abfd);
4108 ++s->reloc_count;
4109 }
4110 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4111 }
4112 }
4113 \f
4114 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4115 mips_elf_traverse_got_arg structure. Count the number of GOT
4116 entries and TLS relocs. Set DATA->value to true if we need
4117 to resolve indirect or warning symbols and then recreate the GOT. */
4118
4119 static int
4120 mips_elf_check_recreate_got (void **entryp, void *data)
4121 {
4122 struct mips_got_entry *entry;
4123 struct mips_elf_traverse_got_arg *arg;
4124
4125 entry = (struct mips_got_entry *) *entryp;
4126 arg = (struct mips_elf_traverse_got_arg *) data;
4127 if (entry->abfd != NULL && entry->symndx == -1)
4128 {
4129 struct mips_elf_link_hash_entry *h;
4130
4131 h = entry->d.h;
4132 if (h->root.root.type == bfd_link_hash_indirect
4133 || h->root.root.type == bfd_link_hash_warning)
4134 {
4135 arg->value = TRUE;
4136 return 0;
4137 }
4138 }
4139 mips_elf_count_got_entry (arg->info, arg->g, entry);
4140 return 1;
4141 }
4142
4143 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4144 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4145 converting entries for indirect and warning symbols into entries
4146 for the target symbol. Set DATA->g to null on error. */
4147
4148 static int
4149 mips_elf_recreate_got (void **entryp, void *data)
4150 {
4151 struct mips_got_entry new_entry, *entry;
4152 struct mips_elf_traverse_got_arg *arg;
4153 void **slot;
4154
4155 entry = (struct mips_got_entry *) *entryp;
4156 arg = (struct mips_elf_traverse_got_arg *) data;
4157 if (entry->abfd != NULL
4158 && entry->symndx == -1
4159 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4160 || entry->d.h->root.root.type == bfd_link_hash_warning))
4161 {
4162 struct mips_elf_link_hash_entry *h;
4163
4164 new_entry = *entry;
4165 entry = &new_entry;
4166 h = entry->d.h;
4167 do
4168 {
4169 BFD_ASSERT (h->global_got_area == GGA_NONE);
4170 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4171 }
4172 while (h->root.root.type == bfd_link_hash_indirect
4173 || h->root.root.type == bfd_link_hash_warning);
4174 entry->d.h = h;
4175 }
4176 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4177 if (slot == NULL)
4178 {
4179 arg->g = NULL;
4180 return 0;
4181 }
4182 if (*slot == NULL)
4183 {
4184 if (entry == &new_entry)
4185 {
4186 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4187 if (!entry)
4188 {
4189 arg->g = NULL;
4190 return 0;
4191 }
4192 *entry = new_entry;
4193 }
4194 *slot = entry;
4195 mips_elf_count_got_entry (arg->info, arg->g, entry);
4196 }
4197 return 1;
4198 }
4199
4200 /* Return the maximum number of GOT page entries required for RANGE. */
4201
4202 static bfd_vma
4203 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4204 {
4205 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4206 }
4207
4208 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4209
4210 static bfd_boolean
4211 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4212 asection *sec, bfd_signed_vma addend)
4213 {
4214 struct mips_got_info *g = arg->g;
4215 struct mips_got_page_entry lookup, *entry;
4216 struct mips_got_page_range **range_ptr, *range;
4217 bfd_vma old_pages, new_pages;
4218 void **loc;
4219
4220 /* Find the mips_got_page_entry hash table entry for this section. */
4221 lookup.sec = sec;
4222 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4223 if (loc == NULL)
4224 return FALSE;
4225
4226 /* Create a mips_got_page_entry if this is the first time we've
4227 seen the section. */
4228 entry = (struct mips_got_page_entry *) *loc;
4229 if (!entry)
4230 {
4231 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4232 if (!entry)
4233 return FALSE;
4234
4235 entry->sec = sec;
4236 *loc = entry;
4237 }
4238
4239 /* Skip over ranges whose maximum extent cannot share a page entry
4240 with ADDEND. */
4241 range_ptr = &entry->ranges;
4242 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4243 range_ptr = &(*range_ptr)->next;
4244
4245 /* If we scanned to the end of the list, or found a range whose
4246 minimum extent cannot share a page entry with ADDEND, create
4247 a new singleton range. */
4248 range = *range_ptr;
4249 if (!range || addend < range->min_addend - 0xffff)
4250 {
4251 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4252 if (!range)
4253 return FALSE;
4254
4255 range->next = *range_ptr;
4256 range->min_addend = addend;
4257 range->max_addend = addend;
4258
4259 *range_ptr = range;
4260 entry->num_pages++;
4261 g->page_gotno++;
4262 return TRUE;
4263 }
4264
4265 /* Remember how many pages the old range contributed. */
4266 old_pages = mips_elf_pages_for_range (range);
4267
4268 /* Update the ranges. */
4269 if (addend < range->min_addend)
4270 range->min_addend = addend;
4271 else if (addend > range->max_addend)
4272 {
4273 if (range->next && addend >= range->next->min_addend - 0xffff)
4274 {
4275 old_pages += mips_elf_pages_for_range (range->next);
4276 range->max_addend = range->next->max_addend;
4277 range->next = range->next->next;
4278 }
4279 else
4280 range->max_addend = addend;
4281 }
4282
4283 /* Record any change in the total estimate. */
4284 new_pages = mips_elf_pages_for_range (range);
4285 if (old_pages != new_pages)
4286 {
4287 entry->num_pages += new_pages - old_pages;
4288 g->page_gotno += new_pages - old_pages;
4289 }
4290
4291 return TRUE;
4292 }
4293
4294 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4295 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4296 whether the page reference described by *REFP needs a GOT page entry,
4297 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4298
4299 static bfd_boolean
4300 mips_elf_resolve_got_page_ref (void **refp, void *data)
4301 {
4302 struct mips_got_page_ref *ref;
4303 struct mips_elf_traverse_got_arg *arg;
4304 struct mips_elf_link_hash_table *htab;
4305 asection *sec;
4306 bfd_vma addend;
4307
4308 ref = (struct mips_got_page_ref *) *refp;
4309 arg = (struct mips_elf_traverse_got_arg *) data;
4310 htab = mips_elf_hash_table (arg->info);
4311
4312 if (ref->symndx < 0)
4313 {
4314 struct mips_elf_link_hash_entry *h;
4315
4316 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4317 h = ref->u.h;
4318 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4319 return 1;
4320
4321 /* Ignore undefined symbols; we'll issue an error later if
4322 appropriate. */
4323 if (!((h->root.root.type == bfd_link_hash_defined
4324 || h->root.root.type == bfd_link_hash_defweak)
4325 && h->root.root.u.def.section))
4326 return 1;
4327
4328 sec = h->root.root.u.def.section;
4329 addend = h->root.root.u.def.value + ref->addend;
4330 }
4331 else
4332 {
4333 Elf_Internal_Sym *isym;
4334
4335 /* Read in the symbol. */
4336 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4337 ref->symndx);
4338 if (isym == NULL)
4339 {
4340 arg->g = NULL;
4341 return 0;
4342 }
4343
4344 /* Get the associated input section. */
4345 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4346 if (sec == NULL)
4347 {
4348 arg->g = NULL;
4349 return 0;
4350 }
4351
4352 /* If this is a mergable section, work out the section and offset
4353 of the merged data. For section symbols, the addend specifies
4354 of the offset _of_ the first byte in the data, otherwise it
4355 specifies the offset _from_ the first byte. */
4356 if (sec->flags & SEC_MERGE)
4357 {
4358 void *secinfo;
4359
4360 secinfo = elf_section_data (sec)->sec_info;
4361 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4362 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4363 isym->st_value + ref->addend);
4364 else
4365 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4366 isym->st_value) + ref->addend;
4367 }
4368 else
4369 addend = isym->st_value + ref->addend;
4370 }
4371 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4372 {
4373 arg->g = NULL;
4374 return 0;
4375 }
4376 return 1;
4377 }
4378
4379 /* If any entries in G->got_entries are for indirect or warning symbols,
4380 replace them with entries for the target symbol. Convert g->got_page_refs
4381 into got_page_entry structures and estimate the number of page entries
4382 that they require. */
4383
4384 static bfd_boolean
4385 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4386 struct mips_got_info *g)
4387 {
4388 struct mips_elf_traverse_got_arg tga;
4389 struct mips_got_info oldg;
4390
4391 oldg = *g;
4392
4393 tga.info = info;
4394 tga.g = g;
4395 tga.value = FALSE;
4396 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4397 if (tga.value)
4398 {
4399 *g = oldg;
4400 g->got_entries = htab_create (htab_size (oldg.got_entries),
4401 mips_elf_got_entry_hash,
4402 mips_elf_got_entry_eq, NULL);
4403 if (!g->got_entries)
4404 return FALSE;
4405
4406 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4407 if (!tga.g)
4408 return FALSE;
4409
4410 htab_delete (oldg.got_entries);
4411 }
4412
4413 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4414 mips_got_page_entry_eq, NULL);
4415 if (g->got_page_entries == NULL)
4416 return FALSE;
4417
4418 tga.info = info;
4419 tga.g = g;
4420 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4421
4422 return TRUE;
4423 }
4424
4425 /* Return true if a GOT entry for H should live in the local rather than
4426 global GOT area. */
4427
4428 static bfd_boolean
4429 mips_use_local_got_p (struct bfd_link_info *info,
4430 struct mips_elf_link_hash_entry *h)
4431 {
4432 /* Symbols that aren't in the dynamic symbol table must live in the
4433 local GOT. This includes symbols that are completely undefined
4434 and which therefore don't bind locally. We'll report undefined
4435 symbols later if appropriate. */
4436 if (h->root.dynindx == -1)
4437 return TRUE;
4438
4439 /* Symbols that bind locally can (and in the case of forced-local
4440 symbols, must) live in the local GOT. */
4441 if (h->got_only_for_calls
4442 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4443 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4444 return TRUE;
4445
4446 /* If this is an executable that must provide a definition of the symbol,
4447 either though PLTs or copy relocations, then that address should go in
4448 the local rather than global GOT. */
4449 if (bfd_link_executable (info) && h->has_static_relocs)
4450 return TRUE;
4451
4452 return FALSE;
4453 }
4454
4455 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4456 link_info structure. Decide whether the hash entry needs an entry in
4457 the global part of the primary GOT, setting global_got_area accordingly.
4458 Count the number of global symbols that are in the primary GOT only
4459 because they have relocations against them (reloc_only_gotno). */
4460
4461 static int
4462 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4463 {
4464 struct bfd_link_info *info;
4465 struct mips_elf_link_hash_table *htab;
4466 struct mips_got_info *g;
4467
4468 info = (struct bfd_link_info *) data;
4469 htab = mips_elf_hash_table (info);
4470 g = htab->got_info;
4471 if (h->global_got_area != GGA_NONE)
4472 {
4473 /* Make a final decision about whether the symbol belongs in the
4474 local or global GOT. */
4475 if (mips_use_local_got_p (info, h))
4476 /* The symbol belongs in the local GOT. We no longer need this
4477 entry if it was only used for relocations; those relocations
4478 will be against the null or section symbol instead of H. */
4479 h->global_got_area = GGA_NONE;
4480 else if (htab->is_vxworks
4481 && h->got_only_for_calls
4482 && h->root.plt.plist->mips_offset != MINUS_ONE)
4483 /* On VxWorks, calls can refer directly to the .got.plt entry;
4484 they don't need entries in the regular GOT. .got.plt entries
4485 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4486 h->global_got_area = GGA_NONE;
4487 else if (h->global_got_area == GGA_RELOC_ONLY)
4488 {
4489 g->reloc_only_gotno++;
4490 g->global_gotno++;
4491 }
4492 }
4493 return 1;
4494 }
4495 \f
4496 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4497 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4498
4499 static int
4500 mips_elf_add_got_entry (void **entryp, void *data)
4501 {
4502 struct mips_got_entry *entry;
4503 struct mips_elf_traverse_got_arg *arg;
4504 void **slot;
4505
4506 entry = (struct mips_got_entry *) *entryp;
4507 arg = (struct mips_elf_traverse_got_arg *) data;
4508 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4509 if (!slot)
4510 {
4511 arg->g = NULL;
4512 return 0;
4513 }
4514 if (!*slot)
4515 {
4516 *slot = entry;
4517 mips_elf_count_got_entry (arg->info, arg->g, entry);
4518 }
4519 return 1;
4520 }
4521
4522 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4523 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4524
4525 static int
4526 mips_elf_add_got_page_entry (void **entryp, void *data)
4527 {
4528 struct mips_got_page_entry *entry;
4529 struct mips_elf_traverse_got_arg *arg;
4530 void **slot;
4531
4532 entry = (struct mips_got_page_entry *) *entryp;
4533 arg = (struct mips_elf_traverse_got_arg *) data;
4534 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4535 if (!slot)
4536 {
4537 arg->g = NULL;
4538 return 0;
4539 }
4540 if (!*slot)
4541 {
4542 *slot = entry;
4543 arg->g->page_gotno += entry->num_pages;
4544 }
4545 return 1;
4546 }
4547
4548 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4549 this would lead to overflow, 1 if they were merged successfully,
4550 and 0 if a merge failed due to lack of memory. (These values are chosen
4551 so that nonnegative return values can be returned by a htab_traverse
4552 callback.) */
4553
4554 static int
4555 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4556 struct mips_got_info *to,
4557 struct mips_elf_got_per_bfd_arg *arg)
4558 {
4559 struct mips_elf_traverse_got_arg tga;
4560 unsigned int estimate;
4561
4562 /* Work out how many page entries we would need for the combined GOT. */
4563 estimate = arg->max_pages;
4564 if (estimate >= from->page_gotno + to->page_gotno)
4565 estimate = from->page_gotno + to->page_gotno;
4566
4567 /* And conservatively estimate how many local and TLS entries
4568 would be needed. */
4569 estimate += from->local_gotno + to->local_gotno;
4570 estimate += from->tls_gotno + to->tls_gotno;
4571
4572 /* If we're merging with the primary got, any TLS relocations will
4573 come after the full set of global entries. Otherwise estimate those
4574 conservatively as well. */
4575 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4576 estimate += arg->global_count;
4577 else
4578 estimate += from->global_gotno + to->global_gotno;
4579
4580 /* Bail out if the combined GOT might be too big. */
4581 if (estimate > arg->max_count)
4582 return -1;
4583
4584 /* Transfer the bfd's got information from FROM to TO. */
4585 tga.info = arg->info;
4586 tga.g = to;
4587 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4588 if (!tga.g)
4589 return 0;
4590
4591 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4592 if (!tga.g)
4593 return 0;
4594
4595 mips_elf_replace_bfd_got (abfd, to);
4596 return 1;
4597 }
4598
4599 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4600 as possible of the primary got, since it doesn't require explicit
4601 dynamic relocations, but don't use bfds that would reference global
4602 symbols out of the addressable range. Failing the primary got,
4603 attempt to merge with the current got, or finish the current got
4604 and then make make the new got current. */
4605
4606 static bfd_boolean
4607 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4608 struct mips_elf_got_per_bfd_arg *arg)
4609 {
4610 unsigned int estimate;
4611 int result;
4612
4613 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4614 return FALSE;
4615
4616 /* Work out the number of page, local and TLS entries. */
4617 estimate = arg->max_pages;
4618 if (estimate > g->page_gotno)
4619 estimate = g->page_gotno;
4620 estimate += g->local_gotno + g->tls_gotno;
4621
4622 /* We place TLS GOT entries after both locals and globals. The globals
4623 for the primary GOT may overflow the normal GOT size limit, so be
4624 sure not to merge a GOT which requires TLS with the primary GOT in that
4625 case. This doesn't affect non-primary GOTs. */
4626 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4627
4628 if (estimate <= arg->max_count)
4629 {
4630 /* If we don't have a primary GOT, use it as
4631 a starting point for the primary GOT. */
4632 if (!arg->primary)
4633 {
4634 arg->primary = g;
4635 return TRUE;
4636 }
4637
4638 /* Try merging with the primary GOT. */
4639 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4640 if (result >= 0)
4641 return result;
4642 }
4643
4644 /* If we can merge with the last-created got, do it. */
4645 if (arg->current)
4646 {
4647 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4648 if (result >= 0)
4649 return result;
4650 }
4651
4652 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4653 fits; if it turns out that it doesn't, we'll get relocation
4654 overflows anyway. */
4655 g->next = arg->current;
4656 arg->current = g;
4657
4658 return TRUE;
4659 }
4660
4661 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4662 to GOTIDX, duplicating the entry if it has already been assigned
4663 an index in a different GOT. */
4664
4665 static bfd_boolean
4666 mips_elf_set_gotidx (void **entryp, long gotidx)
4667 {
4668 struct mips_got_entry *entry;
4669
4670 entry = (struct mips_got_entry *) *entryp;
4671 if (entry->gotidx > 0)
4672 {
4673 struct mips_got_entry *new_entry;
4674
4675 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4676 if (!new_entry)
4677 return FALSE;
4678
4679 *new_entry = *entry;
4680 *entryp = new_entry;
4681 entry = new_entry;
4682 }
4683 entry->gotidx = gotidx;
4684 return TRUE;
4685 }
4686
4687 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4688 mips_elf_traverse_got_arg in which DATA->value is the size of one
4689 GOT entry. Set DATA->g to null on failure. */
4690
4691 static int
4692 mips_elf_initialize_tls_index (void **entryp, void *data)
4693 {
4694 struct mips_got_entry *entry;
4695 struct mips_elf_traverse_got_arg *arg;
4696
4697 /* We're only interested in TLS symbols. */
4698 entry = (struct mips_got_entry *) *entryp;
4699 if (entry->tls_type == GOT_TLS_NONE)
4700 return 1;
4701
4702 arg = (struct mips_elf_traverse_got_arg *) data;
4703 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4704 {
4705 arg->g = NULL;
4706 return 0;
4707 }
4708
4709 /* Account for the entries we've just allocated. */
4710 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4711 return 1;
4712 }
4713
4714 /* A htab_traverse callback for GOT entries, where DATA points to a
4715 mips_elf_traverse_got_arg. Set the global_got_area of each global
4716 symbol to DATA->value. */
4717
4718 static int
4719 mips_elf_set_global_got_area (void **entryp, void *data)
4720 {
4721 struct mips_got_entry *entry;
4722 struct mips_elf_traverse_got_arg *arg;
4723
4724 entry = (struct mips_got_entry *) *entryp;
4725 arg = (struct mips_elf_traverse_got_arg *) data;
4726 if (entry->abfd != NULL
4727 && entry->symndx == -1
4728 && entry->d.h->global_got_area != GGA_NONE)
4729 entry->d.h->global_got_area = arg->value;
4730 return 1;
4731 }
4732
4733 /* A htab_traverse callback for secondary GOT entries, where DATA points
4734 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4735 and record the number of relocations they require. DATA->value is
4736 the size of one GOT entry. Set DATA->g to null on failure. */
4737
4738 static int
4739 mips_elf_set_global_gotidx (void **entryp, void *data)
4740 {
4741 struct mips_got_entry *entry;
4742 struct mips_elf_traverse_got_arg *arg;
4743
4744 entry = (struct mips_got_entry *) *entryp;
4745 arg = (struct mips_elf_traverse_got_arg *) data;
4746 if (entry->abfd != NULL
4747 && entry->symndx == -1
4748 && entry->d.h->global_got_area != GGA_NONE)
4749 {
4750 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4751 {
4752 arg->g = NULL;
4753 return 0;
4754 }
4755 arg->g->assigned_low_gotno += 1;
4756
4757 if (bfd_link_pic (arg->info)
4758 || (elf_hash_table (arg->info)->dynamic_sections_created
4759 && entry->d.h->root.def_dynamic
4760 && !entry->d.h->root.def_regular))
4761 arg->g->relocs += 1;
4762 }
4763
4764 return 1;
4765 }
4766
4767 /* A htab_traverse callback for GOT entries for which DATA is the
4768 bfd_link_info. Forbid any global symbols from having traditional
4769 lazy-binding stubs. */
4770
4771 static int
4772 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4773 {
4774 struct bfd_link_info *info;
4775 struct mips_elf_link_hash_table *htab;
4776 struct mips_got_entry *entry;
4777
4778 entry = (struct mips_got_entry *) *entryp;
4779 info = (struct bfd_link_info *) data;
4780 htab = mips_elf_hash_table (info);
4781 BFD_ASSERT (htab != NULL);
4782
4783 if (entry->abfd != NULL
4784 && entry->symndx == -1
4785 && entry->d.h->needs_lazy_stub)
4786 {
4787 entry->d.h->needs_lazy_stub = FALSE;
4788 htab->lazy_stub_count--;
4789 }
4790
4791 return 1;
4792 }
4793
4794 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4795 the primary GOT. */
4796 static bfd_vma
4797 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4798 {
4799 if (!g->next)
4800 return 0;
4801
4802 g = mips_elf_bfd_got (ibfd, FALSE);
4803 if (! g)
4804 return 0;
4805
4806 BFD_ASSERT (g->next);
4807
4808 g = g->next;
4809
4810 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4811 * MIPS_ELF_GOT_SIZE (abfd);
4812 }
4813
4814 /* Turn a single GOT that is too big for 16-bit addressing into
4815 a sequence of GOTs, each one 16-bit addressable. */
4816
4817 static bfd_boolean
4818 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4819 asection *got, bfd_size_type pages)
4820 {
4821 struct mips_elf_link_hash_table *htab;
4822 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4823 struct mips_elf_traverse_got_arg tga;
4824 struct mips_got_info *g, *gg;
4825 unsigned int assign, needed_relocs;
4826 bfd *dynobj, *ibfd;
4827
4828 dynobj = elf_hash_table (info)->dynobj;
4829 htab = mips_elf_hash_table (info);
4830 BFD_ASSERT (htab != NULL);
4831
4832 g = htab->got_info;
4833
4834 got_per_bfd_arg.obfd = abfd;
4835 got_per_bfd_arg.info = info;
4836 got_per_bfd_arg.current = NULL;
4837 got_per_bfd_arg.primary = NULL;
4838 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4839 / MIPS_ELF_GOT_SIZE (abfd))
4840 - htab->reserved_gotno);
4841 got_per_bfd_arg.max_pages = pages;
4842 /* The number of globals that will be included in the primary GOT.
4843 See the calls to mips_elf_set_global_got_area below for more
4844 information. */
4845 got_per_bfd_arg.global_count = g->global_gotno;
4846
4847 /* Try to merge the GOTs of input bfds together, as long as they
4848 don't seem to exceed the maximum GOT size, choosing one of them
4849 to be the primary GOT. */
4850 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4851 {
4852 gg = mips_elf_bfd_got (ibfd, FALSE);
4853 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4854 return FALSE;
4855 }
4856
4857 /* If we do not find any suitable primary GOT, create an empty one. */
4858 if (got_per_bfd_arg.primary == NULL)
4859 g->next = mips_elf_create_got_info (abfd);
4860 else
4861 g->next = got_per_bfd_arg.primary;
4862 g->next->next = got_per_bfd_arg.current;
4863
4864 /* GG is now the master GOT, and G is the primary GOT. */
4865 gg = g;
4866 g = g->next;
4867
4868 /* Map the output bfd to the primary got. That's what we're going
4869 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4870 didn't mark in check_relocs, and we want a quick way to find it.
4871 We can't just use gg->next because we're going to reverse the
4872 list. */
4873 mips_elf_replace_bfd_got (abfd, g);
4874
4875 /* Every symbol that is referenced in a dynamic relocation must be
4876 present in the primary GOT, so arrange for them to appear after
4877 those that are actually referenced. */
4878 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4879 g->global_gotno = gg->global_gotno;
4880
4881 tga.info = info;
4882 tga.value = GGA_RELOC_ONLY;
4883 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4884 tga.value = GGA_NORMAL;
4885 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4886
4887 /* Now go through the GOTs assigning them offset ranges.
4888 [assigned_low_gotno, local_gotno[ will be set to the range of local
4889 entries in each GOT. We can then compute the end of a GOT by
4890 adding local_gotno to global_gotno. We reverse the list and make
4891 it circular since then we'll be able to quickly compute the
4892 beginning of a GOT, by computing the end of its predecessor. To
4893 avoid special cases for the primary GOT, while still preserving
4894 assertions that are valid for both single- and multi-got links,
4895 we arrange for the main got struct to have the right number of
4896 global entries, but set its local_gotno such that the initial
4897 offset of the primary GOT is zero. Remember that the primary GOT
4898 will become the last item in the circular linked list, so it
4899 points back to the master GOT. */
4900 gg->local_gotno = -g->global_gotno;
4901 gg->global_gotno = g->global_gotno;
4902 gg->tls_gotno = 0;
4903 assign = 0;
4904 gg->next = gg;
4905
4906 do
4907 {
4908 struct mips_got_info *gn;
4909
4910 assign += htab->reserved_gotno;
4911 g->assigned_low_gotno = assign;
4912 g->local_gotno += assign;
4913 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4914 g->assigned_high_gotno = g->local_gotno - 1;
4915 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4916
4917 /* Take g out of the direct list, and push it onto the reversed
4918 list that gg points to. g->next is guaranteed to be nonnull after
4919 this operation, as required by mips_elf_initialize_tls_index. */
4920 gn = g->next;
4921 g->next = gg->next;
4922 gg->next = g;
4923
4924 /* Set up any TLS entries. We always place the TLS entries after
4925 all non-TLS entries. */
4926 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4927 tga.g = g;
4928 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4929 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4930 if (!tga.g)
4931 return FALSE;
4932 BFD_ASSERT (g->tls_assigned_gotno == assign);
4933
4934 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4935 g = gn;
4936
4937 /* Forbid global symbols in every non-primary GOT from having
4938 lazy-binding stubs. */
4939 if (g)
4940 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4941 }
4942 while (g);
4943
4944 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4945
4946 needed_relocs = 0;
4947 for (g = gg->next; g && g->next != gg; g = g->next)
4948 {
4949 unsigned int save_assign;
4950
4951 /* Assign offsets to global GOT entries and count how many
4952 relocations they need. */
4953 save_assign = g->assigned_low_gotno;
4954 g->assigned_low_gotno = g->local_gotno;
4955 tga.info = info;
4956 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4957 tga.g = g;
4958 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4959 if (!tga.g)
4960 return FALSE;
4961 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4962 g->assigned_low_gotno = save_assign;
4963
4964 if (bfd_link_pic (info))
4965 {
4966 g->relocs += g->local_gotno - g->assigned_low_gotno;
4967 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4968 + g->next->global_gotno
4969 + g->next->tls_gotno
4970 + htab->reserved_gotno);
4971 }
4972 needed_relocs += g->relocs;
4973 }
4974 needed_relocs += g->relocs;
4975
4976 if (needed_relocs)
4977 mips_elf_allocate_dynamic_relocations (dynobj, info,
4978 needed_relocs);
4979
4980 return TRUE;
4981 }
4982
4983 \f
4984 /* Returns the first relocation of type r_type found, beginning with
4985 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4986
4987 static const Elf_Internal_Rela *
4988 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4989 const Elf_Internal_Rela *relocation,
4990 const Elf_Internal_Rela *relend)
4991 {
4992 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4993
4994 while (relocation < relend)
4995 {
4996 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4997 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4998 return relocation;
4999
5000 ++relocation;
5001 }
5002
5003 /* We didn't find it. */
5004 return NULL;
5005 }
5006
5007 /* Return whether an input relocation is against a local symbol. */
5008
5009 static bfd_boolean
5010 mips_elf_local_relocation_p (bfd *input_bfd,
5011 const Elf_Internal_Rela *relocation,
5012 asection **local_sections)
5013 {
5014 unsigned long r_symndx;
5015 Elf_Internal_Shdr *symtab_hdr;
5016 size_t extsymoff;
5017
5018 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5019 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5020 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5021
5022 if (r_symndx < extsymoff)
5023 return TRUE;
5024 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5025 return TRUE;
5026
5027 return FALSE;
5028 }
5029 \f
5030 /* Sign-extend VALUE, which has the indicated number of BITS. */
5031
5032 bfd_vma
5033 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5034 {
5035 if (value & ((bfd_vma) 1 << (bits - 1)))
5036 /* VALUE is negative. */
5037 value |= ((bfd_vma) - 1) << bits;
5038
5039 return value;
5040 }
5041
5042 /* Return non-zero if the indicated VALUE has overflowed the maximum
5043 range expressible by a signed number with the indicated number of
5044 BITS. */
5045
5046 static bfd_boolean
5047 mips_elf_overflow_p (bfd_vma value, int bits)
5048 {
5049 bfd_signed_vma svalue = (bfd_signed_vma) value;
5050
5051 if (svalue > (1 << (bits - 1)) - 1)
5052 /* The value is too big. */
5053 return TRUE;
5054 else if (svalue < -(1 << (bits - 1)))
5055 /* The value is too small. */
5056 return TRUE;
5057
5058 /* All is well. */
5059 return FALSE;
5060 }
5061
5062 /* Calculate the %high function. */
5063
5064 static bfd_vma
5065 mips_elf_high (bfd_vma value)
5066 {
5067 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5068 }
5069
5070 /* Calculate the %higher function. */
5071
5072 static bfd_vma
5073 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5074 {
5075 #ifdef BFD64
5076 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5077 #else
5078 abort ();
5079 return MINUS_ONE;
5080 #endif
5081 }
5082
5083 /* Calculate the %highest function. */
5084
5085 static bfd_vma
5086 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5087 {
5088 #ifdef BFD64
5089 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5090 #else
5091 abort ();
5092 return MINUS_ONE;
5093 #endif
5094 }
5095 \f
5096 /* Create the .compact_rel section. */
5097
5098 static bfd_boolean
5099 mips_elf_create_compact_rel_section
5100 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5101 {
5102 flagword flags;
5103 register asection *s;
5104
5105 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5106 {
5107 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5108 | SEC_READONLY);
5109
5110 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5111 if (s == NULL
5112 || ! bfd_set_section_alignment (abfd, s,
5113 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5114 return FALSE;
5115
5116 s->size = sizeof (Elf32_External_compact_rel);
5117 }
5118
5119 return TRUE;
5120 }
5121
5122 /* Create the .got section to hold the global offset table. */
5123
5124 static bfd_boolean
5125 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5126 {
5127 flagword flags;
5128 register asection *s;
5129 struct elf_link_hash_entry *h;
5130 struct bfd_link_hash_entry *bh;
5131 struct mips_elf_link_hash_table *htab;
5132
5133 htab = mips_elf_hash_table (info);
5134 BFD_ASSERT (htab != NULL);
5135
5136 /* This function may be called more than once. */
5137 if (htab->root.sgot)
5138 return TRUE;
5139
5140 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5141 | SEC_LINKER_CREATED);
5142
5143 /* We have to use an alignment of 2**4 here because this is hardcoded
5144 in the function stub generation and in the linker script. */
5145 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5146 if (s == NULL
5147 || ! bfd_set_section_alignment (abfd, s, 4))
5148 return FALSE;
5149 htab->root.sgot = s;
5150
5151 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5152 linker script because we don't want to define the symbol if we
5153 are not creating a global offset table. */
5154 bh = NULL;
5155 if (! (_bfd_generic_link_add_one_symbol
5156 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5157 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5158 return FALSE;
5159
5160 h = (struct elf_link_hash_entry *) bh;
5161 h->non_elf = 0;
5162 h->def_regular = 1;
5163 h->type = STT_OBJECT;
5164 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5165 elf_hash_table (info)->hgot = h;
5166
5167 if (bfd_link_pic (info)
5168 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5169 return FALSE;
5170
5171 htab->got_info = mips_elf_create_got_info (abfd);
5172 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5173 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5174
5175 /* We also need a .got.plt section when generating PLTs. */
5176 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5177 SEC_ALLOC | SEC_LOAD
5178 | SEC_HAS_CONTENTS
5179 | SEC_IN_MEMORY
5180 | SEC_LINKER_CREATED);
5181 if (s == NULL)
5182 return FALSE;
5183 htab->root.sgotplt = s;
5184
5185 return TRUE;
5186 }
5187 \f
5188 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5189 __GOTT_INDEX__ symbols. These symbols are only special for
5190 shared objects; they are not used in executables. */
5191
5192 static bfd_boolean
5193 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5194 {
5195 return (mips_elf_hash_table (info)->is_vxworks
5196 && bfd_link_pic (info)
5197 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5198 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5199 }
5200
5201 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5202 require an la25 stub. See also mips_elf_local_pic_function_p,
5203 which determines whether the destination function ever requires a
5204 stub. */
5205
5206 static bfd_boolean
5207 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5208 bfd_boolean target_is_16_bit_code_p)
5209 {
5210 /* We specifically ignore branches and jumps from EF_PIC objects,
5211 where the onus is on the compiler or programmer to perform any
5212 necessary initialization of $25. Sometimes such initialization
5213 is unnecessary; for example, -mno-shared functions do not use
5214 the incoming value of $25, and may therefore be called directly. */
5215 if (PIC_OBJECT_P (input_bfd))
5216 return FALSE;
5217
5218 switch (r_type)
5219 {
5220 case R_MIPS_26:
5221 case R_MIPS_PC16:
5222 case R_MIPS_PC21_S2:
5223 case R_MIPS_PC26_S2:
5224 case R_MICROMIPS_26_S1:
5225 case R_MICROMIPS_PC7_S1:
5226 case R_MICROMIPS_PC10_S1:
5227 case R_MICROMIPS_PC16_S1:
5228 case R_MICROMIPS_PC23_S2:
5229 return TRUE;
5230
5231 case R_MIPS16_26:
5232 return !target_is_16_bit_code_p;
5233
5234 default:
5235 return FALSE;
5236 }
5237 }
5238 \f
5239 /* Calculate the value produced by the RELOCATION (which comes from
5240 the INPUT_BFD). The ADDEND is the addend to use for this
5241 RELOCATION; RELOCATION->R_ADDEND is ignored.
5242
5243 The result of the relocation calculation is stored in VALUEP.
5244 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5245 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5246
5247 This function returns bfd_reloc_continue if the caller need take no
5248 further action regarding this relocation, bfd_reloc_notsupported if
5249 something goes dramatically wrong, bfd_reloc_overflow if an
5250 overflow occurs, and bfd_reloc_ok to indicate success. */
5251
5252 static bfd_reloc_status_type
5253 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5254 asection *input_section,
5255 struct bfd_link_info *info,
5256 const Elf_Internal_Rela *relocation,
5257 bfd_vma addend, reloc_howto_type *howto,
5258 Elf_Internal_Sym *local_syms,
5259 asection **local_sections, bfd_vma *valuep,
5260 const char **namep,
5261 bfd_boolean *cross_mode_jump_p,
5262 bfd_boolean save_addend)
5263 {
5264 /* The eventual value we will return. */
5265 bfd_vma value;
5266 /* The address of the symbol against which the relocation is
5267 occurring. */
5268 bfd_vma symbol = 0;
5269 /* The final GP value to be used for the relocatable, executable, or
5270 shared object file being produced. */
5271 bfd_vma gp;
5272 /* The place (section offset or address) of the storage unit being
5273 relocated. */
5274 bfd_vma p;
5275 /* The value of GP used to create the relocatable object. */
5276 bfd_vma gp0;
5277 /* The offset into the global offset table at which the address of
5278 the relocation entry symbol, adjusted by the addend, resides
5279 during execution. */
5280 bfd_vma g = MINUS_ONE;
5281 /* The section in which the symbol referenced by the relocation is
5282 located. */
5283 asection *sec = NULL;
5284 struct mips_elf_link_hash_entry *h = NULL;
5285 /* TRUE if the symbol referred to by this relocation is a local
5286 symbol. */
5287 bfd_boolean local_p, was_local_p;
5288 /* TRUE if the symbol referred to by this relocation is a section
5289 symbol. */
5290 bfd_boolean section_p = FALSE;
5291 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5292 bfd_boolean gp_disp_p = FALSE;
5293 /* TRUE if the symbol referred to by this relocation is
5294 "__gnu_local_gp". */
5295 bfd_boolean gnu_local_gp_p = FALSE;
5296 Elf_Internal_Shdr *symtab_hdr;
5297 size_t extsymoff;
5298 unsigned long r_symndx;
5299 int r_type;
5300 /* TRUE if overflow occurred during the calculation of the
5301 relocation value. */
5302 bfd_boolean overflowed_p;
5303 /* TRUE if this relocation refers to a MIPS16 function. */
5304 bfd_boolean target_is_16_bit_code_p = FALSE;
5305 bfd_boolean target_is_micromips_code_p = FALSE;
5306 struct mips_elf_link_hash_table *htab;
5307 bfd *dynobj;
5308 bfd_boolean resolved_to_zero;
5309
5310 dynobj = elf_hash_table (info)->dynobj;
5311 htab = mips_elf_hash_table (info);
5312 BFD_ASSERT (htab != NULL);
5313
5314 /* Parse the relocation. */
5315 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5316 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5317 p = (input_section->output_section->vma
5318 + input_section->output_offset
5319 + relocation->r_offset);
5320
5321 /* Assume that there will be no overflow. */
5322 overflowed_p = FALSE;
5323
5324 /* Figure out whether or not the symbol is local, and get the offset
5325 used in the array of hash table entries. */
5326 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5327 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5328 local_sections);
5329 was_local_p = local_p;
5330 if (! elf_bad_symtab (input_bfd))
5331 extsymoff = symtab_hdr->sh_info;
5332 else
5333 {
5334 /* The symbol table does not follow the rule that local symbols
5335 must come before globals. */
5336 extsymoff = 0;
5337 }
5338
5339 /* Figure out the value of the symbol. */
5340 if (local_p)
5341 {
5342 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5343 Elf_Internal_Sym *sym;
5344
5345 sym = local_syms + r_symndx;
5346 sec = local_sections[r_symndx];
5347
5348 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5349
5350 symbol = sec->output_section->vma + sec->output_offset;
5351 if (!section_p || (sec->flags & SEC_MERGE))
5352 symbol += sym->st_value;
5353 if ((sec->flags & SEC_MERGE) && section_p)
5354 {
5355 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5356 addend -= symbol;
5357 addend += sec->output_section->vma + sec->output_offset;
5358 }
5359
5360 /* MIPS16/microMIPS text labels should be treated as odd. */
5361 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5362 ++symbol;
5363
5364 /* Record the name of this symbol, for our caller. */
5365 *namep = bfd_elf_string_from_elf_section (input_bfd,
5366 symtab_hdr->sh_link,
5367 sym->st_name);
5368 if (*namep == NULL || **namep == '\0')
5369 *namep = bfd_section_name (input_bfd, sec);
5370
5371 /* For relocations against a section symbol and ones against no
5372 symbol (absolute relocations) infer the ISA mode from the addend. */
5373 if (section_p || r_symndx == STN_UNDEF)
5374 {
5375 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5376 target_is_micromips_code_p = (addend & 1) && micromips_p;
5377 }
5378 /* For relocations against an absolute symbol infer the ISA mode
5379 from the value of the symbol plus addend. */
5380 else if (bfd_is_abs_section (sec))
5381 {
5382 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5383 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5384 }
5385 /* Otherwise just use the regular symbol annotation available. */
5386 else
5387 {
5388 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5389 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5390 }
5391 }
5392 else
5393 {
5394 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5395
5396 /* For global symbols we look up the symbol in the hash-table. */
5397 h = ((struct mips_elf_link_hash_entry *)
5398 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5399 /* Find the real hash-table entry for this symbol. */
5400 while (h->root.root.type == bfd_link_hash_indirect
5401 || h->root.root.type == bfd_link_hash_warning)
5402 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5403
5404 /* Record the name of this symbol, for our caller. */
5405 *namep = h->root.root.root.string;
5406
5407 /* See if this is the special _gp_disp symbol. Note that such a
5408 symbol must always be a global symbol. */
5409 if (strcmp (*namep, "_gp_disp") == 0
5410 && ! NEWABI_P (input_bfd))
5411 {
5412 /* Relocations against _gp_disp are permitted only with
5413 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5414 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5415 return bfd_reloc_notsupported;
5416
5417 gp_disp_p = TRUE;
5418 }
5419 /* See if this is the special _gp symbol. Note that such a
5420 symbol must always be a global symbol. */
5421 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5422 gnu_local_gp_p = TRUE;
5423
5424
5425 /* If this symbol is defined, calculate its address. Note that
5426 _gp_disp is a magic symbol, always implicitly defined by the
5427 linker, so it's inappropriate to check to see whether or not
5428 its defined. */
5429 else if ((h->root.root.type == bfd_link_hash_defined
5430 || h->root.root.type == bfd_link_hash_defweak)
5431 && h->root.root.u.def.section)
5432 {
5433 sec = h->root.root.u.def.section;
5434 if (sec->output_section)
5435 symbol = (h->root.root.u.def.value
5436 + sec->output_section->vma
5437 + sec->output_offset);
5438 else
5439 symbol = h->root.root.u.def.value;
5440 }
5441 else if (h->root.root.type == bfd_link_hash_undefweak)
5442 /* We allow relocations against undefined weak symbols, giving
5443 it the value zero, so that you can undefined weak functions
5444 and check to see if they exist by looking at their
5445 addresses. */
5446 symbol = 0;
5447 else if (info->unresolved_syms_in_objects == RM_IGNORE
5448 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5449 symbol = 0;
5450 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5451 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5452 {
5453 /* If this is a dynamic link, we should have created a
5454 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5455 in _bfd_mips_elf_create_dynamic_sections.
5456 Otherwise, we should define the symbol with a value of 0.
5457 FIXME: It should probably get into the symbol table
5458 somehow as well. */
5459 BFD_ASSERT (! bfd_link_pic (info));
5460 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5461 symbol = 0;
5462 }
5463 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5464 {
5465 /* This is an optional symbol - an Irix specific extension to the
5466 ELF spec. Ignore it for now.
5467 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5468 than simply ignoring them, but we do not handle this for now.
5469 For information see the "64-bit ELF Object File Specification"
5470 which is available from here:
5471 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5472 symbol = 0;
5473 }
5474 else
5475 {
5476 bfd_boolean reject_undefined
5477 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5478 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5479
5480 (*info->callbacks->undefined_symbol)
5481 (info, h->root.root.root.string, input_bfd,
5482 input_section, relocation->r_offset, reject_undefined);
5483
5484 if (reject_undefined)
5485 return bfd_reloc_undefined;
5486
5487 symbol = 0;
5488 }
5489
5490 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5491 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5492 }
5493
5494 /* If this is a reference to a 16-bit function with a stub, we need
5495 to redirect the relocation to the stub unless:
5496
5497 (a) the relocation is for a MIPS16 JAL;
5498
5499 (b) the relocation is for a MIPS16 PIC call, and there are no
5500 non-MIPS16 uses of the GOT slot; or
5501
5502 (c) the section allows direct references to MIPS16 functions. */
5503 if (r_type != R_MIPS16_26
5504 && !bfd_link_relocatable (info)
5505 && ((h != NULL
5506 && h->fn_stub != NULL
5507 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5508 || (local_p
5509 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5510 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5511 && !section_allows_mips16_refs_p (input_section))
5512 {
5513 /* This is a 32- or 64-bit call to a 16-bit function. We should
5514 have already noticed that we were going to need the
5515 stub. */
5516 if (local_p)
5517 {
5518 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5519 value = 0;
5520 }
5521 else
5522 {
5523 BFD_ASSERT (h->need_fn_stub);
5524 if (h->la25_stub)
5525 {
5526 /* If a LA25 header for the stub itself exists, point to the
5527 prepended LUI/ADDIU sequence. */
5528 sec = h->la25_stub->stub_section;
5529 value = h->la25_stub->offset;
5530 }
5531 else
5532 {
5533 sec = h->fn_stub;
5534 value = 0;
5535 }
5536 }
5537
5538 symbol = sec->output_section->vma + sec->output_offset + value;
5539 /* The target is 16-bit, but the stub isn't. */
5540 target_is_16_bit_code_p = FALSE;
5541 }
5542 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5543 to a standard MIPS function, we need to redirect the call to the stub.
5544 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5545 indirect calls should use an indirect stub instead. */
5546 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5547 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5548 || (local_p
5549 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5550 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5551 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5552 {
5553 if (local_p)
5554 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5555 else
5556 {
5557 /* If both call_stub and call_fp_stub are defined, we can figure
5558 out which one to use by checking which one appears in the input
5559 file. */
5560 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5561 {
5562 asection *o;
5563
5564 sec = NULL;
5565 for (o = input_bfd->sections; o != NULL; o = o->next)
5566 {
5567 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5568 {
5569 sec = h->call_fp_stub;
5570 break;
5571 }
5572 }
5573 if (sec == NULL)
5574 sec = h->call_stub;
5575 }
5576 else if (h->call_stub != NULL)
5577 sec = h->call_stub;
5578 else
5579 sec = h->call_fp_stub;
5580 }
5581
5582 BFD_ASSERT (sec->size > 0);
5583 symbol = sec->output_section->vma + sec->output_offset;
5584 }
5585 /* If this is a direct call to a PIC function, redirect to the
5586 non-PIC stub. */
5587 else if (h != NULL && h->la25_stub
5588 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5589 target_is_16_bit_code_p))
5590 {
5591 symbol = (h->la25_stub->stub_section->output_section->vma
5592 + h->la25_stub->stub_section->output_offset
5593 + h->la25_stub->offset);
5594 if (ELF_ST_IS_MICROMIPS (h->root.other))
5595 symbol |= 1;
5596 }
5597 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5598 entry is used if a standard PLT entry has also been made. In this
5599 case the symbol will have been set by mips_elf_set_plt_sym_value
5600 to point to the standard PLT entry, so redirect to the compressed
5601 one. */
5602 else if ((mips16_branch_reloc_p (r_type)
5603 || micromips_branch_reloc_p (r_type))
5604 && !bfd_link_relocatable (info)
5605 && h != NULL
5606 && h->use_plt_entry
5607 && h->root.plt.plist->comp_offset != MINUS_ONE
5608 && h->root.plt.plist->mips_offset != MINUS_ONE)
5609 {
5610 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5611
5612 sec = htab->root.splt;
5613 symbol = (sec->output_section->vma
5614 + sec->output_offset
5615 + htab->plt_header_size
5616 + htab->plt_mips_offset
5617 + h->root.plt.plist->comp_offset
5618 + 1);
5619
5620 target_is_16_bit_code_p = !micromips_p;
5621 target_is_micromips_code_p = micromips_p;
5622 }
5623
5624 /* Make sure MIPS16 and microMIPS are not used together. */
5625 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5626 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5627 {
5628 _bfd_error_handler
5629 (_("MIPS16 and microMIPS functions cannot call each other"));
5630 return bfd_reloc_notsupported;
5631 }
5632
5633 /* Calls from 16-bit code to 32-bit code and vice versa require the
5634 mode change. However, we can ignore calls to undefined weak symbols,
5635 which should never be executed at runtime. This exception is important
5636 because the assembly writer may have "known" that any definition of the
5637 symbol would be 16-bit code, and that direct jumps were therefore
5638 acceptable. */
5639 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5640 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5641 && ((mips16_branch_reloc_p (r_type)
5642 && !target_is_16_bit_code_p)
5643 || (micromips_branch_reloc_p (r_type)
5644 && !target_is_micromips_code_p)
5645 || ((branch_reloc_p (r_type)
5646 || r_type == R_MIPS_JALR)
5647 && (target_is_16_bit_code_p
5648 || target_is_micromips_code_p))));
5649
5650 local_p = (h == NULL || mips_use_local_got_p (info, h));
5651
5652 gp0 = _bfd_get_gp_value (input_bfd);
5653 gp = _bfd_get_gp_value (abfd);
5654 if (htab->got_info)
5655 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5656
5657 if (gnu_local_gp_p)
5658 symbol = gp;
5659
5660 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5661 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5662 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5663 if (got_page_reloc_p (r_type) && !local_p)
5664 {
5665 r_type = (micromips_reloc_p (r_type)
5666 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5667 addend = 0;
5668 }
5669
5670 resolved_to_zero = (h != NULL
5671 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5672 &h->root));
5673
5674 /* If we haven't already determined the GOT offset, and we're going
5675 to need it, get it now. */
5676 switch (r_type)
5677 {
5678 case R_MIPS16_CALL16:
5679 case R_MIPS16_GOT16:
5680 case R_MIPS_CALL16:
5681 case R_MIPS_GOT16:
5682 case R_MIPS_GOT_DISP:
5683 case R_MIPS_GOT_HI16:
5684 case R_MIPS_CALL_HI16:
5685 case R_MIPS_GOT_LO16:
5686 case R_MIPS_CALL_LO16:
5687 case R_MICROMIPS_CALL16:
5688 case R_MICROMIPS_GOT16:
5689 case R_MICROMIPS_GOT_DISP:
5690 case R_MICROMIPS_GOT_HI16:
5691 case R_MICROMIPS_CALL_HI16:
5692 case R_MICROMIPS_GOT_LO16:
5693 case R_MICROMIPS_CALL_LO16:
5694 case R_MIPS_TLS_GD:
5695 case R_MIPS_TLS_GOTTPREL:
5696 case R_MIPS_TLS_LDM:
5697 case R_MIPS16_TLS_GD:
5698 case R_MIPS16_TLS_GOTTPREL:
5699 case R_MIPS16_TLS_LDM:
5700 case R_MICROMIPS_TLS_GD:
5701 case R_MICROMIPS_TLS_GOTTPREL:
5702 case R_MICROMIPS_TLS_LDM:
5703 /* Find the index into the GOT where this value is located. */
5704 if (tls_ldm_reloc_p (r_type))
5705 {
5706 g = mips_elf_local_got_index (abfd, input_bfd, info,
5707 0, 0, NULL, r_type);
5708 if (g == MINUS_ONE)
5709 return bfd_reloc_outofrange;
5710 }
5711 else if (!local_p)
5712 {
5713 /* On VxWorks, CALL relocations should refer to the .got.plt
5714 entry, which is initialized to point at the PLT stub. */
5715 if (htab->is_vxworks
5716 && (call_hi16_reloc_p (r_type)
5717 || call_lo16_reloc_p (r_type)
5718 || call16_reloc_p (r_type)))
5719 {
5720 BFD_ASSERT (addend == 0);
5721 BFD_ASSERT (h->root.needs_plt);
5722 g = mips_elf_gotplt_index (info, &h->root);
5723 }
5724 else
5725 {
5726 BFD_ASSERT (addend == 0);
5727 g = mips_elf_global_got_index (abfd, info, input_bfd,
5728 &h->root, r_type);
5729 if (!TLS_RELOC_P (r_type)
5730 && !elf_hash_table (info)->dynamic_sections_created)
5731 /* This is a static link. We must initialize the GOT entry. */
5732 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5733 }
5734 }
5735 else if (!htab->is_vxworks
5736 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5737 /* The calculation below does not involve "g". */
5738 break;
5739 else
5740 {
5741 g = mips_elf_local_got_index (abfd, input_bfd, info,
5742 symbol + addend, r_symndx, h, r_type);
5743 if (g == MINUS_ONE)
5744 return bfd_reloc_outofrange;
5745 }
5746
5747 /* Convert GOT indices to actual offsets. */
5748 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5749 break;
5750 }
5751
5752 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5753 symbols are resolved by the loader. Add them to .rela.dyn. */
5754 if (h != NULL && is_gott_symbol (info, &h->root))
5755 {
5756 Elf_Internal_Rela outrel;
5757 bfd_byte *loc;
5758 asection *s;
5759
5760 s = mips_elf_rel_dyn_section (info, FALSE);
5761 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5762
5763 outrel.r_offset = (input_section->output_section->vma
5764 + input_section->output_offset
5765 + relocation->r_offset);
5766 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5767 outrel.r_addend = addend;
5768 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5769
5770 /* If we've written this relocation for a readonly section,
5771 we need to set DF_TEXTREL again, so that we do not delete the
5772 DT_TEXTREL tag. */
5773 if (MIPS_ELF_READONLY_SECTION (input_section))
5774 info->flags |= DF_TEXTREL;
5775
5776 *valuep = 0;
5777 return bfd_reloc_ok;
5778 }
5779
5780 /* Figure out what kind of relocation is being performed. */
5781 switch (r_type)
5782 {
5783 case R_MIPS_NONE:
5784 return bfd_reloc_continue;
5785
5786 case R_MIPS_16:
5787 if (howto->partial_inplace)
5788 addend = _bfd_mips_elf_sign_extend (addend, 16);
5789 value = symbol + addend;
5790 overflowed_p = mips_elf_overflow_p (value, 16);
5791 break;
5792
5793 case R_MIPS_32:
5794 case R_MIPS_REL32:
5795 case R_MIPS_64:
5796 if ((bfd_link_pic (info)
5797 || (htab->root.dynamic_sections_created
5798 && h != NULL
5799 && h->root.def_dynamic
5800 && !h->root.def_regular
5801 && !h->has_static_relocs))
5802 && r_symndx != STN_UNDEF
5803 && (h == NULL
5804 || h->root.root.type != bfd_link_hash_undefweak
5805 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5806 && !resolved_to_zero))
5807 && (input_section->flags & SEC_ALLOC) != 0)
5808 {
5809 /* If we're creating a shared library, then we can't know
5810 where the symbol will end up. So, we create a relocation
5811 record in the output, and leave the job up to the dynamic
5812 linker. We must do the same for executable references to
5813 shared library symbols, unless we've decided to use copy
5814 relocs or PLTs instead. */
5815 value = addend;
5816 if (!mips_elf_create_dynamic_relocation (abfd,
5817 info,
5818 relocation,
5819 h,
5820 sec,
5821 symbol,
5822 &value,
5823 input_section))
5824 return bfd_reloc_undefined;
5825 }
5826 else
5827 {
5828 if (r_type != R_MIPS_REL32)
5829 value = symbol + addend;
5830 else
5831 value = addend;
5832 }
5833 value &= howto->dst_mask;
5834 break;
5835
5836 case R_MIPS_PC32:
5837 value = symbol + addend - p;
5838 value &= howto->dst_mask;
5839 break;
5840
5841 case R_MIPS16_26:
5842 /* The calculation for R_MIPS16_26 is just the same as for an
5843 R_MIPS_26. It's only the storage of the relocated field into
5844 the output file that's different. That's handled in
5845 mips_elf_perform_relocation. So, we just fall through to the
5846 R_MIPS_26 case here. */
5847 case R_MIPS_26:
5848 case R_MICROMIPS_26_S1:
5849 {
5850 unsigned int shift;
5851
5852 /* Shift is 2, unusually, for microMIPS JALX. */
5853 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5854
5855 if (howto->partial_inplace && !section_p)
5856 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5857 else
5858 value = addend;
5859 value += symbol;
5860
5861 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5862 be the correct ISA mode selector except for weak undefined
5863 symbols. */
5864 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5865 && (*cross_mode_jump_p
5866 ? (value & 3) != (r_type == R_MIPS_26)
5867 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5868 return bfd_reloc_outofrange;
5869
5870 value >>= shift;
5871 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5872 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5873 value &= howto->dst_mask;
5874 }
5875 break;
5876
5877 case R_MIPS_TLS_DTPREL_HI16:
5878 case R_MIPS16_TLS_DTPREL_HI16:
5879 case R_MICROMIPS_TLS_DTPREL_HI16:
5880 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5881 & howto->dst_mask);
5882 break;
5883
5884 case R_MIPS_TLS_DTPREL_LO16:
5885 case R_MIPS_TLS_DTPREL32:
5886 case R_MIPS_TLS_DTPREL64:
5887 case R_MIPS16_TLS_DTPREL_LO16:
5888 case R_MICROMIPS_TLS_DTPREL_LO16:
5889 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5890 break;
5891
5892 case R_MIPS_TLS_TPREL_HI16:
5893 case R_MIPS16_TLS_TPREL_HI16:
5894 case R_MICROMIPS_TLS_TPREL_HI16:
5895 value = (mips_elf_high (addend + symbol - tprel_base (info))
5896 & howto->dst_mask);
5897 break;
5898
5899 case R_MIPS_TLS_TPREL_LO16:
5900 case R_MIPS_TLS_TPREL32:
5901 case R_MIPS_TLS_TPREL64:
5902 case R_MIPS16_TLS_TPREL_LO16:
5903 case R_MICROMIPS_TLS_TPREL_LO16:
5904 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5905 break;
5906
5907 case R_MIPS_HI16:
5908 case R_MIPS16_HI16:
5909 case R_MICROMIPS_HI16:
5910 if (!gp_disp_p)
5911 {
5912 value = mips_elf_high (addend + symbol);
5913 value &= howto->dst_mask;
5914 }
5915 else
5916 {
5917 /* For MIPS16 ABI code we generate this sequence
5918 0: li $v0,%hi(_gp_disp)
5919 4: addiupc $v1,%lo(_gp_disp)
5920 8: sll $v0,16
5921 12: addu $v0,$v1
5922 14: move $gp,$v0
5923 So the offsets of hi and lo relocs are the same, but the
5924 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5925 ADDIUPC clears the low two bits of the instruction address,
5926 so the base is ($t9 + 4) & ~3. */
5927 if (r_type == R_MIPS16_HI16)
5928 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5929 /* The microMIPS .cpload sequence uses the same assembly
5930 instructions as the traditional psABI version, but the
5931 incoming $t9 has the low bit set. */
5932 else if (r_type == R_MICROMIPS_HI16)
5933 value = mips_elf_high (addend + gp - p - 1);
5934 else
5935 value = mips_elf_high (addend + gp - p);
5936 }
5937 break;
5938
5939 case R_MIPS_LO16:
5940 case R_MIPS16_LO16:
5941 case R_MICROMIPS_LO16:
5942 case R_MICROMIPS_HI0_LO16:
5943 if (!gp_disp_p)
5944 value = (symbol + addend) & howto->dst_mask;
5945 else
5946 {
5947 /* See the comment for R_MIPS16_HI16 above for the reason
5948 for this conditional. */
5949 if (r_type == R_MIPS16_LO16)
5950 value = addend + gp - (p & ~(bfd_vma) 0x3);
5951 else if (r_type == R_MICROMIPS_LO16
5952 || r_type == R_MICROMIPS_HI0_LO16)
5953 value = addend + gp - p + 3;
5954 else
5955 value = addend + gp - p + 4;
5956 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5957 for overflow. But, on, say, IRIX5, relocations against
5958 _gp_disp are normally generated from the .cpload
5959 pseudo-op. It generates code that normally looks like
5960 this:
5961
5962 lui $gp,%hi(_gp_disp)
5963 addiu $gp,$gp,%lo(_gp_disp)
5964 addu $gp,$gp,$t9
5965
5966 Here $t9 holds the address of the function being called,
5967 as required by the MIPS ELF ABI. The R_MIPS_LO16
5968 relocation can easily overflow in this situation, but the
5969 R_MIPS_HI16 relocation will handle the overflow.
5970 Therefore, we consider this a bug in the MIPS ABI, and do
5971 not check for overflow here. */
5972 }
5973 break;
5974
5975 case R_MIPS_LITERAL:
5976 case R_MICROMIPS_LITERAL:
5977 /* Because we don't merge literal sections, we can handle this
5978 just like R_MIPS_GPREL16. In the long run, we should merge
5979 shared literals, and then we will need to additional work
5980 here. */
5981
5982 /* Fall through. */
5983
5984 case R_MIPS16_GPREL:
5985 /* The R_MIPS16_GPREL performs the same calculation as
5986 R_MIPS_GPREL16, but stores the relocated bits in a different
5987 order. We don't need to do anything special here; the
5988 differences are handled in mips_elf_perform_relocation. */
5989 case R_MIPS_GPREL16:
5990 case R_MICROMIPS_GPREL7_S2:
5991 case R_MICROMIPS_GPREL16:
5992 /* Only sign-extend the addend if it was extracted from the
5993 instruction. If the addend was separate, leave it alone,
5994 otherwise we may lose significant bits. */
5995 if (howto->partial_inplace)
5996 addend = _bfd_mips_elf_sign_extend (addend, 16);
5997 value = symbol + addend - gp;
5998 /* If the symbol was local, any earlier relocatable links will
5999 have adjusted its addend with the gp offset, so compensate
6000 for that now. Don't do it for symbols forced local in this
6001 link, though, since they won't have had the gp offset applied
6002 to them before. */
6003 if (was_local_p)
6004 value += gp0;
6005 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6006 overflowed_p = mips_elf_overflow_p (value, 16);
6007 break;
6008
6009 case R_MIPS16_GOT16:
6010 case R_MIPS16_CALL16:
6011 case R_MIPS_GOT16:
6012 case R_MIPS_CALL16:
6013 case R_MICROMIPS_GOT16:
6014 case R_MICROMIPS_CALL16:
6015 /* VxWorks does not have separate local and global semantics for
6016 R_MIPS*_GOT16; every relocation evaluates to "G". */
6017 if (!htab->is_vxworks && local_p)
6018 {
6019 value = mips_elf_got16_entry (abfd, input_bfd, info,
6020 symbol + addend, !was_local_p);
6021 if (value == MINUS_ONE)
6022 return bfd_reloc_outofrange;
6023 value
6024 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6025 overflowed_p = mips_elf_overflow_p (value, 16);
6026 break;
6027 }
6028
6029 /* Fall through. */
6030
6031 case R_MIPS_TLS_GD:
6032 case R_MIPS_TLS_GOTTPREL:
6033 case R_MIPS_TLS_LDM:
6034 case R_MIPS_GOT_DISP:
6035 case R_MIPS16_TLS_GD:
6036 case R_MIPS16_TLS_GOTTPREL:
6037 case R_MIPS16_TLS_LDM:
6038 case R_MICROMIPS_TLS_GD:
6039 case R_MICROMIPS_TLS_GOTTPREL:
6040 case R_MICROMIPS_TLS_LDM:
6041 case R_MICROMIPS_GOT_DISP:
6042 value = g;
6043 overflowed_p = mips_elf_overflow_p (value, 16);
6044 break;
6045
6046 case R_MIPS_GPREL32:
6047 value = (addend + symbol + gp0 - gp);
6048 if (!save_addend)
6049 value &= howto->dst_mask;
6050 break;
6051
6052 case R_MIPS_PC16:
6053 case R_MIPS_GNU_REL16_S2:
6054 if (howto->partial_inplace)
6055 addend = _bfd_mips_elf_sign_extend (addend, 18);
6056
6057 /* No need to exclude weak undefined symbols here as they resolve
6058 to 0 and never set `*cross_mode_jump_p', so this alignment check
6059 will never trigger for them. */
6060 if (*cross_mode_jump_p
6061 ? ((symbol + addend) & 3) != 1
6062 : ((symbol + addend) & 3) != 0)
6063 return bfd_reloc_outofrange;
6064
6065 value = symbol + addend - p;
6066 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6067 overflowed_p = mips_elf_overflow_p (value, 18);
6068 value >>= howto->rightshift;
6069 value &= howto->dst_mask;
6070 break;
6071
6072 case R_MIPS16_PC16_S1:
6073 if (howto->partial_inplace)
6074 addend = _bfd_mips_elf_sign_extend (addend, 17);
6075
6076 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6077 && (*cross_mode_jump_p
6078 ? ((symbol + addend) & 3) != 0
6079 : ((symbol + addend) & 1) == 0))
6080 return bfd_reloc_outofrange;
6081
6082 value = symbol + addend - p;
6083 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6084 overflowed_p = mips_elf_overflow_p (value, 17);
6085 value >>= howto->rightshift;
6086 value &= howto->dst_mask;
6087 break;
6088
6089 case R_MIPS_PC21_S2:
6090 if (howto->partial_inplace)
6091 addend = _bfd_mips_elf_sign_extend (addend, 23);
6092
6093 if ((symbol + addend) & 3)
6094 return bfd_reloc_outofrange;
6095
6096 value = symbol + addend - p;
6097 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6098 overflowed_p = mips_elf_overflow_p (value, 23);
6099 value >>= howto->rightshift;
6100 value &= howto->dst_mask;
6101 break;
6102
6103 case R_MIPS_PC26_S2:
6104 if (howto->partial_inplace)
6105 addend = _bfd_mips_elf_sign_extend (addend, 28);
6106
6107 if ((symbol + addend) & 3)
6108 return bfd_reloc_outofrange;
6109
6110 value = symbol + addend - p;
6111 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6112 overflowed_p = mips_elf_overflow_p (value, 28);
6113 value >>= howto->rightshift;
6114 value &= howto->dst_mask;
6115 break;
6116
6117 case R_MIPS_PC18_S3:
6118 if (howto->partial_inplace)
6119 addend = _bfd_mips_elf_sign_extend (addend, 21);
6120
6121 if ((symbol + addend) & 7)
6122 return bfd_reloc_outofrange;
6123
6124 value = symbol + addend - ((p | 7) ^ 7);
6125 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6126 overflowed_p = mips_elf_overflow_p (value, 21);
6127 value >>= howto->rightshift;
6128 value &= howto->dst_mask;
6129 break;
6130
6131 case R_MIPS_PC19_S2:
6132 if (howto->partial_inplace)
6133 addend = _bfd_mips_elf_sign_extend (addend, 21);
6134
6135 if ((symbol + addend) & 3)
6136 return bfd_reloc_outofrange;
6137
6138 value = symbol + addend - p;
6139 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6140 overflowed_p = mips_elf_overflow_p (value, 21);
6141 value >>= howto->rightshift;
6142 value &= howto->dst_mask;
6143 break;
6144
6145 case R_MIPS_PCHI16:
6146 value = mips_elf_high (symbol + addend - p);
6147 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6148 overflowed_p = mips_elf_overflow_p (value, 16);
6149 value &= howto->dst_mask;
6150 break;
6151
6152 case R_MIPS_PCLO16:
6153 if (howto->partial_inplace)
6154 addend = _bfd_mips_elf_sign_extend (addend, 16);
6155 value = symbol + addend - p;
6156 value &= howto->dst_mask;
6157 break;
6158
6159 case R_MICROMIPS_PC7_S1:
6160 if (howto->partial_inplace)
6161 addend = _bfd_mips_elf_sign_extend (addend, 8);
6162
6163 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6164 && (*cross_mode_jump_p
6165 ? ((symbol + addend + 2) & 3) != 0
6166 : ((symbol + addend + 2) & 1) == 0))
6167 return bfd_reloc_outofrange;
6168
6169 value = symbol + addend - p;
6170 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6171 overflowed_p = mips_elf_overflow_p (value, 8);
6172 value >>= howto->rightshift;
6173 value &= howto->dst_mask;
6174 break;
6175
6176 case R_MICROMIPS_PC10_S1:
6177 if (howto->partial_inplace)
6178 addend = _bfd_mips_elf_sign_extend (addend, 11);
6179
6180 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6181 && (*cross_mode_jump_p
6182 ? ((symbol + addend + 2) & 3) != 0
6183 : ((symbol + addend + 2) & 1) == 0))
6184 return bfd_reloc_outofrange;
6185
6186 value = symbol + addend - p;
6187 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6188 overflowed_p = mips_elf_overflow_p (value, 11);
6189 value >>= howto->rightshift;
6190 value &= howto->dst_mask;
6191 break;
6192
6193 case R_MICROMIPS_PC16_S1:
6194 if (howto->partial_inplace)
6195 addend = _bfd_mips_elf_sign_extend (addend, 17);
6196
6197 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6198 && (*cross_mode_jump_p
6199 ? ((symbol + addend) & 3) != 0
6200 : ((symbol + addend) & 1) == 0))
6201 return bfd_reloc_outofrange;
6202
6203 value = symbol + addend - p;
6204 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6205 overflowed_p = mips_elf_overflow_p (value, 17);
6206 value >>= howto->rightshift;
6207 value &= howto->dst_mask;
6208 break;
6209
6210 case R_MICROMIPS_PC23_S2:
6211 if (howto->partial_inplace)
6212 addend = _bfd_mips_elf_sign_extend (addend, 25);
6213 value = symbol + addend - ((p | 3) ^ 3);
6214 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6215 overflowed_p = mips_elf_overflow_p (value, 25);
6216 value >>= howto->rightshift;
6217 value &= howto->dst_mask;
6218 break;
6219
6220 case R_MIPS_GOT_HI16:
6221 case R_MIPS_CALL_HI16:
6222 case R_MICROMIPS_GOT_HI16:
6223 case R_MICROMIPS_CALL_HI16:
6224 /* We're allowed to handle these two relocations identically.
6225 The dynamic linker is allowed to handle the CALL relocations
6226 differently by creating a lazy evaluation stub. */
6227 value = g;
6228 value = mips_elf_high (value);
6229 value &= howto->dst_mask;
6230 break;
6231
6232 case R_MIPS_GOT_LO16:
6233 case R_MIPS_CALL_LO16:
6234 case R_MICROMIPS_GOT_LO16:
6235 case R_MICROMIPS_CALL_LO16:
6236 value = g & howto->dst_mask;
6237 break;
6238
6239 case R_MIPS_GOT_PAGE:
6240 case R_MICROMIPS_GOT_PAGE:
6241 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6242 if (value == MINUS_ONE)
6243 return bfd_reloc_outofrange;
6244 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6245 overflowed_p = mips_elf_overflow_p (value, 16);
6246 break;
6247
6248 case R_MIPS_GOT_OFST:
6249 case R_MICROMIPS_GOT_OFST:
6250 if (local_p)
6251 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6252 else
6253 value = addend;
6254 overflowed_p = mips_elf_overflow_p (value, 16);
6255 break;
6256
6257 case R_MIPS_SUB:
6258 case R_MICROMIPS_SUB:
6259 value = symbol - addend;
6260 value &= howto->dst_mask;
6261 break;
6262
6263 case R_MIPS_HIGHER:
6264 case R_MICROMIPS_HIGHER:
6265 value = mips_elf_higher (addend + symbol);
6266 value &= howto->dst_mask;
6267 break;
6268
6269 case R_MIPS_HIGHEST:
6270 case R_MICROMIPS_HIGHEST:
6271 value = mips_elf_highest (addend + symbol);
6272 value &= howto->dst_mask;
6273 break;
6274
6275 case R_MIPS_SCN_DISP:
6276 case R_MICROMIPS_SCN_DISP:
6277 value = symbol + addend - sec->output_offset;
6278 value &= howto->dst_mask;
6279 break;
6280
6281 case R_MIPS_JALR:
6282 case R_MICROMIPS_JALR:
6283 /* This relocation is only a hint. In some cases, we optimize
6284 it into a bal instruction. But we don't try to optimize
6285 when the symbol does not resolve locally. */
6286 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6287 return bfd_reloc_continue;
6288 /* We can't optimize cross-mode jumps either. */
6289 if (*cross_mode_jump_p)
6290 return bfd_reloc_continue;
6291 value = symbol + addend;
6292 /* Neither we can non-instruction-aligned targets. */
6293 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6294 return bfd_reloc_continue;
6295 break;
6296
6297 case R_MIPS_PJUMP:
6298 case R_MIPS_GNU_VTINHERIT:
6299 case R_MIPS_GNU_VTENTRY:
6300 /* We don't do anything with these at present. */
6301 return bfd_reloc_continue;
6302
6303 default:
6304 /* An unrecognized relocation type. */
6305 return bfd_reloc_notsupported;
6306 }
6307
6308 /* Store the VALUE for our caller. */
6309 *valuep = value;
6310 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6311 }
6312
6313 /* Obtain the field relocated by RELOCATION. */
6314
6315 static bfd_vma
6316 mips_elf_obtain_contents (reloc_howto_type *howto,
6317 const Elf_Internal_Rela *relocation,
6318 bfd *input_bfd, bfd_byte *contents)
6319 {
6320 bfd_vma x = 0;
6321 bfd_byte *location = contents + relocation->r_offset;
6322 unsigned int size = bfd_get_reloc_size (howto);
6323
6324 /* Obtain the bytes. */
6325 if (size != 0)
6326 x = bfd_get (8 * size, input_bfd, location);
6327
6328 return x;
6329 }
6330
6331 /* It has been determined that the result of the RELOCATION is the
6332 VALUE. Use HOWTO to place VALUE into the output file at the
6333 appropriate position. The SECTION is the section to which the
6334 relocation applies.
6335 CROSS_MODE_JUMP_P is true if the relocation field
6336 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6337
6338 Returns FALSE if anything goes wrong. */
6339
6340 static bfd_boolean
6341 mips_elf_perform_relocation (struct bfd_link_info *info,
6342 reloc_howto_type *howto,
6343 const Elf_Internal_Rela *relocation,
6344 bfd_vma value, bfd *input_bfd,
6345 asection *input_section, bfd_byte *contents,
6346 bfd_boolean cross_mode_jump_p)
6347 {
6348 bfd_vma x;
6349 bfd_byte *location;
6350 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6351 unsigned int size;
6352
6353 /* Figure out where the relocation is occurring. */
6354 location = contents + relocation->r_offset;
6355
6356 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6357
6358 /* Obtain the current value. */
6359 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6360
6361 /* Clear the field we are setting. */
6362 x &= ~howto->dst_mask;
6363
6364 /* Set the field. */
6365 x |= (value & howto->dst_mask);
6366
6367 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6368 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6369 {
6370 bfd_vma opcode = x >> 26;
6371
6372 if (r_type == R_MIPS16_26 ? opcode == 0x7
6373 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6374 : opcode == 0x1d)
6375 {
6376 info->callbacks->einfo
6377 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6378 input_bfd, input_section, relocation->r_offset);
6379 return TRUE;
6380 }
6381 }
6382 if (cross_mode_jump_p && jal_reloc_p (r_type))
6383 {
6384 bfd_boolean ok;
6385 bfd_vma opcode = x >> 26;
6386 bfd_vma jalx_opcode;
6387
6388 /* Check to see if the opcode is already JAL or JALX. */
6389 if (r_type == R_MIPS16_26)
6390 {
6391 ok = ((opcode == 0x6) || (opcode == 0x7));
6392 jalx_opcode = 0x7;
6393 }
6394 else if (r_type == R_MICROMIPS_26_S1)
6395 {
6396 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6397 jalx_opcode = 0x3c;
6398 }
6399 else
6400 {
6401 ok = ((opcode == 0x3) || (opcode == 0x1d));
6402 jalx_opcode = 0x1d;
6403 }
6404
6405 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6406 convert J or JALS to JALX. */
6407 if (!ok)
6408 {
6409 info->callbacks->einfo
6410 (_("%X%H: unsupported jump between ISA modes; "
6411 "consider recompiling with interlinking enabled\n"),
6412 input_bfd, input_section, relocation->r_offset);
6413 return TRUE;
6414 }
6415
6416 /* Make this the JALX opcode. */
6417 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6418 }
6419 else if (cross_mode_jump_p && b_reloc_p (r_type))
6420 {
6421 bfd_boolean ok = FALSE;
6422 bfd_vma opcode = x >> 16;
6423 bfd_vma jalx_opcode = 0;
6424 bfd_vma sign_bit = 0;
6425 bfd_vma addr;
6426 bfd_vma dest;
6427
6428 if (r_type == R_MICROMIPS_PC16_S1)
6429 {
6430 ok = opcode == 0x4060;
6431 jalx_opcode = 0x3c;
6432 sign_bit = 0x10000;
6433 value <<= 1;
6434 }
6435 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6436 {
6437 ok = opcode == 0x411;
6438 jalx_opcode = 0x1d;
6439 sign_bit = 0x20000;
6440 value <<= 2;
6441 }
6442
6443 if (ok && !bfd_link_pic (info))
6444 {
6445 addr = (input_section->output_section->vma
6446 + input_section->output_offset
6447 + relocation->r_offset
6448 + 4);
6449 dest = (addr
6450 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6451
6452 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6453 {
6454 info->callbacks->einfo
6455 (_("%X%H: cannot convert branch between ISA modes "
6456 "to JALX: relocation out of range\n"),
6457 input_bfd, input_section, relocation->r_offset);
6458 return TRUE;
6459 }
6460
6461 /* Make this the JALX opcode. */
6462 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6463 }
6464 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6465 {
6466 info->callbacks->einfo
6467 (_("%X%H: unsupported branch between ISA modes\n"),
6468 input_bfd, input_section, relocation->r_offset);
6469 return TRUE;
6470 }
6471 }
6472
6473 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6474 range. */
6475 if (!bfd_link_relocatable (info)
6476 && !cross_mode_jump_p
6477 && ((JAL_TO_BAL_P (input_bfd)
6478 && r_type == R_MIPS_26
6479 && (x >> 26) == 0x3) /* jal addr */
6480 || (JALR_TO_BAL_P (input_bfd)
6481 && r_type == R_MIPS_JALR
6482 && x == 0x0320f809) /* jalr t9 */
6483 || (JR_TO_B_P (input_bfd)
6484 && r_type == R_MIPS_JALR
6485 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6486 {
6487 bfd_vma addr;
6488 bfd_vma dest;
6489 bfd_signed_vma off;
6490
6491 addr = (input_section->output_section->vma
6492 + input_section->output_offset
6493 + relocation->r_offset
6494 + 4);
6495 if (r_type == R_MIPS_26)
6496 dest = (value << 2) | ((addr >> 28) << 28);
6497 else
6498 dest = value;
6499 off = dest - addr;
6500 if (off <= 0x1ffff && off >= -0x20000)
6501 {
6502 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6503 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6504 else
6505 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6506 }
6507 }
6508
6509 /* Put the value into the output. */
6510 size = bfd_get_reloc_size (howto);
6511 if (size != 0)
6512 bfd_put (8 * size, input_bfd, x, location);
6513
6514 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6515 location);
6516
6517 return TRUE;
6518 }
6519 \f
6520 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6521 is the original relocation, which is now being transformed into a
6522 dynamic relocation. The ADDENDP is adjusted if necessary; the
6523 caller should store the result in place of the original addend. */
6524
6525 static bfd_boolean
6526 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6527 struct bfd_link_info *info,
6528 const Elf_Internal_Rela *rel,
6529 struct mips_elf_link_hash_entry *h,
6530 asection *sec, bfd_vma symbol,
6531 bfd_vma *addendp, asection *input_section)
6532 {
6533 Elf_Internal_Rela outrel[3];
6534 asection *sreloc;
6535 bfd *dynobj;
6536 int r_type;
6537 long indx;
6538 bfd_boolean defined_p;
6539 struct mips_elf_link_hash_table *htab;
6540
6541 htab = mips_elf_hash_table (info);
6542 BFD_ASSERT (htab != NULL);
6543
6544 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6545 dynobj = elf_hash_table (info)->dynobj;
6546 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6547 BFD_ASSERT (sreloc != NULL);
6548 BFD_ASSERT (sreloc->contents != NULL);
6549 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6550 < sreloc->size);
6551
6552 outrel[0].r_offset =
6553 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6554 if (ABI_64_P (output_bfd))
6555 {
6556 outrel[1].r_offset =
6557 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6558 outrel[2].r_offset =
6559 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6560 }
6561
6562 if (outrel[0].r_offset == MINUS_ONE)
6563 /* The relocation field has been deleted. */
6564 return TRUE;
6565
6566 if (outrel[0].r_offset == MINUS_TWO)
6567 {
6568 /* The relocation field has been converted into a relative value of
6569 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6570 the field to be fully relocated, so add in the symbol's value. */
6571 *addendp += symbol;
6572 return TRUE;
6573 }
6574
6575 /* We must now calculate the dynamic symbol table index to use
6576 in the relocation. */
6577 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6578 {
6579 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6580 indx = h->root.dynindx;
6581 if (SGI_COMPAT (output_bfd))
6582 defined_p = h->root.def_regular;
6583 else
6584 /* ??? glibc's ld.so just adds the final GOT entry to the
6585 relocation field. It therefore treats relocs against
6586 defined symbols in the same way as relocs against
6587 undefined symbols. */
6588 defined_p = FALSE;
6589 }
6590 else
6591 {
6592 if (sec != NULL && bfd_is_abs_section (sec))
6593 indx = 0;
6594 else if (sec == NULL || sec->owner == NULL)
6595 {
6596 bfd_set_error (bfd_error_bad_value);
6597 return FALSE;
6598 }
6599 else
6600 {
6601 indx = elf_section_data (sec->output_section)->dynindx;
6602 if (indx == 0)
6603 {
6604 asection *osec = htab->root.text_index_section;
6605 indx = elf_section_data (osec)->dynindx;
6606 }
6607 if (indx == 0)
6608 abort ();
6609 }
6610
6611 /* Instead of generating a relocation using the section
6612 symbol, we may as well make it a fully relative
6613 relocation. We want to avoid generating relocations to
6614 local symbols because we used to generate them
6615 incorrectly, without adding the original symbol value,
6616 which is mandated by the ABI for section symbols. In
6617 order to give dynamic loaders and applications time to
6618 phase out the incorrect use, we refrain from emitting
6619 section-relative relocations. It's not like they're
6620 useful, after all. This should be a bit more efficient
6621 as well. */
6622 /* ??? Although this behavior is compatible with glibc's ld.so,
6623 the ABI says that relocations against STN_UNDEF should have
6624 a symbol value of 0. Irix rld honors this, so relocations
6625 against STN_UNDEF have no effect. */
6626 if (!SGI_COMPAT (output_bfd))
6627 indx = 0;
6628 defined_p = TRUE;
6629 }
6630
6631 /* If the relocation was previously an absolute relocation and
6632 this symbol will not be referred to by the relocation, we must
6633 adjust it by the value we give it in the dynamic symbol table.
6634 Otherwise leave the job up to the dynamic linker. */
6635 if (defined_p && r_type != R_MIPS_REL32)
6636 *addendp += symbol;
6637
6638 if (htab->is_vxworks)
6639 /* VxWorks uses non-relative relocations for this. */
6640 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6641 else
6642 /* The relocation is always an REL32 relocation because we don't
6643 know where the shared library will wind up at load-time. */
6644 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6645 R_MIPS_REL32);
6646
6647 /* For strict adherence to the ABI specification, we should
6648 generate a R_MIPS_64 relocation record by itself before the
6649 _REL32/_64 record as well, such that the addend is read in as
6650 a 64-bit value (REL32 is a 32-bit relocation, after all).
6651 However, since none of the existing ELF64 MIPS dynamic
6652 loaders seems to care, we don't waste space with these
6653 artificial relocations. If this turns out to not be true,
6654 mips_elf_allocate_dynamic_relocation() should be tweaked so
6655 as to make room for a pair of dynamic relocations per
6656 invocation if ABI_64_P, and here we should generate an
6657 additional relocation record with R_MIPS_64 by itself for a
6658 NULL symbol before this relocation record. */
6659 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6660 ABI_64_P (output_bfd)
6661 ? R_MIPS_64
6662 : R_MIPS_NONE);
6663 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6664
6665 /* Adjust the output offset of the relocation to reference the
6666 correct location in the output file. */
6667 outrel[0].r_offset += (input_section->output_section->vma
6668 + input_section->output_offset);
6669 outrel[1].r_offset += (input_section->output_section->vma
6670 + input_section->output_offset);
6671 outrel[2].r_offset += (input_section->output_section->vma
6672 + input_section->output_offset);
6673
6674 /* Put the relocation back out. We have to use the special
6675 relocation outputter in the 64-bit case since the 64-bit
6676 relocation format is non-standard. */
6677 if (ABI_64_P (output_bfd))
6678 {
6679 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6680 (output_bfd, &outrel[0],
6681 (sreloc->contents
6682 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6683 }
6684 else if (htab->is_vxworks)
6685 {
6686 /* VxWorks uses RELA rather than REL dynamic relocations. */
6687 outrel[0].r_addend = *addendp;
6688 bfd_elf32_swap_reloca_out
6689 (output_bfd, &outrel[0],
6690 (sreloc->contents
6691 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6692 }
6693 else
6694 bfd_elf32_swap_reloc_out
6695 (output_bfd, &outrel[0],
6696 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6697
6698 /* We've now added another relocation. */
6699 ++sreloc->reloc_count;
6700
6701 /* Make sure the output section is writable. The dynamic linker
6702 will be writing to it. */
6703 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6704 |= SHF_WRITE;
6705
6706 /* On IRIX5, make an entry of compact relocation info. */
6707 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6708 {
6709 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6710 bfd_byte *cr;
6711
6712 if (scpt)
6713 {
6714 Elf32_crinfo cptrel;
6715
6716 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6717 cptrel.vaddr = (rel->r_offset
6718 + input_section->output_section->vma
6719 + input_section->output_offset);
6720 if (r_type == R_MIPS_REL32)
6721 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6722 else
6723 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6724 mips_elf_set_cr_dist2to (cptrel, 0);
6725 cptrel.konst = *addendp;
6726
6727 cr = (scpt->contents
6728 + sizeof (Elf32_External_compact_rel));
6729 mips_elf_set_cr_relvaddr (cptrel, 0);
6730 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6731 ((Elf32_External_crinfo *) cr
6732 + scpt->reloc_count));
6733 ++scpt->reloc_count;
6734 }
6735 }
6736
6737 /* If we've written this relocation for a readonly section,
6738 we need to set DF_TEXTREL again, so that we do not delete the
6739 DT_TEXTREL tag. */
6740 if (MIPS_ELF_READONLY_SECTION (input_section))
6741 info->flags |= DF_TEXTREL;
6742
6743 return TRUE;
6744 }
6745 \f
6746 /* Return the MACH for a MIPS e_flags value. */
6747
6748 unsigned long
6749 _bfd_elf_mips_mach (flagword flags)
6750 {
6751 switch (flags & EF_MIPS_MACH)
6752 {
6753 case E_MIPS_MACH_3900:
6754 return bfd_mach_mips3900;
6755
6756 case E_MIPS_MACH_4010:
6757 return bfd_mach_mips4010;
6758
6759 case E_MIPS_MACH_4100:
6760 return bfd_mach_mips4100;
6761
6762 case E_MIPS_MACH_4111:
6763 return bfd_mach_mips4111;
6764
6765 case E_MIPS_MACH_4120:
6766 return bfd_mach_mips4120;
6767
6768 case E_MIPS_MACH_4650:
6769 return bfd_mach_mips4650;
6770
6771 case E_MIPS_MACH_5400:
6772 return bfd_mach_mips5400;
6773
6774 case E_MIPS_MACH_5500:
6775 return bfd_mach_mips5500;
6776
6777 case E_MIPS_MACH_5900:
6778 return bfd_mach_mips5900;
6779
6780 case E_MIPS_MACH_9000:
6781 return bfd_mach_mips9000;
6782
6783 case E_MIPS_MACH_SB1:
6784 return bfd_mach_mips_sb1;
6785
6786 case E_MIPS_MACH_LS2E:
6787 return bfd_mach_mips_loongson_2e;
6788
6789 case E_MIPS_MACH_LS2F:
6790 return bfd_mach_mips_loongson_2f;
6791
6792 case E_MIPS_MACH_LS3A:
6793 return bfd_mach_mips_loongson_3a;
6794
6795 case E_MIPS_MACH_OCTEON3:
6796 return bfd_mach_mips_octeon3;
6797
6798 case E_MIPS_MACH_OCTEON2:
6799 return bfd_mach_mips_octeon2;
6800
6801 case E_MIPS_MACH_OCTEON:
6802 return bfd_mach_mips_octeon;
6803
6804 case E_MIPS_MACH_XLR:
6805 return bfd_mach_mips_xlr;
6806
6807 case E_MIPS_MACH_IAMR2:
6808 return bfd_mach_mips_interaptiv_mr2;
6809
6810 default:
6811 switch (flags & EF_MIPS_ARCH)
6812 {
6813 default:
6814 case E_MIPS_ARCH_1:
6815 return bfd_mach_mips3000;
6816
6817 case E_MIPS_ARCH_2:
6818 return bfd_mach_mips6000;
6819
6820 case E_MIPS_ARCH_3:
6821 return bfd_mach_mips4000;
6822
6823 case E_MIPS_ARCH_4:
6824 return bfd_mach_mips8000;
6825
6826 case E_MIPS_ARCH_5:
6827 return bfd_mach_mips5;
6828
6829 case E_MIPS_ARCH_32:
6830 return bfd_mach_mipsisa32;
6831
6832 case E_MIPS_ARCH_64:
6833 return bfd_mach_mipsisa64;
6834
6835 case E_MIPS_ARCH_32R2:
6836 return bfd_mach_mipsisa32r2;
6837
6838 case E_MIPS_ARCH_64R2:
6839 return bfd_mach_mipsisa64r2;
6840
6841 case E_MIPS_ARCH_32R6:
6842 return bfd_mach_mipsisa32r6;
6843
6844 case E_MIPS_ARCH_64R6:
6845 return bfd_mach_mipsisa64r6;
6846 }
6847 }
6848
6849 return 0;
6850 }
6851
6852 /* Return printable name for ABI. */
6853
6854 static INLINE char *
6855 elf_mips_abi_name (bfd *abfd)
6856 {
6857 flagword flags;
6858
6859 flags = elf_elfheader (abfd)->e_flags;
6860 switch (flags & EF_MIPS_ABI)
6861 {
6862 case 0:
6863 if (ABI_N32_P (abfd))
6864 return "N32";
6865 else if (ABI_64_P (abfd))
6866 return "64";
6867 else
6868 return "none";
6869 case E_MIPS_ABI_O32:
6870 return "O32";
6871 case E_MIPS_ABI_O64:
6872 return "O64";
6873 case E_MIPS_ABI_EABI32:
6874 return "EABI32";
6875 case E_MIPS_ABI_EABI64:
6876 return "EABI64";
6877 default:
6878 return "unknown abi";
6879 }
6880 }
6881 \f
6882 /* MIPS ELF uses two common sections. One is the usual one, and the
6883 other is for small objects. All the small objects are kept
6884 together, and then referenced via the gp pointer, which yields
6885 faster assembler code. This is what we use for the small common
6886 section. This approach is copied from ecoff.c. */
6887 static asection mips_elf_scom_section;
6888 static asymbol mips_elf_scom_symbol;
6889 static asymbol *mips_elf_scom_symbol_ptr;
6890
6891 /* MIPS ELF also uses an acommon section, which represents an
6892 allocated common symbol which may be overridden by a
6893 definition in a shared library. */
6894 static asection mips_elf_acom_section;
6895 static asymbol mips_elf_acom_symbol;
6896 static asymbol *mips_elf_acom_symbol_ptr;
6897
6898 /* This is used for both the 32-bit and the 64-bit ABI. */
6899
6900 void
6901 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6902 {
6903 elf_symbol_type *elfsym;
6904
6905 /* Handle the special MIPS section numbers that a symbol may use. */
6906 elfsym = (elf_symbol_type *) asym;
6907 switch (elfsym->internal_elf_sym.st_shndx)
6908 {
6909 case SHN_MIPS_ACOMMON:
6910 /* This section is used in a dynamically linked executable file.
6911 It is an allocated common section. The dynamic linker can
6912 either resolve these symbols to something in a shared
6913 library, or it can just leave them here. For our purposes,
6914 we can consider these symbols to be in a new section. */
6915 if (mips_elf_acom_section.name == NULL)
6916 {
6917 /* Initialize the acommon section. */
6918 mips_elf_acom_section.name = ".acommon";
6919 mips_elf_acom_section.flags = SEC_ALLOC;
6920 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6921 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6922 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6923 mips_elf_acom_symbol.name = ".acommon";
6924 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6925 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6926 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6927 }
6928 asym->section = &mips_elf_acom_section;
6929 break;
6930
6931 case SHN_COMMON:
6932 /* Common symbols less than the GP size are automatically
6933 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6934 if (asym->value > elf_gp_size (abfd)
6935 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6936 || IRIX_COMPAT (abfd) == ict_irix6)
6937 break;
6938 /* Fall through. */
6939 case SHN_MIPS_SCOMMON:
6940 if (mips_elf_scom_section.name == NULL)
6941 {
6942 /* Initialize the small common section. */
6943 mips_elf_scom_section.name = ".scommon";
6944 mips_elf_scom_section.flags = SEC_IS_COMMON;
6945 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6946 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6947 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6948 mips_elf_scom_symbol.name = ".scommon";
6949 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6950 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6951 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6952 }
6953 asym->section = &mips_elf_scom_section;
6954 asym->value = elfsym->internal_elf_sym.st_size;
6955 break;
6956
6957 case SHN_MIPS_SUNDEFINED:
6958 asym->section = bfd_und_section_ptr;
6959 break;
6960
6961 case SHN_MIPS_TEXT:
6962 {
6963 asection *section = bfd_get_section_by_name (abfd, ".text");
6964
6965 if (section != NULL)
6966 {
6967 asym->section = section;
6968 /* MIPS_TEXT is a bit special, the address is not an offset
6969 to the base of the .text section. So subtract the section
6970 base address to make it an offset. */
6971 asym->value -= section->vma;
6972 }
6973 }
6974 break;
6975
6976 case SHN_MIPS_DATA:
6977 {
6978 asection *section = bfd_get_section_by_name (abfd, ".data");
6979
6980 if (section != NULL)
6981 {
6982 asym->section = section;
6983 /* MIPS_DATA is a bit special, the address is not an offset
6984 to the base of the .data section. So subtract the section
6985 base address to make it an offset. */
6986 asym->value -= section->vma;
6987 }
6988 }
6989 break;
6990 }
6991
6992 /* If this is an odd-valued function symbol, assume it's a MIPS16
6993 or microMIPS one. */
6994 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6995 && (asym->value & 1) != 0)
6996 {
6997 asym->value--;
6998 if (MICROMIPS_P (abfd))
6999 elfsym->internal_elf_sym.st_other
7000 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7001 else
7002 elfsym->internal_elf_sym.st_other
7003 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7004 }
7005 }
7006 \f
7007 /* Implement elf_backend_eh_frame_address_size. This differs from
7008 the default in the way it handles EABI64.
7009
7010 EABI64 was originally specified as an LP64 ABI, and that is what
7011 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7012 historically accepted the combination of -mabi=eabi and -mlong32,
7013 and this ILP32 variation has become semi-official over time.
7014 Both forms use elf32 and have pointer-sized FDE addresses.
7015
7016 If an EABI object was generated by GCC 4.0 or above, it will have
7017 an empty .gcc_compiled_longXX section, where XX is the size of longs
7018 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7019 have no special marking to distinguish them from LP64 objects.
7020
7021 We don't want users of the official LP64 ABI to be punished for the
7022 existence of the ILP32 variant, but at the same time, we don't want
7023 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7024 We therefore take the following approach:
7025
7026 - If ABFD contains a .gcc_compiled_longXX section, use it to
7027 determine the pointer size.
7028
7029 - Otherwise check the type of the first relocation. Assume that
7030 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7031
7032 - Otherwise punt.
7033
7034 The second check is enough to detect LP64 objects generated by pre-4.0
7035 compilers because, in the kind of output generated by those compilers,
7036 the first relocation will be associated with either a CIE personality
7037 routine or an FDE start address. Furthermore, the compilers never
7038 used a special (non-pointer) encoding for this ABI.
7039
7040 Checking the relocation type should also be safe because there is no
7041 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7042 did so. */
7043
7044 unsigned int
7045 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7046 {
7047 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7048 return 8;
7049 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7050 {
7051 bfd_boolean long32_p, long64_p;
7052
7053 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7054 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7055 if (long32_p && long64_p)
7056 return 0;
7057 if (long32_p)
7058 return 4;
7059 if (long64_p)
7060 return 8;
7061
7062 if (sec->reloc_count > 0
7063 && elf_section_data (sec)->relocs != NULL
7064 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7065 == R_MIPS_64))
7066 return 8;
7067
7068 return 0;
7069 }
7070 return 4;
7071 }
7072 \f
7073 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7074 relocations against two unnamed section symbols to resolve to the
7075 same address. For example, if we have code like:
7076
7077 lw $4,%got_disp(.data)($gp)
7078 lw $25,%got_disp(.text)($gp)
7079 jalr $25
7080
7081 then the linker will resolve both relocations to .data and the program
7082 will jump there rather than to .text.
7083
7084 We can work around this problem by giving names to local section symbols.
7085 This is also what the MIPSpro tools do. */
7086
7087 bfd_boolean
7088 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7089 {
7090 return SGI_COMPAT (abfd);
7091 }
7092 \f
7093 /* Work over a section just before writing it out. This routine is
7094 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7095 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7096 a better way. */
7097
7098 bfd_boolean
7099 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7100 {
7101 if (hdr->sh_type == SHT_MIPS_REGINFO
7102 && hdr->sh_size > 0)
7103 {
7104 bfd_byte buf[4];
7105
7106 BFD_ASSERT (hdr->contents == NULL);
7107
7108 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7109 {
7110 _bfd_error_handler
7111 (_("%pB: incorrect `.reginfo' section size; "
7112 "expected %" PRIu64 ", got %" PRIu64),
7113 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7114 (uint64_t) hdr->sh_size);
7115 bfd_set_error (bfd_error_bad_value);
7116 return FALSE;
7117 }
7118
7119 if (bfd_seek (abfd,
7120 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7121 SEEK_SET) != 0)
7122 return FALSE;
7123 H_PUT_32 (abfd, elf_gp (abfd), buf);
7124 if (bfd_bwrite (buf, 4, abfd) != 4)
7125 return FALSE;
7126 }
7127
7128 if (hdr->sh_type == SHT_MIPS_OPTIONS
7129 && hdr->bfd_section != NULL
7130 && mips_elf_section_data (hdr->bfd_section) != NULL
7131 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7132 {
7133 bfd_byte *contents, *l, *lend;
7134
7135 /* We stored the section contents in the tdata field in the
7136 set_section_contents routine. We save the section contents
7137 so that we don't have to read them again.
7138 At this point we know that elf_gp is set, so we can look
7139 through the section contents to see if there is an
7140 ODK_REGINFO structure. */
7141
7142 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7143 l = contents;
7144 lend = contents + hdr->sh_size;
7145 while (l + sizeof (Elf_External_Options) <= lend)
7146 {
7147 Elf_Internal_Options intopt;
7148
7149 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7150 &intopt);
7151 if (intopt.size < sizeof (Elf_External_Options))
7152 {
7153 _bfd_error_handler
7154 /* xgettext:c-format */
7155 (_("%pB: warning: bad `%s' option size %u smaller than"
7156 " its header"),
7157 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7158 break;
7159 }
7160 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7161 {
7162 bfd_byte buf[8];
7163
7164 if (bfd_seek (abfd,
7165 (hdr->sh_offset
7166 + (l - contents)
7167 + sizeof (Elf_External_Options)
7168 + (sizeof (Elf64_External_RegInfo) - 8)),
7169 SEEK_SET) != 0)
7170 return FALSE;
7171 H_PUT_64 (abfd, elf_gp (abfd), buf);
7172 if (bfd_bwrite (buf, 8, abfd) != 8)
7173 return FALSE;
7174 }
7175 else if (intopt.kind == ODK_REGINFO)
7176 {
7177 bfd_byte buf[4];
7178
7179 if (bfd_seek (abfd,
7180 (hdr->sh_offset
7181 + (l - contents)
7182 + sizeof (Elf_External_Options)
7183 + (sizeof (Elf32_External_RegInfo) - 4)),
7184 SEEK_SET) != 0)
7185 return FALSE;
7186 H_PUT_32 (abfd, elf_gp (abfd), buf);
7187 if (bfd_bwrite (buf, 4, abfd) != 4)
7188 return FALSE;
7189 }
7190 l += intopt.size;
7191 }
7192 }
7193
7194 if (hdr->bfd_section != NULL)
7195 {
7196 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7197
7198 /* .sbss is not handled specially here because the GNU/Linux
7199 prelinker can convert .sbss from NOBITS to PROGBITS and
7200 changing it back to NOBITS breaks the binary. The entry in
7201 _bfd_mips_elf_special_sections will ensure the correct flags
7202 are set on .sbss if BFD creates it without reading it from an
7203 input file, and without special handling here the flags set
7204 on it in an input file will be followed. */
7205 if (strcmp (name, ".sdata") == 0
7206 || strcmp (name, ".lit8") == 0
7207 || strcmp (name, ".lit4") == 0)
7208 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7209 else if (strcmp (name, ".srdata") == 0)
7210 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7211 else if (strcmp (name, ".compact_rel") == 0)
7212 hdr->sh_flags = 0;
7213 else if (strcmp (name, ".rtproc") == 0)
7214 {
7215 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7216 {
7217 unsigned int adjust;
7218
7219 adjust = hdr->sh_size % hdr->sh_addralign;
7220 if (adjust != 0)
7221 hdr->sh_size += hdr->sh_addralign - adjust;
7222 }
7223 }
7224 }
7225
7226 return TRUE;
7227 }
7228
7229 /* Handle a MIPS specific section when reading an object file. This
7230 is called when elfcode.h finds a section with an unknown type.
7231 This routine supports both the 32-bit and 64-bit ELF ABI.
7232
7233 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7234 how to. */
7235
7236 bfd_boolean
7237 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7238 Elf_Internal_Shdr *hdr,
7239 const char *name,
7240 int shindex)
7241 {
7242 flagword flags = 0;
7243
7244 /* There ought to be a place to keep ELF backend specific flags, but
7245 at the moment there isn't one. We just keep track of the
7246 sections by their name, instead. Fortunately, the ABI gives
7247 suggested names for all the MIPS specific sections, so we will
7248 probably get away with this. */
7249 switch (hdr->sh_type)
7250 {
7251 case SHT_MIPS_LIBLIST:
7252 if (strcmp (name, ".liblist") != 0)
7253 return FALSE;
7254 break;
7255 case SHT_MIPS_MSYM:
7256 if (strcmp (name, ".msym") != 0)
7257 return FALSE;
7258 break;
7259 case SHT_MIPS_CONFLICT:
7260 if (strcmp (name, ".conflict") != 0)
7261 return FALSE;
7262 break;
7263 case SHT_MIPS_GPTAB:
7264 if (! CONST_STRNEQ (name, ".gptab."))
7265 return FALSE;
7266 break;
7267 case SHT_MIPS_UCODE:
7268 if (strcmp (name, ".ucode") != 0)
7269 return FALSE;
7270 break;
7271 case SHT_MIPS_DEBUG:
7272 if (strcmp (name, ".mdebug") != 0)
7273 return FALSE;
7274 flags = SEC_DEBUGGING;
7275 break;
7276 case SHT_MIPS_REGINFO:
7277 if (strcmp (name, ".reginfo") != 0
7278 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7279 return FALSE;
7280 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7281 break;
7282 case SHT_MIPS_IFACE:
7283 if (strcmp (name, ".MIPS.interfaces") != 0)
7284 return FALSE;
7285 break;
7286 case SHT_MIPS_CONTENT:
7287 if (! CONST_STRNEQ (name, ".MIPS.content"))
7288 return FALSE;
7289 break;
7290 case SHT_MIPS_OPTIONS:
7291 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7292 return FALSE;
7293 break;
7294 case SHT_MIPS_ABIFLAGS:
7295 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7296 return FALSE;
7297 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7298 break;
7299 case SHT_MIPS_DWARF:
7300 if (! CONST_STRNEQ (name, ".debug_")
7301 && ! CONST_STRNEQ (name, ".zdebug_"))
7302 return FALSE;
7303 break;
7304 case SHT_MIPS_SYMBOL_LIB:
7305 if (strcmp (name, ".MIPS.symlib") != 0)
7306 return FALSE;
7307 break;
7308 case SHT_MIPS_EVENTS:
7309 if (! CONST_STRNEQ (name, ".MIPS.events")
7310 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7311 return FALSE;
7312 break;
7313 default:
7314 break;
7315 }
7316
7317 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7318 return FALSE;
7319
7320 if (flags)
7321 {
7322 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7323 (bfd_get_section_flags (abfd,
7324 hdr->bfd_section)
7325 | flags)))
7326 return FALSE;
7327 }
7328
7329 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7330 {
7331 Elf_External_ABIFlags_v0 ext;
7332
7333 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7334 &ext, 0, sizeof ext))
7335 return FALSE;
7336 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7337 &mips_elf_tdata (abfd)->abiflags);
7338 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7339 return FALSE;
7340 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7341 }
7342
7343 /* FIXME: We should record sh_info for a .gptab section. */
7344
7345 /* For a .reginfo section, set the gp value in the tdata information
7346 from the contents of this section. We need the gp value while
7347 processing relocs, so we just get it now. The .reginfo section
7348 is not used in the 64-bit MIPS ELF ABI. */
7349 if (hdr->sh_type == SHT_MIPS_REGINFO)
7350 {
7351 Elf32_External_RegInfo ext;
7352 Elf32_RegInfo s;
7353
7354 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7355 &ext, 0, sizeof ext))
7356 return FALSE;
7357 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7358 elf_gp (abfd) = s.ri_gp_value;
7359 }
7360
7361 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7362 set the gp value based on what we find. We may see both
7363 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7364 they should agree. */
7365 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7366 {
7367 bfd_byte *contents, *l, *lend;
7368
7369 contents = bfd_malloc (hdr->sh_size);
7370 if (contents == NULL)
7371 return FALSE;
7372 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7373 0, hdr->sh_size))
7374 {
7375 free (contents);
7376 return FALSE;
7377 }
7378 l = contents;
7379 lend = contents + hdr->sh_size;
7380 while (l + sizeof (Elf_External_Options) <= lend)
7381 {
7382 Elf_Internal_Options intopt;
7383
7384 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7385 &intopt);
7386 if (intopt.size < sizeof (Elf_External_Options))
7387 {
7388 _bfd_error_handler
7389 /* xgettext:c-format */
7390 (_("%pB: warning: bad `%s' option size %u smaller than"
7391 " its header"),
7392 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7393 break;
7394 }
7395 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7396 {
7397 Elf64_Internal_RegInfo intreg;
7398
7399 bfd_mips_elf64_swap_reginfo_in
7400 (abfd,
7401 ((Elf64_External_RegInfo *)
7402 (l + sizeof (Elf_External_Options))),
7403 &intreg);
7404 elf_gp (abfd) = intreg.ri_gp_value;
7405 }
7406 else if (intopt.kind == ODK_REGINFO)
7407 {
7408 Elf32_RegInfo intreg;
7409
7410 bfd_mips_elf32_swap_reginfo_in
7411 (abfd,
7412 ((Elf32_External_RegInfo *)
7413 (l + sizeof (Elf_External_Options))),
7414 &intreg);
7415 elf_gp (abfd) = intreg.ri_gp_value;
7416 }
7417 l += intopt.size;
7418 }
7419 free (contents);
7420 }
7421
7422 return TRUE;
7423 }
7424
7425 /* Set the correct type for a MIPS ELF section. We do this by the
7426 section name, which is a hack, but ought to work. This routine is
7427 used by both the 32-bit and the 64-bit ABI. */
7428
7429 bfd_boolean
7430 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7431 {
7432 const char *name = bfd_get_section_name (abfd, sec);
7433
7434 if (strcmp (name, ".liblist") == 0)
7435 {
7436 hdr->sh_type = SHT_MIPS_LIBLIST;
7437 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7438 /* The sh_link field is set in final_write_processing. */
7439 }
7440 else if (strcmp (name, ".conflict") == 0)
7441 hdr->sh_type = SHT_MIPS_CONFLICT;
7442 else if (CONST_STRNEQ (name, ".gptab."))
7443 {
7444 hdr->sh_type = SHT_MIPS_GPTAB;
7445 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7446 /* The sh_info field is set in final_write_processing. */
7447 }
7448 else if (strcmp (name, ".ucode") == 0)
7449 hdr->sh_type = SHT_MIPS_UCODE;
7450 else if (strcmp (name, ".mdebug") == 0)
7451 {
7452 hdr->sh_type = SHT_MIPS_DEBUG;
7453 /* In a shared object on IRIX 5.3, the .mdebug section has an
7454 entsize of 0. FIXME: Does this matter? */
7455 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7456 hdr->sh_entsize = 0;
7457 else
7458 hdr->sh_entsize = 1;
7459 }
7460 else if (strcmp (name, ".reginfo") == 0)
7461 {
7462 hdr->sh_type = SHT_MIPS_REGINFO;
7463 /* In a shared object on IRIX 5.3, the .reginfo section has an
7464 entsize of 0x18. FIXME: Does this matter? */
7465 if (SGI_COMPAT (abfd))
7466 {
7467 if ((abfd->flags & DYNAMIC) != 0)
7468 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7469 else
7470 hdr->sh_entsize = 1;
7471 }
7472 else
7473 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7474 }
7475 else if (SGI_COMPAT (abfd)
7476 && (strcmp (name, ".hash") == 0
7477 || strcmp (name, ".dynamic") == 0
7478 || strcmp (name, ".dynstr") == 0))
7479 {
7480 if (SGI_COMPAT (abfd))
7481 hdr->sh_entsize = 0;
7482 #if 0
7483 /* This isn't how the IRIX6 linker behaves. */
7484 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7485 #endif
7486 }
7487 else if (strcmp (name, ".got") == 0
7488 || strcmp (name, ".srdata") == 0
7489 || strcmp (name, ".sdata") == 0
7490 || strcmp (name, ".sbss") == 0
7491 || strcmp (name, ".lit4") == 0
7492 || strcmp (name, ".lit8") == 0)
7493 hdr->sh_flags |= SHF_MIPS_GPREL;
7494 else if (strcmp (name, ".MIPS.interfaces") == 0)
7495 {
7496 hdr->sh_type = SHT_MIPS_IFACE;
7497 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7498 }
7499 else if (CONST_STRNEQ (name, ".MIPS.content"))
7500 {
7501 hdr->sh_type = SHT_MIPS_CONTENT;
7502 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7503 /* The sh_info field is set in final_write_processing. */
7504 }
7505 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7506 {
7507 hdr->sh_type = SHT_MIPS_OPTIONS;
7508 hdr->sh_entsize = 1;
7509 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7510 }
7511 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7512 {
7513 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7514 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7515 }
7516 else if (CONST_STRNEQ (name, ".debug_")
7517 || CONST_STRNEQ (name, ".zdebug_"))
7518 {
7519 hdr->sh_type = SHT_MIPS_DWARF;
7520
7521 /* Irix facilities such as libexc expect a single .debug_frame
7522 per executable, the system ones have NOSTRIP set and the linker
7523 doesn't merge sections with different flags so ... */
7524 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7525 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7526 }
7527 else if (strcmp (name, ".MIPS.symlib") == 0)
7528 {
7529 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7530 /* The sh_link and sh_info fields are set in
7531 final_write_processing. */
7532 }
7533 else if (CONST_STRNEQ (name, ".MIPS.events")
7534 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7535 {
7536 hdr->sh_type = SHT_MIPS_EVENTS;
7537 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7538 /* The sh_link field is set in final_write_processing. */
7539 }
7540 else if (strcmp (name, ".msym") == 0)
7541 {
7542 hdr->sh_type = SHT_MIPS_MSYM;
7543 hdr->sh_flags |= SHF_ALLOC;
7544 hdr->sh_entsize = 8;
7545 }
7546
7547 /* The generic elf_fake_sections will set up REL_HDR using the default
7548 kind of relocations. We used to set up a second header for the
7549 non-default kind of relocations here, but only NewABI would use
7550 these, and the IRIX ld doesn't like resulting empty RELA sections.
7551 Thus we create those header only on demand now. */
7552
7553 return TRUE;
7554 }
7555
7556 /* Given a BFD section, try to locate the corresponding ELF section
7557 index. This is used by both the 32-bit and the 64-bit ABI.
7558 Actually, it's not clear to me that the 64-bit ABI supports these,
7559 but for non-PIC objects we will certainly want support for at least
7560 the .scommon section. */
7561
7562 bfd_boolean
7563 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7564 asection *sec, int *retval)
7565 {
7566 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7567 {
7568 *retval = SHN_MIPS_SCOMMON;
7569 return TRUE;
7570 }
7571 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7572 {
7573 *retval = SHN_MIPS_ACOMMON;
7574 return TRUE;
7575 }
7576 return FALSE;
7577 }
7578 \f
7579 /* Hook called by the linker routine which adds symbols from an object
7580 file. We must handle the special MIPS section numbers here. */
7581
7582 bfd_boolean
7583 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7584 Elf_Internal_Sym *sym, const char **namep,
7585 flagword *flagsp ATTRIBUTE_UNUSED,
7586 asection **secp, bfd_vma *valp)
7587 {
7588 if (SGI_COMPAT (abfd)
7589 && (abfd->flags & DYNAMIC) != 0
7590 && strcmp (*namep, "_rld_new_interface") == 0)
7591 {
7592 /* Skip IRIX5 rld entry name. */
7593 *namep = NULL;
7594 return TRUE;
7595 }
7596
7597 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7598 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7599 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7600 a magic symbol resolved by the linker, we ignore this bogus definition
7601 of _gp_disp. New ABI objects do not suffer from this problem so this
7602 is not done for them. */
7603 if (!NEWABI_P(abfd)
7604 && (sym->st_shndx == SHN_ABS)
7605 && (strcmp (*namep, "_gp_disp") == 0))
7606 {
7607 *namep = NULL;
7608 return TRUE;
7609 }
7610
7611 switch (sym->st_shndx)
7612 {
7613 case SHN_COMMON:
7614 /* Common symbols less than the GP size are automatically
7615 treated as SHN_MIPS_SCOMMON symbols. */
7616 if (sym->st_size > elf_gp_size (abfd)
7617 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7618 || IRIX_COMPAT (abfd) == ict_irix6)
7619 break;
7620 /* Fall through. */
7621 case SHN_MIPS_SCOMMON:
7622 *secp = bfd_make_section_old_way (abfd, ".scommon");
7623 (*secp)->flags |= SEC_IS_COMMON;
7624 *valp = sym->st_size;
7625 break;
7626
7627 case SHN_MIPS_TEXT:
7628 /* This section is used in a shared object. */
7629 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7630 {
7631 asymbol *elf_text_symbol;
7632 asection *elf_text_section;
7633 bfd_size_type amt = sizeof (asection);
7634
7635 elf_text_section = bfd_zalloc (abfd, amt);
7636 if (elf_text_section == NULL)
7637 return FALSE;
7638
7639 amt = sizeof (asymbol);
7640 elf_text_symbol = bfd_zalloc (abfd, amt);
7641 if (elf_text_symbol == NULL)
7642 return FALSE;
7643
7644 /* Initialize the section. */
7645
7646 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7647 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7648
7649 elf_text_section->symbol = elf_text_symbol;
7650 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7651
7652 elf_text_section->name = ".text";
7653 elf_text_section->flags = SEC_NO_FLAGS;
7654 elf_text_section->output_section = NULL;
7655 elf_text_section->owner = abfd;
7656 elf_text_symbol->name = ".text";
7657 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7658 elf_text_symbol->section = elf_text_section;
7659 }
7660 /* This code used to do *secp = bfd_und_section_ptr if
7661 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7662 so I took it out. */
7663 *secp = mips_elf_tdata (abfd)->elf_text_section;
7664 break;
7665
7666 case SHN_MIPS_ACOMMON:
7667 /* Fall through. XXX Can we treat this as allocated data? */
7668 case SHN_MIPS_DATA:
7669 /* This section is used in a shared object. */
7670 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7671 {
7672 asymbol *elf_data_symbol;
7673 asection *elf_data_section;
7674 bfd_size_type amt = sizeof (asection);
7675
7676 elf_data_section = bfd_zalloc (abfd, amt);
7677 if (elf_data_section == NULL)
7678 return FALSE;
7679
7680 amt = sizeof (asymbol);
7681 elf_data_symbol = bfd_zalloc (abfd, amt);
7682 if (elf_data_symbol == NULL)
7683 return FALSE;
7684
7685 /* Initialize the section. */
7686
7687 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7688 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7689
7690 elf_data_section->symbol = elf_data_symbol;
7691 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7692
7693 elf_data_section->name = ".data";
7694 elf_data_section->flags = SEC_NO_FLAGS;
7695 elf_data_section->output_section = NULL;
7696 elf_data_section->owner = abfd;
7697 elf_data_symbol->name = ".data";
7698 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7699 elf_data_symbol->section = elf_data_section;
7700 }
7701 /* This code used to do *secp = bfd_und_section_ptr if
7702 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7703 so I took it out. */
7704 *secp = mips_elf_tdata (abfd)->elf_data_section;
7705 break;
7706
7707 case SHN_MIPS_SUNDEFINED:
7708 *secp = bfd_und_section_ptr;
7709 break;
7710 }
7711
7712 if (SGI_COMPAT (abfd)
7713 && ! bfd_link_pic (info)
7714 && info->output_bfd->xvec == abfd->xvec
7715 && strcmp (*namep, "__rld_obj_head") == 0)
7716 {
7717 struct elf_link_hash_entry *h;
7718 struct bfd_link_hash_entry *bh;
7719
7720 /* Mark __rld_obj_head as dynamic. */
7721 bh = NULL;
7722 if (! (_bfd_generic_link_add_one_symbol
7723 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7724 get_elf_backend_data (abfd)->collect, &bh)))
7725 return FALSE;
7726
7727 h = (struct elf_link_hash_entry *) bh;
7728 h->non_elf = 0;
7729 h->def_regular = 1;
7730 h->type = STT_OBJECT;
7731
7732 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7733 return FALSE;
7734
7735 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7736 mips_elf_hash_table (info)->rld_symbol = h;
7737 }
7738
7739 /* If this is a mips16 text symbol, add 1 to the value to make it
7740 odd. This will cause something like .word SYM to come up with
7741 the right value when it is loaded into the PC. */
7742 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7743 ++*valp;
7744
7745 return TRUE;
7746 }
7747
7748 /* This hook function is called before the linker writes out a global
7749 symbol. We mark symbols as small common if appropriate. This is
7750 also where we undo the increment of the value for a mips16 symbol. */
7751
7752 int
7753 _bfd_mips_elf_link_output_symbol_hook
7754 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7755 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7756 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7757 {
7758 /* If we see a common symbol, which implies a relocatable link, then
7759 if a symbol was small common in an input file, mark it as small
7760 common in the output file. */
7761 if (sym->st_shndx == SHN_COMMON
7762 && strcmp (input_sec->name, ".scommon") == 0)
7763 sym->st_shndx = SHN_MIPS_SCOMMON;
7764
7765 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7766 sym->st_value &= ~1;
7767
7768 return 1;
7769 }
7770 \f
7771 /* Functions for the dynamic linker. */
7772
7773 /* Create dynamic sections when linking against a dynamic object. */
7774
7775 bfd_boolean
7776 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7777 {
7778 struct elf_link_hash_entry *h;
7779 struct bfd_link_hash_entry *bh;
7780 flagword flags;
7781 register asection *s;
7782 const char * const *namep;
7783 struct mips_elf_link_hash_table *htab;
7784
7785 htab = mips_elf_hash_table (info);
7786 BFD_ASSERT (htab != NULL);
7787
7788 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7789 | SEC_LINKER_CREATED | SEC_READONLY);
7790
7791 /* The psABI requires a read-only .dynamic section, but the VxWorks
7792 EABI doesn't. */
7793 if (!htab->is_vxworks)
7794 {
7795 s = bfd_get_linker_section (abfd, ".dynamic");
7796 if (s != NULL)
7797 {
7798 if (! bfd_set_section_flags (abfd, s, flags))
7799 return FALSE;
7800 }
7801 }
7802
7803 /* We need to create .got section. */
7804 if (!mips_elf_create_got_section (abfd, info))
7805 return FALSE;
7806
7807 if (! mips_elf_rel_dyn_section (info, TRUE))
7808 return FALSE;
7809
7810 /* Create .stub section. */
7811 s = bfd_make_section_anyway_with_flags (abfd,
7812 MIPS_ELF_STUB_SECTION_NAME (abfd),
7813 flags | SEC_CODE);
7814 if (s == NULL
7815 || ! bfd_set_section_alignment (abfd, s,
7816 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7817 return FALSE;
7818 htab->sstubs = s;
7819
7820 if (!mips_elf_hash_table (info)->use_rld_obj_head
7821 && bfd_link_executable (info)
7822 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7823 {
7824 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7825 flags &~ (flagword) SEC_READONLY);
7826 if (s == NULL
7827 || ! bfd_set_section_alignment (abfd, s,
7828 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7829 return FALSE;
7830 }
7831
7832 /* On IRIX5, we adjust add some additional symbols and change the
7833 alignments of several sections. There is no ABI documentation
7834 indicating that this is necessary on IRIX6, nor any evidence that
7835 the linker takes such action. */
7836 if (IRIX_COMPAT (abfd) == ict_irix5)
7837 {
7838 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7839 {
7840 bh = NULL;
7841 if (! (_bfd_generic_link_add_one_symbol
7842 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7843 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7844 return FALSE;
7845
7846 h = (struct elf_link_hash_entry *) bh;
7847 h->non_elf = 0;
7848 h->def_regular = 1;
7849 h->type = STT_SECTION;
7850
7851 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7852 return FALSE;
7853 }
7854
7855 /* We need to create a .compact_rel section. */
7856 if (SGI_COMPAT (abfd))
7857 {
7858 if (!mips_elf_create_compact_rel_section (abfd, info))
7859 return FALSE;
7860 }
7861
7862 /* Change alignments of some sections. */
7863 s = bfd_get_linker_section (abfd, ".hash");
7864 if (s != NULL)
7865 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7866
7867 s = bfd_get_linker_section (abfd, ".dynsym");
7868 if (s != NULL)
7869 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7870
7871 s = bfd_get_linker_section (abfd, ".dynstr");
7872 if (s != NULL)
7873 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7874
7875 /* ??? */
7876 s = bfd_get_section_by_name (abfd, ".reginfo");
7877 if (s != NULL)
7878 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7879
7880 s = bfd_get_linker_section (abfd, ".dynamic");
7881 if (s != NULL)
7882 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7883 }
7884
7885 if (bfd_link_executable (info))
7886 {
7887 const char *name;
7888
7889 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7890 bh = NULL;
7891 if (!(_bfd_generic_link_add_one_symbol
7892 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7893 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7894 return FALSE;
7895
7896 h = (struct elf_link_hash_entry *) bh;
7897 h->non_elf = 0;
7898 h->def_regular = 1;
7899 h->type = STT_SECTION;
7900
7901 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7902 return FALSE;
7903
7904 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7905 {
7906 /* __rld_map is a four byte word located in the .data section
7907 and is filled in by the rtld to contain a pointer to
7908 the _r_debug structure. Its symbol value will be set in
7909 _bfd_mips_elf_finish_dynamic_symbol. */
7910 s = bfd_get_linker_section (abfd, ".rld_map");
7911 BFD_ASSERT (s != NULL);
7912
7913 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7914 bh = NULL;
7915 if (!(_bfd_generic_link_add_one_symbol
7916 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7917 get_elf_backend_data (abfd)->collect, &bh)))
7918 return FALSE;
7919
7920 h = (struct elf_link_hash_entry *) bh;
7921 h->non_elf = 0;
7922 h->def_regular = 1;
7923 h->type = STT_OBJECT;
7924
7925 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7926 return FALSE;
7927 mips_elf_hash_table (info)->rld_symbol = h;
7928 }
7929 }
7930
7931 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7932 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7933 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7934 return FALSE;
7935
7936 /* Do the usual VxWorks handling. */
7937 if (htab->is_vxworks
7938 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7939 return FALSE;
7940
7941 return TRUE;
7942 }
7943 \f
7944 /* Return true if relocation REL against section SEC is a REL rather than
7945 RELA relocation. RELOCS is the first relocation in the section and
7946 ABFD is the bfd that contains SEC. */
7947
7948 static bfd_boolean
7949 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7950 const Elf_Internal_Rela *relocs,
7951 const Elf_Internal_Rela *rel)
7952 {
7953 Elf_Internal_Shdr *rel_hdr;
7954 const struct elf_backend_data *bed;
7955
7956 /* To determine which flavor of relocation this is, we depend on the
7957 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7958 rel_hdr = elf_section_data (sec)->rel.hdr;
7959 if (rel_hdr == NULL)
7960 return FALSE;
7961 bed = get_elf_backend_data (abfd);
7962 return ((size_t) (rel - relocs)
7963 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7964 }
7965
7966 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7967 HOWTO is the relocation's howto and CONTENTS points to the contents
7968 of the section that REL is against. */
7969
7970 static bfd_vma
7971 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7972 reloc_howto_type *howto, bfd_byte *contents)
7973 {
7974 bfd_byte *location;
7975 unsigned int r_type;
7976 bfd_vma addend;
7977 bfd_vma bytes;
7978
7979 r_type = ELF_R_TYPE (abfd, rel->r_info);
7980 location = contents + rel->r_offset;
7981
7982 /* Get the addend, which is stored in the input file. */
7983 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7984 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7985 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7986
7987 addend = bytes & howto->src_mask;
7988
7989 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7990 accordingly. */
7991 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7992 addend <<= 1;
7993
7994 return addend;
7995 }
7996
7997 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7998 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7999 and update *ADDEND with the final addend. Return true on success
8000 or false if the LO16 could not be found. RELEND is the exclusive
8001 upper bound on the relocations for REL's section. */
8002
8003 static bfd_boolean
8004 mips_elf_add_lo16_rel_addend (bfd *abfd,
8005 const Elf_Internal_Rela *rel,
8006 const Elf_Internal_Rela *relend,
8007 bfd_byte *contents, bfd_vma *addend)
8008 {
8009 unsigned int r_type, lo16_type;
8010 const Elf_Internal_Rela *lo16_relocation;
8011 reloc_howto_type *lo16_howto;
8012 bfd_vma l;
8013
8014 r_type = ELF_R_TYPE (abfd, rel->r_info);
8015 if (mips16_reloc_p (r_type))
8016 lo16_type = R_MIPS16_LO16;
8017 else if (micromips_reloc_p (r_type))
8018 lo16_type = R_MICROMIPS_LO16;
8019 else if (r_type == R_MIPS_PCHI16)
8020 lo16_type = R_MIPS_PCLO16;
8021 else
8022 lo16_type = R_MIPS_LO16;
8023
8024 /* The combined value is the sum of the HI16 addend, left-shifted by
8025 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8026 code does a `lui' of the HI16 value, and then an `addiu' of the
8027 LO16 value.)
8028
8029 Scan ahead to find a matching LO16 relocation.
8030
8031 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8032 be immediately following. However, for the IRIX6 ABI, the next
8033 relocation may be a composed relocation consisting of several
8034 relocations for the same address. In that case, the R_MIPS_LO16
8035 relocation may occur as one of these. We permit a similar
8036 extension in general, as that is useful for GCC.
8037
8038 In some cases GCC dead code elimination removes the LO16 but keeps
8039 the corresponding HI16. This is strictly speaking a violation of
8040 the ABI but not immediately harmful. */
8041 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8042 if (lo16_relocation == NULL)
8043 return FALSE;
8044
8045 /* Obtain the addend kept there. */
8046 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8047 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8048
8049 l <<= lo16_howto->rightshift;
8050 l = _bfd_mips_elf_sign_extend (l, 16);
8051
8052 *addend <<= 16;
8053 *addend += l;
8054 return TRUE;
8055 }
8056
8057 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8058 store the contents in *CONTENTS on success. Assume that *CONTENTS
8059 already holds the contents if it is nonull on entry. */
8060
8061 static bfd_boolean
8062 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8063 {
8064 if (*contents)
8065 return TRUE;
8066
8067 /* Get cached copy if it exists. */
8068 if (elf_section_data (sec)->this_hdr.contents != NULL)
8069 {
8070 *contents = elf_section_data (sec)->this_hdr.contents;
8071 return TRUE;
8072 }
8073
8074 return bfd_malloc_and_get_section (abfd, sec, contents);
8075 }
8076
8077 /* Make a new PLT record to keep internal data. */
8078
8079 static struct plt_entry *
8080 mips_elf_make_plt_record (bfd *abfd)
8081 {
8082 struct plt_entry *entry;
8083
8084 entry = bfd_zalloc (abfd, sizeof (*entry));
8085 if (entry == NULL)
8086 return NULL;
8087
8088 entry->stub_offset = MINUS_ONE;
8089 entry->mips_offset = MINUS_ONE;
8090 entry->comp_offset = MINUS_ONE;
8091 entry->gotplt_index = MINUS_ONE;
8092 return entry;
8093 }
8094
8095 /* Look through the relocs for a section during the first phase, and
8096 allocate space in the global offset table and record the need for
8097 standard MIPS and compressed procedure linkage table entries. */
8098
8099 bfd_boolean
8100 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8101 asection *sec, const Elf_Internal_Rela *relocs)
8102 {
8103 const char *name;
8104 bfd *dynobj;
8105 Elf_Internal_Shdr *symtab_hdr;
8106 struct elf_link_hash_entry **sym_hashes;
8107 size_t extsymoff;
8108 const Elf_Internal_Rela *rel;
8109 const Elf_Internal_Rela *rel_end;
8110 asection *sreloc;
8111 const struct elf_backend_data *bed;
8112 struct mips_elf_link_hash_table *htab;
8113 bfd_byte *contents;
8114 bfd_vma addend;
8115 reloc_howto_type *howto;
8116
8117 if (bfd_link_relocatable (info))
8118 return TRUE;
8119
8120 htab = mips_elf_hash_table (info);
8121 BFD_ASSERT (htab != NULL);
8122
8123 dynobj = elf_hash_table (info)->dynobj;
8124 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8125 sym_hashes = elf_sym_hashes (abfd);
8126 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8127
8128 bed = get_elf_backend_data (abfd);
8129 rel_end = relocs + sec->reloc_count;
8130
8131 /* Check for the mips16 stub sections. */
8132
8133 name = bfd_get_section_name (abfd, sec);
8134 if (FN_STUB_P (name))
8135 {
8136 unsigned long r_symndx;
8137
8138 /* Look at the relocation information to figure out which symbol
8139 this is for. */
8140
8141 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8142 if (r_symndx == 0)
8143 {
8144 _bfd_error_handler
8145 /* xgettext:c-format */
8146 (_("%pB: warning: cannot determine the target function for"
8147 " stub section `%s'"),
8148 abfd, name);
8149 bfd_set_error (bfd_error_bad_value);
8150 return FALSE;
8151 }
8152
8153 if (r_symndx < extsymoff
8154 || sym_hashes[r_symndx - extsymoff] == NULL)
8155 {
8156 asection *o;
8157
8158 /* This stub is for a local symbol. This stub will only be
8159 needed if there is some relocation in this BFD, other
8160 than a 16 bit function call, which refers to this symbol. */
8161 for (o = abfd->sections; o != NULL; o = o->next)
8162 {
8163 Elf_Internal_Rela *sec_relocs;
8164 const Elf_Internal_Rela *r, *rend;
8165
8166 /* We can ignore stub sections when looking for relocs. */
8167 if ((o->flags & SEC_RELOC) == 0
8168 || o->reloc_count == 0
8169 || section_allows_mips16_refs_p (o))
8170 continue;
8171
8172 sec_relocs
8173 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8174 info->keep_memory);
8175 if (sec_relocs == NULL)
8176 return FALSE;
8177
8178 rend = sec_relocs + o->reloc_count;
8179 for (r = sec_relocs; r < rend; r++)
8180 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8181 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8182 break;
8183
8184 if (elf_section_data (o)->relocs != sec_relocs)
8185 free (sec_relocs);
8186
8187 if (r < rend)
8188 break;
8189 }
8190
8191 if (o == NULL)
8192 {
8193 /* There is no non-call reloc for this stub, so we do
8194 not need it. Since this function is called before
8195 the linker maps input sections to output sections, we
8196 can easily discard it by setting the SEC_EXCLUDE
8197 flag. */
8198 sec->flags |= SEC_EXCLUDE;
8199 return TRUE;
8200 }
8201
8202 /* Record this stub in an array of local symbol stubs for
8203 this BFD. */
8204 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8205 {
8206 unsigned long symcount;
8207 asection **n;
8208 bfd_size_type amt;
8209
8210 if (elf_bad_symtab (abfd))
8211 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8212 else
8213 symcount = symtab_hdr->sh_info;
8214 amt = symcount * sizeof (asection *);
8215 n = bfd_zalloc (abfd, amt);
8216 if (n == NULL)
8217 return FALSE;
8218 mips_elf_tdata (abfd)->local_stubs = n;
8219 }
8220
8221 sec->flags |= SEC_KEEP;
8222 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8223
8224 /* We don't need to set mips16_stubs_seen in this case.
8225 That flag is used to see whether we need to look through
8226 the global symbol table for stubs. We don't need to set
8227 it here, because we just have a local stub. */
8228 }
8229 else
8230 {
8231 struct mips_elf_link_hash_entry *h;
8232
8233 h = ((struct mips_elf_link_hash_entry *)
8234 sym_hashes[r_symndx - extsymoff]);
8235
8236 while (h->root.root.type == bfd_link_hash_indirect
8237 || h->root.root.type == bfd_link_hash_warning)
8238 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8239
8240 /* H is the symbol this stub is for. */
8241
8242 /* If we already have an appropriate stub for this function, we
8243 don't need another one, so we can discard this one. Since
8244 this function is called before the linker maps input sections
8245 to output sections, we can easily discard it by setting the
8246 SEC_EXCLUDE flag. */
8247 if (h->fn_stub != NULL)
8248 {
8249 sec->flags |= SEC_EXCLUDE;
8250 return TRUE;
8251 }
8252
8253 sec->flags |= SEC_KEEP;
8254 h->fn_stub = sec;
8255 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8256 }
8257 }
8258 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8259 {
8260 unsigned long r_symndx;
8261 struct mips_elf_link_hash_entry *h;
8262 asection **loc;
8263
8264 /* Look at the relocation information to figure out which symbol
8265 this is for. */
8266
8267 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8268 if (r_symndx == 0)
8269 {
8270 _bfd_error_handler
8271 /* xgettext:c-format */
8272 (_("%pB: warning: cannot determine the target function for"
8273 " stub section `%s'"),
8274 abfd, name);
8275 bfd_set_error (bfd_error_bad_value);
8276 return FALSE;
8277 }
8278
8279 if (r_symndx < extsymoff
8280 || sym_hashes[r_symndx - extsymoff] == NULL)
8281 {
8282 asection *o;
8283
8284 /* This stub is for a local symbol. This stub will only be
8285 needed if there is some relocation (R_MIPS16_26) in this BFD
8286 that refers to this symbol. */
8287 for (o = abfd->sections; o != NULL; o = o->next)
8288 {
8289 Elf_Internal_Rela *sec_relocs;
8290 const Elf_Internal_Rela *r, *rend;
8291
8292 /* We can ignore stub sections when looking for relocs. */
8293 if ((o->flags & SEC_RELOC) == 0
8294 || o->reloc_count == 0
8295 || section_allows_mips16_refs_p (o))
8296 continue;
8297
8298 sec_relocs
8299 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8300 info->keep_memory);
8301 if (sec_relocs == NULL)
8302 return FALSE;
8303
8304 rend = sec_relocs + o->reloc_count;
8305 for (r = sec_relocs; r < rend; r++)
8306 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8307 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8308 break;
8309
8310 if (elf_section_data (o)->relocs != sec_relocs)
8311 free (sec_relocs);
8312
8313 if (r < rend)
8314 break;
8315 }
8316
8317 if (o == NULL)
8318 {
8319 /* There is no non-call reloc for this stub, so we do
8320 not need it. Since this function is called before
8321 the linker maps input sections to output sections, we
8322 can easily discard it by setting the SEC_EXCLUDE
8323 flag. */
8324 sec->flags |= SEC_EXCLUDE;
8325 return TRUE;
8326 }
8327
8328 /* Record this stub in an array of local symbol call_stubs for
8329 this BFD. */
8330 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8331 {
8332 unsigned long symcount;
8333 asection **n;
8334 bfd_size_type amt;
8335
8336 if (elf_bad_symtab (abfd))
8337 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8338 else
8339 symcount = symtab_hdr->sh_info;
8340 amt = symcount * sizeof (asection *);
8341 n = bfd_zalloc (abfd, amt);
8342 if (n == NULL)
8343 return FALSE;
8344 mips_elf_tdata (abfd)->local_call_stubs = n;
8345 }
8346
8347 sec->flags |= SEC_KEEP;
8348 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8349
8350 /* We don't need to set mips16_stubs_seen in this case.
8351 That flag is used to see whether we need to look through
8352 the global symbol table for stubs. We don't need to set
8353 it here, because we just have a local stub. */
8354 }
8355 else
8356 {
8357 h = ((struct mips_elf_link_hash_entry *)
8358 sym_hashes[r_symndx - extsymoff]);
8359
8360 /* H is the symbol this stub is for. */
8361
8362 if (CALL_FP_STUB_P (name))
8363 loc = &h->call_fp_stub;
8364 else
8365 loc = &h->call_stub;
8366
8367 /* If we already have an appropriate stub for this function, we
8368 don't need another one, so we can discard this one. Since
8369 this function is called before the linker maps input sections
8370 to output sections, we can easily discard it by setting the
8371 SEC_EXCLUDE flag. */
8372 if (*loc != NULL)
8373 {
8374 sec->flags |= SEC_EXCLUDE;
8375 return TRUE;
8376 }
8377
8378 sec->flags |= SEC_KEEP;
8379 *loc = sec;
8380 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8381 }
8382 }
8383
8384 sreloc = NULL;
8385 contents = NULL;
8386 for (rel = relocs; rel < rel_end; ++rel)
8387 {
8388 unsigned long r_symndx;
8389 unsigned int r_type;
8390 struct elf_link_hash_entry *h;
8391 bfd_boolean can_make_dynamic_p;
8392 bfd_boolean call_reloc_p;
8393 bfd_boolean constrain_symbol_p;
8394
8395 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8396 r_type = ELF_R_TYPE (abfd, rel->r_info);
8397
8398 if (r_symndx < extsymoff)
8399 h = NULL;
8400 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8401 {
8402 _bfd_error_handler
8403 /* xgettext:c-format */
8404 (_("%pB: malformed reloc detected for section %s"),
8405 abfd, name);
8406 bfd_set_error (bfd_error_bad_value);
8407 return FALSE;
8408 }
8409 else
8410 {
8411 h = sym_hashes[r_symndx - extsymoff];
8412 if (h != NULL)
8413 {
8414 while (h->root.type == bfd_link_hash_indirect
8415 || h->root.type == bfd_link_hash_warning)
8416 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8417 }
8418 }
8419
8420 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8421 relocation into a dynamic one. */
8422 can_make_dynamic_p = FALSE;
8423
8424 /* Set CALL_RELOC_P to true if the relocation is for a call,
8425 and if pointer equality therefore doesn't matter. */
8426 call_reloc_p = FALSE;
8427
8428 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8429 into account when deciding how to define the symbol.
8430 Relocations in nonallocatable sections such as .pdr and
8431 .debug* should have no effect. */
8432 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8433
8434 switch (r_type)
8435 {
8436 case R_MIPS_CALL16:
8437 case R_MIPS_CALL_HI16:
8438 case R_MIPS_CALL_LO16:
8439 case R_MIPS16_CALL16:
8440 case R_MICROMIPS_CALL16:
8441 case R_MICROMIPS_CALL_HI16:
8442 case R_MICROMIPS_CALL_LO16:
8443 call_reloc_p = TRUE;
8444 /* Fall through. */
8445
8446 case R_MIPS_GOT16:
8447 case R_MIPS_GOT_HI16:
8448 case R_MIPS_GOT_LO16:
8449 case R_MIPS_GOT_PAGE:
8450 case R_MIPS_GOT_OFST:
8451 case R_MIPS_GOT_DISP:
8452 case R_MIPS_TLS_GOTTPREL:
8453 case R_MIPS_TLS_GD:
8454 case R_MIPS_TLS_LDM:
8455 case R_MIPS16_GOT16:
8456 case R_MIPS16_TLS_GOTTPREL:
8457 case R_MIPS16_TLS_GD:
8458 case R_MIPS16_TLS_LDM:
8459 case R_MICROMIPS_GOT16:
8460 case R_MICROMIPS_GOT_HI16:
8461 case R_MICROMIPS_GOT_LO16:
8462 case R_MICROMIPS_GOT_PAGE:
8463 case R_MICROMIPS_GOT_OFST:
8464 case R_MICROMIPS_GOT_DISP:
8465 case R_MICROMIPS_TLS_GOTTPREL:
8466 case R_MICROMIPS_TLS_GD:
8467 case R_MICROMIPS_TLS_LDM:
8468 if (dynobj == NULL)
8469 elf_hash_table (info)->dynobj = dynobj = abfd;
8470 if (!mips_elf_create_got_section (dynobj, info))
8471 return FALSE;
8472 if (htab->is_vxworks && !bfd_link_pic (info))
8473 {
8474 _bfd_error_handler
8475 /* xgettext:c-format */
8476 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8477 abfd, (uint64_t) rel->r_offset);
8478 bfd_set_error (bfd_error_bad_value);
8479 return FALSE;
8480 }
8481 can_make_dynamic_p = TRUE;
8482 break;
8483
8484 case R_MIPS_NONE:
8485 case R_MIPS_JALR:
8486 case R_MICROMIPS_JALR:
8487 /* These relocations have empty fields and are purely there to
8488 provide link information. The symbol value doesn't matter. */
8489 constrain_symbol_p = FALSE;
8490 break;
8491
8492 case R_MIPS_GPREL16:
8493 case R_MIPS_GPREL32:
8494 case R_MIPS16_GPREL:
8495 case R_MICROMIPS_GPREL16:
8496 /* GP-relative relocations always resolve to a definition in a
8497 regular input file, ignoring the one-definition rule. This is
8498 important for the GP setup sequence in NewABI code, which
8499 always resolves to a local function even if other relocations
8500 against the symbol wouldn't. */
8501 constrain_symbol_p = FALSE;
8502 break;
8503
8504 case R_MIPS_32:
8505 case R_MIPS_REL32:
8506 case R_MIPS_64:
8507 /* In VxWorks executables, references to external symbols
8508 must be handled using copy relocs or PLT entries; it is not
8509 possible to convert this relocation into a dynamic one.
8510
8511 For executables that use PLTs and copy-relocs, we have a
8512 choice between converting the relocation into a dynamic
8513 one or using copy relocations or PLT entries. It is
8514 usually better to do the former, unless the relocation is
8515 against a read-only section. */
8516 if ((bfd_link_pic (info)
8517 || (h != NULL
8518 && !htab->is_vxworks
8519 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8520 && !(!info->nocopyreloc
8521 && !PIC_OBJECT_P (abfd)
8522 && MIPS_ELF_READONLY_SECTION (sec))))
8523 && (sec->flags & SEC_ALLOC) != 0)
8524 {
8525 can_make_dynamic_p = TRUE;
8526 if (dynobj == NULL)
8527 elf_hash_table (info)->dynobj = dynobj = abfd;
8528 }
8529 break;
8530
8531 case R_MIPS_26:
8532 case R_MIPS_PC16:
8533 case R_MIPS_PC21_S2:
8534 case R_MIPS_PC26_S2:
8535 case R_MIPS16_26:
8536 case R_MIPS16_PC16_S1:
8537 case R_MICROMIPS_26_S1:
8538 case R_MICROMIPS_PC7_S1:
8539 case R_MICROMIPS_PC10_S1:
8540 case R_MICROMIPS_PC16_S1:
8541 case R_MICROMIPS_PC23_S2:
8542 call_reloc_p = TRUE;
8543 break;
8544 }
8545
8546 if (h)
8547 {
8548 if (constrain_symbol_p)
8549 {
8550 if (!can_make_dynamic_p)
8551 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8552
8553 if (!call_reloc_p)
8554 h->pointer_equality_needed = 1;
8555
8556 /* We must not create a stub for a symbol that has
8557 relocations related to taking the function's address.
8558 This doesn't apply to VxWorks, where CALL relocs refer
8559 to a .got.plt entry instead of a normal .got entry. */
8560 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8561 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8562 }
8563
8564 /* Relocations against the special VxWorks __GOTT_BASE__ and
8565 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8566 room for them in .rela.dyn. */
8567 if (is_gott_symbol (info, h))
8568 {
8569 if (sreloc == NULL)
8570 {
8571 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8572 if (sreloc == NULL)
8573 return FALSE;
8574 }
8575 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8576 if (MIPS_ELF_READONLY_SECTION (sec))
8577 /* We tell the dynamic linker that there are
8578 relocations against the text segment. */
8579 info->flags |= DF_TEXTREL;
8580 }
8581 }
8582 else if (call_lo16_reloc_p (r_type)
8583 || got_lo16_reloc_p (r_type)
8584 || got_disp_reloc_p (r_type)
8585 || (got16_reloc_p (r_type) && htab->is_vxworks))
8586 {
8587 /* We may need a local GOT entry for this relocation. We
8588 don't count R_MIPS_GOT_PAGE because we can estimate the
8589 maximum number of pages needed by looking at the size of
8590 the segment. Similar comments apply to R_MIPS*_GOT16 and
8591 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8592 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8593 R_MIPS_CALL_HI16 because these are always followed by an
8594 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8595 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8596 rel->r_addend, info, r_type))
8597 return FALSE;
8598 }
8599
8600 if (h != NULL
8601 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8602 ELF_ST_IS_MIPS16 (h->other)))
8603 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8604
8605 switch (r_type)
8606 {
8607 case R_MIPS_CALL16:
8608 case R_MIPS16_CALL16:
8609 case R_MICROMIPS_CALL16:
8610 if (h == NULL)
8611 {
8612 _bfd_error_handler
8613 /* xgettext:c-format */
8614 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8615 abfd, (uint64_t) rel->r_offset);
8616 bfd_set_error (bfd_error_bad_value);
8617 return FALSE;
8618 }
8619 /* Fall through. */
8620
8621 case R_MIPS_CALL_HI16:
8622 case R_MIPS_CALL_LO16:
8623 case R_MICROMIPS_CALL_HI16:
8624 case R_MICROMIPS_CALL_LO16:
8625 if (h != NULL)
8626 {
8627 /* Make sure there is room in the regular GOT to hold the
8628 function's address. We may eliminate it in favour of
8629 a .got.plt entry later; see mips_elf_count_got_symbols. */
8630 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8631 r_type))
8632 return FALSE;
8633
8634 /* We need a stub, not a plt entry for the undefined
8635 function. But we record it as if it needs plt. See
8636 _bfd_elf_adjust_dynamic_symbol. */
8637 h->needs_plt = 1;
8638 h->type = STT_FUNC;
8639 }
8640 break;
8641
8642 case R_MIPS_GOT_PAGE:
8643 case R_MICROMIPS_GOT_PAGE:
8644 case R_MIPS16_GOT16:
8645 case R_MIPS_GOT16:
8646 case R_MIPS_GOT_HI16:
8647 case R_MIPS_GOT_LO16:
8648 case R_MICROMIPS_GOT16:
8649 case R_MICROMIPS_GOT_HI16:
8650 case R_MICROMIPS_GOT_LO16:
8651 if (!h || got_page_reloc_p (r_type))
8652 {
8653 /* This relocation needs (or may need, if h != NULL) a
8654 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8655 know for sure until we know whether the symbol is
8656 preemptible. */
8657 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8658 {
8659 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8660 return FALSE;
8661 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8662 addend = mips_elf_read_rel_addend (abfd, rel,
8663 howto, contents);
8664 if (got16_reloc_p (r_type))
8665 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8666 contents, &addend);
8667 else
8668 addend <<= howto->rightshift;
8669 }
8670 else
8671 addend = rel->r_addend;
8672 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8673 h, addend))
8674 return FALSE;
8675
8676 if (h)
8677 {
8678 struct mips_elf_link_hash_entry *hmips =
8679 (struct mips_elf_link_hash_entry *) h;
8680
8681 /* This symbol is definitely not overridable. */
8682 if (hmips->root.def_regular
8683 && ! (bfd_link_pic (info) && ! info->symbolic
8684 && ! hmips->root.forced_local))
8685 h = NULL;
8686 }
8687 }
8688 /* If this is a global, overridable symbol, GOT_PAGE will
8689 decay to GOT_DISP, so we'll need a GOT entry for it. */
8690 /* Fall through. */
8691
8692 case R_MIPS_GOT_DISP:
8693 case R_MICROMIPS_GOT_DISP:
8694 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8695 FALSE, r_type))
8696 return FALSE;
8697 break;
8698
8699 case R_MIPS_TLS_GOTTPREL:
8700 case R_MIPS16_TLS_GOTTPREL:
8701 case R_MICROMIPS_TLS_GOTTPREL:
8702 if (bfd_link_pic (info))
8703 info->flags |= DF_STATIC_TLS;
8704 /* Fall through */
8705
8706 case R_MIPS_TLS_LDM:
8707 case R_MIPS16_TLS_LDM:
8708 case R_MICROMIPS_TLS_LDM:
8709 if (tls_ldm_reloc_p (r_type))
8710 {
8711 r_symndx = STN_UNDEF;
8712 h = NULL;
8713 }
8714 /* Fall through */
8715
8716 case R_MIPS_TLS_GD:
8717 case R_MIPS16_TLS_GD:
8718 case R_MICROMIPS_TLS_GD:
8719 /* This symbol requires a global offset table entry, or two
8720 for TLS GD relocations. */
8721 if (h != NULL)
8722 {
8723 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8724 FALSE, r_type))
8725 return FALSE;
8726 }
8727 else
8728 {
8729 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8730 rel->r_addend,
8731 info, r_type))
8732 return FALSE;
8733 }
8734 break;
8735
8736 case R_MIPS_32:
8737 case R_MIPS_REL32:
8738 case R_MIPS_64:
8739 /* In VxWorks executables, references to external symbols
8740 are handled using copy relocs or PLT stubs, so there's
8741 no need to add a .rela.dyn entry for this relocation. */
8742 if (can_make_dynamic_p)
8743 {
8744 if (sreloc == NULL)
8745 {
8746 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8747 if (sreloc == NULL)
8748 return FALSE;
8749 }
8750 if (bfd_link_pic (info) && h == NULL)
8751 {
8752 /* When creating a shared object, we must copy these
8753 reloc types into the output file as R_MIPS_REL32
8754 relocs. Make room for this reloc in .rel(a).dyn. */
8755 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8756 if (MIPS_ELF_READONLY_SECTION (sec))
8757 /* We tell the dynamic linker that there are
8758 relocations against the text segment. */
8759 info->flags |= DF_TEXTREL;
8760 }
8761 else
8762 {
8763 struct mips_elf_link_hash_entry *hmips;
8764
8765 /* For a shared object, we must copy this relocation
8766 unless the symbol turns out to be undefined and
8767 weak with non-default visibility, in which case
8768 it will be left as zero.
8769
8770 We could elide R_MIPS_REL32 for locally binding symbols
8771 in shared libraries, but do not yet do so.
8772
8773 For an executable, we only need to copy this
8774 reloc if the symbol is defined in a dynamic
8775 object. */
8776 hmips = (struct mips_elf_link_hash_entry *) h;
8777 ++hmips->possibly_dynamic_relocs;
8778 if (MIPS_ELF_READONLY_SECTION (sec))
8779 /* We need it to tell the dynamic linker if there
8780 are relocations against the text segment. */
8781 hmips->readonly_reloc = TRUE;
8782 }
8783 }
8784
8785 if (SGI_COMPAT (abfd))
8786 mips_elf_hash_table (info)->compact_rel_size +=
8787 sizeof (Elf32_External_crinfo);
8788 break;
8789
8790 case R_MIPS_26:
8791 case R_MIPS_GPREL16:
8792 case R_MIPS_LITERAL:
8793 case R_MIPS_GPREL32:
8794 case R_MICROMIPS_26_S1:
8795 case R_MICROMIPS_GPREL16:
8796 case R_MICROMIPS_LITERAL:
8797 case R_MICROMIPS_GPREL7_S2:
8798 if (SGI_COMPAT (abfd))
8799 mips_elf_hash_table (info)->compact_rel_size +=
8800 sizeof (Elf32_External_crinfo);
8801 break;
8802
8803 /* This relocation describes the C++ object vtable hierarchy.
8804 Reconstruct it for later use during GC. */
8805 case R_MIPS_GNU_VTINHERIT:
8806 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8807 return FALSE;
8808 break;
8809
8810 /* This relocation describes which C++ vtable entries are actually
8811 used. Record for later use during GC. */
8812 case R_MIPS_GNU_VTENTRY:
8813 BFD_ASSERT (h != NULL);
8814 if (h != NULL
8815 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8816 return FALSE;
8817 break;
8818
8819 default:
8820 break;
8821 }
8822
8823 /* Record the need for a PLT entry. At this point we don't know
8824 yet if we are going to create a PLT in the first place, but
8825 we only record whether the relocation requires a standard MIPS
8826 or a compressed code entry anyway. If we don't make a PLT after
8827 all, then we'll just ignore these arrangements. Likewise if
8828 a PLT entry is not created because the symbol is satisfied
8829 locally. */
8830 if (h != NULL
8831 && (branch_reloc_p (r_type)
8832 || mips16_branch_reloc_p (r_type)
8833 || micromips_branch_reloc_p (r_type))
8834 && !SYMBOL_CALLS_LOCAL (info, h))
8835 {
8836 if (h->plt.plist == NULL)
8837 h->plt.plist = mips_elf_make_plt_record (abfd);
8838 if (h->plt.plist == NULL)
8839 return FALSE;
8840
8841 if (branch_reloc_p (r_type))
8842 h->plt.plist->need_mips = TRUE;
8843 else
8844 h->plt.plist->need_comp = TRUE;
8845 }
8846
8847 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8848 if there is one. We only need to handle global symbols here;
8849 we decide whether to keep or delete stubs for local symbols
8850 when processing the stub's relocations. */
8851 if (h != NULL
8852 && !mips16_call_reloc_p (r_type)
8853 && !section_allows_mips16_refs_p (sec))
8854 {
8855 struct mips_elf_link_hash_entry *mh;
8856
8857 mh = (struct mips_elf_link_hash_entry *) h;
8858 mh->need_fn_stub = TRUE;
8859 }
8860
8861 /* Refuse some position-dependent relocations when creating a
8862 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8863 not PIC, but we can create dynamic relocations and the result
8864 will be fine. Also do not refuse R_MIPS_LO16, which can be
8865 combined with R_MIPS_GOT16. */
8866 if (bfd_link_pic (info))
8867 {
8868 switch (r_type)
8869 {
8870 case R_MIPS16_HI16:
8871 case R_MIPS_HI16:
8872 case R_MIPS_HIGHER:
8873 case R_MIPS_HIGHEST:
8874 case R_MICROMIPS_HI16:
8875 case R_MICROMIPS_HIGHER:
8876 case R_MICROMIPS_HIGHEST:
8877 /* Don't refuse a high part relocation if it's against
8878 no symbol (e.g. part of a compound relocation). */
8879 if (r_symndx == STN_UNDEF)
8880 break;
8881
8882 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8883 and has a special meaning. */
8884 if (!NEWABI_P (abfd) && h != NULL
8885 && strcmp (h->root.root.string, "_gp_disp") == 0)
8886 break;
8887
8888 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8889 if (is_gott_symbol (info, h))
8890 break;
8891
8892 /* FALLTHROUGH */
8893
8894 case R_MIPS16_26:
8895 case R_MIPS_26:
8896 case R_MICROMIPS_26_S1:
8897 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8898 _bfd_error_handler
8899 /* xgettext:c-format */
8900 (_("%pB: relocation %s against `%s' can not be used"
8901 " when making a shared object; recompile with -fPIC"),
8902 abfd, howto->name,
8903 (h) ? h->root.root.string : "a local symbol");
8904 bfd_set_error (bfd_error_bad_value);
8905 return FALSE;
8906 default:
8907 break;
8908 }
8909 }
8910 }
8911
8912 return TRUE;
8913 }
8914 \f
8915 /* Allocate space for global sym dynamic relocs. */
8916
8917 static bfd_boolean
8918 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8919 {
8920 struct bfd_link_info *info = inf;
8921 bfd *dynobj;
8922 struct mips_elf_link_hash_entry *hmips;
8923 struct mips_elf_link_hash_table *htab;
8924
8925 htab = mips_elf_hash_table (info);
8926 BFD_ASSERT (htab != NULL);
8927
8928 dynobj = elf_hash_table (info)->dynobj;
8929 hmips = (struct mips_elf_link_hash_entry *) h;
8930
8931 /* VxWorks executables are handled elsewhere; we only need to
8932 allocate relocations in shared objects. */
8933 if (htab->is_vxworks && !bfd_link_pic (info))
8934 return TRUE;
8935
8936 /* Ignore indirect symbols. All relocations against such symbols
8937 will be redirected to the target symbol. */
8938 if (h->root.type == bfd_link_hash_indirect)
8939 return TRUE;
8940
8941 /* If this symbol is defined in a dynamic object, or we are creating
8942 a shared library, we will need to copy any R_MIPS_32 or
8943 R_MIPS_REL32 relocs against it into the output file. */
8944 if (! bfd_link_relocatable (info)
8945 && hmips->possibly_dynamic_relocs != 0
8946 && (h->root.type == bfd_link_hash_defweak
8947 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8948 || bfd_link_pic (info)))
8949 {
8950 bfd_boolean do_copy = TRUE;
8951
8952 if (h->root.type == bfd_link_hash_undefweak)
8953 {
8954 /* Do not copy relocations for undefined weak symbols with
8955 non-default visibility. */
8956 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8957 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8958 do_copy = FALSE;
8959
8960 /* Make sure undefined weak symbols are output as a dynamic
8961 symbol in PIEs. */
8962 else if (h->dynindx == -1 && !h->forced_local)
8963 {
8964 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8965 return FALSE;
8966 }
8967 }
8968
8969 if (do_copy)
8970 {
8971 /* Even though we don't directly need a GOT entry for this symbol,
8972 the SVR4 psABI requires it to have a dynamic symbol table
8973 index greater that DT_MIPS_GOTSYM if there are dynamic
8974 relocations against it.
8975
8976 VxWorks does not enforce the same mapping between the GOT
8977 and the symbol table, so the same requirement does not
8978 apply there. */
8979 if (!htab->is_vxworks)
8980 {
8981 if (hmips->global_got_area > GGA_RELOC_ONLY)
8982 hmips->global_got_area = GGA_RELOC_ONLY;
8983 hmips->got_only_for_calls = FALSE;
8984 }
8985
8986 mips_elf_allocate_dynamic_relocations
8987 (dynobj, info, hmips->possibly_dynamic_relocs);
8988 if (hmips->readonly_reloc)
8989 /* We tell the dynamic linker that there are relocations
8990 against the text segment. */
8991 info->flags |= DF_TEXTREL;
8992 }
8993 }
8994
8995 return TRUE;
8996 }
8997
8998 /* Adjust a symbol defined by a dynamic object and referenced by a
8999 regular object. The current definition is in some section of the
9000 dynamic object, but we're not including those sections. We have to
9001 change the definition to something the rest of the link can
9002 understand. */
9003
9004 bfd_boolean
9005 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9006 struct elf_link_hash_entry *h)
9007 {
9008 bfd *dynobj;
9009 struct mips_elf_link_hash_entry *hmips;
9010 struct mips_elf_link_hash_table *htab;
9011 asection *s, *srel;
9012
9013 htab = mips_elf_hash_table (info);
9014 BFD_ASSERT (htab != NULL);
9015
9016 dynobj = elf_hash_table (info)->dynobj;
9017 hmips = (struct mips_elf_link_hash_entry *) h;
9018
9019 /* Make sure we know what is going on here. */
9020 BFD_ASSERT (dynobj != NULL
9021 && (h->needs_plt
9022 || h->is_weakalias
9023 || (h->def_dynamic
9024 && h->ref_regular
9025 && !h->def_regular)));
9026
9027 hmips = (struct mips_elf_link_hash_entry *) h;
9028
9029 /* If there are call relocations against an externally-defined symbol,
9030 see whether we can create a MIPS lazy-binding stub for it. We can
9031 only do this if all references to the function are through call
9032 relocations, and in that case, the traditional lazy-binding stubs
9033 are much more efficient than PLT entries.
9034
9035 Traditional stubs are only available on SVR4 psABI-based systems;
9036 VxWorks always uses PLTs instead. */
9037 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9038 {
9039 if (! elf_hash_table (info)->dynamic_sections_created)
9040 return TRUE;
9041
9042 /* If this symbol is not defined in a regular file, then set
9043 the symbol to the stub location. This is required to make
9044 function pointers compare as equal between the normal
9045 executable and the shared library. */
9046 if (!h->def_regular)
9047 {
9048 hmips->needs_lazy_stub = TRUE;
9049 htab->lazy_stub_count++;
9050 return TRUE;
9051 }
9052 }
9053 /* As above, VxWorks requires PLT entries for externally-defined
9054 functions that are only accessed through call relocations.
9055
9056 Both VxWorks and non-VxWorks targets also need PLT entries if there
9057 are static-only relocations against an externally-defined function.
9058 This can technically occur for shared libraries if there are
9059 branches to the symbol, although it is unlikely that this will be
9060 used in practice due to the short ranges involved. It can occur
9061 for any relative or absolute relocation in executables; in that
9062 case, the PLT entry becomes the function's canonical address. */
9063 else if (((h->needs_plt && !hmips->no_fn_stub)
9064 || (h->type == STT_FUNC && hmips->has_static_relocs))
9065 && htab->use_plts_and_copy_relocs
9066 && !SYMBOL_CALLS_LOCAL (info, h)
9067 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9068 && h->root.type == bfd_link_hash_undefweak))
9069 {
9070 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9071 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9072
9073 /* If this is the first symbol to need a PLT entry, then make some
9074 basic setup. Also work out PLT entry sizes. We'll need them
9075 for PLT offset calculations. */
9076 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9077 {
9078 BFD_ASSERT (htab->root.sgotplt->size == 0);
9079 BFD_ASSERT (htab->plt_got_index == 0);
9080
9081 /* If we're using the PLT additions to the psABI, each PLT
9082 entry is 16 bytes and the PLT0 entry is 32 bytes.
9083 Encourage better cache usage by aligning. We do this
9084 lazily to avoid pessimizing traditional objects. */
9085 if (!htab->is_vxworks
9086 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9087 return FALSE;
9088
9089 /* Make sure that .got.plt is word-aligned. We do this lazily
9090 for the same reason as above. */
9091 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9092 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9093 return FALSE;
9094
9095 /* On non-VxWorks targets, the first two entries in .got.plt
9096 are reserved. */
9097 if (!htab->is_vxworks)
9098 htab->plt_got_index
9099 += (get_elf_backend_data (dynobj)->got_header_size
9100 / MIPS_ELF_GOT_SIZE (dynobj));
9101
9102 /* On VxWorks, also allocate room for the header's
9103 .rela.plt.unloaded entries. */
9104 if (htab->is_vxworks && !bfd_link_pic (info))
9105 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9106
9107 /* Now work out the sizes of individual PLT entries. */
9108 if (htab->is_vxworks && bfd_link_pic (info))
9109 htab->plt_mips_entry_size
9110 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9111 else if (htab->is_vxworks)
9112 htab->plt_mips_entry_size
9113 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9114 else if (newabi_p)
9115 htab->plt_mips_entry_size
9116 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9117 else if (!micromips_p)
9118 {
9119 htab->plt_mips_entry_size
9120 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9121 htab->plt_comp_entry_size
9122 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9123 }
9124 else if (htab->insn32)
9125 {
9126 htab->plt_mips_entry_size
9127 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9128 htab->plt_comp_entry_size
9129 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9130 }
9131 else
9132 {
9133 htab->plt_mips_entry_size
9134 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9135 htab->plt_comp_entry_size
9136 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9137 }
9138 }
9139
9140 if (h->plt.plist == NULL)
9141 h->plt.plist = mips_elf_make_plt_record (dynobj);
9142 if (h->plt.plist == NULL)
9143 return FALSE;
9144
9145 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9146 n32 or n64, so always use a standard entry there.
9147
9148 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9149 all MIPS16 calls will go via that stub, and there is no benefit
9150 to having a MIPS16 entry. And in the case of call_stub a
9151 standard entry actually has to be used as the stub ends with a J
9152 instruction. */
9153 if (newabi_p
9154 || htab->is_vxworks
9155 || hmips->call_stub
9156 || hmips->call_fp_stub)
9157 {
9158 h->plt.plist->need_mips = TRUE;
9159 h->plt.plist->need_comp = FALSE;
9160 }
9161
9162 /* Otherwise, if there are no direct calls to the function, we
9163 have a free choice of whether to use standard or compressed
9164 entries. Prefer microMIPS entries if the object is known to
9165 contain microMIPS code, so that it becomes possible to create
9166 pure microMIPS binaries. Prefer standard entries otherwise,
9167 because MIPS16 ones are no smaller and are usually slower. */
9168 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9169 {
9170 if (micromips_p)
9171 h->plt.plist->need_comp = TRUE;
9172 else
9173 h->plt.plist->need_mips = TRUE;
9174 }
9175
9176 if (h->plt.plist->need_mips)
9177 {
9178 h->plt.plist->mips_offset = htab->plt_mips_offset;
9179 htab->plt_mips_offset += htab->plt_mips_entry_size;
9180 }
9181 if (h->plt.plist->need_comp)
9182 {
9183 h->plt.plist->comp_offset = htab->plt_comp_offset;
9184 htab->plt_comp_offset += htab->plt_comp_entry_size;
9185 }
9186
9187 /* Reserve the corresponding .got.plt entry now too. */
9188 h->plt.plist->gotplt_index = htab->plt_got_index++;
9189
9190 /* If the output file has no definition of the symbol, set the
9191 symbol's value to the address of the stub. */
9192 if (!bfd_link_pic (info) && !h->def_regular)
9193 hmips->use_plt_entry = TRUE;
9194
9195 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9196 htab->root.srelplt->size += (htab->is_vxworks
9197 ? MIPS_ELF_RELA_SIZE (dynobj)
9198 : MIPS_ELF_REL_SIZE (dynobj));
9199
9200 /* Make room for the .rela.plt.unloaded relocations. */
9201 if (htab->is_vxworks && !bfd_link_pic (info))
9202 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9203
9204 /* All relocations against this symbol that could have been made
9205 dynamic will now refer to the PLT entry instead. */
9206 hmips->possibly_dynamic_relocs = 0;
9207
9208 return TRUE;
9209 }
9210
9211 /* If this is a weak symbol, and there is a real definition, the
9212 processor independent code will have arranged for us to see the
9213 real definition first, and we can just use the same value. */
9214 if (h->is_weakalias)
9215 {
9216 struct elf_link_hash_entry *def = weakdef (h);
9217 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9218 h->root.u.def.section = def->root.u.def.section;
9219 h->root.u.def.value = def->root.u.def.value;
9220 return TRUE;
9221 }
9222
9223 /* Otherwise, there is nothing further to do for symbols defined
9224 in regular objects. */
9225 if (h->def_regular)
9226 return TRUE;
9227
9228 /* There's also nothing more to do if we'll convert all relocations
9229 against this symbol into dynamic relocations. */
9230 if (!hmips->has_static_relocs)
9231 return TRUE;
9232
9233 /* We're now relying on copy relocations. Complain if we have
9234 some that we can't convert. */
9235 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9236 {
9237 _bfd_error_handler (_("non-dynamic relocations refer to "
9238 "dynamic symbol %s"),
9239 h->root.root.string);
9240 bfd_set_error (bfd_error_bad_value);
9241 return FALSE;
9242 }
9243
9244 /* We must allocate the symbol in our .dynbss section, which will
9245 become part of the .bss section of the executable. There will be
9246 an entry for this symbol in the .dynsym section. The dynamic
9247 object will contain position independent code, so all references
9248 from the dynamic object to this symbol will go through the global
9249 offset table. The dynamic linker will use the .dynsym entry to
9250 determine the address it must put in the global offset table, so
9251 both the dynamic object and the regular object will refer to the
9252 same memory location for the variable. */
9253
9254 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9255 {
9256 s = htab->root.sdynrelro;
9257 srel = htab->root.sreldynrelro;
9258 }
9259 else
9260 {
9261 s = htab->root.sdynbss;
9262 srel = htab->root.srelbss;
9263 }
9264 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9265 {
9266 if (htab->is_vxworks)
9267 srel->size += sizeof (Elf32_External_Rela);
9268 else
9269 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9270 h->needs_copy = 1;
9271 }
9272
9273 /* All relocations against this symbol that could have been made
9274 dynamic will now refer to the local copy instead. */
9275 hmips->possibly_dynamic_relocs = 0;
9276
9277 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9278 }
9279 \f
9280 /* This function is called after all the input files have been read,
9281 and the input sections have been assigned to output sections. We
9282 check for any mips16 stub sections that we can discard. */
9283
9284 bfd_boolean
9285 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9286 struct bfd_link_info *info)
9287 {
9288 asection *sect;
9289 struct mips_elf_link_hash_table *htab;
9290 struct mips_htab_traverse_info hti;
9291
9292 htab = mips_elf_hash_table (info);
9293 BFD_ASSERT (htab != NULL);
9294
9295 /* The .reginfo section has a fixed size. */
9296 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9297 if (sect != NULL)
9298 {
9299 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9300 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9301 }
9302
9303 /* The .MIPS.abiflags section has a fixed size. */
9304 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9305 if (sect != NULL)
9306 {
9307 bfd_set_section_size (output_bfd, sect,
9308 sizeof (Elf_External_ABIFlags_v0));
9309 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9310 }
9311
9312 hti.info = info;
9313 hti.output_bfd = output_bfd;
9314 hti.error = FALSE;
9315 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9316 mips_elf_check_symbols, &hti);
9317 if (hti.error)
9318 return FALSE;
9319
9320 return TRUE;
9321 }
9322
9323 /* If the link uses a GOT, lay it out and work out its size. */
9324
9325 static bfd_boolean
9326 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9327 {
9328 bfd *dynobj;
9329 asection *s;
9330 struct mips_got_info *g;
9331 bfd_size_type loadable_size = 0;
9332 bfd_size_type page_gotno;
9333 bfd *ibfd;
9334 struct mips_elf_traverse_got_arg tga;
9335 struct mips_elf_link_hash_table *htab;
9336
9337 htab = mips_elf_hash_table (info);
9338 BFD_ASSERT (htab != NULL);
9339
9340 s = htab->root.sgot;
9341 if (s == NULL)
9342 return TRUE;
9343
9344 dynobj = elf_hash_table (info)->dynobj;
9345 g = htab->got_info;
9346
9347 /* Allocate room for the reserved entries. VxWorks always reserves
9348 3 entries; other objects only reserve 2 entries. */
9349 BFD_ASSERT (g->assigned_low_gotno == 0);
9350 if (htab->is_vxworks)
9351 htab->reserved_gotno = 3;
9352 else
9353 htab->reserved_gotno = 2;
9354 g->local_gotno += htab->reserved_gotno;
9355 g->assigned_low_gotno = htab->reserved_gotno;
9356
9357 /* Decide which symbols need to go in the global part of the GOT and
9358 count the number of reloc-only GOT symbols. */
9359 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9360
9361 if (!mips_elf_resolve_final_got_entries (info, g))
9362 return FALSE;
9363
9364 /* Calculate the total loadable size of the output. That
9365 will give us the maximum number of GOT_PAGE entries
9366 required. */
9367 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9368 {
9369 asection *subsection;
9370
9371 for (subsection = ibfd->sections;
9372 subsection;
9373 subsection = subsection->next)
9374 {
9375 if ((subsection->flags & SEC_ALLOC) == 0)
9376 continue;
9377 loadable_size += ((subsection->size + 0xf)
9378 &~ (bfd_size_type) 0xf);
9379 }
9380 }
9381
9382 if (htab->is_vxworks)
9383 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9384 relocations against local symbols evaluate to "G", and the EABI does
9385 not include R_MIPS_GOT_PAGE. */
9386 page_gotno = 0;
9387 else
9388 /* Assume there are two loadable segments consisting of contiguous
9389 sections. Is 5 enough? */
9390 page_gotno = (loadable_size >> 16) + 5;
9391
9392 /* Choose the smaller of the two page estimates; both are intended to be
9393 conservative. */
9394 if (page_gotno > g->page_gotno)
9395 page_gotno = g->page_gotno;
9396
9397 g->local_gotno += page_gotno;
9398 g->assigned_high_gotno = g->local_gotno - 1;
9399
9400 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9401 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9402 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9403
9404 /* VxWorks does not support multiple GOTs. It initializes $gp to
9405 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9406 dynamic loader. */
9407 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9408 {
9409 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9410 return FALSE;
9411 }
9412 else
9413 {
9414 /* Record that all bfds use G. This also has the effect of freeing
9415 the per-bfd GOTs, which we no longer need. */
9416 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9417 if (mips_elf_bfd_got (ibfd, FALSE))
9418 mips_elf_replace_bfd_got (ibfd, g);
9419 mips_elf_replace_bfd_got (output_bfd, g);
9420
9421 /* Set up TLS entries. */
9422 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9423 tga.info = info;
9424 tga.g = g;
9425 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9426 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9427 if (!tga.g)
9428 return FALSE;
9429 BFD_ASSERT (g->tls_assigned_gotno
9430 == g->global_gotno + g->local_gotno + g->tls_gotno);
9431
9432 /* Each VxWorks GOT entry needs an explicit relocation. */
9433 if (htab->is_vxworks && bfd_link_pic (info))
9434 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9435
9436 /* Allocate room for the TLS relocations. */
9437 if (g->relocs)
9438 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9439 }
9440
9441 return TRUE;
9442 }
9443
9444 /* Estimate the size of the .MIPS.stubs section. */
9445
9446 static void
9447 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9448 {
9449 struct mips_elf_link_hash_table *htab;
9450 bfd_size_type dynsymcount;
9451
9452 htab = mips_elf_hash_table (info);
9453 BFD_ASSERT (htab != NULL);
9454
9455 if (htab->lazy_stub_count == 0)
9456 return;
9457
9458 /* IRIX rld assumes that a function stub isn't at the end of the .text
9459 section, so add a dummy entry to the end. */
9460 htab->lazy_stub_count++;
9461
9462 /* Get a worst-case estimate of the number of dynamic symbols needed.
9463 At this point, dynsymcount does not account for section symbols
9464 and count_section_dynsyms may overestimate the number that will
9465 be needed. */
9466 dynsymcount = (elf_hash_table (info)->dynsymcount
9467 + count_section_dynsyms (output_bfd, info));
9468
9469 /* Determine the size of one stub entry. There's no disadvantage
9470 from using microMIPS code here, so for the sake of pure-microMIPS
9471 binaries we prefer it whenever there's any microMIPS code in
9472 output produced at all. This has a benefit of stubs being
9473 shorter by 4 bytes each too, unless in the insn32 mode. */
9474 if (!MICROMIPS_P (output_bfd))
9475 htab->function_stub_size = (dynsymcount > 0x10000
9476 ? MIPS_FUNCTION_STUB_BIG_SIZE
9477 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9478 else if (htab->insn32)
9479 htab->function_stub_size = (dynsymcount > 0x10000
9480 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9481 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9482 else
9483 htab->function_stub_size = (dynsymcount > 0x10000
9484 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9485 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9486
9487 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9488 }
9489
9490 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9491 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9492 stub, allocate an entry in the stubs section. */
9493
9494 static bfd_boolean
9495 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9496 {
9497 struct mips_htab_traverse_info *hti = data;
9498 struct mips_elf_link_hash_table *htab;
9499 struct bfd_link_info *info;
9500 bfd *output_bfd;
9501
9502 info = hti->info;
9503 output_bfd = hti->output_bfd;
9504 htab = mips_elf_hash_table (info);
9505 BFD_ASSERT (htab != NULL);
9506
9507 if (h->needs_lazy_stub)
9508 {
9509 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9510 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9511 bfd_vma isa_bit = micromips_p;
9512
9513 BFD_ASSERT (htab->root.dynobj != NULL);
9514 if (h->root.plt.plist == NULL)
9515 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9516 if (h->root.plt.plist == NULL)
9517 {
9518 hti->error = TRUE;
9519 return FALSE;
9520 }
9521 h->root.root.u.def.section = htab->sstubs;
9522 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9523 h->root.plt.plist->stub_offset = htab->sstubs->size;
9524 h->root.other = other;
9525 htab->sstubs->size += htab->function_stub_size;
9526 }
9527 return TRUE;
9528 }
9529
9530 /* Allocate offsets in the stubs section to each symbol that needs one.
9531 Set the final size of the .MIPS.stub section. */
9532
9533 static bfd_boolean
9534 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9535 {
9536 bfd *output_bfd = info->output_bfd;
9537 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9538 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9539 bfd_vma isa_bit = micromips_p;
9540 struct mips_elf_link_hash_table *htab;
9541 struct mips_htab_traverse_info hti;
9542 struct elf_link_hash_entry *h;
9543 bfd *dynobj;
9544
9545 htab = mips_elf_hash_table (info);
9546 BFD_ASSERT (htab != NULL);
9547
9548 if (htab->lazy_stub_count == 0)
9549 return TRUE;
9550
9551 htab->sstubs->size = 0;
9552 hti.info = info;
9553 hti.output_bfd = output_bfd;
9554 hti.error = FALSE;
9555 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9556 if (hti.error)
9557 return FALSE;
9558 htab->sstubs->size += htab->function_stub_size;
9559 BFD_ASSERT (htab->sstubs->size
9560 == htab->lazy_stub_count * htab->function_stub_size);
9561
9562 dynobj = elf_hash_table (info)->dynobj;
9563 BFD_ASSERT (dynobj != NULL);
9564 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9565 if (h == NULL)
9566 return FALSE;
9567 h->root.u.def.value = isa_bit;
9568 h->other = other;
9569 h->type = STT_FUNC;
9570
9571 return TRUE;
9572 }
9573
9574 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9575 bfd_link_info. If H uses the address of a PLT entry as the value
9576 of the symbol, then set the entry in the symbol table now. Prefer
9577 a standard MIPS PLT entry. */
9578
9579 static bfd_boolean
9580 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9581 {
9582 struct bfd_link_info *info = data;
9583 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9584 struct mips_elf_link_hash_table *htab;
9585 unsigned int other;
9586 bfd_vma isa_bit;
9587 bfd_vma val;
9588
9589 htab = mips_elf_hash_table (info);
9590 BFD_ASSERT (htab != NULL);
9591
9592 if (h->use_plt_entry)
9593 {
9594 BFD_ASSERT (h->root.plt.plist != NULL);
9595 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9596 || h->root.plt.plist->comp_offset != MINUS_ONE);
9597
9598 val = htab->plt_header_size;
9599 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9600 {
9601 isa_bit = 0;
9602 val += h->root.plt.plist->mips_offset;
9603 other = 0;
9604 }
9605 else
9606 {
9607 isa_bit = 1;
9608 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9609 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9610 }
9611 val += isa_bit;
9612 /* For VxWorks, point at the PLT load stub rather than the lazy
9613 resolution stub; this stub will become the canonical function
9614 address. */
9615 if (htab->is_vxworks)
9616 val += 8;
9617
9618 h->root.root.u.def.section = htab->root.splt;
9619 h->root.root.u.def.value = val;
9620 h->root.other = other;
9621 }
9622
9623 return TRUE;
9624 }
9625
9626 /* Set the sizes of the dynamic sections. */
9627
9628 bfd_boolean
9629 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9630 struct bfd_link_info *info)
9631 {
9632 bfd *dynobj;
9633 asection *s, *sreldyn;
9634 bfd_boolean reltext;
9635 struct mips_elf_link_hash_table *htab;
9636
9637 htab = mips_elf_hash_table (info);
9638 BFD_ASSERT (htab != NULL);
9639 dynobj = elf_hash_table (info)->dynobj;
9640 BFD_ASSERT (dynobj != NULL);
9641
9642 if (elf_hash_table (info)->dynamic_sections_created)
9643 {
9644 /* Set the contents of the .interp section to the interpreter. */
9645 if (bfd_link_executable (info) && !info->nointerp)
9646 {
9647 s = bfd_get_linker_section (dynobj, ".interp");
9648 BFD_ASSERT (s != NULL);
9649 s->size
9650 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9651 s->contents
9652 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9653 }
9654
9655 /* Figure out the size of the PLT header if we know that we
9656 are using it. For the sake of cache alignment always use
9657 a standard header whenever any standard entries are present
9658 even if microMIPS entries are present as well. This also
9659 lets the microMIPS header rely on the value of $v0 only set
9660 by microMIPS entries, for a small size reduction.
9661
9662 Set symbol table entry values for symbols that use the
9663 address of their PLT entry now that we can calculate it.
9664
9665 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9666 haven't already in _bfd_elf_create_dynamic_sections. */
9667 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9668 {
9669 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9670 && !htab->plt_mips_offset);
9671 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9672 bfd_vma isa_bit = micromips_p;
9673 struct elf_link_hash_entry *h;
9674 bfd_vma size;
9675
9676 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9677 BFD_ASSERT (htab->root.sgotplt->size == 0);
9678 BFD_ASSERT (htab->root.splt->size == 0);
9679
9680 if (htab->is_vxworks && bfd_link_pic (info))
9681 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9682 else if (htab->is_vxworks)
9683 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9684 else if (ABI_64_P (output_bfd))
9685 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9686 else if (ABI_N32_P (output_bfd))
9687 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9688 else if (!micromips_p)
9689 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9690 else if (htab->insn32)
9691 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9692 else
9693 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9694
9695 htab->plt_header_is_comp = micromips_p;
9696 htab->plt_header_size = size;
9697 htab->root.splt->size = (size
9698 + htab->plt_mips_offset
9699 + htab->plt_comp_offset);
9700 htab->root.sgotplt->size = (htab->plt_got_index
9701 * MIPS_ELF_GOT_SIZE (dynobj));
9702
9703 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9704
9705 if (htab->root.hplt == NULL)
9706 {
9707 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9708 "_PROCEDURE_LINKAGE_TABLE_");
9709 htab->root.hplt = h;
9710 if (h == NULL)
9711 return FALSE;
9712 }
9713
9714 h = htab->root.hplt;
9715 h->root.u.def.value = isa_bit;
9716 h->other = other;
9717 h->type = STT_FUNC;
9718 }
9719 }
9720
9721 /* Allocate space for global sym dynamic relocs. */
9722 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9723
9724 mips_elf_estimate_stub_size (output_bfd, info);
9725
9726 if (!mips_elf_lay_out_got (output_bfd, info))
9727 return FALSE;
9728
9729 mips_elf_lay_out_lazy_stubs (info);
9730
9731 /* The check_relocs and adjust_dynamic_symbol entry points have
9732 determined the sizes of the various dynamic sections. Allocate
9733 memory for them. */
9734 reltext = FALSE;
9735 for (s = dynobj->sections; s != NULL; s = s->next)
9736 {
9737 const char *name;
9738
9739 /* It's OK to base decisions on the section name, because none
9740 of the dynobj section names depend upon the input files. */
9741 name = bfd_get_section_name (dynobj, s);
9742
9743 if ((s->flags & SEC_LINKER_CREATED) == 0)
9744 continue;
9745
9746 if (CONST_STRNEQ (name, ".rel"))
9747 {
9748 if (s->size != 0)
9749 {
9750 const char *outname;
9751 asection *target;
9752
9753 /* If this relocation section applies to a read only
9754 section, then we probably need a DT_TEXTREL entry.
9755 If the relocation section is .rel(a).dyn, we always
9756 assert a DT_TEXTREL entry rather than testing whether
9757 there exists a relocation to a read only section or
9758 not. */
9759 outname = bfd_get_section_name (output_bfd,
9760 s->output_section);
9761 target = bfd_get_section_by_name (output_bfd, outname + 4);
9762 if ((target != NULL
9763 && (target->flags & SEC_READONLY) != 0
9764 && (target->flags & SEC_ALLOC) != 0)
9765 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9766 reltext = TRUE;
9767
9768 /* We use the reloc_count field as a counter if we need
9769 to copy relocs into the output file. */
9770 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9771 s->reloc_count = 0;
9772
9773 /* If combreloc is enabled, elf_link_sort_relocs() will
9774 sort relocations, but in a different way than we do,
9775 and before we're done creating relocations. Also, it
9776 will move them around between input sections'
9777 relocation's contents, so our sorting would be
9778 broken, so don't let it run. */
9779 info->combreloc = 0;
9780 }
9781 }
9782 else if (bfd_link_executable (info)
9783 && ! mips_elf_hash_table (info)->use_rld_obj_head
9784 && CONST_STRNEQ (name, ".rld_map"))
9785 {
9786 /* We add a room for __rld_map. It will be filled in by the
9787 rtld to contain a pointer to the _r_debug structure. */
9788 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9789 }
9790 else if (SGI_COMPAT (output_bfd)
9791 && CONST_STRNEQ (name, ".compact_rel"))
9792 s->size += mips_elf_hash_table (info)->compact_rel_size;
9793 else if (s == htab->root.splt)
9794 {
9795 /* If the last PLT entry has a branch delay slot, allocate
9796 room for an extra nop to fill the delay slot. This is
9797 for CPUs without load interlocking. */
9798 if (! LOAD_INTERLOCKS_P (output_bfd)
9799 && ! htab->is_vxworks && s->size > 0)
9800 s->size += 4;
9801 }
9802 else if (! CONST_STRNEQ (name, ".init")
9803 && s != htab->root.sgot
9804 && s != htab->root.sgotplt
9805 && s != htab->sstubs
9806 && s != htab->root.sdynbss
9807 && s != htab->root.sdynrelro)
9808 {
9809 /* It's not one of our sections, so don't allocate space. */
9810 continue;
9811 }
9812
9813 if (s->size == 0)
9814 {
9815 s->flags |= SEC_EXCLUDE;
9816 continue;
9817 }
9818
9819 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9820 continue;
9821
9822 /* Allocate memory for the section contents. */
9823 s->contents = bfd_zalloc (dynobj, s->size);
9824 if (s->contents == NULL)
9825 {
9826 bfd_set_error (bfd_error_no_memory);
9827 return FALSE;
9828 }
9829 }
9830
9831 if (elf_hash_table (info)->dynamic_sections_created)
9832 {
9833 /* Add some entries to the .dynamic section. We fill in the
9834 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9835 must add the entries now so that we get the correct size for
9836 the .dynamic section. */
9837
9838 /* SGI object has the equivalence of DT_DEBUG in the
9839 DT_MIPS_RLD_MAP entry. This must come first because glibc
9840 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9841 may only look at the first one they see. */
9842 if (!bfd_link_pic (info)
9843 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9844 return FALSE;
9845
9846 if (bfd_link_executable (info)
9847 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9848 return FALSE;
9849
9850 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9851 used by the debugger. */
9852 if (bfd_link_executable (info)
9853 && !SGI_COMPAT (output_bfd)
9854 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9855 return FALSE;
9856
9857 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9858 info->flags |= DF_TEXTREL;
9859
9860 if ((info->flags & DF_TEXTREL) != 0)
9861 {
9862 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9863 return FALSE;
9864
9865 /* Clear the DF_TEXTREL flag. It will be set again if we
9866 write out an actual text relocation; we may not, because
9867 at this point we do not know whether e.g. any .eh_frame
9868 absolute relocations have been converted to PC-relative. */
9869 info->flags &= ~DF_TEXTREL;
9870 }
9871
9872 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9873 return FALSE;
9874
9875 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9876 if (htab->is_vxworks)
9877 {
9878 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9879 use any of the DT_MIPS_* tags. */
9880 if (sreldyn && sreldyn->size > 0)
9881 {
9882 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9883 return FALSE;
9884
9885 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9886 return FALSE;
9887
9888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9889 return FALSE;
9890 }
9891 }
9892 else
9893 {
9894 if (sreldyn && sreldyn->size > 0)
9895 {
9896 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9897 return FALSE;
9898
9899 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9900 return FALSE;
9901
9902 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9903 return FALSE;
9904 }
9905
9906 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9907 return FALSE;
9908
9909 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9910 return FALSE;
9911
9912 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9913 return FALSE;
9914
9915 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9916 return FALSE;
9917
9918 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9919 return FALSE;
9920
9921 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9922 return FALSE;
9923
9924 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9925 return FALSE;
9926
9927 if (IRIX_COMPAT (dynobj) == ict_irix5
9928 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9929 return FALSE;
9930
9931 if (IRIX_COMPAT (dynobj) == ict_irix6
9932 && (bfd_get_section_by_name
9933 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9934 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9935 return FALSE;
9936 }
9937 if (htab->root.splt->size > 0)
9938 {
9939 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9940 return FALSE;
9941
9942 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9943 return FALSE;
9944
9945 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9946 return FALSE;
9947
9948 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9949 return FALSE;
9950 }
9951 if (htab->is_vxworks
9952 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9953 return FALSE;
9954 }
9955
9956 return TRUE;
9957 }
9958 \f
9959 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9960 Adjust its R_ADDEND field so that it is correct for the output file.
9961 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9962 and sections respectively; both use symbol indexes. */
9963
9964 static void
9965 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9966 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9967 asection **local_sections, Elf_Internal_Rela *rel)
9968 {
9969 unsigned int r_type, r_symndx;
9970 Elf_Internal_Sym *sym;
9971 asection *sec;
9972
9973 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9974 {
9975 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9976 if (gprel16_reloc_p (r_type)
9977 || r_type == R_MIPS_GPREL32
9978 || literal_reloc_p (r_type))
9979 {
9980 rel->r_addend += _bfd_get_gp_value (input_bfd);
9981 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9982 }
9983
9984 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9985 sym = local_syms + r_symndx;
9986
9987 /* Adjust REL's addend to account for section merging. */
9988 if (!bfd_link_relocatable (info))
9989 {
9990 sec = local_sections[r_symndx];
9991 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9992 }
9993
9994 /* This would normally be done by the rela_normal code in elflink.c. */
9995 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9996 rel->r_addend += local_sections[r_symndx]->output_offset;
9997 }
9998 }
9999
10000 /* Handle relocations against symbols from removed linkonce sections,
10001 or sections discarded by a linker script. We use this wrapper around
10002 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10003 on 64-bit ELF targets. In this case for any relocation handled, which
10004 always be the first in a triplet, the remaining two have to be processed
10005 together with the first, even if they are R_MIPS_NONE. It is the symbol
10006 index referred by the first reloc that applies to all the three and the
10007 remaining two never refer to an object symbol. And it is the final
10008 relocation (the last non-null one) that determines the output field of
10009 the whole relocation so retrieve the corresponding howto structure for
10010 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10011
10012 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10013 and therefore requires to be pasted in a loop. It also defines a block
10014 and does not protect any of its arguments, hence the extra brackets. */
10015
10016 static void
10017 mips_reloc_against_discarded_section (bfd *output_bfd,
10018 struct bfd_link_info *info,
10019 bfd *input_bfd, asection *input_section,
10020 Elf_Internal_Rela **rel,
10021 const Elf_Internal_Rela **relend,
10022 bfd_boolean rel_reloc,
10023 reloc_howto_type *howto,
10024 bfd_byte *contents)
10025 {
10026 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10027 int count = bed->s->int_rels_per_ext_rel;
10028 unsigned int r_type;
10029 int i;
10030
10031 for (i = count - 1; i > 0; i--)
10032 {
10033 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10034 if (r_type != R_MIPS_NONE)
10035 {
10036 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10037 break;
10038 }
10039 }
10040 do
10041 {
10042 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10043 (*rel), count, (*relend),
10044 howto, i, contents);
10045 }
10046 while (0);
10047 }
10048
10049 /* Relocate a MIPS ELF section. */
10050
10051 bfd_boolean
10052 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10053 bfd *input_bfd, asection *input_section,
10054 bfd_byte *contents, Elf_Internal_Rela *relocs,
10055 Elf_Internal_Sym *local_syms,
10056 asection **local_sections)
10057 {
10058 Elf_Internal_Rela *rel;
10059 const Elf_Internal_Rela *relend;
10060 bfd_vma addend = 0;
10061 bfd_boolean use_saved_addend_p = FALSE;
10062
10063 relend = relocs + input_section->reloc_count;
10064 for (rel = relocs; rel < relend; ++rel)
10065 {
10066 const char *name;
10067 bfd_vma value = 0;
10068 reloc_howto_type *howto;
10069 bfd_boolean cross_mode_jump_p = FALSE;
10070 /* TRUE if the relocation is a RELA relocation, rather than a
10071 REL relocation. */
10072 bfd_boolean rela_relocation_p = TRUE;
10073 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10074 const char *msg;
10075 unsigned long r_symndx;
10076 asection *sec;
10077 Elf_Internal_Shdr *symtab_hdr;
10078 struct elf_link_hash_entry *h;
10079 bfd_boolean rel_reloc;
10080
10081 rel_reloc = (NEWABI_P (input_bfd)
10082 && mips_elf_rel_relocation_p (input_bfd, input_section,
10083 relocs, rel));
10084 /* Find the relocation howto for this relocation. */
10085 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10086
10087 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10088 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10089 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10090 {
10091 sec = local_sections[r_symndx];
10092 h = NULL;
10093 }
10094 else
10095 {
10096 unsigned long extsymoff;
10097
10098 extsymoff = 0;
10099 if (!elf_bad_symtab (input_bfd))
10100 extsymoff = symtab_hdr->sh_info;
10101 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10102 while (h->root.type == bfd_link_hash_indirect
10103 || h->root.type == bfd_link_hash_warning)
10104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10105
10106 sec = NULL;
10107 if (h->root.type == bfd_link_hash_defined
10108 || h->root.type == bfd_link_hash_defweak)
10109 sec = h->root.u.def.section;
10110 }
10111
10112 if (sec != NULL && discarded_section (sec))
10113 {
10114 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10115 input_section, &rel, &relend,
10116 rel_reloc, howto, contents);
10117 continue;
10118 }
10119
10120 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10121 {
10122 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10123 64-bit code, but make sure all their addresses are in the
10124 lowermost or uppermost 32-bit section of the 64-bit address
10125 space. Thus, when they use an R_MIPS_64 they mean what is
10126 usually meant by R_MIPS_32, with the exception that the
10127 stored value is sign-extended to 64 bits. */
10128 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10129
10130 /* On big-endian systems, we need to lie about the position
10131 of the reloc. */
10132 if (bfd_big_endian (input_bfd))
10133 rel->r_offset += 4;
10134 }
10135
10136 if (!use_saved_addend_p)
10137 {
10138 /* If these relocations were originally of the REL variety,
10139 we must pull the addend out of the field that will be
10140 relocated. Otherwise, we simply use the contents of the
10141 RELA relocation. */
10142 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10143 relocs, rel))
10144 {
10145 rela_relocation_p = FALSE;
10146 addend = mips_elf_read_rel_addend (input_bfd, rel,
10147 howto, contents);
10148 if (hi16_reloc_p (r_type)
10149 || (got16_reloc_p (r_type)
10150 && mips_elf_local_relocation_p (input_bfd, rel,
10151 local_sections)))
10152 {
10153 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10154 contents, &addend))
10155 {
10156 if (h)
10157 name = h->root.root.string;
10158 else
10159 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10160 local_syms + r_symndx,
10161 sec);
10162 _bfd_error_handler
10163 /* xgettext:c-format */
10164 (_("%pB: can't find matching LO16 reloc against `%s'"
10165 " for %s at %#" PRIx64 " in section `%pA'"),
10166 input_bfd, name,
10167 howto->name, (uint64_t) rel->r_offset, input_section);
10168 }
10169 }
10170 else
10171 addend <<= howto->rightshift;
10172 }
10173 else
10174 addend = rel->r_addend;
10175 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10176 local_syms, local_sections, rel);
10177 }
10178
10179 if (bfd_link_relocatable (info))
10180 {
10181 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10182 && bfd_big_endian (input_bfd))
10183 rel->r_offset -= 4;
10184
10185 if (!rela_relocation_p && rel->r_addend)
10186 {
10187 addend += rel->r_addend;
10188 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10189 addend = mips_elf_high (addend);
10190 else if (r_type == R_MIPS_HIGHER)
10191 addend = mips_elf_higher (addend);
10192 else if (r_type == R_MIPS_HIGHEST)
10193 addend = mips_elf_highest (addend);
10194 else
10195 addend >>= howto->rightshift;
10196
10197 /* We use the source mask, rather than the destination
10198 mask because the place to which we are writing will be
10199 source of the addend in the final link. */
10200 addend &= howto->src_mask;
10201
10202 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10203 /* See the comment above about using R_MIPS_64 in the 32-bit
10204 ABI. Here, we need to update the addend. It would be
10205 possible to get away with just using the R_MIPS_32 reloc
10206 but for endianness. */
10207 {
10208 bfd_vma sign_bits;
10209 bfd_vma low_bits;
10210 bfd_vma high_bits;
10211
10212 if (addend & ((bfd_vma) 1 << 31))
10213 #ifdef BFD64
10214 sign_bits = ((bfd_vma) 1 << 32) - 1;
10215 #else
10216 sign_bits = -1;
10217 #endif
10218 else
10219 sign_bits = 0;
10220
10221 /* If we don't know that we have a 64-bit type,
10222 do two separate stores. */
10223 if (bfd_big_endian (input_bfd))
10224 {
10225 /* Store the sign-bits (which are most significant)
10226 first. */
10227 low_bits = sign_bits;
10228 high_bits = addend;
10229 }
10230 else
10231 {
10232 low_bits = addend;
10233 high_bits = sign_bits;
10234 }
10235 bfd_put_32 (input_bfd, low_bits,
10236 contents + rel->r_offset);
10237 bfd_put_32 (input_bfd, high_bits,
10238 contents + rel->r_offset + 4);
10239 continue;
10240 }
10241
10242 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10243 input_bfd, input_section,
10244 contents, FALSE))
10245 return FALSE;
10246 }
10247
10248 /* Go on to the next relocation. */
10249 continue;
10250 }
10251
10252 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10253 relocations for the same offset. In that case we are
10254 supposed to treat the output of each relocation as the addend
10255 for the next. */
10256 if (rel + 1 < relend
10257 && rel->r_offset == rel[1].r_offset
10258 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10259 use_saved_addend_p = TRUE;
10260 else
10261 use_saved_addend_p = FALSE;
10262
10263 /* Figure out what value we are supposed to relocate. */
10264 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10265 input_section, info, rel,
10266 addend, howto, local_syms,
10267 local_sections, &value,
10268 &name, &cross_mode_jump_p,
10269 use_saved_addend_p))
10270 {
10271 case bfd_reloc_continue:
10272 /* There's nothing to do. */
10273 continue;
10274
10275 case bfd_reloc_undefined:
10276 /* mips_elf_calculate_relocation already called the
10277 undefined_symbol callback. There's no real point in
10278 trying to perform the relocation at this point, so we
10279 just skip ahead to the next relocation. */
10280 continue;
10281
10282 case bfd_reloc_notsupported:
10283 msg = _("internal error: unsupported relocation error");
10284 info->callbacks->warning
10285 (info, msg, name, input_bfd, input_section, rel->r_offset);
10286 return FALSE;
10287
10288 case bfd_reloc_overflow:
10289 if (use_saved_addend_p)
10290 /* Ignore overflow until we reach the last relocation for
10291 a given location. */
10292 ;
10293 else
10294 {
10295 struct mips_elf_link_hash_table *htab;
10296
10297 htab = mips_elf_hash_table (info);
10298 BFD_ASSERT (htab != NULL);
10299 BFD_ASSERT (name != NULL);
10300 if (!htab->small_data_overflow_reported
10301 && (gprel16_reloc_p (howto->type)
10302 || literal_reloc_p (howto->type)))
10303 {
10304 msg = _("small-data section exceeds 64KB;"
10305 " lower small-data size limit (see option -G)");
10306
10307 htab->small_data_overflow_reported = TRUE;
10308 (*info->callbacks->einfo) ("%P: %s\n", msg);
10309 }
10310 (*info->callbacks->reloc_overflow)
10311 (info, NULL, name, howto->name, (bfd_vma) 0,
10312 input_bfd, input_section, rel->r_offset);
10313 }
10314 break;
10315
10316 case bfd_reloc_ok:
10317 break;
10318
10319 case bfd_reloc_outofrange:
10320 msg = NULL;
10321 if (jal_reloc_p (howto->type))
10322 msg = (cross_mode_jump_p
10323 ? _("cannot convert a jump to JALX "
10324 "for a non-word-aligned address")
10325 : (howto->type == R_MIPS16_26
10326 ? _("jump to a non-word-aligned address")
10327 : _("jump to a non-instruction-aligned address")));
10328 else if (b_reloc_p (howto->type))
10329 msg = (cross_mode_jump_p
10330 ? _("cannot convert a branch to JALX "
10331 "for a non-word-aligned address")
10332 : _("branch to a non-instruction-aligned address"));
10333 else if (aligned_pcrel_reloc_p (howto->type))
10334 msg = _("PC-relative load from unaligned address");
10335 if (msg)
10336 {
10337 info->callbacks->einfo
10338 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10339 break;
10340 }
10341 /* Fall through. */
10342
10343 default:
10344 abort ();
10345 break;
10346 }
10347
10348 /* If we've got another relocation for the address, keep going
10349 until we reach the last one. */
10350 if (use_saved_addend_p)
10351 {
10352 addend = value;
10353 continue;
10354 }
10355
10356 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10357 /* See the comment above about using R_MIPS_64 in the 32-bit
10358 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10359 that calculated the right value. Now, however, we
10360 sign-extend the 32-bit result to 64-bits, and store it as a
10361 64-bit value. We are especially generous here in that we
10362 go to extreme lengths to support this usage on systems with
10363 only a 32-bit VMA. */
10364 {
10365 bfd_vma sign_bits;
10366 bfd_vma low_bits;
10367 bfd_vma high_bits;
10368
10369 if (value & ((bfd_vma) 1 << 31))
10370 #ifdef BFD64
10371 sign_bits = ((bfd_vma) 1 << 32) - 1;
10372 #else
10373 sign_bits = -1;
10374 #endif
10375 else
10376 sign_bits = 0;
10377
10378 /* If we don't know that we have a 64-bit type,
10379 do two separate stores. */
10380 if (bfd_big_endian (input_bfd))
10381 {
10382 /* Undo what we did above. */
10383 rel->r_offset -= 4;
10384 /* Store the sign-bits (which are most significant)
10385 first. */
10386 low_bits = sign_bits;
10387 high_bits = value;
10388 }
10389 else
10390 {
10391 low_bits = value;
10392 high_bits = sign_bits;
10393 }
10394 bfd_put_32 (input_bfd, low_bits,
10395 contents + rel->r_offset);
10396 bfd_put_32 (input_bfd, high_bits,
10397 contents + rel->r_offset + 4);
10398 continue;
10399 }
10400
10401 /* Actually perform the relocation. */
10402 if (! mips_elf_perform_relocation (info, howto, rel, value,
10403 input_bfd, input_section,
10404 contents, cross_mode_jump_p))
10405 return FALSE;
10406 }
10407
10408 return TRUE;
10409 }
10410 \f
10411 /* A function that iterates over each entry in la25_stubs and fills
10412 in the code for each one. DATA points to a mips_htab_traverse_info. */
10413
10414 static int
10415 mips_elf_create_la25_stub (void **slot, void *data)
10416 {
10417 struct mips_htab_traverse_info *hti;
10418 struct mips_elf_link_hash_table *htab;
10419 struct mips_elf_la25_stub *stub;
10420 asection *s;
10421 bfd_byte *loc;
10422 bfd_vma offset, target, target_high, target_low;
10423
10424 stub = (struct mips_elf_la25_stub *) *slot;
10425 hti = (struct mips_htab_traverse_info *) data;
10426 htab = mips_elf_hash_table (hti->info);
10427 BFD_ASSERT (htab != NULL);
10428
10429 /* Create the section contents, if we haven't already. */
10430 s = stub->stub_section;
10431 loc = s->contents;
10432 if (loc == NULL)
10433 {
10434 loc = bfd_malloc (s->size);
10435 if (loc == NULL)
10436 {
10437 hti->error = TRUE;
10438 return FALSE;
10439 }
10440 s->contents = loc;
10441 }
10442
10443 /* Work out where in the section this stub should go. */
10444 offset = stub->offset;
10445
10446 /* Work out the target address. */
10447 target = mips_elf_get_la25_target (stub, &s);
10448 target += s->output_section->vma + s->output_offset;
10449
10450 target_high = ((target + 0x8000) >> 16) & 0xffff;
10451 target_low = (target & 0xffff);
10452
10453 if (stub->stub_section != htab->strampoline)
10454 {
10455 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10456 of the section and write the two instructions at the end. */
10457 memset (loc, 0, offset);
10458 loc += offset;
10459 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10460 {
10461 bfd_put_micromips_32 (hti->output_bfd,
10462 LA25_LUI_MICROMIPS (target_high),
10463 loc);
10464 bfd_put_micromips_32 (hti->output_bfd,
10465 LA25_ADDIU_MICROMIPS (target_low),
10466 loc + 4);
10467 }
10468 else
10469 {
10470 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10471 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10472 }
10473 }
10474 else
10475 {
10476 /* This is trampoline. */
10477 loc += offset;
10478 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10479 {
10480 bfd_put_micromips_32 (hti->output_bfd,
10481 LA25_LUI_MICROMIPS (target_high), loc);
10482 bfd_put_micromips_32 (hti->output_bfd,
10483 LA25_J_MICROMIPS (target), loc + 4);
10484 bfd_put_micromips_32 (hti->output_bfd,
10485 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10486 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10487 }
10488 else
10489 {
10490 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10491 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10492 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10493 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10494 }
10495 }
10496 return TRUE;
10497 }
10498
10499 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10500 adjust it appropriately now. */
10501
10502 static void
10503 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10504 const char *name, Elf_Internal_Sym *sym)
10505 {
10506 /* The linker script takes care of providing names and values for
10507 these, but we must place them into the right sections. */
10508 static const char* const text_section_symbols[] = {
10509 "_ftext",
10510 "_etext",
10511 "__dso_displacement",
10512 "__elf_header",
10513 "__program_header_table",
10514 NULL
10515 };
10516
10517 static const char* const data_section_symbols[] = {
10518 "_fdata",
10519 "_edata",
10520 "_end",
10521 "_fbss",
10522 NULL
10523 };
10524
10525 const char* const *p;
10526 int i;
10527
10528 for (i = 0; i < 2; ++i)
10529 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10530 *p;
10531 ++p)
10532 if (strcmp (*p, name) == 0)
10533 {
10534 /* All of these symbols are given type STT_SECTION by the
10535 IRIX6 linker. */
10536 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10537 sym->st_other = STO_PROTECTED;
10538
10539 /* The IRIX linker puts these symbols in special sections. */
10540 if (i == 0)
10541 sym->st_shndx = SHN_MIPS_TEXT;
10542 else
10543 sym->st_shndx = SHN_MIPS_DATA;
10544
10545 break;
10546 }
10547 }
10548
10549 /* Finish up dynamic symbol handling. We set the contents of various
10550 dynamic sections here. */
10551
10552 bfd_boolean
10553 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10554 struct bfd_link_info *info,
10555 struct elf_link_hash_entry *h,
10556 Elf_Internal_Sym *sym)
10557 {
10558 bfd *dynobj;
10559 asection *sgot;
10560 struct mips_got_info *g, *gg;
10561 const char *name;
10562 int idx;
10563 struct mips_elf_link_hash_table *htab;
10564 struct mips_elf_link_hash_entry *hmips;
10565
10566 htab = mips_elf_hash_table (info);
10567 BFD_ASSERT (htab != NULL);
10568 dynobj = elf_hash_table (info)->dynobj;
10569 hmips = (struct mips_elf_link_hash_entry *) h;
10570
10571 BFD_ASSERT (!htab->is_vxworks);
10572
10573 if (h->plt.plist != NULL
10574 && (h->plt.plist->mips_offset != MINUS_ONE
10575 || h->plt.plist->comp_offset != MINUS_ONE))
10576 {
10577 /* We've decided to create a PLT entry for this symbol. */
10578 bfd_byte *loc;
10579 bfd_vma header_address, got_address;
10580 bfd_vma got_address_high, got_address_low, load;
10581 bfd_vma got_index;
10582 bfd_vma isa_bit;
10583
10584 got_index = h->plt.plist->gotplt_index;
10585
10586 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10587 BFD_ASSERT (h->dynindx != -1);
10588 BFD_ASSERT (htab->root.splt != NULL);
10589 BFD_ASSERT (got_index != MINUS_ONE);
10590 BFD_ASSERT (!h->def_regular);
10591
10592 /* Calculate the address of the PLT header. */
10593 isa_bit = htab->plt_header_is_comp;
10594 header_address = (htab->root.splt->output_section->vma
10595 + htab->root.splt->output_offset + isa_bit);
10596
10597 /* Calculate the address of the .got.plt entry. */
10598 got_address = (htab->root.sgotplt->output_section->vma
10599 + htab->root.sgotplt->output_offset
10600 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10601
10602 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10603 got_address_low = got_address & 0xffff;
10604
10605 /* Initially point the .got.plt entry at the PLT header. */
10606 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10607 if (ABI_64_P (output_bfd))
10608 bfd_put_64 (output_bfd, header_address, loc);
10609 else
10610 bfd_put_32 (output_bfd, header_address, loc);
10611
10612 /* Now handle the PLT itself. First the standard entry (the order
10613 does not matter, we just have to pick one). */
10614 if (h->plt.plist->mips_offset != MINUS_ONE)
10615 {
10616 const bfd_vma *plt_entry;
10617 bfd_vma plt_offset;
10618
10619 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10620
10621 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10622
10623 /* Find out where the .plt entry should go. */
10624 loc = htab->root.splt->contents + plt_offset;
10625
10626 /* Pick the load opcode. */
10627 load = MIPS_ELF_LOAD_WORD (output_bfd);
10628
10629 /* Fill in the PLT entry itself. */
10630
10631 if (MIPSR6_P (output_bfd))
10632 plt_entry = mipsr6_exec_plt_entry;
10633 else
10634 plt_entry = mips_exec_plt_entry;
10635 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10636 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10637 loc + 4);
10638
10639 if (! LOAD_INTERLOCKS_P (output_bfd))
10640 {
10641 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10642 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10643 }
10644 else
10645 {
10646 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10647 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10648 loc + 12);
10649 }
10650 }
10651
10652 /* Now the compressed entry. They come after any standard ones. */
10653 if (h->plt.plist->comp_offset != MINUS_ONE)
10654 {
10655 bfd_vma plt_offset;
10656
10657 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10658 + h->plt.plist->comp_offset);
10659
10660 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10661
10662 /* Find out where the .plt entry should go. */
10663 loc = htab->root.splt->contents + plt_offset;
10664
10665 /* Fill in the PLT entry itself. */
10666 if (!MICROMIPS_P (output_bfd))
10667 {
10668 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10669
10670 bfd_put_16 (output_bfd, plt_entry[0], loc);
10671 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10672 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10673 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10674 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10675 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10676 bfd_put_32 (output_bfd, got_address, loc + 12);
10677 }
10678 else if (htab->insn32)
10679 {
10680 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10681
10682 bfd_put_16 (output_bfd, plt_entry[0], loc);
10683 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10684 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10685 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10686 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10687 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10688 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10689 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10690 }
10691 else
10692 {
10693 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10694 bfd_signed_vma gotpc_offset;
10695 bfd_vma loc_address;
10696
10697 BFD_ASSERT (got_address % 4 == 0);
10698
10699 loc_address = (htab->root.splt->output_section->vma
10700 + htab->root.splt->output_offset + plt_offset);
10701 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10702
10703 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10704 if (gotpc_offset + 0x1000000 >= 0x2000000)
10705 {
10706 _bfd_error_handler
10707 /* xgettext:c-format */
10708 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10709 "beyond the range of ADDIUPC"),
10710 output_bfd,
10711 htab->root.sgotplt->output_section,
10712 (int64_t) gotpc_offset,
10713 htab->root.splt->output_section);
10714 bfd_set_error (bfd_error_no_error);
10715 return FALSE;
10716 }
10717 bfd_put_16 (output_bfd,
10718 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10719 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10720 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10721 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10722 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10723 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10724 }
10725 }
10726
10727 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10728 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10729 got_index - 2, h->dynindx,
10730 R_MIPS_JUMP_SLOT, got_address);
10731
10732 /* We distinguish between PLT entries and lazy-binding stubs by
10733 giving the former an st_other value of STO_MIPS_PLT. Set the
10734 flag and leave the value if there are any relocations in the
10735 binary where pointer equality matters. */
10736 sym->st_shndx = SHN_UNDEF;
10737 if (h->pointer_equality_needed)
10738 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10739 else
10740 {
10741 sym->st_value = 0;
10742 sym->st_other = 0;
10743 }
10744 }
10745
10746 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10747 {
10748 /* We've decided to create a lazy-binding stub. */
10749 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10750 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10751 bfd_vma stub_size = htab->function_stub_size;
10752 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10753 bfd_vma isa_bit = micromips_p;
10754 bfd_vma stub_big_size;
10755
10756 if (!micromips_p)
10757 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10758 else if (htab->insn32)
10759 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10760 else
10761 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10762
10763 /* This symbol has a stub. Set it up. */
10764
10765 BFD_ASSERT (h->dynindx != -1);
10766
10767 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10768
10769 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10770 sign extension at runtime in the stub, resulting in a negative
10771 index value. */
10772 if (h->dynindx & ~0x7fffffff)
10773 return FALSE;
10774
10775 /* Fill the stub. */
10776 if (micromips_p)
10777 {
10778 idx = 0;
10779 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10780 stub + idx);
10781 idx += 4;
10782 if (htab->insn32)
10783 {
10784 bfd_put_micromips_32 (output_bfd,
10785 STUB_MOVE32_MICROMIPS, stub + idx);
10786 idx += 4;
10787 }
10788 else
10789 {
10790 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10791 idx += 2;
10792 }
10793 if (stub_size == stub_big_size)
10794 {
10795 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10796
10797 bfd_put_micromips_32 (output_bfd,
10798 STUB_LUI_MICROMIPS (dynindx_hi),
10799 stub + idx);
10800 idx += 4;
10801 }
10802 if (htab->insn32)
10803 {
10804 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10805 stub + idx);
10806 idx += 4;
10807 }
10808 else
10809 {
10810 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10811 idx += 2;
10812 }
10813
10814 /* If a large stub is not required and sign extension is not a
10815 problem, then use legacy code in the stub. */
10816 if (stub_size == stub_big_size)
10817 bfd_put_micromips_32 (output_bfd,
10818 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10819 stub + idx);
10820 else if (h->dynindx & ~0x7fff)
10821 bfd_put_micromips_32 (output_bfd,
10822 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10823 stub + idx);
10824 else
10825 bfd_put_micromips_32 (output_bfd,
10826 STUB_LI16S_MICROMIPS (output_bfd,
10827 h->dynindx),
10828 stub + idx);
10829 }
10830 else
10831 {
10832 idx = 0;
10833 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10834 idx += 4;
10835 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10836 idx += 4;
10837 if (stub_size == stub_big_size)
10838 {
10839 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10840 stub + idx);
10841 idx += 4;
10842 }
10843 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10844 idx += 4;
10845
10846 /* If a large stub is not required and sign extension is not a
10847 problem, then use legacy code in the stub. */
10848 if (stub_size == stub_big_size)
10849 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10850 stub + idx);
10851 else if (h->dynindx & ~0x7fff)
10852 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10853 stub + idx);
10854 else
10855 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10856 stub + idx);
10857 }
10858
10859 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10860 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10861 stub, stub_size);
10862
10863 /* Mark the symbol as undefined. stub_offset != -1 occurs
10864 only for the referenced symbol. */
10865 sym->st_shndx = SHN_UNDEF;
10866
10867 /* The run-time linker uses the st_value field of the symbol
10868 to reset the global offset table entry for this external
10869 to its stub address when unlinking a shared object. */
10870 sym->st_value = (htab->sstubs->output_section->vma
10871 + htab->sstubs->output_offset
10872 + h->plt.plist->stub_offset
10873 + isa_bit);
10874 sym->st_other = other;
10875 }
10876
10877 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10878 refer to the stub, since only the stub uses the standard calling
10879 conventions. */
10880 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10881 {
10882 BFD_ASSERT (hmips->need_fn_stub);
10883 sym->st_value = (hmips->fn_stub->output_section->vma
10884 + hmips->fn_stub->output_offset);
10885 sym->st_size = hmips->fn_stub->size;
10886 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10887 }
10888
10889 BFD_ASSERT (h->dynindx != -1
10890 || h->forced_local);
10891
10892 sgot = htab->root.sgot;
10893 g = htab->got_info;
10894 BFD_ASSERT (g != NULL);
10895
10896 /* Run through the global symbol table, creating GOT entries for all
10897 the symbols that need them. */
10898 if (hmips->global_got_area != GGA_NONE)
10899 {
10900 bfd_vma offset;
10901 bfd_vma value;
10902
10903 value = sym->st_value;
10904 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10905 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10906 }
10907
10908 if (hmips->global_got_area != GGA_NONE && g->next)
10909 {
10910 struct mips_got_entry e, *p;
10911 bfd_vma entry;
10912 bfd_vma offset;
10913
10914 gg = g;
10915
10916 e.abfd = output_bfd;
10917 e.symndx = -1;
10918 e.d.h = hmips;
10919 e.tls_type = GOT_TLS_NONE;
10920
10921 for (g = g->next; g->next != gg; g = g->next)
10922 {
10923 if (g->got_entries
10924 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10925 &e)))
10926 {
10927 offset = p->gotidx;
10928 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10929 if (bfd_link_pic (info)
10930 || (elf_hash_table (info)->dynamic_sections_created
10931 && p->d.h != NULL
10932 && p->d.h->root.def_dynamic
10933 && !p->d.h->root.def_regular))
10934 {
10935 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10936 the various compatibility problems, it's easier to mock
10937 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10938 mips_elf_create_dynamic_relocation to calculate the
10939 appropriate addend. */
10940 Elf_Internal_Rela rel[3];
10941
10942 memset (rel, 0, sizeof (rel));
10943 if (ABI_64_P (output_bfd))
10944 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10945 else
10946 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10947 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10948
10949 entry = 0;
10950 if (! (mips_elf_create_dynamic_relocation
10951 (output_bfd, info, rel,
10952 e.d.h, NULL, sym->st_value, &entry, sgot)))
10953 return FALSE;
10954 }
10955 else
10956 entry = sym->st_value;
10957 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10958 }
10959 }
10960 }
10961
10962 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10963 name = h->root.root.string;
10964 if (h == elf_hash_table (info)->hdynamic
10965 || h == elf_hash_table (info)->hgot)
10966 sym->st_shndx = SHN_ABS;
10967 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10968 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10969 {
10970 sym->st_shndx = SHN_ABS;
10971 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10972 sym->st_value = 1;
10973 }
10974 else if (SGI_COMPAT (output_bfd))
10975 {
10976 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10977 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10978 {
10979 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10980 sym->st_other = STO_PROTECTED;
10981 sym->st_value = 0;
10982 sym->st_shndx = SHN_MIPS_DATA;
10983 }
10984 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10985 {
10986 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10987 sym->st_other = STO_PROTECTED;
10988 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10989 sym->st_shndx = SHN_ABS;
10990 }
10991 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10992 {
10993 if (h->type == STT_FUNC)
10994 sym->st_shndx = SHN_MIPS_TEXT;
10995 else if (h->type == STT_OBJECT)
10996 sym->st_shndx = SHN_MIPS_DATA;
10997 }
10998 }
10999
11000 /* Emit a copy reloc, if needed. */
11001 if (h->needs_copy)
11002 {
11003 asection *s;
11004 bfd_vma symval;
11005
11006 BFD_ASSERT (h->dynindx != -1);
11007 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11008
11009 s = mips_elf_rel_dyn_section (info, FALSE);
11010 symval = (h->root.u.def.section->output_section->vma
11011 + h->root.u.def.section->output_offset
11012 + h->root.u.def.value);
11013 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11014 h->dynindx, R_MIPS_COPY, symval);
11015 }
11016
11017 /* Handle the IRIX6-specific symbols. */
11018 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11019 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11020
11021 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11022 to treat compressed symbols like any other. */
11023 if (ELF_ST_IS_MIPS16 (sym->st_other))
11024 {
11025 BFD_ASSERT (sym->st_value & 1);
11026 sym->st_other -= STO_MIPS16;
11027 }
11028 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11029 {
11030 BFD_ASSERT (sym->st_value & 1);
11031 sym->st_other -= STO_MICROMIPS;
11032 }
11033
11034 return TRUE;
11035 }
11036
11037 /* Likewise, for VxWorks. */
11038
11039 bfd_boolean
11040 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11041 struct bfd_link_info *info,
11042 struct elf_link_hash_entry *h,
11043 Elf_Internal_Sym *sym)
11044 {
11045 bfd *dynobj;
11046 asection *sgot;
11047 struct mips_got_info *g;
11048 struct mips_elf_link_hash_table *htab;
11049 struct mips_elf_link_hash_entry *hmips;
11050
11051 htab = mips_elf_hash_table (info);
11052 BFD_ASSERT (htab != NULL);
11053 dynobj = elf_hash_table (info)->dynobj;
11054 hmips = (struct mips_elf_link_hash_entry *) h;
11055
11056 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11057 {
11058 bfd_byte *loc;
11059 bfd_vma plt_address, got_address, got_offset, branch_offset;
11060 Elf_Internal_Rela rel;
11061 static const bfd_vma *plt_entry;
11062 bfd_vma gotplt_index;
11063 bfd_vma plt_offset;
11064
11065 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11066 gotplt_index = h->plt.plist->gotplt_index;
11067
11068 BFD_ASSERT (h->dynindx != -1);
11069 BFD_ASSERT (htab->root.splt != NULL);
11070 BFD_ASSERT (gotplt_index != MINUS_ONE);
11071 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11072
11073 /* Calculate the address of the .plt entry. */
11074 plt_address = (htab->root.splt->output_section->vma
11075 + htab->root.splt->output_offset
11076 + plt_offset);
11077
11078 /* Calculate the address of the .got.plt entry. */
11079 got_address = (htab->root.sgotplt->output_section->vma
11080 + htab->root.sgotplt->output_offset
11081 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11082
11083 /* Calculate the offset of the .got.plt entry from
11084 _GLOBAL_OFFSET_TABLE_. */
11085 got_offset = mips_elf_gotplt_index (info, h);
11086
11087 /* Calculate the offset for the branch at the start of the PLT
11088 entry. The branch jumps to the beginning of .plt. */
11089 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11090
11091 /* Fill in the initial value of the .got.plt entry. */
11092 bfd_put_32 (output_bfd, plt_address,
11093 (htab->root.sgotplt->contents
11094 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11095
11096 /* Find out where the .plt entry should go. */
11097 loc = htab->root.splt->contents + plt_offset;
11098
11099 if (bfd_link_pic (info))
11100 {
11101 plt_entry = mips_vxworks_shared_plt_entry;
11102 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11103 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11104 }
11105 else
11106 {
11107 bfd_vma got_address_high, got_address_low;
11108
11109 plt_entry = mips_vxworks_exec_plt_entry;
11110 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11111 got_address_low = got_address & 0xffff;
11112
11113 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11114 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11115 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11116 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11117 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11118 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11119 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11120 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11121
11122 loc = (htab->srelplt2->contents
11123 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11124
11125 /* Emit a relocation for the .got.plt entry. */
11126 rel.r_offset = got_address;
11127 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11128 rel.r_addend = plt_offset;
11129 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11130
11131 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11132 loc += sizeof (Elf32_External_Rela);
11133 rel.r_offset = plt_address + 8;
11134 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11135 rel.r_addend = got_offset;
11136 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11137
11138 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11139 loc += sizeof (Elf32_External_Rela);
11140 rel.r_offset += 4;
11141 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11142 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11143 }
11144
11145 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11146 loc = (htab->root.srelplt->contents
11147 + gotplt_index * sizeof (Elf32_External_Rela));
11148 rel.r_offset = got_address;
11149 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11150 rel.r_addend = 0;
11151 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11152
11153 if (!h->def_regular)
11154 sym->st_shndx = SHN_UNDEF;
11155 }
11156
11157 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11158
11159 sgot = htab->root.sgot;
11160 g = htab->got_info;
11161 BFD_ASSERT (g != NULL);
11162
11163 /* See if this symbol has an entry in the GOT. */
11164 if (hmips->global_got_area != GGA_NONE)
11165 {
11166 bfd_vma offset;
11167 Elf_Internal_Rela outrel;
11168 bfd_byte *loc;
11169 asection *s;
11170
11171 /* Install the symbol value in the GOT. */
11172 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11173 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11174
11175 /* Add a dynamic relocation for it. */
11176 s = mips_elf_rel_dyn_section (info, FALSE);
11177 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11178 outrel.r_offset = (sgot->output_section->vma
11179 + sgot->output_offset
11180 + offset);
11181 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11182 outrel.r_addend = 0;
11183 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11184 }
11185
11186 /* Emit a copy reloc, if needed. */
11187 if (h->needs_copy)
11188 {
11189 Elf_Internal_Rela rel;
11190 asection *srel;
11191 bfd_byte *loc;
11192
11193 BFD_ASSERT (h->dynindx != -1);
11194
11195 rel.r_offset = (h->root.u.def.section->output_section->vma
11196 + h->root.u.def.section->output_offset
11197 + h->root.u.def.value);
11198 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11199 rel.r_addend = 0;
11200 if (h->root.u.def.section == htab->root.sdynrelro)
11201 srel = htab->root.sreldynrelro;
11202 else
11203 srel = htab->root.srelbss;
11204 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11205 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11206 ++srel->reloc_count;
11207 }
11208
11209 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11210 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11211 sym->st_value &= ~1;
11212
11213 return TRUE;
11214 }
11215
11216 /* Write out a plt0 entry to the beginning of .plt. */
11217
11218 static bfd_boolean
11219 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11220 {
11221 bfd_byte *loc;
11222 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11223 static const bfd_vma *plt_entry;
11224 struct mips_elf_link_hash_table *htab;
11225
11226 htab = mips_elf_hash_table (info);
11227 BFD_ASSERT (htab != NULL);
11228
11229 if (ABI_64_P (output_bfd))
11230 plt_entry = mips_n64_exec_plt0_entry;
11231 else if (ABI_N32_P (output_bfd))
11232 plt_entry = mips_n32_exec_plt0_entry;
11233 else if (!htab->plt_header_is_comp)
11234 plt_entry = mips_o32_exec_plt0_entry;
11235 else if (htab->insn32)
11236 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11237 else
11238 plt_entry = micromips_o32_exec_plt0_entry;
11239
11240 /* Calculate the value of .got.plt. */
11241 gotplt_value = (htab->root.sgotplt->output_section->vma
11242 + htab->root.sgotplt->output_offset);
11243 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11244 gotplt_value_low = gotplt_value & 0xffff;
11245
11246 /* The PLT sequence is not safe for N64 if .got.plt's address can
11247 not be loaded in two instructions. */
11248 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11249 || ~(gotplt_value | 0x7fffffff) == 0);
11250
11251 /* Install the PLT header. */
11252 loc = htab->root.splt->contents;
11253 if (plt_entry == micromips_o32_exec_plt0_entry)
11254 {
11255 bfd_vma gotpc_offset;
11256 bfd_vma loc_address;
11257 size_t i;
11258
11259 BFD_ASSERT (gotplt_value % 4 == 0);
11260
11261 loc_address = (htab->root.splt->output_section->vma
11262 + htab->root.splt->output_offset);
11263 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11264
11265 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11266 if (gotpc_offset + 0x1000000 >= 0x2000000)
11267 {
11268 _bfd_error_handler
11269 /* xgettext:c-format */
11270 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11271 "beyond the range of ADDIUPC"),
11272 output_bfd,
11273 htab->root.sgotplt->output_section,
11274 (int64_t) gotpc_offset,
11275 htab->root.splt->output_section);
11276 bfd_set_error (bfd_error_no_error);
11277 return FALSE;
11278 }
11279 bfd_put_16 (output_bfd,
11280 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11281 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11282 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11283 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11284 }
11285 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11286 {
11287 size_t i;
11288
11289 bfd_put_16 (output_bfd, plt_entry[0], loc);
11290 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11291 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11292 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11293 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11294 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11295 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11296 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11297 }
11298 else
11299 {
11300 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11301 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11302 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11303 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11304 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11305 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11306 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11307 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11308 }
11309
11310 return TRUE;
11311 }
11312
11313 /* Install the PLT header for a VxWorks executable and finalize the
11314 contents of .rela.plt.unloaded. */
11315
11316 static void
11317 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11318 {
11319 Elf_Internal_Rela rela;
11320 bfd_byte *loc;
11321 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11322 static const bfd_vma *plt_entry;
11323 struct mips_elf_link_hash_table *htab;
11324
11325 htab = mips_elf_hash_table (info);
11326 BFD_ASSERT (htab != NULL);
11327
11328 plt_entry = mips_vxworks_exec_plt0_entry;
11329
11330 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11331 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11332 + htab->root.hgot->root.u.def.section->output_offset
11333 + htab->root.hgot->root.u.def.value);
11334
11335 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11336 got_value_low = got_value & 0xffff;
11337
11338 /* Calculate the address of the PLT header. */
11339 plt_address = (htab->root.splt->output_section->vma
11340 + htab->root.splt->output_offset);
11341
11342 /* Install the PLT header. */
11343 loc = htab->root.splt->contents;
11344 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11345 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11346 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11347 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11348 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11349 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11350
11351 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11352 loc = htab->srelplt2->contents;
11353 rela.r_offset = plt_address;
11354 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11355 rela.r_addend = 0;
11356 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11357 loc += sizeof (Elf32_External_Rela);
11358
11359 /* Output the relocation for the following addiu of
11360 %lo(_GLOBAL_OFFSET_TABLE_). */
11361 rela.r_offset += 4;
11362 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11363 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11364 loc += sizeof (Elf32_External_Rela);
11365
11366 /* Fix up the remaining relocations. They may have the wrong
11367 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11368 in which symbols were output. */
11369 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11370 {
11371 Elf_Internal_Rela rel;
11372
11373 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11374 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11375 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11376 loc += sizeof (Elf32_External_Rela);
11377
11378 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11379 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11380 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11381 loc += sizeof (Elf32_External_Rela);
11382
11383 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11384 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11385 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11386 loc += sizeof (Elf32_External_Rela);
11387 }
11388 }
11389
11390 /* Install the PLT header for a VxWorks shared library. */
11391
11392 static void
11393 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11394 {
11395 unsigned int i;
11396 struct mips_elf_link_hash_table *htab;
11397
11398 htab = mips_elf_hash_table (info);
11399 BFD_ASSERT (htab != NULL);
11400
11401 /* We just need to copy the entry byte-by-byte. */
11402 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11403 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11404 htab->root.splt->contents + i * 4);
11405 }
11406
11407 /* Finish up the dynamic sections. */
11408
11409 bfd_boolean
11410 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11411 struct bfd_link_info *info)
11412 {
11413 bfd *dynobj;
11414 asection *sdyn;
11415 asection *sgot;
11416 struct mips_got_info *gg, *g;
11417 struct mips_elf_link_hash_table *htab;
11418
11419 htab = mips_elf_hash_table (info);
11420 BFD_ASSERT (htab != NULL);
11421
11422 dynobj = elf_hash_table (info)->dynobj;
11423
11424 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11425
11426 sgot = htab->root.sgot;
11427 gg = htab->got_info;
11428
11429 if (elf_hash_table (info)->dynamic_sections_created)
11430 {
11431 bfd_byte *b;
11432 int dyn_to_skip = 0, dyn_skipped = 0;
11433
11434 BFD_ASSERT (sdyn != NULL);
11435 BFD_ASSERT (gg != NULL);
11436
11437 g = mips_elf_bfd_got (output_bfd, FALSE);
11438 BFD_ASSERT (g != NULL);
11439
11440 for (b = sdyn->contents;
11441 b < sdyn->contents + sdyn->size;
11442 b += MIPS_ELF_DYN_SIZE (dynobj))
11443 {
11444 Elf_Internal_Dyn dyn;
11445 const char *name;
11446 size_t elemsize;
11447 asection *s;
11448 bfd_boolean swap_out_p;
11449
11450 /* Read in the current dynamic entry. */
11451 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11452
11453 /* Assume that we're going to modify it and write it out. */
11454 swap_out_p = TRUE;
11455
11456 switch (dyn.d_tag)
11457 {
11458 case DT_RELENT:
11459 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11460 break;
11461
11462 case DT_RELAENT:
11463 BFD_ASSERT (htab->is_vxworks);
11464 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11465 break;
11466
11467 case DT_STRSZ:
11468 /* Rewrite DT_STRSZ. */
11469 dyn.d_un.d_val =
11470 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11471 break;
11472
11473 case DT_PLTGOT:
11474 s = htab->root.sgot;
11475 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11476 break;
11477
11478 case DT_MIPS_PLTGOT:
11479 s = htab->root.sgotplt;
11480 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11481 break;
11482
11483 case DT_MIPS_RLD_VERSION:
11484 dyn.d_un.d_val = 1; /* XXX */
11485 break;
11486
11487 case DT_MIPS_FLAGS:
11488 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11489 break;
11490
11491 case DT_MIPS_TIME_STAMP:
11492 {
11493 time_t t;
11494 time (&t);
11495 dyn.d_un.d_val = t;
11496 }
11497 break;
11498
11499 case DT_MIPS_ICHECKSUM:
11500 /* XXX FIXME: */
11501 swap_out_p = FALSE;
11502 break;
11503
11504 case DT_MIPS_IVERSION:
11505 /* XXX FIXME: */
11506 swap_out_p = FALSE;
11507 break;
11508
11509 case DT_MIPS_BASE_ADDRESS:
11510 s = output_bfd->sections;
11511 BFD_ASSERT (s != NULL);
11512 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11513 break;
11514
11515 case DT_MIPS_LOCAL_GOTNO:
11516 dyn.d_un.d_val = g->local_gotno;
11517 break;
11518
11519 case DT_MIPS_UNREFEXTNO:
11520 /* The index into the dynamic symbol table which is the
11521 entry of the first external symbol that is not
11522 referenced within the same object. */
11523 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11524 break;
11525
11526 case DT_MIPS_GOTSYM:
11527 if (htab->global_gotsym)
11528 {
11529 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11530 break;
11531 }
11532 /* In case if we don't have global got symbols we default
11533 to setting DT_MIPS_GOTSYM to the same value as
11534 DT_MIPS_SYMTABNO. */
11535 /* Fall through. */
11536
11537 case DT_MIPS_SYMTABNO:
11538 name = ".dynsym";
11539 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11540 s = bfd_get_linker_section (dynobj, name);
11541
11542 if (s != NULL)
11543 dyn.d_un.d_val = s->size / elemsize;
11544 else
11545 dyn.d_un.d_val = 0;
11546 break;
11547
11548 case DT_MIPS_HIPAGENO:
11549 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11550 break;
11551
11552 case DT_MIPS_RLD_MAP:
11553 {
11554 struct elf_link_hash_entry *h;
11555 h = mips_elf_hash_table (info)->rld_symbol;
11556 if (!h)
11557 {
11558 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11559 swap_out_p = FALSE;
11560 break;
11561 }
11562 s = h->root.u.def.section;
11563
11564 /* The MIPS_RLD_MAP tag stores the absolute address of the
11565 debug pointer. */
11566 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11567 + h->root.u.def.value);
11568 }
11569 break;
11570
11571 case DT_MIPS_RLD_MAP_REL:
11572 {
11573 struct elf_link_hash_entry *h;
11574 bfd_vma dt_addr, rld_addr;
11575 h = mips_elf_hash_table (info)->rld_symbol;
11576 if (!h)
11577 {
11578 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11579 swap_out_p = FALSE;
11580 break;
11581 }
11582 s = h->root.u.def.section;
11583
11584 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11585 pointer, relative to the address of the tag. */
11586 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11587 + (b - sdyn->contents));
11588 rld_addr = (s->output_section->vma + s->output_offset
11589 + h->root.u.def.value);
11590 dyn.d_un.d_ptr = rld_addr - dt_addr;
11591 }
11592 break;
11593
11594 case DT_MIPS_OPTIONS:
11595 s = (bfd_get_section_by_name
11596 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11597 dyn.d_un.d_ptr = s->vma;
11598 break;
11599
11600 case DT_PLTREL:
11601 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11602 if (htab->is_vxworks)
11603 dyn.d_un.d_val = DT_RELA;
11604 else
11605 dyn.d_un.d_val = DT_REL;
11606 break;
11607
11608 case DT_PLTRELSZ:
11609 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11610 dyn.d_un.d_val = htab->root.srelplt->size;
11611 break;
11612
11613 case DT_JMPREL:
11614 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11615 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11616 + htab->root.srelplt->output_offset);
11617 break;
11618
11619 case DT_TEXTREL:
11620 /* If we didn't need any text relocations after all, delete
11621 the dynamic tag. */
11622 if (!(info->flags & DF_TEXTREL))
11623 {
11624 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11625 swap_out_p = FALSE;
11626 }
11627 break;
11628
11629 case DT_FLAGS:
11630 /* If we didn't need any text relocations after all, clear
11631 DF_TEXTREL from DT_FLAGS. */
11632 if (!(info->flags & DF_TEXTREL))
11633 dyn.d_un.d_val &= ~DF_TEXTREL;
11634 else
11635 swap_out_p = FALSE;
11636 break;
11637
11638 default:
11639 swap_out_p = FALSE;
11640 if (htab->is_vxworks
11641 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11642 swap_out_p = TRUE;
11643 break;
11644 }
11645
11646 if (swap_out_p || dyn_skipped)
11647 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11648 (dynobj, &dyn, b - dyn_skipped);
11649
11650 if (dyn_to_skip)
11651 {
11652 dyn_skipped += dyn_to_skip;
11653 dyn_to_skip = 0;
11654 }
11655 }
11656
11657 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11658 if (dyn_skipped > 0)
11659 memset (b - dyn_skipped, 0, dyn_skipped);
11660 }
11661
11662 if (sgot != NULL && sgot->size > 0
11663 && !bfd_is_abs_section (sgot->output_section))
11664 {
11665 if (htab->is_vxworks)
11666 {
11667 /* The first entry of the global offset table points to the
11668 ".dynamic" section. The second is initialized by the
11669 loader and contains the shared library identifier.
11670 The third is also initialized by the loader and points
11671 to the lazy resolution stub. */
11672 MIPS_ELF_PUT_WORD (output_bfd,
11673 sdyn->output_offset + sdyn->output_section->vma,
11674 sgot->contents);
11675 MIPS_ELF_PUT_WORD (output_bfd, 0,
11676 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11677 MIPS_ELF_PUT_WORD (output_bfd, 0,
11678 sgot->contents
11679 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11680 }
11681 else
11682 {
11683 /* The first entry of the global offset table will be filled at
11684 runtime. The second entry will be used by some runtime loaders.
11685 This isn't the case of IRIX rld. */
11686 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11687 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11688 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11689 }
11690
11691 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11692 = MIPS_ELF_GOT_SIZE (output_bfd);
11693 }
11694
11695 /* Generate dynamic relocations for the non-primary gots. */
11696 if (gg != NULL && gg->next)
11697 {
11698 Elf_Internal_Rela rel[3];
11699 bfd_vma addend = 0;
11700
11701 memset (rel, 0, sizeof (rel));
11702 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11703
11704 for (g = gg->next; g->next != gg; g = g->next)
11705 {
11706 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11707 + g->next->tls_gotno;
11708
11709 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11710 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11711 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11712 sgot->contents
11713 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11714
11715 if (! bfd_link_pic (info))
11716 continue;
11717
11718 for (; got_index < g->local_gotno; got_index++)
11719 {
11720 if (got_index >= g->assigned_low_gotno
11721 && got_index <= g->assigned_high_gotno)
11722 continue;
11723
11724 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11725 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11726 if (!(mips_elf_create_dynamic_relocation
11727 (output_bfd, info, rel, NULL,
11728 bfd_abs_section_ptr,
11729 0, &addend, sgot)))
11730 return FALSE;
11731 BFD_ASSERT (addend == 0);
11732 }
11733 }
11734 }
11735
11736 /* The generation of dynamic relocations for the non-primary gots
11737 adds more dynamic relocations. We cannot count them until
11738 here. */
11739
11740 if (elf_hash_table (info)->dynamic_sections_created)
11741 {
11742 bfd_byte *b;
11743 bfd_boolean swap_out_p;
11744
11745 BFD_ASSERT (sdyn != NULL);
11746
11747 for (b = sdyn->contents;
11748 b < sdyn->contents + sdyn->size;
11749 b += MIPS_ELF_DYN_SIZE (dynobj))
11750 {
11751 Elf_Internal_Dyn dyn;
11752 asection *s;
11753
11754 /* Read in the current dynamic entry. */
11755 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11756
11757 /* Assume that we're going to modify it and write it out. */
11758 swap_out_p = TRUE;
11759
11760 switch (dyn.d_tag)
11761 {
11762 case DT_RELSZ:
11763 /* Reduce DT_RELSZ to account for any relocations we
11764 decided not to make. This is for the n64 irix rld,
11765 which doesn't seem to apply any relocations if there
11766 are trailing null entries. */
11767 s = mips_elf_rel_dyn_section (info, FALSE);
11768 dyn.d_un.d_val = (s->reloc_count
11769 * (ABI_64_P (output_bfd)
11770 ? sizeof (Elf64_Mips_External_Rel)
11771 : sizeof (Elf32_External_Rel)));
11772 /* Adjust the section size too. Tools like the prelinker
11773 can reasonably expect the values to the same. */
11774 elf_section_data (s->output_section)->this_hdr.sh_size
11775 = dyn.d_un.d_val;
11776 break;
11777
11778 default:
11779 swap_out_p = FALSE;
11780 break;
11781 }
11782
11783 if (swap_out_p)
11784 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11785 (dynobj, &dyn, b);
11786 }
11787 }
11788
11789 {
11790 asection *s;
11791 Elf32_compact_rel cpt;
11792
11793 if (SGI_COMPAT (output_bfd))
11794 {
11795 /* Write .compact_rel section out. */
11796 s = bfd_get_linker_section (dynobj, ".compact_rel");
11797 if (s != NULL)
11798 {
11799 cpt.id1 = 1;
11800 cpt.num = s->reloc_count;
11801 cpt.id2 = 2;
11802 cpt.offset = (s->output_section->filepos
11803 + sizeof (Elf32_External_compact_rel));
11804 cpt.reserved0 = 0;
11805 cpt.reserved1 = 0;
11806 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11807 ((Elf32_External_compact_rel *)
11808 s->contents));
11809
11810 /* Clean up a dummy stub function entry in .text. */
11811 if (htab->sstubs != NULL)
11812 {
11813 file_ptr dummy_offset;
11814
11815 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11816 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11817 memset (htab->sstubs->contents + dummy_offset, 0,
11818 htab->function_stub_size);
11819 }
11820 }
11821 }
11822
11823 /* The psABI says that the dynamic relocations must be sorted in
11824 increasing order of r_symndx. The VxWorks EABI doesn't require
11825 this, and because the code below handles REL rather than RELA
11826 relocations, using it for VxWorks would be outright harmful. */
11827 if (!htab->is_vxworks)
11828 {
11829 s = mips_elf_rel_dyn_section (info, FALSE);
11830 if (s != NULL
11831 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11832 {
11833 reldyn_sorting_bfd = output_bfd;
11834
11835 if (ABI_64_P (output_bfd))
11836 qsort ((Elf64_External_Rel *) s->contents + 1,
11837 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11838 sort_dynamic_relocs_64);
11839 else
11840 qsort ((Elf32_External_Rel *) s->contents + 1,
11841 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11842 sort_dynamic_relocs);
11843 }
11844 }
11845 }
11846
11847 if (htab->root.splt && htab->root.splt->size > 0)
11848 {
11849 if (htab->is_vxworks)
11850 {
11851 if (bfd_link_pic (info))
11852 mips_vxworks_finish_shared_plt (output_bfd, info);
11853 else
11854 mips_vxworks_finish_exec_plt (output_bfd, info);
11855 }
11856 else
11857 {
11858 BFD_ASSERT (!bfd_link_pic (info));
11859 if (!mips_finish_exec_plt (output_bfd, info))
11860 return FALSE;
11861 }
11862 }
11863 return TRUE;
11864 }
11865
11866
11867 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11868
11869 static void
11870 mips_set_isa_flags (bfd *abfd)
11871 {
11872 flagword val;
11873
11874 switch (bfd_get_mach (abfd))
11875 {
11876 default:
11877 case bfd_mach_mips3000:
11878 val = E_MIPS_ARCH_1;
11879 break;
11880
11881 case bfd_mach_mips3900:
11882 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11883 break;
11884
11885 case bfd_mach_mips6000:
11886 val = E_MIPS_ARCH_2;
11887 break;
11888
11889 case bfd_mach_mips4010:
11890 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11891 break;
11892
11893 case bfd_mach_mips4000:
11894 case bfd_mach_mips4300:
11895 case bfd_mach_mips4400:
11896 case bfd_mach_mips4600:
11897 val = E_MIPS_ARCH_3;
11898 break;
11899
11900 case bfd_mach_mips4100:
11901 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11902 break;
11903
11904 case bfd_mach_mips4111:
11905 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11906 break;
11907
11908 case bfd_mach_mips4120:
11909 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11910 break;
11911
11912 case bfd_mach_mips4650:
11913 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11914 break;
11915
11916 case bfd_mach_mips5400:
11917 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11918 break;
11919
11920 case bfd_mach_mips5500:
11921 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11922 break;
11923
11924 case bfd_mach_mips5900:
11925 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11926 break;
11927
11928 case bfd_mach_mips9000:
11929 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11930 break;
11931
11932 case bfd_mach_mips5000:
11933 case bfd_mach_mips7000:
11934 case bfd_mach_mips8000:
11935 case bfd_mach_mips10000:
11936 case bfd_mach_mips12000:
11937 case bfd_mach_mips14000:
11938 case bfd_mach_mips16000:
11939 val = E_MIPS_ARCH_4;
11940 break;
11941
11942 case bfd_mach_mips5:
11943 val = E_MIPS_ARCH_5;
11944 break;
11945
11946 case bfd_mach_mips_loongson_2e:
11947 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11948 break;
11949
11950 case bfd_mach_mips_loongson_2f:
11951 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11952 break;
11953
11954 case bfd_mach_mips_sb1:
11955 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11956 break;
11957
11958 case bfd_mach_mips_loongson_3a:
11959 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11960 break;
11961
11962 case bfd_mach_mips_octeon:
11963 case bfd_mach_mips_octeonp:
11964 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11965 break;
11966
11967 case bfd_mach_mips_octeon3:
11968 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11969 break;
11970
11971 case bfd_mach_mips_xlr:
11972 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11973 break;
11974
11975 case bfd_mach_mips_octeon2:
11976 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11977 break;
11978
11979 case bfd_mach_mipsisa32:
11980 val = E_MIPS_ARCH_32;
11981 break;
11982
11983 case bfd_mach_mipsisa64:
11984 val = E_MIPS_ARCH_64;
11985 break;
11986
11987 case bfd_mach_mipsisa32r2:
11988 case bfd_mach_mipsisa32r3:
11989 case bfd_mach_mipsisa32r5:
11990 val = E_MIPS_ARCH_32R2;
11991 break;
11992
11993 case bfd_mach_mips_interaptiv_mr2:
11994 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
11995 break;
11996
11997 case bfd_mach_mipsisa64r2:
11998 case bfd_mach_mipsisa64r3:
11999 case bfd_mach_mipsisa64r5:
12000 val = E_MIPS_ARCH_64R2;
12001 break;
12002
12003 case bfd_mach_mipsisa32r6:
12004 val = E_MIPS_ARCH_32R6;
12005 break;
12006
12007 case bfd_mach_mipsisa64r6:
12008 val = E_MIPS_ARCH_64R6;
12009 break;
12010 }
12011 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12012 elf_elfheader (abfd)->e_flags |= val;
12013
12014 }
12015
12016
12017 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12018 Don't do so for code sections. We want to keep ordering of HI16/LO16
12019 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12020 relocs to be sorted. */
12021
12022 bfd_boolean
12023 _bfd_mips_elf_sort_relocs_p (asection *sec)
12024 {
12025 return (sec->flags & SEC_CODE) == 0;
12026 }
12027
12028
12029 /* The final processing done just before writing out a MIPS ELF object
12030 file. This gets the MIPS architecture right based on the machine
12031 number. This is used by both the 32-bit and the 64-bit ABI. */
12032
12033 void
12034 _bfd_mips_elf_final_write_processing (bfd *abfd,
12035 bfd_boolean linker ATTRIBUTE_UNUSED)
12036 {
12037 unsigned int i;
12038 Elf_Internal_Shdr **hdrpp;
12039 const char *name;
12040 asection *sec;
12041
12042 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12043 is nonzero. This is for compatibility with old objects, which used
12044 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12045 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12046 mips_set_isa_flags (abfd);
12047
12048 /* Set the sh_info field for .gptab sections and other appropriate
12049 info for each special section. */
12050 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12051 i < elf_numsections (abfd);
12052 i++, hdrpp++)
12053 {
12054 switch ((*hdrpp)->sh_type)
12055 {
12056 case SHT_MIPS_MSYM:
12057 case SHT_MIPS_LIBLIST:
12058 sec = bfd_get_section_by_name (abfd, ".dynstr");
12059 if (sec != NULL)
12060 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12061 break;
12062
12063 case SHT_MIPS_GPTAB:
12064 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12065 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12066 BFD_ASSERT (name != NULL
12067 && CONST_STRNEQ (name, ".gptab."));
12068 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12069 BFD_ASSERT (sec != NULL);
12070 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12071 break;
12072
12073 case SHT_MIPS_CONTENT:
12074 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12075 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12076 BFD_ASSERT (name != NULL
12077 && CONST_STRNEQ (name, ".MIPS.content"));
12078 sec = bfd_get_section_by_name (abfd,
12079 name + sizeof ".MIPS.content" - 1);
12080 BFD_ASSERT (sec != NULL);
12081 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12082 break;
12083
12084 case SHT_MIPS_SYMBOL_LIB:
12085 sec = bfd_get_section_by_name (abfd, ".dynsym");
12086 if (sec != NULL)
12087 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12088 sec = bfd_get_section_by_name (abfd, ".liblist");
12089 if (sec != NULL)
12090 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12091 break;
12092
12093 case SHT_MIPS_EVENTS:
12094 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12095 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12096 BFD_ASSERT (name != NULL);
12097 if (CONST_STRNEQ (name, ".MIPS.events"))
12098 sec = bfd_get_section_by_name (abfd,
12099 name + sizeof ".MIPS.events" - 1);
12100 else
12101 {
12102 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12103 sec = bfd_get_section_by_name (abfd,
12104 (name
12105 + sizeof ".MIPS.post_rel" - 1));
12106 }
12107 BFD_ASSERT (sec != NULL);
12108 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12109 break;
12110
12111 }
12112 }
12113 }
12114 \f
12115 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12116 segments. */
12117
12118 int
12119 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12120 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12121 {
12122 asection *s;
12123 int ret = 0;
12124
12125 /* See if we need a PT_MIPS_REGINFO segment. */
12126 s = bfd_get_section_by_name (abfd, ".reginfo");
12127 if (s && (s->flags & SEC_LOAD))
12128 ++ret;
12129
12130 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12131 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12132 ++ret;
12133
12134 /* See if we need a PT_MIPS_OPTIONS segment. */
12135 if (IRIX_COMPAT (abfd) == ict_irix6
12136 && bfd_get_section_by_name (abfd,
12137 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12138 ++ret;
12139
12140 /* See if we need a PT_MIPS_RTPROC segment. */
12141 if (IRIX_COMPAT (abfd) == ict_irix5
12142 && bfd_get_section_by_name (abfd, ".dynamic")
12143 && bfd_get_section_by_name (abfd, ".mdebug"))
12144 ++ret;
12145
12146 /* Allocate a PT_NULL header in dynamic objects. See
12147 _bfd_mips_elf_modify_segment_map for details. */
12148 if (!SGI_COMPAT (abfd)
12149 && bfd_get_section_by_name (abfd, ".dynamic"))
12150 ++ret;
12151
12152 return ret;
12153 }
12154
12155 /* Modify the segment map for an IRIX5 executable. */
12156
12157 bfd_boolean
12158 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12159 struct bfd_link_info *info)
12160 {
12161 asection *s;
12162 struct elf_segment_map *m, **pm;
12163 bfd_size_type amt;
12164
12165 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12166 segment. */
12167 s = bfd_get_section_by_name (abfd, ".reginfo");
12168 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12169 {
12170 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12171 if (m->p_type == PT_MIPS_REGINFO)
12172 break;
12173 if (m == NULL)
12174 {
12175 amt = sizeof *m;
12176 m = bfd_zalloc (abfd, amt);
12177 if (m == NULL)
12178 return FALSE;
12179
12180 m->p_type = PT_MIPS_REGINFO;
12181 m->count = 1;
12182 m->sections[0] = s;
12183
12184 /* We want to put it after the PHDR and INTERP segments. */
12185 pm = &elf_seg_map (abfd);
12186 while (*pm != NULL
12187 && ((*pm)->p_type == PT_PHDR
12188 || (*pm)->p_type == PT_INTERP))
12189 pm = &(*pm)->next;
12190
12191 m->next = *pm;
12192 *pm = m;
12193 }
12194 }
12195
12196 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12197 segment. */
12198 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12199 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12200 {
12201 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12202 if (m->p_type == PT_MIPS_ABIFLAGS)
12203 break;
12204 if (m == NULL)
12205 {
12206 amt = sizeof *m;
12207 m = bfd_zalloc (abfd, amt);
12208 if (m == NULL)
12209 return FALSE;
12210
12211 m->p_type = PT_MIPS_ABIFLAGS;
12212 m->count = 1;
12213 m->sections[0] = s;
12214
12215 /* We want to put it after the PHDR and INTERP segments. */
12216 pm = &elf_seg_map (abfd);
12217 while (*pm != NULL
12218 && ((*pm)->p_type == PT_PHDR
12219 || (*pm)->p_type == PT_INTERP))
12220 pm = &(*pm)->next;
12221
12222 m->next = *pm;
12223 *pm = m;
12224 }
12225 }
12226
12227 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12228 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12229 PT_MIPS_OPTIONS segment immediately following the program header
12230 table. */
12231 if (NEWABI_P (abfd)
12232 /* On non-IRIX6 new abi, we'll have already created a segment
12233 for this section, so don't create another. I'm not sure this
12234 is not also the case for IRIX 6, but I can't test it right
12235 now. */
12236 && IRIX_COMPAT (abfd) == ict_irix6)
12237 {
12238 for (s = abfd->sections; s; s = s->next)
12239 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12240 break;
12241
12242 if (s)
12243 {
12244 struct elf_segment_map *options_segment;
12245
12246 pm = &elf_seg_map (abfd);
12247 while (*pm != NULL
12248 && ((*pm)->p_type == PT_PHDR
12249 || (*pm)->p_type == PT_INTERP))
12250 pm = &(*pm)->next;
12251
12252 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12253 {
12254 amt = sizeof (struct elf_segment_map);
12255 options_segment = bfd_zalloc (abfd, amt);
12256 options_segment->next = *pm;
12257 options_segment->p_type = PT_MIPS_OPTIONS;
12258 options_segment->p_flags = PF_R;
12259 options_segment->p_flags_valid = TRUE;
12260 options_segment->count = 1;
12261 options_segment->sections[0] = s;
12262 *pm = options_segment;
12263 }
12264 }
12265 }
12266 else
12267 {
12268 if (IRIX_COMPAT (abfd) == ict_irix5)
12269 {
12270 /* If there are .dynamic and .mdebug sections, we make a room
12271 for the RTPROC header. FIXME: Rewrite without section names. */
12272 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12273 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12274 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12275 {
12276 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12277 if (m->p_type == PT_MIPS_RTPROC)
12278 break;
12279 if (m == NULL)
12280 {
12281 amt = sizeof *m;
12282 m = bfd_zalloc (abfd, amt);
12283 if (m == NULL)
12284 return FALSE;
12285
12286 m->p_type = PT_MIPS_RTPROC;
12287
12288 s = bfd_get_section_by_name (abfd, ".rtproc");
12289 if (s == NULL)
12290 {
12291 m->count = 0;
12292 m->p_flags = 0;
12293 m->p_flags_valid = 1;
12294 }
12295 else
12296 {
12297 m->count = 1;
12298 m->sections[0] = s;
12299 }
12300
12301 /* We want to put it after the DYNAMIC segment. */
12302 pm = &elf_seg_map (abfd);
12303 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12304 pm = &(*pm)->next;
12305 if (*pm != NULL)
12306 pm = &(*pm)->next;
12307
12308 m->next = *pm;
12309 *pm = m;
12310 }
12311 }
12312 }
12313 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12314 .dynstr, .dynsym, and .hash sections, and everything in
12315 between. */
12316 for (pm = &elf_seg_map (abfd); *pm != NULL;
12317 pm = &(*pm)->next)
12318 if ((*pm)->p_type == PT_DYNAMIC)
12319 break;
12320 m = *pm;
12321 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12322 glibc's dynamic linker has traditionally derived the number of
12323 tags from the p_filesz field, and sometimes allocates stack
12324 arrays of that size. An overly-big PT_DYNAMIC segment can
12325 be actively harmful in such cases. Making PT_DYNAMIC contain
12326 other sections can also make life hard for the prelinker,
12327 which might move one of the other sections to a different
12328 PT_LOAD segment. */
12329 if (SGI_COMPAT (abfd)
12330 && m != NULL
12331 && m->count == 1
12332 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12333 {
12334 static const char *sec_names[] =
12335 {
12336 ".dynamic", ".dynstr", ".dynsym", ".hash"
12337 };
12338 bfd_vma low, high;
12339 unsigned int i, c;
12340 struct elf_segment_map *n;
12341
12342 low = ~(bfd_vma) 0;
12343 high = 0;
12344 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12345 {
12346 s = bfd_get_section_by_name (abfd, sec_names[i]);
12347 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12348 {
12349 bfd_size_type sz;
12350
12351 if (low > s->vma)
12352 low = s->vma;
12353 sz = s->size;
12354 if (high < s->vma + sz)
12355 high = s->vma + sz;
12356 }
12357 }
12358
12359 c = 0;
12360 for (s = abfd->sections; s != NULL; s = s->next)
12361 if ((s->flags & SEC_LOAD) != 0
12362 && s->vma >= low
12363 && s->vma + s->size <= high)
12364 ++c;
12365
12366 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12367 n = bfd_zalloc (abfd, amt);
12368 if (n == NULL)
12369 return FALSE;
12370 *n = *m;
12371 n->count = c;
12372
12373 i = 0;
12374 for (s = abfd->sections; s != NULL; s = s->next)
12375 {
12376 if ((s->flags & SEC_LOAD) != 0
12377 && s->vma >= low
12378 && s->vma + s->size <= high)
12379 {
12380 n->sections[i] = s;
12381 ++i;
12382 }
12383 }
12384
12385 *pm = n;
12386 }
12387 }
12388
12389 /* Allocate a spare program header in dynamic objects so that tools
12390 like the prelinker can add an extra PT_LOAD entry.
12391
12392 If the prelinker needs to make room for a new PT_LOAD entry, its
12393 standard procedure is to move the first (read-only) sections into
12394 the new (writable) segment. However, the MIPS ABI requires
12395 .dynamic to be in a read-only segment, and the section will often
12396 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12397
12398 Although the prelinker could in principle move .dynamic to a
12399 writable segment, it seems better to allocate a spare program
12400 header instead, and avoid the need to move any sections.
12401 There is a long tradition of allocating spare dynamic tags,
12402 so allocating a spare program header seems like a natural
12403 extension.
12404
12405 If INFO is NULL, we may be copying an already prelinked binary
12406 with objcopy or strip, so do not add this header. */
12407 if (info != NULL
12408 && !SGI_COMPAT (abfd)
12409 && bfd_get_section_by_name (abfd, ".dynamic"))
12410 {
12411 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12412 if ((*pm)->p_type == PT_NULL)
12413 break;
12414 if (*pm == NULL)
12415 {
12416 m = bfd_zalloc (abfd, sizeof (*m));
12417 if (m == NULL)
12418 return FALSE;
12419
12420 m->p_type = PT_NULL;
12421 *pm = m;
12422 }
12423 }
12424
12425 return TRUE;
12426 }
12427 \f
12428 /* Return the section that should be marked against GC for a given
12429 relocation. */
12430
12431 asection *
12432 _bfd_mips_elf_gc_mark_hook (asection *sec,
12433 struct bfd_link_info *info,
12434 Elf_Internal_Rela *rel,
12435 struct elf_link_hash_entry *h,
12436 Elf_Internal_Sym *sym)
12437 {
12438 /* ??? Do mips16 stub sections need to be handled special? */
12439
12440 if (h != NULL)
12441 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12442 {
12443 case R_MIPS_GNU_VTINHERIT:
12444 case R_MIPS_GNU_VTENTRY:
12445 return NULL;
12446 }
12447
12448 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12449 }
12450
12451 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12452
12453 bfd_boolean
12454 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12455 elf_gc_mark_hook_fn gc_mark_hook)
12456 {
12457 bfd *sub;
12458
12459 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12460
12461 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12462 {
12463 asection *o;
12464
12465 if (! is_mips_elf (sub))
12466 continue;
12467
12468 for (o = sub->sections; o != NULL; o = o->next)
12469 if (!o->gc_mark
12470 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12471 (bfd_get_section_name (sub, o)))
12472 {
12473 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12474 return FALSE;
12475 }
12476 }
12477
12478 return TRUE;
12479 }
12480 \f
12481 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12482 hiding the old indirect symbol. Process additional relocation
12483 information. Also called for weakdefs, in which case we just let
12484 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12485
12486 void
12487 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12488 struct elf_link_hash_entry *dir,
12489 struct elf_link_hash_entry *ind)
12490 {
12491 struct mips_elf_link_hash_entry *dirmips, *indmips;
12492
12493 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12494
12495 dirmips = (struct mips_elf_link_hash_entry *) dir;
12496 indmips = (struct mips_elf_link_hash_entry *) ind;
12497 /* Any absolute non-dynamic relocations against an indirect or weak
12498 definition will be against the target symbol. */
12499 if (indmips->has_static_relocs)
12500 dirmips->has_static_relocs = TRUE;
12501
12502 if (ind->root.type != bfd_link_hash_indirect)
12503 return;
12504
12505 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12506 if (indmips->readonly_reloc)
12507 dirmips->readonly_reloc = TRUE;
12508 if (indmips->no_fn_stub)
12509 dirmips->no_fn_stub = TRUE;
12510 if (indmips->fn_stub)
12511 {
12512 dirmips->fn_stub = indmips->fn_stub;
12513 indmips->fn_stub = NULL;
12514 }
12515 if (indmips->need_fn_stub)
12516 {
12517 dirmips->need_fn_stub = TRUE;
12518 indmips->need_fn_stub = FALSE;
12519 }
12520 if (indmips->call_stub)
12521 {
12522 dirmips->call_stub = indmips->call_stub;
12523 indmips->call_stub = NULL;
12524 }
12525 if (indmips->call_fp_stub)
12526 {
12527 dirmips->call_fp_stub = indmips->call_fp_stub;
12528 indmips->call_fp_stub = NULL;
12529 }
12530 if (indmips->global_got_area < dirmips->global_got_area)
12531 dirmips->global_got_area = indmips->global_got_area;
12532 if (indmips->global_got_area < GGA_NONE)
12533 indmips->global_got_area = GGA_NONE;
12534 if (indmips->has_nonpic_branches)
12535 dirmips->has_nonpic_branches = TRUE;
12536 }
12537 \f
12538 #define PDR_SIZE 32
12539
12540 bfd_boolean
12541 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12542 struct bfd_link_info *info)
12543 {
12544 asection *o;
12545 bfd_boolean ret = FALSE;
12546 unsigned char *tdata;
12547 size_t i, skip;
12548
12549 o = bfd_get_section_by_name (abfd, ".pdr");
12550 if (! o)
12551 return FALSE;
12552 if (o->size == 0)
12553 return FALSE;
12554 if (o->size % PDR_SIZE != 0)
12555 return FALSE;
12556 if (o->output_section != NULL
12557 && bfd_is_abs_section (o->output_section))
12558 return FALSE;
12559
12560 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12561 if (! tdata)
12562 return FALSE;
12563
12564 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12565 info->keep_memory);
12566 if (!cookie->rels)
12567 {
12568 free (tdata);
12569 return FALSE;
12570 }
12571
12572 cookie->rel = cookie->rels;
12573 cookie->relend = cookie->rels + o->reloc_count;
12574
12575 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12576 {
12577 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12578 {
12579 tdata[i] = 1;
12580 skip ++;
12581 }
12582 }
12583
12584 if (skip != 0)
12585 {
12586 mips_elf_section_data (o)->u.tdata = tdata;
12587 if (o->rawsize == 0)
12588 o->rawsize = o->size;
12589 o->size -= skip * PDR_SIZE;
12590 ret = TRUE;
12591 }
12592 else
12593 free (tdata);
12594
12595 if (! info->keep_memory)
12596 free (cookie->rels);
12597
12598 return ret;
12599 }
12600
12601 bfd_boolean
12602 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12603 {
12604 if (strcmp (sec->name, ".pdr") == 0)
12605 return TRUE;
12606 return FALSE;
12607 }
12608
12609 bfd_boolean
12610 _bfd_mips_elf_write_section (bfd *output_bfd,
12611 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12612 asection *sec, bfd_byte *contents)
12613 {
12614 bfd_byte *to, *from, *end;
12615 int i;
12616
12617 if (strcmp (sec->name, ".pdr") != 0)
12618 return FALSE;
12619
12620 if (mips_elf_section_data (sec)->u.tdata == NULL)
12621 return FALSE;
12622
12623 to = contents;
12624 end = contents + sec->size;
12625 for (from = contents, i = 0;
12626 from < end;
12627 from += PDR_SIZE, i++)
12628 {
12629 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12630 continue;
12631 if (to != from)
12632 memcpy (to, from, PDR_SIZE);
12633 to += PDR_SIZE;
12634 }
12635 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12636 sec->output_offset, sec->size);
12637 return TRUE;
12638 }
12639 \f
12640 /* microMIPS code retains local labels for linker relaxation. Omit them
12641 from output by default for clarity. */
12642
12643 bfd_boolean
12644 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12645 {
12646 return _bfd_elf_is_local_label_name (abfd, sym->name);
12647 }
12648
12649 /* MIPS ELF uses a special find_nearest_line routine in order the
12650 handle the ECOFF debugging information. */
12651
12652 struct mips_elf_find_line
12653 {
12654 struct ecoff_debug_info d;
12655 struct ecoff_find_line i;
12656 };
12657
12658 bfd_boolean
12659 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12660 asection *section, bfd_vma offset,
12661 const char **filename_ptr,
12662 const char **functionname_ptr,
12663 unsigned int *line_ptr,
12664 unsigned int *discriminator_ptr)
12665 {
12666 asection *msec;
12667
12668 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12669 filename_ptr, functionname_ptr,
12670 line_ptr, discriminator_ptr,
12671 dwarf_debug_sections,
12672 ABI_64_P (abfd) ? 8 : 0,
12673 &elf_tdata (abfd)->dwarf2_find_line_info)
12674 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12675 filename_ptr, functionname_ptr,
12676 line_ptr))
12677 {
12678 /* PR 22789: If the function name or filename was not found through
12679 the debug information, then try an ordinary lookup instead. */
12680 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12681 || (filename_ptr != NULL && *filename_ptr == NULL))
12682 {
12683 /* Do not override already discovered names. */
12684 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12685 functionname_ptr = NULL;
12686
12687 if (filename_ptr != NULL && *filename_ptr != NULL)
12688 filename_ptr = NULL;
12689
12690 _bfd_elf_find_function (abfd, symbols, section, offset,
12691 filename_ptr, functionname_ptr);
12692 }
12693
12694 return TRUE;
12695 }
12696
12697 msec = bfd_get_section_by_name (abfd, ".mdebug");
12698 if (msec != NULL)
12699 {
12700 flagword origflags;
12701 struct mips_elf_find_line *fi;
12702 const struct ecoff_debug_swap * const swap =
12703 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12704
12705 /* If we are called during a link, mips_elf_final_link may have
12706 cleared the SEC_HAS_CONTENTS field. We force it back on here
12707 if appropriate (which it normally will be). */
12708 origflags = msec->flags;
12709 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12710 msec->flags |= SEC_HAS_CONTENTS;
12711
12712 fi = mips_elf_tdata (abfd)->find_line_info;
12713 if (fi == NULL)
12714 {
12715 bfd_size_type external_fdr_size;
12716 char *fraw_src;
12717 char *fraw_end;
12718 struct fdr *fdr_ptr;
12719 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12720
12721 fi = bfd_zalloc (abfd, amt);
12722 if (fi == NULL)
12723 {
12724 msec->flags = origflags;
12725 return FALSE;
12726 }
12727
12728 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12729 {
12730 msec->flags = origflags;
12731 return FALSE;
12732 }
12733
12734 /* Swap in the FDR information. */
12735 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12736 fi->d.fdr = bfd_alloc (abfd, amt);
12737 if (fi->d.fdr == NULL)
12738 {
12739 msec->flags = origflags;
12740 return FALSE;
12741 }
12742 external_fdr_size = swap->external_fdr_size;
12743 fdr_ptr = fi->d.fdr;
12744 fraw_src = (char *) fi->d.external_fdr;
12745 fraw_end = (fraw_src
12746 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12747 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12748 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12749
12750 mips_elf_tdata (abfd)->find_line_info = fi;
12751
12752 /* Note that we don't bother to ever free this information.
12753 find_nearest_line is either called all the time, as in
12754 objdump -l, so the information should be saved, or it is
12755 rarely called, as in ld error messages, so the memory
12756 wasted is unimportant. Still, it would probably be a
12757 good idea for free_cached_info to throw it away. */
12758 }
12759
12760 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12761 &fi->i, filename_ptr, functionname_ptr,
12762 line_ptr))
12763 {
12764 msec->flags = origflags;
12765 return TRUE;
12766 }
12767
12768 msec->flags = origflags;
12769 }
12770
12771 /* Fall back on the generic ELF find_nearest_line routine. */
12772
12773 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12774 filename_ptr, functionname_ptr,
12775 line_ptr, discriminator_ptr);
12776 }
12777
12778 bfd_boolean
12779 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12780 const char **filename_ptr,
12781 const char **functionname_ptr,
12782 unsigned int *line_ptr)
12783 {
12784 bfd_boolean found;
12785 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12786 functionname_ptr, line_ptr,
12787 & elf_tdata (abfd)->dwarf2_find_line_info);
12788 return found;
12789 }
12790
12791 \f
12792 /* When are writing out the .options or .MIPS.options section,
12793 remember the bytes we are writing out, so that we can install the
12794 GP value in the section_processing routine. */
12795
12796 bfd_boolean
12797 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12798 const void *location,
12799 file_ptr offset, bfd_size_type count)
12800 {
12801 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12802 {
12803 bfd_byte *c;
12804
12805 if (elf_section_data (section) == NULL)
12806 {
12807 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12808 section->used_by_bfd = bfd_zalloc (abfd, amt);
12809 if (elf_section_data (section) == NULL)
12810 return FALSE;
12811 }
12812 c = mips_elf_section_data (section)->u.tdata;
12813 if (c == NULL)
12814 {
12815 c = bfd_zalloc (abfd, section->size);
12816 if (c == NULL)
12817 return FALSE;
12818 mips_elf_section_data (section)->u.tdata = c;
12819 }
12820
12821 memcpy (c + offset, location, count);
12822 }
12823
12824 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12825 count);
12826 }
12827
12828 /* This is almost identical to bfd_generic_get_... except that some
12829 MIPS relocations need to be handled specially. Sigh. */
12830
12831 bfd_byte *
12832 _bfd_elf_mips_get_relocated_section_contents
12833 (bfd *abfd,
12834 struct bfd_link_info *link_info,
12835 struct bfd_link_order *link_order,
12836 bfd_byte *data,
12837 bfd_boolean relocatable,
12838 asymbol **symbols)
12839 {
12840 /* Get enough memory to hold the stuff */
12841 bfd *input_bfd = link_order->u.indirect.section->owner;
12842 asection *input_section = link_order->u.indirect.section;
12843 bfd_size_type sz;
12844
12845 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12846 arelent **reloc_vector = NULL;
12847 long reloc_count;
12848
12849 if (reloc_size < 0)
12850 goto error_return;
12851
12852 reloc_vector = bfd_malloc (reloc_size);
12853 if (reloc_vector == NULL && reloc_size != 0)
12854 goto error_return;
12855
12856 /* read in the section */
12857 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12858 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12859 goto error_return;
12860
12861 reloc_count = bfd_canonicalize_reloc (input_bfd,
12862 input_section,
12863 reloc_vector,
12864 symbols);
12865 if (reloc_count < 0)
12866 goto error_return;
12867
12868 if (reloc_count > 0)
12869 {
12870 arelent **parent;
12871 /* for mips */
12872 int gp_found;
12873 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12874
12875 {
12876 struct bfd_hash_entry *h;
12877 struct bfd_link_hash_entry *lh;
12878 /* Skip all this stuff if we aren't mixing formats. */
12879 if (abfd && input_bfd
12880 && abfd->xvec == input_bfd->xvec)
12881 lh = 0;
12882 else
12883 {
12884 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12885 lh = (struct bfd_link_hash_entry *) h;
12886 }
12887 lookup:
12888 if (lh)
12889 {
12890 switch (lh->type)
12891 {
12892 case bfd_link_hash_undefined:
12893 case bfd_link_hash_undefweak:
12894 case bfd_link_hash_common:
12895 gp_found = 0;
12896 break;
12897 case bfd_link_hash_defined:
12898 case bfd_link_hash_defweak:
12899 gp_found = 1;
12900 gp = lh->u.def.value;
12901 break;
12902 case bfd_link_hash_indirect:
12903 case bfd_link_hash_warning:
12904 lh = lh->u.i.link;
12905 /* @@FIXME ignoring warning for now */
12906 goto lookup;
12907 case bfd_link_hash_new:
12908 default:
12909 abort ();
12910 }
12911 }
12912 else
12913 gp_found = 0;
12914 }
12915 /* end mips */
12916 for (parent = reloc_vector; *parent != NULL; parent++)
12917 {
12918 char *error_message = NULL;
12919 bfd_reloc_status_type r;
12920
12921 /* Specific to MIPS: Deal with relocation types that require
12922 knowing the gp of the output bfd. */
12923 asymbol *sym = *(*parent)->sym_ptr_ptr;
12924
12925 /* If we've managed to find the gp and have a special
12926 function for the relocation then go ahead, else default
12927 to the generic handling. */
12928 if (gp_found
12929 && (*parent)->howto->special_function
12930 == _bfd_mips_elf32_gprel16_reloc)
12931 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12932 input_section, relocatable,
12933 data, gp);
12934 else
12935 r = bfd_perform_relocation (input_bfd, *parent, data,
12936 input_section,
12937 relocatable ? abfd : NULL,
12938 &error_message);
12939
12940 if (relocatable)
12941 {
12942 asection *os = input_section->output_section;
12943
12944 /* A partial link, so keep the relocs */
12945 os->orelocation[os->reloc_count] = *parent;
12946 os->reloc_count++;
12947 }
12948
12949 if (r != bfd_reloc_ok)
12950 {
12951 switch (r)
12952 {
12953 case bfd_reloc_undefined:
12954 (*link_info->callbacks->undefined_symbol)
12955 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12956 input_bfd, input_section, (*parent)->address, TRUE);
12957 break;
12958 case bfd_reloc_dangerous:
12959 BFD_ASSERT (error_message != NULL);
12960 (*link_info->callbacks->reloc_dangerous)
12961 (link_info, error_message,
12962 input_bfd, input_section, (*parent)->address);
12963 break;
12964 case bfd_reloc_overflow:
12965 (*link_info->callbacks->reloc_overflow)
12966 (link_info, NULL,
12967 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12968 (*parent)->howto->name, (*parent)->addend,
12969 input_bfd, input_section, (*parent)->address);
12970 break;
12971 case bfd_reloc_outofrange:
12972 default:
12973 abort ();
12974 break;
12975 }
12976
12977 }
12978 }
12979 }
12980 if (reloc_vector != NULL)
12981 free (reloc_vector);
12982 return data;
12983
12984 error_return:
12985 if (reloc_vector != NULL)
12986 free (reloc_vector);
12987 return NULL;
12988 }
12989 \f
12990 static bfd_boolean
12991 mips_elf_relax_delete_bytes (bfd *abfd,
12992 asection *sec, bfd_vma addr, int count)
12993 {
12994 Elf_Internal_Shdr *symtab_hdr;
12995 unsigned int sec_shndx;
12996 bfd_byte *contents;
12997 Elf_Internal_Rela *irel, *irelend;
12998 Elf_Internal_Sym *isym;
12999 Elf_Internal_Sym *isymend;
13000 struct elf_link_hash_entry **sym_hashes;
13001 struct elf_link_hash_entry **end_hashes;
13002 struct elf_link_hash_entry **start_hashes;
13003 unsigned int symcount;
13004
13005 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13006 contents = elf_section_data (sec)->this_hdr.contents;
13007
13008 irel = elf_section_data (sec)->relocs;
13009 irelend = irel + sec->reloc_count;
13010
13011 /* Actually delete the bytes. */
13012 memmove (contents + addr, contents + addr + count,
13013 (size_t) (sec->size - addr - count));
13014 sec->size -= count;
13015
13016 /* Adjust all the relocs. */
13017 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13018 {
13019 /* Get the new reloc address. */
13020 if (irel->r_offset > addr)
13021 irel->r_offset -= count;
13022 }
13023
13024 BFD_ASSERT (addr % 2 == 0);
13025 BFD_ASSERT (count % 2 == 0);
13026
13027 /* Adjust the local symbols defined in this section. */
13028 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13029 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13030 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13031 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13032 isym->st_value -= count;
13033
13034 /* Now adjust the global symbols defined in this section. */
13035 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13036 - symtab_hdr->sh_info);
13037 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13038 end_hashes = sym_hashes + symcount;
13039
13040 for (; sym_hashes < end_hashes; sym_hashes++)
13041 {
13042 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13043
13044 if ((sym_hash->root.type == bfd_link_hash_defined
13045 || sym_hash->root.type == bfd_link_hash_defweak)
13046 && sym_hash->root.u.def.section == sec)
13047 {
13048 bfd_vma value = sym_hash->root.u.def.value;
13049
13050 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13051 value &= MINUS_TWO;
13052 if (value > addr)
13053 sym_hash->root.u.def.value -= count;
13054 }
13055 }
13056
13057 return TRUE;
13058 }
13059
13060
13061 /* Opcodes needed for microMIPS relaxation as found in
13062 opcodes/micromips-opc.c. */
13063
13064 struct opcode_descriptor {
13065 unsigned long match;
13066 unsigned long mask;
13067 };
13068
13069 /* The $ra register aka $31. */
13070
13071 #define RA 31
13072
13073 /* 32-bit instruction format register fields. */
13074
13075 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13076 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13077
13078 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13079
13080 #define OP16_VALID_REG(r) \
13081 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13082
13083
13084 /* 32-bit and 16-bit branches. */
13085
13086 static const struct opcode_descriptor b_insns_32[] = {
13087 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13088 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13089 { 0, 0 } /* End marker for find_match(). */
13090 };
13091
13092 static const struct opcode_descriptor bc_insn_32 =
13093 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13094
13095 static const struct opcode_descriptor bz_insn_32 =
13096 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13097
13098 static const struct opcode_descriptor bzal_insn_32 =
13099 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13100
13101 static const struct opcode_descriptor beq_insn_32 =
13102 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13103
13104 static const struct opcode_descriptor b_insn_16 =
13105 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13106
13107 static const struct opcode_descriptor bz_insn_16 =
13108 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13109
13110
13111 /* 32-bit and 16-bit branch EQ and NE zero. */
13112
13113 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13114 eq and second the ne. This convention is used when replacing a
13115 32-bit BEQ/BNE with the 16-bit version. */
13116
13117 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13118
13119 static const struct opcode_descriptor bz_rs_insns_32[] = {
13120 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13121 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13122 { 0, 0 } /* End marker for find_match(). */
13123 };
13124
13125 static const struct opcode_descriptor bz_rt_insns_32[] = {
13126 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13127 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13128 { 0, 0 } /* End marker for find_match(). */
13129 };
13130
13131 static const struct opcode_descriptor bzc_insns_32[] = {
13132 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13133 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13134 { 0, 0 } /* End marker for find_match(). */
13135 };
13136
13137 static const struct opcode_descriptor bz_insns_16[] = {
13138 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13139 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13140 { 0, 0 } /* End marker for find_match(). */
13141 };
13142
13143 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13144
13145 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13146 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13147
13148
13149 /* 32-bit instructions with a delay slot. */
13150
13151 static const struct opcode_descriptor jal_insn_32_bd16 =
13152 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13153
13154 static const struct opcode_descriptor jal_insn_32_bd32 =
13155 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13156
13157 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13158 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13159
13160 static const struct opcode_descriptor j_insn_32 =
13161 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13162
13163 static const struct opcode_descriptor jalr_insn_32 =
13164 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13165
13166 /* This table can be compacted, because no opcode replacement is made. */
13167
13168 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13169 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13170
13171 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13172 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13173
13174 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13175 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13176 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13177 { 0, 0 } /* End marker for find_match(). */
13178 };
13179
13180 /* This table can be compacted, because no opcode replacement is made. */
13181
13182 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13183 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13184
13185 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13186 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13187 { 0, 0 } /* End marker for find_match(). */
13188 };
13189
13190
13191 /* 16-bit instructions with a delay slot. */
13192
13193 static const struct opcode_descriptor jalr_insn_16_bd16 =
13194 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13195
13196 static const struct opcode_descriptor jalr_insn_16_bd32 =
13197 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13198
13199 static const struct opcode_descriptor jr_insn_16 =
13200 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13201
13202 #define JR16_REG(opcode) ((opcode) & 0x1f)
13203
13204 /* This table can be compacted, because no opcode replacement is made. */
13205
13206 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13207 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13208
13209 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13210 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13211 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13212 { 0, 0 } /* End marker for find_match(). */
13213 };
13214
13215
13216 /* LUI instruction. */
13217
13218 static const struct opcode_descriptor lui_insn =
13219 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13220
13221
13222 /* ADDIU instruction. */
13223
13224 static const struct opcode_descriptor addiu_insn =
13225 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13226
13227 static const struct opcode_descriptor addiupc_insn =
13228 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13229
13230 #define ADDIUPC_REG_FIELD(r) \
13231 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13232
13233
13234 /* Relaxable instructions in a JAL delay slot: MOVE. */
13235
13236 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13237 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13238 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13239 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13240
13241 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13242 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13243
13244 static const struct opcode_descriptor move_insns_32[] = {
13245 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13246 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13247 { 0, 0 } /* End marker for find_match(). */
13248 };
13249
13250 static const struct opcode_descriptor move_insn_16 =
13251 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13252
13253
13254 /* NOP instructions. */
13255
13256 static const struct opcode_descriptor nop_insn_32 =
13257 { /* "nop", "", */ 0x00000000, 0xffffffff };
13258
13259 static const struct opcode_descriptor nop_insn_16 =
13260 { /* "nop", "", */ 0x0c00, 0xffff };
13261
13262
13263 /* Instruction match support. */
13264
13265 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13266
13267 static int
13268 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13269 {
13270 unsigned long indx;
13271
13272 for (indx = 0; insn[indx].mask != 0; indx++)
13273 if (MATCH (opcode, insn[indx]))
13274 return indx;
13275
13276 return -1;
13277 }
13278
13279
13280 /* Branch and delay slot decoding support. */
13281
13282 /* If PTR points to what *might* be a 16-bit branch or jump, then
13283 return the minimum length of its delay slot, otherwise return 0.
13284 Non-zero results are not definitive as we might be checking against
13285 the second half of another instruction. */
13286
13287 static int
13288 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13289 {
13290 unsigned long opcode;
13291 int bdsize;
13292
13293 opcode = bfd_get_16 (abfd, ptr);
13294 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13295 /* 16-bit branch/jump with a 32-bit delay slot. */
13296 bdsize = 4;
13297 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13298 || find_match (opcode, ds_insns_16_bd16) >= 0)
13299 /* 16-bit branch/jump with a 16-bit delay slot. */
13300 bdsize = 2;
13301 else
13302 /* No delay slot. */
13303 bdsize = 0;
13304
13305 return bdsize;
13306 }
13307
13308 /* If PTR points to what *might* be a 32-bit branch or jump, then
13309 return the minimum length of its delay slot, otherwise return 0.
13310 Non-zero results are not definitive as we might be checking against
13311 the second half of another instruction. */
13312
13313 static int
13314 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13315 {
13316 unsigned long opcode;
13317 int bdsize;
13318
13319 opcode = bfd_get_micromips_32 (abfd, ptr);
13320 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13321 /* 32-bit branch/jump with a 32-bit delay slot. */
13322 bdsize = 4;
13323 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13324 /* 32-bit branch/jump with a 16-bit delay slot. */
13325 bdsize = 2;
13326 else
13327 /* No delay slot. */
13328 bdsize = 0;
13329
13330 return bdsize;
13331 }
13332
13333 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13334 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13335
13336 static bfd_boolean
13337 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13338 {
13339 unsigned long opcode;
13340
13341 opcode = bfd_get_16 (abfd, ptr);
13342 if (MATCH (opcode, b_insn_16)
13343 /* B16 */
13344 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13345 /* JR16 */
13346 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13347 /* BEQZ16, BNEZ16 */
13348 || (MATCH (opcode, jalr_insn_16_bd32)
13349 /* JALR16 */
13350 && reg != JR16_REG (opcode) && reg != RA))
13351 return TRUE;
13352
13353 return FALSE;
13354 }
13355
13356 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13357 then return TRUE, otherwise FALSE. */
13358
13359 static bfd_boolean
13360 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13361 {
13362 unsigned long opcode;
13363
13364 opcode = bfd_get_micromips_32 (abfd, ptr);
13365 if (MATCH (opcode, j_insn_32)
13366 /* J */
13367 || MATCH (opcode, bc_insn_32)
13368 /* BC1F, BC1T, BC2F, BC2T */
13369 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13370 /* JAL, JALX */
13371 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13372 /* BGEZ, BGTZ, BLEZ, BLTZ */
13373 || (MATCH (opcode, bzal_insn_32)
13374 /* BGEZAL, BLTZAL */
13375 && reg != OP32_SREG (opcode) && reg != RA)
13376 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13377 /* JALR, JALR.HB, BEQ, BNE */
13378 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13379 return TRUE;
13380
13381 return FALSE;
13382 }
13383
13384 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13385 IRELEND) at OFFSET indicate that there must be a compact branch there,
13386 then return TRUE, otherwise FALSE. */
13387
13388 static bfd_boolean
13389 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13390 const Elf_Internal_Rela *internal_relocs,
13391 const Elf_Internal_Rela *irelend)
13392 {
13393 const Elf_Internal_Rela *irel;
13394 unsigned long opcode;
13395
13396 opcode = bfd_get_micromips_32 (abfd, ptr);
13397 if (find_match (opcode, bzc_insns_32) < 0)
13398 return FALSE;
13399
13400 for (irel = internal_relocs; irel < irelend; irel++)
13401 if (irel->r_offset == offset
13402 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13403 return TRUE;
13404
13405 return FALSE;
13406 }
13407
13408 /* Bitsize checking. */
13409 #define IS_BITSIZE(val, N) \
13410 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13411 - (1ULL << ((N) - 1))) == (val))
13412
13413 \f
13414 bfd_boolean
13415 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13416 struct bfd_link_info *link_info,
13417 bfd_boolean *again)
13418 {
13419 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13420 Elf_Internal_Shdr *symtab_hdr;
13421 Elf_Internal_Rela *internal_relocs;
13422 Elf_Internal_Rela *irel, *irelend;
13423 bfd_byte *contents = NULL;
13424 Elf_Internal_Sym *isymbuf = NULL;
13425
13426 /* Assume nothing changes. */
13427 *again = FALSE;
13428
13429 /* We don't have to do anything for a relocatable link, if
13430 this section does not have relocs, or if this is not a
13431 code section. */
13432
13433 if (bfd_link_relocatable (link_info)
13434 || (sec->flags & SEC_RELOC) == 0
13435 || sec->reloc_count == 0
13436 || (sec->flags & SEC_CODE) == 0)
13437 return TRUE;
13438
13439 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13440
13441 /* Get a copy of the native relocations. */
13442 internal_relocs = (_bfd_elf_link_read_relocs
13443 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13444 link_info->keep_memory));
13445 if (internal_relocs == NULL)
13446 goto error_return;
13447
13448 /* Walk through them looking for relaxing opportunities. */
13449 irelend = internal_relocs + sec->reloc_count;
13450 for (irel = internal_relocs; irel < irelend; irel++)
13451 {
13452 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13453 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13454 bfd_boolean target_is_micromips_code_p;
13455 unsigned long opcode;
13456 bfd_vma symval;
13457 bfd_vma pcrval;
13458 bfd_byte *ptr;
13459 int fndopc;
13460
13461 /* The number of bytes to delete for relaxation and from where
13462 to delete these bytes starting at irel->r_offset. */
13463 int delcnt = 0;
13464 int deloff = 0;
13465
13466 /* If this isn't something that can be relaxed, then ignore
13467 this reloc. */
13468 if (r_type != R_MICROMIPS_HI16
13469 && r_type != R_MICROMIPS_PC16_S1
13470 && r_type != R_MICROMIPS_26_S1)
13471 continue;
13472
13473 /* Get the section contents if we haven't done so already. */
13474 if (contents == NULL)
13475 {
13476 /* Get cached copy if it exists. */
13477 if (elf_section_data (sec)->this_hdr.contents != NULL)
13478 contents = elf_section_data (sec)->this_hdr.contents;
13479 /* Go get them off disk. */
13480 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13481 goto error_return;
13482 }
13483 ptr = contents + irel->r_offset;
13484
13485 /* Read this BFD's local symbols if we haven't done so already. */
13486 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13487 {
13488 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13489 if (isymbuf == NULL)
13490 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13491 symtab_hdr->sh_info, 0,
13492 NULL, NULL, NULL);
13493 if (isymbuf == NULL)
13494 goto error_return;
13495 }
13496
13497 /* Get the value of the symbol referred to by the reloc. */
13498 if (r_symndx < symtab_hdr->sh_info)
13499 {
13500 /* A local symbol. */
13501 Elf_Internal_Sym *isym;
13502 asection *sym_sec;
13503
13504 isym = isymbuf + r_symndx;
13505 if (isym->st_shndx == SHN_UNDEF)
13506 sym_sec = bfd_und_section_ptr;
13507 else if (isym->st_shndx == SHN_ABS)
13508 sym_sec = bfd_abs_section_ptr;
13509 else if (isym->st_shndx == SHN_COMMON)
13510 sym_sec = bfd_com_section_ptr;
13511 else
13512 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13513 symval = (isym->st_value
13514 + sym_sec->output_section->vma
13515 + sym_sec->output_offset);
13516 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13517 }
13518 else
13519 {
13520 unsigned long indx;
13521 struct elf_link_hash_entry *h;
13522
13523 /* An external symbol. */
13524 indx = r_symndx - symtab_hdr->sh_info;
13525 h = elf_sym_hashes (abfd)[indx];
13526 BFD_ASSERT (h != NULL);
13527
13528 if (h->root.type != bfd_link_hash_defined
13529 && h->root.type != bfd_link_hash_defweak)
13530 /* This appears to be a reference to an undefined
13531 symbol. Just ignore it -- it will be caught by the
13532 regular reloc processing. */
13533 continue;
13534
13535 symval = (h->root.u.def.value
13536 + h->root.u.def.section->output_section->vma
13537 + h->root.u.def.section->output_offset);
13538 target_is_micromips_code_p = (!h->needs_plt
13539 && ELF_ST_IS_MICROMIPS (h->other));
13540 }
13541
13542
13543 /* For simplicity of coding, we are going to modify the
13544 section contents, the section relocs, and the BFD symbol
13545 table. We must tell the rest of the code not to free up this
13546 information. It would be possible to instead create a table
13547 of changes which have to be made, as is done in coff-mips.c;
13548 that would be more work, but would require less memory when
13549 the linker is run. */
13550
13551 /* Only 32-bit instructions relaxed. */
13552 if (irel->r_offset + 4 > sec->size)
13553 continue;
13554
13555 opcode = bfd_get_micromips_32 (abfd, ptr);
13556
13557 /* This is the pc-relative distance from the instruction the
13558 relocation is applied to, to the symbol referred. */
13559 pcrval = (symval
13560 - (sec->output_section->vma + sec->output_offset)
13561 - irel->r_offset);
13562
13563 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13564 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13565 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13566
13567 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13568
13569 where pcrval has first to be adjusted to apply against the LO16
13570 location (we make the adjustment later on, when we have figured
13571 out the offset). */
13572 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13573 {
13574 bfd_boolean bzc = FALSE;
13575 unsigned long nextopc;
13576 unsigned long reg;
13577 bfd_vma offset;
13578
13579 /* Give up if the previous reloc was a HI16 against this symbol
13580 too. */
13581 if (irel > internal_relocs
13582 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13583 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13584 continue;
13585
13586 /* Or if the next reloc is not a LO16 against this symbol. */
13587 if (irel + 1 >= irelend
13588 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13589 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13590 continue;
13591
13592 /* Or if the second next reloc is a LO16 against this symbol too. */
13593 if (irel + 2 >= irelend
13594 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13595 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13596 continue;
13597
13598 /* See if the LUI instruction *might* be in a branch delay slot.
13599 We check whether what looks like a 16-bit branch or jump is
13600 actually an immediate argument to a compact branch, and let
13601 it through if so. */
13602 if (irel->r_offset >= 2
13603 && check_br16_dslot (abfd, ptr - 2)
13604 && !(irel->r_offset >= 4
13605 && (bzc = check_relocated_bzc (abfd,
13606 ptr - 4, irel->r_offset - 4,
13607 internal_relocs, irelend))))
13608 continue;
13609 if (irel->r_offset >= 4
13610 && !bzc
13611 && check_br32_dslot (abfd, ptr - 4))
13612 continue;
13613
13614 reg = OP32_SREG (opcode);
13615
13616 /* We only relax adjacent instructions or ones separated with
13617 a branch or jump that has a delay slot. The branch or jump
13618 must not fiddle with the register used to hold the address.
13619 Subtract 4 for the LUI itself. */
13620 offset = irel[1].r_offset - irel[0].r_offset;
13621 switch (offset - 4)
13622 {
13623 case 0:
13624 break;
13625 case 2:
13626 if (check_br16 (abfd, ptr + 4, reg))
13627 break;
13628 continue;
13629 case 4:
13630 if (check_br32 (abfd, ptr + 4, reg))
13631 break;
13632 continue;
13633 default:
13634 continue;
13635 }
13636
13637 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13638
13639 /* Give up unless the same register is used with both
13640 relocations. */
13641 if (OP32_SREG (nextopc) != reg)
13642 continue;
13643
13644 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13645 and rounding up to take masking of the two LSBs into account. */
13646 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13647
13648 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13649 if (IS_BITSIZE (symval, 16))
13650 {
13651 /* Fix the relocation's type. */
13652 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13653
13654 /* Instructions using R_MICROMIPS_LO16 have the base or
13655 source register in bits 20:16. This register becomes $0
13656 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13657 nextopc &= ~0x001f0000;
13658 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13659 contents + irel[1].r_offset);
13660 }
13661
13662 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13663 We add 4 to take LUI deletion into account while checking
13664 the PC-relative distance. */
13665 else if (symval % 4 == 0
13666 && IS_BITSIZE (pcrval + 4, 25)
13667 && MATCH (nextopc, addiu_insn)
13668 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13669 && OP16_VALID_REG (OP32_TREG (nextopc)))
13670 {
13671 /* Fix the relocation's type. */
13672 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13673
13674 /* Replace ADDIU with the ADDIUPC version. */
13675 nextopc = (addiupc_insn.match
13676 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13677
13678 bfd_put_micromips_32 (abfd, nextopc,
13679 contents + irel[1].r_offset);
13680 }
13681
13682 /* Can't do anything, give up, sigh... */
13683 else
13684 continue;
13685
13686 /* Fix the relocation's type. */
13687 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13688
13689 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13690 delcnt = 4;
13691 deloff = 0;
13692 }
13693
13694 /* Compact branch relaxation -- due to the multitude of macros
13695 employed by the compiler/assembler, compact branches are not
13696 always generated. Obviously, this can/will be fixed elsewhere,
13697 but there is no drawback in double checking it here. */
13698 else if (r_type == R_MICROMIPS_PC16_S1
13699 && irel->r_offset + 5 < sec->size
13700 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13701 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13702 && ((!insn32
13703 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13704 nop_insn_16) ? 2 : 0))
13705 || (irel->r_offset + 7 < sec->size
13706 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13707 ptr + 4),
13708 nop_insn_32) ? 4 : 0))))
13709 {
13710 unsigned long reg;
13711
13712 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13713
13714 /* Replace BEQZ/BNEZ with the compact version. */
13715 opcode = (bzc_insns_32[fndopc].match
13716 | BZC32_REG_FIELD (reg)
13717 | (opcode & 0xffff)); /* Addend value. */
13718
13719 bfd_put_micromips_32 (abfd, opcode, ptr);
13720
13721 /* Delete the delay slot NOP: two or four bytes from
13722 irel->offset + 4; delcnt has already been set above. */
13723 deloff = 4;
13724 }
13725
13726 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13727 to check the distance from the next instruction, so subtract 2. */
13728 else if (!insn32
13729 && r_type == R_MICROMIPS_PC16_S1
13730 && IS_BITSIZE (pcrval - 2, 11)
13731 && find_match (opcode, b_insns_32) >= 0)
13732 {
13733 /* Fix the relocation's type. */
13734 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13735
13736 /* Replace the 32-bit opcode with a 16-bit opcode. */
13737 bfd_put_16 (abfd,
13738 (b_insn_16.match
13739 | (opcode & 0x3ff)), /* Addend value. */
13740 ptr);
13741
13742 /* Delete 2 bytes from irel->r_offset + 2. */
13743 delcnt = 2;
13744 deloff = 2;
13745 }
13746
13747 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13748 to check the distance from the next instruction, so subtract 2. */
13749 else if (!insn32
13750 && r_type == R_MICROMIPS_PC16_S1
13751 && IS_BITSIZE (pcrval - 2, 8)
13752 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13753 && OP16_VALID_REG (OP32_SREG (opcode)))
13754 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13755 && OP16_VALID_REG (OP32_TREG (opcode)))))
13756 {
13757 unsigned long reg;
13758
13759 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13760
13761 /* Fix the relocation's type. */
13762 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13763
13764 /* Replace the 32-bit opcode with a 16-bit opcode. */
13765 bfd_put_16 (abfd,
13766 (bz_insns_16[fndopc].match
13767 | BZ16_REG_FIELD (reg)
13768 | (opcode & 0x7f)), /* Addend value. */
13769 ptr);
13770
13771 /* Delete 2 bytes from irel->r_offset + 2. */
13772 delcnt = 2;
13773 deloff = 2;
13774 }
13775
13776 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13777 else if (!insn32
13778 && r_type == R_MICROMIPS_26_S1
13779 && target_is_micromips_code_p
13780 && irel->r_offset + 7 < sec->size
13781 && MATCH (opcode, jal_insn_32_bd32))
13782 {
13783 unsigned long n32opc;
13784 bfd_boolean relaxed = FALSE;
13785
13786 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13787
13788 if (MATCH (n32opc, nop_insn_32))
13789 {
13790 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13791 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13792
13793 relaxed = TRUE;
13794 }
13795 else if (find_match (n32opc, move_insns_32) >= 0)
13796 {
13797 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13798 bfd_put_16 (abfd,
13799 (move_insn_16.match
13800 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13801 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13802 ptr + 4);
13803
13804 relaxed = TRUE;
13805 }
13806 /* Other 32-bit instructions relaxable to 16-bit
13807 instructions will be handled here later. */
13808
13809 if (relaxed)
13810 {
13811 /* JAL with 32-bit delay slot that is changed to a JALS
13812 with 16-bit delay slot. */
13813 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13814
13815 /* Delete 2 bytes from irel->r_offset + 6. */
13816 delcnt = 2;
13817 deloff = 6;
13818 }
13819 }
13820
13821 if (delcnt != 0)
13822 {
13823 /* Note that we've changed the relocs, section contents, etc. */
13824 elf_section_data (sec)->relocs = internal_relocs;
13825 elf_section_data (sec)->this_hdr.contents = contents;
13826 symtab_hdr->contents = (unsigned char *) isymbuf;
13827
13828 /* Delete bytes depending on the delcnt and deloff. */
13829 if (!mips_elf_relax_delete_bytes (abfd, sec,
13830 irel->r_offset + deloff, delcnt))
13831 goto error_return;
13832
13833 /* That will change things, so we should relax again.
13834 Note that this is not required, and it may be slow. */
13835 *again = TRUE;
13836 }
13837 }
13838
13839 if (isymbuf != NULL
13840 && symtab_hdr->contents != (unsigned char *) isymbuf)
13841 {
13842 if (! link_info->keep_memory)
13843 free (isymbuf);
13844 else
13845 {
13846 /* Cache the symbols for elf_link_input_bfd. */
13847 symtab_hdr->contents = (unsigned char *) isymbuf;
13848 }
13849 }
13850
13851 if (contents != NULL
13852 && elf_section_data (sec)->this_hdr.contents != contents)
13853 {
13854 if (! link_info->keep_memory)
13855 free (contents);
13856 else
13857 {
13858 /* Cache the section contents for elf_link_input_bfd. */
13859 elf_section_data (sec)->this_hdr.contents = contents;
13860 }
13861 }
13862
13863 if (internal_relocs != NULL
13864 && elf_section_data (sec)->relocs != internal_relocs)
13865 free (internal_relocs);
13866
13867 return TRUE;
13868
13869 error_return:
13870 if (isymbuf != NULL
13871 && symtab_hdr->contents != (unsigned char *) isymbuf)
13872 free (isymbuf);
13873 if (contents != NULL
13874 && elf_section_data (sec)->this_hdr.contents != contents)
13875 free (contents);
13876 if (internal_relocs != NULL
13877 && elf_section_data (sec)->relocs != internal_relocs)
13878 free (internal_relocs);
13879
13880 return FALSE;
13881 }
13882 \f
13883 /* Create a MIPS ELF linker hash table. */
13884
13885 struct bfd_link_hash_table *
13886 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13887 {
13888 struct mips_elf_link_hash_table *ret;
13889 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13890
13891 ret = bfd_zmalloc (amt);
13892 if (ret == NULL)
13893 return NULL;
13894
13895 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13896 mips_elf_link_hash_newfunc,
13897 sizeof (struct mips_elf_link_hash_entry),
13898 MIPS_ELF_DATA))
13899 {
13900 free (ret);
13901 return NULL;
13902 }
13903 ret->root.init_plt_refcount.plist = NULL;
13904 ret->root.init_plt_offset.plist = NULL;
13905
13906 return &ret->root.root;
13907 }
13908
13909 /* Likewise, but indicate that the target is VxWorks. */
13910
13911 struct bfd_link_hash_table *
13912 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13913 {
13914 struct bfd_link_hash_table *ret;
13915
13916 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13917 if (ret)
13918 {
13919 struct mips_elf_link_hash_table *htab;
13920
13921 htab = (struct mips_elf_link_hash_table *) ret;
13922 htab->use_plts_and_copy_relocs = TRUE;
13923 htab->is_vxworks = TRUE;
13924 }
13925 return ret;
13926 }
13927
13928 /* A function that the linker calls if we are allowed to use PLTs
13929 and copy relocs. */
13930
13931 void
13932 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13933 {
13934 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13935 }
13936
13937 /* A function that the linker calls to select between all or only
13938 32-bit microMIPS instructions, and between making or ignoring
13939 branch relocation checks for invalid transitions between ISA modes. */
13940
13941 void
13942 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13943 bfd_boolean ignore_branch_isa)
13944 {
13945 mips_elf_hash_table (info)->insn32 = insn32;
13946 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13947 }
13948 \f
13949 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13950
13951 struct mips_mach_extension
13952 {
13953 unsigned long extension, base;
13954 };
13955
13956
13957 /* An array describing how BFD machines relate to one another. The entries
13958 are ordered topologically with MIPS I extensions listed last. */
13959
13960 static const struct mips_mach_extension mips_mach_extensions[] =
13961 {
13962 /* MIPS64r2 extensions. */
13963 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13964 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13965 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13966 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13967 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13968
13969 /* MIPS64 extensions. */
13970 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13971 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13972 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13973
13974 /* MIPS V extensions. */
13975 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13976
13977 /* R10000 extensions. */
13978 { bfd_mach_mips12000, bfd_mach_mips10000 },
13979 { bfd_mach_mips14000, bfd_mach_mips10000 },
13980 { bfd_mach_mips16000, bfd_mach_mips10000 },
13981
13982 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13983 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13984 better to allow vr5400 and vr5500 code to be merged anyway, since
13985 many libraries will just use the core ISA. Perhaps we could add
13986 some sort of ASE flag if this ever proves a problem. */
13987 { bfd_mach_mips5500, bfd_mach_mips5400 },
13988 { bfd_mach_mips5400, bfd_mach_mips5000 },
13989
13990 /* MIPS IV extensions. */
13991 { bfd_mach_mips5, bfd_mach_mips8000 },
13992 { bfd_mach_mips10000, bfd_mach_mips8000 },
13993 { bfd_mach_mips5000, bfd_mach_mips8000 },
13994 { bfd_mach_mips7000, bfd_mach_mips8000 },
13995 { bfd_mach_mips9000, bfd_mach_mips8000 },
13996
13997 /* VR4100 extensions. */
13998 { bfd_mach_mips4120, bfd_mach_mips4100 },
13999 { bfd_mach_mips4111, bfd_mach_mips4100 },
14000
14001 /* MIPS III extensions. */
14002 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14003 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14004 { bfd_mach_mips8000, bfd_mach_mips4000 },
14005 { bfd_mach_mips4650, bfd_mach_mips4000 },
14006 { bfd_mach_mips4600, bfd_mach_mips4000 },
14007 { bfd_mach_mips4400, bfd_mach_mips4000 },
14008 { bfd_mach_mips4300, bfd_mach_mips4000 },
14009 { bfd_mach_mips4100, bfd_mach_mips4000 },
14010 { bfd_mach_mips5900, bfd_mach_mips4000 },
14011
14012 /* MIPS32r3 extensions. */
14013 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14014
14015 /* MIPS32r2 extensions. */
14016 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14017
14018 /* MIPS32 extensions. */
14019 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14020
14021 /* MIPS II extensions. */
14022 { bfd_mach_mips4000, bfd_mach_mips6000 },
14023 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14024 { bfd_mach_mips4010, bfd_mach_mips6000 },
14025
14026 /* MIPS I extensions. */
14027 { bfd_mach_mips6000, bfd_mach_mips3000 },
14028 { bfd_mach_mips3900, bfd_mach_mips3000 }
14029 };
14030
14031 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14032
14033 static bfd_boolean
14034 mips_mach_extends_p (unsigned long base, unsigned long extension)
14035 {
14036 size_t i;
14037
14038 if (extension == base)
14039 return TRUE;
14040
14041 if (base == bfd_mach_mipsisa32
14042 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14043 return TRUE;
14044
14045 if (base == bfd_mach_mipsisa32r2
14046 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14047 return TRUE;
14048
14049 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14050 if (extension == mips_mach_extensions[i].extension)
14051 {
14052 extension = mips_mach_extensions[i].base;
14053 if (extension == base)
14054 return TRUE;
14055 }
14056
14057 return FALSE;
14058 }
14059
14060 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14061
14062 static unsigned long
14063 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14064 {
14065 switch (isa_ext)
14066 {
14067 case AFL_EXT_3900: return bfd_mach_mips3900;
14068 case AFL_EXT_4010: return bfd_mach_mips4010;
14069 case AFL_EXT_4100: return bfd_mach_mips4100;
14070 case AFL_EXT_4111: return bfd_mach_mips4111;
14071 case AFL_EXT_4120: return bfd_mach_mips4120;
14072 case AFL_EXT_4650: return bfd_mach_mips4650;
14073 case AFL_EXT_5400: return bfd_mach_mips5400;
14074 case AFL_EXT_5500: return bfd_mach_mips5500;
14075 case AFL_EXT_5900: return bfd_mach_mips5900;
14076 case AFL_EXT_10000: return bfd_mach_mips10000;
14077 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14078 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14079 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14080 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14081 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14082 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14083 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14084 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14085 default: return bfd_mach_mips3000;
14086 }
14087 }
14088
14089 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14090
14091 unsigned int
14092 bfd_mips_isa_ext (bfd *abfd)
14093 {
14094 switch (bfd_get_mach (abfd))
14095 {
14096 case bfd_mach_mips3900: return AFL_EXT_3900;
14097 case bfd_mach_mips4010: return AFL_EXT_4010;
14098 case bfd_mach_mips4100: return AFL_EXT_4100;
14099 case bfd_mach_mips4111: return AFL_EXT_4111;
14100 case bfd_mach_mips4120: return AFL_EXT_4120;
14101 case bfd_mach_mips4650: return AFL_EXT_4650;
14102 case bfd_mach_mips5400: return AFL_EXT_5400;
14103 case bfd_mach_mips5500: return AFL_EXT_5500;
14104 case bfd_mach_mips5900: return AFL_EXT_5900;
14105 case bfd_mach_mips10000: return AFL_EXT_10000;
14106 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14107 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14108 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14109 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14110 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14111 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14112 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14113 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14114 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14115 case bfd_mach_mips_interaptiv_mr2:
14116 return AFL_EXT_INTERAPTIV_MR2;
14117 default: return 0;
14118 }
14119 }
14120
14121 /* Encode ISA level and revision as a single value. */
14122 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14123
14124 /* Decode a single value into level and revision. */
14125 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14126 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14127
14128 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14129
14130 static void
14131 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14132 {
14133 int new_isa = 0;
14134 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14135 {
14136 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14137 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14138 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14139 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14140 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14141 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14142 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14143 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14144 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14145 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14146 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14147 default:
14148 _bfd_error_handler
14149 /* xgettext:c-format */
14150 (_("%pB: unknown architecture %s"),
14151 abfd, bfd_printable_name (abfd));
14152 }
14153
14154 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14155 {
14156 abiflags->isa_level = ISA_LEVEL (new_isa);
14157 abiflags->isa_rev = ISA_REV (new_isa);
14158 }
14159
14160 /* Update the isa_ext if ABFD describes a further extension. */
14161 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14162 bfd_get_mach (abfd)))
14163 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14164 }
14165
14166 /* Return true if the given ELF header flags describe a 32-bit binary. */
14167
14168 static bfd_boolean
14169 mips_32bit_flags_p (flagword flags)
14170 {
14171 return ((flags & EF_MIPS_32BITMODE) != 0
14172 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14173 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14174 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14175 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14176 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14177 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14178 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14179 }
14180
14181 /* Infer the content of the ABI flags based on the elf header. */
14182
14183 static void
14184 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14185 {
14186 obj_attribute *in_attr;
14187
14188 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14189 update_mips_abiflags_isa (abfd, abiflags);
14190
14191 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14192 abiflags->gpr_size = AFL_REG_32;
14193 else
14194 abiflags->gpr_size = AFL_REG_64;
14195
14196 abiflags->cpr1_size = AFL_REG_NONE;
14197
14198 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14199 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14200
14201 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14202 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14203 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14204 && abiflags->gpr_size == AFL_REG_32))
14205 abiflags->cpr1_size = AFL_REG_32;
14206 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14207 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14208 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14209 abiflags->cpr1_size = AFL_REG_64;
14210
14211 abiflags->cpr2_size = AFL_REG_NONE;
14212
14213 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14214 abiflags->ases |= AFL_ASE_MDMX;
14215 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14216 abiflags->ases |= AFL_ASE_MIPS16;
14217 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14218 abiflags->ases |= AFL_ASE_MICROMIPS;
14219
14220 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14221 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14222 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14223 && abiflags->isa_level >= 32
14224 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14225 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14226 }
14227
14228 /* We need to use a special link routine to handle the .reginfo and
14229 the .mdebug sections. We need to merge all instances of these
14230 sections together, not write them all out sequentially. */
14231
14232 bfd_boolean
14233 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14234 {
14235 asection *o;
14236 struct bfd_link_order *p;
14237 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14238 asection *rtproc_sec, *abiflags_sec;
14239 Elf32_RegInfo reginfo;
14240 struct ecoff_debug_info debug;
14241 struct mips_htab_traverse_info hti;
14242 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14243 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14244 HDRR *symhdr = &debug.symbolic_header;
14245 void *mdebug_handle = NULL;
14246 asection *s;
14247 EXTR esym;
14248 unsigned int i;
14249 bfd_size_type amt;
14250 struct mips_elf_link_hash_table *htab;
14251
14252 static const char * const secname[] =
14253 {
14254 ".text", ".init", ".fini", ".data",
14255 ".rodata", ".sdata", ".sbss", ".bss"
14256 };
14257 static const int sc[] =
14258 {
14259 scText, scInit, scFini, scData,
14260 scRData, scSData, scSBss, scBss
14261 };
14262
14263 htab = mips_elf_hash_table (info);
14264 BFD_ASSERT (htab != NULL);
14265
14266 /* Sort the dynamic symbols so that those with GOT entries come after
14267 those without. */
14268 if (!mips_elf_sort_hash_table (abfd, info))
14269 return FALSE;
14270
14271 /* Create any scheduled LA25 stubs. */
14272 hti.info = info;
14273 hti.output_bfd = abfd;
14274 hti.error = FALSE;
14275 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14276 if (hti.error)
14277 return FALSE;
14278
14279 /* Get a value for the GP register. */
14280 if (elf_gp (abfd) == 0)
14281 {
14282 struct bfd_link_hash_entry *h;
14283
14284 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14285 if (h != NULL && h->type == bfd_link_hash_defined)
14286 elf_gp (abfd) = (h->u.def.value
14287 + h->u.def.section->output_section->vma
14288 + h->u.def.section->output_offset);
14289 else if (htab->is_vxworks
14290 && (h = bfd_link_hash_lookup (info->hash,
14291 "_GLOBAL_OFFSET_TABLE_",
14292 FALSE, FALSE, TRUE))
14293 && h->type == bfd_link_hash_defined)
14294 elf_gp (abfd) = (h->u.def.section->output_section->vma
14295 + h->u.def.section->output_offset
14296 + h->u.def.value);
14297 else if (bfd_link_relocatable (info))
14298 {
14299 bfd_vma lo = MINUS_ONE;
14300
14301 /* Find the GP-relative section with the lowest offset. */
14302 for (o = abfd->sections; o != NULL; o = o->next)
14303 if (o->vma < lo
14304 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14305 lo = o->vma;
14306
14307 /* And calculate GP relative to that. */
14308 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14309 }
14310 else
14311 {
14312 /* If the relocate_section function needs to do a reloc
14313 involving the GP value, it should make a reloc_dangerous
14314 callback to warn that GP is not defined. */
14315 }
14316 }
14317
14318 /* Go through the sections and collect the .reginfo and .mdebug
14319 information. */
14320 abiflags_sec = NULL;
14321 reginfo_sec = NULL;
14322 mdebug_sec = NULL;
14323 gptab_data_sec = NULL;
14324 gptab_bss_sec = NULL;
14325 for (o = abfd->sections; o != NULL; o = o->next)
14326 {
14327 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14328 {
14329 /* We have found the .MIPS.abiflags section in the output file.
14330 Look through all the link_orders comprising it and remove them.
14331 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14332 for (p = o->map_head.link_order; p != NULL; p = p->next)
14333 {
14334 asection *input_section;
14335
14336 if (p->type != bfd_indirect_link_order)
14337 {
14338 if (p->type == bfd_data_link_order)
14339 continue;
14340 abort ();
14341 }
14342
14343 input_section = p->u.indirect.section;
14344
14345 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14346 elf_link_input_bfd ignores this section. */
14347 input_section->flags &= ~SEC_HAS_CONTENTS;
14348 }
14349
14350 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14351 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14352
14353 /* Skip this section later on (I don't think this currently
14354 matters, but someday it might). */
14355 o->map_head.link_order = NULL;
14356
14357 abiflags_sec = o;
14358 }
14359
14360 if (strcmp (o->name, ".reginfo") == 0)
14361 {
14362 memset (&reginfo, 0, sizeof reginfo);
14363
14364 /* We have found the .reginfo section in the output file.
14365 Look through all the link_orders comprising it and merge
14366 the information together. */
14367 for (p = o->map_head.link_order; p != NULL; p = p->next)
14368 {
14369 asection *input_section;
14370 bfd *input_bfd;
14371 Elf32_External_RegInfo ext;
14372 Elf32_RegInfo sub;
14373 bfd_size_type sz;
14374
14375 if (p->type != bfd_indirect_link_order)
14376 {
14377 if (p->type == bfd_data_link_order)
14378 continue;
14379 abort ();
14380 }
14381
14382 input_section = p->u.indirect.section;
14383 input_bfd = input_section->owner;
14384
14385 sz = (input_section->size < sizeof (ext)
14386 ? input_section->size : sizeof (ext));
14387 memset (&ext, 0, sizeof (ext));
14388 if (! bfd_get_section_contents (input_bfd, input_section,
14389 &ext, 0, sz))
14390 return FALSE;
14391
14392 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14393
14394 reginfo.ri_gprmask |= sub.ri_gprmask;
14395 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14396 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14397 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14398 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14399
14400 /* ri_gp_value is set by the function
14401 `_bfd_mips_elf_section_processing' when the section is
14402 finally written out. */
14403
14404 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14405 elf_link_input_bfd ignores this section. */
14406 input_section->flags &= ~SEC_HAS_CONTENTS;
14407 }
14408
14409 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14410 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14411
14412 /* Skip this section later on (I don't think this currently
14413 matters, but someday it might). */
14414 o->map_head.link_order = NULL;
14415
14416 reginfo_sec = o;
14417 }
14418
14419 if (strcmp (o->name, ".mdebug") == 0)
14420 {
14421 struct extsym_info einfo;
14422 bfd_vma last;
14423
14424 /* We have found the .mdebug section in the output file.
14425 Look through all the link_orders comprising it and merge
14426 the information together. */
14427 symhdr->magic = swap->sym_magic;
14428 /* FIXME: What should the version stamp be? */
14429 symhdr->vstamp = 0;
14430 symhdr->ilineMax = 0;
14431 symhdr->cbLine = 0;
14432 symhdr->idnMax = 0;
14433 symhdr->ipdMax = 0;
14434 symhdr->isymMax = 0;
14435 symhdr->ioptMax = 0;
14436 symhdr->iauxMax = 0;
14437 symhdr->issMax = 0;
14438 symhdr->issExtMax = 0;
14439 symhdr->ifdMax = 0;
14440 symhdr->crfd = 0;
14441 symhdr->iextMax = 0;
14442
14443 /* We accumulate the debugging information itself in the
14444 debug_info structure. */
14445 debug.line = NULL;
14446 debug.external_dnr = NULL;
14447 debug.external_pdr = NULL;
14448 debug.external_sym = NULL;
14449 debug.external_opt = NULL;
14450 debug.external_aux = NULL;
14451 debug.ss = NULL;
14452 debug.ssext = debug.ssext_end = NULL;
14453 debug.external_fdr = NULL;
14454 debug.external_rfd = NULL;
14455 debug.external_ext = debug.external_ext_end = NULL;
14456
14457 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14458 if (mdebug_handle == NULL)
14459 return FALSE;
14460
14461 esym.jmptbl = 0;
14462 esym.cobol_main = 0;
14463 esym.weakext = 0;
14464 esym.reserved = 0;
14465 esym.ifd = ifdNil;
14466 esym.asym.iss = issNil;
14467 esym.asym.st = stLocal;
14468 esym.asym.reserved = 0;
14469 esym.asym.index = indexNil;
14470 last = 0;
14471 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14472 {
14473 esym.asym.sc = sc[i];
14474 s = bfd_get_section_by_name (abfd, secname[i]);
14475 if (s != NULL)
14476 {
14477 esym.asym.value = s->vma;
14478 last = s->vma + s->size;
14479 }
14480 else
14481 esym.asym.value = last;
14482 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14483 secname[i], &esym))
14484 return FALSE;
14485 }
14486
14487 for (p = o->map_head.link_order; p != NULL; p = p->next)
14488 {
14489 asection *input_section;
14490 bfd *input_bfd;
14491 const struct ecoff_debug_swap *input_swap;
14492 struct ecoff_debug_info input_debug;
14493 char *eraw_src;
14494 char *eraw_end;
14495
14496 if (p->type != bfd_indirect_link_order)
14497 {
14498 if (p->type == bfd_data_link_order)
14499 continue;
14500 abort ();
14501 }
14502
14503 input_section = p->u.indirect.section;
14504 input_bfd = input_section->owner;
14505
14506 if (!is_mips_elf (input_bfd))
14507 {
14508 /* I don't know what a non MIPS ELF bfd would be
14509 doing with a .mdebug section, but I don't really
14510 want to deal with it. */
14511 continue;
14512 }
14513
14514 input_swap = (get_elf_backend_data (input_bfd)
14515 ->elf_backend_ecoff_debug_swap);
14516
14517 BFD_ASSERT (p->size == input_section->size);
14518
14519 /* The ECOFF linking code expects that we have already
14520 read in the debugging information and set up an
14521 ecoff_debug_info structure, so we do that now. */
14522 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14523 &input_debug))
14524 return FALSE;
14525
14526 if (! (bfd_ecoff_debug_accumulate
14527 (mdebug_handle, abfd, &debug, swap, input_bfd,
14528 &input_debug, input_swap, info)))
14529 return FALSE;
14530
14531 /* Loop through the external symbols. For each one with
14532 interesting information, try to find the symbol in
14533 the linker global hash table and save the information
14534 for the output external symbols. */
14535 eraw_src = input_debug.external_ext;
14536 eraw_end = (eraw_src
14537 + (input_debug.symbolic_header.iextMax
14538 * input_swap->external_ext_size));
14539 for (;
14540 eraw_src < eraw_end;
14541 eraw_src += input_swap->external_ext_size)
14542 {
14543 EXTR ext;
14544 const char *name;
14545 struct mips_elf_link_hash_entry *h;
14546
14547 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14548 if (ext.asym.sc == scNil
14549 || ext.asym.sc == scUndefined
14550 || ext.asym.sc == scSUndefined)
14551 continue;
14552
14553 name = input_debug.ssext + ext.asym.iss;
14554 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14555 name, FALSE, FALSE, TRUE);
14556 if (h == NULL || h->esym.ifd != -2)
14557 continue;
14558
14559 if (ext.ifd != -1)
14560 {
14561 BFD_ASSERT (ext.ifd
14562 < input_debug.symbolic_header.ifdMax);
14563 ext.ifd = input_debug.ifdmap[ext.ifd];
14564 }
14565
14566 h->esym = ext;
14567 }
14568
14569 /* Free up the information we just read. */
14570 free (input_debug.line);
14571 free (input_debug.external_dnr);
14572 free (input_debug.external_pdr);
14573 free (input_debug.external_sym);
14574 free (input_debug.external_opt);
14575 free (input_debug.external_aux);
14576 free (input_debug.ss);
14577 free (input_debug.ssext);
14578 free (input_debug.external_fdr);
14579 free (input_debug.external_rfd);
14580 free (input_debug.external_ext);
14581
14582 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14583 elf_link_input_bfd ignores this section. */
14584 input_section->flags &= ~SEC_HAS_CONTENTS;
14585 }
14586
14587 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14588 {
14589 /* Create .rtproc section. */
14590 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14591 if (rtproc_sec == NULL)
14592 {
14593 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14594 | SEC_LINKER_CREATED | SEC_READONLY);
14595
14596 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14597 ".rtproc",
14598 flags);
14599 if (rtproc_sec == NULL
14600 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14601 return FALSE;
14602 }
14603
14604 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14605 info, rtproc_sec,
14606 &debug))
14607 return FALSE;
14608 }
14609
14610 /* Build the external symbol information. */
14611 einfo.abfd = abfd;
14612 einfo.info = info;
14613 einfo.debug = &debug;
14614 einfo.swap = swap;
14615 einfo.failed = FALSE;
14616 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14617 mips_elf_output_extsym, &einfo);
14618 if (einfo.failed)
14619 return FALSE;
14620
14621 /* Set the size of the .mdebug section. */
14622 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14623
14624 /* Skip this section later on (I don't think this currently
14625 matters, but someday it might). */
14626 o->map_head.link_order = NULL;
14627
14628 mdebug_sec = o;
14629 }
14630
14631 if (CONST_STRNEQ (o->name, ".gptab."))
14632 {
14633 const char *subname;
14634 unsigned int c;
14635 Elf32_gptab *tab;
14636 Elf32_External_gptab *ext_tab;
14637 unsigned int j;
14638
14639 /* The .gptab.sdata and .gptab.sbss sections hold
14640 information describing how the small data area would
14641 change depending upon the -G switch. These sections
14642 not used in executables files. */
14643 if (! bfd_link_relocatable (info))
14644 {
14645 for (p = o->map_head.link_order; p != NULL; p = p->next)
14646 {
14647 asection *input_section;
14648
14649 if (p->type != bfd_indirect_link_order)
14650 {
14651 if (p->type == bfd_data_link_order)
14652 continue;
14653 abort ();
14654 }
14655
14656 input_section = p->u.indirect.section;
14657
14658 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14659 elf_link_input_bfd ignores this section. */
14660 input_section->flags &= ~SEC_HAS_CONTENTS;
14661 }
14662
14663 /* Skip this section later on (I don't think this
14664 currently matters, but someday it might). */
14665 o->map_head.link_order = NULL;
14666
14667 /* Really remove the section. */
14668 bfd_section_list_remove (abfd, o);
14669 --abfd->section_count;
14670
14671 continue;
14672 }
14673
14674 /* There is one gptab for initialized data, and one for
14675 uninitialized data. */
14676 if (strcmp (o->name, ".gptab.sdata") == 0)
14677 gptab_data_sec = o;
14678 else if (strcmp (o->name, ".gptab.sbss") == 0)
14679 gptab_bss_sec = o;
14680 else
14681 {
14682 _bfd_error_handler
14683 /* xgettext:c-format */
14684 (_("%pB: illegal section name `%pA'"), abfd, o);
14685 bfd_set_error (bfd_error_nonrepresentable_section);
14686 return FALSE;
14687 }
14688
14689 /* The linker script always combines .gptab.data and
14690 .gptab.sdata into .gptab.sdata, and likewise for
14691 .gptab.bss and .gptab.sbss. It is possible that there is
14692 no .sdata or .sbss section in the output file, in which
14693 case we must change the name of the output section. */
14694 subname = o->name + sizeof ".gptab" - 1;
14695 if (bfd_get_section_by_name (abfd, subname) == NULL)
14696 {
14697 if (o == gptab_data_sec)
14698 o->name = ".gptab.data";
14699 else
14700 o->name = ".gptab.bss";
14701 subname = o->name + sizeof ".gptab" - 1;
14702 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14703 }
14704
14705 /* Set up the first entry. */
14706 c = 1;
14707 amt = c * sizeof (Elf32_gptab);
14708 tab = bfd_malloc (amt);
14709 if (tab == NULL)
14710 return FALSE;
14711 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14712 tab[0].gt_header.gt_unused = 0;
14713
14714 /* Combine the input sections. */
14715 for (p = o->map_head.link_order; p != NULL; p = p->next)
14716 {
14717 asection *input_section;
14718 bfd *input_bfd;
14719 bfd_size_type size;
14720 unsigned long last;
14721 bfd_size_type gpentry;
14722
14723 if (p->type != bfd_indirect_link_order)
14724 {
14725 if (p->type == bfd_data_link_order)
14726 continue;
14727 abort ();
14728 }
14729
14730 input_section = p->u.indirect.section;
14731 input_bfd = input_section->owner;
14732
14733 /* Combine the gptab entries for this input section one
14734 by one. We know that the input gptab entries are
14735 sorted by ascending -G value. */
14736 size = input_section->size;
14737 last = 0;
14738 for (gpentry = sizeof (Elf32_External_gptab);
14739 gpentry < size;
14740 gpentry += sizeof (Elf32_External_gptab))
14741 {
14742 Elf32_External_gptab ext_gptab;
14743 Elf32_gptab int_gptab;
14744 unsigned long val;
14745 unsigned long add;
14746 bfd_boolean exact;
14747 unsigned int look;
14748
14749 if (! (bfd_get_section_contents
14750 (input_bfd, input_section, &ext_gptab, gpentry,
14751 sizeof (Elf32_External_gptab))))
14752 {
14753 free (tab);
14754 return FALSE;
14755 }
14756
14757 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14758 &int_gptab);
14759 val = int_gptab.gt_entry.gt_g_value;
14760 add = int_gptab.gt_entry.gt_bytes - last;
14761
14762 exact = FALSE;
14763 for (look = 1; look < c; look++)
14764 {
14765 if (tab[look].gt_entry.gt_g_value >= val)
14766 tab[look].gt_entry.gt_bytes += add;
14767
14768 if (tab[look].gt_entry.gt_g_value == val)
14769 exact = TRUE;
14770 }
14771
14772 if (! exact)
14773 {
14774 Elf32_gptab *new_tab;
14775 unsigned int max;
14776
14777 /* We need a new table entry. */
14778 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14779 new_tab = bfd_realloc (tab, amt);
14780 if (new_tab == NULL)
14781 {
14782 free (tab);
14783 return FALSE;
14784 }
14785 tab = new_tab;
14786 tab[c].gt_entry.gt_g_value = val;
14787 tab[c].gt_entry.gt_bytes = add;
14788
14789 /* Merge in the size for the next smallest -G
14790 value, since that will be implied by this new
14791 value. */
14792 max = 0;
14793 for (look = 1; look < c; look++)
14794 {
14795 if (tab[look].gt_entry.gt_g_value < val
14796 && (max == 0
14797 || (tab[look].gt_entry.gt_g_value
14798 > tab[max].gt_entry.gt_g_value)))
14799 max = look;
14800 }
14801 if (max != 0)
14802 tab[c].gt_entry.gt_bytes +=
14803 tab[max].gt_entry.gt_bytes;
14804
14805 ++c;
14806 }
14807
14808 last = int_gptab.gt_entry.gt_bytes;
14809 }
14810
14811 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14812 elf_link_input_bfd ignores this section. */
14813 input_section->flags &= ~SEC_HAS_CONTENTS;
14814 }
14815
14816 /* The table must be sorted by -G value. */
14817 if (c > 2)
14818 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14819
14820 /* Swap out the table. */
14821 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14822 ext_tab = bfd_alloc (abfd, amt);
14823 if (ext_tab == NULL)
14824 {
14825 free (tab);
14826 return FALSE;
14827 }
14828
14829 for (j = 0; j < c; j++)
14830 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14831 free (tab);
14832
14833 o->size = c * sizeof (Elf32_External_gptab);
14834 o->contents = (bfd_byte *) ext_tab;
14835
14836 /* Skip this section later on (I don't think this currently
14837 matters, but someday it might). */
14838 o->map_head.link_order = NULL;
14839 }
14840 }
14841
14842 /* Invoke the regular ELF backend linker to do all the work. */
14843 if (!bfd_elf_final_link (abfd, info))
14844 return FALSE;
14845
14846 /* Now write out the computed sections. */
14847
14848 if (abiflags_sec != NULL)
14849 {
14850 Elf_External_ABIFlags_v0 ext;
14851 Elf_Internal_ABIFlags_v0 *abiflags;
14852
14853 abiflags = &mips_elf_tdata (abfd)->abiflags;
14854
14855 /* Set up the abiflags if no valid input sections were found. */
14856 if (!mips_elf_tdata (abfd)->abiflags_valid)
14857 {
14858 infer_mips_abiflags (abfd, abiflags);
14859 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14860 }
14861 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14862 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14863 return FALSE;
14864 }
14865
14866 if (reginfo_sec != NULL)
14867 {
14868 Elf32_External_RegInfo ext;
14869
14870 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14871 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14872 return FALSE;
14873 }
14874
14875 if (mdebug_sec != NULL)
14876 {
14877 BFD_ASSERT (abfd->output_has_begun);
14878 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14879 swap, info,
14880 mdebug_sec->filepos))
14881 return FALSE;
14882
14883 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14884 }
14885
14886 if (gptab_data_sec != NULL)
14887 {
14888 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14889 gptab_data_sec->contents,
14890 0, gptab_data_sec->size))
14891 return FALSE;
14892 }
14893
14894 if (gptab_bss_sec != NULL)
14895 {
14896 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14897 gptab_bss_sec->contents,
14898 0, gptab_bss_sec->size))
14899 return FALSE;
14900 }
14901
14902 if (SGI_COMPAT (abfd))
14903 {
14904 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14905 if (rtproc_sec != NULL)
14906 {
14907 if (! bfd_set_section_contents (abfd, rtproc_sec,
14908 rtproc_sec->contents,
14909 0, rtproc_sec->size))
14910 return FALSE;
14911 }
14912 }
14913
14914 return TRUE;
14915 }
14916 \f
14917 /* Merge object file header flags from IBFD into OBFD. Raise an error
14918 if there are conflicting settings. */
14919
14920 static bfd_boolean
14921 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14922 {
14923 bfd *obfd = info->output_bfd;
14924 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14925 flagword old_flags;
14926 flagword new_flags;
14927 bfd_boolean ok;
14928
14929 new_flags = elf_elfheader (ibfd)->e_flags;
14930 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14931 old_flags = elf_elfheader (obfd)->e_flags;
14932
14933 /* Check flag compatibility. */
14934
14935 new_flags &= ~EF_MIPS_NOREORDER;
14936 old_flags &= ~EF_MIPS_NOREORDER;
14937
14938 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14939 doesn't seem to matter. */
14940 new_flags &= ~EF_MIPS_XGOT;
14941 old_flags &= ~EF_MIPS_XGOT;
14942
14943 /* MIPSpro generates ucode info in n64 objects. Again, we should
14944 just be able to ignore this. */
14945 new_flags &= ~EF_MIPS_UCODE;
14946 old_flags &= ~EF_MIPS_UCODE;
14947
14948 /* DSOs should only be linked with CPIC code. */
14949 if ((ibfd->flags & DYNAMIC) != 0)
14950 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14951
14952 if (new_flags == old_flags)
14953 return TRUE;
14954
14955 ok = TRUE;
14956
14957 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14958 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14959 {
14960 _bfd_error_handler
14961 (_("%pB: warning: linking abicalls files with non-abicalls files"),
14962 ibfd);
14963 ok = TRUE;
14964 }
14965
14966 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14967 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14968 if (! (new_flags & EF_MIPS_PIC))
14969 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14970
14971 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14972 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14973
14974 /* Compare the ISAs. */
14975 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14976 {
14977 _bfd_error_handler
14978 (_("%pB: linking 32-bit code with 64-bit code"),
14979 ibfd);
14980 ok = FALSE;
14981 }
14982 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14983 {
14984 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14985 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14986 {
14987 /* Copy the architecture info from IBFD to OBFD. Also copy
14988 the 32-bit flag (if set) so that we continue to recognise
14989 OBFD as a 32-bit binary. */
14990 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14991 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14992 elf_elfheader (obfd)->e_flags
14993 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14994
14995 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14996 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14997
14998 /* Copy across the ABI flags if OBFD doesn't use them
14999 and if that was what caused us to treat IBFD as 32-bit. */
15000 if ((old_flags & EF_MIPS_ABI) == 0
15001 && mips_32bit_flags_p (new_flags)
15002 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15003 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15004 }
15005 else
15006 {
15007 /* The ISAs aren't compatible. */
15008 _bfd_error_handler
15009 /* xgettext:c-format */
15010 (_("%pB: linking %s module with previous %s modules"),
15011 ibfd,
15012 bfd_printable_name (ibfd),
15013 bfd_printable_name (obfd));
15014 ok = FALSE;
15015 }
15016 }
15017
15018 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15019 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15020
15021 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15022 does set EI_CLASS differently from any 32-bit ABI. */
15023 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15024 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15025 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15026 {
15027 /* Only error if both are set (to different values). */
15028 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15029 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15030 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15031 {
15032 _bfd_error_handler
15033 /* xgettext:c-format */
15034 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15035 ibfd,
15036 elf_mips_abi_name (ibfd),
15037 elf_mips_abi_name (obfd));
15038 ok = FALSE;
15039 }
15040 new_flags &= ~EF_MIPS_ABI;
15041 old_flags &= ~EF_MIPS_ABI;
15042 }
15043
15044 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15045 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15046 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15047 {
15048 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15049 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15050 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15051 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15052 int micro_mis = old_m16 && new_micro;
15053 int m16_mis = old_micro && new_m16;
15054
15055 if (m16_mis || micro_mis)
15056 {
15057 _bfd_error_handler
15058 /* xgettext:c-format */
15059 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15060 ibfd,
15061 m16_mis ? "MIPS16" : "microMIPS",
15062 m16_mis ? "microMIPS" : "MIPS16");
15063 ok = FALSE;
15064 }
15065
15066 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15067
15068 new_flags &= ~ EF_MIPS_ARCH_ASE;
15069 old_flags &= ~ EF_MIPS_ARCH_ASE;
15070 }
15071
15072 /* Compare NaN encodings. */
15073 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15074 {
15075 /* xgettext:c-format */
15076 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15077 ibfd,
15078 (new_flags & EF_MIPS_NAN2008
15079 ? "-mnan=2008" : "-mnan=legacy"),
15080 (old_flags & EF_MIPS_NAN2008
15081 ? "-mnan=2008" : "-mnan=legacy"));
15082 ok = FALSE;
15083 new_flags &= ~EF_MIPS_NAN2008;
15084 old_flags &= ~EF_MIPS_NAN2008;
15085 }
15086
15087 /* Compare FP64 state. */
15088 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15089 {
15090 /* xgettext:c-format */
15091 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15092 ibfd,
15093 (new_flags & EF_MIPS_FP64
15094 ? "-mfp64" : "-mfp32"),
15095 (old_flags & EF_MIPS_FP64
15096 ? "-mfp64" : "-mfp32"));
15097 ok = FALSE;
15098 new_flags &= ~EF_MIPS_FP64;
15099 old_flags &= ~EF_MIPS_FP64;
15100 }
15101
15102 /* Warn about any other mismatches */
15103 if (new_flags != old_flags)
15104 {
15105 /* xgettext:c-format */
15106 _bfd_error_handler
15107 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15108 "(%#x)"),
15109 ibfd, new_flags, old_flags);
15110 ok = FALSE;
15111 }
15112
15113 return ok;
15114 }
15115
15116 /* Merge object attributes from IBFD into OBFD. Raise an error if
15117 there are conflicting attributes. */
15118 static bfd_boolean
15119 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15120 {
15121 bfd *obfd = info->output_bfd;
15122 obj_attribute *in_attr;
15123 obj_attribute *out_attr;
15124 bfd *abi_fp_bfd;
15125 bfd *abi_msa_bfd;
15126
15127 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15128 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15129 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15130 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15131
15132 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15133 if (!abi_msa_bfd
15134 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15135 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15136
15137 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15138 {
15139 /* This is the first object. Copy the attributes. */
15140 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15141
15142 /* Use the Tag_null value to indicate the attributes have been
15143 initialized. */
15144 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15145
15146 return TRUE;
15147 }
15148
15149 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15150 non-conflicting ones. */
15151 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15152 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15153 {
15154 int out_fp, in_fp;
15155
15156 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15157 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15158 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15159 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15160 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15161 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15162 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15163 || in_fp == Val_GNU_MIPS_ABI_FP_64
15164 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15165 {
15166 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15167 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15168 }
15169 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15170 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15171 || out_fp == Val_GNU_MIPS_ABI_FP_64
15172 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15173 /* Keep the current setting. */;
15174 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15175 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15176 {
15177 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15178 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15179 }
15180 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15181 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15182 /* Keep the current setting. */;
15183 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15184 {
15185 const char *out_string, *in_string;
15186
15187 out_string = _bfd_mips_fp_abi_string (out_fp);
15188 in_string = _bfd_mips_fp_abi_string (in_fp);
15189 /* First warn about cases involving unrecognised ABIs. */
15190 if (!out_string && !in_string)
15191 /* xgettext:c-format */
15192 _bfd_error_handler
15193 (_("warning: %pB uses unknown floating point ABI %d "
15194 "(set by %pB), %pB uses unknown floating point ABI %d"),
15195 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15196 else if (!out_string)
15197 _bfd_error_handler
15198 /* xgettext:c-format */
15199 (_("warning: %pB uses unknown floating point ABI %d "
15200 "(set by %pB), %pB uses %s"),
15201 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15202 else if (!in_string)
15203 _bfd_error_handler
15204 /* xgettext:c-format */
15205 (_("warning: %pB uses %s (set by %pB), "
15206 "%pB uses unknown floating point ABI %d"),
15207 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15208 else
15209 {
15210 /* If one of the bfds is soft-float, the other must be
15211 hard-float. The exact choice of hard-float ABI isn't
15212 really relevant to the error message. */
15213 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15214 out_string = "-mhard-float";
15215 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15216 in_string = "-mhard-float";
15217 _bfd_error_handler
15218 /* xgettext:c-format */
15219 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15220 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15221 }
15222 }
15223 }
15224
15225 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15226 non-conflicting ones. */
15227 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15228 {
15229 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15230 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15231 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15232 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15233 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15234 {
15235 case Val_GNU_MIPS_ABI_MSA_128:
15236 _bfd_error_handler
15237 /* xgettext:c-format */
15238 (_("warning: %pB uses %s (set by %pB), "
15239 "%pB uses unknown MSA ABI %d"),
15240 obfd, "-mmsa", abi_msa_bfd,
15241 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15242 break;
15243
15244 default:
15245 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15246 {
15247 case Val_GNU_MIPS_ABI_MSA_128:
15248 _bfd_error_handler
15249 /* xgettext:c-format */
15250 (_("warning: %pB uses unknown MSA ABI %d "
15251 "(set by %pB), %pB uses %s"),
15252 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15253 abi_msa_bfd, ibfd, "-mmsa");
15254 break;
15255
15256 default:
15257 _bfd_error_handler
15258 /* xgettext:c-format */
15259 (_("warning: %pB uses unknown MSA ABI %d "
15260 "(set by %pB), %pB uses unknown MSA ABI %d"),
15261 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15262 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15263 break;
15264 }
15265 }
15266 }
15267
15268 /* Merge Tag_compatibility attributes and any common GNU ones. */
15269 return _bfd_elf_merge_object_attributes (ibfd, info);
15270 }
15271
15272 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15273 there are conflicting settings. */
15274
15275 static bfd_boolean
15276 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15277 {
15278 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15279 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15280 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15281
15282 /* Update the output abiflags fp_abi using the computed fp_abi. */
15283 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15284
15285 #define max(a, b) ((a) > (b) ? (a) : (b))
15286 /* Merge abiflags. */
15287 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15288 in_tdata->abiflags.isa_level);
15289 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15290 in_tdata->abiflags.isa_rev);
15291 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15292 in_tdata->abiflags.gpr_size);
15293 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15294 in_tdata->abiflags.cpr1_size);
15295 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15296 in_tdata->abiflags.cpr2_size);
15297 #undef max
15298 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15299 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15300
15301 return TRUE;
15302 }
15303
15304 /* Merge backend specific data from an object file to the output
15305 object file when linking. */
15306
15307 bfd_boolean
15308 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15309 {
15310 bfd *obfd = info->output_bfd;
15311 struct mips_elf_obj_tdata *out_tdata;
15312 struct mips_elf_obj_tdata *in_tdata;
15313 bfd_boolean null_input_bfd = TRUE;
15314 asection *sec;
15315 bfd_boolean ok;
15316
15317 /* Check if we have the same endianness. */
15318 if (! _bfd_generic_verify_endian_match (ibfd, info))
15319 {
15320 _bfd_error_handler
15321 (_("%pB: endianness incompatible with that of the selected emulation"),
15322 ibfd);
15323 return FALSE;
15324 }
15325
15326 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15327 return TRUE;
15328
15329 in_tdata = mips_elf_tdata (ibfd);
15330 out_tdata = mips_elf_tdata (obfd);
15331
15332 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15333 {
15334 _bfd_error_handler
15335 (_("%pB: ABI is incompatible with that of the selected emulation"),
15336 ibfd);
15337 return FALSE;
15338 }
15339
15340 /* Check to see if the input BFD actually contains any sections. If not,
15341 then it has no attributes, and its flags may not have been initialized
15342 either, but it cannot actually cause any incompatibility. */
15343 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15344 {
15345 /* Ignore synthetic sections and empty .text, .data and .bss sections
15346 which are automatically generated by gas. Also ignore fake
15347 (s)common sections, since merely defining a common symbol does
15348 not affect compatibility. */
15349 if ((sec->flags & SEC_IS_COMMON) == 0
15350 && strcmp (sec->name, ".reginfo")
15351 && strcmp (sec->name, ".mdebug")
15352 && (sec->size != 0
15353 || (strcmp (sec->name, ".text")
15354 && strcmp (sec->name, ".data")
15355 && strcmp (sec->name, ".bss"))))
15356 {
15357 null_input_bfd = FALSE;
15358 break;
15359 }
15360 }
15361 if (null_input_bfd)
15362 return TRUE;
15363
15364 /* Populate abiflags using existing information. */
15365 if (in_tdata->abiflags_valid)
15366 {
15367 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15368 Elf_Internal_ABIFlags_v0 in_abiflags;
15369 Elf_Internal_ABIFlags_v0 abiflags;
15370
15371 /* Set up the FP ABI attribute from the abiflags if it is not already
15372 set. */
15373 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15374 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15375
15376 infer_mips_abiflags (ibfd, &abiflags);
15377 in_abiflags = in_tdata->abiflags;
15378
15379 /* It is not possible to infer the correct ISA revision
15380 for R3 or R5 so drop down to R2 for the checks. */
15381 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15382 in_abiflags.isa_rev = 2;
15383
15384 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15385 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15386 _bfd_error_handler
15387 (_("%pB: warning: inconsistent ISA between e_flags and "
15388 ".MIPS.abiflags"), ibfd);
15389 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15390 && in_abiflags.fp_abi != abiflags.fp_abi)
15391 _bfd_error_handler
15392 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15393 ".MIPS.abiflags"), ibfd);
15394 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15395 _bfd_error_handler
15396 (_("%pB: warning: inconsistent ASEs between e_flags and "
15397 ".MIPS.abiflags"), ibfd);
15398 /* The isa_ext is allowed to be an extension of what can be inferred
15399 from e_flags. */
15400 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15401 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15402 _bfd_error_handler
15403 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15404 ".MIPS.abiflags"), ibfd);
15405 if (in_abiflags.flags2 != 0)
15406 _bfd_error_handler
15407 (_("%pB: warning: unexpected flag in the flags2 field of "
15408 ".MIPS.abiflags (0x%lx)"), ibfd,
15409 in_abiflags.flags2);
15410 }
15411 else
15412 {
15413 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15414 in_tdata->abiflags_valid = TRUE;
15415 }
15416
15417 if (!out_tdata->abiflags_valid)
15418 {
15419 /* Copy input abiflags if output abiflags are not already valid. */
15420 out_tdata->abiflags = in_tdata->abiflags;
15421 out_tdata->abiflags_valid = TRUE;
15422 }
15423
15424 if (! elf_flags_init (obfd))
15425 {
15426 elf_flags_init (obfd) = TRUE;
15427 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15428 elf_elfheader (obfd)->e_ident[EI_CLASS]
15429 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15430
15431 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15432 && (bfd_get_arch_info (obfd)->the_default
15433 || mips_mach_extends_p (bfd_get_mach (obfd),
15434 bfd_get_mach (ibfd))))
15435 {
15436 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15437 bfd_get_mach (ibfd)))
15438 return FALSE;
15439
15440 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15441 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15442 }
15443
15444 ok = TRUE;
15445 }
15446 else
15447 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15448
15449 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15450
15451 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15452
15453 if (!ok)
15454 {
15455 bfd_set_error (bfd_error_bad_value);
15456 return FALSE;
15457 }
15458
15459 return TRUE;
15460 }
15461
15462 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15463
15464 bfd_boolean
15465 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15466 {
15467 BFD_ASSERT (!elf_flags_init (abfd)
15468 || elf_elfheader (abfd)->e_flags == flags);
15469
15470 elf_elfheader (abfd)->e_flags = flags;
15471 elf_flags_init (abfd) = TRUE;
15472 return TRUE;
15473 }
15474
15475 char *
15476 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15477 {
15478 switch (dtag)
15479 {
15480 default: return "";
15481 case DT_MIPS_RLD_VERSION:
15482 return "MIPS_RLD_VERSION";
15483 case DT_MIPS_TIME_STAMP:
15484 return "MIPS_TIME_STAMP";
15485 case DT_MIPS_ICHECKSUM:
15486 return "MIPS_ICHECKSUM";
15487 case DT_MIPS_IVERSION:
15488 return "MIPS_IVERSION";
15489 case DT_MIPS_FLAGS:
15490 return "MIPS_FLAGS";
15491 case DT_MIPS_BASE_ADDRESS:
15492 return "MIPS_BASE_ADDRESS";
15493 case DT_MIPS_MSYM:
15494 return "MIPS_MSYM";
15495 case DT_MIPS_CONFLICT:
15496 return "MIPS_CONFLICT";
15497 case DT_MIPS_LIBLIST:
15498 return "MIPS_LIBLIST";
15499 case DT_MIPS_LOCAL_GOTNO:
15500 return "MIPS_LOCAL_GOTNO";
15501 case DT_MIPS_CONFLICTNO:
15502 return "MIPS_CONFLICTNO";
15503 case DT_MIPS_LIBLISTNO:
15504 return "MIPS_LIBLISTNO";
15505 case DT_MIPS_SYMTABNO:
15506 return "MIPS_SYMTABNO";
15507 case DT_MIPS_UNREFEXTNO:
15508 return "MIPS_UNREFEXTNO";
15509 case DT_MIPS_GOTSYM:
15510 return "MIPS_GOTSYM";
15511 case DT_MIPS_HIPAGENO:
15512 return "MIPS_HIPAGENO";
15513 case DT_MIPS_RLD_MAP:
15514 return "MIPS_RLD_MAP";
15515 case DT_MIPS_RLD_MAP_REL:
15516 return "MIPS_RLD_MAP_REL";
15517 case DT_MIPS_DELTA_CLASS:
15518 return "MIPS_DELTA_CLASS";
15519 case DT_MIPS_DELTA_CLASS_NO:
15520 return "MIPS_DELTA_CLASS_NO";
15521 case DT_MIPS_DELTA_INSTANCE:
15522 return "MIPS_DELTA_INSTANCE";
15523 case DT_MIPS_DELTA_INSTANCE_NO:
15524 return "MIPS_DELTA_INSTANCE_NO";
15525 case DT_MIPS_DELTA_RELOC:
15526 return "MIPS_DELTA_RELOC";
15527 case DT_MIPS_DELTA_RELOC_NO:
15528 return "MIPS_DELTA_RELOC_NO";
15529 case DT_MIPS_DELTA_SYM:
15530 return "MIPS_DELTA_SYM";
15531 case DT_MIPS_DELTA_SYM_NO:
15532 return "MIPS_DELTA_SYM_NO";
15533 case DT_MIPS_DELTA_CLASSSYM:
15534 return "MIPS_DELTA_CLASSSYM";
15535 case DT_MIPS_DELTA_CLASSSYM_NO:
15536 return "MIPS_DELTA_CLASSSYM_NO";
15537 case DT_MIPS_CXX_FLAGS:
15538 return "MIPS_CXX_FLAGS";
15539 case DT_MIPS_PIXIE_INIT:
15540 return "MIPS_PIXIE_INIT";
15541 case DT_MIPS_SYMBOL_LIB:
15542 return "MIPS_SYMBOL_LIB";
15543 case DT_MIPS_LOCALPAGE_GOTIDX:
15544 return "MIPS_LOCALPAGE_GOTIDX";
15545 case DT_MIPS_LOCAL_GOTIDX:
15546 return "MIPS_LOCAL_GOTIDX";
15547 case DT_MIPS_HIDDEN_GOTIDX:
15548 return "MIPS_HIDDEN_GOTIDX";
15549 case DT_MIPS_PROTECTED_GOTIDX:
15550 return "MIPS_PROTECTED_GOT_IDX";
15551 case DT_MIPS_OPTIONS:
15552 return "MIPS_OPTIONS";
15553 case DT_MIPS_INTERFACE:
15554 return "MIPS_INTERFACE";
15555 case DT_MIPS_DYNSTR_ALIGN:
15556 return "DT_MIPS_DYNSTR_ALIGN";
15557 case DT_MIPS_INTERFACE_SIZE:
15558 return "DT_MIPS_INTERFACE_SIZE";
15559 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15560 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15561 case DT_MIPS_PERF_SUFFIX:
15562 return "DT_MIPS_PERF_SUFFIX";
15563 case DT_MIPS_COMPACT_SIZE:
15564 return "DT_MIPS_COMPACT_SIZE";
15565 case DT_MIPS_GP_VALUE:
15566 return "DT_MIPS_GP_VALUE";
15567 case DT_MIPS_AUX_DYNAMIC:
15568 return "DT_MIPS_AUX_DYNAMIC";
15569 case DT_MIPS_PLTGOT:
15570 return "DT_MIPS_PLTGOT";
15571 case DT_MIPS_RWPLT:
15572 return "DT_MIPS_RWPLT";
15573 }
15574 }
15575
15576 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15577 not known. */
15578
15579 const char *
15580 _bfd_mips_fp_abi_string (int fp)
15581 {
15582 switch (fp)
15583 {
15584 /* These strings aren't translated because they're simply
15585 option lists. */
15586 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15587 return "-mdouble-float";
15588
15589 case Val_GNU_MIPS_ABI_FP_SINGLE:
15590 return "-msingle-float";
15591
15592 case Val_GNU_MIPS_ABI_FP_SOFT:
15593 return "-msoft-float";
15594
15595 case Val_GNU_MIPS_ABI_FP_OLD_64:
15596 return _("-mips32r2 -mfp64 (12 callee-saved)");
15597
15598 case Val_GNU_MIPS_ABI_FP_XX:
15599 return "-mfpxx";
15600
15601 case Val_GNU_MIPS_ABI_FP_64:
15602 return "-mgp32 -mfp64";
15603
15604 case Val_GNU_MIPS_ABI_FP_64A:
15605 return "-mgp32 -mfp64 -mno-odd-spreg";
15606
15607 default:
15608 return 0;
15609 }
15610 }
15611
15612 static void
15613 print_mips_ases (FILE *file, unsigned int mask)
15614 {
15615 if (mask & AFL_ASE_DSP)
15616 fputs ("\n\tDSP ASE", file);
15617 if (mask & AFL_ASE_DSPR2)
15618 fputs ("\n\tDSP R2 ASE", file);
15619 if (mask & AFL_ASE_DSPR3)
15620 fputs ("\n\tDSP R3 ASE", file);
15621 if (mask & AFL_ASE_EVA)
15622 fputs ("\n\tEnhanced VA Scheme", file);
15623 if (mask & AFL_ASE_MCU)
15624 fputs ("\n\tMCU (MicroController) ASE", file);
15625 if (mask & AFL_ASE_MDMX)
15626 fputs ("\n\tMDMX ASE", file);
15627 if (mask & AFL_ASE_MIPS3D)
15628 fputs ("\n\tMIPS-3D ASE", file);
15629 if (mask & AFL_ASE_MT)
15630 fputs ("\n\tMT ASE", file);
15631 if (mask & AFL_ASE_SMARTMIPS)
15632 fputs ("\n\tSmartMIPS ASE", file);
15633 if (mask & AFL_ASE_VIRT)
15634 fputs ("\n\tVZ ASE", file);
15635 if (mask & AFL_ASE_MSA)
15636 fputs ("\n\tMSA ASE", file);
15637 if (mask & AFL_ASE_MIPS16)
15638 fputs ("\n\tMIPS16 ASE", file);
15639 if (mask & AFL_ASE_MICROMIPS)
15640 fputs ("\n\tMICROMIPS ASE", file);
15641 if (mask & AFL_ASE_XPA)
15642 fputs ("\n\tXPA ASE", file);
15643 if (mask & AFL_ASE_MIPS16E2)
15644 fputs ("\n\tMIPS16e2 ASE", file);
15645 if (mask & AFL_ASE_CRC)
15646 fputs ("\n\tCRC ASE", file);
15647 if (mask == 0)
15648 fprintf (file, "\n\t%s", _("None"));
15649 else if ((mask & ~AFL_ASE_MASK) != 0)
15650 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15651 }
15652
15653 static void
15654 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15655 {
15656 switch (isa_ext)
15657 {
15658 case 0:
15659 fputs (_("None"), file);
15660 break;
15661 case AFL_EXT_XLR:
15662 fputs ("RMI XLR", file);
15663 break;
15664 case AFL_EXT_OCTEON3:
15665 fputs ("Cavium Networks Octeon3", file);
15666 break;
15667 case AFL_EXT_OCTEON2:
15668 fputs ("Cavium Networks Octeon2", file);
15669 break;
15670 case AFL_EXT_OCTEONP:
15671 fputs ("Cavium Networks OcteonP", file);
15672 break;
15673 case AFL_EXT_LOONGSON_3A:
15674 fputs ("Loongson 3A", file);
15675 break;
15676 case AFL_EXT_OCTEON:
15677 fputs ("Cavium Networks Octeon", file);
15678 break;
15679 case AFL_EXT_5900:
15680 fputs ("Toshiba R5900", file);
15681 break;
15682 case AFL_EXT_4650:
15683 fputs ("MIPS R4650", file);
15684 break;
15685 case AFL_EXT_4010:
15686 fputs ("LSI R4010", file);
15687 break;
15688 case AFL_EXT_4100:
15689 fputs ("NEC VR4100", file);
15690 break;
15691 case AFL_EXT_3900:
15692 fputs ("Toshiba R3900", file);
15693 break;
15694 case AFL_EXT_10000:
15695 fputs ("MIPS R10000", file);
15696 break;
15697 case AFL_EXT_SB1:
15698 fputs ("Broadcom SB-1", file);
15699 break;
15700 case AFL_EXT_4111:
15701 fputs ("NEC VR4111/VR4181", file);
15702 break;
15703 case AFL_EXT_4120:
15704 fputs ("NEC VR4120", file);
15705 break;
15706 case AFL_EXT_5400:
15707 fputs ("NEC VR5400", file);
15708 break;
15709 case AFL_EXT_5500:
15710 fputs ("NEC VR5500", file);
15711 break;
15712 case AFL_EXT_LOONGSON_2E:
15713 fputs ("ST Microelectronics Loongson 2E", file);
15714 break;
15715 case AFL_EXT_LOONGSON_2F:
15716 fputs ("ST Microelectronics Loongson 2F", file);
15717 break;
15718 case AFL_EXT_INTERAPTIV_MR2:
15719 fputs ("Imagination interAptiv MR2", file);
15720 break;
15721 default:
15722 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15723 break;
15724 }
15725 }
15726
15727 static void
15728 print_mips_fp_abi_value (FILE *file, int val)
15729 {
15730 switch (val)
15731 {
15732 case Val_GNU_MIPS_ABI_FP_ANY:
15733 fprintf (file, _("Hard or soft float\n"));
15734 break;
15735 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15736 fprintf (file, _("Hard float (double precision)\n"));
15737 break;
15738 case Val_GNU_MIPS_ABI_FP_SINGLE:
15739 fprintf (file, _("Hard float (single precision)\n"));
15740 break;
15741 case Val_GNU_MIPS_ABI_FP_SOFT:
15742 fprintf (file, _("Soft float\n"));
15743 break;
15744 case Val_GNU_MIPS_ABI_FP_OLD_64:
15745 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15746 break;
15747 case Val_GNU_MIPS_ABI_FP_XX:
15748 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15749 break;
15750 case Val_GNU_MIPS_ABI_FP_64:
15751 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15752 break;
15753 case Val_GNU_MIPS_ABI_FP_64A:
15754 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15755 break;
15756 default:
15757 fprintf (file, "??? (%d)\n", val);
15758 break;
15759 }
15760 }
15761
15762 static int
15763 get_mips_reg_size (int reg_size)
15764 {
15765 return (reg_size == AFL_REG_NONE) ? 0
15766 : (reg_size == AFL_REG_32) ? 32
15767 : (reg_size == AFL_REG_64) ? 64
15768 : (reg_size == AFL_REG_128) ? 128
15769 : -1;
15770 }
15771
15772 bfd_boolean
15773 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15774 {
15775 FILE *file = ptr;
15776
15777 BFD_ASSERT (abfd != NULL && ptr != NULL);
15778
15779 /* Print normal ELF private data. */
15780 _bfd_elf_print_private_bfd_data (abfd, ptr);
15781
15782 /* xgettext:c-format */
15783 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15784
15785 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15786 fprintf (file, _(" [abi=O32]"));
15787 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15788 fprintf (file, _(" [abi=O64]"));
15789 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15790 fprintf (file, _(" [abi=EABI32]"));
15791 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15792 fprintf (file, _(" [abi=EABI64]"));
15793 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15794 fprintf (file, _(" [abi unknown]"));
15795 else if (ABI_N32_P (abfd))
15796 fprintf (file, _(" [abi=N32]"));
15797 else if (ABI_64_P (abfd))
15798 fprintf (file, _(" [abi=64]"));
15799 else
15800 fprintf (file, _(" [no abi set]"));
15801
15802 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15803 fprintf (file, " [mips1]");
15804 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15805 fprintf (file, " [mips2]");
15806 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15807 fprintf (file, " [mips3]");
15808 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15809 fprintf (file, " [mips4]");
15810 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15811 fprintf (file, " [mips5]");
15812 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15813 fprintf (file, " [mips32]");
15814 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15815 fprintf (file, " [mips64]");
15816 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15817 fprintf (file, " [mips32r2]");
15818 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15819 fprintf (file, " [mips64r2]");
15820 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15821 fprintf (file, " [mips32r6]");
15822 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15823 fprintf (file, " [mips64r6]");
15824 else
15825 fprintf (file, _(" [unknown ISA]"));
15826
15827 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15828 fprintf (file, " [mdmx]");
15829
15830 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15831 fprintf (file, " [mips16]");
15832
15833 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15834 fprintf (file, " [micromips]");
15835
15836 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15837 fprintf (file, " [nan2008]");
15838
15839 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15840 fprintf (file, " [old fp64]");
15841
15842 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15843 fprintf (file, " [32bitmode]");
15844 else
15845 fprintf (file, _(" [not 32bitmode]"));
15846
15847 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15848 fprintf (file, " [noreorder]");
15849
15850 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15851 fprintf (file, " [PIC]");
15852
15853 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15854 fprintf (file, " [CPIC]");
15855
15856 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15857 fprintf (file, " [XGOT]");
15858
15859 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15860 fprintf (file, " [UCODE]");
15861
15862 fputc ('\n', file);
15863
15864 if (mips_elf_tdata (abfd)->abiflags_valid)
15865 {
15866 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15867 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15868 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15869 if (abiflags->isa_rev > 1)
15870 fprintf (file, "r%d", abiflags->isa_rev);
15871 fprintf (file, "\nGPR size: %d",
15872 get_mips_reg_size (abiflags->gpr_size));
15873 fprintf (file, "\nCPR1 size: %d",
15874 get_mips_reg_size (abiflags->cpr1_size));
15875 fprintf (file, "\nCPR2 size: %d",
15876 get_mips_reg_size (abiflags->cpr2_size));
15877 fputs ("\nFP ABI: ", file);
15878 print_mips_fp_abi_value (file, abiflags->fp_abi);
15879 fputs ("ISA Extension: ", file);
15880 print_mips_isa_ext (file, abiflags->isa_ext);
15881 fputs ("\nASEs:", file);
15882 print_mips_ases (file, abiflags->ases);
15883 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15884 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15885 fputc ('\n', file);
15886 }
15887
15888 return TRUE;
15889 }
15890
15891 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15892 {
15893 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15894 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15895 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15896 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15897 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15898 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15899 { NULL, 0, 0, 0, 0 }
15900 };
15901
15902 /* Merge non visibility st_other attributes. Ensure that the
15903 STO_OPTIONAL flag is copied into h->other, even if this is not a
15904 definiton of the symbol. */
15905 void
15906 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15907 const Elf_Internal_Sym *isym,
15908 bfd_boolean definition,
15909 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15910 {
15911 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15912 {
15913 unsigned char other;
15914
15915 other = (definition ? isym->st_other : h->other);
15916 other &= ~ELF_ST_VISIBILITY (-1);
15917 h->other = other | ELF_ST_VISIBILITY (h->other);
15918 }
15919
15920 if (!definition
15921 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15922 h->other |= STO_OPTIONAL;
15923 }
15924
15925 /* Decide whether an undefined symbol is special and can be ignored.
15926 This is the case for OPTIONAL symbols on IRIX. */
15927 bfd_boolean
15928 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15929 {
15930 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15931 }
15932
15933 bfd_boolean
15934 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15935 {
15936 return (sym->st_shndx == SHN_COMMON
15937 || sym->st_shndx == SHN_MIPS_ACOMMON
15938 || sym->st_shndx == SHN_MIPS_SCOMMON);
15939 }
15940
15941 /* Return address for Ith PLT stub in section PLT, for relocation REL
15942 or (bfd_vma) -1 if it should not be included. */
15943
15944 bfd_vma
15945 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15946 const arelent *rel ATTRIBUTE_UNUSED)
15947 {
15948 return (plt->vma
15949 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15950 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15951 }
15952
15953 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15954 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15955 and .got.plt and also the slots may be of a different size each we walk
15956 the PLT manually fetching instructions and matching them against known
15957 patterns. To make things easier standard MIPS slots, if any, always come
15958 first. As we don't create proper ELF symbols we use the UDATA.I member
15959 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15960 with the ST_OTHER member of the ELF symbol. */
15961
15962 long
15963 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15964 long symcount ATTRIBUTE_UNUSED,
15965 asymbol **syms ATTRIBUTE_UNUSED,
15966 long dynsymcount, asymbol **dynsyms,
15967 asymbol **ret)
15968 {
15969 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15970 static const char microsuffix[] = "@micromipsplt";
15971 static const char m16suffix[] = "@mips16plt";
15972 static const char mipssuffix[] = "@plt";
15973
15974 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15975 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15976 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15977 Elf_Internal_Shdr *hdr;
15978 bfd_byte *plt_data;
15979 bfd_vma plt_offset;
15980 unsigned int other;
15981 bfd_vma entry_size;
15982 bfd_vma plt0_size;
15983 asection *relplt;
15984 bfd_vma opcode;
15985 asection *plt;
15986 asymbol *send;
15987 size_t size;
15988 char *names;
15989 long counti;
15990 arelent *p;
15991 asymbol *s;
15992 char *nend;
15993 long count;
15994 long pi;
15995 long i;
15996 long n;
15997
15998 *ret = NULL;
15999
16000 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16001 return 0;
16002
16003 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16004 if (relplt == NULL)
16005 return 0;
16006
16007 hdr = &elf_section_data (relplt)->this_hdr;
16008 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16009 return 0;
16010
16011 plt = bfd_get_section_by_name (abfd, ".plt");
16012 if (plt == NULL)
16013 return 0;
16014
16015 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16016 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16017 return -1;
16018 p = relplt->relocation;
16019
16020 /* Calculating the exact amount of space required for symbols would
16021 require two passes over the PLT, so just pessimise assuming two
16022 PLT slots per relocation. */
16023 count = relplt->size / hdr->sh_entsize;
16024 counti = count * bed->s->int_rels_per_ext_rel;
16025 size = 2 * count * sizeof (asymbol);
16026 size += count * (sizeof (mipssuffix) +
16027 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16028 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16029 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16030
16031 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16032 size += sizeof (asymbol) + sizeof (pltname);
16033
16034 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16035 return -1;
16036
16037 if (plt->size < 16)
16038 return -1;
16039
16040 s = *ret = bfd_malloc (size);
16041 if (s == NULL)
16042 return -1;
16043 send = s + 2 * count + 1;
16044
16045 names = (char *) send;
16046 nend = (char *) s + size;
16047 n = 0;
16048
16049 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16050 if (opcode == 0x3302fffe)
16051 {
16052 if (!micromips_p)
16053 return -1;
16054 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16055 other = STO_MICROMIPS;
16056 }
16057 else if (opcode == 0x0398c1d0)
16058 {
16059 if (!micromips_p)
16060 return -1;
16061 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16062 other = STO_MICROMIPS;
16063 }
16064 else
16065 {
16066 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16067 other = 0;
16068 }
16069
16070 s->the_bfd = abfd;
16071 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16072 s->section = plt;
16073 s->value = 0;
16074 s->name = names;
16075 s->udata.i = other;
16076 memcpy (names, pltname, sizeof (pltname));
16077 names += sizeof (pltname);
16078 ++s, ++n;
16079
16080 pi = 0;
16081 for (plt_offset = plt0_size;
16082 plt_offset + 8 <= plt->size && s < send;
16083 plt_offset += entry_size)
16084 {
16085 bfd_vma gotplt_addr;
16086 const char *suffix;
16087 bfd_vma gotplt_hi;
16088 bfd_vma gotplt_lo;
16089 size_t suffixlen;
16090
16091 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16092
16093 /* Check if the second word matches the expected MIPS16 instruction. */
16094 if (opcode == 0x651aeb00)
16095 {
16096 if (micromips_p)
16097 return -1;
16098 /* Truncated table??? */
16099 if (plt_offset + 16 > plt->size)
16100 break;
16101 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16102 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16103 suffixlen = sizeof (m16suffix);
16104 suffix = m16suffix;
16105 other = STO_MIPS16;
16106 }
16107 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16108 else if (opcode == 0xff220000)
16109 {
16110 if (!micromips_p)
16111 return -1;
16112 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16113 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16114 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16115 gotplt_lo <<= 2;
16116 gotplt_addr = gotplt_hi + gotplt_lo;
16117 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16118 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16119 suffixlen = sizeof (microsuffix);
16120 suffix = microsuffix;
16121 other = STO_MICROMIPS;
16122 }
16123 /* Likewise the expected microMIPS instruction (insn32 mode). */
16124 else if ((opcode & 0xffff0000) == 0xff2f0000)
16125 {
16126 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16127 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16128 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16129 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16130 gotplt_addr = gotplt_hi + gotplt_lo;
16131 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16132 suffixlen = sizeof (microsuffix);
16133 suffix = microsuffix;
16134 other = STO_MICROMIPS;
16135 }
16136 /* Otherwise assume standard MIPS code. */
16137 else
16138 {
16139 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16140 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16141 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16142 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16143 gotplt_addr = gotplt_hi + gotplt_lo;
16144 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16145 suffixlen = sizeof (mipssuffix);
16146 suffix = mipssuffix;
16147 other = 0;
16148 }
16149 /* Truncated table??? */
16150 if (plt_offset + entry_size > plt->size)
16151 break;
16152
16153 for (i = 0;
16154 i < count && p[pi].address != gotplt_addr;
16155 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16156
16157 if (i < count)
16158 {
16159 size_t namelen;
16160 size_t len;
16161
16162 *s = **p[pi].sym_ptr_ptr;
16163 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16164 we are defining a symbol, ensure one of them is set. */
16165 if ((s->flags & BSF_LOCAL) == 0)
16166 s->flags |= BSF_GLOBAL;
16167 s->flags |= BSF_SYNTHETIC;
16168 s->section = plt;
16169 s->value = plt_offset;
16170 s->name = names;
16171 s->udata.i = other;
16172
16173 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16174 namelen = len + suffixlen;
16175 if (names + namelen > nend)
16176 break;
16177
16178 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16179 names += len;
16180 memcpy (names, suffix, suffixlen);
16181 names += suffixlen;
16182
16183 ++s, ++n;
16184 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16185 }
16186 }
16187
16188 free (plt_data);
16189
16190 return n;
16191 }
16192
16193 /* Return the ABI flags associated with ABFD if available. */
16194
16195 Elf_Internal_ABIFlags_v0 *
16196 bfd_mips_elf_get_abiflags (bfd *abfd)
16197 {
16198 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16199
16200 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16201 }
16202
16203 void
16204 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16205 {
16206 struct mips_elf_link_hash_table *htab;
16207 Elf_Internal_Ehdr *i_ehdrp;
16208
16209 i_ehdrp = elf_elfheader (abfd);
16210 if (link_info)
16211 {
16212 htab = mips_elf_hash_table (link_info);
16213 BFD_ASSERT (htab != NULL);
16214
16215 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16216 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16217 }
16218
16219 _bfd_elf_post_process_headers (abfd, link_info);
16220
16221 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16222 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16223 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16224 }
16225
16226 int
16227 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16228 {
16229 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16230 }
16231
16232 /* Return the opcode for can't unwind. */
16233
16234 int
16235 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16236 {
16237 return COMPACT_EH_CANT_UNWIND_OPCODE;
16238 }
This page took 0.618776 seconds and 4 git commands to generate.