bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS_1(VAL) (0x41b9) /* lui t9,VAL */
310 #define LA25_LUI_MICROMIPS_2(VAL) (VAL)
311 #define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
312 #define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
313 #define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339) /* addiu t9,t9,VAL */
314 #define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
315
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319 struct mips_elf_hash_sort_data
320 {
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334 };
335
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339 struct mips_elf_link_hash_entry
340 {
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
364
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
372
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423 #if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427 #endif
428
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
431
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
434
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head;
438
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
441
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
450
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
453
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
462 asection *sstubs;
463 asection *sgot;
464
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
467
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
470
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
473
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
476
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499 };
500
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
502
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
509 {
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
516 };
517
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MIPS16_TLS_GD \
533 || r_type == R_MIPS16_TLS_LDM \
534 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
535 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
536 || r_type == R_MIPS16_TLS_GOTTPREL \
537 || r_type == R_MIPS16_TLS_TPREL_HI16 \
538 || r_type == R_MIPS16_TLS_TPREL_LO16 \
539 || r_type == R_MICROMIPS_TLS_GD \
540 || r_type == R_MICROMIPS_TLS_LDM \
541 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
542 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
543 || r_type == R_MICROMIPS_TLS_GOTTPREL \
544 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
545 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
546
547 /* Structure used to pass information to mips_elf_output_extsym. */
548
549 struct extsym_info
550 {
551 bfd *abfd;
552 struct bfd_link_info *info;
553 struct ecoff_debug_info *debug;
554 const struct ecoff_debug_swap *swap;
555 bfd_boolean failed;
556 };
557
558 /* The names of the runtime procedure table symbols used on IRIX5. */
559
560 static const char * const mips_elf_dynsym_rtproc_names[] =
561 {
562 "_procedure_table",
563 "_procedure_string_table",
564 "_procedure_table_size",
565 NULL
566 };
567
568 /* These structures are used to generate the .compact_rel section on
569 IRIX5. */
570
571 typedef struct
572 {
573 unsigned long id1; /* Always one? */
574 unsigned long num; /* Number of compact relocation entries. */
575 unsigned long id2; /* Always two? */
576 unsigned long offset; /* The file offset of the first relocation. */
577 unsigned long reserved0; /* Zero? */
578 unsigned long reserved1; /* Zero? */
579 } Elf32_compact_rel;
580
581 typedef struct
582 {
583 bfd_byte id1[4];
584 bfd_byte num[4];
585 bfd_byte id2[4];
586 bfd_byte offset[4];
587 bfd_byte reserved0[4];
588 bfd_byte reserved1[4];
589 } Elf32_External_compact_rel;
590
591 typedef struct
592 {
593 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
594 unsigned int rtype : 4; /* Relocation types. See below. */
595 unsigned int dist2to : 8;
596 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
597 unsigned long konst; /* KONST field. See below. */
598 unsigned long vaddr; /* VADDR to be relocated. */
599 } Elf32_crinfo;
600
601 typedef struct
602 {
603 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
604 unsigned int rtype : 4; /* Relocation types. See below. */
605 unsigned int dist2to : 8;
606 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
607 unsigned long konst; /* KONST field. See below. */
608 } Elf32_crinfo2;
609
610 typedef struct
611 {
612 bfd_byte info[4];
613 bfd_byte konst[4];
614 bfd_byte vaddr[4];
615 } Elf32_External_crinfo;
616
617 typedef struct
618 {
619 bfd_byte info[4];
620 bfd_byte konst[4];
621 } Elf32_External_crinfo2;
622
623 /* These are the constants used to swap the bitfields in a crinfo. */
624
625 #define CRINFO_CTYPE (0x1)
626 #define CRINFO_CTYPE_SH (31)
627 #define CRINFO_RTYPE (0xf)
628 #define CRINFO_RTYPE_SH (27)
629 #define CRINFO_DIST2TO (0xff)
630 #define CRINFO_DIST2TO_SH (19)
631 #define CRINFO_RELVADDR (0x7ffff)
632 #define CRINFO_RELVADDR_SH (0)
633
634 /* A compact relocation info has long (3 words) or short (2 words)
635 formats. A short format doesn't have VADDR field and relvaddr
636 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
637 #define CRF_MIPS_LONG 1
638 #define CRF_MIPS_SHORT 0
639
640 /* There are 4 types of compact relocation at least. The value KONST
641 has different meaning for each type:
642
643 (type) (konst)
644 CT_MIPS_REL32 Address in data
645 CT_MIPS_WORD Address in word (XXX)
646 CT_MIPS_GPHI_LO GP - vaddr
647 CT_MIPS_JMPAD Address to jump
648 */
649
650 #define CRT_MIPS_REL32 0xa
651 #define CRT_MIPS_WORD 0xb
652 #define CRT_MIPS_GPHI_LO 0xc
653 #define CRT_MIPS_JMPAD 0xd
654
655 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
656 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
657 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
658 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
659 \f
660 /* The structure of the runtime procedure descriptor created by the
661 loader for use by the static exception system. */
662
663 typedef struct runtime_pdr {
664 bfd_vma adr; /* Memory address of start of procedure. */
665 long regmask; /* Save register mask. */
666 long regoffset; /* Save register offset. */
667 long fregmask; /* Save floating point register mask. */
668 long fregoffset; /* Save floating point register offset. */
669 long frameoffset; /* Frame size. */
670 short framereg; /* Frame pointer register. */
671 short pcreg; /* Offset or reg of return pc. */
672 long irpss; /* Index into the runtime string table. */
673 long reserved;
674 struct exception_info *exception_info;/* Pointer to exception array. */
675 } RPDR, *pRPDR;
676 #define cbRPDR sizeof (RPDR)
677 #define rpdNil ((pRPDR) 0)
678 \f
679 static struct mips_got_entry *mips_elf_create_local_got_entry
680 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
681 struct mips_elf_link_hash_entry *, int);
682 static bfd_boolean mips_elf_sort_hash_table_f
683 (struct mips_elf_link_hash_entry *, void *);
684 static bfd_vma mips_elf_high
685 (bfd_vma);
686 static bfd_boolean mips_elf_create_dynamic_relocation
687 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
688 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
689 bfd_vma *, asection *);
690 static hashval_t mips_elf_got_entry_hash
691 (const void *);
692 static bfd_vma mips_elf_adjust_gp
693 (bfd *, struct mips_got_info *, bfd *);
694 static struct mips_got_info *mips_elf_got_for_ibfd
695 (struct mips_got_info *, bfd *);
696
697 /* This will be used when we sort the dynamic relocation records. */
698 static bfd *reldyn_sorting_bfd;
699
700 /* True if ABFD is for CPUs with load interlocking that include
701 non-MIPS1 CPUs and R3900. */
702 #define LOAD_INTERLOCKS_P(abfd) \
703 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
704 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
705
706 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
707 This should be safe for all architectures. We enable this predicate
708 for RM9000 for now. */
709 #define JAL_TO_BAL_P(abfd) \
710 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
711
712 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
713 This should be safe for all architectures. We enable this predicate for
714 all CPUs. */
715 #define JALR_TO_BAL_P(abfd) 1
716
717 /* True if ABFD is for CPUs that are faster if JR is converted to B.
718 This should be safe for all architectures. We enable this predicate for
719 all CPUs. */
720 #define JR_TO_B_P(abfd) 1
721
722 /* True if ABFD is a PIC object. */
723 #define PIC_OBJECT_P(abfd) \
724 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
725
726 /* Nonzero if ABFD is using the N32 ABI. */
727 #define ABI_N32_P(abfd) \
728 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
729
730 /* Nonzero if ABFD is using the N64 ABI. */
731 #define ABI_64_P(abfd) \
732 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
733
734 /* Nonzero if ABFD is using NewABI conventions. */
735 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
736
737 /* The IRIX compatibility level we are striving for. */
738 #define IRIX_COMPAT(abfd) \
739 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
740
741 /* Whether we are trying to be compatible with IRIX at all. */
742 #define SGI_COMPAT(abfd) \
743 (IRIX_COMPAT (abfd) != ict_none)
744
745 /* The name of the options section. */
746 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
747 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
748
749 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
750 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
751 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
752 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
753
754 /* Whether the section is readonly. */
755 #define MIPS_ELF_READONLY_SECTION(sec) \
756 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
757 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
758
759 /* The name of the stub section. */
760 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
761
762 /* The size of an external REL relocation. */
763 #define MIPS_ELF_REL_SIZE(abfd) \
764 (get_elf_backend_data (abfd)->s->sizeof_rel)
765
766 /* The size of an external RELA relocation. */
767 #define MIPS_ELF_RELA_SIZE(abfd) \
768 (get_elf_backend_data (abfd)->s->sizeof_rela)
769
770 /* The size of an external dynamic table entry. */
771 #define MIPS_ELF_DYN_SIZE(abfd) \
772 (get_elf_backend_data (abfd)->s->sizeof_dyn)
773
774 /* The size of a GOT entry. */
775 #define MIPS_ELF_GOT_SIZE(abfd) \
776 (get_elf_backend_data (abfd)->s->arch_size / 8)
777
778 /* The size of the .rld_map section. */
779 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->arch_size / 8)
781
782 /* The size of a symbol-table entry. */
783 #define MIPS_ELF_SYM_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_sym)
785
786 /* The default alignment for sections, as a power of two. */
787 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
788 (get_elf_backend_data (abfd)->s->log_file_align)
789
790 /* Get word-sized data. */
791 #define MIPS_ELF_GET_WORD(abfd, ptr) \
792 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
793
794 /* Put out word-sized data. */
795 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
796 (ABI_64_P (abfd) \
797 ? bfd_put_64 (abfd, val, ptr) \
798 : bfd_put_32 (abfd, val, ptr))
799
800 /* The opcode for word-sized loads (LW or LD). */
801 #define MIPS_ELF_LOAD_WORD(abfd) \
802 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
803
804 /* Add a dynamic symbol table-entry. */
805 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
806 _bfd_elf_add_dynamic_entry (info, tag, val)
807
808 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
810
811 /* The name of the dynamic relocation section. */
812 #define MIPS_ELF_REL_DYN_NAME(INFO) \
813 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
814
815 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
816 from smaller values. Start with zero, widen, *then* decrement. */
817 #define MINUS_ONE (((bfd_vma)0) - 1)
818 #define MINUS_TWO (((bfd_vma)0) - 2)
819
820 /* The value to write into got[1] for SVR4 targets, to identify it is
821 a GNU object. The dynamic linker can then use got[1] to store the
822 module pointer. */
823 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
824 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
825
826 /* The offset of $gp from the beginning of the .got section. */
827 #define ELF_MIPS_GP_OFFSET(INFO) \
828 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
829
830 /* The maximum size of the GOT for it to be addressable using 16-bit
831 offsets from $gp. */
832 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
833
834 /* Instructions which appear in a stub. */
835 #define STUB_LW(abfd) \
836 ((ABI_64_P (abfd) \
837 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
838 : 0x8f998010)) /* lw t9,0x8010(gp) */
839 #define STUB_MOVE(abfd) \
840 ((ABI_64_P (abfd) \
841 ? 0x03e0782d /* daddu t7,ra */ \
842 : 0x03e07821)) /* addu t7,ra */
843 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
844 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
845 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
846 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
847 #define STUB_LI16S(abfd, VAL) \
848 ((ABI_64_P (abfd) \
849 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
850 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
851
852 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
853 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
854
855 /* The name of the dynamic interpreter. This is put in the .interp
856 section. */
857
858 #define ELF_DYNAMIC_INTERPRETER(abfd) \
859 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
860 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
861 : "/usr/lib/libc.so.1")
862
863 #ifdef BFD64
864 #define MNAME(bfd,pre,pos) \
865 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
866 #define ELF_R_SYM(bfd, i) \
867 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
868 #define ELF_R_TYPE(bfd, i) \
869 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
870 #define ELF_R_INFO(bfd, s, t) \
871 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
872 #else
873 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
874 #define ELF_R_SYM(bfd, i) \
875 (ELF32_R_SYM (i))
876 #define ELF_R_TYPE(bfd, i) \
877 (ELF32_R_TYPE (i))
878 #define ELF_R_INFO(bfd, s, t) \
879 (ELF32_R_INFO (s, t))
880 #endif
881 \f
882 /* The mips16 compiler uses a couple of special sections to handle
883 floating point arguments.
884
885 Section names that look like .mips16.fn.FNNAME contain stubs that
886 copy floating point arguments from the fp regs to the gp regs and
887 then jump to FNNAME. If any 32 bit function calls FNNAME, the
888 call should be redirected to the stub instead. If no 32 bit
889 function calls FNNAME, the stub should be discarded. We need to
890 consider any reference to the function, not just a call, because
891 if the address of the function is taken we will need the stub,
892 since the address might be passed to a 32 bit function.
893
894 Section names that look like .mips16.call.FNNAME contain stubs
895 that copy floating point arguments from the gp regs to the fp
896 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
897 then any 16 bit function that calls FNNAME should be redirected
898 to the stub instead. If FNNAME is not a 32 bit function, the
899 stub should be discarded.
900
901 .mips16.call.fp.FNNAME sections are similar, but contain stubs
902 which call FNNAME and then copy the return value from the fp regs
903 to the gp regs. These stubs store the return value in $18 while
904 calling FNNAME; any function which might call one of these stubs
905 must arrange to save $18 around the call. (This case is not
906 needed for 32 bit functions that call 16 bit functions, because
907 16 bit functions always return floating point values in both
908 $f0/$f1 and $2/$3.)
909
910 Note that in all cases FNNAME might be defined statically.
911 Therefore, FNNAME is not used literally. Instead, the relocation
912 information will indicate which symbol the section is for.
913
914 We record any stubs that we find in the symbol table. */
915
916 #define FN_STUB ".mips16.fn."
917 #define CALL_STUB ".mips16.call."
918 #define CALL_FP_STUB ".mips16.call.fp."
919
920 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
921 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
922 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
923 \f
924 /* The format of the first PLT entry in an O32 executable. */
925 static const bfd_vma mips_o32_exec_plt0_entry[] =
926 {
927 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
928 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
929 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
930 0x031cc023, /* subu $24, $24, $28 */
931 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
932 0x0018c082, /* srl $24, $24, 2 */
933 0x0320f809, /* jalr $25 */
934 0x2718fffe /* subu $24, $24, 2 */
935 };
936
937 /* The format of the first PLT entry in an N32 executable. Different
938 because gp ($28) is not available; we use t2 ($14) instead. */
939 static const bfd_vma mips_n32_exec_plt0_entry[] =
940 {
941 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
942 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
943 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
944 0x030ec023, /* subu $24, $24, $14 */
945 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
946 0x0018c082, /* srl $24, $24, 2 */
947 0x0320f809, /* jalr $25 */
948 0x2718fffe /* subu $24, $24, 2 */
949 };
950
951 /* The format of the first PLT entry in an N64 executable. Different
952 from N32 because of the increased size of GOT entries. */
953 static const bfd_vma mips_n64_exec_plt0_entry[] =
954 {
955 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
956 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
957 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
958 0x030ec023, /* subu $24, $24, $14 */
959 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
960 0x0018c0c2, /* srl $24, $24, 3 */
961 0x0320f809, /* jalr $25 */
962 0x2718fffe /* subu $24, $24, 2 */
963 };
964
965 /* The format of subsequent PLT entries. */
966 static const bfd_vma mips_exec_plt_entry[] =
967 {
968 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
969 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
970 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
971 0x03200008 /* jr $25 */
972 };
973
974 /* The format of the first PLT entry in a VxWorks executable. */
975 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
976 {
977 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
978 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
979 0x8f390008, /* lw t9, 8(t9) */
980 0x00000000, /* nop */
981 0x03200008, /* jr t9 */
982 0x00000000 /* nop */
983 };
984
985 /* The format of subsequent PLT entries. */
986 static const bfd_vma mips_vxworks_exec_plt_entry[] =
987 {
988 0x10000000, /* b .PLT_resolver */
989 0x24180000, /* li t8, <pltindex> */
990 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
991 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
992 0x8f390000, /* lw t9, 0(t9) */
993 0x00000000, /* nop */
994 0x03200008, /* jr t9 */
995 0x00000000 /* nop */
996 };
997
998 /* The format of the first PLT entry in a VxWorks shared object. */
999 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1000 {
1001 0x8f990008, /* lw t9, 8(gp) */
1002 0x00000000, /* nop */
1003 0x03200008, /* jr t9 */
1004 0x00000000, /* nop */
1005 0x00000000, /* nop */
1006 0x00000000 /* nop */
1007 };
1008
1009 /* The format of subsequent PLT entries. */
1010 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1011 {
1012 0x10000000, /* b .PLT_resolver */
1013 0x24180000 /* li t8, <pltindex> */
1014 };
1015 \f
1016 /* Look up an entry in a MIPS ELF linker hash table. */
1017
1018 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1019 ((struct mips_elf_link_hash_entry *) \
1020 elf_link_hash_lookup (&(table)->root, (string), (create), \
1021 (copy), (follow)))
1022
1023 /* Traverse a MIPS ELF linker hash table. */
1024
1025 #define mips_elf_link_hash_traverse(table, func, info) \
1026 (elf_link_hash_traverse \
1027 (&(table)->root, \
1028 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1029 (info)))
1030
1031 /* Find the base offsets for thread-local storage in this object,
1032 for GD/LD and IE/LE respectively. */
1033
1034 #define TP_OFFSET 0x7000
1035 #define DTP_OFFSET 0x8000
1036
1037 static bfd_vma
1038 dtprel_base (struct bfd_link_info *info)
1039 {
1040 /* If tls_sec is NULL, we should have signalled an error already. */
1041 if (elf_hash_table (info)->tls_sec == NULL)
1042 return 0;
1043 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1044 }
1045
1046 static bfd_vma
1047 tprel_base (struct bfd_link_info *info)
1048 {
1049 /* If tls_sec is NULL, we should have signalled an error already. */
1050 if (elf_hash_table (info)->tls_sec == NULL)
1051 return 0;
1052 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1053 }
1054
1055 /* Create an entry in a MIPS ELF linker hash table. */
1056
1057 static struct bfd_hash_entry *
1058 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1059 struct bfd_hash_table *table, const char *string)
1060 {
1061 struct mips_elf_link_hash_entry *ret =
1062 (struct mips_elf_link_hash_entry *) entry;
1063
1064 /* Allocate the structure if it has not already been allocated by a
1065 subclass. */
1066 if (ret == NULL)
1067 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1068 if (ret == NULL)
1069 return (struct bfd_hash_entry *) ret;
1070
1071 /* Call the allocation method of the superclass. */
1072 ret = ((struct mips_elf_link_hash_entry *)
1073 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1074 table, string));
1075 if (ret != NULL)
1076 {
1077 /* Set local fields. */
1078 memset (&ret->esym, 0, sizeof (EXTR));
1079 /* We use -2 as a marker to indicate that the information has
1080 not been set. -1 means there is no associated ifd. */
1081 ret->esym.ifd = -2;
1082 ret->la25_stub = 0;
1083 ret->possibly_dynamic_relocs = 0;
1084 ret->fn_stub = NULL;
1085 ret->call_stub = NULL;
1086 ret->call_fp_stub = NULL;
1087 ret->tls_type = GOT_NORMAL;
1088 ret->global_got_area = GGA_NONE;
1089 ret->got_only_for_calls = TRUE;
1090 ret->readonly_reloc = FALSE;
1091 ret->has_static_relocs = FALSE;
1092 ret->no_fn_stub = FALSE;
1093 ret->need_fn_stub = FALSE;
1094 ret->has_nonpic_branches = FALSE;
1095 ret->needs_lazy_stub = FALSE;
1096 }
1097
1098 return (struct bfd_hash_entry *) ret;
1099 }
1100
1101 bfd_boolean
1102 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1103 {
1104 if (!sec->used_by_bfd)
1105 {
1106 struct _mips_elf_section_data *sdata;
1107 bfd_size_type amt = sizeof (*sdata);
1108
1109 sdata = bfd_zalloc (abfd, amt);
1110 if (sdata == NULL)
1111 return FALSE;
1112 sec->used_by_bfd = sdata;
1113 }
1114
1115 return _bfd_elf_new_section_hook (abfd, sec);
1116 }
1117 \f
1118 /* Read ECOFF debugging information from a .mdebug section into a
1119 ecoff_debug_info structure. */
1120
1121 bfd_boolean
1122 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1123 struct ecoff_debug_info *debug)
1124 {
1125 HDRR *symhdr;
1126 const struct ecoff_debug_swap *swap;
1127 char *ext_hdr;
1128
1129 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1130 memset (debug, 0, sizeof (*debug));
1131
1132 ext_hdr = bfd_malloc (swap->external_hdr_size);
1133 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1134 goto error_return;
1135
1136 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1137 swap->external_hdr_size))
1138 goto error_return;
1139
1140 symhdr = &debug->symbolic_header;
1141 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1142
1143 /* The symbolic header contains absolute file offsets and sizes to
1144 read. */
1145 #define READ(ptr, offset, count, size, type) \
1146 if (symhdr->count == 0) \
1147 debug->ptr = NULL; \
1148 else \
1149 { \
1150 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1151 debug->ptr = bfd_malloc (amt); \
1152 if (debug->ptr == NULL) \
1153 goto error_return; \
1154 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1155 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1156 goto error_return; \
1157 }
1158
1159 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1160 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1161 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1162 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1163 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1164 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1165 union aux_ext *);
1166 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1167 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1168 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1169 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1170 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1171 #undef READ
1172
1173 debug->fdr = NULL;
1174
1175 return TRUE;
1176
1177 error_return:
1178 if (ext_hdr != NULL)
1179 free (ext_hdr);
1180 if (debug->line != NULL)
1181 free (debug->line);
1182 if (debug->external_dnr != NULL)
1183 free (debug->external_dnr);
1184 if (debug->external_pdr != NULL)
1185 free (debug->external_pdr);
1186 if (debug->external_sym != NULL)
1187 free (debug->external_sym);
1188 if (debug->external_opt != NULL)
1189 free (debug->external_opt);
1190 if (debug->external_aux != NULL)
1191 free (debug->external_aux);
1192 if (debug->ss != NULL)
1193 free (debug->ss);
1194 if (debug->ssext != NULL)
1195 free (debug->ssext);
1196 if (debug->external_fdr != NULL)
1197 free (debug->external_fdr);
1198 if (debug->external_rfd != NULL)
1199 free (debug->external_rfd);
1200 if (debug->external_ext != NULL)
1201 free (debug->external_ext);
1202 return FALSE;
1203 }
1204 \f
1205 /* Swap RPDR (runtime procedure table entry) for output. */
1206
1207 static void
1208 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1209 {
1210 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1211 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1212 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1213 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1214 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1215 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1216
1217 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1218 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1219
1220 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1221 }
1222
1223 /* Create a runtime procedure table from the .mdebug section. */
1224
1225 static bfd_boolean
1226 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1227 struct bfd_link_info *info, asection *s,
1228 struct ecoff_debug_info *debug)
1229 {
1230 const struct ecoff_debug_swap *swap;
1231 HDRR *hdr = &debug->symbolic_header;
1232 RPDR *rpdr, *rp;
1233 struct rpdr_ext *erp;
1234 void *rtproc;
1235 struct pdr_ext *epdr;
1236 struct sym_ext *esym;
1237 char *ss, **sv;
1238 char *str;
1239 bfd_size_type size;
1240 bfd_size_type count;
1241 unsigned long sindex;
1242 unsigned long i;
1243 PDR pdr;
1244 SYMR sym;
1245 const char *no_name_func = _("static procedure (no name)");
1246
1247 epdr = NULL;
1248 rpdr = NULL;
1249 esym = NULL;
1250 ss = NULL;
1251 sv = NULL;
1252
1253 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1254
1255 sindex = strlen (no_name_func) + 1;
1256 count = hdr->ipdMax;
1257 if (count > 0)
1258 {
1259 size = swap->external_pdr_size;
1260
1261 epdr = bfd_malloc (size * count);
1262 if (epdr == NULL)
1263 goto error_return;
1264
1265 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1266 goto error_return;
1267
1268 size = sizeof (RPDR);
1269 rp = rpdr = bfd_malloc (size * count);
1270 if (rpdr == NULL)
1271 goto error_return;
1272
1273 size = sizeof (char *);
1274 sv = bfd_malloc (size * count);
1275 if (sv == NULL)
1276 goto error_return;
1277
1278 count = hdr->isymMax;
1279 size = swap->external_sym_size;
1280 esym = bfd_malloc (size * count);
1281 if (esym == NULL)
1282 goto error_return;
1283
1284 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1285 goto error_return;
1286
1287 count = hdr->issMax;
1288 ss = bfd_malloc (count);
1289 if (ss == NULL)
1290 goto error_return;
1291 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1292 goto error_return;
1293
1294 count = hdr->ipdMax;
1295 for (i = 0; i < (unsigned long) count; i++, rp++)
1296 {
1297 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1298 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1299 rp->adr = sym.value;
1300 rp->regmask = pdr.regmask;
1301 rp->regoffset = pdr.regoffset;
1302 rp->fregmask = pdr.fregmask;
1303 rp->fregoffset = pdr.fregoffset;
1304 rp->frameoffset = pdr.frameoffset;
1305 rp->framereg = pdr.framereg;
1306 rp->pcreg = pdr.pcreg;
1307 rp->irpss = sindex;
1308 sv[i] = ss + sym.iss;
1309 sindex += strlen (sv[i]) + 1;
1310 }
1311 }
1312
1313 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1314 size = BFD_ALIGN (size, 16);
1315 rtproc = bfd_alloc (abfd, size);
1316 if (rtproc == NULL)
1317 {
1318 mips_elf_hash_table (info)->procedure_count = 0;
1319 goto error_return;
1320 }
1321
1322 mips_elf_hash_table (info)->procedure_count = count + 2;
1323
1324 erp = rtproc;
1325 memset (erp, 0, sizeof (struct rpdr_ext));
1326 erp++;
1327 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1328 strcpy (str, no_name_func);
1329 str += strlen (no_name_func) + 1;
1330 for (i = 0; i < count; i++)
1331 {
1332 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1333 strcpy (str, sv[i]);
1334 str += strlen (sv[i]) + 1;
1335 }
1336 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1337
1338 /* Set the size and contents of .rtproc section. */
1339 s->size = size;
1340 s->contents = rtproc;
1341
1342 /* Skip this section later on (I don't think this currently
1343 matters, but someday it might). */
1344 s->map_head.link_order = NULL;
1345
1346 if (epdr != NULL)
1347 free (epdr);
1348 if (rpdr != NULL)
1349 free (rpdr);
1350 if (esym != NULL)
1351 free (esym);
1352 if (ss != NULL)
1353 free (ss);
1354 if (sv != NULL)
1355 free (sv);
1356
1357 return TRUE;
1358
1359 error_return:
1360 if (epdr != NULL)
1361 free (epdr);
1362 if (rpdr != NULL)
1363 free (rpdr);
1364 if (esym != NULL)
1365 free (esym);
1366 if (ss != NULL)
1367 free (ss);
1368 if (sv != NULL)
1369 free (sv);
1370 return FALSE;
1371 }
1372 \f
1373 /* We're going to create a stub for H. Create a symbol for the stub's
1374 value and size, to help make the disassembly easier to read. */
1375
1376 static bfd_boolean
1377 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1378 struct mips_elf_link_hash_entry *h,
1379 const char *prefix, asection *s, bfd_vma value,
1380 bfd_vma size)
1381 {
1382 struct bfd_link_hash_entry *bh;
1383 struct elf_link_hash_entry *elfh;
1384 const char *name;
1385
1386 if (ELF_ST_IS_MICROMIPS (h->root.other))
1387 value |= 1;
1388
1389 /* Create a new symbol. */
1390 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1391 bh = NULL;
1392 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1393 BSF_LOCAL, s, value, NULL,
1394 TRUE, FALSE, &bh))
1395 return FALSE;
1396
1397 /* Make it a local function. */
1398 elfh = (struct elf_link_hash_entry *) bh;
1399 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1400 elfh->size = size;
1401 elfh->forced_local = 1;
1402 return TRUE;
1403 }
1404
1405 /* We're about to redefine H. Create a symbol to represent H's
1406 current value and size, to help make the disassembly easier
1407 to read. */
1408
1409 static bfd_boolean
1410 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1411 struct mips_elf_link_hash_entry *h,
1412 const char *prefix)
1413 {
1414 struct bfd_link_hash_entry *bh;
1415 struct elf_link_hash_entry *elfh;
1416 const char *name;
1417 asection *s;
1418 bfd_vma value;
1419
1420 /* Read the symbol's value. */
1421 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1422 || h->root.root.type == bfd_link_hash_defweak);
1423 s = h->root.root.u.def.section;
1424 value = h->root.root.u.def.value;
1425
1426 /* Create a new symbol. */
1427 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1428 bh = NULL;
1429 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1430 BSF_LOCAL, s, value, NULL,
1431 TRUE, FALSE, &bh))
1432 return FALSE;
1433
1434 /* Make it local and copy the other attributes from H. */
1435 elfh = (struct elf_link_hash_entry *) bh;
1436 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1437 elfh->other = h->root.other;
1438 elfh->size = h->root.size;
1439 elfh->forced_local = 1;
1440 return TRUE;
1441 }
1442
1443 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1444 function rather than to a hard-float stub. */
1445
1446 static bfd_boolean
1447 section_allows_mips16_refs_p (asection *section)
1448 {
1449 const char *name;
1450
1451 name = bfd_get_section_name (section->owner, section);
1452 return (FN_STUB_P (name)
1453 || CALL_STUB_P (name)
1454 || CALL_FP_STUB_P (name)
1455 || strcmp (name, ".pdr") == 0);
1456 }
1457
1458 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1459 stub section of some kind. Return the R_SYMNDX of the target
1460 function, or 0 if we can't decide which function that is. */
1461
1462 static unsigned long
1463 mips16_stub_symndx (const struct elf_backend_data *bed,
1464 asection *sec ATTRIBUTE_UNUSED,
1465 const Elf_Internal_Rela *relocs,
1466 const Elf_Internal_Rela *relend)
1467 {
1468 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1469 const Elf_Internal_Rela *rel;
1470
1471 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1472 one in a compound relocation. */
1473 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1474 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1475 return ELF_R_SYM (sec->owner, rel->r_info);
1476
1477 /* Otherwise trust the first relocation, whatever its kind. This is
1478 the traditional behavior. */
1479 if (relocs < relend)
1480 return ELF_R_SYM (sec->owner, relocs->r_info);
1481
1482 return 0;
1483 }
1484
1485 /* Check the mips16 stubs for a particular symbol, and see if we can
1486 discard them. */
1487
1488 static void
1489 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1490 struct mips_elf_link_hash_entry *h)
1491 {
1492 /* Dynamic symbols must use the standard call interface, in case other
1493 objects try to call them. */
1494 if (h->fn_stub != NULL
1495 && h->root.dynindx != -1)
1496 {
1497 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1498 h->need_fn_stub = TRUE;
1499 }
1500
1501 if (h->fn_stub != NULL
1502 && ! h->need_fn_stub)
1503 {
1504 /* We don't need the fn_stub; the only references to this symbol
1505 are 16 bit calls. Clobber the size to 0 to prevent it from
1506 being included in the link. */
1507 h->fn_stub->size = 0;
1508 h->fn_stub->flags &= ~SEC_RELOC;
1509 h->fn_stub->reloc_count = 0;
1510 h->fn_stub->flags |= SEC_EXCLUDE;
1511 }
1512
1513 if (h->call_stub != NULL
1514 && ELF_ST_IS_MIPS16 (h->root.other))
1515 {
1516 /* We don't need the call_stub; this is a 16 bit function, so
1517 calls from other 16 bit functions are OK. Clobber the size
1518 to 0 to prevent it from being included in the link. */
1519 h->call_stub->size = 0;
1520 h->call_stub->flags &= ~SEC_RELOC;
1521 h->call_stub->reloc_count = 0;
1522 h->call_stub->flags |= SEC_EXCLUDE;
1523 }
1524
1525 if (h->call_fp_stub != NULL
1526 && ELF_ST_IS_MIPS16 (h->root.other))
1527 {
1528 /* We don't need the call_stub; this is a 16 bit function, so
1529 calls from other 16 bit functions are OK. Clobber the size
1530 to 0 to prevent it from being included in the link. */
1531 h->call_fp_stub->size = 0;
1532 h->call_fp_stub->flags &= ~SEC_RELOC;
1533 h->call_fp_stub->reloc_count = 0;
1534 h->call_fp_stub->flags |= SEC_EXCLUDE;
1535 }
1536 }
1537
1538 /* Hashtable callbacks for mips_elf_la25_stubs. */
1539
1540 static hashval_t
1541 mips_elf_la25_stub_hash (const void *entry_)
1542 {
1543 const struct mips_elf_la25_stub *entry;
1544
1545 entry = (struct mips_elf_la25_stub *) entry_;
1546 return entry->h->root.root.u.def.section->id
1547 + entry->h->root.root.u.def.value;
1548 }
1549
1550 static int
1551 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1552 {
1553 const struct mips_elf_la25_stub *entry1, *entry2;
1554
1555 entry1 = (struct mips_elf_la25_stub *) entry1_;
1556 entry2 = (struct mips_elf_la25_stub *) entry2_;
1557 return ((entry1->h->root.root.u.def.section
1558 == entry2->h->root.root.u.def.section)
1559 && (entry1->h->root.root.u.def.value
1560 == entry2->h->root.root.u.def.value));
1561 }
1562
1563 /* Called by the linker to set up the la25 stub-creation code. FN is
1564 the linker's implementation of add_stub_function. Return true on
1565 success. */
1566
1567 bfd_boolean
1568 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1569 asection *(*fn) (const char *, asection *,
1570 asection *))
1571 {
1572 struct mips_elf_link_hash_table *htab;
1573
1574 htab = mips_elf_hash_table (info);
1575 if (htab == NULL)
1576 return FALSE;
1577
1578 htab->add_stub_section = fn;
1579 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1580 mips_elf_la25_stub_eq, NULL);
1581 if (htab->la25_stubs == NULL)
1582 return FALSE;
1583
1584 return TRUE;
1585 }
1586
1587 /* Return true if H is a locally-defined PIC function, in the sense
1588 that it or its fn_stub might need $25 to be valid on entry.
1589 Note that MIPS16 functions set up $gp using PC-relative instructions,
1590 so they themselves never need $25 to be valid. Only non-MIPS16
1591 entry points are of interest here. */
1592
1593 static bfd_boolean
1594 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1595 {
1596 return ((h->root.root.type == bfd_link_hash_defined
1597 || h->root.root.type == bfd_link_hash_defweak)
1598 && h->root.def_regular
1599 && !bfd_is_abs_section (h->root.root.u.def.section)
1600 && (!ELF_ST_IS_MIPS16 (h->root.other)
1601 || (h->fn_stub && h->need_fn_stub))
1602 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1603 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1604 }
1605
1606 /* Set *SEC to the input section that contains the target of STUB.
1607 Return the offset of the target from the start of that section. */
1608
1609 static bfd_vma
1610 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1611 asection **sec)
1612 {
1613 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1614 {
1615 BFD_ASSERT (stub->h->need_fn_stub);
1616 *sec = stub->h->fn_stub;
1617 return 0;
1618 }
1619 else
1620 {
1621 *sec = stub->h->root.root.u.def.section;
1622 return stub->h->root.root.u.def.value;
1623 }
1624 }
1625
1626 /* STUB describes an la25 stub that we have decided to implement
1627 by inserting an LUI/ADDIU pair before the target function.
1628 Create the section and redirect the function symbol to it. */
1629
1630 static bfd_boolean
1631 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1632 struct bfd_link_info *info)
1633 {
1634 struct mips_elf_link_hash_table *htab;
1635 char *name;
1636 asection *s, *input_section;
1637 unsigned int align;
1638
1639 htab = mips_elf_hash_table (info);
1640 if (htab == NULL)
1641 return FALSE;
1642
1643 /* Create a unique name for the new section. */
1644 name = bfd_malloc (11 + sizeof (".text.stub."));
1645 if (name == NULL)
1646 return FALSE;
1647 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1648
1649 /* Create the section. */
1650 mips_elf_get_la25_target (stub, &input_section);
1651 s = htab->add_stub_section (name, input_section,
1652 input_section->output_section);
1653 if (s == NULL)
1654 return FALSE;
1655
1656 /* Make sure that any padding goes before the stub. */
1657 align = input_section->alignment_power;
1658 if (!bfd_set_section_alignment (s->owner, s, align))
1659 return FALSE;
1660 if (align > 3)
1661 s->size = (1 << align) - 8;
1662
1663 /* Create a symbol for the stub. */
1664 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1665 stub->stub_section = s;
1666 stub->offset = s->size;
1667
1668 /* Allocate room for it. */
1669 s->size += 8;
1670 return TRUE;
1671 }
1672
1673 /* STUB describes an la25 stub that we have decided to implement
1674 with a separate trampoline. Allocate room for it and redirect
1675 the function symbol to it. */
1676
1677 static bfd_boolean
1678 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1679 struct bfd_link_info *info)
1680 {
1681 struct mips_elf_link_hash_table *htab;
1682 asection *s;
1683
1684 htab = mips_elf_hash_table (info);
1685 if (htab == NULL)
1686 return FALSE;
1687
1688 /* Create a trampoline section, if we haven't already. */
1689 s = htab->strampoline;
1690 if (s == NULL)
1691 {
1692 asection *input_section = stub->h->root.root.u.def.section;
1693 s = htab->add_stub_section (".text", NULL,
1694 input_section->output_section);
1695 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1696 return FALSE;
1697 htab->strampoline = s;
1698 }
1699
1700 /* Create a symbol for the stub. */
1701 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1702 stub->stub_section = s;
1703 stub->offset = s->size;
1704
1705 /* Allocate room for it. */
1706 s->size += 16;
1707 return TRUE;
1708 }
1709
1710 /* H describes a symbol that needs an la25 stub. Make sure that an
1711 appropriate stub exists and point H at it. */
1712
1713 static bfd_boolean
1714 mips_elf_add_la25_stub (struct bfd_link_info *info,
1715 struct mips_elf_link_hash_entry *h)
1716 {
1717 struct mips_elf_link_hash_table *htab;
1718 struct mips_elf_la25_stub search, *stub;
1719 bfd_boolean use_trampoline_p;
1720 asection *s;
1721 bfd_vma value;
1722 void **slot;
1723
1724 /* Describe the stub we want. */
1725 search.stub_section = NULL;
1726 search.offset = 0;
1727 search.h = h;
1728
1729 /* See if we've already created an equivalent stub. */
1730 htab = mips_elf_hash_table (info);
1731 if (htab == NULL)
1732 return FALSE;
1733
1734 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1735 if (slot == NULL)
1736 return FALSE;
1737
1738 stub = (struct mips_elf_la25_stub *) *slot;
1739 if (stub != NULL)
1740 {
1741 /* We can reuse the existing stub. */
1742 h->la25_stub = stub;
1743 return TRUE;
1744 }
1745
1746 /* Create a permanent copy of ENTRY and add it to the hash table. */
1747 stub = bfd_malloc (sizeof (search));
1748 if (stub == NULL)
1749 return FALSE;
1750 *stub = search;
1751 *slot = stub;
1752
1753 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1754 of the section and if we would need no more than 2 nops. */
1755 value = mips_elf_get_la25_target (stub, &s);
1756 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1757
1758 h->la25_stub = stub;
1759 return (use_trampoline_p
1760 ? mips_elf_add_la25_trampoline (stub, info)
1761 : mips_elf_add_la25_intro (stub, info));
1762 }
1763
1764 /* A mips_elf_link_hash_traverse callback that is called before sizing
1765 sections. DATA points to a mips_htab_traverse_info structure. */
1766
1767 static bfd_boolean
1768 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1769 {
1770 struct mips_htab_traverse_info *hti;
1771
1772 hti = (struct mips_htab_traverse_info *) data;
1773 if (!hti->info->relocatable)
1774 mips_elf_check_mips16_stubs (hti->info, h);
1775
1776 if (mips_elf_local_pic_function_p (h))
1777 {
1778 /* PR 12845: If H is in a section that has been garbage
1779 collected it will have its output section set to *ABS*. */
1780 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1781 return TRUE;
1782
1783 /* H is a function that might need $25 to be valid on entry.
1784 If we're creating a non-PIC relocatable object, mark H as
1785 being PIC. If we're creating a non-relocatable object with
1786 non-PIC branches and jumps to H, make sure that H has an la25
1787 stub. */
1788 if (hti->info->relocatable)
1789 {
1790 if (!PIC_OBJECT_P (hti->output_bfd))
1791 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1792 }
1793 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1794 {
1795 hti->error = TRUE;
1796 return FALSE;
1797 }
1798 }
1799 return TRUE;
1800 }
1801 \f
1802 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1803 Most mips16 instructions are 16 bits, but these instructions
1804 are 32 bits.
1805
1806 The format of these instructions is:
1807
1808 +--------------+--------------------------------+
1809 | JALX | X| Imm 20:16 | Imm 25:21 |
1810 +--------------+--------------------------------+
1811 | Immediate 15:0 |
1812 +-----------------------------------------------+
1813
1814 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1815 Note that the immediate value in the first word is swapped.
1816
1817 When producing a relocatable object file, R_MIPS16_26 is
1818 handled mostly like R_MIPS_26. In particular, the addend is
1819 stored as a straight 26-bit value in a 32-bit instruction.
1820 (gas makes life simpler for itself by never adjusting a
1821 R_MIPS16_26 reloc to be against a section, so the addend is
1822 always zero). However, the 32 bit instruction is stored as 2
1823 16-bit values, rather than a single 32-bit value. In a
1824 big-endian file, the result is the same; in a little-endian
1825 file, the two 16-bit halves of the 32 bit value are swapped.
1826 This is so that a disassembler can recognize the jal
1827 instruction.
1828
1829 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1830 instruction stored as two 16-bit values. The addend A is the
1831 contents of the targ26 field. The calculation is the same as
1832 R_MIPS_26. When storing the calculated value, reorder the
1833 immediate value as shown above, and don't forget to store the
1834 value as two 16-bit values.
1835
1836 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1837 defined as
1838
1839 big-endian:
1840 +--------+----------------------+
1841 | | |
1842 | | targ26-16 |
1843 |31 26|25 0|
1844 +--------+----------------------+
1845
1846 little-endian:
1847 +----------+------+-------------+
1848 | | | |
1849 | sub1 | | sub2 |
1850 |0 9|10 15|16 31|
1851 +----------+--------------------+
1852 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1853 ((sub1 << 16) | sub2)).
1854
1855 When producing a relocatable object file, the calculation is
1856 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1857 When producing a fully linked file, the calculation is
1858 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1859 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1860
1861 The table below lists the other MIPS16 instruction relocations.
1862 Each one is calculated in the same way as the non-MIPS16 relocation
1863 given on the right, but using the extended MIPS16 layout of 16-bit
1864 immediate fields:
1865
1866 R_MIPS16_GPREL R_MIPS_GPREL16
1867 R_MIPS16_GOT16 R_MIPS_GOT16
1868 R_MIPS16_CALL16 R_MIPS_CALL16
1869 R_MIPS16_HI16 R_MIPS_HI16
1870 R_MIPS16_LO16 R_MIPS_LO16
1871
1872 A typical instruction will have a format like this:
1873
1874 +--------------+--------------------------------+
1875 | EXTEND | Imm 10:5 | Imm 15:11 |
1876 +--------------+--------------------------------+
1877 | Major | rx | ry | Imm 4:0 |
1878 +--------------+--------------------------------+
1879
1880 EXTEND is the five bit value 11110. Major is the instruction
1881 opcode.
1882
1883 All we need to do here is shuffle the bits appropriately.
1884 As above, the two 16-bit halves must be swapped on a
1885 little-endian system. */
1886
1887 static inline bfd_boolean
1888 mips16_reloc_p (int r_type)
1889 {
1890 switch (r_type)
1891 {
1892 case R_MIPS16_26:
1893 case R_MIPS16_GPREL:
1894 case R_MIPS16_GOT16:
1895 case R_MIPS16_CALL16:
1896 case R_MIPS16_HI16:
1897 case R_MIPS16_LO16:
1898 case R_MIPS16_TLS_GD:
1899 case R_MIPS16_TLS_LDM:
1900 case R_MIPS16_TLS_DTPREL_HI16:
1901 case R_MIPS16_TLS_DTPREL_LO16:
1902 case R_MIPS16_TLS_GOTTPREL:
1903 case R_MIPS16_TLS_TPREL_HI16:
1904 case R_MIPS16_TLS_TPREL_LO16:
1905 return TRUE;
1906
1907 default:
1908 return FALSE;
1909 }
1910 }
1911
1912 /* Check if a microMIPS reloc. */
1913
1914 static inline bfd_boolean
1915 micromips_reloc_p (unsigned int r_type)
1916 {
1917 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1918 }
1919
1920 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1921 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1922 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1923
1924 static inline bfd_boolean
1925 micromips_reloc_shuffle_p (unsigned int r_type)
1926 {
1927 return (micromips_reloc_p (r_type)
1928 && r_type != R_MICROMIPS_PC7_S1
1929 && r_type != R_MICROMIPS_PC10_S1);
1930 }
1931
1932 static inline bfd_boolean
1933 got16_reloc_p (int r_type)
1934 {
1935 return (r_type == R_MIPS_GOT16
1936 || r_type == R_MIPS16_GOT16
1937 || r_type == R_MICROMIPS_GOT16);
1938 }
1939
1940 static inline bfd_boolean
1941 call16_reloc_p (int r_type)
1942 {
1943 return (r_type == R_MIPS_CALL16
1944 || r_type == R_MIPS16_CALL16
1945 || r_type == R_MICROMIPS_CALL16);
1946 }
1947
1948 static inline bfd_boolean
1949 got_disp_reloc_p (unsigned int r_type)
1950 {
1951 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1952 }
1953
1954 static inline bfd_boolean
1955 got_page_reloc_p (unsigned int r_type)
1956 {
1957 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1958 }
1959
1960 static inline bfd_boolean
1961 got_ofst_reloc_p (unsigned int r_type)
1962 {
1963 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1964 }
1965
1966 static inline bfd_boolean
1967 got_hi16_reloc_p (unsigned int r_type)
1968 {
1969 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1970 }
1971
1972 static inline bfd_boolean
1973 got_lo16_reloc_p (unsigned int r_type)
1974 {
1975 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1976 }
1977
1978 static inline bfd_boolean
1979 call_hi16_reloc_p (unsigned int r_type)
1980 {
1981 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1982 }
1983
1984 static inline bfd_boolean
1985 call_lo16_reloc_p (unsigned int r_type)
1986 {
1987 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1988 }
1989
1990 static inline bfd_boolean
1991 hi16_reloc_p (int r_type)
1992 {
1993 return (r_type == R_MIPS_HI16
1994 || r_type == R_MIPS16_HI16
1995 || r_type == R_MICROMIPS_HI16);
1996 }
1997
1998 static inline bfd_boolean
1999 lo16_reloc_p (int r_type)
2000 {
2001 return (r_type == R_MIPS_LO16
2002 || r_type == R_MIPS16_LO16
2003 || r_type == R_MICROMIPS_LO16);
2004 }
2005
2006 static inline bfd_boolean
2007 mips16_call_reloc_p (int r_type)
2008 {
2009 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2010 }
2011
2012 static inline bfd_boolean
2013 jal_reloc_p (int r_type)
2014 {
2015 return (r_type == R_MIPS_26
2016 || r_type == R_MIPS16_26
2017 || r_type == R_MICROMIPS_26_S1);
2018 }
2019
2020 static inline bfd_boolean
2021 micromips_branch_reloc_p (int r_type)
2022 {
2023 return (r_type == R_MICROMIPS_26_S1
2024 || r_type == R_MICROMIPS_PC16_S1
2025 || r_type == R_MICROMIPS_PC10_S1
2026 || r_type == R_MICROMIPS_PC7_S1);
2027 }
2028
2029 static inline bfd_boolean
2030 tls_gd_reloc_p (unsigned int r_type)
2031 {
2032 return (r_type == R_MIPS_TLS_GD
2033 || r_type == R_MIPS16_TLS_GD
2034 || r_type == R_MICROMIPS_TLS_GD);
2035 }
2036
2037 static inline bfd_boolean
2038 tls_ldm_reloc_p (unsigned int r_type)
2039 {
2040 return (r_type == R_MIPS_TLS_LDM
2041 || r_type == R_MIPS16_TLS_LDM
2042 || r_type == R_MICROMIPS_TLS_LDM);
2043 }
2044
2045 static inline bfd_boolean
2046 tls_gottprel_reloc_p (unsigned int r_type)
2047 {
2048 return (r_type == R_MIPS_TLS_GOTTPREL
2049 || r_type == R_MIPS16_TLS_GOTTPREL
2050 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2051 }
2052
2053 void
2054 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2055 bfd_boolean jal_shuffle, bfd_byte *data)
2056 {
2057 bfd_vma first, second, val;
2058
2059 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2060 return;
2061
2062 /* Pick up the first and second halfwords of the instruction. */
2063 first = bfd_get_16 (abfd, data);
2064 second = bfd_get_16 (abfd, data + 2);
2065 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2066 val = first << 16 | second;
2067 else if (r_type != R_MIPS16_26)
2068 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2069 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2070 else
2071 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2072 | ((first & 0x1f) << 21) | second);
2073 bfd_put_32 (abfd, val, data);
2074 }
2075
2076 void
2077 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2078 bfd_boolean jal_shuffle, bfd_byte *data)
2079 {
2080 bfd_vma first, second, val;
2081
2082 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2083 return;
2084
2085 val = bfd_get_32 (abfd, data);
2086 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2087 {
2088 second = val & 0xffff;
2089 first = val >> 16;
2090 }
2091 else if (r_type != R_MIPS16_26)
2092 {
2093 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2094 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2095 }
2096 else
2097 {
2098 second = val & 0xffff;
2099 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2100 | ((val >> 21) & 0x1f);
2101 }
2102 bfd_put_16 (abfd, second, data + 2);
2103 bfd_put_16 (abfd, first, data);
2104 }
2105
2106 bfd_reloc_status_type
2107 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2108 arelent *reloc_entry, asection *input_section,
2109 bfd_boolean relocatable, void *data, bfd_vma gp)
2110 {
2111 bfd_vma relocation;
2112 bfd_signed_vma val;
2113 bfd_reloc_status_type status;
2114
2115 if (bfd_is_com_section (symbol->section))
2116 relocation = 0;
2117 else
2118 relocation = symbol->value;
2119
2120 relocation += symbol->section->output_section->vma;
2121 relocation += symbol->section->output_offset;
2122
2123 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2124 return bfd_reloc_outofrange;
2125
2126 /* Set val to the offset into the section or symbol. */
2127 val = reloc_entry->addend;
2128
2129 _bfd_mips_elf_sign_extend (val, 16);
2130
2131 /* Adjust val for the final section location and GP value. If we
2132 are producing relocatable output, we don't want to do this for
2133 an external symbol. */
2134 if (! relocatable
2135 || (symbol->flags & BSF_SECTION_SYM) != 0)
2136 val += relocation - gp;
2137
2138 if (reloc_entry->howto->partial_inplace)
2139 {
2140 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2141 (bfd_byte *) data
2142 + reloc_entry->address);
2143 if (status != bfd_reloc_ok)
2144 return status;
2145 }
2146 else
2147 reloc_entry->addend = val;
2148
2149 if (relocatable)
2150 reloc_entry->address += input_section->output_offset;
2151
2152 return bfd_reloc_ok;
2153 }
2154
2155 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2156 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2157 that contains the relocation field and DATA points to the start of
2158 INPUT_SECTION. */
2159
2160 struct mips_hi16
2161 {
2162 struct mips_hi16 *next;
2163 bfd_byte *data;
2164 asection *input_section;
2165 arelent rel;
2166 };
2167
2168 /* FIXME: This should not be a static variable. */
2169
2170 static struct mips_hi16 *mips_hi16_list;
2171
2172 /* A howto special_function for REL *HI16 relocations. We can only
2173 calculate the correct value once we've seen the partnering
2174 *LO16 relocation, so just save the information for later.
2175
2176 The ABI requires that the *LO16 immediately follow the *HI16.
2177 However, as a GNU extension, we permit an arbitrary number of
2178 *HI16s to be associated with a single *LO16. This significantly
2179 simplies the relocation handling in gcc. */
2180
2181 bfd_reloc_status_type
2182 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2183 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2184 asection *input_section, bfd *output_bfd,
2185 char **error_message ATTRIBUTE_UNUSED)
2186 {
2187 struct mips_hi16 *n;
2188
2189 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2190 return bfd_reloc_outofrange;
2191
2192 n = bfd_malloc (sizeof *n);
2193 if (n == NULL)
2194 return bfd_reloc_outofrange;
2195
2196 n->next = mips_hi16_list;
2197 n->data = data;
2198 n->input_section = input_section;
2199 n->rel = *reloc_entry;
2200 mips_hi16_list = n;
2201
2202 if (output_bfd != NULL)
2203 reloc_entry->address += input_section->output_offset;
2204
2205 return bfd_reloc_ok;
2206 }
2207
2208 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2209 like any other 16-bit relocation when applied to global symbols, but is
2210 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2211
2212 bfd_reloc_status_type
2213 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2214 void *data, asection *input_section,
2215 bfd *output_bfd, char **error_message)
2216 {
2217 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2218 || bfd_is_und_section (bfd_get_section (symbol))
2219 || bfd_is_com_section (bfd_get_section (symbol)))
2220 /* The relocation is against a global symbol. */
2221 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2222 input_section, output_bfd,
2223 error_message);
2224
2225 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2226 input_section, output_bfd, error_message);
2227 }
2228
2229 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2230 is a straightforward 16 bit inplace relocation, but we must deal with
2231 any partnering high-part relocations as well. */
2232
2233 bfd_reloc_status_type
2234 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2235 void *data, asection *input_section,
2236 bfd *output_bfd, char **error_message)
2237 {
2238 bfd_vma vallo;
2239 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2240
2241 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2242 return bfd_reloc_outofrange;
2243
2244 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2245 location);
2246 vallo = bfd_get_32 (abfd, location);
2247 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2248 location);
2249
2250 while (mips_hi16_list != NULL)
2251 {
2252 bfd_reloc_status_type ret;
2253 struct mips_hi16 *hi;
2254
2255 hi = mips_hi16_list;
2256
2257 /* R_MIPS*_GOT16 relocations are something of a special case. We
2258 want to install the addend in the same way as for a R_MIPS*_HI16
2259 relocation (with a rightshift of 16). However, since GOT16
2260 relocations can also be used with global symbols, their howto
2261 has a rightshift of 0. */
2262 if (hi->rel.howto->type == R_MIPS_GOT16)
2263 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2264 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2265 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2266 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2267 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2268
2269 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2270 carry or borrow will induce a change of +1 or -1 in the high part. */
2271 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2272
2273 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2274 hi->input_section, output_bfd,
2275 error_message);
2276 if (ret != bfd_reloc_ok)
2277 return ret;
2278
2279 mips_hi16_list = hi->next;
2280 free (hi);
2281 }
2282
2283 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2284 input_section, output_bfd,
2285 error_message);
2286 }
2287
2288 /* A generic howto special_function. This calculates and installs the
2289 relocation itself, thus avoiding the oft-discussed problems in
2290 bfd_perform_relocation and bfd_install_relocation. */
2291
2292 bfd_reloc_status_type
2293 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2294 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2295 asection *input_section, bfd *output_bfd,
2296 char **error_message ATTRIBUTE_UNUSED)
2297 {
2298 bfd_signed_vma val;
2299 bfd_reloc_status_type status;
2300 bfd_boolean relocatable;
2301
2302 relocatable = (output_bfd != NULL);
2303
2304 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2305 return bfd_reloc_outofrange;
2306
2307 /* Build up the field adjustment in VAL. */
2308 val = 0;
2309 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2310 {
2311 /* Either we're calculating the final field value or we have a
2312 relocation against a section symbol. Add in the section's
2313 offset or address. */
2314 val += symbol->section->output_section->vma;
2315 val += symbol->section->output_offset;
2316 }
2317
2318 if (!relocatable)
2319 {
2320 /* We're calculating the final field value. Add in the symbol's value
2321 and, if pc-relative, subtract the address of the field itself. */
2322 val += symbol->value;
2323 if (reloc_entry->howto->pc_relative)
2324 {
2325 val -= input_section->output_section->vma;
2326 val -= input_section->output_offset;
2327 val -= reloc_entry->address;
2328 }
2329 }
2330
2331 /* VAL is now the final adjustment. If we're keeping this relocation
2332 in the output file, and if the relocation uses a separate addend,
2333 we just need to add VAL to that addend. Otherwise we need to add
2334 VAL to the relocation field itself. */
2335 if (relocatable && !reloc_entry->howto->partial_inplace)
2336 reloc_entry->addend += val;
2337 else
2338 {
2339 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2340
2341 /* Add in the separate addend, if any. */
2342 val += reloc_entry->addend;
2343
2344 /* Add VAL to the relocation field. */
2345 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2346 location);
2347 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2348 location);
2349 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2350 location);
2351
2352 if (status != bfd_reloc_ok)
2353 return status;
2354 }
2355
2356 if (relocatable)
2357 reloc_entry->address += input_section->output_offset;
2358
2359 return bfd_reloc_ok;
2360 }
2361 \f
2362 /* Swap an entry in a .gptab section. Note that these routines rely
2363 on the equivalence of the two elements of the union. */
2364
2365 static void
2366 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2367 Elf32_gptab *in)
2368 {
2369 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2370 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2371 }
2372
2373 static void
2374 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2375 Elf32_External_gptab *ex)
2376 {
2377 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2378 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2379 }
2380
2381 static void
2382 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2383 Elf32_External_compact_rel *ex)
2384 {
2385 H_PUT_32 (abfd, in->id1, ex->id1);
2386 H_PUT_32 (abfd, in->num, ex->num);
2387 H_PUT_32 (abfd, in->id2, ex->id2);
2388 H_PUT_32 (abfd, in->offset, ex->offset);
2389 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2390 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2391 }
2392
2393 static void
2394 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2395 Elf32_External_crinfo *ex)
2396 {
2397 unsigned long l;
2398
2399 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2400 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2401 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2402 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2403 H_PUT_32 (abfd, l, ex->info);
2404 H_PUT_32 (abfd, in->konst, ex->konst);
2405 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2406 }
2407 \f
2408 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2409 routines swap this structure in and out. They are used outside of
2410 BFD, so they are globally visible. */
2411
2412 void
2413 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2414 Elf32_RegInfo *in)
2415 {
2416 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2417 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2418 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2419 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2420 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2421 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2422 }
2423
2424 void
2425 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2426 Elf32_External_RegInfo *ex)
2427 {
2428 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2429 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2430 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2431 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2432 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2433 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2434 }
2435
2436 /* In the 64 bit ABI, the .MIPS.options section holds register
2437 information in an Elf64_Reginfo structure. These routines swap
2438 them in and out. They are globally visible because they are used
2439 outside of BFD. These routines are here so that gas can call them
2440 without worrying about whether the 64 bit ABI has been included. */
2441
2442 void
2443 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2444 Elf64_Internal_RegInfo *in)
2445 {
2446 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2447 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2448 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2449 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2450 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2451 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2452 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2453 }
2454
2455 void
2456 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2457 Elf64_External_RegInfo *ex)
2458 {
2459 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2460 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2461 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2462 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2463 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2464 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2465 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2466 }
2467
2468 /* Swap in an options header. */
2469
2470 void
2471 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2472 Elf_Internal_Options *in)
2473 {
2474 in->kind = H_GET_8 (abfd, ex->kind);
2475 in->size = H_GET_8 (abfd, ex->size);
2476 in->section = H_GET_16 (abfd, ex->section);
2477 in->info = H_GET_32 (abfd, ex->info);
2478 }
2479
2480 /* Swap out an options header. */
2481
2482 void
2483 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2484 Elf_External_Options *ex)
2485 {
2486 H_PUT_8 (abfd, in->kind, ex->kind);
2487 H_PUT_8 (abfd, in->size, ex->size);
2488 H_PUT_16 (abfd, in->section, ex->section);
2489 H_PUT_32 (abfd, in->info, ex->info);
2490 }
2491 \f
2492 /* This function is called via qsort() to sort the dynamic relocation
2493 entries by increasing r_symndx value. */
2494
2495 static int
2496 sort_dynamic_relocs (const void *arg1, const void *arg2)
2497 {
2498 Elf_Internal_Rela int_reloc1;
2499 Elf_Internal_Rela int_reloc2;
2500 int diff;
2501
2502 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2503 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2504
2505 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2506 if (diff != 0)
2507 return diff;
2508
2509 if (int_reloc1.r_offset < int_reloc2.r_offset)
2510 return -1;
2511 if (int_reloc1.r_offset > int_reloc2.r_offset)
2512 return 1;
2513 return 0;
2514 }
2515
2516 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2517
2518 static int
2519 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2520 const void *arg2 ATTRIBUTE_UNUSED)
2521 {
2522 #ifdef BFD64
2523 Elf_Internal_Rela int_reloc1[3];
2524 Elf_Internal_Rela int_reloc2[3];
2525
2526 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2527 (reldyn_sorting_bfd, arg1, int_reloc1);
2528 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2529 (reldyn_sorting_bfd, arg2, int_reloc2);
2530
2531 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2532 return -1;
2533 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2534 return 1;
2535
2536 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2537 return -1;
2538 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2539 return 1;
2540 return 0;
2541 #else
2542 abort ();
2543 #endif
2544 }
2545
2546
2547 /* This routine is used to write out ECOFF debugging external symbol
2548 information. It is called via mips_elf_link_hash_traverse. The
2549 ECOFF external symbol information must match the ELF external
2550 symbol information. Unfortunately, at this point we don't know
2551 whether a symbol is required by reloc information, so the two
2552 tables may wind up being different. We must sort out the external
2553 symbol information before we can set the final size of the .mdebug
2554 section, and we must set the size of the .mdebug section before we
2555 can relocate any sections, and we can't know which symbols are
2556 required by relocation until we relocate the sections.
2557 Fortunately, it is relatively unlikely that any symbol will be
2558 stripped but required by a reloc. In particular, it can not happen
2559 when generating a final executable. */
2560
2561 static bfd_boolean
2562 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2563 {
2564 struct extsym_info *einfo = data;
2565 bfd_boolean strip;
2566 asection *sec, *output_section;
2567
2568 if (h->root.indx == -2)
2569 strip = FALSE;
2570 else if ((h->root.def_dynamic
2571 || h->root.ref_dynamic
2572 || h->root.type == bfd_link_hash_new)
2573 && !h->root.def_regular
2574 && !h->root.ref_regular)
2575 strip = TRUE;
2576 else if (einfo->info->strip == strip_all
2577 || (einfo->info->strip == strip_some
2578 && bfd_hash_lookup (einfo->info->keep_hash,
2579 h->root.root.root.string,
2580 FALSE, FALSE) == NULL))
2581 strip = TRUE;
2582 else
2583 strip = FALSE;
2584
2585 if (strip)
2586 return TRUE;
2587
2588 if (h->esym.ifd == -2)
2589 {
2590 h->esym.jmptbl = 0;
2591 h->esym.cobol_main = 0;
2592 h->esym.weakext = 0;
2593 h->esym.reserved = 0;
2594 h->esym.ifd = ifdNil;
2595 h->esym.asym.value = 0;
2596 h->esym.asym.st = stGlobal;
2597
2598 if (h->root.root.type == bfd_link_hash_undefined
2599 || h->root.root.type == bfd_link_hash_undefweak)
2600 {
2601 const char *name;
2602
2603 /* Use undefined class. Also, set class and type for some
2604 special symbols. */
2605 name = h->root.root.root.string;
2606 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2607 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2608 {
2609 h->esym.asym.sc = scData;
2610 h->esym.asym.st = stLabel;
2611 h->esym.asym.value = 0;
2612 }
2613 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2614 {
2615 h->esym.asym.sc = scAbs;
2616 h->esym.asym.st = stLabel;
2617 h->esym.asym.value =
2618 mips_elf_hash_table (einfo->info)->procedure_count;
2619 }
2620 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2621 {
2622 h->esym.asym.sc = scAbs;
2623 h->esym.asym.st = stLabel;
2624 h->esym.asym.value = elf_gp (einfo->abfd);
2625 }
2626 else
2627 h->esym.asym.sc = scUndefined;
2628 }
2629 else if (h->root.root.type != bfd_link_hash_defined
2630 && h->root.root.type != bfd_link_hash_defweak)
2631 h->esym.asym.sc = scAbs;
2632 else
2633 {
2634 const char *name;
2635
2636 sec = h->root.root.u.def.section;
2637 output_section = sec->output_section;
2638
2639 /* When making a shared library and symbol h is the one from
2640 the another shared library, OUTPUT_SECTION may be null. */
2641 if (output_section == NULL)
2642 h->esym.asym.sc = scUndefined;
2643 else
2644 {
2645 name = bfd_section_name (output_section->owner, output_section);
2646
2647 if (strcmp (name, ".text") == 0)
2648 h->esym.asym.sc = scText;
2649 else if (strcmp (name, ".data") == 0)
2650 h->esym.asym.sc = scData;
2651 else if (strcmp (name, ".sdata") == 0)
2652 h->esym.asym.sc = scSData;
2653 else if (strcmp (name, ".rodata") == 0
2654 || strcmp (name, ".rdata") == 0)
2655 h->esym.asym.sc = scRData;
2656 else if (strcmp (name, ".bss") == 0)
2657 h->esym.asym.sc = scBss;
2658 else if (strcmp (name, ".sbss") == 0)
2659 h->esym.asym.sc = scSBss;
2660 else if (strcmp (name, ".init") == 0)
2661 h->esym.asym.sc = scInit;
2662 else if (strcmp (name, ".fini") == 0)
2663 h->esym.asym.sc = scFini;
2664 else
2665 h->esym.asym.sc = scAbs;
2666 }
2667 }
2668
2669 h->esym.asym.reserved = 0;
2670 h->esym.asym.index = indexNil;
2671 }
2672
2673 if (h->root.root.type == bfd_link_hash_common)
2674 h->esym.asym.value = h->root.root.u.c.size;
2675 else if (h->root.root.type == bfd_link_hash_defined
2676 || h->root.root.type == bfd_link_hash_defweak)
2677 {
2678 if (h->esym.asym.sc == scCommon)
2679 h->esym.asym.sc = scBss;
2680 else if (h->esym.asym.sc == scSCommon)
2681 h->esym.asym.sc = scSBss;
2682
2683 sec = h->root.root.u.def.section;
2684 output_section = sec->output_section;
2685 if (output_section != NULL)
2686 h->esym.asym.value = (h->root.root.u.def.value
2687 + sec->output_offset
2688 + output_section->vma);
2689 else
2690 h->esym.asym.value = 0;
2691 }
2692 else
2693 {
2694 struct mips_elf_link_hash_entry *hd = h;
2695
2696 while (hd->root.root.type == bfd_link_hash_indirect)
2697 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2698
2699 if (hd->needs_lazy_stub)
2700 {
2701 /* Set type and value for a symbol with a function stub. */
2702 h->esym.asym.st = stProc;
2703 sec = hd->root.root.u.def.section;
2704 if (sec == NULL)
2705 h->esym.asym.value = 0;
2706 else
2707 {
2708 output_section = sec->output_section;
2709 if (output_section != NULL)
2710 h->esym.asym.value = (hd->root.plt.offset
2711 + sec->output_offset
2712 + output_section->vma);
2713 else
2714 h->esym.asym.value = 0;
2715 }
2716 }
2717 }
2718
2719 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2720 h->root.root.root.string,
2721 &h->esym))
2722 {
2723 einfo->failed = TRUE;
2724 return FALSE;
2725 }
2726
2727 return TRUE;
2728 }
2729
2730 /* A comparison routine used to sort .gptab entries. */
2731
2732 static int
2733 gptab_compare (const void *p1, const void *p2)
2734 {
2735 const Elf32_gptab *a1 = p1;
2736 const Elf32_gptab *a2 = p2;
2737
2738 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2739 }
2740 \f
2741 /* Functions to manage the got entry hash table. */
2742
2743 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2744 hash number. */
2745
2746 static INLINE hashval_t
2747 mips_elf_hash_bfd_vma (bfd_vma addr)
2748 {
2749 #ifdef BFD64
2750 return addr + (addr >> 32);
2751 #else
2752 return addr;
2753 #endif
2754 }
2755
2756 /* got_entries only match if they're identical, except for gotidx, so
2757 use all fields to compute the hash, and compare the appropriate
2758 union members. */
2759
2760 static hashval_t
2761 mips_elf_got_entry_hash (const void *entry_)
2762 {
2763 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2764
2765 return entry->symndx
2766 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2767 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2768 : entry->abfd->id
2769 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2770 : entry->d.h->root.root.root.hash));
2771 }
2772
2773 static int
2774 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2775 {
2776 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2777 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2778
2779 /* An LDM entry can only match another LDM entry. */
2780 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2781 return 0;
2782
2783 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2784 && (! e1->abfd ? e1->d.address == e2->d.address
2785 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2786 : e1->d.h == e2->d.h);
2787 }
2788
2789 /* multi_got_entries are still a match in the case of global objects,
2790 even if the input bfd in which they're referenced differs, so the
2791 hash computation and compare functions are adjusted
2792 accordingly. */
2793
2794 static hashval_t
2795 mips_elf_multi_got_entry_hash (const void *entry_)
2796 {
2797 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2798
2799 return entry->symndx
2800 + (! entry->abfd
2801 ? mips_elf_hash_bfd_vma (entry->d.address)
2802 : entry->symndx >= 0
2803 ? ((entry->tls_type & GOT_TLS_LDM)
2804 ? (GOT_TLS_LDM << 17)
2805 : (entry->abfd->id
2806 + mips_elf_hash_bfd_vma (entry->d.addend)))
2807 : entry->d.h->root.root.root.hash);
2808 }
2809
2810 static int
2811 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2812 {
2813 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2814 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2815
2816 /* Any two LDM entries match. */
2817 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2818 return 1;
2819
2820 /* Nothing else matches an LDM entry. */
2821 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2822 return 0;
2823
2824 return e1->symndx == e2->symndx
2825 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2826 : e1->abfd == NULL || e2->abfd == NULL
2827 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2828 : e1->d.h == e2->d.h);
2829 }
2830
2831 static hashval_t
2832 mips_got_page_entry_hash (const void *entry_)
2833 {
2834 const struct mips_got_page_entry *entry;
2835
2836 entry = (const struct mips_got_page_entry *) entry_;
2837 return entry->abfd->id + entry->symndx;
2838 }
2839
2840 static int
2841 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2842 {
2843 const struct mips_got_page_entry *entry1, *entry2;
2844
2845 entry1 = (const struct mips_got_page_entry *) entry1_;
2846 entry2 = (const struct mips_got_page_entry *) entry2_;
2847 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2848 }
2849 \f
2850 /* Return the dynamic relocation section. If it doesn't exist, try to
2851 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2852 if creation fails. */
2853
2854 static asection *
2855 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2856 {
2857 const char *dname;
2858 asection *sreloc;
2859 bfd *dynobj;
2860
2861 dname = MIPS_ELF_REL_DYN_NAME (info);
2862 dynobj = elf_hash_table (info)->dynobj;
2863 sreloc = bfd_get_linker_section (dynobj, dname);
2864 if (sreloc == NULL && create_p)
2865 {
2866 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2867 (SEC_ALLOC
2868 | SEC_LOAD
2869 | SEC_HAS_CONTENTS
2870 | SEC_IN_MEMORY
2871 | SEC_LINKER_CREATED
2872 | SEC_READONLY));
2873 if (sreloc == NULL
2874 || ! bfd_set_section_alignment (dynobj, sreloc,
2875 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2876 return NULL;
2877 }
2878 return sreloc;
2879 }
2880
2881 /* Count the number of relocations needed for a TLS GOT entry, with
2882 access types from TLS_TYPE, and symbol H (or a local symbol if H
2883 is NULL). */
2884
2885 static int
2886 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2887 struct elf_link_hash_entry *h)
2888 {
2889 int indx = 0;
2890 int ret = 0;
2891 bfd_boolean need_relocs = FALSE;
2892 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2893
2894 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2895 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2896 indx = h->dynindx;
2897
2898 if ((info->shared || indx != 0)
2899 && (h == NULL
2900 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2901 || h->root.type != bfd_link_hash_undefweak))
2902 need_relocs = TRUE;
2903
2904 if (!need_relocs)
2905 return FALSE;
2906
2907 if (tls_type & GOT_TLS_GD)
2908 {
2909 ret++;
2910 if (indx != 0)
2911 ret++;
2912 }
2913
2914 if (tls_type & GOT_TLS_IE)
2915 ret++;
2916
2917 if ((tls_type & GOT_TLS_LDM) && info->shared)
2918 ret++;
2919
2920 return ret;
2921 }
2922
2923 /* Count the number of TLS relocations required for the GOT entry in
2924 ARG1, if it describes a local symbol. */
2925
2926 static int
2927 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2928 {
2929 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2930 struct mips_elf_count_tls_arg *arg = arg2;
2931
2932 if (entry->abfd != NULL && entry->symndx != -1)
2933 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2934
2935 return 1;
2936 }
2937
2938 /* Count the number of TLS GOT entries required for the global (or
2939 forced-local) symbol in ARG1. */
2940
2941 static int
2942 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2943 {
2944 struct mips_elf_link_hash_entry *hm
2945 = (struct mips_elf_link_hash_entry *) arg1;
2946 struct mips_elf_count_tls_arg *arg = arg2;
2947
2948 if (hm->tls_type & GOT_TLS_GD)
2949 arg->needed += 2;
2950 if (hm->tls_type & GOT_TLS_IE)
2951 arg->needed += 1;
2952
2953 return 1;
2954 }
2955
2956 /* Count the number of TLS relocations required for the global (or
2957 forced-local) symbol in ARG1. */
2958
2959 static int
2960 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2961 {
2962 struct mips_elf_link_hash_entry *hm
2963 = (struct mips_elf_link_hash_entry *) arg1;
2964 struct mips_elf_count_tls_arg *arg = arg2;
2965
2966 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2967
2968 return 1;
2969 }
2970
2971 /* Output a simple dynamic relocation into SRELOC. */
2972
2973 static void
2974 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2975 asection *sreloc,
2976 unsigned long reloc_index,
2977 unsigned long indx,
2978 int r_type,
2979 bfd_vma offset)
2980 {
2981 Elf_Internal_Rela rel[3];
2982
2983 memset (rel, 0, sizeof (rel));
2984
2985 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2986 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2987
2988 if (ABI_64_P (output_bfd))
2989 {
2990 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2991 (output_bfd, &rel[0],
2992 (sreloc->contents
2993 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2994 }
2995 else
2996 bfd_elf32_swap_reloc_out
2997 (output_bfd, &rel[0],
2998 (sreloc->contents
2999 + reloc_index * sizeof (Elf32_External_Rel)));
3000 }
3001
3002 /* Initialize a set of TLS GOT entries for one symbol. */
3003
3004 static void
3005 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3006 unsigned char *tls_type_p,
3007 struct bfd_link_info *info,
3008 struct mips_elf_link_hash_entry *h,
3009 bfd_vma value)
3010 {
3011 struct mips_elf_link_hash_table *htab;
3012 int indx;
3013 asection *sreloc, *sgot;
3014 bfd_vma offset, offset2;
3015 bfd_boolean need_relocs = FALSE;
3016
3017 htab = mips_elf_hash_table (info);
3018 if (htab == NULL)
3019 return;
3020
3021 sgot = htab->sgot;
3022
3023 indx = 0;
3024 if (h != NULL)
3025 {
3026 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3027
3028 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3029 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3030 indx = h->root.dynindx;
3031 }
3032
3033 if (*tls_type_p & GOT_TLS_DONE)
3034 return;
3035
3036 if ((info->shared || indx != 0)
3037 && (h == NULL
3038 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3039 || h->root.type != bfd_link_hash_undefweak))
3040 need_relocs = TRUE;
3041
3042 /* MINUS_ONE means the symbol is not defined in this object. It may not
3043 be defined at all; assume that the value doesn't matter in that
3044 case. Otherwise complain if we would use the value. */
3045 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3046 || h->root.root.type == bfd_link_hash_undefweak);
3047
3048 /* Emit necessary relocations. */
3049 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3050
3051 /* General Dynamic. */
3052 if (*tls_type_p & GOT_TLS_GD)
3053 {
3054 offset = got_offset;
3055 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3056
3057 if (need_relocs)
3058 {
3059 mips_elf_output_dynamic_relocation
3060 (abfd, sreloc, sreloc->reloc_count++, indx,
3061 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3062 sgot->output_offset + sgot->output_section->vma + offset);
3063
3064 if (indx)
3065 mips_elf_output_dynamic_relocation
3066 (abfd, sreloc, sreloc->reloc_count++, indx,
3067 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3068 sgot->output_offset + sgot->output_section->vma + offset2);
3069 else
3070 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3071 sgot->contents + offset2);
3072 }
3073 else
3074 {
3075 MIPS_ELF_PUT_WORD (abfd, 1,
3076 sgot->contents + offset);
3077 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3078 sgot->contents + offset2);
3079 }
3080
3081 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3082 }
3083
3084 /* Initial Exec model. */
3085 if (*tls_type_p & GOT_TLS_IE)
3086 {
3087 offset = got_offset;
3088
3089 if (need_relocs)
3090 {
3091 if (indx == 0)
3092 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3093 sgot->contents + offset);
3094 else
3095 MIPS_ELF_PUT_WORD (abfd, 0,
3096 sgot->contents + offset);
3097
3098 mips_elf_output_dynamic_relocation
3099 (abfd, sreloc, sreloc->reloc_count++, indx,
3100 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3101 sgot->output_offset + sgot->output_section->vma + offset);
3102 }
3103 else
3104 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3105 sgot->contents + offset);
3106 }
3107
3108 if (*tls_type_p & GOT_TLS_LDM)
3109 {
3110 /* The initial offset is zero, and the LD offsets will include the
3111 bias by DTP_OFFSET. */
3112 MIPS_ELF_PUT_WORD (abfd, 0,
3113 sgot->contents + got_offset
3114 + MIPS_ELF_GOT_SIZE (abfd));
3115
3116 if (!info->shared)
3117 MIPS_ELF_PUT_WORD (abfd, 1,
3118 sgot->contents + got_offset);
3119 else
3120 mips_elf_output_dynamic_relocation
3121 (abfd, sreloc, sreloc->reloc_count++, indx,
3122 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3123 sgot->output_offset + sgot->output_section->vma + got_offset);
3124 }
3125
3126 *tls_type_p |= GOT_TLS_DONE;
3127 }
3128
3129 /* Return the GOT index to use for a relocation of type R_TYPE against
3130 a symbol accessed using TLS_TYPE models. The GOT entries for this
3131 symbol in this GOT start at GOT_INDEX. This function initializes the
3132 GOT entries and corresponding relocations. */
3133
3134 static bfd_vma
3135 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3136 int r_type, struct bfd_link_info *info,
3137 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3138 {
3139 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3140 || tls_gd_reloc_p (r_type)
3141 || tls_ldm_reloc_p (r_type));
3142
3143 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3144
3145 if (tls_gottprel_reloc_p (r_type))
3146 {
3147 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3148 if (*tls_type & GOT_TLS_GD)
3149 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3150 else
3151 return got_index;
3152 }
3153
3154 if (tls_gd_reloc_p (r_type))
3155 {
3156 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3157 return got_index;
3158 }
3159
3160 if (tls_ldm_reloc_p (r_type))
3161 {
3162 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3163 return got_index;
3164 }
3165
3166 return got_index;
3167 }
3168
3169 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3170 for global symbol H. .got.plt comes before the GOT, so the offset
3171 will be negative. */
3172
3173 static bfd_vma
3174 mips_elf_gotplt_index (struct bfd_link_info *info,
3175 struct elf_link_hash_entry *h)
3176 {
3177 bfd_vma plt_index, got_address, got_value;
3178 struct mips_elf_link_hash_table *htab;
3179
3180 htab = mips_elf_hash_table (info);
3181 BFD_ASSERT (htab != NULL);
3182
3183 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3184
3185 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3186 section starts with reserved entries. */
3187 BFD_ASSERT (htab->is_vxworks);
3188
3189 /* Calculate the index of the symbol's PLT entry. */
3190 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3191
3192 /* Calculate the address of the associated .got.plt entry. */
3193 got_address = (htab->sgotplt->output_section->vma
3194 + htab->sgotplt->output_offset
3195 + plt_index * 4);
3196
3197 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3198 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3199 + htab->root.hgot->root.u.def.section->output_offset
3200 + htab->root.hgot->root.u.def.value);
3201
3202 return got_address - got_value;
3203 }
3204
3205 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3206 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3207 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3208 offset can be found. */
3209
3210 static bfd_vma
3211 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3212 bfd_vma value, unsigned long r_symndx,
3213 struct mips_elf_link_hash_entry *h, int r_type)
3214 {
3215 struct mips_elf_link_hash_table *htab;
3216 struct mips_got_entry *entry;
3217
3218 htab = mips_elf_hash_table (info);
3219 BFD_ASSERT (htab != NULL);
3220
3221 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3222 r_symndx, h, r_type);
3223 if (!entry)
3224 return MINUS_ONE;
3225
3226 if (TLS_RELOC_P (r_type))
3227 {
3228 if (entry->symndx == -1 && htab->got_info->next == NULL)
3229 /* A type (3) entry in the single-GOT case. We use the symbol's
3230 hash table entry to track the index. */
3231 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3232 r_type, info, h, value);
3233 else
3234 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3235 r_type, info, h, value);
3236 }
3237 else
3238 return entry->gotidx;
3239 }
3240
3241 /* Returns the GOT index for the global symbol indicated by H. */
3242
3243 static bfd_vma
3244 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3245 int r_type, struct bfd_link_info *info)
3246 {
3247 struct mips_elf_link_hash_table *htab;
3248 bfd_vma got_index;
3249 struct mips_got_info *g, *gg;
3250 long global_got_dynindx = 0;
3251
3252 htab = mips_elf_hash_table (info);
3253 BFD_ASSERT (htab != NULL);
3254
3255 gg = g = htab->got_info;
3256 if (g->bfd2got && ibfd)
3257 {
3258 struct mips_got_entry e, *p;
3259
3260 BFD_ASSERT (h->dynindx >= 0);
3261
3262 g = mips_elf_got_for_ibfd (g, ibfd);
3263 if (g->next != gg || TLS_RELOC_P (r_type))
3264 {
3265 e.abfd = ibfd;
3266 e.symndx = -1;
3267 e.d.h = (struct mips_elf_link_hash_entry *)h;
3268 e.tls_type = 0;
3269
3270 p = htab_find (g->got_entries, &e);
3271
3272 BFD_ASSERT (p->gotidx > 0);
3273
3274 if (TLS_RELOC_P (r_type))
3275 {
3276 bfd_vma value = MINUS_ONE;
3277 if ((h->root.type == bfd_link_hash_defined
3278 || h->root.type == bfd_link_hash_defweak)
3279 && h->root.u.def.section->output_section)
3280 value = (h->root.u.def.value
3281 + h->root.u.def.section->output_offset
3282 + h->root.u.def.section->output_section->vma);
3283
3284 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3285 info, e.d.h, value);
3286 }
3287 else
3288 return p->gotidx;
3289 }
3290 }
3291
3292 if (gg->global_gotsym != NULL)
3293 global_got_dynindx = gg->global_gotsym->dynindx;
3294
3295 if (TLS_RELOC_P (r_type))
3296 {
3297 struct mips_elf_link_hash_entry *hm
3298 = (struct mips_elf_link_hash_entry *) h;
3299 bfd_vma value = MINUS_ONE;
3300
3301 if ((h->root.type == bfd_link_hash_defined
3302 || h->root.type == bfd_link_hash_defweak)
3303 && h->root.u.def.section->output_section)
3304 value = (h->root.u.def.value
3305 + h->root.u.def.section->output_offset
3306 + h->root.u.def.section->output_section->vma);
3307
3308 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3309 r_type, info, hm, value);
3310 }
3311 else
3312 {
3313 /* Once we determine the global GOT entry with the lowest dynamic
3314 symbol table index, we must put all dynamic symbols with greater
3315 indices into the GOT. That makes it easy to calculate the GOT
3316 offset. */
3317 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3318 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3319 * MIPS_ELF_GOT_SIZE (abfd));
3320 }
3321 BFD_ASSERT (got_index < htab->sgot->size);
3322
3323 return got_index;
3324 }
3325
3326 /* Find a GOT page entry that points to within 32KB of VALUE. These
3327 entries are supposed to be placed at small offsets in the GOT, i.e.,
3328 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3329 entry could be created. If OFFSETP is nonnull, use it to return the
3330 offset of the GOT entry from VALUE. */
3331
3332 static bfd_vma
3333 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3334 bfd_vma value, bfd_vma *offsetp)
3335 {
3336 bfd_vma page, got_index;
3337 struct mips_got_entry *entry;
3338
3339 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3340 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3341 NULL, R_MIPS_GOT_PAGE);
3342
3343 if (!entry)
3344 return MINUS_ONE;
3345
3346 got_index = entry->gotidx;
3347
3348 if (offsetp)
3349 *offsetp = value - entry->d.address;
3350
3351 return got_index;
3352 }
3353
3354 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3355 EXTERNAL is true if the relocation was originally against a global
3356 symbol that binds locally. */
3357
3358 static bfd_vma
3359 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3360 bfd_vma value, bfd_boolean external)
3361 {
3362 struct mips_got_entry *entry;
3363
3364 /* GOT16 relocations against local symbols are followed by a LO16
3365 relocation; those against global symbols are not. Thus if the
3366 symbol was originally local, the GOT16 relocation should load the
3367 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3368 if (! external)
3369 value = mips_elf_high (value) << 16;
3370
3371 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3372 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3373 same in all cases. */
3374 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3375 NULL, R_MIPS_GOT16);
3376 if (entry)
3377 return entry->gotidx;
3378 else
3379 return MINUS_ONE;
3380 }
3381
3382 /* Returns the offset for the entry at the INDEXth position
3383 in the GOT. */
3384
3385 static bfd_vma
3386 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3387 bfd *input_bfd, bfd_vma got_index)
3388 {
3389 struct mips_elf_link_hash_table *htab;
3390 asection *sgot;
3391 bfd_vma gp;
3392
3393 htab = mips_elf_hash_table (info);
3394 BFD_ASSERT (htab != NULL);
3395
3396 sgot = htab->sgot;
3397 gp = _bfd_get_gp_value (output_bfd)
3398 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3399
3400 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3401 }
3402
3403 /* Create and return a local GOT entry for VALUE, which was calculated
3404 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3405 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3406 instead. */
3407
3408 static struct mips_got_entry *
3409 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3410 bfd *ibfd, bfd_vma value,
3411 unsigned long r_symndx,
3412 struct mips_elf_link_hash_entry *h,
3413 int r_type)
3414 {
3415 struct mips_got_entry entry, **loc;
3416 struct mips_got_info *g;
3417 struct mips_elf_link_hash_table *htab;
3418
3419 htab = mips_elf_hash_table (info);
3420 BFD_ASSERT (htab != NULL);
3421
3422 entry.abfd = NULL;
3423 entry.symndx = -1;
3424 entry.d.address = value;
3425 entry.tls_type = 0;
3426
3427 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3428 if (g == NULL)
3429 {
3430 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3431 BFD_ASSERT (g != NULL);
3432 }
3433
3434 /* This function shouldn't be called for symbols that live in the global
3435 area of the GOT. */
3436 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3437 if (TLS_RELOC_P (r_type))
3438 {
3439 struct mips_got_entry *p;
3440
3441 entry.abfd = ibfd;
3442 if (tls_ldm_reloc_p (r_type))
3443 {
3444 entry.tls_type = GOT_TLS_LDM;
3445 entry.symndx = 0;
3446 entry.d.addend = 0;
3447 }
3448 else if (h == NULL)
3449 {
3450 entry.symndx = r_symndx;
3451 entry.d.addend = 0;
3452 }
3453 else
3454 entry.d.h = h;
3455
3456 p = (struct mips_got_entry *)
3457 htab_find (g->got_entries, &entry);
3458
3459 BFD_ASSERT (p);
3460 return p;
3461 }
3462
3463 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3464 INSERT);
3465 if (*loc)
3466 return *loc;
3467
3468 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3469 entry.tls_type = 0;
3470
3471 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3472
3473 if (! *loc)
3474 return NULL;
3475
3476 memcpy (*loc, &entry, sizeof entry);
3477
3478 if (g->assigned_gotno > g->local_gotno)
3479 {
3480 (*loc)->gotidx = -1;
3481 /* We didn't allocate enough space in the GOT. */
3482 (*_bfd_error_handler)
3483 (_("not enough GOT space for local GOT entries"));
3484 bfd_set_error (bfd_error_bad_value);
3485 return NULL;
3486 }
3487
3488 MIPS_ELF_PUT_WORD (abfd, value,
3489 (htab->sgot->contents + entry.gotidx));
3490
3491 /* These GOT entries need a dynamic relocation on VxWorks. */
3492 if (htab->is_vxworks)
3493 {
3494 Elf_Internal_Rela outrel;
3495 asection *s;
3496 bfd_byte *rloc;
3497 bfd_vma got_address;
3498
3499 s = mips_elf_rel_dyn_section (info, FALSE);
3500 got_address = (htab->sgot->output_section->vma
3501 + htab->sgot->output_offset
3502 + entry.gotidx);
3503
3504 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3505 outrel.r_offset = got_address;
3506 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3507 outrel.r_addend = value;
3508 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3509 }
3510
3511 return *loc;
3512 }
3513
3514 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3515 The number might be exact or a worst-case estimate, depending on how
3516 much information is available to elf_backend_omit_section_dynsym at
3517 the current linking stage. */
3518
3519 static bfd_size_type
3520 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3521 {
3522 bfd_size_type count;
3523
3524 count = 0;
3525 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3526 {
3527 asection *p;
3528 const struct elf_backend_data *bed;
3529
3530 bed = get_elf_backend_data (output_bfd);
3531 for (p = output_bfd->sections; p ; p = p->next)
3532 if ((p->flags & SEC_EXCLUDE) == 0
3533 && (p->flags & SEC_ALLOC) != 0
3534 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3535 ++count;
3536 }
3537 return count;
3538 }
3539
3540 /* Sort the dynamic symbol table so that symbols that need GOT entries
3541 appear towards the end. */
3542
3543 static bfd_boolean
3544 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3545 {
3546 struct mips_elf_link_hash_table *htab;
3547 struct mips_elf_hash_sort_data hsd;
3548 struct mips_got_info *g;
3549
3550 if (elf_hash_table (info)->dynsymcount == 0)
3551 return TRUE;
3552
3553 htab = mips_elf_hash_table (info);
3554 BFD_ASSERT (htab != NULL);
3555
3556 g = htab->got_info;
3557 if (g == NULL)
3558 return TRUE;
3559
3560 hsd.low = NULL;
3561 hsd.max_unref_got_dynindx
3562 = hsd.min_got_dynindx
3563 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3564 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3565 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3566 elf_hash_table (info)),
3567 mips_elf_sort_hash_table_f,
3568 &hsd);
3569
3570 /* There should have been enough room in the symbol table to
3571 accommodate both the GOT and non-GOT symbols. */
3572 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3573 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3574 == elf_hash_table (info)->dynsymcount);
3575 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3576 == g->global_gotno);
3577
3578 /* Now we know which dynamic symbol has the lowest dynamic symbol
3579 table index in the GOT. */
3580 g->global_gotsym = hsd.low;
3581
3582 return TRUE;
3583 }
3584
3585 /* If H needs a GOT entry, assign it the highest available dynamic
3586 index. Otherwise, assign it the lowest available dynamic
3587 index. */
3588
3589 static bfd_boolean
3590 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3591 {
3592 struct mips_elf_hash_sort_data *hsd = data;
3593
3594 /* Symbols without dynamic symbol table entries aren't interesting
3595 at all. */
3596 if (h->root.dynindx == -1)
3597 return TRUE;
3598
3599 switch (h->global_got_area)
3600 {
3601 case GGA_NONE:
3602 h->root.dynindx = hsd->max_non_got_dynindx++;
3603 break;
3604
3605 case GGA_NORMAL:
3606 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3607
3608 h->root.dynindx = --hsd->min_got_dynindx;
3609 hsd->low = (struct elf_link_hash_entry *) h;
3610 break;
3611
3612 case GGA_RELOC_ONLY:
3613 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3614
3615 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3616 hsd->low = (struct elf_link_hash_entry *) h;
3617 h->root.dynindx = hsd->max_unref_got_dynindx++;
3618 break;
3619 }
3620
3621 return TRUE;
3622 }
3623
3624 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3625 symbol table index lower than any we've seen to date, record it for
3626 posterity. FOR_CALL is true if the caller is only interested in
3627 using the GOT entry for calls. */
3628
3629 static bfd_boolean
3630 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3631 bfd *abfd, struct bfd_link_info *info,
3632 bfd_boolean for_call,
3633 unsigned char tls_flag)
3634 {
3635 struct mips_elf_link_hash_table *htab;
3636 struct mips_elf_link_hash_entry *hmips;
3637 struct mips_got_entry entry, **loc;
3638 struct mips_got_info *g;
3639
3640 htab = mips_elf_hash_table (info);
3641 BFD_ASSERT (htab != NULL);
3642
3643 hmips = (struct mips_elf_link_hash_entry *) h;
3644 if (!for_call)
3645 hmips->got_only_for_calls = FALSE;
3646
3647 /* A global symbol in the GOT must also be in the dynamic symbol
3648 table. */
3649 if (h->dynindx == -1)
3650 {
3651 switch (ELF_ST_VISIBILITY (h->other))
3652 {
3653 case STV_INTERNAL:
3654 case STV_HIDDEN:
3655 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3656 break;
3657 }
3658 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3659 return FALSE;
3660 }
3661
3662 /* Make sure we have a GOT to put this entry into. */
3663 g = htab->got_info;
3664 BFD_ASSERT (g != NULL);
3665
3666 entry.abfd = abfd;
3667 entry.symndx = -1;
3668 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3669 entry.tls_type = 0;
3670
3671 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3672 INSERT);
3673
3674 /* If we've already marked this entry as needing GOT space, we don't
3675 need to do it again. */
3676 if (*loc)
3677 {
3678 (*loc)->tls_type |= tls_flag;
3679 return TRUE;
3680 }
3681
3682 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3683
3684 if (! *loc)
3685 return FALSE;
3686
3687 entry.gotidx = -1;
3688 entry.tls_type = tls_flag;
3689
3690 memcpy (*loc, &entry, sizeof entry);
3691
3692 if (tls_flag == 0)
3693 hmips->global_got_area = GGA_NORMAL;
3694
3695 return TRUE;
3696 }
3697
3698 /* Reserve space in G for a GOT entry containing the value of symbol
3699 SYMNDX in input bfd ABDF, plus ADDEND. */
3700
3701 static bfd_boolean
3702 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3703 struct bfd_link_info *info,
3704 unsigned char tls_flag)
3705 {
3706 struct mips_elf_link_hash_table *htab;
3707 struct mips_got_info *g;
3708 struct mips_got_entry entry, **loc;
3709
3710 htab = mips_elf_hash_table (info);
3711 BFD_ASSERT (htab != NULL);
3712
3713 g = htab->got_info;
3714 BFD_ASSERT (g != NULL);
3715
3716 entry.abfd = abfd;
3717 entry.symndx = symndx;
3718 entry.d.addend = addend;
3719 entry.tls_type = tls_flag;
3720 loc = (struct mips_got_entry **)
3721 htab_find_slot (g->got_entries, &entry, INSERT);
3722
3723 if (*loc)
3724 {
3725 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3726 {
3727 g->tls_gotno += 2;
3728 (*loc)->tls_type |= tls_flag;
3729 }
3730 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3731 {
3732 g->tls_gotno += 1;
3733 (*loc)->tls_type |= tls_flag;
3734 }
3735 return TRUE;
3736 }
3737
3738 if (tls_flag != 0)
3739 {
3740 entry.gotidx = -1;
3741 entry.tls_type = tls_flag;
3742 if (tls_flag == GOT_TLS_IE)
3743 g->tls_gotno += 1;
3744 else if (tls_flag == GOT_TLS_GD)
3745 g->tls_gotno += 2;
3746 else if (g->tls_ldm_offset == MINUS_ONE)
3747 {
3748 g->tls_ldm_offset = MINUS_TWO;
3749 g->tls_gotno += 2;
3750 }
3751 }
3752 else
3753 {
3754 entry.gotidx = g->local_gotno++;
3755 entry.tls_type = 0;
3756 }
3757
3758 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3759
3760 if (! *loc)
3761 return FALSE;
3762
3763 memcpy (*loc, &entry, sizeof entry);
3764
3765 return TRUE;
3766 }
3767
3768 /* Return the maximum number of GOT page entries required for RANGE. */
3769
3770 static bfd_vma
3771 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3772 {
3773 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3774 }
3775
3776 /* Record that ABFD has a page relocation against symbol SYMNDX and
3777 that ADDEND is the addend for that relocation.
3778
3779 This function creates an upper bound on the number of GOT slots
3780 required; no attempt is made to combine references to non-overridable
3781 global symbols across multiple input files. */
3782
3783 static bfd_boolean
3784 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3785 long symndx, bfd_signed_vma addend)
3786 {
3787 struct mips_elf_link_hash_table *htab;
3788 struct mips_got_info *g;
3789 struct mips_got_page_entry lookup, *entry;
3790 struct mips_got_page_range **range_ptr, *range;
3791 bfd_vma old_pages, new_pages;
3792 void **loc;
3793
3794 htab = mips_elf_hash_table (info);
3795 BFD_ASSERT (htab != NULL);
3796
3797 g = htab->got_info;
3798 BFD_ASSERT (g != NULL);
3799
3800 /* Find the mips_got_page_entry hash table entry for this symbol. */
3801 lookup.abfd = abfd;
3802 lookup.symndx = symndx;
3803 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3804 if (loc == NULL)
3805 return FALSE;
3806
3807 /* Create a mips_got_page_entry if this is the first time we've
3808 seen the symbol. */
3809 entry = (struct mips_got_page_entry *) *loc;
3810 if (!entry)
3811 {
3812 entry = bfd_alloc (abfd, sizeof (*entry));
3813 if (!entry)
3814 return FALSE;
3815
3816 entry->abfd = abfd;
3817 entry->symndx = symndx;
3818 entry->ranges = NULL;
3819 entry->num_pages = 0;
3820 *loc = entry;
3821 }
3822
3823 /* Skip over ranges whose maximum extent cannot share a page entry
3824 with ADDEND. */
3825 range_ptr = &entry->ranges;
3826 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3827 range_ptr = &(*range_ptr)->next;
3828
3829 /* If we scanned to the end of the list, or found a range whose
3830 minimum extent cannot share a page entry with ADDEND, create
3831 a new singleton range. */
3832 range = *range_ptr;
3833 if (!range || addend < range->min_addend - 0xffff)
3834 {
3835 range = bfd_alloc (abfd, sizeof (*range));
3836 if (!range)
3837 return FALSE;
3838
3839 range->next = *range_ptr;
3840 range->min_addend = addend;
3841 range->max_addend = addend;
3842
3843 *range_ptr = range;
3844 entry->num_pages++;
3845 g->page_gotno++;
3846 return TRUE;
3847 }
3848
3849 /* Remember how many pages the old range contributed. */
3850 old_pages = mips_elf_pages_for_range (range);
3851
3852 /* Update the ranges. */
3853 if (addend < range->min_addend)
3854 range->min_addend = addend;
3855 else if (addend > range->max_addend)
3856 {
3857 if (range->next && addend >= range->next->min_addend - 0xffff)
3858 {
3859 old_pages += mips_elf_pages_for_range (range->next);
3860 range->max_addend = range->next->max_addend;
3861 range->next = range->next->next;
3862 }
3863 else
3864 range->max_addend = addend;
3865 }
3866
3867 /* Record any change in the total estimate. */
3868 new_pages = mips_elf_pages_for_range (range);
3869 if (old_pages != new_pages)
3870 {
3871 entry->num_pages += new_pages - old_pages;
3872 g->page_gotno += new_pages - old_pages;
3873 }
3874
3875 return TRUE;
3876 }
3877
3878 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3879
3880 static void
3881 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3882 unsigned int n)
3883 {
3884 asection *s;
3885 struct mips_elf_link_hash_table *htab;
3886
3887 htab = mips_elf_hash_table (info);
3888 BFD_ASSERT (htab != NULL);
3889
3890 s = mips_elf_rel_dyn_section (info, FALSE);
3891 BFD_ASSERT (s != NULL);
3892
3893 if (htab->is_vxworks)
3894 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3895 else
3896 {
3897 if (s->size == 0)
3898 {
3899 /* Make room for a null element. */
3900 s->size += MIPS_ELF_REL_SIZE (abfd);
3901 ++s->reloc_count;
3902 }
3903 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3904 }
3905 }
3906 \f
3907 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3908 if the GOT entry is for an indirect or warning symbol. */
3909
3910 static int
3911 mips_elf_check_recreate_got (void **entryp, void *data)
3912 {
3913 struct mips_got_entry *entry;
3914 bfd_boolean *must_recreate;
3915
3916 entry = (struct mips_got_entry *) *entryp;
3917 must_recreate = (bfd_boolean *) data;
3918 if (entry->abfd != NULL && entry->symndx == -1)
3919 {
3920 struct mips_elf_link_hash_entry *h;
3921
3922 h = entry->d.h;
3923 if (h->root.root.type == bfd_link_hash_indirect
3924 || h->root.root.type == bfd_link_hash_warning)
3925 {
3926 *must_recreate = TRUE;
3927 return 0;
3928 }
3929 }
3930 return 1;
3931 }
3932
3933 /* A htab_traverse callback for GOT entries. Add all entries to
3934 hash table *DATA, converting entries for indirect and warning
3935 symbols into entries for the target symbol. Set *DATA to null
3936 on error. */
3937
3938 static int
3939 mips_elf_recreate_got (void **entryp, void *data)
3940 {
3941 htab_t *new_got;
3942 struct mips_got_entry *entry;
3943 void **slot;
3944
3945 new_got = (htab_t *) data;
3946 entry = (struct mips_got_entry *) *entryp;
3947 if (entry->abfd != NULL && entry->symndx == -1)
3948 {
3949 struct mips_elf_link_hash_entry *h;
3950
3951 h = entry->d.h;
3952 while (h->root.root.type == bfd_link_hash_indirect
3953 || h->root.root.type == bfd_link_hash_warning)
3954 {
3955 BFD_ASSERT (h->global_got_area == GGA_NONE);
3956 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3957 }
3958 entry->d.h = h;
3959 }
3960 slot = htab_find_slot (*new_got, entry, INSERT);
3961 if (slot == NULL)
3962 {
3963 *new_got = NULL;
3964 return 0;
3965 }
3966 if (*slot == NULL)
3967 *slot = entry;
3968 else
3969 free (entry);
3970 return 1;
3971 }
3972
3973 /* If any entries in G->got_entries are for indirect or warning symbols,
3974 replace them with entries for the target symbol. */
3975
3976 static bfd_boolean
3977 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3978 {
3979 bfd_boolean must_recreate;
3980 htab_t new_got;
3981
3982 must_recreate = FALSE;
3983 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3984 if (must_recreate)
3985 {
3986 new_got = htab_create (htab_size (g->got_entries),
3987 mips_elf_got_entry_hash,
3988 mips_elf_got_entry_eq, NULL);
3989 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3990 if (new_got == NULL)
3991 return FALSE;
3992
3993 /* Each entry in g->got_entries has either been copied to new_got
3994 or freed. Now delete the hash table itself. */
3995 htab_delete (g->got_entries);
3996 g->got_entries = new_got;
3997 }
3998 return TRUE;
3999 }
4000
4001 /* A mips_elf_link_hash_traverse callback for which DATA points
4002 to the link_info structure. Count the number of type (3) entries
4003 in the master GOT. */
4004
4005 static int
4006 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4007 {
4008 struct bfd_link_info *info;
4009 struct mips_elf_link_hash_table *htab;
4010 struct mips_got_info *g;
4011
4012 info = (struct bfd_link_info *) data;
4013 htab = mips_elf_hash_table (info);
4014 g = htab->got_info;
4015 if (h->global_got_area != GGA_NONE)
4016 {
4017 /* Make a final decision about whether the symbol belongs in the
4018 local or global GOT. Symbols that bind locally can (and in the
4019 case of forced-local symbols, must) live in the local GOT.
4020 Those that are aren't in the dynamic symbol table must also
4021 live in the local GOT.
4022
4023 Note that the former condition does not always imply the
4024 latter: symbols do not bind locally if they are completely
4025 undefined. We'll report undefined symbols later if appropriate. */
4026 if (h->root.dynindx == -1
4027 || (h->got_only_for_calls
4028 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4029 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4030 {
4031 /* The symbol belongs in the local GOT. We no longer need this
4032 entry if it was only used for relocations; those relocations
4033 will be against the null or section symbol instead of H. */
4034 if (h->global_got_area != GGA_RELOC_ONLY)
4035 g->local_gotno++;
4036 h->global_got_area = GGA_NONE;
4037 }
4038 else if (htab->is_vxworks
4039 && h->got_only_for_calls
4040 && h->root.plt.offset != MINUS_ONE)
4041 /* On VxWorks, calls can refer directly to the .got.plt entry;
4042 they don't need entries in the regular GOT. .got.plt entries
4043 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4044 h->global_got_area = GGA_NONE;
4045 else
4046 {
4047 g->global_gotno++;
4048 if (h->global_got_area == GGA_RELOC_ONLY)
4049 g->reloc_only_gotno++;
4050 }
4051 }
4052 return 1;
4053 }
4054 \f
4055 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4056
4057 static hashval_t
4058 mips_elf_bfd2got_entry_hash (const void *entry_)
4059 {
4060 const struct mips_elf_bfd2got_hash *entry
4061 = (struct mips_elf_bfd2got_hash *)entry_;
4062
4063 return entry->bfd->id;
4064 }
4065
4066 /* Check whether two hash entries have the same bfd. */
4067
4068 static int
4069 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4070 {
4071 const struct mips_elf_bfd2got_hash *e1
4072 = (const struct mips_elf_bfd2got_hash *)entry1;
4073 const struct mips_elf_bfd2got_hash *e2
4074 = (const struct mips_elf_bfd2got_hash *)entry2;
4075
4076 return e1->bfd == e2->bfd;
4077 }
4078
4079 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4080 be the master GOT data. */
4081
4082 static struct mips_got_info *
4083 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4084 {
4085 struct mips_elf_bfd2got_hash e, *p;
4086
4087 if (! g->bfd2got)
4088 return g;
4089
4090 e.bfd = ibfd;
4091 p = htab_find (g->bfd2got, &e);
4092 return p ? p->g : NULL;
4093 }
4094
4095 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4096 Return NULL if an error occured. */
4097
4098 static struct mips_got_info *
4099 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4100 bfd *input_bfd)
4101 {
4102 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4103 struct mips_got_info *g;
4104 void **bfdgotp;
4105
4106 bfdgot_entry.bfd = input_bfd;
4107 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4108 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4109
4110 if (bfdgot == NULL)
4111 {
4112 bfdgot = ((struct mips_elf_bfd2got_hash *)
4113 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4114 if (bfdgot == NULL)
4115 return NULL;
4116
4117 *bfdgotp = bfdgot;
4118
4119 g = ((struct mips_got_info *)
4120 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4121 if (g == NULL)
4122 return NULL;
4123
4124 bfdgot->bfd = input_bfd;
4125 bfdgot->g = g;
4126
4127 g->global_gotsym = NULL;
4128 g->global_gotno = 0;
4129 g->reloc_only_gotno = 0;
4130 g->local_gotno = 0;
4131 g->page_gotno = 0;
4132 g->assigned_gotno = -1;
4133 g->tls_gotno = 0;
4134 g->tls_assigned_gotno = 0;
4135 g->tls_ldm_offset = MINUS_ONE;
4136 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4137 mips_elf_multi_got_entry_eq, NULL);
4138 if (g->got_entries == NULL)
4139 return NULL;
4140
4141 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4142 mips_got_page_entry_eq, NULL);
4143 if (g->got_page_entries == NULL)
4144 return NULL;
4145
4146 g->bfd2got = NULL;
4147 g->next = NULL;
4148 }
4149
4150 return bfdgot->g;
4151 }
4152
4153 /* A htab_traverse callback for the entries in the master got.
4154 Create one separate got for each bfd that has entries in the global
4155 got, such that we can tell how many local and global entries each
4156 bfd requires. */
4157
4158 static int
4159 mips_elf_make_got_per_bfd (void **entryp, void *p)
4160 {
4161 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4162 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4163 struct mips_got_info *g;
4164
4165 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4166 if (g == NULL)
4167 {
4168 arg->obfd = NULL;
4169 return 0;
4170 }
4171
4172 /* Insert the GOT entry in the bfd's got entry hash table. */
4173 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4174 if (*entryp != NULL)
4175 return 1;
4176
4177 *entryp = entry;
4178
4179 if (entry->tls_type)
4180 {
4181 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4182 g->tls_gotno += 2;
4183 if (entry->tls_type & GOT_TLS_IE)
4184 g->tls_gotno += 1;
4185 }
4186 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4187 ++g->local_gotno;
4188 else
4189 ++g->global_gotno;
4190
4191 return 1;
4192 }
4193
4194 /* A htab_traverse callback for the page entries in the master got.
4195 Associate each page entry with the bfd's got. */
4196
4197 static int
4198 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4199 {
4200 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4201 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4202 struct mips_got_info *g;
4203
4204 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4205 if (g == NULL)
4206 {
4207 arg->obfd = NULL;
4208 return 0;
4209 }
4210
4211 /* Insert the GOT entry in the bfd's got entry hash table. */
4212 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4213 if (*entryp != NULL)
4214 return 1;
4215
4216 *entryp = entry;
4217 g->page_gotno += entry->num_pages;
4218 return 1;
4219 }
4220
4221 /* Consider merging the got described by BFD2GOT with TO, using the
4222 information given by ARG. Return -1 if this would lead to overflow,
4223 1 if they were merged successfully, and 0 if a merge failed due to
4224 lack of memory. (These values are chosen so that nonnegative return
4225 values can be returned by a htab_traverse callback.) */
4226
4227 static int
4228 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4229 struct mips_got_info *to,
4230 struct mips_elf_got_per_bfd_arg *arg)
4231 {
4232 struct mips_got_info *from = bfd2got->g;
4233 unsigned int estimate;
4234
4235 /* Work out how many page entries we would need for the combined GOT. */
4236 estimate = arg->max_pages;
4237 if (estimate >= from->page_gotno + to->page_gotno)
4238 estimate = from->page_gotno + to->page_gotno;
4239
4240 /* And conservatively estimate how many local and TLS entries
4241 would be needed. */
4242 estimate += from->local_gotno + to->local_gotno;
4243 estimate += from->tls_gotno + to->tls_gotno;
4244
4245 /* If we're merging with the primary got, we will always have
4246 the full set of global entries. Otherwise estimate those
4247 conservatively as well. */
4248 if (to == arg->primary)
4249 estimate += arg->global_count;
4250 else
4251 estimate += from->global_gotno + to->global_gotno;
4252
4253 /* Bail out if the combined GOT might be too big. */
4254 if (estimate > arg->max_count)
4255 return -1;
4256
4257 /* Commit to the merge. Record that TO is now the bfd for this got. */
4258 bfd2got->g = to;
4259
4260 /* Transfer the bfd's got information from FROM to TO. */
4261 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4262 if (arg->obfd == NULL)
4263 return 0;
4264
4265 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4266 if (arg->obfd == NULL)
4267 return 0;
4268
4269 /* We don't have to worry about releasing memory of the actual
4270 got entries, since they're all in the master got_entries hash
4271 table anyway. */
4272 htab_delete (from->got_entries);
4273 htab_delete (from->got_page_entries);
4274 return 1;
4275 }
4276
4277 /* Attempt to merge gots of different input bfds. Try to use as much
4278 as possible of the primary got, since it doesn't require explicit
4279 dynamic relocations, but don't use bfds that would reference global
4280 symbols out of the addressable range. Failing the primary got,
4281 attempt to merge with the current got, or finish the current got
4282 and then make make the new got current. */
4283
4284 static int
4285 mips_elf_merge_gots (void **bfd2got_, void *p)
4286 {
4287 struct mips_elf_bfd2got_hash *bfd2got
4288 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4289 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4290 struct mips_got_info *g;
4291 unsigned int estimate;
4292 int result;
4293
4294 g = bfd2got->g;
4295
4296 /* Work out the number of page, local and TLS entries. */
4297 estimate = arg->max_pages;
4298 if (estimate > g->page_gotno)
4299 estimate = g->page_gotno;
4300 estimate += g->local_gotno + g->tls_gotno;
4301
4302 /* We place TLS GOT entries after both locals and globals. The globals
4303 for the primary GOT may overflow the normal GOT size limit, so be
4304 sure not to merge a GOT which requires TLS with the primary GOT in that
4305 case. This doesn't affect non-primary GOTs. */
4306 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4307
4308 if (estimate <= arg->max_count)
4309 {
4310 /* If we don't have a primary GOT, use it as
4311 a starting point for the primary GOT. */
4312 if (!arg->primary)
4313 {
4314 arg->primary = bfd2got->g;
4315 return 1;
4316 }
4317
4318 /* Try merging with the primary GOT. */
4319 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4320 if (result >= 0)
4321 return result;
4322 }
4323
4324 /* If we can merge with the last-created got, do it. */
4325 if (arg->current)
4326 {
4327 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4328 if (result >= 0)
4329 return result;
4330 }
4331
4332 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4333 fits; if it turns out that it doesn't, we'll get relocation
4334 overflows anyway. */
4335 g->next = arg->current;
4336 arg->current = g;
4337
4338 return 1;
4339 }
4340
4341 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4342 is null iff there is just a single GOT. */
4343
4344 static int
4345 mips_elf_initialize_tls_index (void **entryp, void *p)
4346 {
4347 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4348 struct mips_got_info *g = p;
4349 bfd_vma next_index;
4350 unsigned char tls_type;
4351
4352 /* We're only interested in TLS symbols. */
4353 if (entry->tls_type == 0)
4354 return 1;
4355
4356 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4357
4358 if (entry->symndx == -1 && g->next == NULL)
4359 {
4360 /* A type (3) got entry in the single-GOT case. We use the symbol's
4361 hash table entry to track its index. */
4362 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4363 return 1;
4364 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4365 entry->d.h->tls_got_offset = next_index;
4366 tls_type = entry->d.h->tls_type;
4367 }
4368 else
4369 {
4370 if (entry->tls_type & GOT_TLS_LDM)
4371 {
4372 /* There are separate mips_got_entry objects for each input bfd
4373 that requires an LDM entry. Make sure that all LDM entries in
4374 a GOT resolve to the same index. */
4375 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4376 {
4377 entry->gotidx = g->tls_ldm_offset;
4378 return 1;
4379 }
4380 g->tls_ldm_offset = next_index;
4381 }
4382 entry->gotidx = next_index;
4383 tls_type = entry->tls_type;
4384 }
4385
4386 /* Account for the entries we've just allocated. */
4387 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4388 g->tls_assigned_gotno += 2;
4389 if (tls_type & GOT_TLS_IE)
4390 g->tls_assigned_gotno += 1;
4391
4392 return 1;
4393 }
4394
4395 /* If passed a NULL mips_got_info in the argument, set the marker used
4396 to tell whether a global symbol needs a got entry (in the primary
4397 got) to the given VALUE.
4398
4399 If passed a pointer G to a mips_got_info in the argument (it must
4400 not be the primary GOT), compute the offset from the beginning of
4401 the (primary) GOT section to the entry in G corresponding to the
4402 global symbol. G's assigned_gotno must contain the index of the
4403 first available global GOT entry in G. VALUE must contain the size
4404 of a GOT entry in bytes. For each global GOT entry that requires a
4405 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4406 marked as not eligible for lazy resolution through a function
4407 stub. */
4408 static int
4409 mips_elf_set_global_got_offset (void **entryp, void *p)
4410 {
4411 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4412 struct mips_elf_set_global_got_offset_arg *arg
4413 = (struct mips_elf_set_global_got_offset_arg *)p;
4414 struct mips_got_info *g = arg->g;
4415
4416 if (g && entry->tls_type != GOT_NORMAL)
4417 arg->needed_relocs +=
4418 mips_tls_got_relocs (arg->info, entry->tls_type,
4419 entry->symndx == -1 ? &entry->d.h->root : NULL);
4420
4421 if (entry->abfd != NULL
4422 && entry->symndx == -1
4423 && entry->d.h->global_got_area != GGA_NONE)
4424 {
4425 if (g)
4426 {
4427 BFD_ASSERT (g->global_gotsym == NULL);
4428
4429 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4430 if (arg->info->shared
4431 || (elf_hash_table (arg->info)->dynamic_sections_created
4432 && entry->d.h->root.def_dynamic
4433 && !entry->d.h->root.def_regular))
4434 ++arg->needed_relocs;
4435 }
4436 else
4437 entry->d.h->global_got_area = arg->value;
4438 }
4439
4440 return 1;
4441 }
4442
4443 /* A htab_traverse callback for GOT entries for which DATA is the
4444 bfd_link_info. Forbid any global symbols from having traditional
4445 lazy-binding stubs. */
4446
4447 static int
4448 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4449 {
4450 struct bfd_link_info *info;
4451 struct mips_elf_link_hash_table *htab;
4452 struct mips_got_entry *entry;
4453
4454 entry = (struct mips_got_entry *) *entryp;
4455 info = (struct bfd_link_info *) data;
4456 htab = mips_elf_hash_table (info);
4457 BFD_ASSERT (htab != NULL);
4458
4459 if (entry->abfd != NULL
4460 && entry->symndx == -1
4461 && entry->d.h->needs_lazy_stub)
4462 {
4463 entry->d.h->needs_lazy_stub = FALSE;
4464 htab->lazy_stub_count--;
4465 }
4466
4467 return 1;
4468 }
4469
4470 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4471 the primary GOT. */
4472 static bfd_vma
4473 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4474 {
4475 if (g->bfd2got == NULL)
4476 return 0;
4477
4478 g = mips_elf_got_for_ibfd (g, ibfd);
4479 if (! g)
4480 return 0;
4481
4482 BFD_ASSERT (g->next);
4483
4484 g = g->next;
4485
4486 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4487 * MIPS_ELF_GOT_SIZE (abfd);
4488 }
4489
4490 /* Turn a single GOT that is too big for 16-bit addressing into
4491 a sequence of GOTs, each one 16-bit addressable. */
4492
4493 static bfd_boolean
4494 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4495 asection *got, bfd_size_type pages)
4496 {
4497 struct mips_elf_link_hash_table *htab;
4498 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4499 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4500 struct mips_got_info *g, *gg;
4501 unsigned int assign, needed_relocs;
4502 bfd *dynobj;
4503
4504 dynobj = elf_hash_table (info)->dynobj;
4505 htab = mips_elf_hash_table (info);
4506 BFD_ASSERT (htab != NULL);
4507
4508 g = htab->got_info;
4509 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4510 mips_elf_bfd2got_entry_eq, NULL);
4511 if (g->bfd2got == NULL)
4512 return FALSE;
4513
4514 got_per_bfd_arg.bfd2got = g->bfd2got;
4515 got_per_bfd_arg.obfd = abfd;
4516 got_per_bfd_arg.info = info;
4517
4518 /* Count how many GOT entries each input bfd requires, creating a
4519 map from bfd to got info while at that. */
4520 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4521 if (got_per_bfd_arg.obfd == NULL)
4522 return FALSE;
4523
4524 /* Also count how many page entries each input bfd requires. */
4525 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4526 &got_per_bfd_arg);
4527 if (got_per_bfd_arg.obfd == NULL)
4528 return FALSE;
4529
4530 got_per_bfd_arg.current = NULL;
4531 got_per_bfd_arg.primary = NULL;
4532 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4533 / MIPS_ELF_GOT_SIZE (abfd))
4534 - htab->reserved_gotno);
4535 got_per_bfd_arg.max_pages = pages;
4536 /* The number of globals that will be included in the primary GOT.
4537 See the calls to mips_elf_set_global_got_offset below for more
4538 information. */
4539 got_per_bfd_arg.global_count = g->global_gotno;
4540
4541 /* Try to merge the GOTs of input bfds together, as long as they
4542 don't seem to exceed the maximum GOT size, choosing one of them
4543 to be the primary GOT. */
4544 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4545 if (got_per_bfd_arg.obfd == NULL)
4546 return FALSE;
4547
4548 /* If we do not find any suitable primary GOT, create an empty one. */
4549 if (got_per_bfd_arg.primary == NULL)
4550 {
4551 g->next = (struct mips_got_info *)
4552 bfd_alloc (abfd, sizeof (struct mips_got_info));
4553 if (g->next == NULL)
4554 return FALSE;
4555
4556 g->next->global_gotsym = NULL;
4557 g->next->global_gotno = 0;
4558 g->next->reloc_only_gotno = 0;
4559 g->next->local_gotno = 0;
4560 g->next->page_gotno = 0;
4561 g->next->tls_gotno = 0;
4562 g->next->assigned_gotno = 0;
4563 g->next->tls_assigned_gotno = 0;
4564 g->next->tls_ldm_offset = MINUS_ONE;
4565 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4566 mips_elf_multi_got_entry_eq,
4567 NULL);
4568 if (g->next->got_entries == NULL)
4569 return FALSE;
4570 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4571 mips_got_page_entry_eq,
4572 NULL);
4573 if (g->next->got_page_entries == NULL)
4574 return FALSE;
4575 g->next->bfd2got = NULL;
4576 }
4577 else
4578 g->next = got_per_bfd_arg.primary;
4579 g->next->next = got_per_bfd_arg.current;
4580
4581 /* GG is now the master GOT, and G is the primary GOT. */
4582 gg = g;
4583 g = g->next;
4584
4585 /* Map the output bfd to the primary got. That's what we're going
4586 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4587 didn't mark in check_relocs, and we want a quick way to find it.
4588 We can't just use gg->next because we're going to reverse the
4589 list. */
4590 {
4591 struct mips_elf_bfd2got_hash *bfdgot;
4592 void **bfdgotp;
4593
4594 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4595 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4596
4597 if (bfdgot == NULL)
4598 return FALSE;
4599
4600 bfdgot->bfd = abfd;
4601 bfdgot->g = g;
4602 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4603
4604 BFD_ASSERT (*bfdgotp == NULL);
4605 *bfdgotp = bfdgot;
4606 }
4607
4608 /* Every symbol that is referenced in a dynamic relocation must be
4609 present in the primary GOT, so arrange for them to appear after
4610 those that are actually referenced. */
4611 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4612 g->global_gotno = gg->global_gotno;
4613
4614 set_got_offset_arg.g = NULL;
4615 set_got_offset_arg.value = GGA_RELOC_ONLY;
4616 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4617 &set_got_offset_arg);
4618 set_got_offset_arg.value = GGA_NORMAL;
4619 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4620 &set_got_offset_arg);
4621
4622 /* Now go through the GOTs assigning them offset ranges.
4623 [assigned_gotno, local_gotno[ will be set to the range of local
4624 entries in each GOT. We can then compute the end of a GOT by
4625 adding local_gotno to global_gotno. We reverse the list and make
4626 it circular since then we'll be able to quickly compute the
4627 beginning of a GOT, by computing the end of its predecessor. To
4628 avoid special cases for the primary GOT, while still preserving
4629 assertions that are valid for both single- and multi-got links,
4630 we arrange for the main got struct to have the right number of
4631 global entries, but set its local_gotno such that the initial
4632 offset of the primary GOT is zero. Remember that the primary GOT
4633 will become the last item in the circular linked list, so it
4634 points back to the master GOT. */
4635 gg->local_gotno = -g->global_gotno;
4636 gg->global_gotno = g->global_gotno;
4637 gg->tls_gotno = 0;
4638 assign = 0;
4639 gg->next = gg;
4640
4641 do
4642 {
4643 struct mips_got_info *gn;
4644
4645 assign += htab->reserved_gotno;
4646 g->assigned_gotno = assign;
4647 g->local_gotno += assign;
4648 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4649 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4650
4651 /* Take g out of the direct list, and push it onto the reversed
4652 list that gg points to. g->next is guaranteed to be nonnull after
4653 this operation, as required by mips_elf_initialize_tls_index. */
4654 gn = g->next;
4655 g->next = gg->next;
4656 gg->next = g;
4657
4658 /* Set up any TLS entries. We always place the TLS entries after
4659 all non-TLS entries. */
4660 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4661 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4662
4663 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4664 g = gn;
4665
4666 /* Forbid global symbols in every non-primary GOT from having
4667 lazy-binding stubs. */
4668 if (g)
4669 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4670 }
4671 while (g);
4672
4673 got->size = (gg->next->local_gotno
4674 + gg->next->global_gotno
4675 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4676
4677 needed_relocs = 0;
4678 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4679 set_got_offset_arg.info = info;
4680 for (g = gg->next; g && g->next != gg; g = g->next)
4681 {
4682 unsigned int save_assign;
4683
4684 /* Assign offsets to global GOT entries. */
4685 save_assign = g->assigned_gotno;
4686 g->assigned_gotno = g->local_gotno;
4687 set_got_offset_arg.g = g;
4688 set_got_offset_arg.needed_relocs = 0;
4689 htab_traverse (g->got_entries,
4690 mips_elf_set_global_got_offset,
4691 &set_got_offset_arg);
4692 needed_relocs += set_got_offset_arg.needed_relocs;
4693 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4694
4695 g->assigned_gotno = save_assign;
4696 if (info->shared)
4697 {
4698 needed_relocs += g->local_gotno - g->assigned_gotno;
4699 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4700 + g->next->global_gotno
4701 + g->next->tls_gotno
4702 + htab->reserved_gotno);
4703 }
4704 }
4705
4706 if (needed_relocs)
4707 mips_elf_allocate_dynamic_relocations (dynobj, info,
4708 needed_relocs);
4709
4710 return TRUE;
4711 }
4712
4713 \f
4714 /* Returns the first relocation of type r_type found, beginning with
4715 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4716
4717 static const Elf_Internal_Rela *
4718 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4719 const Elf_Internal_Rela *relocation,
4720 const Elf_Internal_Rela *relend)
4721 {
4722 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4723
4724 while (relocation < relend)
4725 {
4726 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4727 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4728 return relocation;
4729
4730 ++relocation;
4731 }
4732
4733 /* We didn't find it. */
4734 return NULL;
4735 }
4736
4737 /* Return whether an input relocation is against a local symbol. */
4738
4739 static bfd_boolean
4740 mips_elf_local_relocation_p (bfd *input_bfd,
4741 const Elf_Internal_Rela *relocation,
4742 asection **local_sections)
4743 {
4744 unsigned long r_symndx;
4745 Elf_Internal_Shdr *symtab_hdr;
4746 size_t extsymoff;
4747
4748 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4749 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4750 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4751
4752 if (r_symndx < extsymoff)
4753 return TRUE;
4754 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4755 return TRUE;
4756
4757 return FALSE;
4758 }
4759 \f
4760 /* Sign-extend VALUE, which has the indicated number of BITS. */
4761
4762 bfd_vma
4763 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4764 {
4765 if (value & ((bfd_vma) 1 << (bits - 1)))
4766 /* VALUE is negative. */
4767 value |= ((bfd_vma) - 1) << bits;
4768
4769 return value;
4770 }
4771
4772 /* Return non-zero if the indicated VALUE has overflowed the maximum
4773 range expressible by a signed number with the indicated number of
4774 BITS. */
4775
4776 static bfd_boolean
4777 mips_elf_overflow_p (bfd_vma value, int bits)
4778 {
4779 bfd_signed_vma svalue = (bfd_signed_vma) value;
4780
4781 if (svalue > (1 << (bits - 1)) - 1)
4782 /* The value is too big. */
4783 return TRUE;
4784 else if (svalue < -(1 << (bits - 1)))
4785 /* The value is too small. */
4786 return TRUE;
4787
4788 /* All is well. */
4789 return FALSE;
4790 }
4791
4792 /* Calculate the %high function. */
4793
4794 static bfd_vma
4795 mips_elf_high (bfd_vma value)
4796 {
4797 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4798 }
4799
4800 /* Calculate the %higher function. */
4801
4802 static bfd_vma
4803 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4804 {
4805 #ifdef BFD64
4806 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4807 #else
4808 abort ();
4809 return MINUS_ONE;
4810 #endif
4811 }
4812
4813 /* Calculate the %highest function. */
4814
4815 static bfd_vma
4816 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4817 {
4818 #ifdef BFD64
4819 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4820 #else
4821 abort ();
4822 return MINUS_ONE;
4823 #endif
4824 }
4825 \f
4826 /* Create the .compact_rel section. */
4827
4828 static bfd_boolean
4829 mips_elf_create_compact_rel_section
4830 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4831 {
4832 flagword flags;
4833 register asection *s;
4834
4835 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4836 {
4837 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4838 | SEC_READONLY);
4839
4840 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4841 if (s == NULL
4842 || ! bfd_set_section_alignment (abfd, s,
4843 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4844 return FALSE;
4845
4846 s->size = sizeof (Elf32_External_compact_rel);
4847 }
4848
4849 return TRUE;
4850 }
4851
4852 /* Create the .got section to hold the global offset table. */
4853
4854 static bfd_boolean
4855 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4856 {
4857 flagword flags;
4858 register asection *s;
4859 struct elf_link_hash_entry *h;
4860 struct bfd_link_hash_entry *bh;
4861 struct mips_got_info *g;
4862 bfd_size_type amt;
4863 struct mips_elf_link_hash_table *htab;
4864
4865 htab = mips_elf_hash_table (info);
4866 BFD_ASSERT (htab != NULL);
4867
4868 /* This function may be called more than once. */
4869 if (htab->sgot)
4870 return TRUE;
4871
4872 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4873 | SEC_LINKER_CREATED);
4874
4875 /* We have to use an alignment of 2**4 here because this is hardcoded
4876 in the function stub generation and in the linker script. */
4877 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4878 if (s == NULL
4879 || ! bfd_set_section_alignment (abfd, s, 4))
4880 return FALSE;
4881 htab->sgot = s;
4882
4883 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4884 linker script because we don't want to define the symbol if we
4885 are not creating a global offset table. */
4886 bh = NULL;
4887 if (! (_bfd_generic_link_add_one_symbol
4888 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4889 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4890 return FALSE;
4891
4892 h = (struct elf_link_hash_entry *) bh;
4893 h->non_elf = 0;
4894 h->def_regular = 1;
4895 h->type = STT_OBJECT;
4896 elf_hash_table (info)->hgot = h;
4897
4898 if (info->shared
4899 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4900 return FALSE;
4901
4902 amt = sizeof (struct mips_got_info);
4903 g = bfd_alloc (abfd, amt);
4904 if (g == NULL)
4905 return FALSE;
4906 g->global_gotsym = NULL;
4907 g->global_gotno = 0;
4908 g->reloc_only_gotno = 0;
4909 g->tls_gotno = 0;
4910 g->local_gotno = 0;
4911 g->page_gotno = 0;
4912 g->assigned_gotno = 0;
4913 g->bfd2got = NULL;
4914 g->next = NULL;
4915 g->tls_ldm_offset = MINUS_ONE;
4916 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4917 mips_elf_got_entry_eq, NULL);
4918 if (g->got_entries == NULL)
4919 return FALSE;
4920 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4921 mips_got_page_entry_eq, NULL);
4922 if (g->got_page_entries == NULL)
4923 return FALSE;
4924 htab->got_info = g;
4925 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4926 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4927
4928 /* We also need a .got.plt section when generating PLTs. */
4929 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4930 SEC_ALLOC | SEC_LOAD
4931 | SEC_HAS_CONTENTS
4932 | SEC_IN_MEMORY
4933 | SEC_LINKER_CREATED);
4934 if (s == NULL)
4935 return FALSE;
4936 htab->sgotplt = s;
4937
4938 return TRUE;
4939 }
4940 \f
4941 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4942 __GOTT_INDEX__ symbols. These symbols are only special for
4943 shared objects; they are not used in executables. */
4944
4945 static bfd_boolean
4946 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4947 {
4948 return (mips_elf_hash_table (info)->is_vxworks
4949 && info->shared
4950 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4951 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4952 }
4953
4954 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4955 require an la25 stub. See also mips_elf_local_pic_function_p,
4956 which determines whether the destination function ever requires a
4957 stub. */
4958
4959 static bfd_boolean
4960 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4961 bfd_boolean target_is_16_bit_code_p)
4962 {
4963 /* We specifically ignore branches and jumps from EF_PIC objects,
4964 where the onus is on the compiler or programmer to perform any
4965 necessary initialization of $25. Sometimes such initialization
4966 is unnecessary; for example, -mno-shared functions do not use
4967 the incoming value of $25, and may therefore be called directly. */
4968 if (PIC_OBJECT_P (input_bfd))
4969 return FALSE;
4970
4971 switch (r_type)
4972 {
4973 case R_MIPS_26:
4974 case R_MIPS_PC16:
4975 case R_MICROMIPS_26_S1:
4976 case R_MICROMIPS_PC7_S1:
4977 case R_MICROMIPS_PC10_S1:
4978 case R_MICROMIPS_PC16_S1:
4979 case R_MICROMIPS_PC23_S2:
4980 return TRUE;
4981
4982 case R_MIPS16_26:
4983 return !target_is_16_bit_code_p;
4984
4985 default:
4986 return FALSE;
4987 }
4988 }
4989 \f
4990 /* Calculate the value produced by the RELOCATION (which comes from
4991 the INPUT_BFD). The ADDEND is the addend to use for this
4992 RELOCATION; RELOCATION->R_ADDEND is ignored.
4993
4994 The result of the relocation calculation is stored in VALUEP.
4995 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4996 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4997
4998 This function returns bfd_reloc_continue if the caller need take no
4999 further action regarding this relocation, bfd_reloc_notsupported if
5000 something goes dramatically wrong, bfd_reloc_overflow if an
5001 overflow occurs, and bfd_reloc_ok to indicate success. */
5002
5003 static bfd_reloc_status_type
5004 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5005 asection *input_section,
5006 struct bfd_link_info *info,
5007 const Elf_Internal_Rela *relocation,
5008 bfd_vma addend, reloc_howto_type *howto,
5009 Elf_Internal_Sym *local_syms,
5010 asection **local_sections, bfd_vma *valuep,
5011 const char **namep,
5012 bfd_boolean *cross_mode_jump_p,
5013 bfd_boolean save_addend)
5014 {
5015 /* The eventual value we will return. */
5016 bfd_vma value;
5017 /* The address of the symbol against which the relocation is
5018 occurring. */
5019 bfd_vma symbol = 0;
5020 /* The final GP value to be used for the relocatable, executable, or
5021 shared object file being produced. */
5022 bfd_vma gp;
5023 /* The place (section offset or address) of the storage unit being
5024 relocated. */
5025 bfd_vma p;
5026 /* The value of GP used to create the relocatable object. */
5027 bfd_vma gp0;
5028 /* The offset into the global offset table at which the address of
5029 the relocation entry symbol, adjusted by the addend, resides
5030 during execution. */
5031 bfd_vma g = MINUS_ONE;
5032 /* The section in which the symbol referenced by the relocation is
5033 located. */
5034 asection *sec = NULL;
5035 struct mips_elf_link_hash_entry *h = NULL;
5036 /* TRUE if the symbol referred to by this relocation is a local
5037 symbol. */
5038 bfd_boolean local_p, was_local_p;
5039 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5040 bfd_boolean gp_disp_p = FALSE;
5041 /* TRUE if the symbol referred to by this relocation is
5042 "__gnu_local_gp". */
5043 bfd_boolean gnu_local_gp_p = FALSE;
5044 Elf_Internal_Shdr *symtab_hdr;
5045 size_t extsymoff;
5046 unsigned long r_symndx;
5047 int r_type;
5048 /* TRUE if overflow occurred during the calculation of the
5049 relocation value. */
5050 bfd_boolean overflowed_p;
5051 /* TRUE if this relocation refers to a MIPS16 function. */
5052 bfd_boolean target_is_16_bit_code_p = FALSE;
5053 bfd_boolean target_is_micromips_code_p = FALSE;
5054 struct mips_elf_link_hash_table *htab;
5055 bfd *dynobj;
5056
5057 dynobj = elf_hash_table (info)->dynobj;
5058 htab = mips_elf_hash_table (info);
5059 BFD_ASSERT (htab != NULL);
5060
5061 /* Parse the relocation. */
5062 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5063 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5064 p = (input_section->output_section->vma
5065 + input_section->output_offset
5066 + relocation->r_offset);
5067
5068 /* Assume that there will be no overflow. */
5069 overflowed_p = FALSE;
5070
5071 /* Figure out whether or not the symbol is local, and get the offset
5072 used in the array of hash table entries. */
5073 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5074 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5075 local_sections);
5076 was_local_p = local_p;
5077 if (! elf_bad_symtab (input_bfd))
5078 extsymoff = symtab_hdr->sh_info;
5079 else
5080 {
5081 /* The symbol table does not follow the rule that local symbols
5082 must come before globals. */
5083 extsymoff = 0;
5084 }
5085
5086 /* Figure out the value of the symbol. */
5087 if (local_p)
5088 {
5089 Elf_Internal_Sym *sym;
5090
5091 sym = local_syms + r_symndx;
5092 sec = local_sections[r_symndx];
5093
5094 symbol = sec->output_section->vma + sec->output_offset;
5095 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5096 || (sec->flags & SEC_MERGE))
5097 symbol += sym->st_value;
5098 if ((sec->flags & SEC_MERGE)
5099 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5100 {
5101 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5102 addend -= symbol;
5103 addend += sec->output_section->vma + sec->output_offset;
5104 }
5105
5106 /* MIPS16/microMIPS text labels should be treated as odd. */
5107 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5108 ++symbol;
5109
5110 /* Record the name of this symbol, for our caller. */
5111 *namep = bfd_elf_string_from_elf_section (input_bfd,
5112 symtab_hdr->sh_link,
5113 sym->st_name);
5114 if (*namep == '\0')
5115 *namep = bfd_section_name (input_bfd, sec);
5116
5117 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5118 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5119 }
5120 else
5121 {
5122 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5123
5124 /* For global symbols we look up the symbol in the hash-table. */
5125 h = ((struct mips_elf_link_hash_entry *)
5126 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5127 /* Find the real hash-table entry for this symbol. */
5128 while (h->root.root.type == bfd_link_hash_indirect
5129 || h->root.root.type == bfd_link_hash_warning)
5130 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5131
5132 /* Record the name of this symbol, for our caller. */
5133 *namep = h->root.root.root.string;
5134
5135 /* See if this is the special _gp_disp symbol. Note that such a
5136 symbol must always be a global symbol. */
5137 if (strcmp (*namep, "_gp_disp") == 0
5138 && ! NEWABI_P (input_bfd))
5139 {
5140 /* Relocations against _gp_disp are permitted only with
5141 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5142 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5143 return bfd_reloc_notsupported;
5144
5145 gp_disp_p = TRUE;
5146 }
5147 /* See if this is the special _gp symbol. Note that such a
5148 symbol must always be a global symbol. */
5149 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5150 gnu_local_gp_p = TRUE;
5151
5152
5153 /* If this symbol is defined, calculate its address. Note that
5154 _gp_disp is a magic symbol, always implicitly defined by the
5155 linker, so it's inappropriate to check to see whether or not
5156 its defined. */
5157 else if ((h->root.root.type == bfd_link_hash_defined
5158 || h->root.root.type == bfd_link_hash_defweak)
5159 && h->root.root.u.def.section)
5160 {
5161 sec = h->root.root.u.def.section;
5162 if (sec->output_section)
5163 symbol = (h->root.root.u.def.value
5164 + sec->output_section->vma
5165 + sec->output_offset);
5166 else
5167 symbol = h->root.root.u.def.value;
5168 }
5169 else if (h->root.root.type == bfd_link_hash_undefweak)
5170 /* We allow relocations against undefined weak symbols, giving
5171 it the value zero, so that you can undefined weak functions
5172 and check to see if they exist by looking at their
5173 addresses. */
5174 symbol = 0;
5175 else if (info->unresolved_syms_in_objects == RM_IGNORE
5176 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5177 symbol = 0;
5178 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5179 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5180 {
5181 /* If this is a dynamic link, we should have created a
5182 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5183 in in _bfd_mips_elf_create_dynamic_sections.
5184 Otherwise, we should define the symbol with a value of 0.
5185 FIXME: It should probably get into the symbol table
5186 somehow as well. */
5187 BFD_ASSERT (! info->shared);
5188 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5189 symbol = 0;
5190 }
5191 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5192 {
5193 /* This is an optional symbol - an Irix specific extension to the
5194 ELF spec. Ignore it for now.
5195 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5196 than simply ignoring them, but we do not handle this for now.
5197 For information see the "64-bit ELF Object File Specification"
5198 which is available from here:
5199 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5200 symbol = 0;
5201 }
5202 else if ((*info->callbacks->undefined_symbol)
5203 (info, h->root.root.root.string, input_bfd,
5204 input_section, relocation->r_offset,
5205 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5206 || ELF_ST_VISIBILITY (h->root.other)))
5207 {
5208 return bfd_reloc_undefined;
5209 }
5210 else
5211 {
5212 return bfd_reloc_notsupported;
5213 }
5214
5215 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5216 /* If the output section is the PLT section,
5217 then the target is not microMIPS. */
5218 target_is_micromips_code_p = (htab->splt != sec
5219 && ELF_ST_IS_MICROMIPS (h->root.other));
5220 }
5221
5222 /* If this is a reference to a 16-bit function with a stub, we need
5223 to redirect the relocation to the stub unless:
5224
5225 (a) the relocation is for a MIPS16 JAL;
5226
5227 (b) the relocation is for a MIPS16 PIC call, and there are no
5228 non-MIPS16 uses of the GOT slot; or
5229
5230 (c) the section allows direct references to MIPS16 functions. */
5231 if (r_type != R_MIPS16_26
5232 && !info->relocatable
5233 && ((h != NULL
5234 && h->fn_stub != NULL
5235 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5236 || (local_p
5237 && elf_tdata (input_bfd)->local_stubs != NULL
5238 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5239 && !section_allows_mips16_refs_p (input_section))
5240 {
5241 /* This is a 32- or 64-bit call to a 16-bit function. We should
5242 have already noticed that we were going to need the
5243 stub. */
5244 if (local_p)
5245 {
5246 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5247 value = 0;
5248 }
5249 else
5250 {
5251 BFD_ASSERT (h->need_fn_stub);
5252 if (h->la25_stub)
5253 {
5254 /* If a LA25 header for the stub itself exists, point to the
5255 prepended LUI/ADDIU sequence. */
5256 sec = h->la25_stub->stub_section;
5257 value = h->la25_stub->offset;
5258 }
5259 else
5260 {
5261 sec = h->fn_stub;
5262 value = 0;
5263 }
5264 }
5265
5266 symbol = sec->output_section->vma + sec->output_offset + value;
5267 /* The target is 16-bit, but the stub isn't. */
5268 target_is_16_bit_code_p = FALSE;
5269 }
5270 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5271 need to redirect the call to the stub. Note that we specifically
5272 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5273 use an indirect stub instead. */
5274 else if (r_type == R_MIPS16_26 && !info->relocatable
5275 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5276 || (local_p
5277 && elf_tdata (input_bfd)->local_call_stubs != NULL
5278 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5279 && !target_is_16_bit_code_p)
5280 {
5281 if (local_p)
5282 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5283 else
5284 {
5285 /* If both call_stub and call_fp_stub are defined, we can figure
5286 out which one to use by checking which one appears in the input
5287 file. */
5288 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5289 {
5290 asection *o;
5291
5292 sec = NULL;
5293 for (o = input_bfd->sections; o != NULL; o = o->next)
5294 {
5295 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5296 {
5297 sec = h->call_fp_stub;
5298 break;
5299 }
5300 }
5301 if (sec == NULL)
5302 sec = h->call_stub;
5303 }
5304 else if (h->call_stub != NULL)
5305 sec = h->call_stub;
5306 else
5307 sec = h->call_fp_stub;
5308 }
5309
5310 BFD_ASSERT (sec->size > 0);
5311 symbol = sec->output_section->vma + sec->output_offset;
5312 }
5313 /* If this is a direct call to a PIC function, redirect to the
5314 non-PIC stub. */
5315 else if (h != NULL && h->la25_stub
5316 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5317 target_is_16_bit_code_p))
5318 symbol = (h->la25_stub->stub_section->output_section->vma
5319 + h->la25_stub->stub_section->output_offset
5320 + h->la25_stub->offset);
5321
5322 /* Make sure MIPS16 and microMIPS are not used together. */
5323 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5324 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5325 {
5326 (*_bfd_error_handler)
5327 (_("MIPS16 and microMIPS functions cannot call each other"));
5328 return bfd_reloc_notsupported;
5329 }
5330
5331 /* Calls from 16-bit code to 32-bit code and vice versa require the
5332 mode change. However, we can ignore calls to undefined weak symbols,
5333 which should never be executed at runtime. This exception is important
5334 because the assembly writer may have "known" that any definition of the
5335 symbol would be 16-bit code, and that direct jumps were therefore
5336 acceptable. */
5337 *cross_mode_jump_p = (!info->relocatable
5338 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5339 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5340 || (r_type == R_MICROMIPS_26_S1
5341 && !target_is_micromips_code_p)
5342 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5343 && (target_is_16_bit_code_p
5344 || target_is_micromips_code_p))));
5345
5346 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5347
5348 gp0 = _bfd_get_gp_value (input_bfd);
5349 gp = _bfd_get_gp_value (abfd);
5350 if (htab->got_info)
5351 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5352
5353 if (gnu_local_gp_p)
5354 symbol = gp;
5355
5356 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5357 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5358 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5359 if (got_page_reloc_p (r_type) && !local_p)
5360 {
5361 r_type = (micromips_reloc_p (r_type)
5362 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5363 addend = 0;
5364 }
5365
5366 /* If we haven't already determined the GOT offset, and we're going
5367 to need it, get it now. */
5368 switch (r_type)
5369 {
5370 case R_MIPS16_CALL16:
5371 case R_MIPS16_GOT16:
5372 case R_MIPS_CALL16:
5373 case R_MIPS_GOT16:
5374 case R_MIPS_GOT_DISP:
5375 case R_MIPS_GOT_HI16:
5376 case R_MIPS_CALL_HI16:
5377 case R_MIPS_GOT_LO16:
5378 case R_MIPS_CALL_LO16:
5379 case R_MICROMIPS_CALL16:
5380 case R_MICROMIPS_GOT16:
5381 case R_MICROMIPS_GOT_DISP:
5382 case R_MICROMIPS_GOT_HI16:
5383 case R_MICROMIPS_CALL_HI16:
5384 case R_MICROMIPS_GOT_LO16:
5385 case R_MICROMIPS_CALL_LO16:
5386 case R_MIPS_TLS_GD:
5387 case R_MIPS_TLS_GOTTPREL:
5388 case R_MIPS_TLS_LDM:
5389 case R_MIPS16_TLS_GD:
5390 case R_MIPS16_TLS_GOTTPREL:
5391 case R_MIPS16_TLS_LDM:
5392 case R_MICROMIPS_TLS_GD:
5393 case R_MICROMIPS_TLS_GOTTPREL:
5394 case R_MICROMIPS_TLS_LDM:
5395 /* Find the index into the GOT where this value is located. */
5396 if (tls_ldm_reloc_p (r_type))
5397 {
5398 g = mips_elf_local_got_index (abfd, input_bfd, info,
5399 0, 0, NULL, r_type);
5400 if (g == MINUS_ONE)
5401 return bfd_reloc_outofrange;
5402 }
5403 else if (!local_p)
5404 {
5405 /* On VxWorks, CALL relocations should refer to the .got.plt
5406 entry, which is initialized to point at the PLT stub. */
5407 if (htab->is_vxworks
5408 && (call_hi16_reloc_p (r_type)
5409 || call_lo16_reloc_p (r_type)
5410 || call16_reloc_p (r_type)))
5411 {
5412 BFD_ASSERT (addend == 0);
5413 BFD_ASSERT (h->root.needs_plt);
5414 g = mips_elf_gotplt_index (info, &h->root);
5415 }
5416 else
5417 {
5418 BFD_ASSERT (addend == 0);
5419 g = mips_elf_global_got_index (dynobj, input_bfd,
5420 &h->root, r_type, info);
5421 if (h->tls_type == GOT_NORMAL
5422 && !elf_hash_table (info)->dynamic_sections_created)
5423 /* This is a static link. We must initialize the GOT entry. */
5424 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5425 }
5426 }
5427 else if (!htab->is_vxworks
5428 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5429 /* The calculation below does not involve "g". */
5430 break;
5431 else
5432 {
5433 g = mips_elf_local_got_index (abfd, input_bfd, info,
5434 symbol + addend, r_symndx, h, r_type);
5435 if (g == MINUS_ONE)
5436 return bfd_reloc_outofrange;
5437 }
5438
5439 /* Convert GOT indices to actual offsets. */
5440 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5441 break;
5442 }
5443
5444 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5445 symbols are resolved by the loader. Add them to .rela.dyn. */
5446 if (h != NULL && is_gott_symbol (info, &h->root))
5447 {
5448 Elf_Internal_Rela outrel;
5449 bfd_byte *loc;
5450 asection *s;
5451
5452 s = mips_elf_rel_dyn_section (info, FALSE);
5453 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5454
5455 outrel.r_offset = (input_section->output_section->vma
5456 + input_section->output_offset
5457 + relocation->r_offset);
5458 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5459 outrel.r_addend = addend;
5460 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5461
5462 /* If we've written this relocation for a readonly section,
5463 we need to set DF_TEXTREL again, so that we do not delete the
5464 DT_TEXTREL tag. */
5465 if (MIPS_ELF_READONLY_SECTION (input_section))
5466 info->flags |= DF_TEXTREL;
5467
5468 *valuep = 0;
5469 return bfd_reloc_ok;
5470 }
5471
5472 /* Figure out what kind of relocation is being performed. */
5473 switch (r_type)
5474 {
5475 case R_MIPS_NONE:
5476 return bfd_reloc_continue;
5477
5478 case R_MIPS_16:
5479 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5480 overflowed_p = mips_elf_overflow_p (value, 16);
5481 break;
5482
5483 case R_MIPS_32:
5484 case R_MIPS_REL32:
5485 case R_MIPS_64:
5486 if ((info->shared
5487 || (htab->root.dynamic_sections_created
5488 && h != NULL
5489 && h->root.def_dynamic
5490 && !h->root.def_regular
5491 && !h->has_static_relocs))
5492 && r_symndx != STN_UNDEF
5493 && (h == NULL
5494 || h->root.root.type != bfd_link_hash_undefweak
5495 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5496 && (input_section->flags & SEC_ALLOC) != 0)
5497 {
5498 /* If we're creating a shared library, then we can't know
5499 where the symbol will end up. So, we create a relocation
5500 record in the output, and leave the job up to the dynamic
5501 linker. We must do the same for executable references to
5502 shared library symbols, unless we've decided to use copy
5503 relocs or PLTs instead. */
5504 value = addend;
5505 if (!mips_elf_create_dynamic_relocation (abfd,
5506 info,
5507 relocation,
5508 h,
5509 sec,
5510 symbol,
5511 &value,
5512 input_section))
5513 return bfd_reloc_undefined;
5514 }
5515 else
5516 {
5517 if (r_type != R_MIPS_REL32)
5518 value = symbol + addend;
5519 else
5520 value = addend;
5521 }
5522 value &= howto->dst_mask;
5523 break;
5524
5525 case R_MIPS_PC32:
5526 value = symbol + addend - p;
5527 value &= howto->dst_mask;
5528 break;
5529
5530 case R_MIPS16_26:
5531 /* The calculation for R_MIPS16_26 is just the same as for an
5532 R_MIPS_26. It's only the storage of the relocated field into
5533 the output file that's different. That's handled in
5534 mips_elf_perform_relocation. So, we just fall through to the
5535 R_MIPS_26 case here. */
5536 case R_MIPS_26:
5537 case R_MICROMIPS_26_S1:
5538 {
5539 unsigned int shift;
5540
5541 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5542 the correct ISA mode selector and bit 1 must be 0. */
5543 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5544 return bfd_reloc_outofrange;
5545
5546 /* Shift is 2, unusually, for microMIPS JALX. */
5547 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5548
5549 if (was_local_p)
5550 value = addend | ((p + 4) & (0xfc000000 << shift));
5551 else
5552 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5553 value = (value + symbol) >> shift;
5554 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5555 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5556 value &= howto->dst_mask;
5557 }
5558 break;
5559
5560 case R_MIPS_TLS_DTPREL_HI16:
5561 case R_MIPS16_TLS_DTPREL_HI16:
5562 case R_MICROMIPS_TLS_DTPREL_HI16:
5563 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5564 & howto->dst_mask);
5565 break;
5566
5567 case R_MIPS_TLS_DTPREL_LO16:
5568 case R_MIPS_TLS_DTPREL32:
5569 case R_MIPS_TLS_DTPREL64:
5570 case R_MIPS16_TLS_DTPREL_LO16:
5571 case R_MICROMIPS_TLS_DTPREL_LO16:
5572 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5573 break;
5574
5575 case R_MIPS_TLS_TPREL_HI16:
5576 case R_MIPS16_TLS_TPREL_HI16:
5577 case R_MICROMIPS_TLS_TPREL_HI16:
5578 value = (mips_elf_high (addend + symbol - tprel_base (info))
5579 & howto->dst_mask);
5580 break;
5581
5582 case R_MIPS_TLS_TPREL_LO16:
5583 case R_MIPS_TLS_TPREL32:
5584 case R_MIPS_TLS_TPREL64:
5585 case R_MIPS16_TLS_TPREL_LO16:
5586 case R_MICROMIPS_TLS_TPREL_LO16:
5587 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5588 break;
5589
5590 case R_MIPS_HI16:
5591 case R_MIPS16_HI16:
5592 case R_MICROMIPS_HI16:
5593 if (!gp_disp_p)
5594 {
5595 value = mips_elf_high (addend + symbol);
5596 value &= howto->dst_mask;
5597 }
5598 else
5599 {
5600 /* For MIPS16 ABI code we generate this sequence
5601 0: li $v0,%hi(_gp_disp)
5602 4: addiupc $v1,%lo(_gp_disp)
5603 8: sll $v0,16
5604 12: addu $v0,$v1
5605 14: move $gp,$v0
5606 So the offsets of hi and lo relocs are the same, but the
5607 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5608 ADDIUPC clears the low two bits of the instruction address,
5609 so the base is ($t9 + 4) & ~3. */
5610 if (r_type == R_MIPS16_HI16)
5611 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5612 /* The microMIPS .cpload sequence uses the same assembly
5613 instructions as the traditional psABI version, but the
5614 incoming $t9 has the low bit set. */
5615 else if (r_type == R_MICROMIPS_HI16)
5616 value = mips_elf_high (addend + gp - p - 1);
5617 else
5618 value = mips_elf_high (addend + gp - p);
5619 overflowed_p = mips_elf_overflow_p (value, 16);
5620 }
5621 break;
5622
5623 case R_MIPS_LO16:
5624 case R_MIPS16_LO16:
5625 case R_MICROMIPS_LO16:
5626 case R_MICROMIPS_HI0_LO16:
5627 if (!gp_disp_p)
5628 value = (symbol + addend) & howto->dst_mask;
5629 else
5630 {
5631 /* See the comment for R_MIPS16_HI16 above for the reason
5632 for this conditional. */
5633 if (r_type == R_MIPS16_LO16)
5634 value = addend + gp - (p & ~(bfd_vma) 0x3);
5635 else if (r_type == R_MICROMIPS_LO16
5636 || r_type == R_MICROMIPS_HI0_LO16)
5637 value = addend + gp - p + 3;
5638 else
5639 value = addend + gp - p + 4;
5640 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5641 for overflow. But, on, say, IRIX5, relocations against
5642 _gp_disp are normally generated from the .cpload
5643 pseudo-op. It generates code that normally looks like
5644 this:
5645
5646 lui $gp,%hi(_gp_disp)
5647 addiu $gp,$gp,%lo(_gp_disp)
5648 addu $gp,$gp,$t9
5649
5650 Here $t9 holds the address of the function being called,
5651 as required by the MIPS ELF ABI. The R_MIPS_LO16
5652 relocation can easily overflow in this situation, but the
5653 R_MIPS_HI16 relocation will handle the overflow.
5654 Therefore, we consider this a bug in the MIPS ABI, and do
5655 not check for overflow here. */
5656 }
5657 break;
5658
5659 case R_MIPS_LITERAL:
5660 case R_MICROMIPS_LITERAL:
5661 /* Because we don't merge literal sections, we can handle this
5662 just like R_MIPS_GPREL16. In the long run, we should merge
5663 shared literals, and then we will need to additional work
5664 here. */
5665
5666 /* Fall through. */
5667
5668 case R_MIPS16_GPREL:
5669 /* The R_MIPS16_GPREL performs the same calculation as
5670 R_MIPS_GPREL16, but stores the relocated bits in a different
5671 order. We don't need to do anything special here; the
5672 differences are handled in mips_elf_perform_relocation. */
5673 case R_MIPS_GPREL16:
5674 case R_MICROMIPS_GPREL7_S2:
5675 case R_MICROMIPS_GPREL16:
5676 /* Only sign-extend the addend if it was extracted from the
5677 instruction. If the addend was separate, leave it alone,
5678 otherwise we may lose significant bits. */
5679 if (howto->partial_inplace)
5680 addend = _bfd_mips_elf_sign_extend (addend, 16);
5681 value = symbol + addend - gp;
5682 /* If the symbol was local, any earlier relocatable links will
5683 have adjusted its addend with the gp offset, so compensate
5684 for that now. Don't do it for symbols forced local in this
5685 link, though, since they won't have had the gp offset applied
5686 to them before. */
5687 if (was_local_p)
5688 value += gp0;
5689 overflowed_p = mips_elf_overflow_p (value, 16);
5690 break;
5691
5692 case R_MIPS16_GOT16:
5693 case R_MIPS16_CALL16:
5694 case R_MIPS_GOT16:
5695 case R_MIPS_CALL16:
5696 case R_MICROMIPS_GOT16:
5697 case R_MICROMIPS_CALL16:
5698 /* VxWorks does not have separate local and global semantics for
5699 R_MIPS*_GOT16; every relocation evaluates to "G". */
5700 if (!htab->is_vxworks && local_p)
5701 {
5702 value = mips_elf_got16_entry (abfd, input_bfd, info,
5703 symbol + addend, !was_local_p);
5704 if (value == MINUS_ONE)
5705 return bfd_reloc_outofrange;
5706 value
5707 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5708 overflowed_p = mips_elf_overflow_p (value, 16);
5709 break;
5710 }
5711
5712 /* Fall through. */
5713
5714 case R_MIPS_TLS_GD:
5715 case R_MIPS_TLS_GOTTPREL:
5716 case R_MIPS_TLS_LDM:
5717 case R_MIPS_GOT_DISP:
5718 case R_MIPS16_TLS_GD:
5719 case R_MIPS16_TLS_GOTTPREL:
5720 case R_MIPS16_TLS_LDM:
5721 case R_MICROMIPS_TLS_GD:
5722 case R_MICROMIPS_TLS_GOTTPREL:
5723 case R_MICROMIPS_TLS_LDM:
5724 case R_MICROMIPS_GOT_DISP:
5725 value = g;
5726 overflowed_p = mips_elf_overflow_p (value, 16);
5727 break;
5728
5729 case R_MIPS_GPREL32:
5730 value = (addend + symbol + gp0 - gp);
5731 if (!save_addend)
5732 value &= howto->dst_mask;
5733 break;
5734
5735 case R_MIPS_PC16:
5736 case R_MIPS_GNU_REL16_S2:
5737 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5738 overflowed_p = mips_elf_overflow_p (value, 18);
5739 value >>= howto->rightshift;
5740 value &= howto->dst_mask;
5741 break;
5742
5743 case R_MICROMIPS_PC7_S1:
5744 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5745 overflowed_p = mips_elf_overflow_p (value, 8);
5746 value >>= howto->rightshift;
5747 value &= howto->dst_mask;
5748 break;
5749
5750 case R_MICROMIPS_PC10_S1:
5751 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5752 overflowed_p = mips_elf_overflow_p (value, 11);
5753 value >>= howto->rightshift;
5754 value &= howto->dst_mask;
5755 break;
5756
5757 case R_MICROMIPS_PC16_S1:
5758 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5759 overflowed_p = mips_elf_overflow_p (value, 17);
5760 value >>= howto->rightshift;
5761 value &= howto->dst_mask;
5762 break;
5763
5764 case R_MICROMIPS_PC23_S2:
5765 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5766 overflowed_p = mips_elf_overflow_p (value, 25);
5767 value >>= howto->rightshift;
5768 value &= howto->dst_mask;
5769 break;
5770
5771 case R_MIPS_GOT_HI16:
5772 case R_MIPS_CALL_HI16:
5773 case R_MICROMIPS_GOT_HI16:
5774 case R_MICROMIPS_CALL_HI16:
5775 /* We're allowed to handle these two relocations identically.
5776 The dynamic linker is allowed to handle the CALL relocations
5777 differently by creating a lazy evaluation stub. */
5778 value = g;
5779 value = mips_elf_high (value);
5780 value &= howto->dst_mask;
5781 break;
5782
5783 case R_MIPS_GOT_LO16:
5784 case R_MIPS_CALL_LO16:
5785 case R_MICROMIPS_GOT_LO16:
5786 case R_MICROMIPS_CALL_LO16:
5787 value = g & howto->dst_mask;
5788 break;
5789
5790 case R_MIPS_GOT_PAGE:
5791 case R_MICROMIPS_GOT_PAGE:
5792 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5793 if (value == MINUS_ONE)
5794 return bfd_reloc_outofrange;
5795 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5796 overflowed_p = mips_elf_overflow_p (value, 16);
5797 break;
5798
5799 case R_MIPS_GOT_OFST:
5800 case R_MICROMIPS_GOT_OFST:
5801 if (local_p)
5802 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5803 else
5804 value = addend;
5805 overflowed_p = mips_elf_overflow_p (value, 16);
5806 break;
5807
5808 case R_MIPS_SUB:
5809 case R_MICROMIPS_SUB:
5810 value = symbol - addend;
5811 value &= howto->dst_mask;
5812 break;
5813
5814 case R_MIPS_HIGHER:
5815 case R_MICROMIPS_HIGHER:
5816 value = mips_elf_higher (addend + symbol);
5817 value &= howto->dst_mask;
5818 break;
5819
5820 case R_MIPS_HIGHEST:
5821 case R_MICROMIPS_HIGHEST:
5822 value = mips_elf_highest (addend + symbol);
5823 value &= howto->dst_mask;
5824 break;
5825
5826 case R_MIPS_SCN_DISP:
5827 case R_MICROMIPS_SCN_DISP:
5828 value = symbol + addend - sec->output_offset;
5829 value &= howto->dst_mask;
5830 break;
5831
5832 case R_MIPS_JALR:
5833 case R_MICROMIPS_JALR:
5834 /* This relocation is only a hint. In some cases, we optimize
5835 it into a bal instruction. But we don't try to optimize
5836 when the symbol does not resolve locally. */
5837 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5838 return bfd_reloc_continue;
5839 value = symbol + addend;
5840 break;
5841
5842 case R_MIPS_PJUMP:
5843 case R_MIPS_GNU_VTINHERIT:
5844 case R_MIPS_GNU_VTENTRY:
5845 /* We don't do anything with these at present. */
5846 return bfd_reloc_continue;
5847
5848 default:
5849 /* An unrecognized relocation type. */
5850 return bfd_reloc_notsupported;
5851 }
5852
5853 /* Store the VALUE for our caller. */
5854 *valuep = value;
5855 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5856 }
5857
5858 /* Obtain the field relocated by RELOCATION. */
5859
5860 static bfd_vma
5861 mips_elf_obtain_contents (reloc_howto_type *howto,
5862 const Elf_Internal_Rela *relocation,
5863 bfd *input_bfd, bfd_byte *contents)
5864 {
5865 bfd_vma x;
5866 bfd_byte *location = contents + relocation->r_offset;
5867
5868 /* Obtain the bytes. */
5869 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5870
5871 return x;
5872 }
5873
5874 /* It has been determined that the result of the RELOCATION is the
5875 VALUE. Use HOWTO to place VALUE into the output file at the
5876 appropriate position. The SECTION is the section to which the
5877 relocation applies.
5878 CROSS_MODE_JUMP_P is true if the relocation field
5879 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5880
5881 Returns FALSE if anything goes wrong. */
5882
5883 static bfd_boolean
5884 mips_elf_perform_relocation (struct bfd_link_info *info,
5885 reloc_howto_type *howto,
5886 const Elf_Internal_Rela *relocation,
5887 bfd_vma value, bfd *input_bfd,
5888 asection *input_section, bfd_byte *contents,
5889 bfd_boolean cross_mode_jump_p)
5890 {
5891 bfd_vma x;
5892 bfd_byte *location;
5893 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5894
5895 /* Figure out where the relocation is occurring. */
5896 location = contents + relocation->r_offset;
5897
5898 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5899
5900 /* Obtain the current value. */
5901 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5902
5903 /* Clear the field we are setting. */
5904 x &= ~howto->dst_mask;
5905
5906 /* Set the field. */
5907 x |= (value & howto->dst_mask);
5908
5909 /* If required, turn JAL into JALX. */
5910 if (cross_mode_jump_p && jal_reloc_p (r_type))
5911 {
5912 bfd_boolean ok;
5913 bfd_vma opcode = x >> 26;
5914 bfd_vma jalx_opcode;
5915
5916 /* Check to see if the opcode is already JAL or JALX. */
5917 if (r_type == R_MIPS16_26)
5918 {
5919 ok = ((opcode == 0x6) || (opcode == 0x7));
5920 jalx_opcode = 0x7;
5921 }
5922 else if (r_type == R_MICROMIPS_26_S1)
5923 {
5924 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5925 jalx_opcode = 0x3c;
5926 }
5927 else
5928 {
5929 ok = ((opcode == 0x3) || (opcode == 0x1d));
5930 jalx_opcode = 0x1d;
5931 }
5932
5933 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5934 convert J or JALS to JALX. */
5935 if (!ok)
5936 {
5937 (*_bfd_error_handler)
5938 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5939 input_bfd,
5940 input_section,
5941 (unsigned long) relocation->r_offset);
5942 bfd_set_error (bfd_error_bad_value);
5943 return FALSE;
5944 }
5945
5946 /* Make this the JALX opcode. */
5947 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5948 }
5949
5950 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5951 range. */
5952 if (!info->relocatable
5953 && !cross_mode_jump_p
5954 && ((JAL_TO_BAL_P (input_bfd)
5955 && r_type == R_MIPS_26
5956 && (x >> 26) == 0x3) /* jal addr */
5957 || (JALR_TO_BAL_P (input_bfd)
5958 && r_type == R_MIPS_JALR
5959 && x == 0x0320f809) /* jalr t9 */
5960 || (JR_TO_B_P (input_bfd)
5961 && r_type == R_MIPS_JALR
5962 && x == 0x03200008))) /* jr t9 */
5963 {
5964 bfd_vma addr;
5965 bfd_vma dest;
5966 bfd_signed_vma off;
5967
5968 addr = (input_section->output_section->vma
5969 + input_section->output_offset
5970 + relocation->r_offset
5971 + 4);
5972 if (r_type == R_MIPS_26)
5973 dest = (value << 2) | ((addr >> 28) << 28);
5974 else
5975 dest = value;
5976 off = dest - addr;
5977 if (off <= 0x1ffff && off >= -0x20000)
5978 {
5979 if (x == 0x03200008) /* jr t9 */
5980 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5981 else
5982 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5983 }
5984 }
5985
5986 /* Put the value into the output. */
5987 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5988
5989 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5990 location);
5991
5992 return TRUE;
5993 }
5994 \f
5995 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5996 is the original relocation, which is now being transformed into a
5997 dynamic relocation. The ADDENDP is adjusted if necessary; the
5998 caller should store the result in place of the original addend. */
5999
6000 static bfd_boolean
6001 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6002 struct bfd_link_info *info,
6003 const Elf_Internal_Rela *rel,
6004 struct mips_elf_link_hash_entry *h,
6005 asection *sec, bfd_vma symbol,
6006 bfd_vma *addendp, asection *input_section)
6007 {
6008 Elf_Internal_Rela outrel[3];
6009 asection *sreloc;
6010 bfd *dynobj;
6011 int r_type;
6012 long indx;
6013 bfd_boolean defined_p;
6014 struct mips_elf_link_hash_table *htab;
6015
6016 htab = mips_elf_hash_table (info);
6017 BFD_ASSERT (htab != NULL);
6018
6019 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6020 dynobj = elf_hash_table (info)->dynobj;
6021 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6022 BFD_ASSERT (sreloc != NULL);
6023 BFD_ASSERT (sreloc->contents != NULL);
6024 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6025 < sreloc->size);
6026
6027 outrel[0].r_offset =
6028 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6029 if (ABI_64_P (output_bfd))
6030 {
6031 outrel[1].r_offset =
6032 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6033 outrel[2].r_offset =
6034 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6035 }
6036
6037 if (outrel[0].r_offset == MINUS_ONE)
6038 /* The relocation field has been deleted. */
6039 return TRUE;
6040
6041 if (outrel[0].r_offset == MINUS_TWO)
6042 {
6043 /* The relocation field has been converted into a relative value of
6044 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6045 the field to be fully relocated, so add in the symbol's value. */
6046 *addendp += symbol;
6047 return TRUE;
6048 }
6049
6050 /* We must now calculate the dynamic symbol table index to use
6051 in the relocation. */
6052 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6053 {
6054 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6055 indx = h->root.dynindx;
6056 if (SGI_COMPAT (output_bfd))
6057 defined_p = h->root.def_regular;
6058 else
6059 /* ??? glibc's ld.so just adds the final GOT entry to the
6060 relocation field. It therefore treats relocs against
6061 defined symbols in the same way as relocs against
6062 undefined symbols. */
6063 defined_p = FALSE;
6064 }
6065 else
6066 {
6067 if (sec != NULL && bfd_is_abs_section (sec))
6068 indx = 0;
6069 else if (sec == NULL || sec->owner == NULL)
6070 {
6071 bfd_set_error (bfd_error_bad_value);
6072 return FALSE;
6073 }
6074 else
6075 {
6076 indx = elf_section_data (sec->output_section)->dynindx;
6077 if (indx == 0)
6078 {
6079 asection *osec = htab->root.text_index_section;
6080 indx = elf_section_data (osec)->dynindx;
6081 }
6082 if (indx == 0)
6083 abort ();
6084 }
6085
6086 /* Instead of generating a relocation using the section
6087 symbol, we may as well make it a fully relative
6088 relocation. We want to avoid generating relocations to
6089 local symbols because we used to generate them
6090 incorrectly, without adding the original symbol value,
6091 which is mandated by the ABI for section symbols. In
6092 order to give dynamic loaders and applications time to
6093 phase out the incorrect use, we refrain from emitting
6094 section-relative relocations. It's not like they're
6095 useful, after all. This should be a bit more efficient
6096 as well. */
6097 /* ??? Although this behavior is compatible with glibc's ld.so,
6098 the ABI says that relocations against STN_UNDEF should have
6099 a symbol value of 0. Irix rld honors this, so relocations
6100 against STN_UNDEF have no effect. */
6101 if (!SGI_COMPAT (output_bfd))
6102 indx = 0;
6103 defined_p = TRUE;
6104 }
6105
6106 /* If the relocation was previously an absolute relocation and
6107 this symbol will not be referred to by the relocation, we must
6108 adjust it by the value we give it in the dynamic symbol table.
6109 Otherwise leave the job up to the dynamic linker. */
6110 if (defined_p && r_type != R_MIPS_REL32)
6111 *addendp += symbol;
6112
6113 if (htab->is_vxworks)
6114 /* VxWorks uses non-relative relocations for this. */
6115 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6116 else
6117 /* The relocation is always an REL32 relocation because we don't
6118 know where the shared library will wind up at load-time. */
6119 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6120 R_MIPS_REL32);
6121
6122 /* For strict adherence to the ABI specification, we should
6123 generate a R_MIPS_64 relocation record by itself before the
6124 _REL32/_64 record as well, such that the addend is read in as
6125 a 64-bit value (REL32 is a 32-bit relocation, after all).
6126 However, since none of the existing ELF64 MIPS dynamic
6127 loaders seems to care, we don't waste space with these
6128 artificial relocations. If this turns out to not be true,
6129 mips_elf_allocate_dynamic_relocation() should be tweaked so
6130 as to make room for a pair of dynamic relocations per
6131 invocation if ABI_64_P, and here we should generate an
6132 additional relocation record with R_MIPS_64 by itself for a
6133 NULL symbol before this relocation record. */
6134 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6135 ABI_64_P (output_bfd)
6136 ? R_MIPS_64
6137 : R_MIPS_NONE);
6138 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6139
6140 /* Adjust the output offset of the relocation to reference the
6141 correct location in the output file. */
6142 outrel[0].r_offset += (input_section->output_section->vma
6143 + input_section->output_offset);
6144 outrel[1].r_offset += (input_section->output_section->vma
6145 + input_section->output_offset);
6146 outrel[2].r_offset += (input_section->output_section->vma
6147 + input_section->output_offset);
6148
6149 /* Put the relocation back out. We have to use the special
6150 relocation outputter in the 64-bit case since the 64-bit
6151 relocation format is non-standard. */
6152 if (ABI_64_P (output_bfd))
6153 {
6154 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6155 (output_bfd, &outrel[0],
6156 (sreloc->contents
6157 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6158 }
6159 else if (htab->is_vxworks)
6160 {
6161 /* VxWorks uses RELA rather than REL dynamic relocations. */
6162 outrel[0].r_addend = *addendp;
6163 bfd_elf32_swap_reloca_out
6164 (output_bfd, &outrel[0],
6165 (sreloc->contents
6166 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6167 }
6168 else
6169 bfd_elf32_swap_reloc_out
6170 (output_bfd, &outrel[0],
6171 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6172
6173 /* We've now added another relocation. */
6174 ++sreloc->reloc_count;
6175
6176 /* Make sure the output section is writable. The dynamic linker
6177 will be writing to it. */
6178 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6179 |= SHF_WRITE;
6180
6181 /* On IRIX5, make an entry of compact relocation info. */
6182 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6183 {
6184 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6185 bfd_byte *cr;
6186
6187 if (scpt)
6188 {
6189 Elf32_crinfo cptrel;
6190
6191 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6192 cptrel.vaddr = (rel->r_offset
6193 + input_section->output_section->vma
6194 + input_section->output_offset);
6195 if (r_type == R_MIPS_REL32)
6196 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6197 else
6198 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6199 mips_elf_set_cr_dist2to (cptrel, 0);
6200 cptrel.konst = *addendp;
6201
6202 cr = (scpt->contents
6203 + sizeof (Elf32_External_compact_rel));
6204 mips_elf_set_cr_relvaddr (cptrel, 0);
6205 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6206 ((Elf32_External_crinfo *) cr
6207 + scpt->reloc_count));
6208 ++scpt->reloc_count;
6209 }
6210 }
6211
6212 /* If we've written this relocation for a readonly section,
6213 we need to set DF_TEXTREL again, so that we do not delete the
6214 DT_TEXTREL tag. */
6215 if (MIPS_ELF_READONLY_SECTION (input_section))
6216 info->flags |= DF_TEXTREL;
6217
6218 return TRUE;
6219 }
6220 \f
6221 /* Return the MACH for a MIPS e_flags value. */
6222
6223 unsigned long
6224 _bfd_elf_mips_mach (flagword flags)
6225 {
6226 switch (flags & EF_MIPS_MACH)
6227 {
6228 case E_MIPS_MACH_3900:
6229 return bfd_mach_mips3900;
6230
6231 case E_MIPS_MACH_4010:
6232 return bfd_mach_mips4010;
6233
6234 case E_MIPS_MACH_4100:
6235 return bfd_mach_mips4100;
6236
6237 case E_MIPS_MACH_4111:
6238 return bfd_mach_mips4111;
6239
6240 case E_MIPS_MACH_4120:
6241 return bfd_mach_mips4120;
6242
6243 case E_MIPS_MACH_4650:
6244 return bfd_mach_mips4650;
6245
6246 case E_MIPS_MACH_5400:
6247 return bfd_mach_mips5400;
6248
6249 case E_MIPS_MACH_5500:
6250 return bfd_mach_mips5500;
6251
6252 case E_MIPS_MACH_9000:
6253 return bfd_mach_mips9000;
6254
6255 case E_MIPS_MACH_SB1:
6256 return bfd_mach_mips_sb1;
6257
6258 case E_MIPS_MACH_LS2E:
6259 return bfd_mach_mips_loongson_2e;
6260
6261 case E_MIPS_MACH_LS2F:
6262 return bfd_mach_mips_loongson_2f;
6263
6264 case E_MIPS_MACH_LS3A:
6265 return bfd_mach_mips_loongson_3a;
6266
6267 case E_MIPS_MACH_OCTEON2:
6268 return bfd_mach_mips_octeon2;
6269
6270 case E_MIPS_MACH_OCTEON:
6271 return bfd_mach_mips_octeon;
6272
6273 case E_MIPS_MACH_XLR:
6274 return bfd_mach_mips_xlr;
6275
6276 default:
6277 switch (flags & EF_MIPS_ARCH)
6278 {
6279 default:
6280 case E_MIPS_ARCH_1:
6281 return bfd_mach_mips3000;
6282
6283 case E_MIPS_ARCH_2:
6284 return bfd_mach_mips6000;
6285
6286 case E_MIPS_ARCH_3:
6287 return bfd_mach_mips4000;
6288
6289 case E_MIPS_ARCH_4:
6290 return bfd_mach_mips8000;
6291
6292 case E_MIPS_ARCH_5:
6293 return bfd_mach_mips5;
6294
6295 case E_MIPS_ARCH_32:
6296 return bfd_mach_mipsisa32;
6297
6298 case E_MIPS_ARCH_64:
6299 return bfd_mach_mipsisa64;
6300
6301 case E_MIPS_ARCH_32R2:
6302 return bfd_mach_mipsisa32r2;
6303
6304 case E_MIPS_ARCH_64R2:
6305 return bfd_mach_mipsisa64r2;
6306 }
6307 }
6308
6309 return 0;
6310 }
6311
6312 /* Return printable name for ABI. */
6313
6314 static INLINE char *
6315 elf_mips_abi_name (bfd *abfd)
6316 {
6317 flagword flags;
6318
6319 flags = elf_elfheader (abfd)->e_flags;
6320 switch (flags & EF_MIPS_ABI)
6321 {
6322 case 0:
6323 if (ABI_N32_P (abfd))
6324 return "N32";
6325 else if (ABI_64_P (abfd))
6326 return "64";
6327 else
6328 return "none";
6329 case E_MIPS_ABI_O32:
6330 return "O32";
6331 case E_MIPS_ABI_O64:
6332 return "O64";
6333 case E_MIPS_ABI_EABI32:
6334 return "EABI32";
6335 case E_MIPS_ABI_EABI64:
6336 return "EABI64";
6337 default:
6338 return "unknown abi";
6339 }
6340 }
6341 \f
6342 /* MIPS ELF uses two common sections. One is the usual one, and the
6343 other is for small objects. All the small objects are kept
6344 together, and then referenced via the gp pointer, which yields
6345 faster assembler code. This is what we use for the small common
6346 section. This approach is copied from ecoff.c. */
6347 static asection mips_elf_scom_section;
6348 static asymbol mips_elf_scom_symbol;
6349 static asymbol *mips_elf_scom_symbol_ptr;
6350
6351 /* MIPS ELF also uses an acommon section, which represents an
6352 allocated common symbol which may be overridden by a
6353 definition in a shared library. */
6354 static asection mips_elf_acom_section;
6355 static asymbol mips_elf_acom_symbol;
6356 static asymbol *mips_elf_acom_symbol_ptr;
6357
6358 /* This is used for both the 32-bit and the 64-bit ABI. */
6359
6360 void
6361 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6362 {
6363 elf_symbol_type *elfsym;
6364
6365 /* Handle the special MIPS section numbers that a symbol may use. */
6366 elfsym = (elf_symbol_type *) asym;
6367 switch (elfsym->internal_elf_sym.st_shndx)
6368 {
6369 case SHN_MIPS_ACOMMON:
6370 /* This section is used in a dynamically linked executable file.
6371 It is an allocated common section. The dynamic linker can
6372 either resolve these symbols to something in a shared
6373 library, or it can just leave them here. For our purposes,
6374 we can consider these symbols to be in a new section. */
6375 if (mips_elf_acom_section.name == NULL)
6376 {
6377 /* Initialize the acommon section. */
6378 mips_elf_acom_section.name = ".acommon";
6379 mips_elf_acom_section.flags = SEC_ALLOC;
6380 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6381 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6382 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6383 mips_elf_acom_symbol.name = ".acommon";
6384 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6385 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6386 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6387 }
6388 asym->section = &mips_elf_acom_section;
6389 break;
6390
6391 case SHN_COMMON:
6392 /* Common symbols less than the GP size are automatically
6393 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6394 if (asym->value > elf_gp_size (abfd)
6395 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6396 || IRIX_COMPAT (abfd) == ict_irix6)
6397 break;
6398 /* Fall through. */
6399 case SHN_MIPS_SCOMMON:
6400 if (mips_elf_scom_section.name == NULL)
6401 {
6402 /* Initialize the small common section. */
6403 mips_elf_scom_section.name = ".scommon";
6404 mips_elf_scom_section.flags = SEC_IS_COMMON;
6405 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6406 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6407 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6408 mips_elf_scom_symbol.name = ".scommon";
6409 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6410 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6411 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6412 }
6413 asym->section = &mips_elf_scom_section;
6414 asym->value = elfsym->internal_elf_sym.st_size;
6415 break;
6416
6417 case SHN_MIPS_SUNDEFINED:
6418 asym->section = bfd_und_section_ptr;
6419 break;
6420
6421 case SHN_MIPS_TEXT:
6422 {
6423 asection *section = bfd_get_section_by_name (abfd, ".text");
6424
6425 if (section != NULL)
6426 {
6427 asym->section = section;
6428 /* MIPS_TEXT is a bit special, the address is not an offset
6429 to the base of the .text section. So substract the section
6430 base address to make it an offset. */
6431 asym->value -= section->vma;
6432 }
6433 }
6434 break;
6435
6436 case SHN_MIPS_DATA:
6437 {
6438 asection *section = bfd_get_section_by_name (abfd, ".data");
6439
6440 if (section != NULL)
6441 {
6442 asym->section = section;
6443 /* MIPS_DATA is a bit special, the address is not an offset
6444 to the base of the .data section. So substract the section
6445 base address to make it an offset. */
6446 asym->value -= section->vma;
6447 }
6448 }
6449 break;
6450 }
6451
6452 /* If this is an odd-valued function symbol, assume it's a MIPS16
6453 or microMIPS one. */
6454 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6455 && (asym->value & 1) != 0)
6456 {
6457 asym->value--;
6458 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6459 elfsym->internal_elf_sym.st_other
6460 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6461 else
6462 elfsym->internal_elf_sym.st_other
6463 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6464 }
6465 }
6466 \f
6467 /* Implement elf_backend_eh_frame_address_size. This differs from
6468 the default in the way it handles EABI64.
6469
6470 EABI64 was originally specified as an LP64 ABI, and that is what
6471 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6472 historically accepted the combination of -mabi=eabi and -mlong32,
6473 and this ILP32 variation has become semi-official over time.
6474 Both forms use elf32 and have pointer-sized FDE addresses.
6475
6476 If an EABI object was generated by GCC 4.0 or above, it will have
6477 an empty .gcc_compiled_longXX section, where XX is the size of longs
6478 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6479 have no special marking to distinguish them from LP64 objects.
6480
6481 We don't want users of the official LP64 ABI to be punished for the
6482 existence of the ILP32 variant, but at the same time, we don't want
6483 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6484 We therefore take the following approach:
6485
6486 - If ABFD contains a .gcc_compiled_longXX section, use it to
6487 determine the pointer size.
6488
6489 - Otherwise check the type of the first relocation. Assume that
6490 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6491
6492 - Otherwise punt.
6493
6494 The second check is enough to detect LP64 objects generated by pre-4.0
6495 compilers because, in the kind of output generated by those compilers,
6496 the first relocation will be associated with either a CIE personality
6497 routine or an FDE start address. Furthermore, the compilers never
6498 used a special (non-pointer) encoding for this ABI.
6499
6500 Checking the relocation type should also be safe because there is no
6501 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6502 did so. */
6503
6504 unsigned int
6505 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6506 {
6507 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6508 return 8;
6509 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6510 {
6511 bfd_boolean long32_p, long64_p;
6512
6513 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6514 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6515 if (long32_p && long64_p)
6516 return 0;
6517 if (long32_p)
6518 return 4;
6519 if (long64_p)
6520 return 8;
6521
6522 if (sec->reloc_count > 0
6523 && elf_section_data (sec)->relocs != NULL
6524 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6525 == R_MIPS_64))
6526 return 8;
6527
6528 return 0;
6529 }
6530 return 4;
6531 }
6532 \f
6533 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6534 relocations against two unnamed section symbols to resolve to the
6535 same address. For example, if we have code like:
6536
6537 lw $4,%got_disp(.data)($gp)
6538 lw $25,%got_disp(.text)($gp)
6539 jalr $25
6540
6541 then the linker will resolve both relocations to .data and the program
6542 will jump there rather than to .text.
6543
6544 We can work around this problem by giving names to local section symbols.
6545 This is also what the MIPSpro tools do. */
6546
6547 bfd_boolean
6548 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6549 {
6550 return SGI_COMPAT (abfd);
6551 }
6552 \f
6553 /* Work over a section just before writing it out. This routine is
6554 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6555 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6556 a better way. */
6557
6558 bfd_boolean
6559 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6560 {
6561 if (hdr->sh_type == SHT_MIPS_REGINFO
6562 && hdr->sh_size > 0)
6563 {
6564 bfd_byte buf[4];
6565
6566 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6567 BFD_ASSERT (hdr->contents == NULL);
6568
6569 if (bfd_seek (abfd,
6570 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6571 SEEK_SET) != 0)
6572 return FALSE;
6573 H_PUT_32 (abfd, elf_gp (abfd), buf);
6574 if (bfd_bwrite (buf, 4, abfd) != 4)
6575 return FALSE;
6576 }
6577
6578 if (hdr->sh_type == SHT_MIPS_OPTIONS
6579 && hdr->bfd_section != NULL
6580 && mips_elf_section_data (hdr->bfd_section) != NULL
6581 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6582 {
6583 bfd_byte *contents, *l, *lend;
6584
6585 /* We stored the section contents in the tdata field in the
6586 set_section_contents routine. We save the section contents
6587 so that we don't have to read them again.
6588 At this point we know that elf_gp is set, so we can look
6589 through the section contents to see if there is an
6590 ODK_REGINFO structure. */
6591
6592 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6593 l = contents;
6594 lend = contents + hdr->sh_size;
6595 while (l + sizeof (Elf_External_Options) <= lend)
6596 {
6597 Elf_Internal_Options intopt;
6598
6599 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6600 &intopt);
6601 if (intopt.size < sizeof (Elf_External_Options))
6602 {
6603 (*_bfd_error_handler)
6604 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6605 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6606 break;
6607 }
6608 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6609 {
6610 bfd_byte buf[8];
6611
6612 if (bfd_seek (abfd,
6613 (hdr->sh_offset
6614 + (l - contents)
6615 + sizeof (Elf_External_Options)
6616 + (sizeof (Elf64_External_RegInfo) - 8)),
6617 SEEK_SET) != 0)
6618 return FALSE;
6619 H_PUT_64 (abfd, elf_gp (abfd), buf);
6620 if (bfd_bwrite (buf, 8, abfd) != 8)
6621 return FALSE;
6622 }
6623 else if (intopt.kind == ODK_REGINFO)
6624 {
6625 bfd_byte buf[4];
6626
6627 if (bfd_seek (abfd,
6628 (hdr->sh_offset
6629 + (l - contents)
6630 + sizeof (Elf_External_Options)
6631 + (sizeof (Elf32_External_RegInfo) - 4)),
6632 SEEK_SET) != 0)
6633 return FALSE;
6634 H_PUT_32 (abfd, elf_gp (abfd), buf);
6635 if (bfd_bwrite (buf, 4, abfd) != 4)
6636 return FALSE;
6637 }
6638 l += intopt.size;
6639 }
6640 }
6641
6642 if (hdr->bfd_section != NULL)
6643 {
6644 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6645
6646 /* .sbss is not handled specially here because the GNU/Linux
6647 prelinker can convert .sbss from NOBITS to PROGBITS and
6648 changing it back to NOBITS breaks the binary. The entry in
6649 _bfd_mips_elf_special_sections will ensure the correct flags
6650 are set on .sbss if BFD creates it without reading it from an
6651 input file, and without special handling here the flags set
6652 on it in an input file will be followed. */
6653 if (strcmp (name, ".sdata") == 0
6654 || strcmp (name, ".lit8") == 0
6655 || strcmp (name, ".lit4") == 0)
6656 {
6657 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6658 hdr->sh_type = SHT_PROGBITS;
6659 }
6660 else if (strcmp (name, ".srdata") == 0)
6661 {
6662 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6663 hdr->sh_type = SHT_PROGBITS;
6664 }
6665 else if (strcmp (name, ".compact_rel") == 0)
6666 {
6667 hdr->sh_flags = 0;
6668 hdr->sh_type = SHT_PROGBITS;
6669 }
6670 else if (strcmp (name, ".rtproc") == 0)
6671 {
6672 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6673 {
6674 unsigned int adjust;
6675
6676 adjust = hdr->sh_size % hdr->sh_addralign;
6677 if (adjust != 0)
6678 hdr->sh_size += hdr->sh_addralign - adjust;
6679 }
6680 }
6681 }
6682
6683 return TRUE;
6684 }
6685
6686 /* Handle a MIPS specific section when reading an object file. This
6687 is called when elfcode.h finds a section with an unknown type.
6688 This routine supports both the 32-bit and 64-bit ELF ABI.
6689
6690 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6691 how to. */
6692
6693 bfd_boolean
6694 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6695 Elf_Internal_Shdr *hdr,
6696 const char *name,
6697 int shindex)
6698 {
6699 flagword flags = 0;
6700
6701 /* There ought to be a place to keep ELF backend specific flags, but
6702 at the moment there isn't one. We just keep track of the
6703 sections by their name, instead. Fortunately, the ABI gives
6704 suggested names for all the MIPS specific sections, so we will
6705 probably get away with this. */
6706 switch (hdr->sh_type)
6707 {
6708 case SHT_MIPS_LIBLIST:
6709 if (strcmp (name, ".liblist") != 0)
6710 return FALSE;
6711 break;
6712 case SHT_MIPS_MSYM:
6713 if (strcmp (name, ".msym") != 0)
6714 return FALSE;
6715 break;
6716 case SHT_MIPS_CONFLICT:
6717 if (strcmp (name, ".conflict") != 0)
6718 return FALSE;
6719 break;
6720 case SHT_MIPS_GPTAB:
6721 if (! CONST_STRNEQ (name, ".gptab."))
6722 return FALSE;
6723 break;
6724 case SHT_MIPS_UCODE:
6725 if (strcmp (name, ".ucode") != 0)
6726 return FALSE;
6727 break;
6728 case SHT_MIPS_DEBUG:
6729 if (strcmp (name, ".mdebug") != 0)
6730 return FALSE;
6731 flags = SEC_DEBUGGING;
6732 break;
6733 case SHT_MIPS_REGINFO:
6734 if (strcmp (name, ".reginfo") != 0
6735 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6736 return FALSE;
6737 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6738 break;
6739 case SHT_MIPS_IFACE:
6740 if (strcmp (name, ".MIPS.interfaces") != 0)
6741 return FALSE;
6742 break;
6743 case SHT_MIPS_CONTENT:
6744 if (! CONST_STRNEQ (name, ".MIPS.content"))
6745 return FALSE;
6746 break;
6747 case SHT_MIPS_OPTIONS:
6748 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6749 return FALSE;
6750 break;
6751 case SHT_MIPS_DWARF:
6752 if (! CONST_STRNEQ (name, ".debug_")
6753 && ! CONST_STRNEQ (name, ".zdebug_"))
6754 return FALSE;
6755 break;
6756 case SHT_MIPS_SYMBOL_LIB:
6757 if (strcmp (name, ".MIPS.symlib") != 0)
6758 return FALSE;
6759 break;
6760 case SHT_MIPS_EVENTS:
6761 if (! CONST_STRNEQ (name, ".MIPS.events")
6762 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6763 return FALSE;
6764 break;
6765 default:
6766 break;
6767 }
6768
6769 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6770 return FALSE;
6771
6772 if (flags)
6773 {
6774 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6775 (bfd_get_section_flags (abfd,
6776 hdr->bfd_section)
6777 | flags)))
6778 return FALSE;
6779 }
6780
6781 /* FIXME: We should record sh_info for a .gptab section. */
6782
6783 /* For a .reginfo section, set the gp value in the tdata information
6784 from the contents of this section. We need the gp value while
6785 processing relocs, so we just get it now. The .reginfo section
6786 is not used in the 64-bit MIPS ELF ABI. */
6787 if (hdr->sh_type == SHT_MIPS_REGINFO)
6788 {
6789 Elf32_External_RegInfo ext;
6790 Elf32_RegInfo s;
6791
6792 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6793 &ext, 0, sizeof ext))
6794 return FALSE;
6795 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6796 elf_gp (abfd) = s.ri_gp_value;
6797 }
6798
6799 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6800 set the gp value based on what we find. We may see both
6801 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6802 they should agree. */
6803 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6804 {
6805 bfd_byte *contents, *l, *lend;
6806
6807 contents = bfd_malloc (hdr->sh_size);
6808 if (contents == NULL)
6809 return FALSE;
6810 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6811 0, hdr->sh_size))
6812 {
6813 free (contents);
6814 return FALSE;
6815 }
6816 l = contents;
6817 lend = contents + hdr->sh_size;
6818 while (l + sizeof (Elf_External_Options) <= lend)
6819 {
6820 Elf_Internal_Options intopt;
6821
6822 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6823 &intopt);
6824 if (intopt.size < sizeof (Elf_External_Options))
6825 {
6826 (*_bfd_error_handler)
6827 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6828 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6829 break;
6830 }
6831 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6832 {
6833 Elf64_Internal_RegInfo intreg;
6834
6835 bfd_mips_elf64_swap_reginfo_in
6836 (abfd,
6837 ((Elf64_External_RegInfo *)
6838 (l + sizeof (Elf_External_Options))),
6839 &intreg);
6840 elf_gp (abfd) = intreg.ri_gp_value;
6841 }
6842 else if (intopt.kind == ODK_REGINFO)
6843 {
6844 Elf32_RegInfo intreg;
6845
6846 bfd_mips_elf32_swap_reginfo_in
6847 (abfd,
6848 ((Elf32_External_RegInfo *)
6849 (l + sizeof (Elf_External_Options))),
6850 &intreg);
6851 elf_gp (abfd) = intreg.ri_gp_value;
6852 }
6853 l += intopt.size;
6854 }
6855 free (contents);
6856 }
6857
6858 return TRUE;
6859 }
6860
6861 /* Set the correct type for a MIPS ELF section. We do this by the
6862 section name, which is a hack, but ought to work. This routine is
6863 used by both the 32-bit and the 64-bit ABI. */
6864
6865 bfd_boolean
6866 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6867 {
6868 const char *name = bfd_get_section_name (abfd, sec);
6869
6870 if (strcmp (name, ".liblist") == 0)
6871 {
6872 hdr->sh_type = SHT_MIPS_LIBLIST;
6873 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6874 /* The sh_link field is set in final_write_processing. */
6875 }
6876 else if (strcmp (name, ".conflict") == 0)
6877 hdr->sh_type = SHT_MIPS_CONFLICT;
6878 else if (CONST_STRNEQ (name, ".gptab."))
6879 {
6880 hdr->sh_type = SHT_MIPS_GPTAB;
6881 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6882 /* The sh_info field is set in final_write_processing. */
6883 }
6884 else if (strcmp (name, ".ucode") == 0)
6885 hdr->sh_type = SHT_MIPS_UCODE;
6886 else if (strcmp (name, ".mdebug") == 0)
6887 {
6888 hdr->sh_type = SHT_MIPS_DEBUG;
6889 /* In a shared object on IRIX 5.3, the .mdebug section has an
6890 entsize of 0. FIXME: Does this matter? */
6891 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6892 hdr->sh_entsize = 0;
6893 else
6894 hdr->sh_entsize = 1;
6895 }
6896 else if (strcmp (name, ".reginfo") == 0)
6897 {
6898 hdr->sh_type = SHT_MIPS_REGINFO;
6899 /* In a shared object on IRIX 5.3, the .reginfo section has an
6900 entsize of 0x18. FIXME: Does this matter? */
6901 if (SGI_COMPAT (abfd))
6902 {
6903 if ((abfd->flags & DYNAMIC) != 0)
6904 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6905 else
6906 hdr->sh_entsize = 1;
6907 }
6908 else
6909 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6910 }
6911 else if (SGI_COMPAT (abfd)
6912 && (strcmp (name, ".hash") == 0
6913 || strcmp (name, ".dynamic") == 0
6914 || strcmp (name, ".dynstr") == 0))
6915 {
6916 if (SGI_COMPAT (abfd))
6917 hdr->sh_entsize = 0;
6918 #if 0
6919 /* This isn't how the IRIX6 linker behaves. */
6920 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6921 #endif
6922 }
6923 else if (strcmp (name, ".got") == 0
6924 || strcmp (name, ".srdata") == 0
6925 || strcmp (name, ".sdata") == 0
6926 || strcmp (name, ".sbss") == 0
6927 || strcmp (name, ".lit4") == 0
6928 || strcmp (name, ".lit8") == 0)
6929 hdr->sh_flags |= SHF_MIPS_GPREL;
6930 else if (strcmp (name, ".MIPS.interfaces") == 0)
6931 {
6932 hdr->sh_type = SHT_MIPS_IFACE;
6933 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6934 }
6935 else if (CONST_STRNEQ (name, ".MIPS.content"))
6936 {
6937 hdr->sh_type = SHT_MIPS_CONTENT;
6938 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6939 /* The sh_info field is set in final_write_processing. */
6940 }
6941 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6942 {
6943 hdr->sh_type = SHT_MIPS_OPTIONS;
6944 hdr->sh_entsize = 1;
6945 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6946 }
6947 else if (CONST_STRNEQ (name, ".debug_")
6948 || CONST_STRNEQ (name, ".zdebug_"))
6949 {
6950 hdr->sh_type = SHT_MIPS_DWARF;
6951
6952 /* Irix facilities such as libexc expect a single .debug_frame
6953 per executable, the system ones have NOSTRIP set and the linker
6954 doesn't merge sections with different flags so ... */
6955 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6956 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6957 }
6958 else if (strcmp (name, ".MIPS.symlib") == 0)
6959 {
6960 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6961 /* The sh_link and sh_info fields are set in
6962 final_write_processing. */
6963 }
6964 else if (CONST_STRNEQ (name, ".MIPS.events")
6965 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6966 {
6967 hdr->sh_type = SHT_MIPS_EVENTS;
6968 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6969 /* The sh_link field is set in final_write_processing. */
6970 }
6971 else if (strcmp (name, ".msym") == 0)
6972 {
6973 hdr->sh_type = SHT_MIPS_MSYM;
6974 hdr->sh_flags |= SHF_ALLOC;
6975 hdr->sh_entsize = 8;
6976 }
6977
6978 /* The generic elf_fake_sections will set up REL_HDR using the default
6979 kind of relocations. We used to set up a second header for the
6980 non-default kind of relocations here, but only NewABI would use
6981 these, and the IRIX ld doesn't like resulting empty RELA sections.
6982 Thus we create those header only on demand now. */
6983
6984 return TRUE;
6985 }
6986
6987 /* Given a BFD section, try to locate the corresponding ELF section
6988 index. This is used by both the 32-bit and the 64-bit ABI.
6989 Actually, it's not clear to me that the 64-bit ABI supports these,
6990 but for non-PIC objects we will certainly want support for at least
6991 the .scommon section. */
6992
6993 bfd_boolean
6994 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6995 asection *sec, int *retval)
6996 {
6997 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6998 {
6999 *retval = SHN_MIPS_SCOMMON;
7000 return TRUE;
7001 }
7002 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7003 {
7004 *retval = SHN_MIPS_ACOMMON;
7005 return TRUE;
7006 }
7007 return FALSE;
7008 }
7009 \f
7010 /* Hook called by the linker routine which adds symbols from an object
7011 file. We must handle the special MIPS section numbers here. */
7012
7013 bfd_boolean
7014 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7015 Elf_Internal_Sym *sym, const char **namep,
7016 flagword *flagsp ATTRIBUTE_UNUSED,
7017 asection **secp, bfd_vma *valp)
7018 {
7019 if (SGI_COMPAT (abfd)
7020 && (abfd->flags & DYNAMIC) != 0
7021 && strcmp (*namep, "_rld_new_interface") == 0)
7022 {
7023 /* Skip IRIX5 rld entry name. */
7024 *namep = NULL;
7025 return TRUE;
7026 }
7027
7028 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7029 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7030 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7031 a magic symbol resolved by the linker, we ignore this bogus definition
7032 of _gp_disp. New ABI objects do not suffer from this problem so this
7033 is not done for them. */
7034 if (!NEWABI_P(abfd)
7035 && (sym->st_shndx == SHN_ABS)
7036 && (strcmp (*namep, "_gp_disp") == 0))
7037 {
7038 *namep = NULL;
7039 return TRUE;
7040 }
7041
7042 switch (sym->st_shndx)
7043 {
7044 case SHN_COMMON:
7045 /* Common symbols less than the GP size are automatically
7046 treated as SHN_MIPS_SCOMMON symbols. */
7047 if (sym->st_size > elf_gp_size (abfd)
7048 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7049 || IRIX_COMPAT (abfd) == ict_irix6)
7050 break;
7051 /* Fall through. */
7052 case SHN_MIPS_SCOMMON:
7053 *secp = bfd_make_section_old_way (abfd, ".scommon");
7054 (*secp)->flags |= SEC_IS_COMMON;
7055 *valp = sym->st_size;
7056 break;
7057
7058 case SHN_MIPS_TEXT:
7059 /* This section is used in a shared object. */
7060 if (elf_tdata (abfd)->elf_text_section == NULL)
7061 {
7062 asymbol *elf_text_symbol;
7063 asection *elf_text_section;
7064 bfd_size_type amt = sizeof (asection);
7065
7066 elf_text_section = bfd_zalloc (abfd, amt);
7067 if (elf_text_section == NULL)
7068 return FALSE;
7069
7070 amt = sizeof (asymbol);
7071 elf_text_symbol = bfd_zalloc (abfd, amt);
7072 if (elf_text_symbol == NULL)
7073 return FALSE;
7074
7075 /* Initialize the section. */
7076
7077 elf_tdata (abfd)->elf_text_section = elf_text_section;
7078 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7079
7080 elf_text_section->symbol = elf_text_symbol;
7081 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7082
7083 elf_text_section->name = ".text";
7084 elf_text_section->flags = SEC_NO_FLAGS;
7085 elf_text_section->output_section = NULL;
7086 elf_text_section->owner = abfd;
7087 elf_text_symbol->name = ".text";
7088 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7089 elf_text_symbol->section = elf_text_section;
7090 }
7091 /* This code used to do *secp = bfd_und_section_ptr if
7092 info->shared. I don't know why, and that doesn't make sense,
7093 so I took it out. */
7094 *secp = elf_tdata (abfd)->elf_text_section;
7095 break;
7096
7097 case SHN_MIPS_ACOMMON:
7098 /* Fall through. XXX Can we treat this as allocated data? */
7099 case SHN_MIPS_DATA:
7100 /* This section is used in a shared object. */
7101 if (elf_tdata (abfd)->elf_data_section == NULL)
7102 {
7103 asymbol *elf_data_symbol;
7104 asection *elf_data_section;
7105 bfd_size_type amt = sizeof (asection);
7106
7107 elf_data_section = bfd_zalloc (abfd, amt);
7108 if (elf_data_section == NULL)
7109 return FALSE;
7110
7111 amt = sizeof (asymbol);
7112 elf_data_symbol = bfd_zalloc (abfd, amt);
7113 if (elf_data_symbol == NULL)
7114 return FALSE;
7115
7116 /* Initialize the section. */
7117
7118 elf_tdata (abfd)->elf_data_section = elf_data_section;
7119 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7120
7121 elf_data_section->symbol = elf_data_symbol;
7122 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7123
7124 elf_data_section->name = ".data";
7125 elf_data_section->flags = SEC_NO_FLAGS;
7126 elf_data_section->output_section = NULL;
7127 elf_data_section->owner = abfd;
7128 elf_data_symbol->name = ".data";
7129 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7130 elf_data_symbol->section = elf_data_section;
7131 }
7132 /* This code used to do *secp = bfd_und_section_ptr if
7133 info->shared. I don't know why, and that doesn't make sense,
7134 so I took it out. */
7135 *secp = elf_tdata (abfd)->elf_data_section;
7136 break;
7137
7138 case SHN_MIPS_SUNDEFINED:
7139 *secp = bfd_und_section_ptr;
7140 break;
7141 }
7142
7143 if (SGI_COMPAT (abfd)
7144 && ! info->shared
7145 && info->output_bfd->xvec == abfd->xvec
7146 && strcmp (*namep, "__rld_obj_head") == 0)
7147 {
7148 struct elf_link_hash_entry *h;
7149 struct bfd_link_hash_entry *bh;
7150
7151 /* Mark __rld_obj_head as dynamic. */
7152 bh = NULL;
7153 if (! (_bfd_generic_link_add_one_symbol
7154 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7155 get_elf_backend_data (abfd)->collect, &bh)))
7156 return FALSE;
7157
7158 h = (struct elf_link_hash_entry *) bh;
7159 h->non_elf = 0;
7160 h->def_regular = 1;
7161 h->type = STT_OBJECT;
7162
7163 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7164 return FALSE;
7165
7166 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7167 mips_elf_hash_table (info)->rld_symbol = h;
7168 }
7169
7170 /* If this is a mips16 text symbol, add 1 to the value to make it
7171 odd. This will cause something like .word SYM to come up with
7172 the right value when it is loaded into the PC. */
7173 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7174 ++*valp;
7175
7176 return TRUE;
7177 }
7178
7179 /* This hook function is called before the linker writes out a global
7180 symbol. We mark symbols as small common if appropriate. This is
7181 also where we undo the increment of the value for a mips16 symbol. */
7182
7183 int
7184 _bfd_mips_elf_link_output_symbol_hook
7185 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7186 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7187 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7188 {
7189 /* If we see a common symbol, which implies a relocatable link, then
7190 if a symbol was small common in an input file, mark it as small
7191 common in the output file. */
7192 if (sym->st_shndx == SHN_COMMON
7193 && strcmp (input_sec->name, ".scommon") == 0)
7194 sym->st_shndx = SHN_MIPS_SCOMMON;
7195
7196 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7197 sym->st_value &= ~1;
7198
7199 return 1;
7200 }
7201 \f
7202 /* Functions for the dynamic linker. */
7203
7204 /* Create dynamic sections when linking against a dynamic object. */
7205
7206 bfd_boolean
7207 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7208 {
7209 struct elf_link_hash_entry *h;
7210 struct bfd_link_hash_entry *bh;
7211 flagword flags;
7212 register asection *s;
7213 const char * const *namep;
7214 struct mips_elf_link_hash_table *htab;
7215
7216 htab = mips_elf_hash_table (info);
7217 BFD_ASSERT (htab != NULL);
7218
7219 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7220 | SEC_LINKER_CREATED | SEC_READONLY);
7221
7222 /* The psABI requires a read-only .dynamic section, but the VxWorks
7223 EABI doesn't. */
7224 if (!htab->is_vxworks)
7225 {
7226 s = bfd_get_linker_section (abfd, ".dynamic");
7227 if (s != NULL)
7228 {
7229 if (! bfd_set_section_flags (abfd, s, flags))
7230 return FALSE;
7231 }
7232 }
7233
7234 /* We need to create .got section. */
7235 if (!mips_elf_create_got_section (abfd, info))
7236 return FALSE;
7237
7238 if (! mips_elf_rel_dyn_section (info, TRUE))
7239 return FALSE;
7240
7241 /* Create .stub section. */
7242 s = bfd_make_section_anyway_with_flags (abfd,
7243 MIPS_ELF_STUB_SECTION_NAME (abfd),
7244 flags | SEC_CODE);
7245 if (s == NULL
7246 || ! bfd_set_section_alignment (abfd, s,
7247 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7248 return FALSE;
7249 htab->sstubs = s;
7250
7251 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7252 && !info->shared
7253 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7254 {
7255 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7256 flags &~ (flagword) SEC_READONLY);
7257 if (s == NULL
7258 || ! bfd_set_section_alignment (abfd, s,
7259 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7260 return FALSE;
7261 }
7262
7263 /* On IRIX5, we adjust add some additional symbols and change the
7264 alignments of several sections. There is no ABI documentation
7265 indicating that this is necessary on IRIX6, nor any evidence that
7266 the linker takes such action. */
7267 if (IRIX_COMPAT (abfd) == ict_irix5)
7268 {
7269 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7270 {
7271 bh = NULL;
7272 if (! (_bfd_generic_link_add_one_symbol
7273 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7274 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7275 return FALSE;
7276
7277 h = (struct elf_link_hash_entry *) bh;
7278 h->non_elf = 0;
7279 h->def_regular = 1;
7280 h->type = STT_SECTION;
7281
7282 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7283 return FALSE;
7284 }
7285
7286 /* We need to create a .compact_rel section. */
7287 if (SGI_COMPAT (abfd))
7288 {
7289 if (!mips_elf_create_compact_rel_section (abfd, info))
7290 return FALSE;
7291 }
7292
7293 /* Change alignments of some sections. */
7294 s = bfd_get_linker_section (abfd, ".hash");
7295 if (s != NULL)
7296 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7297 s = bfd_get_linker_section (abfd, ".dynsym");
7298 if (s != NULL)
7299 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7300 s = bfd_get_linker_section (abfd, ".dynstr");
7301 if (s != NULL)
7302 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7303 /* ??? */
7304 s = bfd_get_section_by_name (abfd, ".reginfo");
7305 if (s != NULL)
7306 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7307 s = bfd_get_linker_section (abfd, ".dynamic");
7308 if (s != NULL)
7309 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7310 }
7311
7312 if (!info->shared)
7313 {
7314 const char *name;
7315
7316 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7317 bh = NULL;
7318 if (!(_bfd_generic_link_add_one_symbol
7319 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7320 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7321 return FALSE;
7322
7323 h = (struct elf_link_hash_entry *) bh;
7324 h->non_elf = 0;
7325 h->def_regular = 1;
7326 h->type = STT_SECTION;
7327
7328 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7329 return FALSE;
7330
7331 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7332 {
7333 /* __rld_map is a four byte word located in the .data section
7334 and is filled in by the rtld to contain a pointer to
7335 the _r_debug structure. Its symbol value will be set in
7336 _bfd_mips_elf_finish_dynamic_symbol. */
7337 s = bfd_get_linker_section (abfd, ".rld_map");
7338 BFD_ASSERT (s != NULL);
7339
7340 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7341 bh = NULL;
7342 if (!(_bfd_generic_link_add_one_symbol
7343 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7344 get_elf_backend_data (abfd)->collect, &bh)))
7345 return FALSE;
7346
7347 h = (struct elf_link_hash_entry *) bh;
7348 h->non_elf = 0;
7349 h->def_regular = 1;
7350 h->type = STT_OBJECT;
7351
7352 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7353 return FALSE;
7354 mips_elf_hash_table (info)->rld_symbol = h;
7355 }
7356 }
7357
7358 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7359 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7360 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7361 return FALSE;
7362
7363 /* Cache the sections created above. */
7364 htab->splt = bfd_get_linker_section (abfd, ".plt");
7365 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7366 if (htab->is_vxworks)
7367 {
7368 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7369 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7370 }
7371 else
7372 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7373 if (!htab->sdynbss
7374 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7375 || !htab->srelplt
7376 || !htab->splt)
7377 abort ();
7378
7379 if (htab->is_vxworks)
7380 {
7381 /* Do the usual VxWorks handling. */
7382 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7383 return FALSE;
7384
7385 /* Work out the PLT sizes. */
7386 if (info->shared)
7387 {
7388 htab->plt_header_size
7389 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7390 htab->plt_entry_size
7391 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7392 }
7393 else
7394 {
7395 htab->plt_header_size
7396 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7397 htab->plt_entry_size
7398 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7399 }
7400 }
7401 else if (!info->shared)
7402 {
7403 /* All variants of the plt0 entry are the same size. */
7404 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7405 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7406 }
7407
7408 return TRUE;
7409 }
7410 \f
7411 /* Return true if relocation REL against section SEC is a REL rather than
7412 RELA relocation. RELOCS is the first relocation in the section and
7413 ABFD is the bfd that contains SEC. */
7414
7415 static bfd_boolean
7416 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7417 const Elf_Internal_Rela *relocs,
7418 const Elf_Internal_Rela *rel)
7419 {
7420 Elf_Internal_Shdr *rel_hdr;
7421 const struct elf_backend_data *bed;
7422
7423 /* To determine which flavor of relocation this is, we depend on the
7424 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7425 rel_hdr = elf_section_data (sec)->rel.hdr;
7426 if (rel_hdr == NULL)
7427 return FALSE;
7428 bed = get_elf_backend_data (abfd);
7429 return ((size_t) (rel - relocs)
7430 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7431 }
7432
7433 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7434 HOWTO is the relocation's howto and CONTENTS points to the contents
7435 of the section that REL is against. */
7436
7437 static bfd_vma
7438 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7439 reloc_howto_type *howto, bfd_byte *contents)
7440 {
7441 bfd_byte *location;
7442 unsigned int r_type;
7443 bfd_vma addend;
7444
7445 r_type = ELF_R_TYPE (abfd, rel->r_info);
7446 location = contents + rel->r_offset;
7447
7448 /* Get the addend, which is stored in the input file. */
7449 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7450 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7451 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7452
7453 return addend & howto->src_mask;
7454 }
7455
7456 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7457 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7458 and update *ADDEND with the final addend. Return true on success
7459 or false if the LO16 could not be found. RELEND is the exclusive
7460 upper bound on the relocations for REL's section. */
7461
7462 static bfd_boolean
7463 mips_elf_add_lo16_rel_addend (bfd *abfd,
7464 const Elf_Internal_Rela *rel,
7465 const Elf_Internal_Rela *relend,
7466 bfd_byte *contents, bfd_vma *addend)
7467 {
7468 unsigned int r_type, lo16_type;
7469 const Elf_Internal_Rela *lo16_relocation;
7470 reloc_howto_type *lo16_howto;
7471 bfd_vma l;
7472
7473 r_type = ELF_R_TYPE (abfd, rel->r_info);
7474 if (mips16_reloc_p (r_type))
7475 lo16_type = R_MIPS16_LO16;
7476 else if (micromips_reloc_p (r_type))
7477 lo16_type = R_MICROMIPS_LO16;
7478 else
7479 lo16_type = R_MIPS_LO16;
7480
7481 /* The combined value is the sum of the HI16 addend, left-shifted by
7482 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7483 code does a `lui' of the HI16 value, and then an `addiu' of the
7484 LO16 value.)
7485
7486 Scan ahead to find a matching LO16 relocation.
7487
7488 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7489 be immediately following. However, for the IRIX6 ABI, the next
7490 relocation may be a composed relocation consisting of several
7491 relocations for the same address. In that case, the R_MIPS_LO16
7492 relocation may occur as one of these. We permit a similar
7493 extension in general, as that is useful for GCC.
7494
7495 In some cases GCC dead code elimination removes the LO16 but keeps
7496 the corresponding HI16. This is strictly speaking a violation of
7497 the ABI but not immediately harmful. */
7498 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7499 if (lo16_relocation == NULL)
7500 return FALSE;
7501
7502 /* Obtain the addend kept there. */
7503 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7504 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7505
7506 l <<= lo16_howto->rightshift;
7507 l = _bfd_mips_elf_sign_extend (l, 16);
7508
7509 *addend <<= 16;
7510 *addend += l;
7511 return TRUE;
7512 }
7513
7514 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7515 store the contents in *CONTENTS on success. Assume that *CONTENTS
7516 already holds the contents if it is nonull on entry. */
7517
7518 static bfd_boolean
7519 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7520 {
7521 if (*contents)
7522 return TRUE;
7523
7524 /* Get cached copy if it exists. */
7525 if (elf_section_data (sec)->this_hdr.contents != NULL)
7526 {
7527 *contents = elf_section_data (sec)->this_hdr.contents;
7528 return TRUE;
7529 }
7530
7531 return bfd_malloc_and_get_section (abfd, sec, contents);
7532 }
7533
7534 /* Look through the relocs for a section during the first phase, and
7535 allocate space in the global offset table. */
7536
7537 bfd_boolean
7538 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7539 asection *sec, const Elf_Internal_Rela *relocs)
7540 {
7541 const char *name;
7542 bfd *dynobj;
7543 Elf_Internal_Shdr *symtab_hdr;
7544 struct elf_link_hash_entry **sym_hashes;
7545 size_t extsymoff;
7546 const Elf_Internal_Rela *rel;
7547 const Elf_Internal_Rela *rel_end;
7548 asection *sreloc;
7549 const struct elf_backend_data *bed;
7550 struct mips_elf_link_hash_table *htab;
7551 bfd_byte *contents;
7552 bfd_vma addend;
7553 reloc_howto_type *howto;
7554
7555 if (info->relocatable)
7556 return TRUE;
7557
7558 htab = mips_elf_hash_table (info);
7559 BFD_ASSERT (htab != NULL);
7560
7561 dynobj = elf_hash_table (info)->dynobj;
7562 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7563 sym_hashes = elf_sym_hashes (abfd);
7564 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7565
7566 bed = get_elf_backend_data (abfd);
7567 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7568
7569 /* Check for the mips16 stub sections. */
7570
7571 name = bfd_get_section_name (abfd, sec);
7572 if (FN_STUB_P (name))
7573 {
7574 unsigned long r_symndx;
7575
7576 /* Look at the relocation information to figure out which symbol
7577 this is for. */
7578
7579 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7580 if (r_symndx == 0)
7581 {
7582 (*_bfd_error_handler)
7583 (_("%B: Warning: cannot determine the target function for"
7584 " stub section `%s'"),
7585 abfd, name);
7586 bfd_set_error (bfd_error_bad_value);
7587 return FALSE;
7588 }
7589
7590 if (r_symndx < extsymoff
7591 || sym_hashes[r_symndx - extsymoff] == NULL)
7592 {
7593 asection *o;
7594
7595 /* This stub is for a local symbol. This stub will only be
7596 needed if there is some relocation in this BFD, other
7597 than a 16 bit function call, which refers to this symbol. */
7598 for (o = abfd->sections; o != NULL; o = o->next)
7599 {
7600 Elf_Internal_Rela *sec_relocs;
7601 const Elf_Internal_Rela *r, *rend;
7602
7603 /* We can ignore stub sections when looking for relocs. */
7604 if ((o->flags & SEC_RELOC) == 0
7605 || o->reloc_count == 0
7606 || section_allows_mips16_refs_p (o))
7607 continue;
7608
7609 sec_relocs
7610 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7611 info->keep_memory);
7612 if (sec_relocs == NULL)
7613 return FALSE;
7614
7615 rend = sec_relocs + o->reloc_count;
7616 for (r = sec_relocs; r < rend; r++)
7617 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7618 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7619 break;
7620
7621 if (elf_section_data (o)->relocs != sec_relocs)
7622 free (sec_relocs);
7623
7624 if (r < rend)
7625 break;
7626 }
7627
7628 if (o == NULL)
7629 {
7630 /* There is no non-call reloc for this stub, so we do
7631 not need it. Since this function is called before
7632 the linker maps input sections to output sections, we
7633 can easily discard it by setting the SEC_EXCLUDE
7634 flag. */
7635 sec->flags |= SEC_EXCLUDE;
7636 return TRUE;
7637 }
7638
7639 /* Record this stub in an array of local symbol stubs for
7640 this BFD. */
7641 if (elf_tdata (abfd)->local_stubs == NULL)
7642 {
7643 unsigned long symcount;
7644 asection **n;
7645 bfd_size_type amt;
7646
7647 if (elf_bad_symtab (abfd))
7648 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7649 else
7650 symcount = symtab_hdr->sh_info;
7651 amt = symcount * sizeof (asection *);
7652 n = bfd_zalloc (abfd, amt);
7653 if (n == NULL)
7654 return FALSE;
7655 elf_tdata (abfd)->local_stubs = n;
7656 }
7657
7658 sec->flags |= SEC_KEEP;
7659 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7660
7661 /* We don't need to set mips16_stubs_seen in this case.
7662 That flag is used to see whether we need to look through
7663 the global symbol table for stubs. We don't need to set
7664 it here, because we just have a local stub. */
7665 }
7666 else
7667 {
7668 struct mips_elf_link_hash_entry *h;
7669
7670 h = ((struct mips_elf_link_hash_entry *)
7671 sym_hashes[r_symndx - extsymoff]);
7672
7673 while (h->root.root.type == bfd_link_hash_indirect
7674 || h->root.root.type == bfd_link_hash_warning)
7675 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7676
7677 /* H is the symbol this stub is for. */
7678
7679 /* If we already have an appropriate stub for this function, we
7680 don't need another one, so we can discard this one. Since
7681 this function is called before the linker maps input sections
7682 to output sections, we can easily discard it by setting the
7683 SEC_EXCLUDE flag. */
7684 if (h->fn_stub != NULL)
7685 {
7686 sec->flags |= SEC_EXCLUDE;
7687 return TRUE;
7688 }
7689
7690 sec->flags |= SEC_KEEP;
7691 h->fn_stub = sec;
7692 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7693 }
7694 }
7695 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7696 {
7697 unsigned long r_symndx;
7698 struct mips_elf_link_hash_entry *h;
7699 asection **loc;
7700
7701 /* Look at the relocation information to figure out which symbol
7702 this is for. */
7703
7704 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7705 if (r_symndx == 0)
7706 {
7707 (*_bfd_error_handler)
7708 (_("%B: Warning: cannot determine the target function for"
7709 " stub section `%s'"),
7710 abfd, name);
7711 bfd_set_error (bfd_error_bad_value);
7712 return FALSE;
7713 }
7714
7715 if (r_symndx < extsymoff
7716 || sym_hashes[r_symndx - extsymoff] == NULL)
7717 {
7718 asection *o;
7719
7720 /* This stub is for a local symbol. This stub will only be
7721 needed if there is some relocation (R_MIPS16_26) in this BFD
7722 that refers to this symbol. */
7723 for (o = abfd->sections; o != NULL; o = o->next)
7724 {
7725 Elf_Internal_Rela *sec_relocs;
7726 const Elf_Internal_Rela *r, *rend;
7727
7728 /* We can ignore stub sections when looking for relocs. */
7729 if ((o->flags & SEC_RELOC) == 0
7730 || o->reloc_count == 0
7731 || section_allows_mips16_refs_p (o))
7732 continue;
7733
7734 sec_relocs
7735 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7736 info->keep_memory);
7737 if (sec_relocs == NULL)
7738 return FALSE;
7739
7740 rend = sec_relocs + o->reloc_count;
7741 for (r = sec_relocs; r < rend; r++)
7742 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7743 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7744 break;
7745
7746 if (elf_section_data (o)->relocs != sec_relocs)
7747 free (sec_relocs);
7748
7749 if (r < rend)
7750 break;
7751 }
7752
7753 if (o == NULL)
7754 {
7755 /* There is no non-call reloc for this stub, so we do
7756 not need it. Since this function is called before
7757 the linker maps input sections to output sections, we
7758 can easily discard it by setting the SEC_EXCLUDE
7759 flag. */
7760 sec->flags |= SEC_EXCLUDE;
7761 return TRUE;
7762 }
7763
7764 /* Record this stub in an array of local symbol call_stubs for
7765 this BFD. */
7766 if (elf_tdata (abfd)->local_call_stubs == NULL)
7767 {
7768 unsigned long symcount;
7769 asection **n;
7770 bfd_size_type amt;
7771
7772 if (elf_bad_symtab (abfd))
7773 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7774 else
7775 symcount = symtab_hdr->sh_info;
7776 amt = symcount * sizeof (asection *);
7777 n = bfd_zalloc (abfd, amt);
7778 if (n == NULL)
7779 return FALSE;
7780 elf_tdata (abfd)->local_call_stubs = n;
7781 }
7782
7783 sec->flags |= SEC_KEEP;
7784 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7785
7786 /* We don't need to set mips16_stubs_seen in this case.
7787 That flag is used to see whether we need to look through
7788 the global symbol table for stubs. We don't need to set
7789 it here, because we just have a local stub. */
7790 }
7791 else
7792 {
7793 h = ((struct mips_elf_link_hash_entry *)
7794 sym_hashes[r_symndx - extsymoff]);
7795
7796 /* H is the symbol this stub is for. */
7797
7798 if (CALL_FP_STUB_P (name))
7799 loc = &h->call_fp_stub;
7800 else
7801 loc = &h->call_stub;
7802
7803 /* If we already have an appropriate stub for this function, we
7804 don't need another one, so we can discard this one. Since
7805 this function is called before the linker maps input sections
7806 to output sections, we can easily discard it by setting the
7807 SEC_EXCLUDE flag. */
7808 if (*loc != NULL)
7809 {
7810 sec->flags |= SEC_EXCLUDE;
7811 return TRUE;
7812 }
7813
7814 sec->flags |= SEC_KEEP;
7815 *loc = sec;
7816 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7817 }
7818 }
7819
7820 sreloc = NULL;
7821 contents = NULL;
7822 for (rel = relocs; rel < rel_end; ++rel)
7823 {
7824 unsigned long r_symndx;
7825 unsigned int r_type;
7826 struct elf_link_hash_entry *h;
7827 bfd_boolean can_make_dynamic_p;
7828
7829 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7830 r_type = ELF_R_TYPE (abfd, rel->r_info);
7831
7832 if (r_symndx < extsymoff)
7833 h = NULL;
7834 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7835 {
7836 (*_bfd_error_handler)
7837 (_("%B: Malformed reloc detected for section %s"),
7838 abfd, name);
7839 bfd_set_error (bfd_error_bad_value);
7840 return FALSE;
7841 }
7842 else
7843 {
7844 h = sym_hashes[r_symndx - extsymoff];
7845 while (h != NULL
7846 && (h->root.type == bfd_link_hash_indirect
7847 || h->root.type == bfd_link_hash_warning))
7848 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7849 }
7850
7851 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7852 relocation into a dynamic one. */
7853 can_make_dynamic_p = FALSE;
7854 switch (r_type)
7855 {
7856 case R_MIPS_GOT16:
7857 case R_MIPS_CALL16:
7858 case R_MIPS_CALL_HI16:
7859 case R_MIPS_CALL_LO16:
7860 case R_MIPS_GOT_HI16:
7861 case R_MIPS_GOT_LO16:
7862 case R_MIPS_GOT_PAGE:
7863 case R_MIPS_GOT_OFST:
7864 case R_MIPS_GOT_DISP:
7865 case R_MIPS_TLS_GOTTPREL:
7866 case R_MIPS_TLS_GD:
7867 case R_MIPS_TLS_LDM:
7868 case R_MIPS16_GOT16:
7869 case R_MIPS16_CALL16:
7870 case R_MIPS16_TLS_GOTTPREL:
7871 case R_MIPS16_TLS_GD:
7872 case R_MIPS16_TLS_LDM:
7873 case R_MICROMIPS_GOT16:
7874 case R_MICROMIPS_CALL16:
7875 case R_MICROMIPS_CALL_HI16:
7876 case R_MICROMIPS_CALL_LO16:
7877 case R_MICROMIPS_GOT_HI16:
7878 case R_MICROMIPS_GOT_LO16:
7879 case R_MICROMIPS_GOT_PAGE:
7880 case R_MICROMIPS_GOT_OFST:
7881 case R_MICROMIPS_GOT_DISP:
7882 case R_MICROMIPS_TLS_GOTTPREL:
7883 case R_MICROMIPS_TLS_GD:
7884 case R_MICROMIPS_TLS_LDM:
7885 if (dynobj == NULL)
7886 elf_hash_table (info)->dynobj = dynobj = abfd;
7887 if (!mips_elf_create_got_section (dynobj, info))
7888 return FALSE;
7889 if (htab->is_vxworks && !info->shared)
7890 {
7891 (*_bfd_error_handler)
7892 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7893 abfd, (unsigned long) rel->r_offset);
7894 bfd_set_error (bfd_error_bad_value);
7895 return FALSE;
7896 }
7897 break;
7898
7899 /* This is just a hint; it can safely be ignored. Don't set
7900 has_static_relocs for the corresponding symbol. */
7901 case R_MIPS_JALR:
7902 case R_MICROMIPS_JALR:
7903 break;
7904
7905 case R_MIPS_32:
7906 case R_MIPS_REL32:
7907 case R_MIPS_64:
7908 /* In VxWorks executables, references to external symbols
7909 must be handled using copy relocs or PLT entries; it is not
7910 possible to convert this relocation into a dynamic one.
7911
7912 For executables that use PLTs and copy-relocs, we have a
7913 choice between converting the relocation into a dynamic
7914 one or using copy relocations or PLT entries. It is
7915 usually better to do the former, unless the relocation is
7916 against a read-only section. */
7917 if ((info->shared
7918 || (h != NULL
7919 && !htab->is_vxworks
7920 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7921 && !(!info->nocopyreloc
7922 && !PIC_OBJECT_P (abfd)
7923 && MIPS_ELF_READONLY_SECTION (sec))))
7924 && (sec->flags & SEC_ALLOC) != 0)
7925 {
7926 can_make_dynamic_p = TRUE;
7927 if (dynobj == NULL)
7928 elf_hash_table (info)->dynobj = dynobj = abfd;
7929 break;
7930 }
7931 /* For sections that are not SEC_ALLOC a copy reloc would be
7932 output if possible (implying questionable semantics for
7933 read-only data objects) or otherwise the final link would
7934 fail as ld.so will not process them and could not therefore
7935 handle any outstanding dynamic relocations.
7936
7937 For such sections that are also SEC_DEBUGGING, we can avoid
7938 these problems by simply ignoring any relocs as these
7939 sections have a predefined use and we know it is safe to do
7940 so.
7941
7942 This is needed in cases such as a global symbol definition
7943 in a shared library causing a common symbol from an object
7944 file to be converted to an undefined reference. If that
7945 happens, then all the relocations against this symbol from
7946 SEC_DEBUGGING sections in the object file will resolve to
7947 nil. */
7948 if ((sec->flags & SEC_DEBUGGING) != 0)
7949 break;
7950 /* Fall through. */
7951
7952 default:
7953 /* Most static relocations require pointer equality, except
7954 for branches. */
7955 if (h)
7956 h->pointer_equality_needed = TRUE;
7957 /* Fall through. */
7958
7959 case R_MIPS_26:
7960 case R_MIPS_PC16:
7961 case R_MIPS16_26:
7962 case R_MICROMIPS_26_S1:
7963 case R_MICROMIPS_PC7_S1:
7964 case R_MICROMIPS_PC10_S1:
7965 case R_MICROMIPS_PC16_S1:
7966 case R_MICROMIPS_PC23_S2:
7967 if (h)
7968 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7969 break;
7970 }
7971
7972 if (h)
7973 {
7974 /* Relocations against the special VxWorks __GOTT_BASE__ and
7975 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7976 room for them in .rela.dyn. */
7977 if (is_gott_symbol (info, h))
7978 {
7979 if (sreloc == NULL)
7980 {
7981 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7982 if (sreloc == NULL)
7983 return FALSE;
7984 }
7985 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7986 if (MIPS_ELF_READONLY_SECTION (sec))
7987 /* We tell the dynamic linker that there are
7988 relocations against the text segment. */
7989 info->flags |= DF_TEXTREL;
7990 }
7991 }
7992 else if (call_lo16_reloc_p (r_type)
7993 || got_lo16_reloc_p (r_type)
7994 || got_disp_reloc_p (r_type)
7995 || (got16_reloc_p (r_type) && htab->is_vxworks))
7996 {
7997 /* We may need a local GOT entry for this relocation. We
7998 don't count R_MIPS_GOT_PAGE because we can estimate the
7999 maximum number of pages needed by looking at the size of
8000 the segment. Similar comments apply to R_MIPS*_GOT16 and
8001 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8002 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8003 R_MIPS_CALL_HI16 because these are always followed by an
8004 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8005 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8006 rel->r_addend, info, 0))
8007 return FALSE;
8008 }
8009
8010 if (h != NULL
8011 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8012 ELF_ST_IS_MIPS16 (h->other)))
8013 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8014
8015 switch (r_type)
8016 {
8017 case R_MIPS_CALL16:
8018 case R_MIPS16_CALL16:
8019 case R_MICROMIPS_CALL16:
8020 if (h == NULL)
8021 {
8022 (*_bfd_error_handler)
8023 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8024 abfd, (unsigned long) rel->r_offset);
8025 bfd_set_error (bfd_error_bad_value);
8026 return FALSE;
8027 }
8028 /* Fall through. */
8029
8030 case R_MIPS_CALL_HI16:
8031 case R_MIPS_CALL_LO16:
8032 case R_MICROMIPS_CALL_HI16:
8033 case R_MICROMIPS_CALL_LO16:
8034 if (h != NULL)
8035 {
8036 /* Make sure there is room in the regular GOT to hold the
8037 function's address. We may eliminate it in favour of
8038 a .got.plt entry later; see mips_elf_count_got_symbols. */
8039 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
8040 return FALSE;
8041
8042 /* We need a stub, not a plt entry for the undefined
8043 function. But we record it as if it needs plt. See
8044 _bfd_elf_adjust_dynamic_symbol. */
8045 h->needs_plt = 1;
8046 h->type = STT_FUNC;
8047 }
8048 break;
8049
8050 case R_MIPS_GOT_PAGE:
8051 case R_MICROMIPS_GOT_PAGE:
8052 /* If this is a global, overridable symbol, GOT_PAGE will
8053 decay to GOT_DISP, so we'll need a GOT entry for it. */
8054 if (h)
8055 {
8056 struct mips_elf_link_hash_entry *hmips =
8057 (struct mips_elf_link_hash_entry *) h;
8058
8059 /* This symbol is definitely not overridable. */
8060 if (hmips->root.def_regular
8061 && ! (info->shared && ! info->symbolic
8062 && ! hmips->root.forced_local))
8063 h = NULL;
8064 }
8065 /* Fall through. */
8066
8067 case R_MIPS16_GOT16:
8068 case R_MIPS_GOT16:
8069 case R_MIPS_GOT_HI16:
8070 case R_MIPS_GOT_LO16:
8071 case R_MICROMIPS_GOT16:
8072 case R_MICROMIPS_GOT_HI16:
8073 case R_MICROMIPS_GOT_LO16:
8074 if (!h || got_page_reloc_p (r_type))
8075 {
8076 /* This relocation needs (or may need, if h != NULL) a
8077 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8078 know for sure until we know whether the symbol is
8079 preemptible. */
8080 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8081 {
8082 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8083 return FALSE;
8084 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8085 addend = mips_elf_read_rel_addend (abfd, rel,
8086 howto, contents);
8087 if (got16_reloc_p (r_type))
8088 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8089 contents, &addend);
8090 else
8091 addend <<= howto->rightshift;
8092 }
8093 else
8094 addend = rel->r_addend;
8095 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8096 addend))
8097 return FALSE;
8098 }
8099 /* Fall through. */
8100
8101 case R_MIPS_GOT_DISP:
8102 case R_MICROMIPS_GOT_DISP:
8103 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8104 FALSE, 0))
8105 return FALSE;
8106 break;
8107
8108 case R_MIPS_TLS_GOTTPREL:
8109 case R_MIPS16_TLS_GOTTPREL:
8110 case R_MICROMIPS_TLS_GOTTPREL:
8111 if (info->shared)
8112 info->flags |= DF_STATIC_TLS;
8113 /* Fall through */
8114
8115 case R_MIPS_TLS_LDM:
8116 case R_MIPS16_TLS_LDM:
8117 case R_MICROMIPS_TLS_LDM:
8118 if (tls_ldm_reloc_p (r_type))
8119 {
8120 r_symndx = STN_UNDEF;
8121 h = NULL;
8122 }
8123 /* Fall through */
8124
8125 case R_MIPS_TLS_GD:
8126 case R_MIPS16_TLS_GD:
8127 case R_MICROMIPS_TLS_GD:
8128 /* This symbol requires a global offset table entry, or two
8129 for TLS GD relocations. */
8130 {
8131 unsigned char flag;
8132
8133 flag = (tls_gd_reloc_p (r_type)
8134 ? GOT_TLS_GD
8135 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8136 if (h != NULL)
8137 {
8138 struct mips_elf_link_hash_entry *hmips =
8139 (struct mips_elf_link_hash_entry *) h;
8140 hmips->tls_type |= flag;
8141
8142 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8143 FALSE, flag))
8144 return FALSE;
8145 }
8146 else
8147 {
8148 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8149
8150 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8151 rel->r_addend,
8152 info, flag))
8153 return FALSE;
8154 }
8155 }
8156 break;
8157
8158 case R_MIPS_32:
8159 case R_MIPS_REL32:
8160 case R_MIPS_64:
8161 /* In VxWorks executables, references to external symbols
8162 are handled using copy relocs or PLT stubs, so there's
8163 no need to add a .rela.dyn entry for this relocation. */
8164 if (can_make_dynamic_p)
8165 {
8166 if (sreloc == NULL)
8167 {
8168 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8169 if (sreloc == NULL)
8170 return FALSE;
8171 }
8172 if (info->shared && h == NULL)
8173 {
8174 /* When creating a shared object, we must copy these
8175 reloc types into the output file as R_MIPS_REL32
8176 relocs. Make room for this reloc in .rel(a).dyn. */
8177 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8178 if (MIPS_ELF_READONLY_SECTION (sec))
8179 /* We tell the dynamic linker that there are
8180 relocations against the text segment. */
8181 info->flags |= DF_TEXTREL;
8182 }
8183 else
8184 {
8185 struct mips_elf_link_hash_entry *hmips;
8186
8187 /* For a shared object, we must copy this relocation
8188 unless the symbol turns out to be undefined and
8189 weak with non-default visibility, in which case
8190 it will be left as zero.
8191
8192 We could elide R_MIPS_REL32 for locally binding symbols
8193 in shared libraries, but do not yet do so.
8194
8195 For an executable, we only need to copy this
8196 reloc if the symbol is defined in a dynamic
8197 object. */
8198 hmips = (struct mips_elf_link_hash_entry *) h;
8199 ++hmips->possibly_dynamic_relocs;
8200 if (MIPS_ELF_READONLY_SECTION (sec))
8201 /* We need it to tell the dynamic linker if there
8202 are relocations against the text segment. */
8203 hmips->readonly_reloc = TRUE;
8204 }
8205 }
8206
8207 if (SGI_COMPAT (abfd))
8208 mips_elf_hash_table (info)->compact_rel_size +=
8209 sizeof (Elf32_External_crinfo);
8210 break;
8211
8212 case R_MIPS_26:
8213 case R_MIPS_GPREL16:
8214 case R_MIPS_LITERAL:
8215 case R_MIPS_GPREL32:
8216 case R_MICROMIPS_26_S1:
8217 case R_MICROMIPS_GPREL16:
8218 case R_MICROMIPS_LITERAL:
8219 case R_MICROMIPS_GPREL7_S2:
8220 if (SGI_COMPAT (abfd))
8221 mips_elf_hash_table (info)->compact_rel_size +=
8222 sizeof (Elf32_External_crinfo);
8223 break;
8224
8225 /* This relocation describes the C++ object vtable hierarchy.
8226 Reconstruct it for later use during GC. */
8227 case R_MIPS_GNU_VTINHERIT:
8228 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8229 return FALSE;
8230 break;
8231
8232 /* This relocation describes which C++ vtable entries are actually
8233 used. Record for later use during GC. */
8234 case R_MIPS_GNU_VTENTRY:
8235 BFD_ASSERT (h != NULL);
8236 if (h != NULL
8237 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8238 return FALSE;
8239 break;
8240
8241 default:
8242 break;
8243 }
8244
8245 /* We must not create a stub for a symbol that has relocations
8246 related to taking the function's address. This doesn't apply to
8247 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8248 a normal .got entry. */
8249 if (!htab->is_vxworks && h != NULL)
8250 switch (r_type)
8251 {
8252 default:
8253 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8254 break;
8255 case R_MIPS16_CALL16:
8256 case R_MIPS_CALL16:
8257 case R_MIPS_CALL_HI16:
8258 case R_MIPS_CALL_LO16:
8259 case R_MIPS_JALR:
8260 case R_MICROMIPS_CALL16:
8261 case R_MICROMIPS_CALL_HI16:
8262 case R_MICROMIPS_CALL_LO16:
8263 case R_MICROMIPS_JALR:
8264 break;
8265 }
8266
8267 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8268 if there is one. We only need to handle global symbols here;
8269 we decide whether to keep or delete stubs for local symbols
8270 when processing the stub's relocations. */
8271 if (h != NULL
8272 && !mips16_call_reloc_p (r_type)
8273 && !section_allows_mips16_refs_p (sec))
8274 {
8275 struct mips_elf_link_hash_entry *mh;
8276
8277 mh = (struct mips_elf_link_hash_entry *) h;
8278 mh->need_fn_stub = TRUE;
8279 }
8280
8281 /* Refuse some position-dependent relocations when creating a
8282 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8283 not PIC, but we can create dynamic relocations and the result
8284 will be fine. Also do not refuse R_MIPS_LO16, which can be
8285 combined with R_MIPS_GOT16. */
8286 if (info->shared)
8287 {
8288 switch (r_type)
8289 {
8290 case R_MIPS16_HI16:
8291 case R_MIPS_HI16:
8292 case R_MIPS_HIGHER:
8293 case R_MIPS_HIGHEST:
8294 case R_MICROMIPS_HI16:
8295 case R_MICROMIPS_HIGHER:
8296 case R_MICROMIPS_HIGHEST:
8297 /* Don't refuse a high part relocation if it's against
8298 no symbol (e.g. part of a compound relocation). */
8299 if (r_symndx == STN_UNDEF)
8300 break;
8301
8302 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8303 and has a special meaning. */
8304 if (!NEWABI_P (abfd) && h != NULL
8305 && strcmp (h->root.root.string, "_gp_disp") == 0)
8306 break;
8307
8308 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8309 if (is_gott_symbol (info, h))
8310 break;
8311
8312 /* FALLTHROUGH */
8313
8314 case R_MIPS16_26:
8315 case R_MIPS_26:
8316 case R_MICROMIPS_26_S1:
8317 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8318 (*_bfd_error_handler)
8319 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8320 abfd, howto->name,
8321 (h) ? h->root.root.string : "a local symbol");
8322 bfd_set_error (bfd_error_bad_value);
8323 return FALSE;
8324 default:
8325 break;
8326 }
8327 }
8328 }
8329
8330 return TRUE;
8331 }
8332 \f
8333 bfd_boolean
8334 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8335 struct bfd_link_info *link_info,
8336 bfd_boolean *again)
8337 {
8338 Elf_Internal_Rela *internal_relocs;
8339 Elf_Internal_Rela *irel, *irelend;
8340 Elf_Internal_Shdr *symtab_hdr;
8341 bfd_byte *contents = NULL;
8342 size_t extsymoff;
8343 bfd_boolean changed_contents = FALSE;
8344 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8345 Elf_Internal_Sym *isymbuf = NULL;
8346
8347 /* We are not currently changing any sizes, so only one pass. */
8348 *again = FALSE;
8349
8350 if (link_info->relocatable)
8351 return TRUE;
8352
8353 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8354 link_info->keep_memory);
8355 if (internal_relocs == NULL)
8356 return TRUE;
8357
8358 irelend = internal_relocs + sec->reloc_count
8359 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8360 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8361 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8362
8363 for (irel = internal_relocs; irel < irelend; irel++)
8364 {
8365 bfd_vma symval;
8366 bfd_signed_vma sym_offset;
8367 unsigned int r_type;
8368 unsigned long r_symndx;
8369 asection *sym_sec;
8370 unsigned long instruction;
8371
8372 /* Turn jalr into bgezal, and jr into beq, if they're marked
8373 with a JALR relocation, that indicate where they jump to.
8374 This saves some pipeline bubbles. */
8375 r_type = ELF_R_TYPE (abfd, irel->r_info);
8376 if (r_type != R_MIPS_JALR)
8377 continue;
8378
8379 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8380 /* Compute the address of the jump target. */
8381 if (r_symndx >= extsymoff)
8382 {
8383 struct mips_elf_link_hash_entry *h
8384 = ((struct mips_elf_link_hash_entry *)
8385 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8386
8387 while (h->root.root.type == bfd_link_hash_indirect
8388 || h->root.root.type == bfd_link_hash_warning)
8389 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8390
8391 /* If a symbol is undefined, or if it may be overridden,
8392 skip it. */
8393 if (! ((h->root.root.type == bfd_link_hash_defined
8394 || h->root.root.type == bfd_link_hash_defweak)
8395 && h->root.root.u.def.section)
8396 || (link_info->shared && ! link_info->symbolic
8397 && !h->root.forced_local))
8398 continue;
8399
8400 sym_sec = h->root.root.u.def.section;
8401 if (sym_sec->output_section)
8402 symval = (h->root.root.u.def.value
8403 + sym_sec->output_section->vma
8404 + sym_sec->output_offset);
8405 else
8406 symval = h->root.root.u.def.value;
8407 }
8408 else
8409 {
8410 Elf_Internal_Sym *isym;
8411
8412 /* Read this BFD's symbols if we haven't done so already. */
8413 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8414 {
8415 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8416 if (isymbuf == NULL)
8417 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8418 symtab_hdr->sh_info, 0,
8419 NULL, NULL, NULL);
8420 if (isymbuf == NULL)
8421 goto relax_return;
8422 }
8423
8424 isym = isymbuf + r_symndx;
8425 if (isym->st_shndx == SHN_UNDEF)
8426 continue;
8427 else if (isym->st_shndx == SHN_ABS)
8428 sym_sec = bfd_abs_section_ptr;
8429 else if (isym->st_shndx == SHN_COMMON)
8430 sym_sec = bfd_com_section_ptr;
8431 else
8432 sym_sec
8433 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8434 symval = isym->st_value
8435 + sym_sec->output_section->vma
8436 + sym_sec->output_offset;
8437 }
8438
8439 /* Compute branch offset, from delay slot of the jump to the
8440 branch target. */
8441 sym_offset = (symval + irel->r_addend)
8442 - (sec_start + irel->r_offset + 4);
8443
8444 /* Branch offset must be properly aligned. */
8445 if ((sym_offset & 3) != 0)
8446 continue;
8447
8448 sym_offset >>= 2;
8449
8450 /* Check that it's in range. */
8451 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8452 continue;
8453
8454 /* Get the section contents if we haven't done so already. */
8455 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8456 goto relax_return;
8457
8458 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8459
8460 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8461 if ((instruction & 0xfc1fffff) == 0x0000f809)
8462 instruction = 0x04110000;
8463 /* If it was jr <reg>, turn it into b <target>. */
8464 else if ((instruction & 0xfc1fffff) == 0x00000008)
8465 instruction = 0x10000000;
8466 else
8467 continue;
8468
8469 instruction |= (sym_offset & 0xffff);
8470 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8471 changed_contents = TRUE;
8472 }
8473
8474 if (contents != NULL
8475 && elf_section_data (sec)->this_hdr.contents != contents)
8476 {
8477 if (!changed_contents && !link_info->keep_memory)
8478 free (contents);
8479 else
8480 {
8481 /* Cache the section contents for elf_link_input_bfd. */
8482 elf_section_data (sec)->this_hdr.contents = contents;
8483 }
8484 }
8485 return TRUE;
8486
8487 relax_return:
8488 if (contents != NULL
8489 && elf_section_data (sec)->this_hdr.contents != contents)
8490 free (contents);
8491 return FALSE;
8492 }
8493 \f
8494 /* Allocate space for global sym dynamic relocs. */
8495
8496 static bfd_boolean
8497 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8498 {
8499 struct bfd_link_info *info = inf;
8500 bfd *dynobj;
8501 struct mips_elf_link_hash_entry *hmips;
8502 struct mips_elf_link_hash_table *htab;
8503
8504 htab = mips_elf_hash_table (info);
8505 BFD_ASSERT (htab != NULL);
8506
8507 dynobj = elf_hash_table (info)->dynobj;
8508 hmips = (struct mips_elf_link_hash_entry *) h;
8509
8510 /* VxWorks executables are handled elsewhere; we only need to
8511 allocate relocations in shared objects. */
8512 if (htab->is_vxworks && !info->shared)
8513 return TRUE;
8514
8515 /* Ignore indirect symbols. All relocations against such symbols
8516 will be redirected to the target symbol. */
8517 if (h->root.type == bfd_link_hash_indirect)
8518 return TRUE;
8519
8520 /* If this symbol is defined in a dynamic object, or we are creating
8521 a shared library, we will need to copy any R_MIPS_32 or
8522 R_MIPS_REL32 relocs against it into the output file. */
8523 if (! info->relocatable
8524 && hmips->possibly_dynamic_relocs != 0
8525 && (h->root.type == bfd_link_hash_defweak
8526 || !h->def_regular
8527 || info->shared))
8528 {
8529 bfd_boolean do_copy = TRUE;
8530
8531 if (h->root.type == bfd_link_hash_undefweak)
8532 {
8533 /* Do not copy relocations for undefined weak symbols with
8534 non-default visibility. */
8535 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8536 do_copy = FALSE;
8537
8538 /* Make sure undefined weak symbols are output as a dynamic
8539 symbol in PIEs. */
8540 else if (h->dynindx == -1 && !h->forced_local)
8541 {
8542 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8543 return FALSE;
8544 }
8545 }
8546
8547 if (do_copy)
8548 {
8549 /* Even though we don't directly need a GOT entry for this symbol,
8550 the SVR4 psABI requires it to have a dynamic symbol table
8551 index greater that DT_MIPS_GOTSYM if there are dynamic
8552 relocations against it.
8553
8554 VxWorks does not enforce the same mapping between the GOT
8555 and the symbol table, so the same requirement does not
8556 apply there. */
8557 if (!htab->is_vxworks)
8558 {
8559 if (hmips->global_got_area > GGA_RELOC_ONLY)
8560 hmips->global_got_area = GGA_RELOC_ONLY;
8561 hmips->got_only_for_calls = FALSE;
8562 }
8563
8564 mips_elf_allocate_dynamic_relocations
8565 (dynobj, info, hmips->possibly_dynamic_relocs);
8566 if (hmips->readonly_reloc)
8567 /* We tell the dynamic linker that there are relocations
8568 against the text segment. */
8569 info->flags |= DF_TEXTREL;
8570 }
8571 }
8572
8573 return TRUE;
8574 }
8575
8576 /* Adjust a symbol defined by a dynamic object and referenced by a
8577 regular object. The current definition is in some section of the
8578 dynamic object, but we're not including those sections. We have to
8579 change the definition to something the rest of the link can
8580 understand. */
8581
8582 bfd_boolean
8583 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8584 struct elf_link_hash_entry *h)
8585 {
8586 bfd *dynobj;
8587 struct mips_elf_link_hash_entry *hmips;
8588 struct mips_elf_link_hash_table *htab;
8589
8590 htab = mips_elf_hash_table (info);
8591 BFD_ASSERT (htab != NULL);
8592
8593 dynobj = elf_hash_table (info)->dynobj;
8594 hmips = (struct mips_elf_link_hash_entry *) h;
8595
8596 /* Make sure we know what is going on here. */
8597 BFD_ASSERT (dynobj != NULL
8598 && (h->needs_plt
8599 || h->u.weakdef != NULL
8600 || (h->def_dynamic
8601 && h->ref_regular
8602 && !h->def_regular)));
8603
8604 hmips = (struct mips_elf_link_hash_entry *) h;
8605
8606 /* If there are call relocations against an externally-defined symbol,
8607 see whether we can create a MIPS lazy-binding stub for it. We can
8608 only do this if all references to the function are through call
8609 relocations, and in that case, the traditional lazy-binding stubs
8610 are much more efficient than PLT entries.
8611
8612 Traditional stubs are only available on SVR4 psABI-based systems;
8613 VxWorks always uses PLTs instead. */
8614 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8615 {
8616 if (! elf_hash_table (info)->dynamic_sections_created)
8617 return TRUE;
8618
8619 /* If this symbol is not defined in a regular file, then set
8620 the symbol to the stub location. This is required to make
8621 function pointers compare as equal between the normal
8622 executable and the shared library. */
8623 if (!h->def_regular)
8624 {
8625 hmips->needs_lazy_stub = TRUE;
8626 htab->lazy_stub_count++;
8627 return TRUE;
8628 }
8629 }
8630 /* As above, VxWorks requires PLT entries for externally-defined
8631 functions that are only accessed through call relocations.
8632
8633 Both VxWorks and non-VxWorks targets also need PLT entries if there
8634 are static-only relocations against an externally-defined function.
8635 This can technically occur for shared libraries if there are
8636 branches to the symbol, although it is unlikely that this will be
8637 used in practice due to the short ranges involved. It can occur
8638 for any relative or absolute relocation in executables; in that
8639 case, the PLT entry becomes the function's canonical address. */
8640 else if (((h->needs_plt && !hmips->no_fn_stub)
8641 || (h->type == STT_FUNC && hmips->has_static_relocs))
8642 && htab->use_plts_and_copy_relocs
8643 && !SYMBOL_CALLS_LOCAL (info, h)
8644 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8645 && h->root.type == bfd_link_hash_undefweak))
8646 {
8647 /* If this is the first symbol to need a PLT entry, allocate room
8648 for the header. */
8649 if (htab->splt->size == 0)
8650 {
8651 BFD_ASSERT (htab->sgotplt->size == 0);
8652
8653 /* If we're using the PLT additions to the psABI, each PLT
8654 entry is 16 bytes and the PLT0 entry is 32 bytes.
8655 Encourage better cache usage by aligning. We do this
8656 lazily to avoid pessimizing traditional objects. */
8657 if (!htab->is_vxworks
8658 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8659 return FALSE;
8660
8661 /* Make sure that .got.plt is word-aligned. We do this lazily
8662 for the same reason as above. */
8663 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8664 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8665 return FALSE;
8666
8667 htab->splt->size += htab->plt_header_size;
8668
8669 /* On non-VxWorks targets, the first two entries in .got.plt
8670 are reserved. */
8671 if (!htab->is_vxworks)
8672 htab->sgotplt->size
8673 += get_elf_backend_data (dynobj)->got_header_size;
8674
8675 /* On VxWorks, also allocate room for the header's
8676 .rela.plt.unloaded entries. */
8677 if (htab->is_vxworks && !info->shared)
8678 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8679 }
8680
8681 /* Assign the next .plt entry to this symbol. */
8682 h->plt.offset = htab->splt->size;
8683 htab->splt->size += htab->plt_entry_size;
8684
8685 /* If the output file has no definition of the symbol, set the
8686 symbol's value to the address of the stub. */
8687 if (!info->shared && !h->def_regular)
8688 {
8689 h->root.u.def.section = htab->splt;
8690 h->root.u.def.value = h->plt.offset;
8691 /* For VxWorks, point at the PLT load stub rather than the
8692 lazy resolution stub; this stub will become the canonical
8693 function address. */
8694 if (htab->is_vxworks)
8695 h->root.u.def.value += 8;
8696 }
8697
8698 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8699 relocation. */
8700 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8701 htab->srelplt->size += (htab->is_vxworks
8702 ? MIPS_ELF_RELA_SIZE (dynobj)
8703 : MIPS_ELF_REL_SIZE (dynobj));
8704
8705 /* Make room for the .rela.plt.unloaded relocations. */
8706 if (htab->is_vxworks && !info->shared)
8707 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8708
8709 /* All relocations against this symbol that could have been made
8710 dynamic will now refer to the PLT entry instead. */
8711 hmips->possibly_dynamic_relocs = 0;
8712
8713 return TRUE;
8714 }
8715
8716 /* If this is a weak symbol, and there is a real definition, the
8717 processor independent code will have arranged for us to see the
8718 real definition first, and we can just use the same value. */
8719 if (h->u.weakdef != NULL)
8720 {
8721 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8722 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8723 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8724 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8725 return TRUE;
8726 }
8727
8728 /* Otherwise, there is nothing further to do for symbols defined
8729 in regular objects. */
8730 if (h->def_regular)
8731 return TRUE;
8732
8733 /* There's also nothing more to do if we'll convert all relocations
8734 against this symbol into dynamic relocations. */
8735 if (!hmips->has_static_relocs)
8736 return TRUE;
8737
8738 /* We're now relying on copy relocations. Complain if we have
8739 some that we can't convert. */
8740 if (!htab->use_plts_and_copy_relocs || info->shared)
8741 {
8742 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8743 "dynamic symbol %s"),
8744 h->root.root.string);
8745 bfd_set_error (bfd_error_bad_value);
8746 return FALSE;
8747 }
8748
8749 /* We must allocate the symbol in our .dynbss section, which will
8750 become part of the .bss section of the executable. There will be
8751 an entry for this symbol in the .dynsym section. The dynamic
8752 object will contain position independent code, so all references
8753 from the dynamic object to this symbol will go through the global
8754 offset table. The dynamic linker will use the .dynsym entry to
8755 determine the address it must put in the global offset table, so
8756 both the dynamic object and the regular object will refer to the
8757 same memory location for the variable. */
8758
8759 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8760 {
8761 if (htab->is_vxworks)
8762 htab->srelbss->size += sizeof (Elf32_External_Rela);
8763 else
8764 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8765 h->needs_copy = 1;
8766 }
8767
8768 /* All relocations against this symbol that could have been made
8769 dynamic will now refer to the local copy instead. */
8770 hmips->possibly_dynamic_relocs = 0;
8771
8772 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8773 }
8774 \f
8775 /* This function is called after all the input files have been read,
8776 and the input sections have been assigned to output sections. We
8777 check for any mips16 stub sections that we can discard. */
8778
8779 bfd_boolean
8780 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8781 struct bfd_link_info *info)
8782 {
8783 asection *ri;
8784 struct mips_elf_link_hash_table *htab;
8785 struct mips_htab_traverse_info hti;
8786
8787 htab = mips_elf_hash_table (info);
8788 BFD_ASSERT (htab != NULL);
8789
8790 /* The .reginfo section has a fixed size. */
8791 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8792 if (ri != NULL)
8793 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8794
8795 hti.info = info;
8796 hti.output_bfd = output_bfd;
8797 hti.error = FALSE;
8798 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8799 mips_elf_check_symbols, &hti);
8800 if (hti.error)
8801 return FALSE;
8802
8803 return TRUE;
8804 }
8805
8806 /* If the link uses a GOT, lay it out and work out its size. */
8807
8808 static bfd_boolean
8809 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8810 {
8811 bfd *dynobj;
8812 asection *s;
8813 struct mips_got_info *g;
8814 bfd_size_type loadable_size = 0;
8815 bfd_size_type page_gotno;
8816 bfd *sub;
8817 struct mips_elf_count_tls_arg count_tls_arg;
8818 struct mips_elf_link_hash_table *htab;
8819
8820 htab = mips_elf_hash_table (info);
8821 BFD_ASSERT (htab != NULL);
8822
8823 s = htab->sgot;
8824 if (s == NULL)
8825 return TRUE;
8826
8827 dynobj = elf_hash_table (info)->dynobj;
8828 g = htab->got_info;
8829
8830 /* Allocate room for the reserved entries. VxWorks always reserves
8831 3 entries; other objects only reserve 2 entries. */
8832 BFD_ASSERT (g->assigned_gotno == 0);
8833 if (htab->is_vxworks)
8834 htab->reserved_gotno = 3;
8835 else
8836 htab->reserved_gotno = 2;
8837 g->local_gotno += htab->reserved_gotno;
8838 g->assigned_gotno = htab->reserved_gotno;
8839
8840 /* Replace entries for indirect and warning symbols with entries for
8841 the target symbol. */
8842 if (!mips_elf_resolve_final_got_entries (g))
8843 return FALSE;
8844
8845 /* Count the number of GOT symbols. */
8846 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8847
8848 /* Calculate the total loadable size of the output. That
8849 will give us the maximum number of GOT_PAGE entries
8850 required. */
8851 for (sub = info->input_bfds; sub; sub = sub->link_next)
8852 {
8853 asection *subsection;
8854
8855 for (subsection = sub->sections;
8856 subsection;
8857 subsection = subsection->next)
8858 {
8859 if ((subsection->flags & SEC_ALLOC) == 0)
8860 continue;
8861 loadable_size += ((subsection->size + 0xf)
8862 &~ (bfd_size_type) 0xf);
8863 }
8864 }
8865
8866 if (htab->is_vxworks)
8867 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8868 relocations against local symbols evaluate to "G", and the EABI does
8869 not include R_MIPS_GOT_PAGE. */
8870 page_gotno = 0;
8871 else
8872 /* Assume there are two loadable segments consisting of contiguous
8873 sections. Is 5 enough? */
8874 page_gotno = (loadable_size >> 16) + 5;
8875
8876 /* Choose the smaller of the two estimates; both are intended to be
8877 conservative. */
8878 if (page_gotno > g->page_gotno)
8879 page_gotno = g->page_gotno;
8880
8881 g->local_gotno += page_gotno;
8882 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8883 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8884
8885 /* We need to calculate tls_gotno for global symbols at this point
8886 instead of building it up earlier, to avoid doublecounting
8887 entries for one global symbol from multiple input files. */
8888 count_tls_arg.info = info;
8889 count_tls_arg.needed = 0;
8890 elf_link_hash_traverse (elf_hash_table (info),
8891 mips_elf_count_global_tls_entries,
8892 &count_tls_arg);
8893 g->tls_gotno += count_tls_arg.needed;
8894 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8895
8896 /* VxWorks does not support multiple GOTs. It initializes $gp to
8897 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8898 dynamic loader. */
8899 if (htab->is_vxworks)
8900 {
8901 /* VxWorks executables do not need a GOT. */
8902 if (info->shared)
8903 {
8904 /* Each VxWorks GOT entry needs an explicit relocation. */
8905 unsigned int count;
8906
8907 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8908 if (count)
8909 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8910 }
8911 }
8912 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8913 {
8914 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8915 return FALSE;
8916 }
8917 else
8918 {
8919 struct mips_elf_count_tls_arg arg;
8920
8921 /* Set up TLS entries. */
8922 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8923 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8924
8925 /* Allocate room for the TLS relocations. */
8926 arg.info = info;
8927 arg.needed = 0;
8928 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8929 elf_link_hash_traverse (elf_hash_table (info),
8930 mips_elf_count_global_tls_relocs,
8931 &arg);
8932 if (arg.needed)
8933 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8934 }
8935
8936 return TRUE;
8937 }
8938
8939 /* Estimate the size of the .MIPS.stubs section. */
8940
8941 static void
8942 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8943 {
8944 struct mips_elf_link_hash_table *htab;
8945 bfd_size_type dynsymcount;
8946
8947 htab = mips_elf_hash_table (info);
8948 BFD_ASSERT (htab != NULL);
8949
8950 if (htab->lazy_stub_count == 0)
8951 return;
8952
8953 /* IRIX rld assumes that a function stub isn't at the end of the .text
8954 section, so add a dummy entry to the end. */
8955 htab->lazy_stub_count++;
8956
8957 /* Get a worst-case estimate of the number of dynamic symbols needed.
8958 At this point, dynsymcount does not account for section symbols
8959 and count_section_dynsyms may overestimate the number that will
8960 be needed. */
8961 dynsymcount = (elf_hash_table (info)->dynsymcount
8962 + count_section_dynsyms (output_bfd, info));
8963
8964 /* Determine the size of one stub entry. */
8965 htab->function_stub_size = (dynsymcount > 0x10000
8966 ? MIPS_FUNCTION_STUB_BIG_SIZE
8967 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8968
8969 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8970 }
8971
8972 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8973 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8974 allocate an entry in the stubs section. */
8975
8976 static bfd_boolean
8977 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8978 {
8979 struct mips_elf_link_hash_table *htab;
8980
8981 htab = (struct mips_elf_link_hash_table *) data;
8982 if (h->needs_lazy_stub)
8983 {
8984 h->root.root.u.def.section = htab->sstubs;
8985 h->root.root.u.def.value = htab->sstubs->size;
8986 h->root.plt.offset = htab->sstubs->size;
8987 htab->sstubs->size += htab->function_stub_size;
8988 }
8989 return TRUE;
8990 }
8991
8992 /* Allocate offsets in the stubs section to each symbol that needs one.
8993 Set the final size of the .MIPS.stub section. */
8994
8995 static void
8996 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8997 {
8998 struct mips_elf_link_hash_table *htab;
8999
9000 htab = mips_elf_hash_table (info);
9001 BFD_ASSERT (htab != NULL);
9002
9003 if (htab->lazy_stub_count == 0)
9004 return;
9005
9006 htab->sstubs->size = 0;
9007 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
9008 htab->sstubs->size += htab->function_stub_size;
9009 BFD_ASSERT (htab->sstubs->size
9010 == htab->lazy_stub_count * htab->function_stub_size);
9011 }
9012
9013 /* Set the sizes of the dynamic sections. */
9014
9015 bfd_boolean
9016 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9017 struct bfd_link_info *info)
9018 {
9019 bfd *dynobj;
9020 asection *s, *sreldyn;
9021 bfd_boolean reltext;
9022 struct mips_elf_link_hash_table *htab;
9023
9024 htab = mips_elf_hash_table (info);
9025 BFD_ASSERT (htab != NULL);
9026 dynobj = elf_hash_table (info)->dynobj;
9027 BFD_ASSERT (dynobj != NULL);
9028
9029 if (elf_hash_table (info)->dynamic_sections_created)
9030 {
9031 /* Set the contents of the .interp section to the interpreter. */
9032 if (info->executable)
9033 {
9034 s = bfd_get_linker_section (dynobj, ".interp");
9035 BFD_ASSERT (s != NULL);
9036 s->size
9037 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9038 s->contents
9039 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9040 }
9041
9042 /* Create a symbol for the PLT, if we know that we are using it. */
9043 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9044 {
9045 struct elf_link_hash_entry *h;
9046
9047 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9048
9049 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9050 "_PROCEDURE_LINKAGE_TABLE_");
9051 htab->root.hplt = h;
9052 if (h == NULL)
9053 return FALSE;
9054 h->type = STT_FUNC;
9055 }
9056 }
9057
9058 /* Allocate space for global sym dynamic relocs. */
9059 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9060
9061 mips_elf_estimate_stub_size (output_bfd, info);
9062
9063 if (!mips_elf_lay_out_got (output_bfd, info))
9064 return FALSE;
9065
9066 mips_elf_lay_out_lazy_stubs (info);
9067
9068 /* The check_relocs and adjust_dynamic_symbol entry points have
9069 determined the sizes of the various dynamic sections. Allocate
9070 memory for them. */
9071 reltext = FALSE;
9072 for (s = dynobj->sections; s != NULL; s = s->next)
9073 {
9074 const char *name;
9075
9076 /* It's OK to base decisions on the section name, because none
9077 of the dynobj section names depend upon the input files. */
9078 name = bfd_get_section_name (dynobj, s);
9079
9080 if ((s->flags & SEC_LINKER_CREATED) == 0)
9081 continue;
9082
9083 if (CONST_STRNEQ (name, ".rel"))
9084 {
9085 if (s->size != 0)
9086 {
9087 const char *outname;
9088 asection *target;
9089
9090 /* If this relocation section applies to a read only
9091 section, then we probably need a DT_TEXTREL entry.
9092 If the relocation section is .rel(a).dyn, we always
9093 assert a DT_TEXTREL entry rather than testing whether
9094 there exists a relocation to a read only section or
9095 not. */
9096 outname = bfd_get_section_name (output_bfd,
9097 s->output_section);
9098 target = bfd_get_section_by_name (output_bfd, outname + 4);
9099 if ((target != NULL
9100 && (target->flags & SEC_READONLY) != 0
9101 && (target->flags & SEC_ALLOC) != 0)
9102 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9103 reltext = TRUE;
9104
9105 /* We use the reloc_count field as a counter if we need
9106 to copy relocs into the output file. */
9107 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9108 s->reloc_count = 0;
9109
9110 /* If combreloc is enabled, elf_link_sort_relocs() will
9111 sort relocations, but in a different way than we do,
9112 and before we're done creating relocations. Also, it
9113 will move them around between input sections'
9114 relocation's contents, so our sorting would be
9115 broken, so don't let it run. */
9116 info->combreloc = 0;
9117 }
9118 }
9119 else if (! info->shared
9120 && ! mips_elf_hash_table (info)->use_rld_obj_head
9121 && CONST_STRNEQ (name, ".rld_map"))
9122 {
9123 /* We add a room for __rld_map. It will be filled in by the
9124 rtld to contain a pointer to the _r_debug structure. */
9125 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9126 }
9127 else if (SGI_COMPAT (output_bfd)
9128 && CONST_STRNEQ (name, ".compact_rel"))
9129 s->size += mips_elf_hash_table (info)->compact_rel_size;
9130 else if (s == htab->splt)
9131 {
9132 /* If the last PLT entry has a branch delay slot, allocate
9133 room for an extra nop to fill the delay slot. This is
9134 for CPUs without load interlocking. */
9135 if (! LOAD_INTERLOCKS_P (output_bfd)
9136 && ! htab->is_vxworks && s->size > 0)
9137 s->size += 4;
9138 }
9139 else if (! CONST_STRNEQ (name, ".init")
9140 && s != htab->sgot
9141 && s != htab->sgotplt
9142 && s != htab->sstubs
9143 && s != htab->sdynbss)
9144 {
9145 /* It's not one of our sections, so don't allocate space. */
9146 continue;
9147 }
9148
9149 if (s->size == 0)
9150 {
9151 s->flags |= SEC_EXCLUDE;
9152 continue;
9153 }
9154
9155 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9156 continue;
9157
9158 /* Allocate memory for the section contents. */
9159 s->contents = bfd_zalloc (dynobj, s->size);
9160 if (s->contents == NULL)
9161 {
9162 bfd_set_error (bfd_error_no_memory);
9163 return FALSE;
9164 }
9165 }
9166
9167 if (elf_hash_table (info)->dynamic_sections_created)
9168 {
9169 /* Add some entries to the .dynamic section. We fill in the
9170 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9171 must add the entries now so that we get the correct size for
9172 the .dynamic section. */
9173
9174 /* SGI object has the equivalence of DT_DEBUG in the
9175 DT_MIPS_RLD_MAP entry. This must come first because glibc
9176 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9177 may only look at the first one they see. */
9178 if (!info->shared
9179 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9180 return FALSE;
9181
9182 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9183 used by the debugger. */
9184 if (info->executable
9185 && !SGI_COMPAT (output_bfd)
9186 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9187 return FALSE;
9188
9189 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9190 info->flags |= DF_TEXTREL;
9191
9192 if ((info->flags & DF_TEXTREL) != 0)
9193 {
9194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9195 return FALSE;
9196
9197 /* Clear the DF_TEXTREL flag. It will be set again if we
9198 write out an actual text relocation; we may not, because
9199 at this point we do not know whether e.g. any .eh_frame
9200 absolute relocations have been converted to PC-relative. */
9201 info->flags &= ~DF_TEXTREL;
9202 }
9203
9204 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9205 return FALSE;
9206
9207 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9208 if (htab->is_vxworks)
9209 {
9210 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9211 use any of the DT_MIPS_* tags. */
9212 if (sreldyn && sreldyn->size > 0)
9213 {
9214 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9215 return FALSE;
9216
9217 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9218 return FALSE;
9219
9220 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9221 return FALSE;
9222 }
9223 }
9224 else
9225 {
9226 if (sreldyn && sreldyn->size > 0)
9227 {
9228 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9229 return FALSE;
9230
9231 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9232 return FALSE;
9233
9234 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9235 return FALSE;
9236 }
9237
9238 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9239 return FALSE;
9240
9241 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9242 return FALSE;
9243
9244 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9245 return FALSE;
9246
9247 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9248 return FALSE;
9249
9250 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9251 return FALSE;
9252
9253 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9254 return FALSE;
9255
9256 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9257 return FALSE;
9258
9259 if (IRIX_COMPAT (dynobj) == ict_irix5
9260 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9261 return FALSE;
9262
9263 if (IRIX_COMPAT (dynobj) == ict_irix6
9264 && (bfd_get_section_by_name
9265 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9266 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9267 return FALSE;
9268 }
9269 if (htab->splt->size > 0)
9270 {
9271 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9272 return FALSE;
9273
9274 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9275 return FALSE;
9276
9277 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9278 return FALSE;
9279
9280 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9281 return FALSE;
9282 }
9283 if (htab->is_vxworks
9284 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9285 return FALSE;
9286 }
9287
9288 return TRUE;
9289 }
9290 \f
9291 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9292 Adjust its R_ADDEND field so that it is correct for the output file.
9293 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9294 and sections respectively; both use symbol indexes. */
9295
9296 static void
9297 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9298 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9299 asection **local_sections, Elf_Internal_Rela *rel)
9300 {
9301 unsigned int r_type, r_symndx;
9302 Elf_Internal_Sym *sym;
9303 asection *sec;
9304
9305 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9306 {
9307 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9308 if (gprel16_reloc_p (r_type)
9309 || r_type == R_MIPS_GPREL32
9310 || literal_reloc_p (r_type))
9311 {
9312 rel->r_addend += _bfd_get_gp_value (input_bfd);
9313 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9314 }
9315
9316 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9317 sym = local_syms + r_symndx;
9318
9319 /* Adjust REL's addend to account for section merging. */
9320 if (!info->relocatable)
9321 {
9322 sec = local_sections[r_symndx];
9323 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9324 }
9325
9326 /* This would normally be done by the rela_normal code in elflink.c. */
9327 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9328 rel->r_addend += local_sections[r_symndx]->output_offset;
9329 }
9330 }
9331
9332 /* Handle relocations against symbols from removed linkonce sections,
9333 or sections discarded by a linker script. We use this wrapper around
9334 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9335 on 64-bit ELF targets. In this case for any relocation handled, which
9336 always be the first in a triplet, the remaining two have to be processed
9337 together with the first, even if they are R_MIPS_NONE. It is the symbol
9338 index referred by the first reloc that applies to all the three and the
9339 remaining two never refer to an object symbol. And it is the final
9340 relocation (the last non-null one) that determines the output field of
9341 the whole relocation so retrieve the corresponding howto structure for
9342 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9343
9344 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9345 and therefore requires to be pasted in a loop. It also defines a block
9346 and does not protect any of its arguments, hence the extra brackets. */
9347
9348 static void
9349 mips_reloc_against_discarded_section (bfd *output_bfd,
9350 struct bfd_link_info *info,
9351 bfd *input_bfd, asection *input_section,
9352 Elf_Internal_Rela **rel,
9353 const Elf_Internal_Rela **relend,
9354 bfd_boolean rel_reloc,
9355 reloc_howto_type *howto,
9356 bfd_byte *contents)
9357 {
9358 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9359 int count = bed->s->int_rels_per_ext_rel;
9360 unsigned int r_type;
9361 int i;
9362
9363 for (i = count - 1; i > 0; i--)
9364 {
9365 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9366 if (r_type != R_MIPS_NONE)
9367 {
9368 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9369 break;
9370 }
9371 }
9372 do
9373 {
9374 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9375 (*rel), count, (*relend),
9376 howto, i, contents);
9377 }
9378 while (0);
9379 }
9380
9381 /* Relocate a MIPS ELF section. */
9382
9383 bfd_boolean
9384 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9385 bfd *input_bfd, asection *input_section,
9386 bfd_byte *contents, Elf_Internal_Rela *relocs,
9387 Elf_Internal_Sym *local_syms,
9388 asection **local_sections)
9389 {
9390 Elf_Internal_Rela *rel;
9391 const Elf_Internal_Rela *relend;
9392 bfd_vma addend = 0;
9393 bfd_boolean use_saved_addend_p = FALSE;
9394 const struct elf_backend_data *bed;
9395
9396 bed = get_elf_backend_data (output_bfd);
9397 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9398 for (rel = relocs; rel < relend; ++rel)
9399 {
9400 const char *name;
9401 bfd_vma value = 0;
9402 reloc_howto_type *howto;
9403 bfd_boolean cross_mode_jump_p;
9404 /* TRUE if the relocation is a RELA relocation, rather than a
9405 REL relocation. */
9406 bfd_boolean rela_relocation_p = TRUE;
9407 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9408 const char *msg;
9409 unsigned long r_symndx;
9410 asection *sec;
9411 Elf_Internal_Shdr *symtab_hdr;
9412 struct elf_link_hash_entry *h;
9413 bfd_boolean rel_reloc;
9414
9415 rel_reloc = (NEWABI_P (input_bfd)
9416 && mips_elf_rel_relocation_p (input_bfd, input_section,
9417 relocs, rel));
9418 /* Find the relocation howto for this relocation. */
9419 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9420
9421 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9422 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9423 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9424 {
9425 sec = local_sections[r_symndx];
9426 h = NULL;
9427 }
9428 else
9429 {
9430 unsigned long extsymoff;
9431
9432 extsymoff = 0;
9433 if (!elf_bad_symtab (input_bfd))
9434 extsymoff = symtab_hdr->sh_info;
9435 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9436 while (h->root.type == bfd_link_hash_indirect
9437 || h->root.type == bfd_link_hash_warning)
9438 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9439
9440 sec = NULL;
9441 if (h->root.type == bfd_link_hash_defined
9442 || h->root.type == bfd_link_hash_defweak)
9443 sec = h->root.u.def.section;
9444 }
9445
9446 if (sec != NULL && discarded_section (sec))
9447 {
9448 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9449 input_section, &rel, &relend,
9450 rel_reloc, howto, contents);
9451 continue;
9452 }
9453
9454 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9455 {
9456 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9457 64-bit code, but make sure all their addresses are in the
9458 lowermost or uppermost 32-bit section of the 64-bit address
9459 space. Thus, when they use an R_MIPS_64 they mean what is
9460 usually meant by R_MIPS_32, with the exception that the
9461 stored value is sign-extended to 64 bits. */
9462 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9463
9464 /* On big-endian systems, we need to lie about the position
9465 of the reloc. */
9466 if (bfd_big_endian (input_bfd))
9467 rel->r_offset += 4;
9468 }
9469
9470 if (!use_saved_addend_p)
9471 {
9472 /* If these relocations were originally of the REL variety,
9473 we must pull the addend out of the field that will be
9474 relocated. Otherwise, we simply use the contents of the
9475 RELA relocation. */
9476 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9477 relocs, rel))
9478 {
9479 rela_relocation_p = FALSE;
9480 addend = mips_elf_read_rel_addend (input_bfd, rel,
9481 howto, contents);
9482 if (hi16_reloc_p (r_type)
9483 || (got16_reloc_p (r_type)
9484 && mips_elf_local_relocation_p (input_bfd, rel,
9485 local_sections)))
9486 {
9487 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9488 contents, &addend))
9489 {
9490 if (h)
9491 name = h->root.root.string;
9492 else
9493 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9494 local_syms + r_symndx,
9495 sec);
9496 (*_bfd_error_handler)
9497 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9498 input_bfd, input_section, name, howto->name,
9499 rel->r_offset);
9500 }
9501 }
9502 else
9503 addend <<= howto->rightshift;
9504 }
9505 else
9506 addend = rel->r_addend;
9507 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9508 local_syms, local_sections, rel);
9509 }
9510
9511 if (info->relocatable)
9512 {
9513 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9514 && bfd_big_endian (input_bfd))
9515 rel->r_offset -= 4;
9516
9517 if (!rela_relocation_p && rel->r_addend)
9518 {
9519 addend += rel->r_addend;
9520 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9521 addend = mips_elf_high (addend);
9522 else if (r_type == R_MIPS_HIGHER)
9523 addend = mips_elf_higher (addend);
9524 else if (r_type == R_MIPS_HIGHEST)
9525 addend = mips_elf_highest (addend);
9526 else
9527 addend >>= howto->rightshift;
9528
9529 /* We use the source mask, rather than the destination
9530 mask because the place to which we are writing will be
9531 source of the addend in the final link. */
9532 addend &= howto->src_mask;
9533
9534 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9535 /* See the comment above about using R_MIPS_64 in the 32-bit
9536 ABI. Here, we need to update the addend. It would be
9537 possible to get away with just using the R_MIPS_32 reloc
9538 but for endianness. */
9539 {
9540 bfd_vma sign_bits;
9541 bfd_vma low_bits;
9542 bfd_vma high_bits;
9543
9544 if (addend & ((bfd_vma) 1 << 31))
9545 #ifdef BFD64
9546 sign_bits = ((bfd_vma) 1 << 32) - 1;
9547 #else
9548 sign_bits = -1;
9549 #endif
9550 else
9551 sign_bits = 0;
9552
9553 /* If we don't know that we have a 64-bit type,
9554 do two separate stores. */
9555 if (bfd_big_endian (input_bfd))
9556 {
9557 /* Store the sign-bits (which are most significant)
9558 first. */
9559 low_bits = sign_bits;
9560 high_bits = addend;
9561 }
9562 else
9563 {
9564 low_bits = addend;
9565 high_bits = sign_bits;
9566 }
9567 bfd_put_32 (input_bfd, low_bits,
9568 contents + rel->r_offset);
9569 bfd_put_32 (input_bfd, high_bits,
9570 contents + rel->r_offset + 4);
9571 continue;
9572 }
9573
9574 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9575 input_bfd, input_section,
9576 contents, FALSE))
9577 return FALSE;
9578 }
9579
9580 /* Go on to the next relocation. */
9581 continue;
9582 }
9583
9584 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9585 relocations for the same offset. In that case we are
9586 supposed to treat the output of each relocation as the addend
9587 for the next. */
9588 if (rel + 1 < relend
9589 && rel->r_offset == rel[1].r_offset
9590 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9591 use_saved_addend_p = TRUE;
9592 else
9593 use_saved_addend_p = FALSE;
9594
9595 /* Figure out what value we are supposed to relocate. */
9596 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9597 input_section, info, rel,
9598 addend, howto, local_syms,
9599 local_sections, &value,
9600 &name, &cross_mode_jump_p,
9601 use_saved_addend_p))
9602 {
9603 case bfd_reloc_continue:
9604 /* There's nothing to do. */
9605 continue;
9606
9607 case bfd_reloc_undefined:
9608 /* mips_elf_calculate_relocation already called the
9609 undefined_symbol callback. There's no real point in
9610 trying to perform the relocation at this point, so we
9611 just skip ahead to the next relocation. */
9612 continue;
9613
9614 case bfd_reloc_notsupported:
9615 msg = _("internal error: unsupported relocation error");
9616 info->callbacks->warning
9617 (info, msg, name, input_bfd, input_section, rel->r_offset);
9618 return FALSE;
9619
9620 case bfd_reloc_overflow:
9621 if (use_saved_addend_p)
9622 /* Ignore overflow until we reach the last relocation for
9623 a given location. */
9624 ;
9625 else
9626 {
9627 struct mips_elf_link_hash_table *htab;
9628
9629 htab = mips_elf_hash_table (info);
9630 BFD_ASSERT (htab != NULL);
9631 BFD_ASSERT (name != NULL);
9632 if (!htab->small_data_overflow_reported
9633 && (gprel16_reloc_p (howto->type)
9634 || literal_reloc_p (howto->type)))
9635 {
9636 msg = _("small-data section exceeds 64KB;"
9637 " lower small-data size limit (see option -G)");
9638
9639 htab->small_data_overflow_reported = TRUE;
9640 (*info->callbacks->einfo) ("%P: %s\n", msg);
9641 }
9642 if (! ((*info->callbacks->reloc_overflow)
9643 (info, NULL, name, howto->name, (bfd_vma) 0,
9644 input_bfd, input_section, rel->r_offset)))
9645 return FALSE;
9646 }
9647 break;
9648
9649 case bfd_reloc_ok:
9650 break;
9651
9652 case bfd_reloc_outofrange:
9653 if (jal_reloc_p (howto->type))
9654 {
9655 msg = _("JALX to a non-word-aligned address");
9656 info->callbacks->warning
9657 (info, msg, name, input_bfd, input_section, rel->r_offset);
9658 return FALSE;
9659 }
9660 /* Fall through. */
9661
9662 default:
9663 abort ();
9664 break;
9665 }
9666
9667 /* If we've got another relocation for the address, keep going
9668 until we reach the last one. */
9669 if (use_saved_addend_p)
9670 {
9671 addend = value;
9672 continue;
9673 }
9674
9675 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9676 /* See the comment above about using R_MIPS_64 in the 32-bit
9677 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9678 that calculated the right value. Now, however, we
9679 sign-extend the 32-bit result to 64-bits, and store it as a
9680 64-bit value. We are especially generous here in that we
9681 go to extreme lengths to support this usage on systems with
9682 only a 32-bit VMA. */
9683 {
9684 bfd_vma sign_bits;
9685 bfd_vma low_bits;
9686 bfd_vma high_bits;
9687
9688 if (value & ((bfd_vma) 1 << 31))
9689 #ifdef BFD64
9690 sign_bits = ((bfd_vma) 1 << 32) - 1;
9691 #else
9692 sign_bits = -1;
9693 #endif
9694 else
9695 sign_bits = 0;
9696
9697 /* If we don't know that we have a 64-bit type,
9698 do two separate stores. */
9699 if (bfd_big_endian (input_bfd))
9700 {
9701 /* Undo what we did above. */
9702 rel->r_offset -= 4;
9703 /* Store the sign-bits (which are most significant)
9704 first. */
9705 low_bits = sign_bits;
9706 high_bits = value;
9707 }
9708 else
9709 {
9710 low_bits = value;
9711 high_bits = sign_bits;
9712 }
9713 bfd_put_32 (input_bfd, low_bits,
9714 contents + rel->r_offset);
9715 bfd_put_32 (input_bfd, high_bits,
9716 contents + rel->r_offset + 4);
9717 continue;
9718 }
9719
9720 /* Actually perform the relocation. */
9721 if (! mips_elf_perform_relocation (info, howto, rel, value,
9722 input_bfd, input_section,
9723 contents, cross_mode_jump_p))
9724 return FALSE;
9725 }
9726
9727 return TRUE;
9728 }
9729 \f
9730 /* A function that iterates over each entry in la25_stubs and fills
9731 in the code for each one. DATA points to a mips_htab_traverse_info. */
9732
9733 static int
9734 mips_elf_create_la25_stub (void **slot, void *data)
9735 {
9736 struct mips_htab_traverse_info *hti;
9737 struct mips_elf_link_hash_table *htab;
9738 struct mips_elf_la25_stub *stub;
9739 asection *s;
9740 bfd_byte *loc;
9741 bfd_vma offset, target, target_high, target_low;
9742
9743 stub = (struct mips_elf_la25_stub *) *slot;
9744 hti = (struct mips_htab_traverse_info *) data;
9745 htab = mips_elf_hash_table (hti->info);
9746 BFD_ASSERT (htab != NULL);
9747
9748 /* Create the section contents, if we haven't already. */
9749 s = stub->stub_section;
9750 loc = s->contents;
9751 if (loc == NULL)
9752 {
9753 loc = bfd_malloc (s->size);
9754 if (loc == NULL)
9755 {
9756 hti->error = TRUE;
9757 return FALSE;
9758 }
9759 s->contents = loc;
9760 }
9761
9762 /* Work out where in the section this stub should go. */
9763 offset = stub->offset;
9764
9765 /* Work out the target address. */
9766 target = mips_elf_get_la25_target (stub, &s);
9767 target += s->output_section->vma + s->output_offset;
9768
9769 target_high = ((target + 0x8000) >> 16) & 0xffff;
9770 target_low = (target & 0xffff);
9771
9772 if (stub->stub_section != htab->strampoline)
9773 {
9774 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9775 of the section and write the two instructions at the end. */
9776 memset (loc, 0, offset);
9777 loc += offset;
9778 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9779 {
9780 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9781 loc);
9782 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9783 loc + 2);
9784 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9785 loc + 4);
9786 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9787 loc + 6);
9788 }
9789 else
9790 {
9791 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9792 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9793 }
9794 }
9795 else
9796 {
9797 /* This is trampoline. */
9798 loc += offset;
9799 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9800 {
9801 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9802 loc);
9803 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9804 loc + 2);
9805 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
9806 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
9807 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9808 loc + 8);
9809 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9810 loc + 10);
9811 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9812 }
9813 else
9814 {
9815 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9816 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9817 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9818 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9819 }
9820 }
9821 return TRUE;
9822 }
9823
9824 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9825 adjust it appropriately now. */
9826
9827 static void
9828 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9829 const char *name, Elf_Internal_Sym *sym)
9830 {
9831 /* The linker script takes care of providing names and values for
9832 these, but we must place them into the right sections. */
9833 static const char* const text_section_symbols[] = {
9834 "_ftext",
9835 "_etext",
9836 "__dso_displacement",
9837 "__elf_header",
9838 "__program_header_table",
9839 NULL
9840 };
9841
9842 static const char* const data_section_symbols[] = {
9843 "_fdata",
9844 "_edata",
9845 "_end",
9846 "_fbss",
9847 NULL
9848 };
9849
9850 const char* const *p;
9851 int i;
9852
9853 for (i = 0; i < 2; ++i)
9854 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9855 *p;
9856 ++p)
9857 if (strcmp (*p, name) == 0)
9858 {
9859 /* All of these symbols are given type STT_SECTION by the
9860 IRIX6 linker. */
9861 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9862 sym->st_other = STO_PROTECTED;
9863
9864 /* The IRIX linker puts these symbols in special sections. */
9865 if (i == 0)
9866 sym->st_shndx = SHN_MIPS_TEXT;
9867 else
9868 sym->st_shndx = SHN_MIPS_DATA;
9869
9870 break;
9871 }
9872 }
9873
9874 /* Finish up dynamic symbol handling. We set the contents of various
9875 dynamic sections here. */
9876
9877 bfd_boolean
9878 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9879 struct bfd_link_info *info,
9880 struct elf_link_hash_entry *h,
9881 Elf_Internal_Sym *sym)
9882 {
9883 bfd *dynobj;
9884 asection *sgot;
9885 struct mips_got_info *g, *gg;
9886 const char *name;
9887 int idx;
9888 struct mips_elf_link_hash_table *htab;
9889 struct mips_elf_link_hash_entry *hmips;
9890
9891 htab = mips_elf_hash_table (info);
9892 BFD_ASSERT (htab != NULL);
9893 dynobj = elf_hash_table (info)->dynobj;
9894 hmips = (struct mips_elf_link_hash_entry *) h;
9895
9896 BFD_ASSERT (!htab->is_vxworks);
9897
9898 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9899 {
9900 /* We've decided to create a PLT entry for this symbol. */
9901 bfd_byte *loc;
9902 bfd_vma header_address, plt_index, got_address;
9903 bfd_vma got_address_high, got_address_low, load;
9904 const bfd_vma *plt_entry;
9905
9906 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9907 BFD_ASSERT (h->dynindx != -1);
9908 BFD_ASSERT (htab->splt != NULL);
9909 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9910 BFD_ASSERT (!h->def_regular);
9911
9912 /* Calculate the address of the PLT header. */
9913 header_address = (htab->splt->output_section->vma
9914 + htab->splt->output_offset);
9915
9916 /* Calculate the index of the entry. */
9917 plt_index = ((h->plt.offset - htab->plt_header_size)
9918 / htab->plt_entry_size);
9919
9920 /* Calculate the address of the .got.plt entry. */
9921 got_address = (htab->sgotplt->output_section->vma
9922 + htab->sgotplt->output_offset
9923 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9924 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9925 got_address_low = got_address & 0xffff;
9926
9927 /* Initially point the .got.plt entry at the PLT header. */
9928 loc = (htab->sgotplt->contents
9929 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9930 if (ABI_64_P (output_bfd))
9931 bfd_put_64 (output_bfd, header_address, loc);
9932 else
9933 bfd_put_32 (output_bfd, header_address, loc);
9934
9935 /* Find out where the .plt entry should go. */
9936 loc = htab->splt->contents + h->plt.offset;
9937
9938 /* Pick the load opcode. */
9939 load = MIPS_ELF_LOAD_WORD (output_bfd);
9940
9941 /* Fill in the PLT entry itself. */
9942 plt_entry = mips_exec_plt_entry;
9943 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9944 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9945
9946 if (! LOAD_INTERLOCKS_P (output_bfd))
9947 {
9948 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9949 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9950 }
9951 else
9952 {
9953 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9954 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9955 }
9956
9957 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9958 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9959 plt_index, h->dynindx,
9960 R_MIPS_JUMP_SLOT, got_address);
9961
9962 /* We distinguish between PLT entries and lazy-binding stubs by
9963 giving the former an st_other value of STO_MIPS_PLT. Set the
9964 flag and leave the value if there are any relocations in the
9965 binary where pointer equality matters. */
9966 sym->st_shndx = SHN_UNDEF;
9967 if (h->pointer_equality_needed)
9968 sym->st_other = STO_MIPS_PLT;
9969 else
9970 sym->st_value = 0;
9971 }
9972 else if (h->plt.offset != MINUS_ONE)
9973 {
9974 /* We've decided to create a lazy-binding stub. */
9975 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9976
9977 /* This symbol has a stub. Set it up. */
9978
9979 BFD_ASSERT (h->dynindx != -1);
9980
9981 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9982 || (h->dynindx <= 0xffff));
9983
9984 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9985 sign extension at runtime in the stub, resulting in a negative
9986 index value. */
9987 if (h->dynindx & ~0x7fffffff)
9988 return FALSE;
9989
9990 /* Fill the stub. */
9991 idx = 0;
9992 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9993 idx += 4;
9994 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9995 idx += 4;
9996 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9997 {
9998 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9999 stub + idx);
10000 idx += 4;
10001 }
10002 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10003 idx += 4;
10004
10005 /* If a large stub is not required and sign extension is not a
10006 problem, then use legacy code in the stub. */
10007 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10008 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
10009 else if (h->dynindx & ~0x7fff)
10010 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
10011 else
10012 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10013 stub + idx);
10014
10015 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
10016 memcpy (htab->sstubs->contents + h->plt.offset,
10017 stub, htab->function_stub_size);
10018
10019 /* Mark the symbol as undefined. plt.offset != -1 occurs
10020 only for the referenced symbol. */
10021 sym->st_shndx = SHN_UNDEF;
10022
10023 /* The run-time linker uses the st_value field of the symbol
10024 to reset the global offset table entry for this external
10025 to its stub address when unlinking a shared object. */
10026 sym->st_value = (htab->sstubs->output_section->vma
10027 + htab->sstubs->output_offset
10028 + h->plt.offset);
10029 }
10030
10031 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10032 refer to the stub, since only the stub uses the standard calling
10033 conventions. */
10034 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10035 {
10036 BFD_ASSERT (hmips->need_fn_stub);
10037 sym->st_value = (hmips->fn_stub->output_section->vma
10038 + hmips->fn_stub->output_offset);
10039 sym->st_size = hmips->fn_stub->size;
10040 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10041 }
10042
10043 BFD_ASSERT (h->dynindx != -1
10044 || h->forced_local);
10045
10046 sgot = htab->sgot;
10047 g = htab->got_info;
10048 BFD_ASSERT (g != NULL);
10049
10050 /* Run through the global symbol table, creating GOT entries for all
10051 the symbols that need them. */
10052 if (hmips->global_got_area != GGA_NONE)
10053 {
10054 bfd_vma offset;
10055 bfd_vma value;
10056
10057 value = sym->st_value;
10058 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10059 R_MIPS_GOT16, info);
10060 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10061 }
10062
10063 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
10064 {
10065 struct mips_got_entry e, *p;
10066 bfd_vma entry;
10067 bfd_vma offset;
10068
10069 gg = g;
10070
10071 e.abfd = output_bfd;
10072 e.symndx = -1;
10073 e.d.h = hmips;
10074 e.tls_type = 0;
10075
10076 for (g = g->next; g->next != gg; g = g->next)
10077 {
10078 if (g->got_entries
10079 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10080 &e)))
10081 {
10082 offset = p->gotidx;
10083 if (info->shared
10084 || (elf_hash_table (info)->dynamic_sections_created
10085 && p->d.h != NULL
10086 && p->d.h->root.def_dynamic
10087 && !p->d.h->root.def_regular))
10088 {
10089 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10090 the various compatibility problems, it's easier to mock
10091 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10092 mips_elf_create_dynamic_relocation to calculate the
10093 appropriate addend. */
10094 Elf_Internal_Rela rel[3];
10095
10096 memset (rel, 0, sizeof (rel));
10097 if (ABI_64_P (output_bfd))
10098 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10099 else
10100 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10101 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10102
10103 entry = 0;
10104 if (! (mips_elf_create_dynamic_relocation
10105 (output_bfd, info, rel,
10106 e.d.h, NULL, sym->st_value, &entry, sgot)))
10107 return FALSE;
10108 }
10109 else
10110 entry = sym->st_value;
10111 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10112 }
10113 }
10114 }
10115
10116 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10117 name = h->root.root.string;
10118 if (strcmp (name, "_DYNAMIC") == 0
10119 || h == elf_hash_table (info)->hgot)
10120 sym->st_shndx = SHN_ABS;
10121 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10122 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10123 {
10124 sym->st_shndx = SHN_ABS;
10125 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10126 sym->st_value = 1;
10127 }
10128 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10129 {
10130 sym->st_shndx = SHN_ABS;
10131 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10132 sym->st_value = elf_gp (output_bfd);
10133 }
10134 else if (SGI_COMPAT (output_bfd))
10135 {
10136 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10137 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10138 {
10139 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10140 sym->st_other = STO_PROTECTED;
10141 sym->st_value = 0;
10142 sym->st_shndx = SHN_MIPS_DATA;
10143 }
10144 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10145 {
10146 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10147 sym->st_other = STO_PROTECTED;
10148 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10149 sym->st_shndx = SHN_ABS;
10150 }
10151 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10152 {
10153 if (h->type == STT_FUNC)
10154 sym->st_shndx = SHN_MIPS_TEXT;
10155 else if (h->type == STT_OBJECT)
10156 sym->st_shndx = SHN_MIPS_DATA;
10157 }
10158 }
10159
10160 /* Emit a copy reloc, if needed. */
10161 if (h->needs_copy)
10162 {
10163 asection *s;
10164 bfd_vma symval;
10165
10166 BFD_ASSERT (h->dynindx != -1);
10167 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10168
10169 s = mips_elf_rel_dyn_section (info, FALSE);
10170 symval = (h->root.u.def.section->output_section->vma
10171 + h->root.u.def.section->output_offset
10172 + h->root.u.def.value);
10173 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10174 h->dynindx, R_MIPS_COPY, symval);
10175 }
10176
10177 /* Handle the IRIX6-specific symbols. */
10178 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10179 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10180
10181 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10182 treat MIPS16 symbols like any other. */
10183 if (ELF_ST_IS_MIPS16 (sym->st_other))
10184 {
10185 BFD_ASSERT (sym->st_value & 1);
10186 sym->st_other -= STO_MIPS16;
10187 }
10188
10189 return TRUE;
10190 }
10191
10192 /* Likewise, for VxWorks. */
10193
10194 bfd_boolean
10195 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10196 struct bfd_link_info *info,
10197 struct elf_link_hash_entry *h,
10198 Elf_Internal_Sym *sym)
10199 {
10200 bfd *dynobj;
10201 asection *sgot;
10202 struct mips_got_info *g;
10203 struct mips_elf_link_hash_table *htab;
10204 struct mips_elf_link_hash_entry *hmips;
10205
10206 htab = mips_elf_hash_table (info);
10207 BFD_ASSERT (htab != NULL);
10208 dynobj = elf_hash_table (info)->dynobj;
10209 hmips = (struct mips_elf_link_hash_entry *) h;
10210
10211 if (h->plt.offset != (bfd_vma) -1)
10212 {
10213 bfd_byte *loc;
10214 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10215 Elf_Internal_Rela rel;
10216 static const bfd_vma *plt_entry;
10217
10218 BFD_ASSERT (h->dynindx != -1);
10219 BFD_ASSERT (htab->splt != NULL);
10220 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10221
10222 /* Calculate the address of the .plt entry. */
10223 plt_address = (htab->splt->output_section->vma
10224 + htab->splt->output_offset
10225 + h->plt.offset);
10226
10227 /* Calculate the index of the entry. */
10228 plt_index = ((h->plt.offset - htab->plt_header_size)
10229 / htab->plt_entry_size);
10230
10231 /* Calculate the address of the .got.plt entry. */
10232 got_address = (htab->sgotplt->output_section->vma
10233 + htab->sgotplt->output_offset
10234 + plt_index * 4);
10235
10236 /* Calculate the offset of the .got.plt entry from
10237 _GLOBAL_OFFSET_TABLE_. */
10238 got_offset = mips_elf_gotplt_index (info, h);
10239
10240 /* Calculate the offset for the branch at the start of the PLT
10241 entry. The branch jumps to the beginning of .plt. */
10242 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10243
10244 /* Fill in the initial value of the .got.plt entry. */
10245 bfd_put_32 (output_bfd, plt_address,
10246 htab->sgotplt->contents + plt_index * 4);
10247
10248 /* Find out where the .plt entry should go. */
10249 loc = htab->splt->contents + h->plt.offset;
10250
10251 if (info->shared)
10252 {
10253 plt_entry = mips_vxworks_shared_plt_entry;
10254 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10255 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10256 }
10257 else
10258 {
10259 bfd_vma got_address_high, got_address_low;
10260
10261 plt_entry = mips_vxworks_exec_plt_entry;
10262 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10263 got_address_low = got_address & 0xffff;
10264
10265 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10266 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10267 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10268 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10269 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10270 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10271 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10272 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10273
10274 loc = (htab->srelplt2->contents
10275 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10276
10277 /* Emit a relocation for the .got.plt entry. */
10278 rel.r_offset = got_address;
10279 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10280 rel.r_addend = h->plt.offset;
10281 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10282
10283 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10284 loc += sizeof (Elf32_External_Rela);
10285 rel.r_offset = plt_address + 8;
10286 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10287 rel.r_addend = got_offset;
10288 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10289
10290 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10291 loc += sizeof (Elf32_External_Rela);
10292 rel.r_offset += 4;
10293 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10294 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10295 }
10296
10297 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10298 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10299 rel.r_offset = got_address;
10300 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10301 rel.r_addend = 0;
10302 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10303
10304 if (!h->def_regular)
10305 sym->st_shndx = SHN_UNDEF;
10306 }
10307
10308 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10309
10310 sgot = htab->sgot;
10311 g = htab->got_info;
10312 BFD_ASSERT (g != NULL);
10313
10314 /* See if this symbol has an entry in the GOT. */
10315 if (hmips->global_got_area != GGA_NONE)
10316 {
10317 bfd_vma offset;
10318 Elf_Internal_Rela outrel;
10319 bfd_byte *loc;
10320 asection *s;
10321
10322 /* Install the symbol value in the GOT. */
10323 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10324 R_MIPS_GOT16, info);
10325 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10326
10327 /* Add a dynamic relocation for it. */
10328 s = mips_elf_rel_dyn_section (info, FALSE);
10329 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10330 outrel.r_offset = (sgot->output_section->vma
10331 + sgot->output_offset
10332 + offset);
10333 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10334 outrel.r_addend = 0;
10335 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10336 }
10337
10338 /* Emit a copy reloc, if needed. */
10339 if (h->needs_copy)
10340 {
10341 Elf_Internal_Rela rel;
10342
10343 BFD_ASSERT (h->dynindx != -1);
10344
10345 rel.r_offset = (h->root.u.def.section->output_section->vma
10346 + h->root.u.def.section->output_offset
10347 + h->root.u.def.value);
10348 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10349 rel.r_addend = 0;
10350 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10351 htab->srelbss->contents
10352 + (htab->srelbss->reloc_count
10353 * sizeof (Elf32_External_Rela)));
10354 ++htab->srelbss->reloc_count;
10355 }
10356
10357 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10358 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10359 sym->st_value &= ~1;
10360
10361 return TRUE;
10362 }
10363
10364 /* Write out a plt0 entry to the beginning of .plt. */
10365
10366 static void
10367 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10368 {
10369 bfd_byte *loc;
10370 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10371 static const bfd_vma *plt_entry;
10372 struct mips_elf_link_hash_table *htab;
10373
10374 htab = mips_elf_hash_table (info);
10375 BFD_ASSERT (htab != NULL);
10376
10377 if (ABI_64_P (output_bfd))
10378 plt_entry = mips_n64_exec_plt0_entry;
10379 else if (ABI_N32_P (output_bfd))
10380 plt_entry = mips_n32_exec_plt0_entry;
10381 else
10382 plt_entry = mips_o32_exec_plt0_entry;
10383
10384 /* Calculate the value of .got.plt. */
10385 gotplt_value = (htab->sgotplt->output_section->vma
10386 + htab->sgotplt->output_offset);
10387 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10388 gotplt_value_low = gotplt_value & 0xffff;
10389
10390 /* The PLT sequence is not safe for N64 if .got.plt's address can
10391 not be loaded in two instructions. */
10392 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10393 || ~(gotplt_value | 0x7fffffff) == 0);
10394
10395 /* Install the PLT header. */
10396 loc = htab->splt->contents;
10397 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10398 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10399 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10400 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10401 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10402 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10403 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10404 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10405 }
10406
10407 /* Install the PLT header for a VxWorks executable and finalize the
10408 contents of .rela.plt.unloaded. */
10409
10410 static void
10411 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10412 {
10413 Elf_Internal_Rela rela;
10414 bfd_byte *loc;
10415 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10416 static const bfd_vma *plt_entry;
10417 struct mips_elf_link_hash_table *htab;
10418
10419 htab = mips_elf_hash_table (info);
10420 BFD_ASSERT (htab != NULL);
10421
10422 plt_entry = mips_vxworks_exec_plt0_entry;
10423
10424 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10425 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10426 + htab->root.hgot->root.u.def.section->output_offset
10427 + htab->root.hgot->root.u.def.value);
10428
10429 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10430 got_value_low = got_value & 0xffff;
10431
10432 /* Calculate the address of the PLT header. */
10433 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10434
10435 /* Install the PLT header. */
10436 loc = htab->splt->contents;
10437 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10438 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10439 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10440 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10441 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10442 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10443
10444 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10445 loc = htab->srelplt2->contents;
10446 rela.r_offset = plt_address;
10447 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10448 rela.r_addend = 0;
10449 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10450 loc += sizeof (Elf32_External_Rela);
10451
10452 /* Output the relocation for the following addiu of
10453 %lo(_GLOBAL_OFFSET_TABLE_). */
10454 rela.r_offset += 4;
10455 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10456 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10457 loc += sizeof (Elf32_External_Rela);
10458
10459 /* Fix up the remaining relocations. They may have the wrong
10460 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10461 in which symbols were output. */
10462 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10463 {
10464 Elf_Internal_Rela rel;
10465
10466 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10467 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10468 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10469 loc += sizeof (Elf32_External_Rela);
10470
10471 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10472 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10473 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10474 loc += sizeof (Elf32_External_Rela);
10475
10476 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10477 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10478 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10479 loc += sizeof (Elf32_External_Rela);
10480 }
10481 }
10482
10483 /* Install the PLT header for a VxWorks shared library. */
10484
10485 static void
10486 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10487 {
10488 unsigned int i;
10489 struct mips_elf_link_hash_table *htab;
10490
10491 htab = mips_elf_hash_table (info);
10492 BFD_ASSERT (htab != NULL);
10493
10494 /* We just need to copy the entry byte-by-byte. */
10495 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10496 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10497 htab->splt->contents + i * 4);
10498 }
10499
10500 /* Finish up the dynamic sections. */
10501
10502 bfd_boolean
10503 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10504 struct bfd_link_info *info)
10505 {
10506 bfd *dynobj;
10507 asection *sdyn;
10508 asection *sgot;
10509 struct mips_got_info *gg, *g;
10510 struct mips_elf_link_hash_table *htab;
10511
10512 htab = mips_elf_hash_table (info);
10513 BFD_ASSERT (htab != NULL);
10514
10515 dynobj = elf_hash_table (info)->dynobj;
10516
10517 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10518
10519 sgot = htab->sgot;
10520 gg = htab->got_info;
10521
10522 if (elf_hash_table (info)->dynamic_sections_created)
10523 {
10524 bfd_byte *b;
10525 int dyn_to_skip = 0, dyn_skipped = 0;
10526
10527 BFD_ASSERT (sdyn != NULL);
10528 BFD_ASSERT (gg != NULL);
10529
10530 g = mips_elf_got_for_ibfd (gg, output_bfd);
10531 BFD_ASSERT (g != NULL);
10532
10533 for (b = sdyn->contents;
10534 b < sdyn->contents + sdyn->size;
10535 b += MIPS_ELF_DYN_SIZE (dynobj))
10536 {
10537 Elf_Internal_Dyn dyn;
10538 const char *name;
10539 size_t elemsize;
10540 asection *s;
10541 bfd_boolean swap_out_p;
10542
10543 /* Read in the current dynamic entry. */
10544 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10545
10546 /* Assume that we're going to modify it and write it out. */
10547 swap_out_p = TRUE;
10548
10549 switch (dyn.d_tag)
10550 {
10551 case DT_RELENT:
10552 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10553 break;
10554
10555 case DT_RELAENT:
10556 BFD_ASSERT (htab->is_vxworks);
10557 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10558 break;
10559
10560 case DT_STRSZ:
10561 /* Rewrite DT_STRSZ. */
10562 dyn.d_un.d_val =
10563 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10564 break;
10565
10566 case DT_PLTGOT:
10567 s = htab->sgot;
10568 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10569 break;
10570
10571 case DT_MIPS_PLTGOT:
10572 s = htab->sgotplt;
10573 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10574 break;
10575
10576 case DT_MIPS_RLD_VERSION:
10577 dyn.d_un.d_val = 1; /* XXX */
10578 break;
10579
10580 case DT_MIPS_FLAGS:
10581 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10582 break;
10583
10584 case DT_MIPS_TIME_STAMP:
10585 {
10586 time_t t;
10587 time (&t);
10588 dyn.d_un.d_val = t;
10589 }
10590 break;
10591
10592 case DT_MIPS_ICHECKSUM:
10593 /* XXX FIXME: */
10594 swap_out_p = FALSE;
10595 break;
10596
10597 case DT_MIPS_IVERSION:
10598 /* XXX FIXME: */
10599 swap_out_p = FALSE;
10600 break;
10601
10602 case DT_MIPS_BASE_ADDRESS:
10603 s = output_bfd->sections;
10604 BFD_ASSERT (s != NULL);
10605 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10606 break;
10607
10608 case DT_MIPS_LOCAL_GOTNO:
10609 dyn.d_un.d_val = g->local_gotno;
10610 break;
10611
10612 case DT_MIPS_UNREFEXTNO:
10613 /* The index into the dynamic symbol table which is the
10614 entry of the first external symbol that is not
10615 referenced within the same object. */
10616 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10617 break;
10618
10619 case DT_MIPS_GOTSYM:
10620 if (gg->global_gotsym)
10621 {
10622 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10623 break;
10624 }
10625 /* In case if we don't have global got symbols we default
10626 to setting DT_MIPS_GOTSYM to the same value as
10627 DT_MIPS_SYMTABNO, so we just fall through. */
10628
10629 case DT_MIPS_SYMTABNO:
10630 name = ".dynsym";
10631 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10632 s = bfd_get_section_by_name (output_bfd, name);
10633 BFD_ASSERT (s != NULL);
10634
10635 dyn.d_un.d_val = s->size / elemsize;
10636 break;
10637
10638 case DT_MIPS_HIPAGENO:
10639 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10640 break;
10641
10642 case DT_MIPS_RLD_MAP:
10643 {
10644 struct elf_link_hash_entry *h;
10645 h = mips_elf_hash_table (info)->rld_symbol;
10646 if (!h)
10647 {
10648 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10649 swap_out_p = FALSE;
10650 break;
10651 }
10652 s = h->root.u.def.section;
10653 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10654 + h->root.u.def.value);
10655 }
10656 break;
10657
10658 case DT_MIPS_OPTIONS:
10659 s = (bfd_get_section_by_name
10660 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10661 dyn.d_un.d_ptr = s->vma;
10662 break;
10663
10664 case DT_RELASZ:
10665 BFD_ASSERT (htab->is_vxworks);
10666 /* The count does not include the JUMP_SLOT relocations. */
10667 if (htab->srelplt)
10668 dyn.d_un.d_val -= htab->srelplt->size;
10669 break;
10670
10671 case DT_PLTREL:
10672 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10673 if (htab->is_vxworks)
10674 dyn.d_un.d_val = DT_RELA;
10675 else
10676 dyn.d_un.d_val = DT_REL;
10677 break;
10678
10679 case DT_PLTRELSZ:
10680 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10681 dyn.d_un.d_val = htab->srelplt->size;
10682 break;
10683
10684 case DT_JMPREL:
10685 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10686 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10687 + htab->srelplt->output_offset);
10688 break;
10689
10690 case DT_TEXTREL:
10691 /* If we didn't need any text relocations after all, delete
10692 the dynamic tag. */
10693 if (!(info->flags & DF_TEXTREL))
10694 {
10695 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10696 swap_out_p = FALSE;
10697 }
10698 break;
10699
10700 case DT_FLAGS:
10701 /* If we didn't need any text relocations after all, clear
10702 DF_TEXTREL from DT_FLAGS. */
10703 if (!(info->flags & DF_TEXTREL))
10704 dyn.d_un.d_val &= ~DF_TEXTREL;
10705 else
10706 swap_out_p = FALSE;
10707 break;
10708
10709 default:
10710 swap_out_p = FALSE;
10711 if (htab->is_vxworks
10712 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10713 swap_out_p = TRUE;
10714 break;
10715 }
10716
10717 if (swap_out_p || dyn_skipped)
10718 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10719 (dynobj, &dyn, b - dyn_skipped);
10720
10721 if (dyn_to_skip)
10722 {
10723 dyn_skipped += dyn_to_skip;
10724 dyn_to_skip = 0;
10725 }
10726 }
10727
10728 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10729 if (dyn_skipped > 0)
10730 memset (b - dyn_skipped, 0, dyn_skipped);
10731 }
10732
10733 if (sgot != NULL && sgot->size > 0
10734 && !bfd_is_abs_section (sgot->output_section))
10735 {
10736 if (htab->is_vxworks)
10737 {
10738 /* The first entry of the global offset table points to the
10739 ".dynamic" section. The second is initialized by the
10740 loader and contains the shared library identifier.
10741 The third is also initialized by the loader and points
10742 to the lazy resolution stub. */
10743 MIPS_ELF_PUT_WORD (output_bfd,
10744 sdyn->output_offset + sdyn->output_section->vma,
10745 sgot->contents);
10746 MIPS_ELF_PUT_WORD (output_bfd, 0,
10747 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10748 MIPS_ELF_PUT_WORD (output_bfd, 0,
10749 sgot->contents
10750 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10751 }
10752 else
10753 {
10754 /* The first entry of the global offset table will be filled at
10755 runtime. The second entry will be used by some runtime loaders.
10756 This isn't the case of IRIX rld. */
10757 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10758 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10759 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10760 }
10761
10762 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10763 = MIPS_ELF_GOT_SIZE (output_bfd);
10764 }
10765
10766 /* Generate dynamic relocations for the non-primary gots. */
10767 if (gg != NULL && gg->next)
10768 {
10769 Elf_Internal_Rela rel[3];
10770 bfd_vma addend = 0;
10771
10772 memset (rel, 0, sizeof (rel));
10773 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10774
10775 for (g = gg->next; g->next != gg; g = g->next)
10776 {
10777 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10778 + g->next->tls_gotno;
10779
10780 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10781 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10782 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10783 sgot->contents
10784 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10785
10786 if (! info->shared)
10787 continue;
10788
10789 while (got_index < g->assigned_gotno)
10790 {
10791 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10792 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10793 if (!(mips_elf_create_dynamic_relocation
10794 (output_bfd, info, rel, NULL,
10795 bfd_abs_section_ptr,
10796 0, &addend, sgot)))
10797 return FALSE;
10798 BFD_ASSERT (addend == 0);
10799 }
10800 }
10801 }
10802
10803 /* The generation of dynamic relocations for the non-primary gots
10804 adds more dynamic relocations. We cannot count them until
10805 here. */
10806
10807 if (elf_hash_table (info)->dynamic_sections_created)
10808 {
10809 bfd_byte *b;
10810 bfd_boolean swap_out_p;
10811
10812 BFD_ASSERT (sdyn != NULL);
10813
10814 for (b = sdyn->contents;
10815 b < sdyn->contents + sdyn->size;
10816 b += MIPS_ELF_DYN_SIZE (dynobj))
10817 {
10818 Elf_Internal_Dyn dyn;
10819 asection *s;
10820
10821 /* Read in the current dynamic entry. */
10822 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10823
10824 /* Assume that we're going to modify it and write it out. */
10825 swap_out_p = TRUE;
10826
10827 switch (dyn.d_tag)
10828 {
10829 case DT_RELSZ:
10830 /* Reduce DT_RELSZ to account for any relocations we
10831 decided not to make. This is for the n64 irix rld,
10832 which doesn't seem to apply any relocations if there
10833 are trailing null entries. */
10834 s = mips_elf_rel_dyn_section (info, FALSE);
10835 dyn.d_un.d_val = (s->reloc_count
10836 * (ABI_64_P (output_bfd)
10837 ? sizeof (Elf64_Mips_External_Rel)
10838 : sizeof (Elf32_External_Rel)));
10839 /* Adjust the section size too. Tools like the prelinker
10840 can reasonably expect the values to the same. */
10841 elf_section_data (s->output_section)->this_hdr.sh_size
10842 = dyn.d_un.d_val;
10843 break;
10844
10845 default:
10846 swap_out_p = FALSE;
10847 break;
10848 }
10849
10850 if (swap_out_p)
10851 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10852 (dynobj, &dyn, b);
10853 }
10854 }
10855
10856 {
10857 asection *s;
10858 Elf32_compact_rel cpt;
10859
10860 if (SGI_COMPAT (output_bfd))
10861 {
10862 /* Write .compact_rel section out. */
10863 s = bfd_get_linker_section (dynobj, ".compact_rel");
10864 if (s != NULL)
10865 {
10866 cpt.id1 = 1;
10867 cpt.num = s->reloc_count;
10868 cpt.id2 = 2;
10869 cpt.offset = (s->output_section->filepos
10870 + sizeof (Elf32_External_compact_rel));
10871 cpt.reserved0 = 0;
10872 cpt.reserved1 = 0;
10873 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10874 ((Elf32_External_compact_rel *)
10875 s->contents));
10876
10877 /* Clean up a dummy stub function entry in .text. */
10878 if (htab->sstubs != NULL)
10879 {
10880 file_ptr dummy_offset;
10881
10882 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10883 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10884 memset (htab->sstubs->contents + dummy_offset, 0,
10885 htab->function_stub_size);
10886 }
10887 }
10888 }
10889
10890 /* The psABI says that the dynamic relocations must be sorted in
10891 increasing order of r_symndx. The VxWorks EABI doesn't require
10892 this, and because the code below handles REL rather than RELA
10893 relocations, using it for VxWorks would be outright harmful. */
10894 if (!htab->is_vxworks)
10895 {
10896 s = mips_elf_rel_dyn_section (info, FALSE);
10897 if (s != NULL
10898 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10899 {
10900 reldyn_sorting_bfd = output_bfd;
10901
10902 if (ABI_64_P (output_bfd))
10903 qsort ((Elf64_External_Rel *) s->contents + 1,
10904 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10905 sort_dynamic_relocs_64);
10906 else
10907 qsort ((Elf32_External_Rel *) s->contents + 1,
10908 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10909 sort_dynamic_relocs);
10910 }
10911 }
10912 }
10913
10914 if (htab->splt && htab->splt->size > 0)
10915 {
10916 if (htab->is_vxworks)
10917 {
10918 if (info->shared)
10919 mips_vxworks_finish_shared_plt (output_bfd, info);
10920 else
10921 mips_vxworks_finish_exec_plt (output_bfd, info);
10922 }
10923 else
10924 {
10925 BFD_ASSERT (!info->shared);
10926 mips_finish_exec_plt (output_bfd, info);
10927 }
10928 }
10929 return TRUE;
10930 }
10931
10932
10933 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10934
10935 static void
10936 mips_set_isa_flags (bfd *abfd)
10937 {
10938 flagword val;
10939
10940 switch (bfd_get_mach (abfd))
10941 {
10942 default:
10943 case bfd_mach_mips3000:
10944 val = E_MIPS_ARCH_1;
10945 break;
10946
10947 case bfd_mach_mips3900:
10948 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10949 break;
10950
10951 case bfd_mach_mips6000:
10952 val = E_MIPS_ARCH_2;
10953 break;
10954
10955 case bfd_mach_mips4000:
10956 case bfd_mach_mips4300:
10957 case bfd_mach_mips4400:
10958 case bfd_mach_mips4600:
10959 val = E_MIPS_ARCH_3;
10960 break;
10961
10962 case bfd_mach_mips4010:
10963 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10964 break;
10965
10966 case bfd_mach_mips4100:
10967 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10968 break;
10969
10970 case bfd_mach_mips4111:
10971 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10972 break;
10973
10974 case bfd_mach_mips4120:
10975 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10976 break;
10977
10978 case bfd_mach_mips4650:
10979 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10980 break;
10981
10982 case bfd_mach_mips5400:
10983 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10984 break;
10985
10986 case bfd_mach_mips5500:
10987 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10988 break;
10989
10990 case bfd_mach_mips9000:
10991 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10992 break;
10993
10994 case bfd_mach_mips5000:
10995 case bfd_mach_mips7000:
10996 case bfd_mach_mips8000:
10997 case bfd_mach_mips10000:
10998 case bfd_mach_mips12000:
10999 case bfd_mach_mips14000:
11000 case bfd_mach_mips16000:
11001 val = E_MIPS_ARCH_4;
11002 break;
11003
11004 case bfd_mach_mips5:
11005 val = E_MIPS_ARCH_5;
11006 break;
11007
11008 case bfd_mach_mips_loongson_2e:
11009 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11010 break;
11011
11012 case bfd_mach_mips_loongson_2f:
11013 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11014 break;
11015
11016 case bfd_mach_mips_sb1:
11017 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11018 break;
11019
11020 case bfd_mach_mips_loongson_3a:
11021 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11022 break;
11023
11024 case bfd_mach_mips_octeon:
11025 case bfd_mach_mips_octeonp:
11026 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11027 break;
11028
11029 case bfd_mach_mips_xlr:
11030 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11031 break;
11032
11033 case bfd_mach_mips_octeon2:
11034 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11035 break;
11036
11037 case bfd_mach_mipsisa32:
11038 val = E_MIPS_ARCH_32;
11039 break;
11040
11041 case bfd_mach_mipsisa64:
11042 val = E_MIPS_ARCH_64;
11043 break;
11044
11045 case bfd_mach_mipsisa32r2:
11046 val = E_MIPS_ARCH_32R2;
11047 break;
11048
11049 case bfd_mach_mipsisa64r2:
11050 val = E_MIPS_ARCH_64R2;
11051 break;
11052 }
11053 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11054 elf_elfheader (abfd)->e_flags |= val;
11055
11056 }
11057
11058
11059 /* The final processing done just before writing out a MIPS ELF object
11060 file. This gets the MIPS architecture right based on the machine
11061 number. This is used by both the 32-bit and the 64-bit ABI. */
11062
11063 void
11064 _bfd_mips_elf_final_write_processing (bfd *abfd,
11065 bfd_boolean linker ATTRIBUTE_UNUSED)
11066 {
11067 unsigned int i;
11068 Elf_Internal_Shdr **hdrpp;
11069 const char *name;
11070 asection *sec;
11071
11072 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11073 is nonzero. This is for compatibility with old objects, which used
11074 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11075 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11076 mips_set_isa_flags (abfd);
11077
11078 /* Set the sh_info field for .gptab sections and other appropriate
11079 info for each special section. */
11080 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11081 i < elf_numsections (abfd);
11082 i++, hdrpp++)
11083 {
11084 switch ((*hdrpp)->sh_type)
11085 {
11086 case SHT_MIPS_MSYM:
11087 case SHT_MIPS_LIBLIST:
11088 sec = bfd_get_section_by_name (abfd, ".dynstr");
11089 if (sec != NULL)
11090 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11091 break;
11092
11093 case SHT_MIPS_GPTAB:
11094 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11095 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11096 BFD_ASSERT (name != NULL
11097 && CONST_STRNEQ (name, ".gptab."));
11098 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11099 BFD_ASSERT (sec != NULL);
11100 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11101 break;
11102
11103 case SHT_MIPS_CONTENT:
11104 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11105 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11106 BFD_ASSERT (name != NULL
11107 && CONST_STRNEQ (name, ".MIPS.content"));
11108 sec = bfd_get_section_by_name (abfd,
11109 name + sizeof ".MIPS.content" - 1);
11110 BFD_ASSERT (sec != NULL);
11111 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11112 break;
11113
11114 case SHT_MIPS_SYMBOL_LIB:
11115 sec = bfd_get_section_by_name (abfd, ".dynsym");
11116 if (sec != NULL)
11117 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11118 sec = bfd_get_section_by_name (abfd, ".liblist");
11119 if (sec != NULL)
11120 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11121 break;
11122
11123 case SHT_MIPS_EVENTS:
11124 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11125 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11126 BFD_ASSERT (name != NULL);
11127 if (CONST_STRNEQ (name, ".MIPS.events"))
11128 sec = bfd_get_section_by_name (abfd,
11129 name + sizeof ".MIPS.events" - 1);
11130 else
11131 {
11132 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11133 sec = bfd_get_section_by_name (abfd,
11134 (name
11135 + sizeof ".MIPS.post_rel" - 1));
11136 }
11137 BFD_ASSERT (sec != NULL);
11138 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11139 break;
11140
11141 }
11142 }
11143 }
11144 \f
11145 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11146 segments. */
11147
11148 int
11149 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11150 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11151 {
11152 asection *s;
11153 int ret = 0;
11154
11155 /* See if we need a PT_MIPS_REGINFO segment. */
11156 s = bfd_get_section_by_name (abfd, ".reginfo");
11157 if (s && (s->flags & SEC_LOAD))
11158 ++ret;
11159
11160 /* See if we need a PT_MIPS_OPTIONS segment. */
11161 if (IRIX_COMPAT (abfd) == ict_irix6
11162 && bfd_get_section_by_name (abfd,
11163 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11164 ++ret;
11165
11166 /* See if we need a PT_MIPS_RTPROC segment. */
11167 if (IRIX_COMPAT (abfd) == ict_irix5
11168 && bfd_get_section_by_name (abfd, ".dynamic")
11169 && bfd_get_section_by_name (abfd, ".mdebug"))
11170 ++ret;
11171
11172 /* Allocate a PT_NULL header in dynamic objects. See
11173 _bfd_mips_elf_modify_segment_map for details. */
11174 if (!SGI_COMPAT (abfd)
11175 && bfd_get_section_by_name (abfd, ".dynamic"))
11176 ++ret;
11177
11178 return ret;
11179 }
11180
11181 /* Modify the segment map for an IRIX5 executable. */
11182
11183 bfd_boolean
11184 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11185 struct bfd_link_info *info)
11186 {
11187 asection *s;
11188 struct elf_segment_map *m, **pm;
11189 bfd_size_type amt;
11190
11191 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11192 segment. */
11193 s = bfd_get_section_by_name (abfd, ".reginfo");
11194 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11195 {
11196 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11197 if (m->p_type == PT_MIPS_REGINFO)
11198 break;
11199 if (m == NULL)
11200 {
11201 amt = sizeof *m;
11202 m = bfd_zalloc (abfd, amt);
11203 if (m == NULL)
11204 return FALSE;
11205
11206 m->p_type = PT_MIPS_REGINFO;
11207 m->count = 1;
11208 m->sections[0] = s;
11209
11210 /* We want to put it after the PHDR and INTERP segments. */
11211 pm = &elf_tdata (abfd)->segment_map;
11212 while (*pm != NULL
11213 && ((*pm)->p_type == PT_PHDR
11214 || (*pm)->p_type == PT_INTERP))
11215 pm = &(*pm)->next;
11216
11217 m->next = *pm;
11218 *pm = m;
11219 }
11220 }
11221
11222 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11223 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11224 PT_MIPS_OPTIONS segment immediately following the program header
11225 table. */
11226 if (NEWABI_P (abfd)
11227 /* On non-IRIX6 new abi, we'll have already created a segment
11228 for this section, so don't create another. I'm not sure this
11229 is not also the case for IRIX 6, but I can't test it right
11230 now. */
11231 && IRIX_COMPAT (abfd) == ict_irix6)
11232 {
11233 for (s = abfd->sections; s; s = s->next)
11234 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11235 break;
11236
11237 if (s)
11238 {
11239 struct elf_segment_map *options_segment;
11240
11241 pm = &elf_tdata (abfd)->segment_map;
11242 while (*pm != NULL
11243 && ((*pm)->p_type == PT_PHDR
11244 || (*pm)->p_type == PT_INTERP))
11245 pm = &(*pm)->next;
11246
11247 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11248 {
11249 amt = sizeof (struct elf_segment_map);
11250 options_segment = bfd_zalloc (abfd, amt);
11251 options_segment->next = *pm;
11252 options_segment->p_type = PT_MIPS_OPTIONS;
11253 options_segment->p_flags = PF_R;
11254 options_segment->p_flags_valid = TRUE;
11255 options_segment->count = 1;
11256 options_segment->sections[0] = s;
11257 *pm = options_segment;
11258 }
11259 }
11260 }
11261 else
11262 {
11263 if (IRIX_COMPAT (abfd) == ict_irix5)
11264 {
11265 /* If there are .dynamic and .mdebug sections, we make a room
11266 for the RTPROC header. FIXME: Rewrite without section names. */
11267 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11268 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11269 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11270 {
11271 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11272 if (m->p_type == PT_MIPS_RTPROC)
11273 break;
11274 if (m == NULL)
11275 {
11276 amt = sizeof *m;
11277 m = bfd_zalloc (abfd, amt);
11278 if (m == NULL)
11279 return FALSE;
11280
11281 m->p_type = PT_MIPS_RTPROC;
11282
11283 s = bfd_get_section_by_name (abfd, ".rtproc");
11284 if (s == NULL)
11285 {
11286 m->count = 0;
11287 m->p_flags = 0;
11288 m->p_flags_valid = 1;
11289 }
11290 else
11291 {
11292 m->count = 1;
11293 m->sections[0] = s;
11294 }
11295
11296 /* We want to put it after the DYNAMIC segment. */
11297 pm = &elf_tdata (abfd)->segment_map;
11298 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11299 pm = &(*pm)->next;
11300 if (*pm != NULL)
11301 pm = &(*pm)->next;
11302
11303 m->next = *pm;
11304 *pm = m;
11305 }
11306 }
11307 }
11308 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11309 .dynstr, .dynsym, and .hash sections, and everything in
11310 between. */
11311 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11312 pm = &(*pm)->next)
11313 if ((*pm)->p_type == PT_DYNAMIC)
11314 break;
11315 m = *pm;
11316 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11317 {
11318 /* For a normal mips executable the permissions for the PT_DYNAMIC
11319 segment are read, write and execute. We do that here since
11320 the code in elf.c sets only the read permission. This matters
11321 sometimes for the dynamic linker. */
11322 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11323 {
11324 m->p_flags = PF_R | PF_W | PF_X;
11325 m->p_flags_valid = 1;
11326 }
11327 }
11328 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11329 glibc's dynamic linker has traditionally derived the number of
11330 tags from the p_filesz field, and sometimes allocates stack
11331 arrays of that size. An overly-big PT_DYNAMIC segment can
11332 be actively harmful in such cases. Making PT_DYNAMIC contain
11333 other sections can also make life hard for the prelinker,
11334 which might move one of the other sections to a different
11335 PT_LOAD segment. */
11336 if (SGI_COMPAT (abfd)
11337 && m != NULL
11338 && m->count == 1
11339 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11340 {
11341 static const char *sec_names[] =
11342 {
11343 ".dynamic", ".dynstr", ".dynsym", ".hash"
11344 };
11345 bfd_vma low, high;
11346 unsigned int i, c;
11347 struct elf_segment_map *n;
11348
11349 low = ~(bfd_vma) 0;
11350 high = 0;
11351 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11352 {
11353 s = bfd_get_section_by_name (abfd, sec_names[i]);
11354 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11355 {
11356 bfd_size_type sz;
11357
11358 if (low > s->vma)
11359 low = s->vma;
11360 sz = s->size;
11361 if (high < s->vma + sz)
11362 high = s->vma + sz;
11363 }
11364 }
11365
11366 c = 0;
11367 for (s = abfd->sections; s != NULL; s = s->next)
11368 if ((s->flags & SEC_LOAD) != 0
11369 && s->vma >= low
11370 && s->vma + s->size <= high)
11371 ++c;
11372
11373 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11374 n = bfd_zalloc (abfd, amt);
11375 if (n == NULL)
11376 return FALSE;
11377 *n = *m;
11378 n->count = c;
11379
11380 i = 0;
11381 for (s = abfd->sections; s != NULL; s = s->next)
11382 {
11383 if ((s->flags & SEC_LOAD) != 0
11384 && s->vma >= low
11385 && s->vma + s->size <= high)
11386 {
11387 n->sections[i] = s;
11388 ++i;
11389 }
11390 }
11391
11392 *pm = n;
11393 }
11394 }
11395
11396 /* Allocate a spare program header in dynamic objects so that tools
11397 like the prelinker can add an extra PT_LOAD entry.
11398
11399 If the prelinker needs to make room for a new PT_LOAD entry, its
11400 standard procedure is to move the first (read-only) sections into
11401 the new (writable) segment. However, the MIPS ABI requires
11402 .dynamic to be in a read-only segment, and the section will often
11403 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11404
11405 Although the prelinker could in principle move .dynamic to a
11406 writable segment, it seems better to allocate a spare program
11407 header instead, and avoid the need to move any sections.
11408 There is a long tradition of allocating spare dynamic tags,
11409 so allocating a spare program header seems like a natural
11410 extension.
11411
11412 If INFO is NULL, we may be copying an already prelinked binary
11413 with objcopy or strip, so do not add this header. */
11414 if (info != NULL
11415 && !SGI_COMPAT (abfd)
11416 && bfd_get_section_by_name (abfd, ".dynamic"))
11417 {
11418 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11419 if ((*pm)->p_type == PT_NULL)
11420 break;
11421 if (*pm == NULL)
11422 {
11423 m = bfd_zalloc (abfd, sizeof (*m));
11424 if (m == NULL)
11425 return FALSE;
11426
11427 m->p_type = PT_NULL;
11428 *pm = m;
11429 }
11430 }
11431
11432 return TRUE;
11433 }
11434 \f
11435 /* Return the section that should be marked against GC for a given
11436 relocation. */
11437
11438 asection *
11439 _bfd_mips_elf_gc_mark_hook (asection *sec,
11440 struct bfd_link_info *info,
11441 Elf_Internal_Rela *rel,
11442 struct elf_link_hash_entry *h,
11443 Elf_Internal_Sym *sym)
11444 {
11445 /* ??? Do mips16 stub sections need to be handled special? */
11446
11447 if (h != NULL)
11448 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11449 {
11450 case R_MIPS_GNU_VTINHERIT:
11451 case R_MIPS_GNU_VTENTRY:
11452 return NULL;
11453 }
11454
11455 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11456 }
11457
11458 /* Update the got entry reference counts for the section being removed. */
11459
11460 bfd_boolean
11461 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11462 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11463 asection *sec ATTRIBUTE_UNUSED,
11464 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11465 {
11466 #if 0
11467 Elf_Internal_Shdr *symtab_hdr;
11468 struct elf_link_hash_entry **sym_hashes;
11469 bfd_signed_vma *local_got_refcounts;
11470 const Elf_Internal_Rela *rel, *relend;
11471 unsigned long r_symndx;
11472 struct elf_link_hash_entry *h;
11473
11474 if (info->relocatable)
11475 return TRUE;
11476
11477 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11478 sym_hashes = elf_sym_hashes (abfd);
11479 local_got_refcounts = elf_local_got_refcounts (abfd);
11480
11481 relend = relocs + sec->reloc_count;
11482 for (rel = relocs; rel < relend; rel++)
11483 switch (ELF_R_TYPE (abfd, rel->r_info))
11484 {
11485 case R_MIPS16_GOT16:
11486 case R_MIPS16_CALL16:
11487 case R_MIPS_GOT16:
11488 case R_MIPS_CALL16:
11489 case R_MIPS_CALL_HI16:
11490 case R_MIPS_CALL_LO16:
11491 case R_MIPS_GOT_HI16:
11492 case R_MIPS_GOT_LO16:
11493 case R_MIPS_GOT_DISP:
11494 case R_MIPS_GOT_PAGE:
11495 case R_MIPS_GOT_OFST:
11496 case R_MICROMIPS_GOT16:
11497 case R_MICROMIPS_CALL16:
11498 case R_MICROMIPS_CALL_HI16:
11499 case R_MICROMIPS_CALL_LO16:
11500 case R_MICROMIPS_GOT_HI16:
11501 case R_MICROMIPS_GOT_LO16:
11502 case R_MICROMIPS_GOT_DISP:
11503 case R_MICROMIPS_GOT_PAGE:
11504 case R_MICROMIPS_GOT_OFST:
11505 /* ??? It would seem that the existing MIPS code does no sort
11506 of reference counting or whatnot on its GOT and PLT entries,
11507 so it is not possible to garbage collect them at this time. */
11508 break;
11509
11510 default:
11511 break;
11512 }
11513 #endif
11514
11515 return TRUE;
11516 }
11517 \f
11518 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11519 hiding the old indirect symbol. Process additional relocation
11520 information. Also called for weakdefs, in which case we just let
11521 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11522
11523 void
11524 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11525 struct elf_link_hash_entry *dir,
11526 struct elf_link_hash_entry *ind)
11527 {
11528 struct mips_elf_link_hash_entry *dirmips, *indmips;
11529
11530 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11531
11532 dirmips = (struct mips_elf_link_hash_entry *) dir;
11533 indmips = (struct mips_elf_link_hash_entry *) ind;
11534 /* Any absolute non-dynamic relocations against an indirect or weak
11535 definition will be against the target symbol. */
11536 if (indmips->has_static_relocs)
11537 dirmips->has_static_relocs = TRUE;
11538
11539 if (ind->root.type != bfd_link_hash_indirect)
11540 return;
11541
11542 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11543 if (indmips->readonly_reloc)
11544 dirmips->readonly_reloc = TRUE;
11545 if (indmips->no_fn_stub)
11546 dirmips->no_fn_stub = TRUE;
11547 if (indmips->fn_stub)
11548 {
11549 dirmips->fn_stub = indmips->fn_stub;
11550 indmips->fn_stub = NULL;
11551 }
11552 if (indmips->need_fn_stub)
11553 {
11554 dirmips->need_fn_stub = TRUE;
11555 indmips->need_fn_stub = FALSE;
11556 }
11557 if (indmips->call_stub)
11558 {
11559 dirmips->call_stub = indmips->call_stub;
11560 indmips->call_stub = NULL;
11561 }
11562 if (indmips->call_fp_stub)
11563 {
11564 dirmips->call_fp_stub = indmips->call_fp_stub;
11565 indmips->call_fp_stub = NULL;
11566 }
11567 if (indmips->global_got_area < dirmips->global_got_area)
11568 dirmips->global_got_area = indmips->global_got_area;
11569 if (indmips->global_got_area < GGA_NONE)
11570 indmips->global_got_area = GGA_NONE;
11571 if (indmips->has_nonpic_branches)
11572 dirmips->has_nonpic_branches = TRUE;
11573
11574 if (dirmips->tls_type == 0)
11575 dirmips->tls_type = indmips->tls_type;
11576 }
11577 \f
11578 #define PDR_SIZE 32
11579
11580 bfd_boolean
11581 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11582 struct bfd_link_info *info)
11583 {
11584 asection *o;
11585 bfd_boolean ret = FALSE;
11586 unsigned char *tdata;
11587 size_t i, skip;
11588
11589 o = bfd_get_section_by_name (abfd, ".pdr");
11590 if (! o)
11591 return FALSE;
11592 if (o->size == 0)
11593 return FALSE;
11594 if (o->size % PDR_SIZE != 0)
11595 return FALSE;
11596 if (o->output_section != NULL
11597 && bfd_is_abs_section (o->output_section))
11598 return FALSE;
11599
11600 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11601 if (! tdata)
11602 return FALSE;
11603
11604 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11605 info->keep_memory);
11606 if (!cookie->rels)
11607 {
11608 free (tdata);
11609 return FALSE;
11610 }
11611
11612 cookie->rel = cookie->rels;
11613 cookie->relend = cookie->rels + o->reloc_count;
11614
11615 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11616 {
11617 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11618 {
11619 tdata[i] = 1;
11620 skip ++;
11621 }
11622 }
11623
11624 if (skip != 0)
11625 {
11626 mips_elf_section_data (o)->u.tdata = tdata;
11627 o->size -= skip * PDR_SIZE;
11628 ret = TRUE;
11629 }
11630 else
11631 free (tdata);
11632
11633 if (! info->keep_memory)
11634 free (cookie->rels);
11635
11636 return ret;
11637 }
11638
11639 bfd_boolean
11640 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11641 {
11642 if (strcmp (sec->name, ".pdr") == 0)
11643 return TRUE;
11644 return FALSE;
11645 }
11646
11647 bfd_boolean
11648 _bfd_mips_elf_write_section (bfd *output_bfd,
11649 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11650 asection *sec, bfd_byte *contents)
11651 {
11652 bfd_byte *to, *from, *end;
11653 int i;
11654
11655 if (strcmp (sec->name, ".pdr") != 0)
11656 return FALSE;
11657
11658 if (mips_elf_section_data (sec)->u.tdata == NULL)
11659 return FALSE;
11660
11661 to = contents;
11662 end = contents + sec->size;
11663 for (from = contents, i = 0;
11664 from < end;
11665 from += PDR_SIZE, i++)
11666 {
11667 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11668 continue;
11669 if (to != from)
11670 memcpy (to, from, PDR_SIZE);
11671 to += PDR_SIZE;
11672 }
11673 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11674 sec->output_offset, sec->size);
11675 return TRUE;
11676 }
11677 \f
11678 /* microMIPS code retains local labels for linker relaxation. Omit them
11679 from output by default for clarity. */
11680
11681 bfd_boolean
11682 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11683 {
11684 return _bfd_elf_is_local_label_name (abfd, sym->name);
11685 }
11686
11687 /* MIPS ELF uses a special find_nearest_line routine in order the
11688 handle the ECOFF debugging information. */
11689
11690 struct mips_elf_find_line
11691 {
11692 struct ecoff_debug_info d;
11693 struct ecoff_find_line i;
11694 };
11695
11696 bfd_boolean
11697 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11698 asymbol **symbols, bfd_vma offset,
11699 const char **filename_ptr,
11700 const char **functionname_ptr,
11701 unsigned int *line_ptr)
11702 {
11703 asection *msec;
11704
11705 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11706 filename_ptr, functionname_ptr,
11707 line_ptr))
11708 return TRUE;
11709
11710 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11711 section, symbols, offset,
11712 filename_ptr, functionname_ptr,
11713 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11714 &elf_tdata (abfd)->dwarf2_find_line_info))
11715 return TRUE;
11716
11717 msec = bfd_get_section_by_name (abfd, ".mdebug");
11718 if (msec != NULL)
11719 {
11720 flagword origflags;
11721 struct mips_elf_find_line *fi;
11722 const struct ecoff_debug_swap * const swap =
11723 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11724
11725 /* If we are called during a link, mips_elf_final_link may have
11726 cleared the SEC_HAS_CONTENTS field. We force it back on here
11727 if appropriate (which it normally will be). */
11728 origflags = msec->flags;
11729 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11730 msec->flags |= SEC_HAS_CONTENTS;
11731
11732 fi = elf_tdata (abfd)->find_line_info;
11733 if (fi == NULL)
11734 {
11735 bfd_size_type external_fdr_size;
11736 char *fraw_src;
11737 char *fraw_end;
11738 struct fdr *fdr_ptr;
11739 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11740
11741 fi = bfd_zalloc (abfd, amt);
11742 if (fi == NULL)
11743 {
11744 msec->flags = origflags;
11745 return FALSE;
11746 }
11747
11748 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11749 {
11750 msec->flags = origflags;
11751 return FALSE;
11752 }
11753
11754 /* Swap in the FDR information. */
11755 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11756 fi->d.fdr = bfd_alloc (abfd, amt);
11757 if (fi->d.fdr == NULL)
11758 {
11759 msec->flags = origflags;
11760 return FALSE;
11761 }
11762 external_fdr_size = swap->external_fdr_size;
11763 fdr_ptr = fi->d.fdr;
11764 fraw_src = (char *) fi->d.external_fdr;
11765 fraw_end = (fraw_src
11766 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11767 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11768 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11769
11770 elf_tdata (abfd)->find_line_info = fi;
11771
11772 /* Note that we don't bother to ever free this information.
11773 find_nearest_line is either called all the time, as in
11774 objdump -l, so the information should be saved, or it is
11775 rarely called, as in ld error messages, so the memory
11776 wasted is unimportant. Still, it would probably be a
11777 good idea for free_cached_info to throw it away. */
11778 }
11779
11780 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11781 &fi->i, filename_ptr, functionname_ptr,
11782 line_ptr))
11783 {
11784 msec->flags = origflags;
11785 return TRUE;
11786 }
11787
11788 msec->flags = origflags;
11789 }
11790
11791 /* Fall back on the generic ELF find_nearest_line routine. */
11792
11793 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11794 filename_ptr, functionname_ptr,
11795 line_ptr);
11796 }
11797
11798 bfd_boolean
11799 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11800 const char **filename_ptr,
11801 const char **functionname_ptr,
11802 unsigned int *line_ptr)
11803 {
11804 bfd_boolean found;
11805 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11806 functionname_ptr, line_ptr,
11807 & elf_tdata (abfd)->dwarf2_find_line_info);
11808 return found;
11809 }
11810
11811 \f
11812 /* When are writing out the .options or .MIPS.options section,
11813 remember the bytes we are writing out, so that we can install the
11814 GP value in the section_processing routine. */
11815
11816 bfd_boolean
11817 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11818 const void *location,
11819 file_ptr offset, bfd_size_type count)
11820 {
11821 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11822 {
11823 bfd_byte *c;
11824
11825 if (elf_section_data (section) == NULL)
11826 {
11827 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11828 section->used_by_bfd = bfd_zalloc (abfd, amt);
11829 if (elf_section_data (section) == NULL)
11830 return FALSE;
11831 }
11832 c = mips_elf_section_data (section)->u.tdata;
11833 if (c == NULL)
11834 {
11835 c = bfd_zalloc (abfd, section->size);
11836 if (c == NULL)
11837 return FALSE;
11838 mips_elf_section_data (section)->u.tdata = c;
11839 }
11840
11841 memcpy (c + offset, location, count);
11842 }
11843
11844 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11845 count);
11846 }
11847
11848 /* This is almost identical to bfd_generic_get_... except that some
11849 MIPS relocations need to be handled specially. Sigh. */
11850
11851 bfd_byte *
11852 _bfd_elf_mips_get_relocated_section_contents
11853 (bfd *abfd,
11854 struct bfd_link_info *link_info,
11855 struct bfd_link_order *link_order,
11856 bfd_byte *data,
11857 bfd_boolean relocatable,
11858 asymbol **symbols)
11859 {
11860 /* Get enough memory to hold the stuff */
11861 bfd *input_bfd = link_order->u.indirect.section->owner;
11862 asection *input_section = link_order->u.indirect.section;
11863 bfd_size_type sz;
11864
11865 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11866 arelent **reloc_vector = NULL;
11867 long reloc_count;
11868
11869 if (reloc_size < 0)
11870 goto error_return;
11871
11872 reloc_vector = bfd_malloc (reloc_size);
11873 if (reloc_vector == NULL && reloc_size != 0)
11874 goto error_return;
11875
11876 /* read in the section */
11877 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11878 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11879 goto error_return;
11880
11881 reloc_count = bfd_canonicalize_reloc (input_bfd,
11882 input_section,
11883 reloc_vector,
11884 symbols);
11885 if (reloc_count < 0)
11886 goto error_return;
11887
11888 if (reloc_count > 0)
11889 {
11890 arelent **parent;
11891 /* for mips */
11892 int gp_found;
11893 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11894
11895 {
11896 struct bfd_hash_entry *h;
11897 struct bfd_link_hash_entry *lh;
11898 /* Skip all this stuff if we aren't mixing formats. */
11899 if (abfd && input_bfd
11900 && abfd->xvec == input_bfd->xvec)
11901 lh = 0;
11902 else
11903 {
11904 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11905 lh = (struct bfd_link_hash_entry *) h;
11906 }
11907 lookup:
11908 if (lh)
11909 {
11910 switch (lh->type)
11911 {
11912 case bfd_link_hash_undefined:
11913 case bfd_link_hash_undefweak:
11914 case bfd_link_hash_common:
11915 gp_found = 0;
11916 break;
11917 case bfd_link_hash_defined:
11918 case bfd_link_hash_defweak:
11919 gp_found = 1;
11920 gp = lh->u.def.value;
11921 break;
11922 case bfd_link_hash_indirect:
11923 case bfd_link_hash_warning:
11924 lh = lh->u.i.link;
11925 /* @@FIXME ignoring warning for now */
11926 goto lookup;
11927 case bfd_link_hash_new:
11928 default:
11929 abort ();
11930 }
11931 }
11932 else
11933 gp_found = 0;
11934 }
11935 /* end mips */
11936 for (parent = reloc_vector; *parent != NULL; parent++)
11937 {
11938 char *error_message = NULL;
11939 bfd_reloc_status_type r;
11940
11941 /* Specific to MIPS: Deal with relocation types that require
11942 knowing the gp of the output bfd. */
11943 asymbol *sym = *(*parent)->sym_ptr_ptr;
11944
11945 /* If we've managed to find the gp and have a special
11946 function for the relocation then go ahead, else default
11947 to the generic handling. */
11948 if (gp_found
11949 && (*parent)->howto->special_function
11950 == _bfd_mips_elf32_gprel16_reloc)
11951 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11952 input_section, relocatable,
11953 data, gp);
11954 else
11955 r = bfd_perform_relocation (input_bfd, *parent, data,
11956 input_section,
11957 relocatable ? abfd : NULL,
11958 &error_message);
11959
11960 if (relocatable)
11961 {
11962 asection *os = input_section->output_section;
11963
11964 /* A partial link, so keep the relocs */
11965 os->orelocation[os->reloc_count] = *parent;
11966 os->reloc_count++;
11967 }
11968
11969 if (r != bfd_reloc_ok)
11970 {
11971 switch (r)
11972 {
11973 case bfd_reloc_undefined:
11974 if (!((*link_info->callbacks->undefined_symbol)
11975 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11976 input_bfd, input_section, (*parent)->address, TRUE)))
11977 goto error_return;
11978 break;
11979 case bfd_reloc_dangerous:
11980 BFD_ASSERT (error_message != NULL);
11981 if (!((*link_info->callbacks->reloc_dangerous)
11982 (link_info, error_message, input_bfd, input_section,
11983 (*parent)->address)))
11984 goto error_return;
11985 break;
11986 case bfd_reloc_overflow:
11987 if (!((*link_info->callbacks->reloc_overflow)
11988 (link_info, NULL,
11989 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11990 (*parent)->howto->name, (*parent)->addend,
11991 input_bfd, input_section, (*parent)->address)))
11992 goto error_return;
11993 break;
11994 case bfd_reloc_outofrange:
11995 default:
11996 abort ();
11997 break;
11998 }
11999
12000 }
12001 }
12002 }
12003 if (reloc_vector != NULL)
12004 free (reloc_vector);
12005 return data;
12006
12007 error_return:
12008 if (reloc_vector != NULL)
12009 free (reloc_vector);
12010 return NULL;
12011 }
12012 \f
12013 static bfd_boolean
12014 mips_elf_relax_delete_bytes (bfd *abfd,
12015 asection *sec, bfd_vma addr, int count)
12016 {
12017 Elf_Internal_Shdr *symtab_hdr;
12018 unsigned int sec_shndx;
12019 bfd_byte *contents;
12020 Elf_Internal_Rela *irel, *irelend;
12021 Elf_Internal_Sym *isym;
12022 Elf_Internal_Sym *isymend;
12023 struct elf_link_hash_entry **sym_hashes;
12024 struct elf_link_hash_entry **end_hashes;
12025 struct elf_link_hash_entry **start_hashes;
12026 unsigned int symcount;
12027
12028 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12029 contents = elf_section_data (sec)->this_hdr.contents;
12030
12031 irel = elf_section_data (sec)->relocs;
12032 irelend = irel + sec->reloc_count;
12033
12034 /* Actually delete the bytes. */
12035 memmove (contents + addr, contents + addr + count,
12036 (size_t) (sec->size - addr - count));
12037 sec->size -= count;
12038
12039 /* Adjust all the relocs. */
12040 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12041 {
12042 /* Get the new reloc address. */
12043 if (irel->r_offset > addr)
12044 irel->r_offset -= count;
12045 }
12046
12047 BFD_ASSERT (addr % 2 == 0);
12048 BFD_ASSERT (count % 2 == 0);
12049
12050 /* Adjust the local symbols defined in this section. */
12051 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12052 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12053 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12054 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12055 isym->st_value -= count;
12056
12057 /* Now adjust the global symbols defined in this section. */
12058 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12059 - symtab_hdr->sh_info);
12060 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12061 end_hashes = sym_hashes + symcount;
12062
12063 for (; sym_hashes < end_hashes; sym_hashes++)
12064 {
12065 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12066
12067 if ((sym_hash->root.type == bfd_link_hash_defined
12068 || sym_hash->root.type == bfd_link_hash_defweak)
12069 && sym_hash->root.u.def.section == sec)
12070 {
12071 bfd_vma value = sym_hash->root.u.def.value;
12072
12073 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12074 value &= MINUS_TWO;
12075 if (value > addr)
12076 sym_hash->root.u.def.value -= count;
12077 }
12078 }
12079
12080 return TRUE;
12081 }
12082
12083
12084 /* Opcodes needed for microMIPS relaxation as found in
12085 opcodes/micromips-opc.c. */
12086
12087 struct opcode_descriptor {
12088 unsigned long match;
12089 unsigned long mask;
12090 };
12091
12092 /* The $ra register aka $31. */
12093
12094 #define RA 31
12095
12096 /* 32-bit instruction format register fields. */
12097
12098 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12099 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12100
12101 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12102
12103 #define OP16_VALID_REG(r) \
12104 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12105
12106
12107 /* 32-bit and 16-bit branches. */
12108
12109 static const struct opcode_descriptor b_insns_32[] = {
12110 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12111 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12112 { 0, 0 } /* End marker for find_match(). */
12113 };
12114
12115 static const struct opcode_descriptor bc_insn_32 =
12116 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12117
12118 static const struct opcode_descriptor bz_insn_32 =
12119 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12120
12121 static const struct opcode_descriptor bzal_insn_32 =
12122 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12123
12124 static const struct opcode_descriptor beq_insn_32 =
12125 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12126
12127 static const struct opcode_descriptor b_insn_16 =
12128 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12129
12130 static const struct opcode_descriptor bz_insn_16 =
12131 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12132
12133
12134 /* 32-bit and 16-bit branch EQ and NE zero. */
12135
12136 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12137 eq and second the ne. This convention is used when replacing a
12138 32-bit BEQ/BNE with the 16-bit version. */
12139
12140 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12141
12142 static const struct opcode_descriptor bz_rs_insns_32[] = {
12143 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12144 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12145 { 0, 0 } /* End marker for find_match(). */
12146 };
12147
12148 static const struct opcode_descriptor bz_rt_insns_32[] = {
12149 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12150 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12151 { 0, 0 } /* End marker for find_match(). */
12152 };
12153
12154 static const struct opcode_descriptor bzc_insns_32[] = {
12155 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12156 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12157 { 0, 0 } /* End marker for find_match(). */
12158 };
12159
12160 static const struct opcode_descriptor bz_insns_16[] = {
12161 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12162 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12163 { 0, 0 } /* End marker for find_match(). */
12164 };
12165
12166 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12167
12168 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12169 #define BZ16_REG_FIELD(r) \
12170 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12171
12172
12173 /* 32-bit instructions with a delay slot. */
12174
12175 static const struct opcode_descriptor jal_insn_32_bd16 =
12176 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12177
12178 static const struct opcode_descriptor jal_insn_32_bd32 =
12179 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12180
12181 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12182 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12183
12184 static const struct opcode_descriptor j_insn_32 =
12185 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12186
12187 static const struct opcode_descriptor jalr_insn_32 =
12188 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12189
12190 /* This table can be compacted, because no opcode replacement is made. */
12191
12192 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12193 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12194
12195 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12196 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12197
12198 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12199 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12200 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12201 { 0, 0 } /* End marker for find_match(). */
12202 };
12203
12204 /* This table can be compacted, because no opcode replacement is made. */
12205
12206 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12207 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12208
12209 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12210 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12211 { 0, 0 } /* End marker for find_match(). */
12212 };
12213
12214
12215 /* 16-bit instructions with a delay slot. */
12216
12217 static const struct opcode_descriptor jalr_insn_16_bd16 =
12218 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12219
12220 static const struct opcode_descriptor jalr_insn_16_bd32 =
12221 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12222
12223 static const struct opcode_descriptor jr_insn_16 =
12224 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12225
12226 #define JR16_REG(opcode) ((opcode) & 0x1f)
12227
12228 /* This table can be compacted, because no opcode replacement is made. */
12229
12230 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12231 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12232
12233 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12234 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12235 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12236 { 0, 0 } /* End marker for find_match(). */
12237 };
12238
12239
12240 /* LUI instruction. */
12241
12242 static const struct opcode_descriptor lui_insn =
12243 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12244
12245
12246 /* ADDIU instruction. */
12247
12248 static const struct opcode_descriptor addiu_insn =
12249 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12250
12251 static const struct opcode_descriptor addiupc_insn =
12252 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12253
12254 #define ADDIUPC_REG_FIELD(r) \
12255 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12256
12257
12258 /* Relaxable instructions in a JAL delay slot: MOVE. */
12259
12260 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12261 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12262 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12263 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12264
12265 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12266 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12267
12268 static const struct opcode_descriptor move_insns_32[] = {
12269 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12270 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12271 { 0, 0 } /* End marker for find_match(). */
12272 };
12273
12274 static const struct opcode_descriptor move_insn_16 =
12275 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12276
12277
12278 /* NOP instructions. */
12279
12280 static const struct opcode_descriptor nop_insn_32 =
12281 { /* "nop", "", */ 0x00000000, 0xffffffff };
12282
12283 static const struct opcode_descriptor nop_insn_16 =
12284 { /* "nop", "", */ 0x0c00, 0xffff };
12285
12286
12287 /* Instruction match support. */
12288
12289 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12290
12291 static int
12292 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12293 {
12294 unsigned long indx;
12295
12296 for (indx = 0; insn[indx].mask != 0; indx++)
12297 if (MATCH (opcode, insn[indx]))
12298 return indx;
12299
12300 return -1;
12301 }
12302
12303
12304 /* Branch and delay slot decoding support. */
12305
12306 /* If PTR points to what *might* be a 16-bit branch or jump, then
12307 return the minimum length of its delay slot, otherwise return 0.
12308 Non-zero results are not definitive as we might be checking against
12309 the second half of another instruction. */
12310
12311 static int
12312 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12313 {
12314 unsigned long opcode;
12315 int bdsize;
12316
12317 opcode = bfd_get_16 (abfd, ptr);
12318 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12319 /* 16-bit branch/jump with a 32-bit delay slot. */
12320 bdsize = 4;
12321 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12322 || find_match (opcode, ds_insns_16_bd16) >= 0)
12323 /* 16-bit branch/jump with a 16-bit delay slot. */
12324 bdsize = 2;
12325 else
12326 /* No delay slot. */
12327 bdsize = 0;
12328
12329 return bdsize;
12330 }
12331
12332 /* If PTR points to what *might* be a 32-bit branch or jump, then
12333 return the minimum length of its delay slot, otherwise return 0.
12334 Non-zero results are not definitive as we might be checking against
12335 the second half of another instruction. */
12336
12337 static int
12338 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12339 {
12340 unsigned long opcode;
12341 int bdsize;
12342
12343 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12344 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12345 /* 32-bit branch/jump with a 32-bit delay slot. */
12346 bdsize = 4;
12347 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12348 /* 32-bit branch/jump with a 16-bit delay slot. */
12349 bdsize = 2;
12350 else
12351 /* No delay slot. */
12352 bdsize = 0;
12353
12354 return bdsize;
12355 }
12356
12357 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12358 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12359
12360 static bfd_boolean
12361 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12362 {
12363 unsigned long opcode;
12364
12365 opcode = bfd_get_16 (abfd, ptr);
12366 if (MATCH (opcode, b_insn_16)
12367 /* B16 */
12368 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12369 /* JR16 */
12370 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12371 /* BEQZ16, BNEZ16 */
12372 || (MATCH (opcode, jalr_insn_16_bd32)
12373 /* JALR16 */
12374 && reg != JR16_REG (opcode) && reg != RA))
12375 return TRUE;
12376
12377 return FALSE;
12378 }
12379
12380 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12381 then return TRUE, otherwise FALSE. */
12382
12383 static bfd_boolean
12384 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12385 {
12386 unsigned long opcode;
12387
12388 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12389 if (MATCH (opcode, j_insn_32)
12390 /* J */
12391 || MATCH (opcode, bc_insn_32)
12392 /* BC1F, BC1T, BC2F, BC2T */
12393 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12394 /* JAL, JALX */
12395 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12396 /* BGEZ, BGTZ, BLEZ, BLTZ */
12397 || (MATCH (opcode, bzal_insn_32)
12398 /* BGEZAL, BLTZAL */
12399 && reg != OP32_SREG (opcode) && reg != RA)
12400 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12401 /* JALR, JALR.HB, BEQ, BNE */
12402 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12403 return TRUE;
12404
12405 return FALSE;
12406 }
12407
12408 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12409 IRELEND) at OFFSET indicate that there must be a compact branch there,
12410 then return TRUE, otherwise FALSE. */
12411
12412 static bfd_boolean
12413 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12414 const Elf_Internal_Rela *internal_relocs,
12415 const Elf_Internal_Rela *irelend)
12416 {
12417 const Elf_Internal_Rela *irel;
12418 unsigned long opcode;
12419
12420 opcode = bfd_get_16 (abfd, ptr);
12421 opcode <<= 16;
12422 opcode |= bfd_get_16 (abfd, ptr + 2);
12423 if (find_match (opcode, bzc_insns_32) < 0)
12424 return FALSE;
12425
12426 for (irel = internal_relocs; irel < irelend; irel++)
12427 if (irel->r_offset == offset
12428 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12429 return TRUE;
12430
12431 return FALSE;
12432 }
12433
12434 /* Bitsize checking. */
12435 #define IS_BITSIZE(val, N) \
12436 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12437 - (1ULL << ((N) - 1))) == (val))
12438
12439 \f
12440 bfd_boolean
12441 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12442 struct bfd_link_info *link_info,
12443 bfd_boolean *again)
12444 {
12445 Elf_Internal_Shdr *symtab_hdr;
12446 Elf_Internal_Rela *internal_relocs;
12447 Elf_Internal_Rela *irel, *irelend;
12448 bfd_byte *contents = NULL;
12449 Elf_Internal_Sym *isymbuf = NULL;
12450
12451 /* Assume nothing changes. */
12452 *again = FALSE;
12453
12454 /* We don't have to do anything for a relocatable link, if
12455 this section does not have relocs, or if this is not a
12456 code section. */
12457
12458 if (link_info->relocatable
12459 || (sec->flags & SEC_RELOC) == 0
12460 || sec->reloc_count == 0
12461 || (sec->flags & SEC_CODE) == 0)
12462 return TRUE;
12463
12464 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12465
12466 /* Get a copy of the native relocations. */
12467 internal_relocs = (_bfd_elf_link_read_relocs
12468 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12469 link_info->keep_memory));
12470 if (internal_relocs == NULL)
12471 goto error_return;
12472
12473 /* Walk through them looking for relaxing opportunities. */
12474 irelend = internal_relocs + sec->reloc_count;
12475 for (irel = internal_relocs; irel < irelend; irel++)
12476 {
12477 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12478 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12479 bfd_boolean target_is_micromips_code_p;
12480 unsigned long opcode;
12481 bfd_vma symval;
12482 bfd_vma pcrval;
12483 bfd_byte *ptr;
12484 int fndopc;
12485
12486 /* The number of bytes to delete for relaxation and from where
12487 to delete these bytes starting at irel->r_offset. */
12488 int delcnt = 0;
12489 int deloff = 0;
12490
12491 /* If this isn't something that can be relaxed, then ignore
12492 this reloc. */
12493 if (r_type != R_MICROMIPS_HI16
12494 && r_type != R_MICROMIPS_PC16_S1
12495 && r_type != R_MICROMIPS_26_S1)
12496 continue;
12497
12498 /* Get the section contents if we haven't done so already. */
12499 if (contents == NULL)
12500 {
12501 /* Get cached copy if it exists. */
12502 if (elf_section_data (sec)->this_hdr.contents != NULL)
12503 contents = elf_section_data (sec)->this_hdr.contents;
12504 /* Go get them off disk. */
12505 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12506 goto error_return;
12507 }
12508 ptr = contents + irel->r_offset;
12509
12510 /* Read this BFD's local symbols if we haven't done so already. */
12511 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12512 {
12513 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12514 if (isymbuf == NULL)
12515 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12516 symtab_hdr->sh_info, 0,
12517 NULL, NULL, NULL);
12518 if (isymbuf == NULL)
12519 goto error_return;
12520 }
12521
12522 /* Get the value of the symbol referred to by the reloc. */
12523 if (r_symndx < symtab_hdr->sh_info)
12524 {
12525 /* A local symbol. */
12526 Elf_Internal_Sym *isym;
12527 asection *sym_sec;
12528
12529 isym = isymbuf + r_symndx;
12530 if (isym->st_shndx == SHN_UNDEF)
12531 sym_sec = bfd_und_section_ptr;
12532 else if (isym->st_shndx == SHN_ABS)
12533 sym_sec = bfd_abs_section_ptr;
12534 else if (isym->st_shndx == SHN_COMMON)
12535 sym_sec = bfd_com_section_ptr;
12536 else
12537 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12538 symval = (isym->st_value
12539 + sym_sec->output_section->vma
12540 + sym_sec->output_offset);
12541 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12542 }
12543 else
12544 {
12545 unsigned long indx;
12546 struct elf_link_hash_entry *h;
12547
12548 /* An external symbol. */
12549 indx = r_symndx - symtab_hdr->sh_info;
12550 h = elf_sym_hashes (abfd)[indx];
12551 BFD_ASSERT (h != NULL);
12552
12553 if (h->root.type != bfd_link_hash_defined
12554 && h->root.type != bfd_link_hash_defweak)
12555 /* This appears to be a reference to an undefined
12556 symbol. Just ignore it -- it will be caught by the
12557 regular reloc processing. */
12558 continue;
12559
12560 symval = (h->root.u.def.value
12561 + h->root.u.def.section->output_section->vma
12562 + h->root.u.def.section->output_offset);
12563 target_is_micromips_code_p = (!h->needs_plt
12564 && ELF_ST_IS_MICROMIPS (h->other));
12565 }
12566
12567
12568 /* For simplicity of coding, we are going to modify the
12569 section contents, the section relocs, and the BFD symbol
12570 table. We must tell the rest of the code not to free up this
12571 information. It would be possible to instead create a table
12572 of changes which have to be made, as is done in coff-mips.c;
12573 that would be more work, but would require less memory when
12574 the linker is run. */
12575
12576 /* Only 32-bit instructions relaxed. */
12577 if (irel->r_offset + 4 > sec->size)
12578 continue;
12579
12580 opcode = bfd_get_16 (abfd, ptr ) << 16;
12581 opcode |= bfd_get_16 (abfd, ptr + 2);
12582
12583 /* This is the pc-relative distance from the instruction the
12584 relocation is applied to, to the symbol referred. */
12585 pcrval = (symval
12586 - (sec->output_section->vma + sec->output_offset)
12587 - irel->r_offset);
12588
12589 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12590 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12591 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12592
12593 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12594
12595 where pcrval has first to be adjusted to apply against the LO16
12596 location (we make the adjustment later on, when we have figured
12597 out the offset). */
12598 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12599 {
12600 bfd_boolean bzc = FALSE;
12601 unsigned long nextopc;
12602 unsigned long reg;
12603 bfd_vma offset;
12604
12605 /* Give up if the previous reloc was a HI16 against this symbol
12606 too. */
12607 if (irel > internal_relocs
12608 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12609 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12610 continue;
12611
12612 /* Or if the next reloc is not a LO16 against this symbol. */
12613 if (irel + 1 >= irelend
12614 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12615 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12616 continue;
12617
12618 /* Or if the second next reloc is a LO16 against this symbol too. */
12619 if (irel + 2 >= irelend
12620 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12621 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12622 continue;
12623
12624 /* See if the LUI instruction *might* be in a branch delay slot.
12625 We check whether what looks like a 16-bit branch or jump is
12626 actually an immediate argument to a compact branch, and let
12627 it through if so. */
12628 if (irel->r_offset >= 2
12629 && check_br16_dslot (abfd, ptr - 2)
12630 && !(irel->r_offset >= 4
12631 && (bzc = check_relocated_bzc (abfd,
12632 ptr - 4, irel->r_offset - 4,
12633 internal_relocs, irelend))))
12634 continue;
12635 if (irel->r_offset >= 4
12636 && !bzc
12637 && check_br32_dslot (abfd, ptr - 4))
12638 continue;
12639
12640 reg = OP32_SREG (opcode);
12641
12642 /* We only relax adjacent instructions or ones separated with
12643 a branch or jump that has a delay slot. The branch or jump
12644 must not fiddle with the register used to hold the address.
12645 Subtract 4 for the LUI itself. */
12646 offset = irel[1].r_offset - irel[0].r_offset;
12647 switch (offset - 4)
12648 {
12649 case 0:
12650 break;
12651 case 2:
12652 if (check_br16 (abfd, ptr + 4, reg))
12653 break;
12654 continue;
12655 case 4:
12656 if (check_br32 (abfd, ptr + 4, reg))
12657 break;
12658 continue;
12659 default:
12660 continue;
12661 }
12662
12663 nextopc = bfd_get_16 (abfd, contents + irel[1].r_offset ) << 16;
12664 nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
12665
12666 /* Give up unless the same register is used with both
12667 relocations. */
12668 if (OP32_SREG (nextopc) != reg)
12669 continue;
12670
12671 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12672 and rounding up to take masking of the two LSBs into account. */
12673 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12674
12675 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12676 if (IS_BITSIZE (symval, 16))
12677 {
12678 /* Fix the relocation's type. */
12679 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12680
12681 /* Instructions using R_MICROMIPS_LO16 have the base or
12682 source register in bits 20:16. This register becomes $0
12683 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12684 nextopc &= ~0x001f0000;
12685 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12686 contents + irel[1].r_offset);
12687 }
12688
12689 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12690 We add 4 to take LUI deletion into account while checking
12691 the PC-relative distance. */
12692 else if (symval % 4 == 0
12693 && IS_BITSIZE (pcrval + 4, 25)
12694 && MATCH (nextopc, addiu_insn)
12695 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12696 && OP16_VALID_REG (OP32_TREG (nextopc)))
12697 {
12698 /* Fix the relocation's type. */
12699 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12700
12701 /* Replace ADDIU with the ADDIUPC version. */
12702 nextopc = (addiupc_insn.match
12703 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12704
12705 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12706 contents + irel[1].r_offset);
12707 bfd_put_16 (abfd, nextopc & 0xffff,
12708 contents + irel[1].r_offset + 2);
12709 }
12710
12711 /* Can't do anything, give up, sigh... */
12712 else
12713 continue;
12714
12715 /* Fix the relocation's type. */
12716 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12717
12718 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12719 delcnt = 4;
12720 deloff = 0;
12721 }
12722
12723 /* Compact branch relaxation -- due to the multitude of macros
12724 employed by the compiler/assembler, compact branches are not
12725 always generated. Obviously, this can/will be fixed elsewhere,
12726 but there is no drawback in double checking it here. */
12727 else if (r_type == R_MICROMIPS_PC16_S1
12728 && irel->r_offset + 5 < sec->size
12729 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12730 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12731 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12732 {
12733 unsigned long reg;
12734
12735 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12736
12737 /* Replace BEQZ/BNEZ with the compact version. */
12738 opcode = (bzc_insns_32[fndopc].match
12739 | BZC32_REG_FIELD (reg)
12740 | (opcode & 0xffff)); /* Addend value. */
12741
12742 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
12743 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
12744
12745 /* Delete the 16-bit delay slot NOP: two bytes from
12746 irel->offset + 4. */
12747 delcnt = 2;
12748 deloff = 4;
12749 }
12750
12751 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12752 to check the distance from the next instruction, so subtract 2. */
12753 else if (r_type == R_MICROMIPS_PC16_S1
12754 && IS_BITSIZE (pcrval - 2, 11)
12755 && find_match (opcode, b_insns_32) >= 0)
12756 {
12757 /* Fix the relocation's type. */
12758 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12759
12760 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12761 bfd_put_16 (abfd,
12762 (b_insn_16.match
12763 | (opcode & 0x3ff)), /* Addend value. */
12764 ptr);
12765
12766 /* Delete 2 bytes from irel->r_offset + 2. */
12767 delcnt = 2;
12768 deloff = 2;
12769 }
12770
12771 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12772 to check the distance from the next instruction, so subtract 2. */
12773 else if (r_type == R_MICROMIPS_PC16_S1
12774 && IS_BITSIZE (pcrval - 2, 8)
12775 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12776 && OP16_VALID_REG (OP32_SREG (opcode)))
12777 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12778 && OP16_VALID_REG (OP32_TREG (opcode)))))
12779 {
12780 unsigned long reg;
12781
12782 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12783
12784 /* Fix the relocation's type. */
12785 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12786
12787 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12788 bfd_put_16 (abfd,
12789 (bz_insns_16[fndopc].match
12790 | BZ16_REG_FIELD (reg)
12791 | (opcode & 0x7f)), /* Addend value. */
12792 ptr);
12793
12794 /* Delete 2 bytes from irel->r_offset + 2. */
12795 delcnt = 2;
12796 deloff = 2;
12797 }
12798
12799 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12800 else if (r_type == R_MICROMIPS_26_S1
12801 && target_is_micromips_code_p
12802 && irel->r_offset + 7 < sec->size
12803 && MATCH (opcode, jal_insn_32_bd32))
12804 {
12805 unsigned long n32opc;
12806 bfd_boolean relaxed = FALSE;
12807
12808 n32opc = bfd_get_16 (abfd, ptr + 4) << 16;
12809 n32opc |= bfd_get_16 (abfd, ptr + 6);
12810
12811 if (MATCH (n32opc, nop_insn_32))
12812 {
12813 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12814 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12815
12816 relaxed = TRUE;
12817 }
12818 else if (find_match (n32opc, move_insns_32) >= 0)
12819 {
12820 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12821 bfd_put_16 (abfd,
12822 (move_insn_16.match
12823 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12824 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12825 ptr + 4);
12826
12827 relaxed = TRUE;
12828 }
12829 /* Other 32-bit instructions relaxable to 16-bit
12830 instructions will be handled here later. */
12831
12832 if (relaxed)
12833 {
12834 /* JAL with 32-bit delay slot that is changed to a JALS
12835 with 16-bit delay slot. */
12836 bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
12837 ptr);
12838 bfd_put_16 (abfd, jal_insn_32_bd16.match & 0xffff,
12839 ptr + 2);
12840
12841 /* Delete 2 bytes from irel->r_offset + 6. */
12842 delcnt = 2;
12843 deloff = 6;
12844 }
12845 }
12846
12847 if (delcnt != 0)
12848 {
12849 /* Note that we've changed the relocs, section contents, etc. */
12850 elf_section_data (sec)->relocs = internal_relocs;
12851 elf_section_data (sec)->this_hdr.contents = contents;
12852 symtab_hdr->contents = (unsigned char *) isymbuf;
12853
12854 /* Delete bytes depending on the delcnt and deloff. */
12855 if (!mips_elf_relax_delete_bytes (abfd, sec,
12856 irel->r_offset + deloff, delcnt))
12857 goto error_return;
12858
12859 /* That will change things, so we should relax again.
12860 Note that this is not required, and it may be slow. */
12861 *again = TRUE;
12862 }
12863 }
12864
12865 if (isymbuf != NULL
12866 && symtab_hdr->contents != (unsigned char *) isymbuf)
12867 {
12868 if (! link_info->keep_memory)
12869 free (isymbuf);
12870 else
12871 {
12872 /* Cache the symbols for elf_link_input_bfd. */
12873 symtab_hdr->contents = (unsigned char *) isymbuf;
12874 }
12875 }
12876
12877 if (contents != NULL
12878 && elf_section_data (sec)->this_hdr.contents != contents)
12879 {
12880 if (! link_info->keep_memory)
12881 free (contents);
12882 else
12883 {
12884 /* Cache the section contents for elf_link_input_bfd. */
12885 elf_section_data (sec)->this_hdr.contents = contents;
12886 }
12887 }
12888
12889 if (internal_relocs != NULL
12890 && elf_section_data (sec)->relocs != internal_relocs)
12891 free (internal_relocs);
12892
12893 return TRUE;
12894
12895 error_return:
12896 if (isymbuf != NULL
12897 && symtab_hdr->contents != (unsigned char *) isymbuf)
12898 free (isymbuf);
12899 if (contents != NULL
12900 && elf_section_data (sec)->this_hdr.contents != contents)
12901 free (contents);
12902 if (internal_relocs != NULL
12903 && elf_section_data (sec)->relocs != internal_relocs)
12904 free (internal_relocs);
12905
12906 return FALSE;
12907 }
12908 \f
12909 /* Create a MIPS ELF linker hash table. */
12910
12911 struct bfd_link_hash_table *
12912 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12913 {
12914 struct mips_elf_link_hash_table *ret;
12915 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12916
12917 ret = bfd_malloc (amt);
12918 if (ret == NULL)
12919 return NULL;
12920
12921 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12922 mips_elf_link_hash_newfunc,
12923 sizeof (struct mips_elf_link_hash_entry),
12924 MIPS_ELF_DATA))
12925 {
12926 free (ret);
12927 return NULL;
12928 }
12929
12930 #if 0
12931 /* We no longer use this. */
12932 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12933 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12934 #endif
12935 ret->procedure_count = 0;
12936 ret->compact_rel_size = 0;
12937 ret->use_rld_obj_head = FALSE;
12938 ret->rld_symbol = NULL;
12939 ret->mips16_stubs_seen = FALSE;
12940 ret->use_plts_and_copy_relocs = FALSE;
12941 ret->is_vxworks = FALSE;
12942 ret->small_data_overflow_reported = FALSE;
12943 ret->srelbss = NULL;
12944 ret->sdynbss = NULL;
12945 ret->srelplt = NULL;
12946 ret->srelplt2 = NULL;
12947 ret->sgotplt = NULL;
12948 ret->splt = NULL;
12949 ret->sstubs = NULL;
12950 ret->sgot = NULL;
12951 ret->got_info = NULL;
12952 ret->plt_header_size = 0;
12953 ret->plt_entry_size = 0;
12954 ret->lazy_stub_count = 0;
12955 ret->function_stub_size = 0;
12956 ret->strampoline = NULL;
12957 ret->la25_stubs = NULL;
12958 ret->add_stub_section = NULL;
12959
12960 return &ret->root.root;
12961 }
12962
12963 /* Likewise, but indicate that the target is VxWorks. */
12964
12965 struct bfd_link_hash_table *
12966 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12967 {
12968 struct bfd_link_hash_table *ret;
12969
12970 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12971 if (ret)
12972 {
12973 struct mips_elf_link_hash_table *htab;
12974
12975 htab = (struct mips_elf_link_hash_table *) ret;
12976 htab->use_plts_and_copy_relocs = TRUE;
12977 htab->is_vxworks = TRUE;
12978 }
12979 return ret;
12980 }
12981
12982 /* A function that the linker calls if we are allowed to use PLTs
12983 and copy relocs. */
12984
12985 void
12986 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12987 {
12988 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12989 }
12990 \f
12991 /* We need to use a special link routine to handle the .reginfo and
12992 the .mdebug sections. We need to merge all instances of these
12993 sections together, not write them all out sequentially. */
12994
12995 bfd_boolean
12996 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12997 {
12998 asection *o;
12999 struct bfd_link_order *p;
13000 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
13001 asection *rtproc_sec;
13002 Elf32_RegInfo reginfo;
13003 struct ecoff_debug_info debug;
13004 struct mips_htab_traverse_info hti;
13005 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13006 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
13007 HDRR *symhdr = &debug.symbolic_header;
13008 void *mdebug_handle = NULL;
13009 asection *s;
13010 EXTR esym;
13011 unsigned int i;
13012 bfd_size_type amt;
13013 struct mips_elf_link_hash_table *htab;
13014
13015 static const char * const secname[] =
13016 {
13017 ".text", ".init", ".fini", ".data",
13018 ".rodata", ".sdata", ".sbss", ".bss"
13019 };
13020 static const int sc[] =
13021 {
13022 scText, scInit, scFini, scData,
13023 scRData, scSData, scSBss, scBss
13024 };
13025
13026 /* Sort the dynamic symbols so that those with GOT entries come after
13027 those without. */
13028 htab = mips_elf_hash_table (info);
13029 BFD_ASSERT (htab != NULL);
13030
13031 if (!mips_elf_sort_hash_table (abfd, info))
13032 return FALSE;
13033
13034 /* Create any scheduled LA25 stubs. */
13035 hti.info = info;
13036 hti.output_bfd = abfd;
13037 hti.error = FALSE;
13038 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13039 if (hti.error)
13040 return FALSE;
13041
13042 /* Get a value for the GP register. */
13043 if (elf_gp (abfd) == 0)
13044 {
13045 struct bfd_link_hash_entry *h;
13046
13047 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
13048 if (h != NULL && h->type == bfd_link_hash_defined)
13049 elf_gp (abfd) = (h->u.def.value
13050 + h->u.def.section->output_section->vma
13051 + h->u.def.section->output_offset);
13052 else if (htab->is_vxworks
13053 && (h = bfd_link_hash_lookup (info->hash,
13054 "_GLOBAL_OFFSET_TABLE_",
13055 FALSE, FALSE, TRUE))
13056 && h->type == bfd_link_hash_defined)
13057 elf_gp (abfd) = (h->u.def.section->output_section->vma
13058 + h->u.def.section->output_offset
13059 + h->u.def.value);
13060 else if (info->relocatable)
13061 {
13062 bfd_vma lo = MINUS_ONE;
13063
13064 /* Find the GP-relative section with the lowest offset. */
13065 for (o = abfd->sections; o != NULL; o = o->next)
13066 if (o->vma < lo
13067 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13068 lo = o->vma;
13069
13070 /* And calculate GP relative to that. */
13071 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13072 }
13073 else
13074 {
13075 /* If the relocate_section function needs to do a reloc
13076 involving the GP value, it should make a reloc_dangerous
13077 callback to warn that GP is not defined. */
13078 }
13079 }
13080
13081 /* Go through the sections and collect the .reginfo and .mdebug
13082 information. */
13083 reginfo_sec = NULL;
13084 mdebug_sec = NULL;
13085 gptab_data_sec = NULL;
13086 gptab_bss_sec = NULL;
13087 for (o = abfd->sections; o != NULL; o = o->next)
13088 {
13089 if (strcmp (o->name, ".reginfo") == 0)
13090 {
13091 memset (&reginfo, 0, sizeof reginfo);
13092
13093 /* We have found the .reginfo section in the output file.
13094 Look through all the link_orders comprising it and merge
13095 the information together. */
13096 for (p = o->map_head.link_order; p != NULL; p = p->next)
13097 {
13098 asection *input_section;
13099 bfd *input_bfd;
13100 Elf32_External_RegInfo ext;
13101 Elf32_RegInfo sub;
13102
13103 if (p->type != bfd_indirect_link_order)
13104 {
13105 if (p->type == bfd_data_link_order)
13106 continue;
13107 abort ();
13108 }
13109
13110 input_section = p->u.indirect.section;
13111 input_bfd = input_section->owner;
13112
13113 if (! bfd_get_section_contents (input_bfd, input_section,
13114 &ext, 0, sizeof ext))
13115 return FALSE;
13116
13117 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13118
13119 reginfo.ri_gprmask |= sub.ri_gprmask;
13120 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13121 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13122 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13123 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13124
13125 /* ri_gp_value is set by the function
13126 mips_elf32_section_processing when the section is
13127 finally written out. */
13128
13129 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13130 elf_link_input_bfd ignores this section. */
13131 input_section->flags &= ~SEC_HAS_CONTENTS;
13132 }
13133
13134 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13135 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13136
13137 /* Skip this section later on (I don't think this currently
13138 matters, but someday it might). */
13139 o->map_head.link_order = NULL;
13140
13141 reginfo_sec = o;
13142 }
13143
13144 if (strcmp (o->name, ".mdebug") == 0)
13145 {
13146 struct extsym_info einfo;
13147 bfd_vma last;
13148
13149 /* We have found the .mdebug section in the output file.
13150 Look through all the link_orders comprising it and merge
13151 the information together. */
13152 symhdr->magic = swap->sym_magic;
13153 /* FIXME: What should the version stamp be? */
13154 symhdr->vstamp = 0;
13155 symhdr->ilineMax = 0;
13156 symhdr->cbLine = 0;
13157 symhdr->idnMax = 0;
13158 symhdr->ipdMax = 0;
13159 symhdr->isymMax = 0;
13160 symhdr->ioptMax = 0;
13161 symhdr->iauxMax = 0;
13162 symhdr->issMax = 0;
13163 symhdr->issExtMax = 0;
13164 symhdr->ifdMax = 0;
13165 symhdr->crfd = 0;
13166 symhdr->iextMax = 0;
13167
13168 /* We accumulate the debugging information itself in the
13169 debug_info structure. */
13170 debug.line = NULL;
13171 debug.external_dnr = NULL;
13172 debug.external_pdr = NULL;
13173 debug.external_sym = NULL;
13174 debug.external_opt = NULL;
13175 debug.external_aux = NULL;
13176 debug.ss = NULL;
13177 debug.ssext = debug.ssext_end = NULL;
13178 debug.external_fdr = NULL;
13179 debug.external_rfd = NULL;
13180 debug.external_ext = debug.external_ext_end = NULL;
13181
13182 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13183 if (mdebug_handle == NULL)
13184 return FALSE;
13185
13186 esym.jmptbl = 0;
13187 esym.cobol_main = 0;
13188 esym.weakext = 0;
13189 esym.reserved = 0;
13190 esym.ifd = ifdNil;
13191 esym.asym.iss = issNil;
13192 esym.asym.st = stLocal;
13193 esym.asym.reserved = 0;
13194 esym.asym.index = indexNil;
13195 last = 0;
13196 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13197 {
13198 esym.asym.sc = sc[i];
13199 s = bfd_get_section_by_name (abfd, secname[i]);
13200 if (s != NULL)
13201 {
13202 esym.asym.value = s->vma;
13203 last = s->vma + s->size;
13204 }
13205 else
13206 esym.asym.value = last;
13207 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13208 secname[i], &esym))
13209 return FALSE;
13210 }
13211
13212 for (p = o->map_head.link_order; p != NULL; p = p->next)
13213 {
13214 asection *input_section;
13215 bfd *input_bfd;
13216 const struct ecoff_debug_swap *input_swap;
13217 struct ecoff_debug_info input_debug;
13218 char *eraw_src;
13219 char *eraw_end;
13220
13221 if (p->type != bfd_indirect_link_order)
13222 {
13223 if (p->type == bfd_data_link_order)
13224 continue;
13225 abort ();
13226 }
13227
13228 input_section = p->u.indirect.section;
13229 input_bfd = input_section->owner;
13230
13231 if (!is_mips_elf (input_bfd))
13232 {
13233 /* I don't know what a non MIPS ELF bfd would be
13234 doing with a .mdebug section, but I don't really
13235 want to deal with it. */
13236 continue;
13237 }
13238
13239 input_swap = (get_elf_backend_data (input_bfd)
13240 ->elf_backend_ecoff_debug_swap);
13241
13242 BFD_ASSERT (p->size == input_section->size);
13243
13244 /* The ECOFF linking code expects that we have already
13245 read in the debugging information and set up an
13246 ecoff_debug_info structure, so we do that now. */
13247 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13248 &input_debug))
13249 return FALSE;
13250
13251 if (! (bfd_ecoff_debug_accumulate
13252 (mdebug_handle, abfd, &debug, swap, input_bfd,
13253 &input_debug, input_swap, info)))
13254 return FALSE;
13255
13256 /* Loop through the external symbols. For each one with
13257 interesting information, try to find the symbol in
13258 the linker global hash table and save the information
13259 for the output external symbols. */
13260 eraw_src = input_debug.external_ext;
13261 eraw_end = (eraw_src
13262 + (input_debug.symbolic_header.iextMax
13263 * input_swap->external_ext_size));
13264 for (;
13265 eraw_src < eraw_end;
13266 eraw_src += input_swap->external_ext_size)
13267 {
13268 EXTR ext;
13269 const char *name;
13270 struct mips_elf_link_hash_entry *h;
13271
13272 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13273 if (ext.asym.sc == scNil
13274 || ext.asym.sc == scUndefined
13275 || ext.asym.sc == scSUndefined)
13276 continue;
13277
13278 name = input_debug.ssext + ext.asym.iss;
13279 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13280 name, FALSE, FALSE, TRUE);
13281 if (h == NULL || h->esym.ifd != -2)
13282 continue;
13283
13284 if (ext.ifd != -1)
13285 {
13286 BFD_ASSERT (ext.ifd
13287 < input_debug.symbolic_header.ifdMax);
13288 ext.ifd = input_debug.ifdmap[ext.ifd];
13289 }
13290
13291 h->esym = ext;
13292 }
13293
13294 /* Free up the information we just read. */
13295 free (input_debug.line);
13296 free (input_debug.external_dnr);
13297 free (input_debug.external_pdr);
13298 free (input_debug.external_sym);
13299 free (input_debug.external_opt);
13300 free (input_debug.external_aux);
13301 free (input_debug.ss);
13302 free (input_debug.ssext);
13303 free (input_debug.external_fdr);
13304 free (input_debug.external_rfd);
13305 free (input_debug.external_ext);
13306
13307 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13308 elf_link_input_bfd ignores this section. */
13309 input_section->flags &= ~SEC_HAS_CONTENTS;
13310 }
13311
13312 if (SGI_COMPAT (abfd) && info->shared)
13313 {
13314 /* Create .rtproc section. */
13315 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13316 if (rtproc_sec == NULL)
13317 {
13318 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13319 | SEC_LINKER_CREATED | SEC_READONLY);
13320
13321 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13322 ".rtproc",
13323 flags);
13324 if (rtproc_sec == NULL
13325 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13326 return FALSE;
13327 }
13328
13329 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13330 info, rtproc_sec,
13331 &debug))
13332 return FALSE;
13333 }
13334
13335 /* Build the external symbol information. */
13336 einfo.abfd = abfd;
13337 einfo.info = info;
13338 einfo.debug = &debug;
13339 einfo.swap = swap;
13340 einfo.failed = FALSE;
13341 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13342 mips_elf_output_extsym, &einfo);
13343 if (einfo.failed)
13344 return FALSE;
13345
13346 /* Set the size of the .mdebug section. */
13347 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13348
13349 /* Skip this section later on (I don't think this currently
13350 matters, but someday it might). */
13351 o->map_head.link_order = NULL;
13352
13353 mdebug_sec = o;
13354 }
13355
13356 if (CONST_STRNEQ (o->name, ".gptab."))
13357 {
13358 const char *subname;
13359 unsigned int c;
13360 Elf32_gptab *tab;
13361 Elf32_External_gptab *ext_tab;
13362 unsigned int j;
13363
13364 /* The .gptab.sdata and .gptab.sbss sections hold
13365 information describing how the small data area would
13366 change depending upon the -G switch. These sections
13367 not used in executables files. */
13368 if (! info->relocatable)
13369 {
13370 for (p = o->map_head.link_order; p != NULL; p = p->next)
13371 {
13372 asection *input_section;
13373
13374 if (p->type != bfd_indirect_link_order)
13375 {
13376 if (p->type == bfd_data_link_order)
13377 continue;
13378 abort ();
13379 }
13380
13381 input_section = p->u.indirect.section;
13382
13383 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13384 elf_link_input_bfd ignores this section. */
13385 input_section->flags &= ~SEC_HAS_CONTENTS;
13386 }
13387
13388 /* Skip this section later on (I don't think this
13389 currently matters, but someday it might). */
13390 o->map_head.link_order = NULL;
13391
13392 /* Really remove the section. */
13393 bfd_section_list_remove (abfd, o);
13394 --abfd->section_count;
13395
13396 continue;
13397 }
13398
13399 /* There is one gptab for initialized data, and one for
13400 uninitialized data. */
13401 if (strcmp (o->name, ".gptab.sdata") == 0)
13402 gptab_data_sec = o;
13403 else if (strcmp (o->name, ".gptab.sbss") == 0)
13404 gptab_bss_sec = o;
13405 else
13406 {
13407 (*_bfd_error_handler)
13408 (_("%s: illegal section name `%s'"),
13409 bfd_get_filename (abfd), o->name);
13410 bfd_set_error (bfd_error_nonrepresentable_section);
13411 return FALSE;
13412 }
13413
13414 /* The linker script always combines .gptab.data and
13415 .gptab.sdata into .gptab.sdata, and likewise for
13416 .gptab.bss and .gptab.sbss. It is possible that there is
13417 no .sdata or .sbss section in the output file, in which
13418 case we must change the name of the output section. */
13419 subname = o->name + sizeof ".gptab" - 1;
13420 if (bfd_get_section_by_name (abfd, subname) == NULL)
13421 {
13422 if (o == gptab_data_sec)
13423 o->name = ".gptab.data";
13424 else
13425 o->name = ".gptab.bss";
13426 subname = o->name + sizeof ".gptab" - 1;
13427 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13428 }
13429
13430 /* Set up the first entry. */
13431 c = 1;
13432 amt = c * sizeof (Elf32_gptab);
13433 tab = bfd_malloc (amt);
13434 if (tab == NULL)
13435 return FALSE;
13436 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13437 tab[0].gt_header.gt_unused = 0;
13438
13439 /* Combine the input sections. */
13440 for (p = o->map_head.link_order; p != NULL; p = p->next)
13441 {
13442 asection *input_section;
13443 bfd *input_bfd;
13444 bfd_size_type size;
13445 unsigned long last;
13446 bfd_size_type gpentry;
13447
13448 if (p->type != bfd_indirect_link_order)
13449 {
13450 if (p->type == bfd_data_link_order)
13451 continue;
13452 abort ();
13453 }
13454
13455 input_section = p->u.indirect.section;
13456 input_bfd = input_section->owner;
13457
13458 /* Combine the gptab entries for this input section one
13459 by one. We know that the input gptab entries are
13460 sorted by ascending -G value. */
13461 size = input_section->size;
13462 last = 0;
13463 for (gpentry = sizeof (Elf32_External_gptab);
13464 gpentry < size;
13465 gpentry += sizeof (Elf32_External_gptab))
13466 {
13467 Elf32_External_gptab ext_gptab;
13468 Elf32_gptab int_gptab;
13469 unsigned long val;
13470 unsigned long add;
13471 bfd_boolean exact;
13472 unsigned int look;
13473
13474 if (! (bfd_get_section_contents
13475 (input_bfd, input_section, &ext_gptab, gpentry,
13476 sizeof (Elf32_External_gptab))))
13477 {
13478 free (tab);
13479 return FALSE;
13480 }
13481
13482 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13483 &int_gptab);
13484 val = int_gptab.gt_entry.gt_g_value;
13485 add = int_gptab.gt_entry.gt_bytes - last;
13486
13487 exact = FALSE;
13488 for (look = 1; look < c; look++)
13489 {
13490 if (tab[look].gt_entry.gt_g_value >= val)
13491 tab[look].gt_entry.gt_bytes += add;
13492
13493 if (tab[look].gt_entry.gt_g_value == val)
13494 exact = TRUE;
13495 }
13496
13497 if (! exact)
13498 {
13499 Elf32_gptab *new_tab;
13500 unsigned int max;
13501
13502 /* We need a new table entry. */
13503 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13504 new_tab = bfd_realloc (tab, amt);
13505 if (new_tab == NULL)
13506 {
13507 free (tab);
13508 return FALSE;
13509 }
13510 tab = new_tab;
13511 tab[c].gt_entry.gt_g_value = val;
13512 tab[c].gt_entry.gt_bytes = add;
13513
13514 /* Merge in the size for the next smallest -G
13515 value, since that will be implied by this new
13516 value. */
13517 max = 0;
13518 for (look = 1; look < c; look++)
13519 {
13520 if (tab[look].gt_entry.gt_g_value < val
13521 && (max == 0
13522 || (tab[look].gt_entry.gt_g_value
13523 > tab[max].gt_entry.gt_g_value)))
13524 max = look;
13525 }
13526 if (max != 0)
13527 tab[c].gt_entry.gt_bytes +=
13528 tab[max].gt_entry.gt_bytes;
13529
13530 ++c;
13531 }
13532
13533 last = int_gptab.gt_entry.gt_bytes;
13534 }
13535
13536 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13537 elf_link_input_bfd ignores this section. */
13538 input_section->flags &= ~SEC_HAS_CONTENTS;
13539 }
13540
13541 /* The table must be sorted by -G value. */
13542 if (c > 2)
13543 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13544
13545 /* Swap out the table. */
13546 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13547 ext_tab = bfd_alloc (abfd, amt);
13548 if (ext_tab == NULL)
13549 {
13550 free (tab);
13551 return FALSE;
13552 }
13553
13554 for (j = 0; j < c; j++)
13555 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13556 free (tab);
13557
13558 o->size = c * sizeof (Elf32_External_gptab);
13559 o->contents = (bfd_byte *) ext_tab;
13560
13561 /* Skip this section later on (I don't think this currently
13562 matters, but someday it might). */
13563 o->map_head.link_order = NULL;
13564 }
13565 }
13566
13567 /* Invoke the regular ELF backend linker to do all the work. */
13568 if (!bfd_elf_final_link (abfd, info))
13569 return FALSE;
13570
13571 /* Now write out the computed sections. */
13572
13573 if (reginfo_sec != NULL)
13574 {
13575 Elf32_External_RegInfo ext;
13576
13577 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13578 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13579 return FALSE;
13580 }
13581
13582 if (mdebug_sec != NULL)
13583 {
13584 BFD_ASSERT (abfd->output_has_begun);
13585 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13586 swap, info,
13587 mdebug_sec->filepos))
13588 return FALSE;
13589
13590 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13591 }
13592
13593 if (gptab_data_sec != NULL)
13594 {
13595 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13596 gptab_data_sec->contents,
13597 0, gptab_data_sec->size))
13598 return FALSE;
13599 }
13600
13601 if (gptab_bss_sec != NULL)
13602 {
13603 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13604 gptab_bss_sec->contents,
13605 0, gptab_bss_sec->size))
13606 return FALSE;
13607 }
13608
13609 if (SGI_COMPAT (abfd))
13610 {
13611 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13612 if (rtproc_sec != NULL)
13613 {
13614 if (! bfd_set_section_contents (abfd, rtproc_sec,
13615 rtproc_sec->contents,
13616 0, rtproc_sec->size))
13617 return FALSE;
13618 }
13619 }
13620
13621 return TRUE;
13622 }
13623 \f
13624 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13625
13626 struct mips_mach_extension {
13627 unsigned long extension, base;
13628 };
13629
13630
13631 /* An array describing how BFD machines relate to one another. The entries
13632 are ordered topologically with MIPS I extensions listed last. */
13633
13634 static const struct mips_mach_extension mips_mach_extensions[] = {
13635 /* MIPS64r2 extensions. */
13636 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13637 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13638 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13639
13640 /* MIPS64 extensions. */
13641 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13642 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13643 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13644 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13645
13646 /* MIPS V extensions. */
13647 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13648
13649 /* R10000 extensions. */
13650 { bfd_mach_mips12000, bfd_mach_mips10000 },
13651 { bfd_mach_mips14000, bfd_mach_mips10000 },
13652 { bfd_mach_mips16000, bfd_mach_mips10000 },
13653
13654 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13655 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13656 better to allow vr5400 and vr5500 code to be merged anyway, since
13657 many libraries will just use the core ISA. Perhaps we could add
13658 some sort of ASE flag if this ever proves a problem. */
13659 { bfd_mach_mips5500, bfd_mach_mips5400 },
13660 { bfd_mach_mips5400, bfd_mach_mips5000 },
13661
13662 /* MIPS IV extensions. */
13663 { bfd_mach_mips5, bfd_mach_mips8000 },
13664 { bfd_mach_mips10000, bfd_mach_mips8000 },
13665 { bfd_mach_mips5000, bfd_mach_mips8000 },
13666 { bfd_mach_mips7000, bfd_mach_mips8000 },
13667 { bfd_mach_mips9000, bfd_mach_mips8000 },
13668
13669 /* VR4100 extensions. */
13670 { bfd_mach_mips4120, bfd_mach_mips4100 },
13671 { bfd_mach_mips4111, bfd_mach_mips4100 },
13672
13673 /* MIPS III extensions. */
13674 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13675 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13676 { bfd_mach_mips8000, bfd_mach_mips4000 },
13677 { bfd_mach_mips4650, bfd_mach_mips4000 },
13678 { bfd_mach_mips4600, bfd_mach_mips4000 },
13679 { bfd_mach_mips4400, bfd_mach_mips4000 },
13680 { bfd_mach_mips4300, bfd_mach_mips4000 },
13681 { bfd_mach_mips4100, bfd_mach_mips4000 },
13682 { bfd_mach_mips4010, bfd_mach_mips4000 },
13683
13684 /* MIPS32 extensions. */
13685 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13686
13687 /* MIPS II extensions. */
13688 { bfd_mach_mips4000, bfd_mach_mips6000 },
13689 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13690
13691 /* MIPS I extensions. */
13692 { bfd_mach_mips6000, bfd_mach_mips3000 },
13693 { bfd_mach_mips3900, bfd_mach_mips3000 }
13694 };
13695
13696
13697 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13698
13699 static bfd_boolean
13700 mips_mach_extends_p (unsigned long base, unsigned long extension)
13701 {
13702 size_t i;
13703
13704 if (extension == base)
13705 return TRUE;
13706
13707 if (base == bfd_mach_mipsisa32
13708 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13709 return TRUE;
13710
13711 if (base == bfd_mach_mipsisa32r2
13712 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13713 return TRUE;
13714
13715 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13716 if (extension == mips_mach_extensions[i].extension)
13717 {
13718 extension = mips_mach_extensions[i].base;
13719 if (extension == base)
13720 return TRUE;
13721 }
13722
13723 return FALSE;
13724 }
13725
13726
13727 /* Return true if the given ELF header flags describe a 32-bit binary. */
13728
13729 static bfd_boolean
13730 mips_32bit_flags_p (flagword flags)
13731 {
13732 return ((flags & EF_MIPS_32BITMODE) != 0
13733 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13734 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13735 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13736 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13737 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13738 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13739 }
13740
13741
13742 /* Merge object attributes from IBFD into OBFD. Raise an error if
13743 there are conflicting attributes. */
13744 static bfd_boolean
13745 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13746 {
13747 obj_attribute *in_attr;
13748 obj_attribute *out_attr;
13749
13750 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13751 {
13752 /* This is the first object. Copy the attributes. */
13753 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13754
13755 /* Use the Tag_null value to indicate the attributes have been
13756 initialized. */
13757 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13758
13759 return TRUE;
13760 }
13761
13762 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13763 non-conflicting ones. */
13764 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13765 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13766 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13767 {
13768 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13769 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13770 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13771 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13772 ;
13773 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13774 _bfd_error_handler
13775 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13776 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13777 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13778 _bfd_error_handler
13779 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13780 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13781 else
13782 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13783 {
13784 case 1:
13785 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13786 {
13787 case 2:
13788 _bfd_error_handler
13789 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13790 obfd, ibfd);
13791 break;
13792
13793 case 3:
13794 _bfd_error_handler
13795 (_("Warning: %B uses hard float, %B uses soft float"),
13796 obfd, ibfd);
13797 break;
13798
13799 case 4:
13800 _bfd_error_handler
13801 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13802 obfd, ibfd);
13803 break;
13804
13805 default:
13806 abort ();
13807 }
13808 break;
13809
13810 case 2:
13811 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13812 {
13813 case 1:
13814 _bfd_error_handler
13815 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13816 ibfd, obfd);
13817 break;
13818
13819 case 3:
13820 _bfd_error_handler
13821 (_("Warning: %B uses hard float, %B uses soft float"),
13822 obfd, ibfd);
13823 break;
13824
13825 case 4:
13826 _bfd_error_handler
13827 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13828 obfd, ibfd);
13829 break;
13830
13831 default:
13832 abort ();
13833 }
13834 break;
13835
13836 case 3:
13837 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13838 {
13839 case 1:
13840 case 2:
13841 case 4:
13842 _bfd_error_handler
13843 (_("Warning: %B uses hard float, %B uses soft float"),
13844 ibfd, obfd);
13845 break;
13846
13847 default:
13848 abort ();
13849 }
13850 break;
13851
13852 case 4:
13853 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13854 {
13855 case 1:
13856 _bfd_error_handler
13857 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13858 ibfd, obfd);
13859 break;
13860
13861 case 2:
13862 _bfd_error_handler
13863 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13864 ibfd, obfd);
13865 break;
13866
13867 case 3:
13868 _bfd_error_handler
13869 (_("Warning: %B uses hard float, %B uses soft float"),
13870 obfd, ibfd);
13871 break;
13872
13873 default:
13874 abort ();
13875 }
13876 break;
13877
13878 default:
13879 abort ();
13880 }
13881 }
13882
13883 /* Merge Tag_compatibility attributes and any common GNU ones. */
13884 _bfd_elf_merge_object_attributes (ibfd, obfd);
13885
13886 return TRUE;
13887 }
13888
13889 /* Merge backend specific data from an object file to the output
13890 object file when linking. */
13891
13892 bfd_boolean
13893 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13894 {
13895 flagword old_flags;
13896 flagword new_flags;
13897 bfd_boolean ok;
13898 bfd_boolean null_input_bfd = TRUE;
13899 asection *sec;
13900
13901 /* Check if we have the same endianness. */
13902 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13903 {
13904 (*_bfd_error_handler)
13905 (_("%B: endianness incompatible with that of the selected emulation"),
13906 ibfd);
13907 return FALSE;
13908 }
13909
13910 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13911 return TRUE;
13912
13913 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13914 {
13915 (*_bfd_error_handler)
13916 (_("%B: ABI is incompatible with that of the selected emulation"),
13917 ibfd);
13918 return FALSE;
13919 }
13920
13921 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13922 return FALSE;
13923
13924 new_flags = elf_elfheader (ibfd)->e_flags;
13925 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13926 old_flags = elf_elfheader (obfd)->e_flags;
13927
13928 if (! elf_flags_init (obfd))
13929 {
13930 elf_flags_init (obfd) = TRUE;
13931 elf_elfheader (obfd)->e_flags = new_flags;
13932 elf_elfheader (obfd)->e_ident[EI_CLASS]
13933 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13934
13935 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13936 && (bfd_get_arch_info (obfd)->the_default
13937 || mips_mach_extends_p (bfd_get_mach (obfd),
13938 bfd_get_mach (ibfd))))
13939 {
13940 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13941 bfd_get_mach (ibfd)))
13942 return FALSE;
13943 }
13944
13945 return TRUE;
13946 }
13947
13948 /* Check flag compatibility. */
13949
13950 new_flags &= ~EF_MIPS_NOREORDER;
13951 old_flags &= ~EF_MIPS_NOREORDER;
13952
13953 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13954 doesn't seem to matter. */
13955 new_flags &= ~EF_MIPS_XGOT;
13956 old_flags &= ~EF_MIPS_XGOT;
13957
13958 /* MIPSpro generates ucode info in n64 objects. Again, we should
13959 just be able to ignore this. */
13960 new_flags &= ~EF_MIPS_UCODE;
13961 old_flags &= ~EF_MIPS_UCODE;
13962
13963 /* DSOs should only be linked with CPIC code. */
13964 if ((ibfd->flags & DYNAMIC) != 0)
13965 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13966
13967 if (new_flags == old_flags)
13968 return TRUE;
13969
13970 /* Check to see if the input BFD actually contains any sections.
13971 If not, its flags may not have been initialised either, but it cannot
13972 actually cause any incompatibility. */
13973 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13974 {
13975 /* Ignore synthetic sections and empty .text, .data and .bss sections
13976 which are automatically generated by gas. Also ignore fake
13977 (s)common sections, since merely defining a common symbol does
13978 not affect compatibility. */
13979 if ((sec->flags & SEC_IS_COMMON) == 0
13980 && strcmp (sec->name, ".reginfo")
13981 && strcmp (sec->name, ".mdebug")
13982 && (sec->size != 0
13983 || (strcmp (sec->name, ".text")
13984 && strcmp (sec->name, ".data")
13985 && strcmp (sec->name, ".bss"))))
13986 {
13987 null_input_bfd = FALSE;
13988 break;
13989 }
13990 }
13991 if (null_input_bfd)
13992 return TRUE;
13993
13994 ok = TRUE;
13995
13996 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13997 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13998 {
13999 (*_bfd_error_handler)
14000 (_("%B: warning: linking abicalls files with non-abicalls files"),
14001 ibfd);
14002 ok = TRUE;
14003 }
14004
14005 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14006 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14007 if (! (new_flags & EF_MIPS_PIC))
14008 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14009
14010 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14011 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14012
14013 /* Compare the ISAs. */
14014 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14015 {
14016 (*_bfd_error_handler)
14017 (_("%B: linking 32-bit code with 64-bit code"),
14018 ibfd);
14019 ok = FALSE;
14020 }
14021 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14022 {
14023 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14024 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14025 {
14026 /* Copy the architecture info from IBFD to OBFD. Also copy
14027 the 32-bit flag (if set) so that we continue to recognise
14028 OBFD as a 32-bit binary. */
14029 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14030 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14031 elf_elfheader (obfd)->e_flags
14032 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14033
14034 /* Copy across the ABI flags if OBFD doesn't use them
14035 and if that was what caused us to treat IBFD as 32-bit. */
14036 if ((old_flags & EF_MIPS_ABI) == 0
14037 && mips_32bit_flags_p (new_flags)
14038 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14039 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14040 }
14041 else
14042 {
14043 /* The ISAs aren't compatible. */
14044 (*_bfd_error_handler)
14045 (_("%B: linking %s module with previous %s modules"),
14046 ibfd,
14047 bfd_printable_name (ibfd),
14048 bfd_printable_name (obfd));
14049 ok = FALSE;
14050 }
14051 }
14052
14053 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14054 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14055
14056 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14057 does set EI_CLASS differently from any 32-bit ABI. */
14058 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14059 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14060 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14061 {
14062 /* Only error if both are set (to different values). */
14063 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14064 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14065 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14066 {
14067 (*_bfd_error_handler)
14068 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14069 ibfd,
14070 elf_mips_abi_name (ibfd),
14071 elf_mips_abi_name (obfd));
14072 ok = FALSE;
14073 }
14074 new_flags &= ~EF_MIPS_ABI;
14075 old_flags &= ~EF_MIPS_ABI;
14076 }
14077
14078 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14079 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14080 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14081 {
14082 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14083 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14084 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14085 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14086 int micro_mis = old_m16 && new_micro;
14087 int m16_mis = old_micro && new_m16;
14088
14089 if (m16_mis || micro_mis)
14090 {
14091 (*_bfd_error_handler)
14092 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14093 ibfd,
14094 m16_mis ? "MIPS16" : "microMIPS",
14095 m16_mis ? "microMIPS" : "MIPS16");
14096 ok = FALSE;
14097 }
14098
14099 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14100
14101 new_flags &= ~ EF_MIPS_ARCH_ASE;
14102 old_flags &= ~ EF_MIPS_ARCH_ASE;
14103 }
14104
14105 /* Warn about any other mismatches */
14106 if (new_flags != old_flags)
14107 {
14108 (*_bfd_error_handler)
14109 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14110 ibfd, (unsigned long) new_flags,
14111 (unsigned long) old_flags);
14112 ok = FALSE;
14113 }
14114
14115 if (! ok)
14116 {
14117 bfd_set_error (bfd_error_bad_value);
14118 return FALSE;
14119 }
14120
14121 return TRUE;
14122 }
14123
14124 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14125
14126 bfd_boolean
14127 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14128 {
14129 BFD_ASSERT (!elf_flags_init (abfd)
14130 || elf_elfheader (abfd)->e_flags == flags);
14131
14132 elf_elfheader (abfd)->e_flags = flags;
14133 elf_flags_init (abfd) = TRUE;
14134 return TRUE;
14135 }
14136
14137 char *
14138 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14139 {
14140 switch (dtag)
14141 {
14142 default: return "";
14143 case DT_MIPS_RLD_VERSION:
14144 return "MIPS_RLD_VERSION";
14145 case DT_MIPS_TIME_STAMP:
14146 return "MIPS_TIME_STAMP";
14147 case DT_MIPS_ICHECKSUM:
14148 return "MIPS_ICHECKSUM";
14149 case DT_MIPS_IVERSION:
14150 return "MIPS_IVERSION";
14151 case DT_MIPS_FLAGS:
14152 return "MIPS_FLAGS";
14153 case DT_MIPS_BASE_ADDRESS:
14154 return "MIPS_BASE_ADDRESS";
14155 case DT_MIPS_MSYM:
14156 return "MIPS_MSYM";
14157 case DT_MIPS_CONFLICT:
14158 return "MIPS_CONFLICT";
14159 case DT_MIPS_LIBLIST:
14160 return "MIPS_LIBLIST";
14161 case DT_MIPS_LOCAL_GOTNO:
14162 return "MIPS_LOCAL_GOTNO";
14163 case DT_MIPS_CONFLICTNO:
14164 return "MIPS_CONFLICTNO";
14165 case DT_MIPS_LIBLISTNO:
14166 return "MIPS_LIBLISTNO";
14167 case DT_MIPS_SYMTABNO:
14168 return "MIPS_SYMTABNO";
14169 case DT_MIPS_UNREFEXTNO:
14170 return "MIPS_UNREFEXTNO";
14171 case DT_MIPS_GOTSYM:
14172 return "MIPS_GOTSYM";
14173 case DT_MIPS_HIPAGENO:
14174 return "MIPS_HIPAGENO";
14175 case DT_MIPS_RLD_MAP:
14176 return "MIPS_RLD_MAP";
14177 case DT_MIPS_DELTA_CLASS:
14178 return "MIPS_DELTA_CLASS";
14179 case DT_MIPS_DELTA_CLASS_NO:
14180 return "MIPS_DELTA_CLASS_NO";
14181 case DT_MIPS_DELTA_INSTANCE:
14182 return "MIPS_DELTA_INSTANCE";
14183 case DT_MIPS_DELTA_INSTANCE_NO:
14184 return "MIPS_DELTA_INSTANCE_NO";
14185 case DT_MIPS_DELTA_RELOC:
14186 return "MIPS_DELTA_RELOC";
14187 case DT_MIPS_DELTA_RELOC_NO:
14188 return "MIPS_DELTA_RELOC_NO";
14189 case DT_MIPS_DELTA_SYM:
14190 return "MIPS_DELTA_SYM";
14191 case DT_MIPS_DELTA_SYM_NO:
14192 return "MIPS_DELTA_SYM_NO";
14193 case DT_MIPS_DELTA_CLASSSYM:
14194 return "MIPS_DELTA_CLASSSYM";
14195 case DT_MIPS_DELTA_CLASSSYM_NO:
14196 return "MIPS_DELTA_CLASSSYM_NO";
14197 case DT_MIPS_CXX_FLAGS:
14198 return "MIPS_CXX_FLAGS";
14199 case DT_MIPS_PIXIE_INIT:
14200 return "MIPS_PIXIE_INIT";
14201 case DT_MIPS_SYMBOL_LIB:
14202 return "MIPS_SYMBOL_LIB";
14203 case DT_MIPS_LOCALPAGE_GOTIDX:
14204 return "MIPS_LOCALPAGE_GOTIDX";
14205 case DT_MIPS_LOCAL_GOTIDX:
14206 return "MIPS_LOCAL_GOTIDX";
14207 case DT_MIPS_HIDDEN_GOTIDX:
14208 return "MIPS_HIDDEN_GOTIDX";
14209 case DT_MIPS_PROTECTED_GOTIDX:
14210 return "MIPS_PROTECTED_GOT_IDX";
14211 case DT_MIPS_OPTIONS:
14212 return "MIPS_OPTIONS";
14213 case DT_MIPS_INTERFACE:
14214 return "MIPS_INTERFACE";
14215 case DT_MIPS_DYNSTR_ALIGN:
14216 return "DT_MIPS_DYNSTR_ALIGN";
14217 case DT_MIPS_INTERFACE_SIZE:
14218 return "DT_MIPS_INTERFACE_SIZE";
14219 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14220 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14221 case DT_MIPS_PERF_SUFFIX:
14222 return "DT_MIPS_PERF_SUFFIX";
14223 case DT_MIPS_COMPACT_SIZE:
14224 return "DT_MIPS_COMPACT_SIZE";
14225 case DT_MIPS_GP_VALUE:
14226 return "DT_MIPS_GP_VALUE";
14227 case DT_MIPS_AUX_DYNAMIC:
14228 return "DT_MIPS_AUX_DYNAMIC";
14229 case DT_MIPS_PLTGOT:
14230 return "DT_MIPS_PLTGOT";
14231 case DT_MIPS_RWPLT:
14232 return "DT_MIPS_RWPLT";
14233 }
14234 }
14235
14236 bfd_boolean
14237 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14238 {
14239 FILE *file = ptr;
14240
14241 BFD_ASSERT (abfd != NULL && ptr != NULL);
14242
14243 /* Print normal ELF private data. */
14244 _bfd_elf_print_private_bfd_data (abfd, ptr);
14245
14246 /* xgettext:c-format */
14247 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14248
14249 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14250 fprintf (file, _(" [abi=O32]"));
14251 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14252 fprintf (file, _(" [abi=O64]"));
14253 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14254 fprintf (file, _(" [abi=EABI32]"));
14255 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14256 fprintf (file, _(" [abi=EABI64]"));
14257 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14258 fprintf (file, _(" [abi unknown]"));
14259 else if (ABI_N32_P (abfd))
14260 fprintf (file, _(" [abi=N32]"));
14261 else if (ABI_64_P (abfd))
14262 fprintf (file, _(" [abi=64]"));
14263 else
14264 fprintf (file, _(" [no abi set]"));
14265
14266 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14267 fprintf (file, " [mips1]");
14268 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14269 fprintf (file, " [mips2]");
14270 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14271 fprintf (file, " [mips3]");
14272 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14273 fprintf (file, " [mips4]");
14274 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14275 fprintf (file, " [mips5]");
14276 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14277 fprintf (file, " [mips32]");
14278 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14279 fprintf (file, " [mips64]");
14280 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14281 fprintf (file, " [mips32r2]");
14282 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14283 fprintf (file, " [mips64r2]");
14284 else
14285 fprintf (file, _(" [unknown ISA]"));
14286
14287 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14288 fprintf (file, " [mdmx]");
14289
14290 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14291 fprintf (file, " [mips16]");
14292
14293 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14294 fprintf (file, " [micromips]");
14295
14296 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14297 fprintf (file, " [32bitmode]");
14298 else
14299 fprintf (file, _(" [not 32bitmode]"));
14300
14301 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14302 fprintf (file, " [noreorder]");
14303
14304 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14305 fprintf (file, " [PIC]");
14306
14307 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14308 fprintf (file, " [CPIC]");
14309
14310 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14311 fprintf (file, " [XGOT]");
14312
14313 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14314 fprintf (file, " [UCODE]");
14315
14316 fputc ('\n', file);
14317
14318 return TRUE;
14319 }
14320
14321 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14322 {
14323 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14324 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14325 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14326 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14327 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14328 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14329 { NULL, 0, 0, 0, 0 }
14330 };
14331
14332 /* Merge non visibility st_other attributes. Ensure that the
14333 STO_OPTIONAL flag is copied into h->other, even if this is not a
14334 definiton of the symbol. */
14335 void
14336 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14337 const Elf_Internal_Sym *isym,
14338 bfd_boolean definition,
14339 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14340 {
14341 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14342 {
14343 unsigned char other;
14344
14345 other = (definition ? isym->st_other : h->other);
14346 other &= ~ELF_ST_VISIBILITY (-1);
14347 h->other = other | ELF_ST_VISIBILITY (h->other);
14348 }
14349
14350 if (!definition
14351 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14352 h->other |= STO_OPTIONAL;
14353 }
14354
14355 /* Decide whether an undefined symbol is special and can be ignored.
14356 This is the case for OPTIONAL symbols on IRIX. */
14357 bfd_boolean
14358 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14359 {
14360 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14361 }
14362
14363 bfd_boolean
14364 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14365 {
14366 return (sym->st_shndx == SHN_COMMON
14367 || sym->st_shndx == SHN_MIPS_ACOMMON
14368 || sym->st_shndx == SHN_MIPS_SCOMMON);
14369 }
14370
14371 /* Return address for Ith PLT stub in section PLT, for relocation REL
14372 or (bfd_vma) -1 if it should not be included. */
14373
14374 bfd_vma
14375 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14376 const arelent *rel ATTRIBUTE_UNUSED)
14377 {
14378 return (plt->vma
14379 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14380 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14381 }
14382
14383 void
14384 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14385 {
14386 struct mips_elf_link_hash_table *htab;
14387 Elf_Internal_Ehdr *i_ehdrp;
14388
14389 i_ehdrp = elf_elfheader (abfd);
14390 if (link_info)
14391 {
14392 htab = mips_elf_hash_table (link_info);
14393 BFD_ASSERT (htab != NULL);
14394
14395 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14396 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14397 }
14398 }
This page took 0.455532 seconds and 4 git commands to generate.