Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2907 {
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
2978 else
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984
2985 if (hd->needs_lazy_stub)
2986 {
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
3011 einfo->failed = TRUE;
3012 return FALSE;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 /* A comparison routine used to sort .gptab entries. */
3019
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3022 {
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027 }
3028 \f
3029 /* Functions to manage the got entry hash table. */
3030
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3036 {
3037 #ifdef BFD64
3038 return addr + (addr >> 32);
3039 #else
3040 return addr;
3041 #endif
3042 }
3043
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3046 {
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3056 }
3057
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060 {
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3071 }
3072
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3075 {
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083 }
3084
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087 {
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097 }
3098
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3106 }
3107
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110 {
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3116 }
3117 \f
3118 /* Create and return a new mips_got_info structure. */
3119
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3122 {
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3138
3139 return g;
3140 }
3141
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147 {
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3157 }
3158
3159 /* Record that ABFD should use output GOT G. */
3160
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163 {
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3176 }
3177 tdata->got = g;
3178 }
3179
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3183
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186 {
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3190
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3195 {
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3207 }
3208 return sreloc;
3209 }
3210
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3215 {
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
3225 return GOT_TLS_NONE;
3226 }
3227
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3232 {
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
3242 case GOT_TLS_NONE:
3243 return 0;
3244 }
3245 abort ();
3246 }
3247
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255 {
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3262 indx = h->dynindx;
3263
3264 if ((bfd_link_pic (info) || indx != 0)
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3269
3270 if (!need_relocs)
3271 return 0;
3272
3273 switch (tls_type)
3274 {
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
3277
3278 case GOT_TLS_IE:
3279 return 1;
3280
3281 case GOT_TLS_LDM:
3282 return bfd_link_pic (info) ? 1 : 0;
3283
3284 default:
3285 return 0;
3286 }
3287 }
3288
3289 /* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
3291
3292 static void
3293 mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
3296 {
3297 if (entry->tls_type)
3298 {
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3303 }
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
3308 }
3309
3310 /* Output a simple dynamic relocation into SRELOC. */
3311
3312 static void
3313 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
3315 unsigned long reloc_index,
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3319 {
3320 Elf_Internal_Rela rel[3];
3321
3322 memset (rel, 0, sizeof (rel));
3323
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326
3327 if (ABI_64_P (output_bfd))
3328 {
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3333 }
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
3338 + reloc_index * sizeof (Elf32_External_Rel)));
3339 }
3340
3341 /* Initialize a set of TLS GOT entries for one symbol. */
3342
3343 static void
3344 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3348 {
3349 struct mips_elf_link_hash_table *htab;
3350 int indx;
3351 asection *sreloc, *sgot;
3352 bfd_vma got_offset, got_offset2;
3353 bfd_boolean need_relocs = FALSE;
3354
3355 htab = mips_elf_hash_table (info);
3356 if (htab == NULL)
3357 return;
3358
3359 sgot = htab->root.sgot;
3360
3361 indx = 0;
3362 if (h != NULL)
3363 {
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3370 indx = h->root.dynindx;
3371 }
3372
3373 if (entry->tls_initialized)
3374 return;
3375
3376 if ((bfd_link_pic (info) || indx != 0)
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3381
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3387
3388 /* Emit necessary relocations. */
3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3390 got_offset = entry->gotidx;
3391
3392 switch (entry->tls_type)
3393 {
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3397
3398 if (need_relocs)
3399 {
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset);
3404
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
3407 (abfd, sreloc, sreloc->reloc_count++, indx,
3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3412 sgot->contents + got_offset2);
3413 }
3414 else
3415 {
3416 MIPS_ELF_PUT_WORD (abfd, 1,
3417 sgot->contents + got_offset);
3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3419 sgot->contents + got_offset2);
3420 }
3421 break;
3422
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
3425 if (need_relocs)
3426 {
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3429 sgot->contents + got_offset);
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
3432 sgot->contents + got_offset);
3433
3434 mips_elf_output_dynamic_relocation
3435 (abfd, sreloc, sreloc->reloc_count++, indx,
3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3437 sgot->output_offset + sgot->output_section->vma + got_offset);
3438 }
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3441 sgot->contents + got_offset);
3442 break;
3443
3444 case GOT_TLS_LDM:
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3450
3451 if (!bfd_link_pic (info))
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
3456 (abfd, sreloc, sreloc->reloc_count++, indx,
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
3459 break;
3460
3461 default:
3462 abort ();
3463 }
3464
3465 entry->tls_initialized = TRUE;
3466 }
3467
3468 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3471
3472 static bfd_vma
3473 mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3475 {
3476 bfd_vma got_address, got_value;
3477 struct mips_elf_link_hash_table *htab;
3478
3479 htab = mips_elf_hash_table (info);
3480 BFD_ASSERT (htab != NULL);
3481
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3484
3485 /* Calculate the address of the associated .got.plt entry. */
3486 got_address = (htab->root.sgotplt->output_section->vma
3487 + htab->root.sgotplt->output_offset
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3490
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3495
3496 return got_address - got_value;
3497 }
3498
3499 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
3503
3504 static bfd_vma
3505 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3506 bfd_vma value, unsigned long r_symndx,
3507 struct mips_elf_link_hash_entry *h, int r_type)
3508 {
3509 struct mips_elf_link_hash_table *htab;
3510 struct mips_got_entry *entry;
3511
3512 htab = mips_elf_hash_table (info);
3513 BFD_ASSERT (htab != NULL);
3514
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
3517 if (!entry)
3518 return MINUS_ONE;
3519
3520 if (entry->tls_type)
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
3523 }
3524
3525 /* Return the GOT index of global symbol H in the primary GOT. */
3526
3527 static bfd_vma
3528 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3530 {
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3542
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
3551 BFD_ASSERT (got_index < htab->root.sgot->size);
3552
3553 return got_index;
3554 }
3555
3556 /* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3558
3559 static bfd_vma
3560 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
3562 {
3563 struct mips_elf_link_hash_table *htab;
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
3567
3568 htab = mips_elf_hash_table (info);
3569 BFD_ASSERT (htab != NULL);
3570
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
3573
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
3577
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
3583
3584 gotidx = entry->gotidx;
3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3586
3587 if (lookup.tls_type)
3588 {
3589 bfd_vma value = MINUS_ONE;
3590
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3597
3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3599 }
3600 return gotidx;
3601 }
3602
3603 /* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
3607 offset of the GOT entry from VALUE. */
3608
3609 static bfd_vma
3610 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3611 bfd_vma value, bfd_vma *offsetp)
3612 {
3613 bfd_vma page, got_index;
3614 struct mips_got_entry *entry;
3615
3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
3619
3620 if (!entry)
3621 return MINUS_ONE;
3622
3623 got_index = entry->gotidx;
3624
3625 if (offsetp)
3626 *offsetp = value - entry->d.address;
3627
3628 return got_index;
3629 }
3630
3631 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
3634
3635 static bfd_vma
3636 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3637 bfd_vma value, bfd_boolean external)
3638 {
3639 struct mips_got_entry *entry;
3640
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3645 if (! external)
3646 value = mips_elf_high (value) << 16;
3647
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
3657 }
3658
3659 /* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3661
3662 static bfd_vma
3663 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3664 bfd *input_bfd, bfd_vma got_index)
3665 {
3666 struct mips_elf_link_hash_table *htab;
3667 asection *sgot;
3668 bfd_vma gp;
3669
3670 htab = mips_elf_hash_table (info);
3671 BFD_ASSERT (htab != NULL);
3672
3673 sgot = htab->root.sgot;
3674 gp = _bfd_get_gp_value (output_bfd)
3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3676
3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3678 }
3679
3680 /* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
3684
3685 static struct mips_got_entry *
3686 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3687 bfd *ibfd, bfd_vma value,
3688 unsigned long r_symndx,
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
3691 {
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
3694 struct mips_got_info *g;
3695 struct mips_elf_link_hash_table *htab;
3696 bfd_vma gotidx;
3697
3698 htab = mips_elf_hash_table (info);
3699 BFD_ASSERT (htab != NULL);
3700
3701 g = mips_elf_bfd_got (ibfd, FALSE);
3702 if (g == NULL)
3703 {
3704 g = mips_elf_bfd_got (abfd, FALSE);
3705 BFD_ASSERT (g != NULL);
3706 }
3707
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3711
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3714 {
3715 lookup.abfd = ibfd;
3716 if (tls_ldm_reloc_p (r_type))
3717 {
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
3720 }
3721 else if (h == NULL)
3722 {
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
3725 }
3726 else
3727 {
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3730 }
3731
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
3734
3735 gotidx = entry->gotidx;
3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3737
3738 return entry;
3739 }
3740
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
3746 return NULL;
3747
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
3751
3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
3753 {
3754 /* We didn't allocate enough space in the GOT. */
3755 _bfd_error_handler
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
3758 return NULL;
3759 }
3760
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3764
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772
3773 *entry = lookup;
3774 *loc = entry;
3775
3776 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3777
3778 /* These GOT entries need a dynamic relocation on VxWorks. */
3779 if (htab->is_vxworks)
3780 {
3781 Elf_Internal_Rela outrel;
3782 asection *s;
3783 bfd_byte *rloc;
3784 bfd_vma got_address;
3785
3786 s = mips_elf_rel_dyn_section (info, FALSE);
3787 got_address = (htab->root.sgot->output_section->vma
3788 + htab->root.sgot->output_offset
3789 + entry->gotidx);
3790
3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3792 outrel.r_offset = got_address;
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3796 }
3797
3798 return entry;
3799 }
3800
3801 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3805
3806 static bfd_size_type
3807 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808 {
3809 bfd_size_type count;
3810
3811 count = 0;
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
3814 {
3815 asection *p;
3816 const struct elf_backend_data *bed;
3817
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3824 }
3825 return count;
3826 }
3827
3828 /* Sort the dynamic symbol table so that symbols that need GOT entries
3829 appear towards the end. */
3830
3831 static bfd_boolean
3832 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3833 {
3834 struct mips_elf_link_hash_table *htab;
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
3837
3838 htab = mips_elf_hash_table (info);
3839 BFD_ASSERT (htab != NULL);
3840
3841 if (htab->root.dynsymcount == 0)
3842 return TRUE;
3843
3844 g = htab->got_info;
3845 if (g == NULL)
3846 return TRUE;
3847
3848 hsd.low = NULL;
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
3851 = (htab->root.dynsymcount - g->reloc_only_gotno);
3852 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3853 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3854 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3855 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3856 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3857
3858 /* There should have been enough room in the symbol table to
3859 accommodate both the GOT and non-GOT symbols. */
3860 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3861 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3862 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3863 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3864
3865 /* Now we know which dynamic symbol has the lowest dynamic symbol
3866 table index in the GOT. */
3867 htab->global_gotsym = hsd.low;
3868
3869 return TRUE;
3870 }
3871
3872 /* If H needs a GOT entry, assign it the highest available dynamic
3873 index. Otherwise, assign it the lowest available dynamic
3874 index. */
3875
3876 static bfd_boolean
3877 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3878 {
3879 struct mips_elf_hash_sort_data *hsd = data;
3880
3881 /* Symbols without dynamic symbol table entries aren't interesting
3882 at all. */
3883 if (h->root.dynindx == -1)
3884 return TRUE;
3885
3886 switch (h->global_got_area)
3887 {
3888 case GGA_NONE:
3889 if (h->root.forced_local)
3890 h->root.dynindx = hsd->max_local_dynindx++;
3891 else
3892 h->root.dynindx = hsd->max_non_got_dynindx++;
3893 break;
3894
3895 case GGA_NORMAL:
3896 h->root.dynindx = --hsd->min_got_dynindx;
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 break;
3899
3900 case GGA_RELOC_ONLY:
3901 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3902 hsd->low = (struct elf_link_hash_entry *) h;
3903 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 break;
3905 }
3906
3907 return TRUE;
3908 }
3909
3910 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3911 (which is owned by the caller and shouldn't be added to the
3912 hash table directly). */
3913
3914 static bfd_boolean
3915 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3916 struct mips_got_entry *lookup)
3917 {
3918 struct mips_elf_link_hash_table *htab;
3919 struct mips_got_entry *entry;
3920 struct mips_got_info *g;
3921 void **loc, **bfd_loc;
3922
3923 /* Make sure there's a slot for this entry in the master GOT. */
3924 htab = mips_elf_hash_table (info);
3925 g = htab->got_info;
3926 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3927 if (!loc)
3928 return FALSE;
3929
3930 /* Populate the entry if it isn't already. */
3931 entry = (struct mips_got_entry *) *loc;
3932 if (!entry)
3933 {
3934 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3935 if (!entry)
3936 return FALSE;
3937
3938 lookup->tls_initialized = FALSE;
3939 lookup->gotidx = -1;
3940 *entry = *lookup;
3941 *loc = entry;
3942 }
3943
3944 /* Reuse the same GOT entry for the BFD's GOT. */
3945 g = mips_elf_bfd_got (abfd, TRUE);
3946 if (!g)
3947 return FALSE;
3948
3949 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950 if (!bfd_loc)
3951 return FALSE;
3952
3953 if (!*bfd_loc)
3954 *bfd_loc = entry;
3955 return TRUE;
3956 }
3957
3958 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3959 entry for it. FOR_CALL is true if the caller is only interested in
3960 using the GOT entry for calls. */
3961
3962 static bfd_boolean
3963 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3964 bfd *abfd, struct bfd_link_info *info,
3965 bfd_boolean for_call, int r_type)
3966 {
3967 struct mips_elf_link_hash_table *htab;
3968 struct mips_elf_link_hash_entry *hmips;
3969 struct mips_got_entry entry;
3970 unsigned char tls_type;
3971
3972 htab = mips_elf_hash_table (info);
3973 BFD_ASSERT (htab != NULL);
3974
3975 hmips = (struct mips_elf_link_hash_entry *) h;
3976 if (!for_call)
3977 hmips->got_only_for_calls = FALSE;
3978
3979 /* A global symbol in the GOT must also be in the dynamic symbol
3980 table. */
3981 if (h->dynindx == -1)
3982 {
3983 switch (ELF_ST_VISIBILITY (h->other))
3984 {
3985 case STV_INTERNAL:
3986 case STV_HIDDEN:
3987 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3988 break;
3989 }
3990 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3991 return FALSE;
3992 }
3993
3994 tls_type = mips_elf_reloc_tls_type (r_type);
3995 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3996 hmips->global_got_area = GGA_NORMAL;
3997
3998 entry.abfd = abfd;
3999 entry.symndx = -1;
4000 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4001 entry.tls_type = tls_type;
4002 return mips_elf_record_got_entry (info, abfd, &entry);
4003 }
4004
4005 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4006 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4007
4008 static bfd_boolean
4009 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4010 struct bfd_link_info *info, int r_type)
4011 {
4012 struct mips_elf_link_hash_table *htab;
4013 struct mips_got_info *g;
4014 struct mips_got_entry entry;
4015
4016 htab = mips_elf_hash_table (info);
4017 BFD_ASSERT (htab != NULL);
4018
4019 g = htab->got_info;
4020 BFD_ASSERT (g != NULL);
4021
4022 entry.abfd = abfd;
4023 entry.symndx = symndx;
4024 entry.d.addend = addend;
4025 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4026 return mips_elf_record_got_entry (info, abfd, &entry);
4027 }
4028
4029 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4030 H is the symbol's hash table entry, or null if SYMNDX is local
4031 to ABFD. */
4032
4033 static bfd_boolean
4034 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4035 long symndx, struct elf_link_hash_entry *h,
4036 bfd_signed_vma addend)
4037 {
4038 struct mips_elf_link_hash_table *htab;
4039 struct mips_got_info *g1, *g2;
4040 struct mips_got_page_ref lookup, *entry;
4041 void **loc, **bfd_loc;
4042
4043 htab = mips_elf_hash_table (info);
4044 BFD_ASSERT (htab != NULL);
4045
4046 g1 = htab->got_info;
4047 BFD_ASSERT (g1 != NULL);
4048
4049 if (h)
4050 {
4051 lookup.symndx = -1;
4052 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4053 }
4054 else
4055 {
4056 lookup.symndx = symndx;
4057 lookup.u.abfd = abfd;
4058 }
4059 lookup.addend = addend;
4060 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4061 if (loc == NULL)
4062 return FALSE;
4063
4064 entry = (struct mips_got_page_ref *) *loc;
4065 if (!entry)
4066 {
4067 entry = bfd_alloc (abfd, sizeof (*entry));
4068 if (!entry)
4069 return FALSE;
4070
4071 *entry = lookup;
4072 *loc = entry;
4073 }
4074
4075 /* Add the same entry to the BFD's GOT. */
4076 g2 = mips_elf_bfd_got (abfd, TRUE);
4077 if (!g2)
4078 return FALSE;
4079
4080 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4081 if (!bfd_loc)
4082 return FALSE;
4083
4084 if (!*bfd_loc)
4085 *bfd_loc = entry;
4086
4087 return TRUE;
4088 }
4089
4090 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4091
4092 static void
4093 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4094 unsigned int n)
4095 {
4096 asection *s;
4097 struct mips_elf_link_hash_table *htab;
4098
4099 htab = mips_elf_hash_table (info);
4100 BFD_ASSERT (htab != NULL);
4101
4102 s = mips_elf_rel_dyn_section (info, FALSE);
4103 BFD_ASSERT (s != NULL);
4104
4105 if (htab->is_vxworks)
4106 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4107 else
4108 {
4109 if (s->size == 0)
4110 {
4111 /* Make room for a null element. */
4112 s->size += MIPS_ELF_REL_SIZE (abfd);
4113 ++s->reloc_count;
4114 }
4115 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4116 }
4117 }
4118 \f
4119 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4120 mips_elf_traverse_got_arg structure. Count the number of GOT
4121 entries and TLS relocs. Set DATA->value to true if we need
4122 to resolve indirect or warning symbols and then recreate the GOT. */
4123
4124 static int
4125 mips_elf_check_recreate_got (void **entryp, void *data)
4126 {
4127 struct mips_got_entry *entry;
4128 struct mips_elf_traverse_got_arg *arg;
4129
4130 entry = (struct mips_got_entry *) *entryp;
4131 arg = (struct mips_elf_traverse_got_arg *) data;
4132 if (entry->abfd != NULL && entry->symndx == -1)
4133 {
4134 struct mips_elf_link_hash_entry *h;
4135
4136 h = entry->d.h;
4137 if (h->root.root.type == bfd_link_hash_indirect
4138 || h->root.root.type == bfd_link_hash_warning)
4139 {
4140 arg->value = TRUE;
4141 return 0;
4142 }
4143 }
4144 mips_elf_count_got_entry (arg->info, arg->g, entry);
4145 return 1;
4146 }
4147
4148 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4149 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4150 converting entries for indirect and warning symbols into entries
4151 for the target symbol. Set DATA->g to null on error. */
4152
4153 static int
4154 mips_elf_recreate_got (void **entryp, void *data)
4155 {
4156 struct mips_got_entry new_entry, *entry;
4157 struct mips_elf_traverse_got_arg *arg;
4158 void **slot;
4159
4160 entry = (struct mips_got_entry *) *entryp;
4161 arg = (struct mips_elf_traverse_got_arg *) data;
4162 if (entry->abfd != NULL
4163 && entry->symndx == -1
4164 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4165 || entry->d.h->root.root.type == bfd_link_hash_warning))
4166 {
4167 struct mips_elf_link_hash_entry *h;
4168
4169 new_entry = *entry;
4170 entry = &new_entry;
4171 h = entry->d.h;
4172 do
4173 {
4174 BFD_ASSERT (h->global_got_area == GGA_NONE);
4175 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4176 }
4177 while (h->root.root.type == bfd_link_hash_indirect
4178 || h->root.root.type == bfd_link_hash_warning);
4179 entry->d.h = h;
4180 }
4181 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4182 if (slot == NULL)
4183 {
4184 arg->g = NULL;
4185 return 0;
4186 }
4187 if (*slot == NULL)
4188 {
4189 if (entry == &new_entry)
4190 {
4191 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 if (!entry)
4193 {
4194 arg->g = NULL;
4195 return 0;
4196 }
4197 *entry = new_entry;
4198 }
4199 *slot = entry;
4200 mips_elf_count_got_entry (arg->info, arg->g, entry);
4201 }
4202 return 1;
4203 }
4204
4205 /* Return the maximum number of GOT page entries required for RANGE. */
4206
4207 static bfd_vma
4208 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4209 {
4210 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4211 }
4212
4213 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4214
4215 static bfd_boolean
4216 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4217 asection *sec, bfd_signed_vma addend)
4218 {
4219 struct mips_got_info *g = arg->g;
4220 struct mips_got_page_entry lookup, *entry;
4221 struct mips_got_page_range **range_ptr, *range;
4222 bfd_vma old_pages, new_pages;
4223 void **loc;
4224
4225 /* Find the mips_got_page_entry hash table entry for this section. */
4226 lookup.sec = sec;
4227 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4228 if (loc == NULL)
4229 return FALSE;
4230
4231 /* Create a mips_got_page_entry if this is the first time we've
4232 seen the section. */
4233 entry = (struct mips_got_page_entry *) *loc;
4234 if (!entry)
4235 {
4236 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4237 if (!entry)
4238 return FALSE;
4239
4240 entry->sec = sec;
4241 *loc = entry;
4242 }
4243
4244 /* Skip over ranges whose maximum extent cannot share a page entry
4245 with ADDEND. */
4246 range_ptr = &entry->ranges;
4247 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4248 range_ptr = &(*range_ptr)->next;
4249
4250 /* If we scanned to the end of the list, or found a range whose
4251 minimum extent cannot share a page entry with ADDEND, create
4252 a new singleton range. */
4253 range = *range_ptr;
4254 if (!range || addend < range->min_addend - 0xffff)
4255 {
4256 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4257 if (!range)
4258 return FALSE;
4259
4260 range->next = *range_ptr;
4261 range->min_addend = addend;
4262 range->max_addend = addend;
4263
4264 *range_ptr = range;
4265 entry->num_pages++;
4266 g->page_gotno++;
4267 return TRUE;
4268 }
4269
4270 /* Remember how many pages the old range contributed. */
4271 old_pages = mips_elf_pages_for_range (range);
4272
4273 /* Update the ranges. */
4274 if (addend < range->min_addend)
4275 range->min_addend = addend;
4276 else if (addend > range->max_addend)
4277 {
4278 if (range->next && addend >= range->next->min_addend - 0xffff)
4279 {
4280 old_pages += mips_elf_pages_for_range (range->next);
4281 range->max_addend = range->next->max_addend;
4282 range->next = range->next->next;
4283 }
4284 else
4285 range->max_addend = addend;
4286 }
4287
4288 /* Record any change in the total estimate. */
4289 new_pages = mips_elf_pages_for_range (range);
4290 if (old_pages != new_pages)
4291 {
4292 entry->num_pages += new_pages - old_pages;
4293 g->page_gotno += new_pages - old_pages;
4294 }
4295
4296 return TRUE;
4297 }
4298
4299 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4300 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4301 whether the page reference described by *REFP needs a GOT page entry,
4302 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4303
4304 static bfd_boolean
4305 mips_elf_resolve_got_page_ref (void **refp, void *data)
4306 {
4307 struct mips_got_page_ref *ref;
4308 struct mips_elf_traverse_got_arg *arg;
4309 struct mips_elf_link_hash_table *htab;
4310 asection *sec;
4311 bfd_vma addend;
4312
4313 ref = (struct mips_got_page_ref *) *refp;
4314 arg = (struct mips_elf_traverse_got_arg *) data;
4315 htab = mips_elf_hash_table (arg->info);
4316
4317 if (ref->symndx < 0)
4318 {
4319 struct mips_elf_link_hash_entry *h;
4320
4321 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4322 h = ref->u.h;
4323 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4324 return 1;
4325
4326 /* Ignore undefined symbols; we'll issue an error later if
4327 appropriate. */
4328 if (!((h->root.root.type == bfd_link_hash_defined
4329 || h->root.root.type == bfd_link_hash_defweak)
4330 && h->root.root.u.def.section))
4331 return 1;
4332
4333 sec = h->root.root.u.def.section;
4334 addend = h->root.root.u.def.value + ref->addend;
4335 }
4336 else
4337 {
4338 Elf_Internal_Sym *isym;
4339
4340 /* Read in the symbol. */
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4342 ref->symndx);
4343 if (isym == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* Get the associated input section. */
4350 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 if (sec == NULL)
4352 {
4353 arg->g = NULL;
4354 return 0;
4355 }
4356
4357 /* If this is a mergable section, work out the section and offset
4358 of the merged data. For section symbols, the addend specifies
4359 of the offset _of_ the first byte in the data, otherwise it
4360 specifies the offset _from_ the first byte. */
4361 if (sec->flags & SEC_MERGE)
4362 {
4363 void *secinfo;
4364
4365 secinfo = elf_section_data (sec)->sec_info;
4366 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4367 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4368 isym->st_value + ref->addend);
4369 else
4370 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4371 isym->st_value) + ref->addend;
4372 }
4373 else
4374 addend = isym->st_value + ref->addend;
4375 }
4376 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4377 {
4378 arg->g = NULL;
4379 return 0;
4380 }
4381 return 1;
4382 }
4383
4384 /* If any entries in G->got_entries are for indirect or warning symbols,
4385 replace them with entries for the target symbol. Convert g->got_page_refs
4386 into got_page_entry structures and estimate the number of page entries
4387 that they require. */
4388
4389 static bfd_boolean
4390 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4391 struct mips_got_info *g)
4392 {
4393 struct mips_elf_traverse_got_arg tga;
4394 struct mips_got_info oldg;
4395
4396 oldg = *g;
4397
4398 tga.info = info;
4399 tga.g = g;
4400 tga.value = FALSE;
4401 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4402 if (tga.value)
4403 {
4404 *g = oldg;
4405 g->got_entries = htab_create (htab_size (oldg.got_entries),
4406 mips_elf_got_entry_hash,
4407 mips_elf_got_entry_eq, NULL);
4408 if (!g->got_entries)
4409 return FALSE;
4410
4411 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4412 if (!tga.g)
4413 return FALSE;
4414
4415 htab_delete (oldg.got_entries);
4416 }
4417
4418 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4419 mips_got_page_entry_eq, NULL);
4420 if (g->got_page_entries == NULL)
4421 return FALSE;
4422
4423 tga.info = info;
4424 tga.g = g;
4425 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4426
4427 return TRUE;
4428 }
4429
4430 /* Return true if a GOT entry for H should live in the local rather than
4431 global GOT area. */
4432
4433 static bfd_boolean
4434 mips_use_local_got_p (struct bfd_link_info *info,
4435 struct mips_elf_link_hash_entry *h)
4436 {
4437 /* Symbols that aren't in the dynamic symbol table must live in the
4438 local GOT. This includes symbols that are completely undefined
4439 and which therefore don't bind locally. We'll report undefined
4440 symbols later if appropriate. */
4441 if (h->root.dynindx == -1)
4442 return TRUE;
4443
4444 /* Symbols that bind locally can (and in the case of forced-local
4445 symbols, must) live in the local GOT. */
4446 if (h->got_only_for_calls
4447 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4448 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4449 return TRUE;
4450
4451 /* If this is an executable that must provide a definition of the symbol,
4452 either though PLTs or copy relocations, then that address should go in
4453 the local rather than global GOT. */
4454 if (bfd_link_executable (info) && h->has_static_relocs)
4455 return TRUE;
4456
4457 return FALSE;
4458 }
4459
4460 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4461 link_info structure. Decide whether the hash entry needs an entry in
4462 the global part of the primary GOT, setting global_got_area accordingly.
4463 Count the number of global symbols that are in the primary GOT only
4464 because they have relocations against them (reloc_only_gotno). */
4465
4466 static int
4467 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4468 {
4469 struct bfd_link_info *info;
4470 struct mips_elf_link_hash_table *htab;
4471 struct mips_got_info *g;
4472
4473 info = (struct bfd_link_info *) data;
4474 htab = mips_elf_hash_table (info);
4475 g = htab->got_info;
4476 if (h->global_got_area != GGA_NONE)
4477 {
4478 /* Make a final decision about whether the symbol belongs in the
4479 local or global GOT. */
4480 if (mips_use_local_got_p (info, h))
4481 /* The symbol belongs in the local GOT. We no longer need this
4482 entry if it was only used for relocations; those relocations
4483 will be against the null or section symbol instead of H. */
4484 h->global_got_area = GGA_NONE;
4485 else if (htab->is_vxworks
4486 && h->got_only_for_calls
4487 && h->root.plt.plist->mips_offset != MINUS_ONE)
4488 /* On VxWorks, calls can refer directly to the .got.plt entry;
4489 they don't need entries in the regular GOT. .got.plt entries
4490 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4491 h->global_got_area = GGA_NONE;
4492 else if (h->global_got_area == GGA_RELOC_ONLY)
4493 {
4494 g->reloc_only_gotno++;
4495 g->global_gotno++;
4496 }
4497 }
4498 return 1;
4499 }
4500 \f
4501 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4502 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4503
4504 static int
4505 mips_elf_add_got_entry (void **entryp, void *data)
4506 {
4507 struct mips_got_entry *entry;
4508 struct mips_elf_traverse_got_arg *arg;
4509 void **slot;
4510
4511 entry = (struct mips_got_entry *) *entryp;
4512 arg = (struct mips_elf_traverse_got_arg *) data;
4513 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514 if (!slot)
4515 {
4516 arg->g = NULL;
4517 return 0;
4518 }
4519 if (!*slot)
4520 {
4521 *slot = entry;
4522 mips_elf_count_got_entry (arg->info, arg->g, entry);
4523 }
4524 return 1;
4525 }
4526
4527 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4528 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4529
4530 static int
4531 mips_elf_add_got_page_entry (void **entryp, void *data)
4532 {
4533 struct mips_got_page_entry *entry;
4534 struct mips_elf_traverse_got_arg *arg;
4535 void **slot;
4536
4537 entry = (struct mips_got_page_entry *) *entryp;
4538 arg = (struct mips_elf_traverse_got_arg *) data;
4539 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540 if (!slot)
4541 {
4542 arg->g = NULL;
4543 return 0;
4544 }
4545 if (!*slot)
4546 {
4547 *slot = entry;
4548 arg->g->page_gotno += entry->num_pages;
4549 }
4550 return 1;
4551 }
4552
4553 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4554 this would lead to overflow, 1 if they were merged successfully,
4555 and 0 if a merge failed due to lack of memory. (These values are chosen
4556 so that nonnegative return values can be returned by a htab_traverse
4557 callback.) */
4558
4559 static int
4560 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4561 struct mips_got_info *to,
4562 struct mips_elf_got_per_bfd_arg *arg)
4563 {
4564 struct mips_elf_traverse_got_arg tga;
4565 unsigned int estimate;
4566
4567 /* Work out how many page entries we would need for the combined GOT. */
4568 estimate = arg->max_pages;
4569 if (estimate >= from->page_gotno + to->page_gotno)
4570 estimate = from->page_gotno + to->page_gotno;
4571
4572 /* And conservatively estimate how many local and TLS entries
4573 would be needed. */
4574 estimate += from->local_gotno + to->local_gotno;
4575 estimate += from->tls_gotno + to->tls_gotno;
4576
4577 /* If we're merging with the primary got, any TLS relocations will
4578 come after the full set of global entries. Otherwise estimate those
4579 conservatively as well. */
4580 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4581 estimate += arg->global_count;
4582 else
4583 estimate += from->global_gotno + to->global_gotno;
4584
4585 /* Bail out if the combined GOT might be too big. */
4586 if (estimate > arg->max_count)
4587 return -1;
4588
4589 /* Transfer the bfd's got information from FROM to TO. */
4590 tga.info = arg->info;
4591 tga.g = to;
4592 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4593 if (!tga.g)
4594 return 0;
4595
4596 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4597 if (!tga.g)
4598 return 0;
4599
4600 mips_elf_replace_bfd_got (abfd, to);
4601 return 1;
4602 }
4603
4604 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4605 as possible of the primary got, since it doesn't require explicit
4606 dynamic relocations, but don't use bfds that would reference global
4607 symbols out of the addressable range. Failing the primary got,
4608 attempt to merge with the current got, or finish the current got
4609 and then make make the new got current. */
4610
4611 static bfd_boolean
4612 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4613 struct mips_elf_got_per_bfd_arg *arg)
4614 {
4615 unsigned int estimate;
4616 int result;
4617
4618 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4619 return FALSE;
4620
4621 /* Work out the number of page, local and TLS entries. */
4622 estimate = arg->max_pages;
4623 if (estimate > g->page_gotno)
4624 estimate = g->page_gotno;
4625 estimate += g->local_gotno + g->tls_gotno;
4626
4627 /* We place TLS GOT entries after both locals and globals. The globals
4628 for the primary GOT may overflow the normal GOT size limit, so be
4629 sure not to merge a GOT which requires TLS with the primary GOT in that
4630 case. This doesn't affect non-primary GOTs. */
4631 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4632
4633 if (estimate <= arg->max_count)
4634 {
4635 /* If we don't have a primary GOT, use it as
4636 a starting point for the primary GOT. */
4637 if (!arg->primary)
4638 {
4639 arg->primary = g;
4640 return TRUE;
4641 }
4642
4643 /* Try merging with the primary GOT. */
4644 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4645 if (result >= 0)
4646 return result;
4647 }
4648
4649 /* If we can merge with the last-created got, do it. */
4650 if (arg->current)
4651 {
4652 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4653 if (result >= 0)
4654 return result;
4655 }
4656
4657 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4658 fits; if it turns out that it doesn't, we'll get relocation
4659 overflows anyway. */
4660 g->next = arg->current;
4661 arg->current = g;
4662
4663 return TRUE;
4664 }
4665
4666 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4667 to GOTIDX, duplicating the entry if it has already been assigned
4668 an index in a different GOT. */
4669
4670 static bfd_boolean
4671 mips_elf_set_gotidx (void **entryp, long gotidx)
4672 {
4673 struct mips_got_entry *entry;
4674
4675 entry = (struct mips_got_entry *) *entryp;
4676 if (entry->gotidx > 0)
4677 {
4678 struct mips_got_entry *new_entry;
4679
4680 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4681 if (!new_entry)
4682 return FALSE;
4683
4684 *new_entry = *entry;
4685 *entryp = new_entry;
4686 entry = new_entry;
4687 }
4688 entry->gotidx = gotidx;
4689 return TRUE;
4690 }
4691
4692 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4693 mips_elf_traverse_got_arg in which DATA->value is the size of one
4694 GOT entry. Set DATA->g to null on failure. */
4695
4696 static int
4697 mips_elf_initialize_tls_index (void **entryp, void *data)
4698 {
4699 struct mips_got_entry *entry;
4700 struct mips_elf_traverse_got_arg *arg;
4701
4702 /* We're only interested in TLS symbols. */
4703 entry = (struct mips_got_entry *) *entryp;
4704 if (entry->tls_type == GOT_TLS_NONE)
4705 return 1;
4706
4707 arg = (struct mips_elf_traverse_got_arg *) data;
4708 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4709 {
4710 arg->g = NULL;
4711 return 0;
4712 }
4713
4714 /* Account for the entries we've just allocated. */
4715 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4716 return 1;
4717 }
4718
4719 /* A htab_traverse callback for GOT entries, where DATA points to a
4720 mips_elf_traverse_got_arg. Set the global_got_area of each global
4721 symbol to DATA->value. */
4722
4723 static int
4724 mips_elf_set_global_got_area (void **entryp, void *data)
4725 {
4726 struct mips_got_entry *entry;
4727 struct mips_elf_traverse_got_arg *arg;
4728
4729 entry = (struct mips_got_entry *) *entryp;
4730 arg = (struct mips_elf_traverse_got_arg *) data;
4731 if (entry->abfd != NULL
4732 && entry->symndx == -1
4733 && entry->d.h->global_got_area != GGA_NONE)
4734 entry->d.h->global_got_area = arg->value;
4735 return 1;
4736 }
4737
4738 /* A htab_traverse callback for secondary GOT entries, where DATA points
4739 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4740 and record the number of relocations they require. DATA->value is
4741 the size of one GOT entry. Set DATA->g to null on failure. */
4742
4743 static int
4744 mips_elf_set_global_gotidx (void **entryp, void *data)
4745 {
4746 struct mips_got_entry *entry;
4747 struct mips_elf_traverse_got_arg *arg;
4748
4749 entry = (struct mips_got_entry *) *entryp;
4750 arg = (struct mips_elf_traverse_got_arg *) data;
4751 if (entry->abfd != NULL
4752 && entry->symndx == -1
4753 && entry->d.h->global_got_area != GGA_NONE)
4754 {
4755 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4756 {
4757 arg->g = NULL;
4758 return 0;
4759 }
4760 arg->g->assigned_low_gotno += 1;
4761
4762 if (bfd_link_pic (arg->info)
4763 || (elf_hash_table (arg->info)->dynamic_sections_created
4764 && entry->d.h->root.def_dynamic
4765 && !entry->d.h->root.def_regular))
4766 arg->g->relocs += 1;
4767 }
4768
4769 return 1;
4770 }
4771
4772 /* A htab_traverse callback for GOT entries for which DATA is the
4773 bfd_link_info. Forbid any global symbols from having traditional
4774 lazy-binding stubs. */
4775
4776 static int
4777 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4778 {
4779 struct bfd_link_info *info;
4780 struct mips_elf_link_hash_table *htab;
4781 struct mips_got_entry *entry;
4782
4783 entry = (struct mips_got_entry *) *entryp;
4784 info = (struct bfd_link_info *) data;
4785 htab = mips_elf_hash_table (info);
4786 BFD_ASSERT (htab != NULL);
4787
4788 if (entry->abfd != NULL
4789 && entry->symndx == -1
4790 && entry->d.h->needs_lazy_stub)
4791 {
4792 entry->d.h->needs_lazy_stub = FALSE;
4793 htab->lazy_stub_count--;
4794 }
4795
4796 return 1;
4797 }
4798
4799 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4800 the primary GOT. */
4801 static bfd_vma
4802 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4803 {
4804 if (!g->next)
4805 return 0;
4806
4807 g = mips_elf_bfd_got (ibfd, FALSE);
4808 if (! g)
4809 return 0;
4810
4811 BFD_ASSERT (g->next);
4812
4813 g = g->next;
4814
4815 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4816 * MIPS_ELF_GOT_SIZE (abfd);
4817 }
4818
4819 /* Turn a single GOT that is too big for 16-bit addressing into
4820 a sequence of GOTs, each one 16-bit addressable. */
4821
4822 static bfd_boolean
4823 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4824 asection *got, bfd_size_type pages)
4825 {
4826 struct mips_elf_link_hash_table *htab;
4827 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4828 struct mips_elf_traverse_got_arg tga;
4829 struct mips_got_info *g, *gg;
4830 unsigned int assign, needed_relocs;
4831 bfd *dynobj, *ibfd;
4832
4833 dynobj = elf_hash_table (info)->dynobj;
4834 htab = mips_elf_hash_table (info);
4835 BFD_ASSERT (htab != NULL);
4836
4837 g = htab->got_info;
4838
4839 got_per_bfd_arg.obfd = abfd;
4840 got_per_bfd_arg.info = info;
4841 got_per_bfd_arg.current = NULL;
4842 got_per_bfd_arg.primary = NULL;
4843 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4844 / MIPS_ELF_GOT_SIZE (abfd))
4845 - htab->reserved_gotno);
4846 got_per_bfd_arg.max_pages = pages;
4847 /* The number of globals that will be included in the primary GOT.
4848 See the calls to mips_elf_set_global_got_area below for more
4849 information. */
4850 got_per_bfd_arg.global_count = g->global_gotno;
4851
4852 /* Try to merge the GOTs of input bfds together, as long as they
4853 don't seem to exceed the maximum GOT size, choosing one of them
4854 to be the primary GOT. */
4855 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4856 {
4857 gg = mips_elf_bfd_got (ibfd, FALSE);
4858 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4859 return FALSE;
4860 }
4861
4862 /* If we do not find any suitable primary GOT, create an empty one. */
4863 if (got_per_bfd_arg.primary == NULL)
4864 g->next = mips_elf_create_got_info (abfd);
4865 else
4866 g->next = got_per_bfd_arg.primary;
4867 g->next->next = got_per_bfd_arg.current;
4868
4869 /* GG is now the master GOT, and G is the primary GOT. */
4870 gg = g;
4871 g = g->next;
4872
4873 /* Map the output bfd to the primary got. That's what we're going
4874 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4875 didn't mark in check_relocs, and we want a quick way to find it.
4876 We can't just use gg->next because we're going to reverse the
4877 list. */
4878 mips_elf_replace_bfd_got (abfd, g);
4879
4880 /* Every symbol that is referenced in a dynamic relocation must be
4881 present in the primary GOT, so arrange for them to appear after
4882 those that are actually referenced. */
4883 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4884 g->global_gotno = gg->global_gotno;
4885
4886 tga.info = info;
4887 tga.value = GGA_RELOC_ONLY;
4888 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4889 tga.value = GGA_NORMAL;
4890 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4891
4892 /* Now go through the GOTs assigning them offset ranges.
4893 [assigned_low_gotno, local_gotno[ will be set to the range of local
4894 entries in each GOT. We can then compute the end of a GOT by
4895 adding local_gotno to global_gotno. We reverse the list and make
4896 it circular since then we'll be able to quickly compute the
4897 beginning of a GOT, by computing the end of its predecessor. To
4898 avoid special cases for the primary GOT, while still preserving
4899 assertions that are valid for both single- and multi-got links,
4900 we arrange for the main got struct to have the right number of
4901 global entries, but set its local_gotno such that the initial
4902 offset of the primary GOT is zero. Remember that the primary GOT
4903 will become the last item in the circular linked list, so it
4904 points back to the master GOT. */
4905 gg->local_gotno = -g->global_gotno;
4906 gg->global_gotno = g->global_gotno;
4907 gg->tls_gotno = 0;
4908 assign = 0;
4909 gg->next = gg;
4910
4911 do
4912 {
4913 struct mips_got_info *gn;
4914
4915 assign += htab->reserved_gotno;
4916 g->assigned_low_gotno = assign;
4917 g->local_gotno += assign;
4918 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4919 g->assigned_high_gotno = g->local_gotno - 1;
4920 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4921
4922 /* Take g out of the direct list, and push it onto the reversed
4923 list that gg points to. g->next is guaranteed to be nonnull after
4924 this operation, as required by mips_elf_initialize_tls_index. */
4925 gn = g->next;
4926 g->next = gg->next;
4927 gg->next = g;
4928
4929 /* Set up any TLS entries. We always place the TLS entries after
4930 all non-TLS entries. */
4931 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4932 tga.g = g;
4933 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4934 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4935 if (!tga.g)
4936 return FALSE;
4937 BFD_ASSERT (g->tls_assigned_gotno == assign);
4938
4939 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4940 g = gn;
4941
4942 /* Forbid global symbols in every non-primary GOT from having
4943 lazy-binding stubs. */
4944 if (g)
4945 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4946 }
4947 while (g);
4948
4949 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4950
4951 needed_relocs = 0;
4952 for (g = gg->next; g && g->next != gg; g = g->next)
4953 {
4954 unsigned int save_assign;
4955
4956 /* Assign offsets to global GOT entries and count how many
4957 relocations they need. */
4958 save_assign = g->assigned_low_gotno;
4959 g->assigned_low_gotno = g->local_gotno;
4960 tga.info = info;
4961 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4962 tga.g = g;
4963 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4964 if (!tga.g)
4965 return FALSE;
4966 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4967 g->assigned_low_gotno = save_assign;
4968
4969 if (bfd_link_pic (info))
4970 {
4971 g->relocs += g->local_gotno - g->assigned_low_gotno;
4972 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4973 + g->next->global_gotno
4974 + g->next->tls_gotno
4975 + htab->reserved_gotno);
4976 }
4977 needed_relocs += g->relocs;
4978 }
4979 needed_relocs += g->relocs;
4980
4981 if (needed_relocs)
4982 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 needed_relocs);
4984
4985 return TRUE;
4986 }
4987
4988 \f
4989 /* Returns the first relocation of type r_type found, beginning with
4990 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4991
4992 static const Elf_Internal_Rela *
4993 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4994 const Elf_Internal_Rela *relocation,
4995 const Elf_Internal_Rela *relend)
4996 {
4997 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4998
4999 while (relocation < relend)
5000 {
5001 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5002 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5003 return relocation;
5004
5005 ++relocation;
5006 }
5007
5008 /* We didn't find it. */
5009 return NULL;
5010 }
5011
5012 /* Return whether an input relocation is against a local symbol. */
5013
5014 static bfd_boolean
5015 mips_elf_local_relocation_p (bfd *input_bfd,
5016 const Elf_Internal_Rela *relocation,
5017 asection **local_sections)
5018 {
5019 unsigned long r_symndx;
5020 Elf_Internal_Shdr *symtab_hdr;
5021 size_t extsymoff;
5022
5023 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5026
5027 if (r_symndx < extsymoff)
5028 return TRUE;
5029 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5030 return TRUE;
5031
5032 return FALSE;
5033 }
5034 \f
5035 /* Sign-extend VALUE, which has the indicated number of BITS. */
5036
5037 bfd_vma
5038 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5039 {
5040 if (value & ((bfd_vma) 1 << (bits - 1)))
5041 /* VALUE is negative. */
5042 value |= ((bfd_vma) - 1) << bits;
5043
5044 return value;
5045 }
5046
5047 /* Return non-zero if the indicated VALUE has overflowed the maximum
5048 range expressible by a signed number with the indicated number of
5049 BITS. */
5050
5051 static bfd_boolean
5052 mips_elf_overflow_p (bfd_vma value, int bits)
5053 {
5054 bfd_signed_vma svalue = (bfd_signed_vma) value;
5055
5056 if (svalue > (1 << (bits - 1)) - 1)
5057 /* The value is too big. */
5058 return TRUE;
5059 else if (svalue < -(1 << (bits - 1)))
5060 /* The value is too small. */
5061 return TRUE;
5062
5063 /* All is well. */
5064 return FALSE;
5065 }
5066
5067 /* Calculate the %high function. */
5068
5069 static bfd_vma
5070 mips_elf_high (bfd_vma value)
5071 {
5072 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5073 }
5074
5075 /* Calculate the %higher function. */
5076
5077 static bfd_vma
5078 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5079 {
5080 #ifdef BFD64
5081 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082 #else
5083 abort ();
5084 return MINUS_ONE;
5085 #endif
5086 }
5087
5088 /* Calculate the %highest function. */
5089
5090 static bfd_vma
5091 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5092 {
5093 #ifdef BFD64
5094 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5095 #else
5096 abort ();
5097 return MINUS_ONE;
5098 #endif
5099 }
5100 \f
5101 /* Create the .compact_rel section. */
5102
5103 static bfd_boolean
5104 mips_elf_create_compact_rel_section
5105 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5106 {
5107 flagword flags;
5108 register asection *s;
5109
5110 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5111 {
5112 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5113 | SEC_READONLY);
5114
5115 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5116 if (s == NULL
5117 || ! bfd_set_section_alignment (abfd, s,
5118 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5119 return FALSE;
5120
5121 s->size = sizeof (Elf32_External_compact_rel);
5122 }
5123
5124 return TRUE;
5125 }
5126
5127 /* Create the .got section to hold the global offset table. */
5128
5129 static bfd_boolean
5130 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5131 {
5132 flagword flags;
5133 register asection *s;
5134 struct elf_link_hash_entry *h;
5135 struct bfd_link_hash_entry *bh;
5136 struct mips_elf_link_hash_table *htab;
5137
5138 htab = mips_elf_hash_table (info);
5139 BFD_ASSERT (htab != NULL);
5140
5141 /* This function may be called more than once. */
5142 if (htab->root.sgot)
5143 return TRUE;
5144
5145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5146 | SEC_LINKER_CREATED);
5147
5148 /* We have to use an alignment of 2**4 here because this is hardcoded
5149 in the function stub generation and in the linker script. */
5150 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5151 if (s == NULL
5152 || ! bfd_set_section_alignment (abfd, s, 4))
5153 return FALSE;
5154 htab->root.sgot = s;
5155
5156 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5157 linker script because we don't want to define the symbol if we
5158 are not creating a global offset table. */
5159 bh = NULL;
5160 if (! (_bfd_generic_link_add_one_symbol
5161 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5162 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5163 return FALSE;
5164
5165 h = (struct elf_link_hash_entry *) bh;
5166 h->non_elf = 0;
5167 h->def_regular = 1;
5168 h->type = STT_OBJECT;
5169 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5170 elf_hash_table (info)->hgot = h;
5171
5172 if (bfd_link_pic (info)
5173 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5174 return FALSE;
5175
5176 htab->got_info = mips_elf_create_got_info (abfd);
5177 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5178 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5179
5180 /* We also need a .got.plt section when generating PLTs. */
5181 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5182 SEC_ALLOC | SEC_LOAD
5183 | SEC_HAS_CONTENTS
5184 | SEC_IN_MEMORY
5185 | SEC_LINKER_CREATED);
5186 if (s == NULL)
5187 return FALSE;
5188 htab->root.sgotplt = s;
5189
5190 return TRUE;
5191 }
5192 \f
5193 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5194 __GOTT_INDEX__ symbols. These symbols are only special for
5195 shared objects; they are not used in executables. */
5196
5197 static bfd_boolean
5198 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5199 {
5200 return (mips_elf_hash_table (info)->is_vxworks
5201 && bfd_link_pic (info)
5202 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5203 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5204 }
5205
5206 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5207 require an la25 stub. See also mips_elf_local_pic_function_p,
5208 which determines whether the destination function ever requires a
5209 stub. */
5210
5211 static bfd_boolean
5212 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5213 bfd_boolean target_is_16_bit_code_p)
5214 {
5215 /* We specifically ignore branches and jumps from EF_PIC objects,
5216 where the onus is on the compiler or programmer to perform any
5217 necessary initialization of $25. Sometimes such initialization
5218 is unnecessary; for example, -mno-shared functions do not use
5219 the incoming value of $25, and may therefore be called directly. */
5220 if (PIC_OBJECT_P (input_bfd))
5221 return FALSE;
5222
5223 switch (r_type)
5224 {
5225 case R_MIPS_26:
5226 case R_MIPS_PC16:
5227 case R_MIPS_PC21_S2:
5228 case R_MIPS_PC26_S2:
5229 case R_MICROMIPS_26_S1:
5230 case R_MICROMIPS_PC7_S1:
5231 case R_MICROMIPS_PC10_S1:
5232 case R_MICROMIPS_PC16_S1:
5233 case R_MICROMIPS_PC23_S2:
5234 return TRUE;
5235
5236 case R_MIPS16_26:
5237 return !target_is_16_bit_code_p;
5238
5239 default:
5240 return FALSE;
5241 }
5242 }
5243 \f
5244 /* Calculate the value produced by the RELOCATION (which comes from
5245 the INPUT_BFD). The ADDEND is the addend to use for this
5246 RELOCATION; RELOCATION->R_ADDEND is ignored.
5247
5248 The result of the relocation calculation is stored in VALUEP.
5249 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5250 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5251
5252 This function returns bfd_reloc_continue if the caller need take no
5253 further action regarding this relocation, bfd_reloc_notsupported if
5254 something goes dramatically wrong, bfd_reloc_overflow if an
5255 overflow occurs, and bfd_reloc_ok to indicate success. */
5256
5257 static bfd_reloc_status_type
5258 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5259 asection *input_section,
5260 struct bfd_link_info *info,
5261 const Elf_Internal_Rela *relocation,
5262 bfd_vma addend, reloc_howto_type *howto,
5263 Elf_Internal_Sym *local_syms,
5264 asection **local_sections, bfd_vma *valuep,
5265 const char **namep,
5266 bfd_boolean *cross_mode_jump_p,
5267 bfd_boolean save_addend)
5268 {
5269 /* The eventual value we will return. */
5270 bfd_vma value;
5271 /* The address of the symbol against which the relocation is
5272 occurring. */
5273 bfd_vma symbol = 0;
5274 /* The final GP value to be used for the relocatable, executable, or
5275 shared object file being produced. */
5276 bfd_vma gp;
5277 /* The place (section offset or address) of the storage unit being
5278 relocated. */
5279 bfd_vma p;
5280 /* The value of GP used to create the relocatable object. */
5281 bfd_vma gp0;
5282 /* The offset into the global offset table at which the address of
5283 the relocation entry symbol, adjusted by the addend, resides
5284 during execution. */
5285 bfd_vma g = MINUS_ONE;
5286 /* The section in which the symbol referenced by the relocation is
5287 located. */
5288 asection *sec = NULL;
5289 struct mips_elf_link_hash_entry *h = NULL;
5290 /* TRUE if the symbol referred to by this relocation is a local
5291 symbol. */
5292 bfd_boolean local_p, was_local_p;
5293 /* TRUE if the symbol referred to by this relocation is a section
5294 symbol. */
5295 bfd_boolean section_p = FALSE;
5296 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5297 bfd_boolean gp_disp_p = FALSE;
5298 /* TRUE if the symbol referred to by this relocation is
5299 "__gnu_local_gp". */
5300 bfd_boolean gnu_local_gp_p = FALSE;
5301 Elf_Internal_Shdr *symtab_hdr;
5302 size_t extsymoff;
5303 unsigned long r_symndx;
5304 int r_type;
5305 /* TRUE if overflow occurred during the calculation of the
5306 relocation value. */
5307 bfd_boolean overflowed_p;
5308 /* TRUE if this relocation refers to a MIPS16 function. */
5309 bfd_boolean target_is_16_bit_code_p = FALSE;
5310 bfd_boolean target_is_micromips_code_p = FALSE;
5311 struct mips_elf_link_hash_table *htab;
5312 bfd *dynobj;
5313
5314 dynobj = elf_hash_table (info)->dynobj;
5315 htab = mips_elf_hash_table (info);
5316 BFD_ASSERT (htab != NULL);
5317
5318 /* Parse the relocation. */
5319 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5320 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5321 p = (input_section->output_section->vma
5322 + input_section->output_offset
5323 + relocation->r_offset);
5324
5325 /* Assume that there will be no overflow. */
5326 overflowed_p = FALSE;
5327
5328 /* Figure out whether or not the symbol is local, and get the offset
5329 used in the array of hash table entries. */
5330 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5331 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5332 local_sections);
5333 was_local_p = local_p;
5334 if (! elf_bad_symtab (input_bfd))
5335 extsymoff = symtab_hdr->sh_info;
5336 else
5337 {
5338 /* The symbol table does not follow the rule that local symbols
5339 must come before globals. */
5340 extsymoff = 0;
5341 }
5342
5343 /* Figure out the value of the symbol. */
5344 if (local_p)
5345 {
5346 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5347 Elf_Internal_Sym *sym;
5348
5349 sym = local_syms + r_symndx;
5350 sec = local_sections[r_symndx];
5351
5352 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5353
5354 symbol = sec->output_section->vma + sec->output_offset;
5355 if (!section_p || (sec->flags & SEC_MERGE))
5356 symbol += sym->st_value;
5357 if ((sec->flags & SEC_MERGE) && section_p)
5358 {
5359 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5360 addend -= symbol;
5361 addend += sec->output_section->vma + sec->output_offset;
5362 }
5363
5364 /* MIPS16/microMIPS text labels should be treated as odd. */
5365 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5366 ++symbol;
5367
5368 /* Record the name of this symbol, for our caller. */
5369 *namep = bfd_elf_string_from_elf_section (input_bfd,
5370 symtab_hdr->sh_link,
5371 sym->st_name);
5372 if (*namep == NULL || **namep == '\0')
5373 *namep = bfd_section_name (input_bfd, sec);
5374
5375 /* For relocations against a section symbol and ones against no
5376 symbol (absolute relocations) infer the ISA mode from the addend. */
5377 if (section_p || r_symndx == STN_UNDEF)
5378 {
5379 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5380 target_is_micromips_code_p = (addend & 1) && micromips_p;
5381 }
5382 /* For relocations against an absolute symbol infer the ISA mode
5383 from the value of the symbol plus addend. */
5384 else if (bfd_is_abs_section (sec))
5385 {
5386 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5387 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5388 }
5389 /* Otherwise just use the regular symbol annotation available. */
5390 else
5391 {
5392 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5393 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5394 }
5395 }
5396 else
5397 {
5398 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5399
5400 /* For global symbols we look up the symbol in the hash-table. */
5401 h = ((struct mips_elf_link_hash_entry *)
5402 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5403 /* Find the real hash-table entry for this symbol. */
5404 while (h->root.root.type == bfd_link_hash_indirect
5405 || h->root.root.type == bfd_link_hash_warning)
5406 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5407
5408 /* Record the name of this symbol, for our caller. */
5409 *namep = h->root.root.root.string;
5410
5411 /* See if this is the special _gp_disp symbol. Note that such a
5412 symbol must always be a global symbol. */
5413 if (strcmp (*namep, "_gp_disp") == 0
5414 && ! NEWABI_P (input_bfd))
5415 {
5416 /* Relocations against _gp_disp are permitted only with
5417 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5418 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5419 return bfd_reloc_notsupported;
5420
5421 gp_disp_p = TRUE;
5422 }
5423 /* See if this is the special _gp symbol. Note that such a
5424 symbol must always be a global symbol. */
5425 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5426 gnu_local_gp_p = TRUE;
5427
5428
5429 /* If this symbol is defined, calculate its address. Note that
5430 _gp_disp is a magic symbol, always implicitly defined by the
5431 linker, so it's inappropriate to check to see whether or not
5432 its defined. */
5433 else if ((h->root.root.type == bfd_link_hash_defined
5434 || h->root.root.type == bfd_link_hash_defweak)
5435 && h->root.root.u.def.section)
5436 {
5437 sec = h->root.root.u.def.section;
5438 if (sec->output_section)
5439 symbol = (h->root.root.u.def.value
5440 + sec->output_section->vma
5441 + sec->output_offset);
5442 else
5443 symbol = h->root.root.u.def.value;
5444 }
5445 else if (h->root.root.type == bfd_link_hash_undefweak)
5446 /* We allow relocations against undefined weak symbols, giving
5447 it the value zero, so that you can undefined weak functions
5448 and check to see if they exist by looking at their
5449 addresses. */
5450 symbol = 0;
5451 else if (info->unresolved_syms_in_objects == RM_IGNORE
5452 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5453 symbol = 0;
5454 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5455 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5456 {
5457 /* If this is a dynamic link, we should have created a
5458 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5459 in in _bfd_mips_elf_create_dynamic_sections.
5460 Otherwise, we should define the symbol with a value of 0.
5461 FIXME: It should probably get into the symbol table
5462 somehow as well. */
5463 BFD_ASSERT (! bfd_link_pic (info));
5464 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5465 symbol = 0;
5466 }
5467 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5468 {
5469 /* This is an optional symbol - an Irix specific extension to the
5470 ELF spec. Ignore it for now.
5471 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5472 than simply ignoring them, but we do not handle this for now.
5473 For information see the "64-bit ELF Object File Specification"
5474 which is available from here:
5475 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5476 symbol = 0;
5477 }
5478 else
5479 {
5480 (*info->callbacks->undefined_symbol)
5481 (info, h->root.root.root.string, input_bfd,
5482 input_section, relocation->r_offset,
5483 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5484 || ELF_ST_VISIBILITY (h->root.other));
5485 return bfd_reloc_undefined;
5486 }
5487
5488 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5489 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5490 }
5491
5492 /* If this is a reference to a 16-bit function with a stub, we need
5493 to redirect the relocation to the stub unless:
5494
5495 (a) the relocation is for a MIPS16 JAL;
5496
5497 (b) the relocation is for a MIPS16 PIC call, and there are no
5498 non-MIPS16 uses of the GOT slot; or
5499
5500 (c) the section allows direct references to MIPS16 functions. */
5501 if (r_type != R_MIPS16_26
5502 && !bfd_link_relocatable (info)
5503 && ((h != NULL
5504 && h->fn_stub != NULL
5505 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5506 || (local_p
5507 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5508 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5509 && !section_allows_mips16_refs_p (input_section))
5510 {
5511 /* This is a 32- or 64-bit call to a 16-bit function. We should
5512 have already noticed that we were going to need the
5513 stub. */
5514 if (local_p)
5515 {
5516 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5517 value = 0;
5518 }
5519 else
5520 {
5521 BFD_ASSERT (h->need_fn_stub);
5522 if (h->la25_stub)
5523 {
5524 /* If a LA25 header for the stub itself exists, point to the
5525 prepended LUI/ADDIU sequence. */
5526 sec = h->la25_stub->stub_section;
5527 value = h->la25_stub->offset;
5528 }
5529 else
5530 {
5531 sec = h->fn_stub;
5532 value = 0;
5533 }
5534 }
5535
5536 symbol = sec->output_section->vma + sec->output_offset + value;
5537 /* The target is 16-bit, but the stub isn't. */
5538 target_is_16_bit_code_p = FALSE;
5539 }
5540 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5541 to a standard MIPS function, we need to redirect the call to the stub.
5542 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5543 indirect calls should use an indirect stub instead. */
5544 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5545 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5546 || (local_p
5547 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5548 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5549 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5550 {
5551 if (local_p)
5552 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5553 else
5554 {
5555 /* If both call_stub and call_fp_stub are defined, we can figure
5556 out which one to use by checking which one appears in the input
5557 file. */
5558 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5559 {
5560 asection *o;
5561
5562 sec = NULL;
5563 for (o = input_bfd->sections; o != NULL; o = o->next)
5564 {
5565 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5566 {
5567 sec = h->call_fp_stub;
5568 break;
5569 }
5570 }
5571 if (sec == NULL)
5572 sec = h->call_stub;
5573 }
5574 else if (h->call_stub != NULL)
5575 sec = h->call_stub;
5576 else
5577 sec = h->call_fp_stub;
5578 }
5579
5580 BFD_ASSERT (sec->size > 0);
5581 symbol = sec->output_section->vma + sec->output_offset;
5582 }
5583 /* If this is a direct call to a PIC function, redirect to the
5584 non-PIC stub. */
5585 else if (h != NULL && h->la25_stub
5586 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5587 target_is_16_bit_code_p))
5588 {
5589 symbol = (h->la25_stub->stub_section->output_section->vma
5590 + h->la25_stub->stub_section->output_offset
5591 + h->la25_stub->offset);
5592 if (ELF_ST_IS_MICROMIPS (h->root.other))
5593 symbol |= 1;
5594 }
5595 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5596 entry is used if a standard PLT entry has also been made. In this
5597 case the symbol will have been set by mips_elf_set_plt_sym_value
5598 to point to the standard PLT entry, so redirect to the compressed
5599 one. */
5600 else if ((mips16_branch_reloc_p (r_type)
5601 || micromips_branch_reloc_p (r_type))
5602 && !bfd_link_relocatable (info)
5603 && h != NULL
5604 && h->use_plt_entry
5605 && h->root.plt.plist->comp_offset != MINUS_ONE
5606 && h->root.plt.plist->mips_offset != MINUS_ONE)
5607 {
5608 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5609
5610 sec = htab->root.splt;
5611 symbol = (sec->output_section->vma
5612 + sec->output_offset
5613 + htab->plt_header_size
5614 + htab->plt_mips_offset
5615 + h->root.plt.plist->comp_offset
5616 + 1);
5617
5618 target_is_16_bit_code_p = !micromips_p;
5619 target_is_micromips_code_p = micromips_p;
5620 }
5621
5622 /* Make sure MIPS16 and microMIPS are not used together. */
5623 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5624 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5625 {
5626 _bfd_error_handler
5627 (_("MIPS16 and microMIPS functions cannot call each other"));
5628 return bfd_reloc_notsupported;
5629 }
5630
5631 /* Calls from 16-bit code to 32-bit code and vice versa require the
5632 mode change. However, we can ignore calls to undefined weak symbols,
5633 which should never be executed at runtime. This exception is important
5634 because the assembly writer may have "known" that any definition of the
5635 symbol would be 16-bit code, and that direct jumps were therefore
5636 acceptable. */
5637 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5638 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5639 && ((mips16_branch_reloc_p (r_type)
5640 && !target_is_16_bit_code_p)
5641 || (micromips_branch_reloc_p (r_type)
5642 && !target_is_micromips_code_p)
5643 || ((branch_reloc_p (r_type)
5644 || r_type == R_MIPS_JALR)
5645 && (target_is_16_bit_code_p
5646 || target_is_micromips_code_p))));
5647
5648 local_p = (h == NULL || mips_use_local_got_p (info, h));
5649
5650 gp0 = _bfd_get_gp_value (input_bfd);
5651 gp = _bfd_get_gp_value (abfd);
5652 if (htab->got_info)
5653 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5654
5655 if (gnu_local_gp_p)
5656 symbol = gp;
5657
5658 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5659 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5660 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5661 if (got_page_reloc_p (r_type) && !local_p)
5662 {
5663 r_type = (micromips_reloc_p (r_type)
5664 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5665 addend = 0;
5666 }
5667
5668 /* If we haven't already determined the GOT offset, and we're going
5669 to need it, get it now. */
5670 switch (r_type)
5671 {
5672 case R_MIPS16_CALL16:
5673 case R_MIPS16_GOT16:
5674 case R_MIPS_CALL16:
5675 case R_MIPS_GOT16:
5676 case R_MIPS_GOT_DISP:
5677 case R_MIPS_GOT_HI16:
5678 case R_MIPS_CALL_HI16:
5679 case R_MIPS_GOT_LO16:
5680 case R_MIPS_CALL_LO16:
5681 case R_MICROMIPS_CALL16:
5682 case R_MICROMIPS_GOT16:
5683 case R_MICROMIPS_GOT_DISP:
5684 case R_MICROMIPS_GOT_HI16:
5685 case R_MICROMIPS_CALL_HI16:
5686 case R_MICROMIPS_GOT_LO16:
5687 case R_MICROMIPS_CALL_LO16:
5688 case R_MIPS_TLS_GD:
5689 case R_MIPS_TLS_GOTTPREL:
5690 case R_MIPS_TLS_LDM:
5691 case R_MIPS16_TLS_GD:
5692 case R_MIPS16_TLS_GOTTPREL:
5693 case R_MIPS16_TLS_LDM:
5694 case R_MICROMIPS_TLS_GD:
5695 case R_MICROMIPS_TLS_GOTTPREL:
5696 case R_MICROMIPS_TLS_LDM:
5697 /* Find the index into the GOT where this value is located. */
5698 if (tls_ldm_reloc_p (r_type))
5699 {
5700 g = mips_elf_local_got_index (abfd, input_bfd, info,
5701 0, 0, NULL, r_type);
5702 if (g == MINUS_ONE)
5703 return bfd_reloc_outofrange;
5704 }
5705 else if (!local_p)
5706 {
5707 /* On VxWorks, CALL relocations should refer to the .got.plt
5708 entry, which is initialized to point at the PLT stub. */
5709 if (htab->is_vxworks
5710 && (call_hi16_reloc_p (r_type)
5711 || call_lo16_reloc_p (r_type)
5712 || call16_reloc_p (r_type)))
5713 {
5714 BFD_ASSERT (addend == 0);
5715 BFD_ASSERT (h->root.needs_plt);
5716 g = mips_elf_gotplt_index (info, &h->root);
5717 }
5718 else
5719 {
5720 BFD_ASSERT (addend == 0);
5721 g = mips_elf_global_got_index (abfd, info, input_bfd,
5722 &h->root, r_type);
5723 if (!TLS_RELOC_P (r_type)
5724 && !elf_hash_table (info)->dynamic_sections_created)
5725 /* This is a static link. We must initialize the GOT entry. */
5726 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5727 }
5728 }
5729 else if (!htab->is_vxworks
5730 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5731 /* The calculation below does not involve "g". */
5732 break;
5733 else
5734 {
5735 g = mips_elf_local_got_index (abfd, input_bfd, info,
5736 symbol + addend, r_symndx, h, r_type);
5737 if (g == MINUS_ONE)
5738 return bfd_reloc_outofrange;
5739 }
5740
5741 /* Convert GOT indices to actual offsets. */
5742 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5743 break;
5744 }
5745
5746 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5747 symbols are resolved by the loader. Add them to .rela.dyn. */
5748 if (h != NULL && is_gott_symbol (info, &h->root))
5749 {
5750 Elf_Internal_Rela outrel;
5751 bfd_byte *loc;
5752 asection *s;
5753
5754 s = mips_elf_rel_dyn_section (info, FALSE);
5755 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5756
5757 outrel.r_offset = (input_section->output_section->vma
5758 + input_section->output_offset
5759 + relocation->r_offset);
5760 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5761 outrel.r_addend = addend;
5762 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5763
5764 /* If we've written this relocation for a readonly section,
5765 we need to set DF_TEXTREL again, so that we do not delete the
5766 DT_TEXTREL tag. */
5767 if (MIPS_ELF_READONLY_SECTION (input_section))
5768 info->flags |= DF_TEXTREL;
5769
5770 *valuep = 0;
5771 return bfd_reloc_ok;
5772 }
5773
5774 /* Figure out what kind of relocation is being performed. */
5775 switch (r_type)
5776 {
5777 case R_MIPS_NONE:
5778 return bfd_reloc_continue;
5779
5780 case R_MIPS_16:
5781 if (howto->partial_inplace)
5782 addend = _bfd_mips_elf_sign_extend (addend, 16);
5783 value = symbol + addend;
5784 overflowed_p = mips_elf_overflow_p (value, 16);
5785 break;
5786
5787 case R_MIPS_32:
5788 case R_MIPS_REL32:
5789 case R_MIPS_64:
5790 if ((bfd_link_pic (info)
5791 || (htab->root.dynamic_sections_created
5792 && h != NULL
5793 && h->root.def_dynamic
5794 && !h->root.def_regular
5795 && !h->has_static_relocs))
5796 && r_symndx != STN_UNDEF
5797 && (h == NULL
5798 || h->root.root.type != bfd_link_hash_undefweak
5799 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5800 && (input_section->flags & SEC_ALLOC) != 0)
5801 {
5802 /* If we're creating a shared library, then we can't know
5803 where the symbol will end up. So, we create a relocation
5804 record in the output, and leave the job up to the dynamic
5805 linker. We must do the same for executable references to
5806 shared library symbols, unless we've decided to use copy
5807 relocs or PLTs instead. */
5808 value = addend;
5809 if (!mips_elf_create_dynamic_relocation (abfd,
5810 info,
5811 relocation,
5812 h,
5813 sec,
5814 symbol,
5815 &value,
5816 input_section))
5817 return bfd_reloc_undefined;
5818 }
5819 else
5820 {
5821 if (r_type != R_MIPS_REL32)
5822 value = symbol + addend;
5823 else
5824 value = addend;
5825 }
5826 value &= howto->dst_mask;
5827 break;
5828
5829 case R_MIPS_PC32:
5830 value = symbol + addend - p;
5831 value &= howto->dst_mask;
5832 break;
5833
5834 case R_MIPS16_26:
5835 /* The calculation for R_MIPS16_26 is just the same as for an
5836 R_MIPS_26. It's only the storage of the relocated field into
5837 the output file that's different. That's handled in
5838 mips_elf_perform_relocation. So, we just fall through to the
5839 R_MIPS_26 case here. */
5840 case R_MIPS_26:
5841 case R_MICROMIPS_26_S1:
5842 {
5843 unsigned int shift;
5844
5845 /* Shift is 2, unusually, for microMIPS JALX. */
5846 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5847
5848 if (howto->partial_inplace && !section_p)
5849 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5850 else
5851 value = addend;
5852 value += symbol;
5853
5854 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5855 be the correct ISA mode selector except for weak undefined
5856 symbols. */
5857 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5858 && (*cross_mode_jump_p
5859 ? (value & 3) != (r_type == R_MIPS_26)
5860 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5861 return bfd_reloc_outofrange;
5862
5863 value >>= shift;
5864 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5865 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5866 value &= howto->dst_mask;
5867 }
5868 break;
5869
5870 case R_MIPS_TLS_DTPREL_HI16:
5871 case R_MIPS16_TLS_DTPREL_HI16:
5872 case R_MICROMIPS_TLS_DTPREL_HI16:
5873 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5874 & howto->dst_mask);
5875 break;
5876
5877 case R_MIPS_TLS_DTPREL_LO16:
5878 case R_MIPS_TLS_DTPREL32:
5879 case R_MIPS_TLS_DTPREL64:
5880 case R_MIPS16_TLS_DTPREL_LO16:
5881 case R_MICROMIPS_TLS_DTPREL_LO16:
5882 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5883 break;
5884
5885 case R_MIPS_TLS_TPREL_HI16:
5886 case R_MIPS16_TLS_TPREL_HI16:
5887 case R_MICROMIPS_TLS_TPREL_HI16:
5888 value = (mips_elf_high (addend + symbol - tprel_base (info))
5889 & howto->dst_mask);
5890 break;
5891
5892 case R_MIPS_TLS_TPREL_LO16:
5893 case R_MIPS_TLS_TPREL32:
5894 case R_MIPS_TLS_TPREL64:
5895 case R_MIPS16_TLS_TPREL_LO16:
5896 case R_MICROMIPS_TLS_TPREL_LO16:
5897 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5898 break;
5899
5900 case R_MIPS_HI16:
5901 case R_MIPS16_HI16:
5902 case R_MICROMIPS_HI16:
5903 if (!gp_disp_p)
5904 {
5905 value = mips_elf_high (addend + symbol);
5906 value &= howto->dst_mask;
5907 }
5908 else
5909 {
5910 /* For MIPS16 ABI code we generate this sequence
5911 0: li $v0,%hi(_gp_disp)
5912 4: addiupc $v1,%lo(_gp_disp)
5913 8: sll $v0,16
5914 12: addu $v0,$v1
5915 14: move $gp,$v0
5916 So the offsets of hi and lo relocs are the same, but the
5917 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5918 ADDIUPC clears the low two bits of the instruction address,
5919 so the base is ($t9 + 4) & ~3. */
5920 if (r_type == R_MIPS16_HI16)
5921 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5922 /* The microMIPS .cpload sequence uses the same assembly
5923 instructions as the traditional psABI version, but the
5924 incoming $t9 has the low bit set. */
5925 else if (r_type == R_MICROMIPS_HI16)
5926 value = mips_elf_high (addend + gp - p - 1);
5927 else
5928 value = mips_elf_high (addend + gp - p);
5929 }
5930 break;
5931
5932 case R_MIPS_LO16:
5933 case R_MIPS16_LO16:
5934 case R_MICROMIPS_LO16:
5935 case R_MICROMIPS_HI0_LO16:
5936 if (!gp_disp_p)
5937 value = (symbol + addend) & howto->dst_mask;
5938 else
5939 {
5940 /* See the comment for R_MIPS16_HI16 above for the reason
5941 for this conditional. */
5942 if (r_type == R_MIPS16_LO16)
5943 value = addend + gp - (p & ~(bfd_vma) 0x3);
5944 else if (r_type == R_MICROMIPS_LO16
5945 || r_type == R_MICROMIPS_HI0_LO16)
5946 value = addend + gp - p + 3;
5947 else
5948 value = addend + gp - p + 4;
5949 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5950 for overflow. But, on, say, IRIX5, relocations against
5951 _gp_disp are normally generated from the .cpload
5952 pseudo-op. It generates code that normally looks like
5953 this:
5954
5955 lui $gp,%hi(_gp_disp)
5956 addiu $gp,$gp,%lo(_gp_disp)
5957 addu $gp,$gp,$t9
5958
5959 Here $t9 holds the address of the function being called,
5960 as required by the MIPS ELF ABI. The R_MIPS_LO16
5961 relocation can easily overflow in this situation, but the
5962 R_MIPS_HI16 relocation will handle the overflow.
5963 Therefore, we consider this a bug in the MIPS ABI, and do
5964 not check for overflow here. */
5965 }
5966 break;
5967
5968 case R_MIPS_LITERAL:
5969 case R_MICROMIPS_LITERAL:
5970 /* Because we don't merge literal sections, we can handle this
5971 just like R_MIPS_GPREL16. In the long run, we should merge
5972 shared literals, and then we will need to additional work
5973 here. */
5974
5975 /* Fall through. */
5976
5977 case R_MIPS16_GPREL:
5978 /* The R_MIPS16_GPREL performs the same calculation as
5979 R_MIPS_GPREL16, but stores the relocated bits in a different
5980 order. We don't need to do anything special here; the
5981 differences are handled in mips_elf_perform_relocation. */
5982 case R_MIPS_GPREL16:
5983 case R_MICROMIPS_GPREL7_S2:
5984 case R_MICROMIPS_GPREL16:
5985 /* Only sign-extend the addend if it was extracted from the
5986 instruction. If the addend was separate, leave it alone,
5987 otherwise we may lose significant bits. */
5988 if (howto->partial_inplace)
5989 addend = _bfd_mips_elf_sign_extend (addend, 16);
5990 value = symbol + addend - gp;
5991 /* If the symbol was local, any earlier relocatable links will
5992 have adjusted its addend with the gp offset, so compensate
5993 for that now. Don't do it for symbols forced local in this
5994 link, though, since they won't have had the gp offset applied
5995 to them before. */
5996 if (was_local_p)
5997 value += gp0;
5998 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5999 overflowed_p = mips_elf_overflow_p (value, 16);
6000 break;
6001
6002 case R_MIPS16_GOT16:
6003 case R_MIPS16_CALL16:
6004 case R_MIPS_GOT16:
6005 case R_MIPS_CALL16:
6006 case R_MICROMIPS_GOT16:
6007 case R_MICROMIPS_CALL16:
6008 /* VxWorks does not have separate local and global semantics for
6009 R_MIPS*_GOT16; every relocation evaluates to "G". */
6010 if (!htab->is_vxworks && local_p)
6011 {
6012 value = mips_elf_got16_entry (abfd, input_bfd, info,
6013 symbol + addend, !was_local_p);
6014 if (value == MINUS_ONE)
6015 return bfd_reloc_outofrange;
6016 value
6017 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6018 overflowed_p = mips_elf_overflow_p (value, 16);
6019 break;
6020 }
6021
6022 /* Fall through. */
6023
6024 case R_MIPS_TLS_GD:
6025 case R_MIPS_TLS_GOTTPREL:
6026 case R_MIPS_TLS_LDM:
6027 case R_MIPS_GOT_DISP:
6028 case R_MIPS16_TLS_GD:
6029 case R_MIPS16_TLS_GOTTPREL:
6030 case R_MIPS16_TLS_LDM:
6031 case R_MICROMIPS_TLS_GD:
6032 case R_MICROMIPS_TLS_GOTTPREL:
6033 case R_MICROMIPS_TLS_LDM:
6034 case R_MICROMIPS_GOT_DISP:
6035 value = g;
6036 overflowed_p = mips_elf_overflow_p (value, 16);
6037 break;
6038
6039 case R_MIPS_GPREL32:
6040 value = (addend + symbol + gp0 - gp);
6041 if (!save_addend)
6042 value &= howto->dst_mask;
6043 break;
6044
6045 case R_MIPS_PC16:
6046 case R_MIPS_GNU_REL16_S2:
6047 if (howto->partial_inplace)
6048 addend = _bfd_mips_elf_sign_extend (addend, 18);
6049
6050 /* No need to exclude weak undefined symbols here as they resolve
6051 to 0 and never set `*cross_mode_jump_p', so this alignment check
6052 will never trigger for them. */
6053 if (*cross_mode_jump_p
6054 ? ((symbol + addend) & 3) != 1
6055 : ((symbol + addend) & 3) != 0)
6056 return bfd_reloc_outofrange;
6057
6058 value = symbol + addend - p;
6059 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6060 overflowed_p = mips_elf_overflow_p (value, 18);
6061 value >>= howto->rightshift;
6062 value &= howto->dst_mask;
6063 break;
6064
6065 case R_MIPS16_PC16_S1:
6066 if (howto->partial_inplace)
6067 addend = _bfd_mips_elf_sign_extend (addend, 17);
6068
6069 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6070 && (*cross_mode_jump_p
6071 ? ((symbol + addend) & 3) != 0
6072 : ((symbol + addend) & 1) == 0))
6073 return bfd_reloc_outofrange;
6074
6075 value = symbol + addend - p;
6076 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6077 overflowed_p = mips_elf_overflow_p (value, 17);
6078 value >>= howto->rightshift;
6079 value &= howto->dst_mask;
6080 break;
6081
6082 case R_MIPS_PC21_S2:
6083 if (howto->partial_inplace)
6084 addend = _bfd_mips_elf_sign_extend (addend, 23);
6085
6086 if ((symbol + addend) & 3)
6087 return bfd_reloc_outofrange;
6088
6089 value = symbol + addend - p;
6090 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6091 overflowed_p = mips_elf_overflow_p (value, 23);
6092 value >>= howto->rightshift;
6093 value &= howto->dst_mask;
6094 break;
6095
6096 case R_MIPS_PC26_S2:
6097 if (howto->partial_inplace)
6098 addend = _bfd_mips_elf_sign_extend (addend, 28);
6099
6100 if ((symbol + addend) & 3)
6101 return bfd_reloc_outofrange;
6102
6103 value = symbol + addend - p;
6104 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6105 overflowed_p = mips_elf_overflow_p (value, 28);
6106 value >>= howto->rightshift;
6107 value &= howto->dst_mask;
6108 break;
6109
6110 case R_MIPS_PC18_S3:
6111 if (howto->partial_inplace)
6112 addend = _bfd_mips_elf_sign_extend (addend, 21);
6113
6114 if ((symbol + addend) & 7)
6115 return bfd_reloc_outofrange;
6116
6117 value = symbol + addend - ((p | 7) ^ 7);
6118 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6119 overflowed_p = mips_elf_overflow_p (value, 21);
6120 value >>= howto->rightshift;
6121 value &= howto->dst_mask;
6122 break;
6123
6124 case R_MIPS_PC19_S2:
6125 if (howto->partial_inplace)
6126 addend = _bfd_mips_elf_sign_extend (addend, 21);
6127
6128 if ((symbol + addend) & 3)
6129 return bfd_reloc_outofrange;
6130
6131 value = symbol + addend - p;
6132 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6133 overflowed_p = mips_elf_overflow_p (value, 21);
6134 value >>= howto->rightshift;
6135 value &= howto->dst_mask;
6136 break;
6137
6138 case R_MIPS_PCHI16:
6139 value = mips_elf_high (symbol + addend - p);
6140 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6141 overflowed_p = mips_elf_overflow_p (value, 16);
6142 value &= howto->dst_mask;
6143 break;
6144
6145 case R_MIPS_PCLO16:
6146 if (howto->partial_inplace)
6147 addend = _bfd_mips_elf_sign_extend (addend, 16);
6148 value = symbol + addend - p;
6149 value &= howto->dst_mask;
6150 break;
6151
6152 case R_MICROMIPS_PC7_S1:
6153 if (howto->partial_inplace)
6154 addend = _bfd_mips_elf_sign_extend (addend, 8);
6155
6156 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6157 && (*cross_mode_jump_p
6158 ? ((symbol + addend + 2) & 3) != 0
6159 : ((symbol + addend + 2) & 1) == 0))
6160 return bfd_reloc_outofrange;
6161
6162 value = symbol + addend - p;
6163 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6164 overflowed_p = mips_elf_overflow_p (value, 8);
6165 value >>= howto->rightshift;
6166 value &= howto->dst_mask;
6167 break;
6168
6169 case R_MICROMIPS_PC10_S1:
6170 if (howto->partial_inplace)
6171 addend = _bfd_mips_elf_sign_extend (addend, 11);
6172
6173 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6174 && (*cross_mode_jump_p
6175 ? ((symbol + addend + 2) & 3) != 0
6176 : ((symbol + addend + 2) & 1) == 0))
6177 return bfd_reloc_outofrange;
6178
6179 value = symbol + addend - p;
6180 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6181 overflowed_p = mips_elf_overflow_p (value, 11);
6182 value >>= howto->rightshift;
6183 value &= howto->dst_mask;
6184 break;
6185
6186 case R_MICROMIPS_PC16_S1:
6187 if (howto->partial_inplace)
6188 addend = _bfd_mips_elf_sign_extend (addend, 17);
6189
6190 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6191 && (*cross_mode_jump_p
6192 ? ((symbol + addend) & 3) != 0
6193 : ((symbol + addend) & 1) == 0))
6194 return bfd_reloc_outofrange;
6195
6196 value = symbol + addend - p;
6197 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6198 overflowed_p = mips_elf_overflow_p (value, 17);
6199 value >>= howto->rightshift;
6200 value &= howto->dst_mask;
6201 break;
6202
6203 case R_MICROMIPS_PC23_S2:
6204 if (howto->partial_inplace)
6205 addend = _bfd_mips_elf_sign_extend (addend, 25);
6206 value = symbol + addend - ((p | 3) ^ 3);
6207 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6208 overflowed_p = mips_elf_overflow_p (value, 25);
6209 value >>= howto->rightshift;
6210 value &= howto->dst_mask;
6211 break;
6212
6213 case R_MIPS_GOT_HI16:
6214 case R_MIPS_CALL_HI16:
6215 case R_MICROMIPS_GOT_HI16:
6216 case R_MICROMIPS_CALL_HI16:
6217 /* We're allowed to handle these two relocations identically.
6218 The dynamic linker is allowed to handle the CALL relocations
6219 differently by creating a lazy evaluation stub. */
6220 value = g;
6221 value = mips_elf_high (value);
6222 value &= howto->dst_mask;
6223 break;
6224
6225 case R_MIPS_GOT_LO16:
6226 case R_MIPS_CALL_LO16:
6227 case R_MICROMIPS_GOT_LO16:
6228 case R_MICROMIPS_CALL_LO16:
6229 value = g & howto->dst_mask;
6230 break;
6231
6232 case R_MIPS_GOT_PAGE:
6233 case R_MICROMIPS_GOT_PAGE:
6234 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6235 if (value == MINUS_ONE)
6236 return bfd_reloc_outofrange;
6237 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6238 overflowed_p = mips_elf_overflow_p (value, 16);
6239 break;
6240
6241 case R_MIPS_GOT_OFST:
6242 case R_MICROMIPS_GOT_OFST:
6243 if (local_p)
6244 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6245 else
6246 value = addend;
6247 overflowed_p = mips_elf_overflow_p (value, 16);
6248 break;
6249
6250 case R_MIPS_SUB:
6251 case R_MICROMIPS_SUB:
6252 value = symbol - addend;
6253 value &= howto->dst_mask;
6254 break;
6255
6256 case R_MIPS_HIGHER:
6257 case R_MICROMIPS_HIGHER:
6258 value = mips_elf_higher (addend + symbol);
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_HIGHEST:
6263 case R_MICROMIPS_HIGHEST:
6264 value = mips_elf_highest (addend + symbol);
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_SCN_DISP:
6269 case R_MICROMIPS_SCN_DISP:
6270 value = symbol + addend - sec->output_offset;
6271 value &= howto->dst_mask;
6272 break;
6273
6274 case R_MIPS_JALR:
6275 case R_MICROMIPS_JALR:
6276 /* This relocation is only a hint. In some cases, we optimize
6277 it into a bal instruction. But we don't try to optimize
6278 when the symbol does not resolve locally. */
6279 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6280 return bfd_reloc_continue;
6281 /* We can't optimize cross-mode jumps either. */
6282 if (*cross_mode_jump_p)
6283 return bfd_reloc_continue;
6284 value = symbol + addend;
6285 /* Neither we can non-instruction-aligned targets. */
6286 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6287 return bfd_reloc_continue;
6288 break;
6289
6290 case R_MIPS_PJUMP:
6291 case R_MIPS_GNU_VTINHERIT:
6292 case R_MIPS_GNU_VTENTRY:
6293 /* We don't do anything with these at present. */
6294 return bfd_reloc_continue;
6295
6296 default:
6297 /* An unrecognized relocation type. */
6298 return bfd_reloc_notsupported;
6299 }
6300
6301 /* Store the VALUE for our caller. */
6302 *valuep = value;
6303 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6304 }
6305
6306 /* Obtain the field relocated by RELOCATION. */
6307
6308 static bfd_vma
6309 mips_elf_obtain_contents (reloc_howto_type *howto,
6310 const Elf_Internal_Rela *relocation,
6311 bfd *input_bfd, bfd_byte *contents)
6312 {
6313 bfd_vma x = 0;
6314 bfd_byte *location = contents + relocation->r_offset;
6315 unsigned int size = bfd_get_reloc_size (howto);
6316
6317 /* Obtain the bytes. */
6318 if (size != 0)
6319 x = bfd_get (8 * size, input_bfd, location);
6320
6321 return x;
6322 }
6323
6324 /* It has been determined that the result of the RELOCATION is the
6325 VALUE. Use HOWTO to place VALUE into the output file at the
6326 appropriate position. The SECTION is the section to which the
6327 relocation applies.
6328 CROSS_MODE_JUMP_P is true if the relocation field
6329 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6330
6331 Returns FALSE if anything goes wrong. */
6332
6333 static bfd_boolean
6334 mips_elf_perform_relocation (struct bfd_link_info *info,
6335 reloc_howto_type *howto,
6336 const Elf_Internal_Rela *relocation,
6337 bfd_vma value, bfd *input_bfd,
6338 asection *input_section, bfd_byte *contents,
6339 bfd_boolean cross_mode_jump_p)
6340 {
6341 bfd_vma x;
6342 bfd_byte *location;
6343 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6344 unsigned int size;
6345
6346 /* Figure out where the relocation is occurring. */
6347 location = contents + relocation->r_offset;
6348
6349 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6350
6351 /* Obtain the current value. */
6352 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6353
6354 /* Clear the field we are setting. */
6355 x &= ~howto->dst_mask;
6356
6357 /* Set the field. */
6358 x |= (value & howto->dst_mask);
6359
6360 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6361 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6362 {
6363 bfd_vma opcode = x >> 26;
6364
6365 if (r_type == R_MIPS16_26 ? opcode == 0x7
6366 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6367 : opcode == 0x1d)
6368 {
6369 info->callbacks->einfo
6370 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6371 input_bfd, input_section, relocation->r_offset);
6372 return TRUE;
6373 }
6374 }
6375 if (cross_mode_jump_p && jal_reloc_p (r_type))
6376 {
6377 bfd_boolean ok;
6378 bfd_vma opcode = x >> 26;
6379 bfd_vma jalx_opcode;
6380
6381 /* Check to see if the opcode is already JAL or JALX. */
6382 if (r_type == R_MIPS16_26)
6383 {
6384 ok = ((opcode == 0x6) || (opcode == 0x7));
6385 jalx_opcode = 0x7;
6386 }
6387 else if (r_type == R_MICROMIPS_26_S1)
6388 {
6389 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6390 jalx_opcode = 0x3c;
6391 }
6392 else
6393 {
6394 ok = ((opcode == 0x3) || (opcode == 0x1d));
6395 jalx_opcode = 0x1d;
6396 }
6397
6398 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6399 convert J or JALS to JALX. */
6400 if (!ok)
6401 {
6402 info->callbacks->einfo
6403 (_("%X%H: Unsupported jump between ISA modes; "
6404 "consider recompiling with interlinking enabled\n"),
6405 input_bfd, input_section, relocation->r_offset);
6406 return TRUE;
6407 }
6408
6409 /* Make this the JALX opcode. */
6410 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6411 }
6412 else if (cross_mode_jump_p && b_reloc_p (r_type))
6413 {
6414 bfd_boolean ok = FALSE;
6415 bfd_vma opcode = x >> 16;
6416 bfd_vma jalx_opcode = 0;
6417 bfd_vma addr;
6418 bfd_vma dest;
6419
6420 if (r_type == R_MICROMIPS_PC16_S1)
6421 {
6422 ok = opcode == 0x4060;
6423 jalx_opcode = 0x3c;
6424 value <<= 1;
6425 }
6426 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6427 {
6428 ok = opcode == 0x411;
6429 jalx_opcode = 0x1d;
6430 value <<= 2;
6431 }
6432
6433 if (ok && !bfd_link_pic (info))
6434 {
6435 addr = (input_section->output_section->vma
6436 + input_section->output_offset
6437 + relocation->r_offset
6438 + 4);
6439 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6440
6441 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6442 {
6443 info->callbacks->einfo
6444 (_("%X%H: Cannot convert branch between ISA modes "
6445 "to JALX: relocation out of range\n"),
6446 input_bfd, input_section, relocation->r_offset);
6447 return TRUE;
6448 }
6449
6450 /* Make this the JALX opcode. */
6451 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6452 }
6453 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6454 {
6455 info->callbacks->einfo
6456 (_("%X%H: Unsupported branch between ISA modes\n"),
6457 input_bfd, input_section, relocation->r_offset);
6458 return TRUE;
6459 }
6460 }
6461
6462 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6463 range. */
6464 if (!bfd_link_relocatable (info)
6465 && !cross_mode_jump_p
6466 && ((JAL_TO_BAL_P (input_bfd)
6467 && r_type == R_MIPS_26
6468 && (x >> 26) == 0x3) /* jal addr */
6469 || (JALR_TO_BAL_P (input_bfd)
6470 && r_type == R_MIPS_JALR
6471 && x == 0x0320f809) /* jalr t9 */
6472 || (JR_TO_B_P (input_bfd)
6473 && r_type == R_MIPS_JALR
6474 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6475 {
6476 bfd_vma addr;
6477 bfd_vma dest;
6478 bfd_signed_vma off;
6479
6480 addr = (input_section->output_section->vma
6481 + input_section->output_offset
6482 + relocation->r_offset
6483 + 4);
6484 if (r_type == R_MIPS_26)
6485 dest = (value << 2) | ((addr >> 28) << 28);
6486 else
6487 dest = value;
6488 off = dest - addr;
6489 if (off <= 0x1ffff && off >= -0x20000)
6490 {
6491 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6492 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6493 else
6494 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6495 }
6496 }
6497
6498 /* Put the value into the output. */
6499 size = bfd_get_reloc_size (howto);
6500 if (size != 0)
6501 bfd_put (8 * size, input_bfd, x, location);
6502
6503 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6504 location);
6505
6506 return TRUE;
6507 }
6508 \f
6509 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6510 is the original relocation, which is now being transformed into a
6511 dynamic relocation. The ADDENDP is adjusted if necessary; the
6512 caller should store the result in place of the original addend. */
6513
6514 static bfd_boolean
6515 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6516 struct bfd_link_info *info,
6517 const Elf_Internal_Rela *rel,
6518 struct mips_elf_link_hash_entry *h,
6519 asection *sec, bfd_vma symbol,
6520 bfd_vma *addendp, asection *input_section)
6521 {
6522 Elf_Internal_Rela outrel[3];
6523 asection *sreloc;
6524 bfd *dynobj;
6525 int r_type;
6526 long indx;
6527 bfd_boolean defined_p;
6528 struct mips_elf_link_hash_table *htab;
6529
6530 htab = mips_elf_hash_table (info);
6531 BFD_ASSERT (htab != NULL);
6532
6533 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6534 dynobj = elf_hash_table (info)->dynobj;
6535 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6536 BFD_ASSERT (sreloc != NULL);
6537 BFD_ASSERT (sreloc->contents != NULL);
6538 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6539 < sreloc->size);
6540
6541 outrel[0].r_offset =
6542 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6543 if (ABI_64_P (output_bfd))
6544 {
6545 outrel[1].r_offset =
6546 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6547 outrel[2].r_offset =
6548 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6549 }
6550
6551 if (outrel[0].r_offset == MINUS_ONE)
6552 /* The relocation field has been deleted. */
6553 return TRUE;
6554
6555 if (outrel[0].r_offset == MINUS_TWO)
6556 {
6557 /* The relocation field has been converted into a relative value of
6558 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6559 the field to be fully relocated, so add in the symbol's value. */
6560 *addendp += symbol;
6561 return TRUE;
6562 }
6563
6564 /* We must now calculate the dynamic symbol table index to use
6565 in the relocation. */
6566 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6567 {
6568 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6569 indx = h->root.dynindx;
6570 if (SGI_COMPAT (output_bfd))
6571 defined_p = h->root.def_regular;
6572 else
6573 /* ??? glibc's ld.so just adds the final GOT entry to the
6574 relocation field. It therefore treats relocs against
6575 defined symbols in the same way as relocs against
6576 undefined symbols. */
6577 defined_p = FALSE;
6578 }
6579 else
6580 {
6581 if (sec != NULL && bfd_is_abs_section (sec))
6582 indx = 0;
6583 else if (sec == NULL || sec->owner == NULL)
6584 {
6585 bfd_set_error (bfd_error_bad_value);
6586 return FALSE;
6587 }
6588 else
6589 {
6590 indx = elf_section_data (sec->output_section)->dynindx;
6591 if (indx == 0)
6592 {
6593 asection *osec = htab->root.text_index_section;
6594 indx = elf_section_data (osec)->dynindx;
6595 }
6596 if (indx == 0)
6597 abort ();
6598 }
6599
6600 /* Instead of generating a relocation using the section
6601 symbol, we may as well make it a fully relative
6602 relocation. We want to avoid generating relocations to
6603 local symbols because we used to generate them
6604 incorrectly, without adding the original symbol value,
6605 which is mandated by the ABI for section symbols. In
6606 order to give dynamic loaders and applications time to
6607 phase out the incorrect use, we refrain from emitting
6608 section-relative relocations. It's not like they're
6609 useful, after all. This should be a bit more efficient
6610 as well. */
6611 /* ??? Although this behavior is compatible with glibc's ld.so,
6612 the ABI says that relocations against STN_UNDEF should have
6613 a symbol value of 0. Irix rld honors this, so relocations
6614 against STN_UNDEF have no effect. */
6615 if (!SGI_COMPAT (output_bfd))
6616 indx = 0;
6617 defined_p = TRUE;
6618 }
6619
6620 /* If the relocation was previously an absolute relocation and
6621 this symbol will not be referred to by the relocation, we must
6622 adjust it by the value we give it in the dynamic symbol table.
6623 Otherwise leave the job up to the dynamic linker. */
6624 if (defined_p && r_type != R_MIPS_REL32)
6625 *addendp += symbol;
6626
6627 if (htab->is_vxworks)
6628 /* VxWorks uses non-relative relocations for this. */
6629 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6630 else
6631 /* The relocation is always an REL32 relocation because we don't
6632 know where the shared library will wind up at load-time. */
6633 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6634 R_MIPS_REL32);
6635
6636 /* For strict adherence to the ABI specification, we should
6637 generate a R_MIPS_64 relocation record by itself before the
6638 _REL32/_64 record as well, such that the addend is read in as
6639 a 64-bit value (REL32 is a 32-bit relocation, after all).
6640 However, since none of the existing ELF64 MIPS dynamic
6641 loaders seems to care, we don't waste space with these
6642 artificial relocations. If this turns out to not be true,
6643 mips_elf_allocate_dynamic_relocation() should be tweaked so
6644 as to make room for a pair of dynamic relocations per
6645 invocation if ABI_64_P, and here we should generate an
6646 additional relocation record with R_MIPS_64 by itself for a
6647 NULL symbol before this relocation record. */
6648 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6649 ABI_64_P (output_bfd)
6650 ? R_MIPS_64
6651 : R_MIPS_NONE);
6652 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6653
6654 /* Adjust the output offset of the relocation to reference the
6655 correct location in the output file. */
6656 outrel[0].r_offset += (input_section->output_section->vma
6657 + input_section->output_offset);
6658 outrel[1].r_offset += (input_section->output_section->vma
6659 + input_section->output_offset);
6660 outrel[2].r_offset += (input_section->output_section->vma
6661 + input_section->output_offset);
6662
6663 /* Put the relocation back out. We have to use the special
6664 relocation outputter in the 64-bit case since the 64-bit
6665 relocation format is non-standard. */
6666 if (ABI_64_P (output_bfd))
6667 {
6668 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6669 (output_bfd, &outrel[0],
6670 (sreloc->contents
6671 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6672 }
6673 else if (htab->is_vxworks)
6674 {
6675 /* VxWorks uses RELA rather than REL dynamic relocations. */
6676 outrel[0].r_addend = *addendp;
6677 bfd_elf32_swap_reloca_out
6678 (output_bfd, &outrel[0],
6679 (sreloc->contents
6680 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6681 }
6682 else
6683 bfd_elf32_swap_reloc_out
6684 (output_bfd, &outrel[0],
6685 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6686
6687 /* We've now added another relocation. */
6688 ++sreloc->reloc_count;
6689
6690 /* Make sure the output section is writable. The dynamic linker
6691 will be writing to it. */
6692 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6693 |= SHF_WRITE;
6694
6695 /* On IRIX5, make an entry of compact relocation info. */
6696 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6697 {
6698 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6699 bfd_byte *cr;
6700
6701 if (scpt)
6702 {
6703 Elf32_crinfo cptrel;
6704
6705 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6706 cptrel.vaddr = (rel->r_offset
6707 + input_section->output_section->vma
6708 + input_section->output_offset);
6709 if (r_type == R_MIPS_REL32)
6710 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6711 else
6712 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6713 mips_elf_set_cr_dist2to (cptrel, 0);
6714 cptrel.konst = *addendp;
6715
6716 cr = (scpt->contents
6717 + sizeof (Elf32_External_compact_rel));
6718 mips_elf_set_cr_relvaddr (cptrel, 0);
6719 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6720 ((Elf32_External_crinfo *) cr
6721 + scpt->reloc_count));
6722 ++scpt->reloc_count;
6723 }
6724 }
6725
6726 /* If we've written this relocation for a readonly section,
6727 we need to set DF_TEXTREL again, so that we do not delete the
6728 DT_TEXTREL tag. */
6729 if (MIPS_ELF_READONLY_SECTION (input_section))
6730 info->flags |= DF_TEXTREL;
6731
6732 return TRUE;
6733 }
6734 \f
6735 /* Return the MACH for a MIPS e_flags value. */
6736
6737 unsigned long
6738 _bfd_elf_mips_mach (flagword flags)
6739 {
6740 switch (flags & EF_MIPS_MACH)
6741 {
6742 case E_MIPS_MACH_3900:
6743 return bfd_mach_mips3900;
6744
6745 case E_MIPS_MACH_4010:
6746 return bfd_mach_mips4010;
6747
6748 case E_MIPS_MACH_4100:
6749 return bfd_mach_mips4100;
6750
6751 case E_MIPS_MACH_4111:
6752 return bfd_mach_mips4111;
6753
6754 case E_MIPS_MACH_4120:
6755 return bfd_mach_mips4120;
6756
6757 case E_MIPS_MACH_4650:
6758 return bfd_mach_mips4650;
6759
6760 case E_MIPS_MACH_5400:
6761 return bfd_mach_mips5400;
6762
6763 case E_MIPS_MACH_5500:
6764 return bfd_mach_mips5500;
6765
6766 case E_MIPS_MACH_5900:
6767 return bfd_mach_mips5900;
6768
6769 case E_MIPS_MACH_9000:
6770 return bfd_mach_mips9000;
6771
6772 case E_MIPS_MACH_SB1:
6773 return bfd_mach_mips_sb1;
6774
6775 case E_MIPS_MACH_LS2E:
6776 return bfd_mach_mips_loongson_2e;
6777
6778 case E_MIPS_MACH_LS2F:
6779 return bfd_mach_mips_loongson_2f;
6780
6781 case E_MIPS_MACH_LS3A:
6782 return bfd_mach_mips_loongson_3a;
6783
6784 case E_MIPS_MACH_OCTEON3:
6785 return bfd_mach_mips_octeon3;
6786
6787 case E_MIPS_MACH_OCTEON2:
6788 return bfd_mach_mips_octeon2;
6789
6790 case E_MIPS_MACH_OCTEON:
6791 return bfd_mach_mips_octeon;
6792
6793 case E_MIPS_MACH_XLR:
6794 return bfd_mach_mips_xlr;
6795
6796 default:
6797 switch (flags & EF_MIPS_ARCH)
6798 {
6799 default:
6800 case E_MIPS_ARCH_1:
6801 return bfd_mach_mips3000;
6802
6803 case E_MIPS_ARCH_2:
6804 return bfd_mach_mips6000;
6805
6806 case E_MIPS_ARCH_3:
6807 return bfd_mach_mips4000;
6808
6809 case E_MIPS_ARCH_4:
6810 return bfd_mach_mips8000;
6811
6812 case E_MIPS_ARCH_5:
6813 return bfd_mach_mips5;
6814
6815 case E_MIPS_ARCH_32:
6816 return bfd_mach_mipsisa32;
6817
6818 case E_MIPS_ARCH_64:
6819 return bfd_mach_mipsisa64;
6820
6821 case E_MIPS_ARCH_32R2:
6822 return bfd_mach_mipsisa32r2;
6823
6824 case E_MIPS_ARCH_64R2:
6825 return bfd_mach_mipsisa64r2;
6826
6827 case E_MIPS_ARCH_32R6:
6828 return bfd_mach_mipsisa32r6;
6829
6830 case E_MIPS_ARCH_64R6:
6831 return bfd_mach_mipsisa64r6;
6832 }
6833 }
6834
6835 return 0;
6836 }
6837
6838 /* Return printable name for ABI. */
6839
6840 static INLINE char *
6841 elf_mips_abi_name (bfd *abfd)
6842 {
6843 flagword flags;
6844
6845 flags = elf_elfheader (abfd)->e_flags;
6846 switch (flags & EF_MIPS_ABI)
6847 {
6848 case 0:
6849 if (ABI_N32_P (abfd))
6850 return "N32";
6851 else if (ABI_64_P (abfd))
6852 return "64";
6853 else
6854 return "none";
6855 case E_MIPS_ABI_O32:
6856 return "O32";
6857 case E_MIPS_ABI_O64:
6858 return "O64";
6859 case E_MIPS_ABI_EABI32:
6860 return "EABI32";
6861 case E_MIPS_ABI_EABI64:
6862 return "EABI64";
6863 default:
6864 return "unknown abi";
6865 }
6866 }
6867 \f
6868 /* MIPS ELF uses two common sections. One is the usual one, and the
6869 other is for small objects. All the small objects are kept
6870 together, and then referenced via the gp pointer, which yields
6871 faster assembler code. This is what we use for the small common
6872 section. This approach is copied from ecoff.c. */
6873 static asection mips_elf_scom_section;
6874 static asymbol mips_elf_scom_symbol;
6875 static asymbol *mips_elf_scom_symbol_ptr;
6876
6877 /* MIPS ELF also uses an acommon section, which represents an
6878 allocated common symbol which may be overridden by a
6879 definition in a shared library. */
6880 static asection mips_elf_acom_section;
6881 static asymbol mips_elf_acom_symbol;
6882 static asymbol *mips_elf_acom_symbol_ptr;
6883
6884 /* This is used for both the 32-bit and the 64-bit ABI. */
6885
6886 void
6887 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6888 {
6889 elf_symbol_type *elfsym;
6890
6891 /* Handle the special MIPS section numbers that a symbol may use. */
6892 elfsym = (elf_symbol_type *) asym;
6893 switch (elfsym->internal_elf_sym.st_shndx)
6894 {
6895 case SHN_MIPS_ACOMMON:
6896 /* This section is used in a dynamically linked executable file.
6897 It is an allocated common section. The dynamic linker can
6898 either resolve these symbols to something in a shared
6899 library, or it can just leave them here. For our purposes,
6900 we can consider these symbols to be in a new section. */
6901 if (mips_elf_acom_section.name == NULL)
6902 {
6903 /* Initialize the acommon section. */
6904 mips_elf_acom_section.name = ".acommon";
6905 mips_elf_acom_section.flags = SEC_ALLOC;
6906 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6907 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6908 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6909 mips_elf_acom_symbol.name = ".acommon";
6910 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6911 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6912 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6913 }
6914 asym->section = &mips_elf_acom_section;
6915 break;
6916
6917 case SHN_COMMON:
6918 /* Common symbols less than the GP size are automatically
6919 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6920 if (asym->value > elf_gp_size (abfd)
6921 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6922 || IRIX_COMPAT (abfd) == ict_irix6)
6923 break;
6924 /* Fall through. */
6925 case SHN_MIPS_SCOMMON:
6926 if (mips_elf_scom_section.name == NULL)
6927 {
6928 /* Initialize the small common section. */
6929 mips_elf_scom_section.name = ".scommon";
6930 mips_elf_scom_section.flags = SEC_IS_COMMON;
6931 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6932 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6933 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6934 mips_elf_scom_symbol.name = ".scommon";
6935 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6936 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6937 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6938 }
6939 asym->section = &mips_elf_scom_section;
6940 asym->value = elfsym->internal_elf_sym.st_size;
6941 break;
6942
6943 case SHN_MIPS_SUNDEFINED:
6944 asym->section = bfd_und_section_ptr;
6945 break;
6946
6947 case SHN_MIPS_TEXT:
6948 {
6949 asection *section = bfd_get_section_by_name (abfd, ".text");
6950
6951 if (section != NULL)
6952 {
6953 asym->section = section;
6954 /* MIPS_TEXT is a bit special, the address is not an offset
6955 to the base of the .text section. So substract the section
6956 base address to make it an offset. */
6957 asym->value -= section->vma;
6958 }
6959 }
6960 break;
6961
6962 case SHN_MIPS_DATA:
6963 {
6964 asection *section = bfd_get_section_by_name (abfd, ".data");
6965
6966 if (section != NULL)
6967 {
6968 asym->section = section;
6969 /* MIPS_DATA is a bit special, the address is not an offset
6970 to the base of the .data section. So substract the section
6971 base address to make it an offset. */
6972 asym->value -= section->vma;
6973 }
6974 }
6975 break;
6976 }
6977
6978 /* If this is an odd-valued function symbol, assume it's a MIPS16
6979 or microMIPS one. */
6980 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6981 && (asym->value & 1) != 0)
6982 {
6983 asym->value--;
6984 if (MICROMIPS_P (abfd))
6985 elfsym->internal_elf_sym.st_other
6986 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6987 else
6988 elfsym->internal_elf_sym.st_other
6989 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6990 }
6991 }
6992 \f
6993 /* Implement elf_backend_eh_frame_address_size. This differs from
6994 the default in the way it handles EABI64.
6995
6996 EABI64 was originally specified as an LP64 ABI, and that is what
6997 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6998 historically accepted the combination of -mabi=eabi and -mlong32,
6999 and this ILP32 variation has become semi-official over time.
7000 Both forms use elf32 and have pointer-sized FDE addresses.
7001
7002 If an EABI object was generated by GCC 4.0 or above, it will have
7003 an empty .gcc_compiled_longXX section, where XX is the size of longs
7004 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7005 have no special marking to distinguish them from LP64 objects.
7006
7007 We don't want users of the official LP64 ABI to be punished for the
7008 existence of the ILP32 variant, but at the same time, we don't want
7009 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7010 We therefore take the following approach:
7011
7012 - If ABFD contains a .gcc_compiled_longXX section, use it to
7013 determine the pointer size.
7014
7015 - Otherwise check the type of the first relocation. Assume that
7016 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7017
7018 - Otherwise punt.
7019
7020 The second check is enough to detect LP64 objects generated by pre-4.0
7021 compilers because, in the kind of output generated by those compilers,
7022 the first relocation will be associated with either a CIE personality
7023 routine or an FDE start address. Furthermore, the compilers never
7024 used a special (non-pointer) encoding for this ABI.
7025
7026 Checking the relocation type should also be safe because there is no
7027 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7028 did so. */
7029
7030 unsigned int
7031 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7032 {
7033 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7034 return 8;
7035 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7036 {
7037 bfd_boolean long32_p, long64_p;
7038
7039 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7040 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7041 if (long32_p && long64_p)
7042 return 0;
7043 if (long32_p)
7044 return 4;
7045 if (long64_p)
7046 return 8;
7047
7048 if (sec->reloc_count > 0
7049 && elf_section_data (sec)->relocs != NULL
7050 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7051 == R_MIPS_64))
7052 return 8;
7053
7054 return 0;
7055 }
7056 return 4;
7057 }
7058 \f
7059 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7060 relocations against two unnamed section symbols to resolve to the
7061 same address. For example, if we have code like:
7062
7063 lw $4,%got_disp(.data)($gp)
7064 lw $25,%got_disp(.text)($gp)
7065 jalr $25
7066
7067 then the linker will resolve both relocations to .data and the program
7068 will jump there rather than to .text.
7069
7070 We can work around this problem by giving names to local section symbols.
7071 This is also what the MIPSpro tools do. */
7072
7073 bfd_boolean
7074 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7075 {
7076 return SGI_COMPAT (abfd);
7077 }
7078 \f
7079 /* Work over a section just before writing it out. This routine is
7080 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7081 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7082 a better way. */
7083
7084 bfd_boolean
7085 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7086 {
7087 if (hdr->sh_type == SHT_MIPS_REGINFO
7088 && hdr->sh_size > 0)
7089 {
7090 bfd_byte buf[4];
7091
7092 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7093 BFD_ASSERT (hdr->contents == NULL);
7094
7095 if (bfd_seek (abfd,
7096 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7097 SEEK_SET) != 0)
7098 return FALSE;
7099 H_PUT_32 (abfd, elf_gp (abfd), buf);
7100 if (bfd_bwrite (buf, 4, abfd) != 4)
7101 return FALSE;
7102 }
7103
7104 if (hdr->sh_type == SHT_MIPS_OPTIONS
7105 && hdr->bfd_section != NULL
7106 && mips_elf_section_data (hdr->bfd_section) != NULL
7107 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7108 {
7109 bfd_byte *contents, *l, *lend;
7110
7111 /* We stored the section contents in the tdata field in the
7112 set_section_contents routine. We save the section contents
7113 so that we don't have to read them again.
7114 At this point we know that elf_gp is set, so we can look
7115 through the section contents to see if there is an
7116 ODK_REGINFO structure. */
7117
7118 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7119 l = contents;
7120 lend = contents + hdr->sh_size;
7121 while (l + sizeof (Elf_External_Options) <= lend)
7122 {
7123 Elf_Internal_Options intopt;
7124
7125 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7126 &intopt);
7127 if (intopt.size < sizeof (Elf_External_Options))
7128 {
7129 _bfd_error_handler
7130 /* xgettext:c-format */
7131 (_("%B: Warning: bad `%s' option size %u smaller than"
7132 " its header"),
7133 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7134 break;
7135 }
7136 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7137 {
7138 bfd_byte buf[8];
7139
7140 if (bfd_seek (abfd,
7141 (hdr->sh_offset
7142 + (l - contents)
7143 + sizeof (Elf_External_Options)
7144 + (sizeof (Elf64_External_RegInfo) - 8)),
7145 SEEK_SET) != 0)
7146 return FALSE;
7147 H_PUT_64 (abfd, elf_gp (abfd), buf);
7148 if (bfd_bwrite (buf, 8, abfd) != 8)
7149 return FALSE;
7150 }
7151 else if (intopt.kind == ODK_REGINFO)
7152 {
7153 bfd_byte buf[4];
7154
7155 if (bfd_seek (abfd,
7156 (hdr->sh_offset
7157 + (l - contents)
7158 + sizeof (Elf_External_Options)
7159 + (sizeof (Elf32_External_RegInfo) - 4)),
7160 SEEK_SET) != 0)
7161 return FALSE;
7162 H_PUT_32 (abfd, elf_gp (abfd), buf);
7163 if (bfd_bwrite (buf, 4, abfd) != 4)
7164 return FALSE;
7165 }
7166 l += intopt.size;
7167 }
7168 }
7169
7170 if (hdr->bfd_section != NULL)
7171 {
7172 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7173
7174 /* .sbss is not handled specially here because the GNU/Linux
7175 prelinker can convert .sbss from NOBITS to PROGBITS and
7176 changing it back to NOBITS breaks the binary. The entry in
7177 _bfd_mips_elf_special_sections will ensure the correct flags
7178 are set on .sbss if BFD creates it without reading it from an
7179 input file, and without special handling here the flags set
7180 on it in an input file will be followed. */
7181 if (strcmp (name, ".sdata") == 0
7182 || strcmp (name, ".lit8") == 0
7183 || strcmp (name, ".lit4") == 0)
7184 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7185 else if (strcmp (name, ".srdata") == 0)
7186 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7187 else if (strcmp (name, ".compact_rel") == 0)
7188 hdr->sh_flags = 0;
7189 else if (strcmp (name, ".rtproc") == 0)
7190 {
7191 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7192 {
7193 unsigned int adjust;
7194
7195 adjust = hdr->sh_size % hdr->sh_addralign;
7196 if (adjust != 0)
7197 hdr->sh_size += hdr->sh_addralign - adjust;
7198 }
7199 }
7200 }
7201
7202 return TRUE;
7203 }
7204
7205 /* Handle a MIPS specific section when reading an object file. This
7206 is called when elfcode.h finds a section with an unknown type.
7207 This routine supports both the 32-bit and 64-bit ELF ABI.
7208
7209 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7210 how to. */
7211
7212 bfd_boolean
7213 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7214 Elf_Internal_Shdr *hdr,
7215 const char *name,
7216 int shindex)
7217 {
7218 flagword flags = 0;
7219
7220 /* There ought to be a place to keep ELF backend specific flags, but
7221 at the moment there isn't one. We just keep track of the
7222 sections by their name, instead. Fortunately, the ABI gives
7223 suggested names for all the MIPS specific sections, so we will
7224 probably get away with this. */
7225 switch (hdr->sh_type)
7226 {
7227 case SHT_MIPS_LIBLIST:
7228 if (strcmp (name, ".liblist") != 0)
7229 return FALSE;
7230 break;
7231 case SHT_MIPS_MSYM:
7232 if (strcmp (name, ".msym") != 0)
7233 return FALSE;
7234 break;
7235 case SHT_MIPS_CONFLICT:
7236 if (strcmp (name, ".conflict") != 0)
7237 return FALSE;
7238 break;
7239 case SHT_MIPS_GPTAB:
7240 if (! CONST_STRNEQ (name, ".gptab."))
7241 return FALSE;
7242 break;
7243 case SHT_MIPS_UCODE:
7244 if (strcmp (name, ".ucode") != 0)
7245 return FALSE;
7246 break;
7247 case SHT_MIPS_DEBUG:
7248 if (strcmp (name, ".mdebug") != 0)
7249 return FALSE;
7250 flags = SEC_DEBUGGING;
7251 break;
7252 case SHT_MIPS_REGINFO:
7253 if (strcmp (name, ".reginfo") != 0
7254 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7255 return FALSE;
7256 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7257 break;
7258 case SHT_MIPS_IFACE:
7259 if (strcmp (name, ".MIPS.interfaces") != 0)
7260 return FALSE;
7261 break;
7262 case SHT_MIPS_CONTENT:
7263 if (! CONST_STRNEQ (name, ".MIPS.content"))
7264 return FALSE;
7265 break;
7266 case SHT_MIPS_OPTIONS:
7267 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7268 return FALSE;
7269 break;
7270 case SHT_MIPS_ABIFLAGS:
7271 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7272 return FALSE;
7273 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7274 break;
7275 case SHT_MIPS_DWARF:
7276 if (! CONST_STRNEQ (name, ".debug_")
7277 && ! CONST_STRNEQ (name, ".zdebug_"))
7278 return FALSE;
7279 break;
7280 case SHT_MIPS_SYMBOL_LIB:
7281 if (strcmp (name, ".MIPS.symlib") != 0)
7282 return FALSE;
7283 break;
7284 case SHT_MIPS_EVENTS:
7285 if (! CONST_STRNEQ (name, ".MIPS.events")
7286 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7287 return FALSE;
7288 break;
7289 default:
7290 break;
7291 }
7292
7293 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7294 return FALSE;
7295
7296 if (flags)
7297 {
7298 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7299 (bfd_get_section_flags (abfd,
7300 hdr->bfd_section)
7301 | flags)))
7302 return FALSE;
7303 }
7304
7305 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7306 {
7307 Elf_External_ABIFlags_v0 ext;
7308
7309 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7310 &ext, 0, sizeof ext))
7311 return FALSE;
7312 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7313 &mips_elf_tdata (abfd)->abiflags);
7314 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7315 return FALSE;
7316 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7317 }
7318
7319 /* FIXME: We should record sh_info for a .gptab section. */
7320
7321 /* For a .reginfo section, set the gp value in the tdata information
7322 from the contents of this section. We need the gp value while
7323 processing relocs, so we just get it now. The .reginfo section
7324 is not used in the 64-bit MIPS ELF ABI. */
7325 if (hdr->sh_type == SHT_MIPS_REGINFO)
7326 {
7327 Elf32_External_RegInfo ext;
7328 Elf32_RegInfo s;
7329
7330 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7331 &ext, 0, sizeof ext))
7332 return FALSE;
7333 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7334 elf_gp (abfd) = s.ri_gp_value;
7335 }
7336
7337 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7338 set the gp value based on what we find. We may see both
7339 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7340 they should agree. */
7341 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7342 {
7343 bfd_byte *contents, *l, *lend;
7344
7345 contents = bfd_malloc (hdr->sh_size);
7346 if (contents == NULL)
7347 return FALSE;
7348 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7349 0, hdr->sh_size))
7350 {
7351 free (contents);
7352 return FALSE;
7353 }
7354 l = contents;
7355 lend = contents + hdr->sh_size;
7356 while (l + sizeof (Elf_External_Options) <= lend)
7357 {
7358 Elf_Internal_Options intopt;
7359
7360 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7361 &intopt);
7362 if (intopt.size < sizeof (Elf_External_Options))
7363 {
7364 _bfd_error_handler
7365 /* xgettext:c-format */
7366 (_("%B: Warning: bad `%s' option size %u smaller than"
7367 " its header"),
7368 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7369 break;
7370 }
7371 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7372 {
7373 Elf64_Internal_RegInfo intreg;
7374
7375 bfd_mips_elf64_swap_reginfo_in
7376 (abfd,
7377 ((Elf64_External_RegInfo *)
7378 (l + sizeof (Elf_External_Options))),
7379 &intreg);
7380 elf_gp (abfd) = intreg.ri_gp_value;
7381 }
7382 else if (intopt.kind == ODK_REGINFO)
7383 {
7384 Elf32_RegInfo intreg;
7385
7386 bfd_mips_elf32_swap_reginfo_in
7387 (abfd,
7388 ((Elf32_External_RegInfo *)
7389 (l + sizeof (Elf_External_Options))),
7390 &intreg);
7391 elf_gp (abfd) = intreg.ri_gp_value;
7392 }
7393 l += intopt.size;
7394 }
7395 free (contents);
7396 }
7397
7398 return TRUE;
7399 }
7400
7401 /* Set the correct type for a MIPS ELF section. We do this by the
7402 section name, which is a hack, but ought to work. This routine is
7403 used by both the 32-bit and the 64-bit ABI. */
7404
7405 bfd_boolean
7406 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7407 {
7408 const char *name = bfd_get_section_name (abfd, sec);
7409
7410 if (strcmp (name, ".liblist") == 0)
7411 {
7412 hdr->sh_type = SHT_MIPS_LIBLIST;
7413 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7414 /* The sh_link field is set in final_write_processing. */
7415 }
7416 else if (strcmp (name, ".conflict") == 0)
7417 hdr->sh_type = SHT_MIPS_CONFLICT;
7418 else if (CONST_STRNEQ (name, ".gptab."))
7419 {
7420 hdr->sh_type = SHT_MIPS_GPTAB;
7421 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7422 /* The sh_info field is set in final_write_processing. */
7423 }
7424 else if (strcmp (name, ".ucode") == 0)
7425 hdr->sh_type = SHT_MIPS_UCODE;
7426 else if (strcmp (name, ".mdebug") == 0)
7427 {
7428 hdr->sh_type = SHT_MIPS_DEBUG;
7429 /* In a shared object on IRIX 5.3, the .mdebug section has an
7430 entsize of 0. FIXME: Does this matter? */
7431 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7432 hdr->sh_entsize = 0;
7433 else
7434 hdr->sh_entsize = 1;
7435 }
7436 else if (strcmp (name, ".reginfo") == 0)
7437 {
7438 hdr->sh_type = SHT_MIPS_REGINFO;
7439 /* In a shared object on IRIX 5.3, the .reginfo section has an
7440 entsize of 0x18. FIXME: Does this matter? */
7441 if (SGI_COMPAT (abfd))
7442 {
7443 if ((abfd->flags & DYNAMIC) != 0)
7444 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7445 else
7446 hdr->sh_entsize = 1;
7447 }
7448 else
7449 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7450 }
7451 else if (SGI_COMPAT (abfd)
7452 && (strcmp (name, ".hash") == 0
7453 || strcmp (name, ".dynamic") == 0
7454 || strcmp (name, ".dynstr") == 0))
7455 {
7456 if (SGI_COMPAT (abfd))
7457 hdr->sh_entsize = 0;
7458 #if 0
7459 /* This isn't how the IRIX6 linker behaves. */
7460 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7461 #endif
7462 }
7463 else if (strcmp (name, ".got") == 0
7464 || strcmp (name, ".srdata") == 0
7465 || strcmp (name, ".sdata") == 0
7466 || strcmp (name, ".sbss") == 0
7467 || strcmp (name, ".lit4") == 0
7468 || strcmp (name, ".lit8") == 0)
7469 hdr->sh_flags |= SHF_MIPS_GPREL;
7470 else if (strcmp (name, ".MIPS.interfaces") == 0)
7471 {
7472 hdr->sh_type = SHT_MIPS_IFACE;
7473 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7474 }
7475 else if (CONST_STRNEQ (name, ".MIPS.content"))
7476 {
7477 hdr->sh_type = SHT_MIPS_CONTENT;
7478 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7479 /* The sh_info field is set in final_write_processing. */
7480 }
7481 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7482 {
7483 hdr->sh_type = SHT_MIPS_OPTIONS;
7484 hdr->sh_entsize = 1;
7485 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7486 }
7487 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7488 {
7489 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7490 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7491 }
7492 else if (CONST_STRNEQ (name, ".debug_")
7493 || CONST_STRNEQ (name, ".zdebug_"))
7494 {
7495 hdr->sh_type = SHT_MIPS_DWARF;
7496
7497 /* Irix facilities such as libexc expect a single .debug_frame
7498 per executable, the system ones have NOSTRIP set and the linker
7499 doesn't merge sections with different flags so ... */
7500 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7501 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7502 }
7503 else if (strcmp (name, ".MIPS.symlib") == 0)
7504 {
7505 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7506 /* The sh_link and sh_info fields are set in
7507 final_write_processing. */
7508 }
7509 else if (CONST_STRNEQ (name, ".MIPS.events")
7510 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7511 {
7512 hdr->sh_type = SHT_MIPS_EVENTS;
7513 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7514 /* The sh_link field is set in final_write_processing. */
7515 }
7516 else if (strcmp (name, ".msym") == 0)
7517 {
7518 hdr->sh_type = SHT_MIPS_MSYM;
7519 hdr->sh_flags |= SHF_ALLOC;
7520 hdr->sh_entsize = 8;
7521 }
7522
7523 /* The generic elf_fake_sections will set up REL_HDR using the default
7524 kind of relocations. We used to set up a second header for the
7525 non-default kind of relocations here, but only NewABI would use
7526 these, and the IRIX ld doesn't like resulting empty RELA sections.
7527 Thus we create those header only on demand now. */
7528
7529 return TRUE;
7530 }
7531
7532 /* Given a BFD section, try to locate the corresponding ELF section
7533 index. This is used by both the 32-bit and the 64-bit ABI.
7534 Actually, it's not clear to me that the 64-bit ABI supports these,
7535 but for non-PIC objects we will certainly want support for at least
7536 the .scommon section. */
7537
7538 bfd_boolean
7539 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7540 asection *sec, int *retval)
7541 {
7542 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7543 {
7544 *retval = SHN_MIPS_SCOMMON;
7545 return TRUE;
7546 }
7547 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7548 {
7549 *retval = SHN_MIPS_ACOMMON;
7550 return TRUE;
7551 }
7552 return FALSE;
7553 }
7554 \f
7555 /* Hook called by the linker routine which adds symbols from an object
7556 file. We must handle the special MIPS section numbers here. */
7557
7558 bfd_boolean
7559 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7560 Elf_Internal_Sym *sym, const char **namep,
7561 flagword *flagsp ATTRIBUTE_UNUSED,
7562 asection **secp, bfd_vma *valp)
7563 {
7564 if (SGI_COMPAT (abfd)
7565 && (abfd->flags & DYNAMIC) != 0
7566 && strcmp (*namep, "_rld_new_interface") == 0)
7567 {
7568 /* Skip IRIX5 rld entry name. */
7569 *namep = NULL;
7570 return TRUE;
7571 }
7572
7573 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7574 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7575 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7576 a magic symbol resolved by the linker, we ignore this bogus definition
7577 of _gp_disp. New ABI objects do not suffer from this problem so this
7578 is not done for them. */
7579 if (!NEWABI_P(abfd)
7580 && (sym->st_shndx == SHN_ABS)
7581 && (strcmp (*namep, "_gp_disp") == 0))
7582 {
7583 *namep = NULL;
7584 return TRUE;
7585 }
7586
7587 switch (sym->st_shndx)
7588 {
7589 case SHN_COMMON:
7590 /* Common symbols less than the GP size are automatically
7591 treated as SHN_MIPS_SCOMMON symbols. */
7592 if (sym->st_size > elf_gp_size (abfd)
7593 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7594 || IRIX_COMPAT (abfd) == ict_irix6)
7595 break;
7596 /* Fall through. */
7597 case SHN_MIPS_SCOMMON:
7598 *secp = bfd_make_section_old_way (abfd, ".scommon");
7599 (*secp)->flags |= SEC_IS_COMMON;
7600 *valp = sym->st_size;
7601 break;
7602
7603 case SHN_MIPS_TEXT:
7604 /* This section is used in a shared object. */
7605 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7606 {
7607 asymbol *elf_text_symbol;
7608 asection *elf_text_section;
7609 bfd_size_type amt = sizeof (asection);
7610
7611 elf_text_section = bfd_zalloc (abfd, amt);
7612 if (elf_text_section == NULL)
7613 return FALSE;
7614
7615 amt = sizeof (asymbol);
7616 elf_text_symbol = bfd_zalloc (abfd, amt);
7617 if (elf_text_symbol == NULL)
7618 return FALSE;
7619
7620 /* Initialize the section. */
7621
7622 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7623 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7624
7625 elf_text_section->symbol = elf_text_symbol;
7626 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7627
7628 elf_text_section->name = ".text";
7629 elf_text_section->flags = SEC_NO_FLAGS;
7630 elf_text_section->output_section = NULL;
7631 elf_text_section->owner = abfd;
7632 elf_text_symbol->name = ".text";
7633 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7634 elf_text_symbol->section = elf_text_section;
7635 }
7636 /* This code used to do *secp = bfd_und_section_ptr if
7637 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7638 so I took it out. */
7639 *secp = mips_elf_tdata (abfd)->elf_text_section;
7640 break;
7641
7642 case SHN_MIPS_ACOMMON:
7643 /* Fall through. XXX Can we treat this as allocated data? */
7644 case SHN_MIPS_DATA:
7645 /* This section is used in a shared object. */
7646 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7647 {
7648 asymbol *elf_data_symbol;
7649 asection *elf_data_section;
7650 bfd_size_type amt = sizeof (asection);
7651
7652 elf_data_section = bfd_zalloc (abfd, amt);
7653 if (elf_data_section == NULL)
7654 return FALSE;
7655
7656 amt = sizeof (asymbol);
7657 elf_data_symbol = bfd_zalloc (abfd, amt);
7658 if (elf_data_symbol == NULL)
7659 return FALSE;
7660
7661 /* Initialize the section. */
7662
7663 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7664 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7665
7666 elf_data_section->symbol = elf_data_symbol;
7667 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7668
7669 elf_data_section->name = ".data";
7670 elf_data_section->flags = SEC_NO_FLAGS;
7671 elf_data_section->output_section = NULL;
7672 elf_data_section->owner = abfd;
7673 elf_data_symbol->name = ".data";
7674 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7675 elf_data_symbol->section = elf_data_section;
7676 }
7677 /* This code used to do *secp = bfd_und_section_ptr if
7678 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7679 so I took it out. */
7680 *secp = mips_elf_tdata (abfd)->elf_data_section;
7681 break;
7682
7683 case SHN_MIPS_SUNDEFINED:
7684 *secp = bfd_und_section_ptr;
7685 break;
7686 }
7687
7688 if (SGI_COMPAT (abfd)
7689 && ! bfd_link_pic (info)
7690 && info->output_bfd->xvec == abfd->xvec
7691 && strcmp (*namep, "__rld_obj_head") == 0)
7692 {
7693 struct elf_link_hash_entry *h;
7694 struct bfd_link_hash_entry *bh;
7695
7696 /* Mark __rld_obj_head as dynamic. */
7697 bh = NULL;
7698 if (! (_bfd_generic_link_add_one_symbol
7699 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7700 get_elf_backend_data (abfd)->collect, &bh)))
7701 return FALSE;
7702
7703 h = (struct elf_link_hash_entry *) bh;
7704 h->non_elf = 0;
7705 h->def_regular = 1;
7706 h->type = STT_OBJECT;
7707
7708 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7709 return FALSE;
7710
7711 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7712 mips_elf_hash_table (info)->rld_symbol = h;
7713 }
7714
7715 /* If this is a mips16 text symbol, add 1 to the value to make it
7716 odd. This will cause something like .word SYM to come up with
7717 the right value when it is loaded into the PC. */
7718 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7719 ++*valp;
7720
7721 return TRUE;
7722 }
7723
7724 /* This hook function is called before the linker writes out a global
7725 symbol. We mark symbols as small common if appropriate. This is
7726 also where we undo the increment of the value for a mips16 symbol. */
7727
7728 int
7729 _bfd_mips_elf_link_output_symbol_hook
7730 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7731 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7732 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7733 {
7734 /* If we see a common symbol, which implies a relocatable link, then
7735 if a symbol was small common in an input file, mark it as small
7736 common in the output file. */
7737 if (sym->st_shndx == SHN_COMMON
7738 && strcmp (input_sec->name, ".scommon") == 0)
7739 sym->st_shndx = SHN_MIPS_SCOMMON;
7740
7741 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7742 sym->st_value &= ~1;
7743
7744 return 1;
7745 }
7746 \f
7747 /* Functions for the dynamic linker. */
7748
7749 /* Create dynamic sections when linking against a dynamic object. */
7750
7751 bfd_boolean
7752 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7753 {
7754 struct elf_link_hash_entry *h;
7755 struct bfd_link_hash_entry *bh;
7756 flagword flags;
7757 register asection *s;
7758 const char * const *namep;
7759 struct mips_elf_link_hash_table *htab;
7760
7761 htab = mips_elf_hash_table (info);
7762 BFD_ASSERT (htab != NULL);
7763
7764 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7765 | SEC_LINKER_CREATED | SEC_READONLY);
7766
7767 /* The psABI requires a read-only .dynamic section, but the VxWorks
7768 EABI doesn't. */
7769 if (!htab->is_vxworks)
7770 {
7771 s = bfd_get_linker_section (abfd, ".dynamic");
7772 if (s != NULL)
7773 {
7774 if (! bfd_set_section_flags (abfd, s, flags))
7775 return FALSE;
7776 }
7777 }
7778
7779 /* We need to create .got section. */
7780 if (!mips_elf_create_got_section (abfd, info))
7781 return FALSE;
7782
7783 if (! mips_elf_rel_dyn_section (info, TRUE))
7784 return FALSE;
7785
7786 /* Create .stub section. */
7787 s = bfd_make_section_anyway_with_flags (abfd,
7788 MIPS_ELF_STUB_SECTION_NAME (abfd),
7789 flags | SEC_CODE);
7790 if (s == NULL
7791 || ! bfd_set_section_alignment (abfd, s,
7792 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7793 return FALSE;
7794 htab->sstubs = s;
7795
7796 if (!mips_elf_hash_table (info)->use_rld_obj_head
7797 && bfd_link_executable (info)
7798 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7799 {
7800 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7801 flags &~ (flagword) SEC_READONLY);
7802 if (s == NULL
7803 || ! bfd_set_section_alignment (abfd, s,
7804 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7805 return FALSE;
7806 }
7807
7808 /* On IRIX5, we adjust add some additional symbols and change the
7809 alignments of several sections. There is no ABI documentation
7810 indicating that this is necessary on IRIX6, nor any evidence that
7811 the linker takes such action. */
7812 if (IRIX_COMPAT (abfd) == ict_irix5)
7813 {
7814 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7815 {
7816 bh = NULL;
7817 if (! (_bfd_generic_link_add_one_symbol
7818 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7819 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7820 return FALSE;
7821
7822 h = (struct elf_link_hash_entry *) bh;
7823 h->non_elf = 0;
7824 h->def_regular = 1;
7825 h->type = STT_SECTION;
7826
7827 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7828 return FALSE;
7829 }
7830
7831 /* We need to create a .compact_rel section. */
7832 if (SGI_COMPAT (abfd))
7833 {
7834 if (!mips_elf_create_compact_rel_section (abfd, info))
7835 return FALSE;
7836 }
7837
7838 /* Change alignments of some sections. */
7839 s = bfd_get_linker_section (abfd, ".hash");
7840 if (s != NULL)
7841 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7842
7843 s = bfd_get_linker_section (abfd, ".dynsym");
7844 if (s != NULL)
7845 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7846
7847 s = bfd_get_linker_section (abfd, ".dynstr");
7848 if (s != NULL)
7849 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7850
7851 /* ??? */
7852 s = bfd_get_section_by_name (abfd, ".reginfo");
7853 if (s != NULL)
7854 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7855
7856 s = bfd_get_linker_section (abfd, ".dynamic");
7857 if (s != NULL)
7858 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7859 }
7860
7861 if (bfd_link_executable (info))
7862 {
7863 const char *name;
7864
7865 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7866 bh = NULL;
7867 if (!(_bfd_generic_link_add_one_symbol
7868 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7869 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7870 return FALSE;
7871
7872 h = (struct elf_link_hash_entry *) bh;
7873 h->non_elf = 0;
7874 h->def_regular = 1;
7875 h->type = STT_SECTION;
7876
7877 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7878 return FALSE;
7879
7880 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7881 {
7882 /* __rld_map is a four byte word located in the .data section
7883 and is filled in by the rtld to contain a pointer to
7884 the _r_debug structure. Its symbol value will be set in
7885 _bfd_mips_elf_finish_dynamic_symbol. */
7886 s = bfd_get_linker_section (abfd, ".rld_map");
7887 BFD_ASSERT (s != NULL);
7888
7889 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7890 bh = NULL;
7891 if (!(_bfd_generic_link_add_one_symbol
7892 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7893 get_elf_backend_data (abfd)->collect, &bh)))
7894 return FALSE;
7895
7896 h = (struct elf_link_hash_entry *) bh;
7897 h->non_elf = 0;
7898 h->def_regular = 1;
7899 h->type = STT_OBJECT;
7900
7901 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7902 return FALSE;
7903 mips_elf_hash_table (info)->rld_symbol = h;
7904 }
7905 }
7906
7907 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7908 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7909 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7910 return FALSE;
7911
7912 /* Do the usual VxWorks handling. */
7913 if (htab->is_vxworks
7914 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7915 return FALSE;
7916
7917 return TRUE;
7918 }
7919 \f
7920 /* Return true if relocation REL against section SEC is a REL rather than
7921 RELA relocation. RELOCS is the first relocation in the section and
7922 ABFD is the bfd that contains SEC. */
7923
7924 static bfd_boolean
7925 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7926 const Elf_Internal_Rela *relocs,
7927 const Elf_Internal_Rela *rel)
7928 {
7929 Elf_Internal_Shdr *rel_hdr;
7930 const struct elf_backend_data *bed;
7931
7932 /* To determine which flavor of relocation this is, we depend on the
7933 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7934 rel_hdr = elf_section_data (sec)->rel.hdr;
7935 if (rel_hdr == NULL)
7936 return FALSE;
7937 bed = get_elf_backend_data (abfd);
7938 return ((size_t) (rel - relocs)
7939 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7940 }
7941
7942 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7943 HOWTO is the relocation's howto and CONTENTS points to the contents
7944 of the section that REL is against. */
7945
7946 static bfd_vma
7947 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7948 reloc_howto_type *howto, bfd_byte *contents)
7949 {
7950 bfd_byte *location;
7951 unsigned int r_type;
7952 bfd_vma addend;
7953 bfd_vma bytes;
7954
7955 r_type = ELF_R_TYPE (abfd, rel->r_info);
7956 location = contents + rel->r_offset;
7957
7958 /* Get the addend, which is stored in the input file. */
7959 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7960 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7961 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7962
7963 addend = bytes & howto->src_mask;
7964
7965 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7966 accordingly. */
7967 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7968 addend <<= 1;
7969
7970 return addend;
7971 }
7972
7973 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7974 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7975 and update *ADDEND with the final addend. Return true on success
7976 or false if the LO16 could not be found. RELEND is the exclusive
7977 upper bound on the relocations for REL's section. */
7978
7979 static bfd_boolean
7980 mips_elf_add_lo16_rel_addend (bfd *abfd,
7981 const Elf_Internal_Rela *rel,
7982 const Elf_Internal_Rela *relend,
7983 bfd_byte *contents, bfd_vma *addend)
7984 {
7985 unsigned int r_type, lo16_type;
7986 const Elf_Internal_Rela *lo16_relocation;
7987 reloc_howto_type *lo16_howto;
7988 bfd_vma l;
7989
7990 r_type = ELF_R_TYPE (abfd, rel->r_info);
7991 if (mips16_reloc_p (r_type))
7992 lo16_type = R_MIPS16_LO16;
7993 else if (micromips_reloc_p (r_type))
7994 lo16_type = R_MICROMIPS_LO16;
7995 else if (r_type == R_MIPS_PCHI16)
7996 lo16_type = R_MIPS_PCLO16;
7997 else
7998 lo16_type = R_MIPS_LO16;
7999
8000 /* The combined value is the sum of the HI16 addend, left-shifted by
8001 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8002 code does a `lui' of the HI16 value, and then an `addiu' of the
8003 LO16 value.)
8004
8005 Scan ahead to find a matching LO16 relocation.
8006
8007 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8008 be immediately following. However, for the IRIX6 ABI, the next
8009 relocation may be a composed relocation consisting of several
8010 relocations for the same address. In that case, the R_MIPS_LO16
8011 relocation may occur as one of these. We permit a similar
8012 extension in general, as that is useful for GCC.
8013
8014 In some cases GCC dead code elimination removes the LO16 but keeps
8015 the corresponding HI16. This is strictly speaking a violation of
8016 the ABI but not immediately harmful. */
8017 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8018 if (lo16_relocation == NULL)
8019 return FALSE;
8020
8021 /* Obtain the addend kept there. */
8022 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8023 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8024
8025 l <<= lo16_howto->rightshift;
8026 l = _bfd_mips_elf_sign_extend (l, 16);
8027
8028 *addend <<= 16;
8029 *addend += l;
8030 return TRUE;
8031 }
8032
8033 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8034 store the contents in *CONTENTS on success. Assume that *CONTENTS
8035 already holds the contents if it is nonull on entry. */
8036
8037 static bfd_boolean
8038 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8039 {
8040 if (*contents)
8041 return TRUE;
8042
8043 /* Get cached copy if it exists. */
8044 if (elf_section_data (sec)->this_hdr.contents != NULL)
8045 {
8046 *contents = elf_section_data (sec)->this_hdr.contents;
8047 return TRUE;
8048 }
8049
8050 return bfd_malloc_and_get_section (abfd, sec, contents);
8051 }
8052
8053 /* Make a new PLT record to keep internal data. */
8054
8055 static struct plt_entry *
8056 mips_elf_make_plt_record (bfd *abfd)
8057 {
8058 struct plt_entry *entry;
8059
8060 entry = bfd_zalloc (abfd, sizeof (*entry));
8061 if (entry == NULL)
8062 return NULL;
8063
8064 entry->stub_offset = MINUS_ONE;
8065 entry->mips_offset = MINUS_ONE;
8066 entry->comp_offset = MINUS_ONE;
8067 entry->gotplt_index = MINUS_ONE;
8068 return entry;
8069 }
8070
8071 /* Look through the relocs for a section during the first phase, and
8072 allocate space in the global offset table and record the need for
8073 standard MIPS and compressed procedure linkage table entries. */
8074
8075 bfd_boolean
8076 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8077 asection *sec, const Elf_Internal_Rela *relocs)
8078 {
8079 const char *name;
8080 bfd *dynobj;
8081 Elf_Internal_Shdr *symtab_hdr;
8082 struct elf_link_hash_entry **sym_hashes;
8083 size_t extsymoff;
8084 const Elf_Internal_Rela *rel;
8085 const Elf_Internal_Rela *rel_end;
8086 asection *sreloc;
8087 const struct elf_backend_data *bed;
8088 struct mips_elf_link_hash_table *htab;
8089 bfd_byte *contents;
8090 bfd_vma addend;
8091 reloc_howto_type *howto;
8092
8093 if (bfd_link_relocatable (info))
8094 return TRUE;
8095
8096 htab = mips_elf_hash_table (info);
8097 BFD_ASSERT (htab != NULL);
8098
8099 dynobj = elf_hash_table (info)->dynobj;
8100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8101 sym_hashes = elf_sym_hashes (abfd);
8102 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8103
8104 bed = get_elf_backend_data (abfd);
8105 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8106
8107 /* Check for the mips16 stub sections. */
8108
8109 name = bfd_get_section_name (abfd, sec);
8110 if (FN_STUB_P (name))
8111 {
8112 unsigned long r_symndx;
8113
8114 /* Look at the relocation information to figure out which symbol
8115 this is for. */
8116
8117 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8118 if (r_symndx == 0)
8119 {
8120 _bfd_error_handler
8121 /* xgettext:c-format */
8122 (_("%B: Warning: cannot determine the target function for"
8123 " stub section `%s'"),
8124 abfd, name);
8125 bfd_set_error (bfd_error_bad_value);
8126 return FALSE;
8127 }
8128
8129 if (r_symndx < extsymoff
8130 || sym_hashes[r_symndx - extsymoff] == NULL)
8131 {
8132 asection *o;
8133
8134 /* This stub is for a local symbol. This stub will only be
8135 needed if there is some relocation in this BFD, other
8136 than a 16 bit function call, which refers to this symbol. */
8137 for (o = abfd->sections; o != NULL; o = o->next)
8138 {
8139 Elf_Internal_Rela *sec_relocs;
8140 const Elf_Internal_Rela *r, *rend;
8141
8142 /* We can ignore stub sections when looking for relocs. */
8143 if ((o->flags & SEC_RELOC) == 0
8144 || o->reloc_count == 0
8145 || section_allows_mips16_refs_p (o))
8146 continue;
8147
8148 sec_relocs
8149 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8150 info->keep_memory);
8151 if (sec_relocs == NULL)
8152 return FALSE;
8153
8154 rend = sec_relocs + o->reloc_count;
8155 for (r = sec_relocs; r < rend; r++)
8156 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8157 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8158 break;
8159
8160 if (elf_section_data (o)->relocs != sec_relocs)
8161 free (sec_relocs);
8162
8163 if (r < rend)
8164 break;
8165 }
8166
8167 if (o == NULL)
8168 {
8169 /* There is no non-call reloc for this stub, so we do
8170 not need it. Since this function is called before
8171 the linker maps input sections to output sections, we
8172 can easily discard it by setting the SEC_EXCLUDE
8173 flag. */
8174 sec->flags |= SEC_EXCLUDE;
8175 return TRUE;
8176 }
8177
8178 /* Record this stub in an array of local symbol stubs for
8179 this BFD. */
8180 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8181 {
8182 unsigned long symcount;
8183 asection **n;
8184 bfd_size_type amt;
8185
8186 if (elf_bad_symtab (abfd))
8187 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8188 else
8189 symcount = symtab_hdr->sh_info;
8190 amt = symcount * sizeof (asection *);
8191 n = bfd_zalloc (abfd, amt);
8192 if (n == NULL)
8193 return FALSE;
8194 mips_elf_tdata (abfd)->local_stubs = n;
8195 }
8196
8197 sec->flags |= SEC_KEEP;
8198 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8199
8200 /* We don't need to set mips16_stubs_seen in this case.
8201 That flag is used to see whether we need to look through
8202 the global symbol table for stubs. We don't need to set
8203 it here, because we just have a local stub. */
8204 }
8205 else
8206 {
8207 struct mips_elf_link_hash_entry *h;
8208
8209 h = ((struct mips_elf_link_hash_entry *)
8210 sym_hashes[r_symndx - extsymoff]);
8211
8212 while (h->root.root.type == bfd_link_hash_indirect
8213 || h->root.root.type == bfd_link_hash_warning)
8214 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8215
8216 /* H is the symbol this stub is for. */
8217
8218 /* If we already have an appropriate stub for this function, we
8219 don't need another one, so we can discard this one. Since
8220 this function is called before the linker maps input sections
8221 to output sections, we can easily discard it by setting the
8222 SEC_EXCLUDE flag. */
8223 if (h->fn_stub != NULL)
8224 {
8225 sec->flags |= SEC_EXCLUDE;
8226 return TRUE;
8227 }
8228
8229 sec->flags |= SEC_KEEP;
8230 h->fn_stub = sec;
8231 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8232 }
8233 }
8234 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8235 {
8236 unsigned long r_symndx;
8237 struct mips_elf_link_hash_entry *h;
8238 asection **loc;
8239
8240 /* Look at the relocation information to figure out which symbol
8241 this is for. */
8242
8243 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8244 if (r_symndx == 0)
8245 {
8246 _bfd_error_handler
8247 /* xgettext:c-format */
8248 (_("%B: Warning: cannot determine the target function for"
8249 " stub section `%s'"),
8250 abfd, name);
8251 bfd_set_error (bfd_error_bad_value);
8252 return FALSE;
8253 }
8254
8255 if (r_symndx < extsymoff
8256 || sym_hashes[r_symndx - extsymoff] == NULL)
8257 {
8258 asection *o;
8259
8260 /* This stub is for a local symbol. This stub will only be
8261 needed if there is some relocation (R_MIPS16_26) in this BFD
8262 that refers to this symbol. */
8263 for (o = abfd->sections; o != NULL; o = o->next)
8264 {
8265 Elf_Internal_Rela *sec_relocs;
8266 const Elf_Internal_Rela *r, *rend;
8267
8268 /* We can ignore stub sections when looking for relocs. */
8269 if ((o->flags & SEC_RELOC) == 0
8270 || o->reloc_count == 0
8271 || section_allows_mips16_refs_p (o))
8272 continue;
8273
8274 sec_relocs
8275 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8276 info->keep_memory);
8277 if (sec_relocs == NULL)
8278 return FALSE;
8279
8280 rend = sec_relocs + o->reloc_count;
8281 for (r = sec_relocs; r < rend; r++)
8282 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8283 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8284 break;
8285
8286 if (elf_section_data (o)->relocs != sec_relocs)
8287 free (sec_relocs);
8288
8289 if (r < rend)
8290 break;
8291 }
8292
8293 if (o == NULL)
8294 {
8295 /* There is no non-call reloc for this stub, so we do
8296 not need it. Since this function is called before
8297 the linker maps input sections to output sections, we
8298 can easily discard it by setting the SEC_EXCLUDE
8299 flag. */
8300 sec->flags |= SEC_EXCLUDE;
8301 return TRUE;
8302 }
8303
8304 /* Record this stub in an array of local symbol call_stubs for
8305 this BFD. */
8306 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8307 {
8308 unsigned long symcount;
8309 asection **n;
8310 bfd_size_type amt;
8311
8312 if (elf_bad_symtab (abfd))
8313 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8314 else
8315 symcount = symtab_hdr->sh_info;
8316 amt = symcount * sizeof (asection *);
8317 n = bfd_zalloc (abfd, amt);
8318 if (n == NULL)
8319 return FALSE;
8320 mips_elf_tdata (abfd)->local_call_stubs = n;
8321 }
8322
8323 sec->flags |= SEC_KEEP;
8324 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8325
8326 /* We don't need to set mips16_stubs_seen in this case.
8327 That flag is used to see whether we need to look through
8328 the global symbol table for stubs. We don't need to set
8329 it here, because we just have a local stub. */
8330 }
8331 else
8332 {
8333 h = ((struct mips_elf_link_hash_entry *)
8334 sym_hashes[r_symndx - extsymoff]);
8335
8336 /* H is the symbol this stub is for. */
8337
8338 if (CALL_FP_STUB_P (name))
8339 loc = &h->call_fp_stub;
8340 else
8341 loc = &h->call_stub;
8342
8343 /* If we already have an appropriate stub for this function, we
8344 don't need another one, so we can discard this one. Since
8345 this function is called before the linker maps input sections
8346 to output sections, we can easily discard it by setting the
8347 SEC_EXCLUDE flag. */
8348 if (*loc != NULL)
8349 {
8350 sec->flags |= SEC_EXCLUDE;
8351 return TRUE;
8352 }
8353
8354 sec->flags |= SEC_KEEP;
8355 *loc = sec;
8356 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8357 }
8358 }
8359
8360 sreloc = NULL;
8361 contents = NULL;
8362 for (rel = relocs; rel < rel_end; ++rel)
8363 {
8364 unsigned long r_symndx;
8365 unsigned int r_type;
8366 struct elf_link_hash_entry *h;
8367 bfd_boolean can_make_dynamic_p;
8368 bfd_boolean call_reloc_p;
8369 bfd_boolean constrain_symbol_p;
8370
8371 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8372 r_type = ELF_R_TYPE (abfd, rel->r_info);
8373
8374 if (r_symndx < extsymoff)
8375 h = NULL;
8376 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8377 {
8378 _bfd_error_handler
8379 /* xgettext:c-format */
8380 (_("%B: Malformed reloc detected for section %s"),
8381 abfd, name);
8382 bfd_set_error (bfd_error_bad_value);
8383 return FALSE;
8384 }
8385 else
8386 {
8387 h = sym_hashes[r_symndx - extsymoff];
8388 if (h != NULL)
8389 {
8390 while (h->root.type == bfd_link_hash_indirect
8391 || h->root.type == bfd_link_hash_warning)
8392 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8393
8394 /* PR15323, ref flags aren't set for references in the
8395 same object. */
8396 h->root.non_ir_ref = 1;
8397 }
8398 }
8399
8400 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8401 relocation into a dynamic one. */
8402 can_make_dynamic_p = FALSE;
8403
8404 /* Set CALL_RELOC_P to true if the relocation is for a call,
8405 and if pointer equality therefore doesn't matter. */
8406 call_reloc_p = FALSE;
8407
8408 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8409 into account when deciding how to define the symbol.
8410 Relocations in nonallocatable sections such as .pdr and
8411 .debug* should have no effect. */
8412 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8413
8414 switch (r_type)
8415 {
8416 case R_MIPS_CALL16:
8417 case R_MIPS_CALL_HI16:
8418 case R_MIPS_CALL_LO16:
8419 case R_MIPS16_CALL16:
8420 case R_MICROMIPS_CALL16:
8421 case R_MICROMIPS_CALL_HI16:
8422 case R_MICROMIPS_CALL_LO16:
8423 call_reloc_p = TRUE;
8424 /* Fall through. */
8425
8426 case R_MIPS_GOT16:
8427 case R_MIPS_GOT_HI16:
8428 case R_MIPS_GOT_LO16:
8429 case R_MIPS_GOT_PAGE:
8430 case R_MIPS_GOT_OFST:
8431 case R_MIPS_GOT_DISP:
8432 case R_MIPS_TLS_GOTTPREL:
8433 case R_MIPS_TLS_GD:
8434 case R_MIPS_TLS_LDM:
8435 case R_MIPS16_GOT16:
8436 case R_MIPS16_TLS_GOTTPREL:
8437 case R_MIPS16_TLS_GD:
8438 case R_MIPS16_TLS_LDM:
8439 case R_MICROMIPS_GOT16:
8440 case R_MICROMIPS_GOT_HI16:
8441 case R_MICROMIPS_GOT_LO16:
8442 case R_MICROMIPS_GOT_PAGE:
8443 case R_MICROMIPS_GOT_OFST:
8444 case R_MICROMIPS_GOT_DISP:
8445 case R_MICROMIPS_TLS_GOTTPREL:
8446 case R_MICROMIPS_TLS_GD:
8447 case R_MICROMIPS_TLS_LDM:
8448 if (dynobj == NULL)
8449 elf_hash_table (info)->dynobj = dynobj = abfd;
8450 if (!mips_elf_create_got_section (dynobj, info))
8451 return FALSE;
8452 if (htab->is_vxworks && !bfd_link_pic (info))
8453 {
8454 _bfd_error_handler
8455 /* xgettext:c-format */
8456 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8457 abfd, (unsigned long) rel->r_offset);
8458 bfd_set_error (bfd_error_bad_value);
8459 return FALSE;
8460 }
8461 can_make_dynamic_p = TRUE;
8462 break;
8463
8464 case R_MIPS_NONE:
8465 case R_MIPS_JALR:
8466 case R_MICROMIPS_JALR:
8467 /* These relocations have empty fields and are purely there to
8468 provide link information. The symbol value doesn't matter. */
8469 constrain_symbol_p = FALSE;
8470 break;
8471
8472 case R_MIPS_GPREL16:
8473 case R_MIPS_GPREL32:
8474 case R_MIPS16_GPREL:
8475 case R_MICROMIPS_GPREL16:
8476 /* GP-relative relocations always resolve to a definition in a
8477 regular input file, ignoring the one-definition rule. This is
8478 important for the GP setup sequence in NewABI code, which
8479 always resolves to a local function even if other relocations
8480 against the symbol wouldn't. */
8481 constrain_symbol_p = FALSE;
8482 break;
8483
8484 case R_MIPS_32:
8485 case R_MIPS_REL32:
8486 case R_MIPS_64:
8487 /* In VxWorks executables, references to external symbols
8488 must be handled using copy relocs or PLT entries; it is not
8489 possible to convert this relocation into a dynamic one.
8490
8491 For executables that use PLTs and copy-relocs, we have a
8492 choice between converting the relocation into a dynamic
8493 one or using copy relocations or PLT entries. It is
8494 usually better to do the former, unless the relocation is
8495 against a read-only section. */
8496 if ((bfd_link_pic (info)
8497 || (h != NULL
8498 && !htab->is_vxworks
8499 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8500 && !(!info->nocopyreloc
8501 && !PIC_OBJECT_P (abfd)
8502 && MIPS_ELF_READONLY_SECTION (sec))))
8503 && (sec->flags & SEC_ALLOC) != 0)
8504 {
8505 can_make_dynamic_p = TRUE;
8506 if (dynobj == NULL)
8507 elf_hash_table (info)->dynobj = dynobj = abfd;
8508 }
8509 break;
8510
8511 case R_MIPS_26:
8512 case R_MIPS_PC16:
8513 case R_MIPS_PC21_S2:
8514 case R_MIPS_PC26_S2:
8515 case R_MIPS16_26:
8516 case R_MIPS16_PC16_S1:
8517 case R_MICROMIPS_26_S1:
8518 case R_MICROMIPS_PC7_S1:
8519 case R_MICROMIPS_PC10_S1:
8520 case R_MICROMIPS_PC16_S1:
8521 case R_MICROMIPS_PC23_S2:
8522 call_reloc_p = TRUE;
8523 break;
8524 }
8525
8526 if (h)
8527 {
8528 if (constrain_symbol_p)
8529 {
8530 if (!can_make_dynamic_p)
8531 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8532
8533 if (!call_reloc_p)
8534 h->pointer_equality_needed = 1;
8535
8536 /* We must not create a stub for a symbol that has
8537 relocations related to taking the function's address.
8538 This doesn't apply to VxWorks, where CALL relocs refer
8539 to a .got.plt entry instead of a normal .got entry. */
8540 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8541 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8542 }
8543
8544 /* Relocations against the special VxWorks __GOTT_BASE__ and
8545 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8546 room for them in .rela.dyn. */
8547 if (is_gott_symbol (info, h))
8548 {
8549 if (sreloc == NULL)
8550 {
8551 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8552 if (sreloc == NULL)
8553 return FALSE;
8554 }
8555 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8556 if (MIPS_ELF_READONLY_SECTION (sec))
8557 /* We tell the dynamic linker that there are
8558 relocations against the text segment. */
8559 info->flags |= DF_TEXTREL;
8560 }
8561 }
8562 else if (call_lo16_reloc_p (r_type)
8563 || got_lo16_reloc_p (r_type)
8564 || got_disp_reloc_p (r_type)
8565 || (got16_reloc_p (r_type) && htab->is_vxworks))
8566 {
8567 /* We may need a local GOT entry for this relocation. We
8568 don't count R_MIPS_GOT_PAGE because we can estimate the
8569 maximum number of pages needed by looking at the size of
8570 the segment. Similar comments apply to R_MIPS*_GOT16 and
8571 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8572 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8573 R_MIPS_CALL_HI16 because these are always followed by an
8574 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8575 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8576 rel->r_addend, info, r_type))
8577 return FALSE;
8578 }
8579
8580 if (h != NULL
8581 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8582 ELF_ST_IS_MIPS16 (h->other)))
8583 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8584
8585 switch (r_type)
8586 {
8587 case R_MIPS_CALL16:
8588 case R_MIPS16_CALL16:
8589 case R_MICROMIPS_CALL16:
8590 if (h == NULL)
8591 {
8592 _bfd_error_handler
8593 /* xgettext:c-format */
8594 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8595 abfd, (unsigned long) rel->r_offset);
8596 bfd_set_error (bfd_error_bad_value);
8597 return FALSE;
8598 }
8599 /* Fall through. */
8600
8601 case R_MIPS_CALL_HI16:
8602 case R_MIPS_CALL_LO16:
8603 case R_MICROMIPS_CALL_HI16:
8604 case R_MICROMIPS_CALL_LO16:
8605 if (h != NULL)
8606 {
8607 /* Make sure there is room in the regular GOT to hold the
8608 function's address. We may eliminate it in favour of
8609 a .got.plt entry later; see mips_elf_count_got_symbols. */
8610 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8611 r_type))
8612 return FALSE;
8613
8614 /* We need a stub, not a plt entry for the undefined
8615 function. But we record it as if it needs plt. See
8616 _bfd_elf_adjust_dynamic_symbol. */
8617 h->needs_plt = 1;
8618 h->type = STT_FUNC;
8619 }
8620 break;
8621
8622 case R_MIPS_GOT_PAGE:
8623 case R_MICROMIPS_GOT_PAGE:
8624 case R_MIPS16_GOT16:
8625 case R_MIPS_GOT16:
8626 case R_MIPS_GOT_HI16:
8627 case R_MIPS_GOT_LO16:
8628 case R_MICROMIPS_GOT16:
8629 case R_MICROMIPS_GOT_HI16:
8630 case R_MICROMIPS_GOT_LO16:
8631 if (!h || got_page_reloc_p (r_type))
8632 {
8633 /* This relocation needs (or may need, if h != NULL) a
8634 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8635 know for sure until we know whether the symbol is
8636 preemptible. */
8637 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8638 {
8639 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8640 return FALSE;
8641 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8642 addend = mips_elf_read_rel_addend (abfd, rel,
8643 howto, contents);
8644 if (got16_reloc_p (r_type))
8645 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8646 contents, &addend);
8647 else
8648 addend <<= howto->rightshift;
8649 }
8650 else
8651 addend = rel->r_addend;
8652 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8653 h, addend))
8654 return FALSE;
8655
8656 if (h)
8657 {
8658 struct mips_elf_link_hash_entry *hmips =
8659 (struct mips_elf_link_hash_entry *) h;
8660
8661 /* This symbol is definitely not overridable. */
8662 if (hmips->root.def_regular
8663 && ! (bfd_link_pic (info) && ! info->symbolic
8664 && ! hmips->root.forced_local))
8665 h = NULL;
8666 }
8667 }
8668 /* If this is a global, overridable symbol, GOT_PAGE will
8669 decay to GOT_DISP, so we'll need a GOT entry for it. */
8670 /* Fall through. */
8671
8672 case R_MIPS_GOT_DISP:
8673 case R_MICROMIPS_GOT_DISP:
8674 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8675 FALSE, r_type))
8676 return FALSE;
8677 break;
8678
8679 case R_MIPS_TLS_GOTTPREL:
8680 case R_MIPS16_TLS_GOTTPREL:
8681 case R_MICROMIPS_TLS_GOTTPREL:
8682 if (bfd_link_pic (info))
8683 info->flags |= DF_STATIC_TLS;
8684 /* Fall through */
8685
8686 case R_MIPS_TLS_LDM:
8687 case R_MIPS16_TLS_LDM:
8688 case R_MICROMIPS_TLS_LDM:
8689 if (tls_ldm_reloc_p (r_type))
8690 {
8691 r_symndx = STN_UNDEF;
8692 h = NULL;
8693 }
8694 /* Fall through */
8695
8696 case R_MIPS_TLS_GD:
8697 case R_MIPS16_TLS_GD:
8698 case R_MICROMIPS_TLS_GD:
8699 /* This symbol requires a global offset table entry, or two
8700 for TLS GD relocations. */
8701 if (h != NULL)
8702 {
8703 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8704 FALSE, r_type))
8705 return FALSE;
8706 }
8707 else
8708 {
8709 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8710 rel->r_addend,
8711 info, r_type))
8712 return FALSE;
8713 }
8714 break;
8715
8716 case R_MIPS_32:
8717 case R_MIPS_REL32:
8718 case R_MIPS_64:
8719 /* In VxWorks executables, references to external symbols
8720 are handled using copy relocs or PLT stubs, so there's
8721 no need to add a .rela.dyn entry for this relocation. */
8722 if (can_make_dynamic_p)
8723 {
8724 if (sreloc == NULL)
8725 {
8726 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8727 if (sreloc == NULL)
8728 return FALSE;
8729 }
8730 if (bfd_link_pic (info) && h == NULL)
8731 {
8732 /* When creating a shared object, we must copy these
8733 reloc types into the output file as R_MIPS_REL32
8734 relocs. Make room for this reloc in .rel(a).dyn. */
8735 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8736 if (MIPS_ELF_READONLY_SECTION (sec))
8737 /* We tell the dynamic linker that there are
8738 relocations against the text segment. */
8739 info->flags |= DF_TEXTREL;
8740 }
8741 else
8742 {
8743 struct mips_elf_link_hash_entry *hmips;
8744
8745 /* For a shared object, we must copy this relocation
8746 unless the symbol turns out to be undefined and
8747 weak with non-default visibility, in which case
8748 it will be left as zero.
8749
8750 We could elide R_MIPS_REL32 for locally binding symbols
8751 in shared libraries, but do not yet do so.
8752
8753 For an executable, we only need to copy this
8754 reloc if the symbol is defined in a dynamic
8755 object. */
8756 hmips = (struct mips_elf_link_hash_entry *) h;
8757 ++hmips->possibly_dynamic_relocs;
8758 if (MIPS_ELF_READONLY_SECTION (sec))
8759 /* We need it to tell the dynamic linker if there
8760 are relocations against the text segment. */
8761 hmips->readonly_reloc = TRUE;
8762 }
8763 }
8764
8765 if (SGI_COMPAT (abfd))
8766 mips_elf_hash_table (info)->compact_rel_size +=
8767 sizeof (Elf32_External_crinfo);
8768 break;
8769
8770 case R_MIPS_26:
8771 case R_MIPS_GPREL16:
8772 case R_MIPS_LITERAL:
8773 case R_MIPS_GPREL32:
8774 case R_MICROMIPS_26_S1:
8775 case R_MICROMIPS_GPREL16:
8776 case R_MICROMIPS_LITERAL:
8777 case R_MICROMIPS_GPREL7_S2:
8778 if (SGI_COMPAT (abfd))
8779 mips_elf_hash_table (info)->compact_rel_size +=
8780 sizeof (Elf32_External_crinfo);
8781 break;
8782
8783 /* This relocation describes the C++ object vtable hierarchy.
8784 Reconstruct it for later use during GC. */
8785 case R_MIPS_GNU_VTINHERIT:
8786 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8787 return FALSE;
8788 break;
8789
8790 /* This relocation describes which C++ vtable entries are actually
8791 used. Record for later use during GC. */
8792 case R_MIPS_GNU_VTENTRY:
8793 BFD_ASSERT (h != NULL);
8794 if (h != NULL
8795 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8796 return FALSE;
8797 break;
8798
8799 default:
8800 break;
8801 }
8802
8803 /* Record the need for a PLT entry. At this point we don't know
8804 yet if we are going to create a PLT in the first place, but
8805 we only record whether the relocation requires a standard MIPS
8806 or a compressed code entry anyway. If we don't make a PLT after
8807 all, then we'll just ignore these arrangements. Likewise if
8808 a PLT entry is not created because the symbol is satisfied
8809 locally. */
8810 if (h != NULL
8811 && (branch_reloc_p (r_type)
8812 || mips16_branch_reloc_p (r_type)
8813 || micromips_branch_reloc_p (r_type))
8814 && !SYMBOL_CALLS_LOCAL (info, h))
8815 {
8816 if (h->plt.plist == NULL)
8817 h->plt.plist = mips_elf_make_plt_record (abfd);
8818 if (h->plt.plist == NULL)
8819 return FALSE;
8820
8821 if (branch_reloc_p (r_type))
8822 h->plt.plist->need_mips = TRUE;
8823 else
8824 h->plt.plist->need_comp = TRUE;
8825 }
8826
8827 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8828 if there is one. We only need to handle global symbols here;
8829 we decide whether to keep or delete stubs for local symbols
8830 when processing the stub's relocations. */
8831 if (h != NULL
8832 && !mips16_call_reloc_p (r_type)
8833 && !section_allows_mips16_refs_p (sec))
8834 {
8835 struct mips_elf_link_hash_entry *mh;
8836
8837 mh = (struct mips_elf_link_hash_entry *) h;
8838 mh->need_fn_stub = TRUE;
8839 }
8840
8841 /* Refuse some position-dependent relocations when creating a
8842 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8843 not PIC, but we can create dynamic relocations and the result
8844 will be fine. Also do not refuse R_MIPS_LO16, which can be
8845 combined with R_MIPS_GOT16. */
8846 if (bfd_link_pic (info))
8847 {
8848 switch (r_type)
8849 {
8850 case R_MIPS16_HI16:
8851 case R_MIPS_HI16:
8852 case R_MIPS_HIGHER:
8853 case R_MIPS_HIGHEST:
8854 case R_MICROMIPS_HI16:
8855 case R_MICROMIPS_HIGHER:
8856 case R_MICROMIPS_HIGHEST:
8857 /* Don't refuse a high part relocation if it's against
8858 no symbol (e.g. part of a compound relocation). */
8859 if (r_symndx == STN_UNDEF)
8860 break;
8861
8862 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8863 and has a special meaning. */
8864 if (!NEWABI_P (abfd) && h != NULL
8865 && strcmp (h->root.root.string, "_gp_disp") == 0)
8866 break;
8867
8868 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8869 if (is_gott_symbol (info, h))
8870 break;
8871
8872 /* FALLTHROUGH */
8873
8874 case R_MIPS16_26:
8875 case R_MIPS_26:
8876 case R_MICROMIPS_26_S1:
8877 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8878 _bfd_error_handler
8879 /* xgettext:c-format */
8880 (_("%B: relocation %s against `%s' can not be used"
8881 " when making a shared object; recompile with -fPIC"),
8882 abfd, howto->name,
8883 (h) ? h->root.root.string : "a local symbol");
8884 bfd_set_error (bfd_error_bad_value);
8885 return FALSE;
8886 default:
8887 break;
8888 }
8889 }
8890 }
8891
8892 return TRUE;
8893 }
8894 \f
8895 /* Allocate space for global sym dynamic relocs. */
8896
8897 static bfd_boolean
8898 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8899 {
8900 struct bfd_link_info *info = inf;
8901 bfd *dynobj;
8902 struct mips_elf_link_hash_entry *hmips;
8903 struct mips_elf_link_hash_table *htab;
8904
8905 htab = mips_elf_hash_table (info);
8906 BFD_ASSERT (htab != NULL);
8907
8908 dynobj = elf_hash_table (info)->dynobj;
8909 hmips = (struct mips_elf_link_hash_entry *) h;
8910
8911 /* VxWorks executables are handled elsewhere; we only need to
8912 allocate relocations in shared objects. */
8913 if (htab->is_vxworks && !bfd_link_pic (info))
8914 return TRUE;
8915
8916 /* Ignore indirect symbols. All relocations against such symbols
8917 will be redirected to the target symbol. */
8918 if (h->root.type == bfd_link_hash_indirect)
8919 return TRUE;
8920
8921 /* If this symbol is defined in a dynamic object, or we are creating
8922 a shared library, we will need to copy any R_MIPS_32 or
8923 R_MIPS_REL32 relocs against it into the output file. */
8924 if (! bfd_link_relocatable (info)
8925 && hmips->possibly_dynamic_relocs != 0
8926 && (h->root.type == bfd_link_hash_defweak
8927 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8928 || bfd_link_pic (info)))
8929 {
8930 bfd_boolean do_copy = TRUE;
8931
8932 if (h->root.type == bfd_link_hash_undefweak)
8933 {
8934 /* Do not copy relocations for undefined weak symbols with
8935 non-default visibility. */
8936 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8937 do_copy = FALSE;
8938
8939 /* Make sure undefined weak symbols are output as a dynamic
8940 symbol in PIEs. */
8941 else if (h->dynindx == -1 && !h->forced_local)
8942 {
8943 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8944 return FALSE;
8945 }
8946 }
8947
8948 if (do_copy)
8949 {
8950 /* Even though we don't directly need a GOT entry for this symbol,
8951 the SVR4 psABI requires it to have a dynamic symbol table
8952 index greater that DT_MIPS_GOTSYM if there are dynamic
8953 relocations against it.
8954
8955 VxWorks does not enforce the same mapping between the GOT
8956 and the symbol table, so the same requirement does not
8957 apply there. */
8958 if (!htab->is_vxworks)
8959 {
8960 if (hmips->global_got_area > GGA_RELOC_ONLY)
8961 hmips->global_got_area = GGA_RELOC_ONLY;
8962 hmips->got_only_for_calls = FALSE;
8963 }
8964
8965 mips_elf_allocate_dynamic_relocations
8966 (dynobj, info, hmips->possibly_dynamic_relocs);
8967 if (hmips->readonly_reloc)
8968 /* We tell the dynamic linker that there are relocations
8969 against the text segment. */
8970 info->flags |= DF_TEXTREL;
8971 }
8972 }
8973
8974 return TRUE;
8975 }
8976
8977 /* Adjust a symbol defined by a dynamic object and referenced by a
8978 regular object. The current definition is in some section of the
8979 dynamic object, but we're not including those sections. We have to
8980 change the definition to something the rest of the link can
8981 understand. */
8982
8983 bfd_boolean
8984 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8985 struct elf_link_hash_entry *h)
8986 {
8987 bfd *dynobj;
8988 struct mips_elf_link_hash_entry *hmips;
8989 struct mips_elf_link_hash_table *htab;
8990 asection *s, *srel;
8991
8992 htab = mips_elf_hash_table (info);
8993 BFD_ASSERT (htab != NULL);
8994
8995 dynobj = elf_hash_table (info)->dynobj;
8996 hmips = (struct mips_elf_link_hash_entry *) h;
8997
8998 /* Make sure we know what is going on here. */
8999 BFD_ASSERT (dynobj != NULL
9000 && (h->needs_plt
9001 || h->u.weakdef != NULL
9002 || (h->def_dynamic
9003 && h->ref_regular
9004 && !h->def_regular)));
9005
9006 hmips = (struct mips_elf_link_hash_entry *) h;
9007
9008 /* If there are call relocations against an externally-defined symbol,
9009 see whether we can create a MIPS lazy-binding stub for it. We can
9010 only do this if all references to the function are through call
9011 relocations, and in that case, the traditional lazy-binding stubs
9012 are much more efficient than PLT entries.
9013
9014 Traditional stubs are only available on SVR4 psABI-based systems;
9015 VxWorks always uses PLTs instead. */
9016 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9017 {
9018 if (! elf_hash_table (info)->dynamic_sections_created)
9019 return TRUE;
9020
9021 /* If this symbol is not defined in a regular file, then set
9022 the symbol to the stub location. This is required to make
9023 function pointers compare as equal between the normal
9024 executable and the shared library. */
9025 if (!h->def_regular)
9026 {
9027 hmips->needs_lazy_stub = TRUE;
9028 htab->lazy_stub_count++;
9029 return TRUE;
9030 }
9031 }
9032 /* As above, VxWorks requires PLT entries for externally-defined
9033 functions that are only accessed through call relocations.
9034
9035 Both VxWorks and non-VxWorks targets also need PLT entries if there
9036 are static-only relocations against an externally-defined function.
9037 This can technically occur for shared libraries if there are
9038 branches to the symbol, although it is unlikely that this will be
9039 used in practice due to the short ranges involved. It can occur
9040 for any relative or absolute relocation in executables; in that
9041 case, the PLT entry becomes the function's canonical address. */
9042 else if (((h->needs_plt && !hmips->no_fn_stub)
9043 || (h->type == STT_FUNC && hmips->has_static_relocs))
9044 && htab->use_plts_and_copy_relocs
9045 && !SYMBOL_CALLS_LOCAL (info, h)
9046 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9047 && h->root.type == bfd_link_hash_undefweak))
9048 {
9049 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9050 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9051
9052 /* If this is the first symbol to need a PLT entry, then make some
9053 basic setup. Also work out PLT entry sizes. We'll need them
9054 for PLT offset calculations. */
9055 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9056 {
9057 BFD_ASSERT (htab->root.sgotplt->size == 0);
9058 BFD_ASSERT (htab->plt_got_index == 0);
9059
9060 /* If we're using the PLT additions to the psABI, each PLT
9061 entry is 16 bytes and the PLT0 entry is 32 bytes.
9062 Encourage better cache usage by aligning. We do this
9063 lazily to avoid pessimizing traditional objects. */
9064 if (!htab->is_vxworks
9065 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9066 return FALSE;
9067
9068 /* Make sure that .got.plt is word-aligned. We do this lazily
9069 for the same reason as above. */
9070 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9071 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9072 return FALSE;
9073
9074 /* On non-VxWorks targets, the first two entries in .got.plt
9075 are reserved. */
9076 if (!htab->is_vxworks)
9077 htab->plt_got_index
9078 += (get_elf_backend_data (dynobj)->got_header_size
9079 / MIPS_ELF_GOT_SIZE (dynobj));
9080
9081 /* On VxWorks, also allocate room for the header's
9082 .rela.plt.unloaded entries. */
9083 if (htab->is_vxworks && !bfd_link_pic (info))
9084 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9085
9086 /* Now work out the sizes of individual PLT entries. */
9087 if (htab->is_vxworks && bfd_link_pic (info))
9088 htab->plt_mips_entry_size
9089 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9090 else if (htab->is_vxworks)
9091 htab->plt_mips_entry_size
9092 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9093 else if (newabi_p)
9094 htab->plt_mips_entry_size
9095 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9096 else if (!micromips_p)
9097 {
9098 htab->plt_mips_entry_size
9099 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9100 htab->plt_comp_entry_size
9101 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9102 }
9103 else if (htab->insn32)
9104 {
9105 htab->plt_mips_entry_size
9106 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9107 htab->plt_comp_entry_size
9108 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9109 }
9110 else
9111 {
9112 htab->plt_mips_entry_size
9113 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9114 htab->plt_comp_entry_size
9115 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9116 }
9117 }
9118
9119 if (h->plt.plist == NULL)
9120 h->plt.plist = mips_elf_make_plt_record (dynobj);
9121 if (h->plt.plist == NULL)
9122 return FALSE;
9123
9124 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9125 n32 or n64, so always use a standard entry there.
9126
9127 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9128 all MIPS16 calls will go via that stub, and there is no benefit
9129 to having a MIPS16 entry. And in the case of call_stub a
9130 standard entry actually has to be used as the stub ends with a J
9131 instruction. */
9132 if (newabi_p
9133 || htab->is_vxworks
9134 || hmips->call_stub
9135 || hmips->call_fp_stub)
9136 {
9137 h->plt.plist->need_mips = TRUE;
9138 h->plt.plist->need_comp = FALSE;
9139 }
9140
9141 /* Otherwise, if there are no direct calls to the function, we
9142 have a free choice of whether to use standard or compressed
9143 entries. Prefer microMIPS entries if the object is known to
9144 contain microMIPS code, so that it becomes possible to create
9145 pure microMIPS binaries. Prefer standard entries otherwise,
9146 because MIPS16 ones are no smaller and are usually slower. */
9147 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9148 {
9149 if (micromips_p)
9150 h->plt.plist->need_comp = TRUE;
9151 else
9152 h->plt.plist->need_mips = TRUE;
9153 }
9154
9155 if (h->plt.plist->need_mips)
9156 {
9157 h->plt.plist->mips_offset = htab->plt_mips_offset;
9158 htab->plt_mips_offset += htab->plt_mips_entry_size;
9159 }
9160 if (h->plt.plist->need_comp)
9161 {
9162 h->plt.plist->comp_offset = htab->plt_comp_offset;
9163 htab->plt_comp_offset += htab->plt_comp_entry_size;
9164 }
9165
9166 /* Reserve the corresponding .got.plt entry now too. */
9167 h->plt.plist->gotplt_index = htab->plt_got_index++;
9168
9169 /* If the output file has no definition of the symbol, set the
9170 symbol's value to the address of the stub. */
9171 if (!bfd_link_pic (info) && !h->def_regular)
9172 hmips->use_plt_entry = TRUE;
9173
9174 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9175 htab->root.srelplt->size += (htab->is_vxworks
9176 ? MIPS_ELF_RELA_SIZE (dynobj)
9177 : MIPS_ELF_REL_SIZE (dynobj));
9178
9179 /* Make room for the .rela.plt.unloaded relocations. */
9180 if (htab->is_vxworks && !bfd_link_pic (info))
9181 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9182
9183 /* All relocations against this symbol that could have been made
9184 dynamic will now refer to the PLT entry instead. */
9185 hmips->possibly_dynamic_relocs = 0;
9186
9187 return TRUE;
9188 }
9189
9190 /* If this is a weak symbol, and there is a real definition, the
9191 processor independent code will have arranged for us to see the
9192 real definition first, and we can just use the same value. */
9193 if (h->u.weakdef != NULL)
9194 {
9195 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9196 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9197 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9198 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9199 return TRUE;
9200 }
9201
9202 /* Otherwise, there is nothing further to do for symbols defined
9203 in regular objects. */
9204 if (h->def_regular)
9205 return TRUE;
9206
9207 /* There's also nothing more to do if we'll convert all relocations
9208 against this symbol into dynamic relocations. */
9209 if (!hmips->has_static_relocs)
9210 return TRUE;
9211
9212 /* We're now relying on copy relocations. Complain if we have
9213 some that we can't convert. */
9214 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9215 {
9216 _bfd_error_handler (_("non-dynamic relocations refer to "
9217 "dynamic symbol %s"),
9218 h->root.root.string);
9219 bfd_set_error (bfd_error_bad_value);
9220 return FALSE;
9221 }
9222
9223 /* We must allocate the symbol in our .dynbss section, which will
9224 become part of the .bss section of the executable. There will be
9225 an entry for this symbol in the .dynsym section. The dynamic
9226 object will contain position independent code, so all references
9227 from the dynamic object to this symbol will go through the global
9228 offset table. The dynamic linker will use the .dynsym entry to
9229 determine the address it must put in the global offset table, so
9230 both the dynamic object and the regular object will refer to the
9231 same memory location for the variable. */
9232
9233 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9234 {
9235 s = htab->root.sdynrelro;
9236 srel = htab->root.sreldynrelro;
9237 }
9238 else
9239 {
9240 s = htab->root.sdynbss;
9241 srel = htab->root.srelbss;
9242 }
9243 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9244 {
9245 if (htab->is_vxworks)
9246 srel->size += sizeof (Elf32_External_Rela);
9247 else
9248 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9249 h->needs_copy = 1;
9250 }
9251
9252 /* All relocations against this symbol that could have been made
9253 dynamic will now refer to the local copy instead. */
9254 hmips->possibly_dynamic_relocs = 0;
9255
9256 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9257 }
9258 \f
9259 /* This function is called after all the input files have been read,
9260 and the input sections have been assigned to output sections. We
9261 check for any mips16 stub sections that we can discard. */
9262
9263 bfd_boolean
9264 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9265 struct bfd_link_info *info)
9266 {
9267 asection *sect;
9268 struct mips_elf_link_hash_table *htab;
9269 struct mips_htab_traverse_info hti;
9270
9271 htab = mips_elf_hash_table (info);
9272 BFD_ASSERT (htab != NULL);
9273
9274 /* The .reginfo section has a fixed size. */
9275 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9276 if (sect != NULL)
9277 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9278
9279 /* The .MIPS.abiflags section has a fixed size. */
9280 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9281 if (sect != NULL)
9282 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9283
9284 hti.info = info;
9285 hti.output_bfd = output_bfd;
9286 hti.error = FALSE;
9287 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9288 mips_elf_check_symbols, &hti);
9289 if (hti.error)
9290 return FALSE;
9291
9292 return TRUE;
9293 }
9294
9295 /* If the link uses a GOT, lay it out and work out its size. */
9296
9297 static bfd_boolean
9298 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9299 {
9300 bfd *dynobj;
9301 asection *s;
9302 struct mips_got_info *g;
9303 bfd_size_type loadable_size = 0;
9304 bfd_size_type page_gotno;
9305 bfd *ibfd;
9306 struct mips_elf_traverse_got_arg tga;
9307 struct mips_elf_link_hash_table *htab;
9308
9309 htab = mips_elf_hash_table (info);
9310 BFD_ASSERT (htab != NULL);
9311
9312 s = htab->root.sgot;
9313 if (s == NULL)
9314 return TRUE;
9315
9316 dynobj = elf_hash_table (info)->dynobj;
9317 g = htab->got_info;
9318
9319 /* Allocate room for the reserved entries. VxWorks always reserves
9320 3 entries; other objects only reserve 2 entries. */
9321 BFD_ASSERT (g->assigned_low_gotno == 0);
9322 if (htab->is_vxworks)
9323 htab->reserved_gotno = 3;
9324 else
9325 htab->reserved_gotno = 2;
9326 g->local_gotno += htab->reserved_gotno;
9327 g->assigned_low_gotno = htab->reserved_gotno;
9328
9329 /* Decide which symbols need to go in the global part of the GOT and
9330 count the number of reloc-only GOT symbols. */
9331 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9332
9333 if (!mips_elf_resolve_final_got_entries (info, g))
9334 return FALSE;
9335
9336 /* Calculate the total loadable size of the output. That
9337 will give us the maximum number of GOT_PAGE entries
9338 required. */
9339 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9340 {
9341 asection *subsection;
9342
9343 for (subsection = ibfd->sections;
9344 subsection;
9345 subsection = subsection->next)
9346 {
9347 if ((subsection->flags & SEC_ALLOC) == 0)
9348 continue;
9349 loadable_size += ((subsection->size + 0xf)
9350 &~ (bfd_size_type) 0xf);
9351 }
9352 }
9353
9354 if (htab->is_vxworks)
9355 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9356 relocations against local symbols evaluate to "G", and the EABI does
9357 not include R_MIPS_GOT_PAGE. */
9358 page_gotno = 0;
9359 else
9360 /* Assume there are two loadable segments consisting of contiguous
9361 sections. Is 5 enough? */
9362 page_gotno = (loadable_size >> 16) + 5;
9363
9364 /* Choose the smaller of the two page estimates; both are intended to be
9365 conservative. */
9366 if (page_gotno > g->page_gotno)
9367 page_gotno = g->page_gotno;
9368
9369 g->local_gotno += page_gotno;
9370 g->assigned_high_gotno = g->local_gotno - 1;
9371
9372 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9373 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9374 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9375
9376 /* VxWorks does not support multiple GOTs. It initializes $gp to
9377 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9378 dynamic loader. */
9379 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9380 {
9381 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9382 return FALSE;
9383 }
9384 else
9385 {
9386 /* Record that all bfds use G. This also has the effect of freeing
9387 the per-bfd GOTs, which we no longer need. */
9388 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9389 if (mips_elf_bfd_got (ibfd, FALSE))
9390 mips_elf_replace_bfd_got (ibfd, g);
9391 mips_elf_replace_bfd_got (output_bfd, g);
9392
9393 /* Set up TLS entries. */
9394 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9395 tga.info = info;
9396 tga.g = g;
9397 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9398 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9399 if (!tga.g)
9400 return FALSE;
9401 BFD_ASSERT (g->tls_assigned_gotno
9402 == g->global_gotno + g->local_gotno + g->tls_gotno);
9403
9404 /* Each VxWorks GOT entry needs an explicit relocation. */
9405 if (htab->is_vxworks && bfd_link_pic (info))
9406 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9407
9408 /* Allocate room for the TLS relocations. */
9409 if (g->relocs)
9410 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9411 }
9412
9413 return TRUE;
9414 }
9415
9416 /* Estimate the size of the .MIPS.stubs section. */
9417
9418 static void
9419 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9420 {
9421 struct mips_elf_link_hash_table *htab;
9422 bfd_size_type dynsymcount;
9423
9424 htab = mips_elf_hash_table (info);
9425 BFD_ASSERT (htab != NULL);
9426
9427 if (htab->lazy_stub_count == 0)
9428 return;
9429
9430 /* IRIX rld assumes that a function stub isn't at the end of the .text
9431 section, so add a dummy entry to the end. */
9432 htab->lazy_stub_count++;
9433
9434 /* Get a worst-case estimate of the number of dynamic symbols needed.
9435 At this point, dynsymcount does not account for section symbols
9436 and count_section_dynsyms may overestimate the number that will
9437 be needed. */
9438 dynsymcount = (elf_hash_table (info)->dynsymcount
9439 + count_section_dynsyms (output_bfd, info));
9440
9441 /* Determine the size of one stub entry. There's no disadvantage
9442 from using microMIPS code here, so for the sake of pure-microMIPS
9443 binaries we prefer it whenever there's any microMIPS code in
9444 output produced at all. This has a benefit of stubs being
9445 shorter by 4 bytes each too, unless in the insn32 mode. */
9446 if (!MICROMIPS_P (output_bfd))
9447 htab->function_stub_size = (dynsymcount > 0x10000
9448 ? MIPS_FUNCTION_STUB_BIG_SIZE
9449 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9450 else if (htab->insn32)
9451 htab->function_stub_size = (dynsymcount > 0x10000
9452 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9453 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9454 else
9455 htab->function_stub_size = (dynsymcount > 0x10000
9456 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9457 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9458
9459 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9460 }
9461
9462 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9463 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9464 stub, allocate an entry in the stubs section. */
9465
9466 static bfd_boolean
9467 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9468 {
9469 struct mips_htab_traverse_info *hti = data;
9470 struct mips_elf_link_hash_table *htab;
9471 struct bfd_link_info *info;
9472 bfd *output_bfd;
9473
9474 info = hti->info;
9475 output_bfd = hti->output_bfd;
9476 htab = mips_elf_hash_table (info);
9477 BFD_ASSERT (htab != NULL);
9478
9479 if (h->needs_lazy_stub)
9480 {
9481 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9482 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9483 bfd_vma isa_bit = micromips_p;
9484
9485 BFD_ASSERT (htab->root.dynobj != NULL);
9486 if (h->root.plt.plist == NULL)
9487 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9488 if (h->root.plt.plist == NULL)
9489 {
9490 hti->error = TRUE;
9491 return FALSE;
9492 }
9493 h->root.root.u.def.section = htab->sstubs;
9494 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9495 h->root.plt.plist->stub_offset = htab->sstubs->size;
9496 h->root.other = other;
9497 htab->sstubs->size += htab->function_stub_size;
9498 }
9499 return TRUE;
9500 }
9501
9502 /* Allocate offsets in the stubs section to each symbol that needs one.
9503 Set the final size of the .MIPS.stub section. */
9504
9505 static bfd_boolean
9506 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9507 {
9508 bfd *output_bfd = info->output_bfd;
9509 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9510 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9511 bfd_vma isa_bit = micromips_p;
9512 struct mips_elf_link_hash_table *htab;
9513 struct mips_htab_traverse_info hti;
9514 struct elf_link_hash_entry *h;
9515 bfd *dynobj;
9516
9517 htab = mips_elf_hash_table (info);
9518 BFD_ASSERT (htab != NULL);
9519
9520 if (htab->lazy_stub_count == 0)
9521 return TRUE;
9522
9523 htab->sstubs->size = 0;
9524 hti.info = info;
9525 hti.output_bfd = output_bfd;
9526 hti.error = FALSE;
9527 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9528 if (hti.error)
9529 return FALSE;
9530 htab->sstubs->size += htab->function_stub_size;
9531 BFD_ASSERT (htab->sstubs->size
9532 == htab->lazy_stub_count * htab->function_stub_size);
9533
9534 dynobj = elf_hash_table (info)->dynobj;
9535 BFD_ASSERT (dynobj != NULL);
9536 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9537 if (h == NULL)
9538 return FALSE;
9539 h->root.u.def.value = isa_bit;
9540 h->other = other;
9541 h->type = STT_FUNC;
9542
9543 return TRUE;
9544 }
9545
9546 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9547 bfd_link_info. If H uses the address of a PLT entry as the value
9548 of the symbol, then set the entry in the symbol table now. Prefer
9549 a standard MIPS PLT entry. */
9550
9551 static bfd_boolean
9552 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9553 {
9554 struct bfd_link_info *info = data;
9555 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9556 struct mips_elf_link_hash_table *htab;
9557 unsigned int other;
9558 bfd_vma isa_bit;
9559 bfd_vma val;
9560
9561 htab = mips_elf_hash_table (info);
9562 BFD_ASSERT (htab != NULL);
9563
9564 if (h->use_plt_entry)
9565 {
9566 BFD_ASSERT (h->root.plt.plist != NULL);
9567 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9568 || h->root.plt.plist->comp_offset != MINUS_ONE);
9569
9570 val = htab->plt_header_size;
9571 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9572 {
9573 isa_bit = 0;
9574 val += h->root.plt.plist->mips_offset;
9575 other = 0;
9576 }
9577 else
9578 {
9579 isa_bit = 1;
9580 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9581 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9582 }
9583 val += isa_bit;
9584 /* For VxWorks, point at the PLT load stub rather than the lazy
9585 resolution stub; this stub will become the canonical function
9586 address. */
9587 if (htab->is_vxworks)
9588 val += 8;
9589
9590 h->root.root.u.def.section = htab->root.splt;
9591 h->root.root.u.def.value = val;
9592 h->root.other = other;
9593 }
9594
9595 return TRUE;
9596 }
9597
9598 /* Set the sizes of the dynamic sections. */
9599
9600 bfd_boolean
9601 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9602 struct bfd_link_info *info)
9603 {
9604 bfd *dynobj;
9605 asection *s, *sreldyn;
9606 bfd_boolean reltext;
9607 struct mips_elf_link_hash_table *htab;
9608
9609 htab = mips_elf_hash_table (info);
9610 BFD_ASSERT (htab != NULL);
9611 dynobj = elf_hash_table (info)->dynobj;
9612 BFD_ASSERT (dynobj != NULL);
9613
9614 if (elf_hash_table (info)->dynamic_sections_created)
9615 {
9616 /* Set the contents of the .interp section to the interpreter. */
9617 if (bfd_link_executable (info) && !info->nointerp)
9618 {
9619 s = bfd_get_linker_section (dynobj, ".interp");
9620 BFD_ASSERT (s != NULL);
9621 s->size
9622 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9623 s->contents
9624 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9625 }
9626
9627 /* Figure out the size of the PLT header if we know that we
9628 are using it. For the sake of cache alignment always use
9629 a standard header whenever any standard entries are present
9630 even if microMIPS entries are present as well. This also
9631 lets the microMIPS header rely on the value of $v0 only set
9632 by microMIPS entries, for a small size reduction.
9633
9634 Set symbol table entry values for symbols that use the
9635 address of their PLT entry now that we can calculate it.
9636
9637 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9638 haven't already in _bfd_elf_create_dynamic_sections. */
9639 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9640 {
9641 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9642 && !htab->plt_mips_offset);
9643 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9644 bfd_vma isa_bit = micromips_p;
9645 struct elf_link_hash_entry *h;
9646 bfd_vma size;
9647
9648 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9649 BFD_ASSERT (htab->root.sgotplt->size == 0);
9650 BFD_ASSERT (htab->root.splt->size == 0);
9651
9652 if (htab->is_vxworks && bfd_link_pic (info))
9653 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9654 else if (htab->is_vxworks)
9655 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9656 else if (ABI_64_P (output_bfd))
9657 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9658 else if (ABI_N32_P (output_bfd))
9659 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9660 else if (!micromips_p)
9661 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9662 else if (htab->insn32)
9663 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9664 else
9665 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9666
9667 htab->plt_header_is_comp = micromips_p;
9668 htab->plt_header_size = size;
9669 htab->root.splt->size = (size
9670 + htab->plt_mips_offset
9671 + htab->plt_comp_offset);
9672 htab->root.sgotplt->size = (htab->plt_got_index
9673 * MIPS_ELF_GOT_SIZE (dynobj));
9674
9675 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9676
9677 if (htab->root.hplt == NULL)
9678 {
9679 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9680 "_PROCEDURE_LINKAGE_TABLE_");
9681 htab->root.hplt = h;
9682 if (h == NULL)
9683 return FALSE;
9684 }
9685
9686 h = htab->root.hplt;
9687 h->root.u.def.value = isa_bit;
9688 h->other = other;
9689 h->type = STT_FUNC;
9690 }
9691 }
9692
9693 /* Allocate space for global sym dynamic relocs. */
9694 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9695
9696 mips_elf_estimate_stub_size (output_bfd, info);
9697
9698 if (!mips_elf_lay_out_got (output_bfd, info))
9699 return FALSE;
9700
9701 mips_elf_lay_out_lazy_stubs (info);
9702
9703 /* The check_relocs and adjust_dynamic_symbol entry points have
9704 determined the sizes of the various dynamic sections. Allocate
9705 memory for them. */
9706 reltext = FALSE;
9707 for (s = dynobj->sections; s != NULL; s = s->next)
9708 {
9709 const char *name;
9710
9711 /* It's OK to base decisions on the section name, because none
9712 of the dynobj section names depend upon the input files. */
9713 name = bfd_get_section_name (dynobj, s);
9714
9715 if ((s->flags & SEC_LINKER_CREATED) == 0)
9716 continue;
9717
9718 if (CONST_STRNEQ (name, ".rel"))
9719 {
9720 if (s->size != 0)
9721 {
9722 const char *outname;
9723 asection *target;
9724
9725 /* If this relocation section applies to a read only
9726 section, then we probably need a DT_TEXTREL entry.
9727 If the relocation section is .rel(a).dyn, we always
9728 assert a DT_TEXTREL entry rather than testing whether
9729 there exists a relocation to a read only section or
9730 not. */
9731 outname = bfd_get_section_name (output_bfd,
9732 s->output_section);
9733 target = bfd_get_section_by_name (output_bfd, outname + 4);
9734 if ((target != NULL
9735 && (target->flags & SEC_READONLY) != 0
9736 && (target->flags & SEC_ALLOC) != 0)
9737 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9738 reltext = TRUE;
9739
9740 /* We use the reloc_count field as a counter if we need
9741 to copy relocs into the output file. */
9742 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9743 s->reloc_count = 0;
9744
9745 /* If combreloc is enabled, elf_link_sort_relocs() will
9746 sort relocations, but in a different way than we do,
9747 and before we're done creating relocations. Also, it
9748 will move them around between input sections'
9749 relocation's contents, so our sorting would be
9750 broken, so don't let it run. */
9751 info->combreloc = 0;
9752 }
9753 }
9754 else if (bfd_link_executable (info)
9755 && ! mips_elf_hash_table (info)->use_rld_obj_head
9756 && CONST_STRNEQ (name, ".rld_map"))
9757 {
9758 /* We add a room for __rld_map. It will be filled in by the
9759 rtld to contain a pointer to the _r_debug structure. */
9760 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9761 }
9762 else if (SGI_COMPAT (output_bfd)
9763 && CONST_STRNEQ (name, ".compact_rel"))
9764 s->size += mips_elf_hash_table (info)->compact_rel_size;
9765 else if (s == htab->root.splt)
9766 {
9767 /* If the last PLT entry has a branch delay slot, allocate
9768 room for an extra nop to fill the delay slot. This is
9769 for CPUs without load interlocking. */
9770 if (! LOAD_INTERLOCKS_P (output_bfd)
9771 && ! htab->is_vxworks && s->size > 0)
9772 s->size += 4;
9773 }
9774 else if (! CONST_STRNEQ (name, ".init")
9775 && s != htab->root.sgot
9776 && s != htab->root.sgotplt
9777 && s != htab->sstubs
9778 && s != htab->root.sdynbss
9779 && s != htab->root.sdynrelro)
9780 {
9781 /* It's not one of our sections, so don't allocate space. */
9782 continue;
9783 }
9784
9785 if (s->size == 0)
9786 {
9787 s->flags |= SEC_EXCLUDE;
9788 continue;
9789 }
9790
9791 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9792 continue;
9793
9794 /* Allocate memory for the section contents. */
9795 s->contents = bfd_zalloc (dynobj, s->size);
9796 if (s->contents == NULL)
9797 {
9798 bfd_set_error (bfd_error_no_memory);
9799 return FALSE;
9800 }
9801 }
9802
9803 if (elf_hash_table (info)->dynamic_sections_created)
9804 {
9805 /* Add some entries to the .dynamic section. We fill in the
9806 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9807 must add the entries now so that we get the correct size for
9808 the .dynamic section. */
9809
9810 /* SGI object has the equivalence of DT_DEBUG in the
9811 DT_MIPS_RLD_MAP entry. This must come first because glibc
9812 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9813 may only look at the first one they see. */
9814 if (!bfd_link_pic (info)
9815 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9816 return FALSE;
9817
9818 if (bfd_link_executable (info)
9819 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9820 return FALSE;
9821
9822 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9823 used by the debugger. */
9824 if (bfd_link_executable (info)
9825 && !SGI_COMPAT (output_bfd)
9826 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9827 return FALSE;
9828
9829 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9830 info->flags |= DF_TEXTREL;
9831
9832 if ((info->flags & DF_TEXTREL) != 0)
9833 {
9834 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9835 return FALSE;
9836
9837 /* Clear the DF_TEXTREL flag. It will be set again if we
9838 write out an actual text relocation; we may not, because
9839 at this point we do not know whether e.g. any .eh_frame
9840 absolute relocations have been converted to PC-relative. */
9841 info->flags &= ~DF_TEXTREL;
9842 }
9843
9844 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9845 return FALSE;
9846
9847 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9848 if (htab->is_vxworks)
9849 {
9850 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9851 use any of the DT_MIPS_* tags. */
9852 if (sreldyn && sreldyn->size > 0)
9853 {
9854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9855 return FALSE;
9856
9857 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9858 return FALSE;
9859
9860 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9861 return FALSE;
9862 }
9863 }
9864 else
9865 {
9866 if (sreldyn && sreldyn->size > 0)
9867 {
9868 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9869 return FALSE;
9870
9871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9872 return FALSE;
9873
9874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9875 return FALSE;
9876 }
9877
9878 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9879 return FALSE;
9880
9881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9882 return FALSE;
9883
9884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9885 return FALSE;
9886
9887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9888 return FALSE;
9889
9890 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9891 return FALSE;
9892
9893 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9894 return FALSE;
9895
9896 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9897 return FALSE;
9898
9899 if (IRIX_COMPAT (dynobj) == ict_irix5
9900 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9901 return FALSE;
9902
9903 if (IRIX_COMPAT (dynobj) == ict_irix6
9904 && (bfd_get_section_by_name
9905 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9906 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9907 return FALSE;
9908 }
9909 if (htab->root.splt->size > 0)
9910 {
9911 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9912 return FALSE;
9913
9914 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9915 return FALSE;
9916
9917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9918 return FALSE;
9919
9920 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9921 return FALSE;
9922 }
9923 if (htab->is_vxworks
9924 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9925 return FALSE;
9926 }
9927
9928 return TRUE;
9929 }
9930 \f
9931 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9932 Adjust its R_ADDEND field so that it is correct for the output file.
9933 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9934 and sections respectively; both use symbol indexes. */
9935
9936 static void
9937 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9938 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9939 asection **local_sections, Elf_Internal_Rela *rel)
9940 {
9941 unsigned int r_type, r_symndx;
9942 Elf_Internal_Sym *sym;
9943 asection *sec;
9944
9945 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9946 {
9947 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9948 if (gprel16_reloc_p (r_type)
9949 || r_type == R_MIPS_GPREL32
9950 || literal_reloc_p (r_type))
9951 {
9952 rel->r_addend += _bfd_get_gp_value (input_bfd);
9953 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9954 }
9955
9956 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9957 sym = local_syms + r_symndx;
9958
9959 /* Adjust REL's addend to account for section merging. */
9960 if (!bfd_link_relocatable (info))
9961 {
9962 sec = local_sections[r_symndx];
9963 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9964 }
9965
9966 /* This would normally be done by the rela_normal code in elflink.c. */
9967 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9968 rel->r_addend += local_sections[r_symndx]->output_offset;
9969 }
9970 }
9971
9972 /* Handle relocations against symbols from removed linkonce sections,
9973 or sections discarded by a linker script. We use this wrapper around
9974 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9975 on 64-bit ELF targets. In this case for any relocation handled, which
9976 always be the first in a triplet, the remaining two have to be processed
9977 together with the first, even if they are R_MIPS_NONE. It is the symbol
9978 index referred by the first reloc that applies to all the three and the
9979 remaining two never refer to an object symbol. And it is the final
9980 relocation (the last non-null one) that determines the output field of
9981 the whole relocation so retrieve the corresponding howto structure for
9982 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9983
9984 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9985 and therefore requires to be pasted in a loop. It also defines a block
9986 and does not protect any of its arguments, hence the extra brackets. */
9987
9988 static void
9989 mips_reloc_against_discarded_section (bfd *output_bfd,
9990 struct bfd_link_info *info,
9991 bfd *input_bfd, asection *input_section,
9992 Elf_Internal_Rela **rel,
9993 const Elf_Internal_Rela **relend,
9994 bfd_boolean rel_reloc,
9995 reloc_howto_type *howto,
9996 bfd_byte *contents)
9997 {
9998 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9999 int count = bed->s->int_rels_per_ext_rel;
10000 unsigned int r_type;
10001 int i;
10002
10003 for (i = count - 1; i > 0; i--)
10004 {
10005 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10006 if (r_type != R_MIPS_NONE)
10007 {
10008 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10009 break;
10010 }
10011 }
10012 do
10013 {
10014 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10015 (*rel), count, (*relend),
10016 howto, i, contents);
10017 }
10018 while (0);
10019 }
10020
10021 /* Relocate a MIPS ELF section. */
10022
10023 bfd_boolean
10024 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10025 bfd *input_bfd, asection *input_section,
10026 bfd_byte *contents, Elf_Internal_Rela *relocs,
10027 Elf_Internal_Sym *local_syms,
10028 asection **local_sections)
10029 {
10030 Elf_Internal_Rela *rel;
10031 const Elf_Internal_Rela *relend;
10032 bfd_vma addend = 0;
10033 bfd_boolean use_saved_addend_p = FALSE;
10034 const struct elf_backend_data *bed;
10035
10036 bed = get_elf_backend_data (output_bfd);
10037 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10038 for (rel = relocs; rel < relend; ++rel)
10039 {
10040 const char *name;
10041 bfd_vma value = 0;
10042 reloc_howto_type *howto;
10043 bfd_boolean cross_mode_jump_p = FALSE;
10044 /* TRUE if the relocation is a RELA relocation, rather than a
10045 REL relocation. */
10046 bfd_boolean rela_relocation_p = TRUE;
10047 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10048 const char *msg;
10049 unsigned long r_symndx;
10050 asection *sec;
10051 Elf_Internal_Shdr *symtab_hdr;
10052 struct elf_link_hash_entry *h;
10053 bfd_boolean rel_reloc;
10054
10055 rel_reloc = (NEWABI_P (input_bfd)
10056 && mips_elf_rel_relocation_p (input_bfd, input_section,
10057 relocs, rel));
10058 /* Find the relocation howto for this relocation. */
10059 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10060
10061 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10062 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10063 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10064 {
10065 sec = local_sections[r_symndx];
10066 h = NULL;
10067 }
10068 else
10069 {
10070 unsigned long extsymoff;
10071
10072 extsymoff = 0;
10073 if (!elf_bad_symtab (input_bfd))
10074 extsymoff = symtab_hdr->sh_info;
10075 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10076 while (h->root.type == bfd_link_hash_indirect
10077 || h->root.type == bfd_link_hash_warning)
10078 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10079
10080 sec = NULL;
10081 if (h->root.type == bfd_link_hash_defined
10082 || h->root.type == bfd_link_hash_defweak)
10083 sec = h->root.u.def.section;
10084 }
10085
10086 if (sec != NULL && discarded_section (sec))
10087 {
10088 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10089 input_section, &rel, &relend,
10090 rel_reloc, howto, contents);
10091 continue;
10092 }
10093
10094 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10095 {
10096 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10097 64-bit code, but make sure all their addresses are in the
10098 lowermost or uppermost 32-bit section of the 64-bit address
10099 space. Thus, when they use an R_MIPS_64 they mean what is
10100 usually meant by R_MIPS_32, with the exception that the
10101 stored value is sign-extended to 64 bits. */
10102 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10103
10104 /* On big-endian systems, we need to lie about the position
10105 of the reloc. */
10106 if (bfd_big_endian (input_bfd))
10107 rel->r_offset += 4;
10108 }
10109
10110 if (!use_saved_addend_p)
10111 {
10112 /* If these relocations were originally of the REL variety,
10113 we must pull the addend out of the field that will be
10114 relocated. Otherwise, we simply use the contents of the
10115 RELA relocation. */
10116 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10117 relocs, rel))
10118 {
10119 rela_relocation_p = FALSE;
10120 addend = mips_elf_read_rel_addend (input_bfd, rel,
10121 howto, contents);
10122 if (hi16_reloc_p (r_type)
10123 || (got16_reloc_p (r_type)
10124 && mips_elf_local_relocation_p (input_bfd, rel,
10125 local_sections)))
10126 {
10127 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10128 contents, &addend))
10129 {
10130 if (h)
10131 name = h->root.root.string;
10132 else
10133 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10134 local_syms + r_symndx,
10135 sec);
10136 _bfd_error_handler
10137 /* xgettext:c-format */
10138 (_("%B: Can't find matching LO16 reloc against `%s'"
10139 " for %s at 0x%lx in section `%A'"),
10140 input_bfd, name,
10141 howto->name, rel->r_offset, input_section);
10142 }
10143 }
10144 else
10145 addend <<= howto->rightshift;
10146 }
10147 else
10148 addend = rel->r_addend;
10149 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10150 local_syms, local_sections, rel);
10151 }
10152
10153 if (bfd_link_relocatable (info))
10154 {
10155 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10156 && bfd_big_endian (input_bfd))
10157 rel->r_offset -= 4;
10158
10159 if (!rela_relocation_p && rel->r_addend)
10160 {
10161 addend += rel->r_addend;
10162 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10163 addend = mips_elf_high (addend);
10164 else if (r_type == R_MIPS_HIGHER)
10165 addend = mips_elf_higher (addend);
10166 else if (r_type == R_MIPS_HIGHEST)
10167 addend = mips_elf_highest (addend);
10168 else
10169 addend >>= howto->rightshift;
10170
10171 /* We use the source mask, rather than the destination
10172 mask because the place to which we are writing will be
10173 source of the addend in the final link. */
10174 addend &= howto->src_mask;
10175
10176 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10177 /* See the comment above about using R_MIPS_64 in the 32-bit
10178 ABI. Here, we need to update the addend. It would be
10179 possible to get away with just using the R_MIPS_32 reloc
10180 but for endianness. */
10181 {
10182 bfd_vma sign_bits;
10183 bfd_vma low_bits;
10184 bfd_vma high_bits;
10185
10186 if (addend & ((bfd_vma) 1 << 31))
10187 #ifdef BFD64
10188 sign_bits = ((bfd_vma) 1 << 32) - 1;
10189 #else
10190 sign_bits = -1;
10191 #endif
10192 else
10193 sign_bits = 0;
10194
10195 /* If we don't know that we have a 64-bit type,
10196 do two separate stores. */
10197 if (bfd_big_endian (input_bfd))
10198 {
10199 /* Store the sign-bits (which are most significant)
10200 first. */
10201 low_bits = sign_bits;
10202 high_bits = addend;
10203 }
10204 else
10205 {
10206 low_bits = addend;
10207 high_bits = sign_bits;
10208 }
10209 bfd_put_32 (input_bfd, low_bits,
10210 contents + rel->r_offset);
10211 bfd_put_32 (input_bfd, high_bits,
10212 contents + rel->r_offset + 4);
10213 continue;
10214 }
10215
10216 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10217 input_bfd, input_section,
10218 contents, FALSE))
10219 return FALSE;
10220 }
10221
10222 /* Go on to the next relocation. */
10223 continue;
10224 }
10225
10226 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10227 relocations for the same offset. In that case we are
10228 supposed to treat the output of each relocation as the addend
10229 for the next. */
10230 if (rel + 1 < relend
10231 && rel->r_offset == rel[1].r_offset
10232 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10233 use_saved_addend_p = TRUE;
10234 else
10235 use_saved_addend_p = FALSE;
10236
10237 /* Figure out what value we are supposed to relocate. */
10238 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10239 input_section, info, rel,
10240 addend, howto, local_syms,
10241 local_sections, &value,
10242 &name, &cross_mode_jump_p,
10243 use_saved_addend_p))
10244 {
10245 case bfd_reloc_continue:
10246 /* There's nothing to do. */
10247 continue;
10248
10249 case bfd_reloc_undefined:
10250 /* mips_elf_calculate_relocation already called the
10251 undefined_symbol callback. There's no real point in
10252 trying to perform the relocation at this point, so we
10253 just skip ahead to the next relocation. */
10254 continue;
10255
10256 case bfd_reloc_notsupported:
10257 msg = _("internal error: unsupported relocation error");
10258 info->callbacks->warning
10259 (info, msg, name, input_bfd, input_section, rel->r_offset);
10260 return FALSE;
10261
10262 case bfd_reloc_overflow:
10263 if (use_saved_addend_p)
10264 /* Ignore overflow until we reach the last relocation for
10265 a given location. */
10266 ;
10267 else
10268 {
10269 struct mips_elf_link_hash_table *htab;
10270
10271 htab = mips_elf_hash_table (info);
10272 BFD_ASSERT (htab != NULL);
10273 BFD_ASSERT (name != NULL);
10274 if (!htab->small_data_overflow_reported
10275 && (gprel16_reloc_p (howto->type)
10276 || literal_reloc_p (howto->type)))
10277 {
10278 msg = _("small-data section exceeds 64KB;"
10279 " lower small-data size limit (see option -G)");
10280
10281 htab->small_data_overflow_reported = TRUE;
10282 (*info->callbacks->einfo) ("%P: %s\n", msg);
10283 }
10284 (*info->callbacks->reloc_overflow)
10285 (info, NULL, name, howto->name, (bfd_vma) 0,
10286 input_bfd, input_section, rel->r_offset);
10287 }
10288 break;
10289
10290 case bfd_reloc_ok:
10291 break;
10292
10293 case bfd_reloc_outofrange:
10294 msg = NULL;
10295 if (jal_reloc_p (howto->type))
10296 msg = (cross_mode_jump_p
10297 ? _("Cannot convert a jump to JALX "
10298 "for a non-word-aligned address")
10299 : (howto->type == R_MIPS16_26
10300 ? _("Jump to a non-word-aligned address")
10301 : _("Jump to a non-instruction-aligned address")));
10302 else if (b_reloc_p (howto->type))
10303 msg = (cross_mode_jump_p
10304 ? _("Cannot convert a branch to JALX "
10305 "for a non-word-aligned address")
10306 : _("Branch to a non-instruction-aligned address"));
10307 else if (aligned_pcrel_reloc_p (howto->type))
10308 msg = _("PC-relative load from unaligned address");
10309 if (msg)
10310 {
10311 info->callbacks->einfo
10312 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10313 break;
10314 }
10315 /* Fall through. */
10316
10317 default:
10318 abort ();
10319 break;
10320 }
10321
10322 /* If we've got another relocation for the address, keep going
10323 until we reach the last one. */
10324 if (use_saved_addend_p)
10325 {
10326 addend = value;
10327 continue;
10328 }
10329
10330 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10331 /* See the comment above about using R_MIPS_64 in the 32-bit
10332 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10333 that calculated the right value. Now, however, we
10334 sign-extend the 32-bit result to 64-bits, and store it as a
10335 64-bit value. We are especially generous here in that we
10336 go to extreme lengths to support this usage on systems with
10337 only a 32-bit VMA. */
10338 {
10339 bfd_vma sign_bits;
10340 bfd_vma low_bits;
10341 bfd_vma high_bits;
10342
10343 if (value & ((bfd_vma) 1 << 31))
10344 #ifdef BFD64
10345 sign_bits = ((bfd_vma) 1 << 32) - 1;
10346 #else
10347 sign_bits = -1;
10348 #endif
10349 else
10350 sign_bits = 0;
10351
10352 /* If we don't know that we have a 64-bit type,
10353 do two separate stores. */
10354 if (bfd_big_endian (input_bfd))
10355 {
10356 /* Undo what we did above. */
10357 rel->r_offset -= 4;
10358 /* Store the sign-bits (which are most significant)
10359 first. */
10360 low_bits = sign_bits;
10361 high_bits = value;
10362 }
10363 else
10364 {
10365 low_bits = value;
10366 high_bits = sign_bits;
10367 }
10368 bfd_put_32 (input_bfd, low_bits,
10369 contents + rel->r_offset);
10370 bfd_put_32 (input_bfd, high_bits,
10371 contents + rel->r_offset + 4);
10372 continue;
10373 }
10374
10375 /* Actually perform the relocation. */
10376 if (! mips_elf_perform_relocation (info, howto, rel, value,
10377 input_bfd, input_section,
10378 contents, cross_mode_jump_p))
10379 return FALSE;
10380 }
10381
10382 return TRUE;
10383 }
10384 \f
10385 /* A function that iterates over each entry in la25_stubs and fills
10386 in the code for each one. DATA points to a mips_htab_traverse_info. */
10387
10388 static int
10389 mips_elf_create_la25_stub (void **slot, void *data)
10390 {
10391 struct mips_htab_traverse_info *hti;
10392 struct mips_elf_link_hash_table *htab;
10393 struct mips_elf_la25_stub *stub;
10394 asection *s;
10395 bfd_byte *loc;
10396 bfd_vma offset, target, target_high, target_low;
10397
10398 stub = (struct mips_elf_la25_stub *) *slot;
10399 hti = (struct mips_htab_traverse_info *) data;
10400 htab = mips_elf_hash_table (hti->info);
10401 BFD_ASSERT (htab != NULL);
10402
10403 /* Create the section contents, if we haven't already. */
10404 s = stub->stub_section;
10405 loc = s->contents;
10406 if (loc == NULL)
10407 {
10408 loc = bfd_malloc (s->size);
10409 if (loc == NULL)
10410 {
10411 hti->error = TRUE;
10412 return FALSE;
10413 }
10414 s->contents = loc;
10415 }
10416
10417 /* Work out where in the section this stub should go. */
10418 offset = stub->offset;
10419
10420 /* Work out the target address. */
10421 target = mips_elf_get_la25_target (stub, &s);
10422 target += s->output_section->vma + s->output_offset;
10423
10424 target_high = ((target + 0x8000) >> 16) & 0xffff;
10425 target_low = (target & 0xffff);
10426
10427 if (stub->stub_section != htab->strampoline)
10428 {
10429 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10430 of the section and write the two instructions at the end. */
10431 memset (loc, 0, offset);
10432 loc += offset;
10433 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10434 {
10435 bfd_put_micromips_32 (hti->output_bfd,
10436 LA25_LUI_MICROMIPS (target_high),
10437 loc);
10438 bfd_put_micromips_32 (hti->output_bfd,
10439 LA25_ADDIU_MICROMIPS (target_low),
10440 loc + 4);
10441 }
10442 else
10443 {
10444 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10445 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10446 }
10447 }
10448 else
10449 {
10450 /* This is trampoline. */
10451 loc += offset;
10452 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10453 {
10454 bfd_put_micromips_32 (hti->output_bfd,
10455 LA25_LUI_MICROMIPS (target_high), loc);
10456 bfd_put_micromips_32 (hti->output_bfd,
10457 LA25_J_MICROMIPS (target), loc + 4);
10458 bfd_put_micromips_32 (hti->output_bfd,
10459 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10460 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10461 }
10462 else
10463 {
10464 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10465 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10466 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10467 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10468 }
10469 }
10470 return TRUE;
10471 }
10472
10473 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10474 adjust it appropriately now. */
10475
10476 static void
10477 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10478 const char *name, Elf_Internal_Sym *sym)
10479 {
10480 /* The linker script takes care of providing names and values for
10481 these, but we must place them into the right sections. */
10482 static const char* const text_section_symbols[] = {
10483 "_ftext",
10484 "_etext",
10485 "__dso_displacement",
10486 "__elf_header",
10487 "__program_header_table",
10488 NULL
10489 };
10490
10491 static const char* const data_section_symbols[] = {
10492 "_fdata",
10493 "_edata",
10494 "_end",
10495 "_fbss",
10496 NULL
10497 };
10498
10499 const char* const *p;
10500 int i;
10501
10502 for (i = 0; i < 2; ++i)
10503 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10504 *p;
10505 ++p)
10506 if (strcmp (*p, name) == 0)
10507 {
10508 /* All of these symbols are given type STT_SECTION by the
10509 IRIX6 linker. */
10510 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10511 sym->st_other = STO_PROTECTED;
10512
10513 /* The IRIX linker puts these symbols in special sections. */
10514 if (i == 0)
10515 sym->st_shndx = SHN_MIPS_TEXT;
10516 else
10517 sym->st_shndx = SHN_MIPS_DATA;
10518
10519 break;
10520 }
10521 }
10522
10523 /* Finish up dynamic symbol handling. We set the contents of various
10524 dynamic sections here. */
10525
10526 bfd_boolean
10527 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10528 struct bfd_link_info *info,
10529 struct elf_link_hash_entry *h,
10530 Elf_Internal_Sym *sym)
10531 {
10532 bfd *dynobj;
10533 asection *sgot;
10534 struct mips_got_info *g, *gg;
10535 const char *name;
10536 int idx;
10537 struct mips_elf_link_hash_table *htab;
10538 struct mips_elf_link_hash_entry *hmips;
10539
10540 htab = mips_elf_hash_table (info);
10541 BFD_ASSERT (htab != NULL);
10542 dynobj = elf_hash_table (info)->dynobj;
10543 hmips = (struct mips_elf_link_hash_entry *) h;
10544
10545 BFD_ASSERT (!htab->is_vxworks);
10546
10547 if (h->plt.plist != NULL
10548 && (h->plt.plist->mips_offset != MINUS_ONE
10549 || h->plt.plist->comp_offset != MINUS_ONE))
10550 {
10551 /* We've decided to create a PLT entry for this symbol. */
10552 bfd_byte *loc;
10553 bfd_vma header_address, got_address;
10554 bfd_vma got_address_high, got_address_low, load;
10555 bfd_vma got_index;
10556 bfd_vma isa_bit;
10557
10558 got_index = h->plt.plist->gotplt_index;
10559
10560 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10561 BFD_ASSERT (h->dynindx != -1);
10562 BFD_ASSERT (htab->root.splt != NULL);
10563 BFD_ASSERT (got_index != MINUS_ONE);
10564 BFD_ASSERT (!h->def_regular);
10565
10566 /* Calculate the address of the PLT header. */
10567 isa_bit = htab->plt_header_is_comp;
10568 header_address = (htab->root.splt->output_section->vma
10569 + htab->root.splt->output_offset + isa_bit);
10570
10571 /* Calculate the address of the .got.plt entry. */
10572 got_address = (htab->root.sgotplt->output_section->vma
10573 + htab->root.sgotplt->output_offset
10574 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10575
10576 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10577 got_address_low = got_address & 0xffff;
10578
10579 /* Initially point the .got.plt entry at the PLT header. */
10580 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10581 if (ABI_64_P (output_bfd))
10582 bfd_put_64 (output_bfd, header_address, loc);
10583 else
10584 bfd_put_32 (output_bfd, header_address, loc);
10585
10586 /* Now handle the PLT itself. First the standard entry (the order
10587 does not matter, we just have to pick one). */
10588 if (h->plt.plist->mips_offset != MINUS_ONE)
10589 {
10590 const bfd_vma *plt_entry;
10591 bfd_vma plt_offset;
10592
10593 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10594
10595 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10596
10597 /* Find out where the .plt entry should go. */
10598 loc = htab->root.splt->contents + plt_offset;
10599
10600 /* Pick the load opcode. */
10601 load = MIPS_ELF_LOAD_WORD (output_bfd);
10602
10603 /* Fill in the PLT entry itself. */
10604
10605 if (MIPSR6_P (output_bfd))
10606 plt_entry = mipsr6_exec_plt_entry;
10607 else
10608 plt_entry = mips_exec_plt_entry;
10609 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10610 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10611 loc + 4);
10612
10613 if (! LOAD_INTERLOCKS_P (output_bfd))
10614 {
10615 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10616 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10617 }
10618 else
10619 {
10620 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10621 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10622 loc + 12);
10623 }
10624 }
10625
10626 /* Now the compressed entry. They come after any standard ones. */
10627 if (h->plt.plist->comp_offset != MINUS_ONE)
10628 {
10629 bfd_vma plt_offset;
10630
10631 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10632 + h->plt.plist->comp_offset);
10633
10634 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10635
10636 /* Find out where the .plt entry should go. */
10637 loc = htab->root.splt->contents + plt_offset;
10638
10639 /* Fill in the PLT entry itself. */
10640 if (!MICROMIPS_P (output_bfd))
10641 {
10642 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10643
10644 bfd_put_16 (output_bfd, plt_entry[0], loc);
10645 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10646 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10647 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10648 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10649 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10650 bfd_put_32 (output_bfd, got_address, loc + 12);
10651 }
10652 else if (htab->insn32)
10653 {
10654 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10655
10656 bfd_put_16 (output_bfd, plt_entry[0], loc);
10657 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10658 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10659 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10660 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10661 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10662 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10663 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10664 }
10665 else
10666 {
10667 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10668 bfd_signed_vma gotpc_offset;
10669 bfd_vma loc_address;
10670
10671 BFD_ASSERT (got_address % 4 == 0);
10672
10673 loc_address = (htab->root.splt->output_section->vma
10674 + htab->root.splt->output_offset + plt_offset);
10675 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10676
10677 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10678 if (gotpc_offset + 0x1000000 >= 0x2000000)
10679 {
10680 _bfd_error_handler
10681 /* xgettext:c-format */
10682 (_("%B: `%A' offset of %ld from `%A' "
10683 "beyond the range of ADDIUPC"),
10684 output_bfd,
10685 htab->root.sgotplt->output_section,
10686 (long) gotpc_offset,
10687 htab->root.splt->output_section);
10688 bfd_set_error (bfd_error_no_error);
10689 return FALSE;
10690 }
10691 bfd_put_16 (output_bfd,
10692 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10693 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10694 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10695 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10696 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10697 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10698 }
10699 }
10700
10701 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10702 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10703 got_index - 2, h->dynindx,
10704 R_MIPS_JUMP_SLOT, got_address);
10705
10706 /* We distinguish between PLT entries and lazy-binding stubs by
10707 giving the former an st_other value of STO_MIPS_PLT. Set the
10708 flag and leave the value if there are any relocations in the
10709 binary where pointer equality matters. */
10710 sym->st_shndx = SHN_UNDEF;
10711 if (h->pointer_equality_needed)
10712 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10713 else
10714 {
10715 sym->st_value = 0;
10716 sym->st_other = 0;
10717 }
10718 }
10719
10720 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10721 {
10722 /* We've decided to create a lazy-binding stub. */
10723 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10724 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10725 bfd_vma stub_size = htab->function_stub_size;
10726 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10727 bfd_vma isa_bit = micromips_p;
10728 bfd_vma stub_big_size;
10729
10730 if (!micromips_p)
10731 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10732 else if (htab->insn32)
10733 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10734 else
10735 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10736
10737 /* This symbol has a stub. Set it up. */
10738
10739 BFD_ASSERT (h->dynindx != -1);
10740
10741 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10742
10743 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10744 sign extension at runtime in the stub, resulting in a negative
10745 index value. */
10746 if (h->dynindx & ~0x7fffffff)
10747 return FALSE;
10748
10749 /* Fill the stub. */
10750 if (micromips_p)
10751 {
10752 idx = 0;
10753 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10754 stub + idx);
10755 idx += 4;
10756 if (htab->insn32)
10757 {
10758 bfd_put_micromips_32 (output_bfd,
10759 STUB_MOVE32_MICROMIPS, stub + idx);
10760 idx += 4;
10761 }
10762 else
10763 {
10764 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10765 idx += 2;
10766 }
10767 if (stub_size == stub_big_size)
10768 {
10769 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10770
10771 bfd_put_micromips_32 (output_bfd,
10772 STUB_LUI_MICROMIPS (dynindx_hi),
10773 stub + idx);
10774 idx += 4;
10775 }
10776 if (htab->insn32)
10777 {
10778 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10779 stub + idx);
10780 idx += 4;
10781 }
10782 else
10783 {
10784 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10785 idx += 2;
10786 }
10787
10788 /* If a large stub is not required and sign extension is not a
10789 problem, then use legacy code in the stub. */
10790 if (stub_size == stub_big_size)
10791 bfd_put_micromips_32 (output_bfd,
10792 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10793 stub + idx);
10794 else if (h->dynindx & ~0x7fff)
10795 bfd_put_micromips_32 (output_bfd,
10796 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10797 stub + idx);
10798 else
10799 bfd_put_micromips_32 (output_bfd,
10800 STUB_LI16S_MICROMIPS (output_bfd,
10801 h->dynindx),
10802 stub + idx);
10803 }
10804 else
10805 {
10806 idx = 0;
10807 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10808 idx += 4;
10809 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10810 idx += 4;
10811 if (stub_size == stub_big_size)
10812 {
10813 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10814 stub + idx);
10815 idx += 4;
10816 }
10817 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10818 idx += 4;
10819
10820 /* If a large stub is not required and sign extension is not a
10821 problem, then use legacy code in the stub. */
10822 if (stub_size == stub_big_size)
10823 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10824 stub + idx);
10825 else if (h->dynindx & ~0x7fff)
10826 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10827 stub + idx);
10828 else
10829 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10830 stub + idx);
10831 }
10832
10833 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10834 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10835 stub, stub_size);
10836
10837 /* Mark the symbol as undefined. stub_offset != -1 occurs
10838 only for the referenced symbol. */
10839 sym->st_shndx = SHN_UNDEF;
10840
10841 /* The run-time linker uses the st_value field of the symbol
10842 to reset the global offset table entry for this external
10843 to its stub address when unlinking a shared object. */
10844 sym->st_value = (htab->sstubs->output_section->vma
10845 + htab->sstubs->output_offset
10846 + h->plt.plist->stub_offset
10847 + isa_bit);
10848 sym->st_other = other;
10849 }
10850
10851 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10852 refer to the stub, since only the stub uses the standard calling
10853 conventions. */
10854 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10855 {
10856 BFD_ASSERT (hmips->need_fn_stub);
10857 sym->st_value = (hmips->fn_stub->output_section->vma
10858 + hmips->fn_stub->output_offset);
10859 sym->st_size = hmips->fn_stub->size;
10860 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10861 }
10862
10863 BFD_ASSERT (h->dynindx != -1
10864 || h->forced_local);
10865
10866 sgot = htab->root.sgot;
10867 g = htab->got_info;
10868 BFD_ASSERT (g != NULL);
10869
10870 /* Run through the global symbol table, creating GOT entries for all
10871 the symbols that need them. */
10872 if (hmips->global_got_area != GGA_NONE)
10873 {
10874 bfd_vma offset;
10875 bfd_vma value;
10876
10877 value = sym->st_value;
10878 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10879 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10880 }
10881
10882 if (hmips->global_got_area != GGA_NONE && g->next)
10883 {
10884 struct mips_got_entry e, *p;
10885 bfd_vma entry;
10886 bfd_vma offset;
10887
10888 gg = g;
10889
10890 e.abfd = output_bfd;
10891 e.symndx = -1;
10892 e.d.h = hmips;
10893 e.tls_type = GOT_TLS_NONE;
10894
10895 for (g = g->next; g->next != gg; g = g->next)
10896 {
10897 if (g->got_entries
10898 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10899 &e)))
10900 {
10901 offset = p->gotidx;
10902 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10903 if (bfd_link_pic (info)
10904 || (elf_hash_table (info)->dynamic_sections_created
10905 && p->d.h != NULL
10906 && p->d.h->root.def_dynamic
10907 && !p->d.h->root.def_regular))
10908 {
10909 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10910 the various compatibility problems, it's easier to mock
10911 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10912 mips_elf_create_dynamic_relocation to calculate the
10913 appropriate addend. */
10914 Elf_Internal_Rela rel[3];
10915
10916 memset (rel, 0, sizeof (rel));
10917 if (ABI_64_P (output_bfd))
10918 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10919 else
10920 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10921 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10922
10923 entry = 0;
10924 if (! (mips_elf_create_dynamic_relocation
10925 (output_bfd, info, rel,
10926 e.d.h, NULL, sym->st_value, &entry, sgot)))
10927 return FALSE;
10928 }
10929 else
10930 entry = sym->st_value;
10931 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10932 }
10933 }
10934 }
10935
10936 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10937 name = h->root.root.string;
10938 if (h == elf_hash_table (info)->hdynamic
10939 || h == elf_hash_table (info)->hgot)
10940 sym->st_shndx = SHN_ABS;
10941 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10942 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10943 {
10944 sym->st_shndx = SHN_ABS;
10945 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10946 sym->st_value = 1;
10947 }
10948 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10949 {
10950 sym->st_shndx = SHN_ABS;
10951 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10952 sym->st_value = elf_gp (output_bfd);
10953 }
10954 else if (SGI_COMPAT (output_bfd))
10955 {
10956 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10957 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10958 {
10959 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10960 sym->st_other = STO_PROTECTED;
10961 sym->st_value = 0;
10962 sym->st_shndx = SHN_MIPS_DATA;
10963 }
10964 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10965 {
10966 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10967 sym->st_other = STO_PROTECTED;
10968 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10969 sym->st_shndx = SHN_ABS;
10970 }
10971 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10972 {
10973 if (h->type == STT_FUNC)
10974 sym->st_shndx = SHN_MIPS_TEXT;
10975 else if (h->type == STT_OBJECT)
10976 sym->st_shndx = SHN_MIPS_DATA;
10977 }
10978 }
10979
10980 /* Emit a copy reloc, if needed. */
10981 if (h->needs_copy)
10982 {
10983 asection *s;
10984 bfd_vma symval;
10985
10986 BFD_ASSERT (h->dynindx != -1);
10987 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10988
10989 s = mips_elf_rel_dyn_section (info, FALSE);
10990 symval = (h->root.u.def.section->output_section->vma
10991 + h->root.u.def.section->output_offset
10992 + h->root.u.def.value);
10993 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10994 h->dynindx, R_MIPS_COPY, symval);
10995 }
10996
10997 /* Handle the IRIX6-specific symbols. */
10998 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10999 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11000
11001 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11002 to treat compressed symbols like any other. */
11003 if (ELF_ST_IS_MIPS16 (sym->st_other))
11004 {
11005 BFD_ASSERT (sym->st_value & 1);
11006 sym->st_other -= STO_MIPS16;
11007 }
11008 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11009 {
11010 BFD_ASSERT (sym->st_value & 1);
11011 sym->st_other -= STO_MICROMIPS;
11012 }
11013
11014 return TRUE;
11015 }
11016
11017 /* Likewise, for VxWorks. */
11018
11019 bfd_boolean
11020 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11021 struct bfd_link_info *info,
11022 struct elf_link_hash_entry *h,
11023 Elf_Internal_Sym *sym)
11024 {
11025 bfd *dynobj;
11026 asection *sgot;
11027 struct mips_got_info *g;
11028 struct mips_elf_link_hash_table *htab;
11029 struct mips_elf_link_hash_entry *hmips;
11030
11031 htab = mips_elf_hash_table (info);
11032 BFD_ASSERT (htab != NULL);
11033 dynobj = elf_hash_table (info)->dynobj;
11034 hmips = (struct mips_elf_link_hash_entry *) h;
11035
11036 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11037 {
11038 bfd_byte *loc;
11039 bfd_vma plt_address, got_address, got_offset, branch_offset;
11040 Elf_Internal_Rela rel;
11041 static const bfd_vma *plt_entry;
11042 bfd_vma gotplt_index;
11043 bfd_vma plt_offset;
11044
11045 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11046 gotplt_index = h->plt.plist->gotplt_index;
11047
11048 BFD_ASSERT (h->dynindx != -1);
11049 BFD_ASSERT (htab->root.splt != NULL);
11050 BFD_ASSERT (gotplt_index != MINUS_ONE);
11051 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11052
11053 /* Calculate the address of the .plt entry. */
11054 plt_address = (htab->root.splt->output_section->vma
11055 + htab->root.splt->output_offset
11056 + plt_offset);
11057
11058 /* Calculate the address of the .got.plt entry. */
11059 got_address = (htab->root.sgotplt->output_section->vma
11060 + htab->root.sgotplt->output_offset
11061 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11062
11063 /* Calculate the offset of the .got.plt entry from
11064 _GLOBAL_OFFSET_TABLE_. */
11065 got_offset = mips_elf_gotplt_index (info, h);
11066
11067 /* Calculate the offset for the branch at the start of the PLT
11068 entry. The branch jumps to the beginning of .plt. */
11069 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11070
11071 /* Fill in the initial value of the .got.plt entry. */
11072 bfd_put_32 (output_bfd, plt_address,
11073 (htab->root.sgotplt->contents
11074 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11075
11076 /* Find out where the .plt entry should go. */
11077 loc = htab->root.splt->contents + plt_offset;
11078
11079 if (bfd_link_pic (info))
11080 {
11081 plt_entry = mips_vxworks_shared_plt_entry;
11082 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11083 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11084 }
11085 else
11086 {
11087 bfd_vma got_address_high, got_address_low;
11088
11089 plt_entry = mips_vxworks_exec_plt_entry;
11090 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11091 got_address_low = got_address & 0xffff;
11092
11093 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11094 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11095 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11096 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11097 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11098 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11099 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11100 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11101
11102 loc = (htab->srelplt2->contents
11103 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11104
11105 /* Emit a relocation for the .got.plt entry. */
11106 rel.r_offset = got_address;
11107 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11108 rel.r_addend = plt_offset;
11109 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11110
11111 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11112 loc += sizeof (Elf32_External_Rela);
11113 rel.r_offset = plt_address + 8;
11114 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11115 rel.r_addend = got_offset;
11116 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11117
11118 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11119 loc += sizeof (Elf32_External_Rela);
11120 rel.r_offset += 4;
11121 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11122 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11123 }
11124
11125 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11126 loc = (htab->root.srelplt->contents
11127 + gotplt_index * sizeof (Elf32_External_Rela));
11128 rel.r_offset = got_address;
11129 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11130 rel.r_addend = 0;
11131 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11132
11133 if (!h->def_regular)
11134 sym->st_shndx = SHN_UNDEF;
11135 }
11136
11137 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11138
11139 sgot = htab->root.sgot;
11140 g = htab->got_info;
11141 BFD_ASSERT (g != NULL);
11142
11143 /* See if this symbol has an entry in the GOT. */
11144 if (hmips->global_got_area != GGA_NONE)
11145 {
11146 bfd_vma offset;
11147 Elf_Internal_Rela outrel;
11148 bfd_byte *loc;
11149 asection *s;
11150
11151 /* Install the symbol value in the GOT. */
11152 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11153 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11154
11155 /* Add a dynamic relocation for it. */
11156 s = mips_elf_rel_dyn_section (info, FALSE);
11157 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11158 outrel.r_offset = (sgot->output_section->vma
11159 + sgot->output_offset
11160 + offset);
11161 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11162 outrel.r_addend = 0;
11163 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11164 }
11165
11166 /* Emit a copy reloc, if needed. */
11167 if (h->needs_copy)
11168 {
11169 Elf_Internal_Rela rel;
11170 asection *srel;
11171 bfd_byte *loc;
11172
11173 BFD_ASSERT (h->dynindx != -1);
11174
11175 rel.r_offset = (h->root.u.def.section->output_section->vma
11176 + h->root.u.def.section->output_offset
11177 + h->root.u.def.value);
11178 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11179 rel.r_addend = 0;
11180 if (h->root.u.def.section == htab->root.sdynrelro)
11181 srel = htab->root.sreldynrelro;
11182 else
11183 srel = htab->root.srelbss;
11184 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11185 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11186 ++srel->reloc_count;
11187 }
11188
11189 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11190 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11191 sym->st_value &= ~1;
11192
11193 return TRUE;
11194 }
11195
11196 /* Write out a plt0 entry to the beginning of .plt. */
11197
11198 static bfd_boolean
11199 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11200 {
11201 bfd_byte *loc;
11202 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11203 static const bfd_vma *plt_entry;
11204 struct mips_elf_link_hash_table *htab;
11205
11206 htab = mips_elf_hash_table (info);
11207 BFD_ASSERT (htab != NULL);
11208
11209 if (ABI_64_P (output_bfd))
11210 plt_entry = mips_n64_exec_plt0_entry;
11211 else if (ABI_N32_P (output_bfd))
11212 plt_entry = mips_n32_exec_plt0_entry;
11213 else if (!htab->plt_header_is_comp)
11214 plt_entry = mips_o32_exec_plt0_entry;
11215 else if (htab->insn32)
11216 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11217 else
11218 plt_entry = micromips_o32_exec_plt0_entry;
11219
11220 /* Calculate the value of .got.plt. */
11221 gotplt_value = (htab->root.sgotplt->output_section->vma
11222 + htab->root.sgotplt->output_offset);
11223 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11224 gotplt_value_low = gotplt_value & 0xffff;
11225
11226 /* The PLT sequence is not safe for N64 if .got.plt's address can
11227 not be loaded in two instructions. */
11228 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11229 || ~(gotplt_value | 0x7fffffff) == 0);
11230
11231 /* Install the PLT header. */
11232 loc = htab->root.splt->contents;
11233 if (plt_entry == micromips_o32_exec_plt0_entry)
11234 {
11235 bfd_vma gotpc_offset;
11236 bfd_vma loc_address;
11237 size_t i;
11238
11239 BFD_ASSERT (gotplt_value % 4 == 0);
11240
11241 loc_address = (htab->root.splt->output_section->vma
11242 + htab->root.splt->output_offset);
11243 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11244
11245 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11246 if (gotpc_offset + 0x1000000 >= 0x2000000)
11247 {
11248 _bfd_error_handler
11249 /* xgettext:c-format */
11250 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11251 output_bfd,
11252 htab->root.sgotplt->output_section,
11253 (long) gotpc_offset,
11254 htab->root.splt->output_section);
11255 bfd_set_error (bfd_error_no_error);
11256 return FALSE;
11257 }
11258 bfd_put_16 (output_bfd,
11259 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11260 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11261 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11262 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11263 }
11264 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11265 {
11266 size_t i;
11267
11268 bfd_put_16 (output_bfd, plt_entry[0], loc);
11269 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11270 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11271 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11272 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11273 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11274 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11275 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11276 }
11277 else
11278 {
11279 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11280 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11281 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11282 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11283 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11284 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11285 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11286 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11287 }
11288
11289 return TRUE;
11290 }
11291
11292 /* Install the PLT header for a VxWorks executable and finalize the
11293 contents of .rela.plt.unloaded. */
11294
11295 static void
11296 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11297 {
11298 Elf_Internal_Rela rela;
11299 bfd_byte *loc;
11300 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11301 static const bfd_vma *plt_entry;
11302 struct mips_elf_link_hash_table *htab;
11303
11304 htab = mips_elf_hash_table (info);
11305 BFD_ASSERT (htab != NULL);
11306
11307 plt_entry = mips_vxworks_exec_plt0_entry;
11308
11309 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11310 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11311 + htab->root.hgot->root.u.def.section->output_offset
11312 + htab->root.hgot->root.u.def.value);
11313
11314 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11315 got_value_low = got_value & 0xffff;
11316
11317 /* Calculate the address of the PLT header. */
11318 plt_address = (htab->root.splt->output_section->vma
11319 + htab->root.splt->output_offset);
11320
11321 /* Install the PLT header. */
11322 loc = htab->root.splt->contents;
11323 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11324 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11325 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11326 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11327 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11328 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11329
11330 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11331 loc = htab->srelplt2->contents;
11332 rela.r_offset = plt_address;
11333 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11334 rela.r_addend = 0;
11335 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11336 loc += sizeof (Elf32_External_Rela);
11337
11338 /* Output the relocation for the following addiu of
11339 %lo(_GLOBAL_OFFSET_TABLE_). */
11340 rela.r_offset += 4;
11341 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11342 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11343 loc += sizeof (Elf32_External_Rela);
11344
11345 /* Fix up the remaining relocations. They may have the wrong
11346 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11347 in which symbols were output. */
11348 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11349 {
11350 Elf_Internal_Rela rel;
11351
11352 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11353 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11354 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11355 loc += sizeof (Elf32_External_Rela);
11356
11357 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11358 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11359 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11360 loc += sizeof (Elf32_External_Rela);
11361
11362 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11363 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11364 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11365 loc += sizeof (Elf32_External_Rela);
11366 }
11367 }
11368
11369 /* Install the PLT header for a VxWorks shared library. */
11370
11371 static void
11372 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11373 {
11374 unsigned int i;
11375 struct mips_elf_link_hash_table *htab;
11376
11377 htab = mips_elf_hash_table (info);
11378 BFD_ASSERT (htab != NULL);
11379
11380 /* We just need to copy the entry byte-by-byte. */
11381 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11382 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11383 htab->root.splt->contents + i * 4);
11384 }
11385
11386 /* Finish up the dynamic sections. */
11387
11388 bfd_boolean
11389 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11390 struct bfd_link_info *info)
11391 {
11392 bfd *dynobj;
11393 asection *sdyn;
11394 asection *sgot;
11395 struct mips_got_info *gg, *g;
11396 struct mips_elf_link_hash_table *htab;
11397
11398 htab = mips_elf_hash_table (info);
11399 BFD_ASSERT (htab != NULL);
11400
11401 dynobj = elf_hash_table (info)->dynobj;
11402
11403 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11404
11405 sgot = htab->root.sgot;
11406 gg = htab->got_info;
11407
11408 if (elf_hash_table (info)->dynamic_sections_created)
11409 {
11410 bfd_byte *b;
11411 int dyn_to_skip = 0, dyn_skipped = 0;
11412
11413 BFD_ASSERT (sdyn != NULL);
11414 BFD_ASSERT (gg != NULL);
11415
11416 g = mips_elf_bfd_got (output_bfd, FALSE);
11417 BFD_ASSERT (g != NULL);
11418
11419 for (b = sdyn->contents;
11420 b < sdyn->contents + sdyn->size;
11421 b += MIPS_ELF_DYN_SIZE (dynobj))
11422 {
11423 Elf_Internal_Dyn dyn;
11424 const char *name;
11425 size_t elemsize;
11426 asection *s;
11427 bfd_boolean swap_out_p;
11428
11429 /* Read in the current dynamic entry. */
11430 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11431
11432 /* Assume that we're going to modify it and write it out. */
11433 swap_out_p = TRUE;
11434
11435 switch (dyn.d_tag)
11436 {
11437 case DT_RELENT:
11438 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11439 break;
11440
11441 case DT_RELAENT:
11442 BFD_ASSERT (htab->is_vxworks);
11443 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11444 break;
11445
11446 case DT_STRSZ:
11447 /* Rewrite DT_STRSZ. */
11448 dyn.d_un.d_val =
11449 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11450 break;
11451
11452 case DT_PLTGOT:
11453 s = htab->root.sgot;
11454 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11455 break;
11456
11457 case DT_MIPS_PLTGOT:
11458 s = htab->root.sgotplt;
11459 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11460 break;
11461
11462 case DT_MIPS_RLD_VERSION:
11463 dyn.d_un.d_val = 1; /* XXX */
11464 break;
11465
11466 case DT_MIPS_FLAGS:
11467 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11468 break;
11469
11470 case DT_MIPS_TIME_STAMP:
11471 {
11472 time_t t;
11473 time (&t);
11474 dyn.d_un.d_val = t;
11475 }
11476 break;
11477
11478 case DT_MIPS_ICHECKSUM:
11479 /* XXX FIXME: */
11480 swap_out_p = FALSE;
11481 break;
11482
11483 case DT_MIPS_IVERSION:
11484 /* XXX FIXME: */
11485 swap_out_p = FALSE;
11486 break;
11487
11488 case DT_MIPS_BASE_ADDRESS:
11489 s = output_bfd->sections;
11490 BFD_ASSERT (s != NULL);
11491 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11492 break;
11493
11494 case DT_MIPS_LOCAL_GOTNO:
11495 dyn.d_un.d_val = g->local_gotno;
11496 break;
11497
11498 case DT_MIPS_UNREFEXTNO:
11499 /* The index into the dynamic symbol table which is the
11500 entry of the first external symbol that is not
11501 referenced within the same object. */
11502 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11503 break;
11504
11505 case DT_MIPS_GOTSYM:
11506 if (htab->global_gotsym)
11507 {
11508 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11509 break;
11510 }
11511 /* In case if we don't have global got symbols we default
11512 to setting DT_MIPS_GOTSYM to the same value as
11513 DT_MIPS_SYMTABNO. */
11514 /* Fall through. */
11515
11516 case DT_MIPS_SYMTABNO:
11517 name = ".dynsym";
11518 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11519 s = bfd_get_linker_section (dynobj, name);
11520
11521 if (s != NULL)
11522 dyn.d_un.d_val = s->size / elemsize;
11523 else
11524 dyn.d_un.d_val = 0;
11525 break;
11526
11527 case DT_MIPS_HIPAGENO:
11528 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11529 break;
11530
11531 case DT_MIPS_RLD_MAP:
11532 {
11533 struct elf_link_hash_entry *h;
11534 h = mips_elf_hash_table (info)->rld_symbol;
11535 if (!h)
11536 {
11537 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11538 swap_out_p = FALSE;
11539 break;
11540 }
11541 s = h->root.u.def.section;
11542
11543 /* The MIPS_RLD_MAP tag stores the absolute address of the
11544 debug pointer. */
11545 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11546 + h->root.u.def.value);
11547 }
11548 break;
11549
11550 case DT_MIPS_RLD_MAP_REL:
11551 {
11552 struct elf_link_hash_entry *h;
11553 bfd_vma dt_addr, rld_addr;
11554 h = mips_elf_hash_table (info)->rld_symbol;
11555 if (!h)
11556 {
11557 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11558 swap_out_p = FALSE;
11559 break;
11560 }
11561 s = h->root.u.def.section;
11562
11563 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11564 pointer, relative to the address of the tag. */
11565 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11566 + (b - sdyn->contents));
11567 rld_addr = (s->output_section->vma + s->output_offset
11568 + h->root.u.def.value);
11569 dyn.d_un.d_ptr = rld_addr - dt_addr;
11570 }
11571 break;
11572
11573 case DT_MIPS_OPTIONS:
11574 s = (bfd_get_section_by_name
11575 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11576 dyn.d_un.d_ptr = s->vma;
11577 break;
11578
11579 case DT_PLTREL:
11580 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11581 if (htab->is_vxworks)
11582 dyn.d_un.d_val = DT_RELA;
11583 else
11584 dyn.d_un.d_val = DT_REL;
11585 break;
11586
11587 case DT_PLTRELSZ:
11588 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11589 dyn.d_un.d_val = htab->root.srelplt->size;
11590 break;
11591
11592 case DT_JMPREL:
11593 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11594 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11595 + htab->root.srelplt->output_offset);
11596 break;
11597
11598 case DT_TEXTREL:
11599 /* If we didn't need any text relocations after all, delete
11600 the dynamic tag. */
11601 if (!(info->flags & DF_TEXTREL))
11602 {
11603 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11604 swap_out_p = FALSE;
11605 }
11606 break;
11607
11608 case DT_FLAGS:
11609 /* If we didn't need any text relocations after all, clear
11610 DF_TEXTREL from DT_FLAGS. */
11611 if (!(info->flags & DF_TEXTREL))
11612 dyn.d_un.d_val &= ~DF_TEXTREL;
11613 else
11614 swap_out_p = FALSE;
11615 break;
11616
11617 default:
11618 swap_out_p = FALSE;
11619 if (htab->is_vxworks
11620 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11621 swap_out_p = TRUE;
11622 break;
11623 }
11624
11625 if (swap_out_p || dyn_skipped)
11626 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11627 (dynobj, &dyn, b - dyn_skipped);
11628
11629 if (dyn_to_skip)
11630 {
11631 dyn_skipped += dyn_to_skip;
11632 dyn_to_skip = 0;
11633 }
11634 }
11635
11636 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11637 if (dyn_skipped > 0)
11638 memset (b - dyn_skipped, 0, dyn_skipped);
11639 }
11640
11641 if (sgot != NULL && sgot->size > 0
11642 && !bfd_is_abs_section (sgot->output_section))
11643 {
11644 if (htab->is_vxworks)
11645 {
11646 /* The first entry of the global offset table points to the
11647 ".dynamic" section. The second is initialized by the
11648 loader and contains the shared library identifier.
11649 The third is also initialized by the loader and points
11650 to the lazy resolution stub. */
11651 MIPS_ELF_PUT_WORD (output_bfd,
11652 sdyn->output_offset + sdyn->output_section->vma,
11653 sgot->contents);
11654 MIPS_ELF_PUT_WORD (output_bfd, 0,
11655 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11656 MIPS_ELF_PUT_WORD (output_bfd, 0,
11657 sgot->contents
11658 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11659 }
11660 else
11661 {
11662 /* The first entry of the global offset table will be filled at
11663 runtime. The second entry will be used by some runtime loaders.
11664 This isn't the case of IRIX rld. */
11665 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11666 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11667 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11668 }
11669
11670 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11671 = MIPS_ELF_GOT_SIZE (output_bfd);
11672 }
11673
11674 /* Generate dynamic relocations for the non-primary gots. */
11675 if (gg != NULL && gg->next)
11676 {
11677 Elf_Internal_Rela rel[3];
11678 bfd_vma addend = 0;
11679
11680 memset (rel, 0, sizeof (rel));
11681 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11682
11683 for (g = gg->next; g->next != gg; g = g->next)
11684 {
11685 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11686 + g->next->tls_gotno;
11687
11688 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11689 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11690 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11691 sgot->contents
11692 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11693
11694 if (! bfd_link_pic (info))
11695 continue;
11696
11697 for (; got_index < g->local_gotno; got_index++)
11698 {
11699 if (got_index >= g->assigned_low_gotno
11700 && got_index <= g->assigned_high_gotno)
11701 continue;
11702
11703 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11704 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11705 if (!(mips_elf_create_dynamic_relocation
11706 (output_bfd, info, rel, NULL,
11707 bfd_abs_section_ptr,
11708 0, &addend, sgot)))
11709 return FALSE;
11710 BFD_ASSERT (addend == 0);
11711 }
11712 }
11713 }
11714
11715 /* The generation of dynamic relocations for the non-primary gots
11716 adds more dynamic relocations. We cannot count them until
11717 here. */
11718
11719 if (elf_hash_table (info)->dynamic_sections_created)
11720 {
11721 bfd_byte *b;
11722 bfd_boolean swap_out_p;
11723
11724 BFD_ASSERT (sdyn != NULL);
11725
11726 for (b = sdyn->contents;
11727 b < sdyn->contents + sdyn->size;
11728 b += MIPS_ELF_DYN_SIZE (dynobj))
11729 {
11730 Elf_Internal_Dyn dyn;
11731 asection *s;
11732
11733 /* Read in the current dynamic entry. */
11734 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11735
11736 /* Assume that we're going to modify it and write it out. */
11737 swap_out_p = TRUE;
11738
11739 switch (dyn.d_tag)
11740 {
11741 case DT_RELSZ:
11742 /* Reduce DT_RELSZ to account for any relocations we
11743 decided not to make. This is for the n64 irix rld,
11744 which doesn't seem to apply any relocations if there
11745 are trailing null entries. */
11746 s = mips_elf_rel_dyn_section (info, FALSE);
11747 dyn.d_un.d_val = (s->reloc_count
11748 * (ABI_64_P (output_bfd)
11749 ? sizeof (Elf64_Mips_External_Rel)
11750 : sizeof (Elf32_External_Rel)));
11751 /* Adjust the section size too. Tools like the prelinker
11752 can reasonably expect the values to the same. */
11753 elf_section_data (s->output_section)->this_hdr.sh_size
11754 = dyn.d_un.d_val;
11755 break;
11756
11757 default:
11758 swap_out_p = FALSE;
11759 break;
11760 }
11761
11762 if (swap_out_p)
11763 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11764 (dynobj, &dyn, b);
11765 }
11766 }
11767
11768 {
11769 asection *s;
11770 Elf32_compact_rel cpt;
11771
11772 if (SGI_COMPAT (output_bfd))
11773 {
11774 /* Write .compact_rel section out. */
11775 s = bfd_get_linker_section (dynobj, ".compact_rel");
11776 if (s != NULL)
11777 {
11778 cpt.id1 = 1;
11779 cpt.num = s->reloc_count;
11780 cpt.id2 = 2;
11781 cpt.offset = (s->output_section->filepos
11782 + sizeof (Elf32_External_compact_rel));
11783 cpt.reserved0 = 0;
11784 cpt.reserved1 = 0;
11785 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11786 ((Elf32_External_compact_rel *)
11787 s->contents));
11788
11789 /* Clean up a dummy stub function entry in .text. */
11790 if (htab->sstubs != NULL)
11791 {
11792 file_ptr dummy_offset;
11793
11794 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11795 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11796 memset (htab->sstubs->contents + dummy_offset, 0,
11797 htab->function_stub_size);
11798 }
11799 }
11800 }
11801
11802 /* The psABI says that the dynamic relocations must be sorted in
11803 increasing order of r_symndx. The VxWorks EABI doesn't require
11804 this, and because the code below handles REL rather than RELA
11805 relocations, using it for VxWorks would be outright harmful. */
11806 if (!htab->is_vxworks)
11807 {
11808 s = mips_elf_rel_dyn_section (info, FALSE);
11809 if (s != NULL
11810 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11811 {
11812 reldyn_sorting_bfd = output_bfd;
11813
11814 if (ABI_64_P (output_bfd))
11815 qsort ((Elf64_External_Rel *) s->contents + 1,
11816 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11817 sort_dynamic_relocs_64);
11818 else
11819 qsort ((Elf32_External_Rel *) s->contents + 1,
11820 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11821 sort_dynamic_relocs);
11822 }
11823 }
11824 }
11825
11826 if (htab->root.splt && htab->root.splt->size > 0)
11827 {
11828 if (htab->is_vxworks)
11829 {
11830 if (bfd_link_pic (info))
11831 mips_vxworks_finish_shared_plt (output_bfd, info);
11832 else
11833 mips_vxworks_finish_exec_plt (output_bfd, info);
11834 }
11835 else
11836 {
11837 BFD_ASSERT (!bfd_link_pic (info));
11838 if (!mips_finish_exec_plt (output_bfd, info))
11839 return FALSE;
11840 }
11841 }
11842 return TRUE;
11843 }
11844
11845
11846 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11847
11848 static void
11849 mips_set_isa_flags (bfd *abfd)
11850 {
11851 flagword val;
11852
11853 switch (bfd_get_mach (abfd))
11854 {
11855 default:
11856 case bfd_mach_mips3000:
11857 val = E_MIPS_ARCH_1;
11858 break;
11859
11860 case bfd_mach_mips3900:
11861 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11862 break;
11863
11864 case bfd_mach_mips6000:
11865 val = E_MIPS_ARCH_2;
11866 break;
11867
11868 case bfd_mach_mips4000:
11869 case bfd_mach_mips4300:
11870 case bfd_mach_mips4400:
11871 case bfd_mach_mips4600:
11872 val = E_MIPS_ARCH_3;
11873 break;
11874
11875 case bfd_mach_mips4010:
11876 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11877 break;
11878
11879 case bfd_mach_mips4100:
11880 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11881 break;
11882
11883 case bfd_mach_mips4111:
11884 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11885 break;
11886
11887 case bfd_mach_mips4120:
11888 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11889 break;
11890
11891 case bfd_mach_mips4650:
11892 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11893 break;
11894
11895 case bfd_mach_mips5400:
11896 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11897 break;
11898
11899 case bfd_mach_mips5500:
11900 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11901 break;
11902
11903 case bfd_mach_mips5900:
11904 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11905 break;
11906
11907 case bfd_mach_mips9000:
11908 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11909 break;
11910
11911 case bfd_mach_mips5000:
11912 case bfd_mach_mips7000:
11913 case bfd_mach_mips8000:
11914 case bfd_mach_mips10000:
11915 case bfd_mach_mips12000:
11916 case bfd_mach_mips14000:
11917 case bfd_mach_mips16000:
11918 val = E_MIPS_ARCH_4;
11919 break;
11920
11921 case bfd_mach_mips5:
11922 val = E_MIPS_ARCH_5;
11923 break;
11924
11925 case bfd_mach_mips_loongson_2e:
11926 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11927 break;
11928
11929 case bfd_mach_mips_loongson_2f:
11930 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11931 break;
11932
11933 case bfd_mach_mips_sb1:
11934 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11935 break;
11936
11937 case bfd_mach_mips_loongson_3a:
11938 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11939 break;
11940
11941 case bfd_mach_mips_octeon:
11942 case bfd_mach_mips_octeonp:
11943 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11944 break;
11945
11946 case bfd_mach_mips_octeon3:
11947 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11948 break;
11949
11950 case bfd_mach_mips_xlr:
11951 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11952 break;
11953
11954 case bfd_mach_mips_octeon2:
11955 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11956 break;
11957
11958 case bfd_mach_mipsisa32:
11959 val = E_MIPS_ARCH_32;
11960 break;
11961
11962 case bfd_mach_mipsisa64:
11963 val = E_MIPS_ARCH_64;
11964 break;
11965
11966 case bfd_mach_mipsisa32r2:
11967 case bfd_mach_mipsisa32r3:
11968 case bfd_mach_mipsisa32r5:
11969 val = E_MIPS_ARCH_32R2;
11970 break;
11971
11972 case bfd_mach_mipsisa64r2:
11973 case bfd_mach_mipsisa64r3:
11974 case bfd_mach_mipsisa64r5:
11975 val = E_MIPS_ARCH_64R2;
11976 break;
11977
11978 case bfd_mach_mipsisa32r6:
11979 val = E_MIPS_ARCH_32R6;
11980 break;
11981
11982 case bfd_mach_mipsisa64r6:
11983 val = E_MIPS_ARCH_64R6;
11984 break;
11985 }
11986 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11987 elf_elfheader (abfd)->e_flags |= val;
11988
11989 }
11990
11991
11992 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11993 Don't do so for code sections. We want to keep ordering of HI16/LO16
11994 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
11995 relocs to be sorted. */
11996
11997 bfd_boolean
11998 _bfd_mips_elf_sort_relocs_p (asection *sec)
11999 {
12000 return (sec->flags & SEC_CODE) == 0;
12001 }
12002
12003
12004 /* The final processing done just before writing out a MIPS ELF object
12005 file. This gets the MIPS architecture right based on the machine
12006 number. This is used by both the 32-bit and the 64-bit ABI. */
12007
12008 void
12009 _bfd_mips_elf_final_write_processing (bfd *abfd,
12010 bfd_boolean linker ATTRIBUTE_UNUSED)
12011 {
12012 unsigned int i;
12013 Elf_Internal_Shdr **hdrpp;
12014 const char *name;
12015 asection *sec;
12016
12017 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12018 is nonzero. This is for compatibility with old objects, which used
12019 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12020 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12021 mips_set_isa_flags (abfd);
12022
12023 /* Set the sh_info field for .gptab sections and other appropriate
12024 info for each special section. */
12025 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12026 i < elf_numsections (abfd);
12027 i++, hdrpp++)
12028 {
12029 switch ((*hdrpp)->sh_type)
12030 {
12031 case SHT_MIPS_MSYM:
12032 case SHT_MIPS_LIBLIST:
12033 sec = bfd_get_section_by_name (abfd, ".dynstr");
12034 if (sec != NULL)
12035 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12036 break;
12037
12038 case SHT_MIPS_GPTAB:
12039 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12040 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12041 BFD_ASSERT (name != NULL
12042 && CONST_STRNEQ (name, ".gptab."));
12043 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12044 BFD_ASSERT (sec != NULL);
12045 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12046 break;
12047
12048 case SHT_MIPS_CONTENT:
12049 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12050 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12051 BFD_ASSERT (name != NULL
12052 && CONST_STRNEQ (name, ".MIPS.content"));
12053 sec = bfd_get_section_by_name (abfd,
12054 name + sizeof ".MIPS.content" - 1);
12055 BFD_ASSERT (sec != NULL);
12056 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12057 break;
12058
12059 case SHT_MIPS_SYMBOL_LIB:
12060 sec = bfd_get_section_by_name (abfd, ".dynsym");
12061 if (sec != NULL)
12062 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12063 sec = bfd_get_section_by_name (abfd, ".liblist");
12064 if (sec != NULL)
12065 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12066 break;
12067
12068 case SHT_MIPS_EVENTS:
12069 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12070 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12071 BFD_ASSERT (name != NULL);
12072 if (CONST_STRNEQ (name, ".MIPS.events"))
12073 sec = bfd_get_section_by_name (abfd,
12074 name + sizeof ".MIPS.events" - 1);
12075 else
12076 {
12077 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12078 sec = bfd_get_section_by_name (abfd,
12079 (name
12080 + sizeof ".MIPS.post_rel" - 1));
12081 }
12082 BFD_ASSERT (sec != NULL);
12083 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12084 break;
12085
12086 }
12087 }
12088 }
12089 \f
12090 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12091 segments. */
12092
12093 int
12094 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12095 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12096 {
12097 asection *s;
12098 int ret = 0;
12099
12100 /* See if we need a PT_MIPS_REGINFO segment. */
12101 s = bfd_get_section_by_name (abfd, ".reginfo");
12102 if (s && (s->flags & SEC_LOAD))
12103 ++ret;
12104
12105 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12106 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12107 ++ret;
12108
12109 /* See if we need a PT_MIPS_OPTIONS segment. */
12110 if (IRIX_COMPAT (abfd) == ict_irix6
12111 && bfd_get_section_by_name (abfd,
12112 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12113 ++ret;
12114
12115 /* See if we need a PT_MIPS_RTPROC segment. */
12116 if (IRIX_COMPAT (abfd) == ict_irix5
12117 && bfd_get_section_by_name (abfd, ".dynamic")
12118 && bfd_get_section_by_name (abfd, ".mdebug"))
12119 ++ret;
12120
12121 /* Allocate a PT_NULL header in dynamic objects. See
12122 _bfd_mips_elf_modify_segment_map for details. */
12123 if (!SGI_COMPAT (abfd)
12124 && bfd_get_section_by_name (abfd, ".dynamic"))
12125 ++ret;
12126
12127 return ret;
12128 }
12129
12130 /* Modify the segment map for an IRIX5 executable. */
12131
12132 bfd_boolean
12133 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12134 struct bfd_link_info *info)
12135 {
12136 asection *s;
12137 struct elf_segment_map *m, **pm;
12138 bfd_size_type amt;
12139
12140 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12141 segment. */
12142 s = bfd_get_section_by_name (abfd, ".reginfo");
12143 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12144 {
12145 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12146 if (m->p_type == PT_MIPS_REGINFO)
12147 break;
12148 if (m == NULL)
12149 {
12150 amt = sizeof *m;
12151 m = bfd_zalloc (abfd, amt);
12152 if (m == NULL)
12153 return FALSE;
12154
12155 m->p_type = PT_MIPS_REGINFO;
12156 m->count = 1;
12157 m->sections[0] = s;
12158
12159 /* We want to put it after the PHDR and INTERP segments. */
12160 pm = &elf_seg_map (abfd);
12161 while (*pm != NULL
12162 && ((*pm)->p_type == PT_PHDR
12163 || (*pm)->p_type == PT_INTERP))
12164 pm = &(*pm)->next;
12165
12166 m->next = *pm;
12167 *pm = m;
12168 }
12169 }
12170
12171 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12172 segment. */
12173 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12174 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12175 {
12176 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12177 if (m->p_type == PT_MIPS_ABIFLAGS)
12178 break;
12179 if (m == NULL)
12180 {
12181 amt = sizeof *m;
12182 m = bfd_zalloc (abfd, amt);
12183 if (m == NULL)
12184 return FALSE;
12185
12186 m->p_type = PT_MIPS_ABIFLAGS;
12187 m->count = 1;
12188 m->sections[0] = s;
12189
12190 /* We want to put it after the PHDR and INTERP segments. */
12191 pm = &elf_seg_map (abfd);
12192 while (*pm != NULL
12193 && ((*pm)->p_type == PT_PHDR
12194 || (*pm)->p_type == PT_INTERP))
12195 pm = &(*pm)->next;
12196
12197 m->next = *pm;
12198 *pm = m;
12199 }
12200 }
12201
12202 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12203 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12204 PT_MIPS_OPTIONS segment immediately following the program header
12205 table. */
12206 if (NEWABI_P (abfd)
12207 /* On non-IRIX6 new abi, we'll have already created a segment
12208 for this section, so don't create another. I'm not sure this
12209 is not also the case for IRIX 6, but I can't test it right
12210 now. */
12211 && IRIX_COMPAT (abfd) == ict_irix6)
12212 {
12213 for (s = abfd->sections; s; s = s->next)
12214 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12215 break;
12216
12217 if (s)
12218 {
12219 struct elf_segment_map *options_segment;
12220
12221 pm = &elf_seg_map (abfd);
12222 while (*pm != NULL
12223 && ((*pm)->p_type == PT_PHDR
12224 || (*pm)->p_type == PT_INTERP))
12225 pm = &(*pm)->next;
12226
12227 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12228 {
12229 amt = sizeof (struct elf_segment_map);
12230 options_segment = bfd_zalloc (abfd, amt);
12231 options_segment->next = *pm;
12232 options_segment->p_type = PT_MIPS_OPTIONS;
12233 options_segment->p_flags = PF_R;
12234 options_segment->p_flags_valid = TRUE;
12235 options_segment->count = 1;
12236 options_segment->sections[0] = s;
12237 *pm = options_segment;
12238 }
12239 }
12240 }
12241 else
12242 {
12243 if (IRIX_COMPAT (abfd) == ict_irix5)
12244 {
12245 /* If there are .dynamic and .mdebug sections, we make a room
12246 for the RTPROC header. FIXME: Rewrite without section names. */
12247 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12248 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12249 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12250 {
12251 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12252 if (m->p_type == PT_MIPS_RTPROC)
12253 break;
12254 if (m == NULL)
12255 {
12256 amt = sizeof *m;
12257 m = bfd_zalloc (abfd, amt);
12258 if (m == NULL)
12259 return FALSE;
12260
12261 m->p_type = PT_MIPS_RTPROC;
12262
12263 s = bfd_get_section_by_name (abfd, ".rtproc");
12264 if (s == NULL)
12265 {
12266 m->count = 0;
12267 m->p_flags = 0;
12268 m->p_flags_valid = 1;
12269 }
12270 else
12271 {
12272 m->count = 1;
12273 m->sections[0] = s;
12274 }
12275
12276 /* We want to put it after the DYNAMIC segment. */
12277 pm = &elf_seg_map (abfd);
12278 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12279 pm = &(*pm)->next;
12280 if (*pm != NULL)
12281 pm = &(*pm)->next;
12282
12283 m->next = *pm;
12284 *pm = m;
12285 }
12286 }
12287 }
12288 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12289 .dynstr, .dynsym, and .hash sections, and everything in
12290 between. */
12291 for (pm = &elf_seg_map (abfd); *pm != NULL;
12292 pm = &(*pm)->next)
12293 if ((*pm)->p_type == PT_DYNAMIC)
12294 break;
12295 m = *pm;
12296 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12297 glibc's dynamic linker has traditionally derived the number of
12298 tags from the p_filesz field, and sometimes allocates stack
12299 arrays of that size. An overly-big PT_DYNAMIC segment can
12300 be actively harmful in such cases. Making PT_DYNAMIC contain
12301 other sections can also make life hard for the prelinker,
12302 which might move one of the other sections to a different
12303 PT_LOAD segment. */
12304 if (SGI_COMPAT (abfd)
12305 && m != NULL
12306 && m->count == 1
12307 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12308 {
12309 static const char *sec_names[] =
12310 {
12311 ".dynamic", ".dynstr", ".dynsym", ".hash"
12312 };
12313 bfd_vma low, high;
12314 unsigned int i, c;
12315 struct elf_segment_map *n;
12316
12317 low = ~(bfd_vma) 0;
12318 high = 0;
12319 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12320 {
12321 s = bfd_get_section_by_name (abfd, sec_names[i]);
12322 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12323 {
12324 bfd_size_type sz;
12325
12326 if (low > s->vma)
12327 low = s->vma;
12328 sz = s->size;
12329 if (high < s->vma + sz)
12330 high = s->vma + sz;
12331 }
12332 }
12333
12334 c = 0;
12335 for (s = abfd->sections; s != NULL; s = s->next)
12336 if ((s->flags & SEC_LOAD) != 0
12337 && s->vma >= low
12338 && s->vma + s->size <= high)
12339 ++c;
12340
12341 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12342 n = bfd_zalloc (abfd, amt);
12343 if (n == NULL)
12344 return FALSE;
12345 *n = *m;
12346 n->count = c;
12347
12348 i = 0;
12349 for (s = abfd->sections; s != NULL; s = s->next)
12350 {
12351 if ((s->flags & SEC_LOAD) != 0
12352 && s->vma >= low
12353 && s->vma + s->size <= high)
12354 {
12355 n->sections[i] = s;
12356 ++i;
12357 }
12358 }
12359
12360 *pm = n;
12361 }
12362 }
12363
12364 /* Allocate a spare program header in dynamic objects so that tools
12365 like the prelinker can add an extra PT_LOAD entry.
12366
12367 If the prelinker needs to make room for a new PT_LOAD entry, its
12368 standard procedure is to move the first (read-only) sections into
12369 the new (writable) segment. However, the MIPS ABI requires
12370 .dynamic to be in a read-only segment, and the section will often
12371 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12372
12373 Although the prelinker could in principle move .dynamic to a
12374 writable segment, it seems better to allocate a spare program
12375 header instead, and avoid the need to move any sections.
12376 There is a long tradition of allocating spare dynamic tags,
12377 so allocating a spare program header seems like a natural
12378 extension.
12379
12380 If INFO is NULL, we may be copying an already prelinked binary
12381 with objcopy or strip, so do not add this header. */
12382 if (info != NULL
12383 && !SGI_COMPAT (abfd)
12384 && bfd_get_section_by_name (abfd, ".dynamic"))
12385 {
12386 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12387 if ((*pm)->p_type == PT_NULL)
12388 break;
12389 if (*pm == NULL)
12390 {
12391 m = bfd_zalloc (abfd, sizeof (*m));
12392 if (m == NULL)
12393 return FALSE;
12394
12395 m->p_type = PT_NULL;
12396 *pm = m;
12397 }
12398 }
12399
12400 return TRUE;
12401 }
12402 \f
12403 /* Return the section that should be marked against GC for a given
12404 relocation. */
12405
12406 asection *
12407 _bfd_mips_elf_gc_mark_hook (asection *sec,
12408 struct bfd_link_info *info,
12409 Elf_Internal_Rela *rel,
12410 struct elf_link_hash_entry *h,
12411 Elf_Internal_Sym *sym)
12412 {
12413 /* ??? Do mips16 stub sections need to be handled special? */
12414
12415 if (h != NULL)
12416 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12417 {
12418 case R_MIPS_GNU_VTINHERIT:
12419 case R_MIPS_GNU_VTENTRY:
12420 return NULL;
12421 }
12422
12423 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12424 }
12425
12426 /* Update the got entry reference counts for the section being removed. */
12427
12428 bfd_boolean
12429 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12430 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12431 asection *sec ATTRIBUTE_UNUSED,
12432 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12433 {
12434 #if 0
12435 Elf_Internal_Shdr *symtab_hdr;
12436 struct elf_link_hash_entry **sym_hashes;
12437 bfd_signed_vma *local_got_refcounts;
12438 const Elf_Internal_Rela *rel, *relend;
12439 unsigned long r_symndx;
12440 struct elf_link_hash_entry *h;
12441
12442 if (bfd_link_relocatable (info))
12443 return TRUE;
12444
12445 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12446 sym_hashes = elf_sym_hashes (abfd);
12447 local_got_refcounts = elf_local_got_refcounts (abfd);
12448
12449 relend = relocs + sec->reloc_count;
12450 for (rel = relocs; rel < relend; rel++)
12451 switch (ELF_R_TYPE (abfd, rel->r_info))
12452 {
12453 case R_MIPS16_GOT16:
12454 case R_MIPS16_CALL16:
12455 case R_MIPS_GOT16:
12456 case R_MIPS_CALL16:
12457 case R_MIPS_CALL_HI16:
12458 case R_MIPS_CALL_LO16:
12459 case R_MIPS_GOT_HI16:
12460 case R_MIPS_GOT_LO16:
12461 case R_MIPS_GOT_DISP:
12462 case R_MIPS_GOT_PAGE:
12463 case R_MIPS_GOT_OFST:
12464 case R_MICROMIPS_GOT16:
12465 case R_MICROMIPS_CALL16:
12466 case R_MICROMIPS_CALL_HI16:
12467 case R_MICROMIPS_CALL_LO16:
12468 case R_MICROMIPS_GOT_HI16:
12469 case R_MICROMIPS_GOT_LO16:
12470 case R_MICROMIPS_GOT_DISP:
12471 case R_MICROMIPS_GOT_PAGE:
12472 case R_MICROMIPS_GOT_OFST:
12473 /* ??? It would seem that the existing MIPS code does no sort
12474 of reference counting or whatnot on its GOT and PLT entries,
12475 so it is not possible to garbage collect them at this time. */
12476 break;
12477
12478 default:
12479 break;
12480 }
12481 #endif
12482
12483 return TRUE;
12484 }
12485
12486 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12487
12488 bfd_boolean
12489 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12490 elf_gc_mark_hook_fn gc_mark_hook)
12491 {
12492 bfd *sub;
12493
12494 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12495
12496 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12497 {
12498 asection *o;
12499
12500 if (! is_mips_elf (sub))
12501 continue;
12502
12503 for (o = sub->sections; o != NULL; o = o->next)
12504 if (!o->gc_mark
12505 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12506 (bfd_get_section_name (sub, o)))
12507 {
12508 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12509 return FALSE;
12510 }
12511 }
12512
12513 return TRUE;
12514 }
12515 \f
12516 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12517 hiding the old indirect symbol. Process additional relocation
12518 information. Also called for weakdefs, in which case we just let
12519 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12520
12521 void
12522 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12523 struct elf_link_hash_entry *dir,
12524 struct elf_link_hash_entry *ind)
12525 {
12526 struct mips_elf_link_hash_entry *dirmips, *indmips;
12527
12528 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12529
12530 dirmips = (struct mips_elf_link_hash_entry *) dir;
12531 indmips = (struct mips_elf_link_hash_entry *) ind;
12532 /* Any absolute non-dynamic relocations against an indirect or weak
12533 definition will be against the target symbol. */
12534 if (indmips->has_static_relocs)
12535 dirmips->has_static_relocs = TRUE;
12536
12537 if (ind->root.type != bfd_link_hash_indirect)
12538 return;
12539
12540 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12541 if (indmips->readonly_reloc)
12542 dirmips->readonly_reloc = TRUE;
12543 if (indmips->no_fn_stub)
12544 dirmips->no_fn_stub = TRUE;
12545 if (indmips->fn_stub)
12546 {
12547 dirmips->fn_stub = indmips->fn_stub;
12548 indmips->fn_stub = NULL;
12549 }
12550 if (indmips->need_fn_stub)
12551 {
12552 dirmips->need_fn_stub = TRUE;
12553 indmips->need_fn_stub = FALSE;
12554 }
12555 if (indmips->call_stub)
12556 {
12557 dirmips->call_stub = indmips->call_stub;
12558 indmips->call_stub = NULL;
12559 }
12560 if (indmips->call_fp_stub)
12561 {
12562 dirmips->call_fp_stub = indmips->call_fp_stub;
12563 indmips->call_fp_stub = NULL;
12564 }
12565 if (indmips->global_got_area < dirmips->global_got_area)
12566 dirmips->global_got_area = indmips->global_got_area;
12567 if (indmips->global_got_area < GGA_NONE)
12568 indmips->global_got_area = GGA_NONE;
12569 if (indmips->has_nonpic_branches)
12570 dirmips->has_nonpic_branches = TRUE;
12571 }
12572 \f
12573 #define PDR_SIZE 32
12574
12575 bfd_boolean
12576 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12577 struct bfd_link_info *info)
12578 {
12579 asection *o;
12580 bfd_boolean ret = FALSE;
12581 unsigned char *tdata;
12582 size_t i, skip;
12583
12584 o = bfd_get_section_by_name (abfd, ".pdr");
12585 if (! o)
12586 return FALSE;
12587 if (o->size == 0)
12588 return FALSE;
12589 if (o->size % PDR_SIZE != 0)
12590 return FALSE;
12591 if (o->output_section != NULL
12592 && bfd_is_abs_section (o->output_section))
12593 return FALSE;
12594
12595 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12596 if (! tdata)
12597 return FALSE;
12598
12599 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12600 info->keep_memory);
12601 if (!cookie->rels)
12602 {
12603 free (tdata);
12604 return FALSE;
12605 }
12606
12607 cookie->rel = cookie->rels;
12608 cookie->relend = cookie->rels + o->reloc_count;
12609
12610 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12611 {
12612 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12613 {
12614 tdata[i] = 1;
12615 skip ++;
12616 }
12617 }
12618
12619 if (skip != 0)
12620 {
12621 mips_elf_section_data (o)->u.tdata = tdata;
12622 if (o->rawsize == 0)
12623 o->rawsize = o->size;
12624 o->size -= skip * PDR_SIZE;
12625 ret = TRUE;
12626 }
12627 else
12628 free (tdata);
12629
12630 if (! info->keep_memory)
12631 free (cookie->rels);
12632
12633 return ret;
12634 }
12635
12636 bfd_boolean
12637 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12638 {
12639 if (strcmp (sec->name, ".pdr") == 0)
12640 return TRUE;
12641 return FALSE;
12642 }
12643
12644 bfd_boolean
12645 _bfd_mips_elf_write_section (bfd *output_bfd,
12646 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12647 asection *sec, bfd_byte *contents)
12648 {
12649 bfd_byte *to, *from, *end;
12650 int i;
12651
12652 if (strcmp (sec->name, ".pdr") != 0)
12653 return FALSE;
12654
12655 if (mips_elf_section_data (sec)->u.tdata == NULL)
12656 return FALSE;
12657
12658 to = contents;
12659 end = contents + sec->size;
12660 for (from = contents, i = 0;
12661 from < end;
12662 from += PDR_SIZE, i++)
12663 {
12664 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12665 continue;
12666 if (to != from)
12667 memcpy (to, from, PDR_SIZE);
12668 to += PDR_SIZE;
12669 }
12670 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12671 sec->output_offset, sec->size);
12672 return TRUE;
12673 }
12674 \f
12675 /* microMIPS code retains local labels for linker relaxation. Omit them
12676 from output by default for clarity. */
12677
12678 bfd_boolean
12679 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12680 {
12681 return _bfd_elf_is_local_label_name (abfd, sym->name);
12682 }
12683
12684 /* MIPS ELF uses a special find_nearest_line routine in order the
12685 handle the ECOFF debugging information. */
12686
12687 struct mips_elf_find_line
12688 {
12689 struct ecoff_debug_info d;
12690 struct ecoff_find_line i;
12691 };
12692
12693 bfd_boolean
12694 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12695 asection *section, bfd_vma offset,
12696 const char **filename_ptr,
12697 const char **functionname_ptr,
12698 unsigned int *line_ptr,
12699 unsigned int *discriminator_ptr)
12700 {
12701 asection *msec;
12702
12703 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12704 filename_ptr, functionname_ptr,
12705 line_ptr, discriminator_ptr,
12706 dwarf_debug_sections,
12707 ABI_64_P (abfd) ? 8 : 0,
12708 &elf_tdata (abfd)->dwarf2_find_line_info))
12709 return TRUE;
12710
12711 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12712 filename_ptr, functionname_ptr,
12713 line_ptr))
12714 return TRUE;
12715
12716 msec = bfd_get_section_by_name (abfd, ".mdebug");
12717 if (msec != NULL)
12718 {
12719 flagword origflags;
12720 struct mips_elf_find_line *fi;
12721 const struct ecoff_debug_swap * const swap =
12722 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12723
12724 /* If we are called during a link, mips_elf_final_link may have
12725 cleared the SEC_HAS_CONTENTS field. We force it back on here
12726 if appropriate (which it normally will be). */
12727 origflags = msec->flags;
12728 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12729 msec->flags |= SEC_HAS_CONTENTS;
12730
12731 fi = mips_elf_tdata (abfd)->find_line_info;
12732 if (fi == NULL)
12733 {
12734 bfd_size_type external_fdr_size;
12735 char *fraw_src;
12736 char *fraw_end;
12737 struct fdr *fdr_ptr;
12738 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12739
12740 fi = bfd_zalloc (abfd, amt);
12741 if (fi == NULL)
12742 {
12743 msec->flags = origflags;
12744 return FALSE;
12745 }
12746
12747 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12748 {
12749 msec->flags = origflags;
12750 return FALSE;
12751 }
12752
12753 /* Swap in the FDR information. */
12754 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12755 fi->d.fdr = bfd_alloc (abfd, amt);
12756 if (fi->d.fdr == NULL)
12757 {
12758 msec->flags = origflags;
12759 return FALSE;
12760 }
12761 external_fdr_size = swap->external_fdr_size;
12762 fdr_ptr = fi->d.fdr;
12763 fraw_src = (char *) fi->d.external_fdr;
12764 fraw_end = (fraw_src
12765 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12766 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12767 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12768
12769 mips_elf_tdata (abfd)->find_line_info = fi;
12770
12771 /* Note that we don't bother to ever free this information.
12772 find_nearest_line is either called all the time, as in
12773 objdump -l, so the information should be saved, or it is
12774 rarely called, as in ld error messages, so the memory
12775 wasted is unimportant. Still, it would probably be a
12776 good idea for free_cached_info to throw it away. */
12777 }
12778
12779 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12780 &fi->i, filename_ptr, functionname_ptr,
12781 line_ptr))
12782 {
12783 msec->flags = origflags;
12784 return TRUE;
12785 }
12786
12787 msec->flags = origflags;
12788 }
12789
12790 /* Fall back on the generic ELF find_nearest_line routine. */
12791
12792 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12793 filename_ptr, functionname_ptr,
12794 line_ptr, discriminator_ptr);
12795 }
12796
12797 bfd_boolean
12798 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12799 const char **filename_ptr,
12800 const char **functionname_ptr,
12801 unsigned int *line_ptr)
12802 {
12803 bfd_boolean found;
12804 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12805 functionname_ptr, line_ptr,
12806 & elf_tdata (abfd)->dwarf2_find_line_info);
12807 return found;
12808 }
12809
12810 \f
12811 /* When are writing out the .options or .MIPS.options section,
12812 remember the bytes we are writing out, so that we can install the
12813 GP value in the section_processing routine. */
12814
12815 bfd_boolean
12816 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12817 const void *location,
12818 file_ptr offset, bfd_size_type count)
12819 {
12820 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12821 {
12822 bfd_byte *c;
12823
12824 if (elf_section_data (section) == NULL)
12825 {
12826 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12827 section->used_by_bfd = bfd_zalloc (abfd, amt);
12828 if (elf_section_data (section) == NULL)
12829 return FALSE;
12830 }
12831 c = mips_elf_section_data (section)->u.tdata;
12832 if (c == NULL)
12833 {
12834 c = bfd_zalloc (abfd, section->size);
12835 if (c == NULL)
12836 return FALSE;
12837 mips_elf_section_data (section)->u.tdata = c;
12838 }
12839
12840 memcpy (c + offset, location, count);
12841 }
12842
12843 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12844 count);
12845 }
12846
12847 /* This is almost identical to bfd_generic_get_... except that some
12848 MIPS relocations need to be handled specially. Sigh. */
12849
12850 bfd_byte *
12851 _bfd_elf_mips_get_relocated_section_contents
12852 (bfd *abfd,
12853 struct bfd_link_info *link_info,
12854 struct bfd_link_order *link_order,
12855 bfd_byte *data,
12856 bfd_boolean relocatable,
12857 asymbol **symbols)
12858 {
12859 /* Get enough memory to hold the stuff */
12860 bfd *input_bfd = link_order->u.indirect.section->owner;
12861 asection *input_section = link_order->u.indirect.section;
12862 bfd_size_type sz;
12863
12864 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12865 arelent **reloc_vector = NULL;
12866 long reloc_count;
12867
12868 if (reloc_size < 0)
12869 goto error_return;
12870
12871 reloc_vector = bfd_malloc (reloc_size);
12872 if (reloc_vector == NULL && reloc_size != 0)
12873 goto error_return;
12874
12875 /* read in the section */
12876 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12877 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12878 goto error_return;
12879
12880 reloc_count = bfd_canonicalize_reloc (input_bfd,
12881 input_section,
12882 reloc_vector,
12883 symbols);
12884 if (reloc_count < 0)
12885 goto error_return;
12886
12887 if (reloc_count > 0)
12888 {
12889 arelent **parent;
12890 /* for mips */
12891 int gp_found;
12892 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12893
12894 {
12895 struct bfd_hash_entry *h;
12896 struct bfd_link_hash_entry *lh;
12897 /* Skip all this stuff if we aren't mixing formats. */
12898 if (abfd && input_bfd
12899 && abfd->xvec == input_bfd->xvec)
12900 lh = 0;
12901 else
12902 {
12903 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12904 lh = (struct bfd_link_hash_entry *) h;
12905 }
12906 lookup:
12907 if (lh)
12908 {
12909 switch (lh->type)
12910 {
12911 case bfd_link_hash_undefined:
12912 case bfd_link_hash_undefweak:
12913 case bfd_link_hash_common:
12914 gp_found = 0;
12915 break;
12916 case bfd_link_hash_defined:
12917 case bfd_link_hash_defweak:
12918 gp_found = 1;
12919 gp = lh->u.def.value;
12920 break;
12921 case bfd_link_hash_indirect:
12922 case bfd_link_hash_warning:
12923 lh = lh->u.i.link;
12924 /* @@FIXME ignoring warning for now */
12925 goto lookup;
12926 case bfd_link_hash_new:
12927 default:
12928 abort ();
12929 }
12930 }
12931 else
12932 gp_found = 0;
12933 }
12934 /* end mips */
12935 for (parent = reloc_vector; *parent != NULL; parent++)
12936 {
12937 char *error_message = NULL;
12938 bfd_reloc_status_type r;
12939
12940 /* Specific to MIPS: Deal with relocation types that require
12941 knowing the gp of the output bfd. */
12942 asymbol *sym = *(*parent)->sym_ptr_ptr;
12943
12944 /* If we've managed to find the gp and have a special
12945 function for the relocation then go ahead, else default
12946 to the generic handling. */
12947 if (gp_found
12948 && (*parent)->howto->special_function
12949 == _bfd_mips_elf32_gprel16_reloc)
12950 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12951 input_section, relocatable,
12952 data, gp);
12953 else
12954 r = bfd_perform_relocation (input_bfd, *parent, data,
12955 input_section,
12956 relocatable ? abfd : NULL,
12957 &error_message);
12958
12959 if (relocatable)
12960 {
12961 asection *os = input_section->output_section;
12962
12963 /* A partial link, so keep the relocs */
12964 os->orelocation[os->reloc_count] = *parent;
12965 os->reloc_count++;
12966 }
12967
12968 if (r != bfd_reloc_ok)
12969 {
12970 switch (r)
12971 {
12972 case bfd_reloc_undefined:
12973 (*link_info->callbacks->undefined_symbol)
12974 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12975 input_bfd, input_section, (*parent)->address, TRUE);
12976 break;
12977 case bfd_reloc_dangerous:
12978 BFD_ASSERT (error_message != NULL);
12979 (*link_info->callbacks->reloc_dangerous)
12980 (link_info, error_message,
12981 input_bfd, input_section, (*parent)->address);
12982 break;
12983 case bfd_reloc_overflow:
12984 (*link_info->callbacks->reloc_overflow)
12985 (link_info, NULL,
12986 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12987 (*parent)->howto->name, (*parent)->addend,
12988 input_bfd, input_section, (*parent)->address);
12989 break;
12990 case bfd_reloc_outofrange:
12991 default:
12992 abort ();
12993 break;
12994 }
12995
12996 }
12997 }
12998 }
12999 if (reloc_vector != NULL)
13000 free (reloc_vector);
13001 return data;
13002
13003 error_return:
13004 if (reloc_vector != NULL)
13005 free (reloc_vector);
13006 return NULL;
13007 }
13008 \f
13009 static bfd_boolean
13010 mips_elf_relax_delete_bytes (bfd *abfd,
13011 asection *sec, bfd_vma addr, int count)
13012 {
13013 Elf_Internal_Shdr *symtab_hdr;
13014 unsigned int sec_shndx;
13015 bfd_byte *contents;
13016 Elf_Internal_Rela *irel, *irelend;
13017 Elf_Internal_Sym *isym;
13018 Elf_Internal_Sym *isymend;
13019 struct elf_link_hash_entry **sym_hashes;
13020 struct elf_link_hash_entry **end_hashes;
13021 struct elf_link_hash_entry **start_hashes;
13022 unsigned int symcount;
13023
13024 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13025 contents = elf_section_data (sec)->this_hdr.contents;
13026
13027 irel = elf_section_data (sec)->relocs;
13028 irelend = irel + sec->reloc_count;
13029
13030 /* Actually delete the bytes. */
13031 memmove (contents + addr, contents + addr + count,
13032 (size_t) (sec->size - addr - count));
13033 sec->size -= count;
13034
13035 /* Adjust all the relocs. */
13036 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13037 {
13038 /* Get the new reloc address. */
13039 if (irel->r_offset > addr)
13040 irel->r_offset -= count;
13041 }
13042
13043 BFD_ASSERT (addr % 2 == 0);
13044 BFD_ASSERT (count % 2 == 0);
13045
13046 /* Adjust the local symbols defined in this section. */
13047 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13048 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13049 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13050 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13051 isym->st_value -= count;
13052
13053 /* Now adjust the global symbols defined in this section. */
13054 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13055 - symtab_hdr->sh_info);
13056 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13057 end_hashes = sym_hashes + symcount;
13058
13059 for (; sym_hashes < end_hashes; sym_hashes++)
13060 {
13061 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13062
13063 if ((sym_hash->root.type == bfd_link_hash_defined
13064 || sym_hash->root.type == bfd_link_hash_defweak)
13065 && sym_hash->root.u.def.section == sec)
13066 {
13067 bfd_vma value = sym_hash->root.u.def.value;
13068
13069 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13070 value &= MINUS_TWO;
13071 if (value > addr)
13072 sym_hash->root.u.def.value -= count;
13073 }
13074 }
13075
13076 return TRUE;
13077 }
13078
13079
13080 /* Opcodes needed for microMIPS relaxation as found in
13081 opcodes/micromips-opc.c. */
13082
13083 struct opcode_descriptor {
13084 unsigned long match;
13085 unsigned long mask;
13086 };
13087
13088 /* The $ra register aka $31. */
13089
13090 #define RA 31
13091
13092 /* 32-bit instruction format register fields. */
13093
13094 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13095 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13096
13097 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13098
13099 #define OP16_VALID_REG(r) \
13100 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13101
13102
13103 /* 32-bit and 16-bit branches. */
13104
13105 static const struct opcode_descriptor b_insns_32[] = {
13106 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13107 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13108 { 0, 0 } /* End marker for find_match(). */
13109 };
13110
13111 static const struct opcode_descriptor bc_insn_32 =
13112 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13113
13114 static const struct opcode_descriptor bz_insn_32 =
13115 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13116
13117 static const struct opcode_descriptor bzal_insn_32 =
13118 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13119
13120 static const struct opcode_descriptor beq_insn_32 =
13121 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13122
13123 static const struct opcode_descriptor b_insn_16 =
13124 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13125
13126 static const struct opcode_descriptor bz_insn_16 =
13127 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13128
13129
13130 /* 32-bit and 16-bit branch EQ and NE zero. */
13131
13132 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13133 eq and second the ne. This convention is used when replacing a
13134 32-bit BEQ/BNE with the 16-bit version. */
13135
13136 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13137
13138 static const struct opcode_descriptor bz_rs_insns_32[] = {
13139 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13140 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13141 { 0, 0 } /* End marker for find_match(). */
13142 };
13143
13144 static const struct opcode_descriptor bz_rt_insns_32[] = {
13145 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13146 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13147 { 0, 0 } /* End marker for find_match(). */
13148 };
13149
13150 static const struct opcode_descriptor bzc_insns_32[] = {
13151 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13152 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13153 { 0, 0 } /* End marker for find_match(). */
13154 };
13155
13156 static const struct opcode_descriptor bz_insns_16[] = {
13157 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13158 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13159 { 0, 0 } /* End marker for find_match(). */
13160 };
13161
13162 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13163
13164 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13165 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13166
13167
13168 /* 32-bit instructions with a delay slot. */
13169
13170 static const struct opcode_descriptor jal_insn_32_bd16 =
13171 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13172
13173 static const struct opcode_descriptor jal_insn_32_bd32 =
13174 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13175
13176 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13177 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13178
13179 static const struct opcode_descriptor j_insn_32 =
13180 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13181
13182 static const struct opcode_descriptor jalr_insn_32 =
13183 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13184
13185 /* This table can be compacted, because no opcode replacement is made. */
13186
13187 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13188 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13189
13190 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13191 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13192
13193 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13194 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13195 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13196 { 0, 0 } /* End marker for find_match(). */
13197 };
13198
13199 /* This table can be compacted, because no opcode replacement is made. */
13200
13201 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13202 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13203
13204 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13205 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13206 { 0, 0 } /* End marker for find_match(). */
13207 };
13208
13209
13210 /* 16-bit instructions with a delay slot. */
13211
13212 static const struct opcode_descriptor jalr_insn_16_bd16 =
13213 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13214
13215 static const struct opcode_descriptor jalr_insn_16_bd32 =
13216 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13217
13218 static const struct opcode_descriptor jr_insn_16 =
13219 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13220
13221 #define JR16_REG(opcode) ((opcode) & 0x1f)
13222
13223 /* This table can be compacted, because no opcode replacement is made. */
13224
13225 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13226 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13227
13228 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13229 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13230 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13231 { 0, 0 } /* End marker for find_match(). */
13232 };
13233
13234
13235 /* LUI instruction. */
13236
13237 static const struct opcode_descriptor lui_insn =
13238 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13239
13240
13241 /* ADDIU instruction. */
13242
13243 static const struct opcode_descriptor addiu_insn =
13244 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13245
13246 static const struct opcode_descriptor addiupc_insn =
13247 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13248
13249 #define ADDIUPC_REG_FIELD(r) \
13250 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13251
13252
13253 /* Relaxable instructions in a JAL delay slot: MOVE. */
13254
13255 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13256 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13257 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13258 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13259
13260 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13261 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13262
13263 static const struct opcode_descriptor move_insns_32[] = {
13264 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13265 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13266 { 0, 0 } /* End marker for find_match(). */
13267 };
13268
13269 static const struct opcode_descriptor move_insn_16 =
13270 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13271
13272
13273 /* NOP instructions. */
13274
13275 static const struct opcode_descriptor nop_insn_32 =
13276 { /* "nop", "", */ 0x00000000, 0xffffffff };
13277
13278 static const struct opcode_descriptor nop_insn_16 =
13279 { /* "nop", "", */ 0x0c00, 0xffff };
13280
13281
13282 /* Instruction match support. */
13283
13284 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13285
13286 static int
13287 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13288 {
13289 unsigned long indx;
13290
13291 for (indx = 0; insn[indx].mask != 0; indx++)
13292 if (MATCH (opcode, insn[indx]))
13293 return indx;
13294
13295 return -1;
13296 }
13297
13298
13299 /* Branch and delay slot decoding support. */
13300
13301 /* If PTR points to what *might* be a 16-bit branch or jump, then
13302 return the minimum length of its delay slot, otherwise return 0.
13303 Non-zero results are not definitive as we might be checking against
13304 the second half of another instruction. */
13305
13306 static int
13307 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13308 {
13309 unsigned long opcode;
13310 int bdsize;
13311
13312 opcode = bfd_get_16 (abfd, ptr);
13313 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13314 /* 16-bit branch/jump with a 32-bit delay slot. */
13315 bdsize = 4;
13316 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13317 || find_match (opcode, ds_insns_16_bd16) >= 0)
13318 /* 16-bit branch/jump with a 16-bit delay slot. */
13319 bdsize = 2;
13320 else
13321 /* No delay slot. */
13322 bdsize = 0;
13323
13324 return bdsize;
13325 }
13326
13327 /* If PTR points to what *might* be a 32-bit branch or jump, then
13328 return the minimum length of its delay slot, otherwise return 0.
13329 Non-zero results are not definitive as we might be checking against
13330 the second half of another instruction. */
13331
13332 static int
13333 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13334 {
13335 unsigned long opcode;
13336 int bdsize;
13337
13338 opcode = bfd_get_micromips_32 (abfd, ptr);
13339 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13340 /* 32-bit branch/jump with a 32-bit delay slot. */
13341 bdsize = 4;
13342 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13343 /* 32-bit branch/jump with a 16-bit delay slot. */
13344 bdsize = 2;
13345 else
13346 /* No delay slot. */
13347 bdsize = 0;
13348
13349 return bdsize;
13350 }
13351
13352 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13353 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13354
13355 static bfd_boolean
13356 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13357 {
13358 unsigned long opcode;
13359
13360 opcode = bfd_get_16 (abfd, ptr);
13361 if (MATCH (opcode, b_insn_16)
13362 /* B16 */
13363 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13364 /* JR16 */
13365 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13366 /* BEQZ16, BNEZ16 */
13367 || (MATCH (opcode, jalr_insn_16_bd32)
13368 /* JALR16 */
13369 && reg != JR16_REG (opcode) && reg != RA))
13370 return TRUE;
13371
13372 return FALSE;
13373 }
13374
13375 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13376 then return TRUE, otherwise FALSE. */
13377
13378 static bfd_boolean
13379 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13380 {
13381 unsigned long opcode;
13382
13383 opcode = bfd_get_micromips_32 (abfd, ptr);
13384 if (MATCH (opcode, j_insn_32)
13385 /* J */
13386 || MATCH (opcode, bc_insn_32)
13387 /* BC1F, BC1T, BC2F, BC2T */
13388 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13389 /* JAL, JALX */
13390 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13391 /* BGEZ, BGTZ, BLEZ, BLTZ */
13392 || (MATCH (opcode, bzal_insn_32)
13393 /* BGEZAL, BLTZAL */
13394 && reg != OP32_SREG (opcode) && reg != RA)
13395 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13396 /* JALR, JALR.HB, BEQ, BNE */
13397 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13398 return TRUE;
13399
13400 return FALSE;
13401 }
13402
13403 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13404 IRELEND) at OFFSET indicate that there must be a compact branch there,
13405 then return TRUE, otherwise FALSE. */
13406
13407 static bfd_boolean
13408 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13409 const Elf_Internal_Rela *internal_relocs,
13410 const Elf_Internal_Rela *irelend)
13411 {
13412 const Elf_Internal_Rela *irel;
13413 unsigned long opcode;
13414
13415 opcode = bfd_get_micromips_32 (abfd, ptr);
13416 if (find_match (opcode, bzc_insns_32) < 0)
13417 return FALSE;
13418
13419 for (irel = internal_relocs; irel < irelend; irel++)
13420 if (irel->r_offset == offset
13421 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13422 return TRUE;
13423
13424 return FALSE;
13425 }
13426
13427 /* Bitsize checking. */
13428 #define IS_BITSIZE(val, N) \
13429 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13430 - (1ULL << ((N) - 1))) == (val))
13431
13432 \f
13433 bfd_boolean
13434 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13435 struct bfd_link_info *link_info,
13436 bfd_boolean *again)
13437 {
13438 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13439 Elf_Internal_Shdr *symtab_hdr;
13440 Elf_Internal_Rela *internal_relocs;
13441 Elf_Internal_Rela *irel, *irelend;
13442 bfd_byte *contents = NULL;
13443 Elf_Internal_Sym *isymbuf = NULL;
13444
13445 /* Assume nothing changes. */
13446 *again = FALSE;
13447
13448 /* We don't have to do anything for a relocatable link, if
13449 this section does not have relocs, or if this is not a
13450 code section. */
13451
13452 if (bfd_link_relocatable (link_info)
13453 || (sec->flags & SEC_RELOC) == 0
13454 || sec->reloc_count == 0
13455 || (sec->flags & SEC_CODE) == 0)
13456 return TRUE;
13457
13458 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13459
13460 /* Get a copy of the native relocations. */
13461 internal_relocs = (_bfd_elf_link_read_relocs
13462 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13463 link_info->keep_memory));
13464 if (internal_relocs == NULL)
13465 goto error_return;
13466
13467 /* Walk through them looking for relaxing opportunities. */
13468 irelend = internal_relocs + sec->reloc_count;
13469 for (irel = internal_relocs; irel < irelend; irel++)
13470 {
13471 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13472 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13473 bfd_boolean target_is_micromips_code_p;
13474 unsigned long opcode;
13475 bfd_vma symval;
13476 bfd_vma pcrval;
13477 bfd_byte *ptr;
13478 int fndopc;
13479
13480 /* The number of bytes to delete for relaxation and from where
13481 to delete these bytes starting at irel->r_offset. */
13482 int delcnt = 0;
13483 int deloff = 0;
13484
13485 /* If this isn't something that can be relaxed, then ignore
13486 this reloc. */
13487 if (r_type != R_MICROMIPS_HI16
13488 && r_type != R_MICROMIPS_PC16_S1
13489 && r_type != R_MICROMIPS_26_S1)
13490 continue;
13491
13492 /* Get the section contents if we haven't done so already. */
13493 if (contents == NULL)
13494 {
13495 /* Get cached copy if it exists. */
13496 if (elf_section_data (sec)->this_hdr.contents != NULL)
13497 contents = elf_section_data (sec)->this_hdr.contents;
13498 /* Go get them off disk. */
13499 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13500 goto error_return;
13501 }
13502 ptr = contents + irel->r_offset;
13503
13504 /* Read this BFD's local symbols if we haven't done so already. */
13505 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13506 {
13507 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13508 if (isymbuf == NULL)
13509 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13510 symtab_hdr->sh_info, 0,
13511 NULL, NULL, NULL);
13512 if (isymbuf == NULL)
13513 goto error_return;
13514 }
13515
13516 /* Get the value of the symbol referred to by the reloc. */
13517 if (r_symndx < symtab_hdr->sh_info)
13518 {
13519 /* A local symbol. */
13520 Elf_Internal_Sym *isym;
13521 asection *sym_sec;
13522
13523 isym = isymbuf + r_symndx;
13524 if (isym->st_shndx == SHN_UNDEF)
13525 sym_sec = bfd_und_section_ptr;
13526 else if (isym->st_shndx == SHN_ABS)
13527 sym_sec = bfd_abs_section_ptr;
13528 else if (isym->st_shndx == SHN_COMMON)
13529 sym_sec = bfd_com_section_ptr;
13530 else
13531 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13532 symval = (isym->st_value
13533 + sym_sec->output_section->vma
13534 + sym_sec->output_offset);
13535 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13536 }
13537 else
13538 {
13539 unsigned long indx;
13540 struct elf_link_hash_entry *h;
13541
13542 /* An external symbol. */
13543 indx = r_symndx - symtab_hdr->sh_info;
13544 h = elf_sym_hashes (abfd)[indx];
13545 BFD_ASSERT (h != NULL);
13546
13547 if (h->root.type != bfd_link_hash_defined
13548 && h->root.type != bfd_link_hash_defweak)
13549 /* This appears to be a reference to an undefined
13550 symbol. Just ignore it -- it will be caught by the
13551 regular reloc processing. */
13552 continue;
13553
13554 symval = (h->root.u.def.value
13555 + h->root.u.def.section->output_section->vma
13556 + h->root.u.def.section->output_offset);
13557 target_is_micromips_code_p = (!h->needs_plt
13558 && ELF_ST_IS_MICROMIPS (h->other));
13559 }
13560
13561
13562 /* For simplicity of coding, we are going to modify the
13563 section contents, the section relocs, and the BFD symbol
13564 table. We must tell the rest of the code not to free up this
13565 information. It would be possible to instead create a table
13566 of changes which have to be made, as is done in coff-mips.c;
13567 that would be more work, but would require less memory when
13568 the linker is run. */
13569
13570 /* Only 32-bit instructions relaxed. */
13571 if (irel->r_offset + 4 > sec->size)
13572 continue;
13573
13574 opcode = bfd_get_micromips_32 (abfd, ptr);
13575
13576 /* This is the pc-relative distance from the instruction the
13577 relocation is applied to, to the symbol referred. */
13578 pcrval = (symval
13579 - (sec->output_section->vma + sec->output_offset)
13580 - irel->r_offset);
13581
13582 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13583 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13584 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13585
13586 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13587
13588 where pcrval has first to be adjusted to apply against the LO16
13589 location (we make the adjustment later on, when we have figured
13590 out the offset). */
13591 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13592 {
13593 bfd_boolean bzc = FALSE;
13594 unsigned long nextopc;
13595 unsigned long reg;
13596 bfd_vma offset;
13597
13598 /* Give up if the previous reloc was a HI16 against this symbol
13599 too. */
13600 if (irel > internal_relocs
13601 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13602 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13603 continue;
13604
13605 /* Or if the next reloc is not a LO16 against this symbol. */
13606 if (irel + 1 >= irelend
13607 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13608 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13609 continue;
13610
13611 /* Or if the second next reloc is a LO16 against this symbol too. */
13612 if (irel + 2 >= irelend
13613 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13614 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13615 continue;
13616
13617 /* See if the LUI instruction *might* be in a branch delay slot.
13618 We check whether what looks like a 16-bit branch or jump is
13619 actually an immediate argument to a compact branch, and let
13620 it through if so. */
13621 if (irel->r_offset >= 2
13622 && check_br16_dslot (abfd, ptr - 2)
13623 && !(irel->r_offset >= 4
13624 && (bzc = check_relocated_bzc (abfd,
13625 ptr - 4, irel->r_offset - 4,
13626 internal_relocs, irelend))))
13627 continue;
13628 if (irel->r_offset >= 4
13629 && !bzc
13630 && check_br32_dslot (abfd, ptr - 4))
13631 continue;
13632
13633 reg = OP32_SREG (opcode);
13634
13635 /* We only relax adjacent instructions or ones separated with
13636 a branch or jump that has a delay slot. The branch or jump
13637 must not fiddle with the register used to hold the address.
13638 Subtract 4 for the LUI itself. */
13639 offset = irel[1].r_offset - irel[0].r_offset;
13640 switch (offset - 4)
13641 {
13642 case 0:
13643 break;
13644 case 2:
13645 if (check_br16 (abfd, ptr + 4, reg))
13646 break;
13647 continue;
13648 case 4:
13649 if (check_br32 (abfd, ptr + 4, reg))
13650 break;
13651 continue;
13652 default:
13653 continue;
13654 }
13655
13656 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13657
13658 /* Give up unless the same register is used with both
13659 relocations. */
13660 if (OP32_SREG (nextopc) != reg)
13661 continue;
13662
13663 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13664 and rounding up to take masking of the two LSBs into account. */
13665 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13666
13667 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13668 if (IS_BITSIZE (symval, 16))
13669 {
13670 /* Fix the relocation's type. */
13671 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13672
13673 /* Instructions using R_MICROMIPS_LO16 have the base or
13674 source register in bits 20:16. This register becomes $0
13675 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13676 nextopc &= ~0x001f0000;
13677 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13678 contents + irel[1].r_offset);
13679 }
13680
13681 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13682 We add 4 to take LUI deletion into account while checking
13683 the PC-relative distance. */
13684 else if (symval % 4 == 0
13685 && IS_BITSIZE (pcrval + 4, 25)
13686 && MATCH (nextopc, addiu_insn)
13687 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13688 && OP16_VALID_REG (OP32_TREG (nextopc)))
13689 {
13690 /* Fix the relocation's type. */
13691 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13692
13693 /* Replace ADDIU with the ADDIUPC version. */
13694 nextopc = (addiupc_insn.match
13695 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13696
13697 bfd_put_micromips_32 (abfd, nextopc,
13698 contents + irel[1].r_offset);
13699 }
13700
13701 /* Can't do anything, give up, sigh... */
13702 else
13703 continue;
13704
13705 /* Fix the relocation's type. */
13706 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13707
13708 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13709 delcnt = 4;
13710 deloff = 0;
13711 }
13712
13713 /* Compact branch relaxation -- due to the multitude of macros
13714 employed by the compiler/assembler, compact branches are not
13715 always generated. Obviously, this can/will be fixed elsewhere,
13716 but there is no drawback in double checking it here. */
13717 else if (r_type == R_MICROMIPS_PC16_S1
13718 && irel->r_offset + 5 < sec->size
13719 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13720 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13721 && ((!insn32
13722 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13723 nop_insn_16) ? 2 : 0))
13724 || (irel->r_offset + 7 < sec->size
13725 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13726 ptr + 4),
13727 nop_insn_32) ? 4 : 0))))
13728 {
13729 unsigned long reg;
13730
13731 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13732
13733 /* Replace BEQZ/BNEZ with the compact version. */
13734 opcode = (bzc_insns_32[fndopc].match
13735 | BZC32_REG_FIELD (reg)
13736 | (opcode & 0xffff)); /* Addend value. */
13737
13738 bfd_put_micromips_32 (abfd, opcode, ptr);
13739
13740 /* Delete the delay slot NOP: two or four bytes from
13741 irel->offset + 4; delcnt has already been set above. */
13742 deloff = 4;
13743 }
13744
13745 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13746 to check the distance from the next instruction, so subtract 2. */
13747 else if (!insn32
13748 && r_type == R_MICROMIPS_PC16_S1
13749 && IS_BITSIZE (pcrval - 2, 11)
13750 && find_match (opcode, b_insns_32) >= 0)
13751 {
13752 /* Fix the relocation's type. */
13753 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13754
13755 /* Replace the 32-bit opcode with a 16-bit opcode. */
13756 bfd_put_16 (abfd,
13757 (b_insn_16.match
13758 | (opcode & 0x3ff)), /* Addend value. */
13759 ptr);
13760
13761 /* Delete 2 bytes from irel->r_offset + 2. */
13762 delcnt = 2;
13763 deloff = 2;
13764 }
13765
13766 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13767 to check the distance from the next instruction, so subtract 2. */
13768 else if (!insn32
13769 && r_type == R_MICROMIPS_PC16_S1
13770 && IS_BITSIZE (pcrval - 2, 8)
13771 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13772 && OP16_VALID_REG (OP32_SREG (opcode)))
13773 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13774 && OP16_VALID_REG (OP32_TREG (opcode)))))
13775 {
13776 unsigned long reg;
13777
13778 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13779
13780 /* Fix the relocation's type. */
13781 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13782
13783 /* Replace the 32-bit opcode with a 16-bit opcode. */
13784 bfd_put_16 (abfd,
13785 (bz_insns_16[fndopc].match
13786 | BZ16_REG_FIELD (reg)
13787 | (opcode & 0x7f)), /* Addend value. */
13788 ptr);
13789
13790 /* Delete 2 bytes from irel->r_offset + 2. */
13791 delcnt = 2;
13792 deloff = 2;
13793 }
13794
13795 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13796 else if (!insn32
13797 && r_type == R_MICROMIPS_26_S1
13798 && target_is_micromips_code_p
13799 && irel->r_offset + 7 < sec->size
13800 && MATCH (opcode, jal_insn_32_bd32))
13801 {
13802 unsigned long n32opc;
13803 bfd_boolean relaxed = FALSE;
13804
13805 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13806
13807 if (MATCH (n32opc, nop_insn_32))
13808 {
13809 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13810 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13811
13812 relaxed = TRUE;
13813 }
13814 else if (find_match (n32opc, move_insns_32) >= 0)
13815 {
13816 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13817 bfd_put_16 (abfd,
13818 (move_insn_16.match
13819 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13820 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13821 ptr + 4);
13822
13823 relaxed = TRUE;
13824 }
13825 /* Other 32-bit instructions relaxable to 16-bit
13826 instructions will be handled here later. */
13827
13828 if (relaxed)
13829 {
13830 /* JAL with 32-bit delay slot that is changed to a JALS
13831 with 16-bit delay slot. */
13832 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13833
13834 /* Delete 2 bytes from irel->r_offset + 6. */
13835 delcnt = 2;
13836 deloff = 6;
13837 }
13838 }
13839
13840 if (delcnt != 0)
13841 {
13842 /* Note that we've changed the relocs, section contents, etc. */
13843 elf_section_data (sec)->relocs = internal_relocs;
13844 elf_section_data (sec)->this_hdr.contents = contents;
13845 symtab_hdr->contents = (unsigned char *) isymbuf;
13846
13847 /* Delete bytes depending on the delcnt and deloff. */
13848 if (!mips_elf_relax_delete_bytes (abfd, sec,
13849 irel->r_offset + deloff, delcnt))
13850 goto error_return;
13851
13852 /* That will change things, so we should relax again.
13853 Note that this is not required, and it may be slow. */
13854 *again = TRUE;
13855 }
13856 }
13857
13858 if (isymbuf != NULL
13859 && symtab_hdr->contents != (unsigned char *) isymbuf)
13860 {
13861 if (! link_info->keep_memory)
13862 free (isymbuf);
13863 else
13864 {
13865 /* Cache the symbols for elf_link_input_bfd. */
13866 symtab_hdr->contents = (unsigned char *) isymbuf;
13867 }
13868 }
13869
13870 if (contents != NULL
13871 && elf_section_data (sec)->this_hdr.contents != contents)
13872 {
13873 if (! link_info->keep_memory)
13874 free (contents);
13875 else
13876 {
13877 /* Cache the section contents for elf_link_input_bfd. */
13878 elf_section_data (sec)->this_hdr.contents = contents;
13879 }
13880 }
13881
13882 if (internal_relocs != NULL
13883 && elf_section_data (sec)->relocs != internal_relocs)
13884 free (internal_relocs);
13885
13886 return TRUE;
13887
13888 error_return:
13889 if (isymbuf != NULL
13890 && symtab_hdr->contents != (unsigned char *) isymbuf)
13891 free (isymbuf);
13892 if (contents != NULL
13893 && elf_section_data (sec)->this_hdr.contents != contents)
13894 free (contents);
13895 if (internal_relocs != NULL
13896 && elf_section_data (sec)->relocs != internal_relocs)
13897 free (internal_relocs);
13898
13899 return FALSE;
13900 }
13901 \f
13902 /* Create a MIPS ELF linker hash table. */
13903
13904 struct bfd_link_hash_table *
13905 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13906 {
13907 struct mips_elf_link_hash_table *ret;
13908 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13909
13910 ret = bfd_zmalloc (amt);
13911 if (ret == NULL)
13912 return NULL;
13913
13914 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13915 mips_elf_link_hash_newfunc,
13916 sizeof (struct mips_elf_link_hash_entry),
13917 MIPS_ELF_DATA))
13918 {
13919 free (ret);
13920 return NULL;
13921 }
13922 ret->root.init_plt_refcount.plist = NULL;
13923 ret->root.init_plt_offset.plist = NULL;
13924
13925 return &ret->root.root;
13926 }
13927
13928 /* Likewise, but indicate that the target is VxWorks. */
13929
13930 struct bfd_link_hash_table *
13931 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13932 {
13933 struct bfd_link_hash_table *ret;
13934
13935 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13936 if (ret)
13937 {
13938 struct mips_elf_link_hash_table *htab;
13939
13940 htab = (struct mips_elf_link_hash_table *) ret;
13941 htab->use_plts_and_copy_relocs = TRUE;
13942 htab->is_vxworks = TRUE;
13943 }
13944 return ret;
13945 }
13946
13947 /* A function that the linker calls if we are allowed to use PLTs
13948 and copy relocs. */
13949
13950 void
13951 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13952 {
13953 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13954 }
13955
13956 /* A function that the linker calls to select between all or only
13957 32-bit microMIPS instructions, and between making or ignoring
13958 branch relocation checks for invalid transitions between ISA modes. */
13959
13960 void
13961 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13962 bfd_boolean ignore_branch_isa)
13963 {
13964 mips_elf_hash_table (info)->insn32 = insn32;
13965 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13966 }
13967 \f
13968 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13969
13970 struct mips_mach_extension
13971 {
13972 unsigned long extension, base;
13973 };
13974
13975
13976 /* An array describing how BFD machines relate to one another. The entries
13977 are ordered topologically with MIPS I extensions listed last. */
13978
13979 static const struct mips_mach_extension mips_mach_extensions[] =
13980 {
13981 /* MIPS64r2 extensions. */
13982 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13983 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13984 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13985 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13986 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13987
13988 /* MIPS64 extensions. */
13989 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13990 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13991 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13992
13993 /* MIPS V extensions. */
13994 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13995
13996 /* R10000 extensions. */
13997 { bfd_mach_mips12000, bfd_mach_mips10000 },
13998 { bfd_mach_mips14000, bfd_mach_mips10000 },
13999 { bfd_mach_mips16000, bfd_mach_mips10000 },
14000
14001 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14002 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14003 better to allow vr5400 and vr5500 code to be merged anyway, since
14004 many libraries will just use the core ISA. Perhaps we could add
14005 some sort of ASE flag if this ever proves a problem. */
14006 { bfd_mach_mips5500, bfd_mach_mips5400 },
14007 { bfd_mach_mips5400, bfd_mach_mips5000 },
14008
14009 /* MIPS IV extensions. */
14010 { bfd_mach_mips5, bfd_mach_mips8000 },
14011 { bfd_mach_mips10000, bfd_mach_mips8000 },
14012 { bfd_mach_mips5000, bfd_mach_mips8000 },
14013 { bfd_mach_mips7000, bfd_mach_mips8000 },
14014 { bfd_mach_mips9000, bfd_mach_mips8000 },
14015
14016 /* VR4100 extensions. */
14017 { bfd_mach_mips4120, bfd_mach_mips4100 },
14018 { bfd_mach_mips4111, bfd_mach_mips4100 },
14019
14020 /* MIPS III extensions. */
14021 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14022 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14023 { bfd_mach_mips8000, bfd_mach_mips4000 },
14024 { bfd_mach_mips4650, bfd_mach_mips4000 },
14025 { bfd_mach_mips4600, bfd_mach_mips4000 },
14026 { bfd_mach_mips4400, bfd_mach_mips4000 },
14027 { bfd_mach_mips4300, bfd_mach_mips4000 },
14028 { bfd_mach_mips4100, bfd_mach_mips4000 },
14029 { bfd_mach_mips4010, bfd_mach_mips4000 },
14030 { bfd_mach_mips5900, bfd_mach_mips4000 },
14031
14032 /* MIPS32 extensions. */
14033 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14034
14035 /* MIPS II extensions. */
14036 { bfd_mach_mips4000, bfd_mach_mips6000 },
14037 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14038
14039 /* MIPS I extensions. */
14040 { bfd_mach_mips6000, bfd_mach_mips3000 },
14041 { bfd_mach_mips3900, bfd_mach_mips3000 }
14042 };
14043
14044 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14045
14046 static bfd_boolean
14047 mips_mach_extends_p (unsigned long base, unsigned long extension)
14048 {
14049 size_t i;
14050
14051 if (extension == base)
14052 return TRUE;
14053
14054 if (base == bfd_mach_mipsisa32
14055 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14056 return TRUE;
14057
14058 if (base == bfd_mach_mipsisa32r2
14059 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14060 return TRUE;
14061
14062 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14063 if (extension == mips_mach_extensions[i].extension)
14064 {
14065 extension = mips_mach_extensions[i].base;
14066 if (extension == base)
14067 return TRUE;
14068 }
14069
14070 return FALSE;
14071 }
14072
14073 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14074
14075 static unsigned long
14076 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14077 {
14078 switch (isa_ext)
14079 {
14080 case AFL_EXT_3900: return bfd_mach_mips3900;
14081 case AFL_EXT_4010: return bfd_mach_mips4010;
14082 case AFL_EXT_4100: return bfd_mach_mips4100;
14083 case AFL_EXT_4111: return bfd_mach_mips4111;
14084 case AFL_EXT_4120: return bfd_mach_mips4120;
14085 case AFL_EXT_4650: return bfd_mach_mips4650;
14086 case AFL_EXT_5400: return bfd_mach_mips5400;
14087 case AFL_EXT_5500: return bfd_mach_mips5500;
14088 case AFL_EXT_5900: return bfd_mach_mips5900;
14089 case AFL_EXT_10000: return bfd_mach_mips10000;
14090 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14091 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14092 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14093 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14094 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14095 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14096 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14097 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14098 default: return bfd_mach_mips3000;
14099 }
14100 }
14101
14102 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14103
14104 unsigned int
14105 bfd_mips_isa_ext (bfd *abfd)
14106 {
14107 switch (bfd_get_mach (abfd))
14108 {
14109 case bfd_mach_mips3900: return AFL_EXT_3900;
14110 case bfd_mach_mips4010: return AFL_EXT_4010;
14111 case bfd_mach_mips4100: return AFL_EXT_4100;
14112 case bfd_mach_mips4111: return AFL_EXT_4111;
14113 case bfd_mach_mips4120: return AFL_EXT_4120;
14114 case bfd_mach_mips4650: return AFL_EXT_4650;
14115 case bfd_mach_mips5400: return AFL_EXT_5400;
14116 case bfd_mach_mips5500: return AFL_EXT_5500;
14117 case bfd_mach_mips5900: return AFL_EXT_5900;
14118 case bfd_mach_mips10000: return AFL_EXT_10000;
14119 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14120 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14121 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14122 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14123 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14124 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14125 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14126 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14127 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14128 default: return 0;
14129 }
14130 }
14131
14132 /* Encode ISA level and revision as a single value. */
14133 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14134
14135 /* Decode a single value into level and revision. */
14136 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14137 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14138
14139 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14140
14141 static void
14142 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14143 {
14144 int new_isa = 0;
14145 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14146 {
14147 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14148 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14149 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14150 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14151 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14152 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14153 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14154 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14155 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14156 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14157 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14158 default:
14159 _bfd_error_handler
14160 /* xgettext:c-format */
14161 (_("%B: Unknown architecture %s"),
14162 abfd, bfd_printable_name (abfd));
14163 }
14164
14165 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14166 {
14167 abiflags->isa_level = ISA_LEVEL (new_isa);
14168 abiflags->isa_rev = ISA_REV (new_isa);
14169 }
14170
14171 /* Update the isa_ext if ABFD describes a further extension. */
14172 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14173 bfd_get_mach (abfd)))
14174 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14175 }
14176
14177 /* Return true if the given ELF header flags describe a 32-bit binary. */
14178
14179 static bfd_boolean
14180 mips_32bit_flags_p (flagword flags)
14181 {
14182 return ((flags & EF_MIPS_32BITMODE) != 0
14183 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14184 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14185 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14186 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14187 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14188 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14189 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14190 }
14191
14192 /* Infer the content of the ABI flags based on the elf header. */
14193
14194 static void
14195 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14196 {
14197 obj_attribute *in_attr;
14198
14199 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14200 update_mips_abiflags_isa (abfd, abiflags);
14201
14202 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14203 abiflags->gpr_size = AFL_REG_32;
14204 else
14205 abiflags->gpr_size = AFL_REG_64;
14206
14207 abiflags->cpr1_size = AFL_REG_NONE;
14208
14209 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14210 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14211
14212 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14213 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14214 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14215 && abiflags->gpr_size == AFL_REG_32))
14216 abiflags->cpr1_size = AFL_REG_32;
14217 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14218 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14219 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14220 abiflags->cpr1_size = AFL_REG_64;
14221
14222 abiflags->cpr2_size = AFL_REG_NONE;
14223
14224 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14225 abiflags->ases |= AFL_ASE_MDMX;
14226 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14227 abiflags->ases |= AFL_ASE_MIPS16;
14228 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14229 abiflags->ases |= AFL_ASE_MICROMIPS;
14230
14231 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14232 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14233 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14234 && abiflags->isa_level >= 32
14235 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14236 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14237 }
14238
14239 /* We need to use a special link routine to handle the .reginfo and
14240 the .mdebug sections. We need to merge all instances of these
14241 sections together, not write them all out sequentially. */
14242
14243 bfd_boolean
14244 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14245 {
14246 asection *o;
14247 struct bfd_link_order *p;
14248 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14249 asection *rtproc_sec, *abiflags_sec;
14250 Elf32_RegInfo reginfo;
14251 struct ecoff_debug_info debug;
14252 struct mips_htab_traverse_info hti;
14253 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14254 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14255 HDRR *symhdr = &debug.symbolic_header;
14256 void *mdebug_handle = NULL;
14257 asection *s;
14258 EXTR esym;
14259 unsigned int i;
14260 bfd_size_type amt;
14261 struct mips_elf_link_hash_table *htab;
14262
14263 static const char * const secname[] =
14264 {
14265 ".text", ".init", ".fini", ".data",
14266 ".rodata", ".sdata", ".sbss", ".bss"
14267 };
14268 static const int sc[] =
14269 {
14270 scText, scInit, scFini, scData,
14271 scRData, scSData, scSBss, scBss
14272 };
14273
14274 htab = mips_elf_hash_table (info);
14275 BFD_ASSERT (htab != NULL);
14276
14277 /* Sort the dynamic symbols so that those with GOT entries come after
14278 those without. */
14279 if (!mips_elf_sort_hash_table (abfd, info))
14280 return FALSE;
14281
14282 /* Create any scheduled LA25 stubs. */
14283 hti.info = info;
14284 hti.output_bfd = abfd;
14285 hti.error = FALSE;
14286 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14287 if (hti.error)
14288 return FALSE;
14289
14290 /* Get a value for the GP register. */
14291 if (elf_gp (abfd) == 0)
14292 {
14293 struct bfd_link_hash_entry *h;
14294
14295 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14296 if (h != NULL && h->type == bfd_link_hash_defined)
14297 elf_gp (abfd) = (h->u.def.value
14298 + h->u.def.section->output_section->vma
14299 + h->u.def.section->output_offset);
14300 else if (htab->is_vxworks
14301 && (h = bfd_link_hash_lookup (info->hash,
14302 "_GLOBAL_OFFSET_TABLE_",
14303 FALSE, FALSE, TRUE))
14304 && h->type == bfd_link_hash_defined)
14305 elf_gp (abfd) = (h->u.def.section->output_section->vma
14306 + h->u.def.section->output_offset
14307 + h->u.def.value);
14308 else if (bfd_link_relocatable (info))
14309 {
14310 bfd_vma lo = MINUS_ONE;
14311
14312 /* Find the GP-relative section with the lowest offset. */
14313 for (o = abfd->sections; o != NULL; o = o->next)
14314 if (o->vma < lo
14315 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14316 lo = o->vma;
14317
14318 /* And calculate GP relative to that. */
14319 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14320 }
14321 else
14322 {
14323 /* If the relocate_section function needs to do a reloc
14324 involving the GP value, it should make a reloc_dangerous
14325 callback to warn that GP is not defined. */
14326 }
14327 }
14328
14329 /* Go through the sections and collect the .reginfo and .mdebug
14330 information. */
14331 abiflags_sec = NULL;
14332 reginfo_sec = NULL;
14333 mdebug_sec = NULL;
14334 gptab_data_sec = NULL;
14335 gptab_bss_sec = NULL;
14336 for (o = abfd->sections; o != NULL; o = o->next)
14337 {
14338 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14339 {
14340 /* We have found the .MIPS.abiflags section in the output file.
14341 Look through all the link_orders comprising it and remove them.
14342 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14343 for (p = o->map_head.link_order; p != NULL; p = p->next)
14344 {
14345 asection *input_section;
14346
14347 if (p->type != bfd_indirect_link_order)
14348 {
14349 if (p->type == bfd_data_link_order)
14350 continue;
14351 abort ();
14352 }
14353
14354 input_section = p->u.indirect.section;
14355
14356 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14357 elf_link_input_bfd ignores this section. */
14358 input_section->flags &= ~SEC_HAS_CONTENTS;
14359 }
14360
14361 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14362 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14363
14364 /* Skip this section later on (I don't think this currently
14365 matters, but someday it might). */
14366 o->map_head.link_order = NULL;
14367
14368 abiflags_sec = o;
14369 }
14370
14371 if (strcmp (o->name, ".reginfo") == 0)
14372 {
14373 memset (&reginfo, 0, sizeof reginfo);
14374
14375 /* We have found the .reginfo section in the output file.
14376 Look through all the link_orders comprising it and merge
14377 the information together. */
14378 for (p = o->map_head.link_order; p != NULL; p = p->next)
14379 {
14380 asection *input_section;
14381 bfd *input_bfd;
14382 Elf32_External_RegInfo ext;
14383 Elf32_RegInfo sub;
14384
14385 if (p->type != bfd_indirect_link_order)
14386 {
14387 if (p->type == bfd_data_link_order)
14388 continue;
14389 abort ();
14390 }
14391
14392 input_section = p->u.indirect.section;
14393 input_bfd = input_section->owner;
14394
14395 if (! bfd_get_section_contents (input_bfd, input_section,
14396 &ext, 0, sizeof ext))
14397 return FALSE;
14398
14399 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14400
14401 reginfo.ri_gprmask |= sub.ri_gprmask;
14402 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14403 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14404 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14405 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14406
14407 /* ri_gp_value is set by the function
14408 mips_elf32_section_processing when the section is
14409 finally written out. */
14410
14411 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14412 elf_link_input_bfd ignores this section. */
14413 input_section->flags &= ~SEC_HAS_CONTENTS;
14414 }
14415
14416 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14417 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14418
14419 /* Skip this section later on (I don't think this currently
14420 matters, but someday it might). */
14421 o->map_head.link_order = NULL;
14422
14423 reginfo_sec = o;
14424 }
14425
14426 if (strcmp (o->name, ".mdebug") == 0)
14427 {
14428 struct extsym_info einfo;
14429 bfd_vma last;
14430
14431 /* We have found the .mdebug section in the output file.
14432 Look through all the link_orders comprising it and merge
14433 the information together. */
14434 symhdr->magic = swap->sym_magic;
14435 /* FIXME: What should the version stamp be? */
14436 symhdr->vstamp = 0;
14437 symhdr->ilineMax = 0;
14438 symhdr->cbLine = 0;
14439 symhdr->idnMax = 0;
14440 symhdr->ipdMax = 0;
14441 symhdr->isymMax = 0;
14442 symhdr->ioptMax = 0;
14443 symhdr->iauxMax = 0;
14444 symhdr->issMax = 0;
14445 symhdr->issExtMax = 0;
14446 symhdr->ifdMax = 0;
14447 symhdr->crfd = 0;
14448 symhdr->iextMax = 0;
14449
14450 /* We accumulate the debugging information itself in the
14451 debug_info structure. */
14452 debug.line = NULL;
14453 debug.external_dnr = NULL;
14454 debug.external_pdr = NULL;
14455 debug.external_sym = NULL;
14456 debug.external_opt = NULL;
14457 debug.external_aux = NULL;
14458 debug.ss = NULL;
14459 debug.ssext = debug.ssext_end = NULL;
14460 debug.external_fdr = NULL;
14461 debug.external_rfd = NULL;
14462 debug.external_ext = debug.external_ext_end = NULL;
14463
14464 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14465 if (mdebug_handle == NULL)
14466 return FALSE;
14467
14468 esym.jmptbl = 0;
14469 esym.cobol_main = 0;
14470 esym.weakext = 0;
14471 esym.reserved = 0;
14472 esym.ifd = ifdNil;
14473 esym.asym.iss = issNil;
14474 esym.asym.st = stLocal;
14475 esym.asym.reserved = 0;
14476 esym.asym.index = indexNil;
14477 last = 0;
14478 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14479 {
14480 esym.asym.sc = sc[i];
14481 s = bfd_get_section_by_name (abfd, secname[i]);
14482 if (s != NULL)
14483 {
14484 esym.asym.value = s->vma;
14485 last = s->vma + s->size;
14486 }
14487 else
14488 esym.asym.value = last;
14489 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14490 secname[i], &esym))
14491 return FALSE;
14492 }
14493
14494 for (p = o->map_head.link_order; p != NULL; p = p->next)
14495 {
14496 asection *input_section;
14497 bfd *input_bfd;
14498 const struct ecoff_debug_swap *input_swap;
14499 struct ecoff_debug_info input_debug;
14500 char *eraw_src;
14501 char *eraw_end;
14502
14503 if (p->type != bfd_indirect_link_order)
14504 {
14505 if (p->type == bfd_data_link_order)
14506 continue;
14507 abort ();
14508 }
14509
14510 input_section = p->u.indirect.section;
14511 input_bfd = input_section->owner;
14512
14513 if (!is_mips_elf (input_bfd))
14514 {
14515 /* I don't know what a non MIPS ELF bfd would be
14516 doing with a .mdebug section, but I don't really
14517 want to deal with it. */
14518 continue;
14519 }
14520
14521 input_swap = (get_elf_backend_data (input_bfd)
14522 ->elf_backend_ecoff_debug_swap);
14523
14524 BFD_ASSERT (p->size == input_section->size);
14525
14526 /* The ECOFF linking code expects that we have already
14527 read in the debugging information and set up an
14528 ecoff_debug_info structure, so we do that now. */
14529 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14530 &input_debug))
14531 return FALSE;
14532
14533 if (! (bfd_ecoff_debug_accumulate
14534 (mdebug_handle, abfd, &debug, swap, input_bfd,
14535 &input_debug, input_swap, info)))
14536 return FALSE;
14537
14538 /* Loop through the external symbols. For each one with
14539 interesting information, try to find the symbol in
14540 the linker global hash table and save the information
14541 for the output external symbols. */
14542 eraw_src = input_debug.external_ext;
14543 eraw_end = (eraw_src
14544 + (input_debug.symbolic_header.iextMax
14545 * input_swap->external_ext_size));
14546 for (;
14547 eraw_src < eraw_end;
14548 eraw_src += input_swap->external_ext_size)
14549 {
14550 EXTR ext;
14551 const char *name;
14552 struct mips_elf_link_hash_entry *h;
14553
14554 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14555 if (ext.asym.sc == scNil
14556 || ext.asym.sc == scUndefined
14557 || ext.asym.sc == scSUndefined)
14558 continue;
14559
14560 name = input_debug.ssext + ext.asym.iss;
14561 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14562 name, FALSE, FALSE, TRUE);
14563 if (h == NULL || h->esym.ifd != -2)
14564 continue;
14565
14566 if (ext.ifd != -1)
14567 {
14568 BFD_ASSERT (ext.ifd
14569 < input_debug.symbolic_header.ifdMax);
14570 ext.ifd = input_debug.ifdmap[ext.ifd];
14571 }
14572
14573 h->esym = ext;
14574 }
14575
14576 /* Free up the information we just read. */
14577 free (input_debug.line);
14578 free (input_debug.external_dnr);
14579 free (input_debug.external_pdr);
14580 free (input_debug.external_sym);
14581 free (input_debug.external_opt);
14582 free (input_debug.external_aux);
14583 free (input_debug.ss);
14584 free (input_debug.ssext);
14585 free (input_debug.external_fdr);
14586 free (input_debug.external_rfd);
14587 free (input_debug.external_ext);
14588
14589 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14590 elf_link_input_bfd ignores this section. */
14591 input_section->flags &= ~SEC_HAS_CONTENTS;
14592 }
14593
14594 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14595 {
14596 /* Create .rtproc section. */
14597 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14598 if (rtproc_sec == NULL)
14599 {
14600 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14601 | SEC_LINKER_CREATED | SEC_READONLY);
14602
14603 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14604 ".rtproc",
14605 flags);
14606 if (rtproc_sec == NULL
14607 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14608 return FALSE;
14609 }
14610
14611 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14612 info, rtproc_sec,
14613 &debug))
14614 return FALSE;
14615 }
14616
14617 /* Build the external symbol information. */
14618 einfo.abfd = abfd;
14619 einfo.info = info;
14620 einfo.debug = &debug;
14621 einfo.swap = swap;
14622 einfo.failed = FALSE;
14623 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14624 mips_elf_output_extsym, &einfo);
14625 if (einfo.failed)
14626 return FALSE;
14627
14628 /* Set the size of the .mdebug section. */
14629 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14630
14631 /* Skip this section later on (I don't think this currently
14632 matters, but someday it might). */
14633 o->map_head.link_order = NULL;
14634
14635 mdebug_sec = o;
14636 }
14637
14638 if (CONST_STRNEQ (o->name, ".gptab."))
14639 {
14640 const char *subname;
14641 unsigned int c;
14642 Elf32_gptab *tab;
14643 Elf32_External_gptab *ext_tab;
14644 unsigned int j;
14645
14646 /* The .gptab.sdata and .gptab.sbss sections hold
14647 information describing how the small data area would
14648 change depending upon the -G switch. These sections
14649 not used in executables files. */
14650 if (! bfd_link_relocatable (info))
14651 {
14652 for (p = o->map_head.link_order; p != NULL; p = p->next)
14653 {
14654 asection *input_section;
14655
14656 if (p->type != bfd_indirect_link_order)
14657 {
14658 if (p->type == bfd_data_link_order)
14659 continue;
14660 abort ();
14661 }
14662
14663 input_section = p->u.indirect.section;
14664
14665 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14666 elf_link_input_bfd ignores this section. */
14667 input_section->flags &= ~SEC_HAS_CONTENTS;
14668 }
14669
14670 /* Skip this section later on (I don't think this
14671 currently matters, but someday it might). */
14672 o->map_head.link_order = NULL;
14673
14674 /* Really remove the section. */
14675 bfd_section_list_remove (abfd, o);
14676 --abfd->section_count;
14677
14678 continue;
14679 }
14680
14681 /* There is one gptab for initialized data, and one for
14682 uninitialized data. */
14683 if (strcmp (o->name, ".gptab.sdata") == 0)
14684 gptab_data_sec = o;
14685 else if (strcmp (o->name, ".gptab.sbss") == 0)
14686 gptab_bss_sec = o;
14687 else
14688 {
14689 _bfd_error_handler
14690 /* xgettext:c-format */
14691 (_("%B: illegal section name `%A'"), abfd, o);
14692 bfd_set_error (bfd_error_nonrepresentable_section);
14693 return FALSE;
14694 }
14695
14696 /* The linker script always combines .gptab.data and
14697 .gptab.sdata into .gptab.sdata, and likewise for
14698 .gptab.bss and .gptab.sbss. It is possible that there is
14699 no .sdata or .sbss section in the output file, in which
14700 case we must change the name of the output section. */
14701 subname = o->name + sizeof ".gptab" - 1;
14702 if (bfd_get_section_by_name (abfd, subname) == NULL)
14703 {
14704 if (o == gptab_data_sec)
14705 o->name = ".gptab.data";
14706 else
14707 o->name = ".gptab.bss";
14708 subname = o->name + sizeof ".gptab" - 1;
14709 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14710 }
14711
14712 /* Set up the first entry. */
14713 c = 1;
14714 amt = c * sizeof (Elf32_gptab);
14715 tab = bfd_malloc (amt);
14716 if (tab == NULL)
14717 return FALSE;
14718 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14719 tab[0].gt_header.gt_unused = 0;
14720
14721 /* Combine the input sections. */
14722 for (p = o->map_head.link_order; p != NULL; p = p->next)
14723 {
14724 asection *input_section;
14725 bfd *input_bfd;
14726 bfd_size_type size;
14727 unsigned long last;
14728 bfd_size_type gpentry;
14729
14730 if (p->type != bfd_indirect_link_order)
14731 {
14732 if (p->type == bfd_data_link_order)
14733 continue;
14734 abort ();
14735 }
14736
14737 input_section = p->u.indirect.section;
14738 input_bfd = input_section->owner;
14739
14740 /* Combine the gptab entries for this input section one
14741 by one. We know that the input gptab entries are
14742 sorted by ascending -G value. */
14743 size = input_section->size;
14744 last = 0;
14745 for (gpentry = sizeof (Elf32_External_gptab);
14746 gpentry < size;
14747 gpentry += sizeof (Elf32_External_gptab))
14748 {
14749 Elf32_External_gptab ext_gptab;
14750 Elf32_gptab int_gptab;
14751 unsigned long val;
14752 unsigned long add;
14753 bfd_boolean exact;
14754 unsigned int look;
14755
14756 if (! (bfd_get_section_contents
14757 (input_bfd, input_section, &ext_gptab, gpentry,
14758 sizeof (Elf32_External_gptab))))
14759 {
14760 free (tab);
14761 return FALSE;
14762 }
14763
14764 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14765 &int_gptab);
14766 val = int_gptab.gt_entry.gt_g_value;
14767 add = int_gptab.gt_entry.gt_bytes - last;
14768
14769 exact = FALSE;
14770 for (look = 1; look < c; look++)
14771 {
14772 if (tab[look].gt_entry.gt_g_value >= val)
14773 tab[look].gt_entry.gt_bytes += add;
14774
14775 if (tab[look].gt_entry.gt_g_value == val)
14776 exact = TRUE;
14777 }
14778
14779 if (! exact)
14780 {
14781 Elf32_gptab *new_tab;
14782 unsigned int max;
14783
14784 /* We need a new table entry. */
14785 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14786 new_tab = bfd_realloc (tab, amt);
14787 if (new_tab == NULL)
14788 {
14789 free (tab);
14790 return FALSE;
14791 }
14792 tab = new_tab;
14793 tab[c].gt_entry.gt_g_value = val;
14794 tab[c].gt_entry.gt_bytes = add;
14795
14796 /* Merge in the size for the next smallest -G
14797 value, since that will be implied by this new
14798 value. */
14799 max = 0;
14800 for (look = 1; look < c; look++)
14801 {
14802 if (tab[look].gt_entry.gt_g_value < val
14803 && (max == 0
14804 || (tab[look].gt_entry.gt_g_value
14805 > tab[max].gt_entry.gt_g_value)))
14806 max = look;
14807 }
14808 if (max != 0)
14809 tab[c].gt_entry.gt_bytes +=
14810 tab[max].gt_entry.gt_bytes;
14811
14812 ++c;
14813 }
14814
14815 last = int_gptab.gt_entry.gt_bytes;
14816 }
14817
14818 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14819 elf_link_input_bfd ignores this section. */
14820 input_section->flags &= ~SEC_HAS_CONTENTS;
14821 }
14822
14823 /* The table must be sorted by -G value. */
14824 if (c > 2)
14825 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14826
14827 /* Swap out the table. */
14828 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14829 ext_tab = bfd_alloc (abfd, amt);
14830 if (ext_tab == NULL)
14831 {
14832 free (tab);
14833 return FALSE;
14834 }
14835
14836 for (j = 0; j < c; j++)
14837 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14838 free (tab);
14839
14840 o->size = c * sizeof (Elf32_External_gptab);
14841 o->contents = (bfd_byte *) ext_tab;
14842
14843 /* Skip this section later on (I don't think this currently
14844 matters, but someday it might). */
14845 o->map_head.link_order = NULL;
14846 }
14847 }
14848
14849 /* Invoke the regular ELF backend linker to do all the work. */
14850 if (!bfd_elf_final_link (abfd, info))
14851 return FALSE;
14852
14853 /* Now write out the computed sections. */
14854
14855 if (abiflags_sec != NULL)
14856 {
14857 Elf_External_ABIFlags_v0 ext;
14858 Elf_Internal_ABIFlags_v0 *abiflags;
14859
14860 abiflags = &mips_elf_tdata (abfd)->abiflags;
14861
14862 /* Set up the abiflags if no valid input sections were found. */
14863 if (!mips_elf_tdata (abfd)->abiflags_valid)
14864 {
14865 infer_mips_abiflags (abfd, abiflags);
14866 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14867 }
14868 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14869 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14870 return FALSE;
14871 }
14872
14873 if (reginfo_sec != NULL)
14874 {
14875 Elf32_External_RegInfo ext;
14876
14877 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14878 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14879 return FALSE;
14880 }
14881
14882 if (mdebug_sec != NULL)
14883 {
14884 BFD_ASSERT (abfd->output_has_begun);
14885 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14886 swap, info,
14887 mdebug_sec->filepos))
14888 return FALSE;
14889
14890 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14891 }
14892
14893 if (gptab_data_sec != NULL)
14894 {
14895 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14896 gptab_data_sec->contents,
14897 0, gptab_data_sec->size))
14898 return FALSE;
14899 }
14900
14901 if (gptab_bss_sec != NULL)
14902 {
14903 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14904 gptab_bss_sec->contents,
14905 0, gptab_bss_sec->size))
14906 return FALSE;
14907 }
14908
14909 if (SGI_COMPAT (abfd))
14910 {
14911 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14912 if (rtproc_sec != NULL)
14913 {
14914 if (! bfd_set_section_contents (abfd, rtproc_sec,
14915 rtproc_sec->contents,
14916 0, rtproc_sec->size))
14917 return FALSE;
14918 }
14919 }
14920
14921 return TRUE;
14922 }
14923 \f
14924 /* Merge object file header flags from IBFD into OBFD. Raise an error
14925 if there are conflicting settings. */
14926
14927 static bfd_boolean
14928 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14929 {
14930 bfd *obfd = info->output_bfd;
14931 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14932 flagword old_flags;
14933 flagword new_flags;
14934 bfd_boolean ok;
14935
14936 new_flags = elf_elfheader (ibfd)->e_flags;
14937 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14938 old_flags = elf_elfheader (obfd)->e_flags;
14939
14940 /* Check flag compatibility. */
14941
14942 new_flags &= ~EF_MIPS_NOREORDER;
14943 old_flags &= ~EF_MIPS_NOREORDER;
14944
14945 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14946 doesn't seem to matter. */
14947 new_flags &= ~EF_MIPS_XGOT;
14948 old_flags &= ~EF_MIPS_XGOT;
14949
14950 /* MIPSpro generates ucode info in n64 objects. Again, we should
14951 just be able to ignore this. */
14952 new_flags &= ~EF_MIPS_UCODE;
14953 old_flags &= ~EF_MIPS_UCODE;
14954
14955 /* DSOs should only be linked with CPIC code. */
14956 if ((ibfd->flags & DYNAMIC) != 0)
14957 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14958
14959 if (new_flags == old_flags)
14960 return TRUE;
14961
14962 ok = TRUE;
14963
14964 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14965 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14966 {
14967 _bfd_error_handler
14968 (_("%B: warning: linking abicalls files with non-abicalls files"),
14969 ibfd);
14970 ok = TRUE;
14971 }
14972
14973 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14974 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14975 if (! (new_flags & EF_MIPS_PIC))
14976 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14977
14978 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14979 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14980
14981 /* Compare the ISAs. */
14982 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14983 {
14984 _bfd_error_handler
14985 (_("%B: linking 32-bit code with 64-bit code"),
14986 ibfd);
14987 ok = FALSE;
14988 }
14989 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14990 {
14991 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14992 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14993 {
14994 /* Copy the architecture info from IBFD to OBFD. Also copy
14995 the 32-bit flag (if set) so that we continue to recognise
14996 OBFD as a 32-bit binary. */
14997 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14998 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14999 elf_elfheader (obfd)->e_flags
15000 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15001
15002 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15003 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15004
15005 /* Copy across the ABI flags if OBFD doesn't use them
15006 and if that was what caused us to treat IBFD as 32-bit. */
15007 if ((old_flags & EF_MIPS_ABI) == 0
15008 && mips_32bit_flags_p (new_flags)
15009 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15010 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15011 }
15012 else
15013 {
15014 /* The ISAs aren't compatible. */
15015 _bfd_error_handler
15016 /* xgettext:c-format */
15017 (_("%B: linking %s module with previous %s modules"),
15018 ibfd,
15019 bfd_printable_name (ibfd),
15020 bfd_printable_name (obfd));
15021 ok = FALSE;
15022 }
15023 }
15024
15025 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15026 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15027
15028 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15029 does set EI_CLASS differently from any 32-bit ABI. */
15030 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15031 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15032 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15033 {
15034 /* Only error if both are set (to different values). */
15035 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15036 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15037 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15038 {
15039 _bfd_error_handler
15040 /* xgettext:c-format */
15041 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15042 ibfd,
15043 elf_mips_abi_name (ibfd),
15044 elf_mips_abi_name (obfd));
15045 ok = FALSE;
15046 }
15047 new_flags &= ~EF_MIPS_ABI;
15048 old_flags &= ~EF_MIPS_ABI;
15049 }
15050
15051 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15052 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15053 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15054 {
15055 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15056 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15057 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15058 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15059 int micro_mis = old_m16 && new_micro;
15060 int m16_mis = old_micro && new_m16;
15061
15062 if (m16_mis || micro_mis)
15063 {
15064 _bfd_error_handler
15065 /* xgettext:c-format */
15066 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15067 ibfd,
15068 m16_mis ? "MIPS16" : "microMIPS",
15069 m16_mis ? "microMIPS" : "MIPS16");
15070 ok = FALSE;
15071 }
15072
15073 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15074
15075 new_flags &= ~ EF_MIPS_ARCH_ASE;
15076 old_flags &= ~ EF_MIPS_ARCH_ASE;
15077 }
15078
15079 /* Compare NaN encodings. */
15080 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15081 {
15082 /* xgettext:c-format */
15083 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15084 ibfd,
15085 (new_flags & EF_MIPS_NAN2008
15086 ? "-mnan=2008" : "-mnan=legacy"),
15087 (old_flags & EF_MIPS_NAN2008
15088 ? "-mnan=2008" : "-mnan=legacy"));
15089 ok = FALSE;
15090 new_flags &= ~EF_MIPS_NAN2008;
15091 old_flags &= ~EF_MIPS_NAN2008;
15092 }
15093
15094 /* Compare FP64 state. */
15095 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15096 {
15097 /* xgettext:c-format */
15098 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15099 ibfd,
15100 (new_flags & EF_MIPS_FP64
15101 ? "-mfp64" : "-mfp32"),
15102 (old_flags & EF_MIPS_FP64
15103 ? "-mfp64" : "-mfp32"));
15104 ok = FALSE;
15105 new_flags &= ~EF_MIPS_FP64;
15106 old_flags &= ~EF_MIPS_FP64;
15107 }
15108
15109 /* Warn about any other mismatches */
15110 if (new_flags != old_flags)
15111 {
15112 /* xgettext:c-format */
15113 _bfd_error_handler
15114 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15115 "(0x%lx)"),
15116 ibfd, (unsigned long) new_flags,
15117 (unsigned long) old_flags);
15118 ok = FALSE;
15119 }
15120
15121 return ok;
15122 }
15123
15124 /* Merge object attributes from IBFD into OBFD. Raise an error if
15125 there are conflicting attributes. */
15126 static bfd_boolean
15127 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15128 {
15129 bfd *obfd = info->output_bfd;
15130 obj_attribute *in_attr;
15131 obj_attribute *out_attr;
15132 bfd *abi_fp_bfd;
15133 bfd *abi_msa_bfd;
15134
15135 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15136 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15137 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15138 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15139
15140 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15141 if (!abi_msa_bfd
15142 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15143 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15144
15145 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15146 {
15147 /* This is the first object. Copy the attributes. */
15148 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15149
15150 /* Use the Tag_null value to indicate the attributes have been
15151 initialized. */
15152 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15153
15154 return TRUE;
15155 }
15156
15157 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15158 non-conflicting ones. */
15159 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15160 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15161 {
15162 int out_fp, in_fp;
15163
15164 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15165 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15166 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15167 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15168 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15169 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15170 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15171 || in_fp == Val_GNU_MIPS_ABI_FP_64
15172 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15173 {
15174 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15175 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15176 }
15177 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15178 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15179 || out_fp == Val_GNU_MIPS_ABI_FP_64
15180 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15181 /* Keep the current setting. */;
15182 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15183 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15184 {
15185 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15186 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15187 }
15188 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15189 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15190 /* Keep the current setting. */;
15191 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15192 {
15193 const char *out_string, *in_string;
15194
15195 out_string = _bfd_mips_fp_abi_string (out_fp);
15196 in_string = _bfd_mips_fp_abi_string (in_fp);
15197 /* First warn about cases involving unrecognised ABIs. */
15198 if (!out_string && !in_string)
15199 /* xgettext:c-format */
15200 _bfd_error_handler
15201 (_("Warning: %B uses unknown floating point ABI %d "
15202 "(set by %B), %B uses unknown floating point ABI %d"),
15203 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15204 else if (!out_string)
15205 _bfd_error_handler
15206 /* xgettext:c-format */
15207 (_("Warning: %B uses unknown floating point ABI %d "
15208 "(set by %B), %B uses %s"),
15209 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15210 else if (!in_string)
15211 _bfd_error_handler
15212 /* xgettext:c-format */
15213 (_("Warning: %B uses %s (set by %B), "
15214 "%B uses unknown floating point ABI %d"),
15215 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15216 else
15217 {
15218 /* If one of the bfds is soft-float, the other must be
15219 hard-float. The exact choice of hard-float ABI isn't
15220 really relevant to the error message. */
15221 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15222 out_string = "-mhard-float";
15223 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15224 in_string = "-mhard-float";
15225 _bfd_error_handler
15226 /* xgettext:c-format */
15227 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15228 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15229 }
15230 }
15231 }
15232
15233 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15234 non-conflicting ones. */
15235 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15236 {
15237 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15238 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15239 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15240 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15241 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15242 {
15243 case Val_GNU_MIPS_ABI_MSA_128:
15244 _bfd_error_handler
15245 /* xgettext:c-format */
15246 (_("Warning: %B uses %s (set by %B), "
15247 "%B uses unknown MSA ABI %d"),
15248 obfd, "-mmsa", abi_msa_bfd,
15249 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15250 break;
15251
15252 default:
15253 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15254 {
15255 case Val_GNU_MIPS_ABI_MSA_128:
15256 _bfd_error_handler
15257 /* xgettext:c-format */
15258 (_("Warning: %B uses unknown MSA ABI %d "
15259 "(set by %B), %B uses %s"),
15260 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15261 abi_msa_bfd, ibfd, "-mmsa");
15262 break;
15263
15264 default:
15265 _bfd_error_handler
15266 /* xgettext:c-format */
15267 (_("Warning: %B uses unknown MSA ABI %d "
15268 "(set by %B), %B uses unknown MSA ABI %d"),
15269 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15270 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15271 break;
15272 }
15273 }
15274 }
15275
15276 /* Merge Tag_compatibility attributes and any common GNU ones. */
15277 return _bfd_elf_merge_object_attributes (ibfd, info);
15278 }
15279
15280 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15281 there are conflicting settings. */
15282
15283 static bfd_boolean
15284 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15285 {
15286 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15287 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15288 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15289
15290 /* Update the output abiflags fp_abi using the computed fp_abi. */
15291 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15292
15293 #define max(a, b) ((a) > (b) ? (a) : (b))
15294 /* Merge abiflags. */
15295 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15296 in_tdata->abiflags.isa_level);
15297 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15298 in_tdata->abiflags.isa_rev);
15299 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15300 in_tdata->abiflags.gpr_size);
15301 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15302 in_tdata->abiflags.cpr1_size);
15303 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15304 in_tdata->abiflags.cpr2_size);
15305 #undef max
15306 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15307 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15308
15309 return TRUE;
15310 }
15311
15312 /* Merge backend specific data from an object file to the output
15313 object file when linking. */
15314
15315 bfd_boolean
15316 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15317 {
15318 bfd *obfd = info->output_bfd;
15319 struct mips_elf_obj_tdata *out_tdata;
15320 struct mips_elf_obj_tdata *in_tdata;
15321 bfd_boolean null_input_bfd = TRUE;
15322 asection *sec;
15323 bfd_boolean ok;
15324
15325 /* Check if we have the same endianness. */
15326 if (! _bfd_generic_verify_endian_match (ibfd, info))
15327 {
15328 _bfd_error_handler
15329 (_("%B: endianness incompatible with that of the selected emulation"),
15330 ibfd);
15331 return FALSE;
15332 }
15333
15334 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15335 return TRUE;
15336
15337 in_tdata = mips_elf_tdata (ibfd);
15338 out_tdata = mips_elf_tdata (obfd);
15339
15340 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15341 {
15342 _bfd_error_handler
15343 (_("%B: ABI is incompatible with that of the selected emulation"),
15344 ibfd);
15345 return FALSE;
15346 }
15347
15348 /* Check to see if the input BFD actually contains any sections. If not,
15349 then it has no attributes, and its flags may not have been initialized
15350 either, but it cannot actually cause any incompatibility. */
15351 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15352 {
15353 /* Ignore synthetic sections and empty .text, .data and .bss sections
15354 which are automatically generated by gas. Also ignore fake
15355 (s)common sections, since merely defining a common symbol does
15356 not affect compatibility. */
15357 if ((sec->flags & SEC_IS_COMMON) == 0
15358 && strcmp (sec->name, ".reginfo")
15359 && strcmp (sec->name, ".mdebug")
15360 && (sec->size != 0
15361 || (strcmp (sec->name, ".text")
15362 && strcmp (sec->name, ".data")
15363 && strcmp (sec->name, ".bss"))))
15364 {
15365 null_input_bfd = FALSE;
15366 break;
15367 }
15368 }
15369 if (null_input_bfd)
15370 return TRUE;
15371
15372 /* Populate abiflags using existing information. */
15373 if (in_tdata->abiflags_valid)
15374 {
15375 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15376 Elf_Internal_ABIFlags_v0 in_abiflags;
15377 Elf_Internal_ABIFlags_v0 abiflags;
15378
15379 /* Set up the FP ABI attribute from the abiflags if it is not already
15380 set. */
15381 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15382 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15383
15384 infer_mips_abiflags (ibfd, &abiflags);
15385 in_abiflags = in_tdata->abiflags;
15386
15387 /* It is not possible to infer the correct ISA revision
15388 for R3 or R5 so drop down to R2 for the checks. */
15389 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15390 in_abiflags.isa_rev = 2;
15391
15392 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15393 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15394 _bfd_error_handler
15395 (_("%B: warning: Inconsistent ISA between e_flags and "
15396 ".MIPS.abiflags"), ibfd);
15397 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15398 && in_abiflags.fp_abi != abiflags.fp_abi)
15399 _bfd_error_handler
15400 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15401 ".MIPS.abiflags"), ibfd);
15402 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15403 _bfd_error_handler
15404 (_("%B: warning: Inconsistent ASEs between e_flags and "
15405 ".MIPS.abiflags"), ibfd);
15406 /* The isa_ext is allowed to be an extension of what can be inferred
15407 from e_flags. */
15408 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15409 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15410 _bfd_error_handler
15411 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15412 ".MIPS.abiflags"), ibfd);
15413 if (in_abiflags.flags2 != 0)
15414 _bfd_error_handler
15415 (_("%B: warning: Unexpected flag in the flags2 field of "
15416 ".MIPS.abiflags (0x%lx)"), ibfd,
15417 (unsigned long) in_abiflags.flags2);
15418 }
15419 else
15420 {
15421 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15422 in_tdata->abiflags_valid = TRUE;
15423 }
15424
15425 if (!out_tdata->abiflags_valid)
15426 {
15427 /* Copy input abiflags if output abiflags are not already valid. */
15428 out_tdata->abiflags = in_tdata->abiflags;
15429 out_tdata->abiflags_valid = TRUE;
15430 }
15431
15432 if (! elf_flags_init (obfd))
15433 {
15434 elf_flags_init (obfd) = TRUE;
15435 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15436 elf_elfheader (obfd)->e_ident[EI_CLASS]
15437 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15438
15439 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15440 && (bfd_get_arch_info (obfd)->the_default
15441 || mips_mach_extends_p (bfd_get_mach (obfd),
15442 bfd_get_mach (ibfd))))
15443 {
15444 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15445 bfd_get_mach (ibfd)))
15446 return FALSE;
15447
15448 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15449 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15450 }
15451
15452 ok = TRUE;
15453 }
15454 else
15455 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15456
15457 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15458
15459 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15460
15461 if (!ok)
15462 {
15463 bfd_set_error (bfd_error_bad_value);
15464 return FALSE;
15465 }
15466
15467 return TRUE;
15468 }
15469
15470 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15471
15472 bfd_boolean
15473 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15474 {
15475 BFD_ASSERT (!elf_flags_init (abfd)
15476 || elf_elfheader (abfd)->e_flags == flags);
15477
15478 elf_elfheader (abfd)->e_flags = flags;
15479 elf_flags_init (abfd) = TRUE;
15480 return TRUE;
15481 }
15482
15483 char *
15484 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15485 {
15486 switch (dtag)
15487 {
15488 default: return "";
15489 case DT_MIPS_RLD_VERSION:
15490 return "MIPS_RLD_VERSION";
15491 case DT_MIPS_TIME_STAMP:
15492 return "MIPS_TIME_STAMP";
15493 case DT_MIPS_ICHECKSUM:
15494 return "MIPS_ICHECKSUM";
15495 case DT_MIPS_IVERSION:
15496 return "MIPS_IVERSION";
15497 case DT_MIPS_FLAGS:
15498 return "MIPS_FLAGS";
15499 case DT_MIPS_BASE_ADDRESS:
15500 return "MIPS_BASE_ADDRESS";
15501 case DT_MIPS_MSYM:
15502 return "MIPS_MSYM";
15503 case DT_MIPS_CONFLICT:
15504 return "MIPS_CONFLICT";
15505 case DT_MIPS_LIBLIST:
15506 return "MIPS_LIBLIST";
15507 case DT_MIPS_LOCAL_GOTNO:
15508 return "MIPS_LOCAL_GOTNO";
15509 case DT_MIPS_CONFLICTNO:
15510 return "MIPS_CONFLICTNO";
15511 case DT_MIPS_LIBLISTNO:
15512 return "MIPS_LIBLISTNO";
15513 case DT_MIPS_SYMTABNO:
15514 return "MIPS_SYMTABNO";
15515 case DT_MIPS_UNREFEXTNO:
15516 return "MIPS_UNREFEXTNO";
15517 case DT_MIPS_GOTSYM:
15518 return "MIPS_GOTSYM";
15519 case DT_MIPS_HIPAGENO:
15520 return "MIPS_HIPAGENO";
15521 case DT_MIPS_RLD_MAP:
15522 return "MIPS_RLD_MAP";
15523 case DT_MIPS_RLD_MAP_REL:
15524 return "MIPS_RLD_MAP_REL";
15525 case DT_MIPS_DELTA_CLASS:
15526 return "MIPS_DELTA_CLASS";
15527 case DT_MIPS_DELTA_CLASS_NO:
15528 return "MIPS_DELTA_CLASS_NO";
15529 case DT_MIPS_DELTA_INSTANCE:
15530 return "MIPS_DELTA_INSTANCE";
15531 case DT_MIPS_DELTA_INSTANCE_NO:
15532 return "MIPS_DELTA_INSTANCE_NO";
15533 case DT_MIPS_DELTA_RELOC:
15534 return "MIPS_DELTA_RELOC";
15535 case DT_MIPS_DELTA_RELOC_NO:
15536 return "MIPS_DELTA_RELOC_NO";
15537 case DT_MIPS_DELTA_SYM:
15538 return "MIPS_DELTA_SYM";
15539 case DT_MIPS_DELTA_SYM_NO:
15540 return "MIPS_DELTA_SYM_NO";
15541 case DT_MIPS_DELTA_CLASSSYM:
15542 return "MIPS_DELTA_CLASSSYM";
15543 case DT_MIPS_DELTA_CLASSSYM_NO:
15544 return "MIPS_DELTA_CLASSSYM_NO";
15545 case DT_MIPS_CXX_FLAGS:
15546 return "MIPS_CXX_FLAGS";
15547 case DT_MIPS_PIXIE_INIT:
15548 return "MIPS_PIXIE_INIT";
15549 case DT_MIPS_SYMBOL_LIB:
15550 return "MIPS_SYMBOL_LIB";
15551 case DT_MIPS_LOCALPAGE_GOTIDX:
15552 return "MIPS_LOCALPAGE_GOTIDX";
15553 case DT_MIPS_LOCAL_GOTIDX:
15554 return "MIPS_LOCAL_GOTIDX";
15555 case DT_MIPS_HIDDEN_GOTIDX:
15556 return "MIPS_HIDDEN_GOTIDX";
15557 case DT_MIPS_PROTECTED_GOTIDX:
15558 return "MIPS_PROTECTED_GOT_IDX";
15559 case DT_MIPS_OPTIONS:
15560 return "MIPS_OPTIONS";
15561 case DT_MIPS_INTERFACE:
15562 return "MIPS_INTERFACE";
15563 case DT_MIPS_DYNSTR_ALIGN:
15564 return "DT_MIPS_DYNSTR_ALIGN";
15565 case DT_MIPS_INTERFACE_SIZE:
15566 return "DT_MIPS_INTERFACE_SIZE";
15567 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15568 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15569 case DT_MIPS_PERF_SUFFIX:
15570 return "DT_MIPS_PERF_SUFFIX";
15571 case DT_MIPS_COMPACT_SIZE:
15572 return "DT_MIPS_COMPACT_SIZE";
15573 case DT_MIPS_GP_VALUE:
15574 return "DT_MIPS_GP_VALUE";
15575 case DT_MIPS_AUX_DYNAMIC:
15576 return "DT_MIPS_AUX_DYNAMIC";
15577 case DT_MIPS_PLTGOT:
15578 return "DT_MIPS_PLTGOT";
15579 case DT_MIPS_RWPLT:
15580 return "DT_MIPS_RWPLT";
15581 }
15582 }
15583
15584 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15585 not known. */
15586
15587 const char *
15588 _bfd_mips_fp_abi_string (int fp)
15589 {
15590 switch (fp)
15591 {
15592 /* These strings aren't translated because they're simply
15593 option lists. */
15594 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15595 return "-mdouble-float";
15596
15597 case Val_GNU_MIPS_ABI_FP_SINGLE:
15598 return "-msingle-float";
15599
15600 case Val_GNU_MIPS_ABI_FP_SOFT:
15601 return "-msoft-float";
15602
15603 case Val_GNU_MIPS_ABI_FP_OLD_64:
15604 return _("-mips32r2 -mfp64 (12 callee-saved)");
15605
15606 case Val_GNU_MIPS_ABI_FP_XX:
15607 return "-mfpxx";
15608
15609 case Val_GNU_MIPS_ABI_FP_64:
15610 return "-mgp32 -mfp64";
15611
15612 case Val_GNU_MIPS_ABI_FP_64A:
15613 return "-mgp32 -mfp64 -mno-odd-spreg";
15614
15615 default:
15616 return 0;
15617 }
15618 }
15619
15620 static void
15621 print_mips_ases (FILE *file, unsigned int mask)
15622 {
15623 if (mask & AFL_ASE_DSP)
15624 fputs ("\n\tDSP ASE", file);
15625 if (mask & AFL_ASE_DSPR2)
15626 fputs ("\n\tDSP R2 ASE", file);
15627 if (mask & AFL_ASE_DSPR3)
15628 fputs ("\n\tDSP R3 ASE", file);
15629 if (mask & AFL_ASE_EVA)
15630 fputs ("\n\tEnhanced VA Scheme", file);
15631 if (mask & AFL_ASE_MCU)
15632 fputs ("\n\tMCU (MicroController) ASE", file);
15633 if (mask & AFL_ASE_MDMX)
15634 fputs ("\n\tMDMX ASE", file);
15635 if (mask & AFL_ASE_MIPS3D)
15636 fputs ("\n\tMIPS-3D ASE", file);
15637 if (mask & AFL_ASE_MT)
15638 fputs ("\n\tMT ASE", file);
15639 if (mask & AFL_ASE_SMARTMIPS)
15640 fputs ("\n\tSmartMIPS ASE", file);
15641 if (mask & AFL_ASE_VIRT)
15642 fputs ("\n\tVZ ASE", file);
15643 if (mask & AFL_ASE_MSA)
15644 fputs ("\n\tMSA ASE", file);
15645 if (mask & AFL_ASE_MIPS16)
15646 fputs ("\n\tMIPS16 ASE", file);
15647 if (mask & AFL_ASE_MICROMIPS)
15648 fputs ("\n\tMICROMIPS ASE", file);
15649 if (mask & AFL_ASE_XPA)
15650 fputs ("\n\tXPA ASE", file);
15651 if (mask == 0)
15652 fprintf (file, "\n\t%s", _("None"));
15653 else if ((mask & ~AFL_ASE_MASK) != 0)
15654 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15655 }
15656
15657 static void
15658 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15659 {
15660 switch (isa_ext)
15661 {
15662 case 0:
15663 fputs (_("None"), file);
15664 break;
15665 case AFL_EXT_XLR:
15666 fputs ("RMI XLR", file);
15667 break;
15668 case AFL_EXT_OCTEON3:
15669 fputs ("Cavium Networks Octeon3", file);
15670 break;
15671 case AFL_EXT_OCTEON2:
15672 fputs ("Cavium Networks Octeon2", file);
15673 break;
15674 case AFL_EXT_OCTEONP:
15675 fputs ("Cavium Networks OcteonP", file);
15676 break;
15677 case AFL_EXT_LOONGSON_3A:
15678 fputs ("Loongson 3A", file);
15679 break;
15680 case AFL_EXT_OCTEON:
15681 fputs ("Cavium Networks Octeon", file);
15682 break;
15683 case AFL_EXT_5900:
15684 fputs ("Toshiba R5900", file);
15685 break;
15686 case AFL_EXT_4650:
15687 fputs ("MIPS R4650", file);
15688 break;
15689 case AFL_EXT_4010:
15690 fputs ("LSI R4010", file);
15691 break;
15692 case AFL_EXT_4100:
15693 fputs ("NEC VR4100", file);
15694 break;
15695 case AFL_EXT_3900:
15696 fputs ("Toshiba R3900", file);
15697 break;
15698 case AFL_EXT_10000:
15699 fputs ("MIPS R10000", file);
15700 break;
15701 case AFL_EXT_SB1:
15702 fputs ("Broadcom SB-1", file);
15703 break;
15704 case AFL_EXT_4111:
15705 fputs ("NEC VR4111/VR4181", file);
15706 break;
15707 case AFL_EXT_4120:
15708 fputs ("NEC VR4120", file);
15709 break;
15710 case AFL_EXT_5400:
15711 fputs ("NEC VR5400", file);
15712 break;
15713 case AFL_EXT_5500:
15714 fputs ("NEC VR5500", file);
15715 break;
15716 case AFL_EXT_LOONGSON_2E:
15717 fputs ("ST Microelectronics Loongson 2E", file);
15718 break;
15719 case AFL_EXT_LOONGSON_2F:
15720 fputs ("ST Microelectronics Loongson 2F", file);
15721 break;
15722 default:
15723 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15724 break;
15725 }
15726 }
15727
15728 static void
15729 print_mips_fp_abi_value (FILE *file, int val)
15730 {
15731 switch (val)
15732 {
15733 case Val_GNU_MIPS_ABI_FP_ANY:
15734 fprintf (file, _("Hard or soft float\n"));
15735 break;
15736 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15737 fprintf (file, _("Hard float (double precision)\n"));
15738 break;
15739 case Val_GNU_MIPS_ABI_FP_SINGLE:
15740 fprintf (file, _("Hard float (single precision)\n"));
15741 break;
15742 case Val_GNU_MIPS_ABI_FP_SOFT:
15743 fprintf (file, _("Soft float\n"));
15744 break;
15745 case Val_GNU_MIPS_ABI_FP_OLD_64:
15746 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15747 break;
15748 case Val_GNU_MIPS_ABI_FP_XX:
15749 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15750 break;
15751 case Val_GNU_MIPS_ABI_FP_64:
15752 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15753 break;
15754 case Val_GNU_MIPS_ABI_FP_64A:
15755 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15756 break;
15757 default:
15758 fprintf (file, "??? (%d)\n", val);
15759 break;
15760 }
15761 }
15762
15763 static int
15764 get_mips_reg_size (int reg_size)
15765 {
15766 return (reg_size == AFL_REG_NONE) ? 0
15767 : (reg_size == AFL_REG_32) ? 32
15768 : (reg_size == AFL_REG_64) ? 64
15769 : (reg_size == AFL_REG_128) ? 128
15770 : -1;
15771 }
15772
15773 bfd_boolean
15774 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15775 {
15776 FILE *file = ptr;
15777
15778 BFD_ASSERT (abfd != NULL && ptr != NULL);
15779
15780 /* Print normal ELF private data. */
15781 _bfd_elf_print_private_bfd_data (abfd, ptr);
15782
15783 /* xgettext:c-format */
15784 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15785
15786 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15787 fprintf (file, _(" [abi=O32]"));
15788 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15789 fprintf (file, _(" [abi=O64]"));
15790 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15791 fprintf (file, _(" [abi=EABI32]"));
15792 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15793 fprintf (file, _(" [abi=EABI64]"));
15794 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15795 fprintf (file, _(" [abi unknown]"));
15796 else if (ABI_N32_P (abfd))
15797 fprintf (file, _(" [abi=N32]"));
15798 else if (ABI_64_P (abfd))
15799 fprintf (file, _(" [abi=64]"));
15800 else
15801 fprintf (file, _(" [no abi set]"));
15802
15803 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15804 fprintf (file, " [mips1]");
15805 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15806 fprintf (file, " [mips2]");
15807 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15808 fprintf (file, " [mips3]");
15809 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15810 fprintf (file, " [mips4]");
15811 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15812 fprintf (file, " [mips5]");
15813 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15814 fprintf (file, " [mips32]");
15815 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15816 fprintf (file, " [mips64]");
15817 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15818 fprintf (file, " [mips32r2]");
15819 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15820 fprintf (file, " [mips64r2]");
15821 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15822 fprintf (file, " [mips32r6]");
15823 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15824 fprintf (file, " [mips64r6]");
15825 else
15826 fprintf (file, _(" [unknown ISA]"));
15827
15828 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15829 fprintf (file, " [mdmx]");
15830
15831 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15832 fprintf (file, " [mips16]");
15833
15834 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15835 fprintf (file, " [micromips]");
15836
15837 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15838 fprintf (file, " [nan2008]");
15839
15840 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15841 fprintf (file, " [old fp64]");
15842
15843 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15844 fprintf (file, " [32bitmode]");
15845 else
15846 fprintf (file, _(" [not 32bitmode]"));
15847
15848 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15849 fprintf (file, " [noreorder]");
15850
15851 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15852 fprintf (file, " [PIC]");
15853
15854 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15855 fprintf (file, " [CPIC]");
15856
15857 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15858 fprintf (file, " [XGOT]");
15859
15860 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15861 fprintf (file, " [UCODE]");
15862
15863 fputc ('\n', file);
15864
15865 if (mips_elf_tdata (abfd)->abiflags_valid)
15866 {
15867 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15868 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15869 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15870 if (abiflags->isa_rev > 1)
15871 fprintf (file, "r%d", abiflags->isa_rev);
15872 fprintf (file, "\nGPR size: %d",
15873 get_mips_reg_size (abiflags->gpr_size));
15874 fprintf (file, "\nCPR1 size: %d",
15875 get_mips_reg_size (abiflags->cpr1_size));
15876 fprintf (file, "\nCPR2 size: %d",
15877 get_mips_reg_size (abiflags->cpr2_size));
15878 fputs ("\nFP ABI: ", file);
15879 print_mips_fp_abi_value (file, abiflags->fp_abi);
15880 fputs ("ISA Extension: ", file);
15881 print_mips_isa_ext (file, abiflags->isa_ext);
15882 fputs ("\nASEs:", file);
15883 print_mips_ases (file, abiflags->ases);
15884 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15885 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15886 fputc ('\n', file);
15887 }
15888
15889 return TRUE;
15890 }
15891
15892 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15893 {
15894 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15895 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15896 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15897 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15898 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15899 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15900 { NULL, 0, 0, 0, 0 }
15901 };
15902
15903 /* Merge non visibility st_other attributes. Ensure that the
15904 STO_OPTIONAL flag is copied into h->other, even if this is not a
15905 definiton of the symbol. */
15906 void
15907 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15908 const Elf_Internal_Sym *isym,
15909 bfd_boolean definition,
15910 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15911 {
15912 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15913 {
15914 unsigned char other;
15915
15916 other = (definition ? isym->st_other : h->other);
15917 other &= ~ELF_ST_VISIBILITY (-1);
15918 h->other = other | ELF_ST_VISIBILITY (h->other);
15919 }
15920
15921 if (!definition
15922 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15923 h->other |= STO_OPTIONAL;
15924 }
15925
15926 /* Decide whether an undefined symbol is special and can be ignored.
15927 This is the case for OPTIONAL symbols on IRIX. */
15928 bfd_boolean
15929 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15930 {
15931 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15932 }
15933
15934 bfd_boolean
15935 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15936 {
15937 return (sym->st_shndx == SHN_COMMON
15938 || sym->st_shndx == SHN_MIPS_ACOMMON
15939 || sym->st_shndx == SHN_MIPS_SCOMMON);
15940 }
15941
15942 /* Return address for Ith PLT stub in section PLT, for relocation REL
15943 or (bfd_vma) -1 if it should not be included. */
15944
15945 bfd_vma
15946 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15947 const arelent *rel ATTRIBUTE_UNUSED)
15948 {
15949 return (plt->vma
15950 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15951 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15952 }
15953
15954 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15955 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15956 and .got.plt and also the slots may be of a different size each we walk
15957 the PLT manually fetching instructions and matching them against known
15958 patterns. To make things easier standard MIPS slots, if any, always come
15959 first. As we don't create proper ELF symbols we use the UDATA.I member
15960 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15961 with the ST_OTHER member of the ELF symbol. */
15962
15963 long
15964 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15965 long symcount ATTRIBUTE_UNUSED,
15966 asymbol **syms ATTRIBUTE_UNUSED,
15967 long dynsymcount, asymbol **dynsyms,
15968 asymbol **ret)
15969 {
15970 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15971 static const char microsuffix[] = "@micromipsplt";
15972 static const char m16suffix[] = "@mips16plt";
15973 static const char mipssuffix[] = "@plt";
15974
15975 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15976 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15977 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15978 Elf_Internal_Shdr *hdr;
15979 bfd_byte *plt_data;
15980 bfd_vma plt_offset;
15981 unsigned int other;
15982 bfd_vma entry_size;
15983 bfd_vma plt0_size;
15984 asection *relplt;
15985 bfd_vma opcode;
15986 asection *plt;
15987 asymbol *send;
15988 size_t size;
15989 char *names;
15990 long counti;
15991 arelent *p;
15992 asymbol *s;
15993 char *nend;
15994 long count;
15995 long pi;
15996 long i;
15997 long n;
15998
15999 *ret = NULL;
16000
16001 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16002 return 0;
16003
16004 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16005 if (relplt == NULL)
16006 return 0;
16007
16008 hdr = &elf_section_data (relplt)->this_hdr;
16009 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16010 return 0;
16011
16012 plt = bfd_get_section_by_name (abfd, ".plt");
16013 if (plt == NULL)
16014 return 0;
16015
16016 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16017 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16018 return -1;
16019 p = relplt->relocation;
16020
16021 /* Calculating the exact amount of space required for symbols would
16022 require two passes over the PLT, so just pessimise assuming two
16023 PLT slots per relocation. */
16024 count = relplt->size / hdr->sh_entsize;
16025 counti = count * bed->s->int_rels_per_ext_rel;
16026 size = 2 * count * sizeof (asymbol);
16027 size += count * (sizeof (mipssuffix) +
16028 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16029 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16030 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16031
16032 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16033 size += sizeof (asymbol) + sizeof (pltname);
16034
16035 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16036 return -1;
16037
16038 if (plt->size < 16)
16039 return -1;
16040
16041 s = *ret = bfd_malloc (size);
16042 if (s == NULL)
16043 return -1;
16044 send = s + 2 * count + 1;
16045
16046 names = (char *) send;
16047 nend = (char *) s + size;
16048 n = 0;
16049
16050 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16051 if (opcode == 0x3302fffe)
16052 {
16053 if (!micromips_p)
16054 return -1;
16055 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16056 other = STO_MICROMIPS;
16057 }
16058 else if (opcode == 0x0398c1d0)
16059 {
16060 if (!micromips_p)
16061 return -1;
16062 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16063 other = STO_MICROMIPS;
16064 }
16065 else
16066 {
16067 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16068 other = 0;
16069 }
16070
16071 s->the_bfd = abfd;
16072 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16073 s->section = plt;
16074 s->value = 0;
16075 s->name = names;
16076 s->udata.i = other;
16077 memcpy (names, pltname, sizeof (pltname));
16078 names += sizeof (pltname);
16079 ++s, ++n;
16080
16081 pi = 0;
16082 for (plt_offset = plt0_size;
16083 plt_offset + 8 <= plt->size && s < send;
16084 plt_offset += entry_size)
16085 {
16086 bfd_vma gotplt_addr;
16087 const char *suffix;
16088 bfd_vma gotplt_hi;
16089 bfd_vma gotplt_lo;
16090 size_t suffixlen;
16091
16092 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16093
16094 /* Check if the second word matches the expected MIPS16 instruction. */
16095 if (opcode == 0x651aeb00)
16096 {
16097 if (micromips_p)
16098 return -1;
16099 /* Truncated table??? */
16100 if (plt_offset + 16 > plt->size)
16101 break;
16102 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16103 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16104 suffixlen = sizeof (m16suffix);
16105 suffix = m16suffix;
16106 other = STO_MIPS16;
16107 }
16108 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16109 else if (opcode == 0xff220000)
16110 {
16111 if (!micromips_p)
16112 return -1;
16113 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16114 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16115 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16116 gotplt_lo <<= 2;
16117 gotplt_addr = gotplt_hi + gotplt_lo;
16118 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16119 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16120 suffixlen = sizeof (microsuffix);
16121 suffix = microsuffix;
16122 other = STO_MICROMIPS;
16123 }
16124 /* Likewise the expected microMIPS instruction (insn32 mode). */
16125 else if ((opcode & 0xffff0000) == 0xff2f0000)
16126 {
16127 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16128 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16129 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16130 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16131 gotplt_addr = gotplt_hi + gotplt_lo;
16132 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16133 suffixlen = sizeof (microsuffix);
16134 suffix = microsuffix;
16135 other = STO_MICROMIPS;
16136 }
16137 /* Otherwise assume standard MIPS code. */
16138 else
16139 {
16140 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16141 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16142 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16143 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16144 gotplt_addr = gotplt_hi + gotplt_lo;
16145 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16146 suffixlen = sizeof (mipssuffix);
16147 suffix = mipssuffix;
16148 other = 0;
16149 }
16150 /* Truncated table??? */
16151 if (plt_offset + entry_size > plt->size)
16152 break;
16153
16154 for (i = 0;
16155 i < count && p[pi].address != gotplt_addr;
16156 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16157
16158 if (i < count)
16159 {
16160 size_t namelen;
16161 size_t len;
16162
16163 *s = **p[pi].sym_ptr_ptr;
16164 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16165 we are defining a symbol, ensure one of them is set. */
16166 if ((s->flags & BSF_LOCAL) == 0)
16167 s->flags |= BSF_GLOBAL;
16168 s->flags |= BSF_SYNTHETIC;
16169 s->section = plt;
16170 s->value = plt_offset;
16171 s->name = names;
16172 s->udata.i = other;
16173
16174 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16175 namelen = len + suffixlen;
16176 if (names + namelen > nend)
16177 break;
16178
16179 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16180 names += len;
16181 memcpy (names, suffix, suffixlen);
16182 names += suffixlen;
16183
16184 ++s, ++n;
16185 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16186 }
16187 }
16188
16189 free (plt_data);
16190
16191 return n;
16192 }
16193
16194 /* Return the ABI flags associated with ABFD if available. */
16195
16196 Elf_Internal_ABIFlags_v0 *
16197 bfd_mips_elf_get_abiflags (bfd *abfd)
16198 {
16199 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16200
16201 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16202 }
16203
16204 void
16205 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16206 {
16207 struct mips_elf_link_hash_table *htab;
16208 Elf_Internal_Ehdr *i_ehdrp;
16209
16210 i_ehdrp = elf_elfheader (abfd);
16211 if (link_info)
16212 {
16213 htab = mips_elf_hash_table (link_info);
16214 BFD_ASSERT (htab != NULL);
16215
16216 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16217 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16218 }
16219
16220 _bfd_elf_post_process_headers (abfd, link_info);
16221
16222 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16223 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16224 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16225 }
16226
16227 int
16228 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16229 {
16230 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16231 }
16232
16233 /* Return the opcode for can't unwind. */
16234
16235 int
16236 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16237 {
16238 return COMPACT_EH_CANT_UNWIND_OPCODE;
16239 }
This page took 0.396658 seconds and 4 git commands to generate.