Add c-format tags to translatable strings with more than one argument-using formattin...
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
460 asection *sstubs;
461 asection *sgot;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2907 {
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
2978 else
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984
2985 if (hd->needs_lazy_stub)
2986 {
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
3011 einfo->failed = TRUE;
3012 return FALSE;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 /* A comparison routine used to sort .gptab entries. */
3019
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3022 {
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027 }
3028 \f
3029 /* Functions to manage the got entry hash table. */
3030
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3036 {
3037 #ifdef BFD64
3038 return addr + (addr >> 32);
3039 #else
3040 return addr;
3041 #endif
3042 }
3043
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3046 {
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3056 }
3057
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060 {
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3071 }
3072
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3075 {
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083 }
3084
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087 {
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097 }
3098
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3106 }
3107
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110 {
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3116 }
3117 \f
3118 /* Create and return a new mips_got_info structure. */
3119
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3122 {
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3138
3139 return g;
3140 }
3141
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147 {
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3157 }
3158
3159 /* Record that ABFD should use output GOT G. */
3160
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163 {
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3176 }
3177 tdata->got = g;
3178 }
3179
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3183
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186 {
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3190
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3195 {
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3207 }
3208 return sreloc;
3209 }
3210
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3215 {
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
3225 return GOT_TLS_NONE;
3226 }
3227
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3232 {
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
3242 case GOT_TLS_NONE:
3243 return 0;
3244 }
3245 abort ();
3246 }
3247
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255 {
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3262 indx = h->dynindx;
3263
3264 if ((bfd_link_pic (info) || indx != 0)
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3269
3270 if (!need_relocs)
3271 return 0;
3272
3273 switch (tls_type)
3274 {
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
3277
3278 case GOT_TLS_IE:
3279 return 1;
3280
3281 case GOT_TLS_LDM:
3282 return bfd_link_pic (info) ? 1 : 0;
3283
3284 default:
3285 return 0;
3286 }
3287 }
3288
3289 /* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
3291
3292 static void
3293 mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
3296 {
3297 if (entry->tls_type)
3298 {
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3303 }
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
3308 }
3309
3310 /* Output a simple dynamic relocation into SRELOC. */
3311
3312 static void
3313 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
3315 unsigned long reloc_index,
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3319 {
3320 Elf_Internal_Rela rel[3];
3321
3322 memset (rel, 0, sizeof (rel));
3323
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326
3327 if (ABI_64_P (output_bfd))
3328 {
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3333 }
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
3338 + reloc_index * sizeof (Elf32_External_Rel)));
3339 }
3340
3341 /* Initialize a set of TLS GOT entries for one symbol. */
3342
3343 static void
3344 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3348 {
3349 struct mips_elf_link_hash_table *htab;
3350 int indx;
3351 asection *sreloc, *sgot;
3352 bfd_vma got_offset, got_offset2;
3353 bfd_boolean need_relocs = FALSE;
3354
3355 htab = mips_elf_hash_table (info);
3356 if (htab == NULL)
3357 return;
3358
3359 sgot = htab->sgot;
3360
3361 indx = 0;
3362 if (h != NULL)
3363 {
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3370 indx = h->root.dynindx;
3371 }
3372
3373 if (entry->tls_initialized)
3374 return;
3375
3376 if ((bfd_link_pic (info) || indx != 0)
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3381
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3387
3388 /* Emit necessary relocations. */
3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3390 got_offset = entry->gotidx;
3391
3392 switch (entry->tls_type)
3393 {
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3397
3398 if (need_relocs)
3399 {
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset);
3404
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
3407 (abfd, sreloc, sreloc->reloc_count++, indx,
3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3412 sgot->contents + got_offset2);
3413 }
3414 else
3415 {
3416 MIPS_ELF_PUT_WORD (abfd, 1,
3417 sgot->contents + got_offset);
3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3419 sgot->contents + got_offset2);
3420 }
3421 break;
3422
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
3425 if (need_relocs)
3426 {
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3429 sgot->contents + got_offset);
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
3432 sgot->contents + got_offset);
3433
3434 mips_elf_output_dynamic_relocation
3435 (abfd, sreloc, sreloc->reloc_count++, indx,
3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3437 sgot->output_offset + sgot->output_section->vma + got_offset);
3438 }
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3441 sgot->contents + got_offset);
3442 break;
3443
3444 case GOT_TLS_LDM:
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3450
3451 if (!bfd_link_pic (info))
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
3456 (abfd, sreloc, sreloc->reloc_count++, indx,
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
3459 break;
3460
3461 default:
3462 abort ();
3463 }
3464
3465 entry->tls_initialized = TRUE;
3466 }
3467
3468 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3471
3472 static bfd_vma
3473 mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3475 {
3476 bfd_vma got_address, got_value;
3477 struct mips_elf_link_hash_table *htab;
3478
3479 htab = mips_elf_hash_table (info);
3480 BFD_ASSERT (htab != NULL);
3481
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3484
3485 /* Calculate the address of the associated .got.plt entry. */
3486 got_address = (htab->sgotplt->output_section->vma
3487 + htab->sgotplt->output_offset
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3490
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3495
3496 return got_address - got_value;
3497 }
3498
3499 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
3503
3504 static bfd_vma
3505 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3506 bfd_vma value, unsigned long r_symndx,
3507 struct mips_elf_link_hash_entry *h, int r_type)
3508 {
3509 struct mips_elf_link_hash_table *htab;
3510 struct mips_got_entry *entry;
3511
3512 htab = mips_elf_hash_table (info);
3513 BFD_ASSERT (htab != NULL);
3514
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
3517 if (!entry)
3518 return MINUS_ONE;
3519
3520 if (entry->tls_type)
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
3523 }
3524
3525 /* Return the GOT index of global symbol H in the primary GOT. */
3526
3527 static bfd_vma
3528 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3530 {
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3542
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
3551 BFD_ASSERT (got_index < htab->sgot->size);
3552
3553 return got_index;
3554 }
3555
3556 /* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3558
3559 static bfd_vma
3560 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
3562 {
3563 struct mips_elf_link_hash_table *htab;
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
3567
3568 htab = mips_elf_hash_table (info);
3569 BFD_ASSERT (htab != NULL);
3570
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
3573
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
3577
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
3583
3584 gotidx = entry->gotidx;
3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3586
3587 if (lookup.tls_type)
3588 {
3589 bfd_vma value = MINUS_ONE;
3590
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3597
3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3599 }
3600 return gotidx;
3601 }
3602
3603 /* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
3607 offset of the GOT entry from VALUE. */
3608
3609 static bfd_vma
3610 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3611 bfd_vma value, bfd_vma *offsetp)
3612 {
3613 bfd_vma page, got_index;
3614 struct mips_got_entry *entry;
3615
3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
3619
3620 if (!entry)
3621 return MINUS_ONE;
3622
3623 got_index = entry->gotidx;
3624
3625 if (offsetp)
3626 *offsetp = value - entry->d.address;
3627
3628 return got_index;
3629 }
3630
3631 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
3634
3635 static bfd_vma
3636 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3637 bfd_vma value, bfd_boolean external)
3638 {
3639 struct mips_got_entry *entry;
3640
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3645 if (! external)
3646 value = mips_elf_high (value) << 16;
3647
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
3657 }
3658
3659 /* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3661
3662 static bfd_vma
3663 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3664 bfd *input_bfd, bfd_vma got_index)
3665 {
3666 struct mips_elf_link_hash_table *htab;
3667 asection *sgot;
3668 bfd_vma gp;
3669
3670 htab = mips_elf_hash_table (info);
3671 BFD_ASSERT (htab != NULL);
3672
3673 sgot = htab->sgot;
3674 gp = _bfd_get_gp_value (output_bfd)
3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3676
3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3678 }
3679
3680 /* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
3684
3685 static struct mips_got_entry *
3686 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3687 bfd *ibfd, bfd_vma value,
3688 unsigned long r_symndx,
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
3691 {
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
3694 struct mips_got_info *g;
3695 struct mips_elf_link_hash_table *htab;
3696 bfd_vma gotidx;
3697
3698 htab = mips_elf_hash_table (info);
3699 BFD_ASSERT (htab != NULL);
3700
3701 g = mips_elf_bfd_got (ibfd, FALSE);
3702 if (g == NULL)
3703 {
3704 g = mips_elf_bfd_got (abfd, FALSE);
3705 BFD_ASSERT (g != NULL);
3706 }
3707
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3711
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3714 {
3715 lookup.abfd = ibfd;
3716 if (tls_ldm_reloc_p (r_type))
3717 {
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
3720 }
3721 else if (h == NULL)
3722 {
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
3725 }
3726 else
3727 {
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3730 }
3731
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
3734
3735 gotidx = entry->gotidx;
3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3737
3738 return entry;
3739 }
3740
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
3746 return NULL;
3747
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
3751
3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
3753 {
3754 /* We didn't allocate enough space in the GOT. */
3755 _bfd_error_handler
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
3758 return NULL;
3759 }
3760
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3764
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772
3773 *entry = lookup;
3774 *loc = entry;
3775
3776 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3777
3778 /* These GOT entries need a dynamic relocation on VxWorks. */
3779 if (htab->is_vxworks)
3780 {
3781 Elf_Internal_Rela outrel;
3782 asection *s;
3783 bfd_byte *rloc;
3784 bfd_vma got_address;
3785
3786 s = mips_elf_rel_dyn_section (info, FALSE);
3787 got_address = (htab->sgot->output_section->vma
3788 + htab->sgot->output_offset
3789 + entry->gotidx);
3790
3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3792 outrel.r_offset = got_address;
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3796 }
3797
3798 return entry;
3799 }
3800
3801 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3805
3806 static bfd_size_type
3807 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808 {
3809 bfd_size_type count;
3810
3811 count = 0;
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
3814 {
3815 asection *p;
3816 const struct elf_backend_data *bed;
3817
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3824 }
3825 return count;
3826 }
3827
3828 /* Sort the dynamic symbol table so that symbols that need GOT entries
3829 appear towards the end. */
3830
3831 static bfd_boolean
3832 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3833 {
3834 struct mips_elf_link_hash_table *htab;
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
3837
3838 if (elf_hash_table (info)->dynsymcount == 0)
3839 return TRUE;
3840
3841 htab = mips_elf_hash_table (info);
3842 BFD_ASSERT (htab != NULL);
3843
3844 g = htab->got_info;
3845 if (g == NULL)
3846 return TRUE;
3847
3848 hsd.low = NULL;
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
3851 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3852 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3853 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3854 elf_hash_table (info)),
3855 mips_elf_sort_hash_table_f,
3856 &hsd);
3857
3858 /* There should have been enough room in the symbol table to
3859 accommodate both the GOT and non-GOT symbols. */
3860 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3861 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3862 == elf_hash_table (info)->dynsymcount);
3863 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3864 == g->global_gotno);
3865
3866 /* Now we know which dynamic symbol has the lowest dynamic symbol
3867 table index in the GOT. */
3868 htab->global_gotsym = hsd.low;
3869
3870 return TRUE;
3871 }
3872
3873 /* If H needs a GOT entry, assign it the highest available dynamic
3874 index. Otherwise, assign it the lowest available dynamic
3875 index. */
3876
3877 static bfd_boolean
3878 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3879 {
3880 struct mips_elf_hash_sort_data *hsd = data;
3881
3882 /* Symbols without dynamic symbol table entries aren't interesting
3883 at all. */
3884 if (h->root.dynindx == -1)
3885 return TRUE;
3886
3887 switch (h->global_got_area)
3888 {
3889 case GGA_NONE:
3890 h->root.dynindx = hsd->max_non_got_dynindx++;
3891 break;
3892
3893 case GGA_NORMAL:
3894 h->root.dynindx = --hsd->min_got_dynindx;
3895 hsd->low = (struct elf_link_hash_entry *) h;
3896 break;
3897
3898 case GGA_RELOC_ONLY:
3899 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3900 hsd->low = (struct elf_link_hash_entry *) h;
3901 h->root.dynindx = hsd->max_unref_got_dynindx++;
3902 break;
3903 }
3904
3905 return TRUE;
3906 }
3907
3908 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3909 (which is owned by the caller and shouldn't be added to the
3910 hash table directly). */
3911
3912 static bfd_boolean
3913 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3914 struct mips_got_entry *lookup)
3915 {
3916 struct mips_elf_link_hash_table *htab;
3917 struct mips_got_entry *entry;
3918 struct mips_got_info *g;
3919 void **loc, **bfd_loc;
3920
3921 /* Make sure there's a slot for this entry in the master GOT. */
3922 htab = mips_elf_hash_table (info);
3923 g = htab->got_info;
3924 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3925 if (!loc)
3926 return FALSE;
3927
3928 /* Populate the entry if it isn't already. */
3929 entry = (struct mips_got_entry *) *loc;
3930 if (!entry)
3931 {
3932 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3933 if (!entry)
3934 return FALSE;
3935
3936 lookup->tls_initialized = FALSE;
3937 lookup->gotidx = -1;
3938 *entry = *lookup;
3939 *loc = entry;
3940 }
3941
3942 /* Reuse the same GOT entry for the BFD's GOT. */
3943 g = mips_elf_bfd_got (abfd, TRUE);
3944 if (!g)
3945 return FALSE;
3946
3947 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3948 if (!bfd_loc)
3949 return FALSE;
3950
3951 if (!*bfd_loc)
3952 *bfd_loc = entry;
3953 return TRUE;
3954 }
3955
3956 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3957 entry for it. FOR_CALL is true if the caller is only interested in
3958 using the GOT entry for calls. */
3959
3960 static bfd_boolean
3961 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3962 bfd *abfd, struct bfd_link_info *info,
3963 bfd_boolean for_call, int r_type)
3964 {
3965 struct mips_elf_link_hash_table *htab;
3966 struct mips_elf_link_hash_entry *hmips;
3967 struct mips_got_entry entry;
3968 unsigned char tls_type;
3969
3970 htab = mips_elf_hash_table (info);
3971 BFD_ASSERT (htab != NULL);
3972
3973 hmips = (struct mips_elf_link_hash_entry *) h;
3974 if (!for_call)
3975 hmips->got_only_for_calls = FALSE;
3976
3977 /* A global symbol in the GOT must also be in the dynamic symbol
3978 table. */
3979 if (h->dynindx == -1)
3980 {
3981 switch (ELF_ST_VISIBILITY (h->other))
3982 {
3983 case STV_INTERNAL:
3984 case STV_HIDDEN:
3985 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3986 break;
3987 }
3988 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3989 return FALSE;
3990 }
3991
3992 tls_type = mips_elf_reloc_tls_type (r_type);
3993 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3994 hmips->global_got_area = GGA_NORMAL;
3995
3996 entry.abfd = abfd;
3997 entry.symndx = -1;
3998 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3999 entry.tls_type = tls_type;
4000 return mips_elf_record_got_entry (info, abfd, &entry);
4001 }
4002
4003 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4004 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4005
4006 static bfd_boolean
4007 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4008 struct bfd_link_info *info, int r_type)
4009 {
4010 struct mips_elf_link_hash_table *htab;
4011 struct mips_got_info *g;
4012 struct mips_got_entry entry;
4013
4014 htab = mips_elf_hash_table (info);
4015 BFD_ASSERT (htab != NULL);
4016
4017 g = htab->got_info;
4018 BFD_ASSERT (g != NULL);
4019
4020 entry.abfd = abfd;
4021 entry.symndx = symndx;
4022 entry.d.addend = addend;
4023 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4024 return mips_elf_record_got_entry (info, abfd, &entry);
4025 }
4026
4027 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4028 H is the symbol's hash table entry, or null if SYMNDX is local
4029 to ABFD. */
4030
4031 static bfd_boolean
4032 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4033 long symndx, struct elf_link_hash_entry *h,
4034 bfd_signed_vma addend)
4035 {
4036 struct mips_elf_link_hash_table *htab;
4037 struct mips_got_info *g1, *g2;
4038 struct mips_got_page_ref lookup, *entry;
4039 void **loc, **bfd_loc;
4040
4041 htab = mips_elf_hash_table (info);
4042 BFD_ASSERT (htab != NULL);
4043
4044 g1 = htab->got_info;
4045 BFD_ASSERT (g1 != NULL);
4046
4047 if (h)
4048 {
4049 lookup.symndx = -1;
4050 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4051 }
4052 else
4053 {
4054 lookup.symndx = symndx;
4055 lookup.u.abfd = abfd;
4056 }
4057 lookup.addend = addend;
4058 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4059 if (loc == NULL)
4060 return FALSE;
4061
4062 entry = (struct mips_got_page_ref *) *loc;
4063 if (!entry)
4064 {
4065 entry = bfd_alloc (abfd, sizeof (*entry));
4066 if (!entry)
4067 return FALSE;
4068
4069 *entry = lookup;
4070 *loc = entry;
4071 }
4072
4073 /* Add the same entry to the BFD's GOT. */
4074 g2 = mips_elf_bfd_got (abfd, TRUE);
4075 if (!g2)
4076 return FALSE;
4077
4078 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4079 if (!bfd_loc)
4080 return FALSE;
4081
4082 if (!*bfd_loc)
4083 *bfd_loc = entry;
4084
4085 return TRUE;
4086 }
4087
4088 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4089
4090 static void
4091 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4092 unsigned int n)
4093 {
4094 asection *s;
4095 struct mips_elf_link_hash_table *htab;
4096
4097 htab = mips_elf_hash_table (info);
4098 BFD_ASSERT (htab != NULL);
4099
4100 s = mips_elf_rel_dyn_section (info, FALSE);
4101 BFD_ASSERT (s != NULL);
4102
4103 if (htab->is_vxworks)
4104 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4105 else
4106 {
4107 if (s->size == 0)
4108 {
4109 /* Make room for a null element. */
4110 s->size += MIPS_ELF_REL_SIZE (abfd);
4111 ++s->reloc_count;
4112 }
4113 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4114 }
4115 }
4116 \f
4117 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4118 mips_elf_traverse_got_arg structure. Count the number of GOT
4119 entries and TLS relocs. Set DATA->value to true if we need
4120 to resolve indirect or warning symbols and then recreate the GOT. */
4121
4122 static int
4123 mips_elf_check_recreate_got (void **entryp, void *data)
4124 {
4125 struct mips_got_entry *entry;
4126 struct mips_elf_traverse_got_arg *arg;
4127
4128 entry = (struct mips_got_entry *) *entryp;
4129 arg = (struct mips_elf_traverse_got_arg *) data;
4130 if (entry->abfd != NULL && entry->symndx == -1)
4131 {
4132 struct mips_elf_link_hash_entry *h;
4133
4134 h = entry->d.h;
4135 if (h->root.root.type == bfd_link_hash_indirect
4136 || h->root.root.type == bfd_link_hash_warning)
4137 {
4138 arg->value = TRUE;
4139 return 0;
4140 }
4141 }
4142 mips_elf_count_got_entry (arg->info, arg->g, entry);
4143 return 1;
4144 }
4145
4146 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4147 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4148 converting entries for indirect and warning symbols into entries
4149 for the target symbol. Set DATA->g to null on error. */
4150
4151 static int
4152 mips_elf_recreate_got (void **entryp, void *data)
4153 {
4154 struct mips_got_entry new_entry, *entry;
4155 struct mips_elf_traverse_got_arg *arg;
4156 void **slot;
4157
4158 entry = (struct mips_got_entry *) *entryp;
4159 arg = (struct mips_elf_traverse_got_arg *) data;
4160 if (entry->abfd != NULL
4161 && entry->symndx == -1
4162 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4163 || entry->d.h->root.root.type == bfd_link_hash_warning))
4164 {
4165 struct mips_elf_link_hash_entry *h;
4166
4167 new_entry = *entry;
4168 entry = &new_entry;
4169 h = entry->d.h;
4170 do
4171 {
4172 BFD_ASSERT (h->global_got_area == GGA_NONE);
4173 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4174 }
4175 while (h->root.root.type == bfd_link_hash_indirect
4176 || h->root.root.type == bfd_link_hash_warning);
4177 entry->d.h = h;
4178 }
4179 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4180 if (slot == NULL)
4181 {
4182 arg->g = NULL;
4183 return 0;
4184 }
4185 if (*slot == NULL)
4186 {
4187 if (entry == &new_entry)
4188 {
4189 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4190 if (!entry)
4191 {
4192 arg->g = NULL;
4193 return 0;
4194 }
4195 *entry = new_entry;
4196 }
4197 *slot = entry;
4198 mips_elf_count_got_entry (arg->info, arg->g, entry);
4199 }
4200 return 1;
4201 }
4202
4203 /* Return the maximum number of GOT page entries required for RANGE. */
4204
4205 static bfd_vma
4206 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4207 {
4208 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4209 }
4210
4211 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4212
4213 static bfd_boolean
4214 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4215 asection *sec, bfd_signed_vma addend)
4216 {
4217 struct mips_got_info *g = arg->g;
4218 struct mips_got_page_entry lookup, *entry;
4219 struct mips_got_page_range **range_ptr, *range;
4220 bfd_vma old_pages, new_pages;
4221 void **loc;
4222
4223 /* Find the mips_got_page_entry hash table entry for this section. */
4224 lookup.sec = sec;
4225 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4226 if (loc == NULL)
4227 return FALSE;
4228
4229 /* Create a mips_got_page_entry if this is the first time we've
4230 seen the section. */
4231 entry = (struct mips_got_page_entry *) *loc;
4232 if (!entry)
4233 {
4234 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4235 if (!entry)
4236 return FALSE;
4237
4238 entry->sec = sec;
4239 *loc = entry;
4240 }
4241
4242 /* Skip over ranges whose maximum extent cannot share a page entry
4243 with ADDEND. */
4244 range_ptr = &entry->ranges;
4245 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4246 range_ptr = &(*range_ptr)->next;
4247
4248 /* If we scanned to the end of the list, or found a range whose
4249 minimum extent cannot share a page entry with ADDEND, create
4250 a new singleton range. */
4251 range = *range_ptr;
4252 if (!range || addend < range->min_addend - 0xffff)
4253 {
4254 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4255 if (!range)
4256 return FALSE;
4257
4258 range->next = *range_ptr;
4259 range->min_addend = addend;
4260 range->max_addend = addend;
4261
4262 *range_ptr = range;
4263 entry->num_pages++;
4264 g->page_gotno++;
4265 return TRUE;
4266 }
4267
4268 /* Remember how many pages the old range contributed. */
4269 old_pages = mips_elf_pages_for_range (range);
4270
4271 /* Update the ranges. */
4272 if (addend < range->min_addend)
4273 range->min_addend = addend;
4274 else if (addend > range->max_addend)
4275 {
4276 if (range->next && addend >= range->next->min_addend - 0xffff)
4277 {
4278 old_pages += mips_elf_pages_for_range (range->next);
4279 range->max_addend = range->next->max_addend;
4280 range->next = range->next->next;
4281 }
4282 else
4283 range->max_addend = addend;
4284 }
4285
4286 /* Record any change in the total estimate. */
4287 new_pages = mips_elf_pages_for_range (range);
4288 if (old_pages != new_pages)
4289 {
4290 entry->num_pages += new_pages - old_pages;
4291 g->page_gotno += new_pages - old_pages;
4292 }
4293
4294 return TRUE;
4295 }
4296
4297 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4298 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4299 whether the page reference described by *REFP needs a GOT page entry,
4300 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4301
4302 static bfd_boolean
4303 mips_elf_resolve_got_page_ref (void **refp, void *data)
4304 {
4305 struct mips_got_page_ref *ref;
4306 struct mips_elf_traverse_got_arg *arg;
4307 struct mips_elf_link_hash_table *htab;
4308 asection *sec;
4309 bfd_vma addend;
4310
4311 ref = (struct mips_got_page_ref *) *refp;
4312 arg = (struct mips_elf_traverse_got_arg *) data;
4313 htab = mips_elf_hash_table (arg->info);
4314
4315 if (ref->symndx < 0)
4316 {
4317 struct mips_elf_link_hash_entry *h;
4318
4319 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4320 h = ref->u.h;
4321 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4322 return 1;
4323
4324 /* Ignore undefined symbols; we'll issue an error later if
4325 appropriate. */
4326 if (!((h->root.root.type == bfd_link_hash_defined
4327 || h->root.root.type == bfd_link_hash_defweak)
4328 && h->root.root.u.def.section))
4329 return 1;
4330
4331 sec = h->root.root.u.def.section;
4332 addend = h->root.root.u.def.value + ref->addend;
4333 }
4334 else
4335 {
4336 Elf_Internal_Sym *isym;
4337
4338 /* Read in the symbol. */
4339 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4340 ref->symndx);
4341 if (isym == NULL)
4342 {
4343 arg->g = NULL;
4344 return 0;
4345 }
4346
4347 /* Get the associated input section. */
4348 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4349 if (sec == NULL)
4350 {
4351 arg->g = NULL;
4352 return 0;
4353 }
4354
4355 /* If this is a mergable section, work out the section and offset
4356 of the merged data. For section symbols, the addend specifies
4357 of the offset _of_ the first byte in the data, otherwise it
4358 specifies the offset _from_ the first byte. */
4359 if (sec->flags & SEC_MERGE)
4360 {
4361 void *secinfo;
4362
4363 secinfo = elf_section_data (sec)->sec_info;
4364 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4365 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4366 isym->st_value + ref->addend);
4367 else
4368 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4369 isym->st_value) + ref->addend;
4370 }
4371 else
4372 addend = isym->st_value + ref->addend;
4373 }
4374 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4375 {
4376 arg->g = NULL;
4377 return 0;
4378 }
4379 return 1;
4380 }
4381
4382 /* If any entries in G->got_entries are for indirect or warning symbols,
4383 replace them with entries for the target symbol. Convert g->got_page_refs
4384 into got_page_entry structures and estimate the number of page entries
4385 that they require. */
4386
4387 static bfd_boolean
4388 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4389 struct mips_got_info *g)
4390 {
4391 struct mips_elf_traverse_got_arg tga;
4392 struct mips_got_info oldg;
4393
4394 oldg = *g;
4395
4396 tga.info = info;
4397 tga.g = g;
4398 tga.value = FALSE;
4399 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4400 if (tga.value)
4401 {
4402 *g = oldg;
4403 g->got_entries = htab_create (htab_size (oldg.got_entries),
4404 mips_elf_got_entry_hash,
4405 mips_elf_got_entry_eq, NULL);
4406 if (!g->got_entries)
4407 return FALSE;
4408
4409 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4410 if (!tga.g)
4411 return FALSE;
4412
4413 htab_delete (oldg.got_entries);
4414 }
4415
4416 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4417 mips_got_page_entry_eq, NULL);
4418 if (g->got_page_entries == NULL)
4419 return FALSE;
4420
4421 tga.info = info;
4422 tga.g = g;
4423 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4424
4425 return TRUE;
4426 }
4427
4428 /* Return true if a GOT entry for H should live in the local rather than
4429 global GOT area. */
4430
4431 static bfd_boolean
4432 mips_use_local_got_p (struct bfd_link_info *info,
4433 struct mips_elf_link_hash_entry *h)
4434 {
4435 /* Symbols that aren't in the dynamic symbol table must live in the
4436 local GOT. This includes symbols that are completely undefined
4437 and which therefore don't bind locally. We'll report undefined
4438 symbols later if appropriate. */
4439 if (h->root.dynindx == -1)
4440 return TRUE;
4441
4442 /* Symbols that bind locally can (and in the case of forced-local
4443 symbols, must) live in the local GOT. */
4444 if (h->got_only_for_calls
4445 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4446 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4447 return TRUE;
4448
4449 /* If this is an executable that must provide a definition of the symbol,
4450 either though PLTs or copy relocations, then that address should go in
4451 the local rather than global GOT. */
4452 if (bfd_link_executable (info) && h->has_static_relocs)
4453 return TRUE;
4454
4455 return FALSE;
4456 }
4457
4458 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4459 link_info structure. Decide whether the hash entry needs an entry in
4460 the global part of the primary GOT, setting global_got_area accordingly.
4461 Count the number of global symbols that are in the primary GOT only
4462 because they have relocations against them (reloc_only_gotno). */
4463
4464 static int
4465 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4466 {
4467 struct bfd_link_info *info;
4468 struct mips_elf_link_hash_table *htab;
4469 struct mips_got_info *g;
4470
4471 info = (struct bfd_link_info *) data;
4472 htab = mips_elf_hash_table (info);
4473 g = htab->got_info;
4474 if (h->global_got_area != GGA_NONE)
4475 {
4476 /* Make a final decision about whether the symbol belongs in the
4477 local or global GOT. */
4478 if (mips_use_local_got_p (info, h))
4479 /* The symbol belongs in the local GOT. We no longer need this
4480 entry if it was only used for relocations; those relocations
4481 will be against the null or section symbol instead of H. */
4482 h->global_got_area = GGA_NONE;
4483 else if (htab->is_vxworks
4484 && h->got_only_for_calls
4485 && h->root.plt.plist->mips_offset != MINUS_ONE)
4486 /* On VxWorks, calls can refer directly to the .got.plt entry;
4487 they don't need entries in the regular GOT. .got.plt entries
4488 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4489 h->global_got_area = GGA_NONE;
4490 else if (h->global_got_area == GGA_RELOC_ONLY)
4491 {
4492 g->reloc_only_gotno++;
4493 g->global_gotno++;
4494 }
4495 }
4496 return 1;
4497 }
4498 \f
4499 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4500 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4501
4502 static int
4503 mips_elf_add_got_entry (void **entryp, void *data)
4504 {
4505 struct mips_got_entry *entry;
4506 struct mips_elf_traverse_got_arg *arg;
4507 void **slot;
4508
4509 entry = (struct mips_got_entry *) *entryp;
4510 arg = (struct mips_elf_traverse_got_arg *) data;
4511 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4512 if (!slot)
4513 {
4514 arg->g = NULL;
4515 return 0;
4516 }
4517 if (!*slot)
4518 {
4519 *slot = entry;
4520 mips_elf_count_got_entry (arg->info, arg->g, entry);
4521 }
4522 return 1;
4523 }
4524
4525 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4526 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4527
4528 static int
4529 mips_elf_add_got_page_entry (void **entryp, void *data)
4530 {
4531 struct mips_got_page_entry *entry;
4532 struct mips_elf_traverse_got_arg *arg;
4533 void **slot;
4534
4535 entry = (struct mips_got_page_entry *) *entryp;
4536 arg = (struct mips_elf_traverse_got_arg *) data;
4537 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4538 if (!slot)
4539 {
4540 arg->g = NULL;
4541 return 0;
4542 }
4543 if (!*slot)
4544 {
4545 *slot = entry;
4546 arg->g->page_gotno += entry->num_pages;
4547 }
4548 return 1;
4549 }
4550
4551 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4552 this would lead to overflow, 1 if they were merged successfully,
4553 and 0 if a merge failed due to lack of memory. (These values are chosen
4554 so that nonnegative return values can be returned by a htab_traverse
4555 callback.) */
4556
4557 static int
4558 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4559 struct mips_got_info *to,
4560 struct mips_elf_got_per_bfd_arg *arg)
4561 {
4562 struct mips_elf_traverse_got_arg tga;
4563 unsigned int estimate;
4564
4565 /* Work out how many page entries we would need for the combined GOT. */
4566 estimate = arg->max_pages;
4567 if (estimate >= from->page_gotno + to->page_gotno)
4568 estimate = from->page_gotno + to->page_gotno;
4569
4570 /* And conservatively estimate how many local and TLS entries
4571 would be needed. */
4572 estimate += from->local_gotno + to->local_gotno;
4573 estimate += from->tls_gotno + to->tls_gotno;
4574
4575 /* If we're merging with the primary got, any TLS relocations will
4576 come after the full set of global entries. Otherwise estimate those
4577 conservatively as well. */
4578 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4579 estimate += arg->global_count;
4580 else
4581 estimate += from->global_gotno + to->global_gotno;
4582
4583 /* Bail out if the combined GOT might be too big. */
4584 if (estimate > arg->max_count)
4585 return -1;
4586
4587 /* Transfer the bfd's got information from FROM to TO. */
4588 tga.info = arg->info;
4589 tga.g = to;
4590 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4591 if (!tga.g)
4592 return 0;
4593
4594 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4595 if (!tga.g)
4596 return 0;
4597
4598 mips_elf_replace_bfd_got (abfd, to);
4599 return 1;
4600 }
4601
4602 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4603 as possible of the primary got, since it doesn't require explicit
4604 dynamic relocations, but don't use bfds that would reference global
4605 symbols out of the addressable range. Failing the primary got,
4606 attempt to merge with the current got, or finish the current got
4607 and then make make the new got current. */
4608
4609 static bfd_boolean
4610 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4611 struct mips_elf_got_per_bfd_arg *arg)
4612 {
4613 unsigned int estimate;
4614 int result;
4615
4616 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4617 return FALSE;
4618
4619 /* Work out the number of page, local and TLS entries. */
4620 estimate = arg->max_pages;
4621 if (estimate > g->page_gotno)
4622 estimate = g->page_gotno;
4623 estimate += g->local_gotno + g->tls_gotno;
4624
4625 /* We place TLS GOT entries after both locals and globals. The globals
4626 for the primary GOT may overflow the normal GOT size limit, so be
4627 sure not to merge a GOT which requires TLS with the primary GOT in that
4628 case. This doesn't affect non-primary GOTs. */
4629 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4630
4631 if (estimate <= arg->max_count)
4632 {
4633 /* If we don't have a primary GOT, use it as
4634 a starting point for the primary GOT. */
4635 if (!arg->primary)
4636 {
4637 arg->primary = g;
4638 return TRUE;
4639 }
4640
4641 /* Try merging with the primary GOT. */
4642 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4643 if (result >= 0)
4644 return result;
4645 }
4646
4647 /* If we can merge with the last-created got, do it. */
4648 if (arg->current)
4649 {
4650 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4651 if (result >= 0)
4652 return result;
4653 }
4654
4655 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4656 fits; if it turns out that it doesn't, we'll get relocation
4657 overflows anyway. */
4658 g->next = arg->current;
4659 arg->current = g;
4660
4661 return TRUE;
4662 }
4663
4664 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4665 to GOTIDX, duplicating the entry if it has already been assigned
4666 an index in a different GOT. */
4667
4668 static bfd_boolean
4669 mips_elf_set_gotidx (void **entryp, long gotidx)
4670 {
4671 struct mips_got_entry *entry;
4672
4673 entry = (struct mips_got_entry *) *entryp;
4674 if (entry->gotidx > 0)
4675 {
4676 struct mips_got_entry *new_entry;
4677
4678 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4679 if (!new_entry)
4680 return FALSE;
4681
4682 *new_entry = *entry;
4683 *entryp = new_entry;
4684 entry = new_entry;
4685 }
4686 entry->gotidx = gotidx;
4687 return TRUE;
4688 }
4689
4690 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4691 mips_elf_traverse_got_arg in which DATA->value is the size of one
4692 GOT entry. Set DATA->g to null on failure. */
4693
4694 static int
4695 mips_elf_initialize_tls_index (void **entryp, void *data)
4696 {
4697 struct mips_got_entry *entry;
4698 struct mips_elf_traverse_got_arg *arg;
4699
4700 /* We're only interested in TLS symbols. */
4701 entry = (struct mips_got_entry *) *entryp;
4702 if (entry->tls_type == GOT_TLS_NONE)
4703 return 1;
4704
4705 arg = (struct mips_elf_traverse_got_arg *) data;
4706 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4707 {
4708 arg->g = NULL;
4709 return 0;
4710 }
4711
4712 /* Account for the entries we've just allocated. */
4713 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4714 return 1;
4715 }
4716
4717 /* A htab_traverse callback for GOT entries, where DATA points to a
4718 mips_elf_traverse_got_arg. Set the global_got_area of each global
4719 symbol to DATA->value. */
4720
4721 static int
4722 mips_elf_set_global_got_area (void **entryp, void *data)
4723 {
4724 struct mips_got_entry *entry;
4725 struct mips_elf_traverse_got_arg *arg;
4726
4727 entry = (struct mips_got_entry *) *entryp;
4728 arg = (struct mips_elf_traverse_got_arg *) data;
4729 if (entry->abfd != NULL
4730 && entry->symndx == -1
4731 && entry->d.h->global_got_area != GGA_NONE)
4732 entry->d.h->global_got_area = arg->value;
4733 return 1;
4734 }
4735
4736 /* A htab_traverse callback for secondary GOT entries, where DATA points
4737 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4738 and record the number of relocations they require. DATA->value is
4739 the size of one GOT entry. Set DATA->g to null on failure. */
4740
4741 static int
4742 mips_elf_set_global_gotidx (void **entryp, void *data)
4743 {
4744 struct mips_got_entry *entry;
4745 struct mips_elf_traverse_got_arg *arg;
4746
4747 entry = (struct mips_got_entry *) *entryp;
4748 arg = (struct mips_elf_traverse_got_arg *) data;
4749 if (entry->abfd != NULL
4750 && entry->symndx == -1
4751 && entry->d.h->global_got_area != GGA_NONE)
4752 {
4753 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4754 {
4755 arg->g = NULL;
4756 return 0;
4757 }
4758 arg->g->assigned_low_gotno += 1;
4759
4760 if (bfd_link_pic (arg->info)
4761 || (elf_hash_table (arg->info)->dynamic_sections_created
4762 && entry->d.h->root.def_dynamic
4763 && !entry->d.h->root.def_regular))
4764 arg->g->relocs += 1;
4765 }
4766
4767 return 1;
4768 }
4769
4770 /* A htab_traverse callback for GOT entries for which DATA is the
4771 bfd_link_info. Forbid any global symbols from having traditional
4772 lazy-binding stubs. */
4773
4774 static int
4775 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4776 {
4777 struct bfd_link_info *info;
4778 struct mips_elf_link_hash_table *htab;
4779 struct mips_got_entry *entry;
4780
4781 entry = (struct mips_got_entry *) *entryp;
4782 info = (struct bfd_link_info *) data;
4783 htab = mips_elf_hash_table (info);
4784 BFD_ASSERT (htab != NULL);
4785
4786 if (entry->abfd != NULL
4787 && entry->symndx == -1
4788 && entry->d.h->needs_lazy_stub)
4789 {
4790 entry->d.h->needs_lazy_stub = FALSE;
4791 htab->lazy_stub_count--;
4792 }
4793
4794 return 1;
4795 }
4796
4797 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4798 the primary GOT. */
4799 static bfd_vma
4800 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4801 {
4802 if (!g->next)
4803 return 0;
4804
4805 g = mips_elf_bfd_got (ibfd, FALSE);
4806 if (! g)
4807 return 0;
4808
4809 BFD_ASSERT (g->next);
4810
4811 g = g->next;
4812
4813 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4814 * MIPS_ELF_GOT_SIZE (abfd);
4815 }
4816
4817 /* Turn a single GOT that is too big for 16-bit addressing into
4818 a sequence of GOTs, each one 16-bit addressable. */
4819
4820 static bfd_boolean
4821 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4822 asection *got, bfd_size_type pages)
4823 {
4824 struct mips_elf_link_hash_table *htab;
4825 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4826 struct mips_elf_traverse_got_arg tga;
4827 struct mips_got_info *g, *gg;
4828 unsigned int assign, needed_relocs;
4829 bfd *dynobj, *ibfd;
4830
4831 dynobj = elf_hash_table (info)->dynobj;
4832 htab = mips_elf_hash_table (info);
4833 BFD_ASSERT (htab != NULL);
4834
4835 g = htab->got_info;
4836
4837 got_per_bfd_arg.obfd = abfd;
4838 got_per_bfd_arg.info = info;
4839 got_per_bfd_arg.current = NULL;
4840 got_per_bfd_arg.primary = NULL;
4841 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4842 / MIPS_ELF_GOT_SIZE (abfd))
4843 - htab->reserved_gotno);
4844 got_per_bfd_arg.max_pages = pages;
4845 /* The number of globals that will be included in the primary GOT.
4846 See the calls to mips_elf_set_global_got_area below for more
4847 information. */
4848 got_per_bfd_arg.global_count = g->global_gotno;
4849
4850 /* Try to merge the GOTs of input bfds together, as long as they
4851 don't seem to exceed the maximum GOT size, choosing one of them
4852 to be the primary GOT. */
4853 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4854 {
4855 gg = mips_elf_bfd_got (ibfd, FALSE);
4856 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4857 return FALSE;
4858 }
4859
4860 /* If we do not find any suitable primary GOT, create an empty one. */
4861 if (got_per_bfd_arg.primary == NULL)
4862 g->next = mips_elf_create_got_info (abfd);
4863 else
4864 g->next = got_per_bfd_arg.primary;
4865 g->next->next = got_per_bfd_arg.current;
4866
4867 /* GG is now the master GOT, and G is the primary GOT. */
4868 gg = g;
4869 g = g->next;
4870
4871 /* Map the output bfd to the primary got. That's what we're going
4872 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4873 didn't mark in check_relocs, and we want a quick way to find it.
4874 We can't just use gg->next because we're going to reverse the
4875 list. */
4876 mips_elf_replace_bfd_got (abfd, g);
4877
4878 /* Every symbol that is referenced in a dynamic relocation must be
4879 present in the primary GOT, so arrange for them to appear after
4880 those that are actually referenced. */
4881 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4882 g->global_gotno = gg->global_gotno;
4883
4884 tga.info = info;
4885 tga.value = GGA_RELOC_ONLY;
4886 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4887 tga.value = GGA_NORMAL;
4888 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4889
4890 /* Now go through the GOTs assigning them offset ranges.
4891 [assigned_low_gotno, local_gotno[ will be set to the range of local
4892 entries in each GOT. We can then compute the end of a GOT by
4893 adding local_gotno to global_gotno. We reverse the list and make
4894 it circular since then we'll be able to quickly compute the
4895 beginning of a GOT, by computing the end of its predecessor. To
4896 avoid special cases for the primary GOT, while still preserving
4897 assertions that are valid for both single- and multi-got links,
4898 we arrange for the main got struct to have the right number of
4899 global entries, but set its local_gotno such that the initial
4900 offset of the primary GOT is zero. Remember that the primary GOT
4901 will become the last item in the circular linked list, so it
4902 points back to the master GOT. */
4903 gg->local_gotno = -g->global_gotno;
4904 gg->global_gotno = g->global_gotno;
4905 gg->tls_gotno = 0;
4906 assign = 0;
4907 gg->next = gg;
4908
4909 do
4910 {
4911 struct mips_got_info *gn;
4912
4913 assign += htab->reserved_gotno;
4914 g->assigned_low_gotno = assign;
4915 g->local_gotno += assign;
4916 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4917 g->assigned_high_gotno = g->local_gotno - 1;
4918 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4919
4920 /* Take g out of the direct list, and push it onto the reversed
4921 list that gg points to. g->next is guaranteed to be nonnull after
4922 this operation, as required by mips_elf_initialize_tls_index. */
4923 gn = g->next;
4924 g->next = gg->next;
4925 gg->next = g;
4926
4927 /* Set up any TLS entries. We always place the TLS entries after
4928 all non-TLS entries. */
4929 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4930 tga.g = g;
4931 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4932 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4933 if (!tga.g)
4934 return FALSE;
4935 BFD_ASSERT (g->tls_assigned_gotno == assign);
4936
4937 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4938 g = gn;
4939
4940 /* Forbid global symbols in every non-primary GOT from having
4941 lazy-binding stubs. */
4942 if (g)
4943 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4944 }
4945 while (g);
4946
4947 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4948
4949 needed_relocs = 0;
4950 for (g = gg->next; g && g->next != gg; g = g->next)
4951 {
4952 unsigned int save_assign;
4953
4954 /* Assign offsets to global GOT entries and count how many
4955 relocations they need. */
4956 save_assign = g->assigned_low_gotno;
4957 g->assigned_low_gotno = g->local_gotno;
4958 tga.info = info;
4959 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4960 tga.g = g;
4961 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4962 if (!tga.g)
4963 return FALSE;
4964 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4965 g->assigned_low_gotno = save_assign;
4966
4967 if (bfd_link_pic (info))
4968 {
4969 g->relocs += g->local_gotno - g->assigned_low_gotno;
4970 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4971 + g->next->global_gotno
4972 + g->next->tls_gotno
4973 + htab->reserved_gotno);
4974 }
4975 needed_relocs += g->relocs;
4976 }
4977 needed_relocs += g->relocs;
4978
4979 if (needed_relocs)
4980 mips_elf_allocate_dynamic_relocations (dynobj, info,
4981 needed_relocs);
4982
4983 return TRUE;
4984 }
4985
4986 \f
4987 /* Returns the first relocation of type r_type found, beginning with
4988 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4989
4990 static const Elf_Internal_Rela *
4991 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4992 const Elf_Internal_Rela *relocation,
4993 const Elf_Internal_Rela *relend)
4994 {
4995 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4996
4997 while (relocation < relend)
4998 {
4999 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5000 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5001 return relocation;
5002
5003 ++relocation;
5004 }
5005
5006 /* We didn't find it. */
5007 return NULL;
5008 }
5009
5010 /* Return whether an input relocation is against a local symbol. */
5011
5012 static bfd_boolean
5013 mips_elf_local_relocation_p (bfd *input_bfd,
5014 const Elf_Internal_Rela *relocation,
5015 asection **local_sections)
5016 {
5017 unsigned long r_symndx;
5018 Elf_Internal_Shdr *symtab_hdr;
5019 size_t extsymoff;
5020
5021 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5022 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5023 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5024
5025 if (r_symndx < extsymoff)
5026 return TRUE;
5027 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5028 return TRUE;
5029
5030 return FALSE;
5031 }
5032 \f
5033 /* Sign-extend VALUE, which has the indicated number of BITS. */
5034
5035 bfd_vma
5036 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5037 {
5038 if (value & ((bfd_vma) 1 << (bits - 1)))
5039 /* VALUE is negative. */
5040 value |= ((bfd_vma) - 1) << bits;
5041
5042 return value;
5043 }
5044
5045 /* Return non-zero if the indicated VALUE has overflowed the maximum
5046 range expressible by a signed number with the indicated number of
5047 BITS. */
5048
5049 static bfd_boolean
5050 mips_elf_overflow_p (bfd_vma value, int bits)
5051 {
5052 bfd_signed_vma svalue = (bfd_signed_vma) value;
5053
5054 if (svalue > (1 << (bits - 1)) - 1)
5055 /* The value is too big. */
5056 return TRUE;
5057 else if (svalue < -(1 << (bits - 1)))
5058 /* The value is too small. */
5059 return TRUE;
5060
5061 /* All is well. */
5062 return FALSE;
5063 }
5064
5065 /* Calculate the %high function. */
5066
5067 static bfd_vma
5068 mips_elf_high (bfd_vma value)
5069 {
5070 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5071 }
5072
5073 /* Calculate the %higher function. */
5074
5075 static bfd_vma
5076 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5077 {
5078 #ifdef BFD64
5079 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5080 #else
5081 abort ();
5082 return MINUS_ONE;
5083 #endif
5084 }
5085
5086 /* Calculate the %highest function. */
5087
5088 static bfd_vma
5089 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5090 {
5091 #ifdef BFD64
5092 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5093 #else
5094 abort ();
5095 return MINUS_ONE;
5096 #endif
5097 }
5098 \f
5099 /* Create the .compact_rel section. */
5100
5101 static bfd_boolean
5102 mips_elf_create_compact_rel_section
5103 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5104 {
5105 flagword flags;
5106 register asection *s;
5107
5108 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5109 {
5110 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5111 | SEC_READONLY);
5112
5113 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5114 if (s == NULL
5115 || ! bfd_set_section_alignment (abfd, s,
5116 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5117 return FALSE;
5118
5119 s->size = sizeof (Elf32_External_compact_rel);
5120 }
5121
5122 return TRUE;
5123 }
5124
5125 /* Create the .got section to hold the global offset table. */
5126
5127 static bfd_boolean
5128 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5129 {
5130 flagword flags;
5131 register asection *s;
5132 struct elf_link_hash_entry *h;
5133 struct bfd_link_hash_entry *bh;
5134 struct mips_elf_link_hash_table *htab;
5135
5136 htab = mips_elf_hash_table (info);
5137 BFD_ASSERT (htab != NULL);
5138
5139 /* This function may be called more than once. */
5140 if (htab->sgot)
5141 return TRUE;
5142
5143 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5144 | SEC_LINKER_CREATED);
5145
5146 /* We have to use an alignment of 2**4 here because this is hardcoded
5147 in the function stub generation and in the linker script. */
5148 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5149 if (s == NULL
5150 || ! bfd_set_section_alignment (abfd, s, 4))
5151 return FALSE;
5152 htab->sgot = s;
5153
5154 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5155 linker script because we don't want to define the symbol if we
5156 are not creating a global offset table. */
5157 bh = NULL;
5158 if (! (_bfd_generic_link_add_one_symbol
5159 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5160 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5161 return FALSE;
5162
5163 h = (struct elf_link_hash_entry *) bh;
5164 h->non_elf = 0;
5165 h->def_regular = 1;
5166 h->type = STT_OBJECT;
5167 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5168 elf_hash_table (info)->hgot = h;
5169
5170 if (bfd_link_pic (info)
5171 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5172 return FALSE;
5173
5174 htab->got_info = mips_elf_create_got_info (abfd);
5175 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5176 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5177
5178 /* We also need a .got.plt section when generating PLTs. */
5179 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5180 SEC_ALLOC | SEC_LOAD
5181 | SEC_HAS_CONTENTS
5182 | SEC_IN_MEMORY
5183 | SEC_LINKER_CREATED);
5184 if (s == NULL)
5185 return FALSE;
5186 htab->sgotplt = s;
5187
5188 return TRUE;
5189 }
5190 \f
5191 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5192 __GOTT_INDEX__ symbols. These symbols are only special for
5193 shared objects; they are not used in executables. */
5194
5195 static bfd_boolean
5196 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5197 {
5198 return (mips_elf_hash_table (info)->is_vxworks
5199 && bfd_link_pic (info)
5200 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5201 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5202 }
5203
5204 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5205 require an la25 stub. See also mips_elf_local_pic_function_p,
5206 which determines whether the destination function ever requires a
5207 stub. */
5208
5209 static bfd_boolean
5210 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5211 bfd_boolean target_is_16_bit_code_p)
5212 {
5213 /* We specifically ignore branches and jumps from EF_PIC objects,
5214 where the onus is on the compiler or programmer to perform any
5215 necessary initialization of $25. Sometimes such initialization
5216 is unnecessary; for example, -mno-shared functions do not use
5217 the incoming value of $25, and may therefore be called directly. */
5218 if (PIC_OBJECT_P (input_bfd))
5219 return FALSE;
5220
5221 switch (r_type)
5222 {
5223 case R_MIPS_26:
5224 case R_MIPS_PC16:
5225 case R_MIPS_PC21_S2:
5226 case R_MIPS_PC26_S2:
5227 case R_MICROMIPS_26_S1:
5228 case R_MICROMIPS_PC7_S1:
5229 case R_MICROMIPS_PC10_S1:
5230 case R_MICROMIPS_PC16_S1:
5231 case R_MICROMIPS_PC23_S2:
5232 return TRUE;
5233
5234 case R_MIPS16_26:
5235 return !target_is_16_bit_code_p;
5236
5237 default:
5238 return FALSE;
5239 }
5240 }
5241 \f
5242 /* Calculate the value produced by the RELOCATION (which comes from
5243 the INPUT_BFD). The ADDEND is the addend to use for this
5244 RELOCATION; RELOCATION->R_ADDEND is ignored.
5245
5246 The result of the relocation calculation is stored in VALUEP.
5247 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5248 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5249
5250 This function returns bfd_reloc_continue if the caller need take no
5251 further action regarding this relocation, bfd_reloc_notsupported if
5252 something goes dramatically wrong, bfd_reloc_overflow if an
5253 overflow occurs, and bfd_reloc_ok to indicate success. */
5254
5255 static bfd_reloc_status_type
5256 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5257 asection *input_section,
5258 struct bfd_link_info *info,
5259 const Elf_Internal_Rela *relocation,
5260 bfd_vma addend, reloc_howto_type *howto,
5261 Elf_Internal_Sym *local_syms,
5262 asection **local_sections, bfd_vma *valuep,
5263 const char **namep,
5264 bfd_boolean *cross_mode_jump_p,
5265 bfd_boolean save_addend)
5266 {
5267 /* The eventual value we will return. */
5268 bfd_vma value;
5269 /* The address of the symbol against which the relocation is
5270 occurring. */
5271 bfd_vma symbol = 0;
5272 /* The final GP value to be used for the relocatable, executable, or
5273 shared object file being produced. */
5274 bfd_vma gp;
5275 /* The place (section offset or address) of the storage unit being
5276 relocated. */
5277 bfd_vma p;
5278 /* The value of GP used to create the relocatable object. */
5279 bfd_vma gp0;
5280 /* The offset into the global offset table at which the address of
5281 the relocation entry symbol, adjusted by the addend, resides
5282 during execution. */
5283 bfd_vma g = MINUS_ONE;
5284 /* The section in which the symbol referenced by the relocation is
5285 located. */
5286 asection *sec = NULL;
5287 struct mips_elf_link_hash_entry *h = NULL;
5288 /* TRUE if the symbol referred to by this relocation is a local
5289 symbol. */
5290 bfd_boolean local_p, was_local_p;
5291 /* TRUE if the symbol referred to by this relocation is a section
5292 symbol. */
5293 bfd_boolean section_p = FALSE;
5294 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5295 bfd_boolean gp_disp_p = FALSE;
5296 /* TRUE if the symbol referred to by this relocation is
5297 "__gnu_local_gp". */
5298 bfd_boolean gnu_local_gp_p = FALSE;
5299 Elf_Internal_Shdr *symtab_hdr;
5300 size_t extsymoff;
5301 unsigned long r_symndx;
5302 int r_type;
5303 /* TRUE if overflow occurred during the calculation of the
5304 relocation value. */
5305 bfd_boolean overflowed_p;
5306 /* TRUE if this relocation refers to a MIPS16 function. */
5307 bfd_boolean target_is_16_bit_code_p = FALSE;
5308 bfd_boolean target_is_micromips_code_p = FALSE;
5309 struct mips_elf_link_hash_table *htab;
5310 bfd *dynobj;
5311
5312 dynobj = elf_hash_table (info)->dynobj;
5313 htab = mips_elf_hash_table (info);
5314 BFD_ASSERT (htab != NULL);
5315
5316 /* Parse the relocation. */
5317 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5318 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5319 p = (input_section->output_section->vma
5320 + input_section->output_offset
5321 + relocation->r_offset);
5322
5323 /* Assume that there will be no overflow. */
5324 overflowed_p = FALSE;
5325
5326 /* Figure out whether or not the symbol is local, and get the offset
5327 used in the array of hash table entries. */
5328 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5329 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5330 local_sections);
5331 was_local_p = local_p;
5332 if (! elf_bad_symtab (input_bfd))
5333 extsymoff = symtab_hdr->sh_info;
5334 else
5335 {
5336 /* The symbol table does not follow the rule that local symbols
5337 must come before globals. */
5338 extsymoff = 0;
5339 }
5340
5341 /* Figure out the value of the symbol. */
5342 if (local_p)
5343 {
5344 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5345 Elf_Internal_Sym *sym;
5346
5347 sym = local_syms + r_symndx;
5348 sec = local_sections[r_symndx];
5349
5350 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5351
5352 symbol = sec->output_section->vma + sec->output_offset;
5353 if (!section_p || (sec->flags & SEC_MERGE))
5354 symbol += sym->st_value;
5355 if ((sec->flags & SEC_MERGE) && section_p)
5356 {
5357 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5358 addend -= symbol;
5359 addend += sec->output_section->vma + sec->output_offset;
5360 }
5361
5362 /* MIPS16/microMIPS text labels should be treated as odd. */
5363 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5364 ++symbol;
5365
5366 /* Record the name of this symbol, for our caller. */
5367 *namep = bfd_elf_string_from_elf_section (input_bfd,
5368 symtab_hdr->sh_link,
5369 sym->st_name);
5370 if (*namep == NULL || **namep == '\0')
5371 *namep = bfd_section_name (input_bfd, sec);
5372
5373 /* For relocations against a section symbol and ones against no
5374 symbol (absolute relocations) infer the ISA mode from the addend. */
5375 if (section_p || r_symndx == STN_UNDEF)
5376 {
5377 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5378 target_is_micromips_code_p = (addend & 1) && micromips_p;
5379 }
5380 /* For relocations against an absolute symbol infer the ISA mode
5381 from the value of the symbol plus addend. */
5382 else if (bfd_is_abs_section (sec))
5383 {
5384 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5385 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5386 }
5387 /* Otherwise just use the regular symbol annotation available. */
5388 else
5389 {
5390 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5391 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5392 }
5393 }
5394 else
5395 {
5396 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5397
5398 /* For global symbols we look up the symbol in the hash-table. */
5399 h = ((struct mips_elf_link_hash_entry *)
5400 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5401 /* Find the real hash-table entry for this symbol. */
5402 while (h->root.root.type == bfd_link_hash_indirect
5403 || h->root.root.type == bfd_link_hash_warning)
5404 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5405
5406 /* Record the name of this symbol, for our caller. */
5407 *namep = h->root.root.root.string;
5408
5409 /* See if this is the special _gp_disp symbol. Note that such a
5410 symbol must always be a global symbol. */
5411 if (strcmp (*namep, "_gp_disp") == 0
5412 && ! NEWABI_P (input_bfd))
5413 {
5414 /* Relocations against _gp_disp are permitted only with
5415 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5416 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5417 return bfd_reloc_notsupported;
5418
5419 gp_disp_p = TRUE;
5420 }
5421 /* See if this is the special _gp symbol. Note that such a
5422 symbol must always be a global symbol. */
5423 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5424 gnu_local_gp_p = TRUE;
5425
5426
5427 /* If this symbol is defined, calculate its address. Note that
5428 _gp_disp is a magic symbol, always implicitly defined by the
5429 linker, so it's inappropriate to check to see whether or not
5430 its defined. */
5431 else if ((h->root.root.type == bfd_link_hash_defined
5432 || h->root.root.type == bfd_link_hash_defweak)
5433 && h->root.root.u.def.section)
5434 {
5435 sec = h->root.root.u.def.section;
5436 if (sec->output_section)
5437 symbol = (h->root.root.u.def.value
5438 + sec->output_section->vma
5439 + sec->output_offset);
5440 else
5441 symbol = h->root.root.u.def.value;
5442 }
5443 else if (h->root.root.type == bfd_link_hash_undefweak)
5444 /* We allow relocations against undefined weak symbols, giving
5445 it the value zero, so that you can undefined weak functions
5446 and check to see if they exist by looking at their
5447 addresses. */
5448 symbol = 0;
5449 else if (info->unresolved_syms_in_objects == RM_IGNORE
5450 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5451 symbol = 0;
5452 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5453 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5454 {
5455 /* If this is a dynamic link, we should have created a
5456 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5457 in in _bfd_mips_elf_create_dynamic_sections.
5458 Otherwise, we should define the symbol with a value of 0.
5459 FIXME: It should probably get into the symbol table
5460 somehow as well. */
5461 BFD_ASSERT (! bfd_link_pic (info));
5462 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5463 symbol = 0;
5464 }
5465 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5466 {
5467 /* This is an optional symbol - an Irix specific extension to the
5468 ELF spec. Ignore it for now.
5469 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5470 than simply ignoring them, but we do not handle this for now.
5471 For information see the "64-bit ELF Object File Specification"
5472 which is available from here:
5473 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5474 symbol = 0;
5475 }
5476 else
5477 {
5478 (*info->callbacks->undefined_symbol)
5479 (info, h->root.root.root.string, input_bfd,
5480 input_section, relocation->r_offset,
5481 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5482 || ELF_ST_VISIBILITY (h->root.other));
5483 return bfd_reloc_undefined;
5484 }
5485
5486 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5487 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5488 }
5489
5490 /* If this is a reference to a 16-bit function with a stub, we need
5491 to redirect the relocation to the stub unless:
5492
5493 (a) the relocation is for a MIPS16 JAL;
5494
5495 (b) the relocation is for a MIPS16 PIC call, and there are no
5496 non-MIPS16 uses of the GOT slot; or
5497
5498 (c) the section allows direct references to MIPS16 functions. */
5499 if (r_type != R_MIPS16_26
5500 && !bfd_link_relocatable (info)
5501 && ((h != NULL
5502 && h->fn_stub != NULL
5503 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5504 || (local_p
5505 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5506 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5507 && !section_allows_mips16_refs_p (input_section))
5508 {
5509 /* This is a 32- or 64-bit call to a 16-bit function. We should
5510 have already noticed that we were going to need the
5511 stub. */
5512 if (local_p)
5513 {
5514 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5515 value = 0;
5516 }
5517 else
5518 {
5519 BFD_ASSERT (h->need_fn_stub);
5520 if (h->la25_stub)
5521 {
5522 /* If a LA25 header for the stub itself exists, point to the
5523 prepended LUI/ADDIU sequence. */
5524 sec = h->la25_stub->stub_section;
5525 value = h->la25_stub->offset;
5526 }
5527 else
5528 {
5529 sec = h->fn_stub;
5530 value = 0;
5531 }
5532 }
5533
5534 symbol = sec->output_section->vma + sec->output_offset + value;
5535 /* The target is 16-bit, but the stub isn't. */
5536 target_is_16_bit_code_p = FALSE;
5537 }
5538 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5539 to a standard MIPS function, we need to redirect the call to the stub.
5540 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5541 indirect calls should use an indirect stub instead. */
5542 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5543 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5544 || (local_p
5545 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5546 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5547 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5548 {
5549 if (local_p)
5550 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5551 else
5552 {
5553 /* If both call_stub and call_fp_stub are defined, we can figure
5554 out which one to use by checking which one appears in the input
5555 file. */
5556 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5557 {
5558 asection *o;
5559
5560 sec = NULL;
5561 for (o = input_bfd->sections; o != NULL; o = o->next)
5562 {
5563 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5564 {
5565 sec = h->call_fp_stub;
5566 break;
5567 }
5568 }
5569 if (sec == NULL)
5570 sec = h->call_stub;
5571 }
5572 else if (h->call_stub != NULL)
5573 sec = h->call_stub;
5574 else
5575 sec = h->call_fp_stub;
5576 }
5577
5578 BFD_ASSERT (sec->size > 0);
5579 symbol = sec->output_section->vma + sec->output_offset;
5580 }
5581 /* If this is a direct call to a PIC function, redirect to the
5582 non-PIC stub. */
5583 else if (h != NULL && h->la25_stub
5584 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5585 target_is_16_bit_code_p))
5586 {
5587 symbol = (h->la25_stub->stub_section->output_section->vma
5588 + h->la25_stub->stub_section->output_offset
5589 + h->la25_stub->offset);
5590 if (ELF_ST_IS_MICROMIPS (h->root.other))
5591 symbol |= 1;
5592 }
5593 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5594 entry is used if a standard PLT entry has also been made. In this
5595 case the symbol will have been set by mips_elf_set_plt_sym_value
5596 to point to the standard PLT entry, so redirect to the compressed
5597 one. */
5598 else if ((mips16_branch_reloc_p (r_type)
5599 || micromips_branch_reloc_p (r_type))
5600 && !bfd_link_relocatable (info)
5601 && h != NULL
5602 && h->use_plt_entry
5603 && h->root.plt.plist->comp_offset != MINUS_ONE
5604 && h->root.plt.plist->mips_offset != MINUS_ONE)
5605 {
5606 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5607
5608 sec = htab->splt;
5609 symbol = (sec->output_section->vma
5610 + sec->output_offset
5611 + htab->plt_header_size
5612 + htab->plt_mips_offset
5613 + h->root.plt.plist->comp_offset
5614 + 1);
5615
5616 target_is_16_bit_code_p = !micromips_p;
5617 target_is_micromips_code_p = micromips_p;
5618 }
5619
5620 /* Make sure MIPS16 and microMIPS are not used together. */
5621 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5622 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5623 {
5624 _bfd_error_handler
5625 (_("MIPS16 and microMIPS functions cannot call each other"));
5626 return bfd_reloc_notsupported;
5627 }
5628
5629 /* Calls from 16-bit code to 32-bit code and vice versa require the
5630 mode change. However, we can ignore calls to undefined weak symbols,
5631 which should never be executed at runtime. This exception is important
5632 because the assembly writer may have "known" that any definition of the
5633 symbol would be 16-bit code, and that direct jumps were therefore
5634 acceptable. */
5635 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5636 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5637 && ((mips16_branch_reloc_p (r_type)
5638 && !target_is_16_bit_code_p)
5639 || (micromips_branch_reloc_p (r_type)
5640 && !target_is_micromips_code_p)
5641 || ((branch_reloc_p (r_type)
5642 || r_type == R_MIPS_JALR)
5643 && (target_is_16_bit_code_p
5644 || target_is_micromips_code_p))));
5645
5646 local_p = (h == NULL || mips_use_local_got_p (info, h));
5647
5648 gp0 = _bfd_get_gp_value (input_bfd);
5649 gp = _bfd_get_gp_value (abfd);
5650 if (htab->got_info)
5651 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5652
5653 if (gnu_local_gp_p)
5654 symbol = gp;
5655
5656 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5657 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5658 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5659 if (got_page_reloc_p (r_type) && !local_p)
5660 {
5661 r_type = (micromips_reloc_p (r_type)
5662 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5663 addend = 0;
5664 }
5665
5666 /* If we haven't already determined the GOT offset, and we're going
5667 to need it, get it now. */
5668 switch (r_type)
5669 {
5670 case R_MIPS16_CALL16:
5671 case R_MIPS16_GOT16:
5672 case R_MIPS_CALL16:
5673 case R_MIPS_GOT16:
5674 case R_MIPS_GOT_DISP:
5675 case R_MIPS_GOT_HI16:
5676 case R_MIPS_CALL_HI16:
5677 case R_MIPS_GOT_LO16:
5678 case R_MIPS_CALL_LO16:
5679 case R_MICROMIPS_CALL16:
5680 case R_MICROMIPS_GOT16:
5681 case R_MICROMIPS_GOT_DISP:
5682 case R_MICROMIPS_GOT_HI16:
5683 case R_MICROMIPS_CALL_HI16:
5684 case R_MICROMIPS_GOT_LO16:
5685 case R_MICROMIPS_CALL_LO16:
5686 case R_MIPS_TLS_GD:
5687 case R_MIPS_TLS_GOTTPREL:
5688 case R_MIPS_TLS_LDM:
5689 case R_MIPS16_TLS_GD:
5690 case R_MIPS16_TLS_GOTTPREL:
5691 case R_MIPS16_TLS_LDM:
5692 case R_MICROMIPS_TLS_GD:
5693 case R_MICROMIPS_TLS_GOTTPREL:
5694 case R_MICROMIPS_TLS_LDM:
5695 /* Find the index into the GOT where this value is located. */
5696 if (tls_ldm_reloc_p (r_type))
5697 {
5698 g = mips_elf_local_got_index (abfd, input_bfd, info,
5699 0, 0, NULL, r_type);
5700 if (g == MINUS_ONE)
5701 return bfd_reloc_outofrange;
5702 }
5703 else if (!local_p)
5704 {
5705 /* On VxWorks, CALL relocations should refer to the .got.plt
5706 entry, which is initialized to point at the PLT stub. */
5707 if (htab->is_vxworks
5708 && (call_hi16_reloc_p (r_type)
5709 || call_lo16_reloc_p (r_type)
5710 || call16_reloc_p (r_type)))
5711 {
5712 BFD_ASSERT (addend == 0);
5713 BFD_ASSERT (h->root.needs_plt);
5714 g = mips_elf_gotplt_index (info, &h->root);
5715 }
5716 else
5717 {
5718 BFD_ASSERT (addend == 0);
5719 g = mips_elf_global_got_index (abfd, info, input_bfd,
5720 &h->root, r_type);
5721 if (!TLS_RELOC_P (r_type)
5722 && !elf_hash_table (info)->dynamic_sections_created)
5723 /* This is a static link. We must initialize the GOT entry. */
5724 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5725 }
5726 }
5727 else if (!htab->is_vxworks
5728 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5729 /* The calculation below does not involve "g". */
5730 break;
5731 else
5732 {
5733 g = mips_elf_local_got_index (abfd, input_bfd, info,
5734 symbol + addend, r_symndx, h, r_type);
5735 if (g == MINUS_ONE)
5736 return bfd_reloc_outofrange;
5737 }
5738
5739 /* Convert GOT indices to actual offsets. */
5740 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5741 break;
5742 }
5743
5744 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5745 symbols are resolved by the loader. Add them to .rela.dyn. */
5746 if (h != NULL && is_gott_symbol (info, &h->root))
5747 {
5748 Elf_Internal_Rela outrel;
5749 bfd_byte *loc;
5750 asection *s;
5751
5752 s = mips_elf_rel_dyn_section (info, FALSE);
5753 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5754
5755 outrel.r_offset = (input_section->output_section->vma
5756 + input_section->output_offset
5757 + relocation->r_offset);
5758 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5759 outrel.r_addend = addend;
5760 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5761
5762 /* If we've written this relocation for a readonly section,
5763 we need to set DF_TEXTREL again, so that we do not delete the
5764 DT_TEXTREL tag. */
5765 if (MIPS_ELF_READONLY_SECTION (input_section))
5766 info->flags |= DF_TEXTREL;
5767
5768 *valuep = 0;
5769 return bfd_reloc_ok;
5770 }
5771
5772 /* Figure out what kind of relocation is being performed. */
5773 switch (r_type)
5774 {
5775 case R_MIPS_NONE:
5776 return bfd_reloc_continue;
5777
5778 case R_MIPS_16:
5779 if (howto->partial_inplace)
5780 addend = _bfd_mips_elf_sign_extend (addend, 16);
5781 value = symbol + addend;
5782 overflowed_p = mips_elf_overflow_p (value, 16);
5783 break;
5784
5785 case R_MIPS_32:
5786 case R_MIPS_REL32:
5787 case R_MIPS_64:
5788 if ((bfd_link_pic (info)
5789 || (htab->root.dynamic_sections_created
5790 && h != NULL
5791 && h->root.def_dynamic
5792 && !h->root.def_regular
5793 && !h->has_static_relocs))
5794 && r_symndx != STN_UNDEF
5795 && (h == NULL
5796 || h->root.root.type != bfd_link_hash_undefweak
5797 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5798 && (input_section->flags & SEC_ALLOC) != 0)
5799 {
5800 /* If we're creating a shared library, then we can't know
5801 where the symbol will end up. So, we create a relocation
5802 record in the output, and leave the job up to the dynamic
5803 linker. We must do the same for executable references to
5804 shared library symbols, unless we've decided to use copy
5805 relocs or PLTs instead. */
5806 value = addend;
5807 if (!mips_elf_create_dynamic_relocation (abfd,
5808 info,
5809 relocation,
5810 h,
5811 sec,
5812 symbol,
5813 &value,
5814 input_section))
5815 return bfd_reloc_undefined;
5816 }
5817 else
5818 {
5819 if (r_type != R_MIPS_REL32)
5820 value = symbol + addend;
5821 else
5822 value = addend;
5823 }
5824 value &= howto->dst_mask;
5825 break;
5826
5827 case R_MIPS_PC32:
5828 value = symbol + addend - p;
5829 value &= howto->dst_mask;
5830 break;
5831
5832 case R_MIPS16_26:
5833 /* The calculation for R_MIPS16_26 is just the same as for an
5834 R_MIPS_26. It's only the storage of the relocated field into
5835 the output file that's different. That's handled in
5836 mips_elf_perform_relocation. So, we just fall through to the
5837 R_MIPS_26 case here. */
5838 case R_MIPS_26:
5839 case R_MICROMIPS_26_S1:
5840 {
5841 unsigned int shift;
5842
5843 /* Shift is 2, unusually, for microMIPS JALX. */
5844 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5845
5846 if (howto->partial_inplace && !section_p)
5847 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5848 else
5849 value = addend;
5850 value += symbol;
5851
5852 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5853 be the correct ISA mode selector except for weak undefined
5854 symbols. */
5855 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5856 && (*cross_mode_jump_p
5857 ? (value & 3) != (r_type == R_MIPS_26)
5858 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5859 return bfd_reloc_outofrange;
5860
5861 value >>= shift;
5862 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5863 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5864 value &= howto->dst_mask;
5865 }
5866 break;
5867
5868 case R_MIPS_TLS_DTPREL_HI16:
5869 case R_MIPS16_TLS_DTPREL_HI16:
5870 case R_MICROMIPS_TLS_DTPREL_HI16:
5871 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5872 & howto->dst_mask);
5873 break;
5874
5875 case R_MIPS_TLS_DTPREL_LO16:
5876 case R_MIPS_TLS_DTPREL32:
5877 case R_MIPS_TLS_DTPREL64:
5878 case R_MIPS16_TLS_DTPREL_LO16:
5879 case R_MICROMIPS_TLS_DTPREL_LO16:
5880 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5881 break;
5882
5883 case R_MIPS_TLS_TPREL_HI16:
5884 case R_MIPS16_TLS_TPREL_HI16:
5885 case R_MICROMIPS_TLS_TPREL_HI16:
5886 value = (mips_elf_high (addend + symbol - tprel_base (info))
5887 & howto->dst_mask);
5888 break;
5889
5890 case R_MIPS_TLS_TPREL_LO16:
5891 case R_MIPS_TLS_TPREL32:
5892 case R_MIPS_TLS_TPREL64:
5893 case R_MIPS16_TLS_TPREL_LO16:
5894 case R_MICROMIPS_TLS_TPREL_LO16:
5895 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5896 break;
5897
5898 case R_MIPS_HI16:
5899 case R_MIPS16_HI16:
5900 case R_MICROMIPS_HI16:
5901 if (!gp_disp_p)
5902 {
5903 value = mips_elf_high (addend + symbol);
5904 value &= howto->dst_mask;
5905 }
5906 else
5907 {
5908 /* For MIPS16 ABI code we generate this sequence
5909 0: li $v0,%hi(_gp_disp)
5910 4: addiupc $v1,%lo(_gp_disp)
5911 8: sll $v0,16
5912 12: addu $v0,$v1
5913 14: move $gp,$v0
5914 So the offsets of hi and lo relocs are the same, but the
5915 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5916 ADDIUPC clears the low two bits of the instruction address,
5917 so the base is ($t9 + 4) & ~3. */
5918 if (r_type == R_MIPS16_HI16)
5919 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5920 /* The microMIPS .cpload sequence uses the same assembly
5921 instructions as the traditional psABI version, but the
5922 incoming $t9 has the low bit set. */
5923 else if (r_type == R_MICROMIPS_HI16)
5924 value = mips_elf_high (addend + gp - p - 1);
5925 else
5926 value = mips_elf_high (addend + gp - p);
5927 overflowed_p = mips_elf_overflow_p (value, 16);
5928 }
5929 break;
5930
5931 case R_MIPS_LO16:
5932 case R_MIPS16_LO16:
5933 case R_MICROMIPS_LO16:
5934 case R_MICROMIPS_HI0_LO16:
5935 if (!gp_disp_p)
5936 value = (symbol + addend) & howto->dst_mask;
5937 else
5938 {
5939 /* See the comment for R_MIPS16_HI16 above for the reason
5940 for this conditional. */
5941 if (r_type == R_MIPS16_LO16)
5942 value = addend + gp - (p & ~(bfd_vma) 0x3);
5943 else if (r_type == R_MICROMIPS_LO16
5944 || r_type == R_MICROMIPS_HI0_LO16)
5945 value = addend + gp - p + 3;
5946 else
5947 value = addend + gp - p + 4;
5948 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5949 for overflow. But, on, say, IRIX5, relocations against
5950 _gp_disp are normally generated from the .cpload
5951 pseudo-op. It generates code that normally looks like
5952 this:
5953
5954 lui $gp,%hi(_gp_disp)
5955 addiu $gp,$gp,%lo(_gp_disp)
5956 addu $gp,$gp,$t9
5957
5958 Here $t9 holds the address of the function being called,
5959 as required by the MIPS ELF ABI. The R_MIPS_LO16
5960 relocation can easily overflow in this situation, but the
5961 R_MIPS_HI16 relocation will handle the overflow.
5962 Therefore, we consider this a bug in the MIPS ABI, and do
5963 not check for overflow here. */
5964 }
5965 break;
5966
5967 case R_MIPS_LITERAL:
5968 case R_MICROMIPS_LITERAL:
5969 /* Because we don't merge literal sections, we can handle this
5970 just like R_MIPS_GPREL16. In the long run, we should merge
5971 shared literals, and then we will need to additional work
5972 here. */
5973
5974 /* Fall through. */
5975
5976 case R_MIPS16_GPREL:
5977 /* The R_MIPS16_GPREL performs the same calculation as
5978 R_MIPS_GPREL16, but stores the relocated bits in a different
5979 order. We don't need to do anything special here; the
5980 differences are handled in mips_elf_perform_relocation. */
5981 case R_MIPS_GPREL16:
5982 case R_MICROMIPS_GPREL7_S2:
5983 case R_MICROMIPS_GPREL16:
5984 /* Only sign-extend the addend if it was extracted from the
5985 instruction. If the addend was separate, leave it alone,
5986 otherwise we may lose significant bits. */
5987 if (howto->partial_inplace)
5988 addend = _bfd_mips_elf_sign_extend (addend, 16);
5989 value = symbol + addend - gp;
5990 /* If the symbol was local, any earlier relocatable links will
5991 have adjusted its addend with the gp offset, so compensate
5992 for that now. Don't do it for symbols forced local in this
5993 link, though, since they won't have had the gp offset applied
5994 to them before. */
5995 if (was_local_p)
5996 value += gp0;
5997 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5998 overflowed_p = mips_elf_overflow_p (value, 16);
5999 break;
6000
6001 case R_MIPS16_GOT16:
6002 case R_MIPS16_CALL16:
6003 case R_MIPS_GOT16:
6004 case R_MIPS_CALL16:
6005 case R_MICROMIPS_GOT16:
6006 case R_MICROMIPS_CALL16:
6007 /* VxWorks does not have separate local and global semantics for
6008 R_MIPS*_GOT16; every relocation evaluates to "G". */
6009 if (!htab->is_vxworks && local_p)
6010 {
6011 value = mips_elf_got16_entry (abfd, input_bfd, info,
6012 symbol + addend, !was_local_p);
6013 if (value == MINUS_ONE)
6014 return bfd_reloc_outofrange;
6015 value
6016 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6017 overflowed_p = mips_elf_overflow_p (value, 16);
6018 break;
6019 }
6020
6021 /* Fall through. */
6022
6023 case R_MIPS_TLS_GD:
6024 case R_MIPS_TLS_GOTTPREL:
6025 case R_MIPS_TLS_LDM:
6026 case R_MIPS_GOT_DISP:
6027 case R_MIPS16_TLS_GD:
6028 case R_MIPS16_TLS_GOTTPREL:
6029 case R_MIPS16_TLS_LDM:
6030 case R_MICROMIPS_TLS_GD:
6031 case R_MICROMIPS_TLS_GOTTPREL:
6032 case R_MICROMIPS_TLS_LDM:
6033 case R_MICROMIPS_GOT_DISP:
6034 value = g;
6035 overflowed_p = mips_elf_overflow_p (value, 16);
6036 break;
6037
6038 case R_MIPS_GPREL32:
6039 value = (addend + symbol + gp0 - gp);
6040 if (!save_addend)
6041 value &= howto->dst_mask;
6042 break;
6043
6044 case R_MIPS_PC16:
6045 case R_MIPS_GNU_REL16_S2:
6046 if (howto->partial_inplace)
6047 addend = _bfd_mips_elf_sign_extend (addend, 18);
6048
6049 /* No need to exclude weak undefined symbols here as they resolve
6050 to 0 and never set `*cross_mode_jump_p', so this alignment check
6051 will never trigger for them. */
6052 if (*cross_mode_jump_p
6053 ? ((symbol + addend) & 3) != 1
6054 : ((symbol + addend) & 3) != 0)
6055 return bfd_reloc_outofrange;
6056
6057 value = symbol + addend - p;
6058 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6059 overflowed_p = mips_elf_overflow_p (value, 18);
6060 value >>= howto->rightshift;
6061 value &= howto->dst_mask;
6062 break;
6063
6064 case R_MIPS16_PC16_S1:
6065 if (howto->partial_inplace)
6066 addend = _bfd_mips_elf_sign_extend (addend, 17);
6067
6068 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6069 && (*cross_mode_jump_p
6070 ? ((symbol + addend) & 3) != 0
6071 : ((symbol + addend) & 1) == 0))
6072 return bfd_reloc_outofrange;
6073
6074 value = symbol + addend - p;
6075 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6076 overflowed_p = mips_elf_overflow_p (value, 17);
6077 value >>= howto->rightshift;
6078 value &= howto->dst_mask;
6079 break;
6080
6081 case R_MIPS_PC21_S2:
6082 if (howto->partial_inplace)
6083 addend = _bfd_mips_elf_sign_extend (addend, 23);
6084
6085 if ((symbol + addend) & 3)
6086 return bfd_reloc_outofrange;
6087
6088 value = symbol + addend - p;
6089 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6090 overflowed_p = mips_elf_overflow_p (value, 23);
6091 value >>= howto->rightshift;
6092 value &= howto->dst_mask;
6093 break;
6094
6095 case R_MIPS_PC26_S2:
6096 if (howto->partial_inplace)
6097 addend = _bfd_mips_elf_sign_extend (addend, 28);
6098
6099 if ((symbol + addend) & 3)
6100 return bfd_reloc_outofrange;
6101
6102 value = symbol + addend - p;
6103 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6104 overflowed_p = mips_elf_overflow_p (value, 28);
6105 value >>= howto->rightshift;
6106 value &= howto->dst_mask;
6107 break;
6108
6109 case R_MIPS_PC18_S3:
6110 if (howto->partial_inplace)
6111 addend = _bfd_mips_elf_sign_extend (addend, 21);
6112
6113 if ((symbol + addend) & 7)
6114 return bfd_reloc_outofrange;
6115
6116 value = symbol + addend - ((p | 7) ^ 7);
6117 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6118 overflowed_p = mips_elf_overflow_p (value, 21);
6119 value >>= howto->rightshift;
6120 value &= howto->dst_mask;
6121 break;
6122
6123 case R_MIPS_PC19_S2:
6124 if (howto->partial_inplace)
6125 addend = _bfd_mips_elf_sign_extend (addend, 21);
6126
6127 if ((symbol + addend) & 3)
6128 return bfd_reloc_outofrange;
6129
6130 value = symbol + addend - p;
6131 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6132 overflowed_p = mips_elf_overflow_p (value, 21);
6133 value >>= howto->rightshift;
6134 value &= howto->dst_mask;
6135 break;
6136
6137 case R_MIPS_PCHI16:
6138 value = mips_elf_high (symbol + addend - p);
6139 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6140 overflowed_p = mips_elf_overflow_p (value, 16);
6141 value &= howto->dst_mask;
6142 break;
6143
6144 case R_MIPS_PCLO16:
6145 if (howto->partial_inplace)
6146 addend = _bfd_mips_elf_sign_extend (addend, 16);
6147 value = symbol + addend - p;
6148 value &= howto->dst_mask;
6149 break;
6150
6151 case R_MICROMIPS_PC7_S1:
6152 if (howto->partial_inplace)
6153 addend = _bfd_mips_elf_sign_extend (addend, 8);
6154
6155 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6156 && (*cross_mode_jump_p
6157 ? ((symbol + addend + 2) & 3) != 0
6158 : ((symbol + addend + 2) & 1) == 0))
6159 return bfd_reloc_outofrange;
6160
6161 value = symbol + addend - p;
6162 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6163 overflowed_p = mips_elf_overflow_p (value, 8);
6164 value >>= howto->rightshift;
6165 value &= howto->dst_mask;
6166 break;
6167
6168 case R_MICROMIPS_PC10_S1:
6169 if (howto->partial_inplace)
6170 addend = _bfd_mips_elf_sign_extend (addend, 11);
6171
6172 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6173 && (*cross_mode_jump_p
6174 ? ((symbol + addend + 2) & 3) != 0
6175 : ((symbol + addend + 2) & 1) == 0))
6176 return bfd_reloc_outofrange;
6177
6178 value = symbol + addend - p;
6179 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6180 overflowed_p = mips_elf_overflow_p (value, 11);
6181 value >>= howto->rightshift;
6182 value &= howto->dst_mask;
6183 break;
6184
6185 case R_MICROMIPS_PC16_S1:
6186 if (howto->partial_inplace)
6187 addend = _bfd_mips_elf_sign_extend (addend, 17);
6188
6189 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6190 && (*cross_mode_jump_p
6191 ? ((symbol + addend) & 3) != 0
6192 : ((symbol + addend) & 1) == 0))
6193 return bfd_reloc_outofrange;
6194
6195 value = symbol + addend - p;
6196 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6197 overflowed_p = mips_elf_overflow_p (value, 17);
6198 value >>= howto->rightshift;
6199 value &= howto->dst_mask;
6200 break;
6201
6202 case R_MICROMIPS_PC23_S2:
6203 if (howto->partial_inplace)
6204 addend = _bfd_mips_elf_sign_extend (addend, 25);
6205 value = symbol + addend - ((p | 3) ^ 3);
6206 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6207 overflowed_p = mips_elf_overflow_p (value, 25);
6208 value >>= howto->rightshift;
6209 value &= howto->dst_mask;
6210 break;
6211
6212 case R_MIPS_GOT_HI16:
6213 case R_MIPS_CALL_HI16:
6214 case R_MICROMIPS_GOT_HI16:
6215 case R_MICROMIPS_CALL_HI16:
6216 /* We're allowed to handle these two relocations identically.
6217 The dynamic linker is allowed to handle the CALL relocations
6218 differently by creating a lazy evaluation stub. */
6219 value = g;
6220 value = mips_elf_high (value);
6221 value &= howto->dst_mask;
6222 break;
6223
6224 case R_MIPS_GOT_LO16:
6225 case R_MIPS_CALL_LO16:
6226 case R_MICROMIPS_GOT_LO16:
6227 case R_MICROMIPS_CALL_LO16:
6228 value = g & howto->dst_mask;
6229 break;
6230
6231 case R_MIPS_GOT_PAGE:
6232 case R_MICROMIPS_GOT_PAGE:
6233 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6234 if (value == MINUS_ONE)
6235 return bfd_reloc_outofrange;
6236 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6237 overflowed_p = mips_elf_overflow_p (value, 16);
6238 break;
6239
6240 case R_MIPS_GOT_OFST:
6241 case R_MICROMIPS_GOT_OFST:
6242 if (local_p)
6243 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6244 else
6245 value = addend;
6246 overflowed_p = mips_elf_overflow_p (value, 16);
6247 break;
6248
6249 case R_MIPS_SUB:
6250 case R_MICROMIPS_SUB:
6251 value = symbol - addend;
6252 value &= howto->dst_mask;
6253 break;
6254
6255 case R_MIPS_HIGHER:
6256 case R_MICROMIPS_HIGHER:
6257 value = mips_elf_higher (addend + symbol);
6258 value &= howto->dst_mask;
6259 break;
6260
6261 case R_MIPS_HIGHEST:
6262 case R_MICROMIPS_HIGHEST:
6263 value = mips_elf_highest (addend + symbol);
6264 value &= howto->dst_mask;
6265 break;
6266
6267 case R_MIPS_SCN_DISP:
6268 case R_MICROMIPS_SCN_DISP:
6269 value = symbol + addend - sec->output_offset;
6270 value &= howto->dst_mask;
6271 break;
6272
6273 case R_MIPS_JALR:
6274 case R_MICROMIPS_JALR:
6275 /* This relocation is only a hint. In some cases, we optimize
6276 it into a bal instruction. But we don't try to optimize
6277 when the symbol does not resolve locally. */
6278 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6279 return bfd_reloc_continue;
6280 value = symbol + addend;
6281 break;
6282
6283 case R_MIPS_PJUMP:
6284 case R_MIPS_GNU_VTINHERIT:
6285 case R_MIPS_GNU_VTENTRY:
6286 /* We don't do anything with these at present. */
6287 return bfd_reloc_continue;
6288
6289 default:
6290 /* An unrecognized relocation type. */
6291 return bfd_reloc_notsupported;
6292 }
6293
6294 /* Store the VALUE for our caller. */
6295 *valuep = value;
6296 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6297 }
6298
6299 /* Obtain the field relocated by RELOCATION. */
6300
6301 static bfd_vma
6302 mips_elf_obtain_contents (reloc_howto_type *howto,
6303 const Elf_Internal_Rela *relocation,
6304 bfd *input_bfd, bfd_byte *contents)
6305 {
6306 bfd_vma x = 0;
6307 bfd_byte *location = contents + relocation->r_offset;
6308 unsigned int size = bfd_get_reloc_size (howto);
6309
6310 /* Obtain the bytes. */
6311 if (size != 0)
6312 x = bfd_get (8 * size, input_bfd, location);
6313
6314 return x;
6315 }
6316
6317 /* It has been determined that the result of the RELOCATION is the
6318 VALUE. Use HOWTO to place VALUE into the output file at the
6319 appropriate position. The SECTION is the section to which the
6320 relocation applies.
6321 CROSS_MODE_JUMP_P is true if the relocation field
6322 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6323
6324 Returns FALSE if anything goes wrong. */
6325
6326 static bfd_boolean
6327 mips_elf_perform_relocation (struct bfd_link_info *info,
6328 reloc_howto_type *howto,
6329 const Elf_Internal_Rela *relocation,
6330 bfd_vma value, bfd *input_bfd,
6331 asection *input_section, bfd_byte *contents,
6332 bfd_boolean cross_mode_jump_p)
6333 {
6334 bfd_vma x;
6335 bfd_byte *location;
6336 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6337 unsigned int size;
6338
6339 /* Figure out where the relocation is occurring. */
6340 location = contents + relocation->r_offset;
6341
6342 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6343
6344 /* Obtain the current value. */
6345 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6346
6347 /* Clear the field we are setting. */
6348 x &= ~howto->dst_mask;
6349
6350 /* Set the field. */
6351 x |= (value & howto->dst_mask);
6352
6353 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6354 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6355 {
6356 bfd_vma opcode = x >> 26;
6357
6358 if (r_type == R_MIPS16_26 ? opcode == 0x7
6359 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6360 : opcode == 0x1d)
6361 {
6362 info->callbacks->einfo
6363 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6364 input_bfd, input_section, relocation->r_offset);
6365 return TRUE;
6366 }
6367 }
6368 if (cross_mode_jump_p && jal_reloc_p (r_type))
6369 {
6370 bfd_boolean ok;
6371 bfd_vma opcode = x >> 26;
6372 bfd_vma jalx_opcode;
6373
6374 /* Check to see if the opcode is already JAL or JALX. */
6375 if (r_type == R_MIPS16_26)
6376 {
6377 ok = ((opcode == 0x6) || (opcode == 0x7));
6378 jalx_opcode = 0x7;
6379 }
6380 else if (r_type == R_MICROMIPS_26_S1)
6381 {
6382 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6383 jalx_opcode = 0x3c;
6384 }
6385 else
6386 {
6387 ok = ((opcode == 0x3) || (opcode == 0x1d));
6388 jalx_opcode = 0x1d;
6389 }
6390
6391 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6392 convert J or JALS to JALX. */
6393 if (!ok)
6394 {
6395 info->callbacks->einfo
6396 (_("%X%H: Unsupported jump between ISA modes; "
6397 "consider recompiling with interlinking enabled\n"),
6398 input_bfd, input_section, relocation->r_offset);
6399 return TRUE;
6400 }
6401
6402 /* Make this the JALX opcode. */
6403 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6404 }
6405 else if (cross_mode_jump_p && b_reloc_p (r_type))
6406 {
6407 bfd_boolean ok = FALSE;
6408 bfd_vma opcode = x >> 16;
6409 bfd_vma jalx_opcode = 0;
6410 bfd_vma addr;
6411 bfd_vma dest;
6412
6413 if (r_type == R_MICROMIPS_PC16_S1)
6414 {
6415 ok = opcode == 0x4060;
6416 jalx_opcode = 0x3c;
6417 value <<= 1;
6418 }
6419 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6420 {
6421 ok = opcode == 0x411;
6422 jalx_opcode = 0x1d;
6423 value <<= 2;
6424 }
6425
6426 if (bfd_link_pic (info) || !ok)
6427 {
6428 info->callbacks->einfo
6429 (_("%X%H: Unsupported branch between ISA modes\n"),
6430 input_bfd, input_section, relocation->r_offset);
6431 return TRUE;
6432 }
6433
6434 addr = (input_section->output_section->vma
6435 + input_section->output_offset
6436 + relocation->r_offset
6437 + 4);
6438 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6439
6440 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6441 {
6442 info->callbacks->einfo
6443 (_("%X%H: Cannot convert branch between ISA modes "
6444 "to JALX: relocation out of range\n"),
6445 input_bfd, input_section, relocation->r_offset);
6446 return TRUE;
6447 }
6448
6449 /* Make this the JALX opcode. */
6450 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6451 }
6452
6453 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6454 range. */
6455 if (!bfd_link_relocatable (info)
6456 && !cross_mode_jump_p
6457 && ((JAL_TO_BAL_P (input_bfd)
6458 && r_type == R_MIPS_26
6459 && (x >> 26) == 0x3) /* jal addr */
6460 || (JALR_TO_BAL_P (input_bfd)
6461 && r_type == R_MIPS_JALR
6462 && x == 0x0320f809) /* jalr t9 */
6463 || (JR_TO_B_P (input_bfd)
6464 && r_type == R_MIPS_JALR
6465 && x == 0x03200008))) /* jr t9 */
6466 {
6467 bfd_vma addr;
6468 bfd_vma dest;
6469 bfd_signed_vma off;
6470
6471 addr = (input_section->output_section->vma
6472 + input_section->output_offset
6473 + relocation->r_offset
6474 + 4);
6475 if (r_type == R_MIPS_26)
6476 dest = (value << 2) | ((addr >> 28) << 28);
6477 else
6478 dest = value;
6479 off = dest - addr;
6480 if (off <= 0x1ffff && off >= -0x20000)
6481 {
6482 if (x == 0x03200008) /* jr t9 */
6483 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6484 else
6485 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6486 }
6487 }
6488
6489 /* Put the value into the output. */
6490 size = bfd_get_reloc_size (howto);
6491 if (size != 0)
6492 bfd_put (8 * size, input_bfd, x, location);
6493
6494 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6495 location);
6496
6497 return TRUE;
6498 }
6499 \f
6500 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6501 is the original relocation, which is now being transformed into a
6502 dynamic relocation. The ADDENDP is adjusted if necessary; the
6503 caller should store the result in place of the original addend. */
6504
6505 static bfd_boolean
6506 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6507 struct bfd_link_info *info,
6508 const Elf_Internal_Rela *rel,
6509 struct mips_elf_link_hash_entry *h,
6510 asection *sec, bfd_vma symbol,
6511 bfd_vma *addendp, asection *input_section)
6512 {
6513 Elf_Internal_Rela outrel[3];
6514 asection *sreloc;
6515 bfd *dynobj;
6516 int r_type;
6517 long indx;
6518 bfd_boolean defined_p;
6519 struct mips_elf_link_hash_table *htab;
6520
6521 htab = mips_elf_hash_table (info);
6522 BFD_ASSERT (htab != NULL);
6523
6524 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6525 dynobj = elf_hash_table (info)->dynobj;
6526 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6527 BFD_ASSERT (sreloc != NULL);
6528 BFD_ASSERT (sreloc->contents != NULL);
6529 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6530 < sreloc->size);
6531
6532 outrel[0].r_offset =
6533 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6534 if (ABI_64_P (output_bfd))
6535 {
6536 outrel[1].r_offset =
6537 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6538 outrel[2].r_offset =
6539 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6540 }
6541
6542 if (outrel[0].r_offset == MINUS_ONE)
6543 /* The relocation field has been deleted. */
6544 return TRUE;
6545
6546 if (outrel[0].r_offset == MINUS_TWO)
6547 {
6548 /* The relocation field has been converted into a relative value of
6549 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6550 the field to be fully relocated, so add in the symbol's value. */
6551 *addendp += symbol;
6552 return TRUE;
6553 }
6554
6555 /* We must now calculate the dynamic symbol table index to use
6556 in the relocation. */
6557 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6558 {
6559 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6560 indx = h->root.dynindx;
6561 if (SGI_COMPAT (output_bfd))
6562 defined_p = h->root.def_regular;
6563 else
6564 /* ??? glibc's ld.so just adds the final GOT entry to the
6565 relocation field. It therefore treats relocs against
6566 defined symbols in the same way as relocs against
6567 undefined symbols. */
6568 defined_p = FALSE;
6569 }
6570 else
6571 {
6572 if (sec != NULL && bfd_is_abs_section (sec))
6573 indx = 0;
6574 else if (sec == NULL || sec->owner == NULL)
6575 {
6576 bfd_set_error (bfd_error_bad_value);
6577 return FALSE;
6578 }
6579 else
6580 {
6581 indx = elf_section_data (sec->output_section)->dynindx;
6582 if (indx == 0)
6583 {
6584 asection *osec = htab->root.text_index_section;
6585 indx = elf_section_data (osec)->dynindx;
6586 }
6587 if (indx == 0)
6588 abort ();
6589 }
6590
6591 /* Instead of generating a relocation using the section
6592 symbol, we may as well make it a fully relative
6593 relocation. We want to avoid generating relocations to
6594 local symbols because we used to generate them
6595 incorrectly, without adding the original symbol value,
6596 which is mandated by the ABI for section symbols. In
6597 order to give dynamic loaders and applications time to
6598 phase out the incorrect use, we refrain from emitting
6599 section-relative relocations. It's not like they're
6600 useful, after all. This should be a bit more efficient
6601 as well. */
6602 /* ??? Although this behavior is compatible with glibc's ld.so,
6603 the ABI says that relocations against STN_UNDEF should have
6604 a symbol value of 0. Irix rld honors this, so relocations
6605 against STN_UNDEF have no effect. */
6606 if (!SGI_COMPAT (output_bfd))
6607 indx = 0;
6608 defined_p = TRUE;
6609 }
6610
6611 /* If the relocation was previously an absolute relocation and
6612 this symbol will not be referred to by the relocation, we must
6613 adjust it by the value we give it in the dynamic symbol table.
6614 Otherwise leave the job up to the dynamic linker. */
6615 if (defined_p && r_type != R_MIPS_REL32)
6616 *addendp += symbol;
6617
6618 if (htab->is_vxworks)
6619 /* VxWorks uses non-relative relocations for this. */
6620 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6621 else
6622 /* The relocation is always an REL32 relocation because we don't
6623 know where the shared library will wind up at load-time. */
6624 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6625 R_MIPS_REL32);
6626
6627 /* For strict adherence to the ABI specification, we should
6628 generate a R_MIPS_64 relocation record by itself before the
6629 _REL32/_64 record as well, such that the addend is read in as
6630 a 64-bit value (REL32 is a 32-bit relocation, after all).
6631 However, since none of the existing ELF64 MIPS dynamic
6632 loaders seems to care, we don't waste space with these
6633 artificial relocations. If this turns out to not be true,
6634 mips_elf_allocate_dynamic_relocation() should be tweaked so
6635 as to make room for a pair of dynamic relocations per
6636 invocation if ABI_64_P, and here we should generate an
6637 additional relocation record with R_MIPS_64 by itself for a
6638 NULL symbol before this relocation record. */
6639 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6640 ABI_64_P (output_bfd)
6641 ? R_MIPS_64
6642 : R_MIPS_NONE);
6643 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6644
6645 /* Adjust the output offset of the relocation to reference the
6646 correct location in the output file. */
6647 outrel[0].r_offset += (input_section->output_section->vma
6648 + input_section->output_offset);
6649 outrel[1].r_offset += (input_section->output_section->vma
6650 + input_section->output_offset);
6651 outrel[2].r_offset += (input_section->output_section->vma
6652 + input_section->output_offset);
6653
6654 /* Put the relocation back out. We have to use the special
6655 relocation outputter in the 64-bit case since the 64-bit
6656 relocation format is non-standard. */
6657 if (ABI_64_P (output_bfd))
6658 {
6659 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6660 (output_bfd, &outrel[0],
6661 (sreloc->contents
6662 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6663 }
6664 else if (htab->is_vxworks)
6665 {
6666 /* VxWorks uses RELA rather than REL dynamic relocations. */
6667 outrel[0].r_addend = *addendp;
6668 bfd_elf32_swap_reloca_out
6669 (output_bfd, &outrel[0],
6670 (sreloc->contents
6671 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6672 }
6673 else
6674 bfd_elf32_swap_reloc_out
6675 (output_bfd, &outrel[0],
6676 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6677
6678 /* We've now added another relocation. */
6679 ++sreloc->reloc_count;
6680
6681 /* Make sure the output section is writable. The dynamic linker
6682 will be writing to it. */
6683 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6684 |= SHF_WRITE;
6685
6686 /* On IRIX5, make an entry of compact relocation info. */
6687 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6688 {
6689 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6690 bfd_byte *cr;
6691
6692 if (scpt)
6693 {
6694 Elf32_crinfo cptrel;
6695
6696 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6697 cptrel.vaddr = (rel->r_offset
6698 + input_section->output_section->vma
6699 + input_section->output_offset);
6700 if (r_type == R_MIPS_REL32)
6701 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6702 else
6703 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6704 mips_elf_set_cr_dist2to (cptrel, 0);
6705 cptrel.konst = *addendp;
6706
6707 cr = (scpt->contents
6708 + sizeof (Elf32_External_compact_rel));
6709 mips_elf_set_cr_relvaddr (cptrel, 0);
6710 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6711 ((Elf32_External_crinfo *) cr
6712 + scpt->reloc_count));
6713 ++scpt->reloc_count;
6714 }
6715 }
6716
6717 /* If we've written this relocation for a readonly section,
6718 we need to set DF_TEXTREL again, so that we do not delete the
6719 DT_TEXTREL tag. */
6720 if (MIPS_ELF_READONLY_SECTION (input_section))
6721 info->flags |= DF_TEXTREL;
6722
6723 return TRUE;
6724 }
6725 \f
6726 /* Return the MACH for a MIPS e_flags value. */
6727
6728 unsigned long
6729 _bfd_elf_mips_mach (flagword flags)
6730 {
6731 switch (flags & EF_MIPS_MACH)
6732 {
6733 case E_MIPS_MACH_3900:
6734 return bfd_mach_mips3900;
6735
6736 case E_MIPS_MACH_4010:
6737 return bfd_mach_mips4010;
6738
6739 case E_MIPS_MACH_4100:
6740 return bfd_mach_mips4100;
6741
6742 case E_MIPS_MACH_4111:
6743 return bfd_mach_mips4111;
6744
6745 case E_MIPS_MACH_4120:
6746 return bfd_mach_mips4120;
6747
6748 case E_MIPS_MACH_4650:
6749 return bfd_mach_mips4650;
6750
6751 case E_MIPS_MACH_5400:
6752 return bfd_mach_mips5400;
6753
6754 case E_MIPS_MACH_5500:
6755 return bfd_mach_mips5500;
6756
6757 case E_MIPS_MACH_5900:
6758 return bfd_mach_mips5900;
6759
6760 case E_MIPS_MACH_9000:
6761 return bfd_mach_mips9000;
6762
6763 case E_MIPS_MACH_SB1:
6764 return bfd_mach_mips_sb1;
6765
6766 case E_MIPS_MACH_LS2E:
6767 return bfd_mach_mips_loongson_2e;
6768
6769 case E_MIPS_MACH_LS2F:
6770 return bfd_mach_mips_loongson_2f;
6771
6772 case E_MIPS_MACH_LS3A:
6773 return bfd_mach_mips_loongson_3a;
6774
6775 case E_MIPS_MACH_OCTEON3:
6776 return bfd_mach_mips_octeon3;
6777
6778 case E_MIPS_MACH_OCTEON2:
6779 return bfd_mach_mips_octeon2;
6780
6781 case E_MIPS_MACH_OCTEON:
6782 return bfd_mach_mips_octeon;
6783
6784 case E_MIPS_MACH_XLR:
6785 return bfd_mach_mips_xlr;
6786
6787 default:
6788 switch (flags & EF_MIPS_ARCH)
6789 {
6790 default:
6791 case E_MIPS_ARCH_1:
6792 return bfd_mach_mips3000;
6793
6794 case E_MIPS_ARCH_2:
6795 return bfd_mach_mips6000;
6796
6797 case E_MIPS_ARCH_3:
6798 return bfd_mach_mips4000;
6799
6800 case E_MIPS_ARCH_4:
6801 return bfd_mach_mips8000;
6802
6803 case E_MIPS_ARCH_5:
6804 return bfd_mach_mips5;
6805
6806 case E_MIPS_ARCH_32:
6807 return bfd_mach_mipsisa32;
6808
6809 case E_MIPS_ARCH_64:
6810 return bfd_mach_mipsisa64;
6811
6812 case E_MIPS_ARCH_32R2:
6813 return bfd_mach_mipsisa32r2;
6814
6815 case E_MIPS_ARCH_64R2:
6816 return bfd_mach_mipsisa64r2;
6817
6818 case E_MIPS_ARCH_32R6:
6819 return bfd_mach_mipsisa32r6;
6820
6821 case E_MIPS_ARCH_64R6:
6822 return bfd_mach_mipsisa64r6;
6823 }
6824 }
6825
6826 return 0;
6827 }
6828
6829 /* Return printable name for ABI. */
6830
6831 static INLINE char *
6832 elf_mips_abi_name (bfd *abfd)
6833 {
6834 flagword flags;
6835
6836 flags = elf_elfheader (abfd)->e_flags;
6837 switch (flags & EF_MIPS_ABI)
6838 {
6839 case 0:
6840 if (ABI_N32_P (abfd))
6841 return "N32";
6842 else if (ABI_64_P (abfd))
6843 return "64";
6844 else
6845 return "none";
6846 case E_MIPS_ABI_O32:
6847 return "O32";
6848 case E_MIPS_ABI_O64:
6849 return "O64";
6850 case E_MIPS_ABI_EABI32:
6851 return "EABI32";
6852 case E_MIPS_ABI_EABI64:
6853 return "EABI64";
6854 default:
6855 return "unknown abi";
6856 }
6857 }
6858 \f
6859 /* MIPS ELF uses two common sections. One is the usual one, and the
6860 other is for small objects. All the small objects are kept
6861 together, and then referenced via the gp pointer, which yields
6862 faster assembler code. This is what we use for the small common
6863 section. This approach is copied from ecoff.c. */
6864 static asection mips_elf_scom_section;
6865 static asymbol mips_elf_scom_symbol;
6866 static asymbol *mips_elf_scom_symbol_ptr;
6867
6868 /* MIPS ELF also uses an acommon section, which represents an
6869 allocated common symbol which may be overridden by a
6870 definition in a shared library. */
6871 static asection mips_elf_acom_section;
6872 static asymbol mips_elf_acom_symbol;
6873 static asymbol *mips_elf_acom_symbol_ptr;
6874
6875 /* This is used for both the 32-bit and the 64-bit ABI. */
6876
6877 void
6878 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6879 {
6880 elf_symbol_type *elfsym;
6881
6882 /* Handle the special MIPS section numbers that a symbol may use. */
6883 elfsym = (elf_symbol_type *) asym;
6884 switch (elfsym->internal_elf_sym.st_shndx)
6885 {
6886 case SHN_MIPS_ACOMMON:
6887 /* This section is used in a dynamically linked executable file.
6888 It is an allocated common section. The dynamic linker can
6889 either resolve these symbols to something in a shared
6890 library, or it can just leave them here. For our purposes,
6891 we can consider these symbols to be in a new section. */
6892 if (mips_elf_acom_section.name == NULL)
6893 {
6894 /* Initialize the acommon section. */
6895 mips_elf_acom_section.name = ".acommon";
6896 mips_elf_acom_section.flags = SEC_ALLOC;
6897 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6898 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6899 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6900 mips_elf_acom_symbol.name = ".acommon";
6901 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6902 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6903 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6904 }
6905 asym->section = &mips_elf_acom_section;
6906 break;
6907
6908 case SHN_COMMON:
6909 /* Common symbols less than the GP size are automatically
6910 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6911 if (asym->value > elf_gp_size (abfd)
6912 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6913 || IRIX_COMPAT (abfd) == ict_irix6)
6914 break;
6915 /* Fall through. */
6916 case SHN_MIPS_SCOMMON:
6917 if (mips_elf_scom_section.name == NULL)
6918 {
6919 /* Initialize the small common section. */
6920 mips_elf_scom_section.name = ".scommon";
6921 mips_elf_scom_section.flags = SEC_IS_COMMON;
6922 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6923 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6924 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6925 mips_elf_scom_symbol.name = ".scommon";
6926 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6927 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6928 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6929 }
6930 asym->section = &mips_elf_scom_section;
6931 asym->value = elfsym->internal_elf_sym.st_size;
6932 break;
6933
6934 case SHN_MIPS_SUNDEFINED:
6935 asym->section = bfd_und_section_ptr;
6936 break;
6937
6938 case SHN_MIPS_TEXT:
6939 {
6940 asection *section = bfd_get_section_by_name (abfd, ".text");
6941
6942 if (section != NULL)
6943 {
6944 asym->section = section;
6945 /* MIPS_TEXT is a bit special, the address is not an offset
6946 to the base of the .text section. So substract the section
6947 base address to make it an offset. */
6948 asym->value -= section->vma;
6949 }
6950 }
6951 break;
6952
6953 case SHN_MIPS_DATA:
6954 {
6955 asection *section = bfd_get_section_by_name (abfd, ".data");
6956
6957 if (section != NULL)
6958 {
6959 asym->section = section;
6960 /* MIPS_DATA is a bit special, the address is not an offset
6961 to the base of the .data section. So substract the section
6962 base address to make it an offset. */
6963 asym->value -= section->vma;
6964 }
6965 }
6966 break;
6967 }
6968
6969 /* If this is an odd-valued function symbol, assume it's a MIPS16
6970 or microMIPS one. */
6971 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6972 && (asym->value & 1) != 0)
6973 {
6974 asym->value--;
6975 if (MICROMIPS_P (abfd))
6976 elfsym->internal_elf_sym.st_other
6977 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6978 else
6979 elfsym->internal_elf_sym.st_other
6980 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6981 }
6982 }
6983 \f
6984 /* Implement elf_backend_eh_frame_address_size. This differs from
6985 the default in the way it handles EABI64.
6986
6987 EABI64 was originally specified as an LP64 ABI, and that is what
6988 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6989 historically accepted the combination of -mabi=eabi and -mlong32,
6990 and this ILP32 variation has become semi-official over time.
6991 Both forms use elf32 and have pointer-sized FDE addresses.
6992
6993 If an EABI object was generated by GCC 4.0 or above, it will have
6994 an empty .gcc_compiled_longXX section, where XX is the size of longs
6995 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6996 have no special marking to distinguish them from LP64 objects.
6997
6998 We don't want users of the official LP64 ABI to be punished for the
6999 existence of the ILP32 variant, but at the same time, we don't want
7000 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7001 We therefore take the following approach:
7002
7003 - If ABFD contains a .gcc_compiled_longXX section, use it to
7004 determine the pointer size.
7005
7006 - Otherwise check the type of the first relocation. Assume that
7007 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7008
7009 - Otherwise punt.
7010
7011 The second check is enough to detect LP64 objects generated by pre-4.0
7012 compilers because, in the kind of output generated by those compilers,
7013 the first relocation will be associated with either a CIE personality
7014 routine or an FDE start address. Furthermore, the compilers never
7015 used a special (non-pointer) encoding for this ABI.
7016
7017 Checking the relocation type should also be safe because there is no
7018 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7019 did so. */
7020
7021 unsigned int
7022 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7023 {
7024 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7025 return 8;
7026 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7027 {
7028 bfd_boolean long32_p, long64_p;
7029
7030 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7031 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7032 if (long32_p && long64_p)
7033 return 0;
7034 if (long32_p)
7035 return 4;
7036 if (long64_p)
7037 return 8;
7038
7039 if (sec->reloc_count > 0
7040 && elf_section_data (sec)->relocs != NULL
7041 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7042 == R_MIPS_64))
7043 return 8;
7044
7045 return 0;
7046 }
7047 return 4;
7048 }
7049 \f
7050 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7051 relocations against two unnamed section symbols to resolve to the
7052 same address. For example, if we have code like:
7053
7054 lw $4,%got_disp(.data)($gp)
7055 lw $25,%got_disp(.text)($gp)
7056 jalr $25
7057
7058 then the linker will resolve both relocations to .data and the program
7059 will jump there rather than to .text.
7060
7061 We can work around this problem by giving names to local section symbols.
7062 This is also what the MIPSpro tools do. */
7063
7064 bfd_boolean
7065 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7066 {
7067 return SGI_COMPAT (abfd);
7068 }
7069 \f
7070 /* Work over a section just before writing it out. This routine is
7071 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7072 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7073 a better way. */
7074
7075 bfd_boolean
7076 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7077 {
7078 if (hdr->sh_type == SHT_MIPS_REGINFO
7079 && hdr->sh_size > 0)
7080 {
7081 bfd_byte buf[4];
7082
7083 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7084 BFD_ASSERT (hdr->contents == NULL);
7085
7086 if (bfd_seek (abfd,
7087 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7088 SEEK_SET) != 0)
7089 return FALSE;
7090 H_PUT_32 (abfd, elf_gp (abfd), buf);
7091 if (bfd_bwrite (buf, 4, abfd) != 4)
7092 return FALSE;
7093 }
7094
7095 if (hdr->sh_type == SHT_MIPS_OPTIONS
7096 && hdr->bfd_section != NULL
7097 && mips_elf_section_data (hdr->bfd_section) != NULL
7098 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7099 {
7100 bfd_byte *contents, *l, *lend;
7101
7102 /* We stored the section contents in the tdata field in the
7103 set_section_contents routine. We save the section contents
7104 so that we don't have to read them again.
7105 At this point we know that elf_gp is set, so we can look
7106 through the section contents to see if there is an
7107 ODK_REGINFO structure. */
7108
7109 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7110 l = contents;
7111 lend = contents + hdr->sh_size;
7112 while (l + sizeof (Elf_External_Options) <= lend)
7113 {
7114 Elf_Internal_Options intopt;
7115
7116 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7117 &intopt);
7118 if (intopt.size < sizeof (Elf_External_Options))
7119 {
7120 _bfd_error_handler
7121 /* xgettext:c-format */
7122 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7123 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7124 break;
7125 }
7126 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7127 {
7128 bfd_byte buf[8];
7129
7130 if (bfd_seek (abfd,
7131 (hdr->sh_offset
7132 + (l - contents)
7133 + sizeof (Elf_External_Options)
7134 + (sizeof (Elf64_External_RegInfo) - 8)),
7135 SEEK_SET) != 0)
7136 return FALSE;
7137 H_PUT_64 (abfd, elf_gp (abfd), buf);
7138 if (bfd_bwrite (buf, 8, abfd) != 8)
7139 return FALSE;
7140 }
7141 else if (intopt.kind == ODK_REGINFO)
7142 {
7143 bfd_byte buf[4];
7144
7145 if (bfd_seek (abfd,
7146 (hdr->sh_offset
7147 + (l - contents)
7148 + sizeof (Elf_External_Options)
7149 + (sizeof (Elf32_External_RegInfo) - 4)),
7150 SEEK_SET) != 0)
7151 return FALSE;
7152 H_PUT_32 (abfd, elf_gp (abfd), buf);
7153 if (bfd_bwrite (buf, 4, abfd) != 4)
7154 return FALSE;
7155 }
7156 l += intopt.size;
7157 }
7158 }
7159
7160 if (hdr->bfd_section != NULL)
7161 {
7162 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7163
7164 /* .sbss is not handled specially here because the GNU/Linux
7165 prelinker can convert .sbss from NOBITS to PROGBITS and
7166 changing it back to NOBITS breaks the binary. The entry in
7167 _bfd_mips_elf_special_sections will ensure the correct flags
7168 are set on .sbss if BFD creates it without reading it from an
7169 input file, and without special handling here the flags set
7170 on it in an input file will be followed. */
7171 if (strcmp (name, ".sdata") == 0
7172 || strcmp (name, ".lit8") == 0
7173 || strcmp (name, ".lit4") == 0)
7174 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7175 else if (strcmp (name, ".srdata") == 0)
7176 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7177 else if (strcmp (name, ".compact_rel") == 0)
7178 hdr->sh_flags = 0;
7179 else if (strcmp (name, ".rtproc") == 0)
7180 {
7181 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7182 {
7183 unsigned int adjust;
7184
7185 adjust = hdr->sh_size % hdr->sh_addralign;
7186 if (adjust != 0)
7187 hdr->sh_size += hdr->sh_addralign - adjust;
7188 }
7189 }
7190 }
7191
7192 return TRUE;
7193 }
7194
7195 /* Handle a MIPS specific section when reading an object file. This
7196 is called when elfcode.h finds a section with an unknown type.
7197 This routine supports both the 32-bit and 64-bit ELF ABI.
7198
7199 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7200 how to. */
7201
7202 bfd_boolean
7203 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7204 Elf_Internal_Shdr *hdr,
7205 const char *name,
7206 int shindex)
7207 {
7208 flagword flags = 0;
7209
7210 /* There ought to be a place to keep ELF backend specific flags, but
7211 at the moment there isn't one. We just keep track of the
7212 sections by their name, instead. Fortunately, the ABI gives
7213 suggested names for all the MIPS specific sections, so we will
7214 probably get away with this. */
7215 switch (hdr->sh_type)
7216 {
7217 case SHT_MIPS_LIBLIST:
7218 if (strcmp (name, ".liblist") != 0)
7219 return FALSE;
7220 break;
7221 case SHT_MIPS_MSYM:
7222 if (strcmp (name, ".msym") != 0)
7223 return FALSE;
7224 break;
7225 case SHT_MIPS_CONFLICT:
7226 if (strcmp (name, ".conflict") != 0)
7227 return FALSE;
7228 break;
7229 case SHT_MIPS_GPTAB:
7230 if (! CONST_STRNEQ (name, ".gptab."))
7231 return FALSE;
7232 break;
7233 case SHT_MIPS_UCODE:
7234 if (strcmp (name, ".ucode") != 0)
7235 return FALSE;
7236 break;
7237 case SHT_MIPS_DEBUG:
7238 if (strcmp (name, ".mdebug") != 0)
7239 return FALSE;
7240 flags = SEC_DEBUGGING;
7241 break;
7242 case SHT_MIPS_REGINFO:
7243 if (strcmp (name, ".reginfo") != 0
7244 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7245 return FALSE;
7246 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7247 break;
7248 case SHT_MIPS_IFACE:
7249 if (strcmp (name, ".MIPS.interfaces") != 0)
7250 return FALSE;
7251 break;
7252 case SHT_MIPS_CONTENT:
7253 if (! CONST_STRNEQ (name, ".MIPS.content"))
7254 return FALSE;
7255 break;
7256 case SHT_MIPS_OPTIONS:
7257 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7258 return FALSE;
7259 break;
7260 case SHT_MIPS_ABIFLAGS:
7261 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7262 return FALSE;
7263 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7264 break;
7265 case SHT_MIPS_DWARF:
7266 if (! CONST_STRNEQ (name, ".debug_")
7267 && ! CONST_STRNEQ (name, ".zdebug_"))
7268 return FALSE;
7269 break;
7270 case SHT_MIPS_SYMBOL_LIB:
7271 if (strcmp (name, ".MIPS.symlib") != 0)
7272 return FALSE;
7273 break;
7274 case SHT_MIPS_EVENTS:
7275 if (! CONST_STRNEQ (name, ".MIPS.events")
7276 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7277 return FALSE;
7278 break;
7279 default:
7280 break;
7281 }
7282
7283 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7284 return FALSE;
7285
7286 if (flags)
7287 {
7288 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7289 (bfd_get_section_flags (abfd,
7290 hdr->bfd_section)
7291 | flags)))
7292 return FALSE;
7293 }
7294
7295 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7296 {
7297 Elf_External_ABIFlags_v0 ext;
7298
7299 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7300 &ext, 0, sizeof ext))
7301 return FALSE;
7302 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7303 &mips_elf_tdata (abfd)->abiflags);
7304 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7305 return FALSE;
7306 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7307 }
7308
7309 /* FIXME: We should record sh_info for a .gptab section. */
7310
7311 /* For a .reginfo section, set the gp value in the tdata information
7312 from the contents of this section. We need the gp value while
7313 processing relocs, so we just get it now. The .reginfo section
7314 is not used in the 64-bit MIPS ELF ABI. */
7315 if (hdr->sh_type == SHT_MIPS_REGINFO)
7316 {
7317 Elf32_External_RegInfo ext;
7318 Elf32_RegInfo s;
7319
7320 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7321 &ext, 0, sizeof ext))
7322 return FALSE;
7323 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7324 elf_gp (abfd) = s.ri_gp_value;
7325 }
7326
7327 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7328 set the gp value based on what we find. We may see both
7329 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7330 they should agree. */
7331 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7332 {
7333 bfd_byte *contents, *l, *lend;
7334
7335 contents = bfd_malloc (hdr->sh_size);
7336 if (contents == NULL)
7337 return FALSE;
7338 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7339 0, hdr->sh_size))
7340 {
7341 free (contents);
7342 return FALSE;
7343 }
7344 l = contents;
7345 lend = contents + hdr->sh_size;
7346 while (l + sizeof (Elf_External_Options) <= lend)
7347 {
7348 Elf_Internal_Options intopt;
7349
7350 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7351 &intopt);
7352 if (intopt.size < sizeof (Elf_External_Options))
7353 {
7354 _bfd_error_handler
7355 /* xgettext:c-format */
7356 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7357 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7358 break;
7359 }
7360 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7361 {
7362 Elf64_Internal_RegInfo intreg;
7363
7364 bfd_mips_elf64_swap_reginfo_in
7365 (abfd,
7366 ((Elf64_External_RegInfo *)
7367 (l + sizeof (Elf_External_Options))),
7368 &intreg);
7369 elf_gp (abfd) = intreg.ri_gp_value;
7370 }
7371 else if (intopt.kind == ODK_REGINFO)
7372 {
7373 Elf32_RegInfo intreg;
7374
7375 bfd_mips_elf32_swap_reginfo_in
7376 (abfd,
7377 ((Elf32_External_RegInfo *)
7378 (l + sizeof (Elf_External_Options))),
7379 &intreg);
7380 elf_gp (abfd) = intreg.ri_gp_value;
7381 }
7382 l += intopt.size;
7383 }
7384 free (contents);
7385 }
7386
7387 return TRUE;
7388 }
7389
7390 /* Set the correct type for a MIPS ELF section. We do this by the
7391 section name, which is a hack, but ought to work. This routine is
7392 used by both the 32-bit and the 64-bit ABI. */
7393
7394 bfd_boolean
7395 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7396 {
7397 const char *name = bfd_get_section_name (abfd, sec);
7398
7399 if (strcmp (name, ".liblist") == 0)
7400 {
7401 hdr->sh_type = SHT_MIPS_LIBLIST;
7402 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7403 /* The sh_link field is set in final_write_processing. */
7404 }
7405 else if (strcmp (name, ".conflict") == 0)
7406 hdr->sh_type = SHT_MIPS_CONFLICT;
7407 else if (CONST_STRNEQ (name, ".gptab."))
7408 {
7409 hdr->sh_type = SHT_MIPS_GPTAB;
7410 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7411 /* The sh_info field is set in final_write_processing. */
7412 }
7413 else if (strcmp (name, ".ucode") == 0)
7414 hdr->sh_type = SHT_MIPS_UCODE;
7415 else if (strcmp (name, ".mdebug") == 0)
7416 {
7417 hdr->sh_type = SHT_MIPS_DEBUG;
7418 /* In a shared object on IRIX 5.3, the .mdebug section has an
7419 entsize of 0. FIXME: Does this matter? */
7420 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7421 hdr->sh_entsize = 0;
7422 else
7423 hdr->sh_entsize = 1;
7424 }
7425 else if (strcmp (name, ".reginfo") == 0)
7426 {
7427 hdr->sh_type = SHT_MIPS_REGINFO;
7428 /* In a shared object on IRIX 5.3, the .reginfo section has an
7429 entsize of 0x18. FIXME: Does this matter? */
7430 if (SGI_COMPAT (abfd))
7431 {
7432 if ((abfd->flags & DYNAMIC) != 0)
7433 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7434 else
7435 hdr->sh_entsize = 1;
7436 }
7437 else
7438 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7439 }
7440 else if (SGI_COMPAT (abfd)
7441 && (strcmp (name, ".hash") == 0
7442 || strcmp (name, ".dynamic") == 0
7443 || strcmp (name, ".dynstr") == 0))
7444 {
7445 if (SGI_COMPAT (abfd))
7446 hdr->sh_entsize = 0;
7447 #if 0
7448 /* This isn't how the IRIX6 linker behaves. */
7449 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7450 #endif
7451 }
7452 else if (strcmp (name, ".got") == 0
7453 || strcmp (name, ".srdata") == 0
7454 || strcmp (name, ".sdata") == 0
7455 || strcmp (name, ".sbss") == 0
7456 || strcmp (name, ".lit4") == 0
7457 || strcmp (name, ".lit8") == 0)
7458 hdr->sh_flags |= SHF_MIPS_GPREL;
7459 else if (strcmp (name, ".MIPS.interfaces") == 0)
7460 {
7461 hdr->sh_type = SHT_MIPS_IFACE;
7462 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7463 }
7464 else if (CONST_STRNEQ (name, ".MIPS.content"))
7465 {
7466 hdr->sh_type = SHT_MIPS_CONTENT;
7467 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7468 /* The sh_info field is set in final_write_processing. */
7469 }
7470 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7471 {
7472 hdr->sh_type = SHT_MIPS_OPTIONS;
7473 hdr->sh_entsize = 1;
7474 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7475 }
7476 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7477 {
7478 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7479 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7480 }
7481 else if (CONST_STRNEQ (name, ".debug_")
7482 || CONST_STRNEQ (name, ".zdebug_"))
7483 {
7484 hdr->sh_type = SHT_MIPS_DWARF;
7485
7486 /* Irix facilities such as libexc expect a single .debug_frame
7487 per executable, the system ones have NOSTRIP set and the linker
7488 doesn't merge sections with different flags so ... */
7489 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7490 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7491 }
7492 else if (strcmp (name, ".MIPS.symlib") == 0)
7493 {
7494 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7495 /* The sh_link and sh_info fields are set in
7496 final_write_processing. */
7497 }
7498 else if (CONST_STRNEQ (name, ".MIPS.events")
7499 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7500 {
7501 hdr->sh_type = SHT_MIPS_EVENTS;
7502 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7503 /* The sh_link field is set in final_write_processing. */
7504 }
7505 else if (strcmp (name, ".msym") == 0)
7506 {
7507 hdr->sh_type = SHT_MIPS_MSYM;
7508 hdr->sh_flags |= SHF_ALLOC;
7509 hdr->sh_entsize = 8;
7510 }
7511
7512 /* The generic elf_fake_sections will set up REL_HDR using the default
7513 kind of relocations. We used to set up a second header for the
7514 non-default kind of relocations here, but only NewABI would use
7515 these, and the IRIX ld doesn't like resulting empty RELA sections.
7516 Thus we create those header only on demand now. */
7517
7518 return TRUE;
7519 }
7520
7521 /* Given a BFD section, try to locate the corresponding ELF section
7522 index. This is used by both the 32-bit and the 64-bit ABI.
7523 Actually, it's not clear to me that the 64-bit ABI supports these,
7524 but for non-PIC objects we will certainly want support for at least
7525 the .scommon section. */
7526
7527 bfd_boolean
7528 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7529 asection *sec, int *retval)
7530 {
7531 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7532 {
7533 *retval = SHN_MIPS_SCOMMON;
7534 return TRUE;
7535 }
7536 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7537 {
7538 *retval = SHN_MIPS_ACOMMON;
7539 return TRUE;
7540 }
7541 return FALSE;
7542 }
7543 \f
7544 /* Hook called by the linker routine which adds symbols from an object
7545 file. We must handle the special MIPS section numbers here. */
7546
7547 bfd_boolean
7548 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7549 Elf_Internal_Sym *sym, const char **namep,
7550 flagword *flagsp ATTRIBUTE_UNUSED,
7551 asection **secp, bfd_vma *valp)
7552 {
7553 if (SGI_COMPAT (abfd)
7554 && (abfd->flags & DYNAMIC) != 0
7555 && strcmp (*namep, "_rld_new_interface") == 0)
7556 {
7557 /* Skip IRIX5 rld entry name. */
7558 *namep = NULL;
7559 return TRUE;
7560 }
7561
7562 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7563 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7564 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7565 a magic symbol resolved by the linker, we ignore this bogus definition
7566 of _gp_disp. New ABI objects do not suffer from this problem so this
7567 is not done for them. */
7568 if (!NEWABI_P(abfd)
7569 && (sym->st_shndx == SHN_ABS)
7570 && (strcmp (*namep, "_gp_disp") == 0))
7571 {
7572 *namep = NULL;
7573 return TRUE;
7574 }
7575
7576 switch (sym->st_shndx)
7577 {
7578 case SHN_COMMON:
7579 /* Common symbols less than the GP size are automatically
7580 treated as SHN_MIPS_SCOMMON symbols. */
7581 if (sym->st_size > elf_gp_size (abfd)
7582 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7583 || IRIX_COMPAT (abfd) == ict_irix6)
7584 break;
7585 /* Fall through. */
7586 case SHN_MIPS_SCOMMON:
7587 *secp = bfd_make_section_old_way (abfd, ".scommon");
7588 (*secp)->flags |= SEC_IS_COMMON;
7589 *valp = sym->st_size;
7590 break;
7591
7592 case SHN_MIPS_TEXT:
7593 /* This section is used in a shared object. */
7594 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7595 {
7596 asymbol *elf_text_symbol;
7597 asection *elf_text_section;
7598 bfd_size_type amt = sizeof (asection);
7599
7600 elf_text_section = bfd_zalloc (abfd, amt);
7601 if (elf_text_section == NULL)
7602 return FALSE;
7603
7604 amt = sizeof (asymbol);
7605 elf_text_symbol = bfd_zalloc (abfd, amt);
7606 if (elf_text_symbol == NULL)
7607 return FALSE;
7608
7609 /* Initialize the section. */
7610
7611 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7612 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7613
7614 elf_text_section->symbol = elf_text_symbol;
7615 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7616
7617 elf_text_section->name = ".text";
7618 elf_text_section->flags = SEC_NO_FLAGS;
7619 elf_text_section->output_section = NULL;
7620 elf_text_section->owner = abfd;
7621 elf_text_symbol->name = ".text";
7622 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7623 elf_text_symbol->section = elf_text_section;
7624 }
7625 /* This code used to do *secp = bfd_und_section_ptr if
7626 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7627 so I took it out. */
7628 *secp = mips_elf_tdata (abfd)->elf_text_section;
7629 break;
7630
7631 case SHN_MIPS_ACOMMON:
7632 /* Fall through. XXX Can we treat this as allocated data? */
7633 case SHN_MIPS_DATA:
7634 /* This section is used in a shared object. */
7635 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7636 {
7637 asymbol *elf_data_symbol;
7638 asection *elf_data_section;
7639 bfd_size_type amt = sizeof (asection);
7640
7641 elf_data_section = bfd_zalloc (abfd, amt);
7642 if (elf_data_section == NULL)
7643 return FALSE;
7644
7645 amt = sizeof (asymbol);
7646 elf_data_symbol = bfd_zalloc (abfd, amt);
7647 if (elf_data_symbol == NULL)
7648 return FALSE;
7649
7650 /* Initialize the section. */
7651
7652 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7653 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7654
7655 elf_data_section->symbol = elf_data_symbol;
7656 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7657
7658 elf_data_section->name = ".data";
7659 elf_data_section->flags = SEC_NO_FLAGS;
7660 elf_data_section->output_section = NULL;
7661 elf_data_section->owner = abfd;
7662 elf_data_symbol->name = ".data";
7663 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7664 elf_data_symbol->section = elf_data_section;
7665 }
7666 /* This code used to do *secp = bfd_und_section_ptr if
7667 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7668 so I took it out. */
7669 *secp = mips_elf_tdata (abfd)->elf_data_section;
7670 break;
7671
7672 case SHN_MIPS_SUNDEFINED:
7673 *secp = bfd_und_section_ptr;
7674 break;
7675 }
7676
7677 if (SGI_COMPAT (abfd)
7678 && ! bfd_link_pic (info)
7679 && info->output_bfd->xvec == abfd->xvec
7680 && strcmp (*namep, "__rld_obj_head") == 0)
7681 {
7682 struct elf_link_hash_entry *h;
7683 struct bfd_link_hash_entry *bh;
7684
7685 /* Mark __rld_obj_head as dynamic. */
7686 bh = NULL;
7687 if (! (_bfd_generic_link_add_one_symbol
7688 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7689 get_elf_backend_data (abfd)->collect, &bh)))
7690 return FALSE;
7691
7692 h = (struct elf_link_hash_entry *) bh;
7693 h->non_elf = 0;
7694 h->def_regular = 1;
7695 h->type = STT_OBJECT;
7696
7697 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7698 return FALSE;
7699
7700 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7701 mips_elf_hash_table (info)->rld_symbol = h;
7702 }
7703
7704 /* If this is a mips16 text symbol, add 1 to the value to make it
7705 odd. This will cause something like .word SYM to come up with
7706 the right value when it is loaded into the PC. */
7707 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7708 ++*valp;
7709
7710 return TRUE;
7711 }
7712
7713 /* This hook function is called before the linker writes out a global
7714 symbol. We mark symbols as small common if appropriate. This is
7715 also where we undo the increment of the value for a mips16 symbol. */
7716
7717 int
7718 _bfd_mips_elf_link_output_symbol_hook
7719 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7720 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7721 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7722 {
7723 /* If we see a common symbol, which implies a relocatable link, then
7724 if a symbol was small common in an input file, mark it as small
7725 common in the output file. */
7726 if (sym->st_shndx == SHN_COMMON
7727 && strcmp (input_sec->name, ".scommon") == 0)
7728 sym->st_shndx = SHN_MIPS_SCOMMON;
7729
7730 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7731 sym->st_value &= ~1;
7732
7733 return 1;
7734 }
7735 \f
7736 /* Functions for the dynamic linker. */
7737
7738 /* Create dynamic sections when linking against a dynamic object. */
7739
7740 bfd_boolean
7741 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7742 {
7743 struct elf_link_hash_entry *h;
7744 struct bfd_link_hash_entry *bh;
7745 flagword flags;
7746 register asection *s;
7747 const char * const *namep;
7748 struct mips_elf_link_hash_table *htab;
7749
7750 htab = mips_elf_hash_table (info);
7751 BFD_ASSERT (htab != NULL);
7752
7753 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7754 | SEC_LINKER_CREATED | SEC_READONLY);
7755
7756 /* The psABI requires a read-only .dynamic section, but the VxWorks
7757 EABI doesn't. */
7758 if (!htab->is_vxworks)
7759 {
7760 s = bfd_get_linker_section (abfd, ".dynamic");
7761 if (s != NULL)
7762 {
7763 if (! bfd_set_section_flags (abfd, s, flags))
7764 return FALSE;
7765 }
7766 }
7767
7768 /* We need to create .got section. */
7769 if (!mips_elf_create_got_section (abfd, info))
7770 return FALSE;
7771
7772 if (! mips_elf_rel_dyn_section (info, TRUE))
7773 return FALSE;
7774
7775 /* Create .stub section. */
7776 s = bfd_make_section_anyway_with_flags (abfd,
7777 MIPS_ELF_STUB_SECTION_NAME (abfd),
7778 flags | SEC_CODE);
7779 if (s == NULL
7780 || ! bfd_set_section_alignment (abfd, s,
7781 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7782 return FALSE;
7783 htab->sstubs = s;
7784
7785 if (!mips_elf_hash_table (info)->use_rld_obj_head
7786 && bfd_link_executable (info)
7787 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7788 {
7789 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7790 flags &~ (flagword) SEC_READONLY);
7791 if (s == NULL
7792 || ! bfd_set_section_alignment (abfd, s,
7793 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7794 return FALSE;
7795 }
7796
7797 /* On IRIX5, we adjust add some additional symbols and change the
7798 alignments of several sections. There is no ABI documentation
7799 indicating that this is necessary on IRIX6, nor any evidence that
7800 the linker takes such action. */
7801 if (IRIX_COMPAT (abfd) == ict_irix5)
7802 {
7803 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7804 {
7805 bh = NULL;
7806 if (! (_bfd_generic_link_add_one_symbol
7807 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7808 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7809 return FALSE;
7810
7811 h = (struct elf_link_hash_entry *) bh;
7812 h->non_elf = 0;
7813 h->def_regular = 1;
7814 h->type = STT_SECTION;
7815
7816 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7817 return FALSE;
7818 }
7819
7820 /* We need to create a .compact_rel section. */
7821 if (SGI_COMPAT (abfd))
7822 {
7823 if (!mips_elf_create_compact_rel_section (abfd, info))
7824 return FALSE;
7825 }
7826
7827 /* Change alignments of some sections. */
7828 s = bfd_get_linker_section (abfd, ".hash");
7829 if (s != NULL)
7830 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7831
7832 s = bfd_get_linker_section (abfd, ".dynsym");
7833 if (s != NULL)
7834 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7835
7836 s = bfd_get_linker_section (abfd, ".dynstr");
7837 if (s != NULL)
7838 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7839
7840 /* ??? */
7841 s = bfd_get_section_by_name (abfd, ".reginfo");
7842 if (s != NULL)
7843 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7844
7845 s = bfd_get_linker_section (abfd, ".dynamic");
7846 if (s != NULL)
7847 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7848 }
7849
7850 if (bfd_link_executable (info))
7851 {
7852 const char *name;
7853
7854 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7855 bh = NULL;
7856 if (!(_bfd_generic_link_add_one_symbol
7857 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7858 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7859 return FALSE;
7860
7861 h = (struct elf_link_hash_entry *) bh;
7862 h->non_elf = 0;
7863 h->def_regular = 1;
7864 h->type = STT_SECTION;
7865
7866 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7867 return FALSE;
7868
7869 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7870 {
7871 /* __rld_map is a four byte word located in the .data section
7872 and is filled in by the rtld to contain a pointer to
7873 the _r_debug structure. Its symbol value will be set in
7874 _bfd_mips_elf_finish_dynamic_symbol. */
7875 s = bfd_get_linker_section (abfd, ".rld_map");
7876 BFD_ASSERT (s != NULL);
7877
7878 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7879 bh = NULL;
7880 if (!(_bfd_generic_link_add_one_symbol
7881 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7882 get_elf_backend_data (abfd)->collect, &bh)))
7883 return FALSE;
7884
7885 h = (struct elf_link_hash_entry *) bh;
7886 h->non_elf = 0;
7887 h->def_regular = 1;
7888 h->type = STT_OBJECT;
7889
7890 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7891 return FALSE;
7892 mips_elf_hash_table (info)->rld_symbol = h;
7893 }
7894 }
7895
7896 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7897 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7898 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7899 return FALSE;
7900
7901 /* Cache the sections created above. */
7902 htab->splt = bfd_get_linker_section (abfd, ".plt");
7903 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7904 if (htab->is_vxworks)
7905 {
7906 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7907 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7908 }
7909 else
7910 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7911 if (!htab->sdynbss
7912 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7913 || !htab->srelplt
7914 || !htab->splt)
7915 abort ();
7916
7917 /* Do the usual VxWorks handling. */
7918 if (htab->is_vxworks
7919 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7920 return FALSE;
7921
7922 return TRUE;
7923 }
7924 \f
7925 /* Return true if relocation REL against section SEC is a REL rather than
7926 RELA relocation. RELOCS is the first relocation in the section and
7927 ABFD is the bfd that contains SEC. */
7928
7929 static bfd_boolean
7930 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7931 const Elf_Internal_Rela *relocs,
7932 const Elf_Internal_Rela *rel)
7933 {
7934 Elf_Internal_Shdr *rel_hdr;
7935 const struct elf_backend_data *bed;
7936
7937 /* To determine which flavor of relocation this is, we depend on the
7938 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7939 rel_hdr = elf_section_data (sec)->rel.hdr;
7940 if (rel_hdr == NULL)
7941 return FALSE;
7942 bed = get_elf_backend_data (abfd);
7943 return ((size_t) (rel - relocs)
7944 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7945 }
7946
7947 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7948 HOWTO is the relocation's howto and CONTENTS points to the contents
7949 of the section that REL is against. */
7950
7951 static bfd_vma
7952 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7953 reloc_howto_type *howto, bfd_byte *contents)
7954 {
7955 bfd_byte *location;
7956 unsigned int r_type;
7957 bfd_vma addend;
7958 bfd_vma bytes;
7959
7960 r_type = ELF_R_TYPE (abfd, rel->r_info);
7961 location = contents + rel->r_offset;
7962
7963 /* Get the addend, which is stored in the input file. */
7964 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7965 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7966 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7967
7968 addend = bytes & howto->src_mask;
7969
7970 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7971 accordingly. */
7972 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7973 addend <<= 1;
7974
7975 return addend;
7976 }
7977
7978 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7979 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7980 and update *ADDEND with the final addend. Return true on success
7981 or false if the LO16 could not be found. RELEND is the exclusive
7982 upper bound on the relocations for REL's section. */
7983
7984 static bfd_boolean
7985 mips_elf_add_lo16_rel_addend (bfd *abfd,
7986 const Elf_Internal_Rela *rel,
7987 const Elf_Internal_Rela *relend,
7988 bfd_byte *contents, bfd_vma *addend)
7989 {
7990 unsigned int r_type, lo16_type;
7991 const Elf_Internal_Rela *lo16_relocation;
7992 reloc_howto_type *lo16_howto;
7993 bfd_vma l;
7994
7995 r_type = ELF_R_TYPE (abfd, rel->r_info);
7996 if (mips16_reloc_p (r_type))
7997 lo16_type = R_MIPS16_LO16;
7998 else if (micromips_reloc_p (r_type))
7999 lo16_type = R_MICROMIPS_LO16;
8000 else if (r_type == R_MIPS_PCHI16)
8001 lo16_type = R_MIPS_PCLO16;
8002 else
8003 lo16_type = R_MIPS_LO16;
8004
8005 /* The combined value is the sum of the HI16 addend, left-shifted by
8006 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8007 code does a `lui' of the HI16 value, and then an `addiu' of the
8008 LO16 value.)
8009
8010 Scan ahead to find a matching LO16 relocation.
8011
8012 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8013 be immediately following. However, for the IRIX6 ABI, the next
8014 relocation may be a composed relocation consisting of several
8015 relocations for the same address. In that case, the R_MIPS_LO16
8016 relocation may occur as one of these. We permit a similar
8017 extension in general, as that is useful for GCC.
8018
8019 In some cases GCC dead code elimination removes the LO16 but keeps
8020 the corresponding HI16. This is strictly speaking a violation of
8021 the ABI but not immediately harmful. */
8022 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8023 if (lo16_relocation == NULL)
8024 return FALSE;
8025
8026 /* Obtain the addend kept there. */
8027 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8028 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8029
8030 l <<= lo16_howto->rightshift;
8031 l = _bfd_mips_elf_sign_extend (l, 16);
8032
8033 *addend <<= 16;
8034 *addend += l;
8035 return TRUE;
8036 }
8037
8038 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8039 store the contents in *CONTENTS on success. Assume that *CONTENTS
8040 already holds the contents if it is nonull on entry. */
8041
8042 static bfd_boolean
8043 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8044 {
8045 if (*contents)
8046 return TRUE;
8047
8048 /* Get cached copy if it exists. */
8049 if (elf_section_data (sec)->this_hdr.contents != NULL)
8050 {
8051 *contents = elf_section_data (sec)->this_hdr.contents;
8052 return TRUE;
8053 }
8054
8055 return bfd_malloc_and_get_section (abfd, sec, contents);
8056 }
8057
8058 /* Make a new PLT record to keep internal data. */
8059
8060 static struct plt_entry *
8061 mips_elf_make_plt_record (bfd *abfd)
8062 {
8063 struct plt_entry *entry;
8064
8065 entry = bfd_zalloc (abfd, sizeof (*entry));
8066 if (entry == NULL)
8067 return NULL;
8068
8069 entry->stub_offset = MINUS_ONE;
8070 entry->mips_offset = MINUS_ONE;
8071 entry->comp_offset = MINUS_ONE;
8072 entry->gotplt_index = MINUS_ONE;
8073 return entry;
8074 }
8075
8076 /* Look through the relocs for a section during the first phase, and
8077 allocate space in the global offset table and record the need for
8078 standard MIPS and compressed procedure linkage table entries. */
8079
8080 bfd_boolean
8081 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8082 asection *sec, const Elf_Internal_Rela *relocs)
8083 {
8084 const char *name;
8085 bfd *dynobj;
8086 Elf_Internal_Shdr *symtab_hdr;
8087 struct elf_link_hash_entry **sym_hashes;
8088 size_t extsymoff;
8089 const Elf_Internal_Rela *rel;
8090 const Elf_Internal_Rela *rel_end;
8091 asection *sreloc;
8092 const struct elf_backend_data *bed;
8093 struct mips_elf_link_hash_table *htab;
8094 bfd_byte *contents;
8095 bfd_vma addend;
8096 reloc_howto_type *howto;
8097
8098 if (bfd_link_relocatable (info))
8099 return TRUE;
8100
8101 htab = mips_elf_hash_table (info);
8102 BFD_ASSERT (htab != NULL);
8103
8104 dynobj = elf_hash_table (info)->dynobj;
8105 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8106 sym_hashes = elf_sym_hashes (abfd);
8107 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8108
8109 bed = get_elf_backend_data (abfd);
8110 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8111
8112 /* Check for the mips16 stub sections. */
8113
8114 name = bfd_get_section_name (abfd, sec);
8115 if (FN_STUB_P (name))
8116 {
8117 unsigned long r_symndx;
8118
8119 /* Look at the relocation information to figure out which symbol
8120 this is for. */
8121
8122 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8123 if (r_symndx == 0)
8124 {
8125 _bfd_error_handler
8126 /* xgettext:c-format */
8127 (_("%B: Warning: cannot determine the target function for"
8128 " stub section `%s'"),
8129 abfd, name);
8130 bfd_set_error (bfd_error_bad_value);
8131 return FALSE;
8132 }
8133
8134 if (r_symndx < extsymoff
8135 || sym_hashes[r_symndx - extsymoff] == NULL)
8136 {
8137 asection *o;
8138
8139 /* This stub is for a local symbol. This stub will only be
8140 needed if there is some relocation in this BFD, other
8141 than a 16 bit function call, which refers to this symbol. */
8142 for (o = abfd->sections; o != NULL; o = o->next)
8143 {
8144 Elf_Internal_Rela *sec_relocs;
8145 const Elf_Internal_Rela *r, *rend;
8146
8147 /* We can ignore stub sections when looking for relocs. */
8148 if ((o->flags & SEC_RELOC) == 0
8149 || o->reloc_count == 0
8150 || section_allows_mips16_refs_p (o))
8151 continue;
8152
8153 sec_relocs
8154 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8155 info->keep_memory);
8156 if (sec_relocs == NULL)
8157 return FALSE;
8158
8159 rend = sec_relocs + o->reloc_count;
8160 for (r = sec_relocs; r < rend; r++)
8161 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8162 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8163 break;
8164
8165 if (elf_section_data (o)->relocs != sec_relocs)
8166 free (sec_relocs);
8167
8168 if (r < rend)
8169 break;
8170 }
8171
8172 if (o == NULL)
8173 {
8174 /* There is no non-call reloc for this stub, so we do
8175 not need it. Since this function is called before
8176 the linker maps input sections to output sections, we
8177 can easily discard it by setting the SEC_EXCLUDE
8178 flag. */
8179 sec->flags |= SEC_EXCLUDE;
8180 return TRUE;
8181 }
8182
8183 /* Record this stub in an array of local symbol stubs for
8184 this BFD. */
8185 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8186 {
8187 unsigned long symcount;
8188 asection **n;
8189 bfd_size_type amt;
8190
8191 if (elf_bad_symtab (abfd))
8192 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8193 else
8194 symcount = symtab_hdr->sh_info;
8195 amt = symcount * sizeof (asection *);
8196 n = bfd_zalloc (abfd, amt);
8197 if (n == NULL)
8198 return FALSE;
8199 mips_elf_tdata (abfd)->local_stubs = n;
8200 }
8201
8202 sec->flags |= SEC_KEEP;
8203 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8204
8205 /* We don't need to set mips16_stubs_seen in this case.
8206 That flag is used to see whether we need to look through
8207 the global symbol table for stubs. We don't need to set
8208 it here, because we just have a local stub. */
8209 }
8210 else
8211 {
8212 struct mips_elf_link_hash_entry *h;
8213
8214 h = ((struct mips_elf_link_hash_entry *)
8215 sym_hashes[r_symndx - extsymoff]);
8216
8217 while (h->root.root.type == bfd_link_hash_indirect
8218 || h->root.root.type == bfd_link_hash_warning)
8219 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8220
8221 /* H is the symbol this stub is for. */
8222
8223 /* If we already have an appropriate stub for this function, we
8224 don't need another one, so we can discard this one. Since
8225 this function is called before the linker maps input sections
8226 to output sections, we can easily discard it by setting the
8227 SEC_EXCLUDE flag. */
8228 if (h->fn_stub != NULL)
8229 {
8230 sec->flags |= SEC_EXCLUDE;
8231 return TRUE;
8232 }
8233
8234 sec->flags |= SEC_KEEP;
8235 h->fn_stub = sec;
8236 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8237 }
8238 }
8239 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8240 {
8241 unsigned long r_symndx;
8242 struct mips_elf_link_hash_entry *h;
8243 asection **loc;
8244
8245 /* Look at the relocation information to figure out which symbol
8246 this is for. */
8247
8248 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8249 if (r_symndx == 0)
8250 {
8251 _bfd_error_handler
8252 /* xgettext:c-format */
8253 (_("%B: Warning: cannot determine the target function for"
8254 " stub section `%s'"),
8255 abfd, name);
8256 bfd_set_error (bfd_error_bad_value);
8257 return FALSE;
8258 }
8259
8260 if (r_symndx < extsymoff
8261 || sym_hashes[r_symndx - extsymoff] == NULL)
8262 {
8263 asection *o;
8264
8265 /* This stub is for a local symbol. This stub will only be
8266 needed if there is some relocation (R_MIPS16_26) in this BFD
8267 that refers to this symbol. */
8268 for (o = abfd->sections; o != NULL; o = o->next)
8269 {
8270 Elf_Internal_Rela *sec_relocs;
8271 const Elf_Internal_Rela *r, *rend;
8272
8273 /* We can ignore stub sections when looking for relocs. */
8274 if ((o->flags & SEC_RELOC) == 0
8275 || o->reloc_count == 0
8276 || section_allows_mips16_refs_p (o))
8277 continue;
8278
8279 sec_relocs
8280 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8281 info->keep_memory);
8282 if (sec_relocs == NULL)
8283 return FALSE;
8284
8285 rend = sec_relocs + o->reloc_count;
8286 for (r = sec_relocs; r < rend; r++)
8287 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8288 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8289 break;
8290
8291 if (elf_section_data (o)->relocs != sec_relocs)
8292 free (sec_relocs);
8293
8294 if (r < rend)
8295 break;
8296 }
8297
8298 if (o == NULL)
8299 {
8300 /* There is no non-call reloc for this stub, so we do
8301 not need it. Since this function is called before
8302 the linker maps input sections to output sections, we
8303 can easily discard it by setting the SEC_EXCLUDE
8304 flag. */
8305 sec->flags |= SEC_EXCLUDE;
8306 return TRUE;
8307 }
8308
8309 /* Record this stub in an array of local symbol call_stubs for
8310 this BFD. */
8311 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8312 {
8313 unsigned long symcount;
8314 asection **n;
8315 bfd_size_type amt;
8316
8317 if (elf_bad_symtab (abfd))
8318 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8319 else
8320 symcount = symtab_hdr->sh_info;
8321 amt = symcount * sizeof (asection *);
8322 n = bfd_zalloc (abfd, amt);
8323 if (n == NULL)
8324 return FALSE;
8325 mips_elf_tdata (abfd)->local_call_stubs = n;
8326 }
8327
8328 sec->flags |= SEC_KEEP;
8329 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8330
8331 /* We don't need to set mips16_stubs_seen in this case.
8332 That flag is used to see whether we need to look through
8333 the global symbol table for stubs. We don't need to set
8334 it here, because we just have a local stub. */
8335 }
8336 else
8337 {
8338 h = ((struct mips_elf_link_hash_entry *)
8339 sym_hashes[r_symndx - extsymoff]);
8340
8341 /* H is the symbol this stub is for. */
8342
8343 if (CALL_FP_STUB_P (name))
8344 loc = &h->call_fp_stub;
8345 else
8346 loc = &h->call_stub;
8347
8348 /* If we already have an appropriate stub for this function, we
8349 don't need another one, so we can discard this one. Since
8350 this function is called before the linker maps input sections
8351 to output sections, we can easily discard it by setting the
8352 SEC_EXCLUDE flag. */
8353 if (*loc != NULL)
8354 {
8355 sec->flags |= SEC_EXCLUDE;
8356 return TRUE;
8357 }
8358
8359 sec->flags |= SEC_KEEP;
8360 *loc = sec;
8361 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8362 }
8363 }
8364
8365 sreloc = NULL;
8366 contents = NULL;
8367 for (rel = relocs; rel < rel_end; ++rel)
8368 {
8369 unsigned long r_symndx;
8370 unsigned int r_type;
8371 struct elf_link_hash_entry *h;
8372 bfd_boolean can_make_dynamic_p;
8373 bfd_boolean call_reloc_p;
8374 bfd_boolean constrain_symbol_p;
8375
8376 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8377 r_type = ELF_R_TYPE (abfd, rel->r_info);
8378
8379 if (r_symndx < extsymoff)
8380 h = NULL;
8381 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8382 {
8383 _bfd_error_handler
8384 /* xgettext:c-format */
8385 (_("%B: Malformed reloc detected for section %s"),
8386 abfd, name);
8387 bfd_set_error (bfd_error_bad_value);
8388 return FALSE;
8389 }
8390 else
8391 {
8392 h = sym_hashes[r_symndx - extsymoff];
8393 if (h != NULL)
8394 {
8395 while (h->root.type == bfd_link_hash_indirect
8396 || h->root.type == bfd_link_hash_warning)
8397 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8398
8399 /* PR15323, ref flags aren't set for references in the
8400 same object. */
8401 h->root.non_ir_ref = 1;
8402 }
8403 }
8404
8405 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8406 relocation into a dynamic one. */
8407 can_make_dynamic_p = FALSE;
8408
8409 /* Set CALL_RELOC_P to true if the relocation is for a call,
8410 and if pointer equality therefore doesn't matter. */
8411 call_reloc_p = FALSE;
8412
8413 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8414 into account when deciding how to define the symbol.
8415 Relocations in nonallocatable sections such as .pdr and
8416 .debug* should have no effect. */
8417 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8418
8419 switch (r_type)
8420 {
8421 case R_MIPS_CALL16:
8422 case R_MIPS_CALL_HI16:
8423 case R_MIPS_CALL_LO16:
8424 case R_MIPS16_CALL16:
8425 case R_MICROMIPS_CALL16:
8426 case R_MICROMIPS_CALL_HI16:
8427 case R_MICROMIPS_CALL_LO16:
8428 call_reloc_p = TRUE;
8429 /* Fall through. */
8430
8431 case R_MIPS_GOT16:
8432 case R_MIPS_GOT_HI16:
8433 case R_MIPS_GOT_LO16:
8434 case R_MIPS_GOT_PAGE:
8435 case R_MIPS_GOT_OFST:
8436 case R_MIPS_GOT_DISP:
8437 case R_MIPS_TLS_GOTTPREL:
8438 case R_MIPS_TLS_GD:
8439 case R_MIPS_TLS_LDM:
8440 case R_MIPS16_GOT16:
8441 case R_MIPS16_TLS_GOTTPREL:
8442 case R_MIPS16_TLS_GD:
8443 case R_MIPS16_TLS_LDM:
8444 case R_MICROMIPS_GOT16:
8445 case R_MICROMIPS_GOT_HI16:
8446 case R_MICROMIPS_GOT_LO16:
8447 case R_MICROMIPS_GOT_PAGE:
8448 case R_MICROMIPS_GOT_OFST:
8449 case R_MICROMIPS_GOT_DISP:
8450 case R_MICROMIPS_TLS_GOTTPREL:
8451 case R_MICROMIPS_TLS_GD:
8452 case R_MICROMIPS_TLS_LDM:
8453 if (dynobj == NULL)
8454 elf_hash_table (info)->dynobj = dynobj = abfd;
8455 if (!mips_elf_create_got_section (dynobj, info))
8456 return FALSE;
8457 if (htab->is_vxworks && !bfd_link_pic (info))
8458 {
8459 _bfd_error_handler
8460 /* xgettext:c-format */
8461 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8462 abfd, (unsigned long) rel->r_offset);
8463 bfd_set_error (bfd_error_bad_value);
8464 return FALSE;
8465 }
8466 can_make_dynamic_p = TRUE;
8467 break;
8468
8469 case R_MIPS_NONE:
8470 case R_MIPS_JALR:
8471 case R_MICROMIPS_JALR:
8472 /* These relocations have empty fields and are purely there to
8473 provide link information. The symbol value doesn't matter. */
8474 constrain_symbol_p = FALSE;
8475 break;
8476
8477 case R_MIPS_GPREL16:
8478 case R_MIPS_GPREL32:
8479 case R_MIPS16_GPREL:
8480 case R_MICROMIPS_GPREL16:
8481 /* GP-relative relocations always resolve to a definition in a
8482 regular input file, ignoring the one-definition rule. This is
8483 important for the GP setup sequence in NewABI code, which
8484 always resolves to a local function even if other relocations
8485 against the symbol wouldn't. */
8486 constrain_symbol_p = FALSE;
8487 break;
8488
8489 case R_MIPS_32:
8490 case R_MIPS_REL32:
8491 case R_MIPS_64:
8492 /* In VxWorks executables, references to external symbols
8493 must be handled using copy relocs or PLT entries; it is not
8494 possible to convert this relocation into a dynamic one.
8495
8496 For executables that use PLTs and copy-relocs, we have a
8497 choice between converting the relocation into a dynamic
8498 one or using copy relocations or PLT entries. It is
8499 usually better to do the former, unless the relocation is
8500 against a read-only section. */
8501 if ((bfd_link_pic (info)
8502 || (h != NULL
8503 && !htab->is_vxworks
8504 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8505 && !(!info->nocopyreloc
8506 && !PIC_OBJECT_P (abfd)
8507 && MIPS_ELF_READONLY_SECTION (sec))))
8508 && (sec->flags & SEC_ALLOC) != 0)
8509 {
8510 can_make_dynamic_p = TRUE;
8511 if (dynobj == NULL)
8512 elf_hash_table (info)->dynobj = dynobj = abfd;
8513 }
8514 break;
8515
8516 case R_MIPS_26:
8517 case R_MIPS_PC16:
8518 case R_MIPS_PC21_S2:
8519 case R_MIPS_PC26_S2:
8520 case R_MIPS16_26:
8521 case R_MIPS16_PC16_S1:
8522 case R_MICROMIPS_26_S1:
8523 case R_MICROMIPS_PC7_S1:
8524 case R_MICROMIPS_PC10_S1:
8525 case R_MICROMIPS_PC16_S1:
8526 case R_MICROMIPS_PC23_S2:
8527 call_reloc_p = TRUE;
8528 break;
8529 }
8530
8531 if (h)
8532 {
8533 if (constrain_symbol_p)
8534 {
8535 if (!can_make_dynamic_p)
8536 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8537
8538 if (!call_reloc_p)
8539 h->pointer_equality_needed = 1;
8540
8541 /* We must not create a stub for a symbol that has
8542 relocations related to taking the function's address.
8543 This doesn't apply to VxWorks, where CALL relocs refer
8544 to a .got.plt entry instead of a normal .got entry. */
8545 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8546 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8547 }
8548
8549 /* Relocations against the special VxWorks __GOTT_BASE__ and
8550 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8551 room for them in .rela.dyn. */
8552 if (is_gott_symbol (info, h))
8553 {
8554 if (sreloc == NULL)
8555 {
8556 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8557 if (sreloc == NULL)
8558 return FALSE;
8559 }
8560 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8561 if (MIPS_ELF_READONLY_SECTION (sec))
8562 /* We tell the dynamic linker that there are
8563 relocations against the text segment. */
8564 info->flags |= DF_TEXTREL;
8565 }
8566 }
8567 else if (call_lo16_reloc_p (r_type)
8568 || got_lo16_reloc_p (r_type)
8569 || got_disp_reloc_p (r_type)
8570 || (got16_reloc_p (r_type) && htab->is_vxworks))
8571 {
8572 /* We may need a local GOT entry for this relocation. We
8573 don't count R_MIPS_GOT_PAGE because we can estimate the
8574 maximum number of pages needed by looking at the size of
8575 the segment. Similar comments apply to R_MIPS*_GOT16 and
8576 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8577 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8578 R_MIPS_CALL_HI16 because these are always followed by an
8579 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8580 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8581 rel->r_addend, info, r_type))
8582 return FALSE;
8583 }
8584
8585 if (h != NULL
8586 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8587 ELF_ST_IS_MIPS16 (h->other)))
8588 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8589
8590 switch (r_type)
8591 {
8592 case R_MIPS_CALL16:
8593 case R_MIPS16_CALL16:
8594 case R_MICROMIPS_CALL16:
8595 if (h == NULL)
8596 {
8597 _bfd_error_handler
8598 /* xgettext:c-format */
8599 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8600 abfd, (unsigned long) rel->r_offset);
8601 bfd_set_error (bfd_error_bad_value);
8602 return FALSE;
8603 }
8604 /* Fall through. */
8605
8606 case R_MIPS_CALL_HI16:
8607 case R_MIPS_CALL_LO16:
8608 case R_MICROMIPS_CALL_HI16:
8609 case R_MICROMIPS_CALL_LO16:
8610 if (h != NULL)
8611 {
8612 /* Make sure there is room in the regular GOT to hold the
8613 function's address. We may eliminate it in favour of
8614 a .got.plt entry later; see mips_elf_count_got_symbols. */
8615 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8616 r_type))
8617 return FALSE;
8618
8619 /* We need a stub, not a plt entry for the undefined
8620 function. But we record it as if it needs plt. See
8621 _bfd_elf_adjust_dynamic_symbol. */
8622 h->needs_plt = 1;
8623 h->type = STT_FUNC;
8624 }
8625 break;
8626
8627 case R_MIPS_GOT_PAGE:
8628 case R_MICROMIPS_GOT_PAGE:
8629 case R_MIPS16_GOT16:
8630 case R_MIPS_GOT16:
8631 case R_MIPS_GOT_HI16:
8632 case R_MIPS_GOT_LO16:
8633 case R_MICROMIPS_GOT16:
8634 case R_MICROMIPS_GOT_HI16:
8635 case R_MICROMIPS_GOT_LO16:
8636 if (!h || got_page_reloc_p (r_type))
8637 {
8638 /* This relocation needs (or may need, if h != NULL) a
8639 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8640 know for sure until we know whether the symbol is
8641 preemptible. */
8642 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8643 {
8644 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8645 return FALSE;
8646 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8647 addend = mips_elf_read_rel_addend (abfd, rel,
8648 howto, contents);
8649 if (got16_reloc_p (r_type))
8650 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8651 contents, &addend);
8652 else
8653 addend <<= howto->rightshift;
8654 }
8655 else
8656 addend = rel->r_addend;
8657 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8658 h, addend))
8659 return FALSE;
8660
8661 if (h)
8662 {
8663 struct mips_elf_link_hash_entry *hmips =
8664 (struct mips_elf_link_hash_entry *) h;
8665
8666 /* This symbol is definitely not overridable. */
8667 if (hmips->root.def_regular
8668 && ! (bfd_link_pic (info) && ! info->symbolic
8669 && ! hmips->root.forced_local))
8670 h = NULL;
8671 }
8672 }
8673 /* If this is a global, overridable symbol, GOT_PAGE will
8674 decay to GOT_DISP, so we'll need a GOT entry for it. */
8675 /* Fall through. */
8676
8677 case R_MIPS_GOT_DISP:
8678 case R_MICROMIPS_GOT_DISP:
8679 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8680 FALSE, r_type))
8681 return FALSE;
8682 break;
8683
8684 case R_MIPS_TLS_GOTTPREL:
8685 case R_MIPS16_TLS_GOTTPREL:
8686 case R_MICROMIPS_TLS_GOTTPREL:
8687 if (bfd_link_pic (info))
8688 info->flags |= DF_STATIC_TLS;
8689 /* Fall through */
8690
8691 case R_MIPS_TLS_LDM:
8692 case R_MIPS16_TLS_LDM:
8693 case R_MICROMIPS_TLS_LDM:
8694 if (tls_ldm_reloc_p (r_type))
8695 {
8696 r_symndx = STN_UNDEF;
8697 h = NULL;
8698 }
8699 /* Fall through */
8700
8701 case R_MIPS_TLS_GD:
8702 case R_MIPS16_TLS_GD:
8703 case R_MICROMIPS_TLS_GD:
8704 /* This symbol requires a global offset table entry, or two
8705 for TLS GD relocations. */
8706 if (h != NULL)
8707 {
8708 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8709 FALSE, r_type))
8710 return FALSE;
8711 }
8712 else
8713 {
8714 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8715 rel->r_addend,
8716 info, r_type))
8717 return FALSE;
8718 }
8719 break;
8720
8721 case R_MIPS_32:
8722 case R_MIPS_REL32:
8723 case R_MIPS_64:
8724 /* In VxWorks executables, references to external symbols
8725 are handled using copy relocs or PLT stubs, so there's
8726 no need to add a .rela.dyn entry for this relocation. */
8727 if (can_make_dynamic_p)
8728 {
8729 if (sreloc == NULL)
8730 {
8731 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8732 if (sreloc == NULL)
8733 return FALSE;
8734 }
8735 if (bfd_link_pic (info) && h == NULL)
8736 {
8737 /* When creating a shared object, we must copy these
8738 reloc types into the output file as R_MIPS_REL32
8739 relocs. Make room for this reloc in .rel(a).dyn. */
8740 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8741 if (MIPS_ELF_READONLY_SECTION (sec))
8742 /* We tell the dynamic linker that there are
8743 relocations against the text segment. */
8744 info->flags |= DF_TEXTREL;
8745 }
8746 else
8747 {
8748 struct mips_elf_link_hash_entry *hmips;
8749
8750 /* For a shared object, we must copy this relocation
8751 unless the symbol turns out to be undefined and
8752 weak with non-default visibility, in which case
8753 it will be left as zero.
8754
8755 We could elide R_MIPS_REL32 for locally binding symbols
8756 in shared libraries, but do not yet do so.
8757
8758 For an executable, we only need to copy this
8759 reloc if the symbol is defined in a dynamic
8760 object. */
8761 hmips = (struct mips_elf_link_hash_entry *) h;
8762 ++hmips->possibly_dynamic_relocs;
8763 if (MIPS_ELF_READONLY_SECTION (sec))
8764 /* We need it to tell the dynamic linker if there
8765 are relocations against the text segment. */
8766 hmips->readonly_reloc = TRUE;
8767 }
8768 }
8769
8770 if (SGI_COMPAT (abfd))
8771 mips_elf_hash_table (info)->compact_rel_size +=
8772 sizeof (Elf32_External_crinfo);
8773 break;
8774
8775 case R_MIPS_26:
8776 case R_MIPS_GPREL16:
8777 case R_MIPS_LITERAL:
8778 case R_MIPS_GPREL32:
8779 case R_MICROMIPS_26_S1:
8780 case R_MICROMIPS_GPREL16:
8781 case R_MICROMIPS_LITERAL:
8782 case R_MICROMIPS_GPREL7_S2:
8783 if (SGI_COMPAT (abfd))
8784 mips_elf_hash_table (info)->compact_rel_size +=
8785 sizeof (Elf32_External_crinfo);
8786 break;
8787
8788 /* This relocation describes the C++ object vtable hierarchy.
8789 Reconstruct it for later use during GC. */
8790 case R_MIPS_GNU_VTINHERIT:
8791 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8792 return FALSE;
8793 break;
8794
8795 /* This relocation describes which C++ vtable entries are actually
8796 used. Record for later use during GC. */
8797 case R_MIPS_GNU_VTENTRY:
8798 BFD_ASSERT (h != NULL);
8799 if (h != NULL
8800 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8801 return FALSE;
8802 break;
8803
8804 default:
8805 break;
8806 }
8807
8808 /* Record the need for a PLT entry. At this point we don't know
8809 yet if we are going to create a PLT in the first place, but
8810 we only record whether the relocation requires a standard MIPS
8811 or a compressed code entry anyway. If we don't make a PLT after
8812 all, then we'll just ignore these arrangements. Likewise if
8813 a PLT entry is not created because the symbol is satisfied
8814 locally. */
8815 if (h != NULL
8816 && (branch_reloc_p (r_type)
8817 || mips16_branch_reloc_p (r_type)
8818 || micromips_branch_reloc_p (r_type))
8819 && !SYMBOL_CALLS_LOCAL (info, h))
8820 {
8821 if (h->plt.plist == NULL)
8822 h->plt.plist = mips_elf_make_plt_record (abfd);
8823 if (h->plt.plist == NULL)
8824 return FALSE;
8825
8826 if (branch_reloc_p (r_type))
8827 h->plt.plist->need_mips = TRUE;
8828 else
8829 h->plt.plist->need_comp = TRUE;
8830 }
8831
8832 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8833 if there is one. We only need to handle global symbols here;
8834 we decide whether to keep or delete stubs for local symbols
8835 when processing the stub's relocations. */
8836 if (h != NULL
8837 && !mips16_call_reloc_p (r_type)
8838 && !section_allows_mips16_refs_p (sec))
8839 {
8840 struct mips_elf_link_hash_entry *mh;
8841
8842 mh = (struct mips_elf_link_hash_entry *) h;
8843 mh->need_fn_stub = TRUE;
8844 }
8845
8846 /* Refuse some position-dependent relocations when creating a
8847 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8848 not PIC, but we can create dynamic relocations and the result
8849 will be fine. Also do not refuse R_MIPS_LO16, which can be
8850 combined with R_MIPS_GOT16. */
8851 if (bfd_link_pic (info))
8852 {
8853 switch (r_type)
8854 {
8855 case R_MIPS16_HI16:
8856 case R_MIPS_HI16:
8857 case R_MIPS_HIGHER:
8858 case R_MIPS_HIGHEST:
8859 case R_MICROMIPS_HI16:
8860 case R_MICROMIPS_HIGHER:
8861 case R_MICROMIPS_HIGHEST:
8862 /* Don't refuse a high part relocation if it's against
8863 no symbol (e.g. part of a compound relocation). */
8864 if (r_symndx == STN_UNDEF)
8865 break;
8866
8867 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8868 and has a special meaning. */
8869 if (!NEWABI_P (abfd) && h != NULL
8870 && strcmp (h->root.root.string, "_gp_disp") == 0)
8871 break;
8872
8873 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8874 if (is_gott_symbol (info, h))
8875 break;
8876
8877 /* FALLTHROUGH */
8878
8879 case R_MIPS16_26:
8880 case R_MIPS_26:
8881 case R_MICROMIPS_26_S1:
8882 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8883 _bfd_error_handler
8884 /* xgettext:c-format */
8885 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8886 abfd, howto->name,
8887 (h) ? h->root.root.string : "a local symbol");
8888 bfd_set_error (bfd_error_bad_value);
8889 return FALSE;
8890 default:
8891 break;
8892 }
8893 }
8894 }
8895
8896 return TRUE;
8897 }
8898 \f
8899 bfd_boolean
8900 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8901 struct bfd_link_info *link_info,
8902 bfd_boolean *again)
8903 {
8904 Elf_Internal_Rela *internal_relocs;
8905 Elf_Internal_Rela *irel, *irelend;
8906 Elf_Internal_Shdr *symtab_hdr;
8907 bfd_byte *contents = NULL;
8908 size_t extsymoff;
8909 bfd_boolean changed_contents = FALSE;
8910 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8911 Elf_Internal_Sym *isymbuf = NULL;
8912
8913 /* We are not currently changing any sizes, so only one pass. */
8914 *again = FALSE;
8915
8916 if (bfd_link_relocatable (link_info))
8917 return TRUE;
8918
8919 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8920 link_info->keep_memory);
8921 if (internal_relocs == NULL)
8922 return TRUE;
8923
8924 irelend = internal_relocs + sec->reloc_count
8925 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8926 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8927 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8928
8929 for (irel = internal_relocs; irel < irelend; irel++)
8930 {
8931 bfd_vma symval;
8932 bfd_signed_vma sym_offset;
8933 unsigned int r_type;
8934 unsigned long r_symndx;
8935 asection *sym_sec;
8936 unsigned long instruction;
8937
8938 /* Turn jalr into bgezal, and jr into beq, if they're marked
8939 with a JALR relocation, that indicate where they jump to.
8940 This saves some pipeline bubbles. */
8941 r_type = ELF_R_TYPE (abfd, irel->r_info);
8942 if (r_type != R_MIPS_JALR)
8943 continue;
8944
8945 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8946 /* Compute the address of the jump target. */
8947 if (r_symndx >= extsymoff)
8948 {
8949 struct mips_elf_link_hash_entry *h
8950 = ((struct mips_elf_link_hash_entry *)
8951 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8952
8953 while (h->root.root.type == bfd_link_hash_indirect
8954 || h->root.root.type == bfd_link_hash_warning)
8955 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8956
8957 /* If a symbol is undefined, or if it may be overridden,
8958 skip it. */
8959 if (! ((h->root.root.type == bfd_link_hash_defined
8960 || h->root.root.type == bfd_link_hash_defweak)
8961 && h->root.root.u.def.section)
8962 || (bfd_link_pic (link_info) && ! link_info->symbolic
8963 && !h->root.forced_local))
8964 continue;
8965
8966 sym_sec = h->root.root.u.def.section;
8967 if (sym_sec->output_section)
8968 symval = (h->root.root.u.def.value
8969 + sym_sec->output_section->vma
8970 + sym_sec->output_offset);
8971 else
8972 symval = h->root.root.u.def.value;
8973 }
8974 else
8975 {
8976 Elf_Internal_Sym *isym;
8977
8978 /* Read this BFD's symbols if we haven't done so already. */
8979 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8980 {
8981 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8982 if (isymbuf == NULL)
8983 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8984 symtab_hdr->sh_info, 0,
8985 NULL, NULL, NULL);
8986 if (isymbuf == NULL)
8987 goto relax_return;
8988 }
8989
8990 isym = isymbuf + r_symndx;
8991 if (isym->st_shndx == SHN_UNDEF)
8992 continue;
8993 else if (isym->st_shndx == SHN_ABS)
8994 sym_sec = bfd_abs_section_ptr;
8995 else if (isym->st_shndx == SHN_COMMON)
8996 sym_sec = bfd_com_section_ptr;
8997 else
8998 sym_sec
8999 = bfd_section_from_elf_index (abfd, isym->st_shndx);
9000 symval = isym->st_value
9001 + sym_sec->output_section->vma
9002 + sym_sec->output_offset;
9003 }
9004
9005 /* Compute branch offset, from delay slot of the jump to the
9006 branch target. */
9007 sym_offset = (symval + irel->r_addend)
9008 - (sec_start + irel->r_offset + 4);
9009
9010 /* Branch offset must be properly aligned. */
9011 if ((sym_offset & 3) != 0)
9012 continue;
9013
9014 sym_offset >>= 2;
9015
9016 /* Check that it's in range. */
9017 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
9018 continue;
9019
9020 /* Get the section contents if we haven't done so already. */
9021 if (!mips_elf_get_section_contents (abfd, sec, &contents))
9022 goto relax_return;
9023
9024 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9025
9026 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9027 if ((instruction & 0xfc1fffff) == 0x0000f809)
9028 instruction = 0x04110000;
9029 /* If it was jr <reg>, turn it into b <target>. */
9030 else if ((instruction & 0xfc1fffff) == 0x00000008)
9031 instruction = 0x10000000;
9032 else
9033 continue;
9034
9035 instruction |= (sym_offset & 0xffff);
9036 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9037 changed_contents = TRUE;
9038 }
9039
9040 if (contents != NULL
9041 && elf_section_data (sec)->this_hdr.contents != contents)
9042 {
9043 if (!changed_contents && !link_info->keep_memory)
9044 free (contents);
9045 else
9046 {
9047 /* Cache the section contents for elf_link_input_bfd. */
9048 elf_section_data (sec)->this_hdr.contents = contents;
9049 }
9050 }
9051 return TRUE;
9052
9053 relax_return:
9054 if (contents != NULL
9055 && elf_section_data (sec)->this_hdr.contents != contents)
9056 free (contents);
9057 return FALSE;
9058 }
9059 \f
9060 /* Allocate space for global sym dynamic relocs. */
9061
9062 static bfd_boolean
9063 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9064 {
9065 struct bfd_link_info *info = inf;
9066 bfd *dynobj;
9067 struct mips_elf_link_hash_entry *hmips;
9068 struct mips_elf_link_hash_table *htab;
9069
9070 htab = mips_elf_hash_table (info);
9071 BFD_ASSERT (htab != NULL);
9072
9073 dynobj = elf_hash_table (info)->dynobj;
9074 hmips = (struct mips_elf_link_hash_entry *) h;
9075
9076 /* VxWorks executables are handled elsewhere; we only need to
9077 allocate relocations in shared objects. */
9078 if (htab->is_vxworks && !bfd_link_pic (info))
9079 return TRUE;
9080
9081 /* Ignore indirect symbols. All relocations against such symbols
9082 will be redirected to the target symbol. */
9083 if (h->root.type == bfd_link_hash_indirect)
9084 return TRUE;
9085
9086 /* If this symbol is defined in a dynamic object, or we are creating
9087 a shared library, we will need to copy any R_MIPS_32 or
9088 R_MIPS_REL32 relocs against it into the output file. */
9089 if (! bfd_link_relocatable (info)
9090 && hmips->possibly_dynamic_relocs != 0
9091 && (h->root.type == bfd_link_hash_defweak
9092 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9093 || bfd_link_pic (info)))
9094 {
9095 bfd_boolean do_copy = TRUE;
9096
9097 if (h->root.type == bfd_link_hash_undefweak)
9098 {
9099 /* Do not copy relocations for undefined weak symbols with
9100 non-default visibility. */
9101 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9102 do_copy = FALSE;
9103
9104 /* Make sure undefined weak symbols are output as a dynamic
9105 symbol in PIEs. */
9106 else if (h->dynindx == -1 && !h->forced_local)
9107 {
9108 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9109 return FALSE;
9110 }
9111 }
9112
9113 if (do_copy)
9114 {
9115 /* Even though we don't directly need a GOT entry for this symbol,
9116 the SVR4 psABI requires it to have a dynamic symbol table
9117 index greater that DT_MIPS_GOTSYM if there are dynamic
9118 relocations against it.
9119
9120 VxWorks does not enforce the same mapping between the GOT
9121 and the symbol table, so the same requirement does not
9122 apply there. */
9123 if (!htab->is_vxworks)
9124 {
9125 if (hmips->global_got_area > GGA_RELOC_ONLY)
9126 hmips->global_got_area = GGA_RELOC_ONLY;
9127 hmips->got_only_for_calls = FALSE;
9128 }
9129
9130 mips_elf_allocate_dynamic_relocations
9131 (dynobj, info, hmips->possibly_dynamic_relocs);
9132 if (hmips->readonly_reloc)
9133 /* We tell the dynamic linker that there are relocations
9134 against the text segment. */
9135 info->flags |= DF_TEXTREL;
9136 }
9137 }
9138
9139 return TRUE;
9140 }
9141
9142 /* Adjust a symbol defined by a dynamic object and referenced by a
9143 regular object. The current definition is in some section of the
9144 dynamic object, but we're not including those sections. We have to
9145 change the definition to something the rest of the link can
9146 understand. */
9147
9148 bfd_boolean
9149 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9150 struct elf_link_hash_entry *h)
9151 {
9152 bfd *dynobj;
9153 struct mips_elf_link_hash_entry *hmips;
9154 struct mips_elf_link_hash_table *htab;
9155
9156 htab = mips_elf_hash_table (info);
9157 BFD_ASSERT (htab != NULL);
9158
9159 dynobj = elf_hash_table (info)->dynobj;
9160 hmips = (struct mips_elf_link_hash_entry *) h;
9161
9162 /* Make sure we know what is going on here. */
9163 BFD_ASSERT (dynobj != NULL
9164 && (h->needs_plt
9165 || h->u.weakdef != NULL
9166 || (h->def_dynamic
9167 && h->ref_regular
9168 && !h->def_regular)));
9169
9170 hmips = (struct mips_elf_link_hash_entry *) h;
9171
9172 /* If there are call relocations against an externally-defined symbol,
9173 see whether we can create a MIPS lazy-binding stub for it. We can
9174 only do this if all references to the function are through call
9175 relocations, and in that case, the traditional lazy-binding stubs
9176 are much more efficient than PLT entries.
9177
9178 Traditional stubs are only available on SVR4 psABI-based systems;
9179 VxWorks always uses PLTs instead. */
9180 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9181 {
9182 if (! elf_hash_table (info)->dynamic_sections_created)
9183 return TRUE;
9184
9185 /* If this symbol is not defined in a regular file, then set
9186 the symbol to the stub location. This is required to make
9187 function pointers compare as equal between the normal
9188 executable and the shared library. */
9189 if (!h->def_regular)
9190 {
9191 hmips->needs_lazy_stub = TRUE;
9192 htab->lazy_stub_count++;
9193 return TRUE;
9194 }
9195 }
9196 /* As above, VxWorks requires PLT entries for externally-defined
9197 functions that are only accessed through call relocations.
9198
9199 Both VxWorks and non-VxWorks targets also need PLT entries if there
9200 are static-only relocations against an externally-defined function.
9201 This can technically occur for shared libraries if there are
9202 branches to the symbol, although it is unlikely that this will be
9203 used in practice due to the short ranges involved. It can occur
9204 for any relative or absolute relocation in executables; in that
9205 case, the PLT entry becomes the function's canonical address. */
9206 else if (((h->needs_plt && !hmips->no_fn_stub)
9207 || (h->type == STT_FUNC && hmips->has_static_relocs))
9208 && htab->use_plts_and_copy_relocs
9209 && !SYMBOL_CALLS_LOCAL (info, h)
9210 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9211 && h->root.type == bfd_link_hash_undefweak))
9212 {
9213 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9214 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9215
9216 /* If this is the first symbol to need a PLT entry, then make some
9217 basic setup. Also work out PLT entry sizes. We'll need them
9218 for PLT offset calculations. */
9219 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9220 {
9221 BFD_ASSERT (htab->sgotplt->size == 0);
9222 BFD_ASSERT (htab->plt_got_index == 0);
9223
9224 /* If we're using the PLT additions to the psABI, each PLT
9225 entry is 16 bytes and the PLT0 entry is 32 bytes.
9226 Encourage better cache usage by aligning. We do this
9227 lazily to avoid pessimizing traditional objects. */
9228 if (!htab->is_vxworks
9229 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9230 return FALSE;
9231
9232 /* Make sure that .got.plt is word-aligned. We do this lazily
9233 for the same reason as above. */
9234 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9235 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9236 return FALSE;
9237
9238 /* On non-VxWorks targets, the first two entries in .got.plt
9239 are reserved. */
9240 if (!htab->is_vxworks)
9241 htab->plt_got_index
9242 += (get_elf_backend_data (dynobj)->got_header_size
9243 / MIPS_ELF_GOT_SIZE (dynobj));
9244
9245 /* On VxWorks, also allocate room for the header's
9246 .rela.plt.unloaded entries. */
9247 if (htab->is_vxworks && !bfd_link_pic (info))
9248 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9249
9250 /* Now work out the sizes of individual PLT entries. */
9251 if (htab->is_vxworks && bfd_link_pic (info))
9252 htab->plt_mips_entry_size
9253 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9254 else if (htab->is_vxworks)
9255 htab->plt_mips_entry_size
9256 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9257 else if (newabi_p)
9258 htab->plt_mips_entry_size
9259 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9260 else if (!micromips_p)
9261 {
9262 htab->plt_mips_entry_size
9263 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9264 htab->plt_comp_entry_size
9265 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9266 }
9267 else if (htab->insn32)
9268 {
9269 htab->plt_mips_entry_size
9270 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9271 htab->plt_comp_entry_size
9272 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9273 }
9274 else
9275 {
9276 htab->plt_mips_entry_size
9277 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9278 htab->plt_comp_entry_size
9279 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9280 }
9281 }
9282
9283 if (h->plt.plist == NULL)
9284 h->plt.plist = mips_elf_make_plt_record (dynobj);
9285 if (h->plt.plist == NULL)
9286 return FALSE;
9287
9288 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9289 n32 or n64, so always use a standard entry there.
9290
9291 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9292 all MIPS16 calls will go via that stub, and there is no benefit
9293 to having a MIPS16 entry. And in the case of call_stub a
9294 standard entry actually has to be used as the stub ends with a J
9295 instruction. */
9296 if (newabi_p
9297 || htab->is_vxworks
9298 || hmips->call_stub
9299 || hmips->call_fp_stub)
9300 {
9301 h->plt.plist->need_mips = TRUE;
9302 h->plt.plist->need_comp = FALSE;
9303 }
9304
9305 /* Otherwise, if there are no direct calls to the function, we
9306 have a free choice of whether to use standard or compressed
9307 entries. Prefer microMIPS entries if the object is known to
9308 contain microMIPS code, so that it becomes possible to create
9309 pure microMIPS binaries. Prefer standard entries otherwise,
9310 because MIPS16 ones are no smaller and are usually slower. */
9311 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9312 {
9313 if (micromips_p)
9314 h->plt.plist->need_comp = TRUE;
9315 else
9316 h->plt.plist->need_mips = TRUE;
9317 }
9318
9319 if (h->plt.plist->need_mips)
9320 {
9321 h->plt.plist->mips_offset = htab->plt_mips_offset;
9322 htab->plt_mips_offset += htab->plt_mips_entry_size;
9323 }
9324 if (h->plt.plist->need_comp)
9325 {
9326 h->plt.plist->comp_offset = htab->plt_comp_offset;
9327 htab->plt_comp_offset += htab->plt_comp_entry_size;
9328 }
9329
9330 /* Reserve the corresponding .got.plt entry now too. */
9331 h->plt.plist->gotplt_index = htab->plt_got_index++;
9332
9333 /* If the output file has no definition of the symbol, set the
9334 symbol's value to the address of the stub. */
9335 if (!bfd_link_pic (info) && !h->def_regular)
9336 hmips->use_plt_entry = TRUE;
9337
9338 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9339 htab->srelplt->size += (htab->is_vxworks
9340 ? MIPS_ELF_RELA_SIZE (dynobj)
9341 : MIPS_ELF_REL_SIZE (dynobj));
9342
9343 /* Make room for the .rela.plt.unloaded relocations. */
9344 if (htab->is_vxworks && !bfd_link_pic (info))
9345 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9346
9347 /* All relocations against this symbol that could have been made
9348 dynamic will now refer to the PLT entry instead. */
9349 hmips->possibly_dynamic_relocs = 0;
9350
9351 return TRUE;
9352 }
9353
9354 /* If this is a weak symbol, and there is a real definition, the
9355 processor independent code will have arranged for us to see the
9356 real definition first, and we can just use the same value. */
9357 if (h->u.weakdef != NULL)
9358 {
9359 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9360 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9361 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9362 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9363 return TRUE;
9364 }
9365
9366 /* Otherwise, there is nothing further to do for symbols defined
9367 in regular objects. */
9368 if (h->def_regular)
9369 return TRUE;
9370
9371 /* There's also nothing more to do if we'll convert all relocations
9372 against this symbol into dynamic relocations. */
9373 if (!hmips->has_static_relocs)
9374 return TRUE;
9375
9376 /* We're now relying on copy relocations. Complain if we have
9377 some that we can't convert. */
9378 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9379 {
9380 _bfd_error_handler (_("non-dynamic relocations refer to "
9381 "dynamic symbol %s"),
9382 h->root.root.string);
9383 bfd_set_error (bfd_error_bad_value);
9384 return FALSE;
9385 }
9386
9387 /* We must allocate the symbol in our .dynbss section, which will
9388 become part of the .bss section of the executable. There will be
9389 an entry for this symbol in the .dynsym section. The dynamic
9390 object will contain position independent code, so all references
9391 from the dynamic object to this symbol will go through the global
9392 offset table. The dynamic linker will use the .dynsym entry to
9393 determine the address it must put in the global offset table, so
9394 both the dynamic object and the regular object will refer to the
9395 same memory location for the variable. */
9396
9397 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9398 {
9399 if (htab->is_vxworks)
9400 htab->srelbss->size += sizeof (Elf32_External_Rela);
9401 else
9402 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9403 h->needs_copy = 1;
9404 }
9405
9406 /* All relocations against this symbol that could have been made
9407 dynamic will now refer to the local copy instead. */
9408 hmips->possibly_dynamic_relocs = 0;
9409
9410 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9411 }
9412 \f
9413 /* This function is called after all the input files have been read,
9414 and the input sections have been assigned to output sections. We
9415 check for any mips16 stub sections that we can discard. */
9416
9417 bfd_boolean
9418 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9419 struct bfd_link_info *info)
9420 {
9421 asection *sect;
9422 struct mips_elf_link_hash_table *htab;
9423 struct mips_htab_traverse_info hti;
9424
9425 htab = mips_elf_hash_table (info);
9426 BFD_ASSERT (htab != NULL);
9427
9428 /* The .reginfo section has a fixed size. */
9429 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9430 if (sect != NULL)
9431 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9432
9433 /* The .MIPS.abiflags section has a fixed size. */
9434 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9435 if (sect != NULL)
9436 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9437
9438 hti.info = info;
9439 hti.output_bfd = output_bfd;
9440 hti.error = FALSE;
9441 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9442 mips_elf_check_symbols, &hti);
9443 if (hti.error)
9444 return FALSE;
9445
9446 return TRUE;
9447 }
9448
9449 /* If the link uses a GOT, lay it out and work out its size. */
9450
9451 static bfd_boolean
9452 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9453 {
9454 bfd *dynobj;
9455 asection *s;
9456 struct mips_got_info *g;
9457 bfd_size_type loadable_size = 0;
9458 bfd_size_type page_gotno;
9459 bfd *ibfd;
9460 struct mips_elf_traverse_got_arg tga;
9461 struct mips_elf_link_hash_table *htab;
9462
9463 htab = mips_elf_hash_table (info);
9464 BFD_ASSERT (htab != NULL);
9465
9466 s = htab->sgot;
9467 if (s == NULL)
9468 return TRUE;
9469
9470 dynobj = elf_hash_table (info)->dynobj;
9471 g = htab->got_info;
9472
9473 /* Allocate room for the reserved entries. VxWorks always reserves
9474 3 entries; other objects only reserve 2 entries. */
9475 BFD_ASSERT (g->assigned_low_gotno == 0);
9476 if (htab->is_vxworks)
9477 htab->reserved_gotno = 3;
9478 else
9479 htab->reserved_gotno = 2;
9480 g->local_gotno += htab->reserved_gotno;
9481 g->assigned_low_gotno = htab->reserved_gotno;
9482
9483 /* Decide which symbols need to go in the global part of the GOT and
9484 count the number of reloc-only GOT symbols. */
9485 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9486
9487 if (!mips_elf_resolve_final_got_entries (info, g))
9488 return FALSE;
9489
9490 /* Calculate the total loadable size of the output. That
9491 will give us the maximum number of GOT_PAGE entries
9492 required. */
9493 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9494 {
9495 asection *subsection;
9496
9497 for (subsection = ibfd->sections;
9498 subsection;
9499 subsection = subsection->next)
9500 {
9501 if ((subsection->flags & SEC_ALLOC) == 0)
9502 continue;
9503 loadable_size += ((subsection->size + 0xf)
9504 &~ (bfd_size_type) 0xf);
9505 }
9506 }
9507
9508 if (htab->is_vxworks)
9509 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9510 relocations against local symbols evaluate to "G", and the EABI does
9511 not include R_MIPS_GOT_PAGE. */
9512 page_gotno = 0;
9513 else
9514 /* Assume there are two loadable segments consisting of contiguous
9515 sections. Is 5 enough? */
9516 page_gotno = (loadable_size >> 16) + 5;
9517
9518 /* Choose the smaller of the two page estimates; both are intended to be
9519 conservative. */
9520 if (page_gotno > g->page_gotno)
9521 page_gotno = g->page_gotno;
9522
9523 g->local_gotno += page_gotno;
9524 g->assigned_high_gotno = g->local_gotno - 1;
9525
9526 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9527 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9528 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9529
9530 /* VxWorks does not support multiple GOTs. It initializes $gp to
9531 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9532 dynamic loader. */
9533 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9534 {
9535 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9536 return FALSE;
9537 }
9538 else
9539 {
9540 /* Record that all bfds use G. This also has the effect of freeing
9541 the per-bfd GOTs, which we no longer need. */
9542 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9543 if (mips_elf_bfd_got (ibfd, FALSE))
9544 mips_elf_replace_bfd_got (ibfd, g);
9545 mips_elf_replace_bfd_got (output_bfd, g);
9546
9547 /* Set up TLS entries. */
9548 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9549 tga.info = info;
9550 tga.g = g;
9551 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9552 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9553 if (!tga.g)
9554 return FALSE;
9555 BFD_ASSERT (g->tls_assigned_gotno
9556 == g->global_gotno + g->local_gotno + g->tls_gotno);
9557
9558 /* Each VxWorks GOT entry needs an explicit relocation. */
9559 if (htab->is_vxworks && bfd_link_pic (info))
9560 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9561
9562 /* Allocate room for the TLS relocations. */
9563 if (g->relocs)
9564 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9565 }
9566
9567 return TRUE;
9568 }
9569
9570 /* Estimate the size of the .MIPS.stubs section. */
9571
9572 static void
9573 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9574 {
9575 struct mips_elf_link_hash_table *htab;
9576 bfd_size_type dynsymcount;
9577
9578 htab = mips_elf_hash_table (info);
9579 BFD_ASSERT (htab != NULL);
9580
9581 if (htab->lazy_stub_count == 0)
9582 return;
9583
9584 /* IRIX rld assumes that a function stub isn't at the end of the .text
9585 section, so add a dummy entry to the end. */
9586 htab->lazy_stub_count++;
9587
9588 /* Get a worst-case estimate of the number of dynamic symbols needed.
9589 At this point, dynsymcount does not account for section symbols
9590 and count_section_dynsyms may overestimate the number that will
9591 be needed. */
9592 dynsymcount = (elf_hash_table (info)->dynsymcount
9593 + count_section_dynsyms (output_bfd, info));
9594
9595 /* Determine the size of one stub entry. There's no disadvantage
9596 from using microMIPS code here, so for the sake of pure-microMIPS
9597 binaries we prefer it whenever there's any microMIPS code in
9598 output produced at all. This has a benefit of stubs being
9599 shorter by 4 bytes each too, unless in the insn32 mode. */
9600 if (!MICROMIPS_P (output_bfd))
9601 htab->function_stub_size = (dynsymcount > 0x10000
9602 ? MIPS_FUNCTION_STUB_BIG_SIZE
9603 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9604 else if (htab->insn32)
9605 htab->function_stub_size = (dynsymcount > 0x10000
9606 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9607 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9608 else
9609 htab->function_stub_size = (dynsymcount > 0x10000
9610 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9611 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9612
9613 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9614 }
9615
9616 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9617 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9618 stub, allocate an entry in the stubs section. */
9619
9620 static bfd_boolean
9621 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9622 {
9623 struct mips_htab_traverse_info *hti = data;
9624 struct mips_elf_link_hash_table *htab;
9625 struct bfd_link_info *info;
9626 bfd *output_bfd;
9627
9628 info = hti->info;
9629 output_bfd = hti->output_bfd;
9630 htab = mips_elf_hash_table (info);
9631 BFD_ASSERT (htab != NULL);
9632
9633 if (h->needs_lazy_stub)
9634 {
9635 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9636 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9637 bfd_vma isa_bit = micromips_p;
9638
9639 BFD_ASSERT (htab->root.dynobj != NULL);
9640 if (h->root.plt.plist == NULL)
9641 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9642 if (h->root.plt.plist == NULL)
9643 {
9644 hti->error = TRUE;
9645 return FALSE;
9646 }
9647 h->root.root.u.def.section = htab->sstubs;
9648 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9649 h->root.plt.plist->stub_offset = htab->sstubs->size;
9650 h->root.other = other;
9651 htab->sstubs->size += htab->function_stub_size;
9652 }
9653 return TRUE;
9654 }
9655
9656 /* Allocate offsets in the stubs section to each symbol that needs one.
9657 Set the final size of the .MIPS.stub section. */
9658
9659 static bfd_boolean
9660 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9661 {
9662 bfd *output_bfd = info->output_bfd;
9663 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9664 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9665 bfd_vma isa_bit = micromips_p;
9666 struct mips_elf_link_hash_table *htab;
9667 struct mips_htab_traverse_info hti;
9668 struct elf_link_hash_entry *h;
9669 bfd *dynobj;
9670
9671 htab = mips_elf_hash_table (info);
9672 BFD_ASSERT (htab != NULL);
9673
9674 if (htab->lazy_stub_count == 0)
9675 return TRUE;
9676
9677 htab->sstubs->size = 0;
9678 hti.info = info;
9679 hti.output_bfd = output_bfd;
9680 hti.error = FALSE;
9681 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9682 if (hti.error)
9683 return FALSE;
9684 htab->sstubs->size += htab->function_stub_size;
9685 BFD_ASSERT (htab->sstubs->size
9686 == htab->lazy_stub_count * htab->function_stub_size);
9687
9688 dynobj = elf_hash_table (info)->dynobj;
9689 BFD_ASSERT (dynobj != NULL);
9690 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9691 if (h == NULL)
9692 return FALSE;
9693 h->root.u.def.value = isa_bit;
9694 h->other = other;
9695 h->type = STT_FUNC;
9696
9697 return TRUE;
9698 }
9699
9700 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9701 bfd_link_info. If H uses the address of a PLT entry as the value
9702 of the symbol, then set the entry in the symbol table now. Prefer
9703 a standard MIPS PLT entry. */
9704
9705 static bfd_boolean
9706 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9707 {
9708 struct bfd_link_info *info = data;
9709 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9710 struct mips_elf_link_hash_table *htab;
9711 unsigned int other;
9712 bfd_vma isa_bit;
9713 bfd_vma val;
9714
9715 htab = mips_elf_hash_table (info);
9716 BFD_ASSERT (htab != NULL);
9717
9718 if (h->use_plt_entry)
9719 {
9720 BFD_ASSERT (h->root.plt.plist != NULL);
9721 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9722 || h->root.plt.plist->comp_offset != MINUS_ONE);
9723
9724 val = htab->plt_header_size;
9725 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9726 {
9727 isa_bit = 0;
9728 val += h->root.plt.plist->mips_offset;
9729 other = 0;
9730 }
9731 else
9732 {
9733 isa_bit = 1;
9734 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9735 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9736 }
9737 val += isa_bit;
9738 /* For VxWorks, point at the PLT load stub rather than the lazy
9739 resolution stub; this stub will become the canonical function
9740 address. */
9741 if (htab->is_vxworks)
9742 val += 8;
9743
9744 h->root.root.u.def.section = htab->splt;
9745 h->root.root.u.def.value = val;
9746 h->root.other = other;
9747 }
9748
9749 return TRUE;
9750 }
9751
9752 /* Set the sizes of the dynamic sections. */
9753
9754 bfd_boolean
9755 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9756 struct bfd_link_info *info)
9757 {
9758 bfd *dynobj;
9759 asection *s, *sreldyn;
9760 bfd_boolean reltext;
9761 struct mips_elf_link_hash_table *htab;
9762
9763 htab = mips_elf_hash_table (info);
9764 BFD_ASSERT (htab != NULL);
9765 dynobj = elf_hash_table (info)->dynobj;
9766 BFD_ASSERT (dynobj != NULL);
9767
9768 if (elf_hash_table (info)->dynamic_sections_created)
9769 {
9770 /* Set the contents of the .interp section to the interpreter. */
9771 if (bfd_link_executable (info) && !info->nointerp)
9772 {
9773 s = bfd_get_linker_section (dynobj, ".interp");
9774 BFD_ASSERT (s != NULL);
9775 s->size
9776 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9777 s->contents
9778 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9779 }
9780
9781 /* Figure out the size of the PLT header if we know that we
9782 are using it. For the sake of cache alignment always use
9783 a standard header whenever any standard entries are present
9784 even if microMIPS entries are present as well. This also
9785 lets the microMIPS header rely on the value of $v0 only set
9786 by microMIPS entries, for a small size reduction.
9787
9788 Set symbol table entry values for symbols that use the
9789 address of their PLT entry now that we can calculate it.
9790
9791 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9792 haven't already in _bfd_elf_create_dynamic_sections. */
9793 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9794 {
9795 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9796 && !htab->plt_mips_offset);
9797 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9798 bfd_vma isa_bit = micromips_p;
9799 struct elf_link_hash_entry *h;
9800 bfd_vma size;
9801
9802 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9803 BFD_ASSERT (htab->sgotplt->size == 0);
9804 BFD_ASSERT (htab->splt->size == 0);
9805
9806 if (htab->is_vxworks && bfd_link_pic (info))
9807 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9808 else if (htab->is_vxworks)
9809 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9810 else if (ABI_64_P (output_bfd))
9811 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9812 else if (ABI_N32_P (output_bfd))
9813 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9814 else if (!micromips_p)
9815 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9816 else if (htab->insn32)
9817 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9818 else
9819 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9820
9821 htab->plt_header_is_comp = micromips_p;
9822 htab->plt_header_size = size;
9823 htab->splt->size = (size
9824 + htab->plt_mips_offset
9825 + htab->plt_comp_offset);
9826 htab->sgotplt->size = (htab->plt_got_index
9827 * MIPS_ELF_GOT_SIZE (dynobj));
9828
9829 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9830
9831 if (htab->root.hplt == NULL)
9832 {
9833 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9834 "_PROCEDURE_LINKAGE_TABLE_");
9835 htab->root.hplt = h;
9836 if (h == NULL)
9837 return FALSE;
9838 }
9839
9840 h = htab->root.hplt;
9841 h->root.u.def.value = isa_bit;
9842 h->other = other;
9843 h->type = STT_FUNC;
9844 }
9845 }
9846
9847 /* Allocate space for global sym dynamic relocs. */
9848 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9849
9850 mips_elf_estimate_stub_size (output_bfd, info);
9851
9852 if (!mips_elf_lay_out_got (output_bfd, info))
9853 return FALSE;
9854
9855 mips_elf_lay_out_lazy_stubs (info);
9856
9857 /* The check_relocs and adjust_dynamic_symbol entry points have
9858 determined the sizes of the various dynamic sections. Allocate
9859 memory for them. */
9860 reltext = FALSE;
9861 for (s = dynobj->sections; s != NULL; s = s->next)
9862 {
9863 const char *name;
9864
9865 /* It's OK to base decisions on the section name, because none
9866 of the dynobj section names depend upon the input files. */
9867 name = bfd_get_section_name (dynobj, s);
9868
9869 if ((s->flags & SEC_LINKER_CREATED) == 0)
9870 continue;
9871
9872 if (CONST_STRNEQ (name, ".rel"))
9873 {
9874 if (s->size != 0)
9875 {
9876 const char *outname;
9877 asection *target;
9878
9879 /* If this relocation section applies to a read only
9880 section, then we probably need a DT_TEXTREL entry.
9881 If the relocation section is .rel(a).dyn, we always
9882 assert a DT_TEXTREL entry rather than testing whether
9883 there exists a relocation to a read only section or
9884 not. */
9885 outname = bfd_get_section_name (output_bfd,
9886 s->output_section);
9887 target = bfd_get_section_by_name (output_bfd, outname + 4);
9888 if ((target != NULL
9889 && (target->flags & SEC_READONLY) != 0
9890 && (target->flags & SEC_ALLOC) != 0)
9891 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9892 reltext = TRUE;
9893
9894 /* We use the reloc_count field as a counter if we need
9895 to copy relocs into the output file. */
9896 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9897 s->reloc_count = 0;
9898
9899 /* If combreloc is enabled, elf_link_sort_relocs() will
9900 sort relocations, but in a different way than we do,
9901 and before we're done creating relocations. Also, it
9902 will move them around between input sections'
9903 relocation's contents, so our sorting would be
9904 broken, so don't let it run. */
9905 info->combreloc = 0;
9906 }
9907 }
9908 else if (bfd_link_executable (info)
9909 && ! mips_elf_hash_table (info)->use_rld_obj_head
9910 && CONST_STRNEQ (name, ".rld_map"))
9911 {
9912 /* We add a room for __rld_map. It will be filled in by the
9913 rtld to contain a pointer to the _r_debug structure. */
9914 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9915 }
9916 else if (SGI_COMPAT (output_bfd)
9917 && CONST_STRNEQ (name, ".compact_rel"))
9918 s->size += mips_elf_hash_table (info)->compact_rel_size;
9919 else if (s == htab->splt)
9920 {
9921 /* If the last PLT entry has a branch delay slot, allocate
9922 room for an extra nop to fill the delay slot. This is
9923 for CPUs without load interlocking. */
9924 if (! LOAD_INTERLOCKS_P (output_bfd)
9925 && ! htab->is_vxworks && s->size > 0)
9926 s->size += 4;
9927 }
9928 else if (! CONST_STRNEQ (name, ".init")
9929 && s != htab->sgot
9930 && s != htab->sgotplt
9931 && s != htab->sstubs
9932 && s != htab->sdynbss)
9933 {
9934 /* It's not one of our sections, so don't allocate space. */
9935 continue;
9936 }
9937
9938 if (s->size == 0)
9939 {
9940 s->flags |= SEC_EXCLUDE;
9941 continue;
9942 }
9943
9944 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9945 continue;
9946
9947 /* Allocate memory for the section contents. */
9948 s->contents = bfd_zalloc (dynobj, s->size);
9949 if (s->contents == NULL)
9950 {
9951 bfd_set_error (bfd_error_no_memory);
9952 return FALSE;
9953 }
9954 }
9955
9956 if (elf_hash_table (info)->dynamic_sections_created)
9957 {
9958 /* Add some entries to the .dynamic section. We fill in the
9959 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9960 must add the entries now so that we get the correct size for
9961 the .dynamic section. */
9962
9963 /* SGI object has the equivalence of DT_DEBUG in the
9964 DT_MIPS_RLD_MAP entry. This must come first because glibc
9965 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9966 may only look at the first one they see. */
9967 if (!bfd_link_pic (info)
9968 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9969 return FALSE;
9970
9971 if (bfd_link_executable (info)
9972 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9973 return FALSE;
9974
9975 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9976 used by the debugger. */
9977 if (bfd_link_executable (info)
9978 && !SGI_COMPAT (output_bfd)
9979 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9980 return FALSE;
9981
9982 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9983 info->flags |= DF_TEXTREL;
9984
9985 if ((info->flags & DF_TEXTREL) != 0)
9986 {
9987 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9988 return FALSE;
9989
9990 /* Clear the DF_TEXTREL flag. It will be set again if we
9991 write out an actual text relocation; we may not, because
9992 at this point we do not know whether e.g. any .eh_frame
9993 absolute relocations have been converted to PC-relative. */
9994 info->flags &= ~DF_TEXTREL;
9995 }
9996
9997 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9998 return FALSE;
9999
10000 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10001 if (htab->is_vxworks)
10002 {
10003 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10004 use any of the DT_MIPS_* tags. */
10005 if (sreldyn && sreldyn->size > 0)
10006 {
10007 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10008 return FALSE;
10009
10010 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10011 return FALSE;
10012
10013 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10014 return FALSE;
10015 }
10016 }
10017 else
10018 {
10019 if (sreldyn && sreldyn->size > 0)
10020 {
10021 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10022 return FALSE;
10023
10024 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10025 return FALSE;
10026
10027 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10028 return FALSE;
10029 }
10030
10031 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10032 return FALSE;
10033
10034 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10035 return FALSE;
10036
10037 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10038 return FALSE;
10039
10040 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10041 return FALSE;
10042
10043 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10044 return FALSE;
10045
10046 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10047 return FALSE;
10048
10049 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10050 return FALSE;
10051
10052 if (IRIX_COMPAT (dynobj) == ict_irix5
10053 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10054 return FALSE;
10055
10056 if (IRIX_COMPAT (dynobj) == ict_irix6
10057 && (bfd_get_section_by_name
10058 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10059 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10060 return FALSE;
10061 }
10062 if (htab->splt->size > 0)
10063 {
10064 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10065 return FALSE;
10066
10067 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10068 return FALSE;
10069
10070 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10071 return FALSE;
10072
10073 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10074 return FALSE;
10075 }
10076 if (htab->is_vxworks
10077 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10078 return FALSE;
10079 }
10080
10081 return TRUE;
10082 }
10083 \f
10084 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10085 Adjust its R_ADDEND field so that it is correct for the output file.
10086 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10087 and sections respectively; both use symbol indexes. */
10088
10089 static void
10090 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10091 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10092 asection **local_sections, Elf_Internal_Rela *rel)
10093 {
10094 unsigned int r_type, r_symndx;
10095 Elf_Internal_Sym *sym;
10096 asection *sec;
10097
10098 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10099 {
10100 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10101 if (gprel16_reloc_p (r_type)
10102 || r_type == R_MIPS_GPREL32
10103 || literal_reloc_p (r_type))
10104 {
10105 rel->r_addend += _bfd_get_gp_value (input_bfd);
10106 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10107 }
10108
10109 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10110 sym = local_syms + r_symndx;
10111
10112 /* Adjust REL's addend to account for section merging. */
10113 if (!bfd_link_relocatable (info))
10114 {
10115 sec = local_sections[r_symndx];
10116 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10117 }
10118
10119 /* This would normally be done by the rela_normal code in elflink.c. */
10120 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10121 rel->r_addend += local_sections[r_symndx]->output_offset;
10122 }
10123 }
10124
10125 /* Handle relocations against symbols from removed linkonce sections,
10126 or sections discarded by a linker script. We use this wrapper around
10127 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10128 on 64-bit ELF targets. In this case for any relocation handled, which
10129 always be the first in a triplet, the remaining two have to be processed
10130 together with the first, even if they are R_MIPS_NONE. It is the symbol
10131 index referred by the first reloc that applies to all the three and the
10132 remaining two never refer to an object symbol. And it is the final
10133 relocation (the last non-null one) that determines the output field of
10134 the whole relocation so retrieve the corresponding howto structure for
10135 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10136
10137 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10138 and therefore requires to be pasted in a loop. It also defines a block
10139 and does not protect any of its arguments, hence the extra brackets. */
10140
10141 static void
10142 mips_reloc_against_discarded_section (bfd *output_bfd,
10143 struct bfd_link_info *info,
10144 bfd *input_bfd, asection *input_section,
10145 Elf_Internal_Rela **rel,
10146 const Elf_Internal_Rela **relend,
10147 bfd_boolean rel_reloc,
10148 reloc_howto_type *howto,
10149 bfd_byte *contents)
10150 {
10151 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10152 int count = bed->s->int_rels_per_ext_rel;
10153 unsigned int r_type;
10154 int i;
10155
10156 for (i = count - 1; i > 0; i--)
10157 {
10158 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10159 if (r_type != R_MIPS_NONE)
10160 {
10161 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10162 break;
10163 }
10164 }
10165 do
10166 {
10167 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10168 (*rel), count, (*relend),
10169 howto, i, contents);
10170 }
10171 while (0);
10172 }
10173
10174 /* Relocate a MIPS ELF section. */
10175
10176 bfd_boolean
10177 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10178 bfd *input_bfd, asection *input_section,
10179 bfd_byte *contents, Elf_Internal_Rela *relocs,
10180 Elf_Internal_Sym *local_syms,
10181 asection **local_sections)
10182 {
10183 Elf_Internal_Rela *rel;
10184 const Elf_Internal_Rela *relend;
10185 bfd_vma addend = 0;
10186 bfd_boolean use_saved_addend_p = FALSE;
10187 const struct elf_backend_data *bed;
10188
10189 bed = get_elf_backend_data (output_bfd);
10190 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10191 for (rel = relocs; rel < relend; ++rel)
10192 {
10193 const char *name;
10194 bfd_vma value = 0;
10195 reloc_howto_type *howto;
10196 bfd_boolean cross_mode_jump_p = FALSE;
10197 /* TRUE if the relocation is a RELA relocation, rather than a
10198 REL relocation. */
10199 bfd_boolean rela_relocation_p = TRUE;
10200 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10201 const char *msg;
10202 unsigned long r_symndx;
10203 asection *sec;
10204 Elf_Internal_Shdr *symtab_hdr;
10205 struct elf_link_hash_entry *h;
10206 bfd_boolean rel_reloc;
10207
10208 rel_reloc = (NEWABI_P (input_bfd)
10209 && mips_elf_rel_relocation_p (input_bfd, input_section,
10210 relocs, rel));
10211 /* Find the relocation howto for this relocation. */
10212 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10213
10214 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10215 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10216 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10217 {
10218 sec = local_sections[r_symndx];
10219 h = NULL;
10220 }
10221 else
10222 {
10223 unsigned long extsymoff;
10224
10225 extsymoff = 0;
10226 if (!elf_bad_symtab (input_bfd))
10227 extsymoff = symtab_hdr->sh_info;
10228 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10229 while (h->root.type == bfd_link_hash_indirect
10230 || h->root.type == bfd_link_hash_warning)
10231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10232
10233 sec = NULL;
10234 if (h->root.type == bfd_link_hash_defined
10235 || h->root.type == bfd_link_hash_defweak)
10236 sec = h->root.u.def.section;
10237 }
10238
10239 if (sec != NULL && discarded_section (sec))
10240 {
10241 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10242 input_section, &rel, &relend,
10243 rel_reloc, howto, contents);
10244 continue;
10245 }
10246
10247 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10248 {
10249 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10250 64-bit code, but make sure all their addresses are in the
10251 lowermost or uppermost 32-bit section of the 64-bit address
10252 space. Thus, when they use an R_MIPS_64 they mean what is
10253 usually meant by R_MIPS_32, with the exception that the
10254 stored value is sign-extended to 64 bits. */
10255 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10256
10257 /* On big-endian systems, we need to lie about the position
10258 of the reloc. */
10259 if (bfd_big_endian (input_bfd))
10260 rel->r_offset += 4;
10261 }
10262
10263 if (!use_saved_addend_p)
10264 {
10265 /* If these relocations were originally of the REL variety,
10266 we must pull the addend out of the field that will be
10267 relocated. Otherwise, we simply use the contents of the
10268 RELA relocation. */
10269 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10270 relocs, rel))
10271 {
10272 rela_relocation_p = FALSE;
10273 addend = mips_elf_read_rel_addend (input_bfd, rel,
10274 howto, contents);
10275 if (hi16_reloc_p (r_type)
10276 || (got16_reloc_p (r_type)
10277 && mips_elf_local_relocation_p (input_bfd, rel,
10278 local_sections)))
10279 {
10280 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10281 contents, &addend))
10282 {
10283 if (h)
10284 name = h->root.root.string;
10285 else
10286 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10287 local_syms + r_symndx,
10288 sec);
10289 _bfd_error_handler
10290 /* xgettext:c-format */
10291 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10292 input_bfd, input_section, name, howto->name,
10293 rel->r_offset);
10294 }
10295 }
10296 else
10297 addend <<= howto->rightshift;
10298 }
10299 else
10300 addend = rel->r_addend;
10301 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10302 local_syms, local_sections, rel);
10303 }
10304
10305 if (bfd_link_relocatable (info))
10306 {
10307 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10308 && bfd_big_endian (input_bfd))
10309 rel->r_offset -= 4;
10310
10311 if (!rela_relocation_p && rel->r_addend)
10312 {
10313 addend += rel->r_addend;
10314 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10315 addend = mips_elf_high (addend);
10316 else if (r_type == R_MIPS_HIGHER)
10317 addend = mips_elf_higher (addend);
10318 else if (r_type == R_MIPS_HIGHEST)
10319 addend = mips_elf_highest (addend);
10320 else
10321 addend >>= howto->rightshift;
10322
10323 /* We use the source mask, rather than the destination
10324 mask because the place to which we are writing will be
10325 source of the addend in the final link. */
10326 addend &= howto->src_mask;
10327
10328 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10329 /* See the comment above about using R_MIPS_64 in the 32-bit
10330 ABI. Here, we need to update the addend. It would be
10331 possible to get away with just using the R_MIPS_32 reloc
10332 but for endianness. */
10333 {
10334 bfd_vma sign_bits;
10335 bfd_vma low_bits;
10336 bfd_vma high_bits;
10337
10338 if (addend & ((bfd_vma) 1 << 31))
10339 #ifdef BFD64
10340 sign_bits = ((bfd_vma) 1 << 32) - 1;
10341 #else
10342 sign_bits = -1;
10343 #endif
10344 else
10345 sign_bits = 0;
10346
10347 /* If we don't know that we have a 64-bit type,
10348 do two separate stores. */
10349 if (bfd_big_endian (input_bfd))
10350 {
10351 /* Store the sign-bits (which are most significant)
10352 first. */
10353 low_bits = sign_bits;
10354 high_bits = addend;
10355 }
10356 else
10357 {
10358 low_bits = addend;
10359 high_bits = sign_bits;
10360 }
10361 bfd_put_32 (input_bfd, low_bits,
10362 contents + rel->r_offset);
10363 bfd_put_32 (input_bfd, high_bits,
10364 contents + rel->r_offset + 4);
10365 continue;
10366 }
10367
10368 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10369 input_bfd, input_section,
10370 contents, FALSE))
10371 return FALSE;
10372 }
10373
10374 /* Go on to the next relocation. */
10375 continue;
10376 }
10377
10378 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10379 relocations for the same offset. In that case we are
10380 supposed to treat the output of each relocation as the addend
10381 for the next. */
10382 if (rel + 1 < relend
10383 && rel->r_offset == rel[1].r_offset
10384 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10385 use_saved_addend_p = TRUE;
10386 else
10387 use_saved_addend_p = FALSE;
10388
10389 /* Figure out what value we are supposed to relocate. */
10390 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10391 input_section, info, rel,
10392 addend, howto, local_syms,
10393 local_sections, &value,
10394 &name, &cross_mode_jump_p,
10395 use_saved_addend_p))
10396 {
10397 case bfd_reloc_continue:
10398 /* There's nothing to do. */
10399 continue;
10400
10401 case bfd_reloc_undefined:
10402 /* mips_elf_calculate_relocation already called the
10403 undefined_symbol callback. There's no real point in
10404 trying to perform the relocation at this point, so we
10405 just skip ahead to the next relocation. */
10406 continue;
10407
10408 case bfd_reloc_notsupported:
10409 msg = _("internal error: unsupported relocation error");
10410 info->callbacks->warning
10411 (info, msg, name, input_bfd, input_section, rel->r_offset);
10412 return FALSE;
10413
10414 case bfd_reloc_overflow:
10415 if (use_saved_addend_p)
10416 /* Ignore overflow until we reach the last relocation for
10417 a given location. */
10418 ;
10419 else
10420 {
10421 struct mips_elf_link_hash_table *htab;
10422
10423 htab = mips_elf_hash_table (info);
10424 BFD_ASSERT (htab != NULL);
10425 BFD_ASSERT (name != NULL);
10426 if (!htab->small_data_overflow_reported
10427 && (gprel16_reloc_p (howto->type)
10428 || literal_reloc_p (howto->type)))
10429 {
10430 msg = _("small-data section exceeds 64KB;"
10431 " lower small-data size limit (see option -G)");
10432
10433 htab->small_data_overflow_reported = TRUE;
10434 (*info->callbacks->einfo) ("%P: %s\n", msg);
10435 }
10436 (*info->callbacks->reloc_overflow)
10437 (info, NULL, name, howto->name, (bfd_vma) 0,
10438 input_bfd, input_section, rel->r_offset);
10439 }
10440 break;
10441
10442 case bfd_reloc_ok:
10443 break;
10444
10445 case bfd_reloc_outofrange:
10446 msg = NULL;
10447 if (jal_reloc_p (howto->type))
10448 msg = (cross_mode_jump_p
10449 ? _("Cannot convert a jump to JALX "
10450 "for a non-word-aligned address")
10451 : (howto->type == R_MIPS16_26
10452 ? _("Jump to a non-word-aligned address")
10453 : _("Jump to a non-instruction-aligned address")));
10454 else if (b_reloc_p (howto->type))
10455 msg = (cross_mode_jump_p
10456 ? _("Cannot convert a branch to JALX "
10457 "for a non-word-aligned address")
10458 : _("Branch to a non-instruction-aligned address"));
10459 else if (aligned_pcrel_reloc_p (howto->type))
10460 msg = _("PC-relative load from unaligned address");
10461 if (msg)
10462 {
10463 info->callbacks->einfo
10464 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10465 break;
10466 }
10467 /* Fall through. */
10468
10469 default:
10470 abort ();
10471 break;
10472 }
10473
10474 /* If we've got another relocation for the address, keep going
10475 until we reach the last one. */
10476 if (use_saved_addend_p)
10477 {
10478 addend = value;
10479 continue;
10480 }
10481
10482 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10483 /* See the comment above about using R_MIPS_64 in the 32-bit
10484 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10485 that calculated the right value. Now, however, we
10486 sign-extend the 32-bit result to 64-bits, and store it as a
10487 64-bit value. We are especially generous here in that we
10488 go to extreme lengths to support this usage on systems with
10489 only a 32-bit VMA. */
10490 {
10491 bfd_vma sign_bits;
10492 bfd_vma low_bits;
10493 bfd_vma high_bits;
10494
10495 if (value & ((bfd_vma) 1 << 31))
10496 #ifdef BFD64
10497 sign_bits = ((bfd_vma) 1 << 32) - 1;
10498 #else
10499 sign_bits = -1;
10500 #endif
10501 else
10502 sign_bits = 0;
10503
10504 /* If we don't know that we have a 64-bit type,
10505 do two separate stores. */
10506 if (bfd_big_endian (input_bfd))
10507 {
10508 /* Undo what we did above. */
10509 rel->r_offset -= 4;
10510 /* Store the sign-bits (which are most significant)
10511 first. */
10512 low_bits = sign_bits;
10513 high_bits = value;
10514 }
10515 else
10516 {
10517 low_bits = value;
10518 high_bits = sign_bits;
10519 }
10520 bfd_put_32 (input_bfd, low_bits,
10521 contents + rel->r_offset);
10522 bfd_put_32 (input_bfd, high_bits,
10523 contents + rel->r_offset + 4);
10524 continue;
10525 }
10526
10527 /* Actually perform the relocation. */
10528 if (! mips_elf_perform_relocation (info, howto, rel, value,
10529 input_bfd, input_section,
10530 contents, cross_mode_jump_p))
10531 return FALSE;
10532 }
10533
10534 return TRUE;
10535 }
10536 \f
10537 /* A function that iterates over each entry in la25_stubs and fills
10538 in the code for each one. DATA points to a mips_htab_traverse_info. */
10539
10540 static int
10541 mips_elf_create_la25_stub (void **slot, void *data)
10542 {
10543 struct mips_htab_traverse_info *hti;
10544 struct mips_elf_link_hash_table *htab;
10545 struct mips_elf_la25_stub *stub;
10546 asection *s;
10547 bfd_byte *loc;
10548 bfd_vma offset, target, target_high, target_low;
10549
10550 stub = (struct mips_elf_la25_stub *) *slot;
10551 hti = (struct mips_htab_traverse_info *) data;
10552 htab = mips_elf_hash_table (hti->info);
10553 BFD_ASSERT (htab != NULL);
10554
10555 /* Create the section contents, if we haven't already. */
10556 s = stub->stub_section;
10557 loc = s->contents;
10558 if (loc == NULL)
10559 {
10560 loc = bfd_malloc (s->size);
10561 if (loc == NULL)
10562 {
10563 hti->error = TRUE;
10564 return FALSE;
10565 }
10566 s->contents = loc;
10567 }
10568
10569 /* Work out where in the section this stub should go. */
10570 offset = stub->offset;
10571
10572 /* Work out the target address. */
10573 target = mips_elf_get_la25_target (stub, &s);
10574 target += s->output_section->vma + s->output_offset;
10575
10576 target_high = ((target + 0x8000) >> 16) & 0xffff;
10577 target_low = (target & 0xffff);
10578
10579 if (stub->stub_section != htab->strampoline)
10580 {
10581 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10582 of the section and write the two instructions at the end. */
10583 memset (loc, 0, offset);
10584 loc += offset;
10585 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10586 {
10587 bfd_put_micromips_32 (hti->output_bfd,
10588 LA25_LUI_MICROMIPS (target_high),
10589 loc);
10590 bfd_put_micromips_32 (hti->output_bfd,
10591 LA25_ADDIU_MICROMIPS (target_low),
10592 loc + 4);
10593 }
10594 else
10595 {
10596 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10597 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10598 }
10599 }
10600 else
10601 {
10602 /* This is trampoline. */
10603 loc += offset;
10604 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10605 {
10606 bfd_put_micromips_32 (hti->output_bfd,
10607 LA25_LUI_MICROMIPS (target_high), loc);
10608 bfd_put_micromips_32 (hti->output_bfd,
10609 LA25_J_MICROMIPS (target), loc + 4);
10610 bfd_put_micromips_32 (hti->output_bfd,
10611 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10612 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10613 }
10614 else
10615 {
10616 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10617 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10618 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10619 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10620 }
10621 }
10622 return TRUE;
10623 }
10624
10625 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10626 adjust it appropriately now. */
10627
10628 static void
10629 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10630 const char *name, Elf_Internal_Sym *sym)
10631 {
10632 /* The linker script takes care of providing names and values for
10633 these, but we must place them into the right sections. */
10634 static const char* const text_section_symbols[] = {
10635 "_ftext",
10636 "_etext",
10637 "__dso_displacement",
10638 "__elf_header",
10639 "__program_header_table",
10640 NULL
10641 };
10642
10643 static const char* const data_section_symbols[] = {
10644 "_fdata",
10645 "_edata",
10646 "_end",
10647 "_fbss",
10648 NULL
10649 };
10650
10651 const char* const *p;
10652 int i;
10653
10654 for (i = 0; i < 2; ++i)
10655 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10656 *p;
10657 ++p)
10658 if (strcmp (*p, name) == 0)
10659 {
10660 /* All of these symbols are given type STT_SECTION by the
10661 IRIX6 linker. */
10662 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10663 sym->st_other = STO_PROTECTED;
10664
10665 /* The IRIX linker puts these symbols in special sections. */
10666 if (i == 0)
10667 sym->st_shndx = SHN_MIPS_TEXT;
10668 else
10669 sym->st_shndx = SHN_MIPS_DATA;
10670
10671 break;
10672 }
10673 }
10674
10675 /* Finish up dynamic symbol handling. We set the contents of various
10676 dynamic sections here. */
10677
10678 bfd_boolean
10679 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10680 struct bfd_link_info *info,
10681 struct elf_link_hash_entry *h,
10682 Elf_Internal_Sym *sym)
10683 {
10684 bfd *dynobj;
10685 asection *sgot;
10686 struct mips_got_info *g, *gg;
10687 const char *name;
10688 int idx;
10689 struct mips_elf_link_hash_table *htab;
10690 struct mips_elf_link_hash_entry *hmips;
10691
10692 htab = mips_elf_hash_table (info);
10693 BFD_ASSERT (htab != NULL);
10694 dynobj = elf_hash_table (info)->dynobj;
10695 hmips = (struct mips_elf_link_hash_entry *) h;
10696
10697 BFD_ASSERT (!htab->is_vxworks);
10698
10699 if (h->plt.plist != NULL
10700 && (h->plt.plist->mips_offset != MINUS_ONE
10701 || h->plt.plist->comp_offset != MINUS_ONE))
10702 {
10703 /* We've decided to create a PLT entry for this symbol. */
10704 bfd_byte *loc;
10705 bfd_vma header_address, got_address;
10706 bfd_vma got_address_high, got_address_low, load;
10707 bfd_vma got_index;
10708 bfd_vma isa_bit;
10709
10710 got_index = h->plt.plist->gotplt_index;
10711
10712 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10713 BFD_ASSERT (h->dynindx != -1);
10714 BFD_ASSERT (htab->splt != NULL);
10715 BFD_ASSERT (got_index != MINUS_ONE);
10716 BFD_ASSERT (!h->def_regular);
10717
10718 /* Calculate the address of the PLT header. */
10719 isa_bit = htab->plt_header_is_comp;
10720 header_address = (htab->splt->output_section->vma
10721 + htab->splt->output_offset + isa_bit);
10722
10723 /* Calculate the address of the .got.plt entry. */
10724 got_address = (htab->sgotplt->output_section->vma
10725 + htab->sgotplt->output_offset
10726 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10727
10728 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10729 got_address_low = got_address & 0xffff;
10730
10731 /* Initially point the .got.plt entry at the PLT header. */
10732 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10733 if (ABI_64_P (output_bfd))
10734 bfd_put_64 (output_bfd, header_address, loc);
10735 else
10736 bfd_put_32 (output_bfd, header_address, loc);
10737
10738 /* Now handle the PLT itself. First the standard entry (the order
10739 does not matter, we just have to pick one). */
10740 if (h->plt.plist->mips_offset != MINUS_ONE)
10741 {
10742 const bfd_vma *plt_entry;
10743 bfd_vma plt_offset;
10744
10745 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10746
10747 BFD_ASSERT (plt_offset <= htab->splt->size);
10748
10749 /* Find out where the .plt entry should go. */
10750 loc = htab->splt->contents + plt_offset;
10751
10752 /* Pick the load opcode. */
10753 load = MIPS_ELF_LOAD_WORD (output_bfd);
10754
10755 /* Fill in the PLT entry itself. */
10756
10757 if (MIPSR6_P (output_bfd))
10758 plt_entry = mipsr6_exec_plt_entry;
10759 else
10760 plt_entry = mips_exec_plt_entry;
10761 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10762 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10763 loc + 4);
10764
10765 if (! LOAD_INTERLOCKS_P (output_bfd))
10766 {
10767 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10768 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10769 }
10770 else
10771 {
10772 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10773 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10774 loc + 12);
10775 }
10776 }
10777
10778 /* Now the compressed entry. They come after any standard ones. */
10779 if (h->plt.plist->comp_offset != MINUS_ONE)
10780 {
10781 bfd_vma plt_offset;
10782
10783 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10784 + h->plt.plist->comp_offset);
10785
10786 BFD_ASSERT (plt_offset <= htab->splt->size);
10787
10788 /* Find out where the .plt entry should go. */
10789 loc = htab->splt->contents + plt_offset;
10790
10791 /* Fill in the PLT entry itself. */
10792 if (!MICROMIPS_P (output_bfd))
10793 {
10794 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10795
10796 bfd_put_16 (output_bfd, plt_entry[0], loc);
10797 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10798 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10799 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10800 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10801 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10802 bfd_put_32 (output_bfd, got_address, loc + 12);
10803 }
10804 else if (htab->insn32)
10805 {
10806 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10807
10808 bfd_put_16 (output_bfd, plt_entry[0], loc);
10809 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10810 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10811 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10812 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10813 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10814 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10815 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10816 }
10817 else
10818 {
10819 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10820 bfd_signed_vma gotpc_offset;
10821 bfd_vma loc_address;
10822
10823 BFD_ASSERT (got_address % 4 == 0);
10824
10825 loc_address = (htab->splt->output_section->vma
10826 + htab->splt->output_offset + plt_offset);
10827 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10828
10829 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10830 if (gotpc_offset + 0x1000000 >= 0x2000000)
10831 {
10832 _bfd_error_handler
10833 /* xgettext:c-format */
10834 (_("%B: `%A' offset of %ld from `%A' "
10835 "beyond the range of ADDIUPC"),
10836 output_bfd,
10837 htab->sgotplt->output_section,
10838 htab->splt->output_section,
10839 (long) gotpc_offset);
10840 bfd_set_error (bfd_error_no_error);
10841 return FALSE;
10842 }
10843 bfd_put_16 (output_bfd,
10844 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10845 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10846 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10847 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10848 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10849 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10850 }
10851 }
10852
10853 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10854 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10855 got_index - 2, h->dynindx,
10856 R_MIPS_JUMP_SLOT, got_address);
10857
10858 /* We distinguish between PLT entries and lazy-binding stubs by
10859 giving the former an st_other value of STO_MIPS_PLT. Set the
10860 flag and leave the value if there are any relocations in the
10861 binary where pointer equality matters. */
10862 sym->st_shndx = SHN_UNDEF;
10863 if (h->pointer_equality_needed)
10864 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10865 else
10866 {
10867 sym->st_value = 0;
10868 sym->st_other = 0;
10869 }
10870 }
10871
10872 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10873 {
10874 /* We've decided to create a lazy-binding stub. */
10875 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10876 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10877 bfd_vma stub_size = htab->function_stub_size;
10878 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10879 bfd_vma isa_bit = micromips_p;
10880 bfd_vma stub_big_size;
10881
10882 if (!micromips_p)
10883 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10884 else if (htab->insn32)
10885 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10886 else
10887 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10888
10889 /* This symbol has a stub. Set it up. */
10890
10891 BFD_ASSERT (h->dynindx != -1);
10892
10893 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10894
10895 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10896 sign extension at runtime in the stub, resulting in a negative
10897 index value. */
10898 if (h->dynindx & ~0x7fffffff)
10899 return FALSE;
10900
10901 /* Fill the stub. */
10902 if (micromips_p)
10903 {
10904 idx = 0;
10905 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10906 stub + idx);
10907 idx += 4;
10908 if (htab->insn32)
10909 {
10910 bfd_put_micromips_32 (output_bfd,
10911 STUB_MOVE32_MICROMIPS, stub + idx);
10912 idx += 4;
10913 }
10914 else
10915 {
10916 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10917 idx += 2;
10918 }
10919 if (stub_size == stub_big_size)
10920 {
10921 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10922
10923 bfd_put_micromips_32 (output_bfd,
10924 STUB_LUI_MICROMIPS (dynindx_hi),
10925 stub + idx);
10926 idx += 4;
10927 }
10928 if (htab->insn32)
10929 {
10930 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10931 stub + idx);
10932 idx += 4;
10933 }
10934 else
10935 {
10936 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10937 idx += 2;
10938 }
10939
10940 /* If a large stub is not required and sign extension is not a
10941 problem, then use legacy code in the stub. */
10942 if (stub_size == stub_big_size)
10943 bfd_put_micromips_32 (output_bfd,
10944 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10945 stub + idx);
10946 else if (h->dynindx & ~0x7fff)
10947 bfd_put_micromips_32 (output_bfd,
10948 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10949 stub + idx);
10950 else
10951 bfd_put_micromips_32 (output_bfd,
10952 STUB_LI16S_MICROMIPS (output_bfd,
10953 h->dynindx),
10954 stub + idx);
10955 }
10956 else
10957 {
10958 idx = 0;
10959 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10960 idx += 4;
10961 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10962 idx += 4;
10963 if (stub_size == stub_big_size)
10964 {
10965 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10966 stub + idx);
10967 idx += 4;
10968 }
10969 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10970 idx += 4;
10971
10972 /* If a large stub is not required and sign extension is not a
10973 problem, then use legacy code in the stub. */
10974 if (stub_size == stub_big_size)
10975 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10976 stub + idx);
10977 else if (h->dynindx & ~0x7fff)
10978 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10979 stub + idx);
10980 else
10981 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10982 stub + idx);
10983 }
10984
10985 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10986 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10987 stub, stub_size);
10988
10989 /* Mark the symbol as undefined. stub_offset != -1 occurs
10990 only for the referenced symbol. */
10991 sym->st_shndx = SHN_UNDEF;
10992
10993 /* The run-time linker uses the st_value field of the symbol
10994 to reset the global offset table entry for this external
10995 to its stub address when unlinking a shared object. */
10996 sym->st_value = (htab->sstubs->output_section->vma
10997 + htab->sstubs->output_offset
10998 + h->plt.plist->stub_offset
10999 + isa_bit);
11000 sym->st_other = other;
11001 }
11002
11003 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11004 refer to the stub, since only the stub uses the standard calling
11005 conventions. */
11006 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11007 {
11008 BFD_ASSERT (hmips->need_fn_stub);
11009 sym->st_value = (hmips->fn_stub->output_section->vma
11010 + hmips->fn_stub->output_offset);
11011 sym->st_size = hmips->fn_stub->size;
11012 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11013 }
11014
11015 BFD_ASSERT (h->dynindx != -1
11016 || h->forced_local);
11017
11018 sgot = htab->sgot;
11019 g = htab->got_info;
11020 BFD_ASSERT (g != NULL);
11021
11022 /* Run through the global symbol table, creating GOT entries for all
11023 the symbols that need them. */
11024 if (hmips->global_got_area != GGA_NONE)
11025 {
11026 bfd_vma offset;
11027 bfd_vma value;
11028
11029 value = sym->st_value;
11030 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11031 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11032 }
11033
11034 if (hmips->global_got_area != GGA_NONE && g->next)
11035 {
11036 struct mips_got_entry e, *p;
11037 bfd_vma entry;
11038 bfd_vma offset;
11039
11040 gg = g;
11041
11042 e.abfd = output_bfd;
11043 e.symndx = -1;
11044 e.d.h = hmips;
11045 e.tls_type = GOT_TLS_NONE;
11046
11047 for (g = g->next; g->next != gg; g = g->next)
11048 {
11049 if (g->got_entries
11050 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11051 &e)))
11052 {
11053 offset = p->gotidx;
11054 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
11055 if (bfd_link_pic (info)
11056 || (elf_hash_table (info)->dynamic_sections_created
11057 && p->d.h != NULL
11058 && p->d.h->root.def_dynamic
11059 && !p->d.h->root.def_regular))
11060 {
11061 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11062 the various compatibility problems, it's easier to mock
11063 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11064 mips_elf_create_dynamic_relocation to calculate the
11065 appropriate addend. */
11066 Elf_Internal_Rela rel[3];
11067
11068 memset (rel, 0, sizeof (rel));
11069 if (ABI_64_P (output_bfd))
11070 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11071 else
11072 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11073 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11074
11075 entry = 0;
11076 if (! (mips_elf_create_dynamic_relocation
11077 (output_bfd, info, rel,
11078 e.d.h, NULL, sym->st_value, &entry, sgot)))
11079 return FALSE;
11080 }
11081 else
11082 entry = sym->st_value;
11083 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11084 }
11085 }
11086 }
11087
11088 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11089 name = h->root.root.string;
11090 if (h == elf_hash_table (info)->hdynamic
11091 || h == elf_hash_table (info)->hgot)
11092 sym->st_shndx = SHN_ABS;
11093 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11094 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11095 {
11096 sym->st_shndx = SHN_ABS;
11097 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11098 sym->st_value = 1;
11099 }
11100 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
11101 {
11102 sym->st_shndx = SHN_ABS;
11103 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11104 sym->st_value = elf_gp (output_bfd);
11105 }
11106 else if (SGI_COMPAT (output_bfd))
11107 {
11108 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11109 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11110 {
11111 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11112 sym->st_other = STO_PROTECTED;
11113 sym->st_value = 0;
11114 sym->st_shndx = SHN_MIPS_DATA;
11115 }
11116 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11117 {
11118 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11119 sym->st_other = STO_PROTECTED;
11120 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11121 sym->st_shndx = SHN_ABS;
11122 }
11123 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11124 {
11125 if (h->type == STT_FUNC)
11126 sym->st_shndx = SHN_MIPS_TEXT;
11127 else if (h->type == STT_OBJECT)
11128 sym->st_shndx = SHN_MIPS_DATA;
11129 }
11130 }
11131
11132 /* Emit a copy reloc, if needed. */
11133 if (h->needs_copy)
11134 {
11135 asection *s;
11136 bfd_vma symval;
11137
11138 BFD_ASSERT (h->dynindx != -1);
11139 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11140
11141 s = mips_elf_rel_dyn_section (info, FALSE);
11142 symval = (h->root.u.def.section->output_section->vma
11143 + h->root.u.def.section->output_offset
11144 + h->root.u.def.value);
11145 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11146 h->dynindx, R_MIPS_COPY, symval);
11147 }
11148
11149 /* Handle the IRIX6-specific symbols. */
11150 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11151 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11152
11153 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11154 to treat compressed symbols like any other. */
11155 if (ELF_ST_IS_MIPS16 (sym->st_other))
11156 {
11157 BFD_ASSERT (sym->st_value & 1);
11158 sym->st_other -= STO_MIPS16;
11159 }
11160 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11161 {
11162 BFD_ASSERT (sym->st_value & 1);
11163 sym->st_other -= STO_MICROMIPS;
11164 }
11165
11166 return TRUE;
11167 }
11168
11169 /* Likewise, for VxWorks. */
11170
11171 bfd_boolean
11172 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11173 struct bfd_link_info *info,
11174 struct elf_link_hash_entry *h,
11175 Elf_Internal_Sym *sym)
11176 {
11177 bfd *dynobj;
11178 asection *sgot;
11179 struct mips_got_info *g;
11180 struct mips_elf_link_hash_table *htab;
11181 struct mips_elf_link_hash_entry *hmips;
11182
11183 htab = mips_elf_hash_table (info);
11184 BFD_ASSERT (htab != NULL);
11185 dynobj = elf_hash_table (info)->dynobj;
11186 hmips = (struct mips_elf_link_hash_entry *) h;
11187
11188 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11189 {
11190 bfd_byte *loc;
11191 bfd_vma plt_address, got_address, got_offset, branch_offset;
11192 Elf_Internal_Rela rel;
11193 static const bfd_vma *plt_entry;
11194 bfd_vma gotplt_index;
11195 bfd_vma plt_offset;
11196
11197 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11198 gotplt_index = h->plt.plist->gotplt_index;
11199
11200 BFD_ASSERT (h->dynindx != -1);
11201 BFD_ASSERT (htab->splt != NULL);
11202 BFD_ASSERT (gotplt_index != MINUS_ONE);
11203 BFD_ASSERT (plt_offset <= htab->splt->size);
11204
11205 /* Calculate the address of the .plt entry. */
11206 plt_address = (htab->splt->output_section->vma
11207 + htab->splt->output_offset
11208 + plt_offset);
11209
11210 /* Calculate the address of the .got.plt entry. */
11211 got_address = (htab->sgotplt->output_section->vma
11212 + htab->sgotplt->output_offset
11213 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11214
11215 /* Calculate the offset of the .got.plt entry from
11216 _GLOBAL_OFFSET_TABLE_. */
11217 got_offset = mips_elf_gotplt_index (info, h);
11218
11219 /* Calculate the offset for the branch at the start of the PLT
11220 entry. The branch jumps to the beginning of .plt. */
11221 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11222
11223 /* Fill in the initial value of the .got.plt entry. */
11224 bfd_put_32 (output_bfd, plt_address,
11225 (htab->sgotplt->contents
11226 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11227
11228 /* Find out where the .plt entry should go. */
11229 loc = htab->splt->contents + plt_offset;
11230
11231 if (bfd_link_pic (info))
11232 {
11233 plt_entry = mips_vxworks_shared_plt_entry;
11234 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11235 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11236 }
11237 else
11238 {
11239 bfd_vma got_address_high, got_address_low;
11240
11241 plt_entry = mips_vxworks_exec_plt_entry;
11242 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11243 got_address_low = got_address & 0xffff;
11244
11245 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11246 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11247 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11248 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11249 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11250 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11251 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11252 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11253
11254 loc = (htab->srelplt2->contents
11255 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11256
11257 /* Emit a relocation for the .got.plt entry. */
11258 rel.r_offset = got_address;
11259 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11260 rel.r_addend = plt_offset;
11261 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11262
11263 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11264 loc += sizeof (Elf32_External_Rela);
11265 rel.r_offset = plt_address + 8;
11266 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11267 rel.r_addend = got_offset;
11268 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11269
11270 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11271 loc += sizeof (Elf32_External_Rela);
11272 rel.r_offset += 4;
11273 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11274 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11275 }
11276
11277 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11278 loc = (htab->srelplt->contents
11279 + gotplt_index * sizeof (Elf32_External_Rela));
11280 rel.r_offset = got_address;
11281 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11282 rel.r_addend = 0;
11283 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11284
11285 if (!h->def_regular)
11286 sym->st_shndx = SHN_UNDEF;
11287 }
11288
11289 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11290
11291 sgot = htab->sgot;
11292 g = htab->got_info;
11293 BFD_ASSERT (g != NULL);
11294
11295 /* See if this symbol has an entry in the GOT. */
11296 if (hmips->global_got_area != GGA_NONE)
11297 {
11298 bfd_vma offset;
11299 Elf_Internal_Rela outrel;
11300 bfd_byte *loc;
11301 asection *s;
11302
11303 /* Install the symbol value in the GOT. */
11304 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11305 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11306
11307 /* Add a dynamic relocation for it. */
11308 s = mips_elf_rel_dyn_section (info, FALSE);
11309 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11310 outrel.r_offset = (sgot->output_section->vma
11311 + sgot->output_offset
11312 + offset);
11313 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11314 outrel.r_addend = 0;
11315 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11316 }
11317
11318 /* Emit a copy reloc, if needed. */
11319 if (h->needs_copy)
11320 {
11321 Elf_Internal_Rela rel;
11322
11323 BFD_ASSERT (h->dynindx != -1);
11324
11325 rel.r_offset = (h->root.u.def.section->output_section->vma
11326 + h->root.u.def.section->output_offset
11327 + h->root.u.def.value);
11328 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11329 rel.r_addend = 0;
11330 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11331 htab->srelbss->contents
11332 + (htab->srelbss->reloc_count
11333 * sizeof (Elf32_External_Rela)));
11334 ++htab->srelbss->reloc_count;
11335 }
11336
11337 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11338 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11339 sym->st_value &= ~1;
11340
11341 return TRUE;
11342 }
11343
11344 /* Write out a plt0 entry to the beginning of .plt. */
11345
11346 static bfd_boolean
11347 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11348 {
11349 bfd_byte *loc;
11350 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11351 static const bfd_vma *plt_entry;
11352 struct mips_elf_link_hash_table *htab;
11353
11354 htab = mips_elf_hash_table (info);
11355 BFD_ASSERT (htab != NULL);
11356
11357 if (ABI_64_P (output_bfd))
11358 plt_entry = mips_n64_exec_plt0_entry;
11359 else if (ABI_N32_P (output_bfd))
11360 plt_entry = mips_n32_exec_plt0_entry;
11361 else if (!htab->plt_header_is_comp)
11362 plt_entry = mips_o32_exec_plt0_entry;
11363 else if (htab->insn32)
11364 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11365 else
11366 plt_entry = micromips_o32_exec_plt0_entry;
11367
11368 /* Calculate the value of .got.plt. */
11369 gotplt_value = (htab->sgotplt->output_section->vma
11370 + htab->sgotplt->output_offset);
11371 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11372 gotplt_value_low = gotplt_value & 0xffff;
11373
11374 /* The PLT sequence is not safe for N64 if .got.plt's address can
11375 not be loaded in two instructions. */
11376 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11377 || ~(gotplt_value | 0x7fffffff) == 0);
11378
11379 /* Install the PLT header. */
11380 loc = htab->splt->contents;
11381 if (plt_entry == micromips_o32_exec_plt0_entry)
11382 {
11383 bfd_vma gotpc_offset;
11384 bfd_vma loc_address;
11385 size_t i;
11386
11387 BFD_ASSERT (gotplt_value % 4 == 0);
11388
11389 loc_address = (htab->splt->output_section->vma
11390 + htab->splt->output_offset);
11391 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11392
11393 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11394 if (gotpc_offset + 0x1000000 >= 0x2000000)
11395 {
11396 _bfd_error_handler
11397 /* xgettext:c-format */
11398 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11399 output_bfd,
11400 htab->sgotplt->output_section,
11401 htab->splt->output_section,
11402 (long) gotpc_offset);
11403 bfd_set_error (bfd_error_no_error);
11404 return FALSE;
11405 }
11406 bfd_put_16 (output_bfd,
11407 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11408 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11409 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11410 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11411 }
11412 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11413 {
11414 size_t i;
11415
11416 bfd_put_16 (output_bfd, plt_entry[0], loc);
11417 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11418 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11419 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11420 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11421 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11422 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11423 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11424 }
11425 else
11426 {
11427 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11428 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11429 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11430 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11431 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11432 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11433 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11434 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11435 }
11436
11437 return TRUE;
11438 }
11439
11440 /* Install the PLT header for a VxWorks executable and finalize the
11441 contents of .rela.plt.unloaded. */
11442
11443 static void
11444 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11445 {
11446 Elf_Internal_Rela rela;
11447 bfd_byte *loc;
11448 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11449 static const bfd_vma *plt_entry;
11450 struct mips_elf_link_hash_table *htab;
11451
11452 htab = mips_elf_hash_table (info);
11453 BFD_ASSERT (htab != NULL);
11454
11455 plt_entry = mips_vxworks_exec_plt0_entry;
11456
11457 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11458 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11459 + htab->root.hgot->root.u.def.section->output_offset
11460 + htab->root.hgot->root.u.def.value);
11461
11462 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11463 got_value_low = got_value & 0xffff;
11464
11465 /* Calculate the address of the PLT header. */
11466 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11467
11468 /* Install the PLT header. */
11469 loc = htab->splt->contents;
11470 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11471 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11472 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11473 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11474 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11475 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11476
11477 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11478 loc = htab->srelplt2->contents;
11479 rela.r_offset = plt_address;
11480 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11481 rela.r_addend = 0;
11482 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11483 loc += sizeof (Elf32_External_Rela);
11484
11485 /* Output the relocation for the following addiu of
11486 %lo(_GLOBAL_OFFSET_TABLE_). */
11487 rela.r_offset += 4;
11488 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11489 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11490 loc += sizeof (Elf32_External_Rela);
11491
11492 /* Fix up the remaining relocations. They may have the wrong
11493 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11494 in which symbols were output. */
11495 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11496 {
11497 Elf_Internal_Rela rel;
11498
11499 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11500 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11501 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11502 loc += sizeof (Elf32_External_Rela);
11503
11504 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11505 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11506 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11507 loc += sizeof (Elf32_External_Rela);
11508
11509 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11510 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11511 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11512 loc += sizeof (Elf32_External_Rela);
11513 }
11514 }
11515
11516 /* Install the PLT header for a VxWorks shared library. */
11517
11518 static void
11519 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11520 {
11521 unsigned int i;
11522 struct mips_elf_link_hash_table *htab;
11523
11524 htab = mips_elf_hash_table (info);
11525 BFD_ASSERT (htab != NULL);
11526
11527 /* We just need to copy the entry byte-by-byte. */
11528 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11529 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11530 htab->splt->contents + i * 4);
11531 }
11532
11533 /* Finish up the dynamic sections. */
11534
11535 bfd_boolean
11536 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11537 struct bfd_link_info *info)
11538 {
11539 bfd *dynobj;
11540 asection *sdyn;
11541 asection *sgot;
11542 struct mips_got_info *gg, *g;
11543 struct mips_elf_link_hash_table *htab;
11544
11545 htab = mips_elf_hash_table (info);
11546 BFD_ASSERT (htab != NULL);
11547
11548 dynobj = elf_hash_table (info)->dynobj;
11549
11550 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11551
11552 sgot = htab->sgot;
11553 gg = htab->got_info;
11554
11555 if (elf_hash_table (info)->dynamic_sections_created)
11556 {
11557 bfd_byte *b;
11558 int dyn_to_skip = 0, dyn_skipped = 0;
11559
11560 BFD_ASSERT (sdyn != NULL);
11561 BFD_ASSERT (gg != NULL);
11562
11563 g = mips_elf_bfd_got (output_bfd, FALSE);
11564 BFD_ASSERT (g != NULL);
11565
11566 for (b = sdyn->contents;
11567 b < sdyn->contents + sdyn->size;
11568 b += MIPS_ELF_DYN_SIZE (dynobj))
11569 {
11570 Elf_Internal_Dyn dyn;
11571 const char *name;
11572 size_t elemsize;
11573 asection *s;
11574 bfd_boolean swap_out_p;
11575
11576 /* Read in the current dynamic entry. */
11577 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11578
11579 /* Assume that we're going to modify it and write it out. */
11580 swap_out_p = TRUE;
11581
11582 switch (dyn.d_tag)
11583 {
11584 case DT_RELENT:
11585 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11586 break;
11587
11588 case DT_RELAENT:
11589 BFD_ASSERT (htab->is_vxworks);
11590 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11591 break;
11592
11593 case DT_STRSZ:
11594 /* Rewrite DT_STRSZ. */
11595 dyn.d_un.d_val =
11596 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11597 break;
11598
11599 case DT_PLTGOT:
11600 s = htab->sgot;
11601 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11602 break;
11603
11604 case DT_MIPS_PLTGOT:
11605 s = htab->sgotplt;
11606 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11607 break;
11608
11609 case DT_MIPS_RLD_VERSION:
11610 dyn.d_un.d_val = 1; /* XXX */
11611 break;
11612
11613 case DT_MIPS_FLAGS:
11614 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11615 break;
11616
11617 case DT_MIPS_TIME_STAMP:
11618 {
11619 time_t t;
11620 time (&t);
11621 dyn.d_un.d_val = t;
11622 }
11623 break;
11624
11625 case DT_MIPS_ICHECKSUM:
11626 /* XXX FIXME: */
11627 swap_out_p = FALSE;
11628 break;
11629
11630 case DT_MIPS_IVERSION:
11631 /* XXX FIXME: */
11632 swap_out_p = FALSE;
11633 break;
11634
11635 case DT_MIPS_BASE_ADDRESS:
11636 s = output_bfd->sections;
11637 BFD_ASSERT (s != NULL);
11638 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11639 break;
11640
11641 case DT_MIPS_LOCAL_GOTNO:
11642 dyn.d_un.d_val = g->local_gotno;
11643 break;
11644
11645 case DT_MIPS_UNREFEXTNO:
11646 /* The index into the dynamic symbol table which is the
11647 entry of the first external symbol that is not
11648 referenced within the same object. */
11649 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11650 break;
11651
11652 case DT_MIPS_GOTSYM:
11653 if (htab->global_gotsym)
11654 {
11655 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11656 break;
11657 }
11658 /* In case if we don't have global got symbols we default
11659 to setting DT_MIPS_GOTSYM to the same value as
11660 DT_MIPS_SYMTABNO. */
11661 /* Fall through. */
11662
11663 case DT_MIPS_SYMTABNO:
11664 name = ".dynsym";
11665 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11666 s = bfd_get_linker_section (dynobj, name);
11667
11668 if (s != NULL)
11669 dyn.d_un.d_val = s->size / elemsize;
11670 else
11671 dyn.d_un.d_val = 0;
11672 break;
11673
11674 case DT_MIPS_HIPAGENO:
11675 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11676 break;
11677
11678 case DT_MIPS_RLD_MAP:
11679 {
11680 struct elf_link_hash_entry *h;
11681 h = mips_elf_hash_table (info)->rld_symbol;
11682 if (!h)
11683 {
11684 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11685 swap_out_p = FALSE;
11686 break;
11687 }
11688 s = h->root.u.def.section;
11689
11690 /* The MIPS_RLD_MAP tag stores the absolute address of the
11691 debug pointer. */
11692 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11693 + h->root.u.def.value);
11694 }
11695 break;
11696
11697 case DT_MIPS_RLD_MAP_REL:
11698 {
11699 struct elf_link_hash_entry *h;
11700 bfd_vma dt_addr, rld_addr;
11701 h = mips_elf_hash_table (info)->rld_symbol;
11702 if (!h)
11703 {
11704 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11705 swap_out_p = FALSE;
11706 break;
11707 }
11708 s = h->root.u.def.section;
11709
11710 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11711 pointer, relative to the address of the tag. */
11712 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11713 + (b - sdyn->contents));
11714 rld_addr = (s->output_section->vma + s->output_offset
11715 + h->root.u.def.value);
11716 dyn.d_un.d_ptr = rld_addr - dt_addr;
11717 }
11718 break;
11719
11720 case DT_MIPS_OPTIONS:
11721 s = (bfd_get_section_by_name
11722 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11723 dyn.d_un.d_ptr = s->vma;
11724 break;
11725
11726 case DT_RELASZ:
11727 BFD_ASSERT (htab->is_vxworks);
11728 /* The count does not include the JUMP_SLOT relocations. */
11729 if (htab->srelplt)
11730 dyn.d_un.d_val -= htab->srelplt->size;
11731 break;
11732
11733 case DT_PLTREL:
11734 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11735 if (htab->is_vxworks)
11736 dyn.d_un.d_val = DT_RELA;
11737 else
11738 dyn.d_un.d_val = DT_REL;
11739 break;
11740
11741 case DT_PLTRELSZ:
11742 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11743 dyn.d_un.d_val = htab->srelplt->size;
11744 break;
11745
11746 case DT_JMPREL:
11747 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11748 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11749 + htab->srelplt->output_offset);
11750 break;
11751
11752 case DT_TEXTREL:
11753 /* If we didn't need any text relocations after all, delete
11754 the dynamic tag. */
11755 if (!(info->flags & DF_TEXTREL))
11756 {
11757 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11758 swap_out_p = FALSE;
11759 }
11760 break;
11761
11762 case DT_FLAGS:
11763 /* If we didn't need any text relocations after all, clear
11764 DF_TEXTREL from DT_FLAGS. */
11765 if (!(info->flags & DF_TEXTREL))
11766 dyn.d_un.d_val &= ~DF_TEXTREL;
11767 else
11768 swap_out_p = FALSE;
11769 break;
11770
11771 default:
11772 swap_out_p = FALSE;
11773 if (htab->is_vxworks
11774 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11775 swap_out_p = TRUE;
11776 break;
11777 }
11778
11779 if (swap_out_p || dyn_skipped)
11780 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11781 (dynobj, &dyn, b - dyn_skipped);
11782
11783 if (dyn_to_skip)
11784 {
11785 dyn_skipped += dyn_to_skip;
11786 dyn_to_skip = 0;
11787 }
11788 }
11789
11790 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11791 if (dyn_skipped > 0)
11792 memset (b - dyn_skipped, 0, dyn_skipped);
11793 }
11794
11795 if (sgot != NULL && sgot->size > 0
11796 && !bfd_is_abs_section (sgot->output_section))
11797 {
11798 if (htab->is_vxworks)
11799 {
11800 /* The first entry of the global offset table points to the
11801 ".dynamic" section. The second is initialized by the
11802 loader and contains the shared library identifier.
11803 The third is also initialized by the loader and points
11804 to the lazy resolution stub. */
11805 MIPS_ELF_PUT_WORD (output_bfd,
11806 sdyn->output_offset + sdyn->output_section->vma,
11807 sgot->contents);
11808 MIPS_ELF_PUT_WORD (output_bfd, 0,
11809 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11810 MIPS_ELF_PUT_WORD (output_bfd, 0,
11811 sgot->contents
11812 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11813 }
11814 else
11815 {
11816 /* The first entry of the global offset table will be filled at
11817 runtime. The second entry will be used by some runtime loaders.
11818 This isn't the case of IRIX rld. */
11819 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11820 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11821 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11822 }
11823
11824 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11825 = MIPS_ELF_GOT_SIZE (output_bfd);
11826 }
11827
11828 /* Generate dynamic relocations for the non-primary gots. */
11829 if (gg != NULL && gg->next)
11830 {
11831 Elf_Internal_Rela rel[3];
11832 bfd_vma addend = 0;
11833
11834 memset (rel, 0, sizeof (rel));
11835 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11836
11837 for (g = gg->next; g->next != gg; g = g->next)
11838 {
11839 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11840 + g->next->tls_gotno;
11841
11842 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11843 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11844 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11845 sgot->contents
11846 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11847
11848 if (! bfd_link_pic (info))
11849 continue;
11850
11851 for (; got_index < g->local_gotno; got_index++)
11852 {
11853 if (got_index >= g->assigned_low_gotno
11854 && got_index <= g->assigned_high_gotno)
11855 continue;
11856
11857 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11858 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11859 if (!(mips_elf_create_dynamic_relocation
11860 (output_bfd, info, rel, NULL,
11861 bfd_abs_section_ptr,
11862 0, &addend, sgot)))
11863 return FALSE;
11864 BFD_ASSERT (addend == 0);
11865 }
11866 }
11867 }
11868
11869 /* The generation of dynamic relocations for the non-primary gots
11870 adds more dynamic relocations. We cannot count them until
11871 here. */
11872
11873 if (elf_hash_table (info)->dynamic_sections_created)
11874 {
11875 bfd_byte *b;
11876 bfd_boolean swap_out_p;
11877
11878 BFD_ASSERT (sdyn != NULL);
11879
11880 for (b = sdyn->contents;
11881 b < sdyn->contents + sdyn->size;
11882 b += MIPS_ELF_DYN_SIZE (dynobj))
11883 {
11884 Elf_Internal_Dyn dyn;
11885 asection *s;
11886
11887 /* Read in the current dynamic entry. */
11888 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11889
11890 /* Assume that we're going to modify it and write it out. */
11891 swap_out_p = TRUE;
11892
11893 switch (dyn.d_tag)
11894 {
11895 case DT_RELSZ:
11896 /* Reduce DT_RELSZ to account for any relocations we
11897 decided not to make. This is for the n64 irix rld,
11898 which doesn't seem to apply any relocations if there
11899 are trailing null entries. */
11900 s = mips_elf_rel_dyn_section (info, FALSE);
11901 dyn.d_un.d_val = (s->reloc_count
11902 * (ABI_64_P (output_bfd)
11903 ? sizeof (Elf64_Mips_External_Rel)
11904 : sizeof (Elf32_External_Rel)));
11905 /* Adjust the section size too. Tools like the prelinker
11906 can reasonably expect the values to the same. */
11907 elf_section_data (s->output_section)->this_hdr.sh_size
11908 = dyn.d_un.d_val;
11909 break;
11910
11911 default:
11912 swap_out_p = FALSE;
11913 break;
11914 }
11915
11916 if (swap_out_p)
11917 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11918 (dynobj, &dyn, b);
11919 }
11920 }
11921
11922 {
11923 asection *s;
11924 Elf32_compact_rel cpt;
11925
11926 if (SGI_COMPAT (output_bfd))
11927 {
11928 /* Write .compact_rel section out. */
11929 s = bfd_get_linker_section (dynobj, ".compact_rel");
11930 if (s != NULL)
11931 {
11932 cpt.id1 = 1;
11933 cpt.num = s->reloc_count;
11934 cpt.id2 = 2;
11935 cpt.offset = (s->output_section->filepos
11936 + sizeof (Elf32_External_compact_rel));
11937 cpt.reserved0 = 0;
11938 cpt.reserved1 = 0;
11939 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11940 ((Elf32_External_compact_rel *)
11941 s->contents));
11942
11943 /* Clean up a dummy stub function entry in .text. */
11944 if (htab->sstubs != NULL)
11945 {
11946 file_ptr dummy_offset;
11947
11948 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11949 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11950 memset (htab->sstubs->contents + dummy_offset, 0,
11951 htab->function_stub_size);
11952 }
11953 }
11954 }
11955
11956 /* The psABI says that the dynamic relocations must be sorted in
11957 increasing order of r_symndx. The VxWorks EABI doesn't require
11958 this, and because the code below handles REL rather than RELA
11959 relocations, using it for VxWorks would be outright harmful. */
11960 if (!htab->is_vxworks)
11961 {
11962 s = mips_elf_rel_dyn_section (info, FALSE);
11963 if (s != NULL
11964 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11965 {
11966 reldyn_sorting_bfd = output_bfd;
11967
11968 if (ABI_64_P (output_bfd))
11969 qsort ((Elf64_External_Rel *) s->contents + 1,
11970 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11971 sort_dynamic_relocs_64);
11972 else
11973 qsort ((Elf32_External_Rel *) s->contents + 1,
11974 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11975 sort_dynamic_relocs);
11976 }
11977 }
11978 }
11979
11980 if (htab->splt && htab->splt->size > 0)
11981 {
11982 if (htab->is_vxworks)
11983 {
11984 if (bfd_link_pic (info))
11985 mips_vxworks_finish_shared_plt (output_bfd, info);
11986 else
11987 mips_vxworks_finish_exec_plt (output_bfd, info);
11988 }
11989 else
11990 {
11991 BFD_ASSERT (!bfd_link_pic (info));
11992 if (!mips_finish_exec_plt (output_bfd, info))
11993 return FALSE;
11994 }
11995 }
11996 return TRUE;
11997 }
11998
11999
12000 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12001
12002 static void
12003 mips_set_isa_flags (bfd *abfd)
12004 {
12005 flagword val;
12006
12007 switch (bfd_get_mach (abfd))
12008 {
12009 default:
12010 case bfd_mach_mips3000:
12011 val = E_MIPS_ARCH_1;
12012 break;
12013
12014 case bfd_mach_mips3900:
12015 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12016 break;
12017
12018 case bfd_mach_mips6000:
12019 val = E_MIPS_ARCH_2;
12020 break;
12021
12022 case bfd_mach_mips4000:
12023 case bfd_mach_mips4300:
12024 case bfd_mach_mips4400:
12025 case bfd_mach_mips4600:
12026 val = E_MIPS_ARCH_3;
12027 break;
12028
12029 case bfd_mach_mips4010:
12030 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12031 break;
12032
12033 case bfd_mach_mips4100:
12034 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12035 break;
12036
12037 case bfd_mach_mips4111:
12038 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12039 break;
12040
12041 case bfd_mach_mips4120:
12042 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12043 break;
12044
12045 case bfd_mach_mips4650:
12046 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12047 break;
12048
12049 case bfd_mach_mips5400:
12050 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12051 break;
12052
12053 case bfd_mach_mips5500:
12054 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12055 break;
12056
12057 case bfd_mach_mips5900:
12058 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12059 break;
12060
12061 case bfd_mach_mips9000:
12062 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12063 break;
12064
12065 case bfd_mach_mips5000:
12066 case bfd_mach_mips7000:
12067 case bfd_mach_mips8000:
12068 case bfd_mach_mips10000:
12069 case bfd_mach_mips12000:
12070 case bfd_mach_mips14000:
12071 case bfd_mach_mips16000:
12072 val = E_MIPS_ARCH_4;
12073 break;
12074
12075 case bfd_mach_mips5:
12076 val = E_MIPS_ARCH_5;
12077 break;
12078
12079 case bfd_mach_mips_loongson_2e:
12080 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12081 break;
12082
12083 case bfd_mach_mips_loongson_2f:
12084 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12085 break;
12086
12087 case bfd_mach_mips_sb1:
12088 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12089 break;
12090
12091 case bfd_mach_mips_loongson_3a:
12092 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
12093 break;
12094
12095 case bfd_mach_mips_octeon:
12096 case bfd_mach_mips_octeonp:
12097 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12098 break;
12099
12100 case bfd_mach_mips_octeon3:
12101 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12102 break;
12103
12104 case bfd_mach_mips_xlr:
12105 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12106 break;
12107
12108 case bfd_mach_mips_octeon2:
12109 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12110 break;
12111
12112 case bfd_mach_mipsisa32:
12113 val = E_MIPS_ARCH_32;
12114 break;
12115
12116 case bfd_mach_mipsisa64:
12117 val = E_MIPS_ARCH_64;
12118 break;
12119
12120 case bfd_mach_mipsisa32r2:
12121 case bfd_mach_mipsisa32r3:
12122 case bfd_mach_mipsisa32r5:
12123 val = E_MIPS_ARCH_32R2;
12124 break;
12125
12126 case bfd_mach_mipsisa64r2:
12127 case bfd_mach_mipsisa64r3:
12128 case bfd_mach_mipsisa64r5:
12129 val = E_MIPS_ARCH_64R2;
12130 break;
12131
12132 case bfd_mach_mipsisa32r6:
12133 val = E_MIPS_ARCH_32R6;
12134 break;
12135
12136 case bfd_mach_mipsisa64r6:
12137 val = E_MIPS_ARCH_64R6;
12138 break;
12139 }
12140 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12141 elf_elfheader (abfd)->e_flags |= val;
12142
12143 }
12144
12145
12146 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12147 Don't do so for code sections. We want to keep ordering of HI16/LO16
12148 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12149 relocs to be sorted. */
12150
12151 bfd_boolean
12152 _bfd_mips_elf_sort_relocs_p (asection *sec)
12153 {
12154 return (sec->flags & SEC_CODE) == 0;
12155 }
12156
12157
12158 /* The final processing done just before writing out a MIPS ELF object
12159 file. This gets the MIPS architecture right based on the machine
12160 number. This is used by both the 32-bit and the 64-bit ABI. */
12161
12162 void
12163 _bfd_mips_elf_final_write_processing (bfd *abfd,
12164 bfd_boolean linker ATTRIBUTE_UNUSED)
12165 {
12166 unsigned int i;
12167 Elf_Internal_Shdr **hdrpp;
12168 const char *name;
12169 asection *sec;
12170
12171 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12172 is nonzero. This is for compatibility with old objects, which used
12173 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12174 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12175 mips_set_isa_flags (abfd);
12176
12177 /* Set the sh_info field for .gptab sections and other appropriate
12178 info for each special section. */
12179 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12180 i < elf_numsections (abfd);
12181 i++, hdrpp++)
12182 {
12183 switch ((*hdrpp)->sh_type)
12184 {
12185 case SHT_MIPS_MSYM:
12186 case SHT_MIPS_LIBLIST:
12187 sec = bfd_get_section_by_name (abfd, ".dynstr");
12188 if (sec != NULL)
12189 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12190 break;
12191
12192 case SHT_MIPS_GPTAB:
12193 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12194 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12195 BFD_ASSERT (name != NULL
12196 && CONST_STRNEQ (name, ".gptab."));
12197 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12198 BFD_ASSERT (sec != NULL);
12199 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12200 break;
12201
12202 case SHT_MIPS_CONTENT:
12203 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12204 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12205 BFD_ASSERT (name != NULL
12206 && CONST_STRNEQ (name, ".MIPS.content"));
12207 sec = bfd_get_section_by_name (abfd,
12208 name + sizeof ".MIPS.content" - 1);
12209 BFD_ASSERT (sec != NULL);
12210 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12211 break;
12212
12213 case SHT_MIPS_SYMBOL_LIB:
12214 sec = bfd_get_section_by_name (abfd, ".dynsym");
12215 if (sec != NULL)
12216 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12217 sec = bfd_get_section_by_name (abfd, ".liblist");
12218 if (sec != NULL)
12219 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12220 break;
12221
12222 case SHT_MIPS_EVENTS:
12223 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12224 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12225 BFD_ASSERT (name != NULL);
12226 if (CONST_STRNEQ (name, ".MIPS.events"))
12227 sec = bfd_get_section_by_name (abfd,
12228 name + sizeof ".MIPS.events" - 1);
12229 else
12230 {
12231 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12232 sec = bfd_get_section_by_name (abfd,
12233 (name
12234 + sizeof ".MIPS.post_rel" - 1));
12235 }
12236 BFD_ASSERT (sec != NULL);
12237 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12238 break;
12239
12240 }
12241 }
12242 }
12243 \f
12244 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12245 segments. */
12246
12247 int
12248 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12249 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12250 {
12251 asection *s;
12252 int ret = 0;
12253
12254 /* See if we need a PT_MIPS_REGINFO segment. */
12255 s = bfd_get_section_by_name (abfd, ".reginfo");
12256 if (s && (s->flags & SEC_LOAD))
12257 ++ret;
12258
12259 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12260 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12261 ++ret;
12262
12263 /* See if we need a PT_MIPS_OPTIONS segment. */
12264 if (IRIX_COMPAT (abfd) == ict_irix6
12265 && bfd_get_section_by_name (abfd,
12266 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12267 ++ret;
12268
12269 /* See if we need a PT_MIPS_RTPROC segment. */
12270 if (IRIX_COMPAT (abfd) == ict_irix5
12271 && bfd_get_section_by_name (abfd, ".dynamic")
12272 && bfd_get_section_by_name (abfd, ".mdebug"))
12273 ++ret;
12274
12275 /* Allocate a PT_NULL header in dynamic objects. See
12276 _bfd_mips_elf_modify_segment_map for details. */
12277 if (!SGI_COMPAT (abfd)
12278 && bfd_get_section_by_name (abfd, ".dynamic"))
12279 ++ret;
12280
12281 return ret;
12282 }
12283
12284 /* Modify the segment map for an IRIX5 executable. */
12285
12286 bfd_boolean
12287 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12288 struct bfd_link_info *info)
12289 {
12290 asection *s;
12291 struct elf_segment_map *m, **pm;
12292 bfd_size_type amt;
12293
12294 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12295 segment. */
12296 s = bfd_get_section_by_name (abfd, ".reginfo");
12297 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12298 {
12299 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12300 if (m->p_type == PT_MIPS_REGINFO)
12301 break;
12302 if (m == NULL)
12303 {
12304 amt = sizeof *m;
12305 m = bfd_zalloc (abfd, amt);
12306 if (m == NULL)
12307 return FALSE;
12308
12309 m->p_type = PT_MIPS_REGINFO;
12310 m->count = 1;
12311 m->sections[0] = s;
12312
12313 /* We want to put it after the PHDR and INTERP segments. */
12314 pm = &elf_seg_map (abfd);
12315 while (*pm != NULL
12316 && ((*pm)->p_type == PT_PHDR
12317 || (*pm)->p_type == PT_INTERP))
12318 pm = &(*pm)->next;
12319
12320 m->next = *pm;
12321 *pm = m;
12322 }
12323 }
12324
12325 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12326 segment. */
12327 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12328 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12329 {
12330 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12331 if (m->p_type == PT_MIPS_ABIFLAGS)
12332 break;
12333 if (m == NULL)
12334 {
12335 amt = sizeof *m;
12336 m = bfd_zalloc (abfd, amt);
12337 if (m == NULL)
12338 return FALSE;
12339
12340 m->p_type = PT_MIPS_ABIFLAGS;
12341 m->count = 1;
12342 m->sections[0] = s;
12343
12344 /* We want to put it after the PHDR and INTERP segments. */
12345 pm = &elf_seg_map (abfd);
12346 while (*pm != NULL
12347 && ((*pm)->p_type == PT_PHDR
12348 || (*pm)->p_type == PT_INTERP))
12349 pm = &(*pm)->next;
12350
12351 m->next = *pm;
12352 *pm = m;
12353 }
12354 }
12355
12356 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12357 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12358 PT_MIPS_OPTIONS segment immediately following the program header
12359 table. */
12360 if (NEWABI_P (abfd)
12361 /* On non-IRIX6 new abi, we'll have already created a segment
12362 for this section, so don't create another. I'm not sure this
12363 is not also the case for IRIX 6, but I can't test it right
12364 now. */
12365 && IRIX_COMPAT (abfd) == ict_irix6)
12366 {
12367 for (s = abfd->sections; s; s = s->next)
12368 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12369 break;
12370
12371 if (s)
12372 {
12373 struct elf_segment_map *options_segment;
12374
12375 pm = &elf_seg_map (abfd);
12376 while (*pm != NULL
12377 && ((*pm)->p_type == PT_PHDR
12378 || (*pm)->p_type == PT_INTERP))
12379 pm = &(*pm)->next;
12380
12381 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12382 {
12383 amt = sizeof (struct elf_segment_map);
12384 options_segment = bfd_zalloc (abfd, amt);
12385 options_segment->next = *pm;
12386 options_segment->p_type = PT_MIPS_OPTIONS;
12387 options_segment->p_flags = PF_R;
12388 options_segment->p_flags_valid = TRUE;
12389 options_segment->count = 1;
12390 options_segment->sections[0] = s;
12391 *pm = options_segment;
12392 }
12393 }
12394 }
12395 else
12396 {
12397 if (IRIX_COMPAT (abfd) == ict_irix5)
12398 {
12399 /* If there are .dynamic and .mdebug sections, we make a room
12400 for the RTPROC header. FIXME: Rewrite without section names. */
12401 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12402 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12403 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12404 {
12405 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12406 if (m->p_type == PT_MIPS_RTPROC)
12407 break;
12408 if (m == NULL)
12409 {
12410 amt = sizeof *m;
12411 m = bfd_zalloc (abfd, amt);
12412 if (m == NULL)
12413 return FALSE;
12414
12415 m->p_type = PT_MIPS_RTPROC;
12416
12417 s = bfd_get_section_by_name (abfd, ".rtproc");
12418 if (s == NULL)
12419 {
12420 m->count = 0;
12421 m->p_flags = 0;
12422 m->p_flags_valid = 1;
12423 }
12424 else
12425 {
12426 m->count = 1;
12427 m->sections[0] = s;
12428 }
12429
12430 /* We want to put it after the DYNAMIC segment. */
12431 pm = &elf_seg_map (abfd);
12432 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12433 pm = &(*pm)->next;
12434 if (*pm != NULL)
12435 pm = &(*pm)->next;
12436
12437 m->next = *pm;
12438 *pm = m;
12439 }
12440 }
12441 }
12442 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12443 .dynstr, .dynsym, and .hash sections, and everything in
12444 between. */
12445 for (pm = &elf_seg_map (abfd); *pm != NULL;
12446 pm = &(*pm)->next)
12447 if ((*pm)->p_type == PT_DYNAMIC)
12448 break;
12449 m = *pm;
12450 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12451 glibc's dynamic linker has traditionally derived the number of
12452 tags from the p_filesz field, and sometimes allocates stack
12453 arrays of that size. An overly-big PT_DYNAMIC segment can
12454 be actively harmful in such cases. Making PT_DYNAMIC contain
12455 other sections can also make life hard for the prelinker,
12456 which might move one of the other sections to a different
12457 PT_LOAD segment. */
12458 if (SGI_COMPAT (abfd)
12459 && m != NULL
12460 && m->count == 1
12461 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12462 {
12463 static const char *sec_names[] =
12464 {
12465 ".dynamic", ".dynstr", ".dynsym", ".hash"
12466 };
12467 bfd_vma low, high;
12468 unsigned int i, c;
12469 struct elf_segment_map *n;
12470
12471 low = ~(bfd_vma) 0;
12472 high = 0;
12473 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12474 {
12475 s = bfd_get_section_by_name (abfd, sec_names[i]);
12476 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12477 {
12478 bfd_size_type sz;
12479
12480 if (low > s->vma)
12481 low = s->vma;
12482 sz = s->size;
12483 if (high < s->vma + sz)
12484 high = s->vma + sz;
12485 }
12486 }
12487
12488 c = 0;
12489 for (s = abfd->sections; s != NULL; s = s->next)
12490 if ((s->flags & SEC_LOAD) != 0
12491 && s->vma >= low
12492 && s->vma + s->size <= high)
12493 ++c;
12494
12495 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12496 n = bfd_zalloc (abfd, amt);
12497 if (n == NULL)
12498 return FALSE;
12499 *n = *m;
12500 n->count = c;
12501
12502 i = 0;
12503 for (s = abfd->sections; s != NULL; s = s->next)
12504 {
12505 if ((s->flags & SEC_LOAD) != 0
12506 && s->vma >= low
12507 && s->vma + s->size <= high)
12508 {
12509 n->sections[i] = s;
12510 ++i;
12511 }
12512 }
12513
12514 *pm = n;
12515 }
12516 }
12517
12518 /* Allocate a spare program header in dynamic objects so that tools
12519 like the prelinker can add an extra PT_LOAD entry.
12520
12521 If the prelinker needs to make room for a new PT_LOAD entry, its
12522 standard procedure is to move the first (read-only) sections into
12523 the new (writable) segment. However, the MIPS ABI requires
12524 .dynamic to be in a read-only segment, and the section will often
12525 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12526
12527 Although the prelinker could in principle move .dynamic to a
12528 writable segment, it seems better to allocate a spare program
12529 header instead, and avoid the need to move any sections.
12530 There is a long tradition of allocating spare dynamic tags,
12531 so allocating a spare program header seems like a natural
12532 extension.
12533
12534 If INFO is NULL, we may be copying an already prelinked binary
12535 with objcopy or strip, so do not add this header. */
12536 if (info != NULL
12537 && !SGI_COMPAT (abfd)
12538 && bfd_get_section_by_name (abfd, ".dynamic"))
12539 {
12540 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12541 if ((*pm)->p_type == PT_NULL)
12542 break;
12543 if (*pm == NULL)
12544 {
12545 m = bfd_zalloc (abfd, sizeof (*m));
12546 if (m == NULL)
12547 return FALSE;
12548
12549 m->p_type = PT_NULL;
12550 *pm = m;
12551 }
12552 }
12553
12554 return TRUE;
12555 }
12556 \f
12557 /* Return the section that should be marked against GC for a given
12558 relocation. */
12559
12560 asection *
12561 _bfd_mips_elf_gc_mark_hook (asection *sec,
12562 struct bfd_link_info *info,
12563 Elf_Internal_Rela *rel,
12564 struct elf_link_hash_entry *h,
12565 Elf_Internal_Sym *sym)
12566 {
12567 /* ??? Do mips16 stub sections need to be handled special? */
12568
12569 if (h != NULL)
12570 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12571 {
12572 case R_MIPS_GNU_VTINHERIT:
12573 case R_MIPS_GNU_VTENTRY:
12574 return NULL;
12575 }
12576
12577 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12578 }
12579
12580 /* Update the got entry reference counts for the section being removed. */
12581
12582 bfd_boolean
12583 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12584 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12585 asection *sec ATTRIBUTE_UNUSED,
12586 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12587 {
12588 #if 0
12589 Elf_Internal_Shdr *symtab_hdr;
12590 struct elf_link_hash_entry **sym_hashes;
12591 bfd_signed_vma *local_got_refcounts;
12592 const Elf_Internal_Rela *rel, *relend;
12593 unsigned long r_symndx;
12594 struct elf_link_hash_entry *h;
12595
12596 if (bfd_link_relocatable (info))
12597 return TRUE;
12598
12599 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12600 sym_hashes = elf_sym_hashes (abfd);
12601 local_got_refcounts = elf_local_got_refcounts (abfd);
12602
12603 relend = relocs + sec->reloc_count;
12604 for (rel = relocs; rel < relend; rel++)
12605 switch (ELF_R_TYPE (abfd, rel->r_info))
12606 {
12607 case R_MIPS16_GOT16:
12608 case R_MIPS16_CALL16:
12609 case R_MIPS_GOT16:
12610 case R_MIPS_CALL16:
12611 case R_MIPS_CALL_HI16:
12612 case R_MIPS_CALL_LO16:
12613 case R_MIPS_GOT_HI16:
12614 case R_MIPS_GOT_LO16:
12615 case R_MIPS_GOT_DISP:
12616 case R_MIPS_GOT_PAGE:
12617 case R_MIPS_GOT_OFST:
12618 case R_MICROMIPS_GOT16:
12619 case R_MICROMIPS_CALL16:
12620 case R_MICROMIPS_CALL_HI16:
12621 case R_MICROMIPS_CALL_LO16:
12622 case R_MICROMIPS_GOT_HI16:
12623 case R_MICROMIPS_GOT_LO16:
12624 case R_MICROMIPS_GOT_DISP:
12625 case R_MICROMIPS_GOT_PAGE:
12626 case R_MICROMIPS_GOT_OFST:
12627 /* ??? It would seem that the existing MIPS code does no sort
12628 of reference counting or whatnot on its GOT and PLT entries,
12629 so it is not possible to garbage collect them at this time. */
12630 break;
12631
12632 default:
12633 break;
12634 }
12635 #endif
12636
12637 return TRUE;
12638 }
12639
12640 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12641
12642 bfd_boolean
12643 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12644 elf_gc_mark_hook_fn gc_mark_hook)
12645 {
12646 bfd *sub;
12647
12648 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12649
12650 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12651 {
12652 asection *o;
12653
12654 if (! is_mips_elf (sub))
12655 continue;
12656
12657 for (o = sub->sections; o != NULL; o = o->next)
12658 if (!o->gc_mark
12659 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12660 (bfd_get_section_name (sub, o)))
12661 {
12662 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12663 return FALSE;
12664 }
12665 }
12666
12667 return TRUE;
12668 }
12669 \f
12670 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12671 hiding the old indirect symbol. Process additional relocation
12672 information. Also called for weakdefs, in which case we just let
12673 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12674
12675 void
12676 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12677 struct elf_link_hash_entry *dir,
12678 struct elf_link_hash_entry *ind)
12679 {
12680 struct mips_elf_link_hash_entry *dirmips, *indmips;
12681
12682 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12683
12684 dirmips = (struct mips_elf_link_hash_entry *) dir;
12685 indmips = (struct mips_elf_link_hash_entry *) ind;
12686 /* Any absolute non-dynamic relocations against an indirect or weak
12687 definition will be against the target symbol. */
12688 if (indmips->has_static_relocs)
12689 dirmips->has_static_relocs = TRUE;
12690
12691 if (ind->root.type != bfd_link_hash_indirect)
12692 return;
12693
12694 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12695 if (indmips->readonly_reloc)
12696 dirmips->readonly_reloc = TRUE;
12697 if (indmips->no_fn_stub)
12698 dirmips->no_fn_stub = TRUE;
12699 if (indmips->fn_stub)
12700 {
12701 dirmips->fn_stub = indmips->fn_stub;
12702 indmips->fn_stub = NULL;
12703 }
12704 if (indmips->need_fn_stub)
12705 {
12706 dirmips->need_fn_stub = TRUE;
12707 indmips->need_fn_stub = FALSE;
12708 }
12709 if (indmips->call_stub)
12710 {
12711 dirmips->call_stub = indmips->call_stub;
12712 indmips->call_stub = NULL;
12713 }
12714 if (indmips->call_fp_stub)
12715 {
12716 dirmips->call_fp_stub = indmips->call_fp_stub;
12717 indmips->call_fp_stub = NULL;
12718 }
12719 if (indmips->global_got_area < dirmips->global_got_area)
12720 dirmips->global_got_area = indmips->global_got_area;
12721 if (indmips->global_got_area < GGA_NONE)
12722 indmips->global_got_area = GGA_NONE;
12723 if (indmips->has_nonpic_branches)
12724 dirmips->has_nonpic_branches = TRUE;
12725 }
12726 \f
12727 #define PDR_SIZE 32
12728
12729 bfd_boolean
12730 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12731 struct bfd_link_info *info)
12732 {
12733 asection *o;
12734 bfd_boolean ret = FALSE;
12735 unsigned char *tdata;
12736 size_t i, skip;
12737
12738 o = bfd_get_section_by_name (abfd, ".pdr");
12739 if (! o)
12740 return FALSE;
12741 if (o->size == 0)
12742 return FALSE;
12743 if (o->size % PDR_SIZE != 0)
12744 return FALSE;
12745 if (o->output_section != NULL
12746 && bfd_is_abs_section (o->output_section))
12747 return FALSE;
12748
12749 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12750 if (! tdata)
12751 return FALSE;
12752
12753 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12754 info->keep_memory);
12755 if (!cookie->rels)
12756 {
12757 free (tdata);
12758 return FALSE;
12759 }
12760
12761 cookie->rel = cookie->rels;
12762 cookie->relend = cookie->rels + o->reloc_count;
12763
12764 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12765 {
12766 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12767 {
12768 tdata[i] = 1;
12769 skip ++;
12770 }
12771 }
12772
12773 if (skip != 0)
12774 {
12775 mips_elf_section_data (o)->u.tdata = tdata;
12776 if (o->rawsize == 0)
12777 o->rawsize = o->size;
12778 o->size -= skip * PDR_SIZE;
12779 ret = TRUE;
12780 }
12781 else
12782 free (tdata);
12783
12784 if (! info->keep_memory)
12785 free (cookie->rels);
12786
12787 return ret;
12788 }
12789
12790 bfd_boolean
12791 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12792 {
12793 if (strcmp (sec->name, ".pdr") == 0)
12794 return TRUE;
12795 return FALSE;
12796 }
12797
12798 bfd_boolean
12799 _bfd_mips_elf_write_section (bfd *output_bfd,
12800 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12801 asection *sec, bfd_byte *contents)
12802 {
12803 bfd_byte *to, *from, *end;
12804 int i;
12805
12806 if (strcmp (sec->name, ".pdr") != 0)
12807 return FALSE;
12808
12809 if (mips_elf_section_data (sec)->u.tdata == NULL)
12810 return FALSE;
12811
12812 to = contents;
12813 end = contents + sec->size;
12814 for (from = contents, i = 0;
12815 from < end;
12816 from += PDR_SIZE, i++)
12817 {
12818 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12819 continue;
12820 if (to != from)
12821 memcpy (to, from, PDR_SIZE);
12822 to += PDR_SIZE;
12823 }
12824 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12825 sec->output_offset, sec->size);
12826 return TRUE;
12827 }
12828 \f
12829 /* microMIPS code retains local labels for linker relaxation. Omit them
12830 from output by default for clarity. */
12831
12832 bfd_boolean
12833 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12834 {
12835 return _bfd_elf_is_local_label_name (abfd, sym->name);
12836 }
12837
12838 /* MIPS ELF uses a special find_nearest_line routine in order the
12839 handle the ECOFF debugging information. */
12840
12841 struct mips_elf_find_line
12842 {
12843 struct ecoff_debug_info d;
12844 struct ecoff_find_line i;
12845 };
12846
12847 bfd_boolean
12848 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12849 asection *section, bfd_vma offset,
12850 const char **filename_ptr,
12851 const char **functionname_ptr,
12852 unsigned int *line_ptr,
12853 unsigned int *discriminator_ptr)
12854 {
12855 asection *msec;
12856
12857 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12858 filename_ptr, functionname_ptr,
12859 line_ptr, discriminator_ptr,
12860 dwarf_debug_sections,
12861 ABI_64_P (abfd) ? 8 : 0,
12862 &elf_tdata (abfd)->dwarf2_find_line_info))
12863 return TRUE;
12864
12865 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12866 filename_ptr, functionname_ptr,
12867 line_ptr))
12868 return TRUE;
12869
12870 msec = bfd_get_section_by_name (abfd, ".mdebug");
12871 if (msec != NULL)
12872 {
12873 flagword origflags;
12874 struct mips_elf_find_line *fi;
12875 const struct ecoff_debug_swap * const swap =
12876 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12877
12878 /* If we are called during a link, mips_elf_final_link may have
12879 cleared the SEC_HAS_CONTENTS field. We force it back on here
12880 if appropriate (which it normally will be). */
12881 origflags = msec->flags;
12882 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12883 msec->flags |= SEC_HAS_CONTENTS;
12884
12885 fi = mips_elf_tdata (abfd)->find_line_info;
12886 if (fi == NULL)
12887 {
12888 bfd_size_type external_fdr_size;
12889 char *fraw_src;
12890 char *fraw_end;
12891 struct fdr *fdr_ptr;
12892 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12893
12894 fi = bfd_zalloc (abfd, amt);
12895 if (fi == NULL)
12896 {
12897 msec->flags = origflags;
12898 return FALSE;
12899 }
12900
12901 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12902 {
12903 msec->flags = origflags;
12904 return FALSE;
12905 }
12906
12907 /* Swap in the FDR information. */
12908 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12909 fi->d.fdr = bfd_alloc (abfd, amt);
12910 if (fi->d.fdr == NULL)
12911 {
12912 msec->flags = origflags;
12913 return FALSE;
12914 }
12915 external_fdr_size = swap->external_fdr_size;
12916 fdr_ptr = fi->d.fdr;
12917 fraw_src = (char *) fi->d.external_fdr;
12918 fraw_end = (fraw_src
12919 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12920 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12921 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12922
12923 mips_elf_tdata (abfd)->find_line_info = fi;
12924
12925 /* Note that we don't bother to ever free this information.
12926 find_nearest_line is either called all the time, as in
12927 objdump -l, so the information should be saved, or it is
12928 rarely called, as in ld error messages, so the memory
12929 wasted is unimportant. Still, it would probably be a
12930 good idea for free_cached_info to throw it away. */
12931 }
12932
12933 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12934 &fi->i, filename_ptr, functionname_ptr,
12935 line_ptr))
12936 {
12937 msec->flags = origflags;
12938 return TRUE;
12939 }
12940
12941 msec->flags = origflags;
12942 }
12943
12944 /* Fall back on the generic ELF find_nearest_line routine. */
12945
12946 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12947 filename_ptr, functionname_ptr,
12948 line_ptr, discriminator_ptr);
12949 }
12950
12951 bfd_boolean
12952 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12953 const char **filename_ptr,
12954 const char **functionname_ptr,
12955 unsigned int *line_ptr)
12956 {
12957 bfd_boolean found;
12958 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12959 functionname_ptr, line_ptr,
12960 & elf_tdata (abfd)->dwarf2_find_line_info);
12961 return found;
12962 }
12963
12964 \f
12965 /* When are writing out the .options or .MIPS.options section,
12966 remember the bytes we are writing out, so that we can install the
12967 GP value in the section_processing routine. */
12968
12969 bfd_boolean
12970 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12971 const void *location,
12972 file_ptr offset, bfd_size_type count)
12973 {
12974 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12975 {
12976 bfd_byte *c;
12977
12978 if (elf_section_data (section) == NULL)
12979 {
12980 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12981 section->used_by_bfd = bfd_zalloc (abfd, amt);
12982 if (elf_section_data (section) == NULL)
12983 return FALSE;
12984 }
12985 c = mips_elf_section_data (section)->u.tdata;
12986 if (c == NULL)
12987 {
12988 c = bfd_zalloc (abfd, section->size);
12989 if (c == NULL)
12990 return FALSE;
12991 mips_elf_section_data (section)->u.tdata = c;
12992 }
12993
12994 memcpy (c + offset, location, count);
12995 }
12996
12997 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12998 count);
12999 }
13000
13001 /* This is almost identical to bfd_generic_get_... except that some
13002 MIPS relocations need to be handled specially. Sigh. */
13003
13004 bfd_byte *
13005 _bfd_elf_mips_get_relocated_section_contents
13006 (bfd *abfd,
13007 struct bfd_link_info *link_info,
13008 struct bfd_link_order *link_order,
13009 bfd_byte *data,
13010 bfd_boolean relocatable,
13011 asymbol **symbols)
13012 {
13013 /* Get enough memory to hold the stuff */
13014 bfd *input_bfd = link_order->u.indirect.section->owner;
13015 asection *input_section = link_order->u.indirect.section;
13016 bfd_size_type sz;
13017
13018 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13019 arelent **reloc_vector = NULL;
13020 long reloc_count;
13021
13022 if (reloc_size < 0)
13023 goto error_return;
13024
13025 reloc_vector = bfd_malloc (reloc_size);
13026 if (reloc_vector == NULL && reloc_size != 0)
13027 goto error_return;
13028
13029 /* read in the section */
13030 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13031 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13032 goto error_return;
13033
13034 reloc_count = bfd_canonicalize_reloc (input_bfd,
13035 input_section,
13036 reloc_vector,
13037 symbols);
13038 if (reloc_count < 0)
13039 goto error_return;
13040
13041 if (reloc_count > 0)
13042 {
13043 arelent **parent;
13044 /* for mips */
13045 int gp_found;
13046 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13047
13048 {
13049 struct bfd_hash_entry *h;
13050 struct bfd_link_hash_entry *lh;
13051 /* Skip all this stuff if we aren't mixing formats. */
13052 if (abfd && input_bfd
13053 && abfd->xvec == input_bfd->xvec)
13054 lh = 0;
13055 else
13056 {
13057 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13058 lh = (struct bfd_link_hash_entry *) h;
13059 }
13060 lookup:
13061 if (lh)
13062 {
13063 switch (lh->type)
13064 {
13065 case bfd_link_hash_undefined:
13066 case bfd_link_hash_undefweak:
13067 case bfd_link_hash_common:
13068 gp_found = 0;
13069 break;
13070 case bfd_link_hash_defined:
13071 case bfd_link_hash_defweak:
13072 gp_found = 1;
13073 gp = lh->u.def.value;
13074 break;
13075 case bfd_link_hash_indirect:
13076 case bfd_link_hash_warning:
13077 lh = lh->u.i.link;
13078 /* @@FIXME ignoring warning for now */
13079 goto lookup;
13080 case bfd_link_hash_new:
13081 default:
13082 abort ();
13083 }
13084 }
13085 else
13086 gp_found = 0;
13087 }
13088 /* end mips */
13089 for (parent = reloc_vector; *parent != NULL; parent++)
13090 {
13091 char *error_message = NULL;
13092 bfd_reloc_status_type r;
13093
13094 /* Specific to MIPS: Deal with relocation types that require
13095 knowing the gp of the output bfd. */
13096 asymbol *sym = *(*parent)->sym_ptr_ptr;
13097
13098 /* If we've managed to find the gp and have a special
13099 function for the relocation then go ahead, else default
13100 to the generic handling. */
13101 if (gp_found
13102 && (*parent)->howto->special_function
13103 == _bfd_mips_elf32_gprel16_reloc)
13104 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13105 input_section, relocatable,
13106 data, gp);
13107 else
13108 r = bfd_perform_relocation (input_bfd, *parent, data,
13109 input_section,
13110 relocatable ? abfd : NULL,
13111 &error_message);
13112
13113 if (relocatable)
13114 {
13115 asection *os = input_section->output_section;
13116
13117 /* A partial link, so keep the relocs */
13118 os->orelocation[os->reloc_count] = *parent;
13119 os->reloc_count++;
13120 }
13121
13122 if (r != bfd_reloc_ok)
13123 {
13124 switch (r)
13125 {
13126 case bfd_reloc_undefined:
13127 (*link_info->callbacks->undefined_symbol)
13128 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13129 input_bfd, input_section, (*parent)->address, TRUE);
13130 break;
13131 case bfd_reloc_dangerous:
13132 BFD_ASSERT (error_message != NULL);
13133 (*link_info->callbacks->reloc_dangerous)
13134 (link_info, error_message,
13135 input_bfd, input_section, (*parent)->address);
13136 break;
13137 case bfd_reloc_overflow:
13138 (*link_info->callbacks->reloc_overflow)
13139 (link_info, NULL,
13140 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13141 (*parent)->howto->name, (*parent)->addend,
13142 input_bfd, input_section, (*parent)->address);
13143 break;
13144 case bfd_reloc_outofrange:
13145 default:
13146 abort ();
13147 break;
13148 }
13149
13150 }
13151 }
13152 }
13153 if (reloc_vector != NULL)
13154 free (reloc_vector);
13155 return data;
13156
13157 error_return:
13158 if (reloc_vector != NULL)
13159 free (reloc_vector);
13160 return NULL;
13161 }
13162 \f
13163 static bfd_boolean
13164 mips_elf_relax_delete_bytes (bfd *abfd,
13165 asection *sec, bfd_vma addr, int count)
13166 {
13167 Elf_Internal_Shdr *symtab_hdr;
13168 unsigned int sec_shndx;
13169 bfd_byte *contents;
13170 Elf_Internal_Rela *irel, *irelend;
13171 Elf_Internal_Sym *isym;
13172 Elf_Internal_Sym *isymend;
13173 struct elf_link_hash_entry **sym_hashes;
13174 struct elf_link_hash_entry **end_hashes;
13175 struct elf_link_hash_entry **start_hashes;
13176 unsigned int symcount;
13177
13178 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13179 contents = elf_section_data (sec)->this_hdr.contents;
13180
13181 irel = elf_section_data (sec)->relocs;
13182 irelend = irel + sec->reloc_count;
13183
13184 /* Actually delete the bytes. */
13185 memmove (contents + addr, contents + addr + count,
13186 (size_t) (sec->size - addr - count));
13187 sec->size -= count;
13188
13189 /* Adjust all the relocs. */
13190 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13191 {
13192 /* Get the new reloc address. */
13193 if (irel->r_offset > addr)
13194 irel->r_offset -= count;
13195 }
13196
13197 BFD_ASSERT (addr % 2 == 0);
13198 BFD_ASSERT (count % 2 == 0);
13199
13200 /* Adjust the local symbols defined in this section. */
13201 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13202 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13203 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13204 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13205 isym->st_value -= count;
13206
13207 /* Now adjust the global symbols defined in this section. */
13208 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13209 - symtab_hdr->sh_info);
13210 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13211 end_hashes = sym_hashes + symcount;
13212
13213 for (; sym_hashes < end_hashes; sym_hashes++)
13214 {
13215 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13216
13217 if ((sym_hash->root.type == bfd_link_hash_defined
13218 || sym_hash->root.type == bfd_link_hash_defweak)
13219 && sym_hash->root.u.def.section == sec)
13220 {
13221 bfd_vma value = sym_hash->root.u.def.value;
13222
13223 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13224 value &= MINUS_TWO;
13225 if (value > addr)
13226 sym_hash->root.u.def.value -= count;
13227 }
13228 }
13229
13230 return TRUE;
13231 }
13232
13233
13234 /* Opcodes needed for microMIPS relaxation as found in
13235 opcodes/micromips-opc.c. */
13236
13237 struct opcode_descriptor {
13238 unsigned long match;
13239 unsigned long mask;
13240 };
13241
13242 /* The $ra register aka $31. */
13243
13244 #define RA 31
13245
13246 /* 32-bit instruction format register fields. */
13247
13248 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13249 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13250
13251 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13252
13253 #define OP16_VALID_REG(r) \
13254 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13255
13256
13257 /* 32-bit and 16-bit branches. */
13258
13259 static const struct opcode_descriptor b_insns_32[] = {
13260 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13261 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13262 { 0, 0 } /* End marker for find_match(). */
13263 };
13264
13265 static const struct opcode_descriptor bc_insn_32 =
13266 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13267
13268 static const struct opcode_descriptor bz_insn_32 =
13269 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13270
13271 static const struct opcode_descriptor bzal_insn_32 =
13272 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13273
13274 static const struct opcode_descriptor beq_insn_32 =
13275 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13276
13277 static const struct opcode_descriptor b_insn_16 =
13278 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13279
13280 static const struct opcode_descriptor bz_insn_16 =
13281 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13282
13283
13284 /* 32-bit and 16-bit branch EQ and NE zero. */
13285
13286 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13287 eq and second the ne. This convention is used when replacing a
13288 32-bit BEQ/BNE with the 16-bit version. */
13289
13290 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13291
13292 static const struct opcode_descriptor bz_rs_insns_32[] = {
13293 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13294 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13295 { 0, 0 } /* End marker for find_match(). */
13296 };
13297
13298 static const struct opcode_descriptor bz_rt_insns_32[] = {
13299 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13300 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13301 { 0, 0 } /* End marker for find_match(). */
13302 };
13303
13304 static const struct opcode_descriptor bzc_insns_32[] = {
13305 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13306 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13307 { 0, 0 } /* End marker for find_match(). */
13308 };
13309
13310 static const struct opcode_descriptor bz_insns_16[] = {
13311 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13312 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13313 { 0, 0 } /* End marker for find_match(). */
13314 };
13315
13316 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13317
13318 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13319 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13320
13321
13322 /* 32-bit instructions with a delay slot. */
13323
13324 static const struct opcode_descriptor jal_insn_32_bd16 =
13325 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13326
13327 static const struct opcode_descriptor jal_insn_32_bd32 =
13328 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13329
13330 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13331 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13332
13333 static const struct opcode_descriptor j_insn_32 =
13334 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13335
13336 static const struct opcode_descriptor jalr_insn_32 =
13337 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13338
13339 /* This table can be compacted, because no opcode replacement is made. */
13340
13341 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13342 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13343
13344 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13345 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13346
13347 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13348 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13349 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13350 { 0, 0 } /* End marker for find_match(). */
13351 };
13352
13353 /* This table can be compacted, because no opcode replacement is made. */
13354
13355 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13356 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13357
13358 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13359 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13360 { 0, 0 } /* End marker for find_match(). */
13361 };
13362
13363
13364 /* 16-bit instructions with a delay slot. */
13365
13366 static const struct opcode_descriptor jalr_insn_16_bd16 =
13367 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13368
13369 static const struct opcode_descriptor jalr_insn_16_bd32 =
13370 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13371
13372 static const struct opcode_descriptor jr_insn_16 =
13373 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13374
13375 #define JR16_REG(opcode) ((opcode) & 0x1f)
13376
13377 /* This table can be compacted, because no opcode replacement is made. */
13378
13379 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13380 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13381
13382 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13383 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13384 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13385 { 0, 0 } /* End marker for find_match(). */
13386 };
13387
13388
13389 /* LUI instruction. */
13390
13391 static const struct opcode_descriptor lui_insn =
13392 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13393
13394
13395 /* ADDIU instruction. */
13396
13397 static const struct opcode_descriptor addiu_insn =
13398 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13399
13400 static const struct opcode_descriptor addiupc_insn =
13401 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13402
13403 #define ADDIUPC_REG_FIELD(r) \
13404 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13405
13406
13407 /* Relaxable instructions in a JAL delay slot: MOVE. */
13408
13409 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13410 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13411 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13412 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13413
13414 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13415 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13416
13417 static const struct opcode_descriptor move_insns_32[] = {
13418 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13419 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13420 { 0, 0 } /* End marker for find_match(). */
13421 };
13422
13423 static const struct opcode_descriptor move_insn_16 =
13424 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13425
13426
13427 /* NOP instructions. */
13428
13429 static const struct opcode_descriptor nop_insn_32 =
13430 { /* "nop", "", */ 0x00000000, 0xffffffff };
13431
13432 static const struct opcode_descriptor nop_insn_16 =
13433 { /* "nop", "", */ 0x0c00, 0xffff };
13434
13435
13436 /* Instruction match support. */
13437
13438 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13439
13440 static int
13441 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13442 {
13443 unsigned long indx;
13444
13445 for (indx = 0; insn[indx].mask != 0; indx++)
13446 if (MATCH (opcode, insn[indx]))
13447 return indx;
13448
13449 return -1;
13450 }
13451
13452
13453 /* Branch and delay slot decoding support. */
13454
13455 /* If PTR points to what *might* be a 16-bit branch or jump, then
13456 return the minimum length of its delay slot, otherwise return 0.
13457 Non-zero results are not definitive as we might be checking against
13458 the second half of another instruction. */
13459
13460 static int
13461 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13462 {
13463 unsigned long opcode;
13464 int bdsize;
13465
13466 opcode = bfd_get_16 (abfd, ptr);
13467 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13468 /* 16-bit branch/jump with a 32-bit delay slot. */
13469 bdsize = 4;
13470 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13471 || find_match (opcode, ds_insns_16_bd16) >= 0)
13472 /* 16-bit branch/jump with a 16-bit delay slot. */
13473 bdsize = 2;
13474 else
13475 /* No delay slot. */
13476 bdsize = 0;
13477
13478 return bdsize;
13479 }
13480
13481 /* If PTR points to what *might* be a 32-bit branch or jump, then
13482 return the minimum length of its delay slot, otherwise return 0.
13483 Non-zero results are not definitive as we might be checking against
13484 the second half of another instruction. */
13485
13486 static int
13487 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13488 {
13489 unsigned long opcode;
13490 int bdsize;
13491
13492 opcode = bfd_get_micromips_32 (abfd, ptr);
13493 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13494 /* 32-bit branch/jump with a 32-bit delay slot. */
13495 bdsize = 4;
13496 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13497 /* 32-bit branch/jump with a 16-bit delay slot. */
13498 bdsize = 2;
13499 else
13500 /* No delay slot. */
13501 bdsize = 0;
13502
13503 return bdsize;
13504 }
13505
13506 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13507 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13508
13509 static bfd_boolean
13510 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13511 {
13512 unsigned long opcode;
13513
13514 opcode = bfd_get_16 (abfd, ptr);
13515 if (MATCH (opcode, b_insn_16)
13516 /* B16 */
13517 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13518 /* JR16 */
13519 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13520 /* BEQZ16, BNEZ16 */
13521 || (MATCH (opcode, jalr_insn_16_bd32)
13522 /* JALR16 */
13523 && reg != JR16_REG (opcode) && reg != RA))
13524 return TRUE;
13525
13526 return FALSE;
13527 }
13528
13529 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13530 then return TRUE, otherwise FALSE. */
13531
13532 static bfd_boolean
13533 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13534 {
13535 unsigned long opcode;
13536
13537 opcode = bfd_get_micromips_32 (abfd, ptr);
13538 if (MATCH (opcode, j_insn_32)
13539 /* J */
13540 || MATCH (opcode, bc_insn_32)
13541 /* BC1F, BC1T, BC2F, BC2T */
13542 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13543 /* JAL, JALX */
13544 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13545 /* BGEZ, BGTZ, BLEZ, BLTZ */
13546 || (MATCH (opcode, bzal_insn_32)
13547 /* BGEZAL, BLTZAL */
13548 && reg != OP32_SREG (opcode) && reg != RA)
13549 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13550 /* JALR, JALR.HB, BEQ, BNE */
13551 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13552 return TRUE;
13553
13554 return FALSE;
13555 }
13556
13557 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13558 IRELEND) at OFFSET indicate that there must be a compact branch there,
13559 then return TRUE, otherwise FALSE. */
13560
13561 static bfd_boolean
13562 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13563 const Elf_Internal_Rela *internal_relocs,
13564 const Elf_Internal_Rela *irelend)
13565 {
13566 const Elf_Internal_Rela *irel;
13567 unsigned long opcode;
13568
13569 opcode = bfd_get_micromips_32 (abfd, ptr);
13570 if (find_match (opcode, bzc_insns_32) < 0)
13571 return FALSE;
13572
13573 for (irel = internal_relocs; irel < irelend; irel++)
13574 if (irel->r_offset == offset
13575 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13576 return TRUE;
13577
13578 return FALSE;
13579 }
13580
13581 /* Bitsize checking. */
13582 #define IS_BITSIZE(val, N) \
13583 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13584 - (1ULL << ((N) - 1))) == (val))
13585
13586 \f
13587 bfd_boolean
13588 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13589 struct bfd_link_info *link_info,
13590 bfd_boolean *again)
13591 {
13592 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13593 Elf_Internal_Shdr *symtab_hdr;
13594 Elf_Internal_Rela *internal_relocs;
13595 Elf_Internal_Rela *irel, *irelend;
13596 bfd_byte *contents = NULL;
13597 Elf_Internal_Sym *isymbuf = NULL;
13598
13599 /* Assume nothing changes. */
13600 *again = FALSE;
13601
13602 /* We don't have to do anything for a relocatable link, if
13603 this section does not have relocs, or if this is not a
13604 code section. */
13605
13606 if (bfd_link_relocatable (link_info)
13607 || (sec->flags & SEC_RELOC) == 0
13608 || sec->reloc_count == 0
13609 || (sec->flags & SEC_CODE) == 0)
13610 return TRUE;
13611
13612 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13613
13614 /* Get a copy of the native relocations. */
13615 internal_relocs = (_bfd_elf_link_read_relocs
13616 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13617 link_info->keep_memory));
13618 if (internal_relocs == NULL)
13619 goto error_return;
13620
13621 /* Walk through them looking for relaxing opportunities. */
13622 irelend = internal_relocs + sec->reloc_count;
13623 for (irel = internal_relocs; irel < irelend; irel++)
13624 {
13625 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13626 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13627 bfd_boolean target_is_micromips_code_p;
13628 unsigned long opcode;
13629 bfd_vma symval;
13630 bfd_vma pcrval;
13631 bfd_byte *ptr;
13632 int fndopc;
13633
13634 /* The number of bytes to delete for relaxation and from where
13635 to delete these bytes starting at irel->r_offset. */
13636 int delcnt = 0;
13637 int deloff = 0;
13638
13639 /* If this isn't something that can be relaxed, then ignore
13640 this reloc. */
13641 if (r_type != R_MICROMIPS_HI16
13642 && r_type != R_MICROMIPS_PC16_S1
13643 && r_type != R_MICROMIPS_26_S1)
13644 continue;
13645
13646 /* Get the section contents if we haven't done so already. */
13647 if (contents == NULL)
13648 {
13649 /* Get cached copy if it exists. */
13650 if (elf_section_data (sec)->this_hdr.contents != NULL)
13651 contents = elf_section_data (sec)->this_hdr.contents;
13652 /* Go get them off disk. */
13653 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13654 goto error_return;
13655 }
13656 ptr = contents + irel->r_offset;
13657
13658 /* Read this BFD's local symbols if we haven't done so already. */
13659 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13660 {
13661 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13662 if (isymbuf == NULL)
13663 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13664 symtab_hdr->sh_info, 0,
13665 NULL, NULL, NULL);
13666 if (isymbuf == NULL)
13667 goto error_return;
13668 }
13669
13670 /* Get the value of the symbol referred to by the reloc. */
13671 if (r_symndx < symtab_hdr->sh_info)
13672 {
13673 /* A local symbol. */
13674 Elf_Internal_Sym *isym;
13675 asection *sym_sec;
13676
13677 isym = isymbuf + r_symndx;
13678 if (isym->st_shndx == SHN_UNDEF)
13679 sym_sec = bfd_und_section_ptr;
13680 else if (isym->st_shndx == SHN_ABS)
13681 sym_sec = bfd_abs_section_ptr;
13682 else if (isym->st_shndx == SHN_COMMON)
13683 sym_sec = bfd_com_section_ptr;
13684 else
13685 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13686 symval = (isym->st_value
13687 + sym_sec->output_section->vma
13688 + sym_sec->output_offset);
13689 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13690 }
13691 else
13692 {
13693 unsigned long indx;
13694 struct elf_link_hash_entry *h;
13695
13696 /* An external symbol. */
13697 indx = r_symndx - symtab_hdr->sh_info;
13698 h = elf_sym_hashes (abfd)[indx];
13699 BFD_ASSERT (h != NULL);
13700
13701 if (h->root.type != bfd_link_hash_defined
13702 && h->root.type != bfd_link_hash_defweak)
13703 /* This appears to be a reference to an undefined
13704 symbol. Just ignore it -- it will be caught by the
13705 regular reloc processing. */
13706 continue;
13707
13708 symval = (h->root.u.def.value
13709 + h->root.u.def.section->output_section->vma
13710 + h->root.u.def.section->output_offset);
13711 target_is_micromips_code_p = (!h->needs_plt
13712 && ELF_ST_IS_MICROMIPS (h->other));
13713 }
13714
13715
13716 /* For simplicity of coding, we are going to modify the
13717 section contents, the section relocs, and the BFD symbol
13718 table. We must tell the rest of the code not to free up this
13719 information. It would be possible to instead create a table
13720 of changes which have to be made, as is done in coff-mips.c;
13721 that would be more work, but would require less memory when
13722 the linker is run. */
13723
13724 /* Only 32-bit instructions relaxed. */
13725 if (irel->r_offset + 4 > sec->size)
13726 continue;
13727
13728 opcode = bfd_get_micromips_32 (abfd, ptr);
13729
13730 /* This is the pc-relative distance from the instruction the
13731 relocation is applied to, to the symbol referred. */
13732 pcrval = (symval
13733 - (sec->output_section->vma + sec->output_offset)
13734 - irel->r_offset);
13735
13736 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13737 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13738 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13739
13740 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13741
13742 where pcrval has first to be adjusted to apply against the LO16
13743 location (we make the adjustment later on, when we have figured
13744 out the offset). */
13745 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13746 {
13747 bfd_boolean bzc = FALSE;
13748 unsigned long nextopc;
13749 unsigned long reg;
13750 bfd_vma offset;
13751
13752 /* Give up if the previous reloc was a HI16 against this symbol
13753 too. */
13754 if (irel > internal_relocs
13755 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13756 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13757 continue;
13758
13759 /* Or if the next reloc is not a LO16 against this symbol. */
13760 if (irel + 1 >= irelend
13761 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13762 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13763 continue;
13764
13765 /* Or if the second next reloc is a LO16 against this symbol too. */
13766 if (irel + 2 >= irelend
13767 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13768 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13769 continue;
13770
13771 /* See if the LUI instruction *might* be in a branch delay slot.
13772 We check whether what looks like a 16-bit branch or jump is
13773 actually an immediate argument to a compact branch, and let
13774 it through if so. */
13775 if (irel->r_offset >= 2
13776 && check_br16_dslot (abfd, ptr - 2)
13777 && !(irel->r_offset >= 4
13778 && (bzc = check_relocated_bzc (abfd,
13779 ptr - 4, irel->r_offset - 4,
13780 internal_relocs, irelend))))
13781 continue;
13782 if (irel->r_offset >= 4
13783 && !bzc
13784 && check_br32_dslot (abfd, ptr - 4))
13785 continue;
13786
13787 reg = OP32_SREG (opcode);
13788
13789 /* We only relax adjacent instructions or ones separated with
13790 a branch or jump that has a delay slot. The branch or jump
13791 must not fiddle with the register used to hold the address.
13792 Subtract 4 for the LUI itself. */
13793 offset = irel[1].r_offset - irel[0].r_offset;
13794 switch (offset - 4)
13795 {
13796 case 0:
13797 break;
13798 case 2:
13799 if (check_br16 (abfd, ptr + 4, reg))
13800 break;
13801 continue;
13802 case 4:
13803 if (check_br32 (abfd, ptr + 4, reg))
13804 break;
13805 continue;
13806 default:
13807 continue;
13808 }
13809
13810 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13811
13812 /* Give up unless the same register is used with both
13813 relocations. */
13814 if (OP32_SREG (nextopc) != reg)
13815 continue;
13816
13817 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13818 and rounding up to take masking of the two LSBs into account. */
13819 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13820
13821 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13822 if (IS_BITSIZE (symval, 16))
13823 {
13824 /* Fix the relocation's type. */
13825 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13826
13827 /* Instructions using R_MICROMIPS_LO16 have the base or
13828 source register in bits 20:16. This register becomes $0
13829 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13830 nextopc &= ~0x001f0000;
13831 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13832 contents + irel[1].r_offset);
13833 }
13834
13835 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13836 We add 4 to take LUI deletion into account while checking
13837 the PC-relative distance. */
13838 else if (symval % 4 == 0
13839 && IS_BITSIZE (pcrval + 4, 25)
13840 && MATCH (nextopc, addiu_insn)
13841 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13842 && OP16_VALID_REG (OP32_TREG (nextopc)))
13843 {
13844 /* Fix the relocation's type. */
13845 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13846
13847 /* Replace ADDIU with the ADDIUPC version. */
13848 nextopc = (addiupc_insn.match
13849 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13850
13851 bfd_put_micromips_32 (abfd, nextopc,
13852 contents + irel[1].r_offset);
13853 }
13854
13855 /* Can't do anything, give up, sigh... */
13856 else
13857 continue;
13858
13859 /* Fix the relocation's type. */
13860 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13861
13862 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13863 delcnt = 4;
13864 deloff = 0;
13865 }
13866
13867 /* Compact branch relaxation -- due to the multitude of macros
13868 employed by the compiler/assembler, compact branches are not
13869 always generated. Obviously, this can/will be fixed elsewhere,
13870 but there is no drawback in double checking it here. */
13871 else if (r_type == R_MICROMIPS_PC16_S1
13872 && irel->r_offset + 5 < sec->size
13873 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13874 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13875 && ((!insn32
13876 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13877 nop_insn_16) ? 2 : 0))
13878 || (irel->r_offset + 7 < sec->size
13879 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13880 ptr + 4),
13881 nop_insn_32) ? 4 : 0))))
13882 {
13883 unsigned long reg;
13884
13885 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13886
13887 /* Replace BEQZ/BNEZ with the compact version. */
13888 opcode = (bzc_insns_32[fndopc].match
13889 | BZC32_REG_FIELD (reg)
13890 | (opcode & 0xffff)); /* Addend value. */
13891
13892 bfd_put_micromips_32 (abfd, opcode, ptr);
13893
13894 /* Delete the delay slot NOP: two or four bytes from
13895 irel->offset + 4; delcnt has already been set above. */
13896 deloff = 4;
13897 }
13898
13899 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13900 to check the distance from the next instruction, so subtract 2. */
13901 else if (!insn32
13902 && r_type == R_MICROMIPS_PC16_S1
13903 && IS_BITSIZE (pcrval - 2, 11)
13904 && find_match (opcode, b_insns_32) >= 0)
13905 {
13906 /* Fix the relocation's type. */
13907 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13908
13909 /* Replace the 32-bit opcode with a 16-bit opcode. */
13910 bfd_put_16 (abfd,
13911 (b_insn_16.match
13912 | (opcode & 0x3ff)), /* Addend value. */
13913 ptr);
13914
13915 /* Delete 2 bytes from irel->r_offset + 2. */
13916 delcnt = 2;
13917 deloff = 2;
13918 }
13919
13920 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13921 to check the distance from the next instruction, so subtract 2. */
13922 else if (!insn32
13923 && r_type == R_MICROMIPS_PC16_S1
13924 && IS_BITSIZE (pcrval - 2, 8)
13925 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13926 && OP16_VALID_REG (OP32_SREG (opcode)))
13927 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13928 && OP16_VALID_REG (OP32_TREG (opcode)))))
13929 {
13930 unsigned long reg;
13931
13932 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13933
13934 /* Fix the relocation's type. */
13935 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13936
13937 /* Replace the 32-bit opcode with a 16-bit opcode. */
13938 bfd_put_16 (abfd,
13939 (bz_insns_16[fndopc].match
13940 | BZ16_REG_FIELD (reg)
13941 | (opcode & 0x7f)), /* Addend value. */
13942 ptr);
13943
13944 /* Delete 2 bytes from irel->r_offset + 2. */
13945 delcnt = 2;
13946 deloff = 2;
13947 }
13948
13949 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13950 else if (!insn32
13951 && r_type == R_MICROMIPS_26_S1
13952 && target_is_micromips_code_p
13953 && irel->r_offset + 7 < sec->size
13954 && MATCH (opcode, jal_insn_32_bd32))
13955 {
13956 unsigned long n32opc;
13957 bfd_boolean relaxed = FALSE;
13958
13959 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13960
13961 if (MATCH (n32opc, nop_insn_32))
13962 {
13963 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13964 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13965
13966 relaxed = TRUE;
13967 }
13968 else if (find_match (n32opc, move_insns_32) >= 0)
13969 {
13970 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13971 bfd_put_16 (abfd,
13972 (move_insn_16.match
13973 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13974 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13975 ptr + 4);
13976
13977 relaxed = TRUE;
13978 }
13979 /* Other 32-bit instructions relaxable to 16-bit
13980 instructions will be handled here later. */
13981
13982 if (relaxed)
13983 {
13984 /* JAL with 32-bit delay slot that is changed to a JALS
13985 with 16-bit delay slot. */
13986 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13987
13988 /* Delete 2 bytes from irel->r_offset + 6. */
13989 delcnt = 2;
13990 deloff = 6;
13991 }
13992 }
13993
13994 if (delcnt != 0)
13995 {
13996 /* Note that we've changed the relocs, section contents, etc. */
13997 elf_section_data (sec)->relocs = internal_relocs;
13998 elf_section_data (sec)->this_hdr.contents = contents;
13999 symtab_hdr->contents = (unsigned char *) isymbuf;
14000
14001 /* Delete bytes depending on the delcnt and deloff. */
14002 if (!mips_elf_relax_delete_bytes (abfd, sec,
14003 irel->r_offset + deloff, delcnt))
14004 goto error_return;
14005
14006 /* That will change things, so we should relax again.
14007 Note that this is not required, and it may be slow. */
14008 *again = TRUE;
14009 }
14010 }
14011
14012 if (isymbuf != NULL
14013 && symtab_hdr->contents != (unsigned char *) isymbuf)
14014 {
14015 if (! link_info->keep_memory)
14016 free (isymbuf);
14017 else
14018 {
14019 /* Cache the symbols for elf_link_input_bfd. */
14020 symtab_hdr->contents = (unsigned char *) isymbuf;
14021 }
14022 }
14023
14024 if (contents != NULL
14025 && elf_section_data (sec)->this_hdr.contents != contents)
14026 {
14027 if (! link_info->keep_memory)
14028 free (contents);
14029 else
14030 {
14031 /* Cache the section contents for elf_link_input_bfd. */
14032 elf_section_data (sec)->this_hdr.contents = contents;
14033 }
14034 }
14035
14036 if (internal_relocs != NULL
14037 && elf_section_data (sec)->relocs != internal_relocs)
14038 free (internal_relocs);
14039
14040 return TRUE;
14041
14042 error_return:
14043 if (isymbuf != NULL
14044 && symtab_hdr->contents != (unsigned char *) isymbuf)
14045 free (isymbuf);
14046 if (contents != NULL
14047 && elf_section_data (sec)->this_hdr.contents != contents)
14048 free (contents);
14049 if (internal_relocs != NULL
14050 && elf_section_data (sec)->relocs != internal_relocs)
14051 free (internal_relocs);
14052
14053 return FALSE;
14054 }
14055 \f
14056 /* Create a MIPS ELF linker hash table. */
14057
14058 struct bfd_link_hash_table *
14059 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14060 {
14061 struct mips_elf_link_hash_table *ret;
14062 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14063
14064 ret = bfd_zmalloc (amt);
14065 if (ret == NULL)
14066 return NULL;
14067
14068 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14069 mips_elf_link_hash_newfunc,
14070 sizeof (struct mips_elf_link_hash_entry),
14071 MIPS_ELF_DATA))
14072 {
14073 free (ret);
14074 return NULL;
14075 }
14076 ret->root.init_plt_refcount.plist = NULL;
14077 ret->root.init_plt_offset.plist = NULL;
14078
14079 return &ret->root.root;
14080 }
14081
14082 /* Likewise, but indicate that the target is VxWorks. */
14083
14084 struct bfd_link_hash_table *
14085 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14086 {
14087 struct bfd_link_hash_table *ret;
14088
14089 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14090 if (ret)
14091 {
14092 struct mips_elf_link_hash_table *htab;
14093
14094 htab = (struct mips_elf_link_hash_table *) ret;
14095 htab->use_plts_and_copy_relocs = TRUE;
14096 htab->is_vxworks = TRUE;
14097 }
14098 return ret;
14099 }
14100
14101 /* A function that the linker calls if we are allowed to use PLTs
14102 and copy relocs. */
14103
14104 void
14105 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14106 {
14107 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14108 }
14109
14110 /* A function that the linker calls to select between all or only
14111 32-bit microMIPS instructions. */
14112
14113 void
14114 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
14115 {
14116 mips_elf_hash_table (info)->insn32 = on;
14117 }
14118 \f
14119 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14120
14121 struct mips_mach_extension
14122 {
14123 unsigned long extension, base;
14124 };
14125
14126
14127 /* An array describing how BFD machines relate to one another. The entries
14128 are ordered topologically with MIPS I extensions listed last. */
14129
14130 static const struct mips_mach_extension mips_mach_extensions[] =
14131 {
14132 /* MIPS64r2 extensions. */
14133 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14134 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14135 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14136 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14137 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14138
14139 /* MIPS64 extensions. */
14140 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14141 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14142 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14143
14144 /* MIPS V extensions. */
14145 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14146
14147 /* R10000 extensions. */
14148 { bfd_mach_mips12000, bfd_mach_mips10000 },
14149 { bfd_mach_mips14000, bfd_mach_mips10000 },
14150 { bfd_mach_mips16000, bfd_mach_mips10000 },
14151
14152 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14153 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14154 better to allow vr5400 and vr5500 code to be merged anyway, since
14155 many libraries will just use the core ISA. Perhaps we could add
14156 some sort of ASE flag if this ever proves a problem. */
14157 { bfd_mach_mips5500, bfd_mach_mips5400 },
14158 { bfd_mach_mips5400, bfd_mach_mips5000 },
14159
14160 /* MIPS IV extensions. */
14161 { bfd_mach_mips5, bfd_mach_mips8000 },
14162 { bfd_mach_mips10000, bfd_mach_mips8000 },
14163 { bfd_mach_mips5000, bfd_mach_mips8000 },
14164 { bfd_mach_mips7000, bfd_mach_mips8000 },
14165 { bfd_mach_mips9000, bfd_mach_mips8000 },
14166
14167 /* VR4100 extensions. */
14168 { bfd_mach_mips4120, bfd_mach_mips4100 },
14169 { bfd_mach_mips4111, bfd_mach_mips4100 },
14170
14171 /* MIPS III extensions. */
14172 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14173 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14174 { bfd_mach_mips8000, bfd_mach_mips4000 },
14175 { bfd_mach_mips4650, bfd_mach_mips4000 },
14176 { bfd_mach_mips4600, bfd_mach_mips4000 },
14177 { bfd_mach_mips4400, bfd_mach_mips4000 },
14178 { bfd_mach_mips4300, bfd_mach_mips4000 },
14179 { bfd_mach_mips4100, bfd_mach_mips4000 },
14180 { bfd_mach_mips4010, bfd_mach_mips4000 },
14181 { bfd_mach_mips5900, bfd_mach_mips4000 },
14182
14183 /* MIPS32 extensions. */
14184 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14185
14186 /* MIPS II extensions. */
14187 { bfd_mach_mips4000, bfd_mach_mips6000 },
14188 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14189
14190 /* MIPS I extensions. */
14191 { bfd_mach_mips6000, bfd_mach_mips3000 },
14192 { bfd_mach_mips3900, bfd_mach_mips3000 }
14193 };
14194
14195 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14196
14197 static bfd_boolean
14198 mips_mach_extends_p (unsigned long base, unsigned long extension)
14199 {
14200 size_t i;
14201
14202 if (extension == base)
14203 return TRUE;
14204
14205 if (base == bfd_mach_mipsisa32
14206 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14207 return TRUE;
14208
14209 if (base == bfd_mach_mipsisa32r2
14210 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14211 return TRUE;
14212
14213 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14214 if (extension == mips_mach_extensions[i].extension)
14215 {
14216 extension = mips_mach_extensions[i].base;
14217 if (extension == base)
14218 return TRUE;
14219 }
14220
14221 return FALSE;
14222 }
14223
14224 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14225
14226 static unsigned long
14227 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14228 {
14229 switch (isa_ext)
14230 {
14231 case AFL_EXT_3900: return bfd_mach_mips3900;
14232 case AFL_EXT_4010: return bfd_mach_mips4010;
14233 case AFL_EXT_4100: return bfd_mach_mips4100;
14234 case AFL_EXT_4111: return bfd_mach_mips4111;
14235 case AFL_EXT_4120: return bfd_mach_mips4120;
14236 case AFL_EXT_4650: return bfd_mach_mips4650;
14237 case AFL_EXT_5400: return bfd_mach_mips5400;
14238 case AFL_EXT_5500: return bfd_mach_mips5500;
14239 case AFL_EXT_5900: return bfd_mach_mips5900;
14240 case AFL_EXT_10000: return bfd_mach_mips10000;
14241 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14242 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14243 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14244 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14245 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14246 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14247 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14248 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14249 default: return bfd_mach_mips3000;
14250 }
14251 }
14252
14253 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14254
14255 unsigned int
14256 bfd_mips_isa_ext (bfd *abfd)
14257 {
14258 switch (bfd_get_mach (abfd))
14259 {
14260 case bfd_mach_mips3900: return AFL_EXT_3900;
14261 case bfd_mach_mips4010: return AFL_EXT_4010;
14262 case bfd_mach_mips4100: return AFL_EXT_4100;
14263 case bfd_mach_mips4111: return AFL_EXT_4111;
14264 case bfd_mach_mips4120: return AFL_EXT_4120;
14265 case bfd_mach_mips4650: return AFL_EXT_4650;
14266 case bfd_mach_mips5400: return AFL_EXT_5400;
14267 case bfd_mach_mips5500: return AFL_EXT_5500;
14268 case bfd_mach_mips5900: return AFL_EXT_5900;
14269 case bfd_mach_mips10000: return AFL_EXT_10000;
14270 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14271 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14272 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14273 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14274 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14275 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14276 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14277 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14278 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14279 default: return 0;
14280 }
14281 }
14282
14283 /* Encode ISA level and revision as a single value. */
14284 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14285
14286 /* Decode a single value into level and revision. */
14287 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14288 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14289
14290 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14291
14292 static void
14293 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14294 {
14295 int new_isa = 0;
14296 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14297 {
14298 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14299 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14300 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14301 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14302 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14303 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14304 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14305 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14306 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14307 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14308 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14309 default:
14310 _bfd_error_handler
14311 /* xgettext:c-format */
14312 (_("%B: Unknown architecture %s"),
14313 abfd, bfd_printable_name (abfd));
14314 }
14315
14316 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14317 {
14318 abiflags->isa_level = ISA_LEVEL (new_isa);
14319 abiflags->isa_rev = ISA_REV (new_isa);
14320 }
14321
14322 /* Update the isa_ext if ABFD describes a further extension. */
14323 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14324 bfd_get_mach (abfd)))
14325 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14326 }
14327
14328 /* Return true if the given ELF header flags describe a 32-bit binary. */
14329
14330 static bfd_boolean
14331 mips_32bit_flags_p (flagword flags)
14332 {
14333 return ((flags & EF_MIPS_32BITMODE) != 0
14334 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14335 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14336 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14337 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14338 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14339 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14340 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14341 }
14342
14343 /* Infer the content of the ABI flags based on the elf header. */
14344
14345 static void
14346 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14347 {
14348 obj_attribute *in_attr;
14349
14350 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14351 update_mips_abiflags_isa (abfd, abiflags);
14352
14353 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14354 abiflags->gpr_size = AFL_REG_32;
14355 else
14356 abiflags->gpr_size = AFL_REG_64;
14357
14358 abiflags->cpr1_size = AFL_REG_NONE;
14359
14360 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14361 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14362
14363 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14364 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14365 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14366 && abiflags->gpr_size == AFL_REG_32))
14367 abiflags->cpr1_size = AFL_REG_32;
14368 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14369 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14370 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14371 abiflags->cpr1_size = AFL_REG_64;
14372
14373 abiflags->cpr2_size = AFL_REG_NONE;
14374
14375 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14376 abiflags->ases |= AFL_ASE_MDMX;
14377 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14378 abiflags->ases |= AFL_ASE_MIPS16;
14379 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14380 abiflags->ases |= AFL_ASE_MICROMIPS;
14381
14382 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14383 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14384 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14385 && abiflags->isa_level >= 32
14386 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14387 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14388 }
14389
14390 /* We need to use a special link routine to handle the .reginfo and
14391 the .mdebug sections. We need to merge all instances of these
14392 sections together, not write them all out sequentially. */
14393
14394 bfd_boolean
14395 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14396 {
14397 asection *o;
14398 struct bfd_link_order *p;
14399 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14400 asection *rtproc_sec, *abiflags_sec;
14401 Elf32_RegInfo reginfo;
14402 struct ecoff_debug_info debug;
14403 struct mips_htab_traverse_info hti;
14404 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14405 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14406 HDRR *symhdr = &debug.symbolic_header;
14407 void *mdebug_handle = NULL;
14408 asection *s;
14409 EXTR esym;
14410 unsigned int i;
14411 bfd_size_type amt;
14412 struct mips_elf_link_hash_table *htab;
14413
14414 static const char * const secname[] =
14415 {
14416 ".text", ".init", ".fini", ".data",
14417 ".rodata", ".sdata", ".sbss", ".bss"
14418 };
14419 static const int sc[] =
14420 {
14421 scText, scInit, scFini, scData,
14422 scRData, scSData, scSBss, scBss
14423 };
14424
14425 /* Sort the dynamic symbols so that those with GOT entries come after
14426 those without. */
14427 htab = mips_elf_hash_table (info);
14428 BFD_ASSERT (htab != NULL);
14429
14430 if (!mips_elf_sort_hash_table (abfd, info))
14431 return FALSE;
14432
14433 /* Create any scheduled LA25 stubs. */
14434 hti.info = info;
14435 hti.output_bfd = abfd;
14436 hti.error = FALSE;
14437 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14438 if (hti.error)
14439 return FALSE;
14440
14441 /* Get a value for the GP register. */
14442 if (elf_gp (abfd) == 0)
14443 {
14444 struct bfd_link_hash_entry *h;
14445
14446 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14447 if (h != NULL && h->type == bfd_link_hash_defined)
14448 elf_gp (abfd) = (h->u.def.value
14449 + h->u.def.section->output_section->vma
14450 + h->u.def.section->output_offset);
14451 else if (htab->is_vxworks
14452 && (h = bfd_link_hash_lookup (info->hash,
14453 "_GLOBAL_OFFSET_TABLE_",
14454 FALSE, FALSE, TRUE))
14455 && h->type == bfd_link_hash_defined)
14456 elf_gp (abfd) = (h->u.def.section->output_section->vma
14457 + h->u.def.section->output_offset
14458 + h->u.def.value);
14459 else if (bfd_link_relocatable (info))
14460 {
14461 bfd_vma lo = MINUS_ONE;
14462
14463 /* Find the GP-relative section with the lowest offset. */
14464 for (o = abfd->sections; o != NULL; o = o->next)
14465 if (o->vma < lo
14466 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14467 lo = o->vma;
14468
14469 /* And calculate GP relative to that. */
14470 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14471 }
14472 else
14473 {
14474 /* If the relocate_section function needs to do a reloc
14475 involving the GP value, it should make a reloc_dangerous
14476 callback to warn that GP is not defined. */
14477 }
14478 }
14479
14480 /* Go through the sections and collect the .reginfo and .mdebug
14481 information. */
14482 abiflags_sec = NULL;
14483 reginfo_sec = NULL;
14484 mdebug_sec = NULL;
14485 gptab_data_sec = NULL;
14486 gptab_bss_sec = NULL;
14487 for (o = abfd->sections; o != NULL; o = o->next)
14488 {
14489 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14490 {
14491 /* We have found the .MIPS.abiflags section in the output file.
14492 Look through all the link_orders comprising it and remove them.
14493 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14494 for (p = o->map_head.link_order; p != NULL; p = p->next)
14495 {
14496 asection *input_section;
14497
14498 if (p->type != bfd_indirect_link_order)
14499 {
14500 if (p->type == bfd_data_link_order)
14501 continue;
14502 abort ();
14503 }
14504
14505 input_section = p->u.indirect.section;
14506
14507 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14508 elf_link_input_bfd ignores this section. */
14509 input_section->flags &= ~SEC_HAS_CONTENTS;
14510 }
14511
14512 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14513 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14514
14515 /* Skip this section later on (I don't think this currently
14516 matters, but someday it might). */
14517 o->map_head.link_order = NULL;
14518
14519 abiflags_sec = o;
14520 }
14521
14522 if (strcmp (o->name, ".reginfo") == 0)
14523 {
14524 memset (&reginfo, 0, sizeof reginfo);
14525
14526 /* We have found the .reginfo section in the output file.
14527 Look through all the link_orders comprising it and merge
14528 the information together. */
14529 for (p = o->map_head.link_order; p != NULL; p = p->next)
14530 {
14531 asection *input_section;
14532 bfd *input_bfd;
14533 Elf32_External_RegInfo ext;
14534 Elf32_RegInfo sub;
14535
14536 if (p->type != bfd_indirect_link_order)
14537 {
14538 if (p->type == bfd_data_link_order)
14539 continue;
14540 abort ();
14541 }
14542
14543 input_section = p->u.indirect.section;
14544 input_bfd = input_section->owner;
14545
14546 if (! bfd_get_section_contents (input_bfd, input_section,
14547 &ext, 0, sizeof ext))
14548 return FALSE;
14549
14550 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14551
14552 reginfo.ri_gprmask |= sub.ri_gprmask;
14553 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14554 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14555 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14556 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14557
14558 /* ri_gp_value is set by the function
14559 mips_elf32_section_processing when the section is
14560 finally written out. */
14561
14562 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14563 elf_link_input_bfd ignores this section. */
14564 input_section->flags &= ~SEC_HAS_CONTENTS;
14565 }
14566
14567 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14568 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14569
14570 /* Skip this section later on (I don't think this currently
14571 matters, but someday it might). */
14572 o->map_head.link_order = NULL;
14573
14574 reginfo_sec = o;
14575 }
14576
14577 if (strcmp (o->name, ".mdebug") == 0)
14578 {
14579 struct extsym_info einfo;
14580 bfd_vma last;
14581
14582 /* We have found the .mdebug section in the output file.
14583 Look through all the link_orders comprising it and merge
14584 the information together. */
14585 symhdr->magic = swap->sym_magic;
14586 /* FIXME: What should the version stamp be? */
14587 symhdr->vstamp = 0;
14588 symhdr->ilineMax = 0;
14589 symhdr->cbLine = 0;
14590 symhdr->idnMax = 0;
14591 symhdr->ipdMax = 0;
14592 symhdr->isymMax = 0;
14593 symhdr->ioptMax = 0;
14594 symhdr->iauxMax = 0;
14595 symhdr->issMax = 0;
14596 symhdr->issExtMax = 0;
14597 symhdr->ifdMax = 0;
14598 symhdr->crfd = 0;
14599 symhdr->iextMax = 0;
14600
14601 /* We accumulate the debugging information itself in the
14602 debug_info structure. */
14603 debug.line = NULL;
14604 debug.external_dnr = NULL;
14605 debug.external_pdr = NULL;
14606 debug.external_sym = NULL;
14607 debug.external_opt = NULL;
14608 debug.external_aux = NULL;
14609 debug.ss = NULL;
14610 debug.ssext = debug.ssext_end = NULL;
14611 debug.external_fdr = NULL;
14612 debug.external_rfd = NULL;
14613 debug.external_ext = debug.external_ext_end = NULL;
14614
14615 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14616 if (mdebug_handle == NULL)
14617 return FALSE;
14618
14619 esym.jmptbl = 0;
14620 esym.cobol_main = 0;
14621 esym.weakext = 0;
14622 esym.reserved = 0;
14623 esym.ifd = ifdNil;
14624 esym.asym.iss = issNil;
14625 esym.asym.st = stLocal;
14626 esym.asym.reserved = 0;
14627 esym.asym.index = indexNil;
14628 last = 0;
14629 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14630 {
14631 esym.asym.sc = sc[i];
14632 s = bfd_get_section_by_name (abfd, secname[i]);
14633 if (s != NULL)
14634 {
14635 esym.asym.value = s->vma;
14636 last = s->vma + s->size;
14637 }
14638 else
14639 esym.asym.value = last;
14640 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14641 secname[i], &esym))
14642 return FALSE;
14643 }
14644
14645 for (p = o->map_head.link_order; p != NULL; p = p->next)
14646 {
14647 asection *input_section;
14648 bfd *input_bfd;
14649 const struct ecoff_debug_swap *input_swap;
14650 struct ecoff_debug_info input_debug;
14651 char *eraw_src;
14652 char *eraw_end;
14653
14654 if (p->type != bfd_indirect_link_order)
14655 {
14656 if (p->type == bfd_data_link_order)
14657 continue;
14658 abort ();
14659 }
14660
14661 input_section = p->u.indirect.section;
14662 input_bfd = input_section->owner;
14663
14664 if (!is_mips_elf (input_bfd))
14665 {
14666 /* I don't know what a non MIPS ELF bfd would be
14667 doing with a .mdebug section, but I don't really
14668 want to deal with it. */
14669 continue;
14670 }
14671
14672 input_swap = (get_elf_backend_data (input_bfd)
14673 ->elf_backend_ecoff_debug_swap);
14674
14675 BFD_ASSERT (p->size == input_section->size);
14676
14677 /* The ECOFF linking code expects that we have already
14678 read in the debugging information and set up an
14679 ecoff_debug_info structure, so we do that now. */
14680 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14681 &input_debug))
14682 return FALSE;
14683
14684 if (! (bfd_ecoff_debug_accumulate
14685 (mdebug_handle, abfd, &debug, swap, input_bfd,
14686 &input_debug, input_swap, info)))
14687 return FALSE;
14688
14689 /* Loop through the external symbols. For each one with
14690 interesting information, try to find the symbol in
14691 the linker global hash table and save the information
14692 for the output external symbols. */
14693 eraw_src = input_debug.external_ext;
14694 eraw_end = (eraw_src
14695 + (input_debug.symbolic_header.iextMax
14696 * input_swap->external_ext_size));
14697 for (;
14698 eraw_src < eraw_end;
14699 eraw_src += input_swap->external_ext_size)
14700 {
14701 EXTR ext;
14702 const char *name;
14703 struct mips_elf_link_hash_entry *h;
14704
14705 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14706 if (ext.asym.sc == scNil
14707 || ext.asym.sc == scUndefined
14708 || ext.asym.sc == scSUndefined)
14709 continue;
14710
14711 name = input_debug.ssext + ext.asym.iss;
14712 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14713 name, FALSE, FALSE, TRUE);
14714 if (h == NULL || h->esym.ifd != -2)
14715 continue;
14716
14717 if (ext.ifd != -1)
14718 {
14719 BFD_ASSERT (ext.ifd
14720 < input_debug.symbolic_header.ifdMax);
14721 ext.ifd = input_debug.ifdmap[ext.ifd];
14722 }
14723
14724 h->esym = ext;
14725 }
14726
14727 /* Free up the information we just read. */
14728 free (input_debug.line);
14729 free (input_debug.external_dnr);
14730 free (input_debug.external_pdr);
14731 free (input_debug.external_sym);
14732 free (input_debug.external_opt);
14733 free (input_debug.external_aux);
14734 free (input_debug.ss);
14735 free (input_debug.ssext);
14736 free (input_debug.external_fdr);
14737 free (input_debug.external_rfd);
14738 free (input_debug.external_ext);
14739
14740 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14741 elf_link_input_bfd ignores this section. */
14742 input_section->flags &= ~SEC_HAS_CONTENTS;
14743 }
14744
14745 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14746 {
14747 /* Create .rtproc section. */
14748 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14749 if (rtproc_sec == NULL)
14750 {
14751 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14752 | SEC_LINKER_CREATED | SEC_READONLY);
14753
14754 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14755 ".rtproc",
14756 flags);
14757 if (rtproc_sec == NULL
14758 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14759 return FALSE;
14760 }
14761
14762 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14763 info, rtproc_sec,
14764 &debug))
14765 return FALSE;
14766 }
14767
14768 /* Build the external symbol information. */
14769 einfo.abfd = abfd;
14770 einfo.info = info;
14771 einfo.debug = &debug;
14772 einfo.swap = swap;
14773 einfo.failed = FALSE;
14774 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14775 mips_elf_output_extsym, &einfo);
14776 if (einfo.failed)
14777 return FALSE;
14778
14779 /* Set the size of the .mdebug section. */
14780 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14781
14782 /* Skip this section later on (I don't think this currently
14783 matters, but someday it might). */
14784 o->map_head.link_order = NULL;
14785
14786 mdebug_sec = o;
14787 }
14788
14789 if (CONST_STRNEQ (o->name, ".gptab."))
14790 {
14791 const char *subname;
14792 unsigned int c;
14793 Elf32_gptab *tab;
14794 Elf32_External_gptab *ext_tab;
14795 unsigned int j;
14796
14797 /* The .gptab.sdata and .gptab.sbss sections hold
14798 information describing how the small data area would
14799 change depending upon the -G switch. These sections
14800 not used in executables files. */
14801 if (! bfd_link_relocatable (info))
14802 {
14803 for (p = o->map_head.link_order; p != NULL; p = p->next)
14804 {
14805 asection *input_section;
14806
14807 if (p->type != bfd_indirect_link_order)
14808 {
14809 if (p->type == bfd_data_link_order)
14810 continue;
14811 abort ();
14812 }
14813
14814 input_section = p->u.indirect.section;
14815
14816 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14817 elf_link_input_bfd ignores this section. */
14818 input_section->flags &= ~SEC_HAS_CONTENTS;
14819 }
14820
14821 /* Skip this section later on (I don't think this
14822 currently matters, but someday it might). */
14823 o->map_head.link_order = NULL;
14824
14825 /* Really remove the section. */
14826 bfd_section_list_remove (abfd, o);
14827 --abfd->section_count;
14828
14829 continue;
14830 }
14831
14832 /* There is one gptab for initialized data, and one for
14833 uninitialized data. */
14834 if (strcmp (o->name, ".gptab.sdata") == 0)
14835 gptab_data_sec = o;
14836 else if (strcmp (o->name, ".gptab.sbss") == 0)
14837 gptab_bss_sec = o;
14838 else
14839 {
14840 _bfd_error_handler
14841 /* xgettext:c-format */
14842 (_("%s: illegal section name `%s'"),
14843 bfd_get_filename (abfd), o->name);
14844 bfd_set_error (bfd_error_nonrepresentable_section);
14845 return FALSE;
14846 }
14847
14848 /* The linker script always combines .gptab.data and
14849 .gptab.sdata into .gptab.sdata, and likewise for
14850 .gptab.bss and .gptab.sbss. It is possible that there is
14851 no .sdata or .sbss section in the output file, in which
14852 case we must change the name of the output section. */
14853 subname = o->name + sizeof ".gptab" - 1;
14854 if (bfd_get_section_by_name (abfd, subname) == NULL)
14855 {
14856 if (o == gptab_data_sec)
14857 o->name = ".gptab.data";
14858 else
14859 o->name = ".gptab.bss";
14860 subname = o->name + sizeof ".gptab" - 1;
14861 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14862 }
14863
14864 /* Set up the first entry. */
14865 c = 1;
14866 amt = c * sizeof (Elf32_gptab);
14867 tab = bfd_malloc (amt);
14868 if (tab == NULL)
14869 return FALSE;
14870 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14871 tab[0].gt_header.gt_unused = 0;
14872
14873 /* Combine the input sections. */
14874 for (p = o->map_head.link_order; p != NULL; p = p->next)
14875 {
14876 asection *input_section;
14877 bfd *input_bfd;
14878 bfd_size_type size;
14879 unsigned long last;
14880 bfd_size_type gpentry;
14881
14882 if (p->type != bfd_indirect_link_order)
14883 {
14884 if (p->type == bfd_data_link_order)
14885 continue;
14886 abort ();
14887 }
14888
14889 input_section = p->u.indirect.section;
14890 input_bfd = input_section->owner;
14891
14892 /* Combine the gptab entries for this input section one
14893 by one. We know that the input gptab entries are
14894 sorted by ascending -G value. */
14895 size = input_section->size;
14896 last = 0;
14897 for (gpentry = sizeof (Elf32_External_gptab);
14898 gpentry < size;
14899 gpentry += sizeof (Elf32_External_gptab))
14900 {
14901 Elf32_External_gptab ext_gptab;
14902 Elf32_gptab int_gptab;
14903 unsigned long val;
14904 unsigned long add;
14905 bfd_boolean exact;
14906 unsigned int look;
14907
14908 if (! (bfd_get_section_contents
14909 (input_bfd, input_section, &ext_gptab, gpentry,
14910 sizeof (Elf32_External_gptab))))
14911 {
14912 free (tab);
14913 return FALSE;
14914 }
14915
14916 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14917 &int_gptab);
14918 val = int_gptab.gt_entry.gt_g_value;
14919 add = int_gptab.gt_entry.gt_bytes - last;
14920
14921 exact = FALSE;
14922 for (look = 1; look < c; look++)
14923 {
14924 if (tab[look].gt_entry.gt_g_value >= val)
14925 tab[look].gt_entry.gt_bytes += add;
14926
14927 if (tab[look].gt_entry.gt_g_value == val)
14928 exact = TRUE;
14929 }
14930
14931 if (! exact)
14932 {
14933 Elf32_gptab *new_tab;
14934 unsigned int max;
14935
14936 /* We need a new table entry. */
14937 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14938 new_tab = bfd_realloc (tab, amt);
14939 if (new_tab == NULL)
14940 {
14941 free (tab);
14942 return FALSE;
14943 }
14944 tab = new_tab;
14945 tab[c].gt_entry.gt_g_value = val;
14946 tab[c].gt_entry.gt_bytes = add;
14947
14948 /* Merge in the size for the next smallest -G
14949 value, since that will be implied by this new
14950 value. */
14951 max = 0;
14952 for (look = 1; look < c; look++)
14953 {
14954 if (tab[look].gt_entry.gt_g_value < val
14955 && (max == 0
14956 || (tab[look].gt_entry.gt_g_value
14957 > tab[max].gt_entry.gt_g_value)))
14958 max = look;
14959 }
14960 if (max != 0)
14961 tab[c].gt_entry.gt_bytes +=
14962 tab[max].gt_entry.gt_bytes;
14963
14964 ++c;
14965 }
14966
14967 last = int_gptab.gt_entry.gt_bytes;
14968 }
14969
14970 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14971 elf_link_input_bfd ignores this section. */
14972 input_section->flags &= ~SEC_HAS_CONTENTS;
14973 }
14974
14975 /* The table must be sorted by -G value. */
14976 if (c > 2)
14977 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14978
14979 /* Swap out the table. */
14980 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14981 ext_tab = bfd_alloc (abfd, amt);
14982 if (ext_tab == NULL)
14983 {
14984 free (tab);
14985 return FALSE;
14986 }
14987
14988 for (j = 0; j < c; j++)
14989 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14990 free (tab);
14991
14992 o->size = c * sizeof (Elf32_External_gptab);
14993 o->contents = (bfd_byte *) ext_tab;
14994
14995 /* Skip this section later on (I don't think this currently
14996 matters, but someday it might). */
14997 o->map_head.link_order = NULL;
14998 }
14999 }
15000
15001 /* Invoke the regular ELF backend linker to do all the work. */
15002 if (!bfd_elf_final_link (abfd, info))
15003 return FALSE;
15004
15005 /* Now write out the computed sections. */
15006
15007 if (abiflags_sec != NULL)
15008 {
15009 Elf_External_ABIFlags_v0 ext;
15010 Elf_Internal_ABIFlags_v0 *abiflags;
15011
15012 abiflags = &mips_elf_tdata (abfd)->abiflags;
15013
15014 /* Set up the abiflags if no valid input sections were found. */
15015 if (!mips_elf_tdata (abfd)->abiflags_valid)
15016 {
15017 infer_mips_abiflags (abfd, abiflags);
15018 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15019 }
15020 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15021 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15022 return FALSE;
15023 }
15024
15025 if (reginfo_sec != NULL)
15026 {
15027 Elf32_External_RegInfo ext;
15028
15029 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15030 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15031 return FALSE;
15032 }
15033
15034 if (mdebug_sec != NULL)
15035 {
15036 BFD_ASSERT (abfd->output_has_begun);
15037 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15038 swap, info,
15039 mdebug_sec->filepos))
15040 return FALSE;
15041
15042 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15043 }
15044
15045 if (gptab_data_sec != NULL)
15046 {
15047 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15048 gptab_data_sec->contents,
15049 0, gptab_data_sec->size))
15050 return FALSE;
15051 }
15052
15053 if (gptab_bss_sec != NULL)
15054 {
15055 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15056 gptab_bss_sec->contents,
15057 0, gptab_bss_sec->size))
15058 return FALSE;
15059 }
15060
15061 if (SGI_COMPAT (abfd))
15062 {
15063 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15064 if (rtproc_sec != NULL)
15065 {
15066 if (! bfd_set_section_contents (abfd, rtproc_sec,
15067 rtproc_sec->contents,
15068 0, rtproc_sec->size))
15069 return FALSE;
15070 }
15071 }
15072
15073 return TRUE;
15074 }
15075 \f
15076 /* Merge object file header flags from IBFD into OBFD. Raise an error
15077 if there are conflicting settings. */
15078
15079 static bfd_boolean
15080 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15081 {
15082 bfd *obfd = info->output_bfd;
15083 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15084 flagword old_flags;
15085 flagword new_flags;
15086 bfd_boolean ok;
15087
15088 new_flags = elf_elfheader (ibfd)->e_flags;
15089 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15090 old_flags = elf_elfheader (obfd)->e_flags;
15091
15092 /* Check flag compatibility. */
15093
15094 new_flags &= ~EF_MIPS_NOREORDER;
15095 old_flags &= ~EF_MIPS_NOREORDER;
15096
15097 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15098 doesn't seem to matter. */
15099 new_flags &= ~EF_MIPS_XGOT;
15100 old_flags &= ~EF_MIPS_XGOT;
15101
15102 /* MIPSpro generates ucode info in n64 objects. Again, we should
15103 just be able to ignore this. */
15104 new_flags &= ~EF_MIPS_UCODE;
15105 old_flags &= ~EF_MIPS_UCODE;
15106
15107 /* DSOs should only be linked with CPIC code. */
15108 if ((ibfd->flags & DYNAMIC) != 0)
15109 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15110
15111 if (new_flags == old_flags)
15112 return TRUE;
15113
15114 ok = TRUE;
15115
15116 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15117 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15118 {
15119 _bfd_error_handler
15120 (_("%B: warning: linking abicalls files with non-abicalls files"),
15121 ibfd);
15122 ok = TRUE;
15123 }
15124
15125 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15126 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15127 if (! (new_flags & EF_MIPS_PIC))
15128 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15129
15130 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15131 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15132
15133 /* Compare the ISAs. */
15134 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15135 {
15136 _bfd_error_handler
15137 (_("%B: linking 32-bit code with 64-bit code"),
15138 ibfd);
15139 ok = FALSE;
15140 }
15141 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15142 {
15143 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15144 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15145 {
15146 /* Copy the architecture info from IBFD to OBFD. Also copy
15147 the 32-bit flag (if set) so that we continue to recognise
15148 OBFD as a 32-bit binary. */
15149 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15150 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15151 elf_elfheader (obfd)->e_flags
15152 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15153
15154 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15155 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15156
15157 /* Copy across the ABI flags if OBFD doesn't use them
15158 and if that was what caused us to treat IBFD as 32-bit. */
15159 if ((old_flags & EF_MIPS_ABI) == 0
15160 && mips_32bit_flags_p (new_flags)
15161 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15162 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15163 }
15164 else
15165 {
15166 /* The ISAs aren't compatible. */
15167 _bfd_error_handler
15168 /* xgettext:c-format */
15169 (_("%B: linking %s module with previous %s modules"),
15170 ibfd,
15171 bfd_printable_name (ibfd),
15172 bfd_printable_name (obfd));
15173 ok = FALSE;
15174 }
15175 }
15176
15177 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15178 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15179
15180 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15181 does set EI_CLASS differently from any 32-bit ABI. */
15182 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15183 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15184 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15185 {
15186 /* Only error if both are set (to different values). */
15187 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15188 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15189 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15190 {
15191 _bfd_error_handler
15192 /* xgettext:c-format */
15193 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15194 ibfd,
15195 elf_mips_abi_name (ibfd),
15196 elf_mips_abi_name (obfd));
15197 ok = FALSE;
15198 }
15199 new_flags &= ~EF_MIPS_ABI;
15200 old_flags &= ~EF_MIPS_ABI;
15201 }
15202
15203 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15204 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15205 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15206 {
15207 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15208 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15209 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15210 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15211 int micro_mis = old_m16 && new_micro;
15212 int m16_mis = old_micro && new_m16;
15213
15214 if (m16_mis || micro_mis)
15215 {
15216 _bfd_error_handler
15217 /* xgettext:c-format */
15218 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15219 ibfd,
15220 m16_mis ? "MIPS16" : "microMIPS",
15221 m16_mis ? "microMIPS" : "MIPS16");
15222 ok = FALSE;
15223 }
15224
15225 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15226
15227 new_flags &= ~ EF_MIPS_ARCH_ASE;
15228 old_flags &= ~ EF_MIPS_ARCH_ASE;
15229 }
15230
15231 /* Compare NaN encodings. */
15232 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15233 {
15234 /* xgettext:c-format */
15235 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15236 ibfd,
15237 (new_flags & EF_MIPS_NAN2008
15238 ? "-mnan=2008" : "-mnan=legacy"),
15239 (old_flags & EF_MIPS_NAN2008
15240 ? "-mnan=2008" : "-mnan=legacy"));
15241 ok = FALSE;
15242 new_flags &= ~EF_MIPS_NAN2008;
15243 old_flags &= ~EF_MIPS_NAN2008;
15244 }
15245
15246 /* Compare FP64 state. */
15247 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15248 {
15249 /* xgettext:c-format */
15250 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15251 ibfd,
15252 (new_flags & EF_MIPS_FP64
15253 ? "-mfp64" : "-mfp32"),
15254 (old_flags & EF_MIPS_FP64
15255 ? "-mfp64" : "-mfp32"));
15256 ok = FALSE;
15257 new_flags &= ~EF_MIPS_FP64;
15258 old_flags &= ~EF_MIPS_FP64;
15259 }
15260
15261 /* Warn about any other mismatches */
15262 if (new_flags != old_flags)
15263 {
15264 /* xgettext:c-format */
15265 _bfd_error_handler
15266 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15267 "(0x%lx)"),
15268 ibfd, (unsigned long) new_flags,
15269 (unsigned long) old_flags);
15270 ok = FALSE;
15271 }
15272
15273 return ok;
15274 }
15275
15276 /* Merge object attributes from IBFD into OBFD. Raise an error if
15277 there are conflicting attributes. */
15278 static bfd_boolean
15279 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15280 {
15281 bfd *obfd = info->output_bfd;
15282 obj_attribute *in_attr;
15283 obj_attribute *out_attr;
15284 bfd *abi_fp_bfd;
15285 bfd *abi_msa_bfd;
15286
15287 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15288 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15289 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15290 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15291
15292 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15293 if (!abi_msa_bfd
15294 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15295 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15296
15297 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15298 {
15299 /* This is the first object. Copy the attributes. */
15300 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15301
15302 /* Use the Tag_null value to indicate the attributes have been
15303 initialized. */
15304 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15305
15306 return TRUE;
15307 }
15308
15309 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15310 non-conflicting ones. */
15311 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15312 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15313 {
15314 int out_fp, in_fp;
15315
15316 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15317 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15318 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15319 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15320 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15321 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15322 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15323 || in_fp == Val_GNU_MIPS_ABI_FP_64
15324 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15325 {
15326 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15327 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15328 }
15329 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15330 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15331 || out_fp == Val_GNU_MIPS_ABI_FP_64
15332 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15333 /* Keep the current setting. */;
15334 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15335 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15336 {
15337 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15338 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15339 }
15340 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15341 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15342 /* Keep the current setting. */;
15343 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15344 {
15345 const char *out_string, *in_string;
15346
15347 out_string = _bfd_mips_fp_abi_string (out_fp);
15348 in_string = _bfd_mips_fp_abi_string (in_fp);
15349 /* First warn about cases involving unrecognised ABIs. */
15350 if (!out_string && !in_string)
15351 /* xgettext:c-format */
15352 _bfd_error_handler
15353 (_("Warning: %B uses unknown floating point ABI %d "
15354 "(set by %B), %B uses unknown floating point ABI %d"),
15355 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15356 else if (!out_string)
15357 _bfd_error_handler
15358 /* xgettext:c-format */
15359 (_("Warning: %B uses unknown floating point ABI %d "
15360 "(set by %B), %B uses %s"),
15361 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15362 else if (!in_string)
15363 _bfd_error_handler
15364 /* xgettext:c-format */
15365 (_("Warning: %B uses %s (set by %B), "
15366 "%B uses unknown floating point ABI %d"),
15367 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15368 else
15369 {
15370 /* If one of the bfds is soft-float, the other must be
15371 hard-float. The exact choice of hard-float ABI isn't
15372 really relevant to the error message. */
15373 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15374 out_string = "-mhard-float";
15375 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15376 in_string = "-mhard-float";
15377 _bfd_error_handler
15378 /* xgettext:c-format */
15379 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15380 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15381 }
15382 }
15383 }
15384
15385 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15386 non-conflicting ones. */
15387 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15388 {
15389 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15390 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15391 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15392 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15393 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15394 {
15395 case Val_GNU_MIPS_ABI_MSA_128:
15396 _bfd_error_handler
15397 /* xgettext:c-format */
15398 (_("Warning: %B uses %s (set by %B), "
15399 "%B uses unknown MSA ABI %d"),
15400 obfd, abi_msa_bfd, ibfd,
15401 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15402 break;
15403
15404 default:
15405 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15406 {
15407 case Val_GNU_MIPS_ABI_MSA_128:
15408 _bfd_error_handler
15409 /* xgettext:c-format */
15410 (_("Warning: %B uses unknown MSA ABI %d "
15411 "(set by %B), %B uses %s"),
15412 obfd, abi_msa_bfd, ibfd,
15413 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15414 break;
15415
15416 default:
15417 _bfd_error_handler
15418 /* xgettext:c-format */
15419 (_("Warning: %B uses unknown MSA ABI %d "
15420 "(set by %B), %B uses unknown MSA ABI %d"),
15421 obfd, abi_msa_bfd, ibfd,
15422 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15423 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15424 break;
15425 }
15426 }
15427 }
15428
15429 /* Merge Tag_compatibility attributes and any common GNU ones. */
15430 return _bfd_elf_merge_object_attributes (ibfd, info);
15431 }
15432
15433 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15434 there are conflicting settings. */
15435
15436 static bfd_boolean
15437 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15438 {
15439 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15440 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15441 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15442
15443 /* Update the output abiflags fp_abi using the computed fp_abi. */
15444 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15445
15446 #define max(a, b) ((a) > (b) ? (a) : (b))
15447 /* Merge abiflags. */
15448 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15449 in_tdata->abiflags.isa_level);
15450 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15451 in_tdata->abiflags.isa_rev);
15452 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15453 in_tdata->abiflags.gpr_size);
15454 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15455 in_tdata->abiflags.cpr1_size);
15456 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15457 in_tdata->abiflags.cpr2_size);
15458 #undef max
15459 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15460 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15461
15462 return TRUE;
15463 }
15464
15465 /* Merge backend specific data from an object file to the output
15466 object file when linking. */
15467
15468 bfd_boolean
15469 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15470 {
15471 bfd *obfd = info->output_bfd;
15472 struct mips_elf_obj_tdata *out_tdata;
15473 struct mips_elf_obj_tdata *in_tdata;
15474 bfd_boolean null_input_bfd = TRUE;
15475 asection *sec;
15476 bfd_boolean ok;
15477
15478 /* Check if we have the same endianness. */
15479 if (! _bfd_generic_verify_endian_match (ibfd, info))
15480 {
15481 _bfd_error_handler
15482 (_("%B: endianness incompatible with that of the selected emulation"),
15483 ibfd);
15484 return FALSE;
15485 }
15486
15487 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15488 return TRUE;
15489
15490 in_tdata = mips_elf_tdata (ibfd);
15491 out_tdata = mips_elf_tdata (obfd);
15492
15493 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15494 {
15495 _bfd_error_handler
15496 (_("%B: ABI is incompatible with that of the selected emulation"),
15497 ibfd);
15498 return FALSE;
15499 }
15500
15501 /* Check to see if the input BFD actually contains any sections. If not,
15502 then it has no attributes, and its flags may not have been initialized
15503 either, but it cannot actually cause any incompatibility. */
15504 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15505 {
15506 /* Ignore synthetic sections and empty .text, .data and .bss sections
15507 which are automatically generated by gas. Also ignore fake
15508 (s)common sections, since merely defining a common symbol does
15509 not affect compatibility. */
15510 if ((sec->flags & SEC_IS_COMMON) == 0
15511 && strcmp (sec->name, ".reginfo")
15512 && strcmp (sec->name, ".mdebug")
15513 && (sec->size != 0
15514 || (strcmp (sec->name, ".text")
15515 && strcmp (sec->name, ".data")
15516 && strcmp (sec->name, ".bss"))))
15517 {
15518 null_input_bfd = FALSE;
15519 break;
15520 }
15521 }
15522 if (null_input_bfd)
15523 return TRUE;
15524
15525 /* Populate abiflags using existing information. */
15526 if (in_tdata->abiflags_valid)
15527 {
15528 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15529 Elf_Internal_ABIFlags_v0 in_abiflags;
15530 Elf_Internal_ABIFlags_v0 abiflags;
15531
15532 /* Set up the FP ABI attribute from the abiflags if it is not already
15533 set. */
15534 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15535 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15536
15537 infer_mips_abiflags (ibfd, &abiflags);
15538 in_abiflags = in_tdata->abiflags;
15539
15540 /* It is not possible to infer the correct ISA revision
15541 for R3 or R5 so drop down to R2 for the checks. */
15542 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15543 in_abiflags.isa_rev = 2;
15544
15545 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15546 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15547 _bfd_error_handler
15548 (_("%B: warning: Inconsistent ISA between e_flags and "
15549 ".MIPS.abiflags"), ibfd);
15550 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15551 && in_abiflags.fp_abi != abiflags.fp_abi)
15552 _bfd_error_handler
15553 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15554 ".MIPS.abiflags"), ibfd);
15555 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15556 _bfd_error_handler
15557 (_("%B: warning: Inconsistent ASEs between e_flags and "
15558 ".MIPS.abiflags"), ibfd);
15559 /* The isa_ext is allowed to be an extension of what can be inferred
15560 from e_flags. */
15561 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15562 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15563 _bfd_error_handler
15564 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15565 ".MIPS.abiflags"), ibfd);
15566 if (in_abiflags.flags2 != 0)
15567 _bfd_error_handler
15568 (_("%B: warning: Unexpected flag in the flags2 field of "
15569 ".MIPS.abiflags (0x%lx)"), ibfd,
15570 (unsigned long) in_abiflags.flags2);
15571 }
15572 else
15573 {
15574 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15575 in_tdata->abiflags_valid = TRUE;
15576 }
15577
15578 if (!out_tdata->abiflags_valid)
15579 {
15580 /* Copy input abiflags if output abiflags are not already valid. */
15581 out_tdata->abiflags = in_tdata->abiflags;
15582 out_tdata->abiflags_valid = TRUE;
15583 }
15584
15585 if (! elf_flags_init (obfd))
15586 {
15587 elf_flags_init (obfd) = TRUE;
15588 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15589 elf_elfheader (obfd)->e_ident[EI_CLASS]
15590 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15591
15592 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15593 && (bfd_get_arch_info (obfd)->the_default
15594 || mips_mach_extends_p (bfd_get_mach (obfd),
15595 bfd_get_mach (ibfd))))
15596 {
15597 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15598 bfd_get_mach (ibfd)))
15599 return FALSE;
15600
15601 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15602 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15603 }
15604
15605 ok = TRUE;
15606 }
15607 else
15608 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15609
15610 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15611
15612 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15613
15614 if (!ok)
15615 {
15616 bfd_set_error (bfd_error_bad_value);
15617 return FALSE;
15618 }
15619
15620 return TRUE;
15621 }
15622
15623 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15624
15625 bfd_boolean
15626 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15627 {
15628 BFD_ASSERT (!elf_flags_init (abfd)
15629 || elf_elfheader (abfd)->e_flags == flags);
15630
15631 elf_elfheader (abfd)->e_flags = flags;
15632 elf_flags_init (abfd) = TRUE;
15633 return TRUE;
15634 }
15635
15636 char *
15637 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15638 {
15639 switch (dtag)
15640 {
15641 default: return "";
15642 case DT_MIPS_RLD_VERSION:
15643 return "MIPS_RLD_VERSION";
15644 case DT_MIPS_TIME_STAMP:
15645 return "MIPS_TIME_STAMP";
15646 case DT_MIPS_ICHECKSUM:
15647 return "MIPS_ICHECKSUM";
15648 case DT_MIPS_IVERSION:
15649 return "MIPS_IVERSION";
15650 case DT_MIPS_FLAGS:
15651 return "MIPS_FLAGS";
15652 case DT_MIPS_BASE_ADDRESS:
15653 return "MIPS_BASE_ADDRESS";
15654 case DT_MIPS_MSYM:
15655 return "MIPS_MSYM";
15656 case DT_MIPS_CONFLICT:
15657 return "MIPS_CONFLICT";
15658 case DT_MIPS_LIBLIST:
15659 return "MIPS_LIBLIST";
15660 case DT_MIPS_LOCAL_GOTNO:
15661 return "MIPS_LOCAL_GOTNO";
15662 case DT_MIPS_CONFLICTNO:
15663 return "MIPS_CONFLICTNO";
15664 case DT_MIPS_LIBLISTNO:
15665 return "MIPS_LIBLISTNO";
15666 case DT_MIPS_SYMTABNO:
15667 return "MIPS_SYMTABNO";
15668 case DT_MIPS_UNREFEXTNO:
15669 return "MIPS_UNREFEXTNO";
15670 case DT_MIPS_GOTSYM:
15671 return "MIPS_GOTSYM";
15672 case DT_MIPS_HIPAGENO:
15673 return "MIPS_HIPAGENO";
15674 case DT_MIPS_RLD_MAP:
15675 return "MIPS_RLD_MAP";
15676 case DT_MIPS_RLD_MAP_REL:
15677 return "MIPS_RLD_MAP_REL";
15678 case DT_MIPS_DELTA_CLASS:
15679 return "MIPS_DELTA_CLASS";
15680 case DT_MIPS_DELTA_CLASS_NO:
15681 return "MIPS_DELTA_CLASS_NO";
15682 case DT_MIPS_DELTA_INSTANCE:
15683 return "MIPS_DELTA_INSTANCE";
15684 case DT_MIPS_DELTA_INSTANCE_NO:
15685 return "MIPS_DELTA_INSTANCE_NO";
15686 case DT_MIPS_DELTA_RELOC:
15687 return "MIPS_DELTA_RELOC";
15688 case DT_MIPS_DELTA_RELOC_NO:
15689 return "MIPS_DELTA_RELOC_NO";
15690 case DT_MIPS_DELTA_SYM:
15691 return "MIPS_DELTA_SYM";
15692 case DT_MIPS_DELTA_SYM_NO:
15693 return "MIPS_DELTA_SYM_NO";
15694 case DT_MIPS_DELTA_CLASSSYM:
15695 return "MIPS_DELTA_CLASSSYM";
15696 case DT_MIPS_DELTA_CLASSSYM_NO:
15697 return "MIPS_DELTA_CLASSSYM_NO";
15698 case DT_MIPS_CXX_FLAGS:
15699 return "MIPS_CXX_FLAGS";
15700 case DT_MIPS_PIXIE_INIT:
15701 return "MIPS_PIXIE_INIT";
15702 case DT_MIPS_SYMBOL_LIB:
15703 return "MIPS_SYMBOL_LIB";
15704 case DT_MIPS_LOCALPAGE_GOTIDX:
15705 return "MIPS_LOCALPAGE_GOTIDX";
15706 case DT_MIPS_LOCAL_GOTIDX:
15707 return "MIPS_LOCAL_GOTIDX";
15708 case DT_MIPS_HIDDEN_GOTIDX:
15709 return "MIPS_HIDDEN_GOTIDX";
15710 case DT_MIPS_PROTECTED_GOTIDX:
15711 return "MIPS_PROTECTED_GOT_IDX";
15712 case DT_MIPS_OPTIONS:
15713 return "MIPS_OPTIONS";
15714 case DT_MIPS_INTERFACE:
15715 return "MIPS_INTERFACE";
15716 case DT_MIPS_DYNSTR_ALIGN:
15717 return "DT_MIPS_DYNSTR_ALIGN";
15718 case DT_MIPS_INTERFACE_SIZE:
15719 return "DT_MIPS_INTERFACE_SIZE";
15720 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15721 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15722 case DT_MIPS_PERF_SUFFIX:
15723 return "DT_MIPS_PERF_SUFFIX";
15724 case DT_MIPS_COMPACT_SIZE:
15725 return "DT_MIPS_COMPACT_SIZE";
15726 case DT_MIPS_GP_VALUE:
15727 return "DT_MIPS_GP_VALUE";
15728 case DT_MIPS_AUX_DYNAMIC:
15729 return "DT_MIPS_AUX_DYNAMIC";
15730 case DT_MIPS_PLTGOT:
15731 return "DT_MIPS_PLTGOT";
15732 case DT_MIPS_RWPLT:
15733 return "DT_MIPS_RWPLT";
15734 }
15735 }
15736
15737 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15738 not known. */
15739
15740 const char *
15741 _bfd_mips_fp_abi_string (int fp)
15742 {
15743 switch (fp)
15744 {
15745 /* These strings aren't translated because they're simply
15746 option lists. */
15747 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15748 return "-mdouble-float";
15749
15750 case Val_GNU_MIPS_ABI_FP_SINGLE:
15751 return "-msingle-float";
15752
15753 case Val_GNU_MIPS_ABI_FP_SOFT:
15754 return "-msoft-float";
15755
15756 case Val_GNU_MIPS_ABI_FP_OLD_64:
15757 return _("-mips32r2 -mfp64 (12 callee-saved)");
15758
15759 case Val_GNU_MIPS_ABI_FP_XX:
15760 return "-mfpxx";
15761
15762 case Val_GNU_MIPS_ABI_FP_64:
15763 return "-mgp32 -mfp64";
15764
15765 case Val_GNU_MIPS_ABI_FP_64A:
15766 return "-mgp32 -mfp64 -mno-odd-spreg";
15767
15768 default:
15769 return 0;
15770 }
15771 }
15772
15773 static void
15774 print_mips_ases (FILE *file, unsigned int mask)
15775 {
15776 if (mask & AFL_ASE_DSP)
15777 fputs ("\n\tDSP ASE", file);
15778 if (mask & AFL_ASE_DSPR2)
15779 fputs ("\n\tDSP R2 ASE", file);
15780 if (mask & AFL_ASE_DSPR3)
15781 fputs ("\n\tDSP R3 ASE", file);
15782 if (mask & AFL_ASE_EVA)
15783 fputs ("\n\tEnhanced VA Scheme", file);
15784 if (mask & AFL_ASE_MCU)
15785 fputs ("\n\tMCU (MicroController) ASE", file);
15786 if (mask & AFL_ASE_MDMX)
15787 fputs ("\n\tMDMX ASE", file);
15788 if (mask & AFL_ASE_MIPS3D)
15789 fputs ("\n\tMIPS-3D ASE", file);
15790 if (mask & AFL_ASE_MT)
15791 fputs ("\n\tMT ASE", file);
15792 if (mask & AFL_ASE_SMARTMIPS)
15793 fputs ("\n\tSmartMIPS ASE", file);
15794 if (mask & AFL_ASE_VIRT)
15795 fputs ("\n\tVZ ASE", file);
15796 if (mask & AFL_ASE_MSA)
15797 fputs ("\n\tMSA ASE", file);
15798 if (mask & AFL_ASE_MIPS16)
15799 fputs ("\n\tMIPS16 ASE", file);
15800 if (mask & AFL_ASE_MICROMIPS)
15801 fputs ("\n\tMICROMIPS ASE", file);
15802 if (mask & AFL_ASE_XPA)
15803 fputs ("\n\tXPA ASE", file);
15804 if (mask == 0)
15805 fprintf (file, "\n\t%s", _("None"));
15806 else if ((mask & ~AFL_ASE_MASK) != 0)
15807 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15808 }
15809
15810 static void
15811 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15812 {
15813 switch (isa_ext)
15814 {
15815 case 0:
15816 fputs (_("None"), file);
15817 break;
15818 case AFL_EXT_XLR:
15819 fputs ("RMI XLR", file);
15820 break;
15821 case AFL_EXT_OCTEON3:
15822 fputs ("Cavium Networks Octeon3", file);
15823 break;
15824 case AFL_EXT_OCTEON2:
15825 fputs ("Cavium Networks Octeon2", file);
15826 break;
15827 case AFL_EXT_OCTEONP:
15828 fputs ("Cavium Networks OcteonP", file);
15829 break;
15830 case AFL_EXT_LOONGSON_3A:
15831 fputs ("Loongson 3A", file);
15832 break;
15833 case AFL_EXT_OCTEON:
15834 fputs ("Cavium Networks Octeon", file);
15835 break;
15836 case AFL_EXT_5900:
15837 fputs ("Toshiba R5900", file);
15838 break;
15839 case AFL_EXT_4650:
15840 fputs ("MIPS R4650", file);
15841 break;
15842 case AFL_EXT_4010:
15843 fputs ("LSI R4010", file);
15844 break;
15845 case AFL_EXT_4100:
15846 fputs ("NEC VR4100", file);
15847 break;
15848 case AFL_EXT_3900:
15849 fputs ("Toshiba R3900", file);
15850 break;
15851 case AFL_EXT_10000:
15852 fputs ("MIPS R10000", file);
15853 break;
15854 case AFL_EXT_SB1:
15855 fputs ("Broadcom SB-1", file);
15856 break;
15857 case AFL_EXT_4111:
15858 fputs ("NEC VR4111/VR4181", file);
15859 break;
15860 case AFL_EXT_4120:
15861 fputs ("NEC VR4120", file);
15862 break;
15863 case AFL_EXT_5400:
15864 fputs ("NEC VR5400", file);
15865 break;
15866 case AFL_EXT_5500:
15867 fputs ("NEC VR5500", file);
15868 break;
15869 case AFL_EXT_LOONGSON_2E:
15870 fputs ("ST Microelectronics Loongson 2E", file);
15871 break;
15872 case AFL_EXT_LOONGSON_2F:
15873 fputs ("ST Microelectronics Loongson 2F", file);
15874 break;
15875 default:
15876 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15877 break;
15878 }
15879 }
15880
15881 static void
15882 print_mips_fp_abi_value (FILE *file, int val)
15883 {
15884 switch (val)
15885 {
15886 case Val_GNU_MIPS_ABI_FP_ANY:
15887 fprintf (file, _("Hard or soft float\n"));
15888 break;
15889 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15890 fprintf (file, _("Hard float (double precision)\n"));
15891 break;
15892 case Val_GNU_MIPS_ABI_FP_SINGLE:
15893 fprintf (file, _("Hard float (single precision)\n"));
15894 break;
15895 case Val_GNU_MIPS_ABI_FP_SOFT:
15896 fprintf (file, _("Soft float\n"));
15897 break;
15898 case Val_GNU_MIPS_ABI_FP_OLD_64:
15899 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15900 break;
15901 case Val_GNU_MIPS_ABI_FP_XX:
15902 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15903 break;
15904 case Val_GNU_MIPS_ABI_FP_64:
15905 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15906 break;
15907 case Val_GNU_MIPS_ABI_FP_64A:
15908 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15909 break;
15910 default:
15911 fprintf (file, "??? (%d)\n", val);
15912 break;
15913 }
15914 }
15915
15916 static int
15917 get_mips_reg_size (int reg_size)
15918 {
15919 return (reg_size == AFL_REG_NONE) ? 0
15920 : (reg_size == AFL_REG_32) ? 32
15921 : (reg_size == AFL_REG_64) ? 64
15922 : (reg_size == AFL_REG_128) ? 128
15923 : -1;
15924 }
15925
15926 bfd_boolean
15927 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15928 {
15929 FILE *file = ptr;
15930
15931 BFD_ASSERT (abfd != NULL && ptr != NULL);
15932
15933 /* Print normal ELF private data. */
15934 _bfd_elf_print_private_bfd_data (abfd, ptr);
15935
15936 /* xgettext:c-format */
15937 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15938
15939 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15940 fprintf (file, _(" [abi=O32]"));
15941 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15942 fprintf (file, _(" [abi=O64]"));
15943 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15944 fprintf (file, _(" [abi=EABI32]"));
15945 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15946 fprintf (file, _(" [abi=EABI64]"));
15947 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15948 fprintf (file, _(" [abi unknown]"));
15949 else if (ABI_N32_P (abfd))
15950 fprintf (file, _(" [abi=N32]"));
15951 else if (ABI_64_P (abfd))
15952 fprintf (file, _(" [abi=64]"));
15953 else
15954 fprintf (file, _(" [no abi set]"));
15955
15956 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15957 fprintf (file, " [mips1]");
15958 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15959 fprintf (file, " [mips2]");
15960 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15961 fprintf (file, " [mips3]");
15962 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15963 fprintf (file, " [mips4]");
15964 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15965 fprintf (file, " [mips5]");
15966 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15967 fprintf (file, " [mips32]");
15968 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15969 fprintf (file, " [mips64]");
15970 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15971 fprintf (file, " [mips32r2]");
15972 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15973 fprintf (file, " [mips64r2]");
15974 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15975 fprintf (file, " [mips32r6]");
15976 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15977 fprintf (file, " [mips64r6]");
15978 else
15979 fprintf (file, _(" [unknown ISA]"));
15980
15981 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15982 fprintf (file, " [mdmx]");
15983
15984 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15985 fprintf (file, " [mips16]");
15986
15987 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15988 fprintf (file, " [micromips]");
15989
15990 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15991 fprintf (file, " [nan2008]");
15992
15993 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15994 fprintf (file, " [old fp64]");
15995
15996 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15997 fprintf (file, " [32bitmode]");
15998 else
15999 fprintf (file, _(" [not 32bitmode]"));
16000
16001 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16002 fprintf (file, " [noreorder]");
16003
16004 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16005 fprintf (file, " [PIC]");
16006
16007 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16008 fprintf (file, " [CPIC]");
16009
16010 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16011 fprintf (file, " [XGOT]");
16012
16013 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16014 fprintf (file, " [UCODE]");
16015
16016 fputc ('\n', file);
16017
16018 if (mips_elf_tdata (abfd)->abiflags_valid)
16019 {
16020 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16021 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16022 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16023 if (abiflags->isa_rev > 1)
16024 fprintf (file, "r%d", abiflags->isa_rev);
16025 fprintf (file, "\nGPR size: %d",
16026 get_mips_reg_size (abiflags->gpr_size));
16027 fprintf (file, "\nCPR1 size: %d",
16028 get_mips_reg_size (abiflags->cpr1_size));
16029 fprintf (file, "\nCPR2 size: %d",
16030 get_mips_reg_size (abiflags->cpr2_size));
16031 fputs ("\nFP ABI: ", file);
16032 print_mips_fp_abi_value (file, abiflags->fp_abi);
16033 fputs ("ISA Extension: ", file);
16034 print_mips_isa_ext (file, abiflags->isa_ext);
16035 fputs ("\nASEs:", file);
16036 print_mips_ases (file, abiflags->ases);
16037 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16038 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16039 fputc ('\n', file);
16040 }
16041
16042 return TRUE;
16043 }
16044
16045 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16046 {
16047 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16048 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16049 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16050 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16051 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16052 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16053 { NULL, 0, 0, 0, 0 }
16054 };
16055
16056 /* Merge non visibility st_other attributes. Ensure that the
16057 STO_OPTIONAL flag is copied into h->other, even if this is not a
16058 definiton of the symbol. */
16059 void
16060 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16061 const Elf_Internal_Sym *isym,
16062 bfd_boolean definition,
16063 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16064 {
16065 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16066 {
16067 unsigned char other;
16068
16069 other = (definition ? isym->st_other : h->other);
16070 other &= ~ELF_ST_VISIBILITY (-1);
16071 h->other = other | ELF_ST_VISIBILITY (h->other);
16072 }
16073
16074 if (!definition
16075 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16076 h->other |= STO_OPTIONAL;
16077 }
16078
16079 /* Decide whether an undefined symbol is special and can be ignored.
16080 This is the case for OPTIONAL symbols on IRIX. */
16081 bfd_boolean
16082 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16083 {
16084 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16085 }
16086
16087 bfd_boolean
16088 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16089 {
16090 return (sym->st_shndx == SHN_COMMON
16091 || sym->st_shndx == SHN_MIPS_ACOMMON
16092 || sym->st_shndx == SHN_MIPS_SCOMMON);
16093 }
16094
16095 /* Return address for Ith PLT stub in section PLT, for relocation REL
16096 or (bfd_vma) -1 if it should not be included. */
16097
16098 bfd_vma
16099 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16100 const arelent *rel ATTRIBUTE_UNUSED)
16101 {
16102 return (plt->vma
16103 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16104 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16105 }
16106
16107 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16108 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16109 and .got.plt and also the slots may be of a different size each we walk
16110 the PLT manually fetching instructions and matching them against known
16111 patterns. To make things easier standard MIPS slots, if any, always come
16112 first. As we don't create proper ELF symbols we use the UDATA.I member
16113 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16114 with the ST_OTHER member of the ELF symbol. */
16115
16116 long
16117 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16118 long symcount ATTRIBUTE_UNUSED,
16119 asymbol **syms ATTRIBUTE_UNUSED,
16120 long dynsymcount, asymbol **dynsyms,
16121 asymbol **ret)
16122 {
16123 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16124 static const char microsuffix[] = "@micromipsplt";
16125 static const char m16suffix[] = "@mips16plt";
16126 static const char mipssuffix[] = "@plt";
16127
16128 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16129 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16130 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16131 Elf_Internal_Shdr *hdr;
16132 bfd_byte *plt_data;
16133 bfd_vma plt_offset;
16134 unsigned int other;
16135 bfd_vma entry_size;
16136 bfd_vma plt0_size;
16137 asection *relplt;
16138 bfd_vma opcode;
16139 asection *plt;
16140 asymbol *send;
16141 size_t size;
16142 char *names;
16143 long counti;
16144 arelent *p;
16145 asymbol *s;
16146 char *nend;
16147 long count;
16148 long pi;
16149 long i;
16150 long n;
16151
16152 *ret = NULL;
16153
16154 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16155 return 0;
16156
16157 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16158 if (relplt == NULL)
16159 return 0;
16160
16161 hdr = &elf_section_data (relplt)->this_hdr;
16162 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16163 return 0;
16164
16165 plt = bfd_get_section_by_name (abfd, ".plt");
16166 if (plt == NULL)
16167 return 0;
16168
16169 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16170 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16171 return -1;
16172 p = relplt->relocation;
16173
16174 /* Calculating the exact amount of space required for symbols would
16175 require two passes over the PLT, so just pessimise assuming two
16176 PLT slots per relocation. */
16177 count = relplt->size / hdr->sh_entsize;
16178 counti = count * bed->s->int_rels_per_ext_rel;
16179 size = 2 * count * sizeof (asymbol);
16180 size += count * (sizeof (mipssuffix) +
16181 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16182 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16183 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16184
16185 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16186 size += sizeof (asymbol) + sizeof (pltname);
16187
16188 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16189 return -1;
16190
16191 if (plt->size < 16)
16192 return -1;
16193
16194 s = *ret = bfd_malloc (size);
16195 if (s == NULL)
16196 return -1;
16197 send = s + 2 * count + 1;
16198
16199 names = (char *) send;
16200 nend = (char *) s + size;
16201 n = 0;
16202
16203 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16204 if (opcode == 0x3302fffe)
16205 {
16206 if (!micromips_p)
16207 return -1;
16208 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16209 other = STO_MICROMIPS;
16210 }
16211 else if (opcode == 0x0398c1d0)
16212 {
16213 if (!micromips_p)
16214 return -1;
16215 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16216 other = STO_MICROMIPS;
16217 }
16218 else
16219 {
16220 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16221 other = 0;
16222 }
16223
16224 s->the_bfd = abfd;
16225 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16226 s->section = plt;
16227 s->value = 0;
16228 s->name = names;
16229 s->udata.i = other;
16230 memcpy (names, pltname, sizeof (pltname));
16231 names += sizeof (pltname);
16232 ++s, ++n;
16233
16234 pi = 0;
16235 for (plt_offset = plt0_size;
16236 plt_offset + 8 <= plt->size && s < send;
16237 plt_offset += entry_size)
16238 {
16239 bfd_vma gotplt_addr;
16240 const char *suffix;
16241 bfd_vma gotplt_hi;
16242 bfd_vma gotplt_lo;
16243 size_t suffixlen;
16244
16245 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16246
16247 /* Check if the second word matches the expected MIPS16 instruction. */
16248 if (opcode == 0x651aeb00)
16249 {
16250 if (micromips_p)
16251 return -1;
16252 /* Truncated table??? */
16253 if (plt_offset + 16 > plt->size)
16254 break;
16255 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16256 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16257 suffixlen = sizeof (m16suffix);
16258 suffix = m16suffix;
16259 other = STO_MIPS16;
16260 }
16261 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16262 else if (opcode == 0xff220000)
16263 {
16264 if (!micromips_p)
16265 return -1;
16266 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16267 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16268 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16269 gotplt_lo <<= 2;
16270 gotplt_addr = gotplt_hi + gotplt_lo;
16271 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16272 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16273 suffixlen = sizeof (microsuffix);
16274 suffix = microsuffix;
16275 other = STO_MICROMIPS;
16276 }
16277 /* Likewise the expected microMIPS instruction (insn32 mode). */
16278 else if ((opcode & 0xffff0000) == 0xff2f0000)
16279 {
16280 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16281 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16282 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16283 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16284 gotplt_addr = gotplt_hi + gotplt_lo;
16285 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16286 suffixlen = sizeof (microsuffix);
16287 suffix = microsuffix;
16288 other = STO_MICROMIPS;
16289 }
16290 /* Otherwise assume standard MIPS code. */
16291 else
16292 {
16293 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16294 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16295 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16296 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16297 gotplt_addr = gotplt_hi + gotplt_lo;
16298 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16299 suffixlen = sizeof (mipssuffix);
16300 suffix = mipssuffix;
16301 other = 0;
16302 }
16303 /* Truncated table??? */
16304 if (plt_offset + entry_size > plt->size)
16305 break;
16306
16307 for (i = 0;
16308 i < count && p[pi].address != gotplt_addr;
16309 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16310
16311 if (i < count)
16312 {
16313 size_t namelen;
16314 size_t len;
16315
16316 *s = **p[pi].sym_ptr_ptr;
16317 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16318 we are defining a symbol, ensure one of them is set. */
16319 if ((s->flags & BSF_LOCAL) == 0)
16320 s->flags |= BSF_GLOBAL;
16321 s->flags |= BSF_SYNTHETIC;
16322 s->section = plt;
16323 s->value = plt_offset;
16324 s->name = names;
16325 s->udata.i = other;
16326
16327 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16328 namelen = len + suffixlen;
16329 if (names + namelen > nend)
16330 break;
16331
16332 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16333 names += len;
16334 memcpy (names, suffix, suffixlen);
16335 names += suffixlen;
16336
16337 ++s, ++n;
16338 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16339 }
16340 }
16341
16342 free (plt_data);
16343
16344 return n;
16345 }
16346
16347 void
16348 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16349 {
16350 struct mips_elf_link_hash_table *htab;
16351 Elf_Internal_Ehdr *i_ehdrp;
16352
16353 i_ehdrp = elf_elfheader (abfd);
16354 if (link_info)
16355 {
16356 htab = mips_elf_hash_table (link_info);
16357 BFD_ASSERT (htab != NULL);
16358
16359 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16360 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16361 }
16362
16363 _bfd_elf_post_process_headers (abfd, link_info);
16364
16365 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16366 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16367 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16368
16369 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16370 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16371 }
16372
16373 int
16374 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16375 {
16376 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16377 }
16378
16379 /* Return the opcode for can't unwind. */
16380
16381 int
16382 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16383 {
16384 return COMPACT_EH_CANT_UNWIND_OPCODE;
16385 }
This page took 0.370648 seconds and 4 git commands to generate.