bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are four types of entry:
52
53 (1) an absolute address
54 requires: abfd == NULL
55 fields: d.address
56
57 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
58 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
59 fields: abfd, symndx, d.addend, tls_type
60
61 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
62 requires: abfd != NULL, symndx == -1
63 fields: d.h, tls_type
64
65 (4) a TLS LDM slot
66 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
67 fields: none; there's only one of these per GOT. */
68 struct mips_got_entry
69 {
70 /* One input bfd that needs the GOT entry. */
71 bfd *abfd;
72 /* The index of the symbol, as stored in the relocation r_info, if
73 we have a local symbol; -1 otherwise. */
74 long symndx;
75 union
76 {
77 /* If abfd == NULL, an address that must be stored in the got. */
78 bfd_vma address;
79 /* If abfd != NULL && symndx != -1, the addend of the relocation
80 that should be added to the symbol value. */
81 bfd_vma addend;
82 /* If abfd != NULL && symndx == -1, the hash table entry
83 corresponding to a symbol in the GOT. The symbol's entry
84 is in the local area if h->global_got_area is GGA_NONE,
85 otherwise it is in the global area. */
86 struct mips_elf_link_hash_entry *h;
87 } d;
88
89 /* The TLS type of this GOT entry: GOT_NORMAL, GOT_TLS_IE, GOT_TLS_GD
90 or GOT_TLS_LDM. An LDM GOT entry will be a local symbol entry with
91 r_symndx == 0. */
92 unsigned char tls_type;
93
94 /* The offset from the beginning of the .got section to the entry
95 corresponding to this symbol+addend. If it's a global symbol
96 whose offset is yet to be decided, it's going to be -1. */
97 long gotidx;
98 };
99
100 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
101 The structures form a non-overlapping list that is sorted by increasing
102 MIN_ADDEND. */
103 struct mips_got_page_range
104 {
105 struct mips_got_page_range *next;
106 bfd_signed_vma min_addend;
107 bfd_signed_vma max_addend;
108 };
109
110 /* This structure describes the range of addends that are applied to page
111 relocations against a given symbol. */
112 struct mips_got_page_entry
113 {
114 /* The input bfd in which the symbol is defined. */
115 bfd *abfd;
116 /* The index of the symbol, as stored in the relocation r_info. */
117 long symndx;
118 /* The ranges for this page entry. */
119 struct mips_got_page_range *ranges;
120 /* The maximum number of page entries needed for RANGES. */
121 bfd_vma num_pages;
122 };
123
124 /* This structure is used to hold .got information when linking. */
125
126 struct mips_got_info
127 {
128 /* The number of global .got entries. */
129 unsigned int global_gotno;
130 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
131 unsigned int reloc_only_gotno;
132 /* The number of .got slots used for TLS. */
133 unsigned int tls_gotno;
134 /* The first unused TLS .got entry. Used only during
135 mips_elf_initialize_tls_index. */
136 unsigned int tls_assigned_gotno;
137 /* The number of local .got entries, eventually including page entries. */
138 unsigned int local_gotno;
139 /* The maximum number of page entries needed. */
140 unsigned int page_gotno;
141 /* The number of relocations needed for the GOT entries. */
142 unsigned int relocs;
143 /* The number of local .got entries we have used. */
144 unsigned int assigned_gotno;
145 /* A hash table holding members of the got. */
146 struct htab *got_entries;
147 /* A hash table of mips_got_page_entry structures. */
148 struct htab *got_page_entries;
149 /* In multi-got links, a pointer to the next got (err, rather, most
150 of the time, it points to the previous got). */
151 struct mips_got_info *next;
152 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
153 for none, or MINUS_TWO for not yet assigned. This is needed
154 because a single-GOT link may have multiple hash table entries
155 for the LDM. It does not get initialized in multi-GOT mode. */
156 bfd_vma tls_ldm_offset;
157 };
158
159 /* Structure passed when merging bfds' gots. */
160
161 struct mips_elf_got_per_bfd_arg
162 {
163 /* The output bfd. */
164 bfd *obfd;
165 /* The link information. */
166 struct bfd_link_info *info;
167 /* A pointer to the primary got, i.e., the one that's going to get
168 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
169 DT_MIPS_GOTSYM. */
170 struct mips_got_info *primary;
171 /* A non-primary got we're trying to merge with other input bfd's
172 gots. */
173 struct mips_got_info *current;
174 /* The maximum number of got entries that can be addressed with a
175 16-bit offset. */
176 unsigned int max_count;
177 /* The maximum number of page entries needed by each got. */
178 unsigned int max_pages;
179 /* The total number of global entries which will live in the
180 primary got and be automatically relocated. This includes
181 those not referenced by the primary GOT but included in
182 the "master" GOT. */
183 unsigned int global_count;
184 };
185
186 /* A structure used to pass information to htab_traverse callbacks
187 when laying out the GOT. */
188
189 struct mips_elf_traverse_got_arg
190 {
191 struct bfd_link_info *info;
192 struct mips_got_info *g;
193 int value;
194 };
195
196 struct _mips_elf_section_data
197 {
198 struct bfd_elf_section_data elf;
199 union
200 {
201 bfd_byte *tdata;
202 } u;
203 };
204
205 #define mips_elf_section_data(sec) \
206 ((struct _mips_elf_section_data *) elf_section_data (sec))
207
208 #define is_mips_elf(bfd) \
209 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
210 && elf_tdata (bfd) != NULL \
211 && elf_object_id (bfd) == MIPS_ELF_DATA)
212
213 /* The ABI says that every symbol used by dynamic relocations must have
214 a global GOT entry. Among other things, this provides the dynamic
215 linker with a free, directly-indexed cache. The GOT can therefore
216 contain symbols that are not referenced by GOT relocations themselves
217 (in other words, it may have symbols that are not referenced by things
218 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
219
220 GOT relocations are less likely to overflow if we put the associated
221 GOT entries towards the beginning. We therefore divide the global
222 GOT entries into two areas: "normal" and "reloc-only". Entries in
223 the first area can be used for both dynamic relocations and GP-relative
224 accesses, while those in the "reloc-only" area are for dynamic
225 relocations only.
226
227 These GGA_* ("Global GOT Area") values are organised so that lower
228 values are more general than higher values. Also, non-GGA_NONE
229 values are ordered by the position of the area in the GOT. */
230 #define GGA_NORMAL 0
231 #define GGA_RELOC_ONLY 1
232 #define GGA_NONE 2
233
234 /* Information about a non-PIC interface to a PIC function. There are
235 two ways of creating these interfaces. The first is to add:
236
237 lui $25,%hi(func)
238 addiu $25,$25,%lo(func)
239
240 immediately before a PIC function "func". The second is to add:
241
242 lui $25,%hi(func)
243 j func
244 addiu $25,$25,%lo(func)
245
246 to a separate trampoline section.
247
248 Stubs of the first kind go in a new section immediately before the
249 target function. Stubs of the second kind go in a single section
250 pointed to by the hash table's "strampoline" field. */
251 struct mips_elf_la25_stub {
252 /* The generated section that contains this stub. */
253 asection *stub_section;
254
255 /* The offset of the stub from the start of STUB_SECTION. */
256 bfd_vma offset;
257
258 /* One symbol for the original function. Its location is available
259 in H->root.root.u.def. */
260 struct mips_elf_link_hash_entry *h;
261 };
262
263 /* Macros for populating a mips_elf_la25_stub. */
264
265 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
266 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
267 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
268 #define LA25_LUI_MICROMIPS(VAL) \
269 (0x41b90000 | (VAL)) /* lui t9,VAL */
270 #define LA25_J_MICROMIPS(VAL) \
271 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
272 #define LA25_ADDIU_MICROMIPS(VAL) \
273 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
274
275 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
276 the dynamic symbols. */
277
278 struct mips_elf_hash_sort_data
279 {
280 /* The symbol in the global GOT with the lowest dynamic symbol table
281 index. */
282 struct elf_link_hash_entry *low;
283 /* The least dynamic symbol table index corresponding to a non-TLS
284 symbol with a GOT entry. */
285 long min_got_dynindx;
286 /* The greatest dynamic symbol table index corresponding to a symbol
287 with a GOT entry that is not referenced (e.g., a dynamic symbol
288 with dynamic relocations pointing to it from non-primary GOTs). */
289 long max_unref_got_dynindx;
290 /* The greatest dynamic symbol table index not corresponding to a
291 symbol without a GOT entry. */
292 long max_non_got_dynindx;
293 };
294
295 /* The MIPS ELF linker needs additional information for each symbol in
296 the global hash table. */
297
298 struct mips_elf_link_hash_entry
299 {
300 struct elf_link_hash_entry root;
301
302 /* External symbol information. */
303 EXTR esym;
304
305 /* The la25 stub we have created for ths symbol, if any. */
306 struct mips_elf_la25_stub *la25_stub;
307
308 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
309 this symbol. */
310 unsigned int possibly_dynamic_relocs;
311
312 /* If there is a stub that 32 bit functions should use to call this
313 16 bit function, this points to the section containing the stub. */
314 asection *fn_stub;
315
316 /* If there is a stub that 16 bit functions should use to call this
317 32 bit function, this points to the section containing the stub. */
318 asection *call_stub;
319
320 /* This is like the call_stub field, but it is used if the function
321 being called returns a floating point value. */
322 asection *call_fp_stub;
323
324 #define GOT_NORMAL 0
325 #define GOT_TLS_GD 1
326 #define GOT_TLS_LDM 2
327 #define GOT_TLS_IE 4
328 #define GOT_TLS_TYPE 7
329 #define GOT_TLS_OFFSET_DONE 0x40
330 #define GOT_TLS_DONE 0x80
331 unsigned char tls_ie_type;
332 unsigned char tls_gd_type;
333
334 /* These fields are only used in single-GOT mode; in multi-GOT mode there
335 is one mips_got_entry per GOT entry, so the offset is stored
336 there. In single-GOT mode there may be many mips_got_entry
337 structures all referring to the same GOT slot. */
338 bfd_vma tls_ie_got_offset;
339 bfd_vma tls_gd_got_offset;
340
341 /* The highest GGA_* value that satisfies all references to this symbol. */
342 unsigned int global_got_area : 2;
343
344 /* True if all GOT relocations against this symbol are for calls. This is
345 a looser condition than no_fn_stub below, because there may be other
346 non-call non-GOT relocations against the symbol. */
347 unsigned int got_only_for_calls : 1;
348
349 /* True if one of the relocations described by possibly_dynamic_relocs
350 is against a readonly section. */
351 unsigned int readonly_reloc : 1;
352
353 /* True if there is a relocation against this symbol that must be
354 resolved by the static linker (in other words, if the relocation
355 cannot possibly be made dynamic). */
356 unsigned int has_static_relocs : 1;
357
358 /* True if we must not create a .MIPS.stubs entry for this symbol.
359 This is set, for example, if there are relocations related to
360 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
361 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
362 unsigned int no_fn_stub : 1;
363
364 /* Whether we need the fn_stub; this is true if this symbol appears
365 in any relocs other than a 16 bit call. */
366 unsigned int need_fn_stub : 1;
367
368 /* True if this symbol is referenced by branch relocations from
369 any non-PIC input file. This is used to determine whether an
370 la25 stub is required. */
371 unsigned int has_nonpic_branches : 1;
372
373 /* Does this symbol need a traditional MIPS lazy-binding stub
374 (as opposed to a PLT entry)? */
375 unsigned int needs_lazy_stub : 1;
376 };
377
378 /* MIPS ELF linker hash table. */
379
380 struct mips_elf_link_hash_table
381 {
382 struct elf_link_hash_table root;
383
384 /* The number of .rtproc entries. */
385 bfd_size_type procedure_count;
386
387 /* The size of the .compact_rel section (if SGI_COMPAT). */
388 bfd_size_type compact_rel_size;
389
390 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
391 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
392 bfd_boolean use_rld_obj_head;
393
394 /* The __rld_map or __rld_obj_head symbol. */
395 struct elf_link_hash_entry *rld_symbol;
396
397 /* This is set if we see any mips16 stub sections. */
398 bfd_boolean mips16_stubs_seen;
399
400 /* True if we can generate copy relocs and PLTs. */
401 bfd_boolean use_plts_and_copy_relocs;
402
403 /* True if we're generating code for VxWorks. */
404 bfd_boolean is_vxworks;
405
406 /* True if we already reported the small-data section overflow. */
407 bfd_boolean small_data_overflow_reported;
408
409 /* Shortcuts to some dynamic sections, or NULL if they are not
410 being used. */
411 asection *srelbss;
412 asection *sdynbss;
413 asection *srelplt;
414 asection *srelplt2;
415 asection *sgotplt;
416 asection *splt;
417 asection *sstubs;
418 asection *sgot;
419
420 /* The master GOT information. */
421 struct mips_got_info *got_info;
422
423 /* The global symbol in the GOT with the lowest index in the dynamic
424 symbol table. */
425 struct elf_link_hash_entry *global_gotsym;
426
427 /* The size of the PLT header in bytes. */
428 bfd_vma plt_header_size;
429
430 /* The size of a PLT entry in bytes. */
431 bfd_vma plt_entry_size;
432
433 /* The number of functions that need a lazy-binding stub. */
434 bfd_vma lazy_stub_count;
435
436 /* The size of a function stub entry in bytes. */
437 bfd_vma function_stub_size;
438
439 /* The number of reserved entries at the beginning of the GOT. */
440 unsigned int reserved_gotno;
441
442 /* The section used for mips_elf_la25_stub trampolines.
443 See the comment above that structure for details. */
444 asection *strampoline;
445
446 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
447 pairs. */
448 htab_t la25_stubs;
449
450 /* A function FN (NAME, IS, OS) that creates a new input section
451 called NAME and links it to output section OS. If IS is nonnull,
452 the new section should go immediately before it, otherwise it
453 should go at the (current) beginning of OS.
454
455 The function returns the new section on success, otherwise it
456 returns null. */
457 asection *(*add_stub_section) (const char *, asection *, asection *);
458 };
459
460 /* Get the MIPS ELF linker hash table from a link_info structure. */
461
462 #define mips_elf_hash_table(p) \
463 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
464 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
465
466 /* A structure used to communicate with htab_traverse callbacks. */
467 struct mips_htab_traverse_info
468 {
469 /* The usual link-wide information. */
470 struct bfd_link_info *info;
471 bfd *output_bfd;
472
473 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
474 bfd_boolean error;
475 };
476
477 /* MIPS ELF private object data. */
478
479 struct mips_elf_obj_tdata
480 {
481 /* Generic ELF private object data. */
482 struct elf_obj_tdata root;
483
484 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
485 bfd *abi_fp_bfd;
486
487 /* The GOT requirements of input bfds. */
488 struct mips_got_info *got;
489 };
490
491 /* Get MIPS ELF private object data from BFD's tdata. */
492
493 #define mips_elf_tdata(bfd) \
494 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
495
496 #define TLS_RELOC_P(r_type) \
497 (r_type == R_MIPS_TLS_DTPMOD32 \
498 || r_type == R_MIPS_TLS_DTPMOD64 \
499 || r_type == R_MIPS_TLS_DTPREL32 \
500 || r_type == R_MIPS_TLS_DTPREL64 \
501 || r_type == R_MIPS_TLS_GD \
502 || r_type == R_MIPS_TLS_LDM \
503 || r_type == R_MIPS_TLS_DTPREL_HI16 \
504 || r_type == R_MIPS_TLS_DTPREL_LO16 \
505 || r_type == R_MIPS_TLS_GOTTPREL \
506 || r_type == R_MIPS_TLS_TPREL32 \
507 || r_type == R_MIPS_TLS_TPREL64 \
508 || r_type == R_MIPS_TLS_TPREL_HI16 \
509 || r_type == R_MIPS_TLS_TPREL_LO16 \
510 || r_type == R_MIPS16_TLS_GD \
511 || r_type == R_MIPS16_TLS_LDM \
512 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
513 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
514 || r_type == R_MIPS16_TLS_GOTTPREL \
515 || r_type == R_MIPS16_TLS_TPREL_HI16 \
516 || r_type == R_MIPS16_TLS_TPREL_LO16 \
517 || r_type == R_MICROMIPS_TLS_GD \
518 || r_type == R_MICROMIPS_TLS_LDM \
519 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
520 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
521 || r_type == R_MICROMIPS_TLS_GOTTPREL \
522 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
523 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
524
525 /* Structure used to pass information to mips_elf_output_extsym. */
526
527 struct extsym_info
528 {
529 bfd *abfd;
530 struct bfd_link_info *info;
531 struct ecoff_debug_info *debug;
532 const struct ecoff_debug_swap *swap;
533 bfd_boolean failed;
534 };
535
536 /* The names of the runtime procedure table symbols used on IRIX5. */
537
538 static const char * const mips_elf_dynsym_rtproc_names[] =
539 {
540 "_procedure_table",
541 "_procedure_string_table",
542 "_procedure_table_size",
543 NULL
544 };
545
546 /* These structures are used to generate the .compact_rel section on
547 IRIX5. */
548
549 typedef struct
550 {
551 unsigned long id1; /* Always one? */
552 unsigned long num; /* Number of compact relocation entries. */
553 unsigned long id2; /* Always two? */
554 unsigned long offset; /* The file offset of the first relocation. */
555 unsigned long reserved0; /* Zero? */
556 unsigned long reserved1; /* Zero? */
557 } Elf32_compact_rel;
558
559 typedef struct
560 {
561 bfd_byte id1[4];
562 bfd_byte num[4];
563 bfd_byte id2[4];
564 bfd_byte offset[4];
565 bfd_byte reserved0[4];
566 bfd_byte reserved1[4];
567 } Elf32_External_compact_rel;
568
569 typedef struct
570 {
571 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
572 unsigned int rtype : 4; /* Relocation types. See below. */
573 unsigned int dist2to : 8;
574 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
575 unsigned long konst; /* KONST field. See below. */
576 unsigned long vaddr; /* VADDR to be relocated. */
577 } Elf32_crinfo;
578
579 typedef struct
580 {
581 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
582 unsigned int rtype : 4; /* Relocation types. See below. */
583 unsigned int dist2to : 8;
584 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
585 unsigned long konst; /* KONST field. See below. */
586 } Elf32_crinfo2;
587
588 typedef struct
589 {
590 bfd_byte info[4];
591 bfd_byte konst[4];
592 bfd_byte vaddr[4];
593 } Elf32_External_crinfo;
594
595 typedef struct
596 {
597 bfd_byte info[4];
598 bfd_byte konst[4];
599 } Elf32_External_crinfo2;
600
601 /* These are the constants used to swap the bitfields in a crinfo. */
602
603 #define CRINFO_CTYPE (0x1)
604 #define CRINFO_CTYPE_SH (31)
605 #define CRINFO_RTYPE (0xf)
606 #define CRINFO_RTYPE_SH (27)
607 #define CRINFO_DIST2TO (0xff)
608 #define CRINFO_DIST2TO_SH (19)
609 #define CRINFO_RELVADDR (0x7ffff)
610 #define CRINFO_RELVADDR_SH (0)
611
612 /* A compact relocation info has long (3 words) or short (2 words)
613 formats. A short format doesn't have VADDR field and relvaddr
614 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
615 #define CRF_MIPS_LONG 1
616 #define CRF_MIPS_SHORT 0
617
618 /* There are 4 types of compact relocation at least. The value KONST
619 has different meaning for each type:
620
621 (type) (konst)
622 CT_MIPS_REL32 Address in data
623 CT_MIPS_WORD Address in word (XXX)
624 CT_MIPS_GPHI_LO GP - vaddr
625 CT_MIPS_JMPAD Address to jump
626 */
627
628 #define CRT_MIPS_REL32 0xa
629 #define CRT_MIPS_WORD 0xb
630 #define CRT_MIPS_GPHI_LO 0xc
631 #define CRT_MIPS_JMPAD 0xd
632
633 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
634 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
635 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
636 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
637 \f
638 /* The structure of the runtime procedure descriptor created by the
639 loader for use by the static exception system. */
640
641 typedef struct runtime_pdr {
642 bfd_vma adr; /* Memory address of start of procedure. */
643 long regmask; /* Save register mask. */
644 long regoffset; /* Save register offset. */
645 long fregmask; /* Save floating point register mask. */
646 long fregoffset; /* Save floating point register offset. */
647 long frameoffset; /* Frame size. */
648 short framereg; /* Frame pointer register. */
649 short pcreg; /* Offset or reg of return pc. */
650 long irpss; /* Index into the runtime string table. */
651 long reserved;
652 struct exception_info *exception_info;/* Pointer to exception array. */
653 } RPDR, *pRPDR;
654 #define cbRPDR sizeof (RPDR)
655 #define rpdNil ((pRPDR) 0)
656 \f
657 static struct mips_got_entry *mips_elf_create_local_got_entry
658 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
659 struct mips_elf_link_hash_entry *, int);
660 static bfd_boolean mips_elf_sort_hash_table_f
661 (struct mips_elf_link_hash_entry *, void *);
662 static bfd_vma mips_elf_high
663 (bfd_vma);
664 static bfd_boolean mips_elf_create_dynamic_relocation
665 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
666 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
667 bfd_vma *, asection *);
668 static bfd_vma mips_elf_adjust_gp
669 (bfd *, struct mips_got_info *, bfd *);
670
671 /* This will be used when we sort the dynamic relocation records. */
672 static bfd *reldyn_sorting_bfd;
673
674 /* True if ABFD is for CPUs with load interlocking that include
675 non-MIPS1 CPUs and R3900. */
676 #define LOAD_INTERLOCKS_P(abfd) \
677 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
678 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
679
680 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
681 This should be safe for all architectures. We enable this predicate
682 for RM9000 for now. */
683 #define JAL_TO_BAL_P(abfd) \
684 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
685
686 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
687 This should be safe for all architectures. We enable this predicate for
688 all CPUs. */
689 #define JALR_TO_BAL_P(abfd) 1
690
691 /* True if ABFD is for CPUs that are faster if JR is converted to B.
692 This should be safe for all architectures. We enable this predicate for
693 all CPUs. */
694 #define JR_TO_B_P(abfd) 1
695
696 /* True if ABFD is a PIC object. */
697 #define PIC_OBJECT_P(abfd) \
698 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
699
700 /* Nonzero if ABFD is using the N32 ABI. */
701 #define ABI_N32_P(abfd) \
702 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
703
704 /* Nonzero if ABFD is using the N64 ABI. */
705 #define ABI_64_P(abfd) \
706 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
707
708 /* Nonzero if ABFD is using NewABI conventions. */
709 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
710
711 /* The IRIX compatibility level we are striving for. */
712 #define IRIX_COMPAT(abfd) \
713 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
714
715 /* Whether we are trying to be compatible with IRIX at all. */
716 #define SGI_COMPAT(abfd) \
717 (IRIX_COMPAT (abfd) != ict_none)
718
719 /* The name of the options section. */
720 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
721 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
722
723 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
724 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
725 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
726 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
727
728 /* Whether the section is readonly. */
729 #define MIPS_ELF_READONLY_SECTION(sec) \
730 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
731 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
732
733 /* The name of the stub section. */
734 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
735
736 /* The size of an external REL relocation. */
737 #define MIPS_ELF_REL_SIZE(abfd) \
738 (get_elf_backend_data (abfd)->s->sizeof_rel)
739
740 /* The size of an external RELA relocation. */
741 #define MIPS_ELF_RELA_SIZE(abfd) \
742 (get_elf_backend_data (abfd)->s->sizeof_rela)
743
744 /* The size of an external dynamic table entry. */
745 #define MIPS_ELF_DYN_SIZE(abfd) \
746 (get_elf_backend_data (abfd)->s->sizeof_dyn)
747
748 /* The size of a GOT entry. */
749 #define MIPS_ELF_GOT_SIZE(abfd) \
750 (get_elf_backend_data (abfd)->s->arch_size / 8)
751
752 /* The size of the .rld_map section. */
753 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
754 (get_elf_backend_data (abfd)->s->arch_size / 8)
755
756 /* The size of a symbol-table entry. */
757 #define MIPS_ELF_SYM_SIZE(abfd) \
758 (get_elf_backend_data (abfd)->s->sizeof_sym)
759
760 /* The default alignment for sections, as a power of two. */
761 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
762 (get_elf_backend_data (abfd)->s->log_file_align)
763
764 /* Get word-sized data. */
765 #define MIPS_ELF_GET_WORD(abfd, ptr) \
766 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
767
768 /* Put out word-sized data. */
769 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
770 (ABI_64_P (abfd) \
771 ? bfd_put_64 (abfd, val, ptr) \
772 : bfd_put_32 (abfd, val, ptr))
773
774 /* The opcode for word-sized loads (LW or LD). */
775 #define MIPS_ELF_LOAD_WORD(abfd) \
776 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
777
778 /* Add a dynamic symbol table-entry. */
779 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
780 _bfd_elf_add_dynamic_entry (info, tag, val)
781
782 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
783 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
784
785 /* The name of the dynamic relocation section. */
786 #define MIPS_ELF_REL_DYN_NAME(INFO) \
787 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
788
789 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
790 from smaller values. Start with zero, widen, *then* decrement. */
791 #define MINUS_ONE (((bfd_vma)0) - 1)
792 #define MINUS_TWO (((bfd_vma)0) - 2)
793
794 /* The value to write into got[1] for SVR4 targets, to identify it is
795 a GNU object. The dynamic linker can then use got[1] to store the
796 module pointer. */
797 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
798 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
799
800 /* The offset of $gp from the beginning of the .got section. */
801 #define ELF_MIPS_GP_OFFSET(INFO) \
802 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
803
804 /* The maximum size of the GOT for it to be addressable using 16-bit
805 offsets from $gp. */
806 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
807
808 /* Instructions which appear in a stub. */
809 #define STUB_LW(abfd) \
810 ((ABI_64_P (abfd) \
811 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
812 : 0x8f998010)) /* lw t9,0x8010(gp) */
813 #define STUB_MOVE(abfd) \
814 ((ABI_64_P (abfd) \
815 ? 0x03e0782d /* daddu t7,ra */ \
816 : 0x03e07821)) /* addu t7,ra */
817 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
818 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
819 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
820 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
821 #define STUB_LI16S(abfd, VAL) \
822 ((ABI_64_P (abfd) \
823 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
824 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
825
826 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
827 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
828
829 /* The name of the dynamic interpreter. This is put in the .interp
830 section. */
831
832 #define ELF_DYNAMIC_INTERPRETER(abfd) \
833 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
834 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
835 : "/usr/lib/libc.so.1")
836
837 #ifdef BFD64
838 #define MNAME(bfd,pre,pos) \
839 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
840 #define ELF_R_SYM(bfd, i) \
841 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
842 #define ELF_R_TYPE(bfd, i) \
843 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
844 #define ELF_R_INFO(bfd, s, t) \
845 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
846 #else
847 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
848 #define ELF_R_SYM(bfd, i) \
849 (ELF32_R_SYM (i))
850 #define ELF_R_TYPE(bfd, i) \
851 (ELF32_R_TYPE (i))
852 #define ELF_R_INFO(bfd, s, t) \
853 (ELF32_R_INFO (s, t))
854 #endif
855 \f
856 /* The mips16 compiler uses a couple of special sections to handle
857 floating point arguments.
858
859 Section names that look like .mips16.fn.FNNAME contain stubs that
860 copy floating point arguments from the fp regs to the gp regs and
861 then jump to FNNAME. If any 32 bit function calls FNNAME, the
862 call should be redirected to the stub instead. If no 32 bit
863 function calls FNNAME, the stub should be discarded. We need to
864 consider any reference to the function, not just a call, because
865 if the address of the function is taken we will need the stub,
866 since the address might be passed to a 32 bit function.
867
868 Section names that look like .mips16.call.FNNAME contain stubs
869 that copy floating point arguments from the gp regs to the fp
870 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
871 then any 16 bit function that calls FNNAME should be redirected
872 to the stub instead. If FNNAME is not a 32 bit function, the
873 stub should be discarded.
874
875 .mips16.call.fp.FNNAME sections are similar, but contain stubs
876 which call FNNAME and then copy the return value from the fp regs
877 to the gp regs. These stubs store the return value in $18 while
878 calling FNNAME; any function which might call one of these stubs
879 must arrange to save $18 around the call. (This case is not
880 needed for 32 bit functions that call 16 bit functions, because
881 16 bit functions always return floating point values in both
882 $f0/$f1 and $2/$3.)
883
884 Note that in all cases FNNAME might be defined statically.
885 Therefore, FNNAME is not used literally. Instead, the relocation
886 information will indicate which symbol the section is for.
887
888 We record any stubs that we find in the symbol table. */
889
890 #define FN_STUB ".mips16.fn."
891 #define CALL_STUB ".mips16.call."
892 #define CALL_FP_STUB ".mips16.call.fp."
893
894 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
895 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
896 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
897 \f
898 /* The format of the first PLT entry in an O32 executable. */
899 static const bfd_vma mips_o32_exec_plt0_entry[] =
900 {
901 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
902 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
903 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
904 0x031cc023, /* subu $24, $24, $28 */
905 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
906 0x0018c082, /* srl $24, $24, 2 */
907 0x0320f809, /* jalr $25 */
908 0x2718fffe /* subu $24, $24, 2 */
909 };
910
911 /* The format of the first PLT entry in an N32 executable. Different
912 because gp ($28) is not available; we use t2 ($14) instead. */
913 static const bfd_vma mips_n32_exec_plt0_entry[] =
914 {
915 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
916 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
917 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
918 0x030ec023, /* subu $24, $24, $14 */
919 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
920 0x0018c082, /* srl $24, $24, 2 */
921 0x0320f809, /* jalr $25 */
922 0x2718fffe /* subu $24, $24, 2 */
923 };
924
925 /* The format of the first PLT entry in an N64 executable. Different
926 from N32 because of the increased size of GOT entries. */
927 static const bfd_vma mips_n64_exec_plt0_entry[] =
928 {
929 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
930 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
931 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
932 0x030ec023, /* subu $24, $24, $14 */
933 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
934 0x0018c0c2, /* srl $24, $24, 3 */
935 0x0320f809, /* jalr $25 */
936 0x2718fffe /* subu $24, $24, 2 */
937 };
938
939 /* The format of subsequent PLT entries. */
940 static const bfd_vma mips_exec_plt_entry[] =
941 {
942 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
943 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
944 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
945 0x03200008 /* jr $25 */
946 };
947
948 /* The format of the first PLT entry in a VxWorks executable. */
949 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
950 {
951 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
952 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
953 0x8f390008, /* lw t9, 8(t9) */
954 0x00000000, /* nop */
955 0x03200008, /* jr t9 */
956 0x00000000 /* nop */
957 };
958
959 /* The format of subsequent PLT entries. */
960 static const bfd_vma mips_vxworks_exec_plt_entry[] =
961 {
962 0x10000000, /* b .PLT_resolver */
963 0x24180000, /* li t8, <pltindex> */
964 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
965 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
966 0x8f390000, /* lw t9, 0(t9) */
967 0x00000000, /* nop */
968 0x03200008, /* jr t9 */
969 0x00000000 /* nop */
970 };
971
972 /* The format of the first PLT entry in a VxWorks shared object. */
973 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
974 {
975 0x8f990008, /* lw t9, 8(gp) */
976 0x00000000, /* nop */
977 0x03200008, /* jr t9 */
978 0x00000000, /* nop */
979 0x00000000, /* nop */
980 0x00000000 /* nop */
981 };
982
983 /* The format of subsequent PLT entries. */
984 static const bfd_vma mips_vxworks_shared_plt_entry[] =
985 {
986 0x10000000, /* b .PLT_resolver */
987 0x24180000 /* li t8, <pltindex> */
988 };
989 \f
990 /* microMIPS 32-bit opcode helper installer. */
991
992 static void
993 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
994 {
995 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
996 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
997 }
998
999 /* microMIPS 32-bit opcode helper retriever. */
1000
1001 static bfd_vma
1002 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1003 {
1004 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1005 }
1006 \f
1007 /* Look up an entry in a MIPS ELF linker hash table. */
1008
1009 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1010 ((struct mips_elf_link_hash_entry *) \
1011 elf_link_hash_lookup (&(table)->root, (string), (create), \
1012 (copy), (follow)))
1013
1014 /* Traverse a MIPS ELF linker hash table. */
1015
1016 #define mips_elf_link_hash_traverse(table, func, info) \
1017 (elf_link_hash_traverse \
1018 (&(table)->root, \
1019 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1020 (info)))
1021
1022 /* Find the base offsets for thread-local storage in this object,
1023 for GD/LD and IE/LE respectively. */
1024
1025 #define TP_OFFSET 0x7000
1026 #define DTP_OFFSET 0x8000
1027
1028 static bfd_vma
1029 dtprel_base (struct bfd_link_info *info)
1030 {
1031 /* If tls_sec is NULL, we should have signalled an error already. */
1032 if (elf_hash_table (info)->tls_sec == NULL)
1033 return 0;
1034 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1035 }
1036
1037 static bfd_vma
1038 tprel_base (struct bfd_link_info *info)
1039 {
1040 /* If tls_sec is NULL, we should have signalled an error already. */
1041 if (elf_hash_table (info)->tls_sec == NULL)
1042 return 0;
1043 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1044 }
1045
1046 /* Create an entry in a MIPS ELF linker hash table. */
1047
1048 static struct bfd_hash_entry *
1049 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1050 struct bfd_hash_table *table, const char *string)
1051 {
1052 struct mips_elf_link_hash_entry *ret =
1053 (struct mips_elf_link_hash_entry *) entry;
1054
1055 /* Allocate the structure if it has not already been allocated by a
1056 subclass. */
1057 if (ret == NULL)
1058 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1059 if (ret == NULL)
1060 return (struct bfd_hash_entry *) ret;
1061
1062 /* Call the allocation method of the superclass. */
1063 ret = ((struct mips_elf_link_hash_entry *)
1064 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1065 table, string));
1066 if (ret != NULL)
1067 {
1068 /* Set local fields. */
1069 memset (&ret->esym, 0, sizeof (EXTR));
1070 /* We use -2 as a marker to indicate that the information has
1071 not been set. -1 means there is no associated ifd. */
1072 ret->esym.ifd = -2;
1073 ret->la25_stub = 0;
1074 ret->possibly_dynamic_relocs = 0;
1075 ret->fn_stub = NULL;
1076 ret->call_stub = NULL;
1077 ret->call_fp_stub = NULL;
1078 ret->tls_ie_type = GOT_NORMAL;
1079 ret->tls_gd_type = GOT_NORMAL;
1080 ret->global_got_area = GGA_NONE;
1081 ret->got_only_for_calls = TRUE;
1082 ret->readonly_reloc = FALSE;
1083 ret->has_static_relocs = FALSE;
1084 ret->no_fn_stub = FALSE;
1085 ret->need_fn_stub = FALSE;
1086 ret->has_nonpic_branches = FALSE;
1087 ret->needs_lazy_stub = FALSE;
1088 }
1089
1090 return (struct bfd_hash_entry *) ret;
1091 }
1092
1093 /* Allocate MIPS ELF private object data. */
1094
1095 bfd_boolean
1096 _bfd_mips_elf_mkobject (bfd *abfd)
1097 {
1098 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1099 MIPS_ELF_DATA);
1100 }
1101
1102 bfd_boolean
1103 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1104 {
1105 if (!sec->used_by_bfd)
1106 {
1107 struct _mips_elf_section_data *sdata;
1108 bfd_size_type amt = sizeof (*sdata);
1109
1110 sdata = bfd_zalloc (abfd, amt);
1111 if (sdata == NULL)
1112 return FALSE;
1113 sec->used_by_bfd = sdata;
1114 }
1115
1116 return _bfd_elf_new_section_hook (abfd, sec);
1117 }
1118 \f
1119 /* Read ECOFF debugging information from a .mdebug section into a
1120 ecoff_debug_info structure. */
1121
1122 bfd_boolean
1123 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1124 struct ecoff_debug_info *debug)
1125 {
1126 HDRR *symhdr;
1127 const struct ecoff_debug_swap *swap;
1128 char *ext_hdr;
1129
1130 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1131 memset (debug, 0, sizeof (*debug));
1132
1133 ext_hdr = bfd_malloc (swap->external_hdr_size);
1134 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1135 goto error_return;
1136
1137 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1138 swap->external_hdr_size))
1139 goto error_return;
1140
1141 symhdr = &debug->symbolic_header;
1142 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1143
1144 /* The symbolic header contains absolute file offsets and sizes to
1145 read. */
1146 #define READ(ptr, offset, count, size, type) \
1147 if (symhdr->count == 0) \
1148 debug->ptr = NULL; \
1149 else \
1150 { \
1151 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1152 debug->ptr = bfd_malloc (amt); \
1153 if (debug->ptr == NULL) \
1154 goto error_return; \
1155 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1156 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1157 goto error_return; \
1158 }
1159
1160 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1161 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1162 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1163 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1164 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1165 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1166 union aux_ext *);
1167 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1168 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1169 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1170 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1171 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1172 #undef READ
1173
1174 debug->fdr = NULL;
1175
1176 return TRUE;
1177
1178 error_return:
1179 if (ext_hdr != NULL)
1180 free (ext_hdr);
1181 if (debug->line != NULL)
1182 free (debug->line);
1183 if (debug->external_dnr != NULL)
1184 free (debug->external_dnr);
1185 if (debug->external_pdr != NULL)
1186 free (debug->external_pdr);
1187 if (debug->external_sym != NULL)
1188 free (debug->external_sym);
1189 if (debug->external_opt != NULL)
1190 free (debug->external_opt);
1191 if (debug->external_aux != NULL)
1192 free (debug->external_aux);
1193 if (debug->ss != NULL)
1194 free (debug->ss);
1195 if (debug->ssext != NULL)
1196 free (debug->ssext);
1197 if (debug->external_fdr != NULL)
1198 free (debug->external_fdr);
1199 if (debug->external_rfd != NULL)
1200 free (debug->external_rfd);
1201 if (debug->external_ext != NULL)
1202 free (debug->external_ext);
1203 return FALSE;
1204 }
1205 \f
1206 /* Swap RPDR (runtime procedure table entry) for output. */
1207
1208 static void
1209 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1210 {
1211 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1212 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1213 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1214 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1215 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1216 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1217
1218 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1219 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1220
1221 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1222 }
1223
1224 /* Create a runtime procedure table from the .mdebug section. */
1225
1226 static bfd_boolean
1227 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1228 struct bfd_link_info *info, asection *s,
1229 struct ecoff_debug_info *debug)
1230 {
1231 const struct ecoff_debug_swap *swap;
1232 HDRR *hdr = &debug->symbolic_header;
1233 RPDR *rpdr, *rp;
1234 struct rpdr_ext *erp;
1235 void *rtproc;
1236 struct pdr_ext *epdr;
1237 struct sym_ext *esym;
1238 char *ss, **sv;
1239 char *str;
1240 bfd_size_type size;
1241 bfd_size_type count;
1242 unsigned long sindex;
1243 unsigned long i;
1244 PDR pdr;
1245 SYMR sym;
1246 const char *no_name_func = _("static procedure (no name)");
1247
1248 epdr = NULL;
1249 rpdr = NULL;
1250 esym = NULL;
1251 ss = NULL;
1252 sv = NULL;
1253
1254 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1255
1256 sindex = strlen (no_name_func) + 1;
1257 count = hdr->ipdMax;
1258 if (count > 0)
1259 {
1260 size = swap->external_pdr_size;
1261
1262 epdr = bfd_malloc (size * count);
1263 if (epdr == NULL)
1264 goto error_return;
1265
1266 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1267 goto error_return;
1268
1269 size = sizeof (RPDR);
1270 rp = rpdr = bfd_malloc (size * count);
1271 if (rpdr == NULL)
1272 goto error_return;
1273
1274 size = sizeof (char *);
1275 sv = bfd_malloc (size * count);
1276 if (sv == NULL)
1277 goto error_return;
1278
1279 count = hdr->isymMax;
1280 size = swap->external_sym_size;
1281 esym = bfd_malloc (size * count);
1282 if (esym == NULL)
1283 goto error_return;
1284
1285 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1286 goto error_return;
1287
1288 count = hdr->issMax;
1289 ss = bfd_malloc (count);
1290 if (ss == NULL)
1291 goto error_return;
1292 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1293 goto error_return;
1294
1295 count = hdr->ipdMax;
1296 for (i = 0; i < (unsigned long) count; i++, rp++)
1297 {
1298 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1299 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1300 rp->adr = sym.value;
1301 rp->regmask = pdr.regmask;
1302 rp->regoffset = pdr.regoffset;
1303 rp->fregmask = pdr.fregmask;
1304 rp->fregoffset = pdr.fregoffset;
1305 rp->frameoffset = pdr.frameoffset;
1306 rp->framereg = pdr.framereg;
1307 rp->pcreg = pdr.pcreg;
1308 rp->irpss = sindex;
1309 sv[i] = ss + sym.iss;
1310 sindex += strlen (sv[i]) + 1;
1311 }
1312 }
1313
1314 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1315 size = BFD_ALIGN (size, 16);
1316 rtproc = bfd_alloc (abfd, size);
1317 if (rtproc == NULL)
1318 {
1319 mips_elf_hash_table (info)->procedure_count = 0;
1320 goto error_return;
1321 }
1322
1323 mips_elf_hash_table (info)->procedure_count = count + 2;
1324
1325 erp = rtproc;
1326 memset (erp, 0, sizeof (struct rpdr_ext));
1327 erp++;
1328 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1329 strcpy (str, no_name_func);
1330 str += strlen (no_name_func) + 1;
1331 for (i = 0; i < count; i++)
1332 {
1333 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1334 strcpy (str, sv[i]);
1335 str += strlen (sv[i]) + 1;
1336 }
1337 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1338
1339 /* Set the size and contents of .rtproc section. */
1340 s->size = size;
1341 s->contents = rtproc;
1342
1343 /* Skip this section later on (I don't think this currently
1344 matters, but someday it might). */
1345 s->map_head.link_order = NULL;
1346
1347 if (epdr != NULL)
1348 free (epdr);
1349 if (rpdr != NULL)
1350 free (rpdr);
1351 if (esym != NULL)
1352 free (esym);
1353 if (ss != NULL)
1354 free (ss);
1355 if (sv != NULL)
1356 free (sv);
1357
1358 return TRUE;
1359
1360 error_return:
1361 if (epdr != NULL)
1362 free (epdr);
1363 if (rpdr != NULL)
1364 free (rpdr);
1365 if (esym != NULL)
1366 free (esym);
1367 if (ss != NULL)
1368 free (ss);
1369 if (sv != NULL)
1370 free (sv);
1371 return FALSE;
1372 }
1373 \f
1374 /* We're going to create a stub for H. Create a symbol for the stub's
1375 value and size, to help make the disassembly easier to read. */
1376
1377 static bfd_boolean
1378 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1379 struct mips_elf_link_hash_entry *h,
1380 const char *prefix, asection *s, bfd_vma value,
1381 bfd_vma size)
1382 {
1383 struct bfd_link_hash_entry *bh;
1384 struct elf_link_hash_entry *elfh;
1385 const char *name;
1386
1387 if (ELF_ST_IS_MICROMIPS (h->root.other))
1388 value |= 1;
1389
1390 /* Create a new symbol. */
1391 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1392 bh = NULL;
1393 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1394 BSF_LOCAL, s, value, NULL,
1395 TRUE, FALSE, &bh))
1396 return FALSE;
1397
1398 /* Make it a local function. */
1399 elfh = (struct elf_link_hash_entry *) bh;
1400 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1401 elfh->size = size;
1402 elfh->forced_local = 1;
1403 return TRUE;
1404 }
1405
1406 /* We're about to redefine H. Create a symbol to represent H's
1407 current value and size, to help make the disassembly easier
1408 to read. */
1409
1410 static bfd_boolean
1411 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1412 struct mips_elf_link_hash_entry *h,
1413 const char *prefix)
1414 {
1415 struct bfd_link_hash_entry *bh;
1416 struct elf_link_hash_entry *elfh;
1417 const char *name;
1418 asection *s;
1419 bfd_vma value;
1420
1421 /* Read the symbol's value. */
1422 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1423 || h->root.root.type == bfd_link_hash_defweak);
1424 s = h->root.root.u.def.section;
1425 value = h->root.root.u.def.value;
1426
1427 /* Create a new symbol. */
1428 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1429 bh = NULL;
1430 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1431 BSF_LOCAL, s, value, NULL,
1432 TRUE, FALSE, &bh))
1433 return FALSE;
1434
1435 /* Make it local and copy the other attributes from H. */
1436 elfh = (struct elf_link_hash_entry *) bh;
1437 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1438 elfh->other = h->root.other;
1439 elfh->size = h->root.size;
1440 elfh->forced_local = 1;
1441 return TRUE;
1442 }
1443
1444 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1445 function rather than to a hard-float stub. */
1446
1447 static bfd_boolean
1448 section_allows_mips16_refs_p (asection *section)
1449 {
1450 const char *name;
1451
1452 name = bfd_get_section_name (section->owner, section);
1453 return (FN_STUB_P (name)
1454 || CALL_STUB_P (name)
1455 || CALL_FP_STUB_P (name)
1456 || strcmp (name, ".pdr") == 0);
1457 }
1458
1459 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1460 stub section of some kind. Return the R_SYMNDX of the target
1461 function, or 0 if we can't decide which function that is. */
1462
1463 static unsigned long
1464 mips16_stub_symndx (const struct elf_backend_data *bed,
1465 asection *sec ATTRIBUTE_UNUSED,
1466 const Elf_Internal_Rela *relocs,
1467 const Elf_Internal_Rela *relend)
1468 {
1469 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1470 const Elf_Internal_Rela *rel;
1471
1472 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1473 one in a compound relocation. */
1474 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1475 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1476 return ELF_R_SYM (sec->owner, rel->r_info);
1477
1478 /* Otherwise trust the first relocation, whatever its kind. This is
1479 the traditional behavior. */
1480 if (relocs < relend)
1481 return ELF_R_SYM (sec->owner, relocs->r_info);
1482
1483 return 0;
1484 }
1485
1486 /* Check the mips16 stubs for a particular symbol, and see if we can
1487 discard them. */
1488
1489 static void
1490 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1491 struct mips_elf_link_hash_entry *h)
1492 {
1493 /* Dynamic symbols must use the standard call interface, in case other
1494 objects try to call them. */
1495 if (h->fn_stub != NULL
1496 && h->root.dynindx != -1)
1497 {
1498 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1499 h->need_fn_stub = TRUE;
1500 }
1501
1502 if (h->fn_stub != NULL
1503 && ! h->need_fn_stub)
1504 {
1505 /* We don't need the fn_stub; the only references to this symbol
1506 are 16 bit calls. Clobber the size to 0 to prevent it from
1507 being included in the link. */
1508 h->fn_stub->size = 0;
1509 h->fn_stub->flags &= ~SEC_RELOC;
1510 h->fn_stub->reloc_count = 0;
1511 h->fn_stub->flags |= SEC_EXCLUDE;
1512 }
1513
1514 if (h->call_stub != NULL
1515 && ELF_ST_IS_MIPS16 (h->root.other))
1516 {
1517 /* We don't need the call_stub; this is a 16 bit function, so
1518 calls from other 16 bit functions are OK. Clobber the size
1519 to 0 to prevent it from being included in the link. */
1520 h->call_stub->size = 0;
1521 h->call_stub->flags &= ~SEC_RELOC;
1522 h->call_stub->reloc_count = 0;
1523 h->call_stub->flags |= SEC_EXCLUDE;
1524 }
1525
1526 if (h->call_fp_stub != NULL
1527 && ELF_ST_IS_MIPS16 (h->root.other))
1528 {
1529 /* We don't need the call_stub; this is a 16 bit function, so
1530 calls from other 16 bit functions are OK. Clobber the size
1531 to 0 to prevent it from being included in the link. */
1532 h->call_fp_stub->size = 0;
1533 h->call_fp_stub->flags &= ~SEC_RELOC;
1534 h->call_fp_stub->reloc_count = 0;
1535 h->call_fp_stub->flags |= SEC_EXCLUDE;
1536 }
1537 }
1538
1539 /* Hashtable callbacks for mips_elf_la25_stubs. */
1540
1541 static hashval_t
1542 mips_elf_la25_stub_hash (const void *entry_)
1543 {
1544 const struct mips_elf_la25_stub *entry;
1545
1546 entry = (struct mips_elf_la25_stub *) entry_;
1547 return entry->h->root.root.u.def.section->id
1548 + entry->h->root.root.u.def.value;
1549 }
1550
1551 static int
1552 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1553 {
1554 const struct mips_elf_la25_stub *entry1, *entry2;
1555
1556 entry1 = (struct mips_elf_la25_stub *) entry1_;
1557 entry2 = (struct mips_elf_la25_stub *) entry2_;
1558 return ((entry1->h->root.root.u.def.section
1559 == entry2->h->root.root.u.def.section)
1560 && (entry1->h->root.root.u.def.value
1561 == entry2->h->root.root.u.def.value));
1562 }
1563
1564 /* Called by the linker to set up the la25 stub-creation code. FN is
1565 the linker's implementation of add_stub_function. Return true on
1566 success. */
1567
1568 bfd_boolean
1569 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1570 asection *(*fn) (const char *, asection *,
1571 asection *))
1572 {
1573 struct mips_elf_link_hash_table *htab;
1574
1575 htab = mips_elf_hash_table (info);
1576 if (htab == NULL)
1577 return FALSE;
1578
1579 htab->add_stub_section = fn;
1580 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1581 mips_elf_la25_stub_eq, NULL);
1582 if (htab->la25_stubs == NULL)
1583 return FALSE;
1584
1585 return TRUE;
1586 }
1587
1588 /* Return true if H is a locally-defined PIC function, in the sense
1589 that it or its fn_stub might need $25 to be valid on entry.
1590 Note that MIPS16 functions set up $gp using PC-relative instructions,
1591 so they themselves never need $25 to be valid. Only non-MIPS16
1592 entry points are of interest here. */
1593
1594 static bfd_boolean
1595 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1596 {
1597 return ((h->root.root.type == bfd_link_hash_defined
1598 || h->root.root.type == bfd_link_hash_defweak)
1599 && h->root.def_regular
1600 && !bfd_is_abs_section (h->root.root.u.def.section)
1601 && (!ELF_ST_IS_MIPS16 (h->root.other)
1602 || (h->fn_stub && h->need_fn_stub))
1603 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1604 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1605 }
1606
1607 /* Set *SEC to the input section that contains the target of STUB.
1608 Return the offset of the target from the start of that section. */
1609
1610 static bfd_vma
1611 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1612 asection **sec)
1613 {
1614 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1615 {
1616 BFD_ASSERT (stub->h->need_fn_stub);
1617 *sec = stub->h->fn_stub;
1618 return 0;
1619 }
1620 else
1621 {
1622 *sec = stub->h->root.root.u.def.section;
1623 return stub->h->root.root.u.def.value;
1624 }
1625 }
1626
1627 /* STUB describes an la25 stub that we have decided to implement
1628 by inserting an LUI/ADDIU pair before the target function.
1629 Create the section and redirect the function symbol to it. */
1630
1631 static bfd_boolean
1632 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1633 struct bfd_link_info *info)
1634 {
1635 struct mips_elf_link_hash_table *htab;
1636 char *name;
1637 asection *s, *input_section;
1638 unsigned int align;
1639
1640 htab = mips_elf_hash_table (info);
1641 if (htab == NULL)
1642 return FALSE;
1643
1644 /* Create a unique name for the new section. */
1645 name = bfd_malloc (11 + sizeof (".text.stub."));
1646 if (name == NULL)
1647 return FALSE;
1648 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1649
1650 /* Create the section. */
1651 mips_elf_get_la25_target (stub, &input_section);
1652 s = htab->add_stub_section (name, input_section,
1653 input_section->output_section);
1654 if (s == NULL)
1655 return FALSE;
1656
1657 /* Make sure that any padding goes before the stub. */
1658 align = input_section->alignment_power;
1659 if (!bfd_set_section_alignment (s->owner, s, align))
1660 return FALSE;
1661 if (align > 3)
1662 s->size = (1 << align) - 8;
1663
1664 /* Create a symbol for the stub. */
1665 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1666 stub->stub_section = s;
1667 stub->offset = s->size;
1668
1669 /* Allocate room for it. */
1670 s->size += 8;
1671 return TRUE;
1672 }
1673
1674 /* STUB describes an la25 stub that we have decided to implement
1675 with a separate trampoline. Allocate room for it and redirect
1676 the function symbol to it. */
1677
1678 static bfd_boolean
1679 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1680 struct bfd_link_info *info)
1681 {
1682 struct mips_elf_link_hash_table *htab;
1683 asection *s;
1684
1685 htab = mips_elf_hash_table (info);
1686 if (htab == NULL)
1687 return FALSE;
1688
1689 /* Create a trampoline section, if we haven't already. */
1690 s = htab->strampoline;
1691 if (s == NULL)
1692 {
1693 asection *input_section = stub->h->root.root.u.def.section;
1694 s = htab->add_stub_section (".text", NULL,
1695 input_section->output_section);
1696 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1697 return FALSE;
1698 htab->strampoline = s;
1699 }
1700
1701 /* Create a symbol for the stub. */
1702 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1703 stub->stub_section = s;
1704 stub->offset = s->size;
1705
1706 /* Allocate room for it. */
1707 s->size += 16;
1708 return TRUE;
1709 }
1710
1711 /* H describes a symbol that needs an la25 stub. Make sure that an
1712 appropriate stub exists and point H at it. */
1713
1714 static bfd_boolean
1715 mips_elf_add_la25_stub (struct bfd_link_info *info,
1716 struct mips_elf_link_hash_entry *h)
1717 {
1718 struct mips_elf_link_hash_table *htab;
1719 struct mips_elf_la25_stub search, *stub;
1720 bfd_boolean use_trampoline_p;
1721 asection *s;
1722 bfd_vma value;
1723 void **slot;
1724
1725 /* Describe the stub we want. */
1726 search.stub_section = NULL;
1727 search.offset = 0;
1728 search.h = h;
1729
1730 /* See if we've already created an equivalent stub. */
1731 htab = mips_elf_hash_table (info);
1732 if (htab == NULL)
1733 return FALSE;
1734
1735 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1736 if (slot == NULL)
1737 return FALSE;
1738
1739 stub = (struct mips_elf_la25_stub *) *slot;
1740 if (stub != NULL)
1741 {
1742 /* We can reuse the existing stub. */
1743 h->la25_stub = stub;
1744 return TRUE;
1745 }
1746
1747 /* Create a permanent copy of ENTRY and add it to the hash table. */
1748 stub = bfd_malloc (sizeof (search));
1749 if (stub == NULL)
1750 return FALSE;
1751 *stub = search;
1752 *slot = stub;
1753
1754 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1755 of the section and if we would need no more than 2 nops. */
1756 value = mips_elf_get_la25_target (stub, &s);
1757 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1758
1759 h->la25_stub = stub;
1760 return (use_trampoline_p
1761 ? mips_elf_add_la25_trampoline (stub, info)
1762 : mips_elf_add_la25_intro (stub, info));
1763 }
1764
1765 /* A mips_elf_link_hash_traverse callback that is called before sizing
1766 sections. DATA points to a mips_htab_traverse_info structure. */
1767
1768 static bfd_boolean
1769 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1770 {
1771 struct mips_htab_traverse_info *hti;
1772
1773 hti = (struct mips_htab_traverse_info *) data;
1774 if (!hti->info->relocatable)
1775 mips_elf_check_mips16_stubs (hti->info, h);
1776
1777 if (mips_elf_local_pic_function_p (h))
1778 {
1779 /* PR 12845: If H is in a section that has been garbage
1780 collected it will have its output section set to *ABS*. */
1781 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1782 return TRUE;
1783
1784 /* H is a function that might need $25 to be valid on entry.
1785 If we're creating a non-PIC relocatable object, mark H as
1786 being PIC. If we're creating a non-relocatable object with
1787 non-PIC branches and jumps to H, make sure that H has an la25
1788 stub. */
1789 if (hti->info->relocatable)
1790 {
1791 if (!PIC_OBJECT_P (hti->output_bfd))
1792 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1793 }
1794 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1795 {
1796 hti->error = TRUE;
1797 return FALSE;
1798 }
1799 }
1800 return TRUE;
1801 }
1802 \f
1803 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1804 Most mips16 instructions are 16 bits, but these instructions
1805 are 32 bits.
1806
1807 The format of these instructions is:
1808
1809 +--------------+--------------------------------+
1810 | JALX | X| Imm 20:16 | Imm 25:21 |
1811 +--------------+--------------------------------+
1812 | Immediate 15:0 |
1813 +-----------------------------------------------+
1814
1815 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1816 Note that the immediate value in the first word is swapped.
1817
1818 When producing a relocatable object file, R_MIPS16_26 is
1819 handled mostly like R_MIPS_26. In particular, the addend is
1820 stored as a straight 26-bit value in a 32-bit instruction.
1821 (gas makes life simpler for itself by never adjusting a
1822 R_MIPS16_26 reloc to be against a section, so the addend is
1823 always zero). However, the 32 bit instruction is stored as 2
1824 16-bit values, rather than a single 32-bit value. In a
1825 big-endian file, the result is the same; in a little-endian
1826 file, the two 16-bit halves of the 32 bit value are swapped.
1827 This is so that a disassembler can recognize the jal
1828 instruction.
1829
1830 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1831 instruction stored as two 16-bit values. The addend A is the
1832 contents of the targ26 field. The calculation is the same as
1833 R_MIPS_26. When storing the calculated value, reorder the
1834 immediate value as shown above, and don't forget to store the
1835 value as two 16-bit values.
1836
1837 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1838 defined as
1839
1840 big-endian:
1841 +--------+----------------------+
1842 | | |
1843 | | targ26-16 |
1844 |31 26|25 0|
1845 +--------+----------------------+
1846
1847 little-endian:
1848 +----------+------+-------------+
1849 | | | |
1850 | sub1 | | sub2 |
1851 |0 9|10 15|16 31|
1852 +----------+--------------------+
1853 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1854 ((sub1 << 16) | sub2)).
1855
1856 When producing a relocatable object file, the calculation is
1857 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1858 When producing a fully linked file, the calculation is
1859 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1860 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1861
1862 The table below lists the other MIPS16 instruction relocations.
1863 Each one is calculated in the same way as the non-MIPS16 relocation
1864 given on the right, but using the extended MIPS16 layout of 16-bit
1865 immediate fields:
1866
1867 R_MIPS16_GPREL R_MIPS_GPREL16
1868 R_MIPS16_GOT16 R_MIPS_GOT16
1869 R_MIPS16_CALL16 R_MIPS_CALL16
1870 R_MIPS16_HI16 R_MIPS_HI16
1871 R_MIPS16_LO16 R_MIPS_LO16
1872
1873 A typical instruction will have a format like this:
1874
1875 +--------------+--------------------------------+
1876 | EXTEND | Imm 10:5 | Imm 15:11 |
1877 +--------------+--------------------------------+
1878 | Major | rx | ry | Imm 4:0 |
1879 +--------------+--------------------------------+
1880
1881 EXTEND is the five bit value 11110. Major is the instruction
1882 opcode.
1883
1884 All we need to do here is shuffle the bits appropriately.
1885 As above, the two 16-bit halves must be swapped on a
1886 little-endian system. */
1887
1888 static inline bfd_boolean
1889 mips16_reloc_p (int r_type)
1890 {
1891 switch (r_type)
1892 {
1893 case R_MIPS16_26:
1894 case R_MIPS16_GPREL:
1895 case R_MIPS16_GOT16:
1896 case R_MIPS16_CALL16:
1897 case R_MIPS16_HI16:
1898 case R_MIPS16_LO16:
1899 case R_MIPS16_TLS_GD:
1900 case R_MIPS16_TLS_LDM:
1901 case R_MIPS16_TLS_DTPREL_HI16:
1902 case R_MIPS16_TLS_DTPREL_LO16:
1903 case R_MIPS16_TLS_GOTTPREL:
1904 case R_MIPS16_TLS_TPREL_HI16:
1905 case R_MIPS16_TLS_TPREL_LO16:
1906 return TRUE;
1907
1908 default:
1909 return FALSE;
1910 }
1911 }
1912
1913 /* Check if a microMIPS reloc. */
1914
1915 static inline bfd_boolean
1916 micromips_reloc_p (unsigned int r_type)
1917 {
1918 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1919 }
1920
1921 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1922 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1923 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1924
1925 static inline bfd_boolean
1926 micromips_reloc_shuffle_p (unsigned int r_type)
1927 {
1928 return (micromips_reloc_p (r_type)
1929 && r_type != R_MICROMIPS_PC7_S1
1930 && r_type != R_MICROMIPS_PC10_S1);
1931 }
1932
1933 static inline bfd_boolean
1934 got16_reloc_p (int r_type)
1935 {
1936 return (r_type == R_MIPS_GOT16
1937 || r_type == R_MIPS16_GOT16
1938 || r_type == R_MICROMIPS_GOT16);
1939 }
1940
1941 static inline bfd_boolean
1942 call16_reloc_p (int r_type)
1943 {
1944 return (r_type == R_MIPS_CALL16
1945 || r_type == R_MIPS16_CALL16
1946 || r_type == R_MICROMIPS_CALL16);
1947 }
1948
1949 static inline bfd_boolean
1950 got_disp_reloc_p (unsigned int r_type)
1951 {
1952 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1953 }
1954
1955 static inline bfd_boolean
1956 got_page_reloc_p (unsigned int r_type)
1957 {
1958 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1959 }
1960
1961 static inline bfd_boolean
1962 got_ofst_reloc_p (unsigned int r_type)
1963 {
1964 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1965 }
1966
1967 static inline bfd_boolean
1968 got_hi16_reloc_p (unsigned int r_type)
1969 {
1970 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1971 }
1972
1973 static inline bfd_boolean
1974 got_lo16_reloc_p (unsigned int r_type)
1975 {
1976 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1977 }
1978
1979 static inline bfd_boolean
1980 call_hi16_reloc_p (unsigned int r_type)
1981 {
1982 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1983 }
1984
1985 static inline bfd_boolean
1986 call_lo16_reloc_p (unsigned int r_type)
1987 {
1988 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1989 }
1990
1991 static inline bfd_boolean
1992 hi16_reloc_p (int r_type)
1993 {
1994 return (r_type == R_MIPS_HI16
1995 || r_type == R_MIPS16_HI16
1996 || r_type == R_MICROMIPS_HI16);
1997 }
1998
1999 static inline bfd_boolean
2000 lo16_reloc_p (int r_type)
2001 {
2002 return (r_type == R_MIPS_LO16
2003 || r_type == R_MIPS16_LO16
2004 || r_type == R_MICROMIPS_LO16);
2005 }
2006
2007 static inline bfd_boolean
2008 mips16_call_reloc_p (int r_type)
2009 {
2010 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2011 }
2012
2013 static inline bfd_boolean
2014 jal_reloc_p (int r_type)
2015 {
2016 return (r_type == R_MIPS_26
2017 || r_type == R_MIPS16_26
2018 || r_type == R_MICROMIPS_26_S1);
2019 }
2020
2021 static inline bfd_boolean
2022 micromips_branch_reloc_p (int r_type)
2023 {
2024 return (r_type == R_MICROMIPS_26_S1
2025 || r_type == R_MICROMIPS_PC16_S1
2026 || r_type == R_MICROMIPS_PC10_S1
2027 || r_type == R_MICROMIPS_PC7_S1);
2028 }
2029
2030 static inline bfd_boolean
2031 tls_gd_reloc_p (unsigned int r_type)
2032 {
2033 return (r_type == R_MIPS_TLS_GD
2034 || r_type == R_MIPS16_TLS_GD
2035 || r_type == R_MICROMIPS_TLS_GD);
2036 }
2037
2038 static inline bfd_boolean
2039 tls_ldm_reloc_p (unsigned int r_type)
2040 {
2041 return (r_type == R_MIPS_TLS_LDM
2042 || r_type == R_MIPS16_TLS_LDM
2043 || r_type == R_MICROMIPS_TLS_LDM);
2044 }
2045
2046 static inline bfd_boolean
2047 tls_gottprel_reloc_p (unsigned int r_type)
2048 {
2049 return (r_type == R_MIPS_TLS_GOTTPREL
2050 || r_type == R_MIPS16_TLS_GOTTPREL
2051 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2052 }
2053
2054 void
2055 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2056 bfd_boolean jal_shuffle, bfd_byte *data)
2057 {
2058 bfd_vma first, second, val;
2059
2060 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2061 return;
2062
2063 /* Pick up the first and second halfwords of the instruction. */
2064 first = bfd_get_16 (abfd, data);
2065 second = bfd_get_16 (abfd, data + 2);
2066 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2067 val = first << 16 | second;
2068 else if (r_type != R_MIPS16_26)
2069 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2070 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2071 else
2072 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2073 | ((first & 0x1f) << 21) | second);
2074 bfd_put_32 (abfd, val, data);
2075 }
2076
2077 void
2078 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2079 bfd_boolean jal_shuffle, bfd_byte *data)
2080 {
2081 bfd_vma first, second, val;
2082
2083 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2084 return;
2085
2086 val = bfd_get_32 (abfd, data);
2087 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2088 {
2089 second = val & 0xffff;
2090 first = val >> 16;
2091 }
2092 else if (r_type != R_MIPS16_26)
2093 {
2094 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2095 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2096 }
2097 else
2098 {
2099 second = val & 0xffff;
2100 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2101 | ((val >> 21) & 0x1f);
2102 }
2103 bfd_put_16 (abfd, second, data + 2);
2104 bfd_put_16 (abfd, first, data);
2105 }
2106
2107 bfd_reloc_status_type
2108 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2109 arelent *reloc_entry, asection *input_section,
2110 bfd_boolean relocatable, void *data, bfd_vma gp)
2111 {
2112 bfd_vma relocation;
2113 bfd_signed_vma val;
2114 bfd_reloc_status_type status;
2115
2116 if (bfd_is_com_section (symbol->section))
2117 relocation = 0;
2118 else
2119 relocation = symbol->value;
2120
2121 relocation += symbol->section->output_section->vma;
2122 relocation += symbol->section->output_offset;
2123
2124 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2125 return bfd_reloc_outofrange;
2126
2127 /* Set val to the offset into the section or symbol. */
2128 val = reloc_entry->addend;
2129
2130 _bfd_mips_elf_sign_extend (val, 16);
2131
2132 /* Adjust val for the final section location and GP value. If we
2133 are producing relocatable output, we don't want to do this for
2134 an external symbol. */
2135 if (! relocatable
2136 || (symbol->flags & BSF_SECTION_SYM) != 0)
2137 val += relocation - gp;
2138
2139 if (reloc_entry->howto->partial_inplace)
2140 {
2141 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2142 (bfd_byte *) data
2143 + reloc_entry->address);
2144 if (status != bfd_reloc_ok)
2145 return status;
2146 }
2147 else
2148 reloc_entry->addend = val;
2149
2150 if (relocatable)
2151 reloc_entry->address += input_section->output_offset;
2152
2153 return bfd_reloc_ok;
2154 }
2155
2156 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2157 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2158 that contains the relocation field and DATA points to the start of
2159 INPUT_SECTION. */
2160
2161 struct mips_hi16
2162 {
2163 struct mips_hi16 *next;
2164 bfd_byte *data;
2165 asection *input_section;
2166 arelent rel;
2167 };
2168
2169 /* FIXME: This should not be a static variable. */
2170
2171 static struct mips_hi16 *mips_hi16_list;
2172
2173 /* A howto special_function for REL *HI16 relocations. We can only
2174 calculate the correct value once we've seen the partnering
2175 *LO16 relocation, so just save the information for later.
2176
2177 The ABI requires that the *LO16 immediately follow the *HI16.
2178 However, as a GNU extension, we permit an arbitrary number of
2179 *HI16s to be associated with a single *LO16. This significantly
2180 simplies the relocation handling in gcc. */
2181
2182 bfd_reloc_status_type
2183 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2184 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2185 asection *input_section, bfd *output_bfd,
2186 char **error_message ATTRIBUTE_UNUSED)
2187 {
2188 struct mips_hi16 *n;
2189
2190 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2191 return bfd_reloc_outofrange;
2192
2193 n = bfd_malloc (sizeof *n);
2194 if (n == NULL)
2195 return bfd_reloc_outofrange;
2196
2197 n->next = mips_hi16_list;
2198 n->data = data;
2199 n->input_section = input_section;
2200 n->rel = *reloc_entry;
2201 mips_hi16_list = n;
2202
2203 if (output_bfd != NULL)
2204 reloc_entry->address += input_section->output_offset;
2205
2206 return bfd_reloc_ok;
2207 }
2208
2209 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2210 like any other 16-bit relocation when applied to global symbols, but is
2211 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2212
2213 bfd_reloc_status_type
2214 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2215 void *data, asection *input_section,
2216 bfd *output_bfd, char **error_message)
2217 {
2218 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2219 || bfd_is_und_section (bfd_get_section (symbol))
2220 || bfd_is_com_section (bfd_get_section (symbol)))
2221 /* The relocation is against a global symbol. */
2222 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2223 input_section, output_bfd,
2224 error_message);
2225
2226 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2227 input_section, output_bfd, error_message);
2228 }
2229
2230 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2231 is a straightforward 16 bit inplace relocation, but we must deal with
2232 any partnering high-part relocations as well. */
2233
2234 bfd_reloc_status_type
2235 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2236 void *data, asection *input_section,
2237 bfd *output_bfd, char **error_message)
2238 {
2239 bfd_vma vallo;
2240 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2241
2242 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2243 return bfd_reloc_outofrange;
2244
2245 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2246 location);
2247 vallo = bfd_get_32 (abfd, location);
2248 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2249 location);
2250
2251 while (mips_hi16_list != NULL)
2252 {
2253 bfd_reloc_status_type ret;
2254 struct mips_hi16 *hi;
2255
2256 hi = mips_hi16_list;
2257
2258 /* R_MIPS*_GOT16 relocations are something of a special case. We
2259 want to install the addend in the same way as for a R_MIPS*_HI16
2260 relocation (with a rightshift of 16). However, since GOT16
2261 relocations can also be used with global symbols, their howto
2262 has a rightshift of 0. */
2263 if (hi->rel.howto->type == R_MIPS_GOT16)
2264 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2265 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2266 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2267 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2268 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2269
2270 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2271 carry or borrow will induce a change of +1 or -1 in the high part. */
2272 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2273
2274 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2275 hi->input_section, output_bfd,
2276 error_message);
2277 if (ret != bfd_reloc_ok)
2278 return ret;
2279
2280 mips_hi16_list = hi->next;
2281 free (hi);
2282 }
2283
2284 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2285 input_section, output_bfd,
2286 error_message);
2287 }
2288
2289 /* A generic howto special_function. This calculates and installs the
2290 relocation itself, thus avoiding the oft-discussed problems in
2291 bfd_perform_relocation and bfd_install_relocation. */
2292
2293 bfd_reloc_status_type
2294 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2295 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2296 asection *input_section, bfd *output_bfd,
2297 char **error_message ATTRIBUTE_UNUSED)
2298 {
2299 bfd_signed_vma val;
2300 bfd_reloc_status_type status;
2301 bfd_boolean relocatable;
2302
2303 relocatable = (output_bfd != NULL);
2304
2305 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2306 return bfd_reloc_outofrange;
2307
2308 /* Build up the field adjustment in VAL. */
2309 val = 0;
2310 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2311 {
2312 /* Either we're calculating the final field value or we have a
2313 relocation against a section symbol. Add in the section's
2314 offset or address. */
2315 val += symbol->section->output_section->vma;
2316 val += symbol->section->output_offset;
2317 }
2318
2319 if (!relocatable)
2320 {
2321 /* We're calculating the final field value. Add in the symbol's value
2322 and, if pc-relative, subtract the address of the field itself. */
2323 val += symbol->value;
2324 if (reloc_entry->howto->pc_relative)
2325 {
2326 val -= input_section->output_section->vma;
2327 val -= input_section->output_offset;
2328 val -= reloc_entry->address;
2329 }
2330 }
2331
2332 /* VAL is now the final adjustment. If we're keeping this relocation
2333 in the output file, and if the relocation uses a separate addend,
2334 we just need to add VAL to that addend. Otherwise we need to add
2335 VAL to the relocation field itself. */
2336 if (relocatable && !reloc_entry->howto->partial_inplace)
2337 reloc_entry->addend += val;
2338 else
2339 {
2340 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2341
2342 /* Add in the separate addend, if any. */
2343 val += reloc_entry->addend;
2344
2345 /* Add VAL to the relocation field. */
2346 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2347 location);
2348 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2349 location);
2350 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2351 location);
2352
2353 if (status != bfd_reloc_ok)
2354 return status;
2355 }
2356
2357 if (relocatable)
2358 reloc_entry->address += input_section->output_offset;
2359
2360 return bfd_reloc_ok;
2361 }
2362 \f
2363 /* Swap an entry in a .gptab section. Note that these routines rely
2364 on the equivalence of the two elements of the union. */
2365
2366 static void
2367 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2368 Elf32_gptab *in)
2369 {
2370 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2371 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2372 }
2373
2374 static void
2375 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2376 Elf32_External_gptab *ex)
2377 {
2378 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2379 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2380 }
2381
2382 static void
2383 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2384 Elf32_External_compact_rel *ex)
2385 {
2386 H_PUT_32 (abfd, in->id1, ex->id1);
2387 H_PUT_32 (abfd, in->num, ex->num);
2388 H_PUT_32 (abfd, in->id2, ex->id2);
2389 H_PUT_32 (abfd, in->offset, ex->offset);
2390 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2391 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2392 }
2393
2394 static void
2395 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2396 Elf32_External_crinfo *ex)
2397 {
2398 unsigned long l;
2399
2400 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2401 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2402 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2403 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2404 H_PUT_32 (abfd, l, ex->info);
2405 H_PUT_32 (abfd, in->konst, ex->konst);
2406 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2407 }
2408 \f
2409 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2410 routines swap this structure in and out. They are used outside of
2411 BFD, so they are globally visible. */
2412
2413 void
2414 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2415 Elf32_RegInfo *in)
2416 {
2417 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2418 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2419 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2420 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2421 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2422 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2423 }
2424
2425 void
2426 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2427 Elf32_External_RegInfo *ex)
2428 {
2429 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2430 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2431 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2432 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2433 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2434 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2435 }
2436
2437 /* In the 64 bit ABI, the .MIPS.options section holds register
2438 information in an Elf64_Reginfo structure. These routines swap
2439 them in and out. They are globally visible because they are used
2440 outside of BFD. These routines are here so that gas can call them
2441 without worrying about whether the 64 bit ABI has been included. */
2442
2443 void
2444 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2445 Elf64_Internal_RegInfo *in)
2446 {
2447 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2448 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2449 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2450 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2451 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2452 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2453 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2454 }
2455
2456 void
2457 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2458 Elf64_External_RegInfo *ex)
2459 {
2460 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2461 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2462 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2463 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2464 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2465 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2466 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2467 }
2468
2469 /* Swap in an options header. */
2470
2471 void
2472 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2473 Elf_Internal_Options *in)
2474 {
2475 in->kind = H_GET_8 (abfd, ex->kind);
2476 in->size = H_GET_8 (abfd, ex->size);
2477 in->section = H_GET_16 (abfd, ex->section);
2478 in->info = H_GET_32 (abfd, ex->info);
2479 }
2480
2481 /* Swap out an options header. */
2482
2483 void
2484 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2485 Elf_External_Options *ex)
2486 {
2487 H_PUT_8 (abfd, in->kind, ex->kind);
2488 H_PUT_8 (abfd, in->size, ex->size);
2489 H_PUT_16 (abfd, in->section, ex->section);
2490 H_PUT_32 (abfd, in->info, ex->info);
2491 }
2492 \f
2493 /* This function is called via qsort() to sort the dynamic relocation
2494 entries by increasing r_symndx value. */
2495
2496 static int
2497 sort_dynamic_relocs (const void *arg1, const void *arg2)
2498 {
2499 Elf_Internal_Rela int_reloc1;
2500 Elf_Internal_Rela int_reloc2;
2501 int diff;
2502
2503 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2504 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2505
2506 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2507 if (diff != 0)
2508 return diff;
2509
2510 if (int_reloc1.r_offset < int_reloc2.r_offset)
2511 return -1;
2512 if (int_reloc1.r_offset > int_reloc2.r_offset)
2513 return 1;
2514 return 0;
2515 }
2516
2517 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2518
2519 static int
2520 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2521 const void *arg2 ATTRIBUTE_UNUSED)
2522 {
2523 #ifdef BFD64
2524 Elf_Internal_Rela int_reloc1[3];
2525 Elf_Internal_Rela int_reloc2[3];
2526
2527 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2528 (reldyn_sorting_bfd, arg1, int_reloc1);
2529 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2530 (reldyn_sorting_bfd, arg2, int_reloc2);
2531
2532 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2533 return -1;
2534 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2535 return 1;
2536
2537 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2538 return -1;
2539 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2540 return 1;
2541 return 0;
2542 #else
2543 abort ();
2544 #endif
2545 }
2546
2547
2548 /* This routine is used to write out ECOFF debugging external symbol
2549 information. It is called via mips_elf_link_hash_traverse. The
2550 ECOFF external symbol information must match the ELF external
2551 symbol information. Unfortunately, at this point we don't know
2552 whether a symbol is required by reloc information, so the two
2553 tables may wind up being different. We must sort out the external
2554 symbol information before we can set the final size of the .mdebug
2555 section, and we must set the size of the .mdebug section before we
2556 can relocate any sections, and we can't know which symbols are
2557 required by relocation until we relocate the sections.
2558 Fortunately, it is relatively unlikely that any symbol will be
2559 stripped but required by a reloc. In particular, it can not happen
2560 when generating a final executable. */
2561
2562 static bfd_boolean
2563 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2564 {
2565 struct extsym_info *einfo = data;
2566 bfd_boolean strip;
2567 asection *sec, *output_section;
2568
2569 if (h->root.indx == -2)
2570 strip = FALSE;
2571 else if ((h->root.def_dynamic
2572 || h->root.ref_dynamic
2573 || h->root.type == bfd_link_hash_new)
2574 && !h->root.def_regular
2575 && !h->root.ref_regular)
2576 strip = TRUE;
2577 else if (einfo->info->strip == strip_all
2578 || (einfo->info->strip == strip_some
2579 && bfd_hash_lookup (einfo->info->keep_hash,
2580 h->root.root.root.string,
2581 FALSE, FALSE) == NULL))
2582 strip = TRUE;
2583 else
2584 strip = FALSE;
2585
2586 if (strip)
2587 return TRUE;
2588
2589 if (h->esym.ifd == -2)
2590 {
2591 h->esym.jmptbl = 0;
2592 h->esym.cobol_main = 0;
2593 h->esym.weakext = 0;
2594 h->esym.reserved = 0;
2595 h->esym.ifd = ifdNil;
2596 h->esym.asym.value = 0;
2597 h->esym.asym.st = stGlobal;
2598
2599 if (h->root.root.type == bfd_link_hash_undefined
2600 || h->root.root.type == bfd_link_hash_undefweak)
2601 {
2602 const char *name;
2603
2604 /* Use undefined class. Also, set class and type for some
2605 special symbols. */
2606 name = h->root.root.root.string;
2607 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2608 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2609 {
2610 h->esym.asym.sc = scData;
2611 h->esym.asym.st = stLabel;
2612 h->esym.asym.value = 0;
2613 }
2614 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2615 {
2616 h->esym.asym.sc = scAbs;
2617 h->esym.asym.st = stLabel;
2618 h->esym.asym.value =
2619 mips_elf_hash_table (einfo->info)->procedure_count;
2620 }
2621 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2622 {
2623 h->esym.asym.sc = scAbs;
2624 h->esym.asym.st = stLabel;
2625 h->esym.asym.value = elf_gp (einfo->abfd);
2626 }
2627 else
2628 h->esym.asym.sc = scUndefined;
2629 }
2630 else if (h->root.root.type != bfd_link_hash_defined
2631 && h->root.root.type != bfd_link_hash_defweak)
2632 h->esym.asym.sc = scAbs;
2633 else
2634 {
2635 const char *name;
2636
2637 sec = h->root.root.u.def.section;
2638 output_section = sec->output_section;
2639
2640 /* When making a shared library and symbol h is the one from
2641 the another shared library, OUTPUT_SECTION may be null. */
2642 if (output_section == NULL)
2643 h->esym.asym.sc = scUndefined;
2644 else
2645 {
2646 name = bfd_section_name (output_section->owner, output_section);
2647
2648 if (strcmp (name, ".text") == 0)
2649 h->esym.asym.sc = scText;
2650 else if (strcmp (name, ".data") == 0)
2651 h->esym.asym.sc = scData;
2652 else if (strcmp (name, ".sdata") == 0)
2653 h->esym.asym.sc = scSData;
2654 else if (strcmp (name, ".rodata") == 0
2655 || strcmp (name, ".rdata") == 0)
2656 h->esym.asym.sc = scRData;
2657 else if (strcmp (name, ".bss") == 0)
2658 h->esym.asym.sc = scBss;
2659 else if (strcmp (name, ".sbss") == 0)
2660 h->esym.asym.sc = scSBss;
2661 else if (strcmp (name, ".init") == 0)
2662 h->esym.asym.sc = scInit;
2663 else if (strcmp (name, ".fini") == 0)
2664 h->esym.asym.sc = scFini;
2665 else
2666 h->esym.asym.sc = scAbs;
2667 }
2668 }
2669
2670 h->esym.asym.reserved = 0;
2671 h->esym.asym.index = indexNil;
2672 }
2673
2674 if (h->root.root.type == bfd_link_hash_common)
2675 h->esym.asym.value = h->root.root.u.c.size;
2676 else if (h->root.root.type == bfd_link_hash_defined
2677 || h->root.root.type == bfd_link_hash_defweak)
2678 {
2679 if (h->esym.asym.sc == scCommon)
2680 h->esym.asym.sc = scBss;
2681 else if (h->esym.asym.sc == scSCommon)
2682 h->esym.asym.sc = scSBss;
2683
2684 sec = h->root.root.u.def.section;
2685 output_section = sec->output_section;
2686 if (output_section != NULL)
2687 h->esym.asym.value = (h->root.root.u.def.value
2688 + sec->output_offset
2689 + output_section->vma);
2690 else
2691 h->esym.asym.value = 0;
2692 }
2693 else
2694 {
2695 struct mips_elf_link_hash_entry *hd = h;
2696
2697 while (hd->root.root.type == bfd_link_hash_indirect)
2698 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2699
2700 if (hd->needs_lazy_stub)
2701 {
2702 /* Set type and value for a symbol with a function stub. */
2703 h->esym.asym.st = stProc;
2704 sec = hd->root.root.u.def.section;
2705 if (sec == NULL)
2706 h->esym.asym.value = 0;
2707 else
2708 {
2709 output_section = sec->output_section;
2710 if (output_section != NULL)
2711 h->esym.asym.value = (hd->root.plt.offset
2712 + sec->output_offset
2713 + output_section->vma);
2714 else
2715 h->esym.asym.value = 0;
2716 }
2717 }
2718 }
2719
2720 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2721 h->root.root.root.string,
2722 &h->esym))
2723 {
2724 einfo->failed = TRUE;
2725 return FALSE;
2726 }
2727
2728 return TRUE;
2729 }
2730
2731 /* A comparison routine used to sort .gptab entries. */
2732
2733 static int
2734 gptab_compare (const void *p1, const void *p2)
2735 {
2736 const Elf32_gptab *a1 = p1;
2737 const Elf32_gptab *a2 = p2;
2738
2739 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2740 }
2741 \f
2742 /* Functions to manage the got entry hash table. */
2743
2744 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2745 hash number. */
2746
2747 static INLINE hashval_t
2748 mips_elf_hash_bfd_vma (bfd_vma addr)
2749 {
2750 #ifdef BFD64
2751 return addr + (addr >> 32);
2752 #else
2753 return addr;
2754 #endif
2755 }
2756
2757 static hashval_t
2758 mips_elf_got_entry_hash (const void *entry_)
2759 {
2760 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2761
2762 return (entry->symndx
2763 + (((entry->tls_type & GOT_TLS_TYPE) == GOT_TLS_LDM) << 18)
2764 + ((entry->tls_type & GOT_TLS_TYPE) == GOT_TLS_LDM ? 0
2765 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2766 : entry->symndx >= 0 ? (entry->abfd->id
2767 + mips_elf_hash_bfd_vma (entry->d.addend))
2768 : entry->d.h->root.root.root.hash));
2769 }
2770
2771 static int
2772 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2773 {
2774 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2775 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2776
2777 return (e1->symndx == e2->symndx
2778 && (e1->tls_type & GOT_TLS_TYPE) == (e2->tls_type & GOT_TLS_TYPE)
2779 && ((e1->tls_type & GOT_TLS_TYPE) == GOT_TLS_LDM ? TRUE
2780 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2781 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2782 && e1->d.addend == e2->d.addend)
2783 : e2->abfd && e1->d.h == e2->d.h));
2784 }
2785
2786 static hashval_t
2787 mips_got_page_entry_hash (const void *entry_)
2788 {
2789 const struct mips_got_page_entry *entry;
2790
2791 entry = (const struct mips_got_page_entry *) entry_;
2792 return entry->abfd->id + entry->symndx;
2793 }
2794
2795 static int
2796 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2797 {
2798 const struct mips_got_page_entry *entry1, *entry2;
2799
2800 entry1 = (const struct mips_got_page_entry *) entry1_;
2801 entry2 = (const struct mips_got_page_entry *) entry2_;
2802 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2803 }
2804 \f
2805 /* Create and return a new mips_got_info structure. */
2806
2807 static struct mips_got_info *
2808 mips_elf_create_got_info (bfd *abfd)
2809 {
2810 struct mips_got_info *g;
2811
2812 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
2813 if (g == NULL)
2814 return NULL;
2815
2816 g->tls_ldm_offset = MINUS_ONE;
2817 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2818 mips_elf_got_entry_eq, NULL);
2819 if (g->got_entries == NULL)
2820 return NULL;
2821
2822 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
2823 mips_got_page_entry_eq, NULL);
2824 if (g->got_page_entries == NULL)
2825 return NULL;
2826
2827 return g;
2828 }
2829
2830 /* Return the GOT info for input bfd ABFD, trying to create a new one if
2831 CREATE_P and if ABFD doesn't already have a GOT. */
2832
2833 static struct mips_got_info *
2834 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
2835 {
2836 struct mips_elf_obj_tdata *tdata;
2837
2838 if (!is_mips_elf (abfd))
2839 return NULL;
2840
2841 tdata = mips_elf_tdata (abfd);
2842 if (!tdata->got && create_p)
2843 tdata->got = mips_elf_create_got_info (abfd);
2844 return tdata->got;
2845 }
2846
2847 /* Record that ABFD should use output GOT G. */
2848
2849 static void
2850 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
2851 {
2852 struct mips_elf_obj_tdata *tdata;
2853
2854 BFD_ASSERT (is_mips_elf (abfd));
2855 tdata = mips_elf_tdata (abfd);
2856 if (tdata->got)
2857 {
2858 /* The GOT structure itself and the hash table entries are
2859 allocated to a bfd, but the hash tables aren't. */
2860 htab_delete (tdata->got->got_entries);
2861 htab_delete (tdata->got->got_page_entries);
2862 }
2863 tdata->got = g;
2864 }
2865
2866 /* Return the dynamic relocation section. If it doesn't exist, try to
2867 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2868 if creation fails. */
2869
2870 static asection *
2871 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2872 {
2873 const char *dname;
2874 asection *sreloc;
2875 bfd *dynobj;
2876
2877 dname = MIPS_ELF_REL_DYN_NAME (info);
2878 dynobj = elf_hash_table (info)->dynobj;
2879 sreloc = bfd_get_linker_section (dynobj, dname);
2880 if (sreloc == NULL && create_p)
2881 {
2882 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2883 (SEC_ALLOC
2884 | SEC_LOAD
2885 | SEC_HAS_CONTENTS
2886 | SEC_IN_MEMORY
2887 | SEC_LINKER_CREATED
2888 | SEC_READONLY));
2889 if (sreloc == NULL
2890 || ! bfd_set_section_alignment (dynobj, sreloc,
2891 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2892 return NULL;
2893 }
2894 return sreloc;
2895 }
2896
2897 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
2898
2899 static int
2900 mips_elf_reloc_tls_type (unsigned int r_type)
2901 {
2902 if (tls_gd_reloc_p (r_type))
2903 return GOT_TLS_GD;
2904
2905 if (tls_ldm_reloc_p (r_type))
2906 return GOT_TLS_LDM;
2907
2908 if (tls_gottprel_reloc_p (r_type))
2909 return GOT_TLS_IE;
2910
2911 return GOT_NORMAL;
2912 }
2913
2914 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
2915
2916 static int
2917 mips_tls_got_entries (unsigned int type)
2918 {
2919 switch (type)
2920 {
2921 case GOT_TLS_GD:
2922 case GOT_TLS_LDM:
2923 return 2;
2924
2925 case GOT_TLS_IE:
2926 return 1;
2927
2928 case GOT_NORMAL:
2929 return 0;
2930 }
2931 abort ();
2932 }
2933
2934 /* Count the number of relocations needed for a TLS GOT entry, with
2935 access types from TLS_TYPE, and symbol H (or a local symbol if H
2936 is NULL). */
2937
2938 static int
2939 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2940 struct elf_link_hash_entry *h)
2941 {
2942 int indx = 0;
2943 bfd_boolean need_relocs = FALSE;
2944 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2945
2946 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2947 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2948 indx = h->dynindx;
2949
2950 if ((info->shared || indx != 0)
2951 && (h == NULL
2952 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2953 || h->root.type != bfd_link_hash_undefweak))
2954 need_relocs = TRUE;
2955
2956 if (!need_relocs)
2957 return 0;
2958
2959 switch (tls_type & GOT_TLS_TYPE)
2960 {
2961 case GOT_TLS_GD:
2962 return indx != 0 ? 2 : 1;
2963
2964 case GOT_TLS_IE:
2965 return 1;
2966
2967 case GOT_TLS_LDM:
2968 return info->shared ? 1 : 0;
2969
2970 default:
2971 return 0;
2972 }
2973 }
2974
2975 /* Add the number of GOT entries and TLS relocations required by ENTRY
2976 to G. */
2977
2978 static void
2979 mips_elf_count_got_entry (struct bfd_link_info *info,
2980 struct mips_got_info *g,
2981 struct mips_got_entry *entry)
2982 {
2983 unsigned char tls_type;
2984
2985 tls_type = entry->tls_type & GOT_TLS_TYPE;
2986 if (tls_type)
2987 {
2988 g->tls_gotno += mips_tls_got_entries (tls_type);
2989 g->relocs += mips_tls_got_relocs (info, tls_type,
2990 entry->symndx < 0
2991 ? &entry->d.h->root : NULL);
2992 }
2993 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
2994 g->local_gotno += 1;
2995 else
2996 g->global_gotno += 1;
2997 }
2998
2999 /* A htab_traverse callback. Count the number of GOT entries and
3000 TLS relocations required for the GOT entry in *ENTRYP. DATA points
3001 to a mips_elf_traverse_got_arg structure. */
3002
3003 static int
3004 mips_elf_count_got_entries (void **entryp, void *data)
3005 {
3006 struct mips_got_entry *entry;
3007 struct mips_elf_traverse_got_arg *arg;
3008
3009 entry = (struct mips_got_entry *) *entryp;
3010 arg = (struct mips_elf_traverse_got_arg *) data;
3011 mips_elf_count_got_entry (arg->info, arg->g, entry);
3012
3013 return 1;
3014 }
3015
3016 /* A htab_traverse callback. If *SLOT describes a GOT entry for a local
3017 symbol, count the number of GOT entries and TLS relocations that it
3018 requires. DATA points to a mips_elf_traverse_got_arg structure. */
3019
3020 static int
3021 mips_elf_count_local_got_entries (void **entryp, void *data)
3022 {
3023 struct mips_got_entry *entry;
3024 struct mips_elf_traverse_got_arg *arg;
3025
3026 entry = (struct mips_got_entry *) *entryp;
3027 arg = (struct mips_elf_traverse_got_arg *) data;
3028 if (entry->abfd != NULL && entry->symndx != -1)
3029 {
3030 if ((entry->tls_type & GOT_TLS_TYPE) == GOT_TLS_LDM)
3031 {
3032 if (arg->g->tls_ldm_offset == MINUS_TWO)
3033 return 1;
3034 arg->g->tls_ldm_offset = MINUS_TWO;
3035 }
3036 mips_elf_count_got_entry (arg->info, arg->g, entry);
3037 }
3038
3039 return 1;
3040 }
3041
3042 /* Count the number of TLS GOT entries and relocationss required for the
3043 global (or forced-local) symbol in ARG1. */
3044
3045 static int
3046 mips_elf_count_global_tls_entries (void *entry, void *data)
3047 {
3048 struct mips_elf_link_hash_entry *hm;
3049 struct mips_elf_traverse_got_arg *arg;
3050
3051 hm = (struct mips_elf_link_hash_entry *) entry;
3052 if (hm->root.root.type == bfd_link_hash_indirect
3053 || hm->root.root.type == bfd_link_hash_warning)
3054 return 1;
3055
3056 arg = (struct mips_elf_traverse_got_arg *) data;
3057 if (hm->tls_gd_type)
3058 {
3059 arg->g->tls_gotno += 2;
3060 arg->g->relocs += mips_tls_got_relocs (arg->info, hm->tls_gd_type,
3061 &hm->root);
3062 }
3063 if (hm->tls_ie_type)
3064 {
3065 arg->g->tls_gotno += 1;
3066 arg->g->relocs += mips_tls_got_relocs (arg->info, hm->tls_ie_type,
3067 &hm->root);
3068 }
3069
3070 return 1;
3071 }
3072
3073 /* Output a simple dynamic relocation into SRELOC. */
3074
3075 static void
3076 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3077 asection *sreloc,
3078 unsigned long reloc_index,
3079 unsigned long indx,
3080 int r_type,
3081 bfd_vma offset)
3082 {
3083 Elf_Internal_Rela rel[3];
3084
3085 memset (rel, 0, sizeof (rel));
3086
3087 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3088 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3089
3090 if (ABI_64_P (output_bfd))
3091 {
3092 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3093 (output_bfd, &rel[0],
3094 (sreloc->contents
3095 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3096 }
3097 else
3098 bfd_elf32_swap_reloc_out
3099 (output_bfd, &rel[0],
3100 (sreloc->contents
3101 + reloc_index * sizeof (Elf32_External_Rel)));
3102 }
3103
3104 /* Initialize a set of TLS GOT entries for one symbol. */
3105
3106 static void
3107 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3108 unsigned char *tls_type_p,
3109 struct bfd_link_info *info,
3110 struct mips_elf_link_hash_entry *h,
3111 bfd_vma value)
3112 {
3113 struct mips_elf_link_hash_table *htab;
3114 int indx;
3115 asection *sreloc, *sgot;
3116 bfd_vma got_offset2;
3117 bfd_boolean need_relocs = FALSE;
3118
3119 htab = mips_elf_hash_table (info);
3120 if (htab == NULL)
3121 return;
3122
3123 sgot = htab->sgot;
3124
3125 indx = 0;
3126 if (h != NULL)
3127 {
3128 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3129
3130 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3131 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3132 indx = h->root.dynindx;
3133 }
3134
3135 if (*tls_type_p & GOT_TLS_DONE)
3136 return;
3137
3138 if ((info->shared || indx != 0)
3139 && (h == NULL
3140 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3141 || h->root.type != bfd_link_hash_undefweak))
3142 need_relocs = TRUE;
3143
3144 /* MINUS_ONE means the symbol is not defined in this object. It may not
3145 be defined at all; assume that the value doesn't matter in that
3146 case. Otherwise complain if we would use the value. */
3147 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3148 || h->root.root.type == bfd_link_hash_undefweak);
3149
3150 /* Emit necessary relocations. */
3151 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3152
3153 switch (*tls_type_p & GOT_TLS_TYPE)
3154 {
3155 case GOT_TLS_GD:
3156 /* General Dynamic. */
3157 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3158
3159 if (need_relocs)
3160 {
3161 mips_elf_output_dynamic_relocation
3162 (abfd, sreloc, sreloc->reloc_count++, indx,
3163 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3164 sgot->output_offset + sgot->output_section->vma + got_offset);
3165
3166 if (indx)
3167 mips_elf_output_dynamic_relocation
3168 (abfd, sreloc, sreloc->reloc_count++, indx,
3169 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3170 sgot->output_offset + sgot->output_section->vma + got_offset2);
3171 else
3172 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3173 sgot->contents + got_offset2);
3174 }
3175 else
3176 {
3177 MIPS_ELF_PUT_WORD (abfd, 1,
3178 sgot->contents + got_offset);
3179 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3180 sgot->contents + got_offset2);
3181 }
3182 break;
3183
3184 case GOT_TLS_IE:
3185 /* Initial Exec model. */
3186 if (need_relocs)
3187 {
3188 if (indx == 0)
3189 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3190 sgot->contents + got_offset);
3191 else
3192 MIPS_ELF_PUT_WORD (abfd, 0,
3193 sgot->contents + got_offset);
3194
3195 mips_elf_output_dynamic_relocation
3196 (abfd, sreloc, sreloc->reloc_count++, indx,
3197 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3198 sgot->output_offset + sgot->output_section->vma + got_offset);
3199 }
3200 else
3201 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3202 sgot->contents + got_offset);
3203 break;
3204
3205 case GOT_TLS_LDM:
3206 /* The initial offset is zero, and the LD offsets will include the
3207 bias by DTP_OFFSET. */
3208 MIPS_ELF_PUT_WORD (abfd, 0,
3209 sgot->contents + got_offset
3210 + MIPS_ELF_GOT_SIZE (abfd));
3211
3212 if (!info->shared)
3213 MIPS_ELF_PUT_WORD (abfd, 1,
3214 sgot->contents + got_offset);
3215 else
3216 mips_elf_output_dynamic_relocation
3217 (abfd, sreloc, sreloc->reloc_count++, indx,
3218 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3219 sgot->output_offset + sgot->output_section->vma + got_offset);
3220 break;
3221
3222 default:
3223 abort ();
3224 }
3225
3226 *tls_type_p |= GOT_TLS_DONE;
3227 }
3228
3229 /* Return the GOT index to use for a relocation against H using the
3230 TLS model in *TLS_TYPE. The GOT entries for this symbol/model
3231 combination start at GOT_INDEX into ABFD's GOT. This function
3232 initializes the GOT entries and corresponding relocations. */
3233
3234 static bfd_vma
3235 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3236 struct bfd_link_info *info,
3237 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3238 {
3239 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3240 return got_index;
3241 }
3242
3243 /* Return the GOT index to use for a relocation of type R_TYPE against H
3244 in ABFD. */
3245
3246 static bfd_vma
3247 mips_tls_single_got_index (bfd *abfd, int r_type, struct bfd_link_info *info,
3248 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3249 {
3250 if (tls_gottprel_reloc_p (r_type))
3251 return mips_tls_got_index (abfd, h->tls_ie_got_offset, &h->tls_ie_type,
3252 info, h, symbol);
3253 if (tls_gd_reloc_p (r_type))
3254 return mips_tls_got_index (abfd, h->tls_gd_got_offset, &h->tls_gd_type,
3255 info, h, symbol);
3256 abort ();
3257 }
3258
3259 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3260 for global symbol H. .got.plt comes before the GOT, so the offset
3261 will be negative. */
3262
3263 static bfd_vma
3264 mips_elf_gotplt_index (struct bfd_link_info *info,
3265 struct elf_link_hash_entry *h)
3266 {
3267 bfd_vma plt_index, got_address, got_value;
3268 struct mips_elf_link_hash_table *htab;
3269
3270 htab = mips_elf_hash_table (info);
3271 BFD_ASSERT (htab != NULL);
3272
3273 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3274
3275 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3276 section starts with reserved entries. */
3277 BFD_ASSERT (htab->is_vxworks);
3278
3279 /* Calculate the index of the symbol's PLT entry. */
3280 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3281
3282 /* Calculate the address of the associated .got.plt entry. */
3283 got_address = (htab->sgotplt->output_section->vma
3284 + htab->sgotplt->output_offset
3285 + plt_index * 4);
3286
3287 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3288 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3289 + htab->root.hgot->root.u.def.section->output_offset
3290 + htab->root.hgot->root.u.def.value);
3291
3292 return got_address - got_value;
3293 }
3294
3295 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3296 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3297 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3298 offset can be found. */
3299
3300 static bfd_vma
3301 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3302 bfd_vma value, unsigned long r_symndx,
3303 struct mips_elf_link_hash_entry *h, int r_type)
3304 {
3305 struct mips_elf_link_hash_table *htab;
3306 struct mips_got_entry *entry;
3307
3308 htab = mips_elf_hash_table (info);
3309 BFD_ASSERT (htab != NULL);
3310
3311 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3312 r_symndx, h, r_type);
3313 if (!entry)
3314 return MINUS_ONE;
3315
3316 if (entry->tls_type)
3317 {
3318 if (entry->symndx == -1 && htab->got_info->next == NULL)
3319 /* A type (3) entry in the single-GOT case. We use the symbol's
3320 hash table entry to track the index. */
3321 return mips_tls_single_got_index (abfd, r_type, info, h, value);
3322 else
3323 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3324 info, h, value);
3325 }
3326 else
3327 return entry->gotidx;
3328 }
3329
3330 /* Returns the GOT index for the global symbol indicated by H. */
3331
3332 static bfd_vma
3333 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3334 int r_type, struct bfd_link_info *info)
3335 {
3336 struct mips_elf_link_hash_table *htab;
3337 bfd_vma got_index;
3338 struct mips_got_info *g, *gg;
3339 long global_got_dynindx = 0;
3340
3341 htab = mips_elf_hash_table (info);
3342 BFD_ASSERT (htab != NULL);
3343
3344 gg = g = htab->got_info;
3345 if (g->next && ibfd)
3346 {
3347 struct mips_got_entry e, *p;
3348
3349 BFD_ASSERT (h->dynindx >= 0);
3350
3351 g = mips_elf_bfd_got (ibfd, FALSE);
3352 BFD_ASSERT (g);
3353 if (g->next != gg || TLS_RELOC_P (r_type))
3354 {
3355 e.abfd = ibfd;
3356 e.symndx = -1;
3357 e.d.h = (struct mips_elf_link_hash_entry *)h;
3358 e.tls_type = mips_elf_reloc_tls_type (r_type);
3359
3360 p = htab_find (g->got_entries, &e);
3361
3362 BFD_ASSERT (p && p->gotidx > 0);
3363
3364 if (p->tls_type)
3365 {
3366 bfd_vma value = MINUS_ONE;
3367 if ((h->root.type == bfd_link_hash_defined
3368 || h->root.type == bfd_link_hash_defweak)
3369 && h->root.u.def.section->output_section)
3370 value = (h->root.u.def.value
3371 + h->root.u.def.section->output_offset
3372 + h->root.u.def.section->output_section->vma);
3373
3374 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type,
3375 info, e.d.h, value);
3376 }
3377 else
3378 return p->gotidx;
3379 }
3380 }
3381
3382 if (htab->global_gotsym != NULL)
3383 global_got_dynindx = htab->global_gotsym->dynindx;
3384
3385 if (TLS_RELOC_P (r_type))
3386 {
3387 struct mips_elf_link_hash_entry *hm
3388 = (struct mips_elf_link_hash_entry *) h;
3389 bfd_vma value = MINUS_ONE;
3390
3391 if ((h->root.type == bfd_link_hash_defined
3392 || h->root.type == bfd_link_hash_defweak)
3393 && h->root.u.def.section->output_section)
3394 value = (h->root.u.def.value
3395 + h->root.u.def.section->output_offset
3396 + h->root.u.def.section->output_section->vma);
3397
3398 got_index = mips_tls_single_got_index (abfd, r_type, info, hm, value);
3399 }
3400 else
3401 {
3402 /* Once we determine the global GOT entry with the lowest dynamic
3403 symbol table index, we must put all dynamic symbols with greater
3404 indices into the GOT. That makes it easy to calculate the GOT
3405 offset. */
3406 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3407 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3408 * MIPS_ELF_GOT_SIZE (abfd));
3409 }
3410 BFD_ASSERT (got_index < htab->sgot->size);
3411
3412 return got_index;
3413 }
3414
3415 /* Find a GOT page entry that points to within 32KB of VALUE. These
3416 entries are supposed to be placed at small offsets in the GOT, i.e.,
3417 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3418 entry could be created. If OFFSETP is nonnull, use it to return the
3419 offset of the GOT entry from VALUE. */
3420
3421 static bfd_vma
3422 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3423 bfd_vma value, bfd_vma *offsetp)
3424 {
3425 bfd_vma page, got_index;
3426 struct mips_got_entry *entry;
3427
3428 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3429 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3430 NULL, R_MIPS_GOT_PAGE);
3431
3432 if (!entry)
3433 return MINUS_ONE;
3434
3435 got_index = entry->gotidx;
3436
3437 if (offsetp)
3438 *offsetp = value - entry->d.address;
3439
3440 return got_index;
3441 }
3442
3443 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3444 EXTERNAL is true if the relocation was originally against a global
3445 symbol that binds locally. */
3446
3447 static bfd_vma
3448 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3449 bfd_vma value, bfd_boolean external)
3450 {
3451 struct mips_got_entry *entry;
3452
3453 /* GOT16 relocations against local symbols are followed by a LO16
3454 relocation; those against global symbols are not. Thus if the
3455 symbol was originally local, the GOT16 relocation should load the
3456 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3457 if (! external)
3458 value = mips_elf_high (value) << 16;
3459
3460 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3461 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3462 same in all cases. */
3463 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3464 NULL, R_MIPS_GOT16);
3465 if (entry)
3466 return entry->gotidx;
3467 else
3468 return MINUS_ONE;
3469 }
3470
3471 /* Returns the offset for the entry at the INDEXth position
3472 in the GOT. */
3473
3474 static bfd_vma
3475 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3476 bfd *input_bfd, bfd_vma got_index)
3477 {
3478 struct mips_elf_link_hash_table *htab;
3479 asection *sgot;
3480 bfd_vma gp;
3481
3482 htab = mips_elf_hash_table (info);
3483 BFD_ASSERT (htab != NULL);
3484
3485 sgot = htab->sgot;
3486 gp = _bfd_get_gp_value (output_bfd)
3487 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3488
3489 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3490 }
3491
3492 /* Create and return a local GOT entry for VALUE, which was calculated
3493 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3494 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3495 instead. */
3496
3497 static struct mips_got_entry *
3498 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3499 bfd *ibfd, bfd_vma value,
3500 unsigned long r_symndx,
3501 struct mips_elf_link_hash_entry *h,
3502 int r_type)
3503 {
3504 struct mips_got_entry entry, **loc;
3505 struct mips_got_info *g;
3506 struct mips_elf_link_hash_table *htab;
3507
3508 htab = mips_elf_hash_table (info);
3509 BFD_ASSERT (htab != NULL);
3510
3511 entry.abfd = NULL;
3512 entry.symndx = -1;
3513 entry.d.address = value;
3514 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3515
3516 g = mips_elf_bfd_got (ibfd, FALSE);
3517 if (g == NULL)
3518 {
3519 g = mips_elf_bfd_got (abfd, FALSE);
3520 BFD_ASSERT (g != NULL);
3521 }
3522
3523 /* This function shouldn't be called for symbols that live in the global
3524 area of the GOT. */
3525 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3526 if (entry.tls_type)
3527 {
3528 struct mips_got_entry *p;
3529
3530 entry.abfd = ibfd;
3531 if (tls_ldm_reloc_p (r_type))
3532 {
3533 entry.symndx = 0;
3534 entry.d.addend = 0;
3535 }
3536 else if (h == NULL)
3537 {
3538 entry.symndx = r_symndx;
3539 entry.d.addend = 0;
3540 }
3541 else
3542 entry.d.h = h;
3543
3544 p = (struct mips_got_entry *)
3545 htab_find (g->got_entries, &entry);
3546
3547 BFD_ASSERT (p);
3548 return p;
3549 }
3550
3551 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3552 INSERT);
3553 if (*loc)
3554 return *loc;
3555
3556 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3557
3558 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3559
3560 if (! *loc)
3561 return NULL;
3562
3563 memcpy (*loc, &entry, sizeof entry);
3564
3565 if (g->assigned_gotno > g->local_gotno)
3566 {
3567 (*loc)->gotidx = -1;
3568 /* We didn't allocate enough space in the GOT. */
3569 (*_bfd_error_handler)
3570 (_("not enough GOT space for local GOT entries"));
3571 bfd_set_error (bfd_error_bad_value);
3572 return NULL;
3573 }
3574
3575 MIPS_ELF_PUT_WORD (abfd, value,
3576 (htab->sgot->contents + entry.gotidx));
3577
3578 /* These GOT entries need a dynamic relocation on VxWorks. */
3579 if (htab->is_vxworks)
3580 {
3581 Elf_Internal_Rela outrel;
3582 asection *s;
3583 bfd_byte *rloc;
3584 bfd_vma got_address;
3585
3586 s = mips_elf_rel_dyn_section (info, FALSE);
3587 got_address = (htab->sgot->output_section->vma
3588 + htab->sgot->output_offset
3589 + entry.gotidx);
3590
3591 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3592 outrel.r_offset = got_address;
3593 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3594 outrel.r_addend = value;
3595 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3596 }
3597
3598 return *loc;
3599 }
3600
3601 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3602 The number might be exact or a worst-case estimate, depending on how
3603 much information is available to elf_backend_omit_section_dynsym at
3604 the current linking stage. */
3605
3606 static bfd_size_type
3607 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3608 {
3609 bfd_size_type count;
3610
3611 count = 0;
3612 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3613 {
3614 asection *p;
3615 const struct elf_backend_data *bed;
3616
3617 bed = get_elf_backend_data (output_bfd);
3618 for (p = output_bfd->sections; p ; p = p->next)
3619 if ((p->flags & SEC_EXCLUDE) == 0
3620 && (p->flags & SEC_ALLOC) != 0
3621 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3622 ++count;
3623 }
3624 return count;
3625 }
3626
3627 /* Sort the dynamic symbol table so that symbols that need GOT entries
3628 appear towards the end. */
3629
3630 static bfd_boolean
3631 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3632 {
3633 struct mips_elf_link_hash_table *htab;
3634 struct mips_elf_hash_sort_data hsd;
3635 struct mips_got_info *g;
3636
3637 if (elf_hash_table (info)->dynsymcount == 0)
3638 return TRUE;
3639
3640 htab = mips_elf_hash_table (info);
3641 BFD_ASSERT (htab != NULL);
3642
3643 g = htab->got_info;
3644 if (g == NULL)
3645 return TRUE;
3646
3647 hsd.low = NULL;
3648 hsd.max_unref_got_dynindx
3649 = hsd.min_got_dynindx
3650 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3651 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3652 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3653 elf_hash_table (info)),
3654 mips_elf_sort_hash_table_f,
3655 &hsd);
3656
3657 /* There should have been enough room in the symbol table to
3658 accommodate both the GOT and non-GOT symbols. */
3659 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3660 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3661 == elf_hash_table (info)->dynsymcount);
3662 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3663 == g->global_gotno);
3664
3665 /* Now we know which dynamic symbol has the lowest dynamic symbol
3666 table index in the GOT. */
3667 htab->global_gotsym = hsd.low;
3668
3669 return TRUE;
3670 }
3671
3672 /* If H needs a GOT entry, assign it the highest available dynamic
3673 index. Otherwise, assign it the lowest available dynamic
3674 index. */
3675
3676 static bfd_boolean
3677 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3678 {
3679 struct mips_elf_hash_sort_data *hsd = data;
3680
3681 /* Symbols without dynamic symbol table entries aren't interesting
3682 at all. */
3683 if (h->root.dynindx == -1)
3684 return TRUE;
3685
3686 switch (h->global_got_area)
3687 {
3688 case GGA_NONE:
3689 h->root.dynindx = hsd->max_non_got_dynindx++;
3690 break;
3691
3692 case GGA_NORMAL:
3693 h->root.dynindx = --hsd->min_got_dynindx;
3694 hsd->low = (struct elf_link_hash_entry *) h;
3695 break;
3696
3697 case GGA_RELOC_ONLY:
3698 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3699 hsd->low = (struct elf_link_hash_entry *) h;
3700 h->root.dynindx = hsd->max_unref_got_dynindx++;
3701 break;
3702 }
3703
3704 return TRUE;
3705 }
3706
3707 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3708 (which is owned by the caller and shouldn't be added to the
3709 hash table directly). */
3710
3711 static bfd_boolean
3712 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3713 struct mips_got_entry *lookup)
3714 {
3715 struct mips_elf_link_hash_table *htab;
3716 struct mips_got_entry *entry;
3717 struct mips_got_info *g;
3718 void **loc, **bfd_loc;
3719
3720 /* Make sure there's a slot for this entry in the master GOT. */
3721 htab = mips_elf_hash_table (info);
3722 g = htab->got_info;
3723 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3724 if (!loc)
3725 return FALSE;
3726
3727 /* Populate the entry if it isn't already. */
3728 entry = (struct mips_got_entry *) *loc;
3729 if (!entry)
3730 {
3731 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3732 if (!entry)
3733 return FALSE;
3734
3735 lookup->gotidx = -1;
3736 *entry = *lookup;
3737 *loc = entry;
3738 }
3739
3740 /* Reuse the same GOT entry for the BFD's GOT. */
3741 g = mips_elf_bfd_got (abfd, TRUE);
3742 if (!g)
3743 return FALSE;
3744
3745 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3746 if (!bfd_loc)
3747 return FALSE;
3748
3749 if (!*bfd_loc)
3750 *bfd_loc = entry;
3751 return TRUE;
3752 }
3753
3754 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3755 entry for it. FOR_CALL is true if the caller is only interested in
3756 using the GOT entry for calls. */
3757
3758 static bfd_boolean
3759 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3760 bfd *abfd, struct bfd_link_info *info,
3761 bfd_boolean for_call, int r_type)
3762 {
3763 struct mips_elf_link_hash_table *htab;
3764 struct mips_elf_link_hash_entry *hmips;
3765 struct mips_got_entry entry;
3766 unsigned char tls_type;
3767
3768 htab = mips_elf_hash_table (info);
3769 BFD_ASSERT (htab != NULL);
3770
3771 hmips = (struct mips_elf_link_hash_entry *) h;
3772 if (!for_call)
3773 hmips->got_only_for_calls = FALSE;
3774
3775 /* A global symbol in the GOT must also be in the dynamic symbol
3776 table. */
3777 if (h->dynindx == -1)
3778 {
3779 switch (ELF_ST_VISIBILITY (h->other))
3780 {
3781 case STV_INTERNAL:
3782 case STV_HIDDEN:
3783 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3784 break;
3785 }
3786 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3787 return FALSE;
3788 }
3789
3790 tls_type = mips_elf_reloc_tls_type (r_type);
3791 if (tls_type == GOT_NORMAL && hmips->global_got_area > GGA_NORMAL)
3792 hmips->global_got_area = GGA_NORMAL;
3793 else if (tls_type == GOT_TLS_IE && hmips->tls_ie_type == 0)
3794 hmips->tls_ie_type = tls_type;
3795 else if (tls_type == GOT_TLS_GD && hmips->tls_gd_type == 0)
3796 hmips->tls_gd_type = tls_type;
3797
3798 entry.abfd = abfd;
3799 entry.symndx = -1;
3800 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3801 entry.tls_type = tls_type;
3802 return mips_elf_record_got_entry (info, abfd, &entry);
3803 }
3804
3805 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3806 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3807
3808 static bfd_boolean
3809 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3810 struct bfd_link_info *info, int r_type)
3811 {
3812 struct mips_elf_link_hash_table *htab;
3813 struct mips_got_info *g;
3814 struct mips_got_entry entry;
3815
3816 htab = mips_elf_hash_table (info);
3817 BFD_ASSERT (htab != NULL);
3818
3819 g = htab->got_info;
3820 BFD_ASSERT (g != NULL);
3821
3822 entry.abfd = abfd;
3823 entry.symndx = symndx;
3824 entry.d.addend = addend;
3825 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3826 return mips_elf_record_got_entry (info, abfd, &entry);
3827 }
3828
3829 /* Return the maximum number of GOT page entries required for RANGE. */
3830
3831 static bfd_vma
3832 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3833 {
3834 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3835 }
3836
3837 /* Record that ABFD has a page relocation against symbol SYMNDX and
3838 that ADDEND is the addend for that relocation.
3839
3840 This function creates an upper bound on the number of GOT slots
3841 required; no attempt is made to combine references to non-overridable
3842 global symbols across multiple input files. */
3843
3844 static bfd_boolean
3845 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3846 long symndx, bfd_signed_vma addend)
3847 {
3848 struct mips_elf_link_hash_table *htab;
3849 struct mips_got_info *g1, *g2;
3850 struct mips_got_page_entry lookup, *entry;
3851 struct mips_got_page_range **range_ptr, *range;
3852 bfd_vma old_pages, new_pages;
3853 void **loc, **bfd_loc;
3854
3855 htab = mips_elf_hash_table (info);
3856 BFD_ASSERT (htab != NULL);
3857
3858 g1 = htab->got_info;
3859 BFD_ASSERT (g1 != NULL);
3860
3861 /* Find the mips_got_page_entry hash table entry for this symbol. */
3862 lookup.abfd = abfd;
3863 lookup.symndx = symndx;
3864 loc = htab_find_slot (g1->got_page_entries, &lookup, INSERT);
3865 if (loc == NULL)
3866 return FALSE;
3867
3868 /* Create a mips_got_page_entry if this is the first time we've
3869 seen the symbol. */
3870 entry = (struct mips_got_page_entry *) *loc;
3871 if (!entry)
3872 {
3873 entry = bfd_alloc (abfd, sizeof (*entry));
3874 if (!entry)
3875 return FALSE;
3876
3877 entry->abfd = abfd;
3878 entry->symndx = symndx;
3879 entry->ranges = NULL;
3880 entry->num_pages = 0;
3881 *loc = entry;
3882 }
3883
3884 /* Add the same entry to the BFD's GOT. */
3885 g2 = mips_elf_bfd_got (abfd, TRUE);
3886 if (!g2)
3887 return FALSE;
3888
3889 bfd_loc = htab_find_slot (g2->got_page_entries, &lookup, INSERT);
3890 if (!bfd_loc)
3891 return FALSE;
3892
3893 if (!*bfd_loc)
3894 *bfd_loc = entry;
3895
3896 /* Skip over ranges whose maximum extent cannot share a page entry
3897 with ADDEND. */
3898 range_ptr = &entry->ranges;
3899 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3900 range_ptr = &(*range_ptr)->next;
3901
3902 /* If we scanned to the end of the list, or found a range whose
3903 minimum extent cannot share a page entry with ADDEND, create
3904 a new singleton range. */
3905 range = *range_ptr;
3906 if (!range || addend < range->min_addend - 0xffff)
3907 {
3908 range = bfd_alloc (abfd, sizeof (*range));
3909 if (!range)
3910 return FALSE;
3911
3912 range->next = *range_ptr;
3913 range->min_addend = addend;
3914 range->max_addend = addend;
3915
3916 *range_ptr = range;
3917 entry->num_pages++;
3918 g1->page_gotno++;
3919 g2->page_gotno++;
3920 return TRUE;
3921 }
3922
3923 /* Remember how many pages the old range contributed. */
3924 old_pages = mips_elf_pages_for_range (range);
3925
3926 /* Update the ranges. */
3927 if (addend < range->min_addend)
3928 range->min_addend = addend;
3929 else if (addend > range->max_addend)
3930 {
3931 if (range->next && addend >= range->next->min_addend - 0xffff)
3932 {
3933 old_pages += mips_elf_pages_for_range (range->next);
3934 range->max_addend = range->next->max_addend;
3935 range->next = range->next->next;
3936 }
3937 else
3938 range->max_addend = addend;
3939 }
3940
3941 /* Record any change in the total estimate. */
3942 new_pages = mips_elf_pages_for_range (range);
3943 if (old_pages != new_pages)
3944 {
3945 entry->num_pages += new_pages - old_pages;
3946 g1->page_gotno += new_pages - old_pages;
3947 g2->page_gotno += new_pages - old_pages;
3948 }
3949
3950 return TRUE;
3951 }
3952
3953 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3954
3955 static void
3956 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3957 unsigned int n)
3958 {
3959 asection *s;
3960 struct mips_elf_link_hash_table *htab;
3961
3962 htab = mips_elf_hash_table (info);
3963 BFD_ASSERT (htab != NULL);
3964
3965 s = mips_elf_rel_dyn_section (info, FALSE);
3966 BFD_ASSERT (s != NULL);
3967
3968 if (htab->is_vxworks)
3969 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3970 else
3971 {
3972 if (s->size == 0)
3973 {
3974 /* Make room for a null element. */
3975 s->size += MIPS_ELF_REL_SIZE (abfd);
3976 ++s->reloc_count;
3977 }
3978 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3979 }
3980 }
3981 \f
3982 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3983 if the GOT entry is for an indirect or warning symbol. */
3984
3985 static int
3986 mips_elf_check_recreate_got (void **entryp, void *data)
3987 {
3988 struct mips_got_entry *entry;
3989 bfd_boolean *must_recreate;
3990
3991 entry = (struct mips_got_entry *) *entryp;
3992 must_recreate = (bfd_boolean *) data;
3993 if (entry->abfd != NULL && entry->symndx == -1)
3994 {
3995 struct mips_elf_link_hash_entry *h;
3996
3997 h = entry->d.h;
3998 if (h->root.root.type == bfd_link_hash_indirect
3999 || h->root.root.type == bfd_link_hash_warning)
4000 {
4001 *must_recreate = TRUE;
4002 return 0;
4003 }
4004 }
4005 return 1;
4006 }
4007
4008 /* A htab_traverse callback for GOT entries. Add all entries to
4009 hash table *DATA, converting entries for indirect and warning
4010 symbols into entries for the target symbol. Set *DATA to null
4011 on error. */
4012
4013 static int
4014 mips_elf_recreate_got (void **entryp, void *data)
4015 {
4016 htab_t *new_got;
4017 struct mips_got_entry new_entry, *entry;
4018 void **slot;
4019
4020 new_got = (htab_t *) data;
4021 entry = (struct mips_got_entry *) *entryp;
4022 if (entry->abfd != NULL
4023 && entry->symndx == -1
4024 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4025 || entry->d.h->root.root.type == bfd_link_hash_warning))
4026 {
4027 struct mips_elf_link_hash_entry *h;
4028
4029 new_entry = *entry;
4030 entry = &new_entry;
4031 h = entry->d.h;
4032 do
4033 {
4034 BFD_ASSERT (h->global_got_area == GGA_NONE);
4035 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4036 }
4037 while (h->root.root.type == bfd_link_hash_indirect
4038 || h->root.root.type == bfd_link_hash_warning);
4039 entry->d.h = h;
4040 }
4041 slot = htab_find_slot (*new_got, entry, INSERT);
4042 if (slot == NULL)
4043 {
4044 *new_got = NULL;
4045 return 0;
4046 }
4047 if (*slot == NULL)
4048 {
4049 if (entry == &new_entry)
4050 {
4051 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4052 if (!entry)
4053 {
4054 *new_got = NULL;
4055 return 0;
4056 }
4057 *entry = new_entry;
4058 }
4059 *slot = entry;
4060 }
4061 return 1;
4062 }
4063
4064 /* If any entries in G->got_entries are for indirect or warning symbols,
4065 replace them with entries for the target symbol. */
4066
4067 static bfd_boolean
4068 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
4069 {
4070 bfd_boolean must_recreate;
4071 htab_t new_got;
4072
4073 must_recreate = FALSE;
4074 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
4075 if (must_recreate)
4076 {
4077 new_got = htab_create (htab_size (g->got_entries),
4078 mips_elf_got_entry_hash,
4079 mips_elf_got_entry_eq, NULL);
4080 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
4081 if (new_got == NULL)
4082 return FALSE;
4083
4084 htab_delete (g->got_entries);
4085 g->got_entries = new_got;
4086 }
4087 return TRUE;
4088 }
4089
4090 /* A mips_elf_link_hash_traverse callback for which DATA points
4091 to the link_info structure. Count the number of type (3) entries
4092 in the master GOT. */
4093
4094 static int
4095 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4096 {
4097 struct bfd_link_info *info;
4098 struct mips_elf_link_hash_table *htab;
4099 struct mips_got_info *g;
4100
4101 info = (struct bfd_link_info *) data;
4102 htab = mips_elf_hash_table (info);
4103 g = htab->got_info;
4104 if (h->global_got_area != GGA_NONE)
4105 {
4106 /* Make a final decision about whether the symbol belongs in the
4107 local or global GOT. Symbols that bind locally can (and in the
4108 case of forced-local symbols, must) live in the local GOT.
4109 Those that are aren't in the dynamic symbol table must also
4110 live in the local GOT.
4111
4112 Note that the former condition does not always imply the
4113 latter: symbols do not bind locally if they are completely
4114 undefined. We'll report undefined symbols later if appropriate. */
4115 if (h->root.dynindx == -1
4116 || (h->got_only_for_calls
4117 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4118 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4119 {
4120 /* The symbol belongs in the local GOT. We no longer need this
4121 entry if it was only used for relocations; those relocations
4122 will be against the null or section symbol instead of H. */
4123 if (h->global_got_area != GGA_RELOC_ONLY)
4124 g->local_gotno++;
4125 h->global_got_area = GGA_NONE;
4126 }
4127 else if (htab->is_vxworks
4128 && h->got_only_for_calls
4129 && h->root.plt.offset != MINUS_ONE)
4130 /* On VxWorks, calls can refer directly to the .got.plt entry;
4131 they don't need entries in the regular GOT. .got.plt entries
4132 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4133 h->global_got_area = GGA_NONE;
4134 else
4135 {
4136 g->global_gotno++;
4137 if (h->global_got_area == GGA_RELOC_ONLY)
4138 g->reloc_only_gotno++;
4139 }
4140 }
4141 return 1;
4142 }
4143 \f
4144 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4145 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4146
4147 static int
4148 mips_elf_add_got_entry (void **entryp, void *data)
4149 {
4150 struct mips_got_entry *entry;
4151 struct mips_elf_traverse_got_arg *arg;
4152 void **slot;
4153
4154 entry = (struct mips_got_entry *) *entryp;
4155 arg = (struct mips_elf_traverse_got_arg *) data;
4156 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4157 if (!slot)
4158 {
4159 arg->g = NULL;
4160 return 0;
4161 }
4162 if (!*slot)
4163 {
4164 *slot = entry;
4165 mips_elf_count_got_entry (arg->info, arg->g, entry);
4166 }
4167 return 1;
4168 }
4169
4170 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4171 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4172
4173 static int
4174 mips_elf_add_got_page_entry (void **entryp, void *data)
4175 {
4176 struct mips_got_page_entry *entry;
4177 struct mips_elf_traverse_got_arg *arg;
4178 void **slot;
4179
4180 entry = (struct mips_got_page_entry *) *entryp;
4181 arg = (struct mips_elf_traverse_got_arg *) data;
4182 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4183 if (!slot)
4184 {
4185 arg->g = NULL;
4186 return 0;
4187 }
4188 if (!*slot)
4189 {
4190 *slot = entry;
4191 arg->g->page_gotno += entry->num_pages;
4192 }
4193 return 1;
4194 }
4195
4196 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4197 this would lead to overflow, 1 if they were merged successfully,
4198 and 0 if a merge failed due to lack of memory. (These values are chosen
4199 so that nonnegative return values can be returned by a htab_traverse
4200 callback.) */
4201
4202 static int
4203 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4204 struct mips_got_info *to,
4205 struct mips_elf_got_per_bfd_arg *arg)
4206 {
4207 struct mips_elf_traverse_got_arg tga;
4208 unsigned int estimate;
4209
4210 /* Work out how many page entries we would need for the combined GOT. */
4211 estimate = arg->max_pages;
4212 if (estimate >= from->page_gotno + to->page_gotno)
4213 estimate = from->page_gotno + to->page_gotno;
4214
4215 /* And conservatively estimate how many local and TLS entries
4216 would be needed. */
4217 estimate += from->local_gotno + to->local_gotno;
4218 estimate += from->tls_gotno + to->tls_gotno;
4219
4220 /* If we're merging with the primary got, any TLS relocations will
4221 come after the full set of global entries. Otherwise estimate those
4222 conservatively as well. */
4223 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4224 estimate += arg->global_count;
4225 else
4226 estimate += from->global_gotno + to->global_gotno;
4227
4228 /* Bail out if the combined GOT might be too big. */
4229 if (estimate > arg->max_count)
4230 return -1;
4231
4232 /* Transfer the bfd's got information from FROM to TO. */
4233 tga.info = arg->info;
4234 tga.g = to;
4235 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4236 if (!tga.g)
4237 return 0;
4238
4239 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4240 if (!tga.g)
4241 return 0;
4242
4243 mips_elf_replace_bfd_got (abfd, to);
4244 return 1;
4245 }
4246
4247 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4248 as possible of the primary got, since it doesn't require explicit
4249 dynamic relocations, but don't use bfds that would reference global
4250 symbols out of the addressable range. Failing the primary got,
4251 attempt to merge with the current got, or finish the current got
4252 and then make make the new got current. */
4253
4254 static bfd_boolean
4255 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4256 struct mips_elf_got_per_bfd_arg *arg)
4257 {
4258 struct mips_elf_traverse_got_arg tga;
4259 unsigned int estimate;
4260 int result;
4261
4262 if (!mips_elf_resolve_final_got_entries (g))
4263 return FALSE;
4264
4265 tga.info = arg->info;
4266 tga.g = g;
4267 htab_traverse (g->got_entries, mips_elf_count_got_entries, &tga);
4268
4269 /* Work out the number of page, local and TLS entries. */
4270 estimate = arg->max_pages;
4271 if (estimate > g->page_gotno)
4272 estimate = g->page_gotno;
4273 estimate += g->local_gotno + g->tls_gotno;
4274
4275 /* We place TLS GOT entries after both locals and globals. The globals
4276 for the primary GOT may overflow the normal GOT size limit, so be
4277 sure not to merge a GOT which requires TLS with the primary GOT in that
4278 case. This doesn't affect non-primary GOTs. */
4279 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4280
4281 if (estimate <= arg->max_count)
4282 {
4283 /* If we don't have a primary GOT, use it as
4284 a starting point for the primary GOT. */
4285 if (!arg->primary)
4286 {
4287 arg->primary = g;
4288 return TRUE;
4289 }
4290
4291 /* Try merging with the primary GOT. */
4292 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4293 if (result >= 0)
4294 return result;
4295 }
4296
4297 /* If we can merge with the last-created got, do it. */
4298 if (arg->current)
4299 {
4300 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4301 if (result >= 0)
4302 return result;
4303 }
4304
4305 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4306 fits; if it turns out that it doesn't, we'll get relocation
4307 overflows anyway. */
4308 g->next = arg->current;
4309 arg->current = g;
4310
4311 return TRUE;
4312 }
4313
4314 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4315 to GOTIDX, duplicating the entry if it has already been assigned
4316 an index in a different GOT. */
4317
4318 static bfd_boolean
4319 mips_elf_set_gotidx (void **entryp, long gotidx)
4320 {
4321 struct mips_got_entry *entry;
4322
4323 entry = (struct mips_got_entry *) *entryp;
4324 if (entry->gotidx > 0)
4325 {
4326 struct mips_got_entry *new_entry;
4327
4328 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4329 if (!new_entry)
4330 return FALSE;
4331
4332 *new_entry = *entry;
4333 *entryp = new_entry;
4334 entry = new_entry;
4335 }
4336 entry->gotidx = gotidx;
4337 return TRUE;
4338 }
4339
4340 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4341 mips_elf_traverse_got_arg in which DATA->value is the size of one
4342 GOT entry. Set DATA->g to null on failure. */
4343
4344 static int
4345 mips_elf_initialize_tls_index (void **entryp, void *data)
4346 {
4347 struct mips_got_entry *entry;
4348 struct mips_elf_traverse_got_arg *arg;
4349 struct mips_got_info *g;
4350 bfd_vma next_index;
4351 unsigned char tls_type;
4352
4353 /* We're only interested in TLS symbols. */
4354 entry = (struct mips_got_entry *) *entryp;
4355 tls_type = (entry->tls_type & GOT_TLS_TYPE);
4356 if (tls_type == 0)
4357 return 1;
4358
4359 arg = (struct mips_elf_traverse_got_arg *) data;
4360 g = arg->g;
4361 next_index = arg->value * g->tls_assigned_gotno;
4362
4363 if (entry->symndx == -1 && g->next == NULL)
4364 {
4365 /* A type (3) got entry in the single-GOT case. We use the symbol's
4366 hash table entry to track its index. */
4367 if (tls_type == GOT_TLS_IE)
4368 {
4369 if (entry->d.h->tls_ie_type & GOT_TLS_OFFSET_DONE)
4370 return 1;
4371 entry->d.h->tls_ie_type |= GOT_TLS_OFFSET_DONE;
4372 entry->d.h->tls_ie_got_offset = next_index;
4373 }
4374 else
4375 {
4376 BFD_ASSERT (tls_type == GOT_TLS_GD);
4377 if (entry->d.h->tls_gd_type & GOT_TLS_OFFSET_DONE)
4378 return 1;
4379 entry->d.h->tls_gd_type |= GOT_TLS_OFFSET_DONE;
4380 entry->d.h->tls_gd_got_offset = next_index;
4381 }
4382 }
4383 else
4384 {
4385 if (tls_type == GOT_TLS_LDM)
4386 {
4387 /* There are separate mips_got_entry objects for each input bfd
4388 that requires an LDM entry. Make sure that all LDM entries in
4389 a GOT resolve to the same index. */
4390 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4391 {
4392 entry->gotidx = g->tls_ldm_offset;
4393 return 1;
4394 }
4395 g->tls_ldm_offset = next_index;
4396 }
4397 if (!mips_elf_set_gotidx (entryp, next_index))
4398 {
4399 arg->g = NULL;
4400 return 0;
4401 }
4402 }
4403
4404 /* Account for the entries we've just allocated. */
4405 g->tls_assigned_gotno += mips_tls_got_entries (tls_type);
4406 return 1;
4407 }
4408
4409 /* A htab_traverse callback for GOT entries, where DATA points to a
4410 mips_elf_traverse_got_arg. Set the global_got_area of each global
4411 symbol to DATA->value. */
4412
4413 static int
4414 mips_elf_set_global_got_area (void **entryp, void *data)
4415 {
4416 struct mips_got_entry *entry;
4417 struct mips_elf_traverse_got_arg *arg;
4418
4419 entry = (struct mips_got_entry *) *entryp;
4420 arg = (struct mips_elf_traverse_got_arg *) data;
4421 if (entry->abfd != NULL
4422 && entry->symndx == -1
4423 && entry->d.h->global_got_area != GGA_NONE)
4424 entry->d.h->global_got_area = arg->value;
4425 return 1;
4426 }
4427
4428 /* A htab_traverse callback for secondary GOT entries, where DATA points
4429 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4430 and record the number of relocations they require. DATA->value is
4431 the size of one GOT entry. Set DATA->g to null on failure. */
4432
4433 static int
4434 mips_elf_set_global_gotidx (void **entryp, void *data)
4435 {
4436 struct mips_got_entry *entry;
4437 struct mips_elf_traverse_got_arg *arg;
4438
4439 entry = (struct mips_got_entry *) *entryp;
4440 arg = (struct mips_elf_traverse_got_arg *) data;
4441 if (entry->abfd != NULL
4442 && entry->symndx == -1
4443 && entry->d.h->global_got_area != GGA_NONE)
4444 {
4445 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_gotno))
4446 {
4447 arg->g = NULL;
4448 return 0;
4449 }
4450 arg->g->assigned_gotno += 1;
4451
4452 if (arg->info->shared
4453 || (elf_hash_table (arg->info)->dynamic_sections_created
4454 && entry->d.h->root.def_dynamic
4455 && !entry->d.h->root.def_regular))
4456 arg->g->relocs += 1;
4457 }
4458
4459 return 1;
4460 }
4461
4462 /* A htab_traverse callback for GOT entries for which DATA is the
4463 bfd_link_info. Forbid any global symbols from having traditional
4464 lazy-binding stubs. */
4465
4466 static int
4467 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4468 {
4469 struct bfd_link_info *info;
4470 struct mips_elf_link_hash_table *htab;
4471 struct mips_got_entry *entry;
4472
4473 entry = (struct mips_got_entry *) *entryp;
4474 info = (struct bfd_link_info *) data;
4475 htab = mips_elf_hash_table (info);
4476 BFD_ASSERT (htab != NULL);
4477
4478 if (entry->abfd != NULL
4479 && entry->symndx == -1
4480 && entry->d.h->needs_lazy_stub)
4481 {
4482 entry->d.h->needs_lazy_stub = FALSE;
4483 htab->lazy_stub_count--;
4484 }
4485
4486 return 1;
4487 }
4488
4489 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4490 the primary GOT. */
4491 static bfd_vma
4492 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4493 {
4494 if (!g->next)
4495 return 0;
4496
4497 g = mips_elf_bfd_got (ibfd, FALSE);
4498 if (! g)
4499 return 0;
4500
4501 BFD_ASSERT (g->next);
4502
4503 g = g->next;
4504
4505 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4506 * MIPS_ELF_GOT_SIZE (abfd);
4507 }
4508
4509 /* Turn a single GOT that is too big for 16-bit addressing into
4510 a sequence of GOTs, each one 16-bit addressable. */
4511
4512 static bfd_boolean
4513 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4514 asection *got, bfd_size_type pages)
4515 {
4516 struct mips_elf_link_hash_table *htab;
4517 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4518 struct mips_elf_traverse_got_arg tga;
4519 struct mips_got_info *g, *gg;
4520 unsigned int assign, needed_relocs;
4521 bfd *dynobj, *ibfd;
4522
4523 dynobj = elf_hash_table (info)->dynobj;
4524 htab = mips_elf_hash_table (info);
4525 BFD_ASSERT (htab != NULL);
4526
4527 g = htab->got_info;
4528
4529 got_per_bfd_arg.obfd = abfd;
4530 got_per_bfd_arg.info = info;
4531 got_per_bfd_arg.current = NULL;
4532 got_per_bfd_arg.primary = NULL;
4533 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4534 / MIPS_ELF_GOT_SIZE (abfd))
4535 - htab->reserved_gotno);
4536 got_per_bfd_arg.max_pages = pages;
4537 /* The number of globals that will be included in the primary GOT.
4538 See the calls to mips_elf_set_global_got_area below for more
4539 information. */
4540 got_per_bfd_arg.global_count = g->global_gotno;
4541
4542 /* Try to merge the GOTs of input bfds together, as long as they
4543 don't seem to exceed the maximum GOT size, choosing one of them
4544 to be the primary GOT. */
4545 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
4546 {
4547 gg = mips_elf_bfd_got (ibfd, FALSE);
4548 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4549 return FALSE;
4550 }
4551
4552 /* If we do not find any suitable primary GOT, create an empty one. */
4553 if (got_per_bfd_arg.primary == NULL)
4554 g->next = mips_elf_create_got_info (abfd);
4555 else
4556 g->next = got_per_bfd_arg.primary;
4557 g->next->next = got_per_bfd_arg.current;
4558
4559 /* GG is now the master GOT, and G is the primary GOT. */
4560 gg = g;
4561 g = g->next;
4562
4563 /* Map the output bfd to the primary got. That's what we're going
4564 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4565 didn't mark in check_relocs, and we want a quick way to find it.
4566 We can't just use gg->next because we're going to reverse the
4567 list. */
4568 mips_elf_replace_bfd_got (abfd, g);
4569
4570 /* Every symbol that is referenced in a dynamic relocation must be
4571 present in the primary GOT, so arrange for them to appear after
4572 those that are actually referenced. */
4573 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4574 g->global_gotno = gg->global_gotno;
4575
4576 tga.info = info;
4577 tga.value = GGA_RELOC_ONLY;
4578 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4579 tga.value = GGA_NORMAL;
4580 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4581
4582 /* Now go through the GOTs assigning them offset ranges.
4583 [assigned_gotno, local_gotno[ will be set to the range of local
4584 entries in each GOT. We can then compute the end of a GOT by
4585 adding local_gotno to global_gotno. We reverse the list and make
4586 it circular since then we'll be able to quickly compute the
4587 beginning of a GOT, by computing the end of its predecessor. To
4588 avoid special cases for the primary GOT, while still preserving
4589 assertions that are valid for both single- and multi-got links,
4590 we arrange for the main got struct to have the right number of
4591 global entries, but set its local_gotno such that the initial
4592 offset of the primary GOT is zero. Remember that the primary GOT
4593 will become the last item in the circular linked list, so it
4594 points back to the master GOT. */
4595 gg->local_gotno = -g->global_gotno;
4596 gg->global_gotno = g->global_gotno;
4597 gg->tls_gotno = 0;
4598 assign = 0;
4599 gg->next = gg;
4600
4601 do
4602 {
4603 struct mips_got_info *gn;
4604
4605 assign += htab->reserved_gotno;
4606 g->assigned_gotno = assign;
4607 g->local_gotno += assign;
4608 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4609 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4610
4611 /* Take g out of the direct list, and push it onto the reversed
4612 list that gg points to. g->next is guaranteed to be nonnull after
4613 this operation, as required by mips_elf_initialize_tls_index. */
4614 gn = g->next;
4615 g->next = gg->next;
4616 gg->next = g;
4617
4618 /* Set up any TLS entries. We always place the TLS entries after
4619 all non-TLS entries. */
4620 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4621 tga.g = g;
4622 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4623 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4624 if (!tga.g)
4625 return FALSE;
4626 BFD_ASSERT (g->tls_assigned_gotno == assign);
4627
4628 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4629 g = gn;
4630
4631 /* Forbid global symbols in every non-primary GOT from having
4632 lazy-binding stubs. */
4633 if (g)
4634 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4635 }
4636 while (g);
4637
4638 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4639
4640 needed_relocs = 0;
4641 for (g = gg->next; g && g->next != gg; g = g->next)
4642 {
4643 unsigned int save_assign;
4644
4645 /* Assign offsets to global GOT entries and count how many
4646 relocations they need. */
4647 save_assign = g->assigned_gotno;
4648 g->assigned_gotno = g->local_gotno;
4649 tga.info = info;
4650 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4651 tga.g = g;
4652 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4653 if (!tga.g)
4654 return FALSE;
4655 BFD_ASSERT (g->assigned_gotno == g->local_gotno + g->global_gotno);
4656 g->assigned_gotno = save_assign;
4657
4658 if (info->shared)
4659 {
4660 g->relocs += g->local_gotno - g->assigned_gotno;
4661 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4662 + g->next->global_gotno
4663 + g->next->tls_gotno
4664 + htab->reserved_gotno);
4665 }
4666 needed_relocs += g->relocs;
4667 }
4668 needed_relocs += g->relocs;
4669
4670 if (needed_relocs)
4671 mips_elf_allocate_dynamic_relocations (dynobj, info,
4672 needed_relocs);
4673
4674 return TRUE;
4675 }
4676
4677 \f
4678 /* Returns the first relocation of type r_type found, beginning with
4679 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4680
4681 static const Elf_Internal_Rela *
4682 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4683 const Elf_Internal_Rela *relocation,
4684 const Elf_Internal_Rela *relend)
4685 {
4686 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4687
4688 while (relocation < relend)
4689 {
4690 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4691 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4692 return relocation;
4693
4694 ++relocation;
4695 }
4696
4697 /* We didn't find it. */
4698 return NULL;
4699 }
4700
4701 /* Return whether an input relocation is against a local symbol. */
4702
4703 static bfd_boolean
4704 mips_elf_local_relocation_p (bfd *input_bfd,
4705 const Elf_Internal_Rela *relocation,
4706 asection **local_sections)
4707 {
4708 unsigned long r_symndx;
4709 Elf_Internal_Shdr *symtab_hdr;
4710 size_t extsymoff;
4711
4712 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4713 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4714 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4715
4716 if (r_symndx < extsymoff)
4717 return TRUE;
4718 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4719 return TRUE;
4720
4721 return FALSE;
4722 }
4723 \f
4724 /* Sign-extend VALUE, which has the indicated number of BITS. */
4725
4726 bfd_vma
4727 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4728 {
4729 if (value & ((bfd_vma) 1 << (bits - 1)))
4730 /* VALUE is negative. */
4731 value |= ((bfd_vma) - 1) << bits;
4732
4733 return value;
4734 }
4735
4736 /* Return non-zero if the indicated VALUE has overflowed the maximum
4737 range expressible by a signed number with the indicated number of
4738 BITS. */
4739
4740 static bfd_boolean
4741 mips_elf_overflow_p (bfd_vma value, int bits)
4742 {
4743 bfd_signed_vma svalue = (bfd_signed_vma) value;
4744
4745 if (svalue > (1 << (bits - 1)) - 1)
4746 /* The value is too big. */
4747 return TRUE;
4748 else if (svalue < -(1 << (bits - 1)))
4749 /* The value is too small. */
4750 return TRUE;
4751
4752 /* All is well. */
4753 return FALSE;
4754 }
4755
4756 /* Calculate the %high function. */
4757
4758 static bfd_vma
4759 mips_elf_high (bfd_vma value)
4760 {
4761 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4762 }
4763
4764 /* Calculate the %higher function. */
4765
4766 static bfd_vma
4767 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4768 {
4769 #ifdef BFD64
4770 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4771 #else
4772 abort ();
4773 return MINUS_ONE;
4774 #endif
4775 }
4776
4777 /* Calculate the %highest function. */
4778
4779 static bfd_vma
4780 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4781 {
4782 #ifdef BFD64
4783 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4784 #else
4785 abort ();
4786 return MINUS_ONE;
4787 #endif
4788 }
4789 \f
4790 /* Create the .compact_rel section. */
4791
4792 static bfd_boolean
4793 mips_elf_create_compact_rel_section
4794 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4795 {
4796 flagword flags;
4797 register asection *s;
4798
4799 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4800 {
4801 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4802 | SEC_READONLY);
4803
4804 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4805 if (s == NULL
4806 || ! bfd_set_section_alignment (abfd, s,
4807 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4808 return FALSE;
4809
4810 s->size = sizeof (Elf32_External_compact_rel);
4811 }
4812
4813 return TRUE;
4814 }
4815
4816 /* Create the .got section to hold the global offset table. */
4817
4818 static bfd_boolean
4819 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4820 {
4821 flagword flags;
4822 register asection *s;
4823 struct elf_link_hash_entry *h;
4824 struct bfd_link_hash_entry *bh;
4825 struct mips_elf_link_hash_table *htab;
4826
4827 htab = mips_elf_hash_table (info);
4828 BFD_ASSERT (htab != NULL);
4829
4830 /* This function may be called more than once. */
4831 if (htab->sgot)
4832 return TRUE;
4833
4834 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4835 | SEC_LINKER_CREATED);
4836
4837 /* We have to use an alignment of 2**4 here because this is hardcoded
4838 in the function stub generation and in the linker script. */
4839 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4840 if (s == NULL
4841 || ! bfd_set_section_alignment (abfd, s, 4))
4842 return FALSE;
4843 htab->sgot = s;
4844
4845 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4846 linker script because we don't want to define the symbol if we
4847 are not creating a global offset table. */
4848 bh = NULL;
4849 if (! (_bfd_generic_link_add_one_symbol
4850 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4851 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4852 return FALSE;
4853
4854 h = (struct elf_link_hash_entry *) bh;
4855 h->non_elf = 0;
4856 h->def_regular = 1;
4857 h->type = STT_OBJECT;
4858 elf_hash_table (info)->hgot = h;
4859
4860 if (info->shared
4861 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4862 return FALSE;
4863
4864 htab->got_info = mips_elf_create_got_info (abfd);
4865 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4866 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4867
4868 /* We also need a .got.plt section when generating PLTs. */
4869 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4870 SEC_ALLOC | SEC_LOAD
4871 | SEC_HAS_CONTENTS
4872 | SEC_IN_MEMORY
4873 | SEC_LINKER_CREATED);
4874 if (s == NULL)
4875 return FALSE;
4876 htab->sgotplt = s;
4877
4878 return TRUE;
4879 }
4880 \f
4881 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4882 __GOTT_INDEX__ symbols. These symbols are only special for
4883 shared objects; they are not used in executables. */
4884
4885 static bfd_boolean
4886 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4887 {
4888 return (mips_elf_hash_table (info)->is_vxworks
4889 && info->shared
4890 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4891 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4892 }
4893
4894 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4895 require an la25 stub. See also mips_elf_local_pic_function_p,
4896 which determines whether the destination function ever requires a
4897 stub. */
4898
4899 static bfd_boolean
4900 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4901 bfd_boolean target_is_16_bit_code_p)
4902 {
4903 /* We specifically ignore branches and jumps from EF_PIC objects,
4904 where the onus is on the compiler or programmer to perform any
4905 necessary initialization of $25. Sometimes such initialization
4906 is unnecessary; for example, -mno-shared functions do not use
4907 the incoming value of $25, and may therefore be called directly. */
4908 if (PIC_OBJECT_P (input_bfd))
4909 return FALSE;
4910
4911 switch (r_type)
4912 {
4913 case R_MIPS_26:
4914 case R_MIPS_PC16:
4915 case R_MICROMIPS_26_S1:
4916 case R_MICROMIPS_PC7_S1:
4917 case R_MICROMIPS_PC10_S1:
4918 case R_MICROMIPS_PC16_S1:
4919 case R_MICROMIPS_PC23_S2:
4920 return TRUE;
4921
4922 case R_MIPS16_26:
4923 return !target_is_16_bit_code_p;
4924
4925 default:
4926 return FALSE;
4927 }
4928 }
4929 \f
4930 /* Calculate the value produced by the RELOCATION (which comes from
4931 the INPUT_BFD). The ADDEND is the addend to use for this
4932 RELOCATION; RELOCATION->R_ADDEND is ignored.
4933
4934 The result of the relocation calculation is stored in VALUEP.
4935 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4936 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4937
4938 This function returns bfd_reloc_continue if the caller need take no
4939 further action regarding this relocation, bfd_reloc_notsupported if
4940 something goes dramatically wrong, bfd_reloc_overflow if an
4941 overflow occurs, and bfd_reloc_ok to indicate success. */
4942
4943 static bfd_reloc_status_type
4944 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4945 asection *input_section,
4946 struct bfd_link_info *info,
4947 const Elf_Internal_Rela *relocation,
4948 bfd_vma addend, reloc_howto_type *howto,
4949 Elf_Internal_Sym *local_syms,
4950 asection **local_sections, bfd_vma *valuep,
4951 const char **namep,
4952 bfd_boolean *cross_mode_jump_p,
4953 bfd_boolean save_addend)
4954 {
4955 /* The eventual value we will return. */
4956 bfd_vma value;
4957 /* The address of the symbol against which the relocation is
4958 occurring. */
4959 bfd_vma symbol = 0;
4960 /* The final GP value to be used for the relocatable, executable, or
4961 shared object file being produced. */
4962 bfd_vma gp;
4963 /* The place (section offset or address) of the storage unit being
4964 relocated. */
4965 bfd_vma p;
4966 /* The value of GP used to create the relocatable object. */
4967 bfd_vma gp0;
4968 /* The offset into the global offset table at which the address of
4969 the relocation entry symbol, adjusted by the addend, resides
4970 during execution. */
4971 bfd_vma g = MINUS_ONE;
4972 /* The section in which the symbol referenced by the relocation is
4973 located. */
4974 asection *sec = NULL;
4975 struct mips_elf_link_hash_entry *h = NULL;
4976 /* TRUE if the symbol referred to by this relocation is a local
4977 symbol. */
4978 bfd_boolean local_p, was_local_p;
4979 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4980 bfd_boolean gp_disp_p = FALSE;
4981 /* TRUE if the symbol referred to by this relocation is
4982 "__gnu_local_gp". */
4983 bfd_boolean gnu_local_gp_p = FALSE;
4984 Elf_Internal_Shdr *symtab_hdr;
4985 size_t extsymoff;
4986 unsigned long r_symndx;
4987 int r_type;
4988 /* TRUE if overflow occurred during the calculation of the
4989 relocation value. */
4990 bfd_boolean overflowed_p;
4991 /* TRUE if this relocation refers to a MIPS16 function. */
4992 bfd_boolean target_is_16_bit_code_p = FALSE;
4993 bfd_boolean target_is_micromips_code_p = FALSE;
4994 struct mips_elf_link_hash_table *htab;
4995 bfd *dynobj;
4996
4997 dynobj = elf_hash_table (info)->dynobj;
4998 htab = mips_elf_hash_table (info);
4999 BFD_ASSERT (htab != NULL);
5000
5001 /* Parse the relocation. */
5002 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5003 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5004 p = (input_section->output_section->vma
5005 + input_section->output_offset
5006 + relocation->r_offset);
5007
5008 /* Assume that there will be no overflow. */
5009 overflowed_p = FALSE;
5010
5011 /* Figure out whether or not the symbol is local, and get the offset
5012 used in the array of hash table entries. */
5013 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5014 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5015 local_sections);
5016 was_local_p = local_p;
5017 if (! elf_bad_symtab (input_bfd))
5018 extsymoff = symtab_hdr->sh_info;
5019 else
5020 {
5021 /* The symbol table does not follow the rule that local symbols
5022 must come before globals. */
5023 extsymoff = 0;
5024 }
5025
5026 /* Figure out the value of the symbol. */
5027 if (local_p)
5028 {
5029 Elf_Internal_Sym *sym;
5030
5031 sym = local_syms + r_symndx;
5032 sec = local_sections[r_symndx];
5033
5034 symbol = sec->output_section->vma + sec->output_offset;
5035 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5036 || (sec->flags & SEC_MERGE))
5037 symbol += sym->st_value;
5038 if ((sec->flags & SEC_MERGE)
5039 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5040 {
5041 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5042 addend -= symbol;
5043 addend += sec->output_section->vma + sec->output_offset;
5044 }
5045
5046 /* MIPS16/microMIPS text labels should be treated as odd. */
5047 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5048 ++symbol;
5049
5050 /* Record the name of this symbol, for our caller. */
5051 *namep = bfd_elf_string_from_elf_section (input_bfd,
5052 symtab_hdr->sh_link,
5053 sym->st_name);
5054 if (*namep == '\0')
5055 *namep = bfd_section_name (input_bfd, sec);
5056
5057 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5058 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5059 }
5060 else
5061 {
5062 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5063
5064 /* For global symbols we look up the symbol in the hash-table. */
5065 h = ((struct mips_elf_link_hash_entry *)
5066 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5067 /* Find the real hash-table entry for this symbol. */
5068 while (h->root.root.type == bfd_link_hash_indirect
5069 || h->root.root.type == bfd_link_hash_warning)
5070 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5071
5072 /* Record the name of this symbol, for our caller. */
5073 *namep = h->root.root.root.string;
5074
5075 /* See if this is the special _gp_disp symbol. Note that such a
5076 symbol must always be a global symbol. */
5077 if (strcmp (*namep, "_gp_disp") == 0
5078 && ! NEWABI_P (input_bfd))
5079 {
5080 /* Relocations against _gp_disp are permitted only with
5081 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5082 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5083 return bfd_reloc_notsupported;
5084
5085 gp_disp_p = TRUE;
5086 }
5087 /* See if this is the special _gp symbol. Note that such a
5088 symbol must always be a global symbol. */
5089 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5090 gnu_local_gp_p = TRUE;
5091
5092
5093 /* If this symbol is defined, calculate its address. Note that
5094 _gp_disp is a magic symbol, always implicitly defined by the
5095 linker, so it's inappropriate to check to see whether or not
5096 its defined. */
5097 else if ((h->root.root.type == bfd_link_hash_defined
5098 || h->root.root.type == bfd_link_hash_defweak)
5099 && h->root.root.u.def.section)
5100 {
5101 sec = h->root.root.u.def.section;
5102 if (sec->output_section)
5103 symbol = (h->root.root.u.def.value
5104 + sec->output_section->vma
5105 + sec->output_offset);
5106 else
5107 symbol = h->root.root.u.def.value;
5108 }
5109 else if (h->root.root.type == bfd_link_hash_undefweak)
5110 /* We allow relocations against undefined weak symbols, giving
5111 it the value zero, so that you can undefined weak functions
5112 and check to see if they exist by looking at their
5113 addresses. */
5114 symbol = 0;
5115 else if (info->unresolved_syms_in_objects == RM_IGNORE
5116 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5117 symbol = 0;
5118 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5119 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5120 {
5121 /* If this is a dynamic link, we should have created a
5122 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5123 in in _bfd_mips_elf_create_dynamic_sections.
5124 Otherwise, we should define the symbol with a value of 0.
5125 FIXME: It should probably get into the symbol table
5126 somehow as well. */
5127 BFD_ASSERT (! info->shared);
5128 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5129 symbol = 0;
5130 }
5131 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5132 {
5133 /* This is an optional symbol - an Irix specific extension to the
5134 ELF spec. Ignore it for now.
5135 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5136 than simply ignoring them, but we do not handle this for now.
5137 For information see the "64-bit ELF Object File Specification"
5138 which is available from here:
5139 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5140 symbol = 0;
5141 }
5142 else if ((*info->callbacks->undefined_symbol)
5143 (info, h->root.root.root.string, input_bfd,
5144 input_section, relocation->r_offset,
5145 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5146 || ELF_ST_VISIBILITY (h->root.other)))
5147 {
5148 return bfd_reloc_undefined;
5149 }
5150 else
5151 {
5152 return bfd_reloc_notsupported;
5153 }
5154
5155 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5156 /* If the output section is the PLT section,
5157 then the target is not microMIPS. */
5158 target_is_micromips_code_p = (htab->splt != sec
5159 && ELF_ST_IS_MICROMIPS (h->root.other));
5160 }
5161
5162 /* If this is a reference to a 16-bit function with a stub, we need
5163 to redirect the relocation to the stub unless:
5164
5165 (a) the relocation is for a MIPS16 JAL;
5166
5167 (b) the relocation is for a MIPS16 PIC call, and there are no
5168 non-MIPS16 uses of the GOT slot; or
5169
5170 (c) the section allows direct references to MIPS16 functions. */
5171 if (r_type != R_MIPS16_26
5172 && !info->relocatable
5173 && ((h != NULL
5174 && h->fn_stub != NULL
5175 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5176 || (local_p
5177 && elf_tdata (input_bfd)->local_stubs != NULL
5178 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5179 && !section_allows_mips16_refs_p (input_section))
5180 {
5181 /* This is a 32- or 64-bit call to a 16-bit function. We should
5182 have already noticed that we were going to need the
5183 stub. */
5184 if (local_p)
5185 {
5186 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5187 value = 0;
5188 }
5189 else
5190 {
5191 BFD_ASSERT (h->need_fn_stub);
5192 if (h->la25_stub)
5193 {
5194 /* If a LA25 header for the stub itself exists, point to the
5195 prepended LUI/ADDIU sequence. */
5196 sec = h->la25_stub->stub_section;
5197 value = h->la25_stub->offset;
5198 }
5199 else
5200 {
5201 sec = h->fn_stub;
5202 value = 0;
5203 }
5204 }
5205
5206 symbol = sec->output_section->vma + sec->output_offset + value;
5207 /* The target is 16-bit, but the stub isn't. */
5208 target_is_16_bit_code_p = FALSE;
5209 }
5210 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5211 need to redirect the call to the stub. Note that we specifically
5212 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5213 use an indirect stub instead. */
5214 else if (r_type == R_MIPS16_26 && !info->relocatable
5215 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5216 || (local_p
5217 && elf_tdata (input_bfd)->local_call_stubs != NULL
5218 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5219 && !target_is_16_bit_code_p)
5220 {
5221 if (local_p)
5222 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5223 else
5224 {
5225 /* If both call_stub and call_fp_stub are defined, we can figure
5226 out which one to use by checking which one appears in the input
5227 file. */
5228 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5229 {
5230 asection *o;
5231
5232 sec = NULL;
5233 for (o = input_bfd->sections; o != NULL; o = o->next)
5234 {
5235 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5236 {
5237 sec = h->call_fp_stub;
5238 break;
5239 }
5240 }
5241 if (sec == NULL)
5242 sec = h->call_stub;
5243 }
5244 else if (h->call_stub != NULL)
5245 sec = h->call_stub;
5246 else
5247 sec = h->call_fp_stub;
5248 }
5249
5250 BFD_ASSERT (sec->size > 0);
5251 symbol = sec->output_section->vma + sec->output_offset;
5252 }
5253 /* If this is a direct call to a PIC function, redirect to the
5254 non-PIC stub. */
5255 else if (h != NULL && h->la25_stub
5256 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5257 target_is_16_bit_code_p))
5258 symbol = (h->la25_stub->stub_section->output_section->vma
5259 + h->la25_stub->stub_section->output_offset
5260 + h->la25_stub->offset);
5261
5262 /* Make sure MIPS16 and microMIPS are not used together. */
5263 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5264 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5265 {
5266 (*_bfd_error_handler)
5267 (_("MIPS16 and microMIPS functions cannot call each other"));
5268 return bfd_reloc_notsupported;
5269 }
5270
5271 /* Calls from 16-bit code to 32-bit code and vice versa require the
5272 mode change. However, we can ignore calls to undefined weak symbols,
5273 which should never be executed at runtime. This exception is important
5274 because the assembly writer may have "known" that any definition of the
5275 symbol would be 16-bit code, and that direct jumps were therefore
5276 acceptable. */
5277 *cross_mode_jump_p = (!info->relocatable
5278 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5279 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5280 || (r_type == R_MICROMIPS_26_S1
5281 && !target_is_micromips_code_p)
5282 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5283 && (target_is_16_bit_code_p
5284 || target_is_micromips_code_p))));
5285
5286 local_p = (h == NULL
5287 || (h->got_only_for_calls
5288 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5289 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
5290
5291 gp0 = _bfd_get_gp_value (input_bfd);
5292 gp = _bfd_get_gp_value (abfd);
5293 if (htab->got_info)
5294 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5295
5296 if (gnu_local_gp_p)
5297 symbol = gp;
5298
5299 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5300 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5301 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5302 if (got_page_reloc_p (r_type) && !local_p)
5303 {
5304 r_type = (micromips_reloc_p (r_type)
5305 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5306 addend = 0;
5307 }
5308
5309 /* If we haven't already determined the GOT offset, and we're going
5310 to need it, get it now. */
5311 switch (r_type)
5312 {
5313 case R_MIPS16_CALL16:
5314 case R_MIPS16_GOT16:
5315 case R_MIPS_CALL16:
5316 case R_MIPS_GOT16:
5317 case R_MIPS_GOT_DISP:
5318 case R_MIPS_GOT_HI16:
5319 case R_MIPS_CALL_HI16:
5320 case R_MIPS_GOT_LO16:
5321 case R_MIPS_CALL_LO16:
5322 case R_MICROMIPS_CALL16:
5323 case R_MICROMIPS_GOT16:
5324 case R_MICROMIPS_GOT_DISP:
5325 case R_MICROMIPS_GOT_HI16:
5326 case R_MICROMIPS_CALL_HI16:
5327 case R_MICROMIPS_GOT_LO16:
5328 case R_MICROMIPS_CALL_LO16:
5329 case R_MIPS_TLS_GD:
5330 case R_MIPS_TLS_GOTTPREL:
5331 case R_MIPS_TLS_LDM:
5332 case R_MIPS16_TLS_GD:
5333 case R_MIPS16_TLS_GOTTPREL:
5334 case R_MIPS16_TLS_LDM:
5335 case R_MICROMIPS_TLS_GD:
5336 case R_MICROMIPS_TLS_GOTTPREL:
5337 case R_MICROMIPS_TLS_LDM:
5338 /* Find the index into the GOT where this value is located. */
5339 if (tls_ldm_reloc_p (r_type))
5340 {
5341 g = mips_elf_local_got_index (abfd, input_bfd, info,
5342 0, 0, NULL, r_type);
5343 if (g == MINUS_ONE)
5344 return bfd_reloc_outofrange;
5345 }
5346 else if (!local_p)
5347 {
5348 /* On VxWorks, CALL relocations should refer to the .got.plt
5349 entry, which is initialized to point at the PLT stub. */
5350 if (htab->is_vxworks
5351 && (call_hi16_reloc_p (r_type)
5352 || call_lo16_reloc_p (r_type)
5353 || call16_reloc_p (r_type)))
5354 {
5355 BFD_ASSERT (addend == 0);
5356 BFD_ASSERT (h->root.needs_plt);
5357 g = mips_elf_gotplt_index (info, &h->root);
5358 }
5359 else
5360 {
5361 BFD_ASSERT (addend == 0);
5362 g = mips_elf_global_got_index (dynobj, input_bfd,
5363 &h->root, r_type, info);
5364 if (!TLS_RELOC_P (r_type)
5365 && !elf_hash_table (info)->dynamic_sections_created)
5366 /* This is a static link. We must initialize the GOT entry. */
5367 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5368 }
5369 }
5370 else if (!htab->is_vxworks
5371 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5372 /* The calculation below does not involve "g". */
5373 break;
5374 else
5375 {
5376 g = mips_elf_local_got_index (abfd, input_bfd, info,
5377 symbol + addend, r_symndx, h, r_type);
5378 if (g == MINUS_ONE)
5379 return bfd_reloc_outofrange;
5380 }
5381
5382 /* Convert GOT indices to actual offsets. */
5383 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5384 break;
5385 }
5386
5387 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5388 symbols are resolved by the loader. Add them to .rela.dyn. */
5389 if (h != NULL && is_gott_symbol (info, &h->root))
5390 {
5391 Elf_Internal_Rela outrel;
5392 bfd_byte *loc;
5393 asection *s;
5394
5395 s = mips_elf_rel_dyn_section (info, FALSE);
5396 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5397
5398 outrel.r_offset = (input_section->output_section->vma
5399 + input_section->output_offset
5400 + relocation->r_offset);
5401 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5402 outrel.r_addend = addend;
5403 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5404
5405 /* If we've written this relocation for a readonly section,
5406 we need to set DF_TEXTREL again, so that we do not delete the
5407 DT_TEXTREL tag. */
5408 if (MIPS_ELF_READONLY_SECTION (input_section))
5409 info->flags |= DF_TEXTREL;
5410
5411 *valuep = 0;
5412 return bfd_reloc_ok;
5413 }
5414
5415 /* Figure out what kind of relocation is being performed. */
5416 switch (r_type)
5417 {
5418 case R_MIPS_NONE:
5419 return bfd_reloc_continue;
5420
5421 case R_MIPS_16:
5422 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5423 overflowed_p = mips_elf_overflow_p (value, 16);
5424 break;
5425
5426 case R_MIPS_32:
5427 case R_MIPS_REL32:
5428 case R_MIPS_64:
5429 if ((info->shared
5430 || (htab->root.dynamic_sections_created
5431 && h != NULL
5432 && h->root.def_dynamic
5433 && !h->root.def_regular
5434 && !h->has_static_relocs))
5435 && r_symndx != STN_UNDEF
5436 && (h == NULL
5437 || h->root.root.type != bfd_link_hash_undefweak
5438 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5439 && (input_section->flags & SEC_ALLOC) != 0)
5440 {
5441 /* If we're creating a shared library, then we can't know
5442 where the symbol will end up. So, we create a relocation
5443 record in the output, and leave the job up to the dynamic
5444 linker. We must do the same for executable references to
5445 shared library symbols, unless we've decided to use copy
5446 relocs or PLTs instead. */
5447 value = addend;
5448 if (!mips_elf_create_dynamic_relocation (abfd,
5449 info,
5450 relocation,
5451 h,
5452 sec,
5453 symbol,
5454 &value,
5455 input_section))
5456 return bfd_reloc_undefined;
5457 }
5458 else
5459 {
5460 if (r_type != R_MIPS_REL32)
5461 value = symbol + addend;
5462 else
5463 value = addend;
5464 }
5465 value &= howto->dst_mask;
5466 break;
5467
5468 case R_MIPS_PC32:
5469 value = symbol + addend - p;
5470 value &= howto->dst_mask;
5471 break;
5472
5473 case R_MIPS16_26:
5474 /* The calculation for R_MIPS16_26 is just the same as for an
5475 R_MIPS_26. It's only the storage of the relocated field into
5476 the output file that's different. That's handled in
5477 mips_elf_perform_relocation. So, we just fall through to the
5478 R_MIPS_26 case here. */
5479 case R_MIPS_26:
5480 case R_MICROMIPS_26_S1:
5481 {
5482 unsigned int shift;
5483
5484 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5485 the correct ISA mode selector and bit 1 must be 0. */
5486 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5487 return bfd_reloc_outofrange;
5488
5489 /* Shift is 2, unusually, for microMIPS JALX. */
5490 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5491
5492 if (was_local_p)
5493 value = addend | ((p + 4) & (0xfc000000 << shift));
5494 else
5495 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5496 value = (value + symbol) >> shift;
5497 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5498 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5499 value &= howto->dst_mask;
5500 }
5501 break;
5502
5503 case R_MIPS_TLS_DTPREL_HI16:
5504 case R_MIPS16_TLS_DTPREL_HI16:
5505 case R_MICROMIPS_TLS_DTPREL_HI16:
5506 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5507 & howto->dst_mask);
5508 break;
5509
5510 case R_MIPS_TLS_DTPREL_LO16:
5511 case R_MIPS_TLS_DTPREL32:
5512 case R_MIPS_TLS_DTPREL64:
5513 case R_MIPS16_TLS_DTPREL_LO16:
5514 case R_MICROMIPS_TLS_DTPREL_LO16:
5515 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5516 break;
5517
5518 case R_MIPS_TLS_TPREL_HI16:
5519 case R_MIPS16_TLS_TPREL_HI16:
5520 case R_MICROMIPS_TLS_TPREL_HI16:
5521 value = (mips_elf_high (addend + symbol - tprel_base (info))
5522 & howto->dst_mask);
5523 break;
5524
5525 case R_MIPS_TLS_TPREL_LO16:
5526 case R_MIPS_TLS_TPREL32:
5527 case R_MIPS_TLS_TPREL64:
5528 case R_MIPS16_TLS_TPREL_LO16:
5529 case R_MICROMIPS_TLS_TPREL_LO16:
5530 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5531 break;
5532
5533 case R_MIPS_HI16:
5534 case R_MIPS16_HI16:
5535 case R_MICROMIPS_HI16:
5536 if (!gp_disp_p)
5537 {
5538 value = mips_elf_high (addend + symbol);
5539 value &= howto->dst_mask;
5540 }
5541 else
5542 {
5543 /* For MIPS16 ABI code we generate this sequence
5544 0: li $v0,%hi(_gp_disp)
5545 4: addiupc $v1,%lo(_gp_disp)
5546 8: sll $v0,16
5547 12: addu $v0,$v1
5548 14: move $gp,$v0
5549 So the offsets of hi and lo relocs are the same, but the
5550 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5551 ADDIUPC clears the low two bits of the instruction address,
5552 so the base is ($t9 + 4) & ~3. */
5553 if (r_type == R_MIPS16_HI16)
5554 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5555 /* The microMIPS .cpload sequence uses the same assembly
5556 instructions as the traditional psABI version, but the
5557 incoming $t9 has the low bit set. */
5558 else if (r_type == R_MICROMIPS_HI16)
5559 value = mips_elf_high (addend + gp - p - 1);
5560 else
5561 value = mips_elf_high (addend + gp - p);
5562 overflowed_p = mips_elf_overflow_p (value, 16);
5563 }
5564 break;
5565
5566 case R_MIPS_LO16:
5567 case R_MIPS16_LO16:
5568 case R_MICROMIPS_LO16:
5569 case R_MICROMIPS_HI0_LO16:
5570 if (!gp_disp_p)
5571 value = (symbol + addend) & howto->dst_mask;
5572 else
5573 {
5574 /* See the comment for R_MIPS16_HI16 above for the reason
5575 for this conditional. */
5576 if (r_type == R_MIPS16_LO16)
5577 value = addend + gp - (p & ~(bfd_vma) 0x3);
5578 else if (r_type == R_MICROMIPS_LO16
5579 || r_type == R_MICROMIPS_HI0_LO16)
5580 value = addend + gp - p + 3;
5581 else
5582 value = addend + gp - p + 4;
5583 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5584 for overflow. But, on, say, IRIX5, relocations against
5585 _gp_disp are normally generated from the .cpload
5586 pseudo-op. It generates code that normally looks like
5587 this:
5588
5589 lui $gp,%hi(_gp_disp)
5590 addiu $gp,$gp,%lo(_gp_disp)
5591 addu $gp,$gp,$t9
5592
5593 Here $t9 holds the address of the function being called,
5594 as required by the MIPS ELF ABI. The R_MIPS_LO16
5595 relocation can easily overflow in this situation, but the
5596 R_MIPS_HI16 relocation will handle the overflow.
5597 Therefore, we consider this a bug in the MIPS ABI, and do
5598 not check for overflow here. */
5599 }
5600 break;
5601
5602 case R_MIPS_LITERAL:
5603 case R_MICROMIPS_LITERAL:
5604 /* Because we don't merge literal sections, we can handle this
5605 just like R_MIPS_GPREL16. In the long run, we should merge
5606 shared literals, and then we will need to additional work
5607 here. */
5608
5609 /* Fall through. */
5610
5611 case R_MIPS16_GPREL:
5612 /* The R_MIPS16_GPREL performs the same calculation as
5613 R_MIPS_GPREL16, but stores the relocated bits in a different
5614 order. We don't need to do anything special here; the
5615 differences are handled in mips_elf_perform_relocation. */
5616 case R_MIPS_GPREL16:
5617 case R_MICROMIPS_GPREL7_S2:
5618 case R_MICROMIPS_GPREL16:
5619 /* Only sign-extend the addend if it was extracted from the
5620 instruction. If the addend was separate, leave it alone,
5621 otherwise we may lose significant bits. */
5622 if (howto->partial_inplace)
5623 addend = _bfd_mips_elf_sign_extend (addend, 16);
5624 value = symbol + addend - gp;
5625 /* If the symbol was local, any earlier relocatable links will
5626 have adjusted its addend with the gp offset, so compensate
5627 for that now. Don't do it for symbols forced local in this
5628 link, though, since they won't have had the gp offset applied
5629 to them before. */
5630 if (was_local_p)
5631 value += gp0;
5632 overflowed_p = mips_elf_overflow_p (value, 16);
5633 break;
5634
5635 case R_MIPS16_GOT16:
5636 case R_MIPS16_CALL16:
5637 case R_MIPS_GOT16:
5638 case R_MIPS_CALL16:
5639 case R_MICROMIPS_GOT16:
5640 case R_MICROMIPS_CALL16:
5641 /* VxWorks does not have separate local and global semantics for
5642 R_MIPS*_GOT16; every relocation evaluates to "G". */
5643 if (!htab->is_vxworks && local_p)
5644 {
5645 value = mips_elf_got16_entry (abfd, input_bfd, info,
5646 symbol + addend, !was_local_p);
5647 if (value == MINUS_ONE)
5648 return bfd_reloc_outofrange;
5649 value
5650 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5651 overflowed_p = mips_elf_overflow_p (value, 16);
5652 break;
5653 }
5654
5655 /* Fall through. */
5656
5657 case R_MIPS_TLS_GD:
5658 case R_MIPS_TLS_GOTTPREL:
5659 case R_MIPS_TLS_LDM:
5660 case R_MIPS_GOT_DISP:
5661 case R_MIPS16_TLS_GD:
5662 case R_MIPS16_TLS_GOTTPREL:
5663 case R_MIPS16_TLS_LDM:
5664 case R_MICROMIPS_TLS_GD:
5665 case R_MICROMIPS_TLS_GOTTPREL:
5666 case R_MICROMIPS_TLS_LDM:
5667 case R_MICROMIPS_GOT_DISP:
5668 value = g;
5669 overflowed_p = mips_elf_overflow_p (value, 16);
5670 break;
5671
5672 case R_MIPS_GPREL32:
5673 value = (addend + symbol + gp0 - gp);
5674 if (!save_addend)
5675 value &= howto->dst_mask;
5676 break;
5677
5678 case R_MIPS_PC16:
5679 case R_MIPS_GNU_REL16_S2:
5680 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5681 overflowed_p = mips_elf_overflow_p (value, 18);
5682 value >>= howto->rightshift;
5683 value &= howto->dst_mask;
5684 break;
5685
5686 case R_MICROMIPS_PC7_S1:
5687 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5688 overflowed_p = mips_elf_overflow_p (value, 8);
5689 value >>= howto->rightshift;
5690 value &= howto->dst_mask;
5691 break;
5692
5693 case R_MICROMIPS_PC10_S1:
5694 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5695 overflowed_p = mips_elf_overflow_p (value, 11);
5696 value >>= howto->rightshift;
5697 value &= howto->dst_mask;
5698 break;
5699
5700 case R_MICROMIPS_PC16_S1:
5701 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5702 overflowed_p = mips_elf_overflow_p (value, 17);
5703 value >>= howto->rightshift;
5704 value &= howto->dst_mask;
5705 break;
5706
5707 case R_MICROMIPS_PC23_S2:
5708 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5709 overflowed_p = mips_elf_overflow_p (value, 25);
5710 value >>= howto->rightshift;
5711 value &= howto->dst_mask;
5712 break;
5713
5714 case R_MIPS_GOT_HI16:
5715 case R_MIPS_CALL_HI16:
5716 case R_MICROMIPS_GOT_HI16:
5717 case R_MICROMIPS_CALL_HI16:
5718 /* We're allowed to handle these two relocations identically.
5719 The dynamic linker is allowed to handle the CALL relocations
5720 differently by creating a lazy evaluation stub. */
5721 value = g;
5722 value = mips_elf_high (value);
5723 value &= howto->dst_mask;
5724 break;
5725
5726 case R_MIPS_GOT_LO16:
5727 case R_MIPS_CALL_LO16:
5728 case R_MICROMIPS_GOT_LO16:
5729 case R_MICROMIPS_CALL_LO16:
5730 value = g & howto->dst_mask;
5731 break;
5732
5733 case R_MIPS_GOT_PAGE:
5734 case R_MICROMIPS_GOT_PAGE:
5735 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5736 if (value == MINUS_ONE)
5737 return bfd_reloc_outofrange;
5738 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5739 overflowed_p = mips_elf_overflow_p (value, 16);
5740 break;
5741
5742 case R_MIPS_GOT_OFST:
5743 case R_MICROMIPS_GOT_OFST:
5744 if (local_p)
5745 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5746 else
5747 value = addend;
5748 overflowed_p = mips_elf_overflow_p (value, 16);
5749 break;
5750
5751 case R_MIPS_SUB:
5752 case R_MICROMIPS_SUB:
5753 value = symbol - addend;
5754 value &= howto->dst_mask;
5755 break;
5756
5757 case R_MIPS_HIGHER:
5758 case R_MICROMIPS_HIGHER:
5759 value = mips_elf_higher (addend + symbol);
5760 value &= howto->dst_mask;
5761 break;
5762
5763 case R_MIPS_HIGHEST:
5764 case R_MICROMIPS_HIGHEST:
5765 value = mips_elf_highest (addend + symbol);
5766 value &= howto->dst_mask;
5767 break;
5768
5769 case R_MIPS_SCN_DISP:
5770 case R_MICROMIPS_SCN_DISP:
5771 value = symbol + addend - sec->output_offset;
5772 value &= howto->dst_mask;
5773 break;
5774
5775 case R_MIPS_JALR:
5776 case R_MICROMIPS_JALR:
5777 /* This relocation is only a hint. In some cases, we optimize
5778 it into a bal instruction. But we don't try to optimize
5779 when the symbol does not resolve locally. */
5780 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5781 return bfd_reloc_continue;
5782 value = symbol + addend;
5783 break;
5784
5785 case R_MIPS_PJUMP:
5786 case R_MIPS_GNU_VTINHERIT:
5787 case R_MIPS_GNU_VTENTRY:
5788 /* We don't do anything with these at present. */
5789 return bfd_reloc_continue;
5790
5791 default:
5792 /* An unrecognized relocation type. */
5793 return bfd_reloc_notsupported;
5794 }
5795
5796 /* Store the VALUE for our caller. */
5797 *valuep = value;
5798 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5799 }
5800
5801 /* Obtain the field relocated by RELOCATION. */
5802
5803 static bfd_vma
5804 mips_elf_obtain_contents (reloc_howto_type *howto,
5805 const Elf_Internal_Rela *relocation,
5806 bfd *input_bfd, bfd_byte *contents)
5807 {
5808 bfd_vma x;
5809 bfd_byte *location = contents + relocation->r_offset;
5810
5811 /* Obtain the bytes. */
5812 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5813
5814 return x;
5815 }
5816
5817 /* It has been determined that the result of the RELOCATION is the
5818 VALUE. Use HOWTO to place VALUE into the output file at the
5819 appropriate position. The SECTION is the section to which the
5820 relocation applies.
5821 CROSS_MODE_JUMP_P is true if the relocation field
5822 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5823
5824 Returns FALSE if anything goes wrong. */
5825
5826 static bfd_boolean
5827 mips_elf_perform_relocation (struct bfd_link_info *info,
5828 reloc_howto_type *howto,
5829 const Elf_Internal_Rela *relocation,
5830 bfd_vma value, bfd *input_bfd,
5831 asection *input_section, bfd_byte *contents,
5832 bfd_boolean cross_mode_jump_p)
5833 {
5834 bfd_vma x;
5835 bfd_byte *location;
5836 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5837
5838 /* Figure out where the relocation is occurring. */
5839 location = contents + relocation->r_offset;
5840
5841 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5842
5843 /* Obtain the current value. */
5844 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5845
5846 /* Clear the field we are setting. */
5847 x &= ~howto->dst_mask;
5848
5849 /* Set the field. */
5850 x |= (value & howto->dst_mask);
5851
5852 /* If required, turn JAL into JALX. */
5853 if (cross_mode_jump_p && jal_reloc_p (r_type))
5854 {
5855 bfd_boolean ok;
5856 bfd_vma opcode = x >> 26;
5857 bfd_vma jalx_opcode;
5858
5859 /* Check to see if the opcode is already JAL or JALX. */
5860 if (r_type == R_MIPS16_26)
5861 {
5862 ok = ((opcode == 0x6) || (opcode == 0x7));
5863 jalx_opcode = 0x7;
5864 }
5865 else if (r_type == R_MICROMIPS_26_S1)
5866 {
5867 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5868 jalx_opcode = 0x3c;
5869 }
5870 else
5871 {
5872 ok = ((opcode == 0x3) || (opcode == 0x1d));
5873 jalx_opcode = 0x1d;
5874 }
5875
5876 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5877 convert J or JALS to JALX. */
5878 if (!ok)
5879 {
5880 (*_bfd_error_handler)
5881 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5882 input_bfd,
5883 input_section,
5884 (unsigned long) relocation->r_offset);
5885 bfd_set_error (bfd_error_bad_value);
5886 return FALSE;
5887 }
5888
5889 /* Make this the JALX opcode. */
5890 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5891 }
5892
5893 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5894 range. */
5895 if (!info->relocatable
5896 && !cross_mode_jump_p
5897 && ((JAL_TO_BAL_P (input_bfd)
5898 && r_type == R_MIPS_26
5899 && (x >> 26) == 0x3) /* jal addr */
5900 || (JALR_TO_BAL_P (input_bfd)
5901 && r_type == R_MIPS_JALR
5902 && x == 0x0320f809) /* jalr t9 */
5903 || (JR_TO_B_P (input_bfd)
5904 && r_type == R_MIPS_JALR
5905 && x == 0x03200008))) /* jr t9 */
5906 {
5907 bfd_vma addr;
5908 bfd_vma dest;
5909 bfd_signed_vma off;
5910
5911 addr = (input_section->output_section->vma
5912 + input_section->output_offset
5913 + relocation->r_offset
5914 + 4);
5915 if (r_type == R_MIPS_26)
5916 dest = (value << 2) | ((addr >> 28) << 28);
5917 else
5918 dest = value;
5919 off = dest - addr;
5920 if (off <= 0x1ffff && off >= -0x20000)
5921 {
5922 if (x == 0x03200008) /* jr t9 */
5923 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5924 else
5925 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5926 }
5927 }
5928
5929 /* Put the value into the output. */
5930 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5931
5932 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5933 location);
5934
5935 return TRUE;
5936 }
5937 \f
5938 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5939 is the original relocation, which is now being transformed into a
5940 dynamic relocation. The ADDENDP is adjusted if necessary; the
5941 caller should store the result in place of the original addend. */
5942
5943 static bfd_boolean
5944 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5945 struct bfd_link_info *info,
5946 const Elf_Internal_Rela *rel,
5947 struct mips_elf_link_hash_entry *h,
5948 asection *sec, bfd_vma symbol,
5949 bfd_vma *addendp, asection *input_section)
5950 {
5951 Elf_Internal_Rela outrel[3];
5952 asection *sreloc;
5953 bfd *dynobj;
5954 int r_type;
5955 long indx;
5956 bfd_boolean defined_p;
5957 struct mips_elf_link_hash_table *htab;
5958
5959 htab = mips_elf_hash_table (info);
5960 BFD_ASSERT (htab != NULL);
5961
5962 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5963 dynobj = elf_hash_table (info)->dynobj;
5964 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5965 BFD_ASSERT (sreloc != NULL);
5966 BFD_ASSERT (sreloc->contents != NULL);
5967 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5968 < sreloc->size);
5969
5970 outrel[0].r_offset =
5971 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5972 if (ABI_64_P (output_bfd))
5973 {
5974 outrel[1].r_offset =
5975 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5976 outrel[2].r_offset =
5977 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5978 }
5979
5980 if (outrel[0].r_offset == MINUS_ONE)
5981 /* The relocation field has been deleted. */
5982 return TRUE;
5983
5984 if (outrel[0].r_offset == MINUS_TWO)
5985 {
5986 /* The relocation field has been converted into a relative value of
5987 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5988 the field to be fully relocated, so add in the symbol's value. */
5989 *addendp += symbol;
5990 return TRUE;
5991 }
5992
5993 /* We must now calculate the dynamic symbol table index to use
5994 in the relocation. */
5995 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5996 {
5997 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5998 indx = h->root.dynindx;
5999 if (SGI_COMPAT (output_bfd))
6000 defined_p = h->root.def_regular;
6001 else
6002 /* ??? glibc's ld.so just adds the final GOT entry to the
6003 relocation field. It therefore treats relocs against
6004 defined symbols in the same way as relocs against
6005 undefined symbols. */
6006 defined_p = FALSE;
6007 }
6008 else
6009 {
6010 if (sec != NULL && bfd_is_abs_section (sec))
6011 indx = 0;
6012 else if (sec == NULL || sec->owner == NULL)
6013 {
6014 bfd_set_error (bfd_error_bad_value);
6015 return FALSE;
6016 }
6017 else
6018 {
6019 indx = elf_section_data (sec->output_section)->dynindx;
6020 if (indx == 0)
6021 {
6022 asection *osec = htab->root.text_index_section;
6023 indx = elf_section_data (osec)->dynindx;
6024 }
6025 if (indx == 0)
6026 abort ();
6027 }
6028
6029 /* Instead of generating a relocation using the section
6030 symbol, we may as well make it a fully relative
6031 relocation. We want to avoid generating relocations to
6032 local symbols because we used to generate them
6033 incorrectly, without adding the original symbol value,
6034 which is mandated by the ABI for section symbols. In
6035 order to give dynamic loaders and applications time to
6036 phase out the incorrect use, we refrain from emitting
6037 section-relative relocations. It's not like they're
6038 useful, after all. This should be a bit more efficient
6039 as well. */
6040 /* ??? Although this behavior is compatible with glibc's ld.so,
6041 the ABI says that relocations against STN_UNDEF should have
6042 a symbol value of 0. Irix rld honors this, so relocations
6043 against STN_UNDEF have no effect. */
6044 if (!SGI_COMPAT (output_bfd))
6045 indx = 0;
6046 defined_p = TRUE;
6047 }
6048
6049 /* If the relocation was previously an absolute relocation and
6050 this symbol will not be referred to by the relocation, we must
6051 adjust it by the value we give it in the dynamic symbol table.
6052 Otherwise leave the job up to the dynamic linker. */
6053 if (defined_p && r_type != R_MIPS_REL32)
6054 *addendp += symbol;
6055
6056 if (htab->is_vxworks)
6057 /* VxWorks uses non-relative relocations for this. */
6058 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6059 else
6060 /* The relocation is always an REL32 relocation because we don't
6061 know where the shared library will wind up at load-time. */
6062 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6063 R_MIPS_REL32);
6064
6065 /* For strict adherence to the ABI specification, we should
6066 generate a R_MIPS_64 relocation record by itself before the
6067 _REL32/_64 record as well, such that the addend is read in as
6068 a 64-bit value (REL32 is a 32-bit relocation, after all).
6069 However, since none of the existing ELF64 MIPS dynamic
6070 loaders seems to care, we don't waste space with these
6071 artificial relocations. If this turns out to not be true,
6072 mips_elf_allocate_dynamic_relocation() should be tweaked so
6073 as to make room for a pair of dynamic relocations per
6074 invocation if ABI_64_P, and here we should generate an
6075 additional relocation record with R_MIPS_64 by itself for a
6076 NULL symbol before this relocation record. */
6077 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6078 ABI_64_P (output_bfd)
6079 ? R_MIPS_64
6080 : R_MIPS_NONE);
6081 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6082
6083 /* Adjust the output offset of the relocation to reference the
6084 correct location in the output file. */
6085 outrel[0].r_offset += (input_section->output_section->vma
6086 + input_section->output_offset);
6087 outrel[1].r_offset += (input_section->output_section->vma
6088 + input_section->output_offset);
6089 outrel[2].r_offset += (input_section->output_section->vma
6090 + input_section->output_offset);
6091
6092 /* Put the relocation back out. We have to use the special
6093 relocation outputter in the 64-bit case since the 64-bit
6094 relocation format is non-standard. */
6095 if (ABI_64_P (output_bfd))
6096 {
6097 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6098 (output_bfd, &outrel[0],
6099 (sreloc->contents
6100 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6101 }
6102 else if (htab->is_vxworks)
6103 {
6104 /* VxWorks uses RELA rather than REL dynamic relocations. */
6105 outrel[0].r_addend = *addendp;
6106 bfd_elf32_swap_reloca_out
6107 (output_bfd, &outrel[0],
6108 (sreloc->contents
6109 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6110 }
6111 else
6112 bfd_elf32_swap_reloc_out
6113 (output_bfd, &outrel[0],
6114 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6115
6116 /* We've now added another relocation. */
6117 ++sreloc->reloc_count;
6118
6119 /* Make sure the output section is writable. The dynamic linker
6120 will be writing to it. */
6121 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6122 |= SHF_WRITE;
6123
6124 /* On IRIX5, make an entry of compact relocation info. */
6125 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6126 {
6127 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6128 bfd_byte *cr;
6129
6130 if (scpt)
6131 {
6132 Elf32_crinfo cptrel;
6133
6134 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6135 cptrel.vaddr = (rel->r_offset
6136 + input_section->output_section->vma
6137 + input_section->output_offset);
6138 if (r_type == R_MIPS_REL32)
6139 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6140 else
6141 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6142 mips_elf_set_cr_dist2to (cptrel, 0);
6143 cptrel.konst = *addendp;
6144
6145 cr = (scpt->contents
6146 + sizeof (Elf32_External_compact_rel));
6147 mips_elf_set_cr_relvaddr (cptrel, 0);
6148 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6149 ((Elf32_External_crinfo *) cr
6150 + scpt->reloc_count));
6151 ++scpt->reloc_count;
6152 }
6153 }
6154
6155 /* If we've written this relocation for a readonly section,
6156 we need to set DF_TEXTREL again, so that we do not delete the
6157 DT_TEXTREL tag. */
6158 if (MIPS_ELF_READONLY_SECTION (input_section))
6159 info->flags |= DF_TEXTREL;
6160
6161 return TRUE;
6162 }
6163 \f
6164 /* Return the MACH for a MIPS e_flags value. */
6165
6166 unsigned long
6167 _bfd_elf_mips_mach (flagword flags)
6168 {
6169 switch (flags & EF_MIPS_MACH)
6170 {
6171 case E_MIPS_MACH_3900:
6172 return bfd_mach_mips3900;
6173
6174 case E_MIPS_MACH_4010:
6175 return bfd_mach_mips4010;
6176
6177 case E_MIPS_MACH_4100:
6178 return bfd_mach_mips4100;
6179
6180 case E_MIPS_MACH_4111:
6181 return bfd_mach_mips4111;
6182
6183 case E_MIPS_MACH_4120:
6184 return bfd_mach_mips4120;
6185
6186 case E_MIPS_MACH_4650:
6187 return bfd_mach_mips4650;
6188
6189 case E_MIPS_MACH_5400:
6190 return bfd_mach_mips5400;
6191
6192 case E_MIPS_MACH_5500:
6193 return bfd_mach_mips5500;
6194
6195 case E_MIPS_MACH_5900:
6196 return bfd_mach_mips5900;
6197
6198 case E_MIPS_MACH_9000:
6199 return bfd_mach_mips9000;
6200
6201 case E_MIPS_MACH_SB1:
6202 return bfd_mach_mips_sb1;
6203
6204 case E_MIPS_MACH_LS2E:
6205 return bfd_mach_mips_loongson_2e;
6206
6207 case E_MIPS_MACH_LS2F:
6208 return bfd_mach_mips_loongson_2f;
6209
6210 case E_MIPS_MACH_LS3A:
6211 return bfd_mach_mips_loongson_3a;
6212
6213 case E_MIPS_MACH_OCTEON2:
6214 return bfd_mach_mips_octeon2;
6215
6216 case E_MIPS_MACH_OCTEON:
6217 return bfd_mach_mips_octeon;
6218
6219 case E_MIPS_MACH_XLR:
6220 return bfd_mach_mips_xlr;
6221
6222 default:
6223 switch (flags & EF_MIPS_ARCH)
6224 {
6225 default:
6226 case E_MIPS_ARCH_1:
6227 return bfd_mach_mips3000;
6228
6229 case E_MIPS_ARCH_2:
6230 return bfd_mach_mips6000;
6231
6232 case E_MIPS_ARCH_3:
6233 return bfd_mach_mips4000;
6234
6235 case E_MIPS_ARCH_4:
6236 return bfd_mach_mips8000;
6237
6238 case E_MIPS_ARCH_5:
6239 return bfd_mach_mips5;
6240
6241 case E_MIPS_ARCH_32:
6242 return bfd_mach_mipsisa32;
6243
6244 case E_MIPS_ARCH_64:
6245 return bfd_mach_mipsisa64;
6246
6247 case E_MIPS_ARCH_32R2:
6248 return bfd_mach_mipsisa32r2;
6249
6250 case E_MIPS_ARCH_64R2:
6251 return bfd_mach_mipsisa64r2;
6252 }
6253 }
6254
6255 return 0;
6256 }
6257
6258 /* Return printable name for ABI. */
6259
6260 static INLINE char *
6261 elf_mips_abi_name (bfd *abfd)
6262 {
6263 flagword flags;
6264
6265 flags = elf_elfheader (abfd)->e_flags;
6266 switch (flags & EF_MIPS_ABI)
6267 {
6268 case 0:
6269 if (ABI_N32_P (abfd))
6270 return "N32";
6271 else if (ABI_64_P (abfd))
6272 return "64";
6273 else
6274 return "none";
6275 case E_MIPS_ABI_O32:
6276 return "O32";
6277 case E_MIPS_ABI_O64:
6278 return "O64";
6279 case E_MIPS_ABI_EABI32:
6280 return "EABI32";
6281 case E_MIPS_ABI_EABI64:
6282 return "EABI64";
6283 default:
6284 return "unknown abi";
6285 }
6286 }
6287 \f
6288 /* MIPS ELF uses two common sections. One is the usual one, and the
6289 other is for small objects. All the small objects are kept
6290 together, and then referenced via the gp pointer, which yields
6291 faster assembler code. This is what we use for the small common
6292 section. This approach is copied from ecoff.c. */
6293 static asection mips_elf_scom_section;
6294 static asymbol mips_elf_scom_symbol;
6295 static asymbol *mips_elf_scom_symbol_ptr;
6296
6297 /* MIPS ELF also uses an acommon section, which represents an
6298 allocated common symbol which may be overridden by a
6299 definition in a shared library. */
6300 static asection mips_elf_acom_section;
6301 static asymbol mips_elf_acom_symbol;
6302 static asymbol *mips_elf_acom_symbol_ptr;
6303
6304 /* This is used for both the 32-bit and the 64-bit ABI. */
6305
6306 void
6307 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6308 {
6309 elf_symbol_type *elfsym;
6310
6311 /* Handle the special MIPS section numbers that a symbol may use. */
6312 elfsym = (elf_symbol_type *) asym;
6313 switch (elfsym->internal_elf_sym.st_shndx)
6314 {
6315 case SHN_MIPS_ACOMMON:
6316 /* This section is used in a dynamically linked executable file.
6317 It is an allocated common section. The dynamic linker can
6318 either resolve these symbols to something in a shared
6319 library, or it can just leave them here. For our purposes,
6320 we can consider these symbols to be in a new section. */
6321 if (mips_elf_acom_section.name == NULL)
6322 {
6323 /* Initialize the acommon section. */
6324 mips_elf_acom_section.name = ".acommon";
6325 mips_elf_acom_section.flags = SEC_ALLOC;
6326 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6327 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6328 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6329 mips_elf_acom_symbol.name = ".acommon";
6330 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6331 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6332 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6333 }
6334 asym->section = &mips_elf_acom_section;
6335 break;
6336
6337 case SHN_COMMON:
6338 /* Common symbols less than the GP size are automatically
6339 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6340 if (asym->value > elf_gp_size (abfd)
6341 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6342 || IRIX_COMPAT (abfd) == ict_irix6)
6343 break;
6344 /* Fall through. */
6345 case SHN_MIPS_SCOMMON:
6346 if (mips_elf_scom_section.name == NULL)
6347 {
6348 /* Initialize the small common section. */
6349 mips_elf_scom_section.name = ".scommon";
6350 mips_elf_scom_section.flags = SEC_IS_COMMON;
6351 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6352 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6353 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6354 mips_elf_scom_symbol.name = ".scommon";
6355 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6356 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6357 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6358 }
6359 asym->section = &mips_elf_scom_section;
6360 asym->value = elfsym->internal_elf_sym.st_size;
6361 break;
6362
6363 case SHN_MIPS_SUNDEFINED:
6364 asym->section = bfd_und_section_ptr;
6365 break;
6366
6367 case SHN_MIPS_TEXT:
6368 {
6369 asection *section = bfd_get_section_by_name (abfd, ".text");
6370
6371 if (section != NULL)
6372 {
6373 asym->section = section;
6374 /* MIPS_TEXT is a bit special, the address is not an offset
6375 to the base of the .text section. So substract the section
6376 base address to make it an offset. */
6377 asym->value -= section->vma;
6378 }
6379 }
6380 break;
6381
6382 case SHN_MIPS_DATA:
6383 {
6384 asection *section = bfd_get_section_by_name (abfd, ".data");
6385
6386 if (section != NULL)
6387 {
6388 asym->section = section;
6389 /* MIPS_DATA is a bit special, the address is not an offset
6390 to the base of the .data section. So substract the section
6391 base address to make it an offset. */
6392 asym->value -= section->vma;
6393 }
6394 }
6395 break;
6396 }
6397
6398 /* If this is an odd-valued function symbol, assume it's a MIPS16
6399 or microMIPS one. */
6400 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6401 && (asym->value & 1) != 0)
6402 {
6403 asym->value--;
6404 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6405 elfsym->internal_elf_sym.st_other
6406 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6407 else
6408 elfsym->internal_elf_sym.st_other
6409 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6410 }
6411 }
6412 \f
6413 /* Implement elf_backend_eh_frame_address_size. This differs from
6414 the default in the way it handles EABI64.
6415
6416 EABI64 was originally specified as an LP64 ABI, and that is what
6417 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6418 historically accepted the combination of -mabi=eabi and -mlong32,
6419 and this ILP32 variation has become semi-official over time.
6420 Both forms use elf32 and have pointer-sized FDE addresses.
6421
6422 If an EABI object was generated by GCC 4.0 or above, it will have
6423 an empty .gcc_compiled_longXX section, where XX is the size of longs
6424 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6425 have no special marking to distinguish them from LP64 objects.
6426
6427 We don't want users of the official LP64 ABI to be punished for the
6428 existence of the ILP32 variant, but at the same time, we don't want
6429 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6430 We therefore take the following approach:
6431
6432 - If ABFD contains a .gcc_compiled_longXX section, use it to
6433 determine the pointer size.
6434
6435 - Otherwise check the type of the first relocation. Assume that
6436 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6437
6438 - Otherwise punt.
6439
6440 The second check is enough to detect LP64 objects generated by pre-4.0
6441 compilers because, in the kind of output generated by those compilers,
6442 the first relocation will be associated with either a CIE personality
6443 routine or an FDE start address. Furthermore, the compilers never
6444 used a special (non-pointer) encoding for this ABI.
6445
6446 Checking the relocation type should also be safe because there is no
6447 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6448 did so. */
6449
6450 unsigned int
6451 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6452 {
6453 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6454 return 8;
6455 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6456 {
6457 bfd_boolean long32_p, long64_p;
6458
6459 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6460 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6461 if (long32_p && long64_p)
6462 return 0;
6463 if (long32_p)
6464 return 4;
6465 if (long64_p)
6466 return 8;
6467
6468 if (sec->reloc_count > 0
6469 && elf_section_data (sec)->relocs != NULL
6470 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6471 == R_MIPS_64))
6472 return 8;
6473
6474 return 0;
6475 }
6476 return 4;
6477 }
6478 \f
6479 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6480 relocations against two unnamed section symbols to resolve to the
6481 same address. For example, if we have code like:
6482
6483 lw $4,%got_disp(.data)($gp)
6484 lw $25,%got_disp(.text)($gp)
6485 jalr $25
6486
6487 then the linker will resolve both relocations to .data and the program
6488 will jump there rather than to .text.
6489
6490 We can work around this problem by giving names to local section symbols.
6491 This is also what the MIPSpro tools do. */
6492
6493 bfd_boolean
6494 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6495 {
6496 return SGI_COMPAT (abfd);
6497 }
6498 \f
6499 /* Work over a section just before writing it out. This routine is
6500 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6501 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6502 a better way. */
6503
6504 bfd_boolean
6505 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6506 {
6507 if (hdr->sh_type == SHT_MIPS_REGINFO
6508 && hdr->sh_size > 0)
6509 {
6510 bfd_byte buf[4];
6511
6512 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6513 BFD_ASSERT (hdr->contents == NULL);
6514
6515 if (bfd_seek (abfd,
6516 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6517 SEEK_SET) != 0)
6518 return FALSE;
6519 H_PUT_32 (abfd, elf_gp (abfd), buf);
6520 if (bfd_bwrite (buf, 4, abfd) != 4)
6521 return FALSE;
6522 }
6523
6524 if (hdr->sh_type == SHT_MIPS_OPTIONS
6525 && hdr->bfd_section != NULL
6526 && mips_elf_section_data (hdr->bfd_section) != NULL
6527 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6528 {
6529 bfd_byte *contents, *l, *lend;
6530
6531 /* We stored the section contents in the tdata field in the
6532 set_section_contents routine. We save the section contents
6533 so that we don't have to read them again.
6534 At this point we know that elf_gp is set, so we can look
6535 through the section contents to see if there is an
6536 ODK_REGINFO structure. */
6537
6538 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6539 l = contents;
6540 lend = contents + hdr->sh_size;
6541 while (l + sizeof (Elf_External_Options) <= lend)
6542 {
6543 Elf_Internal_Options intopt;
6544
6545 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6546 &intopt);
6547 if (intopt.size < sizeof (Elf_External_Options))
6548 {
6549 (*_bfd_error_handler)
6550 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6551 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6552 break;
6553 }
6554 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6555 {
6556 bfd_byte buf[8];
6557
6558 if (bfd_seek (abfd,
6559 (hdr->sh_offset
6560 + (l - contents)
6561 + sizeof (Elf_External_Options)
6562 + (sizeof (Elf64_External_RegInfo) - 8)),
6563 SEEK_SET) != 0)
6564 return FALSE;
6565 H_PUT_64 (abfd, elf_gp (abfd), buf);
6566 if (bfd_bwrite (buf, 8, abfd) != 8)
6567 return FALSE;
6568 }
6569 else if (intopt.kind == ODK_REGINFO)
6570 {
6571 bfd_byte buf[4];
6572
6573 if (bfd_seek (abfd,
6574 (hdr->sh_offset
6575 + (l - contents)
6576 + sizeof (Elf_External_Options)
6577 + (sizeof (Elf32_External_RegInfo) - 4)),
6578 SEEK_SET) != 0)
6579 return FALSE;
6580 H_PUT_32 (abfd, elf_gp (abfd), buf);
6581 if (bfd_bwrite (buf, 4, abfd) != 4)
6582 return FALSE;
6583 }
6584 l += intopt.size;
6585 }
6586 }
6587
6588 if (hdr->bfd_section != NULL)
6589 {
6590 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6591
6592 /* .sbss is not handled specially here because the GNU/Linux
6593 prelinker can convert .sbss from NOBITS to PROGBITS and
6594 changing it back to NOBITS breaks the binary. The entry in
6595 _bfd_mips_elf_special_sections will ensure the correct flags
6596 are set on .sbss if BFD creates it without reading it from an
6597 input file, and without special handling here the flags set
6598 on it in an input file will be followed. */
6599 if (strcmp (name, ".sdata") == 0
6600 || strcmp (name, ".lit8") == 0
6601 || strcmp (name, ".lit4") == 0)
6602 {
6603 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6604 hdr->sh_type = SHT_PROGBITS;
6605 }
6606 else if (strcmp (name, ".srdata") == 0)
6607 {
6608 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6609 hdr->sh_type = SHT_PROGBITS;
6610 }
6611 else if (strcmp (name, ".compact_rel") == 0)
6612 {
6613 hdr->sh_flags = 0;
6614 hdr->sh_type = SHT_PROGBITS;
6615 }
6616 else if (strcmp (name, ".rtproc") == 0)
6617 {
6618 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6619 {
6620 unsigned int adjust;
6621
6622 adjust = hdr->sh_size % hdr->sh_addralign;
6623 if (adjust != 0)
6624 hdr->sh_size += hdr->sh_addralign - adjust;
6625 }
6626 }
6627 }
6628
6629 return TRUE;
6630 }
6631
6632 /* Handle a MIPS specific section when reading an object file. This
6633 is called when elfcode.h finds a section with an unknown type.
6634 This routine supports both the 32-bit and 64-bit ELF ABI.
6635
6636 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6637 how to. */
6638
6639 bfd_boolean
6640 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6641 Elf_Internal_Shdr *hdr,
6642 const char *name,
6643 int shindex)
6644 {
6645 flagword flags = 0;
6646
6647 /* There ought to be a place to keep ELF backend specific flags, but
6648 at the moment there isn't one. We just keep track of the
6649 sections by their name, instead. Fortunately, the ABI gives
6650 suggested names for all the MIPS specific sections, so we will
6651 probably get away with this. */
6652 switch (hdr->sh_type)
6653 {
6654 case SHT_MIPS_LIBLIST:
6655 if (strcmp (name, ".liblist") != 0)
6656 return FALSE;
6657 break;
6658 case SHT_MIPS_MSYM:
6659 if (strcmp (name, ".msym") != 0)
6660 return FALSE;
6661 break;
6662 case SHT_MIPS_CONFLICT:
6663 if (strcmp (name, ".conflict") != 0)
6664 return FALSE;
6665 break;
6666 case SHT_MIPS_GPTAB:
6667 if (! CONST_STRNEQ (name, ".gptab."))
6668 return FALSE;
6669 break;
6670 case SHT_MIPS_UCODE:
6671 if (strcmp (name, ".ucode") != 0)
6672 return FALSE;
6673 break;
6674 case SHT_MIPS_DEBUG:
6675 if (strcmp (name, ".mdebug") != 0)
6676 return FALSE;
6677 flags = SEC_DEBUGGING;
6678 break;
6679 case SHT_MIPS_REGINFO:
6680 if (strcmp (name, ".reginfo") != 0
6681 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6682 return FALSE;
6683 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6684 break;
6685 case SHT_MIPS_IFACE:
6686 if (strcmp (name, ".MIPS.interfaces") != 0)
6687 return FALSE;
6688 break;
6689 case SHT_MIPS_CONTENT:
6690 if (! CONST_STRNEQ (name, ".MIPS.content"))
6691 return FALSE;
6692 break;
6693 case SHT_MIPS_OPTIONS:
6694 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6695 return FALSE;
6696 break;
6697 case SHT_MIPS_DWARF:
6698 if (! CONST_STRNEQ (name, ".debug_")
6699 && ! CONST_STRNEQ (name, ".zdebug_"))
6700 return FALSE;
6701 break;
6702 case SHT_MIPS_SYMBOL_LIB:
6703 if (strcmp (name, ".MIPS.symlib") != 0)
6704 return FALSE;
6705 break;
6706 case SHT_MIPS_EVENTS:
6707 if (! CONST_STRNEQ (name, ".MIPS.events")
6708 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6709 return FALSE;
6710 break;
6711 default:
6712 break;
6713 }
6714
6715 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6716 return FALSE;
6717
6718 if (flags)
6719 {
6720 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6721 (bfd_get_section_flags (abfd,
6722 hdr->bfd_section)
6723 | flags)))
6724 return FALSE;
6725 }
6726
6727 /* FIXME: We should record sh_info for a .gptab section. */
6728
6729 /* For a .reginfo section, set the gp value in the tdata information
6730 from the contents of this section. We need the gp value while
6731 processing relocs, so we just get it now. The .reginfo section
6732 is not used in the 64-bit MIPS ELF ABI. */
6733 if (hdr->sh_type == SHT_MIPS_REGINFO)
6734 {
6735 Elf32_External_RegInfo ext;
6736 Elf32_RegInfo s;
6737
6738 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6739 &ext, 0, sizeof ext))
6740 return FALSE;
6741 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6742 elf_gp (abfd) = s.ri_gp_value;
6743 }
6744
6745 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6746 set the gp value based on what we find. We may see both
6747 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6748 they should agree. */
6749 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6750 {
6751 bfd_byte *contents, *l, *lend;
6752
6753 contents = bfd_malloc (hdr->sh_size);
6754 if (contents == NULL)
6755 return FALSE;
6756 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6757 0, hdr->sh_size))
6758 {
6759 free (contents);
6760 return FALSE;
6761 }
6762 l = contents;
6763 lend = contents + hdr->sh_size;
6764 while (l + sizeof (Elf_External_Options) <= lend)
6765 {
6766 Elf_Internal_Options intopt;
6767
6768 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6769 &intopt);
6770 if (intopt.size < sizeof (Elf_External_Options))
6771 {
6772 (*_bfd_error_handler)
6773 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6774 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6775 break;
6776 }
6777 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6778 {
6779 Elf64_Internal_RegInfo intreg;
6780
6781 bfd_mips_elf64_swap_reginfo_in
6782 (abfd,
6783 ((Elf64_External_RegInfo *)
6784 (l + sizeof (Elf_External_Options))),
6785 &intreg);
6786 elf_gp (abfd) = intreg.ri_gp_value;
6787 }
6788 else if (intopt.kind == ODK_REGINFO)
6789 {
6790 Elf32_RegInfo intreg;
6791
6792 bfd_mips_elf32_swap_reginfo_in
6793 (abfd,
6794 ((Elf32_External_RegInfo *)
6795 (l + sizeof (Elf_External_Options))),
6796 &intreg);
6797 elf_gp (abfd) = intreg.ri_gp_value;
6798 }
6799 l += intopt.size;
6800 }
6801 free (contents);
6802 }
6803
6804 return TRUE;
6805 }
6806
6807 /* Set the correct type for a MIPS ELF section. We do this by the
6808 section name, which is a hack, but ought to work. This routine is
6809 used by both the 32-bit and the 64-bit ABI. */
6810
6811 bfd_boolean
6812 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6813 {
6814 const char *name = bfd_get_section_name (abfd, sec);
6815
6816 if (strcmp (name, ".liblist") == 0)
6817 {
6818 hdr->sh_type = SHT_MIPS_LIBLIST;
6819 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6820 /* The sh_link field is set in final_write_processing. */
6821 }
6822 else if (strcmp (name, ".conflict") == 0)
6823 hdr->sh_type = SHT_MIPS_CONFLICT;
6824 else if (CONST_STRNEQ (name, ".gptab."))
6825 {
6826 hdr->sh_type = SHT_MIPS_GPTAB;
6827 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6828 /* The sh_info field is set in final_write_processing. */
6829 }
6830 else if (strcmp (name, ".ucode") == 0)
6831 hdr->sh_type = SHT_MIPS_UCODE;
6832 else if (strcmp (name, ".mdebug") == 0)
6833 {
6834 hdr->sh_type = SHT_MIPS_DEBUG;
6835 /* In a shared object on IRIX 5.3, the .mdebug section has an
6836 entsize of 0. FIXME: Does this matter? */
6837 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6838 hdr->sh_entsize = 0;
6839 else
6840 hdr->sh_entsize = 1;
6841 }
6842 else if (strcmp (name, ".reginfo") == 0)
6843 {
6844 hdr->sh_type = SHT_MIPS_REGINFO;
6845 /* In a shared object on IRIX 5.3, the .reginfo section has an
6846 entsize of 0x18. FIXME: Does this matter? */
6847 if (SGI_COMPAT (abfd))
6848 {
6849 if ((abfd->flags & DYNAMIC) != 0)
6850 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6851 else
6852 hdr->sh_entsize = 1;
6853 }
6854 else
6855 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6856 }
6857 else if (SGI_COMPAT (abfd)
6858 && (strcmp (name, ".hash") == 0
6859 || strcmp (name, ".dynamic") == 0
6860 || strcmp (name, ".dynstr") == 0))
6861 {
6862 if (SGI_COMPAT (abfd))
6863 hdr->sh_entsize = 0;
6864 #if 0
6865 /* This isn't how the IRIX6 linker behaves. */
6866 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6867 #endif
6868 }
6869 else if (strcmp (name, ".got") == 0
6870 || strcmp (name, ".srdata") == 0
6871 || strcmp (name, ".sdata") == 0
6872 || strcmp (name, ".sbss") == 0
6873 || strcmp (name, ".lit4") == 0
6874 || strcmp (name, ".lit8") == 0)
6875 hdr->sh_flags |= SHF_MIPS_GPREL;
6876 else if (strcmp (name, ".MIPS.interfaces") == 0)
6877 {
6878 hdr->sh_type = SHT_MIPS_IFACE;
6879 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6880 }
6881 else if (CONST_STRNEQ (name, ".MIPS.content"))
6882 {
6883 hdr->sh_type = SHT_MIPS_CONTENT;
6884 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6885 /* The sh_info field is set in final_write_processing. */
6886 }
6887 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6888 {
6889 hdr->sh_type = SHT_MIPS_OPTIONS;
6890 hdr->sh_entsize = 1;
6891 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6892 }
6893 else if (CONST_STRNEQ (name, ".debug_")
6894 || CONST_STRNEQ (name, ".zdebug_"))
6895 {
6896 hdr->sh_type = SHT_MIPS_DWARF;
6897
6898 /* Irix facilities such as libexc expect a single .debug_frame
6899 per executable, the system ones have NOSTRIP set and the linker
6900 doesn't merge sections with different flags so ... */
6901 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6902 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6903 }
6904 else if (strcmp (name, ".MIPS.symlib") == 0)
6905 {
6906 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6907 /* The sh_link and sh_info fields are set in
6908 final_write_processing. */
6909 }
6910 else if (CONST_STRNEQ (name, ".MIPS.events")
6911 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6912 {
6913 hdr->sh_type = SHT_MIPS_EVENTS;
6914 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6915 /* The sh_link field is set in final_write_processing. */
6916 }
6917 else if (strcmp (name, ".msym") == 0)
6918 {
6919 hdr->sh_type = SHT_MIPS_MSYM;
6920 hdr->sh_flags |= SHF_ALLOC;
6921 hdr->sh_entsize = 8;
6922 }
6923
6924 /* The generic elf_fake_sections will set up REL_HDR using the default
6925 kind of relocations. We used to set up a second header for the
6926 non-default kind of relocations here, but only NewABI would use
6927 these, and the IRIX ld doesn't like resulting empty RELA sections.
6928 Thus we create those header only on demand now. */
6929
6930 return TRUE;
6931 }
6932
6933 /* Given a BFD section, try to locate the corresponding ELF section
6934 index. This is used by both the 32-bit and the 64-bit ABI.
6935 Actually, it's not clear to me that the 64-bit ABI supports these,
6936 but for non-PIC objects we will certainly want support for at least
6937 the .scommon section. */
6938
6939 bfd_boolean
6940 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6941 asection *sec, int *retval)
6942 {
6943 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6944 {
6945 *retval = SHN_MIPS_SCOMMON;
6946 return TRUE;
6947 }
6948 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6949 {
6950 *retval = SHN_MIPS_ACOMMON;
6951 return TRUE;
6952 }
6953 return FALSE;
6954 }
6955 \f
6956 /* Hook called by the linker routine which adds symbols from an object
6957 file. We must handle the special MIPS section numbers here. */
6958
6959 bfd_boolean
6960 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6961 Elf_Internal_Sym *sym, const char **namep,
6962 flagword *flagsp ATTRIBUTE_UNUSED,
6963 asection **secp, bfd_vma *valp)
6964 {
6965 if (SGI_COMPAT (abfd)
6966 && (abfd->flags & DYNAMIC) != 0
6967 && strcmp (*namep, "_rld_new_interface") == 0)
6968 {
6969 /* Skip IRIX5 rld entry name. */
6970 *namep = NULL;
6971 return TRUE;
6972 }
6973
6974 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6975 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6976 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6977 a magic symbol resolved by the linker, we ignore this bogus definition
6978 of _gp_disp. New ABI objects do not suffer from this problem so this
6979 is not done for them. */
6980 if (!NEWABI_P(abfd)
6981 && (sym->st_shndx == SHN_ABS)
6982 && (strcmp (*namep, "_gp_disp") == 0))
6983 {
6984 *namep = NULL;
6985 return TRUE;
6986 }
6987
6988 switch (sym->st_shndx)
6989 {
6990 case SHN_COMMON:
6991 /* Common symbols less than the GP size are automatically
6992 treated as SHN_MIPS_SCOMMON symbols. */
6993 if (sym->st_size > elf_gp_size (abfd)
6994 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6995 || IRIX_COMPAT (abfd) == ict_irix6)
6996 break;
6997 /* Fall through. */
6998 case SHN_MIPS_SCOMMON:
6999 *secp = bfd_make_section_old_way (abfd, ".scommon");
7000 (*secp)->flags |= SEC_IS_COMMON;
7001 *valp = sym->st_size;
7002 break;
7003
7004 case SHN_MIPS_TEXT:
7005 /* This section is used in a shared object. */
7006 if (elf_tdata (abfd)->elf_text_section == NULL)
7007 {
7008 asymbol *elf_text_symbol;
7009 asection *elf_text_section;
7010 bfd_size_type amt = sizeof (asection);
7011
7012 elf_text_section = bfd_zalloc (abfd, amt);
7013 if (elf_text_section == NULL)
7014 return FALSE;
7015
7016 amt = sizeof (asymbol);
7017 elf_text_symbol = bfd_zalloc (abfd, amt);
7018 if (elf_text_symbol == NULL)
7019 return FALSE;
7020
7021 /* Initialize the section. */
7022
7023 elf_tdata (abfd)->elf_text_section = elf_text_section;
7024 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7025
7026 elf_text_section->symbol = elf_text_symbol;
7027 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7028
7029 elf_text_section->name = ".text";
7030 elf_text_section->flags = SEC_NO_FLAGS;
7031 elf_text_section->output_section = NULL;
7032 elf_text_section->owner = abfd;
7033 elf_text_symbol->name = ".text";
7034 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7035 elf_text_symbol->section = elf_text_section;
7036 }
7037 /* This code used to do *secp = bfd_und_section_ptr if
7038 info->shared. I don't know why, and that doesn't make sense,
7039 so I took it out. */
7040 *secp = elf_tdata (abfd)->elf_text_section;
7041 break;
7042
7043 case SHN_MIPS_ACOMMON:
7044 /* Fall through. XXX Can we treat this as allocated data? */
7045 case SHN_MIPS_DATA:
7046 /* This section is used in a shared object. */
7047 if (elf_tdata (abfd)->elf_data_section == NULL)
7048 {
7049 asymbol *elf_data_symbol;
7050 asection *elf_data_section;
7051 bfd_size_type amt = sizeof (asection);
7052
7053 elf_data_section = bfd_zalloc (abfd, amt);
7054 if (elf_data_section == NULL)
7055 return FALSE;
7056
7057 amt = sizeof (asymbol);
7058 elf_data_symbol = bfd_zalloc (abfd, amt);
7059 if (elf_data_symbol == NULL)
7060 return FALSE;
7061
7062 /* Initialize the section. */
7063
7064 elf_tdata (abfd)->elf_data_section = elf_data_section;
7065 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7066
7067 elf_data_section->symbol = elf_data_symbol;
7068 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7069
7070 elf_data_section->name = ".data";
7071 elf_data_section->flags = SEC_NO_FLAGS;
7072 elf_data_section->output_section = NULL;
7073 elf_data_section->owner = abfd;
7074 elf_data_symbol->name = ".data";
7075 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7076 elf_data_symbol->section = elf_data_section;
7077 }
7078 /* This code used to do *secp = bfd_und_section_ptr if
7079 info->shared. I don't know why, and that doesn't make sense,
7080 so I took it out. */
7081 *secp = elf_tdata (abfd)->elf_data_section;
7082 break;
7083
7084 case SHN_MIPS_SUNDEFINED:
7085 *secp = bfd_und_section_ptr;
7086 break;
7087 }
7088
7089 if (SGI_COMPAT (abfd)
7090 && ! info->shared
7091 && info->output_bfd->xvec == abfd->xvec
7092 && strcmp (*namep, "__rld_obj_head") == 0)
7093 {
7094 struct elf_link_hash_entry *h;
7095 struct bfd_link_hash_entry *bh;
7096
7097 /* Mark __rld_obj_head as dynamic. */
7098 bh = NULL;
7099 if (! (_bfd_generic_link_add_one_symbol
7100 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7101 get_elf_backend_data (abfd)->collect, &bh)))
7102 return FALSE;
7103
7104 h = (struct elf_link_hash_entry *) bh;
7105 h->non_elf = 0;
7106 h->def_regular = 1;
7107 h->type = STT_OBJECT;
7108
7109 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7110 return FALSE;
7111
7112 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7113 mips_elf_hash_table (info)->rld_symbol = h;
7114 }
7115
7116 /* If this is a mips16 text symbol, add 1 to the value to make it
7117 odd. This will cause something like .word SYM to come up with
7118 the right value when it is loaded into the PC. */
7119 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7120 ++*valp;
7121
7122 return TRUE;
7123 }
7124
7125 /* This hook function is called before the linker writes out a global
7126 symbol. We mark symbols as small common if appropriate. This is
7127 also where we undo the increment of the value for a mips16 symbol. */
7128
7129 int
7130 _bfd_mips_elf_link_output_symbol_hook
7131 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7132 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7133 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7134 {
7135 /* If we see a common symbol, which implies a relocatable link, then
7136 if a symbol was small common in an input file, mark it as small
7137 common in the output file. */
7138 if (sym->st_shndx == SHN_COMMON
7139 && strcmp (input_sec->name, ".scommon") == 0)
7140 sym->st_shndx = SHN_MIPS_SCOMMON;
7141
7142 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7143 sym->st_value &= ~1;
7144
7145 return 1;
7146 }
7147 \f
7148 /* Functions for the dynamic linker. */
7149
7150 /* Create dynamic sections when linking against a dynamic object. */
7151
7152 bfd_boolean
7153 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7154 {
7155 struct elf_link_hash_entry *h;
7156 struct bfd_link_hash_entry *bh;
7157 flagword flags;
7158 register asection *s;
7159 const char * const *namep;
7160 struct mips_elf_link_hash_table *htab;
7161
7162 htab = mips_elf_hash_table (info);
7163 BFD_ASSERT (htab != NULL);
7164
7165 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7166 | SEC_LINKER_CREATED | SEC_READONLY);
7167
7168 /* The psABI requires a read-only .dynamic section, but the VxWorks
7169 EABI doesn't. */
7170 if (!htab->is_vxworks)
7171 {
7172 s = bfd_get_linker_section (abfd, ".dynamic");
7173 if (s != NULL)
7174 {
7175 if (! bfd_set_section_flags (abfd, s, flags))
7176 return FALSE;
7177 }
7178 }
7179
7180 /* We need to create .got section. */
7181 if (!mips_elf_create_got_section (abfd, info))
7182 return FALSE;
7183
7184 if (! mips_elf_rel_dyn_section (info, TRUE))
7185 return FALSE;
7186
7187 /* Create .stub section. */
7188 s = bfd_make_section_anyway_with_flags (abfd,
7189 MIPS_ELF_STUB_SECTION_NAME (abfd),
7190 flags | SEC_CODE);
7191 if (s == NULL
7192 || ! bfd_set_section_alignment (abfd, s,
7193 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7194 return FALSE;
7195 htab->sstubs = s;
7196
7197 if (!mips_elf_hash_table (info)->use_rld_obj_head
7198 && !info->shared
7199 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7200 {
7201 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7202 flags &~ (flagword) SEC_READONLY);
7203 if (s == NULL
7204 || ! bfd_set_section_alignment (abfd, s,
7205 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7206 return FALSE;
7207 }
7208
7209 /* On IRIX5, we adjust add some additional symbols and change the
7210 alignments of several sections. There is no ABI documentation
7211 indicating that this is necessary on IRIX6, nor any evidence that
7212 the linker takes such action. */
7213 if (IRIX_COMPAT (abfd) == ict_irix5)
7214 {
7215 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7216 {
7217 bh = NULL;
7218 if (! (_bfd_generic_link_add_one_symbol
7219 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7220 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7221 return FALSE;
7222
7223 h = (struct elf_link_hash_entry *) bh;
7224 h->non_elf = 0;
7225 h->def_regular = 1;
7226 h->type = STT_SECTION;
7227
7228 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7229 return FALSE;
7230 }
7231
7232 /* We need to create a .compact_rel section. */
7233 if (SGI_COMPAT (abfd))
7234 {
7235 if (!mips_elf_create_compact_rel_section (abfd, info))
7236 return FALSE;
7237 }
7238
7239 /* Change alignments of some sections. */
7240 s = bfd_get_linker_section (abfd, ".hash");
7241 if (s != NULL)
7242 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7243 s = bfd_get_linker_section (abfd, ".dynsym");
7244 if (s != NULL)
7245 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7246 s = bfd_get_linker_section (abfd, ".dynstr");
7247 if (s != NULL)
7248 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7249 /* ??? */
7250 s = bfd_get_section_by_name (abfd, ".reginfo");
7251 if (s != NULL)
7252 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7253 s = bfd_get_linker_section (abfd, ".dynamic");
7254 if (s != NULL)
7255 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7256 }
7257
7258 if (!info->shared)
7259 {
7260 const char *name;
7261
7262 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7263 bh = NULL;
7264 if (!(_bfd_generic_link_add_one_symbol
7265 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7266 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7267 return FALSE;
7268
7269 h = (struct elf_link_hash_entry *) bh;
7270 h->non_elf = 0;
7271 h->def_regular = 1;
7272 h->type = STT_SECTION;
7273
7274 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7275 return FALSE;
7276
7277 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7278 {
7279 /* __rld_map is a four byte word located in the .data section
7280 and is filled in by the rtld to contain a pointer to
7281 the _r_debug structure. Its symbol value will be set in
7282 _bfd_mips_elf_finish_dynamic_symbol. */
7283 s = bfd_get_linker_section (abfd, ".rld_map");
7284 BFD_ASSERT (s != NULL);
7285
7286 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7287 bh = NULL;
7288 if (!(_bfd_generic_link_add_one_symbol
7289 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7290 get_elf_backend_data (abfd)->collect, &bh)))
7291 return FALSE;
7292
7293 h = (struct elf_link_hash_entry *) bh;
7294 h->non_elf = 0;
7295 h->def_regular = 1;
7296 h->type = STT_OBJECT;
7297
7298 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7299 return FALSE;
7300 mips_elf_hash_table (info)->rld_symbol = h;
7301 }
7302 }
7303
7304 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7305 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7306 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7307 return FALSE;
7308
7309 /* Cache the sections created above. */
7310 htab->splt = bfd_get_linker_section (abfd, ".plt");
7311 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7312 if (htab->is_vxworks)
7313 {
7314 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7315 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7316 }
7317 else
7318 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7319 if (!htab->sdynbss
7320 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7321 || !htab->srelplt
7322 || !htab->splt)
7323 abort ();
7324
7325 if (htab->is_vxworks)
7326 {
7327 /* Do the usual VxWorks handling. */
7328 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7329 return FALSE;
7330
7331 /* Work out the PLT sizes. */
7332 if (info->shared)
7333 {
7334 htab->plt_header_size
7335 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7336 htab->plt_entry_size
7337 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7338 }
7339 else
7340 {
7341 htab->plt_header_size
7342 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7343 htab->plt_entry_size
7344 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7345 }
7346 }
7347 else if (!info->shared)
7348 {
7349 /* All variants of the plt0 entry are the same size. */
7350 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7351 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7352 }
7353
7354 return TRUE;
7355 }
7356 \f
7357 /* Return true if relocation REL against section SEC is a REL rather than
7358 RELA relocation. RELOCS is the first relocation in the section and
7359 ABFD is the bfd that contains SEC. */
7360
7361 static bfd_boolean
7362 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7363 const Elf_Internal_Rela *relocs,
7364 const Elf_Internal_Rela *rel)
7365 {
7366 Elf_Internal_Shdr *rel_hdr;
7367 const struct elf_backend_data *bed;
7368
7369 /* To determine which flavor of relocation this is, we depend on the
7370 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7371 rel_hdr = elf_section_data (sec)->rel.hdr;
7372 if (rel_hdr == NULL)
7373 return FALSE;
7374 bed = get_elf_backend_data (abfd);
7375 return ((size_t) (rel - relocs)
7376 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7377 }
7378
7379 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7380 HOWTO is the relocation's howto and CONTENTS points to the contents
7381 of the section that REL is against. */
7382
7383 static bfd_vma
7384 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7385 reloc_howto_type *howto, bfd_byte *contents)
7386 {
7387 bfd_byte *location;
7388 unsigned int r_type;
7389 bfd_vma addend;
7390
7391 r_type = ELF_R_TYPE (abfd, rel->r_info);
7392 location = contents + rel->r_offset;
7393
7394 /* Get the addend, which is stored in the input file. */
7395 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7396 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7397 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7398
7399 return addend & howto->src_mask;
7400 }
7401
7402 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7403 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7404 and update *ADDEND with the final addend. Return true on success
7405 or false if the LO16 could not be found. RELEND is the exclusive
7406 upper bound on the relocations for REL's section. */
7407
7408 static bfd_boolean
7409 mips_elf_add_lo16_rel_addend (bfd *abfd,
7410 const Elf_Internal_Rela *rel,
7411 const Elf_Internal_Rela *relend,
7412 bfd_byte *contents, bfd_vma *addend)
7413 {
7414 unsigned int r_type, lo16_type;
7415 const Elf_Internal_Rela *lo16_relocation;
7416 reloc_howto_type *lo16_howto;
7417 bfd_vma l;
7418
7419 r_type = ELF_R_TYPE (abfd, rel->r_info);
7420 if (mips16_reloc_p (r_type))
7421 lo16_type = R_MIPS16_LO16;
7422 else if (micromips_reloc_p (r_type))
7423 lo16_type = R_MICROMIPS_LO16;
7424 else
7425 lo16_type = R_MIPS_LO16;
7426
7427 /* The combined value is the sum of the HI16 addend, left-shifted by
7428 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7429 code does a `lui' of the HI16 value, and then an `addiu' of the
7430 LO16 value.)
7431
7432 Scan ahead to find a matching LO16 relocation.
7433
7434 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7435 be immediately following. However, for the IRIX6 ABI, the next
7436 relocation may be a composed relocation consisting of several
7437 relocations for the same address. In that case, the R_MIPS_LO16
7438 relocation may occur as one of these. We permit a similar
7439 extension in general, as that is useful for GCC.
7440
7441 In some cases GCC dead code elimination removes the LO16 but keeps
7442 the corresponding HI16. This is strictly speaking a violation of
7443 the ABI but not immediately harmful. */
7444 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7445 if (lo16_relocation == NULL)
7446 return FALSE;
7447
7448 /* Obtain the addend kept there. */
7449 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7450 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7451
7452 l <<= lo16_howto->rightshift;
7453 l = _bfd_mips_elf_sign_extend (l, 16);
7454
7455 *addend <<= 16;
7456 *addend += l;
7457 return TRUE;
7458 }
7459
7460 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7461 store the contents in *CONTENTS on success. Assume that *CONTENTS
7462 already holds the contents if it is nonull on entry. */
7463
7464 static bfd_boolean
7465 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7466 {
7467 if (*contents)
7468 return TRUE;
7469
7470 /* Get cached copy if it exists. */
7471 if (elf_section_data (sec)->this_hdr.contents != NULL)
7472 {
7473 *contents = elf_section_data (sec)->this_hdr.contents;
7474 return TRUE;
7475 }
7476
7477 return bfd_malloc_and_get_section (abfd, sec, contents);
7478 }
7479
7480 /* Look through the relocs for a section during the first phase, and
7481 allocate space in the global offset table. */
7482
7483 bfd_boolean
7484 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7485 asection *sec, const Elf_Internal_Rela *relocs)
7486 {
7487 const char *name;
7488 bfd *dynobj;
7489 Elf_Internal_Shdr *symtab_hdr;
7490 struct elf_link_hash_entry **sym_hashes;
7491 size_t extsymoff;
7492 const Elf_Internal_Rela *rel;
7493 const Elf_Internal_Rela *rel_end;
7494 asection *sreloc;
7495 const struct elf_backend_data *bed;
7496 struct mips_elf_link_hash_table *htab;
7497 bfd_byte *contents;
7498 bfd_vma addend;
7499 reloc_howto_type *howto;
7500
7501 if (info->relocatable)
7502 return TRUE;
7503
7504 htab = mips_elf_hash_table (info);
7505 BFD_ASSERT (htab != NULL);
7506
7507 dynobj = elf_hash_table (info)->dynobj;
7508 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7509 sym_hashes = elf_sym_hashes (abfd);
7510 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7511
7512 bed = get_elf_backend_data (abfd);
7513 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7514
7515 /* Check for the mips16 stub sections. */
7516
7517 name = bfd_get_section_name (abfd, sec);
7518 if (FN_STUB_P (name))
7519 {
7520 unsigned long r_symndx;
7521
7522 /* Look at the relocation information to figure out which symbol
7523 this is for. */
7524
7525 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7526 if (r_symndx == 0)
7527 {
7528 (*_bfd_error_handler)
7529 (_("%B: Warning: cannot determine the target function for"
7530 " stub section `%s'"),
7531 abfd, name);
7532 bfd_set_error (bfd_error_bad_value);
7533 return FALSE;
7534 }
7535
7536 if (r_symndx < extsymoff
7537 || sym_hashes[r_symndx - extsymoff] == NULL)
7538 {
7539 asection *o;
7540
7541 /* This stub is for a local symbol. This stub will only be
7542 needed if there is some relocation in this BFD, other
7543 than a 16 bit function call, which refers to this symbol. */
7544 for (o = abfd->sections; o != NULL; o = o->next)
7545 {
7546 Elf_Internal_Rela *sec_relocs;
7547 const Elf_Internal_Rela *r, *rend;
7548
7549 /* We can ignore stub sections when looking for relocs. */
7550 if ((o->flags & SEC_RELOC) == 0
7551 || o->reloc_count == 0
7552 || section_allows_mips16_refs_p (o))
7553 continue;
7554
7555 sec_relocs
7556 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7557 info->keep_memory);
7558 if (sec_relocs == NULL)
7559 return FALSE;
7560
7561 rend = sec_relocs + o->reloc_count;
7562 for (r = sec_relocs; r < rend; r++)
7563 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7564 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7565 break;
7566
7567 if (elf_section_data (o)->relocs != sec_relocs)
7568 free (sec_relocs);
7569
7570 if (r < rend)
7571 break;
7572 }
7573
7574 if (o == NULL)
7575 {
7576 /* There is no non-call reloc for this stub, so we do
7577 not need it. Since this function is called before
7578 the linker maps input sections to output sections, we
7579 can easily discard it by setting the SEC_EXCLUDE
7580 flag. */
7581 sec->flags |= SEC_EXCLUDE;
7582 return TRUE;
7583 }
7584
7585 /* Record this stub in an array of local symbol stubs for
7586 this BFD. */
7587 if (elf_tdata (abfd)->local_stubs == NULL)
7588 {
7589 unsigned long symcount;
7590 asection **n;
7591 bfd_size_type amt;
7592
7593 if (elf_bad_symtab (abfd))
7594 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7595 else
7596 symcount = symtab_hdr->sh_info;
7597 amt = symcount * sizeof (asection *);
7598 n = bfd_zalloc (abfd, amt);
7599 if (n == NULL)
7600 return FALSE;
7601 elf_tdata (abfd)->local_stubs = n;
7602 }
7603
7604 sec->flags |= SEC_KEEP;
7605 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7606
7607 /* We don't need to set mips16_stubs_seen in this case.
7608 That flag is used to see whether we need to look through
7609 the global symbol table for stubs. We don't need to set
7610 it here, because we just have a local stub. */
7611 }
7612 else
7613 {
7614 struct mips_elf_link_hash_entry *h;
7615
7616 h = ((struct mips_elf_link_hash_entry *)
7617 sym_hashes[r_symndx - extsymoff]);
7618
7619 while (h->root.root.type == bfd_link_hash_indirect
7620 || h->root.root.type == bfd_link_hash_warning)
7621 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7622
7623 /* H is the symbol this stub is for. */
7624
7625 /* If we already have an appropriate stub for this function, we
7626 don't need another one, so we can discard this one. Since
7627 this function is called before the linker maps input sections
7628 to output sections, we can easily discard it by setting the
7629 SEC_EXCLUDE flag. */
7630 if (h->fn_stub != NULL)
7631 {
7632 sec->flags |= SEC_EXCLUDE;
7633 return TRUE;
7634 }
7635
7636 sec->flags |= SEC_KEEP;
7637 h->fn_stub = sec;
7638 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7639 }
7640 }
7641 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7642 {
7643 unsigned long r_symndx;
7644 struct mips_elf_link_hash_entry *h;
7645 asection **loc;
7646
7647 /* Look at the relocation information to figure out which symbol
7648 this is for. */
7649
7650 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7651 if (r_symndx == 0)
7652 {
7653 (*_bfd_error_handler)
7654 (_("%B: Warning: cannot determine the target function for"
7655 " stub section `%s'"),
7656 abfd, name);
7657 bfd_set_error (bfd_error_bad_value);
7658 return FALSE;
7659 }
7660
7661 if (r_symndx < extsymoff
7662 || sym_hashes[r_symndx - extsymoff] == NULL)
7663 {
7664 asection *o;
7665
7666 /* This stub is for a local symbol. This stub will only be
7667 needed if there is some relocation (R_MIPS16_26) in this BFD
7668 that refers to this symbol. */
7669 for (o = abfd->sections; o != NULL; o = o->next)
7670 {
7671 Elf_Internal_Rela *sec_relocs;
7672 const Elf_Internal_Rela *r, *rend;
7673
7674 /* We can ignore stub sections when looking for relocs. */
7675 if ((o->flags & SEC_RELOC) == 0
7676 || o->reloc_count == 0
7677 || section_allows_mips16_refs_p (o))
7678 continue;
7679
7680 sec_relocs
7681 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7682 info->keep_memory);
7683 if (sec_relocs == NULL)
7684 return FALSE;
7685
7686 rend = sec_relocs + o->reloc_count;
7687 for (r = sec_relocs; r < rend; r++)
7688 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7689 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7690 break;
7691
7692 if (elf_section_data (o)->relocs != sec_relocs)
7693 free (sec_relocs);
7694
7695 if (r < rend)
7696 break;
7697 }
7698
7699 if (o == NULL)
7700 {
7701 /* There is no non-call reloc for this stub, so we do
7702 not need it. Since this function is called before
7703 the linker maps input sections to output sections, we
7704 can easily discard it by setting the SEC_EXCLUDE
7705 flag. */
7706 sec->flags |= SEC_EXCLUDE;
7707 return TRUE;
7708 }
7709
7710 /* Record this stub in an array of local symbol call_stubs for
7711 this BFD. */
7712 if (elf_tdata (abfd)->local_call_stubs == NULL)
7713 {
7714 unsigned long symcount;
7715 asection **n;
7716 bfd_size_type amt;
7717
7718 if (elf_bad_symtab (abfd))
7719 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7720 else
7721 symcount = symtab_hdr->sh_info;
7722 amt = symcount * sizeof (asection *);
7723 n = bfd_zalloc (abfd, amt);
7724 if (n == NULL)
7725 return FALSE;
7726 elf_tdata (abfd)->local_call_stubs = n;
7727 }
7728
7729 sec->flags |= SEC_KEEP;
7730 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7731
7732 /* We don't need to set mips16_stubs_seen in this case.
7733 That flag is used to see whether we need to look through
7734 the global symbol table for stubs. We don't need to set
7735 it here, because we just have a local stub. */
7736 }
7737 else
7738 {
7739 h = ((struct mips_elf_link_hash_entry *)
7740 sym_hashes[r_symndx - extsymoff]);
7741
7742 /* H is the symbol this stub is for. */
7743
7744 if (CALL_FP_STUB_P (name))
7745 loc = &h->call_fp_stub;
7746 else
7747 loc = &h->call_stub;
7748
7749 /* If we already have an appropriate stub for this function, we
7750 don't need another one, so we can discard this one. Since
7751 this function is called before the linker maps input sections
7752 to output sections, we can easily discard it by setting the
7753 SEC_EXCLUDE flag. */
7754 if (*loc != NULL)
7755 {
7756 sec->flags |= SEC_EXCLUDE;
7757 return TRUE;
7758 }
7759
7760 sec->flags |= SEC_KEEP;
7761 *loc = sec;
7762 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7763 }
7764 }
7765
7766 sreloc = NULL;
7767 contents = NULL;
7768 for (rel = relocs; rel < rel_end; ++rel)
7769 {
7770 unsigned long r_symndx;
7771 unsigned int r_type;
7772 struct elf_link_hash_entry *h;
7773 bfd_boolean can_make_dynamic_p;
7774
7775 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7776 r_type = ELF_R_TYPE (abfd, rel->r_info);
7777
7778 if (r_symndx < extsymoff)
7779 h = NULL;
7780 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7781 {
7782 (*_bfd_error_handler)
7783 (_("%B: Malformed reloc detected for section %s"),
7784 abfd, name);
7785 bfd_set_error (bfd_error_bad_value);
7786 return FALSE;
7787 }
7788 else
7789 {
7790 h = sym_hashes[r_symndx - extsymoff];
7791 while (h != NULL
7792 && (h->root.type == bfd_link_hash_indirect
7793 || h->root.type == bfd_link_hash_warning))
7794 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7795 }
7796
7797 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7798 relocation into a dynamic one. */
7799 can_make_dynamic_p = FALSE;
7800 switch (r_type)
7801 {
7802 case R_MIPS_GOT16:
7803 case R_MIPS_CALL16:
7804 case R_MIPS_CALL_HI16:
7805 case R_MIPS_CALL_LO16:
7806 case R_MIPS_GOT_HI16:
7807 case R_MIPS_GOT_LO16:
7808 case R_MIPS_GOT_PAGE:
7809 case R_MIPS_GOT_OFST:
7810 case R_MIPS_GOT_DISP:
7811 case R_MIPS_TLS_GOTTPREL:
7812 case R_MIPS_TLS_GD:
7813 case R_MIPS_TLS_LDM:
7814 case R_MIPS16_GOT16:
7815 case R_MIPS16_CALL16:
7816 case R_MIPS16_TLS_GOTTPREL:
7817 case R_MIPS16_TLS_GD:
7818 case R_MIPS16_TLS_LDM:
7819 case R_MICROMIPS_GOT16:
7820 case R_MICROMIPS_CALL16:
7821 case R_MICROMIPS_CALL_HI16:
7822 case R_MICROMIPS_CALL_LO16:
7823 case R_MICROMIPS_GOT_HI16:
7824 case R_MICROMIPS_GOT_LO16:
7825 case R_MICROMIPS_GOT_PAGE:
7826 case R_MICROMIPS_GOT_OFST:
7827 case R_MICROMIPS_GOT_DISP:
7828 case R_MICROMIPS_TLS_GOTTPREL:
7829 case R_MICROMIPS_TLS_GD:
7830 case R_MICROMIPS_TLS_LDM:
7831 if (dynobj == NULL)
7832 elf_hash_table (info)->dynobj = dynobj = abfd;
7833 if (!mips_elf_create_got_section (dynobj, info))
7834 return FALSE;
7835 if (htab->is_vxworks && !info->shared)
7836 {
7837 (*_bfd_error_handler)
7838 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7839 abfd, (unsigned long) rel->r_offset);
7840 bfd_set_error (bfd_error_bad_value);
7841 return FALSE;
7842 }
7843 break;
7844
7845 /* This is just a hint; it can safely be ignored. Don't set
7846 has_static_relocs for the corresponding symbol. */
7847 case R_MIPS_JALR:
7848 case R_MICROMIPS_JALR:
7849 break;
7850
7851 case R_MIPS_32:
7852 case R_MIPS_REL32:
7853 case R_MIPS_64:
7854 /* In VxWorks executables, references to external symbols
7855 must be handled using copy relocs or PLT entries; it is not
7856 possible to convert this relocation into a dynamic one.
7857
7858 For executables that use PLTs and copy-relocs, we have a
7859 choice between converting the relocation into a dynamic
7860 one or using copy relocations or PLT entries. It is
7861 usually better to do the former, unless the relocation is
7862 against a read-only section. */
7863 if ((info->shared
7864 || (h != NULL
7865 && !htab->is_vxworks
7866 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7867 && !(!info->nocopyreloc
7868 && !PIC_OBJECT_P (abfd)
7869 && MIPS_ELF_READONLY_SECTION (sec))))
7870 && (sec->flags & SEC_ALLOC) != 0)
7871 {
7872 can_make_dynamic_p = TRUE;
7873 if (dynobj == NULL)
7874 elf_hash_table (info)->dynobj = dynobj = abfd;
7875 break;
7876 }
7877 /* For sections that are not SEC_ALLOC a copy reloc would be
7878 output if possible (implying questionable semantics for
7879 read-only data objects) or otherwise the final link would
7880 fail as ld.so will not process them and could not therefore
7881 handle any outstanding dynamic relocations.
7882
7883 For such sections that are also SEC_DEBUGGING, we can avoid
7884 these problems by simply ignoring any relocs as these
7885 sections have a predefined use and we know it is safe to do
7886 so.
7887
7888 This is needed in cases such as a global symbol definition
7889 in a shared library causing a common symbol from an object
7890 file to be converted to an undefined reference. If that
7891 happens, then all the relocations against this symbol from
7892 SEC_DEBUGGING sections in the object file will resolve to
7893 nil. */
7894 if ((sec->flags & SEC_DEBUGGING) != 0)
7895 break;
7896 /* Fall through. */
7897
7898 default:
7899 /* Most static relocations require pointer equality, except
7900 for branches. */
7901 if (h)
7902 h->pointer_equality_needed = TRUE;
7903 /* Fall through. */
7904
7905 case R_MIPS_26:
7906 case R_MIPS_PC16:
7907 case R_MIPS16_26:
7908 case R_MICROMIPS_26_S1:
7909 case R_MICROMIPS_PC7_S1:
7910 case R_MICROMIPS_PC10_S1:
7911 case R_MICROMIPS_PC16_S1:
7912 case R_MICROMIPS_PC23_S2:
7913 if (h)
7914 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7915 break;
7916 }
7917
7918 if (h)
7919 {
7920 /* Relocations against the special VxWorks __GOTT_BASE__ and
7921 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7922 room for them in .rela.dyn. */
7923 if (is_gott_symbol (info, h))
7924 {
7925 if (sreloc == NULL)
7926 {
7927 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7928 if (sreloc == NULL)
7929 return FALSE;
7930 }
7931 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7932 if (MIPS_ELF_READONLY_SECTION (sec))
7933 /* We tell the dynamic linker that there are
7934 relocations against the text segment. */
7935 info->flags |= DF_TEXTREL;
7936 }
7937 }
7938 else if (call_lo16_reloc_p (r_type)
7939 || got_lo16_reloc_p (r_type)
7940 || got_disp_reloc_p (r_type)
7941 || (got16_reloc_p (r_type) && htab->is_vxworks))
7942 {
7943 /* We may need a local GOT entry for this relocation. We
7944 don't count R_MIPS_GOT_PAGE because we can estimate the
7945 maximum number of pages needed by looking at the size of
7946 the segment. Similar comments apply to R_MIPS*_GOT16 and
7947 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7948 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7949 R_MIPS_CALL_HI16 because these are always followed by an
7950 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7951 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7952 rel->r_addend, info, r_type))
7953 return FALSE;
7954 }
7955
7956 if (h != NULL
7957 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
7958 ELF_ST_IS_MIPS16 (h->other)))
7959 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7960
7961 switch (r_type)
7962 {
7963 case R_MIPS_CALL16:
7964 case R_MIPS16_CALL16:
7965 case R_MICROMIPS_CALL16:
7966 if (h == NULL)
7967 {
7968 (*_bfd_error_handler)
7969 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7970 abfd, (unsigned long) rel->r_offset);
7971 bfd_set_error (bfd_error_bad_value);
7972 return FALSE;
7973 }
7974 /* Fall through. */
7975
7976 case R_MIPS_CALL_HI16:
7977 case R_MIPS_CALL_LO16:
7978 case R_MICROMIPS_CALL_HI16:
7979 case R_MICROMIPS_CALL_LO16:
7980 if (h != NULL)
7981 {
7982 /* Make sure there is room in the regular GOT to hold the
7983 function's address. We may eliminate it in favour of
7984 a .got.plt entry later; see mips_elf_count_got_symbols. */
7985 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
7986 r_type))
7987 return FALSE;
7988
7989 /* We need a stub, not a plt entry for the undefined
7990 function. But we record it as if it needs plt. See
7991 _bfd_elf_adjust_dynamic_symbol. */
7992 h->needs_plt = 1;
7993 h->type = STT_FUNC;
7994 }
7995 break;
7996
7997 case R_MIPS_GOT_PAGE:
7998 case R_MICROMIPS_GOT_PAGE:
7999 /* If this is a global, overridable symbol, GOT_PAGE will
8000 decay to GOT_DISP, so we'll need a GOT entry for it. */
8001 if (h)
8002 {
8003 struct mips_elf_link_hash_entry *hmips =
8004 (struct mips_elf_link_hash_entry *) h;
8005
8006 /* This symbol is definitely not overridable. */
8007 if (hmips->root.def_regular
8008 && ! (info->shared && ! info->symbolic
8009 && ! hmips->root.forced_local))
8010 h = NULL;
8011 }
8012 /* Fall through. */
8013
8014 case R_MIPS16_GOT16:
8015 case R_MIPS_GOT16:
8016 case R_MIPS_GOT_HI16:
8017 case R_MIPS_GOT_LO16:
8018 case R_MICROMIPS_GOT16:
8019 case R_MICROMIPS_GOT_HI16:
8020 case R_MICROMIPS_GOT_LO16:
8021 if (!h || got_page_reloc_p (r_type))
8022 {
8023 /* This relocation needs (or may need, if h != NULL) a
8024 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8025 know for sure until we know whether the symbol is
8026 preemptible. */
8027 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8028 {
8029 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8030 return FALSE;
8031 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8032 addend = mips_elf_read_rel_addend (abfd, rel,
8033 howto, contents);
8034 if (got16_reloc_p (r_type))
8035 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8036 contents, &addend);
8037 else
8038 addend <<= howto->rightshift;
8039 }
8040 else
8041 addend = rel->r_addend;
8042 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8043 addend))
8044 return FALSE;
8045 }
8046 /* Fall through. */
8047
8048 case R_MIPS_GOT_DISP:
8049 case R_MICROMIPS_GOT_DISP:
8050 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8051 FALSE, r_type))
8052 return FALSE;
8053 break;
8054
8055 case R_MIPS_TLS_GOTTPREL:
8056 case R_MIPS16_TLS_GOTTPREL:
8057 case R_MICROMIPS_TLS_GOTTPREL:
8058 if (info->shared)
8059 info->flags |= DF_STATIC_TLS;
8060 /* Fall through */
8061
8062 case R_MIPS_TLS_LDM:
8063 case R_MIPS16_TLS_LDM:
8064 case R_MICROMIPS_TLS_LDM:
8065 if (tls_ldm_reloc_p (r_type))
8066 {
8067 r_symndx = STN_UNDEF;
8068 h = NULL;
8069 }
8070 /* Fall through */
8071
8072 case R_MIPS_TLS_GD:
8073 case R_MIPS16_TLS_GD:
8074 case R_MICROMIPS_TLS_GD:
8075 /* This symbol requires a global offset table entry, or two
8076 for TLS GD relocations. */
8077 if (h != NULL)
8078 {
8079 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8080 FALSE, r_type))
8081 return FALSE;
8082 }
8083 else
8084 {
8085 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8086 rel->r_addend,
8087 info, r_type))
8088 return FALSE;
8089 }
8090 break;
8091
8092 case R_MIPS_32:
8093 case R_MIPS_REL32:
8094 case R_MIPS_64:
8095 /* In VxWorks executables, references to external symbols
8096 are handled using copy relocs or PLT stubs, so there's
8097 no need to add a .rela.dyn entry for this relocation. */
8098 if (can_make_dynamic_p)
8099 {
8100 if (sreloc == NULL)
8101 {
8102 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8103 if (sreloc == NULL)
8104 return FALSE;
8105 }
8106 if (info->shared && h == NULL)
8107 {
8108 /* When creating a shared object, we must copy these
8109 reloc types into the output file as R_MIPS_REL32
8110 relocs. Make room for this reloc in .rel(a).dyn. */
8111 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8112 if (MIPS_ELF_READONLY_SECTION (sec))
8113 /* We tell the dynamic linker that there are
8114 relocations against the text segment. */
8115 info->flags |= DF_TEXTREL;
8116 }
8117 else
8118 {
8119 struct mips_elf_link_hash_entry *hmips;
8120
8121 /* For a shared object, we must copy this relocation
8122 unless the symbol turns out to be undefined and
8123 weak with non-default visibility, in which case
8124 it will be left as zero.
8125
8126 We could elide R_MIPS_REL32 for locally binding symbols
8127 in shared libraries, but do not yet do so.
8128
8129 For an executable, we only need to copy this
8130 reloc if the symbol is defined in a dynamic
8131 object. */
8132 hmips = (struct mips_elf_link_hash_entry *) h;
8133 ++hmips->possibly_dynamic_relocs;
8134 if (MIPS_ELF_READONLY_SECTION (sec))
8135 /* We need it to tell the dynamic linker if there
8136 are relocations against the text segment. */
8137 hmips->readonly_reloc = TRUE;
8138 }
8139 }
8140
8141 if (SGI_COMPAT (abfd))
8142 mips_elf_hash_table (info)->compact_rel_size +=
8143 sizeof (Elf32_External_crinfo);
8144 break;
8145
8146 case R_MIPS_26:
8147 case R_MIPS_GPREL16:
8148 case R_MIPS_LITERAL:
8149 case R_MIPS_GPREL32:
8150 case R_MICROMIPS_26_S1:
8151 case R_MICROMIPS_GPREL16:
8152 case R_MICROMIPS_LITERAL:
8153 case R_MICROMIPS_GPREL7_S2:
8154 if (SGI_COMPAT (abfd))
8155 mips_elf_hash_table (info)->compact_rel_size +=
8156 sizeof (Elf32_External_crinfo);
8157 break;
8158
8159 /* This relocation describes the C++ object vtable hierarchy.
8160 Reconstruct it for later use during GC. */
8161 case R_MIPS_GNU_VTINHERIT:
8162 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8163 return FALSE;
8164 break;
8165
8166 /* This relocation describes which C++ vtable entries are actually
8167 used. Record for later use during GC. */
8168 case R_MIPS_GNU_VTENTRY:
8169 BFD_ASSERT (h != NULL);
8170 if (h != NULL
8171 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8172 return FALSE;
8173 break;
8174
8175 default:
8176 break;
8177 }
8178
8179 /* We must not create a stub for a symbol that has relocations
8180 related to taking the function's address. This doesn't apply to
8181 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8182 a normal .got entry. */
8183 if (!htab->is_vxworks && h != NULL)
8184 switch (r_type)
8185 {
8186 default:
8187 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8188 break;
8189 case R_MIPS16_CALL16:
8190 case R_MIPS_CALL16:
8191 case R_MIPS_CALL_HI16:
8192 case R_MIPS_CALL_LO16:
8193 case R_MIPS_JALR:
8194 case R_MICROMIPS_CALL16:
8195 case R_MICROMIPS_CALL_HI16:
8196 case R_MICROMIPS_CALL_LO16:
8197 case R_MICROMIPS_JALR:
8198 break;
8199 }
8200
8201 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8202 if there is one. We only need to handle global symbols here;
8203 we decide whether to keep or delete stubs for local symbols
8204 when processing the stub's relocations. */
8205 if (h != NULL
8206 && !mips16_call_reloc_p (r_type)
8207 && !section_allows_mips16_refs_p (sec))
8208 {
8209 struct mips_elf_link_hash_entry *mh;
8210
8211 mh = (struct mips_elf_link_hash_entry *) h;
8212 mh->need_fn_stub = TRUE;
8213 }
8214
8215 /* Refuse some position-dependent relocations when creating a
8216 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8217 not PIC, but we can create dynamic relocations and the result
8218 will be fine. Also do not refuse R_MIPS_LO16, which can be
8219 combined with R_MIPS_GOT16. */
8220 if (info->shared)
8221 {
8222 switch (r_type)
8223 {
8224 case R_MIPS16_HI16:
8225 case R_MIPS_HI16:
8226 case R_MIPS_HIGHER:
8227 case R_MIPS_HIGHEST:
8228 case R_MICROMIPS_HI16:
8229 case R_MICROMIPS_HIGHER:
8230 case R_MICROMIPS_HIGHEST:
8231 /* Don't refuse a high part relocation if it's against
8232 no symbol (e.g. part of a compound relocation). */
8233 if (r_symndx == STN_UNDEF)
8234 break;
8235
8236 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8237 and has a special meaning. */
8238 if (!NEWABI_P (abfd) && h != NULL
8239 && strcmp (h->root.root.string, "_gp_disp") == 0)
8240 break;
8241
8242 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8243 if (is_gott_symbol (info, h))
8244 break;
8245
8246 /* FALLTHROUGH */
8247
8248 case R_MIPS16_26:
8249 case R_MIPS_26:
8250 case R_MICROMIPS_26_S1:
8251 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8252 (*_bfd_error_handler)
8253 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8254 abfd, howto->name,
8255 (h) ? h->root.root.string : "a local symbol");
8256 bfd_set_error (bfd_error_bad_value);
8257 return FALSE;
8258 default:
8259 break;
8260 }
8261 }
8262 }
8263
8264 return TRUE;
8265 }
8266 \f
8267 bfd_boolean
8268 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8269 struct bfd_link_info *link_info,
8270 bfd_boolean *again)
8271 {
8272 Elf_Internal_Rela *internal_relocs;
8273 Elf_Internal_Rela *irel, *irelend;
8274 Elf_Internal_Shdr *symtab_hdr;
8275 bfd_byte *contents = NULL;
8276 size_t extsymoff;
8277 bfd_boolean changed_contents = FALSE;
8278 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8279 Elf_Internal_Sym *isymbuf = NULL;
8280
8281 /* We are not currently changing any sizes, so only one pass. */
8282 *again = FALSE;
8283
8284 if (link_info->relocatable)
8285 return TRUE;
8286
8287 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8288 link_info->keep_memory);
8289 if (internal_relocs == NULL)
8290 return TRUE;
8291
8292 irelend = internal_relocs + sec->reloc_count
8293 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8294 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8295 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8296
8297 for (irel = internal_relocs; irel < irelend; irel++)
8298 {
8299 bfd_vma symval;
8300 bfd_signed_vma sym_offset;
8301 unsigned int r_type;
8302 unsigned long r_symndx;
8303 asection *sym_sec;
8304 unsigned long instruction;
8305
8306 /* Turn jalr into bgezal, and jr into beq, if they're marked
8307 with a JALR relocation, that indicate where they jump to.
8308 This saves some pipeline bubbles. */
8309 r_type = ELF_R_TYPE (abfd, irel->r_info);
8310 if (r_type != R_MIPS_JALR)
8311 continue;
8312
8313 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8314 /* Compute the address of the jump target. */
8315 if (r_symndx >= extsymoff)
8316 {
8317 struct mips_elf_link_hash_entry *h
8318 = ((struct mips_elf_link_hash_entry *)
8319 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8320
8321 while (h->root.root.type == bfd_link_hash_indirect
8322 || h->root.root.type == bfd_link_hash_warning)
8323 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8324
8325 /* If a symbol is undefined, or if it may be overridden,
8326 skip it. */
8327 if (! ((h->root.root.type == bfd_link_hash_defined
8328 || h->root.root.type == bfd_link_hash_defweak)
8329 && h->root.root.u.def.section)
8330 || (link_info->shared && ! link_info->symbolic
8331 && !h->root.forced_local))
8332 continue;
8333
8334 sym_sec = h->root.root.u.def.section;
8335 if (sym_sec->output_section)
8336 symval = (h->root.root.u.def.value
8337 + sym_sec->output_section->vma
8338 + sym_sec->output_offset);
8339 else
8340 symval = h->root.root.u.def.value;
8341 }
8342 else
8343 {
8344 Elf_Internal_Sym *isym;
8345
8346 /* Read this BFD's symbols if we haven't done so already. */
8347 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8348 {
8349 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8350 if (isymbuf == NULL)
8351 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8352 symtab_hdr->sh_info, 0,
8353 NULL, NULL, NULL);
8354 if (isymbuf == NULL)
8355 goto relax_return;
8356 }
8357
8358 isym = isymbuf + r_symndx;
8359 if (isym->st_shndx == SHN_UNDEF)
8360 continue;
8361 else if (isym->st_shndx == SHN_ABS)
8362 sym_sec = bfd_abs_section_ptr;
8363 else if (isym->st_shndx == SHN_COMMON)
8364 sym_sec = bfd_com_section_ptr;
8365 else
8366 sym_sec
8367 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8368 symval = isym->st_value
8369 + sym_sec->output_section->vma
8370 + sym_sec->output_offset;
8371 }
8372
8373 /* Compute branch offset, from delay slot of the jump to the
8374 branch target. */
8375 sym_offset = (symval + irel->r_addend)
8376 - (sec_start + irel->r_offset + 4);
8377
8378 /* Branch offset must be properly aligned. */
8379 if ((sym_offset & 3) != 0)
8380 continue;
8381
8382 sym_offset >>= 2;
8383
8384 /* Check that it's in range. */
8385 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8386 continue;
8387
8388 /* Get the section contents if we haven't done so already. */
8389 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8390 goto relax_return;
8391
8392 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8393
8394 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8395 if ((instruction & 0xfc1fffff) == 0x0000f809)
8396 instruction = 0x04110000;
8397 /* If it was jr <reg>, turn it into b <target>. */
8398 else if ((instruction & 0xfc1fffff) == 0x00000008)
8399 instruction = 0x10000000;
8400 else
8401 continue;
8402
8403 instruction |= (sym_offset & 0xffff);
8404 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8405 changed_contents = TRUE;
8406 }
8407
8408 if (contents != NULL
8409 && elf_section_data (sec)->this_hdr.contents != contents)
8410 {
8411 if (!changed_contents && !link_info->keep_memory)
8412 free (contents);
8413 else
8414 {
8415 /* Cache the section contents for elf_link_input_bfd. */
8416 elf_section_data (sec)->this_hdr.contents = contents;
8417 }
8418 }
8419 return TRUE;
8420
8421 relax_return:
8422 if (contents != NULL
8423 && elf_section_data (sec)->this_hdr.contents != contents)
8424 free (contents);
8425 return FALSE;
8426 }
8427 \f
8428 /* Allocate space for global sym dynamic relocs. */
8429
8430 static bfd_boolean
8431 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8432 {
8433 struct bfd_link_info *info = inf;
8434 bfd *dynobj;
8435 struct mips_elf_link_hash_entry *hmips;
8436 struct mips_elf_link_hash_table *htab;
8437
8438 htab = mips_elf_hash_table (info);
8439 BFD_ASSERT (htab != NULL);
8440
8441 dynobj = elf_hash_table (info)->dynobj;
8442 hmips = (struct mips_elf_link_hash_entry *) h;
8443
8444 /* VxWorks executables are handled elsewhere; we only need to
8445 allocate relocations in shared objects. */
8446 if (htab->is_vxworks && !info->shared)
8447 return TRUE;
8448
8449 /* Ignore indirect symbols. All relocations against such symbols
8450 will be redirected to the target symbol. */
8451 if (h->root.type == bfd_link_hash_indirect)
8452 return TRUE;
8453
8454 /* If this symbol is defined in a dynamic object, or we are creating
8455 a shared library, we will need to copy any R_MIPS_32 or
8456 R_MIPS_REL32 relocs against it into the output file. */
8457 if (! info->relocatable
8458 && hmips->possibly_dynamic_relocs != 0
8459 && (h->root.type == bfd_link_hash_defweak
8460 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8461 || info->shared))
8462 {
8463 bfd_boolean do_copy = TRUE;
8464
8465 if (h->root.type == bfd_link_hash_undefweak)
8466 {
8467 /* Do not copy relocations for undefined weak symbols with
8468 non-default visibility. */
8469 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8470 do_copy = FALSE;
8471
8472 /* Make sure undefined weak symbols are output as a dynamic
8473 symbol in PIEs. */
8474 else if (h->dynindx == -1 && !h->forced_local)
8475 {
8476 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8477 return FALSE;
8478 }
8479 }
8480
8481 if (do_copy)
8482 {
8483 /* Even though we don't directly need a GOT entry for this symbol,
8484 the SVR4 psABI requires it to have a dynamic symbol table
8485 index greater that DT_MIPS_GOTSYM if there are dynamic
8486 relocations against it.
8487
8488 VxWorks does not enforce the same mapping between the GOT
8489 and the symbol table, so the same requirement does not
8490 apply there. */
8491 if (!htab->is_vxworks)
8492 {
8493 if (hmips->global_got_area > GGA_RELOC_ONLY)
8494 hmips->global_got_area = GGA_RELOC_ONLY;
8495 hmips->got_only_for_calls = FALSE;
8496 }
8497
8498 mips_elf_allocate_dynamic_relocations
8499 (dynobj, info, hmips->possibly_dynamic_relocs);
8500 if (hmips->readonly_reloc)
8501 /* We tell the dynamic linker that there are relocations
8502 against the text segment. */
8503 info->flags |= DF_TEXTREL;
8504 }
8505 }
8506
8507 return TRUE;
8508 }
8509
8510 /* Adjust a symbol defined by a dynamic object and referenced by a
8511 regular object. The current definition is in some section of the
8512 dynamic object, but we're not including those sections. We have to
8513 change the definition to something the rest of the link can
8514 understand. */
8515
8516 bfd_boolean
8517 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8518 struct elf_link_hash_entry *h)
8519 {
8520 bfd *dynobj;
8521 struct mips_elf_link_hash_entry *hmips;
8522 struct mips_elf_link_hash_table *htab;
8523
8524 htab = mips_elf_hash_table (info);
8525 BFD_ASSERT (htab != NULL);
8526
8527 dynobj = elf_hash_table (info)->dynobj;
8528 hmips = (struct mips_elf_link_hash_entry *) h;
8529
8530 /* Make sure we know what is going on here. */
8531 BFD_ASSERT (dynobj != NULL
8532 && (h->needs_plt
8533 || h->u.weakdef != NULL
8534 || (h->def_dynamic
8535 && h->ref_regular
8536 && !h->def_regular)));
8537
8538 hmips = (struct mips_elf_link_hash_entry *) h;
8539
8540 /* If there are call relocations against an externally-defined symbol,
8541 see whether we can create a MIPS lazy-binding stub for it. We can
8542 only do this if all references to the function are through call
8543 relocations, and in that case, the traditional lazy-binding stubs
8544 are much more efficient than PLT entries.
8545
8546 Traditional stubs are only available on SVR4 psABI-based systems;
8547 VxWorks always uses PLTs instead. */
8548 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8549 {
8550 if (! elf_hash_table (info)->dynamic_sections_created)
8551 return TRUE;
8552
8553 /* If this symbol is not defined in a regular file, then set
8554 the symbol to the stub location. This is required to make
8555 function pointers compare as equal between the normal
8556 executable and the shared library. */
8557 if (!h->def_regular)
8558 {
8559 hmips->needs_lazy_stub = TRUE;
8560 htab->lazy_stub_count++;
8561 return TRUE;
8562 }
8563 }
8564 /* As above, VxWorks requires PLT entries for externally-defined
8565 functions that are only accessed through call relocations.
8566
8567 Both VxWorks and non-VxWorks targets also need PLT entries if there
8568 are static-only relocations against an externally-defined function.
8569 This can technically occur for shared libraries if there are
8570 branches to the symbol, although it is unlikely that this will be
8571 used in practice due to the short ranges involved. It can occur
8572 for any relative or absolute relocation in executables; in that
8573 case, the PLT entry becomes the function's canonical address. */
8574 else if (((h->needs_plt && !hmips->no_fn_stub)
8575 || (h->type == STT_FUNC && hmips->has_static_relocs))
8576 && htab->use_plts_and_copy_relocs
8577 && !SYMBOL_CALLS_LOCAL (info, h)
8578 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8579 && h->root.type == bfd_link_hash_undefweak))
8580 {
8581 /* If this is the first symbol to need a PLT entry, allocate room
8582 for the header. */
8583 if (htab->splt->size == 0)
8584 {
8585 BFD_ASSERT (htab->sgotplt->size == 0);
8586
8587 /* If we're using the PLT additions to the psABI, each PLT
8588 entry is 16 bytes and the PLT0 entry is 32 bytes.
8589 Encourage better cache usage by aligning. We do this
8590 lazily to avoid pessimizing traditional objects. */
8591 if (!htab->is_vxworks
8592 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8593 return FALSE;
8594
8595 /* Make sure that .got.plt is word-aligned. We do this lazily
8596 for the same reason as above. */
8597 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8598 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8599 return FALSE;
8600
8601 htab->splt->size += htab->plt_header_size;
8602
8603 /* On non-VxWorks targets, the first two entries in .got.plt
8604 are reserved. */
8605 if (!htab->is_vxworks)
8606 htab->sgotplt->size
8607 += get_elf_backend_data (dynobj)->got_header_size;
8608
8609 /* On VxWorks, also allocate room for the header's
8610 .rela.plt.unloaded entries. */
8611 if (htab->is_vxworks && !info->shared)
8612 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8613 }
8614
8615 /* Assign the next .plt entry to this symbol. */
8616 h->plt.offset = htab->splt->size;
8617 htab->splt->size += htab->plt_entry_size;
8618
8619 /* If the output file has no definition of the symbol, set the
8620 symbol's value to the address of the stub. */
8621 if (!info->shared && !h->def_regular)
8622 {
8623 h->root.u.def.section = htab->splt;
8624 h->root.u.def.value = h->plt.offset;
8625 /* For VxWorks, point at the PLT load stub rather than the
8626 lazy resolution stub; this stub will become the canonical
8627 function address. */
8628 if (htab->is_vxworks)
8629 h->root.u.def.value += 8;
8630 }
8631
8632 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8633 relocation. */
8634 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8635 htab->srelplt->size += (htab->is_vxworks
8636 ? MIPS_ELF_RELA_SIZE (dynobj)
8637 : MIPS_ELF_REL_SIZE (dynobj));
8638
8639 /* Make room for the .rela.plt.unloaded relocations. */
8640 if (htab->is_vxworks && !info->shared)
8641 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8642
8643 /* All relocations against this symbol that could have been made
8644 dynamic will now refer to the PLT entry instead. */
8645 hmips->possibly_dynamic_relocs = 0;
8646
8647 return TRUE;
8648 }
8649
8650 /* If this is a weak symbol, and there is a real definition, the
8651 processor independent code will have arranged for us to see the
8652 real definition first, and we can just use the same value. */
8653 if (h->u.weakdef != NULL)
8654 {
8655 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8656 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8657 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8658 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8659 return TRUE;
8660 }
8661
8662 /* Otherwise, there is nothing further to do for symbols defined
8663 in regular objects. */
8664 if (h->def_regular)
8665 return TRUE;
8666
8667 /* There's also nothing more to do if we'll convert all relocations
8668 against this symbol into dynamic relocations. */
8669 if (!hmips->has_static_relocs)
8670 return TRUE;
8671
8672 /* We're now relying on copy relocations. Complain if we have
8673 some that we can't convert. */
8674 if (!htab->use_plts_and_copy_relocs || info->shared)
8675 {
8676 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8677 "dynamic symbol %s"),
8678 h->root.root.string);
8679 bfd_set_error (bfd_error_bad_value);
8680 return FALSE;
8681 }
8682
8683 /* We must allocate the symbol in our .dynbss section, which will
8684 become part of the .bss section of the executable. There will be
8685 an entry for this symbol in the .dynsym section. The dynamic
8686 object will contain position independent code, so all references
8687 from the dynamic object to this symbol will go through the global
8688 offset table. The dynamic linker will use the .dynsym entry to
8689 determine the address it must put in the global offset table, so
8690 both the dynamic object and the regular object will refer to the
8691 same memory location for the variable. */
8692
8693 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8694 {
8695 if (htab->is_vxworks)
8696 htab->srelbss->size += sizeof (Elf32_External_Rela);
8697 else
8698 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8699 h->needs_copy = 1;
8700 }
8701
8702 /* All relocations against this symbol that could have been made
8703 dynamic will now refer to the local copy instead. */
8704 hmips->possibly_dynamic_relocs = 0;
8705
8706 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8707 }
8708 \f
8709 /* This function is called after all the input files have been read,
8710 and the input sections have been assigned to output sections. We
8711 check for any mips16 stub sections that we can discard. */
8712
8713 bfd_boolean
8714 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8715 struct bfd_link_info *info)
8716 {
8717 asection *ri;
8718 struct mips_elf_link_hash_table *htab;
8719 struct mips_htab_traverse_info hti;
8720
8721 htab = mips_elf_hash_table (info);
8722 BFD_ASSERT (htab != NULL);
8723
8724 /* The .reginfo section has a fixed size. */
8725 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8726 if (ri != NULL)
8727 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8728
8729 hti.info = info;
8730 hti.output_bfd = output_bfd;
8731 hti.error = FALSE;
8732 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8733 mips_elf_check_symbols, &hti);
8734 if (hti.error)
8735 return FALSE;
8736
8737 return TRUE;
8738 }
8739
8740 /* If the link uses a GOT, lay it out and work out its size. */
8741
8742 static bfd_boolean
8743 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8744 {
8745 bfd *dynobj;
8746 asection *s;
8747 struct mips_got_info *g;
8748 bfd_size_type loadable_size = 0;
8749 bfd_size_type page_gotno;
8750 bfd *ibfd;
8751 struct mips_elf_traverse_got_arg tga;
8752 struct mips_elf_link_hash_table *htab;
8753
8754 htab = mips_elf_hash_table (info);
8755 BFD_ASSERT (htab != NULL);
8756
8757 s = htab->sgot;
8758 if (s == NULL)
8759 return TRUE;
8760
8761 dynobj = elf_hash_table (info)->dynobj;
8762 g = htab->got_info;
8763
8764 /* Allocate room for the reserved entries. VxWorks always reserves
8765 3 entries; other objects only reserve 2 entries. */
8766 BFD_ASSERT (g->assigned_gotno == 0);
8767 if (htab->is_vxworks)
8768 htab->reserved_gotno = 3;
8769 else
8770 htab->reserved_gotno = 2;
8771 g->local_gotno += htab->reserved_gotno;
8772 g->assigned_gotno = htab->reserved_gotno;
8773
8774 /* Replace entries for indirect and warning symbols with entries for
8775 the target symbol. */
8776 if (!mips_elf_resolve_final_got_entries (g))
8777 return FALSE;
8778
8779 /* Count the number of GOT symbols. */
8780 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8781
8782 /* Calculate the total loadable size of the output. That
8783 will give us the maximum number of GOT_PAGE entries
8784 required. */
8785 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8786 {
8787 asection *subsection;
8788
8789 for (subsection = ibfd->sections;
8790 subsection;
8791 subsection = subsection->next)
8792 {
8793 if ((subsection->flags & SEC_ALLOC) == 0)
8794 continue;
8795 loadable_size += ((subsection->size + 0xf)
8796 &~ (bfd_size_type) 0xf);
8797 }
8798 }
8799
8800 if (htab->is_vxworks)
8801 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8802 relocations against local symbols evaluate to "G", and the EABI does
8803 not include R_MIPS_GOT_PAGE. */
8804 page_gotno = 0;
8805 else
8806 /* Assume there are two loadable segments consisting of contiguous
8807 sections. Is 5 enough? */
8808 page_gotno = (loadable_size >> 16) + 5;
8809
8810 /* Choose the smaller of the two estimates; both are intended to be
8811 conservative. */
8812 if (page_gotno > g->page_gotno)
8813 page_gotno = g->page_gotno;
8814
8815 g->local_gotno += page_gotno;
8816
8817 /* Count the number of local GOT entries and TLS relocs. */
8818 tga.info = info;
8819 tga.g = g;
8820 htab_traverse (g->got_entries, mips_elf_count_local_got_entries, &tga);
8821
8822 /* We need to calculate tls_gotno for global symbols at this point
8823 instead of building it up earlier, to avoid doublecounting
8824 entries for one global symbol from multiple input files. */
8825 elf_link_hash_traverse (elf_hash_table (info),
8826 mips_elf_count_global_tls_entries,
8827 &tga);
8828
8829 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8830 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8831 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8832
8833 /* VxWorks does not support multiple GOTs. It initializes $gp to
8834 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8835 dynamic loader. */
8836 if (htab->is_vxworks)
8837 {
8838 /* VxWorks executables do not need a GOT. */
8839 if (info->shared)
8840 {
8841 /* Each VxWorks GOT entry needs an explicit relocation. */
8842 unsigned int count;
8843
8844 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8845 if (count)
8846 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8847 }
8848 }
8849 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8850 {
8851 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8852 return FALSE;
8853 }
8854 else
8855 {
8856 /* Record that all bfds use G. This also has the effect of freeing
8857 the per-bfd GOTs, which we no longer need. */
8858 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8859 if (mips_elf_bfd_got (ibfd, FALSE))
8860 mips_elf_replace_bfd_got (ibfd, g);
8861 mips_elf_replace_bfd_got (output_bfd, g);
8862
8863 /* Set up TLS entries. */
8864 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8865 tga.info = info;
8866 tga.g = g;
8867 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
8868 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
8869 if (!tga.g)
8870 return FALSE;
8871 BFD_ASSERT (g->tls_assigned_gotno
8872 == g->global_gotno + g->local_gotno + g->tls_gotno);
8873
8874 /* Allocate room for the TLS relocations. */
8875 if (g->relocs)
8876 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
8877 }
8878
8879 return TRUE;
8880 }
8881
8882 /* Estimate the size of the .MIPS.stubs section. */
8883
8884 static void
8885 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8886 {
8887 struct mips_elf_link_hash_table *htab;
8888 bfd_size_type dynsymcount;
8889
8890 htab = mips_elf_hash_table (info);
8891 BFD_ASSERT (htab != NULL);
8892
8893 if (htab->lazy_stub_count == 0)
8894 return;
8895
8896 /* IRIX rld assumes that a function stub isn't at the end of the .text
8897 section, so add a dummy entry to the end. */
8898 htab->lazy_stub_count++;
8899
8900 /* Get a worst-case estimate of the number of dynamic symbols needed.
8901 At this point, dynsymcount does not account for section symbols
8902 and count_section_dynsyms may overestimate the number that will
8903 be needed. */
8904 dynsymcount = (elf_hash_table (info)->dynsymcount
8905 + count_section_dynsyms (output_bfd, info));
8906
8907 /* Determine the size of one stub entry. */
8908 htab->function_stub_size = (dynsymcount > 0x10000
8909 ? MIPS_FUNCTION_STUB_BIG_SIZE
8910 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8911
8912 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8913 }
8914
8915 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8916 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8917 allocate an entry in the stubs section. */
8918
8919 static bfd_boolean
8920 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8921 {
8922 struct mips_elf_link_hash_table *htab;
8923
8924 htab = (struct mips_elf_link_hash_table *) data;
8925 if (h->needs_lazy_stub)
8926 {
8927 h->root.root.u.def.section = htab->sstubs;
8928 h->root.root.u.def.value = htab->sstubs->size;
8929 h->root.plt.offset = htab->sstubs->size;
8930 htab->sstubs->size += htab->function_stub_size;
8931 }
8932 return TRUE;
8933 }
8934
8935 /* Allocate offsets in the stubs section to each symbol that needs one.
8936 Set the final size of the .MIPS.stub section. */
8937
8938 static void
8939 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8940 {
8941 struct mips_elf_link_hash_table *htab;
8942
8943 htab = mips_elf_hash_table (info);
8944 BFD_ASSERT (htab != NULL);
8945
8946 if (htab->lazy_stub_count == 0)
8947 return;
8948
8949 htab->sstubs->size = 0;
8950 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8951 htab->sstubs->size += htab->function_stub_size;
8952 BFD_ASSERT (htab->sstubs->size
8953 == htab->lazy_stub_count * htab->function_stub_size);
8954 }
8955
8956 /* Set the sizes of the dynamic sections. */
8957
8958 bfd_boolean
8959 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8960 struct bfd_link_info *info)
8961 {
8962 bfd *dynobj;
8963 asection *s, *sreldyn;
8964 bfd_boolean reltext;
8965 struct mips_elf_link_hash_table *htab;
8966
8967 htab = mips_elf_hash_table (info);
8968 BFD_ASSERT (htab != NULL);
8969 dynobj = elf_hash_table (info)->dynobj;
8970 BFD_ASSERT (dynobj != NULL);
8971
8972 if (elf_hash_table (info)->dynamic_sections_created)
8973 {
8974 /* Set the contents of the .interp section to the interpreter. */
8975 if (info->executable)
8976 {
8977 s = bfd_get_linker_section (dynobj, ".interp");
8978 BFD_ASSERT (s != NULL);
8979 s->size
8980 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8981 s->contents
8982 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8983 }
8984
8985 /* Create a symbol for the PLT, if we know that we are using it. */
8986 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8987 {
8988 struct elf_link_hash_entry *h;
8989
8990 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8991
8992 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8993 "_PROCEDURE_LINKAGE_TABLE_");
8994 htab->root.hplt = h;
8995 if (h == NULL)
8996 return FALSE;
8997 h->type = STT_FUNC;
8998 }
8999 }
9000
9001 /* Allocate space for global sym dynamic relocs. */
9002 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9003
9004 mips_elf_estimate_stub_size (output_bfd, info);
9005
9006 if (!mips_elf_lay_out_got (output_bfd, info))
9007 return FALSE;
9008
9009 mips_elf_lay_out_lazy_stubs (info);
9010
9011 /* The check_relocs and adjust_dynamic_symbol entry points have
9012 determined the sizes of the various dynamic sections. Allocate
9013 memory for them. */
9014 reltext = FALSE;
9015 for (s = dynobj->sections; s != NULL; s = s->next)
9016 {
9017 const char *name;
9018
9019 /* It's OK to base decisions on the section name, because none
9020 of the dynobj section names depend upon the input files. */
9021 name = bfd_get_section_name (dynobj, s);
9022
9023 if ((s->flags & SEC_LINKER_CREATED) == 0)
9024 continue;
9025
9026 if (CONST_STRNEQ (name, ".rel"))
9027 {
9028 if (s->size != 0)
9029 {
9030 const char *outname;
9031 asection *target;
9032
9033 /* If this relocation section applies to a read only
9034 section, then we probably need a DT_TEXTREL entry.
9035 If the relocation section is .rel(a).dyn, we always
9036 assert a DT_TEXTREL entry rather than testing whether
9037 there exists a relocation to a read only section or
9038 not. */
9039 outname = bfd_get_section_name (output_bfd,
9040 s->output_section);
9041 target = bfd_get_section_by_name (output_bfd, outname + 4);
9042 if ((target != NULL
9043 && (target->flags & SEC_READONLY) != 0
9044 && (target->flags & SEC_ALLOC) != 0)
9045 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9046 reltext = TRUE;
9047
9048 /* We use the reloc_count field as a counter if we need
9049 to copy relocs into the output file. */
9050 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9051 s->reloc_count = 0;
9052
9053 /* If combreloc is enabled, elf_link_sort_relocs() will
9054 sort relocations, but in a different way than we do,
9055 and before we're done creating relocations. Also, it
9056 will move them around between input sections'
9057 relocation's contents, so our sorting would be
9058 broken, so don't let it run. */
9059 info->combreloc = 0;
9060 }
9061 }
9062 else if (! info->shared
9063 && ! mips_elf_hash_table (info)->use_rld_obj_head
9064 && CONST_STRNEQ (name, ".rld_map"))
9065 {
9066 /* We add a room for __rld_map. It will be filled in by the
9067 rtld to contain a pointer to the _r_debug structure. */
9068 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9069 }
9070 else if (SGI_COMPAT (output_bfd)
9071 && CONST_STRNEQ (name, ".compact_rel"))
9072 s->size += mips_elf_hash_table (info)->compact_rel_size;
9073 else if (s == htab->splt)
9074 {
9075 /* If the last PLT entry has a branch delay slot, allocate
9076 room for an extra nop to fill the delay slot. This is
9077 for CPUs without load interlocking. */
9078 if (! LOAD_INTERLOCKS_P (output_bfd)
9079 && ! htab->is_vxworks && s->size > 0)
9080 s->size += 4;
9081 }
9082 else if (! CONST_STRNEQ (name, ".init")
9083 && s != htab->sgot
9084 && s != htab->sgotplt
9085 && s != htab->sstubs
9086 && s != htab->sdynbss)
9087 {
9088 /* It's not one of our sections, so don't allocate space. */
9089 continue;
9090 }
9091
9092 if (s->size == 0)
9093 {
9094 s->flags |= SEC_EXCLUDE;
9095 continue;
9096 }
9097
9098 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9099 continue;
9100
9101 /* Allocate memory for the section contents. */
9102 s->contents = bfd_zalloc (dynobj, s->size);
9103 if (s->contents == NULL)
9104 {
9105 bfd_set_error (bfd_error_no_memory);
9106 return FALSE;
9107 }
9108 }
9109
9110 if (elf_hash_table (info)->dynamic_sections_created)
9111 {
9112 /* Add some entries to the .dynamic section. We fill in the
9113 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9114 must add the entries now so that we get the correct size for
9115 the .dynamic section. */
9116
9117 /* SGI object has the equivalence of DT_DEBUG in the
9118 DT_MIPS_RLD_MAP entry. This must come first because glibc
9119 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9120 may only look at the first one they see. */
9121 if (!info->shared
9122 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9123 return FALSE;
9124
9125 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9126 used by the debugger. */
9127 if (info->executable
9128 && !SGI_COMPAT (output_bfd)
9129 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9130 return FALSE;
9131
9132 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9133 info->flags |= DF_TEXTREL;
9134
9135 if ((info->flags & DF_TEXTREL) != 0)
9136 {
9137 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9138 return FALSE;
9139
9140 /* Clear the DF_TEXTREL flag. It will be set again if we
9141 write out an actual text relocation; we may not, because
9142 at this point we do not know whether e.g. any .eh_frame
9143 absolute relocations have been converted to PC-relative. */
9144 info->flags &= ~DF_TEXTREL;
9145 }
9146
9147 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9148 return FALSE;
9149
9150 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9151 if (htab->is_vxworks)
9152 {
9153 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9154 use any of the DT_MIPS_* tags. */
9155 if (sreldyn && sreldyn->size > 0)
9156 {
9157 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9158 return FALSE;
9159
9160 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9161 return FALSE;
9162
9163 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9164 return FALSE;
9165 }
9166 }
9167 else
9168 {
9169 if (sreldyn && sreldyn->size > 0)
9170 {
9171 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9172 return FALSE;
9173
9174 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9175 return FALSE;
9176
9177 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9178 return FALSE;
9179 }
9180
9181 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9182 return FALSE;
9183
9184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9185 return FALSE;
9186
9187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9188 return FALSE;
9189
9190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9191 return FALSE;
9192
9193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9194 return FALSE;
9195
9196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9197 return FALSE;
9198
9199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9200 return FALSE;
9201
9202 if (IRIX_COMPAT (dynobj) == ict_irix5
9203 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9204 return FALSE;
9205
9206 if (IRIX_COMPAT (dynobj) == ict_irix6
9207 && (bfd_get_section_by_name
9208 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9209 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9210 return FALSE;
9211 }
9212 if (htab->splt->size > 0)
9213 {
9214 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9215 return FALSE;
9216
9217 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9218 return FALSE;
9219
9220 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9221 return FALSE;
9222
9223 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9224 return FALSE;
9225 }
9226 if (htab->is_vxworks
9227 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9228 return FALSE;
9229 }
9230
9231 return TRUE;
9232 }
9233 \f
9234 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9235 Adjust its R_ADDEND field so that it is correct for the output file.
9236 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9237 and sections respectively; both use symbol indexes. */
9238
9239 static void
9240 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9241 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9242 asection **local_sections, Elf_Internal_Rela *rel)
9243 {
9244 unsigned int r_type, r_symndx;
9245 Elf_Internal_Sym *sym;
9246 asection *sec;
9247
9248 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9249 {
9250 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9251 if (gprel16_reloc_p (r_type)
9252 || r_type == R_MIPS_GPREL32
9253 || literal_reloc_p (r_type))
9254 {
9255 rel->r_addend += _bfd_get_gp_value (input_bfd);
9256 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9257 }
9258
9259 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9260 sym = local_syms + r_symndx;
9261
9262 /* Adjust REL's addend to account for section merging. */
9263 if (!info->relocatable)
9264 {
9265 sec = local_sections[r_symndx];
9266 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9267 }
9268
9269 /* This would normally be done by the rela_normal code in elflink.c. */
9270 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9271 rel->r_addend += local_sections[r_symndx]->output_offset;
9272 }
9273 }
9274
9275 /* Handle relocations against symbols from removed linkonce sections,
9276 or sections discarded by a linker script. We use this wrapper around
9277 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9278 on 64-bit ELF targets. In this case for any relocation handled, which
9279 always be the first in a triplet, the remaining two have to be processed
9280 together with the first, even if they are R_MIPS_NONE. It is the symbol
9281 index referred by the first reloc that applies to all the three and the
9282 remaining two never refer to an object symbol. And it is the final
9283 relocation (the last non-null one) that determines the output field of
9284 the whole relocation so retrieve the corresponding howto structure for
9285 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9286
9287 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9288 and therefore requires to be pasted in a loop. It also defines a block
9289 and does not protect any of its arguments, hence the extra brackets. */
9290
9291 static void
9292 mips_reloc_against_discarded_section (bfd *output_bfd,
9293 struct bfd_link_info *info,
9294 bfd *input_bfd, asection *input_section,
9295 Elf_Internal_Rela **rel,
9296 const Elf_Internal_Rela **relend,
9297 bfd_boolean rel_reloc,
9298 reloc_howto_type *howto,
9299 bfd_byte *contents)
9300 {
9301 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9302 int count = bed->s->int_rels_per_ext_rel;
9303 unsigned int r_type;
9304 int i;
9305
9306 for (i = count - 1; i > 0; i--)
9307 {
9308 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9309 if (r_type != R_MIPS_NONE)
9310 {
9311 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9312 break;
9313 }
9314 }
9315 do
9316 {
9317 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9318 (*rel), count, (*relend),
9319 howto, i, contents);
9320 }
9321 while (0);
9322 }
9323
9324 /* Relocate a MIPS ELF section. */
9325
9326 bfd_boolean
9327 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9328 bfd *input_bfd, asection *input_section,
9329 bfd_byte *contents, Elf_Internal_Rela *relocs,
9330 Elf_Internal_Sym *local_syms,
9331 asection **local_sections)
9332 {
9333 Elf_Internal_Rela *rel;
9334 const Elf_Internal_Rela *relend;
9335 bfd_vma addend = 0;
9336 bfd_boolean use_saved_addend_p = FALSE;
9337 const struct elf_backend_data *bed;
9338
9339 bed = get_elf_backend_data (output_bfd);
9340 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9341 for (rel = relocs; rel < relend; ++rel)
9342 {
9343 const char *name;
9344 bfd_vma value = 0;
9345 reloc_howto_type *howto;
9346 bfd_boolean cross_mode_jump_p;
9347 /* TRUE if the relocation is a RELA relocation, rather than a
9348 REL relocation. */
9349 bfd_boolean rela_relocation_p = TRUE;
9350 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9351 const char *msg;
9352 unsigned long r_symndx;
9353 asection *sec;
9354 Elf_Internal_Shdr *symtab_hdr;
9355 struct elf_link_hash_entry *h;
9356 bfd_boolean rel_reloc;
9357
9358 rel_reloc = (NEWABI_P (input_bfd)
9359 && mips_elf_rel_relocation_p (input_bfd, input_section,
9360 relocs, rel));
9361 /* Find the relocation howto for this relocation. */
9362 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9363
9364 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9365 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9366 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9367 {
9368 sec = local_sections[r_symndx];
9369 h = NULL;
9370 }
9371 else
9372 {
9373 unsigned long extsymoff;
9374
9375 extsymoff = 0;
9376 if (!elf_bad_symtab (input_bfd))
9377 extsymoff = symtab_hdr->sh_info;
9378 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9379 while (h->root.type == bfd_link_hash_indirect
9380 || h->root.type == bfd_link_hash_warning)
9381 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9382
9383 sec = NULL;
9384 if (h->root.type == bfd_link_hash_defined
9385 || h->root.type == bfd_link_hash_defweak)
9386 sec = h->root.u.def.section;
9387 }
9388
9389 if (sec != NULL && discarded_section (sec))
9390 {
9391 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9392 input_section, &rel, &relend,
9393 rel_reloc, howto, contents);
9394 continue;
9395 }
9396
9397 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9398 {
9399 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9400 64-bit code, but make sure all their addresses are in the
9401 lowermost or uppermost 32-bit section of the 64-bit address
9402 space. Thus, when they use an R_MIPS_64 they mean what is
9403 usually meant by R_MIPS_32, with the exception that the
9404 stored value is sign-extended to 64 bits. */
9405 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9406
9407 /* On big-endian systems, we need to lie about the position
9408 of the reloc. */
9409 if (bfd_big_endian (input_bfd))
9410 rel->r_offset += 4;
9411 }
9412
9413 if (!use_saved_addend_p)
9414 {
9415 /* If these relocations were originally of the REL variety,
9416 we must pull the addend out of the field that will be
9417 relocated. Otherwise, we simply use the contents of the
9418 RELA relocation. */
9419 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9420 relocs, rel))
9421 {
9422 rela_relocation_p = FALSE;
9423 addend = mips_elf_read_rel_addend (input_bfd, rel,
9424 howto, contents);
9425 if (hi16_reloc_p (r_type)
9426 || (got16_reloc_p (r_type)
9427 && mips_elf_local_relocation_p (input_bfd, rel,
9428 local_sections)))
9429 {
9430 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9431 contents, &addend))
9432 {
9433 if (h)
9434 name = h->root.root.string;
9435 else
9436 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9437 local_syms + r_symndx,
9438 sec);
9439 (*_bfd_error_handler)
9440 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9441 input_bfd, input_section, name, howto->name,
9442 rel->r_offset);
9443 }
9444 }
9445 else
9446 addend <<= howto->rightshift;
9447 }
9448 else
9449 addend = rel->r_addend;
9450 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9451 local_syms, local_sections, rel);
9452 }
9453
9454 if (info->relocatable)
9455 {
9456 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9457 && bfd_big_endian (input_bfd))
9458 rel->r_offset -= 4;
9459
9460 if (!rela_relocation_p && rel->r_addend)
9461 {
9462 addend += rel->r_addend;
9463 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9464 addend = mips_elf_high (addend);
9465 else if (r_type == R_MIPS_HIGHER)
9466 addend = mips_elf_higher (addend);
9467 else if (r_type == R_MIPS_HIGHEST)
9468 addend = mips_elf_highest (addend);
9469 else
9470 addend >>= howto->rightshift;
9471
9472 /* We use the source mask, rather than the destination
9473 mask because the place to which we are writing will be
9474 source of the addend in the final link. */
9475 addend &= howto->src_mask;
9476
9477 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9478 /* See the comment above about using R_MIPS_64 in the 32-bit
9479 ABI. Here, we need to update the addend. It would be
9480 possible to get away with just using the R_MIPS_32 reloc
9481 but for endianness. */
9482 {
9483 bfd_vma sign_bits;
9484 bfd_vma low_bits;
9485 bfd_vma high_bits;
9486
9487 if (addend & ((bfd_vma) 1 << 31))
9488 #ifdef BFD64
9489 sign_bits = ((bfd_vma) 1 << 32) - 1;
9490 #else
9491 sign_bits = -1;
9492 #endif
9493 else
9494 sign_bits = 0;
9495
9496 /* If we don't know that we have a 64-bit type,
9497 do two separate stores. */
9498 if (bfd_big_endian (input_bfd))
9499 {
9500 /* Store the sign-bits (which are most significant)
9501 first. */
9502 low_bits = sign_bits;
9503 high_bits = addend;
9504 }
9505 else
9506 {
9507 low_bits = addend;
9508 high_bits = sign_bits;
9509 }
9510 bfd_put_32 (input_bfd, low_bits,
9511 contents + rel->r_offset);
9512 bfd_put_32 (input_bfd, high_bits,
9513 contents + rel->r_offset + 4);
9514 continue;
9515 }
9516
9517 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9518 input_bfd, input_section,
9519 contents, FALSE))
9520 return FALSE;
9521 }
9522
9523 /* Go on to the next relocation. */
9524 continue;
9525 }
9526
9527 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9528 relocations for the same offset. In that case we are
9529 supposed to treat the output of each relocation as the addend
9530 for the next. */
9531 if (rel + 1 < relend
9532 && rel->r_offset == rel[1].r_offset
9533 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9534 use_saved_addend_p = TRUE;
9535 else
9536 use_saved_addend_p = FALSE;
9537
9538 /* Figure out what value we are supposed to relocate. */
9539 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9540 input_section, info, rel,
9541 addend, howto, local_syms,
9542 local_sections, &value,
9543 &name, &cross_mode_jump_p,
9544 use_saved_addend_p))
9545 {
9546 case bfd_reloc_continue:
9547 /* There's nothing to do. */
9548 continue;
9549
9550 case bfd_reloc_undefined:
9551 /* mips_elf_calculate_relocation already called the
9552 undefined_symbol callback. There's no real point in
9553 trying to perform the relocation at this point, so we
9554 just skip ahead to the next relocation. */
9555 continue;
9556
9557 case bfd_reloc_notsupported:
9558 msg = _("internal error: unsupported relocation error");
9559 info->callbacks->warning
9560 (info, msg, name, input_bfd, input_section, rel->r_offset);
9561 return FALSE;
9562
9563 case bfd_reloc_overflow:
9564 if (use_saved_addend_p)
9565 /* Ignore overflow until we reach the last relocation for
9566 a given location. */
9567 ;
9568 else
9569 {
9570 struct mips_elf_link_hash_table *htab;
9571
9572 htab = mips_elf_hash_table (info);
9573 BFD_ASSERT (htab != NULL);
9574 BFD_ASSERT (name != NULL);
9575 if (!htab->small_data_overflow_reported
9576 && (gprel16_reloc_p (howto->type)
9577 || literal_reloc_p (howto->type)))
9578 {
9579 msg = _("small-data section exceeds 64KB;"
9580 " lower small-data size limit (see option -G)");
9581
9582 htab->small_data_overflow_reported = TRUE;
9583 (*info->callbacks->einfo) ("%P: %s\n", msg);
9584 }
9585 if (! ((*info->callbacks->reloc_overflow)
9586 (info, NULL, name, howto->name, (bfd_vma) 0,
9587 input_bfd, input_section, rel->r_offset)))
9588 return FALSE;
9589 }
9590 break;
9591
9592 case bfd_reloc_ok:
9593 break;
9594
9595 case bfd_reloc_outofrange:
9596 if (jal_reloc_p (howto->type))
9597 {
9598 msg = _("JALX to a non-word-aligned address");
9599 info->callbacks->warning
9600 (info, msg, name, input_bfd, input_section, rel->r_offset);
9601 return FALSE;
9602 }
9603 /* Fall through. */
9604
9605 default:
9606 abort ();
9607 break;
9608 }
9609
9610 /* If we've got another relocation for the address, keep going
9611 until we reach the last one. */
9612 if (use_saved_addend_p)
9613 {
9614 addend = value;
9615 continue;
9616 }
9617
9618 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9619 /* See the comment above about using R_MIPS_64 in the 32-bit
9620 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9621 that calculated the right value. Now, however, we
9622 sign-extend the 32-bit result to 64-bits, and store it as a
9623 64-bit value. We are especially generous here in that we
9624 go to extreme lengths to support this usage on systems with
9625 only a 32-bit VMA. */
9626 {
9627 bfd_vma sign_bits;
9628 bfd_vma low_bits;
9629 bfd_vma high_bits;
9630
9631 if (value & ((bfd_vma) 1 << 31))
9632 #ifdef BFD64
9633 sign_bits = ((bfd_vma) 1 << 32) - 1;
9634 #else
9635 sign_bits = -1;
9636 #endif
9637 else
9638 sign_bits = 0;
9639
9640 /* If we don't know that we have a 64-bit type,
9641 do two separate stores. */
9642 if (bfd_big_endian (input_bfd))
9643 {
9644 /* Undo what we did above. */
9645 rel->r_offset -= 4;
9646 /* Store the sign-bits (which are most significant)
9647 first. */
9648 low_bits = sign_bits;
9649 high_bits = value;
9650 }
9651 else
9652 {
9653 low_bits = value;
9654 high_bits = sign_bits;
9655 }
9656 bfd_put_32 (input_bfd, low_bits,
9657 contents + rel->r_offset);
9658 bfd_put_32 (input_bfd, high_bits,
9659 contents + rel->r_offset + 4);
9660 continue;
9661 }
9662
9663 /* Actually perform the relocation. */
9664 if (! mips_elf_perform_relocation (info, howto, rel, value,
9665 input_bfd, input_section,
9666 contents, cross_mode_jump_p))
9667 return FALSE;
9668 }
9669
9670 return TRUE;
9671 }
9672 \f
9673 /* A function that iterates over each entry in la25_stubs and fills
9674 in the code for each one. DATA points to a mips_htab_traverse_info. */
9675
9676 static int
9677 mips_elf_create_la25_stub (void **slot, void *data)
9678 {
9679 struct mips_htab_traverse_info *hti;
9680 struct mips_elf_link_hash_table *htab;
9681 struct mips_elf_la25_stub *stub;
9682 asection *s;
9683 bfd_byte *loc;
9684 bfd_vma offset, target, target_high, target_low;
9685
9686 stub = (struct mips_elf_la25_stub *) *slot;
9687 hti = (struct mips_htab_traverse_info *) data;
9688 htab = mips_elf_hash_table (hti->info);
9689 BFD_ASSERT (htab != NULL);
9690
9691 /* Create the section contents, if we haven't already. */
9692 s = stub->stub_section;
9693 loc = s->contents;
9694 if (loc == NULL)
9695 {
9696 loc = bfd_malloc (s->size);
9697 if (loc == NULL)
9698 {
9699 hti->error = TRUE;
9700 return FALSE;
9701 }
9702 s->contents = loc;
9703 }
9704
9705 /* Work out where in the section this stub should go. */
9706 offset = stub->offset;
9707
9708 /* Work out the target address. */
9709 target = mips_elf_get_la25_target (stub, &s);
9710 target += s->output_section->vma + s->output_offset;
9711
9712 target_high = ((target + 0x8000) >> 16) & 0xffff;
9713 target_low = (target & 0xffff);
9714
9715 if (stub->stub_section != htab->strampoline)
9716 {
9717 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9718 of the section and write the two instructions at the end. */
9719 memset (loc, 0, offset);
9720 loc += offset;
9721 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9722 {
9723 bfd_put_micromips_32 (hti->output_bfd,
9724 LA25_LUI_MICROMIPS (target_high),
9725 loc);
9726 bfd_put_micromips_32 (hti->output_bfd,
9727 LA25_ADDIU_MICROMIPS (target_low),
9728 loc + 4);
9729 }
9730 else
9731 {
9732 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9733 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9734 }
9735 }
9736 else
9737 {
9738 /* This is trampoline. */
9739 loc += offset;
9740 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9741 {
9742 bfd_put_micromips_32 (hti->output_bfd,
9743 LA25_LUI_MICROMIPS (target_high), loc);
9744 bfd_put_micromips_32 (hti->output_bfd,
9745 LA25_J_MICROMIPS (target), loc + 4);
9746 bfd_put_micromips_32 (hti->output_bfd,
9747 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9748 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9749 }
9750 else
9751 {
9752 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9753 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9754 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9755 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9756 }
9757 }
9758 return TRUE;
9759 }
9760
9761 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9762 adjust it appropriately now. */
9763
9764 static void
9765 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9766 const char *name, Elf_Internal_Sym *sym)
9767 {
9768 /* The linker script takes care of providing names and values for
9769 these, but we must place them into the right sections. */
9770 static const char* const text_section_symbols[] = {
9771 "_ftext",
9772 "_etext",
9773 "__dso_displacement",
9774 "__elf_header",
9775 "__program_header_table",
9776 NULL
9777 };
9778
9779 static const char* const data_section_symbols[] = {
9780 "_fdata",
9781 "_edata",
9782 "_end",
9783 "_fbss",
9784 NULL
9785 };
9786
9787 const char* const *p;
9788 int i;
9789
9790 for (i = 0; i < 2; ++i)
9791 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9792 *p;
9793 ++p)
9794 if (strcmp (*p, name) == 0)
9795 {
9796 /* All of these symbols are given type STT_SECTION by the
9797 IRIX6 linker. */
9798 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9799 sym->st_other = STO_PROTECTED;
9800
9801 /* The IRIX linker puts these symbols in special sections. */
9802 if (i == 0)
9803 sym->st_shndx = SHN_MIPS_TEXT;
9804 else
9805 sym->st_shndx = SHN_MIPS_DATA;
9806
9807 break;
9808 }
9809 }
9810
9811 /* Finish up dynamic symbol handling. We set the contents of various
9812 dynamic sections here. */
9813
9814 bfd_boolean
9815 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9816 struct bfd_link_info *info,
9817 struct elf_link_hash_entry *h,
9818 Elf_Internal_Sym *sym)
9819 {
9820 bfd *dynobj;
9821 asection *sgot;
9822 struct mips_got_info *g, *gg;
9823 const char *name;
9824 int idx;
9825 struct mips_elf_link_hash_table *htab;
9826 struct mips_elf_link_hash_entry *hmips;
9827
9828 htab = mips_elf_hash_table (info);
9829 BFD_ASSERT (htab != NULL);
9830 dynobj = elf_hash_table (info)->dynobj;
9831 hmips = (struct mips_elf_link_hash_entry *) h;
9832
9833 BFD_ASSERT (!htab->is_vxworks);
9834
9835 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9836 {
9837 /* We've decided to create a PLT entry for this symbol. */
9838 bfd_byte *loc;
9839 bfd_vma header_address, plt_index, got_address;
9840 bfd_vma got_address_high, got_address_low, load;
9841 const bfd_vma *plt_entry;
9842
9843 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9844 BFD_ASSERT (h->dynindx != -1);
9845 BFD_ASSERT (htab->splt != NULL);
9846 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9847 BFD_ASSERT (!h->def_regular);
9848
9849 /* Calculate the address of the PLT header. */
9850 header_address = (htab->splt->output_section->vma
9851 + htab->splt->output_offset);
9852
9853 /* Calculate the index of the entry. */
9854 plt_index = ((h->plt.offset - htab->plt_header_size)
9855 / htab->plt_entry_size);
9856
9857 /* Calculate the address of the .got.plt entry. */
9858 got_address = (htab->sgotplt->output_section->vma
9859 + htab->sgotplt->output_offset
9860 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9861 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9862 got_address_low = got_address & 0xffff;
9863
9864 /* Initially point the .got.plt entry at the PLT header. */
9865 loc = (htab->sgotplt->contents
9866 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9867 if (ABI_64_P (output_bfd))
9868 bfd_put_64 (output_bfd, header_address, loc);
9869 else
9870 bfd_put_32 (output_bfd, header_address, loc);
9871
9872 /* Find out where the .plt entry should go. */
9873 loc = htab->splt->contents + h->plt.offset;
9874
9875 /* Pick the load opcode. */
9876 load = MIPS_ELF_LOAD_WORD (output_bfd);
9877
9878 /* Fill in the PLT entry itself. */
9879 plt_entry = mips_exec_plt_entry;
9880 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9881 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9882
9883 if (! LOAD_INTERLOCKS_P (output_bfd))
9884 {
9885 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9886 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9887 }
9888 else
9889 {
9890 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9891 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9892 }
9893
9894 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9895 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9896 plt_index, h->dynindx,
9897 R_MIPS_JUMP_SLOT, got_address);
9898
9899 /* We distinguish between PLT entries and lazy-binding stubs by
9900 giving the former an st_other value of STO_MIPS_PLT. Set the
9901 flag and leave the value if there are any relocations in the
9902 binary where pointer equality matters. */
9903 sym->st_shndx = SHN_UNDEF;
9904 if (h->pointer_equality_needed)
9905 sym->st_other = STO_MIPS_PLT;
9906 else
9907 sym->st_value = 0;
9908 }
9909 else if (h->plt.offset != MINUS_ONE)
9910 {
9911 /* We've decided to create a lazy-binding stub. */
9912 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9913
9914 /* This symbol has a stub. Set it up. */
9915
9916 BFD_ASSERT (h->dynindx != -1);
9917
9918 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9919 || (h->dynindx <= 0xffff));
9920
9921 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9922 sign extension at runtime in the stub, resulting in a negative
9923 index value. */
9924 if (h->dynindx & ~0x7fffffff)
9925 return FALSE;
9926
9927 /* Fill the stub. */
9928 idx = 0;
9929 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9930 idx += 4;
9931 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9932 idx += 4;
9933 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9934 {
9935 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9936 stub + idx);
9937 idx += 4;
9938 }
9939 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9940 idx += 4;
9941
9942 /* If a large stub is not required and sign extension is not a
9943 problem, then use legacy code in the stub. */
9944 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9945 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9946 else if (h->dynindx & ~0x7fff)
9947 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9948 else
9949 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9950 stub + idx);
9951
9952 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9953 memcpy (htab->sstubs->contents + h->plt.offset,
9954 stub, htab->function_stub_size);
9955
9956 /* Mark the symbol as undefined. plt.offset != -1 occurs
9957 only for the referenced symbol. */
9958 sym->st_shndx = SHN_UNDEF;
9959
9960 /* The run-time linker uses the st_value field of the symbol
9961 to reset the global offset table entry for this external
9962 to its stub address when unlinking a shared object. */
9963 sym->st_value = (htab->sstubs->output_section->vma
9964 + htab->sstubs->output_offset
9965 + h->plt.offset);
9966 }
9967
9968 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9969 refer to the stub, since only the stub uses the standard calling
9970 conventions. */
9971 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9972 {
9973 BFD_ASSERT (hmips->need_fn_stub);
9974 sym->st_value = (hmips->fn_stub->output_section->vma
9975 + hmips->fn_stub->output_offset);
9976 sym->st_size = hmips->fn_stub->size;
9977 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9978 }
9979
9980 BFD_ASSERT (h->dynindx != -1
9981 || h->forced_local);
9982
9983 sgot = htab->sgot;
9984 g = htab->got_info;
9985 BFD_ASSERT (g != NULL);
9986
9987 /* Run through the global symbol table, creating GOT entries for all
9988 the symbols that need them. */
9989 if (hmips->global_got_area != GGA_NONE)
9990 {
9991 bfd_vma offset;
9992 bfd_vma value;
9993
9994 value = sym->st_value;
9995 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9996 R_MIPS_GOT16, info);
9997 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9998 }
9999
10000 if (hmips->global_got_area != GGA_NONE && g->next)
10001 {
10002 struct mips_got_entry e, *p;
10003 bfd_vma entry;
10004 bfd_vma offset;
10005
10006 gg = g;
10007
10008 e.abfd = output_bfd;
10009 e.symndx = -1;
10010 e.d.h = hmips;
10011 e.tls_type = 0;
10012
10013 for (g = g->next; g->next != gg; g = g->next)
10014 {
10015 if (g->got_entries
10016 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10017 &e)))
10018 {
10019 offset = p->gotidx;
10020 if (info->shared
10021 || (elf_hash_table (info)->dynamic_sections_created
10022 && p->d.h != NULL
10023 && p->d.h->root.def_dynamic
10024 && !p->d.h->root.def_regular))
10025 {
10026 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10027 the various compatibility problems, it's easier to mock
10028 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10029 mips_elf_create_dynamic_relocation to calculate the
10030 appropriate addend. */
10031 Elf_Internal_Rela rel[3];
10032
10033 memset (rel, 0, sizeof (rel));
10034 if (ABI_64_P (output_bfd))
10035 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10036 else
10037 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10038 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10039
10040 entry = 0;
10041 if (! (mips_elf_create_dynamic_relocation
10042 (output_bfd, info, rel,
10043 e.d.h, NULL, sym->st_value, &entry, sgot)))
10044 return FALSE;
10045 }
10046 else
10047 entry = sym->st_value;
10048 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10049 }
10050 }
10051 }
10052
10053 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10054 name = h->root.root.string;
10055 if (h == elf_hash_table (info)->hdynamic
10056 || h == elf_hash_table (info)->hgot)
10057 sym->st_shndx = SHN_ABS;
10058 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10059 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10060 {
10061 sym->st_shndx = SHN_ABS;
10062 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10063 sym->st_value = 1;
10064 }
10065 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10066 {
10067 sym->st_shndx = SHN_ABS;
10068 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10069 sym->st_value = elf_gp (output_bfd);
10070 }
10071 else if (SGI_COMPAT (output_bfd))
10072 {
10073 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10074 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10075 {
10076 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10077 sym->st_other = STO_PROTECTED;
10078 sym->st_value = 0;
10079 sym->st_shndx = SHN_MIPS_DATA;
10080 }
10081 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10082 {
10083 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10084 sym->st_other = STO_PROTECTED;
10085 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10086 sym->st_shndx = SHN_ABS;
10087 }
10088 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10089 {
10090 if (h->type == STT_FUNC)
10091 sym->st_shndx = SHN_MIPS_TEXT;
10092 else if (h->type == STT_OBJECT)
10093 sym->st_shndx = SHN_MIPS_DATA;
10094 }
10095 }
10096
10097 /* Emit a copy reloc, if needed. */
10098 if (h->needs_copy)
10099 {
10100 asection *s;
10101 bfd_vma symval;
10102
10103 BFD_ASSERT (h->dynindx != -1);
10104 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10105
10106 s = mips_elf_rel_dyn_section (info, FALSE);
10107 symval = (h->root.u.def.section->output_section->vma
10108 + h->root.u.def.section->output_offset
10109 + h->root.u.def.value);
10110 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10111 h->dynindx, R_MIPS_COPY, symval);
10112 }
10113
10114 /* Handle the IRIX6-specific symbols. */
10115 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10116 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10117
10118 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10119 treat MIPS16 symbols like any other. */
10120 if (ELF_ST_IS_MIPS16 (sym->st_other))
10121 {
10122 BFD_ASSERT (sym->st_value & 1);
10123 sym->st_other -= STO_MIPS16;
10124 }
10125
10126 return TRUE;
10127 }
10128
10129 /* Likewise, for VxWorks. */
10130
10131 bfd_boolean
10132 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10133 struct bfd_link_info *info,
10134 struct elf_link_hash_entry *h,
10135 Elf_Internal_Sym *sym)
10136 {
10137 bfd *dynobj;
10138 asection *sgot;
10139 struct mips_got_info *g;
10140 struct mips_elf_link_hash_table *htab;
10141 struct mips_elf_link_hash_entry *hmips;
10142
10143 htab = mips_elf_hash_table (info);
10144 BFD_ASSERT (htab != NULL);
10145 dynobj = elf_hash_table (info)->dynobj;
10146 hmips = (struct mips_elf_link_hash_entry *) h;
10147
10148 if (h->plt.offset != (bfd_vma) -1)
10149 {
10150 bfd_byte *loc;
10151 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10152 Elf_Internal_Rela rel;
10153 static const bfd_vma *plt_entry;
10154
10155 BFD_ASSERT (h->dynindx != -1);
10156 BFD_ASSERT (htab->splt != NULL);
10157 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10158
10159 /* Calculate the address of the .plt entry. */
10160 plt_address = (htab->splt->output_section->vma
10161 + htab->splt->output_offset
10162 + h->plt.offset);
10163
10164 /* Calculate the index of the entry. */
10165 plt_index = ((h->plt.offset - htab->plt_header_size)
10166 / htab->plt_entry_size);
10167
10168 /* Calculate the address of the .got.plt entry. */
10169 got_address = (htab->sgotplt->output_section->vma
10170 + htab->sgotplt->output_offset
10171 + plt_index * 4);
10172
10173 /* Calculate the offset of the .got.plt entry from
10174 _GLOBAL_OFFSET_TABLE_. */
10175 got_offset = mips_elf_gotplt_index (info, h);
10176
10177 /* Calculate the offset for the branch at the start of the PLT
10178 entry. The branch jumps to the beginning of .plt. */
10179 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10180
10181 /* Fill in the initial value of the .got.plt entry. */
10182 bfd_put_32 (output_bfd, plt_address,
10183 htab->sgotplt->contents + plt_index * 4);
10184
10185 /* Find out where the .plt entry should go. */
10186 loc = htab->splt->contents + h->plt.offset;
10187
10188 if (info->shared)
10189 {
10190 plt_entry = mips_vxworks_shared_plt_entry;
10191 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10192 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10193 }
10194 else
10195 {
10196 bfd_vma got_address_high, got_address_low;
10197
10198 plt_entry = mips_vxworks_exec_plt_entry;
10199 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10200 got_address_low = got_address & 0xffff;
10201
10202 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10203 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10204 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10205 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10206 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10207 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10208 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10209 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10210
10211 loc = (htab->srelplt2->contents
10212 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10213
10214 /* Emit a relocation for the .got.plt entry. */
10215 rel.r_offset = got_address;
10216 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10217 rel.r_addend = h->plt.offset;
10218 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10219
10220 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10221 loc += sizeof (Elf32_External_Rela);
10222 rel.r_offset = plt_address + 8;
10223 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10224 rel.r_addend = got_offset;
10225 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10226
10227 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10228 loc += sizeof (Elf32_External_Rela);
10229 rel.r_offset += 4;
10230 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10231 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10232 }
10233
10234 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10235 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10236 rel.r_offset = got_address;
10237 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10238 rel.r_addend = 0;
10239 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10240
10241 if (!h->def_regular)
10242 sym->st_shndx = SHN_UNDEF;
10243 }
10244
10245 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10246
10247 sgot = htab->sgot;
10248 g = htab->got_info;
10249 BFD_ASSERT (g != NULL);
10250
10251 /* See if this symbol has an entry in the GOT. */
10252 if (hmips->global_got_area != GGA_NONE)
10253 {
10254 bfd_vma offset;
10255 Elf_Internal_Rela outrel;
10256 bfd_byte *loc;
10257 asection *s;
10258
10259 /* Install the symbol value in the GOT. */
10260 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10261 R_MIPS_GOT16, info);
10262 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10263
10264 /* Add a dynamic relocation for it. */
10265 s = mips_elf_rel_dyn_section (info, FALSE);
10266 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10267 outrel.r_offset = (sgot->output_section->vma
10268 + sgot->output_offset
10269 + offset);
10270 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10271 outrel.r_addend = 0;
10272 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10273 }
10274
10275 /* Emit a copy reloc, if needed. */
10276 if (h->needs_copy)
10277 {
10278 Elf_Internal_Rela rel;
10279
10280 BFD_ASSERT (h->dynindx != -1);
10281
10282 rel.r_offset = (h->root.u.def.section->output_section->vma
10283 + h->root.u.def.section->output_offset
10284 + h->root.u.def.value);
10285 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10286 rel.r_addend = 0;
10287 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10288 htab->srelbss->contents
10289 + (htab->srelbss->reloc_count
10290 * sizeof (Elf32_External_Rela)));
10291 ++htab->srelbss->reloc_count;
10292 }
10293
10294 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10295 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10296 sym->st_value &= ~1;
10297
10298 return TRUE;
10299 }
10300
10301 /* Write out a plt0 entry to the beginning of .plt. */
10302
10303 static void
10304 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10305 {
10306 bfd_byte *loc;
10307 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10308 static const bfd_vma *plt_entry;
10309 struct mips_elf_link_hash_table *htab;
10310
10311 htab = mips_elf_hash_table (info);
10312 BFD_ASSERT (htab != NULL);
10313
10314 if (ABI_64_P (output_bfd))
10315 plt_entry = mips_n64_exec_plt0_entry;
10316 else if (ABI_N32_P (output_bfd))
10317 plt_entry = mips_n32_exec_plt0_entry;
10318 else
10319 plt_entry = mips_o32_exec_plt0_entry;
10320
10321 /* Calculate the value of .got.plt. */
10322 gotplt_value = (htab->sgotplt->output_section->vma
10323 + htab->sgotplt->output_offset);
10324 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10325 gotplt_value_low = gotplt_value & 0xffff;
10326
10327 /* The PLT sequence is not safe for N64 if .got.plt's address can
10328 not be loaded in two instructions. */
10329 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10330 || ~(gotplt_value | 0x7fffffff) == 0);
10331
10332 /* Install the PLT header. */
10333 loc = htab->splt->contents;
10334 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10335 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10336 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10337 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10338 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10339 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10340 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10341 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10342 }
10343
10344 /* Install the PLT header for a VxWorks executable and finalize the
10345 contents of .rela.plt.unloaded. */
10346
10347 static void
10348 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10349 {
10350 Elf_Internal_Rela rela;
10351 bfd_byte *loc;
10352 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10353 static const bfd_vma *plt_entry;
10354 struct mips_elf_link_hash_table *htab;
10355
10356 htab = mips_elf_hash_table (info);
10357 BFD_ASSERT (htab != NULL);
10358
10359 plt_entry = mips_vxworks_exec_plt0_entry;
10360
10361 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10362 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10363 + htab->root.hgot->root.u.def.section->output_offset
10364 + htab->root.hgot->root.u.def.value);
10365
10366 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10367 got_value_low = got_value & 0xffff;
10368
10369 /* Calculate the address of the PLT header. */
10370 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10371
10372 /* Install the PLT header. */
10373 loc = htab->splt->contents;
10374 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10375 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10376 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10377 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10378 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10379 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10380
10381 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10382 loc = htab->srelplt2->contents;
10383 rela.r_offset = plt_address;
10384 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10385 rela.r_addend = 0;
10386 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10387 loc += sizeof (Elf32_External_Rela);
10388
10389 /* Output the relocation for the following addiu of
10390 %lo(_GLOBAL_OFFSET_TABLE_). */
10391 rela.r_offset += 4;
10392 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10393 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10394 loc += sizeof (Elf32_External_Rela);
10395
10396 /* Fix up the remaining relocations. They may have the wrong
10397 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10398 in which symbols were output. */
10399 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10400 {
10401 Elf_Internal_Rela rel;
10402
10403 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10404 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10405 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10406 loc += sizeof (Elf32_External_Rela);
10407
10408 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10409 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10410 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10411 loc += sizeof (Elf32_External_Rela);
10412
10413 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10414 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10415 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10416 loc += sizeof (Elf32_External_Rela);
10417 }
10418 }
10419
10420 /* Install the PLT header for a VxWorks shared library. */
10421
10422 static void
10423 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10424 {
10425 unsigned int i;
10426 struct mips_elf_link_hash_table *htab;
10427
10428 htab = mips_elf_hash_table (info);
10429 BFD_ASSERT (htab != NULL);
10430
10431 /* We just need to copy the entry byte-by-byte. */
10432 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10433 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10434 htab->splt->contents + i * 4);
10435 }
10436
10437 /* Finish up the dynamic sections. */
10438
10439 bfd_boolean
10440 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10441 struct bfd_link_info *info)
10442 {
10443 bfd *dynobj;
10444 asection *sdyn;
10445 asection *sgot;
10446 struct mips_got_info *gg, *g;
10447 struct mips_elf_link_hash_table *htab;
10448
10449 htab = mips_elf_hash_table (info);
10450 BFD_ASSERT (htab != NULL);
10451
10452 dynobj = elf_hash_table (info)->dynobj;
10453
10454 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10455
10456 sgot = htab->sgot;
10457 gg = htab->got_info;
10458
10459 if (elf_hash_table (info)->dynamic_sections_created)
10460 {
10461 bfd_byte *b;
10462 int dyn_to_skip = 0, dyn_skipped = 0;
10463
10464 BFD_ASSERT (sdyn != NULL);
10465 BFD_ASSERT (gg != NULL);
10466
10467 g = mips_elf_bfd_got (output_bfd, FALSE);
10468 BFD_ASSERT (g != NULL);
10469
10470 for (b = sdyn->contents;
10471 b < sdyn->contents + sdyn->size;
10472 b += MIPS_ELF_DYN_SIZE (dynobj))
10473 {
10474 Elf_Internal_Dyn dyn;
10475 const char *name;
10476 size_t elemsize;
10477 asection *s;
10478 bfd_boolean swap_out_p;
10479
10480 /* Read in the current dynamic entry. */
10481 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10482
10483 /* Assume that we're going to modify it and write it out. */
10484 swap_out_p = TRUE;
10485
10486 switch (dyn.d_tag)
10487 {
10488 case DT_RELENT:
10489 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10490 break;
10491
10492 case DT_RELAENT:
10493 BFD_ASSERT (htab->is_vxworks);
10494 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10495 break;
10496
10497 case DT_STRSZ:
10498 /* Rewrite DT_STRSZ. */
10499 dyn.d_un.d_val =
10500 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10501 break;
10502
10503 case DT_PLTGOT:
10504 s = htab->sgot;
10505 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10506 break;
10507
10508 case DT_MIPS_PLTGOT:
10509 s = htab->sgotplt;
10510 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10511 break;
10512
10513 case DT_MIPS_RLD_VERSION:
10514 dyn.d_un.d_val = 1; /* XXX */
10515 break;
10516
10517 case DT_MIPS_FLAGS:
10518 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10519 break;
10520
10521 case DT_MIPS_TIME_STAMP:
10522 {
10523 time_t t;
10524 time (&t);
10525 dyn.d_un.d_val = t;
10526 }
10527 break;
10528
10529 case DT_MIPS_ICHECKSUM:
10530 /* XXX FIXME: */
10531 swap_out_p = FALSE;
10532 break;
10533
10534 case DT_MIPS_IVERSION:
10535 /* XXX FIXME: */
10536 swap_out_p = FALSE;
10537 break;
10538
10539 case DT_MIPS_BASE_ADDRESS:
10540 s = output_bfd->sections;
10541 BFD_ASSERT (s != NULL);
10542 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10543 break;
10544
10545 case DT_MIPS_LOCAL_GOTNO:
10546 dyn.d_un.d_val = g->local_gotno;
10547 break;
10548
10549 case DT_MIPS_UNREFEXTNO:
10550 /* The index into the dynamic symbol table which is the
10551 entry of the first external symbol that is not
10552 referenced within the same object. */
10553 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10554 break;
10555
10556 case DT_MIPS_GOTSYM:
10557 if (htab->global_gotsym)
10558 {
10559 dyn.d_un.d_val = htab->global_gotsym->dynindx;
10560 break;
10561 }
10562 /* In case if we don't have global got symbols we default
10563 to setting DT_MIPS_GOTSYM to the same value as
10564 DT_MIPS_SYMTABNO, so we just fall through. */
10565
10566 case DT_MIPS_SYMTABNO:
10567 name = ".dynsym";
10568 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10569 s = bfd_get_section_by_name (output_bfd, name);
10570 BFD_ASSERT (s != NULL);
10571
10572 dyn.d_un.d_val = s->size / elemsize;
10573 break;
10574
10575 case DT_MIPS_HIPAGENO:
10576 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10577 break;
10578
10579 case DT_MIPS_RLD_MAP:
10580 {
10581 struct elf_link_hash_entry *h;
10582 h = mips_elf_hash_table (info)->rld_symbol;
10583 if (!h)
10584 {
10585 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10586 swap_out_p = FALSE;
10587 break;
10588 }
10589 s = h->root.u.def.section;
10590 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10591 + h->root.u.def.value);
10592 }
10593 break;
10594
10595 case DT_MIPS_OPTIONS:
10596 s = (bfd_get_section_by_name
10597 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10598 dyn.d_un.d_ptr = s->vma;
10599 break;
10600
10601 case DT_RELASZ:
10602 BFD_ASSERT (htab->is_vxworks);
10603 /* The count does not include the JUMP_SLOT relocations. */
10604 if (htab->srelplt)
10605 dyn.d_un.d_val -= htab->srelplt->size;
10606 break;
10607
10608 case DT_PLTREL:
10609 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10610 if (htab->is_vxworks)
10611 dyn.d_un.d_val = DT_RELA;
10612 else
10613 dyn.d_un.d_val = DT_REL;
10614 break;
10615
10616 case DT_PLTRELSZ:
10617 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10618 dyn.d_un.d_val = htab->srelplt->size;
10619 break;
10620
10621 case DT_JMPREL:
10622 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10623 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10624 + htab->srelplt->output_offset);
10625 break;
10626
10627 case DT_TEXTREL:
10628 /* If we didn't need any text relocations after all, delete
10629 the dynamic tag. */
10630 if (!(info->flags & DF_TEXTREL))
10631 {
10632 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10633 swap_out_p = FALSE;
10634 }
10635 break;
10636
10637 case DT_FLAGS:
10638 /* If we didn't need any text relocations after all, clear
10639 DF_TEXTREL from DT_FLAGS. */
10640 if (!(info->flags & DF_TEXTREL))
10641 dyn.d_un.d_val &= ~DF_TEXTREL;
10642 else
10643 swap_out_p = FALSE;
10644 break;
10645
10646 default:
10647 swap_out_p = FALSE;
10648 if (htab->is_vxworks
10649 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10650 swap_out_p = TRUE;
10651 break;
10652 }
10653
10654 if (swap_out_p || dyn_skipped)
10655 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10656 (dynobj, &dyn, b - dyn_skipped);
10657
10658 if (dyn_to_skip)
10659 {
10660 dyn_skipped += dyn_to_skip;
10661 dyn_to_skip = 0;
10662 }
10663 }
10664
10665 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10666 if (dyn_skipped > 0)
10667 memset (b - dyn_skipped, 0, dyn_skipped);
10668 }
10669
10670 if (sgot != NULL && sgot->size > 0
10671 && !bfd_is_abs_section (sgot->output_section))
10672 {
10673 if (htab->is_vxworks)
10674 {
10675 /* The first entry of the global offset table points to the
10676 ".dynamic" section. The second is initialized by the
10677 loader and contains the shared library identifier.
10678 The third is also initialized by the loader and points
10679 to the lazy resolution stub. */
10680 MIPS_ELF_PUT_WORD (output_bfd,
10681 sdyn->output_offset + sdyn->output_section->vma,
10682 sgot->contents);
10683 MIPS_ELF_PUT_WORD (output_bfd, 0,
10684 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10685 MIPS_ELF_PUT_WORD (output_bfd, 0,
10686 sgot->contents
10687 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10688 }
10689 else
10690 {
10691 /* The first entry of the global offset table will be filled at
10692 runtime. The second entry will be used by some runtime loaders.
10693 This isn't the case of IRIX rld. */
10694 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10695 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10696 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10697 }
10698
10699 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10700 = MIPS_ELF_GOT_SIZE (output_bfd);
10701 }
10702
10703 /* Generate dynamic relocations for the non-primary gots. */
10704 if (gg != NULL && gg->next)
10705 {
10706 Elf_Internal_Rela rel[3];
10707 bfd_vma addend = 0;
10708
10709 memset (rel, 0, sizeof (rel));
10710 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10711
10712 for (g = gg->next; g->next != gg; g = g->next)
10713 {
10714 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10715 + g->next->tls_gotno;
10716
10717 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10718 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10719 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10720 sgot->contents
10721 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10722
10723 if (! info->shared)
10724 continue;
10725
10726 while (got_index < g->assigned_gotno)
10727 {
10728 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10729 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10730 if (!(mips_elf_create_dynamic_relocation
10731 (output_bfd, info, rel, NULL,
10732 bfd_abs_section_ptr,
10733 0, &addend, sgot)))
10734 return FALSE;
10735 BFD_ASSERT (addend == 0);
10736 }
10737 }
10738 }
10739
10740 /* The generation of dynamic relocations for the non-primary gots
10741 adds more dynamic relocations. We cannot count them until
10742 here. */
10743
10744 if (elf_hash_table (info)->dynamic_sections_created)
10745 {
10746 bfd_byte *b;
10747 bfd_boolean swap_out_p;
10748
10749 BFD_ASSERT (sdyn != NULL);
10750
10751 for (b = sdyn->contents;
10752 b < sdyn->contents + sdyn->size;
10753 b += MIPS_ELF_DYN_SIZE (dynobj))
10754 {
10755 Elf_Internal_Dyn dyn;
10756 asection *s;
10757
10758 /* Read in the current dynamic entry. */
10759 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10760
10761 /* Assume that we're going to modify it and write it out. */
10762 swap_out_p = TRUE;
10763
10764 switch (dyn.d_tag)
10765 {
10766 case DT_RELSZ:
10767 /* Reduce DT_RELSZ to account for any relocations we
10768 decided not to make. This is for the n64 irix rld,
10769 which doesn't seem to apply any relocations if there
10770 are trailing null entries. */
10771 s = mips_elf_rel_dyn_section (info, FALSE);
10772 dyn.d_un.d_val = (s->reloc_count
10773 * (ABI_64_P (output_bfd)
10774 ? sizeof (Elf64_Mips_External_Rel)
10775 : sizeof (Elf32_External_Rel)));
10776 /* Adjust the section size too. Tools like the prelinker
10777 can reasonably expect the values to the same. */
10778 elf_section_data (s->output_section)->this_hdr.sh_size
10779 = dyn.d_un.d_val;
10780 break;
10781
10782 default:
10783 swap_out_p = FALSE;
10784 break;
10785 }
10786
10787 if (swap_out_p)
10788 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10789 (dynobj, &dyn, b);
10790 }
10791 }
10792
10793 {
10794 asection *s;
10795 Elf32_compact_rel cpt;
10796
10797 if (SGI_COMPAT (output_bfd))
10798 {
10799 /* Write .compact_rel section out. */
10800 s = bfd_get_linker_section (dynobj, ".compact_rel");
10801 if (s != NULL)
10802 {
10803 cpt.id1 = 1;
10804 cpt.num = s->reloc_count;
10805 cpt.id2 = 2;
10806 cpt.offset = (s->output_section->filepos
10807 + sizeof (Elf32_External_compact_rel));
10808 cpt.reserved0 = 0;
10809 cpt.reserved1 = 0;
10810 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10811 ((Elf32_External_compact_rel *)
10812 s->contents));
10813
10814 /* Clean up a dummy stub function entry in .text. */
10815 if (htab->sstubs != NULL)
10816 {
10817 file_ptr dummy_offset;
10818
10819 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10820 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10821 memset (htab->sstubs->contents + dummy_offset, 0,
10822 htab->function_stub_size);
10823 }
10824 }
10825 }
10826
10827 /* The psABI says that the dynamic relocations must be sorted in
10828 increasing order of r_symndx. The VxWorks EABI doesn't require
10829 this, and because the code below handles REL rather than RELA
10830 relocations, using it for VxWorks would be outright harmful. */
10831 if (!htab->is_vxworks)
10832 {
10833 s = mips_elf_rel_dyn_section (info, FALSE);
10834 if (s != NULL
10835 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10836 {
10837 reldyn_sorting_bfd = output_bfd;
10838
10839 if (ABI_64_P (output_bfd))
10840 qsort ((Elf64_External_Rel *) s->contents + 1,
10841 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10842 sort_dynamic_relocs_64);
10843 else
10844 qsort ((Elf32_External_Rel *) s->contents + 1,
10845 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10846 sort_dynamic_relocs);
10847 }
10848 }
10849 }
10850
10851 if (htab->splt && htab->splt->size > 0)
10852 {
10853 if (htab->is_vxworks)
10854 {
10855 if (info->shared)
10856 mips_vxworks_finish_shared_plt (output_bfd, info);
10857 else
10858 mips_vxworks_finish_exec_plt (output_bfd, info);
10859 }
10860 else
10861 {
10862 BFD_ASSERT (!info->shared);
10863 mips_finish_exec_plt (output_bfd, info);
10864 }
10865 }
10866 return TRUE;
10867 }
10868
10869
10870 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10871
10872 static void
10873 mips_set_isa_flags (bfd *abfd)
10874 {
10875 flagword val;
10876
10877 switch (bfd_get_mach (abfd))
10878 {
10879 default:
10880 case bfd_mach_mips3000:
10881 val = E_MIPS_ARCH_1;
10882 break;
10883
10884 case bfd_mach_mips3900:
10885 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10886 break;
10887
10888 case bfd_mach_mips6000:
10889 val = E_MIPS_ARCH_2;
10890 break;
10891
10892 case bfd_mach_mips4000:
10893 case bfd_mach_mips4300:
10894 case bfd_mach_mips4400:
10895 case bfd_mach_mips4600:
10896 val = E_MIPS_ARCH_3;
10897 break;
10898
10899 case bfd_mach_mips4010:
10900 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10901 break;
10902
10903 case bfd_mach_mips4100:
10904 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10905 break;
10906
10907 case bfd_mach_mips4111:
10908 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10909 break;
10910
10911 case bfd_mach_mips4120:
10912 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10913 break;
10914
10915 case bfd_mach_mips4650:
10916 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10917 break;
10918
10919 case bfd_mach_mips5400:
10920 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10921 break;
10922
10923 case bfd_mach_mips5500:
10924 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10925 break;
10926
10927 case bfd_mach_mips5900:
10928 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
10929 break;
10930
10931 case bfd_mach_mips9000:
10932 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10933 break;
10934
10935 case bfd_mach_mips5000:
10936 case bfd_mach_mips7000:
10937 case bfd_mach_mips8000:
10938 case bfd_mach_mips10000:
10939 case bfd_mach_mips12000:
10940 case bfd_mach_mips14000:
10941 case bfd_mach_mips16000:
10942 val = E_MIPS_ARCH_4;
10943 break;
10944
10945 case bfd_mach_mips5:
10946 val = E_MIPS_ARCH_5;
10947 break;
10948
10949 case bfd_mach_mips_loongson_2e:
10950 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10951 break;
10952
10953 case bfd_mach_mips_loongson_2f:
10954 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10955 break;
10956
10957 case bfd_mach_mips_sb1:
10958 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10959 break;
10960
10961 case bfd_mach_mips_loongson_3a:
10962 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10963 break;
10964
10965 case bfd_mach_mips_octeon:
10966 case bfd_mach_mips_octeonp:
10967 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10968 break;
10969
10970 case bfd_mach_mips_xlr:
10971 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10972 break;
10973
10974 case bfd_mach_mips_octeon2:
10975 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10976 break;
10977
10978 case bfd_mach_mipsisa32:
10979 val = E_MIPS_ARCH_32;
10980 break;
10981
10982 case bfd_mach_mipsisa64:
10983 val = E_MIPS_ARCH_64;
10984 break;
10985
10986 case bfd_mach_mipsisa32r2:
10987 val = E_MIPS_ARCH_32R2;
10988 break;
10989
10990 case bfd_mach_mipsisa64r2:
10991 val = E_MIPS_ARCH_64R2;
10992 break;
10993 }
10994 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10995 elf_elfheader (abfd)->e_flags |= val;
10996
10997 }
10998
10999
11000 /* The final processing done just before writing out a MIPS ELF object
11001 file. This gets the MIPS architecture right based on the machine
11002 number. This is used by both the 32-bit and the 64-bit ABI. */
11003
11004 void
11005 _bfd_mips_elf_final_write_processing (bfd *abfd,
11006 bfd_boolean linker ATTRIBUTE_UNUSED)
11007 {
11008 unsigned int i;
11009 Elf_Internal_Shdr **hdrpp;
11010 const char *name;
11011 asection *sec;
11012
11013 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11014 is nonzero. This is for compatibility with old objects, which used
11015 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11016 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11017 mips_set_isa_flags (abfd);
11018
11019 /* Set the sh_info field for .gptab sections and other appropriate
11020 info for each special section. */
11021 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11022 i < elf_numsections (abfd);
11023 i++, hdrpp++)
11024 {
11025 switch ((*hdrpp)->sh_type)
11026 {
11027 case SHT_MIPS_MSYM:
11028 case SHT_MIPS_LIBLIST:
11029 sec = bfd_get_section_by_name (abfd, ".dynstr");
11030 if (sec != NULL)
11031 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11032 break;
11033
11034 case SHT_MIPS_GPTAB:
11035 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11036 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11037 BFD_ASSERT (name != NULL
11038 && CONST_STRNEQ (name, ".gptab."));
11039 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11040 BFD_ASSERT (sec != NULL);
11041 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11042 break;
11043
11044 case SHT_MIPS_CONTENT:
11045 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11046 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11047 BFD_ASSERT (name != NULL
11048 && CONST_STRNEQ (name, ".MIPS.content"));
11049 sec = bfd_get_section_by_name (abfd,
11050 name + sizeof ".MIPS.content" - 1);
11051 BFD_ASSERT (sec != NULL);
11052 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11053 break;
11054
11055 case SHT_MIPS_SYMBOL_LIB:
11056 sec = bfd_get_section_by_name (abfd, ".dynsym");
11057 if (sec != NULL)
11058 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11059 sec = bfd_get_section_by_name (abfd, ".liblist");
11060 if (sec != NULL)
11061 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11062 break;
11063
11064 case SHT_MIPS_EVENTS:
11065 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11066 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11067 BFD_ASSERT (name != NULL);
11068 if (CONST_STRNEQ (name, ".MIPS.events"))
11069 sec = bfd_get_section_by_name (abfd,
11070 name + sizeof ".MIPS.events" - 1);
11071 else
11072 {
11073 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11074 sec = bfd_get_section_by_name (abfd,
11075 (name
11076 + sizeof ".MIPS.post_rel" - 1));
11077 }
11078 BFD_ASSERT (sec != NULL);
11079 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11080 break;
11081
11082 }
11083 }
11084 }
11085 \f
11086 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11087 segments. */
11088
11089 int
11090 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11091 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11092 {
11093 asection *s;
11094 int ret = 0;
11095
11096 /* See if we need a PT_MIPS_REGINFO segment. */
11097 s = bfd_get_section_by_name (abfd, ".reginfo");
11098 if (s && (s->flags & SEC_LOAD))
11099 ++ret;
11100
11101 /* See if we need a PT_MIPS_OPTIONS segment. */
11102 if (IRIX_COMPAT (abfd) == ict_irix6
11103 && bfd_get_section_by_name (abfd,
11104 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11105 ++ret;
11106
11107 /* See if we need a PT_MIPS_RTPROC segment. */
11108 if (IRIX_COMPAT (abfd) == ict_irix5
11109 && bfd_get_section_by_name (abfd, ".dynamic")
11110 && bfd_get_section_by_name (abfd, ".mdebug"))
11111 ++ret;
11112
11113 /* Allocate a PT_NULL header in dynamic objects. See
11114 _bfd_mips_elf_modify_segment_map for details. */
11115 if (!SGI_COMPAT (abfd)
11116 && bfd_get_section_by_name (abfd, ".dynamic"))
11117 ++ret;
11118
11119 return ret;
11120 }
11121
11122 /* Modify the segment map for an IRIX5 executable. */
11123
11124 bfd_boolean
11125 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11126 struct bfd_link_info *info)
11127 {
11128 asection *s;
11129 struct elf_segment_map *m, **pm;
11130 bfd_size_type amt;
11131
11132 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11133 segment. */
11134 s = bfd_get_section_by_name (abfd, ".reginfo");
11135 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11136 {
11137 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11138 if (m->p_type == PT_MIPS_REGINFO)
11139 break;
11140 if (m == NULL)
11141 {
11142 amt = sizeof *m;
11143 m = bfd_zalloc (abfd, amt);
11144 if (m == NULL)
11145 return FALSE;
11146
11147 m->p_type = PT_MIPS_REGINFO;
11148 m->count = 1;
11149 m->sections[0] = s;
11150
11151 /* We want to put it after the PHDR and INTERP segments. */
11152 pm = &elf_tdata (abfd)->segment_map;
11153 while (*pm != NULL
11154 && ((*pm)->p_type == PT_PHDR
11155 || (*pm)->p_type == PT_INTERP))
11156 pm = &(*pm)->next;
11157
11158 m->next = *pm;
11159 *pm = m;
11160 }
11161 }
11162
11163 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11164 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11165 PT_MIPS_OPTIONS segment immediately following the program header
11166 table. */
11167 if (NEWABI_P (abfd)
11168 /* On non-IRIX6 new abi, we'll have already created a segment
11169 for this section, so don't create another. I'm not sure this
11170 is not also the case for IRIX 6, but I can't test it right
11171 now. */
11172 && IRIX_COMPAT (abfd) == ict_irix6)
11173 {
11174 for (s = abfd->sections; s; s = s->next)
11175 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11176 break;
11177
11178 if (s)
11179 {
11180 struct elf_segment_map *options_segment;
11181
11182 pm = &elf_tdata (abfd)->segment_map;
11183 while (*pm != NULL
11184 && ((*pm)->p_type == PT_PHDR
11185 || (*pm)->p_type == PT_INTERP))
11186 pm = &(*pm)->next;
11187
11188 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11189 {
11190 amt = sizeof (struct elf_segment_map);
11191 options_segment = bfd_zalloc (abfd, amt);
11192 options_segment->next = *pm;
11193 options_segment->p_type = PT_MIPS_OPTIONS;
11194 options_segment->p_flags = PF_R;
11195 options_segment->p_flags_valid = TRUE;
11196 options_segment->count = 1;
11197 options_segment->sections[0] = s;
11198 *pm = options_segment;
11199 }
11200 }
11201 }
11202 else
11203 {
11204 if (IRIX_COMPAT (abfd) == ict_irix5)
11205 {
11206 /* If there are .dynamic and .mdebug sections, we make a room
11207 for the RTPROC header. FIXME: Rewrite without section names. */
11208 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11209 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11210 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11211 {
11212 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11213 if (m->p_type == PT_MIPS_RTPROC)
11214 break;
11215 if (m == NULL)
11216 {
11217 amt = sizeof *m;
11218 m = bfd_zalloc (abfd, amt);
11219 if (m == NULL)
11220 return FALSE;
11221
11222 m->p_type = PT_MIPS_RTPROC;
11223
11224 s = bfd_get_section_by_name (abfd, ".rtproc");
11225 if (s == NULL)
11226 {
11227 m->count = 0;
11228 m->p_flags = 0;
11229 m->p_flags_valid = 1;
11230 }
11231 else
11232 {
11233 m->count = 1;
11234 m->sections[0] = s;
11235 }
11236
11237 /* We want to put it after the DYNAMIC segment. */
11238 pm = &elf_tdata (abfd)->segment_map;
11239 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11240 pm = &(*pm)->next;
11241 if (*pm != NULL)
11242 pm = &(*pm)->next;
11243
11244 m->next = *pm;
11245 *pm = m;
11246 }
11247 }
11248 }
11249 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11250 .dynstr, .dynsym, and .hash sections, and everything in
11251 between. */
11252 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11253 pm = &(*pm)->next)
11254 if ((*pm)->p_type == PT_DYNAMIC)
11255 break;
11256 m = *pm;
11257 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11258 {
11259 /* For a normal mips executable the permissions for the PT_DYNAMIC
11260 segment are read, write and execute. We do that here since
11261 the code in elf.c sets only the read permission. This matters
11262 sometimes for the dynamic linker. */
11263 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11264 {
11265 m->p_flags = PF_R | PF_W | PF_X;
11266 m->p_flags_valid = 1;
11267 }
11268 }
11269 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11270 glibc's dynamic linker has traditionally derived the number of
11271 tags from the p_filesz field, and sometimes allocates stack
11272 arrays of that size. An overly-big PT_DYNAMIC segment can
11273 be actively harmful in such cases. Making PT_DYNAMIC contain
11274 other sections can also make life hard for the prelinker,
11275 which might move one of the other sections to a different
11276 PT_LOAD segment. */
11277 if (SGI_COMPAT (abfd)
11278 && m != NULL
11279 && m->count == 1
11280 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11281 {
11282 static const char *sec_names[] =
11283 {
11284 ".dynamic", ".dynstr", ".dynsym", ".hash"
11285 };
11286 bfd_vma low, high;
11287 unsigned int i, c;
11288 struct elf_segment_map *n;
11289
11290 low = ~(bfd_vma) 0;
11291 high = 0;
11292 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11293 {
11294 s = bfd_get_section_by_name (abfd, sec_names[i]);
11295 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11296 {
11297 bfd_size_type sz;
11298
11299 if (low > s->vma)
11300 low = s->vma;
11301 sz = s->size;
11302 if (high < s->vma + sz)
11303 high = s->vma + sz;
11304 }
11305 }
11306
11307 c = 0;
11308 for (s = abfd->sections; s != NULL; s = s->next)
11309 if ((s->flags & SEC_LOAD) != 0
11310 && s->vma >= low
11311 && s->vma + s->size <= high)
11312 ++c;
11313
11314 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11315 n = bfd_zalloc (abfd, amt);
11316 if (n == NULL)
11317 return FALSE;
11318 *n = *m;
11319 n->count = c;
11320
11321 i = 0;
11322 for (s = abfd->sections; s != NULL; s = s->next)
11323 {
11324 if ((s->flags & SEC_LOAD) != 0
11325 && s->vma >= low
11326 && s->vma + s->size <= high)
11327 {
11328 n->sections[i] = s;
11329 ++i;
11330 }
11331 }
11332
11333 *pm = n;
11334 }
11335 }
11336
11337 /* Allocate a spare program header in dynamic objects so that tools
11338 like the prelinker can add an extra PT_LOAD entry.
11339
11340 If the prelinker needs to make room for a new PT_LOAD entry, its
11341 standard procedure is to move the first (read-only) sections into
11342 the new (writable) segment. However, the MIPS ABI requires
11343 .dynamic to be in a read-only segment, and the section will often
11344 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11345
11346 Although the prelinker could in principle move .dynamic to a
11347 writable segment, it seems better to allocate a spare program
11348 header instead, and avoid the need to move any sections.
11349 There is a long tradition of allocating spare dynamic tags,
11350 so allocating a spare program header seems like a natural
11351 extension.
11352
11353 If INFO is NULL, we may be copying an already prelinked binary
11354 with objcopy or strip, so do not add this header. */
11355 if (info != NULL
11356 && !SGI_COMPAT (abfd)
11357 && bfd_get_section_by_name (abfd, ".dynamic"))
11358 {
11359 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11360 if ((*pm)->p_type == PT_NULL)
11361 break;
11362 if (*pm == NULL)
11363 {
11364 m = bfd_zalloc (abfd, sizeof (*m));
11365 if (m == NULL)
11366 return FALSE;
11367
11368 m->p_type = PT_NULL;
11369 *pm = m;
11370 }
11371 }
11372
11373 return TRUE;
11374 }
11375 \f
11376 /* Return the section that should be marked against GC for a given
11377 relocation. */
11378
11379 asection *
11380 _bfd_mips_elf_gc_mark_hook (asection *sec,
11381 struct bfd_link_info *info,
11382 Elf_Internal_Rela *rel,
11383 struct elf_link_hash_entry *h,
11384 Elf_Internal_Sym *sym)
11385 {
11386 /* ??? Do mips16 stub sections need to be handled special? */
11387
11388 if (h != NULL)
11389 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11390 {
11391 case R_MIPS_GNU_VTINHERIT:
11392 case R_MIPS_GNU_VTENTRY:
11393 return NULL;
11394 }
11395
11396 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11397 }
11398
11399 /* Update the got entry reference counts for the section being removed. */
11400
11401 bfd_boolean
11402 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11403 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11404 asection *sec ATTRIBUTE_UNUSED,
11405 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11406 {
11407 #if 0
11408 Elf_Internal_Shdr *symtab_hdr;
11409 struct elf_link_hash_entry **sym_hashes;
11410 bfd_signed_vma *local_got_refcounts;
11411 const Elf_Internal_Rela *rel, *relend;
11412 unsigned long r_symndx;
11413 struct elf_link_hash_entry *h;
11414
11415 if (info->relocatable)
11416 return TRUE;
11417
11418 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11419 sym_hashes = elf_sym_hashes (abfd);
11420 local_got_refcounts = elf_local_got_refcounts (abfd);
11421
11422 relend = relocs + sec->reloc_count;
11423 for (rel = relocs; rel < relend; rel++)
11424 switch (ELF_R_TYPE (abfd, rel->r_info))
11425 {
11426 case R_MIPS16_GOT16:
11427 case R_MIPS16_CALL16:
11428 case R_MIPS_GOT16:
11429 case R_MIPS_CALL16:
11430 case R_MIPS_CALL_HI16:
11431 case R_MIPS_CALL_LO16:
11432 case R_MIPS_GOT_HI16:
11433 case R_MIPS_GOT_LO16:
11434 case R_MIPS_GOT_DISP:
11435 case R_MIPS_GOT_PAGE:
11436 case R_MIPS_GOT_OFST:
11437 case R_MICROMIPS_GOT16:
11438 case R_MICROMIPS_CALL16:
11439 case R_MICROMIPS_CALL_HI16:
11440 case R_MICROMIPS_CALL_LO16:
11441 case R_MICROMIPS_GOT_HI16:
11442 case R_MICROMIPS_GOT_LO16:
11443 case R_MICROMIPS_GOT_DISP:
11444 case R_MICROMIPS_GOT_PAGE:
11445 case R_MICROMIPS_GOT_OFST:
11446 /* ??? It would seem that the existing MIPS code does no sort
11447 of reference counting or whatnot on its GOT and PLT entries,
11448 so it is not possible to garbage collect them at this time. */
11449 break;
11450
11451 default:
11452 break;
11453 }
11454 #endif
11455
11456 return TRUE;
11457 }
11458 \f
11459 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11460 hiding the old indirect symbol. Process additional relocation
11461 information. Also called for weakdefs, in which case we just let
11462 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11463
11464 void
11465 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11466 struct elf_link_hash_entry *dir,
11467 struct elf_link_hash_entry *ind)
11468 {
11469 struct mips_elf_link_hash_entry *dirmips, *indmips;
11470
11471 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11472
11473 dirmips = (struct mips_elf_link_hash_entry *) dir;
11474 indmips = (struct mips_elf_link_hash_entry *) ind;
11475 /* Any absolute non-dynamic relocations against an indirect or weak
11476 definition will be against the target symbol. */
11477 if (indmips->has_static_relocs)
11478 dirmips->has_static_relocs = TRUE;
11479
11480 if (ind->root.type != bfd_link_hash_indirect)
11481 return;
11482
11483 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11484 if (indmips->readonly_reloc)
11485 dirmips->readonly_reloc = TRUE;
11486 if (indmips->no_fn_stub)
11487 dirmips->no_fn_stub = TRUE;
11488 if (indmips->fn_stub)
11489 {
11490 dirmips->fn_stub = indmips->fn_stub;
11491 indmips->fn_stub = NULL;
11492 }
11493 if (indmips->need_fn_stub)
11494 {
11495 dirmips->need_fn_stub = TRUE;
11496 indmips->need_fn_stub = FALSE;
11497 }
11498 if (indmips->call_stub)
11499 {
11500 dirmips->call_stub = indmips->call_stub;
11501 indmips->call_stub = NULL;
11502 }
11503 if (indmips->call_fp_stub)
11504 {
11505 dirmips->call_fp_stub = indmips->call_fp_stub;
11506 indmips->call_fp_stub = NULL;
11507 }
11508 if (indmips->global_got_area < dirmips->global_got_area)
11509 dirmips->global_got_area = indmips->global_got_area;
11510 if (indmips->global_got_area < GGA_NONE)
11511 indmips->global_got_area = GGA_NONE;
11512 if (indmips->has_nonpic_branches)
11513 dirmips->has_nonpic_branches = TRUE;
11514
11515 if (dirmips->tls_ie_type == 0)
11516 dirmips->tls_ie_type = indmips->tls_ie_type;
11517 if (dirmips->tls_gd_type == 0)
11518 dirmips->tls_gd_type = indmips->tls_gd_type;
11519 }
11520 \f
11521 #define PDR_SIZE 32
11522
11523 bfd_boolean
11524 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11525 struct bfd_link_info *info)
11526 {
11527 asection *o;
11528 bfd_boolean ret = FALSE;
11529 unsigned char *tdata;
11530 size_t i, skip;
11531
11532 o = bfd_get_section_by_name (abfd, ".pdr");
11533 if (! o)
11534 return FALSE;
11535 if (o->size == 0)
11536 return FALSE;
11537 if (o->size % PDR_SIZE != 0)
11538 return FALSE;
11539 if (o->output_section != NULL
11540 && bfd_is_abs_section (o->output_section))
11541 return FALSE;
11542
11543 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11544 if (! tdata)
11545 return FALSE;
11546
11547 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11548 info->keep_memory);
11549 if (!cookie->rels)
11550 {
11551 free (tdata);
11552 return FALSE;
11553 }
11554
11555 cookie->rel = cookie->rels;
11556 cookie->relend = cookie->rels + o->reloc_count;
11557
11558 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11559 {
11560 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11561 {
11562 tdata[i] = 1;
11563 skip ++;
11564 }
11565 }
11566
11567 if (skip != 0)
11568 {
11569 mips_elf_section_data (o)->u.tdata = tdata;
11570 o->size -= skip * PDR_SIZE;
11571 ret = TRUE;
11572 }
11573 else
11574 free (tdata);
11575
11576 if (! info->keep_memory)
11577 free (cookie->rels);
11578
11579 return ret;
11580 }
11581
11582 bfd_boolean
11583 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11584 {
11585 if (strcmp (sec->name, ".pdr") == 0)
11586 return TRUE;
11587 return FALSE;
11588 }
11589
11590 bfd_boolean
11591 _bfd_mips_elf_write_section (bfd *output_bfd,
11592 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11593 asection *sec, bfd_byte *contents)
11594 {
11595 bfd_byte *to, *from, *end;
11596 int i;
11597
11598 if (strcmp (sec->name, ".pdr") != 0)
11599 return FALSE;
11600
11601 if (mips_elf_section_data (sec)->u.tdata == NULL)
11602 return FALSE;
11603
11604 to = contents;
11605 end = contents + sec->size;
11606 for (from = contents, i = 0;
11607 from < end;
11608 from += PDR_SIZE, i++)
11609 {
11610 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11611 continue;
11612 if (to != from)
11613 memcpy (to, from, PDR_SIZE);
11614 to += PDR_SIZE;
11615 }
11616 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11617 sec->output_offset, sec->size);
11618 return TRUE;
11619 }
11620 \f
11621 /* microMIPS code retains local labels for linker relaxation. Omit them
11622 from output by default for clarity. */
11623
11624 bfd_boolean
11625 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11626 {
11627 return _bfd_elf_is_local_label_name (abfd, sym->name);
11628 }
11629
11630 /* MIPS ELF uses a special find_nearest_line routine in order the
11631 handle the ECOFF debugging information. */
11632
11633 struct mips_elf_find_line
11634 {
11635 struct ecoff_debug_info d;
11636 struct ecoff_find_line i;
11637 };
11638
11639 bfd_boolean
11640 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11641 asymbol **symbols, bfd_vma offset,
11642 const char **filename_ptr,
11643 const char **functionname_ptr,
11644 unsigned int *line_ptr)
11645 {
11646 asection *msec;
11647
11648 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11649 filename_ptr, functionname_ptr,
11650 line_ptr))
11651 return TRUE;
11652
11653 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11654 section, symbols, offset,
11655 filename_ptr, functionname_ptr,
11656 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11657 &elf_tdata (abfd)->dwarf2_find_line_info))
11658 return TRUE;
11659
11660 msec = bfd_get_section_by_name (abfd, ".mdebug");
11661 if (msec != NULL)
11662 {
11663 flagword origflags;
11664 struct mips_elf_find_line *fi;
11665 const struct ecoff_debug_swap * const swap =
11666 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11667
11668 /* If we are called during a link, mips_elf_final_link may have
11669 cleared the SEC_HAS_CONTENTS field. We force it back on here
11670 if appropriate (which it normally will be). */
11671 origflags = msec->flags;
11672 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11673 msec->flags |= SEC_HAS_CONTENTS;
11674
11675 fi = elf_tdata (abfd)->find_line_info;
11676 if (fi == NULL)
11677 {
11678 bfd_size_type external_fdr_size;
11679 char *fraw_src;
11680 char *fraw_end;
11681 struct fdr *fdr_ptr;
11682 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11683
11684 fi = bfd_zalloc (abfd, amt);
11685 if (fi == NULL)
11686 {
11687 msec->flags = origflags;
11688 return FALSE;
11689 }
11690
11691 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11692 {
11693 msec->flags = origflags;
11694 return FALSE;
11695 }
11696
11697 /* Swap in the FDR information. */
11698 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11699 fi->d.fdr = bfd_alloc (abfd, amt);
11700 if (fi->d.fdr == NULL)
11701 {
11702 msec->flags = origflags;
11703 return FALSE;
11704 }
11705 external_fdr_size = swap->external_fdr_size;
11706 fdr_ptr = fi->d.fdr;
11707 fraw_src = (char *) fi->d.external_fdr;
11708 fraw_end = (fraw_src
11709 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11710 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11711 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11712
11713 elf_tdata (abfd)->find_line_info = fi;
11714
11715 /* Note that we don't bother to ever free this information.
11716 find_nearest_line is either called all the time, as in
11717 objdump -l, so the information should be saved, or it is
11718 rarely called, as in ld error messages, so the memory
11719 wasted is unimportant. Still, it would probably be a
11720 good idea for free_cached_info to throw it away. */
11721 }
11722
11723 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11724 &fi->i, filename_ptr, functionname_ptr,
11725 line_ptr))
11726 {
11727 msec->flags = origflags;
11728 return TRUE;
11729 }
11730
11731 msec->flags = origflags;
11732 }
11733
11734 /* Fall back on the generic ELF find_nearest_line routine. */
11735
11736 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11737 filename_ptr, functionname_ptr,
11738 line_ptr);
11739 }
11740
11741 bfd_boolean
11742 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11743 const char **filename_ptr,
11744 const char **functionname_ptr,
11745 unsigned int *line_ptr)
11746 {
11747 bfd_boolean found;
11748 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11749 functionname_ptr, line_ptr,
11750 & elf_tdata (abfd)->dwarf2_find_line_info);
11751 return found;
11752 }
11753
11754 \f
11755 /* When are writing out the .options or .MIPS.options section,
11756 remember the bytes we are writing out, so that we can install the
11757 GP value in the section_processing routine. */
11758
11759 bfd_boolean
11760 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11761 const void *location,
11762 file_ptr offset, bfd_size_type count)
11763 {
11764 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11765 {
11766 bfd_byte *c;
11767
11768 if (elf_section_data (section) == NULL)
11769 {
11770 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11771 section->used_by_bfd = bfd_zalloc (abfd, amt);
11772 if (elf_section_data (section) == NULL)
11773 return FALSE;
11774 }
11775 c = mips_elf_section_data (section)->u.tdata;
11776 if (c == NULL)
11777 {
11778 c = bfd_zalloc (abfd, section->size);
11779 if (c == NULL)
11780 return FALSE;
11781 mips_elf_section_data (section)->u.tdata = c;
11782 }
11783
11784 memcpy (c + offset, location, count);
11785 }
11786
11787 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11788 count);
11789 }
11790
11791 /* This is almost identical to bfd_generic_get_... except that some
11792 MIPS relocations need to be handled specially. Sigh. */
11793
11794 bfd_byte *
11795 _bfd_elf_mips_get_relocated_section_contents
11796 (bfd *abfd,
11797 struct bfd_link_info *link_info,
11798 struct bfd_link_order *link_order,
11799 bfd_byte *data,
11800 bfd_boolean relocatable,
11801 asymbol **symbols)
11802 {
11803 /* Get enough memory to hold the stuff */
11804 bfd *input_bfd = link_order->u.indirect.section->owner;
11805 asection *input_section = link_order->u.indirect.section;
11806 bfd_size_type sz;
11807
11808 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11809 arelent **reloc_vector = NULL;
11810 long reloc_count;
11811
11812 if (reloc_size < 0)
11813 goto error_return;
11814
11815 reloc_vector = bfd_malloc (reloc_size);
11816 if (reloc_vector == NULL && reloc_size != 0)
11817 goto error_return;
11818
11819 /* read in the section */
11820 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11821 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11822 goto error_return;
11823
11824 reloc_count = bfd_canonicalize_reloc (input_bfd,
11825 input_section,
11826 reloc_vector,
11827 symbols);
11828 if (reloc_count < 0)
11829 goto error_return;
11830
11831 if (reloc_count > 0)
11832 {
11833 arelent **parent;
11834 /* for mips */
11835 int gp_found;
11836 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11837
11838 {
11839 struct bfd_hash_entry *h;
11840 struct bfd_link_hash_entry *lh;
11841 /* Skip all this stuff if we aren't mixing formats. */
11842 if (abfd && input_bfd
11843 && abfd->xvec == input_bfd->xvec)
11844 lh = 0;
11845 else
11846 {
11847 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11848 lh = (struct bfd_link_hash_entry *) h;
11849 }
11850 lookup:
11851 if (lh)
11852 {
11853 switch (lh->type)
11854 {
11855 case bfd_link_hash_undefined:
11856 case bfd_link_hash_undefweak:
11857 case bfd_link_hash_common:
11858 gp_found = 0;
11859 break;
11860 case bfd_link_hash_defined:
11861 case bfd_link_hash_defweak:
11862 gp_found = 1;
11863 gp = lh->u.def.value;
11864 break;
11865 case bfd_link_hash_indirect:
11866 case bfd_link_hash_warning:
11867 lh = lh->u.i.link;
11868 /* @@FIXME ignoring warning for now */
11869 goto lookup;
11870 case bfd_link_hash_new:
11871 default:
11872 abort ();
11873 }
11874 }
11875 else
11876 gp_found = 0;
11877 }
11878 /* end mips */
11879 for (parent = reloc_vector; *parent != NULL; parent++)
11880 {
11881 char *error_message = NULL;
11882 bfd_reloc_status_type r;
11883
11884 /* Specific to MIPS: Deal with relocation types that require
11885 knowing the gp of the output bfd. */
11886 asymbol *sym = *(*parent)->sym_ptr_ptr;
11887
11888 /* If we've managed to find the gp and have a special
11889 function for the relocation then go ahead, else default
11890 to the generic handling. */
11891 if (gp_found
11892 && (*parent)->howto->special_function
11893 == _bfd_mips_elf32_gprel16_reloc)
11894 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11895 input_section, relocatable,
11896 data, gp);
11897 else
11898 r = bfd_perform_relocation (input_bfd, *parent, data,
11899 input_section,
11900 relocatable ? abfd : NULL,
11901 &error_message);
11902
11903 if (relocatable)
11904 {
11905 asection *os = input_section->output_section;
11906
11907 /* A partial link, so keep the relocs */
11908 os->orelocation[os->reloc_count] = *parent;
11909 os->reloc_count++;
11910 }
11911
11912 if (r != bfd_reloc_ok)
11913 {
11914 switch (r)
11915 {
11916 case bfd_reloc_undefined:
11917 if (!((*link_info->callbacks->undefined_symbol)
11918 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11919 input_bfd, input_section, (*parent)->address, TRUE)))
11920 goto error_return;
11921 break;
11922 case bfd_reloc_dangerous:
11923 BFD_ASSERT (error_message != NULL);
11924 if (!((*link_info->callbacks->reloc_dangerous)
11925 (link_info, error_message, input_bfd, input_section,
11926 (*parent)->address)))
11927 goto error_return;
11928 break;
11929 case bfd_reloc_overflow:
11930 if (!((*link_info->callbacks->reloc_overflow)
11931 (link_info, NULL,
11932 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11933 (*parent)->howto->name, (*parent)->addend,
11934 input_bfd, input_section, (*parent)->address)))
11935 goto error_return;
11936 break;
11937 case bfd_reloc_outofrange:
11938 default:
11939 abort ();
11940 break;
11941 }
11942
11943 }
11944 }
11945 }
11946 if (reloc_vector != NULL)
11947 free (reloc_vector);
11948 return data;
11949
11950 error_return:
11951 if (reloc_vector != NULL)
11952 free (reloc_vector);
11953 return NULL;
11954 }
11955 \f
11956 static bfd_boolean
11957 mips_elf_relax_delete_bytes (bfd *abfd,
11958 asection *sec, bfd_vma addr, int count)
11959 {
11960 Elf_Internal_Shdr *symtab_hdr;
11961 unsigned int sec_shndx;
11962 bfd_byte *contents;
11963 Elf_Internal_Rela *irel, *irelend;
11964 Elf_Internal_Sym *isym;
11965 Elf_Internal_Sym *isymend;
11966 struct elf_link_hash_entry **sym_hashes;
11967 struct elf_link_hash_entry **end_hashes;
11968 struct elf_link_hash_entry **start_hashes;
11969 unsigned int symcount;
11970
11971 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11972 contents = elf_section_data (sec)->this_hdr.contents;
11973
11974 irel = elf_section_data (sec)->relocs;
11975 irelend = irel + sec->reloc_count;
11976
11977 /* Actually delete the bytes. */
11978 memmove (contents + addr, contents + addr + count,
11979 (size_t) (sec->size - addr - count));
11980 sec->size -= count;
11981
11982 /* Adjust all the relocs. */
11983 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11984 {
11985 /* Get the new reloc address. */
11986 if (irel->r_offset > addr)
11987 irel->r_offset -= count;
11988 }
11989
11990 BFD_ASSERT (addr % 2 == 0);
11991 BFD_ASSERT (count % 2 == 0);
11992
11993 /* Adjust the local symbols defined in this section. */
11994 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11995 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11996 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
11997 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
11998 isym->st_value -= count;
11999
12000 /* Now adjust the global symbols defined in this section. */
12001 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12002 - symtab_hdr->sh_info);
12003 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12004 end_hashes = sym_hashes + symcount;
12005
12006 for (; sym_hashes < end_hashes; sym_hashes++)
12007 {
12008 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12009
12010 if ((sym_hash->root.type == bfd_link_hash_defined
12011 || sym_hash->root.type == bfd_link_hash_defweak)
12012 && sym_hash->root.u.def.section == sec)
12013 {
12014 bfd_vma value = sym_hash->root.u.def.value;
12015
12016 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12017 value &= MINUS_TWO;
12018 if (value > addr)
12019 sym_hash->root.u.def.value -= count;
12020 }
12021 }
12022
12023 return TRUE;
12024 }
12025
12026
12027 /* Opcodes needed for microMIPS relaxation as found in
12028 opcodes/micromips-opc.c. */
12029
12030 struct opcode_descriptor {
12031 unsigned long match;
12032 unsigned long mask;
12033 };
12034
12035 /* The $ra register aka $31. */
12036
12037 #define RA 31
12038
12039 /* 32-bit instruction format register fields. */
12040
12041 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12042 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12043
12044 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12045
12046 #define OP16_VALID_REG(r) \
12047 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12048
12049
12050 /* 32-bit and 16-bit branches. */
12051
12052 static const struct opcode_descriptor b_insns_32[] = {
12053 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12054 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12055 { 0, 0 } /* End marker for find_match(). */
12056 };
12057
12058 static const struct opcode_descriptor bc_insn_32 =
12059 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12060
12061 static const struct opcode_descriptor bz_insn_32 =
12062 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12063
12064 static const struct opcode_descriptor bzal_insn_32 =
12065 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12066
12067 static const struct opcode_descriptor beq_insn_32 =
12068 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12069
12070 static const struct opcode_descriptor b_insn_16 =
12071 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12072
12073 static const struct opcode_descriptor bz_insn_16 =
12074 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12075
12076
12077 /* 32-bit and 16-bit branch EQ and NE zero. */
12078
12079 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12080 eq and second the ne. This convention is used when replacing a
12081 32-bit BEQ/BNE with the 16-bit version. */
12082
12083 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12084
12085 static const struct opcode_descriptor bz_rs_insns_32[] = {
12086 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12087 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12088 { 0, 0 } /* End marker for find_match(). */
12089 };
12090
12091 static const struct opcode_descriptor bz_rt_insns_32[] = {
12092 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12093 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12094 { 0, 0 } /* End marker for find_match(). */
12095 };
12096
12097 static const struct opcode_descriptor bzc_insns_32[] = {
12098 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12099 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12100 { 0, 0 } /* End marker for find_match(). */
12101 };
12102
12103 static const struct opcode_descriptor bz_insns_16[] = {
12104 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12105 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12106 { 0, 0 } /* End marker for find_match(). */
12107 };
12108
12109 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12110
12111 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12112 #define BZ16_REG_FIELD(r) \
12113 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12114
12115
12116 /* 32-bit instructions with a delay slot. */
12117
12118 static const struct opcode_descriptor jal_insn_32_bd16 =
12119 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12120
12121 static const struct opcode_descriptor jal_insn_32_bd32 =
12122 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12123
12124 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12125 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12126
12127 static const struct opcode_descriptor j_insn_32 =
12128 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12129
12130 static const struct opcode_descriptor jalr_insn_32 =
12131 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12132
12133 /* This table can be compacted, because no opcode replacement is made. */
12134
12135 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12136 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12137
12138 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12139 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12140
12141 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12142 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12143 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12144 { 0, 0 } /* End marker for find_match(). */
12145 };
12146
12147 /* This table can be compacted, because no opcode replacement is made. */
12148
12149 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12150 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12151
12152 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12153 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12154 { 0, 0 } /* End marker for find_match(). */
12155 };
12156
12157
12158 /* 16-bit instructions with a delay slot. */
12159
12160 static const struct opcode_descriptor jalr_insn_16_bd16 =
12161 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12162
12163 static const struct opcode_descriptor jalr_insn_16_bd32 =
12164 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12165
12166 static const struct opcode_descriptor jr_insn_16 =
12167 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12168
12169 #define JR16_REG(opcode) ((opcode) & 0x1f)
12170
12171 /* This table can be compacted, because no opcode replacement is made. */
12172
12173 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12174 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12175
12176 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12177 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12178 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12179 { 0, 0 } /* End marker for find_match(). */
12180 };
12181
12182
12183 /* LUI instruction. */
12184
12185 static const struct opcode_descriptor lui_insn =
12186 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12187
12188
12189 /* ADDIU instruction. */
12190
12191 static const struct opcode_descriptor addiu_insn =
12192 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12193
12194 static const struct opcode_descriptor addiupc_insn =
12195 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12196
12197 #define ADDIUPC_REG_FIELD(r) \
12198 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12199
12200
12201 /* Relaxable instructions in a JAL delay slot: MOVE. */
12202
12203 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12204 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12205 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12206 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12207
12208 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12209 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12210
12211 static const struct opcode_descriptor move_insns_32[] = {
12212 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12213 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12214 { 0, 0 } /* End marker for find_match(). */
12215 };
12216
12217 static const struct opcode_descriptor move_insn_16 =
12218 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12219
12220
12221 /* NOP instructions. */
12222
12223 static const struct opcode_descriptor nop_insn_32 =
12224 { /* "nop", "", */ 0x00000000, 0xffffffff };
12225
12226 static const struct opcode_descriptor nop_insn_16 =
12227 { /* "nop", "", */ 0x0c00, 0xffff };
12228
12229
12230 /* Instruction match support. */
12231
12232 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12233
12234 static int
12235 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12236 {
12237 unsigned long indx;
12238
12239 for (indx = 0; insn[indx].mask != 0; indx++)
12240 if (MATCH (opcode, insn[indx]))
12241 return indx;
12242
12243 return -1;
12244 }
12245
12246
12247 /* Branch and delay slot decoding support. */
12248
12249 /* If PTR points to what *might* be a 16-bit branch or jump, then
12250 return the minimum length of its delay slot, otherwise return 0.
12251 Non-zero results are not definitive as we might be checking against
12252 the second half of another instruction. */
12253
12254 static int
12255 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12256 {
12257 unsigned long opcode;
12258 int bdsize;
12259
12260 opcode = bfd_get_16 (abfd, ptr);
12261 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12262 /* 16-bit branch/jump with a 32-bit delay slot. */
12263 bdsize = 4;
12264 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12265 || find_match (opcode, ds_insns_16_bd16) >= 0)
12266 /* 16-bit branch/jump with a 16-bit delay slot. */
12267 bdsize = 2;
12268 else
12269 /* No delay slot. */
12270 bdsize = 0;
12271
12272 return bdsize;
12273 }
12274
12275 /* If PTR points to what *might* be a 32-bit branch or jump, then
12276 return the minimum length of its delay slot, otherwise return 0.
12277 Non-zero results are not definitive as we might be checking against
12278 the second half of another instruction. */
12279
12280 static int
12281 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12282 {
12283 unsigned long opcode;
12284 int bdsize;
12285
12286 opcode = bfd_get_micromips_32 (abfd, ptr);
12287 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12288 /* 32-bit branch/jump with a 32-bit delay slot. */
12289 bdsize = 4;
12290 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12291 /* 32-bit branch/jump with a 16-bit delay slot. */
12292 bdsize = 2;
12293 else
12294 /* No delay slot. */
12295 bdsize = 0;
12296
12297 return bdsize;
12298 }
12299
12300 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12301 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12302
12303 static bfd_boolean
12304 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12305 {
12306 unsigned long opcode;
12307
12308 opcode = bfd_get_16 (abfd, ptr);
12309 if (MATCH (opcode, b_insn_16)
12310 /* B16 */
12311 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12312 /* JR16 */
12313 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12314 /* BEQZ16, BNEZ16 */
12315 || (MATCH (opcode, jalr_insn_16_bd32)
12316 /* JALR16 */
12317 && reg != JR16_REG (opcode) && reg != RA))
12318 return TRUE;
12319
12320 return FALSE;
12321 }
12322
12323 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12324 then return TRUE, otherwise FALSE. */
12325
12326 static bfd_boolean
12327 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12328 {
12329 unsigned long opcode;
12330
12331 opcode = bfd_get_micromips_32 (abfd, ptr);
12332 if (MATCH (opcode, j_insn_32)
12333 /* J */
12334 || MATCH (opcode, bc_insn_32)
12335 /* BC1F, BC1T, BC2F, BC2T */
12336 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12337 /* JAL, JALX */
12338 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12339 /* BGEZ, BGTZ, BLEZ, BLTZ */
12340 || (MATCH (opcode, bzal_insn_32)
12341 /* BGEZAL, BLTZAL */
12342 && reg != OP32_SREG (opcode) && reg != RA)
12343 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12344 /* JALR, JALR.HB, BEQ, BNE */
12345 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12346 return TRUE;
12347
12348 return FALSE;
12349 }
12350
12351 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12352 IRELEND) at OFFSET indicate that there must be a compact branch there,
12353 then return TRUE, otherwise FALSE. */
12354
12355 static bfd_boolean
12356 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12357 const Elf_Internal_Rela *internal_relocs,
12358 const Elf_Internal_Rela *irelend)
12359 {
12360 const Elf_Internal_Rela *irel;
12361 unsigned long opcode;
12362
12363 opcode = bfd_get_micromips_32 (abfd, ptr);
12364 if (find_match (opcode, bzc_insns_32) < 0)
12365 return FALSE;
12366
12367 for (irel = internal_relocs; irel < irelend; irel++)
12368 if (irel->r_offset == offset
12369 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12370 return TRUE;
12371
12372 return FALSE;
12373 }
12374
12375 /* Bitsize checking. */
12376 #define IS_BITSIZE(val, N) \
12377 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12378 - (1ULL << ((N) - 1))) == (val))
12379
12380 \f
12381 bfd_boolean
12382 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12383 struct bfd_link_info *link_info,
12384 bfd_boolean *again)
12385 {
12386 Elf_Internal_Shdr *symtab_hdr;
12387 Elf_Internal_Rela *internal_relocs;
12388 Elf_Internal_Rela *irel, *irelend;
12389 bfd_byte *contents = NULL;
12390 Elf_Internal_Sym *isymbuf = NULL;
12391
12392 /* Assume nothing changes. */
12393 *again = FALSE;
12394
12395 /* We don't have to do anything for a relocatable link, if
12396 this section does not have relocs, or if this is not a
12397 code section. */
12398
12399 if (link_info->relocatable
12400 || (sec->flags & SEC_RELOC) == 0
12401 || sec->reloc_count == 0
12402 || (sec->flags & SEC_CODE) == 0)
12403 return TRUE;
12404
12405 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12406
12407 /* Get a copy of the native relocations. */
12408 internal_relocs = (_bfd_elf_link_read_relocs
12409 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12410 link_info->keep_memory));
12411 if (internal_relocs == NULL)
12412 goto error_return;
12413
12414 /* Walk through them looking for relaxing opportunities. */
12415 irelend = internal_relocs + sec->reloc_count;
12416 for (irel = internal_relocs; irel < irelend; irel++)
12417 {
12418 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12419 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12420 bfd_boolean target_is_micromips_code_p;
12421 unsigned long opcode;
12422 bfd_vma symval;
12423 bfd_vma pcrval;
12424 bfd_byte *ptr;
12425 int fndopc;
12426
12427 /* The number of bytes to delete for relaxation and from where
12428 to delete these bytes starting at irel->r_offset. */
12429 int delcnt = 0;
12430 int deloff = 0;
12431
12432 /* If this isn't something that can be relaxed, then ignore
12433 this reloc. */
12434 if (r_type != R_MICROMIPS_HI16
12435 && r_type != R_MICROMIPS_PC16_S1
12436 && r_type != R_MICROMIPS_26_S1)
12437 continue;
12438
12439 /* Get the section contents if we haven't done so already. */
12440 if (contents == NULL)
12441 {
12442 /* Get cached copy if it exists. */
12443 if (elf_section_data (sec)->this_hdr.contents != NULL)
12444 contents = elf_section_data (sec)->this_hdr.contents;
12445 /* Go get them off disk. */
12446 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12447 goto error_return;
12448 }
12449 ptr = contents + irel->r_offset;
12450
12451 /* Read this BFD's local symbols if we haven't done so already. */
12452 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12453 {
12454 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12455 if (isymbuf == NULL)
12456 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12457 symtab_hdr->sh_info, 0,
12458 NULL, NULL, NULL);
12459 if (isymbuf == NULL)
12460 goto error_return;
12461 }
12462
12463 /* Get the value of the symbol referred to by the reloc. */
12464 if (r_symndx < symtab_hdr->sh_info)
12465 {
12466 /* A local symbol. */
12467 Elf_Internal_Sym *isym;
12468 asection *sym_sec;
12469
12470 isym = isymbuf + r_symndx;
12471 if (isym->st_shndx == SHN_UNDEF)
12472 sym_sec = bfd_und_section_ptr;
12473 else if (isym->st_shndx == SHN_ABS)
12474 sym_sec = bfd_abs_section_ptr;
12475 else if (isym->st_shndx == SHN_COMMON)
12476 sym_sec = bfd_com_section_ptr;
12477 else
12478 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12479 symval = (isym->st_value
12480 + sym_sec->output_section->vma
12481 + sym_sec->output_offset);
12482 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12483 }
12484 else
12485 {
12486 unsigned long indx;
12487 struct elf_link_hash_entry *h;
12488
12489 /* An external symbol. */
12490 indx = r_symndx - symtab_hdr->sh_info;
12491 h = elf_sym_hashes (abfd)[indx];
12492 BFD_ASSERT (h != NULL);
12493
12494 if (h->root.type != bfd_link_hash_defined
12495 && h->root.type != bfd_link_hash_defweak)
12496 /* This appears to be a reference to an undefined
12497 symbol. Just ignore it -- it will be caught by the
12498 regular reloc processing. */
12499 continue;
12500
12501 symval = (h->root.u.def.value
12502 + h->root.u.def.section->output_section->vma
12503 + h->root.u.def.section->output_offset);
12504 target_is_micromips_code_p = (!h->needs_plt
12505 && ELF_ST_IS_MICROMIPS (h->other));
12506 }
12507
12508
12509 /* For simplicity of coding, we are going to modify the
12510 section contents, the section relocs, and the BFD symbol
12511 table. We must tell the rest of the code not to free up this
12512 information. It would be possible to instead create a table
12513 of changes which have to be made, as is done in coff-mips.c;
12514 that would be more work, but would require less memory when
12515 the linker is run. */
12516
12517 /* Only 32-bit instructions relaxed. */
12518 if (irel->r_offset + 4 > sec->size)
12519 continue;
12520
12521 opcode = bfd_get_micromips_32 (abfd, ptr);
12522
12523 /* This is the pc-relative distance from the instruction the
12524 relocation is applied to, to the symbol referred. */
12525 pcrval = (symval
12526 - (sec->output_section->vma + sec->output_offset)
12527 - irel->r_offset);
12528
12529 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12530 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12531 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12532
12533 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12534
12535 where pcrval has first to be adjusted to apply against the LO16
12536 location (we make the adjustment later on, when we have figured
12537 out the offset). */
12538 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12539 {
12540 bfd_boolean bzc = FALSE;
12541 unsigned long nextopc;
12542 unsigned long reg;
12543 bfd_vma offset;
12544
12545 /* Give up if the previous reloc was a HI16 against this symbol
12546 too. */
12547 if (irel > internal_relocs
12548 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12549 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12550 continue;
12551
12552 /* Or if the next reloc is not a LO16 against this symbol. */
12553 if (irel + 1 >= irelend
12554 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12555 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12556 continue;
12557
12558 /* Or if the second next reloc is a LO16 against this symbol too. */
12559 if (irel + 2 >= irelend
12560 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12561 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12562 continue;
12563
12564 /* See if the LUI instruction *might* be in a branch delay slot.
12565 We check whether what looks like a 16-bit branch or jump is
12566 actually an immediate argument to a compact branch, and let
12567 it through if so. */
12568 if (irel->r_offset >= 2
12569 && check_br16_dslot (abfd, ptr - 2)
12570 && !(irel->r_offset >= 4
12571 && (bzc = check_relocated_bzc (abfd,
12572 ptr - 4, irel->r_offset - 4,
12573 internal_relocs, irelend))))
12574 continue;
12575 if (irel->r_offset >= 4
12576 && !bzc
12577 && check_br32_dslot (abfd, ptr - 4))
12578 continue;
12579
12580 reg = OP32_SREG (opcode);
12581
12582 /* We only relax adjacent instructions or ones separated with
12583 a branch or jump that has a delay slot. The branch or jump
12584 must not fiddle with the register used to hold the address.
12585 Subtract 4 for the LUI itself. */
12586 offset = irel[1].r_offset - irel[0].r_offset;
12587 switch (offset - 4)
12588 {
12589 case 0:
12590 break;
12591 case 2:
12592 if (check_br16 (abfd, ptr + 4, reg))
12593 break;
12594 continue;
12595 case 4:
12596 if (check_br32 (abfd, ptr + 4, reg))
12597 break;
12598 continue;
12599 default:
12600 continue;
12601 }
12602
12603 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12604
12605 /* Give up unless the same register is used with both
12606 relocations. */
12607 if (OP32_SREG (nextopc) != reg)
12608 continue;
12609
12610 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12611 and rounding up to take masking of the two LSBs into account. */
12612 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12613
12614 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12615 if (IS_BITSIZE (symval, 16))
12616 {
12617 /* Fix the relocation's type. */
12618 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12619
12620 /* Instructions using R_MICROMIPS_LO16 have the base or
12621 source register in bits 20:16. This register becomes $0
12622 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12623 nextopc &= ~0x001f0000;
12624 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12625 contents + irel[1].r_offset);
12626 }
12627
12628 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12629 We add 4 to take LUI deletion into account while checking
12630 the PC-relative distance. */
12631 else if (symval % 4 == 0
12632 && IS_BITSIZE (pcrval + 4, 25)
12633 && MATCH (nextopc, addiu_insn)
12634 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12635 && OP16_VALID_REG (OP32_TREG (nextopc)))
12636 {
12637 /* Fix the relocation's type. */
12638 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12639
12640 /* Replace ADDIU with the ADDIUPC version. */
12641 nextopc = (addiupc_insn.match
12642 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12643
12644 bfd_put_micromips_32 (abfd, nextopc,
12645 contents + irel[1].r_offset);
12646 }
12647
12648 /* Can't do anything, give up, sigh... */
12649 else
12650 continue;
12651
12652 /* Fix the relocation's type. */
12653 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12654
12655 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12656 delcnt = 4;
12657 deloff = 0;
12658 }
12659
12660 /* Compact branch relaxation -- due to the multitude of macros
12661 employed by the compiler/assembler, compact branches are not
12662 always generated. Obviously, this can/will be fixed elsewhere,
12663 but there is no drawback in double checking it here. */
12664 else if (r_type == R_MICROMIPS_PC16_S1
12665 && irel->r_offset + 5 < sec->size
12666 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12667 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12668 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12669 {
12670 unsigned long reg;
12671
12672 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12673
12674 /* Replace BEQZ/BNEZ with the compact version. */
12675 opcode = (bzc_insns_32[fndopc].match
12676 | BZC32_REG_FIELD (reg)
12677 | (opcode & 0xffff)); /* Addend value. */
12678
12679 bfd_put_micromips_32 (abfd, opcode, ptr);
12680
12681 /* Delete the 16-bit delay slot NOP: two bytes from
12682 irel->offset + 4. */
12683 delcnt = 2;
12684 deloff = 4;
12685 }
12686
12687 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12688 to check the distance from the next instruction, so subtract 2. */
12689 else if (r_type == R_MICROMIPS_PC16_S1
12690 && IS_BITSIZE (pcrval - 2, 11)
12691 && find_match (opcode, b_insns_32) >= 0)
12692 {
12693 /* Fix the relocation's type. */
12694 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12695
12696 /* Replace the 32-bit opcode with a 16-bit opcode. */
12697 bfd_put_16 (abfd,
12698 (b_insn_16.match
12699 | (opcode & 0x3ff)), /* Addend value. */
12700 ptr);
12701
12702 /* Delete 2 bytes from irel->r_offset + 2. */
12703 delcnt = 2;
12704 deloff = 2;
12705 }
12706
12707 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12708 to check the distance from the next instruction, so subtract 2. */
12709 else if (r_type == R_MICROMIPS_PC16_S1
12710 && IS_BITSIZE (pcrval - 2, 8)
12711 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12712 && OP16_VALID_REG (OP32_SREG (opcode)))
12713 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12714 && OP16_VALID_REG (OP32_TREG (opcode)))))
12715 {
12716 unsigned long reg;
12717
12718 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12719
12720 /* Fix the relocation's type. */
12721 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12722
12723 /* Replace the 32-bit opcode with a 16-bit opcode. */
12724 bfd_put_16 (abfd,
12725 (bz_insns_16[fndopc].match
12726 | BZ16_REG_FIELD (reg)
12727 | (opcode & 0x7f)), /* Addend value. */
12728 ptr);
12729
12730 /* Delete 2 bytes from irel->r_offset + 2. */
12731 delcnt = 2;
12732 deloff = 2;
12733 }
12734
12735 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12736 else if (r_type == R_MICROMIPS_26_S1
12737 && target_is_micromips_code_p
12738 && irel->r_offset + 7 < sec->size
12739 && MATCH (opcode, jal_insn_32_bd32))
12740 {
12741 unsigned long n32opc;
12742 bfd_boolean relaxed = FALSE;
12743
12744 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12745
12746 if (MATCH (n32opc, nop_insn_32))
12747 {
12748 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12749 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12750
12751 relaxed = TRUE;
12752 }
12753 else if (find_match (n32opc, move_insns_32) >= 0)
12754 {
12755 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12756 bfd_put_16 (abfd,
12757 (move_insn_16.match
12758 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12759 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12760 ptr + 4);
12761
12762 relaxed = TRUE;
12763 }
12764 /* Other 32-bit instructions relaxable to 16-bit
12765 instructions will be handled here later. */
12766
12767 if (relaxed)
12768 {
12769 /* JAL with 32-bit delay slot that is changed to a JALS
12770 with 16-bit delay slot. */
12771 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12772
12773 /* Delete 2 bytes from irel->r_offset + 6. */
12774 delcnt = 2;
12775 deloff = 6;
12776 }
12777 }
12778
12779 if (delcnt != 0)
12780 {
12781 /* Note that we've changed the relocs, section contents, etc. */
12782 elf_section_data (sec)->relocs = internal_relocs;
12783 elf_section_data (sec)->this_hdr.contents = contents;
12784 symtab_hdr->contents = (unsigned char *) isymbuf;
12785
12786 /* Delete bytes depending on the delcnt and deloff. */
12787 if (!mips_elf_relax_delete_bytes (abfd, sec,
12788 irel->r_offset + deloff, delcnt))
12789 goto error_return;
12790
12791 /* That will change things, so we should relax again.
12792 Note that this is not required, and it may be slow. */
12793 *again = TRUE;
12794 }
12795 }
12796
12797 if (isymbuf != NULL
12798 && symtab_hdr->contents != (unsigned char *) isymbuf)
12799 {
12800 if (! link_info->keep_memory)
12801 free (isymbuf);
12802 else
12803 {
12804 /* Cache the symbols for elf_link_input_bfd. */
12805 symtab_hdr->contents = (unsigned char *) isymbuf;
12806 }
12807 }
12808
12809 if (contents != NULL
12810 && elf_section_data (sec)->this_hdr.contents != contents)
12811 {
12812 if (! link_info->keep_memory)
12813 free (contents);
12814 else
12815 {
12816 /* Cache the section contents for elf_link_input_bfd. */
12817 elf_section_data (sec)->this_hdr.contents = contents;
12818 }
12819 }
12820
12821 if (internal_relocs != NULL
12822 && elf_section_data (sec)->relocs != internal_relocs)
12823 free (internal_relocs);
12824
12825 return TRUE;
12826
12827 error_return:
12828 if (isymbuf != NULL
12829 && symtab_hdr->contents != (unsigned char *) isymbuf)
12830 free (isymbuf);
12831 if (contents != NULL
12832 && elf_section_data (sec)->this_hdr.contents != contents)
12833 free (contents);
12834 if (internal_relocs != NULL
12835 && elf_section_data (sec)->relocs != internal_relocs)
12836 free (internal_relocs);
12837
12838 return FALSE;
12839 }
12840 \f
12841 /* Create a MIPS ELF linker hash table. */
12842
12843 struct bfd_link_hash_table *
12844 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12845 {
12846 struct mips_elf_link_hash_table *ret;
12847 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12848
12849 ret = bfd_zmalloc (amt);
12850 if (ret == NULL)
12851 return NULL;
12852
12853 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12854 mips_elf_link_hash_newfunc,
12855 sizeof (struct mips_elf_link_hash_entry),
12856 MIPS_ELF_DATA))
12857 {
12858 free (ret);
12859 return NULL;
12860 }
12861
12862 return &ret->root.root;
12863 }
12864
12865 /* Likewise, but indicate that the target is VxWorks. */
12866
12867 struct bfd_link_hash_table *
12868 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12869 {
12870 struct bfd_link_hash_table *ret;
12871
12872 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12873 if (ret)
12874 {
12875 struct mips_elf_link_hash_table *htab;
12876
12877 htab = (struct mips_elf_link_hash_table *) ret;
12878 htab->use_plts_and_copy_relocs = TRUE;
12879 htab->is_vxworks = TRUE;
12880 }
12881 return ret;
12882 }
12883
12884 /* A function that the linker calls if we are allowed to use PLTs
12885 and copy relocs. */
12886
12887 void
12888 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12889 {
12890 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12891 }
12892 \f
12893 /* We need to use a special link routine to handle the .reginfo and
12894 the .mdebug sections. We need to merge all instances of these
12895 sections together, not write them all out sequentially. */
12896
12897 bfd_boolean
12898 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12899 {
12900 asection *o;
12901 struct bfd_link_order *p;
12902 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12903 asection *rtproc_sec;
12904 Elf32_RegInfo reginfo;
12905 struct ecoff_debug_info debug;
12906 struct mips_htab_traverse_info hti;
12907 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12908 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12909 HDRR *symhdr = &debug.symbolic_header;
12910 void *mdebug_handle = NULL;
12911 asection *s;
12912 EXTR esym;
12913 unsigned int i;
12914 bfd_size_type amt;
12915 struct mips_elf_link_hash_table *htab;
12916
12917 static const char * const secname[] =
12918 {
12919 ".text", ".init", ".fini", ".data",
12920 ".rodata", ".sdata", ".sbss", ".bss"
12921 };
12922 static const int sc[] =
12923 {
12924 scText, scInit, scFini, scData,
12925 scRData, scSData, scSBss, scBss
12926 };
12927
12928 /* Sort the dynamic symbols so that those with GOT entries come after
12929 those without. */
12930 htab = mips_elf_hash_table (info);
12931 BFD_ASSERT (htab != NULL);
12932
12933 if (!mips_elf_sort_hash_table (abfd, info))
12934 return FALSE;
12935
12936 /* Create any scheduled LA25 stubs. */
12937 hti.info = info;
12938 hti.output_bfd = abfd;
12939 hti.error = FALSE;
12940 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12941 if (hti.error)
12942 return FALSE;
12943
12944 /* Get a value for the GP register. */
12945 if (elf_gp (abfd) == 0)
12946 {
12947 struct bfd_link_hash_entry *h;
12948
12949 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12950 if (h != NULL && h->type == bfd_link_hash_defined)
12951 elf_gp (abfd) = (h->u.def.value
12952 + h->u.def.section->output_section->vma
12953 + h->u.def.section->output_offset);
12954 else if (htab->is_vxworks
12955 && (h = bfd_link_hash_lookup (info->hash,
12956 "_GLOBAL_OFFSET_TABLE_",
12957 FALSE, FALSE, TRUE))
12958 && h->type == bfd_link_hash_defined)
12959 elf_gp (abfd) = (h->u.def.section->output_section->vma
12960 + h->u.def.section->output_offset
12961 + h->u.def.value);
12962 else if (info->relocatable)
12963 {
12964 bfd_vma lo = MINUS_ONE;
12965
12966 /* Find the GP-relative section with the lowest offset. */
12967 for (o = abfd->sections; o != NULL; o = o->next)
12968 if (o->vma < lo
12969 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12970 lo = o->vma;
12971
12972 /* And calculate GP relative to that. */
12973 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
12974 }
12975 else
12976 {
12977 /* If the relocate_section function needs to do a reloc
12978 involving the GP value, it should make a reloc_dangerous
12979 callback to warn that GP is not defined. */
12980 }
12981 }
12982
12983 /* Go through the sections and collect the .reginfo and .mdebug
12984 information. */
12985 reginfo_sec = NULL;
12986 mdebug_sec = NULL;
12987 gptab_data_sec = NULL;
12988 gptab_bss_sec = NULL;
12989 for (o = abfd->sections; o != NULL; o = o->next)
12990 {
12991 if (strcmp (o->name, ".reginfo") == 0)
12992 {
12993 memset (&reginfo, 0, sizeof reginfo);
12994
12995 /* We have found the .reginfo section in the output file.
12996 Look through all the link_orders comprising it and merge
12997 the information together. */
12998 for (p = o->map_head.link_order; p != NULL; p = p->next)
12999 {
13000 asection *input_section;
13001 bfd *input_bfd;
13002 Elf32_External_RegInfo ext;
13003 Elf32_RegInfo sub;
13004
13005 if (p->type != bfd_indirect_link_order)
13006 {
13007 if (p->type == bfd_data_link_order)
13008 continue;
13009 abort ();
13010 }
13011
13012 input_section = p->u.indirect.section;
13013 input_bfd = input_section->owner;
13014
13015 if (! bfd_get_section_contents (input_bfd, input_section,
13016 &ext, 0, sizeof ext))
13017 return FALSE;
13018
13019 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13020
13021 reginfo.ri_gprmask |= sub.ri_gprmask;
13022 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13023 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13024 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13025 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13026
13027 /* ri_gp_value is set by the function
13028 mips_elf32_section_processing when the section is
13029 finally written out. */
13030
13031 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13032 elf_link_input_bfd ignores this section. */
13033 input_section->flags &= ~SEC_HAS_CONTENTS;
13034 }
13035
13036 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13037 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13038
13039 /* Skip this section later on (I don't think this currently
13040 matters, but someday it might). */
13041 o->map_head.link_order = NULL;
13042
13043 reginfo_sec = o;
13044 }
13045
13046 if (strcmp (o->name, ".mdebug") == 0)
13047 {
13048 struct extsym_info einfo;
13049 bfd_vma last;
13050
13051 /* We have found the .mdebug section in the output file.
13052 Look through all the link_orders comprising it and merge
13053 the information together. */
13054 symhdr->magic = swap->sym_magic;
13055 /* FIXME: What should the version stamp be? */
13056 symhdr->vstamp = 0;
13057 symhdr->ilineMax = 0;
13058 symhdr->cbLine = 0;
13059 symhdr->idnMax = 0;
13060 symhdr->ipdMax = 0;
13061 symhdr->isymMax = 0;
13062 symhdr->ioptMax = 0;
13063 symhdr->iauxMax = 0;
13064 symhdr->issMax = 0;
13065 symhdr->issExtMax = 0;
13066 symhdr->ifdMax = 0;
13067 symhdr->crfd = 0;
13068 symhdr->iextMax = 0;
13069
13070 /* We accumulate the debugging information itself in the
13071 debug_info structure. */
13072 debug.line = NULL;
13073 debug.external_dnr = NULL;
13074 debug.external_pdr = NULL;
13075 debug.external_sym = NULL;
13076 debug.external_opt = NULL;
13077 debug.external_aux = NULL;
13078 debug.ss = NULL;
13079 debug.ssext = debug.ssext_end = NULL;
13080 debug.external_fdr = NULL;
13081 debug.external_rfd = NULL;
13082 debug.external_ext = debug.external_ext_end = NULL;
13083
13084 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13085 if (mdebug_handle == NULL)
13086 return FALSE;
13087
13088 esym.jmptbl = 0;
13089 esym.cobol_main = 0;
13090 esym.weakext = 0;
13091 esym.reserved = 0;
13092 esym.ifd = ifdNil;
13093 esym.asym.iss = issNil;
13094 esym.asym.st = stLocal;
13095 esym.asym.reserved = 0;
13096 esym.asym.index = indexNil;
13097 last = 0;
13098 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13099 {
13100 esym.asym.sc = sc[i];
13101 s = bfd_get_section_by_name (abfd, secname[i]);
13102 if (s != NULL)
13103 {
13104 esym.asym.value = s->vma;
13105 last = s->vma + s->size;
13106 }
13107 else
13108 esym.asym.value = last;
13109 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13110 secname[i], &esym))
13111 return FALSE;
13112 }
13113
13114 for (p = o->map_head.link_order; p != NULL; p = p->next)
13115 {
13116 asection *input_section;
13117 bfd *input_bfd;
13118 const struct ecoff_debug_swap *input_swap;
13119 struct ecoff_debug_info input_debug;
13120 char *eraw_src;
13121 char *eraw_end;
13122
13123 if (p->type != bfd_indirect_link_order)
13124 {
13125 if (p->type == bfd_data_link_order)
13126 continue;
13127 abort ();
13128 }
13129
13130 input_section = p->u.indirect.section;
13131 input_bfd = input_section->owner;
13132
13133 if (!is_mips_elf (input_bfd))
13134 {
13135 /* I don't know what a non MIPS ELF bfd would be
13136 doing with a .mdebug section, but I don't really
13137 want to deal with it. */
13138 continue;
13139 }
13140
13141 input_swap = (get_elf_backend_data (input_bfd)
13142 ->elf_backend_ecoff_debug_swap);
13143
13144 BFD_ASSERT (p->size == input_section->size);
13145
13146 /* The ECOFF linking code expects that we have already
13147 read in the debugging information and set up an
13148 ecoff_debug_info structure, so we do that now. */
13149 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13150 &input_debug))
13151 return FALSE;
13152
13153 if (! (bfd_ecoff_debug_accumulate
13154 (mdebug_handle, abfd, &debug, swap, input_bfd,
13155 &input_debug, input_swap, info)))
13156 return FALSE;
13157
13158 /* Loop through the external symbols. For each one with
13159 interesting information, try to find the symbol in
13160 the linker global hash table and save the information
13161 for the output external symbols. */
13162 eraw_src = input_debug.external_ext;
13163 eraw_end = (eraw_src
13164 + (input_debug.symbolic_header.iextMax
13165 * input_swap->external_ext_size));
13166 for (;
13167 eraw_src < eraw_end;
13168 eraw_src += input_swap->external_ext_size)
13169 {
13170 EXTR ext;
13171 const char *name;
13172 struct mips_elf_link_hash_entry *h;
13173
13174 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13175 if (ext.asym.sc == scNil
13176 || ext.asym.sc == scUndefined
13177 || ext.asym.sc == scSUndefined)
13178 continue;
13179
13180 name = input_debug.ssext + ext.asym.iss;
13181 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13182 name, FALSE, FALSE, TRUE);
13183 if (h == NULL || h->esym.ifd != -2)
13184 continue;
13185
13186 if (ext.ifd != -1)
13187 {
13188 BFD_ASSERT (ext.ifd
13189 < input_debug.symbolic_header.ifdMax);
13190 ext.ifd = input_debug.ifdmap[ext.ifd];
13191 }
13192
13193 h->esym = ext;
13194 }
13195
13196 /* Free up the information we just read. */
13197 free (input_debug.line);
13198 free (input_debug.external_dnr);
13199 free (input_debug.external_pdr);
13200 free (input_debug.external_sym);
13201 free (input_debug.external_opt);
13202 free (input_debug.external_aux);
13203 free (input_debug.ss);
13204 free (input_debug.ssext);
13205 free (input_debug.external_fdr);
13206 free (input_debug.external_rfd);
13207 free (input_debug.external_ext);
13208
13209 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13210 elf_link_input_bfd ignores this section. */
13211 input_section->flags &= ~SEC_HAS_CONTENTS;
13212 }
13213
13214 if (SGI_COMPAT (abfd) && info->shared)
13215 {
13216 /* Create .rtproc section. */
13217 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13218 if (rtproc_sec == NULL)
13219 {
13220 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13221 | SEC_LINKER_CREATED | SEC_READONLY);
13222
13223 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13224 ".rtproc",
13225 flags);
13226 if (rtproc_sec == NULL
13227 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13228 return FALSE;
13229 }
13230
13231 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13232 info, rtproc_sec,
13233 &debug))
13234 return FALSE;
13235 }
13236
13237 /* Build the external symbol information. */
13238 einfo.abfd = abfd;
13239 einfo.info = info;
13240 einfo.debug = &debug;
13241 einfo.swap = swap;
13242 einfo.failed = FALSE;
13243 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13244 mips_elf_output_extsym, &einfo);
13245 if (einfo.failed)
13246 return FALSE;
13247
13248 /* Set the size of the .mdebug section. */
13249 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13250
13251 /* Skip this section later on (I don't think this currently
13252 matters, but someday it might). */
13253 o->map_head.link_order = NULL;
13254
13255 mdebug_sec = o;
13256 }
13257
13258 if (CONST_STRNEQ (o->name, ".gptab."))
13259 {
13260 const char *subname;
13261 unsigned int c;
13262 Elf32_gptab *tab;
13263 Elf32_External_gptab *ext_tab;
13264 unsigned int j;
13265
13266 /* The .gptab.sdata and .gptab.sbss sections hold
13267 information describing how the small data area would
13268 change depending upon the -G switch. These sections
13269 not used in executables files. */
13270 if (! info->relocatable)
13271 {
13272 for (p = o->map_head.link_order; p != NULL; p = p->next)
13273 {
13274 asection *input_section;
13275
13276 if (p->type != bfd_indirect_link_order)
13277 {
13278 if (p->type == bfd_data_link_order)
13279 continue;
13280 abort ();
13281 }
13282
13283 input_section = p->u.indirect.section;
13284
13285 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13286 elf_link_input_bfd ignores this section. */
13287 input_section->flags &= ~SEC_HAS_CONTENTS;
13288 }
13289
13290 /* Skip this section later on (I don't think this
13291 currently matters, but someday it might). */
13292 o->map_head.link_order = NULL;
13293
13294 /* Really remove the section. */
13295 bfd_section_list_remove (abfd, o);
13296 --abfd->section_count;
13297
13298 continue;
13299 }
13300
13301 /* There is one gptab for initialized data, and one for
13302 uninitialized data. */
13303 if (strcmp (o->name, ".gptab.sdata") == 0)
13304 gptab_data_sec = o;
13305 else if (strcmp (o->name, ".gptab.sbss") == 0)
13306 gptab_bss_sec = o;
13307 else
13308 {
13309 (*_bfd_error_handler)
13310 (_("%s: illegal section name `%s'"),
13311 bfd_get_filename (abfd), o->name);
13312 bfd_set_error (bfd_error_nonrepresentable_section);
13313 return FALSE;
13314 }
13315
13316 /* The linker script always combines .gptab.data and
13317 .gptab.sdata into .gptab.sdata, and likewise for
13318 .gptab.bss and .gptab.sbss. It is possible that there is
13319 no .sdata or .sbss section in the output file, in which
13320 case we must change the name of the output section. */
13321 subname = o->name + sizeof ".gptab" - 1;
13322 if (bfd_get_section_by_name (abfd, subname) == NULL)
13323 {
13324 if (o == gptab_data_sec)
13325 o->name = ".gptab.data";
13326 else
13327 o->name = ".gptab.bss";
13328 subname = o->name + sizeof ".gptab" - 1;
13329 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13330 }
13331
13332 /* Set up the first entry. */
13333 c = 1;
13334 amt = c * sizeof (Elf32_gptab);
13335 tab = bfd_malloc (amt);
13336 if (tab == NULL)
13337 return FALSE;
13338 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13339 tab[0].gt_header.gt_unused = 0;
13340
13341 /* Combine the input sections. */
13342 for (p = o->map_head.link_order; p != NULL; p = p->next)
13343 {
13344 asection *input_section;
13345 bfd *input_bfd;
13346 bfd_size_type size;
13347 unsigned long last;
13348 bfd_size_type gpentry;
13349
13350 if (p->type != bfd_indirect_link_order)
13351 {
13352 if (p->type == bfd_data_link_order)
13353 continue;
13354 abort ();
13355 }
13356
13357 input_section = p->u.indirect.section;
13358 input_bfd = input_section->owner;
13359
13360 /* Combine the gptab entries for this input section one
13361 by one. We know that the input gptab entries are
13362 sorted by ascending -G value. */
13363 size = input_section->size;
13364 last = 0;
13365 for (gpentry = sizeof (Elf32_External_gptab);
13366 gpentry < size;
13367 gpentry += sizeof (Elf32_External_gptab))
13368 {
13369 Elf32_External_gptab ext_gptab;
13370 Elf32_gptab int_gptab;
13371 unsigned long val;
13372 unsigned long add;
13373 bfd_boolean exact;
13374 unsigned int look;
13375
13376 if (! (bfd_get_section_contents
13377 (input_bfd, input_section, &ext_gptab, gpentry,
13378 sizeof (Elf32_External_gptab))))
13379 {
13380 free (tab);
13381 return FALSE;
13382 }
13383
13384 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13385 &int_gptab);
13386 val = int_gptab.gt_entry.gt_g_value;
13387 add = int_gptab.gt_entry.gt_bytes - last;
13388
13389 exact = FALSE;
13390 for (look = 1; look < c; look++)
13391 {
13392 if (tab[look].gt_entry.gt_g_value >= val)
13393 tab[look].gt_entry.gt_bytes += add;
13394
13395 if (tab[look].gt_entry.gt_g_value == val)
13396 exact = TRUE;
13397 }
13398
13399 if (! exact)
13400 {
13401 Elf32_gptab *new_tab;
13402 unsigned int max;
13403
13404 /* We need a new table entry. */
13405 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13406 new_tab = bfd_realloc (tab, amt);
13407 if (new_tab == NULL)
13408 {
13409 free (tab);
13410 return FALSE;
13411 }
13412 tab = new_tab;
13413 tab[c].gt_entry.gt_g_value = val;
13414 tab[c].gt_entry.gt_bytes = add;
13415
13416 /* Merge in the size for the next smallest -G
13417 value, since that will be implied by this new
13418 value. */
13419 max = 0;
13420 for (look = 1; look < c; look++)
13421 {
13422 if (tab[look].gt_entry.gt_g_value < val
13423 && (max == 0
13424 || (tab[look].gt_entry.gt_g_value
13425 > tab[max].gt_entry.gt_g_value)))
13426 max = look;
13427 }
13428 if (max != 0)
13429 tab[c].gt_entry.gt_bytes +=
13430 tab[max].gt_entry.gt_bytes;
13431
13432 ++c;
13433 }
13434
13435 last = int_gptab.gt_entry.gt_bytes;
13436 }
13437
13438 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13439 elf_link_input_bfd ignores this section. */
13440 input_section->flags &= ~SEC_HAS_CONTENTS;
13441 }
13442
13443 /* The table must be sorted by -G value. */
13444 if (c > 2)
13445 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13446
13447 /* Swap out the table. */
13448 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13449 ext_tab = bfd_alloc (abfd, amt);
13450 if (ext_tab == NULL)
13451 {
13452 free (tab);
13453 return FALSE;
13454 }
13455
13456 for (j = 0; j < c; j++)
13457 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13458 free (tab);
13459
13460 o->size = c * sizeof (Elf32_External_gptab);
13461 o->contents = (bfd_byte *) ext_tab;
13462
13463 /* Skip this section later on (I don't think this currently
13464 matters, but someday it might). */
13465 o->map_head.link_order = NULL;
13466 }
13467 }
13468
13469 /* Invoke the regular ELF backend linker to do all the work. */
13470 if (!bfd_elf_final_link (abfd, info))
13471 return FALSE;
13472
13473 /* Now write out the computed sections. */
13474
13475 if (reginfo_sec != NULL)
13476 {
13477 Elf32_External_RegInfo ext;
13478
13479 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13480 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13481 return FALSE;
13482 }
13483
13484 if (mdebug_sec != NULL)
13485 {
13486 BFD_ASSERT (abfd->output_has_begun);
13487 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13488 swap, info,
13489 mdebug_sec->filepos))
13490 return FALSE;
13491
13492 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13493 }
13494
13495 if (gptab_data_sec != NULL)
13496 {
13497 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13498 gptab_data_sec->contents,
13499 0, gptab_data_sec->size))
13500 return FALSE;
13501 }
13502
13503 if (gptab_bss_sec != NULL)
13504 {
13505 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13506 gptab_bss_sec->contents,
13507 0, gptab_bss_sec->size))
13508 return FALSE;
13509 }
13510
13511 if (SGI_COMPAT (abfd))
13512 {
13513 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13514 if (rtproc_sec != NULL)
13515 {
13516 if (! bfd_set_section_contents (abfd, rtproc_sec,
13517 rtproc_sec->contents,
13518 0, rtproc_sec->size))
13519 return FALSE;
13520 }
13521 }
13522
13523 return TRUE;
13524 }
13525 \f
13526 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13527
13528 struct mips_mach_extension {
13529 unsigned long extension, base;
13530 };
13531
13532
13533 /* An array describing how BFD machines relate to one another. The entries
13534 are ordered topologically with MIPS I extensions listed last. */
13535
13536 static const struct mips_mach_extension mips_mach_extensions[] = {
13537 /* MIPS64r2 extensions. */
13538 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13539 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13540 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13541
13542 /* MIPS64 extensions. */
13543 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13544 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13545 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13546 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13547
13548 /* MIPS V extensions. */
13549 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13550
13551 /* R10000 extensions. */
13552 { bfd_mach_mips12000, bfd_mach_mips10000 },
13553 { bfd_mach_mips14000, bfd_mach_mips10000 },
13554 { bfd_mach_mips16000, bfd_mach_mips10000 },
13555
13556 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13557 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13558 better to allow vr5400 and vr5500 code to be merged anyway, since
13559 many libraries will just use the core ISA. Perhaps we could add
13560 some sort of ASE flag if this ever proves a problem. */
13561 { bfd_mach_mips5500, bfd_mach_mips5400 },
13562 { bfd_mach_mips5400, bfd_mach_mips5000 },
13563
13564 /* MIPS IV extensions. */
13565 { bfd_mach_mips5, bfd_mach_mips8000 },
13566 { bfd_mach_mips10000, bfd_mach_mips8000 },
13567 { bfd_mach_mips5000, bfd_mach_mips8000 },
13568 { bfd_mach_mips7000, bfd_mach_mips8000 },
13569 { bfd_mach_mips9000, bfd_mach_mips8000 },
13570
13571 /* VR4100 extensions. */
13572 { bfd_mach_mips4120, bfd_mach_mips4100 },
13573 { bfd_mach_mips4111, bfd_mach_mips4100 },
13574
13575 /* MIPS III extensions. */
13576 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13577 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13578 { bfd_mach_mips8000, bfd_mach_mips4000 },
13579 { bfd_mach_mips4650, bfd_mach_mips4000 },
13580 { bfd_mach_mips4600, bfd_mach_mips4000 },
13581 { bfd_mach_mips4400, bfd_mach_mips4000 },
13582 { bfd_mach_mips4300, bfd_mach_mips4000 },
13583 { bfd_mach_mips4100, bfd_mach_mips4000 },
13584 { bfd_mach_mips4010, bfd_mach_mips4000 },
13585 { bfd_mach_mips5900, bfd_mach_mips4000 },
13586
13587 /* MIPS32 extensions. */
13588 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13589
13590 /* MIPS II extensions. */
13591 { bfd_mach_mips4000, bfd_mach_mips6000 },
13592 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13593
13594 /* MIPS I extensions. */
13595 { bfd_mach_mips6000, bfd_mach_mips3000 },
13596 { bfd_mach_mips3900, bfd_mach_mips3000 }
13597 };
13598
13599
13600 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13601
13602 static bfd_boolean
13603 mips_mach_extends_p (unsigned long base, unsigned long extension)
13604 {
13605 size_t i;
13606
13607 if (extension == base)
13608 return TRUE;
13609
13610 if (base == bfd_mach_mipsisa32
13611 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13612 return TRUE;
13613
13614 if (base == bfd_mach_mipsisa32r2
13615 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13616 return TRUE;
13617
13618 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13619 if (extension == mips_mach_extensions[i].extension)
13620 {
13621 extension = mips_mach_extensions[i].base;
13622 if (extension == base)
13623 return TRUE;
13624 }
13625
13626 return FALSE;
13627 }
13628
13629
13630 /* Return true if the given ELF header flags describe a 32-bit binary. */
13631
13632 static bfd_boolean
13633 mips_32bit_flags_p (flagword flags)
13634 {
13635 return ((flags & EF_MIPS_32BITMODE) != 0
13636 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13637 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13638 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13639 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13640 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13641 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13642 }
13643
13644
13645 /* Merge object attributes from IBFD into OBFD. Raise an error if
13646 there are conflicting attributes. */
13647 static bfd_boolean
13648 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13649 {
13650 obj_attribute *in_attr;
13651 obj_attribute *out_attr;
13652 bfd *abi_fp_bfd;
13653
13654 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13655 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13656 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13657 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
13658
13659 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13660 {
13661 /* This is the first object. Copy the attributes. */
13662 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13663
13664 /* Use the Tag_null value to indicate the attributes have been
13665 initialized. */
13666 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13667
13668 return TRUE;
13669 }
13670
13671 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13672 non-conflicting ones. */
13673 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13674 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13675 {
13676 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13677 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13678 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13679 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13680 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13681 {
13682 case 1:
13683 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13684 {
13685 case 2:
13686 _bfd_error_handler
13687 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13688 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
13689 break;
13690
13691 case 3:
13692 _bfd_error_handler
13693 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13694 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13695 break;
13696
13697 case 4:
13698 _bfd_error_handler
13699 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13700 obfd, abi_fp_bfd, ibfd,
13701 "-mdouble-float", "-mips32r2 -mfp64");
13702 break;
13703
13704 default:
13705 _bfd_error_handler
13706 (_("Warning: %B uses %s (set by %B), "
13707 "%B uses unknown floating point ABI %d"),
13708 obfd, abi_fp_bfd, ibfd,
13709 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13710 break;
13711 }
13712 break;
13713
13714 case 2:
13715 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13716 {
13717 case 1:
13718 _bfd_error_handler
13719 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13720 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
13721 break;
13722
13723 case 3:
13724 _bfd_error_handler
13725 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13726 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13727 break;
13728
13729 case 4:
13730 _bfd_error_handler
13731 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13732 obfd, abi_fp_bfd, ibfd,
13733 "-msingle-float", "-mips32r2 -mfp64");
13734 break;
13735
13736 default:
13737 _bfd_error_handler
13738 (_("Warning: %B uses %s (set by %B), "
13739 "%B uses unknown floating point ABI %d"),
13740 obfd, abi_fp_bfd, ibfd,
13741 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13742 break;
13743 }
13744 break;
13745
13746 case 3:
13747 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13748 {
13749 case 1:
13750 case 2:
13751 case 4:
13752 _bfd_error_handler
13753 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13754 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
13755 break;
13756
13757 default:
13758 _bfd_error_handler
13759 (_("Warning: %B uses %s (set by %B), "
13760 "%B uses unknown floating point ABI %d"),
13761 obfd, abi_fp_bfd, ibfd,
13762 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13763 break;
13764 }
13765 break;
13766
13767 case 4:
13768 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13769 {
13770 case 1:
13771 _bfd_error_handler
13772 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13773 obfd, abi_fp_bfd, ibfd,
13774 "-mips32r2 -mfp64", "-mdouble-float");
13775 break;
13776
13777 case 2:
13778 _bfd_error_handler
13779 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13780 obfd, abi_fp_bfd, ibfd,
13781 "-mips32r2 -mfp64", "-msingle-float");
13782 break;
13783
13784 case 3:
13785 _bfd_error_handler
13786 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13787 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13788 break;
13789
13790 default:
13791 _bfd_error_handler
13792 (_("Warning: %B uses %s (set by %B), "
13793 "%B uses unknown floating point ABI %d"),
13794 obfd, abi_fp_bfd, ibfd,
13795 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13796 break;
13797 }
13798 break;
13799
13800 default:
13801 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13802 {
13803 case 1:
13804 _bfd_error_handler
13805 (_("Warning: %B uses unknown floating point ABI %d "
13806 "(set by %B), %B uses %s"),
13807 obfd, abi_fp_bfd, ibfd,
13808 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13809 break;
13810
13811 case 2:
13812 _bfd_error_handler
13813 (_("Warning: %B uses unknown floating point ABI %d "
13814 "(set by %B), %B uses %s"),
13815 obfd, abi_fp_bfd, ibfd,
13816 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13817 break;
13818
13819 case 3:
13820 _bfd_error_handler
13821 (_("Warning: %B uses unknown floating point ABI %d "
13822 "(set by %B), %B uses %s"),
13823 obfd, abi_fp_bfd, ibfd,
13824 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13825 break;
13826
13827 case 4:
13828 _bfd_error_handler
13829 (_("Warning: %B uses unknown floating point ABI %d "
13830 "(set by %B), %B uses %s"),
13831 obfd, abi_fp_bfd, ibfd,
13832 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13833 break;
13834
13835 default:
13836 _bfd_error_handler
13837 (_("Warning: %B uses unknown floating point ABI %d "
13838 "(set by %B), %B uses unknown floating point ABI %d"),
13839 obfd, abi_fp_bfd, ibfd,
13840 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13841 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13842 break;
13843 }
13844 break;
13845 }
13846 }
13847
13848 /* Merge Tag_compatibility attributes and any common GNU ones. */
13849 _bfd_elf_merge_object_attributes (ibfd, obfd);
13850
13851 return TRUE;
13852 }
13853
13854 /* Merge backend specific data from an object file to the output
13855 object file when linking. */
13856
13857 bfd_boolean
13858 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13859 {
13860 flagword old_flags;
13861 flagword new_flags;
13862 bfd_boolean ok;
13863 bfd_boolean null_input_bfd = TRUE;
13864 asection *sec;
13865
13866 /* Check if we have the same endianness. */
13867 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13868 {
13869 (*_bfd_error_handler)
13870 (_("%B: endianness incompatible with that of the selected emulation"),
13871 ibfd);
13872 return FALSE;
13873 }
13874
13875 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13876 return TRUE;
13877
13878 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13879 {
13880 (*_bfd_error_handler)
13881 (_("%B: ABI is incompatible with that of the selected emulation"),
13882 ibfd);
13883 return FALSE;
13884 }
13885
13886 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13887 return FALSE;
13888
13889 new_flags = elf_elfheader (ibfd)->e_flags;
13890 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13891 old_flags = elf_elfheader (obfd)->e_flags;
13892
13893 if (! elf_flags_init (obfd))
13894 {
13895 elf_flags_init (obfd) = TRUE;
13896 elf_elfheader (obfd)->e_flags = new_flags;
13897 elf_elfheader (obfd)->e_ident[EI_CLASS]
13898 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13899
13900 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13901 && (bfd_get_arch_info (obfd)->the_default
13902 || mips_mach_extends_p (bfd_get_mach (obfd),
13903 bfd_get_mach (ibfd))))
13904 {
13905 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13906 bfd_get_mach (ibfd)))
13907 return FALSE;
13908 }
13909
13910 return TRUE;
13911 }
13912
13913 /* Check flag compatibility. */
13914
13915 new_flags &= ~EF_MIPS_NOREORDER;
13916 old_flags &= ~EF_MIPS_NOREORDER;
13917
13918 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13919 doesn't seem to matter. */
13920 new_flags &= ~EF_MIPS_XGOT;
13921 old_flags &= ~EF_MIPS_XGOT;
13922
13923 /* MIPSpro generates ucode info in n64 objects. Again, we should
13924 just be able to ignore this. */
13925 new_flags &= ~EF_MIPS_UCODE;
13926 old_flags &= ~EF_MIPS_UCODE;
13927
13928 /* DSOs should only be linked with CPIC code. */
13929 if ((ibfd->flags & DYNAMIC) != 0)
13930 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13931
13932 if (new_flags == old_flags)
13933 return TRUE;
13934
13935 /* Check to see if the input BFD actually contains any sections.
13936 If not, its flags may not have been initialised either, but it cannot
13937 actually cause any incompatibility. */
13938 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13939 {
13940 /* Ignore synthetic sections and empty .text, .data and .bss sections
13941 which are automatically generated by gas. Also ignore fake
13942 (s)common sections, since merely defining a common symbol does
13943 not affect compatibility. */
13944 if ((sec->flags & SEC_IS_COMMON) == 0
13945 && strcmp (sec->name, ".reginfo")
13946 && strcmp (sec->name, ".mdebug")
13947 && (sec->size != 0
13948 || (strcmp (sec->name, ".text")
13949 && strcmp (sec->name, ".data")
13950 && strcmp (sec->name, ".bss"))))
13951 {
13952 null_input_bfd = FALSE;
13953 break;
13954 }
13955 }
13956 if (null_input_bfd)
13957 return TRUE;
13958
13959 ok = TRUE;
13960
13961 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13962 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13963 {
13964 (*_bfd_error_handler)
13965 (_("%B: warning: linking abicalls files with non-abicalls files"),
13966 ibfd);
13967 ok = TRUE;
13968 }
13969
13970 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13971 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13972 if (! (new_flags & EF_MIPS_PIC))
13973 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13974
13975 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13976 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13977
13978 /* Compare the ISAs. */
13979 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13980 {
13981 (*_bfd_error_handler)
13982 (_("%B: linking 32-bit code with 64-bit code"),
13983 ibfd);
13984 ok = FALSE;
13985 }
13986 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13987 {
13988 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13989 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13990 {
13991 /* Copy the architecture info from IBFD to OBFD. Also copy
13992 the 32-bit flag (if set) so that we continue to recognise
13993 OBFD as a 32-bit binary. */
13994 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13995 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13996 elf_elfheader (obfd)->e_flags
13997 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13998
13999 /* Copy across the ABI flags if OBFD doesn't use them
14000 and if that was what caused us to treat IBFD as 32-bit. */
14001 if ((old_flags & EF_MIPS_ABI) == 0
14002 && mips_32bit_flags_p (new_flags)
14003 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14004 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14005 }
14006 else
14007 {
14008 /* The ISAs aren't compatible. */
14009 (*_bfd_error_handler)
14010 (_("%B: linking %s module with previous %s modules"),
14011 ibfd,
14012 bfd_printable_name (ibfd),
14013 bfd_printable_name (obfd));
14014 ok = FALSE;
14015 }
14016 }
14017
14018 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14019 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14020
14021 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14022 does set EI_CLASS differently from any 32-bit ABI. */
14023 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14024 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14025 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14026 {
14027 /* Only error if both are set (to different values). */
14028 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14029 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14030 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14031 {
14032 (*_bfd_error_handler)
14033 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14034 ibfd,
14035 elf_mips_abi_name (ibfd),
14036 elf_mips_abi_name (obfd));
14037 ok = FALSE;
14038 }
14039 new_flags &= ~EF_MIPS_ABI;
14040 old_flags &= ~EF_MIPS_ABI;
14041 }
14042
14043 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14044 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14045 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14046 {
14047 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14048 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14049 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14050 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14051 int micro_mis = old_m16 && new_micro;
14052 int m16_mis = old_micro && new_m16;
14053
14054 if (m16_mis || micro_mis)
14055 {
14056 (*_bfd_error_handler)
14057 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14058 ibfd,
14059 m16_mis ? "MIPS16" : "microMIPS",
14060 m16_mis ? "microMIPS" : "MIPS16");
14061 ok = FALSE;
14062 }
14063
14064 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14065
14066 new_flags &= ~ EF_MIPS_ARCH_ASE;
14067 old_flags &= ~ EF_MIPS_ARCH_ASE;
14068 }
14069
14070 /* Warn about any other mismatches */
14071 if (new_flags != old_flags)
14072 {
14073 (*_bfd_error_handler)
14074 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14075 ibfd, (unsigned long) new_flags,
14076 (unsigned long) old_flags);
14077 ok = FALSE;
14078 }
14079
14080 if (! ok)
14081 {
14082 bfd_set_error (bfd_error_bad_value);
14083 return FALSE;
14084 }
14085
14086 return TRUE;
14087 }
14088
14089 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14090
14091 bfd_boolean
14092 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14093 {
14094 BFD_ASSERT (!elf_flags_init (abfd)
14095 || elf_elfheader (abfd)->e_flags == flags);
14096
14097 elf_elfheader (abfd)->e_flags = flags;
14098 elf_flags_init (abfd) = TRUE;
14099 return TRUE;
14100 }
14101
14102 char *
14103 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14104 {
14105 switch (dtag)
14106 {
14107 default: return "";
14108 case DT_MIPS_RLD_VERSION:
14109 return "MIPS_RLD_VERSION";
14110 case DT_MIPS_TIME_STAMP:
14111 return "MIPS_TIME_STAMP";
14112 case DT_MIPS_ICHECKSUM:
14113 return "MIPS_ICHECKSUM";
14114 case DT_MIPS_IVERSION:
14115 return "MIPS_IVERSION";
14116 case DT_MIPS_FLAGS:
14117 return "MIPS_FLAGS";
14118 case DT_MIPS_BASE_ADDRESS:
14119 return "MIPS_BASE_ADDRESS";
14120 case DT_MIPS_MSYM:
14121 return "MIPS_MSYM";
14122 case DT_MIPS_CONFLICT:
14123 return "MIPS_CONFLICT";
14124 case DT_MIPS_LIBLIST:
14125 return "MIPS_LIBLIST";
14126 case DT_MIPS_LOCAL_GOTNO:
14127 return "MIPS_LOCAL_GOTNO";
14128 case DT_MIPS_CONFLICTNO:
14129 return "MIPS_CONFLICTNO";
14130 case DT_MIPS_LIBLISTNO:
14131 return "MIPS_LIBLISTNO";
14132 case DT_MIPS_SYMTABNO:
14133 return "MIPS_SYMTABNO";
14134 case DT_MIPS_UNREFEXTNO:
14135 return "MIPS_UNREFEXTNO";
14136 case DT_MIPS_GOTSYM:
14137 return "MIPS_GOTSYM";
14138 case DT_MIPS_HIPAGENO:
14139 return "MIPS_HIPAGENO";
14140 case DT_MIPS_RLD_MAP:
14141 return "MIPS_RLD_MAP";
14142 case DT_MIPS_DELTA_CLASS:
14143 return "MIPS_DELTA_CLASS";
14144 case DT_MIPS_DELTA_CLASS_NO:
14145 return "MIPS_DELTA_CLASS_NO";
14146 case DT_MIPS_DELTA_INSTANCE:
14147 return "MIPS_DELTA_INSTANCE";
14148 case DT_MIPS_DELTA_INSTANCE_NO:
14149 return "MIPS_DELTA_INSTANCE_NO";
14150 case DT_MIPS_DELTA_RELOC:
14151 return "MIPS_DELTA_RELOC";
14152 case DT_MIPS_DELTA_RELOC_NO:
14153 return "MIPS_DELTA_RELOC_NO";
14154 case DT_MIPS_DELTA_SYM:
14155 return "MIPS_DELTA_SYM";
14156 case DT_MIPS_DELTA_SYM_NO:
14157 return "MIPS_DELTA_SYM_NO";
14158 case DT_MIPS_DELTA_CLASSSYM:
14159 return "MIPS_DELTA_CLASSSYM";
14160 case DT_MIPS_DELTA_CLASSSYM_NO:
14161 return "MIPS_DELTA_CLASSSYM_NO";
14162 case DT_MIPS_CXX_FLAGS:
14163 return "MIPS_CXX_FLAGS";
14164 case DT_MIPS_PIXIE_INIT:
14165 return "MIPS_PIXIE_INIT";
14166 case DT_MIPS_SYMBOL_LIB:
14167 return "MIPS_SYMBOL_LIB";
14168 case DT_MIPS_LOCALPAGE_GOTIDX:
14169 return "MIPS_LOCALPAGE_GOTIDX";
14170 case DT_MIPS_LOCAL_GOTIDX:
14171 return "MIPS_LOCAL_GOTIDX";
14172 case DT_MIPS_HIDDEN_GOTIDX:
14173 return "MIPS_HIDDEN_GOTIDX";
14174 case DT_MIPS_PROTECTED_GOTIDX:
14175 return "MIPS_PROTECTED_GOT_IDX";
14176 case DT_MIPS_OPTIONS:
14177 return "MIPS_OPTIONS";
14178 case DT_MIPS_INTERFACE:
14179 return "MIPS_INTERFACE";
14180 case DT_MIPS_DYNSTR_ALIGN:
14181 return "DT_MIPS_DYNSTR_ALIGN";
14182 case DT_MIPS_INTERFACE_SIZE:
14183 return "DT_MIPS_INTERFACE_SIZE";
14184 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14185 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14186 case DT_MIPS_PERF_SUFFIX:
14187 return "DT_MIPS_PERF_SUFFIX";
14188 case DT_MIPS_COMPACT_SIZE:
14189 return "DT_MIPS_COMPACT_SIZE";
14190 case DT_MIPS_GP_VALUE:
14191 return "DT_MIPS_GP_VALUE";
14192 case DT_MIPS_AUX_DYNAMIC:
14193 return "DT_MIPS_AUX_DYNAMIC";
14194 case DT_MIPS_PLTGOT:
14195 return "DT_MIPS_PLTGOT";
14196 case DT_MIPS_RWPLT:
14197 return "DT_MIPS_RWPLT";
14198 }
14199 }
14200
14201 bfd_boolean
14202 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14203 {
14204 FILE *file = ptr;
14205
14206 BFD_ASSERT (abfd != NULL && ptr != NULL);
14207
14208 /* Print normal ELF private data. */
14209 _bfd_elf_print_private_bfd_data (abfd, ptr);
14210
14211 /* xgettext:c-format */
14212 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14213
14214 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14215 fprintf (file, _(" [abi=O32]"));
14216 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14217 fprintf (file, _(" [abi=O64]"));
14218 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14219 fprintf (file, _(" [abi=EABI32]"));
14220 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14221 fprintf (file, _(" [abi=EABI64]"));
14222 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14223 fprintf (file, _(" [abi unknown]"));
14224 else if (ABI_N32_P (abfd))
14225 fprintf (file, _(" [abi=N32]"));
14226 else if (ABI_64_P (abfd))
14227 fprintf (file, _(" [abi=64]"));
14228 else
14229 fprintf (file, _(" [no abi set]"));
14230
14231 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14232 fprintf (file, " [mips1]");
14233 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14234 fprintf (file, " [mips2]");
14235 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14236 fprintf (file, " [mips3]");
14237 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14238 fprintf (file, " [mips4]");
14239 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14240 fprintf (file, " [mips5]");
14241 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14242 fprintf (file, " [mips32]");
14243 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14244 fprintf (file, " [mips64]");
14245 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14246 fprintf (file, " [mips32r2]");
14247 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14248 fprintf (file, " [mips64r2]");
14249 else
14250 fprintf (file, _(" [unknown ISA]"));
14251
14252 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14253 fprintf (file, " [mdmx]");
14254
14255 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14256 fprintf (file, " [mips16]");
14257
14258 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14259 fprintf (file, " [micromips]");
14260
14261 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14262 fprintf (file, " [32bitmode]");
14263 else
14264 fprintf (file, _(" [not 32bitmode]"));
14265
14266 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14267 fprintf (file, " [noreorder]");
14268
14269 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14270 fprintf (file, " [PIC]");
14271
14272 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14273 fprintf (file, " [CPIC]");
14274
14275 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14276 fprintf (file, " [XGOT]");
14277
14278 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14279 fprintf (file, " [UCODE]");
14280
14281 fputc ('\n', file);
14282
14283 return TRUE;
14284 }
14285
14286 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14287 {
14288 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14289 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14290 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14291 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14292 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14293 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14294 { NULL, 0, 0, 0, 0 }
14295 };
14296
14297 /* Merge non visibility st_other attributes. Ensure that the
14298 STO_OPTIONAL flag is copied into h->other, even if this is not a
14299 definiton of the symbol. */
14300 void
14301 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14302 const Elf_Internal_Sym *isym,
14303 bfd_boolean definition,
14304 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14305 {
14306 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14307 {
14308 unsigned char other;
14309
14310 other = (definition ? isym->st_other : h->other);
14311 other &= ~ELF_ST_VISIBILITY (-1);
14312 h->other = other | ELF_ST_VISIBILITY (h->other);
14313 }
14314
14315 if (!definition
14316 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14317 h->other |= STO_OPTIONAL;
14318 }
14319
14320 /* Decide whether an undefined symbol is special and can be ignored.
14321 This is the case for OPTIONAL symbols on IRIX. */
14322 bfd_boolean
14323 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14324 {
14325 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14326 }
14327
14328 bfd_boolean
14329 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14330 {
14331 return (sym->st_shndx == SHN_COMMON
14332 || sym->st_shndx == SHN_MIPS_ACOMMON
14333 || sym->st_shndx == SHN_MIPS_SCOMMON);
14334 }
14335
14336 /* Return address for Ith PLT stub in section PLT, for relocation REL
14337 or (bfd_vma) -1 if it should not be included. */
14338
14339 bfd_vma
14340 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14341 const arelent *rel ATTRIBUTE_UNUSED)
14342 {
14343 return (plt->vma
14344 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14345 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14346 }
14347
14348 void
14349 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14350 {
14351 struct mips_elf_link_hash_table *htab;
14352 Elf_Internal_Ehdr *i_ehdrp;
14353
14354 i_ehdrp = elf_elfheader (abfd);
14355 if (link_info)
14356 {
14357 htab = mips_elf_hash_table (link_info);
14358 BFD_ASSERT (htab != NULL);
14359
14360 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14361 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14362 }
14363 }
This page took 0.360267 seconds and 4 git commands to generate.