MIPS/BFD: Remove extraneous undefined weak symbol visibility check
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
2972 else
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2978
2979 if (hd->needs_lazy_stub)
2980 {
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
3005 einfo->failed = TRUE;
3006 return FALSE;
3007 }
3008
3009 return TRUE;
3010 }
3011
3012 /* A comparison routine used to sort .gptab entries. */
3013
3014 static int
3015 gptab_compare (const void *p1, const void *p2)
3016 {
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021 }
3022 \f
3023 /* Functions to manage the got entry hash table. */
3024
3025 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028 static INLINE hashval_t
3029 mips_elf_hash_bfd_vma (bfd_vma addr)
3030 {
3031 #ifdef BFD64
3032 return addr + (addr >> 32);
3033 #else
3034 return addr;
3035 #endif
3036 }
3037
3038 static hashval_t
3039 mips_elf_got_entry_hash (const void *entry_)
3040 {
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
3043 return (entry->symndx
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
3050 }
3051
3052 static int
3053 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3054 {
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
3058 return (e1->symndx == e2->symndx
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
3065 }
3066
3067 static hashval_t
3068 mips_got_page_ref_hash (const void *ref_)
3069 {
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077 }
3078
3079 static int
3080 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081 {
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091 }
3092
3093 static hashval_t
3094 mips_got_page_entry_hash (const void *entry_)
3095 {
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
3099 return entry->sec->id;
3100 }
3101
3102 static int
3103 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104 {
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
3109 return entry1->sec == entry2->sec;
3110 }
3111 \f
3112 /* Create and return a new mips_got_info structure. */
3113
3114 static struct mips_got_info *
3115 mips_elf_create_got_info (bfd *abfd)
3116 {
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
3131 return NULL;
3132
3133 return g;
3134 }
3135
3136 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139 static struct mips_got_info *
3140 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141 {
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3149 tdata->got = mips_elf_create_got_info (abfd);
3150 return tdata->got;
3151 }
3152
3153 /* Record that ABFD should use output GOT G. */
3154
3155 static void
3156 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157 {
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
3170 }
3171 tdata->got = g;
3172 }
3173
3174 /* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
3177
3178 static asection *
3179 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3180 {
3181 const char *dname;
3182 asection *sreloc;
3183 bfd *dynobj;
3184
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3187 sreloc = bfd_get_linker_section (dynobj, dname);
3188 if (sreloc == NULL && create_p)
3189 {
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
3197 if (sreloc == NULL
3198 || ! bfd_set_section_alignment (dynobj, sreloc,
3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3200 return NULL;
3201 }
3202 return sreloc;
3203 }
3204
3205 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207 static int
3208 mips_elf_reloc_tls_type (unsigned int r_type)
3209 {
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
3219 return GOT_TLS_NONE;
3220 }
3221
3222 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224 static int
3225 mips_tls_got_entries (unsigned int type)
3226 {
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
3236 case GOT_TLS_NONE:
3237 return 0;
3238 }
3239 abort ();
3240 }
3241
3242 /* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246 static int
3247 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249 {
3250 int indx = 0;
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
3254 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3255 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3256 indx = h->dynindx;
3257
3258 if ((bfd_link_pic (info) || indx != 0)
3259 && (h == NULL
3260 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3261 || h->root.type != bfd_link_hash_undefweak))
3262 need_relocs = TRUE;
3263
3264 if (!need_relocs)
3265 return 0;
3266
3267 switch (tls_type)
3268 {
3269 case GOT_TLS_GD:
3270 return indx != 0 ? 2 : 1;
3271
3272 case GOT_TLS_IE:
3273 return 1;
3274
3275 case GOT_TLS_LDM:
3276 return bfd_link_pic (info) ? 1 : 0;
3277
3278 default:
3279 return 0;
3280 }
3281 }
3282
3283 /* Add the number of GOT entries and TLS relocations required by ENTRY
3284 to G. */
3285
3286 static void
3287 mips_elf_count_got_entry (struct bfd_link_info *info,
3288 struct mips_got_info *g,
3289 struct mips_got_entry *entry)
3290 {
3291 if (entry->tls_type)
3292 {
3293 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3294 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3295 entry->symndx < 0
3296 ? &entry->d.h->root : NULL);
3297 }
3298 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3299 g->local_gotno += 1;
3300 else
3301 g->global_gotno += 1;
3302 }
3303
3304 /* Output a simple dynamic relocation into SRELOC. */
3305
3306 static void
3307 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3308 asection *sreloc,
3309 unsigned long reloc_index,
3310 unsigned long indx,
3311 int r_type,
3312 bfd_vma offset)
3313 {
3314 Elf_Internal_Rela rel[3];
3315
3316 memset (rel, 0, sizeof (rel));
3317
3318 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3319 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3320
3321 if (ABI_64_P (output_bfd))
3322 {
3323 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3324 (output_bfd, &rel[0],
3325 (sreloc->contents
3326 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3327 }
3328 else
3329 bfd_elf32_swap_reloc_out
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf32_External_Rel)));
3333 }
3334
3335 /* Initialize a set of TLS GOT entries for one symbol. */
3336
3337 static void
3338 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3339 struct mips_got_entry *entry,
3340 struct mips_elf_link_hash_entry *h,
3341 bfd_vma value)
3342 {
3343 struct mips_elf_link_hash_table *htab;
3344 int indx;
3345 asection *sreloc, *sgot;
3346 bfd_vma got_offset, got_offset2;
3347 bfd_boolean need_relocs = FALSE;
3348
3349 htab = mips_elf_hash_table (info);
3350 if (htab == NULL)
3351 return;
3352
3353 sgot = htab->root.sgot;
3354
3355 indx = 0;
3356 if (h != NULL)
3357 {
3358 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3359
3360 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3361 &h->root)
3362 && (!bfd_link_pic (info)
3363 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3364 indx = h->root.dynindx;
3365 }
3366
3367 if (entry->tls_initialized)
3368 return;
3369
3370 if ((bfd_link_pic (info) || indx != 0)
3371 && (h == NULL
3372 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3373 || h->root.type != bfd_link_hash_undefweak))
3374 need_relocs = TRUE;
3375
3376 /* MINUS_ONE means the symbol is not defined in this object. It may not
3377 be defined at all; assume that the value doesn't matter in that
3378 case. Otherwise complain if we would use the value. */
3379 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3380 || h->root.root.type == bfd_link_hash_undefweak);
3381
3382 /* Emit necessary relocations. */
3383 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3384 got_offset = entry->gotidx;
3385
3386 switch (entry->tls_type)
3387 {
3388 case GOT_TLS_GD:
3389 /* General Dynamic. */
3390 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3391
3392 if (need_relocs)
3393 {
3394 mips_elf_output_dynamic_relocation
3395 (abfd, sreloc, sreloc->reloc_count++, indx,
3396 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3397 sgot->output_offset + sgot->output_section->vma + got_offset);
3398
3399 if (indx)
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset2);
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3406 sgot->contents + got_offset2);
3407 }
3408 else
3409 {
3410 MIPS_ELF_PUT_WORD (abfd, 1,
3411 sgot->contents + got_offset);
3412 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3413 sgot->contents + got_offset2);
3414 }
3415 break;
3416
3417 case GOT_TLS_IE:
3418 /* Initial Exec model. */
3419 if (need_relocs)
3420 {
3421 if (indx == 0)
3422 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3423 sgot->contents + got_offset);
3424 else
3425 MIPS_ELF_PUT_WORD (abfd, 0,
3426 sgot->contents + got_offset);
3427
3428 mips_elf_output_dynamic_relocation
3429 (abfd, sreloc, sreloc->reloc_count++, indx,
3430 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3431 sgot->output_offset + sgot->output_section->vma + got_offset);
3432 }
3433 else
3434 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3435 sgot->contents + got_offset);
3436 break;
3437
3438 case GOT_TLS_LDM:
3439 /* The initial offset is zero, and the LD offsets will include the
3440 bias by DTP_OFFSET. */
3441 MIPS_ELF_PUT_WORD (abfd, 0,
3442 sgot->contents + got_offset
3443 + MIPS_ELF_GOT_SIZE (abfd));
3444
3445 if (!bfd_link_pic (info))
3446 MIPS_ELF_PUT_WORD (abfd, 1,
3447 sgot->contents + got_offset);
3448 else
3449 mips_elf_output_dynamic_relocation
3450 (abfd, sreloc, sreloc->reloc_count++, indx,
3451 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3452 sgot->output_offset + sgot->output_section->vma + got_offset);
3453 break;
3454
3455 default:
3456 abort ();
3457 }
3458
3459 entry->tls_initialized = TRUE;
3460 }
3461
3462 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3463 for global symbol H. .got.plt comes before the GOT, so the offset
3464 will be negative. */
3465
3466 static bfd_vma
3467 mips_elf_gotplt_index (struct bfd_link_info *info,
3468 struct elf_link_hash_entry *h)
3469 {
3470 bfd_vma got_address, got_value;
3471 struct mips_elf_link_hash_table *htab;
3472
3473 htab = mips_elf_hash_table (info);
3474 BFD_ASSERT (htab != NULL);
3475
3476 BFD_ASSERT (h->plt.plist != NULL);
3477 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3478
3479 /* Calculate the address of the associated .got.plt entry. */
3480 got_address = (htab->root.sgotplt->output_section->vma
3481 + htab->root.sgotplt->output_offset
3482 + (h->plt.plist->gotplt_index
3483 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3484
3485 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3486 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3487 + htab->root.hgot->root.u.def.section->output_offset
3488 + htab->root.hgot->root.u.def.value);
3489
3490 return got_address - got_value;
3491 }
3492
3493 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3494 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3495 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3496 offset can be found. */
3497
3498 static bfd_vma
3499 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3500 bfd_vma value, unsigned long r_symndx,
3501 struct mips_elf_link_hash_entry *h, int r_type)
3502 {
3503 struct mips_elf_link_hash_table *htab;
3504 struct mips_got_entry *entry;
3505
3506 htab = mips_elf_hash_table (info);
3507 BFD_ASSERT (htab != NULL);
3508
3509 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3510 r_symndx, h, r_type);
3511 if (!entry)
3512 return MINUS_ONE;
3513
3514 if (entry->tls_type)
3515 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3516 return entry->gotidx;
3517 }
3518
3519 /* Return the GOT index of global symbol H in the primary GOT. */
3520
3521 static bfd_vma
3522 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3523 struct elf_link_hash_entry *h)
3524 {
3525 struct mips_elf_link_hash_table *htab;
3526 long global_got_dynindx;
3527 struct mips_got_info *g;
3528 bfd_vma got_index;
3529
3530 htab = mips_elf_hash_table (info);
3531 BFD_ASSERT (htab != NULL);
3532
3533 global_got_dynindx = 0;
3534 if (htab->global_gotsym != NULL)
3535 global_got_dynindx = htab->global_gotsym->dynindx;
3536
3537 /* Once we determine the global GOT entry with the lowest dynamic
3538 symbol table index, we must put all dynamic symbols with greater
3539 indices into the primary GOT. That makes it easy to calculate the
3540 GOT offset. */
3541 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3542 g = mips_elf_bfd_got (obfd, FALSE);
3543 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3544 * MIPS_ELF_GOT_SIZE (obfd));
3545 BFD_ASSERT (got_index < htab->root.sgot->size);
3546
3547 return got_index;
3548 }
3549
3550 /* Return the GOT index for the global symbol indicated by H, which is
3551 referenced by a relocation of type R_TYPE in IBFD. */
3552
3553 static bfd_vma
3554 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3555 struct elf_link_hash_entry *h, int r_type)
3556 {
3557 struct mips_elf_link_hash_table *htab;
3558 struct mips_got_info *g;
3559 struct mips_got_entry lookup, *entry;
3560 bfd_vma gotidx;
3561
3562 htab = mips_elf_hash_table (info);
3563 BFD_ASSERT (htab != NULL);
3564
3565 g = mips_elf_bfd_got (ibfd, FALSE);
3566 BFD_ASSERT (g);
3567
3568 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3569 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3570 return mips_elf_primary_global_got_index (obfd, info, h);
3571
3572 lookup.abfd = ibfd;
3573 lookup.symndx = -1;
3574 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3575 entry = htab_find (g->got_entries, &lookup);
3576 BFD_ASSERT (entry);
3577
3578 gotidx = entry->gotidx;
3579 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3580
3581 if (lookup.tls_type)
3582 {
3583 bfd_vma value = MINUS_ONE;
3584
3585 if ((h->root.type == bfd_link_hash_defined
3586 || h->root.type == bfd_link_hash_defweak)
3587 && h->root.u.def.section->output_section)
3588 value = (h->root.u.def.value
3589 + h->root.u.def.section->output_offset
3590 + h->root.u.def.section->output_section->vma);
3591
3592 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3593 }
3594 return gotidx;
3595 }
3596
3597 /* Find a GOT page entry that points to within 32KB of VALUE. These
3598 entries are supposed to be placed at small offsets in the GOT, i.e.,
3599 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3600 entry could be created. If OFFSETP is nonnull, use it to return the
3601 offset of the GOT entry from VALUE. */
3602
3603 static bfd_vma
3604 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3605 bfd_vma value, bfd_vma *offsetp)
3606 {
3607 bfd_vma page, got_index;
3608 struct mips_got_entry *entry;
3609
3610 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3611 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3612 NULL, R_MIPS_GOT_PAGE);
3613
3614 if (!entry)
3615 return MINUS_ONE;
3616
3617 got_index = entry->gotidx;
3618
3619 if (offsetp)
3620 *offsetp = value - entry->d.address;
3621
3622 return got_index;
3623 }
3624
3625 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3626 EXTERNAL is true if the relocation was originally against a global
3627 symbol that binds locally. */
3628
3629 static bfd_vma
3630 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3631 bfd_vma value, bfd_boolean external)
3632 {
3633 struct mips_got_entry *entry;
3634
3635 /* GOT16 relocations against local symbols are followed by a LO16
3636 relocation; those against global symbols are not. Thus if the
3637 symbol was originally local, the GOT16 relocation should load the
3638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3639 if (! external)
3640 value = mips_elf_high (value) << 16;
3641
3642 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3643 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3644 same in all cases. */
3645 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3646 NULL, R_MIPS_GOT16);
3647 if (entry)
3648 return entry->gotidx;
3649 else
3650 return MINUS_ONE;
3651 }
3652
3653 /* Returns the offset for the entry at the INDEXth position
3654 in the GOT. */
3655
3656 static bfd_vma
3657 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3658 bfd *input_bfd, bfd_vma got_index)
3659 {
3660 struct mips_elf_link_hash_table *htab;
3661 asection *sgot;
3662 bfd_vma gp;
3663
3664 htab = mips_elf_hash_table (info);
3665 BFD_ASSERT (htab != NULL);
3666
3667 sgot = htab->root.sgot;
3668 gp = _bfd_get_gp_value (output_bfd)
3669 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3670
3671 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3672 }
3673
3674 /* Create and return a local GOT entry for VALUE, which was calculated
3675 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3676 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3677 instead. */
3678
3679 static struct mips_got_entry *
3680 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3681 bfd *ibfd, bfd_vma value,
3682 unsigned long r_symndx,
3683 struct mips_elf_link_hash_entry *h,
3684 int r_type)
3685 {
3686 struct mips_got_entry lookup, *entry;
3687 void **loc;
3688 struct mips_got_info *g;
3689 struct mips_elf_link_hash_table *htab;
3690 bfd_vma gotidx;
3691
3692 htab = mips_elf_hash_table (info);
3693 BFD_ASSERT (htab != NULL);
3694
3695 g = mips_elf_bfd_got (ibfd, FALSE);
3696 if (g == NULL)
3697 {
3698 g = mips_elf_bfd_got (abfd, FALSE);
3699 BFD_ASSERT (g != NULL);
3700 }
3701
3702 /* This function shouldn't be called for symbols that live in the global
3703 area of the GOT. */
3704 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3705
3706 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3707 if (lookup.tls_type)
3708 {
3709 lookup.abfd = ibfd;
3710 if (tls_ldm_reloc_p (r_type))
3711 {
3712 lookup.symndx = 0;
3713 lookup.d.addend = 0;
3714 }
3715 else if (h == NULL)
3716 {
3717 lookup.symndx = r_symndx;
3718 lookup.d.addend = 0;
3719 }
3720 else
3721 {
3722 lookup.symndx = -1;
3723 lookup.d.h = h;
3724 }
3725
3726 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3727 BFD_ASSERT (entry);
3728
3729 gotidx = entry->gotidx;
3730 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3731
3732 return entry;
3733 }
3734
3735 lookup.abfd = NULL;
3736 lookup.symndx = -1;
3737 lookup.d.address = value;
3738 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3739 if (!loc)
3740 return NULL;
3741
3742 entry = (struct mips_got_entry *) *loc;
3743 if (entry)
3744 return entry;
3745
3746 if (g->assigned_low_gotno > g->assigned_high_gotno)
3747 {
3748 /* We didn't allocate enough space in the GOT. */
3749 _bfd_error_handler
3750 (_("not enough GOT space for local GOT entries"));
3751 bfd_set_error (bfd_error_bad_value);
3752 return NULL;
3753 }
3754
3755 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3756 if (!entry)
3757 return NULL;
3758
3759 if (got16_reloc_p (r_type)
3760 || call16_reloc_p (r_type)
3761 || got_page_reloc_p (r_type)
3762 || got_disp_reloc_p (r_type))
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3764 else
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3766
3767 *entry = lookup;
3768 *loc = entry;
3769
3770 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3771
3772 /* These GOT entries need a dynamic relocation on VxWorks. */
3773 if (htab->is_vxworks)
3774 {
3775 Elf_Internal_Rela outrel;
3776 asection *s;
3777 bfd_byte *rloc;
3778 bfd_vma got_address;
3779
3780 s = mips_elf_rel_dyn_section (info, FALSE);
3781 got_address = (htab->root.sgot->output_section->vma
3782 + htab->root.sgot->output_offset
3783 + entry->gotidx);
3784
3785 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3786 outrel.r_offset = got_address;
3787 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3788 outrel.r_addend = value;
3789 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3790 }
3791
3792 return entry;
3793 }
3794
3795 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3796 The number might be exact or a worst-case estimate, depending on how
3797 much information is available to elf_backend_omit_section_dynsym at
3798 the current linking stage. */
3799
3800 static bfd_size_type
3801 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3802 {
3803 bfd_size_type count;
3804
3805 count = 0;
3806 if (bfd_link_pic (info)
3807 || elf_hash_table (info)->is_relocatable_executable)
3808 {
3809 asection *p;
3810 const struct elf_backend_data *bed;
3811
3812 bed = get_elf_backend_data (output_bfd);
3813 for (p = output_bfd->sections; p ; p = p->next)
3814 if ((p->flags & SEC_EXCLUDE) == 0
3815 && (p->flags & SEC_ALLOC) != 0
3816 && elf_hash_table (info)->dynamic_relocs
3817 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3818 ++count;
3819 }
3820 return count;
3821 }
3822
3823 /* Sort the dynamic symbol table so that symbols that need GOT entries
3824 appear towards the end. */
3825
3826 static bfd_boolean
3827 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3828 {
3829 struct mips_elf_link_hash_table *htab;
3830 struct mips_elf_hash_sort_data hsd;
3831 struct mips_got_info *g;
3832
3833 htab = mips_elf_hash_table (info);
3834 BFD_ASSERT (htab != NULL);
3835
3836 if (htab->root.dynsymcount == 0)
3837 return TRUE;
3838
3839 g = htab->got_info;
3840 if (g == NULL)
3841 return TRUE;
3842
3843 hsd.low = NULL;
3844 hsd.max_unref_got_dynindx
3845 = hsd.min_got_dynindx
3846 = (htab->root.dynsymcount - g->reloc_only_gotno);
3847 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3848 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3849 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3850 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3851 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3852
3853 /* There should have been enough room in the symbol table to
3854 accommodate both the GOT and non-GOT symbols. */
3855 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3856 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3857 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3858 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3859
3860 /* Now we know which dynamic symbol has the lowest dynamic symbol
3861 table index in the GOT. */
3862 htab->global_gotsym = hsd.low;
3863
3864 return TRUE;
3865 }
3866
3867 /* If H needs a GOT entry, assign it the highest available dynamic
3868 index. Otherwise, assign it the lowest available dynamic
3869 index. */
3870
3871 static bfd_boolean
3872 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3873 {
3874 struct mips_elf_hash_sort_data *hsd = data;
3875
3876 /* Symbols without dynamic symbol table entries aren't interesting
3877 at all. */
3878 if (h->root.dynindx == -1)
3879 return TRUE;
3880
3881 switch (h->global_got_area)
3882 {
3883 case GGA_NONE:
3884 if (h->root.forced_local)
3885 h->root.dynindx = hsd->max_local_dynindx++;
3886 else
3887 h->root.dynindx = hsd->max_non_got_dynindx++;
3888 break;
3889
3890 case GGA_NORMAL:
3891 h->root.dynindx = --hsd->min_got_dynindx;
3892 hsd->low = (struct elf_link_hash_entry *) h;
3893 break;
3894
3895 case GGA_RELOC_ONLY:
3896 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 h->root.dynindx = hsd->max_unref_got_dynindx++;
3899 break;
3900 }
3901
3902 return TRUE;
3903 }
3904
3905 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3906 (which is owned by the caller and shouldn't be added to the
3907 hash table directly). */
3908
3909 static bfd_boolean
3910 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3911 struct mips_got_entry *lookup)
3912 {
3913 struct mips_elf_link_hash_table *htab;
3914 struct mips_got_entry *entry;
3915 struct mips_got_info *g;
3916 void **loc, **bfd_loc;
3917
3918 /* Make sure there's a slot for this entry in the master GOT. */
3919 htab = mips_elf_hash_table (info);
3920 g = htab->got_info;
3921 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3922 if (!loc)
3923 return FALSE;
3924
3925 /* Populate the entry if it isn't already. */
3926 entry = (struct mips_got_entry *) *loc;
3927 if (!entry)
3928 {
3929 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3930 if (!entry)
3931 return FALSE;
3932
3933 lookup->tls_initialized = FALSE;
3934 lookup->gotidx = -1;
3935 *entry = *lookup;
3936 *loc = entry;
3937 }
3938
3939 /* Reuse the same GOT entry for the BFD's GOT. */
3940 g = mips_elf_bfd_got (abfd, TRUE);
3941 if (!g)
3942 return FALSE;
3943
3944 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3945 if (!bfd_loc)
3946 return FALSE;
3947
3948 if (!*bfd_loc)
3949 *bfd_loc = entry;
3950 return TRUE;
3951 }
3952
3953 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3954 entry for it. FOR_CALL is true if the caller is only interested in
3955 using the GOT entry for calls. */
3956
3957 static bfd_boolean
3958 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3959 bfd *abfd, struct bfd_link_info *info,
3960 bfd_boolean for_call, int r_type)
3961 {
3962 struct mips_elf_link_hash_table *htab;
3963 struct mips_elf_link_hash_entry *hmips;
3964 struct mips_got_entry entry;
3965 unsigned char tls_type;
3966
3967 htab = mips_elf_hash_table (info);
3968 BFD_ASSERT (htab != NULL);
3969
3970 hmips = (struct mips_elf_link_hash_entry *) h;
3971 if (!for_call)
3972 hmips->got_only_for_calls = FALSE;
3973
3974 /* A global symbol in the GOT must also be in the dynamic symbol
3975 table. */
3976 if (h->dynindx == -1)
3977 {
3978 switch (ELF_ST_VISIBILITY (h->other))
3979 {
3980 case STV_INTERNAL:
3981 case STV_HIDDEN:
3982 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3983 break;
3984 }
3985 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3986 return FALSE;
3987 }
3988
3989 tls_type = mips_elf_reloc_tls_type (r_type);
3990 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3991 hmips->global_got_area = GGA_NORMAL;
3992
3993 entry.abfd = abfd;
3994 entry.symndx = -1;
3995 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3996 entry.tls_type = tls_type;
3997 return mips_elf_record_got_entry (info, abfd, &entry);
3998 }
3999
4000 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4001 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4002
4003 static bfd_boolean
4004 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4005 struct bfd_link_info *info, int r_type)
4006 {
4007 struct mips_elf_link_hash_table *htab;
4008 struct mips_got_info *g;
4009 struct mips_got_entry entry;
4010
4011 htab = mips_elf_hash_table (info);
4012 BFD_ASSERT (htab != NULL);
4013
4014 g = htab->got_info;
4015 BFD_ASSERT (g != NULL);
4016
4017 entry.abfd = abfd;
4018 entry.symndx = symndx;
4019 entry.d.addend = addend;
4020 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4021 return mips_elf_record_got_entry (info, abfd, &entry);
4022 }
4023
4024 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4025 H is the symbol's hash table entry, or null if SYMNDX is local
4026 to ABFD. */
4027
4028 static bfd_boolean
4029 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4030 long symndx, struct elf_link_hash_entry *h,
4031 bfd_signed_vma addend)
4032 {
4033 struct mips_elf_link_hash_table *htab;
4034 struct mips_got_info *g1, *g2;
4035 struct mips_got_page_ref lookup, *entry;
4036 void **loc, **bfd_loc;
4037
4038 htab = mips_elf_hash_table (info);
4039 BFD_ASSERT (htab != NULL);
4040
4041 g1 = htab->got_info;
4042 BFD_ASSERT (g1 != NULL);
4043
4044 if (h)
4045 {
4046 lookup.symndx = -1;
4047 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4048 }
4049 else
4050 {
4051 lookup.symndx = symndx;
4052 lookup.u.abfd = abfd;
4053 }
4054 lookup.addend = addend;
4055 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4056 if (loc == NULL)
4057 return FALSE;
4058
4059 entry = (struct mips_got_page_ref *) *loc;
4060 if (!entry)
4061 {
4062 entry = bfd_alloc (abfd, sizeof (*entry));
4063 if (!entry)
4064 return FALSE;
4065
4066 *entry = lookup;
4067 *loc = entry;
4068 }
4069
4070 /* Add the same entry to the BFD's GOT. */
4071 g2 = mips_elf_bfd_got (abfd, TRUE);
4072 if (!g2)
4073 return FALSE;
4074
4075 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4076 if (!bfd_loc)
4077 return FALSE;
4078
4079 if (!*bfd_loc)
4080 *bfd_loc = entry;
4081
4082 return TRUE;
4083 }
4084
4085 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4086
4087 static void
4088 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4089 unsigned int n)
4090 {
4091 asection *s;
4092 struct mips_elf_link_hash_table *htab;
4093
4094 htab = mips_elf_hash_table (info);
4095 BFD_ASSERT (htab != NULL);
4096
4097 s = mips_elf_rel_dyn_section (info, FALSE);
4098 BFD_ASSERT (s != NULL);
4099
4100 if (htab->is_vxworks)
4101 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4102 else
4103 {
4104 if (s->size == 0)
4105 {
4106 /* Make room for a null element. */
4107 s->size += MIPS_ELF_REL_SIZE (abfd);
4108 ++s->reloc_count;
4109 }
4110 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4111 }
4112 }
4113 \f
4114 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4115 mips_elf_traverse_got_arg structure. Count the number of GOT
4116 entries and TLS relocs. Set DATA->value to true if we need
4117 to resolve indirect or warning symbols and then recreate the GOT. */
4118
4119 static int
4120 mips_elf_check_recreate_got (void **entryp, void *data)
4121 {
4122 struct mips_got_entry *entry;
4123 struct mips_elf_traverse_got_arg *arg;
4124
4125 entry = (struct mips_got_entry *) *entryp;
4126 arg = (struct mips_elf_traverse_got_arg *) data;
4127 if (entry->abfd != NULL && entry->symndx == -1)
4128 {
4129 struct mips_elf_link_hash_entry *h;
4130
4131 h = entry->d.h;
4132 if (h->root.root.type == bfd_link_hash_indirect
4133 || h->root.root.type == bfd_link_hash_warning)
4134 {
4135 arg->value = TRUE;
4136 return 0;
4137 }
4138 }
4139 mips_elf_count_got_entry (arg->info, arg->g, entry);
4140 return 1;
4141 }
4142
4143 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4144 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4145 converting entries for indirect and warning symbols into entries
4146 for the target symbol. Set DATA->g to null on error. */
4147
4148 static int
4149 mips_elf_recreate_got (void **entryp, void *data)
4150 {
4151 struct mips_got_entry new_entry, *entry;
4152 struct mips_elf_traverse_got_arg *arg;
4153 void **slot;
4154
4155 entry = (struct mips_got_entry *) *entryp;
4156 arg = (struct mips_elf_traverse_got_arg *) data;
4157 if (entry->abfd != NULL
4158 && entry->symndx == -1
4159 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4160 || entry->d.h->root.root.type == bfd_link_hash_warning))
4161 {
4162 struct mips_elf_link_hash_entry *h;
4163
4164 new_entry = *entry;
4165 entry = &new_entry;
4166 h = entry->d.h;
4167 do
4168 {
4169 BFD_ASSERT (h->global_got_area == GGA_NONE);
4170 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4171 }
4172 while (h->root.root.type == bfd_link_hash_indirect
4173 || h->root.root.type == bfd_link_hash_warning);
4174 entry->d.h = h;
4175 }
4176 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4177 if (slot == NULL)
4178 {
4179 arg->g = NULL;
4180 return 0;
4181 }
4182 if (*slot == NULL)
4183 {
4184 if (entry == &new_entry)
4185 {
4186 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4187 if (!entry)
4188 {
4189 arg->g = NULL;
4190 return 0;
4191 }
4192 *entry = new_entry;
4193 }
4194 *slot = entry;
4195 mips_elf_count_got_entry (arg->info, arg->g, entry);
4196 }
4197 return 1;
4198 }
4199
4200 /* Return the maximum number of GOT page entries required for RANGE. */
4201
4202 static bfd_vma
4203 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4204 {
4205 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4206 }
4207
4208 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4209
4210 static bfd_boolean
4211 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4212 asection *sec, bfd_signed_vma addend)
4213 {
4214 struct mips_got_info *g = arg->g;
4215 struct mips_got_page_entry lookup, *entry;
4216 struct mips_got_page_range **range_ptr, *range;
4217 bfd_vma old_pages, new_pages;
4218 void **loc;
4219
4220 /* Find the mips_got_page_entry hash table entry for this section. */
4221 lookup.sec = sec;
4222 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4223 if (loc == NULL)
4224 return FALSE;
4225
4226 /* Create a mips_got_page_entry if this is the first time we've
4227 seen the section. */
4228 entry = (struct mips_got_page_entry *) *loc;
4229 if (!entry)
4230 {
4231 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4232 if (!entry)
4233 return FALSE;
4234
4235 entry->sec = sec;
4236 *loc = entry;
4237 }
4238
4239 /* Skip over ranges whose maximum extent cannot share a page entry
4240 with ADDEND. */
4241 range_ptr = &entry->ranges;
4242 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4243 range_ptr = &(*range_ptr)->next;
4244
4245 /* If we scanned to the end of the list, or found a range whose
4246 minimum extent cannot share a page entry with ADDEND, create
4247 a new singleton range. */
4248 range = *range_ptr;
4249 if (!range || addend < range->min_addend - 0xffff)
4250 {
4251 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4252 if (!range)
4253 return FALSE;
4254
4255 range->next = *range_ptr;
4256 range->min_addend = addend;
4257 range->max_addend = addend;
4258
4259 *range_ptr = range;
4260 entry->num_pages++;
4261 g->page_gotno++;
4262 return TRUE;
4263 }
4264
4265 /* Remember how many pages the old range contributed. */
4266 old_pages = mips_elf_pages_for_range (range);
4267
4268 /* Update the ranges. */
4269 if (addend < range->min_addend)
4270 range->min_addend = addend;
4271 else if (addend > range->max_addend)
4272 {
4273 if (range->next && addend >= range->next->min_addend - 0xffff)
4274 {
4275 old_pages += mips_elf_pages_for_range (range->next);
4276 range->max_addend = range->next->max_addend;
4277 range->next = range->next->next;
4278 }
4279 else
4280 range->max_addend = addend;
4281 }
4282
4283 /* Record any change in the total estimate. */
4284 new_pages = mips_elf_pages_for_range (range);
4285 if (old_pages != new_pages)
4286 {
4287 entry->num_pages += new_pages - old_pages;
4288 g->page_gotno += new_pages - old_pages;
4289 }
4290
4291 return TRUE;
4292 }
4293
4294 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4295 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4296 whether the page reference described by *REFP needs a GOT page entry,
4297 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4298
4299 static bfd_boolean
4300 mips_elf_resolve_got_page_ref (void **refp, void *data)
4301 {
4302 struct mips_got_page_ref *ref;
4303 struct mips_elf_traverse_got_arg *arg;
4304 struct mips_elf_link_hash_table *htab;
4305 asection *sec;
4306 bfd_vma addend;
4307
4308 ref = (struct mips_got_page_ref *) *refp;
4309 arg = (struct mips_elf_traverse_got_arg *) data;
4310 htab = mips_elf_hash_table (arg->info);
4311
4312 if (ref->symndx < 0)
4313 {
4314 struct mips_elf_link_hash_entry *h;
4315
4316 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4317 h = ref->u.h;
4318 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4319 return 1;
4320
4321 /* Ignore undefined symbols; we'll issue an error later if
4322 appropriate. */
4323 if (!((h->root.root.type == bfd_link_hash_defined
4324 || h->root.root.type == bfd_link_hash_defweak)
4325 && h->root.root.u.def.section))
4326 return 1;
4327
4328 sec = h->root.root.u.def.section;
4329 addend = h->root.root.u.def.value + ref->addend;
4330 }
4331 else
4332 {
4333 Elf_Internal_Sym *isym;
4334
4335 /* Read in the symbol. */
4336 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4337 ref->symndx);
4338 if (isym == NULL)
4339 {
4340 arg->g = NULL;
4341 return 0;
4342 }
4343
4344 /* Get the associated input section. */
4345 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4346 if (sec == NULL)
4347 {
4348 arg->g = NULL;
4349 return 0;
4350 }
4351
4352 /* If this is a mergable section, work out the section and offset
4353 of the merged data. For section symbols, the addend specifies
4354 of the offset _of_ the first byte in the data, otherwise it
4355 specifies the offset _from_ the first byte. */
4356 if (sec->flags & SEC_MERGE)
4357 {
4358 void *secinfo;
4359
4360 secinfo = elf_section_data (sec)->sec_info;
4361 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4362 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4363 isym->st_value + ref->addend);
4364 else
4365 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4366 isym->st_value) + ref->addend;
4367 }
4368 else
4369 addend = isym->st_value + ref->addend;
4370 }
4371 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4372 {
4373 arg->g = NULL;
4374 return 0;
4375 }
4376 return 1;
4377 }
4378
4379 /* If any entries in G->got_entries are for indirect or warning symbols,
4380 replace them with entries for the target symbol. Convert g->got_page_refs
4381 into got_page_entry structures and estimate the number of page entries
4382 that they require. */
4383
4384 static bfd_boolean
4385 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4386 struct mips_got_info *g)
4387 {
4388 struct mips_elf_traverse_got_arg tga;
4389 struct mips_got_info oldg;
4390
4391 oldg = *g;
4392
4393 tga.info = info;
4394 tga.g = g;
4395 tga.value = FALSE;
4396 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4397 if (tga.value)
4398 {
4399 *g = oldg;
4400 g->got_entries = htab_create (htab_size (oldg.got_entries),
4401 mips_elf_got_entry_hash,
4402 mips_elf_got_entry_eq, NULL);
4403 if (!g->got_entries)
4404 return FALSE;
4405
4406 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4407 if (!tga.g)
4408 return FALSE;
4409
4410 htab_delete (oldg.got_entries);
4411 }
4412
4413 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4414 mips_got_page_entry_eq, NULL);
4415 if (g->got_page_entries == NULL)
4416 return FALSE;
4417
4418 tga.info = info;
4419 tga.g = g;
4420 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4421
4422 return TRUE;
4423 }
4424
4425 /* Return true if a GOT entry for H should live in the local rather than
4426 global GOT area. */
4427
4428 static bfd_boolean
4429 mips_use_local_got_p (struct bfd_link_info *info,
4430 struct mips_elf_link_hash_entry *h)
4431 {
4432 /* Symbols that aren't in the dynamic symbol table must live in the
4433 local GOT. This includes symbols that are completely undefined
4434 and which therefore don't bind locally. We'll report undefined
4435 symbols later if appropriate. */
4436 if (h->root.dynindx == -1)
4437 return TRUE;
4438
4439 /* Symbols that bind locally can (and in the case of forced-local
4440 symbols, must) live in the local GOT. */
4441 if (h->got_only_for_calls
4442 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4443 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4444 return TRUE;
4445
4446 /* If this is an executable that must provide a definition of the symbol,
4447 either though PLTs or copy relocations, then that address should go in
4448 the local rather than global GOT. */
4449 if (bfd_link_executable (info) && h->has_static_relocs)
4450 return TRUE;
4451
4452 return FALSE;
4453 }
4454
4455 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4456 link_info structure. Decide whether the hash entry needs an entry in
4457 the global part of the primary GOT, setting global_got_area accordingly.
4458 Count the number of global symbols that are in the primary GOT only
4459 because they have relocations against them (reloc_only_gotno). */
4460
4461 static int
4462 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4463 {
4464 struct bfd_link_info *info;
4465 struct mips_elf_link_hash_table *htab;
4466 struct mips_got_info *g;
4467
4468 info = (struct bfd_link_info *) data;
4469 htab = mips_elf_hash_table (info);
4470 g = htab->got_info;
4471 if (h->global_got_area != GGA_NONE)
4472 {
4473 /* Make a final decision about whether the symbol belongs in the
4474 local or global GOT. */
4475 if (mips_use_local_got_p (info, h))
4476 /* The symbol belongs in the local GOT. We no longer need this
4477 entry if it was only used for relocations; those relocations
4478 will be against the null or section symbol instead of H. */
4479 h->global_got_area = GGA_NONE;
4480 else if (htab->is_vxworks
4481 && h->got_only_for_calls
4482 && h->root.plt.plist->mips_offset != MINUS_ONE)
4483 /* On VxWorks, calls can refer directly to the .got.plt entry;
4484 they don't need entries in the regular GOT. .got.plt entries
4485 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4486 h->global_got_area = GGA_NONE;
4487 else if (h->global_got_area == GGA_RELOC_ONLY)
4488 {
4489 g->reloc_only_gotno++;
4490 g->global_gotno++;
4491 }
4492 }
4493 return 1;
4494 }
4495 \f
4496 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4497 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4498
4499 static int
4500 mips_elf_add_got_entry (void **entryp, void *data)
4501 {
4502 struct mips_got_entry *entry;
4503 struct mips_elf_traverse_got_arg *arg;
4504 void **slot;
4505
4506 entry = (struct mips_got_entry *) *entryp;
4507 arg = (struct mips_elf_traverse_got_arg *) data;
4508 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4509 if (!slot)
4510 {
4511 arg->g = NULL;
4512 return 0;
4513 }
4514 if (!*slot)
4515 {
4516 *slot = entry;
4517 mips_elf_count_got_entry (arg->info, arg->g, entry);
4518 }
4519 return 1;
4520 }
4521
4522 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4523 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4524
4525 static int
4526 mips_elf_add_got_page_entry (void **entryp, void *data)
4527 {
4528 struct mips_got_page_entry *entry;
4529 struct mips_elf_traverse_got_arg *arg;
4530 void **slot;
4531
4532 entry = (struct mips_got_page_entry *) *entryp;
4533 arg = (struct mips_elf_traverse_got_arg *) data;
4534 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4535 if (!slot)
4536 {
4537 arg->g = NULL;
4538 return 0;
4539 }
4540 if (!*slot)
4541 {
4542 *slot = entry;
4543 arg->g->page_gotno += entry->num_pages;
4544 }
4545 return 1;
4546 }
4547
4548 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4549 this would lead to overflow, 1 if they were merged successfully,
4550 and 0 if a merge failed due to lack of memory. (These values are chosen
4551 so that nonnegative return values can be returned by a htab_traverse
4552 callback.) */
4553
4554 static int
4555 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4556 struct mips_got_info *to,
4557 struct mips_elf_got_per_bfd_arg *arg)
4558 {
4559 struct mips_elf_traverse_got_arg tga;
4560 unsigned int estimate;
4561
4562 /* Work out how many page entries we would need for the combined GOT. */
4563 estimate = arg->max_pages;
4564 if (estimate >= from->page_gotno + to->page_gotno)
4565 estimate = from->page_gotno + to->page_gotno;
4566
4567 /* And conservatively estimate how many local and TLS entries
4568 would be needed. */
4569 estimate += from->local_gotno + to->local_gotno;
4570 estimate += from->tls_gotno + to->tls_gotno;
4571
4572 /* If we're merging with the primary got, any TLS relocations will
4573 come after the full set of global entries. Otherwise estimate those
4574 conservatively as well. */
4575 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4576 estimate += arg->global_count;
4577 else
4578 estimate += from->global_gotno + to->global_gotno;
4579
4580 /* Bail out if the combined GOT might be too big. */
4581 if (estimate > arg->max_count)
4582 return -1;
4583
4584 /* Transfer the bfd's got information from FROM to TO. */
4585 tga.info = arg->info;
4586 tga.g = to;
4587 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4588 if (!tga.g)
4589 return 0;
4590
4591 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4592 if (!tga.g)
4593 return 0;
4594
4595 mips_elf_replace_bfd_got (abfd, to);
4596 return 1;
4597 }
4598
4599 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4600 as possible of the primary got, since it doesn't require explicit
4601 dynamic relocations, but don't use bfds that would reference global
4602 symbols out of the addressable range. Failing the primary got,
4603 attempt to merge with the current got, or finish the current got
4604 and then make make the new got current. */
4605
4606 static bfd_boolean
4607 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4608 struct mips_elf_got_per_bfd_arg *arg)
4609 {
4610 unsigned int estimate;
4611 int result;
4612
4613 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4614 return FALSE;
4615
4616 /* Work out the number of page, local and TLS entries. */
4617 estimate = arg->max_pages;
4618 if (estimate > g->page_gotno)
4619 estimate = g->page_gotno;
4620 estimate += g->local_gotno + g->tls_gotno;
4621
4622 /* We place TLS GOT entries after both locals and globals. The globals
4623 for the primary GOT may overflow the normal GOT size limit, so be
4624 sure not to merge a GOT which requires TLS with the primary GOT in that
4625 case. This doesn't affect non-primary GOTs. */
4626 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4627
4628 if (estimate <= arg->max_count)
4629 {
4630 /* If we don't have a primary GOT, use it as
4631 a starting point for the primary GOT. */
4632 if (!arg->primary)
4633 {
4634 arg->primary = g;
4635 return TRUE;
4636 }
4637
4638 /* Try merging with the primary GOT. */
4639 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4640 if (result >= 0)
4641 return result;
4642 }
4643
4644 /* If we can merge with the last-created got, do it. */
4645 if (arg->current)
4646 {
4647 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4648 if (result >= 0)
4649 return result;
4650 }
4651
4652 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4653 fits; if it turns out that it doesn't, we'll get relocation
4654 overflows anyway. */
4655 g->next = arg->current;
4656 arg->current = g;
4657
4658 return TRUE;
4659 }
4660
4661 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4662 to GOTIDX, duplicating the entry if it has already been assigned
4663 an index in a different GOT. */
4664
4665 static bfd_boolean
4666 mips_elf_set_gotidx (void **entryp, long gotidx)
4667 {
4668 struct mips_got_entry *entry;
4669
4670 entry = (struct mips_got_entry *) *entryp;
4671 if (entry->gotidx > 0)
4672 {
4673 struct mips_got_entry *new_entry;
4674
4675 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4676 if (!new_entry)
4677 return FALSE;
4678
4679 *new_entry = *entry;
4680 *entryp = new_entry;
4681 entry = new_entry;
4682 }
4683 entry->gotidx = gotidx;
4684 return TRUE;
4685 }
4686
4687 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4688 mips_elf_traverse_got_arg in which DATA->value is the size of one
4689 GOT entry. Set DATA->g to null on failure. */
4690
4691 static int
4692 mips_elf_initialize_tls_index (void **entryp, void *data)
4693 {
4694 struct mips_got_entry *entry;
4695 struct mips_elf_traverse_got_arg *arg;
4696
4697 /* We're only interested in TLS symbols. */
4698 entry = (struct mips_got_entry *) *entryp;
4699 if (entry->tls_type == GOT_TLS_NONE)
4700 return 1;
4701
4702 arg = (struct mips_elf_traverse_got_arg *) data;
4703 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4704 {
4705 arg->g = NULL;
4706 return 0;
4707 }
4708
4709 /* Account for the entries we've just allocated. */
4710 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4711 return 1;
4712 }
4713
4714 /* A htab_traverse callback for GOT entries, where DATA points to a
4715 mips_elf_traverse_got_arg. Set the global_got_area of each global
4716 symbol to DATA->value. */
4717
4718 static int
4719 mips_elf_set_global_got_area (void **entryp, void *data)
4720 {
4721 struct mips_got_entry *entry;
4722 struct mips_elf_traverse_got_arg *arg;
4723
4724 entry = (struct mips_got_entry *) *entryp;
4725 arg = (struct mips_elf_traverse_got_arg *) data;
4726 if (entry->abfd != NULL
4727 && entry->symndx == -1
4728 && entry->d.h->global_got_area != GGA_NONE)
4729 entry->d.h->global_got_area = arg->value;
4730 return 1;
4731 }
4732
4733 /* A htab_traverse callback for secondary GOT entries, where DATA points
4734 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4735 and record the number of relocations they require. DATA->value is
4736 the size of one GOT entry. Set DATA->g to null on failure. */
4737
4738 static int
4739 mips_elf_set_global_gotidx (void **entryp, void *data)
4740 {
4741 struct mips_got_entry *entry;
4742 struct mips_elf_traverse_got_arg *arg;
4743
4744 entry = (struct mips_got_entry *) *entryp;
4745 arg = (struct mips_elf_traverse_got_arg *) data;
4746 if (entry->abfd != NULL
4747 && entry->symndx == -1
4748 && entry->d.h->global_got_area != GGA_NONE)
4749 {
4750 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4751 {
4752 arg->g = NULL;
4753 return 0;
4754 }
4755 arg->g->assigned_low_gotno += 1;
4756
4757 if (bfd_link_pic (arg->info)
4758 || (elf_hash_table (arg->info)->dynamic_sections_created
4759 && entry->d.h->root.def_dynamic
4760 && !entry->d.h->root.def_regular))
4761 arg->g->relocs += 1;
4762 }
4763
4764 return 1;
4765 }
4766
4767 /* A htab_traverse callback for GOT entries for which DATA is the
4768 bfd_link_info. Forbid any global symbols from having traditional
4769 lazy-binding stubs. */
4770
4771 static int
4772 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4773 {
4774 struct bfd_link_info *info;
4775 struct mips_elf_link_hash_table *htab;
4776 struct mips_got_entry *entry;
4777
4778 entry = (struct mips_got_entry *) *entryp;
4779 info = (struct bfd_link_info *) data;
4780 htab = mips_elf_hash_table (info);
4781 BFD_ASSERT (htab != NULL);
4782
4783 if (entry->abfd != NULL
4784 && entry->symndx == -1
4785 && entry->d.h->needs_lazy_stub)
4786 {
4787 entry->d.h->needs_lazy_stub = FALSE;
4788 htab->lazy_stub_count--;
4789 }
4790
4791 return 1;
4792 }
4793
4794 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4795 the primary GOT. */
4796 static bfd_vma
4797 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4798 {
4799 if (!g->next)
4800 return 0;
4801
4802 g = mips_elf_bfd_got (ibfd, FALSE);
4803 if (! g)
4804 return 0;
4805
4806 BFD_ASSERT (g->next);
4807
4808 g = g->next;
4809
4810 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4811 * MIPS_ELF_GOT_SIZE (abfd);
4812 }
4813
4814 /* Turn a single GOT that is too big for 16-bit addressing into
4815 a sequence of GOTs, each one 16-bit addressable. */
4816
4817 static bfd_boolean
4818 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4819 asection *got, bfd_size_type pages)
4820 {
4821 struct mips_elf_link_hash_table *htab;
4822 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4823 struct mips_elf_traverse_got_arg tga;
4824 struct mips_got_info *g, *gg;
4825 unsigned int assign, needed_relocs;
4826 bfd *dynobj, *ibfd;
4827
4828 dynobj = elf_hash_table (info)->dynobj;
4829 htab = mips_elf_hash_table (info);
4830 BFD_ASSERT (htab != NULL);
4831
4832 g = htab->got_info;
4833
4834 got_per_bfd_arg.obfd = abfd;
4835 got_per_bfd_arg.info = info;
4836 got_per_bfd_arg.current = NULL;
4837 got_per_bfd_arg.primary = NULL;
4838 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4839 / MIPS_ELF_GOT_SIZE (abfd))
4840 - htab->reserved_gotno);
4841 got_per_bfd_arg.max_pages = pages;
4842 /* The number of globals that will be included in the primary GOT.
4843 See the calls to mips_elf_set_global_got_area below for more
4844 information. */
4845 got_per_bfd_arg.global_count = g->global_gotno;
4846
4847 /* Try to merge the GOTs of input bfds together, as long as they
4848 don't seem to exceed the maximum GOT size, choosing one of them
4849 to be the primary GOT. */
4850 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4851 {
4852 gg = mips_elf_bfd_got (ibfd, FALSE);
4853 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4854 return FALSE;
4855 }
4856
4857 /* If we do not find any suitable primary GOT, create an empty one. */
4858 if (got_per_bfd_arg.primary == NULL)
4859 g->next = mips_elf_create_got_info (abfd);
4860 else
4861 g->next = got_per_bfd_arg.primary;
4862 g->next->next = got_per_bfd_arg.current;
4863
4864 /* GG is now the master GOT, and G is the primary GOT. */
4865 gg = g;
4866 g = g->next;
4867
4868 /* Map the output bfd to the primary got. That's what we're going
4869 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4870 didn't mark in check_relocs, and we want a quick way to find it.
4871 We can't just use gg->next because we're going to reverse the
4872 list. */
4873 mips_elf_replace_bfd_got (abfd, g);
4874
4875 /* Every symbol that is referenced in a dynamic relocation must be
4876 present in the primary GOT, so arrange for them to appear after
4877 those that are actually referenced. */
4878 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4879 g->global_gotno = gg->global_gotno;
4880
4881 tga.info = info;
4882 tga.value = GGA_RELOC_ONLY;
4883 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4884 tga.value = GGA_NORMAL;
4885 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4886
4887 /* Now go through the GOTs assigning them offset ranges.
4888 [assigned_low_gotno, local_gotno[ will be set to the range of local
4889 entries in each GOT. We can then compute the end of a GOT by
4890 adding local_gotno to global_gotno. We reverse the list and make
4891 it circular since then we'll be able to quickly compute the
4892 beginning of a GOT, by computing the end of its predecessor. To
4893 avoid special cases for the primary GOT, while still preserving
4894 assertions that are valid for both single- and multi-got links,
4895 we arrange for the main got struct to have the right number of
4896 global entries, but set its local_gotno such that the initial
4897 offset of the primary GOT is zero. Remember that the primary GOT
4898 will become the last item in the circular linked list, so it
4899 points back to the master GOT. */
4900 gg->local_gotno = -g->global_gotno;
4901 gg->global_gotno = g->global_gotno;
4902 gg->tls_gotno = 0;
4903 assign = 0;
4904 gg->next = gg;
4905
4906 do
4907 {
4908 struct mips_got_info *gn;
4909
4910 assign += htab->reserved_gotno;
4911 g->assigned_low_gotno = assign;
4912 g->local_gotno += assign;
4913 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4914 g->assigned_high_gotno = g->local_gotno - 1;
4915 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4916
4917 /* Take g out of the direct list, and push it onto the reversed
4918 list that gg points to. g->next is guaranteed to be nonnull after
4919 this operation, as required by mips_elf_initialize_tls_index. */
4920 gn = g->next;
4921 g->next = gg->next;
4922 gg->next = g;
4923
4924 /* Set up any TLS entries. We always place the TLS entries after
4925 all non-TLS entries. */
4926 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4927 tga.g = g;
4928 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4929 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4930 if (!tga.g)
4931 return FALSE;
4932 BFD_ASSERT (g->tls_assigned_gotno == assign);
4933
4934 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4935 g = gn;
4936
4937 /* Forbid global symbols in every non-primary GOT from having
4938 lazy-binding stubs. */
4939 if (g)
4940 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4941 }
4942 while (g);
4943
4944 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4945
4946 needed_relocs = 0;
4947 for (g = gg->next; g && g->next != gg; g = g->next)
4948 {
4949 unsigned int save_assign;
4950
4951 /* Assign offsets to global GOT entries and count how many
4952 relocations they need. */
4953 save_assign = g->assigned_low_gotno;
4954 g->assigned_low_gotno = g->local_gotno;
4955 tga.info = info;
4956 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4957 tga.g = g;
4958 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4959 if (!tga.g)
4960 return FALSE;
4961 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4962 g->assigned_low_gotno = save_assign;
4963
4964 if (bfd_link_pic (info))
4965 {
4966 g->relocs += g->local_gotno - g->assigned_low_gotno;
4967 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4968 + g->next->global_gotno
4969 + g->next->tls_gotno
4970 + htab->reserved_gotno);
4971 }
4972 needed_relocs += g->relocs;
4973 }
4974 needed_relocs += g->relocs;
4975
4976 if (needed_relocs)
4977 mips_elf_allocate_dynamic_relocations (dynobj, info,
4978 needed_relocs);
4979
4980 return TRUE;
4981 }
4982
4983 \f
4984 /* Returns the first relocation of type r_type found, beginning with
4985 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4986
4987 static const Elf_Internal_Rela *
4988 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4989 const Elf_Internal_Rela *relocation,
4990 const Elf_Internal_Rela *relend)
4991 {
4992 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4993
4994 while (relocation < relend)
4995 {
4996 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4997 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4998 return relocation;
4999
5000 ++relocation;
5001 }
5002
5003 /* We didn't find it. */
5004 return NULL;
5005 }
5006
5007 /* Return whether an input relocation is against a local symbol. */
5008
5009 static bfd_boolean
5010 mips_elf_local_relocation_p (bfd *input_bfd,
5011 const Elf_Internal_Rela *relocation,
5012 asection **local_sections)
5013 {
5014 unsigned long r_symndx;
5015 Elf_Internal_Shdr *symtab_hdr;
5016 size_t extsymoff;
5017
5018 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5019 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5020 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5021
5022 if (r_symndx < extsymoff)
5023 return TRUE;
5024 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5025 return TRUE;
5026
5027 return FALSE;
5028 }
5029 \f
5030 /* Sign-extend VALUE, which has the indicated number of BITS. */
5031
5032 bfd_vma
5033 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5034 {
5035 if (value & ((bfd_vma) 1 << (bits - 1)))
5036 /* VALUE is negative. */
5037 value |= ((bfd_vma) - 1) << bits;
5038
5039 return value;
5040 }
5041
5042 /* Return non-zero if the indicated VALUE has overflowed the maximum
5043 range expressible by a signed number with the indicated number of
5044 BITS. */
5045
5046 static bfd_boolean
5047 mips_elf_overflow_p (bfd_vma value, int bits)
5048 {
5049 bfd_signed_vma svalue = (bfd_signed_vma) value;
5050
5051 if (svalue > (1 << (bits - 1)) - 1)
5052 /* The value is too big. */
5053 return TRUE;
5054 else if (svalue < -(1 << (bits - 1)))
5055 /* The value is too small. */
5056 return TRUE;
5057
5058 /* All is well. */
5059 return FALSE;
5060 }
5061
5062 /* Calculate the %high function. */
5063
5064 static bfd_vma
5065 mips_elf_high (bfd_vma value)
5066 {
5067 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5068 }
5069
5070 /* Calculate the %higher function. */
5071
5072 static bfd_vma
5073 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5074 {
5075 #ifdef BFD64
5076 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5077 #else
5078 abort ();
5079 return MINUS_ONE;
5080 #endif
5081 }
5082
5083 /* Calculate the %highest function. */
5084
5085 static bfd_vma
5086 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5087 {
5088 #ifdef BFD64
5089 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5090 #else
5091 abort ();
5092 return MINUS_ONE;
5093 #endif
5094 }
5095 \f
5096 /* Create the .compact_rel section. */
5097
5098 static bfd_boolean
5099 mips_elf_create_compact_rel_section
5100 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5101 {
5102 flagword flags;
5103 register asection *s;
5104
5105 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5106 {
5107 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5108 | SEC_READONLY);
5109
5110 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5111 if (s == NULL
5112 || ! bfd_set_section_alignment (abfd, s,
5113 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5114 return FALSE;
5115
5116 s->size = sizeof (Elf32_External_compact_rel);
5117 }
5118
5119 return TRUE;
5120 }
5121
5122 /* Create the .got section to hold the global offset table. */
5123
5124 static bfd_boolean
5125 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5126 {
5127 flagword flags;
5128 register asection *s;
5129 struct elf_link_hash_entry *h;
5130 struct bfd_link_hash_entry *bh;
5131 struct mips_elf_link_hash_table *htab;
5132
5133 htab = mips_elf_hash_table (info);
5134 BFD_ASSERT (htab != NULL);
5135
5136 /* This function may be called more than once. */
5137 if (htab->root.sgot)
5138 return TRUE;
5139
5140 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5141 | SEC_LINKER_CREATED);
5142
5143 /* We have to use an alignment of 2**4 here because this is hardcoded
5144 in the function stub generation and in the linker script. */
5145 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5146 if (s == NULL
5147 || ! bfd_set_section_alignment (abfd, s, 4))
5148 return FALSE;
5149 htab->root.sgot = s;
5150
5151 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5152 linker script because we don't want to define the symbol if we
5153 are not creating a global offset table. */
5154 bh = NULL;
5155 if (! (_bfd_generic_link_add_one_symbol
5156 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5157 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5158 return FALSE;
5159
5160 h = (struct elf_link_hash_entry *) bh;
5161 h->non_elf = 0;
5162 h->def_regular = 1;
5163 h->type = STT_OBJECT;
5164 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5165 elf_hash_table (info)->hgot = h;
5166
5167 if (bfd_link_pic (info)
5168 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5169 return FALSE;
5170
5171 htab->got_info = mips_elf_create_got_info (abfd);
5172 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5173 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5174
5175 /* We also need a .got.plt section when generating PLTs. */
5176 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5177 SEC_ALLOC | SEC_LOAD
5178 | SEC_HAS_CONTENTS
5179 | SEC_IN_MEMORY
5180 | SEC_LINKER_CREATED);
5181 if (s == NULL)
5182 return FALSE;
5183 htab->root.sgotplt = s;
5184
5185 return TRUE;
5186 }
5187 \f
5188 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5189 __GOTT_INDEX__ symbols. These symbols are only special for
5190 shared objects; they are not used in executables. */
5191
5192 static bfd_boolean
5193 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5194 {
5195 return (mips_elf_hash_table (info)->is_vxworks
5196 && bfd_link_pic (info)
5197 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5198 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5199 }
5200
5201 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5202 require an la25 stub. See also mips_elf_local_pic_function_p,
5203 which determines whether the destination function ever requires a
5204 stub. */
5205
5206 static bfd_boolean
5207 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5208 bfd_boolean target_is_16_bit_code_p)
5209 {
5210 /* We specifically ignore branches and jumps from EF_PIC objects,
5211 where the onus is on the compiler or programmer to perform any
5212 necessary initialization of $25. Sometimes such initialization
5213 is unnecessary; for example, -mno-shared functions do not use
5214 the incoming value of $25, and may therefore be called directly. */
5215 if (PIC_OBJECT_P (input_bfd))
5216 return FALSE;
5217
5218 switch (r_type)
5219 {
5220 case R_MIPS_26:
5221 case R_MIPS_PC16:
5222 case R_MIPS_PC21_S2:
5223 case R_MIPS_PC26_S2:
5224 case R_MICROMIPS_26_S1:
5225 case R_MICROMIPS_PC7_S1:
5226 case R_MICROMIPS_PC10_S1:
5227 case R_MICROMIPS_PC16_S1:
5228 case R_MICROMIPS_PC23_S2:
5229 return TRUE;
5230
5231 case R_MIPS16_26:
5232 return !target_is_16_bit_code_p;
5233
5234 default:
5235 return FALSE;
5236 }
5237 }
5238 \f
5239 /* Calculate the value produced by the RELOCATION (which comes from
5240 the INPUT_BFD). The ADDEND is the addend to use for this
5241 RELOCATION; RELOCATION->R_ADDEND is ignored.
5242
5243 The result of the relocation calculation is stored in VALUEP.
5244 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5245 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5246
5247 This function returns bfd_reloc_continue if the caller need take no
5248 further action regarding this relocation, bfd_reloc_notsupported if
5249 something goes dramatically wrong, bfd_reloc_overflow if an
5250 overflow occurs, and bfd_reloc_ok to indicate success. */
5251
5252 static bfd_reloc_status_type
5253 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5254 asection *input_section,
5255 struct bfd_link_info *info,
5256 const Elf_Internal_Rela *relocation,
5257 bfd_vma addend, reloc_howto_type *howto,
5258 Elf_Internal_Sym *local_syms,
5259 asection **local_sections, bfd_vma *valuep,
5260 const char **namep,
5261 bfd_boolean *cross_mode_jump_p,
5262 bfd_boolean save_addend)
5263 {
5264 /* The eventual value we will return. */
5265 bfd_vma value;
5266 /* The address of the symbol against which the relocation is
5267 occurring. */
5268 bfd_vma symbol = 0;
5269 /* The final GP value to be used for the relocatable, executable, or
5270 shared object file being produced. */
5271 bfd_vma gp;
5272 /* The place (section offset or address) of the storage unit being
5273 relocated. */
5274 bfd_vma p;
5275 /* The value of GP used to create the relocatable object. */
5276 bfd_vma gp0;
5277 /* The offset into the global offset table at which the address of
5278 the relocation entry symbol, adjusted by the addend, resides
5279 during execution. */
5280 bfd_vma g = MINUS_ONE;
5281 /* The section in which the symbol referenced by the relocation is
5282 located. */
5283 asection *sec = NULL;
5284 struct mips_elf_link_hash_entry *h = NULL;
5285 /* TRUE if the symbol referred to by this relocation is a local
5286 symbol. */
5287 bfd_boolean local_p, was_local_p;
5288 /* TRUE if the symbol referred to by this relocation is a section
5289 symbol. */
5290 bfd_boolean section_p = FALSE;
5291 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5292 bfd_boolean gp_disp_p = FALSE;
5293 /* TRUE if the symbol referred to by this relocation is
5294 "__gnu_local_gp". */
5295 bfd_boolean gnu_local_gp_p = FALSE;
5296 Elf_Internal_Shdr *symtab_hdr;
5297 size_t extsymoff;
5298 unsigned long r_symndx;
5299 int r_type;
5300 /* TRUE if overflow occurred during the calculation of the
5301 relocation value. */
5302 bfd_boolean overflowed_p;
5303 /* TRUE if this relocation refers to a MIPS16 function. */
5304 bfd_boolean target_is_16_bit_code_p = FALSE;
5305 bfd_boolean target_is_micromips_code_p = FALSE;
5306 struct mips_elf_link_hash_table *htab;
5307 bfd *dynobj;
5308 bfd_boolean resolved_to_zero;
5309
5310 dynobj = elf_hash_table (info)->dynobj;
5311 htab = mips_elf_hash_table (info);
5312 BFD_ASSERT (htab != NULL);
5313
5314 /* Parse the relocation. */
5315 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5316 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5317 p = (input_section->output_section->vma
5318 + input_section->output_offset
5319 + relocation->r_offset);
5320
5321 /* Assume that there will be no overflow. */
5322 overflowed_p = FALSE;
5323
5324 /* Figure out whether or not the symbol is local, and get the offset
5325 used in the array of hash table entries. */
5326 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5327 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5328 local_sections);
5329 was_local_p = local_p;
5330 if (! elf_bad_symtab (input_bfd))
5331 extsymoff = symtab_hdr->sh_info;
5332 else
5333 {
5334 /* The symbol table does not follow the rule that local symbols
5335 must come before globals. */
5336 extsymoff = 0;
5337 }
5338
5339 /* Figure out the value of the symbol. */
5340 if (local_p)
5341 {
5342 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5343 Elf_Internal_Sym *sym;
5344
5345 sym = local_syms + r_symndx;
5346 sec = local_sections[r_symndx];
5347
5348 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5349
5350 symbol = sec->output_section->vma + sec->output_offset;
5351 if (!section_p || (sec->flags & SEC_MERGE))
5352 symbol += sym->st_value;
5353 if ((sec->flags & SEC_MERGE) && section_p)
5354 {
5355 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5356 addend -= symbol;
5357 addend += sec->output_section->vma + sec->output_offset;
5358 }
5359
5360 /* MIPS16/microMIPS text labels should be treated as odd. */
5361 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5362 ++symbol;
5363
5364 /* Record the name of this symbol, for our caller. */
5365 *namep = bfd_elf_string_from_elf_section (input_bfd,
5366 symtab_hdr->sh_link,
5367 sym->st_name);
5368 if (*namep == NULL || **namep == '\0')
5369 *namep = bfd_section_name (input_bfd, sec);
5370
5371 /* For relocations against a section symbol and ones against no
5372 symbol (absolute relocations) infer the ISA mode from the addend. */
5373 if (section_p || r_symndx == STN_UNDEF)
5374 {
5375 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5376 target_is_micromips_code_p = (addend & 1) && micromips_p;
5377 }
5378 /* For relocations against an absolute symbol infer the ISA mode
5379 from the value of the symbol plus addend. */
5380 else if (bfd_is_abs_section (sec))
5381 {
5382 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5383 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5384 }
5385 /* Otherwise just use the regular symbol annotation available. */
5386 else
5387 {
5388 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5389 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5390 }
5391 }
5392 else
5393 {
5394 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5395
5396 /* For global symbols we look up the symbol in the hash-table. */
5397 h = ((struct mips_elf_link_hash_entry *)
5398 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5399 /* Find the real hash-table entry for this symbol. */
5400 while (h->root.root.type == bfd_link_hash_indirect
5401 || h->root.root.type == bfd_link_hash_warning)
5402 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5403
5404 /* Record the name of this symbol, for our caller. */
5405 *namep = h->root.root.root.string;
5406
5407 /* See if this is the special _gp_disp symbol. Note that such a
5408 symbol must always be a global symbol. */
5409 if (strcmp (*namep, "_gp_disp") == 0
5410 && ! NEWABI_P (input_bfd))
5411 {
5412 /* Relocations against _gp_disp are permitted only with
5413 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5414 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5415 return bfd_reloc_notsupported;
5416
5417 gp_disp_p = TRUE;
5418 }
5419 /* See if this is the special _gp symbol. Note that such a
5420 symbol must always be a global symbol. */
5421 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5422 gnu_local_gp_p = TRUE;
5423
5424
5425 /* If this symbol is defined, calculate its address. Note that
5426 _gp_disp is a magic symbol, always implicitly defined by the
5427 linker, so it's inappropriate to check to see whether or not
5428 its defined. */
5429 else if ((h->root.root.type == bfd_link_hash_defined
5430 || h->root.root.type == bfd_link_hash_defweak)
5431 && h->root.root.u.def.section)
5432 {
5433 sec = h->root.root.u.def.section;
5434 if (sec->output_section)
5435 symbol = (h->root.root.u.def.value
5436 + sec->output_section->vma
5437 + sec->output_offset);
5438 else
5439 symbol = h->root.root.u.def.value;
5440 }
5441 else if (h->root.root.type == bfd_link_hash_undefweak)
5442 /* We allow relocations against undefined weak symbols, giving
5443 it the value zero, so that you can undefined weak functions
5444 and check to see if they exist by looking at their
5445 addresses. */
5446 symbol = 0;
5447 else if (info->unresolved_syms_in_objects == RM_IGNORE
5448 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5449 symbol = 0;
5450 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5451 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5452 {
5453 /* If this is a dynamic link, we should have created a
5454 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5455 in _bfd_mips_elf_create_dynamic_sections.
5456 Otherwise, we should define the symbol with a value of 0.
5457 FIXME: It should probably get into the symbol table
5458 somehow as well. */
5459 BFD_ASSERT (! bfd_link_pic (info));
5460 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5461 symbol = 0;
5462 }
5463 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5464 {
5465 /* This is an optional symbol - an Irix specific extension to the
5466 ELF spec. Ignore it for now.
5467 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5468 than simply ignoring them, but we do not handle this for now.
5469 For information see the "64-bit ELF Object File Specification"
5470 which is available from here:
5471 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5472 symbol = 0;
5473 }
5474 else
5475 {
5476 bfd_boolean reject_undefined
5477 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5478 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5479
5480 (*info->callbacks->undefined_symbol)
5481 (info, h->root.root.root.string, input_bfd,
5482 input_section, relocation->r_offset, reject_undefined);
5483
5484 if (reject_undefined)
5485 return bfd_reloc_undefined;
5486
5487 symbol = 0;
5488 }
5489
5490 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5491 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5492 }
5493
5494 /* If this is a reference to a 16-bit function with a stub, we need
5495 to redirect the relocation to the stub unless:
5496
5497 (a) the relocation is for a MIPS16 JAL;
5498
5499 (b) the relocation is for a MIPS16 PIC call, and there are no
5500 non-MIPS16 uses of the GOT slot; or
5501
5502 (c) the section allows direct references to MIPS16 functions. */
5503 if (r_type != R_MIPS16_26
5504 && !bfd_link_relocatable (info)
5505 && ((h != NULL
5506 && h->fn_stub != NULL
5507 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5508 || (local_p
5509 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5510 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5511 && !section_allows_mips16_refs_p (input_section))
5512 {
5513 /* This is a 32- or 64-bit call to a 16-bit function. We should
5514 have already noticed that we were going to need the
5515 stub. */
5516 if (local_p)
5517 {
5518 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5519 value = 0;
5520 }
5521 else
5522 {
5523 BFD_ASSERT (h->need_fn_stub);
5524 if (h->la25_stub)
5525 {
5526 /* If a LA25 header for the stub itself exists, point to the
5527 prepended LUI/ADDIU sequence. */
5528 sec = h->la25_stub->stub_section;
5529 value = h->la25_stub->offset;
5530 }
5531 else
5532 {
5533 sec = h->fn_stub;
5534 value = 0;
5535 }
5536 }
5537
5538 symbol = sec->output_section->vma + sec->output_offset + value;
5539 /* The target is 16-bit, but the stub isn't. */
5540 target_is_16_bit_code_p = FALSE;
5541 }
5542 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5543 to a standard MIPS function, we need to redirect the call to the stub.
5544 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5545 indirect calls should use an indirect stub instead. */
5546 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5547 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5548 || (local_p
5549 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5550 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5551 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5552 {
5553 if (local_p)
5554 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5555 else
5556 {
5557 /* If both call_stub and call_fp_stub are defined, we can figure
5558 out which one to use by checking which one appears in the input
5559 file. */
5560 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5561 {
5562 asection *o;
5563
5564 sec = NULL;
5565 for (o = input_bfd->sections; o != NULL; o = o->next)
5566 {
5567 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5568 {
5569 sec = h->call_fp_stub;
5570 break;
5571 }
5572 }
5573 if (sec == NULL)
5574 sec = h->call_stub;
5575 }
5576 else if (h->call_stub != NULL)
5577 sec = h->call_stub;
5578 else
5579 sec = h->call_fp_stub;
5580 }
5581
5582 BFD_ASSERT (sec->size > 0);
5583 symbol = sec->output_section->vma + sec->output_offset;
5584 }
5585 /* If this is a direct call to a PIC function, redirect to the
5586 non-PIC stub. */
5587 else if (h != NULL && h->la25_stub
5588 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5589 target_is_16_bit_code_p))
5590 {
5591 symbol = (h->la25_stub->stub_section->output_section->vma
5592 + h->la25_stub->stub_section->output_offset
5593 + h->la25_stub->offset);
5594 if (ELF_ST_IS_MICROMIPS (h->root.other))
5595 symbol |= 1;
5596 }
5597 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5598 entry is used if a standard PLT entry has also been made. In this
5599 case the symbol will have been set by mips_elf_set_plt_sym_value
5600 to point to the standard PLT entry, so redirect to the compressed
5601 one. */
5602 else if ((mips16_branch_reloc_p (r_type)
5603 || micromips_branch_reloc_p (r_type))
5604 && !bfd_link_relocatable (info)
5605 && h != NULL
5606 && h->use_plt_entry
5607 && h->root.plt.plist->comp_offset != MINUS_ONE
5608 && h->root.plt.plist->mips_offset != MINUS_ONE)
5609 {
5610 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5611
5612 sec = htab->root.splt;
5613 symbol = (sec->output_section->vma
5614 + sec->output_offset
5615 + htab->plt_header_size
5616 + htab->plt_mips_offset
5617 + h->root.plt.plist->comp_offset
5618 + 1);
5619
5620 target_is_16_bit_code_p = !micromips_p;
5621 target_is_micromips_code_p = micromips_p;
5622 }
5623
5624 /* Make sure MIPS16 and microMIPS are not used together. */
5625 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5626 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5627 {
5628 _bfd_error_handler
5629 (_("MIPS16 and microMIPS functions cannot call each other"));
5630 return bfd_reloc_notsupported;
5631 }
5632
5633 /* Calls from 16-bit code to 32-bit code and vice versa require the
5634 mode change. However, we can ignore calls to undefined weak symbols,
5635 which should never be executed at runtime. This exception is important
5636 because the assembly writer may have "known" that any definition of the
5637 symbol would be 16-bit code, and that direct jumps were therefore
5638 acceptable. */
5639 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5640 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5641 && ((mips16_branch_reloc_p (r_type)
5642 && !target_is_16_bit_code_p)
5643 || (micromips_branch_reloc_p (r_type)
5644 && !target_is_micromips_code_p)
5645 || ((branch_reloc_p (r_type)
5646 || r_type == R_MIPS_JALR)
5647 && (target_is_16_bit_code_p
5648 || target_is_micromips_code_p))));
5649
5650 local_p = (h == NULL || mips_use_local_got_p (info, h));
5651
5652 gp0 = _bfd_get_gp_value (input_bfd);
5653 gp = _bfd_get_gp_value (abfd);
5654 if (htab->got_info)
5655 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5656
5657 if (gnu_local_gp_p)
5658 symbol = gp;
5659
5660 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5661 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5662 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5663 if (got_page_reloc_p (r_type) && !local_p)
5664 {
5665 r_type = (micromips_reloc_p (r_type)
5666 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5667 addend = 0;
5668 }
5669
5670 resolved_to_zero = (h != NULL
5671 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5672 &h->root));
5673
5674 /* If we haven't already determined the GOT offset, and we're going
5675 to need it, get it now. */
5676 switch (r_type)
5677 {
5678 case R_MIPS16_CALL16:
5679 case R_MIPS16_GOT16:
5680 case R_MIPS_CALL16:
5681 case R_MIPS_GOT16:
5682 case R_MIPS_GOT_DISP:
5683 case R_MIPS_GOT_HI16:
5684 case R_MIPS_CALL_HI16:
5685 case R_MIPS_GOT_LO16:
5686 case R_MIPS_CALL_LO16:
5687 case R_MICROMIPS_CALL16:
5688 case R_MICROMIPS_GOT16:
5689 case R_MICROMIPS_GOT_DISP:
5690 case R_MICROMIPS_GOT_HI16:
5691 case R_MICROMIPS_CALL_HI16:
5692 case R_MICROMIPS_GOT_LO16:
5693 case R_MICROMIPS_CALL_LO16:
5694 case R_MIPS_TLS_GD:
5695 case R_MIPS_TLS_GOTTPREL:
5696 case R_MIPS_TLS_LDM:
5697 case R_MIPS16_TLS_GD:
5698 case R_MIPS16_TLS_GOTTPREL:
5699 case R_MIPS16_TLS_LDM:
5700 case R_MICROMIPS_TLS_GD:
5701 case R_MICROMIPS_TLS_GOTTPREL:
5702 case R_MICROMIPS_TLS_LDM:
5703 /* Find the index into the GOT where this value is located. */
5704 if (tls_ldm_reloc_p (r_type))
5705 {
5706 g = mips_elf_local_got_index (abfd, input_bfd, info,
5707 0, 0, NULL, r_type);
5708 if (g == MINUS_ONE)
5709 return bfd_reloc_outofrange;
5710 }
5711 else if (!local_p)
5712 {
5713 /* On VxWorks, CALL relocations should refer to the .got.plt
5714 entry, which is initialized to point at the PLT stub. */
5715 if (htab->is_vxworks
5716 && (call_hi16_reloc_p (r_type)
5717 || call_lo16_reloc_p (r_type)
5718 || call16_reloc_p (r_type)))
5719 {
5720 BFD_ASSERT (addend == 0);
5721 BFD_ASSERT (h->root.needs_plt);
5722 g = mips_elf_gotplt_index (info, &h->root);
5723 }
5724 else
5725 {
5726 BFD_ASSERT (addend == 0);
5727 g = mips_elf_global_got_index (abfd, info, input_bfd,
5728 &h->root, r_type);
5729 if (!TLS_RELOC_P (r_type)
5730 && !elf_hash_table (info)->dynamic_sections_created)
5731 /* This is a static link. We must initialize the GOT entry. */
5732 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5733 }
5734 }
5735 else if (!htab->is_vxworks
5736 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5737 /* The calculation below does not involve "g". */
5738 break;
5739 else
5740 {
5741 g = mips_elf_local_got_index (abfd, input_bfd, info,
5742 symbol + addend, r_symndx, h, r_type);
5743 if (g == MINUS_ONE)
5744 return bfd_reloc_outofrange;
5745 }
5746
5747 /* Convert GOT indices to actual offsets. */
5748 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5749 break;
5750 }
5751
5752 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5753 symbols are resolved by the loader. Add them to .rela.dyn. */
5754 if (h != NULL && is_gott_symbol (info, &h->root))
5755 {
5756 Elf_Internal_Rela outrel;
5757 bfd_byte *loc;
5758 asection *s;
5759
5760 s = mips_elf_rel_dyn_section (info, FALSE);
5761 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5762
5763 outrel.r_offset = (input_section->output_section->vma
5764 + input_section->output_offset
5765 + relocation->r_offset);
5766 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5767 outrel.r_addend = addend;
5768 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5769
5770 /* If we've written this relocation for a readonly section,
5771 we need to set DF_TEXTREL again, so that we do not delete the
5772 DT_TEXTREL tag. */
5773 if (MIPS_ELF_READONLY_SECTION (input_section))
5774 info->flags |= DF_TEXTREL;
5775
5776 *valuep = 0;
5777 return bfd_reloc_ok;
5778 }
5779
5780 /* Figure out what kind of relocation is being performed. */
5781 switch (r_type)
5782 {
5783 case R_MIPS_NONE:
5784 return bfd_reloc_continue;
5785
5786 case R_MIPS_16:
5787 if (howto->partial_inplace)
5788 addend = _bfd_mips_elf_sign_extend (addend, 16);
5789 value = symbol + addend;
5790 overflowed_p = mips_elf_overflow_p (value, 16);
5791 break;
5792
5793 case R_MIPS_32:
5794 case R_MIPS_REL32:
5795 case R_MIPS_64:
5796 if ((bfd_link_pic (info)
5797 || (htab->root.dynamic_sections_created
5798 && h != NULL
5799 && h->root.def_dynamic
5800 && !h->root.def_regular
5801 && !h->has_static_relocs))
5802 && r_symndx != STN_UNDEF
5803 && (h == NULL
5804 || h->root.root.type != bfd_link_hash_undefweak
5805 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5806 && !resolved_to_zero))
5807 && (input_section->flags & SEC_ALLOC) != 0)
5808 {
5809 /* If we're creating a shared library, then we can't know
5810 where the symbol will end up. So, we create a relocation
5811 record in the output, and leave the job up to the dynamic
5812 linker. We must do the same for executable references to
5813 shared library symbols, unless we've decided to use copy
5814 relocs or PLTs instead. */
5815 value = addend;
5816 if (!mips_elf_create_dynamic_relocation (abfd,
5817 info,
5818 relocation,
5819 h,
5820 sec,
5821 symbol,
5822 &value,
5823 input_section))
5824 return bfd_reloc_undefined;
5825 }
5826 else
5827 {
5828 if (r_type != R_MIPS_REL32)
5829 value = symbol + addend;
5830 else
5831 value = addend;
5832 }
5833 value &= howto->dst_mask;
5834 break;
5835
5836 case R_MIPS_PC32:
5837 value = symbol + addend - p;
5838 value &= howto->dst_mask;
5839 break;
5840
5841 case R_MIPS16_26:
5842 /* The calculation for R_MIPS16_26 is just the same as for an
5843 R_MIPS_26. It's only the storage of the relocated field into
5844 the output file that's different. That's handled in
5845 mips_elf_perform_relocation. So, we just fall through to the
5846 R_MIPS_26 case here. */
5847 case R_MIPS_26:
5848 case R_MICROMIPS_26_S1:
5849 {
5850 unsigned int shift;
5851
5852 /* Shift is 2, unusually, for microMIPS JALX. */
5853 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5854
5855 if (howto->partial_inplace && !section_p)
5856 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5857 else
5858 value = addend;
5859 value += symbol;
5860
5861 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5862 be the correct ISA mode selector except for weak undefined
5863 symbols. */
5864 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5865 && (*cross_mode_jump_p
5866 ? (value & 3) != (r_type == R_MIPS_26)
5867 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5868 return bfd_reloc_outofrange;
5869
5870 value >>= shift;
5871 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5872 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5873 value &= howto->dst_mask;
5874 }
5875 break;
5876
5877 case R_MIPS_TLS_DTPREL_HI16:
5878 case R_MIPS16_TLS_DTPREL_HI16:
5879 case R_MICROMIPS_TLS_DTPREL_HI16:
5880 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5881 & howto->dst_mask);
5882 break;
5883
5884 case R_MIPS_TLS_DTPREL_LO16:
5885 case R_MIPS_TLS_DTPREL32:
5886 case R_MIPS_TLS_DTPREL64:
5887 case R_MIPS16_TLS_DTPREL_LO16:
5888 case R_MICROMIPS_TLS_DTPREL_LO16:
5889 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5890 break;
5891
5892 case R_MIPS_TLS_TPREL_HI16:
5893 case R_MIPS16_TLS_TPREL_HI16:
5894 case R_MICROMIPS_TLS_TPREL_HI16:
5895 value = (mips_elf_high (addend + symbol - tprel_base (info))
5896 & howto->dst_mask);
5897 break;
5898
5899 case R_MIPS_TLS_TPREL_LO16:
5900 case R_MIPS_TLS_TPREL32:
5901 case R_MIPS_TLS_TPREL64:
5902 case R_MIPS16_TLS_TPREL_LO16:
5903 case R_MICROMIPS_TLS_TPREL_LO16:
5904 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5905 break;
5906
5907 case R_MIPS_HI16:
5908 case R_MIPS16_HI16:
5909 case R_MICROMIPS_HI16:
5910 if (!gp_disp_p)
5911 {
5912 value = mips_elf_high (addend + symbol);
5913 value &= howto->dst_mask;
5914 }
5915 else
5916 {
5917 /* For MIPS16 ABI code we generate this sequence
5918 0: li $v0,%hi(_gp_disp)
5919 4: addiupc $v1,%lo(_gp_disp)
5920 8: sll $v0,16
5921 12: addu $v0,$v1
5922 14: move $gp,$v0
5923 So the offsets of hi and lo relocs are the same, but the
5924 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5925 ADDIUPC clears the low two bits of the instruction address,
5926 so the base is ($t9 + 4) & ~3. */
5927 if (r_type == R_MIPS16_HI16)
5928 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5929 /* The microMIPS .cpload sequence uses the same assembly
5930 instructions as the traditional psABI version, but the
5931 incoming $t9 has the low bit set. */
5932 else if (r_type == R_MICROMIPS_HI16)
5933 value = mips_elf_high (addend + gp - p - 1);
5934 else
5935 value = mips_elf_high (addend + gp - p);
5936 }
5937 break;
5938
5939 case R_MIPS_LO16:
5940 case R_MIPS16_LO16:
5941 case R_MICROMIPS_LO16:
5942 case R_MICROMIPS_HI0_LO16:
5943 if (!gp_disp_p)
5944 value = (symbol + addend) & howto->dst_mask;
5945 else
5946 {
5947 /* See the comment for R_MIPS16_HI16 above for the reason
5948 for this conditional. */
5949 if (r_type == R_MIPS16_LO16)
5950 value = addend + gp - (p & ~(bfd_vma) 0x3);
5951 else if (r_type == R_MICROMIPS_LO16
5952 || r_type == R_MICROMIPS_HI0_LO16)
5953 value = addend + gp - p + 3;
5954 else
5955 value = addend + gp - p + 4;
5956 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5957 for overflow. But, on, say, IRIX5, relocations against
5958 _gp_disp are normally generated from the .cpload
5959 pseudo-op. It generates code that normally looks like
5960 this:
5961
5962 lui $gp,%hi(_gp_disp)
5963 addiu $gp,$gp,%lo(_gp_disp)
5964 addu $gp,$gp,$t9
5965
5966 Here $t9 holds the address of the function being called,
5967 as required by the MIPS ELF ABI. The R_MIPS_LO16
5968 relocation can easily overflow in this situation, but the
5969 R_MIPS_HI16 relocation will handle the overflow.
5970 Therefore, we consider this a bug in the MIPS ABI, and do
5971 not check for overflow here. */
5972 }
5973 break;
5974
5975 case R_MIPS_LITERAL:
5976 case R_MICROMIPS_LITERAL:
5977 /* Because we don't merge literal sections, we can handle this
5978 just like R_MIPS_GPREL16. In the long run, we should merge
5979 shared literals, and then we will need to additional work
5980 here. */
5981
5982 /* Fall through. */
5983
5984 case R_MIPS16_GPREL:
5985 /* The R_MIPS16_GPREL performs the same calculation as
5986 R_MIPS_GPREL16, but stores the relocated bits in a different
5987 order. We don't need to do anything special here; the
5988 differences are handled in mips_elf_perform_relocation. */
5989 case R_MIPS_GPREL16:
5990 case R_MICROMIPS_GPREL7_S2:
5991 case R_MICROMIPS_GPREL16:
5992 /* Only sign-extend the addend if it was extracted from the
5993 instruction. If the addend was separate, leave it alone,
5994 otherwise we may lose significant bits. */
5995 if (howto->partial_inplace)
5996 addend = _bfd_mips_elf_sign_extend (addend, 16);
5997 value = symbol + addend - gp;
5998 /* If the symbol was local, any earlier relocatable links will
5999 have adjusted its addend with the gp offset, so compensate
6000 for that now. Don't do it for symbols forced local in this
6001 link, though, since they won't have had the gp offset applied
6002 to them before. */
6003 if (was_local_p)
6004 value += gp0;
6005 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6006 overflowed_p = mips_elf_overflow_p (value, 16);
6007 break;
6008
6009 case R_MIPS16_GOT16:
6010 case R_MIPS16_CALL16:
6011 case R_MIPS_GOT16:
6012 case R_MIPS_CALL16:
6013 case R_MICROMIPS_GOT16:
6014 case R_MICROMIPS_CALL16:
6015 /* VxWorks does not have separate local and global semantics for
6016 R_MIPS*_GOT16; every relocation evaluates to "G". */
6017 if (!htab->is_vxworks && local_p)
6018 {
6019 value = mips_elf_got16_entry (abfd, input_bfd, info,
6020 symbol + addend, !was_local_p);
6021 if (value == MINUS_ONE)
6022 return bfd_reloc_outofrange;
6023 value
6024 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6025 overflowed_p = mips_elf_overflow_p (value, 16);
6026 break;
6027 }
6028
6029 /* Fall through. */
6030
6031 case R_MIPS_TLS_GD:
6032 case R_MIPS_TLS_GOTTPREL:
6033 case R_MIPS_TLS_LDM:
6034 case R_MIPS_GOT_DISP:
6035 case R_MIPS16_TLS_GD:
6036 case R_MIPS16_TLS_GOTTPREL:
6037 case R_MIPS16_TLS_LDM:
6038 case R_MICROMIPS_TLS_GD:
6039 case R_MICROMIPS_TLS_GOTTPREL:
6040 case R_MICROMIPS_TLS_LDM:
6041 case R_MICROMIPS_GOT_DISP:
6042 value = g;
6043 overflowed_p = mips_elf_overflow_p (value, 16);
6044 break;
6045
6046 case R_MIPS_GPREL32:
6047 value = (addend + symbol + gp0 - gp);
6048 if (!save_addend)
6049 value &= howto->dst_mask;
6050 break;
6051
6052 case R_MIPS_PC16:
6053 case R_MIPS_GNU_REL16_S2:
6054 if (howto->partial_inplace)
6055 addend = _bfd_mips_elf_sign_extend (addend, 18);
6056
6057 /* No need to exclude weak undefined symbols here as they resolve
6058 to 0 and never set `*cross_mode_jump_p', so this alignment check
6059 will never trigger for them. */
6060 if (*cross_mode_jump_p
6061 ? ((symbol + addend) & 3) != 1
6062 : ((symbol + addend) & 3) != 0)
6063 return bfd_reloc_outofrange;
6064
6065 value = symbol + addend - p;
6066 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6067 overflowed_p = mips_elf_overflow_p (value, 18);
6068 value >>= howto->rightshift;
6069 value &= howto->dst_mask;
6070 break;
6071
6072 case R_MIPS16_PC16_S1:
6073 if (howto->partial_inplace)
6074 addend = _bfd_mips_elf_sign_extend (addend, 17);
6075
6076 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6077 && (*cross_mode_jump_p
6078 ? ((symbol + addend) & 3) != 0
6079 : ((symbol + addend) & 1) == 0))
6080 return bfd_reloc_outofrange;
6081
6082 value = symbol + addend - p;
6083 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6084 overflowed_p = mips_elf_overflow_p (value, 17);
6085 value >>= howto->rightshift;
6086 value &= howto->dst_mask;
6087 break;
6088
6089 case R_MIPS_PC21_S2:
6090 if (howto->partial_inplace)
6091 addend = _bfd_mips_elf_sign_extend (addend, 23);
6092
6093 if ((symbol + addend) & 3)
6094 return bfd_reloc_outofrange;
6095
6096 value = symbol + addend - p;
6097 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6098 overflowed_p = mips_elf_overflow_p (value, 23);
6099 value >>= howto->rightshift;
6100 value &= howto->dst_mask;
6101 break;
6102
6103 case R_MIPS_PC26_S2:
6104 if (howto->partial_inplace)
6105 addend = _bfd_mips_elf_sign_extend (addend, 28);
6106
6107 if ((symbol + addend) & 3)
6108 return bfd_reloc_outofrange;
6109
6110 value = symbol + addend - p;
6111 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6112 overflowed_p = mips_elf_overflow_p (value, 28);
6113 value >>= howto->rightshift;
6114 value &= howto->dst_mask;
6115 break;
6116
6117 case R_MIPS_PC18_S3:
6118 if (howto->partial_inplace)
6119 addend = _bfd_mips_elf_sign_extend (addend, 21);
6120
6121 if ((symbol + addend) & 7)
6122 return bfd_reloc_outofrange;
6123
6124 value = symbol + addend - ((p | 7) ^ 7);
6125 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6126 overflowed_p = mips_elf_overflow_p (value, 21);
6127 value >>= howto->rightshift;
6128 value &= howto->dst_mask;
6129 break;
6130
6131 case R_MIPS_PC19_S2:
6132 if (howto->partial_inplace)
6133 addend = _bfd_mips_elf_sign_extend (addend, 21);
6134
6135 if ((symbol + addend) & 3)
6136 return bfd_reloc_outofrange;
6137
6138 value = symbol + addend - p;
6139 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6140 overflowed_p = mips_elf_overflow_p (value, 21);
6141 value >>= howto->rightshift;
6142 value &= howto->dst_mask;
6143 break;
6144
6145 case R_MIPS_PCHI16:
6146 value = mips_elf_high (symbol + addend - p);
6147 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6148 overflowed_p = mips_elf_overflow_p (value, 16);
6149 value &= howto->dst_mask;
6150 break;
6151
6152 case R_MIPS_PCLO16:
6153 if (howto->partial_inplace)
6154 addend = _bfd_mips_elf_sign_extend (addend, 16);
6155 value = symbol + addend - p;
6156 value &= howto->dst_mask;
6157 break;
6158
6159 case R_MICROMIPS_PC7_S1:
6160 if (howto->partial_inplace)
6161 addend = _bfd_mips_elf_sign_extend (addend, 8);
6162
6163 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6164 && (*cross_mode_jump_p
6165 ? ((symbol + addend + 2) & 3) != 0
6166 : ((symbol + addend + 2) & 1) == 0))
6167 return bfd_reloc_outofrange;
6168
6169 value = symbol + addend - p;
6170 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6171 overflowed_p = mips_elf_overflow_p (value, 8);
6172 value >>= howto->rightshift;
6173 value &= howto->dst_mask;
6174 break;
6175
6176 case R_MICROMIPS_PC10_S1:
6177 if (howto->partial_inplace)
6178 addend = _bfd_mips_elf_sign_extend (addend, 11);
6179
6180 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6181 && (*cross_mode_jump_p
6182 ? ((symbol + addend + 2) & 3) != 0
6183 : ((symbol + addend + 2) & 1) == 0))
6184 return bfd_reloc_outofrange;
6185
6186 value = symbol + addend - p;
6187 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6188 overflowed_p = mips_elf_overflow_p (value, 11);
6189 value >>= howto->rightshift;
6190 value &= howto->dst_mask;
6191 break;
6192
6193 case R_MICROMIPS_PC16_S1:
6194 if (howto->partial_inplace)
6195 addend = _bfd_mips_elf_sign_extend (addend, 17);
6196
6197 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6198 && (*cross_mode_jump_p
6199 ? ((symbol + addend) & 3) != 0
6200 : ((symbol + addend) & 1) == 0))
6201 return bfd_reloc_outofrange;
6202
6203 value = symbol + addend - p;
6204 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6205 overflowed_p = mips_elf_overflow_p (value, 17);
6206 value >>= howto->rightshift;
6207 value &= howto->dst_mask;
6208 break;
6209
6210 case R_MICROMIPS_PC23_S2:
6211 if (howto->partial_inplace)
6212 addend = _bfd_mips_elf_sign_extend (addend, 25);
6213 value = symbol + addend - ((p | 3) ^ 3);
6214 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6215 overflowed_p = mips_elf_overflow_p (value, 25);
6216 value >>= howto->rightshift;
6217 value &= howto->dst_mask;
6218 break;
6219
6220 case R_MIPS_GOT_HI16:
6221 case R_MIPS_CALL_HI16:
6222 case R_MICROMIPS_GOT_HI16:
6223 case R_MICROMIPS_CALL_HI16:
6224 /* We're allowed to handle these two relocations identically.
6225 The dynamic linker is allowed to handle the CALL relocations
6226 differently by creating a lazy evaluation stub. */
6227 value = g;
6228 value = mips_elf_high (value);
6229 value &= howto->dst_mask;
6230 break;
6231
6232 case R_MIPS_GOT_LO16:
6233 case R_MIPS_CALL_LO16:
6234 case R_MICROMIPS_GOT_LO16:
6235 case R_MICROMIPS_CALL_LO16:
6236 value = g & howto->dst_mask;
6237 break;
6238
6239 case R_MIPS_GOT_PAGE:
6240 case R_MICROMIPS_GOT_PAGE:
6241 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6242 if (value == MINUS_ONE)
6243 return bfd_reloc_outofrange;
6244 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6245 overflowed_p = mips_elf_overflow_p (value, 16);
6246 break;
6247
6248 case R_MIPS_GOT_OFST:
6249 case R_MICROMIPS_GOT_OFST:
6250 if (local_p)
6251 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6252 else
6253 value = addend;
6254 overflowed_p = mips_elf_overflow_p (value, 16);
6255 break;
6256
6257 case R_MIPS_SUB:
6258 case R_MICROMIPS_SUB:
6259 value = symbol - addend;
6260 value &= howto->dst_mask;
6261 break;
6262
6263 case R_MIPS_HIGHER:
6264 case R_MICROMIPS_HIGHER:
6265 value = mips_elf_higher (addend + symbol);
6266 value &= howto->dst_mask;
6267 break;
6268
6269 case R_MIPS_HIGHEST:
6270 case R_MICROMIPS_HIGHEST:
6271 value = mips_elf_highest (addend + symbol);
6272 value &= howto->dst_mask;
6273 break;
6274
6275 case R_MIPS_SCN_DISP:
6276 case R_MICROMIPS_SCN_DISP:
6277 value = symbol + addend - sec->output_offset;
6278 value &= howto->dst_mask;
6279 break;
6280
6281 case R_MIPS_JALR:
6282 case R_MICROMIPS_JALR:
6283 /* This relocation is only a hint. In some cases, we optimize
6284 it into a bal instruction. But we don't try to optimize
6285 when the symbol does not resolve locally. */
6286 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6287 return bfd_reloc_continue;
6288 /* We can't optimize cross-mode jumps either. */
6289 if (*cross_mode_jump_p)
6290 return bfd_reloc_continue;
6291 value = symbol + addend;
6292 /* Neither we can non-instruction-aligned targets. */
6293 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6294 return bfd_reloc_continue;
6295 break;
6296
6297 case R_MIPS_PJUMP:
6298 case R_MIPS_GNU_VTINHERIT:
6299 case R_MIPS_GNU_VTENTRY:
6300 /* We don't do anything with these at present. */
6301 return bfd_reloc_continue;
6302
6303 default:
6304 /* An unrecognized relocation type. */
6305 return bfd_reloc_notsupported;
6306 }
6307
6308 /* Store the VALUE for our caller. */
6309 *valuep = value;
6310 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6311 }
6312
6313 /* Obtain the field relocated by RELOCATION. */
6314
6315 static bfd_vma
6316 mips_elf_obtain_contents (reloc_howto_type *howto,
6317 const Elf_Internal_Rela *relocation,
6318 bfd *input_bfd, bfd_byte *contents)
6319 {
6320 bfd_vma x = 0;
6321 bfd_byte *location = contents + relocation->r_offset;
6322 unsigned int size = bfd_get_reloc_size (howto);
6323
6324 /* Obtain the bytes. */
6325 if (size != 0)
6326 x = bfd_get (8 * size, input_bfd, location);
6327
6328 return x;
6329 }
6330
6331 /* It has been determined that the result of the RELOCATION is the
6332 VALUE. Use HOWTO to place VALUE into the output file at the
6333 appropriate position. The SECTION is the section to which the
6334 relocation applies.
6335 CROSS_MODE_JUMP_P is true if the relocation field
6336 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6337
6338 Returns FALSE if anything goes wrong. */
6339
6340 static bfd_boolean
6341 mips_elf_perform_relocation (struct bfd_link_info *info,
6342 reloc_howto_type *howto,
6343 const Elf_Internal_Rela *relocation,
6344 bfd_vma value, bfd *input_bfd,
6345 asection *input_section, bfd_byte *contents,
6346 bfd_boolean cross_mode_jump_p)
6347 {
6348 bfd_vma x;
6349 bfd_byte *location;
6350 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6351 unsigned int size;
6352
6353 /* Figure out where the relocation is occurring. */
6354 location = contents + relocation->r_offset;
6355
6356 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6357
6358 /* Obtain the current value. */
6359 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6360
6361 /* Clear the field we are setting. */
6362 x &= ~howto->dst_mask;
6363
6364 /* Set the field. */
6365 x |= (value & howto->dst_mask);
6366
6367 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6368 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6369 {
6370 bfd_vma opcode = x >> 26;
6371
6372 if (r_type == R_MIPS16_26 ? opcode == 0x7
6373 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6374 : opcode == 0x1d)
6375 {
6376 info->callbacks->einfo
6377 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6378 input_bfd, input_section, relocation->r_offset);
6379 return TRUE;
6380 }
6381 }
6382 if (cross_mode_jump_p && jal_reloc_p (r_type))
6383 {
6384 bfd_boolean ok;
6385 bfd_vma opcode = x >> 26;
6386 bfd_vma jalx_opcode;
6387
6388 /* Check to see if the opcode is already JAL or JALX. */
6389 if (r_type == R_MIPS16_26)
6390 {
6391 ok = ((opcode == 0x6) || (opcode == 0x7));
6392 jalx_opcode = 0x7;
6393 }
6394 else if (r_type == R_MICROMIPS_26_S1)
6395 {
6396 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6397 jalx_opcode = 0x3c;
6398 }
6399 else
6400 {
6401 ok = ((opcode == 0x3) || (opcode == 0x1d));
6402 jalx_opcode = 0x1d;
6403 }
6404
6405 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6406 convert J or JALS to JALX. */
6407 if (!ok)
6408 {
6409 info->callbacks->einfo
6410 (_("%X%H: unsupported jump between ISA modes; "
6411 "consider recompiling with interlinking enabled\n"),
6412 input_bfd, input_section, relocation->r_offset);
6413 return TRUE;
6414 }
6415
6416 /* Make this the JALX opcode. */
6417 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6418 }
6419 else if (cross_mode_jump_p && b_reloc_p (r_type))
6420 {
6421 bfd_boolean ok = FALSE;
6422 bfd_vma opcode = x >> 16;
6423 bfd_vma jalx_opcode = 0;
6424 bfd_vma sign_bit = 0;
6425 bfd_vma addr;
6426 bfd_vma dest;
6427
6428 if (r_type == R_MICROMIPS_PC16_S1)
6429 {
6430 ok = opcode == 0x4060;
6431 jalx_opcode = 0x3c;
6432 sign_bit = 0x10000;
6433 value <<= 1;
6434 }
6435 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6436 {
6437 ok = opcode == 0x411;
6438 jalx_opcode = 0x1d;
6439 sign_bit = 0x20000;
6440 value <<= 2;
6441 }
6442
6443 if (ok && !bfd_link_pic (info))
6444 {
6445 addr = (input_section->output_section->vma
6446 + input_section->output_offset
6447 + relocation->r_offset
6448 + 4);
6449 dest = (addr
6450 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6451
6452 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6453 {
6454 info->callbacks->einfo
6455 (_("%X%H: cannot convert branch between ISA modes "
6456 "to JALX: relocation out of range\n"),
6457 input_bfd, input_section, relocation->r_offset);
6458 return TRUE;
6459 }
6460
6461 /* Make this the JALX opcode. */
6462 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6463 }
6464 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6465 {
6466 info->callbacks->einfo
6467 (_("%X%H: unsupported branch between ISA modes\n"),
6468 input_bfd, input_section, relocation->r_offset);
6469 return TRUE;
6470 }
6471 }
6472
6473 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6474 range. */
6475 if (!bfd_link_relocatable (info)
6476 && !cross_mode_jump_p
6477 && ((JAL_TO_BAL_P (input_bfd)
6478 && r_type == R_MIPS_26
6479 && (x >> 26) == 0x3) /* jal addr */
6480 || (JALR_TO_BAL_P (input_bfd)
6481 && r_type == R_MIPS_JALR
6482 && x == 0x0320f809) /* jalr t9 */
6483 || (JR_TO_B_P (input_bfd)
6484 && r_type == R_MIPS_JALR
6485 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6486 {
6487 bfd_vma addr;
6488 bfd_vma dest;
6489 bfd_signed_vma off;
6490
6491 addr = (input_section->output_section->vma
6492 + input_section->output_offset
6493 + relocation->r_offset
6494 + 4);
6495 if (r_type == R_MIPS_26)
6496 dest = (value << 2) | ((addr >> 28) << 28);
6497 else
6498 dest = value;
6499 off = dest - addr;
6500 if (off <= 0x1ffff && off >= -0x20000)
6501 {
6502 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6503 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6504 else
6505 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6506 }
6507 }
6508
6509 /* Put the value into the output. */
6510 size = bfd_get_reloc_size (howto);
6511 if (size != 0)
6512 bfd_put (8 * size, input_bfd, x, location);
6513
6514 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6515 location);
6516
6517 return TRUE;
6518 }
6519 \f
6520 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6521 is the original relocation, which is now being transformed into a
6522 dynamic relocation. The ADDENDP is adjusted if necessary; the
6523 caller should store the result in place of the original addend. */
6524
6525 static bfd_boolean
6526 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6527 struct bfd_link_info *info,
6528 const Elf_Internal_Rela *rel,
6529 struct mips_elf_link_hash_entry *h,
6530 asection *sec, bfd_vma symbol,
6531 bfd_vma *addendp, asection *input_section)
6532 {
6533 Elf_Internal_Rela outrel[3];
6534 asection *sreloc;
6535 bfd *dynobj;
6536 int r_type;
6537 long indx;
6538 bfd_boolean defined_p;
6539 struct mips_elf_link_hash_table *htab;
6540
6541 htab = mips_elf_hash_table (info);
6542 BFD_ASSERT (htab != NULL);
6543
6544 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6545 dynobj = elf_hash_table (info)->dynobj;
6546 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6547 BFD_ASSERT (sreloc != NULL);
6548 BFD_ASSERT (sreloc->contents != NULL);
6549 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6550 < sreloc->size);
6551
6552 outrel[0].r_offset =
6553 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6554 if (ABI_64_P (output_bfd))
6555 {
6556 outrel[1].r_offset =
6557 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6558 outrel[2].r_offset =
6559 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6560 }
6561
6562 if (outrel[0].r_offset == MINUS_ONE)
6563 /* The relocation field has been deleted. */
6564 return TRUE;
6565
6566 if (outrel[0].r_offset == MINUS_TWO)
6567 {
6568 /* The relocation field has been converted into a relative value of
6569 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6570 the field to be fully relocated, so add in the symbol's value. */
6571 *addendp += symbol;
6572 return TRUE;
6573 }
6574
6575 /* We must now calculate the dynamic symbol table index to use
6576 in the relocation. */
6577 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6578 {
6579 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6580 indx = h->root.dynindx;
6581 if (SGI_COMPAT (output_bfd))
6582 defined_p = h->root.def_regular;
6583 else
6584 /* ??? glibc's ld.so just adds the final GOT entry to the
6585 relocation field. It therefore treats relocs against
6586 defined symbols in the same way as relocs against
6587 undefined symbols. */
6588 defined_p = FALSE;
6589 }
6590 else
6591 {
6592 if (sec != NULL && bfd_is_abs_section (sec))
6593 indx = 0;
6594 else if (sec == NULL || sec->owner == NULL)
6595 {
6596 bfd_set_error (bfd_error_bad_value);
6597 return FALSE;
6598 }
6599 else
6600 {
6601 indx = elf_section_data (sec->output_section)->dynindx;
6602 if (indx == 0)
6603 {
6604 asection *osec = htab->root.text_index_section;
6605 indx = elf_section_data (osec)->dynindx;
6606 }
6607 if (indx == 0)
6608 abort ();
6609 }
6610
6611 /* Instead of generating a relocation using the section
6612 symbol, we may as well make it a fully relative
6613 relocation. We want to avoid generating relocations to
6614 local symbols because we used to generate them
6615 incorrectly, without adding the original symbol value,
6616 which is mandated by the ABI for section symbols. In
6617 order to give dynamic loaders and applications time to
6618 phase out the incorrect use, we refrain from emitting
6619 section-relative relocations. It's not like they're
6620 useful, after all. This should be a bit more efficient
6621 as well. */
6622 /* ??? Although this behavior is compatible with glibc's ld.so,
6623 the ABI says that relocations against STN_UNDEF should have
6624 a symbol value of 0. Irix rld honors this, so relocations
6625 against STN_UNDEF have no effect. */
6626 if (!SGI_COMPAT (output_bfd))
6627 indx = 0;
6628 defined_p = TRUE;
6629 }
6630
6631 /* If the relocation was previously an absolute relocation and
6632 this symbol will not be referred to by the relocation, we must
6633 adjust it by the value we give it in the dynamic symbol table.
6634 Otherwise leave the job up to the dynamic linker. */
6635 if (defined_p && r_type != R_MIPS_REL32)
6636 *addendp += symbol;
6637
6638 if (htab->is_vxworks)
6639 /* VxWorks uses non-relative relocations for this. */
6640 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6641 else
6642 /* The relocation is always an REL32 relocation because we don't
6643 know where the shared library will wind up at load-time. */
6644 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6645 R_MIPS_REL32);
6646
6647 /* For strict adherence to the ABI specification, we should
6648 generate a R_MIPS_64 relocation record by itself before the
6649 _REL32/_64 record as well, such that the addend is read in as
6650 a 64-bit value (REL32 is a 32-bit relocation, after all).
6651 However, since none of the existing ELF64 MIPS dynamic
6652 loaders seems to care, we don't waste space with these
6653 artificial relocations. If this turns out to not be true,
6654 mips_elf_allocate_dynamic_relocation() should be tweaked so
6655 as to make room for a pair of dynamic relocations per
6656 invocation if ABI_64_P, and here we should generate an
6657 additional relocation record with R_MIPS_64 by itself for a
6658 NULL symbol before this relocation record. */
6659 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6660 ABI_64_P (output_bfd)
6661 ? R_MIPS_64
6662 : R_MIPS_NONE);
6663 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6664
6665 /* Adjust the output offset of the relocation to reference the
6666 correct location in the output file. */
6667 outrel[0].r_offset += (input_section->output_section->vma
6668 + input_section->output_offset);
6669 outrel[1].r_offset += (input_section->output_section->vma
6670 + input_section->output_offset);
6671 outrel[2].r_offset += (input_section->output_section->vma
6672 + input_section->output_offset);
6673
6674 /* Put the relocation back out. We have to use the special
6675 relocation outputter in the 64-bit case since the 64-bit
6676 relocation format is non-standard. */
6677 if (ABI_64_P (output_bfd))
6678 {
6679 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6680 (output_bfd, &outrel[0],
6681 (sreloc->contents
6682 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6683 }
6684 else if (htab->is_vxworks)
6685 {
6686 /* VxWorks uses RELA rather than REL dynamic relocations. */
6687 outrel[0].r_addend = *addendp;
6688 bfd_elf32_swap_reloca_out
6689 (output_bfd, &outrel[0],
6690 (sreloc->contents
6691 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6692 }
6693 else
6694 bfd_elf32_swap_reloc_out
6695 (output_bfd, &outrel[0],
6696 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6697
6698 /* We've now added another relocation. */
6699 ++sreloc->reloc_count;
6700
6701 /* Make sure the output section is writable. The dynamic linker
6702 will be writing to it. */
6703 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6704 |= SHF_WRITE;
6705
6706 /* On IRIX5, make an entry of compact relocation info. */
6707 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6708 {
6709 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6710 bfd_byte *cr;
6711
6712 if (scpt)
6713 {
6714 Elf32_crinfo cptrel;
6715
6716 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6717 cptrel.vaddr = (rel->r_offset
6718 + input_section->output_section->vma
6719 + input_section->output_offset);
6720 if (r_type == R_MIPS_REL32)
6721 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6722 else
6723 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6724 mips_elf_set_cr_dist2to (cptrel, 0);
6725 cptrel.konst = *addendp;
6726
6727 cr = (scpt->contents
6728 + sizeof (Elf32_External_compact_rel));
6729 mips_elf_set_cr_relvaddr (cptrel, 0);
6730 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6731 ((Elf32_External_crinfo *) cr
6732 + scpt->reloc_count));
6733 ++scpt->reloc_count;
6734 }
6735 }
6736
6737 /* If we've written this relocation for a readonly section,
6738 we need to set DF_TEXTREL again, so that we do not delete the
6739 DT_TEXTREL tag. */
6740 if (MIPS_ELF_READONLY_SECTION (input_section))
6741 info->flags |= DF_TEXTREL;
6742
6743 return TRUE;
6744 }
6745 \f
6746 /* Return the MACH for a MIPS e_flags value. */
6747
6748 unsigned long
6749 _bfd_elf_mips_mach (flagword flags)
6750 {
6751 switch (flags & EF_MIPS_MACH)
6752 {
6753 case E_MIPS_MACH_3900:
6754 return bfd_mach_mips3900;
6755
6756 case E_MIPS_MACH_4010:
6757 return bfd_mach_mips4010;
6758
6759 case E_MIPS_MACH_4100:
6760 return bfd_mach_mips4100;
6761
6762 case E_MIPS_MACH_4111:
6763 return bfd_mach_mips4111;
6764
6765 case E_MIPS_MACH_4120:
6766 return bfd_mach_mips4120;
6767
6768 case E_MIPS_MACH_4650:
6769 return bfd_mach_mips4650;
6770
6771 case E_MIPS_MACH_5400:
6772 return bfd_mach_mips5400;
6773
6774 case E_MIPS_MACH_5500:
6775 return bfd_mach_mips5500;
6776
6777 case E_MIPS_MACH_5900:
6778 return bfd_mach_mips5900;
6779
6780 case E_MIPS_MACH_9000:
6781 return bfd_mach_mips9000;
6782
6783 case E_MIPS_MACH_SB1:
6784 return bfd_mach_mips_sb1;
6785
6786 case E_MIPS_MACH_LS2E:
6787 return bfd_mach_mips_loongson_2e;
6788
6789 case E_MIPS_MACH_LS2F:
6790 return bfd_mach_mips_loongson_2f;
6791
6792 case E_MIPS_MACH_LS3A:
6793 return bfd_mach_mips_loongson_3a;
6794
6795 case E_MIPS_MACH_OCTEON3:
6796 return bfd_mach_mips_octeon3;
6797
6798 case E_MIPS_MACH_OCTEON2:
6799 return bfd_mach_mips_octeon2;
6800
6801 case E_MIPS_MACH_OCTEON:
6802 return bfd_mach_mips_octeon;
6803
6804 case E_MIPS_MACH_XLR:
6805 return bfd_mach_mips_xlr;
6806
6807 case E_MIPS_MACH_IAMR2:
6808 return bfd_mach_mips_interaptiv_mr2;
6809
6810 default:
6811 switch (flags & EF_MIPS_ARCH)
6812 {
6813 default:
6814 case E_MIPS_ARCH_1:
6815 return bfd_mach_mips3000;
6816
6817 case E_MIPS_ARCH_2:
6818 return bfd_mach_mips6000;
6819
6820 case E_MIPS_ARCH_3:
6821 return bfd_mach_mips4000;
6822
6823 case E_MIPS_ARCH_4:
6824 return bfd_mach_mips8000;
6825
6826 case E_MIPS_ARCH_5:
6827 return bfd_mach_mips5;
6828
6829 case E_MIPS_ARCH_32:
6830 return bfd_mach_mipsisa32;
6831
6832 case E_MIPS_ARCH_64:
6833 return bfd_mach_mipsisa64;
6834
6835 case E_MIPS_ARCH_32R2:
6836 return bfd_mach_mipsisa32r2;
6837
6838 case E_MIPS_ARCH_64R2:
6839 return bfd_mach_mipsisa64r2;
6840
6841 case E_MIPS_ARCH_32R6:
6842 return bfd_mach_mipsisa32r6;
6843
6844 case E_MIPS_ARCH_64R6:
6845 return bfd_mach_mipsisa64r6;
6846 }
6847 }
6848
6849 return 0;
6850 }
6851
6852 /* Return printable name for ABI. */
6853
6854 static INLINE char *
6855 elf_mips_abi_name (bfd *abfd)
6856 {
6857 flagword flags;
6858
6859 flags = elf_elfheader (abfd)->e_flags;
6860 switch (flags & EF_MIPS_ABI)
6861 {
6862 case 0:
6863 if (ABI_N32_P (abfd))
6864 return "N32";
6865 else if (ABI_64_P (abfd))
6866 return "64";
6867 else
6868 return "none";
6869 case E_MIPS_ABI_O32:
6870 return "O32";
6871 case E_MIPS_ABI_O64:
6872 return "O64";
6873 case E_MIPS_ABI_EABI32:
6874 return "EABI32";
6875 case E_MIPS_ABI_EABI64:
6876 return "EABI64";
6877 default:
6878 return "unknown abi";
6879 }
6880 }
6881 \f
6882 /* MIPS ELF uses two common sections. One is the usual one, and the
6883 other is for small objects. All the small objects are kept
6884 together, and then referenced via the gp pointer, which yields
6885 faster assembler code. This is what we use for the small common
6886 section. This approach is copied from ecoff.c. */
6887 static asection mips_elf_scom_section;
6888 static asymbol mips_elf_scom_symbol;
6889 static asymbol *mips_elf_scom_symbol_ptr;
6890
6891 /* MIPS ELF also uses an acommon section, which represents an
6892 allocated common symbol which may be overridden by a
6893 definition in a shared library. */
6894 static asection mips_elf_acom_section;
6895 static asymbol mips_elf_acom_symbol;
6896 static asymbol *mips_elf_acom_symbol_ptr;
6897
6898 /* This is used for both the 32-bit and the 64-bit ABI. */
6899
6900 void
6901 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6902 {
6903 elf_symbol_type *elfsym;
6904
6905 /* Handle the special MIPS section numbers that a symbol may use. */
6906 elfsym = (elf_symbol_type *) asym;
6907 switch (elfsym->internal_elf_sym.st_shndx)
6908 {
6909 case SHN_MIPS_ACOMMON:
6910 /* This section is used in a dynamically linked executable file.
6911 It is an allocated common section. The dynamic linker can
6912 either resolve these symbols to something in a shared
6913 library, or it can just leave them here. For our purposes,
6914 we can consider these symbols to be in a new section. */
6915 if (mips_elf_acom_section.name == NULL)
6916 {
6917 /* Initialize the acommon section. */
6918 mips_elf_acom_section.name = ".acommon";
6919 mips_elf_acom_section.flags = SEC_ALLOC;
6920 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6921 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6922 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6923 mips_elf_acom_symbol.name = ".acommon";
6924 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6925 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6926 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6927 }
6928 asym->section = &mips_elf_acom_section;
6929 break;
6930
6931 case SHN_COMMON:
6932 /* Common symbols less than the GP size are automatically
6933 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6934 if (asym->value > elf_gp_size (abfd)
6935 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6936 || IRIX_COMPAT (abfd) == ict_irix6)
6937 break;
6938 /* Fall through. */
6939 case SHN_MIPS_SCOMMON:
6940 if (mips_elf_scom_section.name == NULL)
6941 {
6942 /* Initialize the small common section. */
6943 mips_elf_scom_section.name = ".scommon";
6944 mips_elf_scom_section.flags = SEC_IS_COMMON;
6945 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6946 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6947 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6948 mips_elf_scom_symbol.name = ".scommon";
6949 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6950 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6951 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6952 }
6953 asym->section = &mips_elf_scom_section;
6954 asym->value = elfsym->internal_elf_sym.st_size;
6955 break;
6956
6957 case SHN_MIPS_SUNDEFINED:
6958 asym->section = bfd_und_section_ptr;
6959 break;
6960
6961 case SHN_MIPS_TEXT:
6962 {
6963 asection *section = bfd_get_section_by_name (abfd, ".text");
6964
6965 if (section != NULL)
6966 {
6967 asym->section = section;
6968 /* MIPS_TEXT is a bit special, the address is not an offset
6969 to the base of the .text section. So subtract the section
6970 base address to make it an offset. */
6971 asym->value -= section->vma;
6972 }
6973 }
6974 break;
6975
6976 case SHN_MIPS_DATA:
6977 {
6978 asection *section = bfd_get_section_by_name (abfd, ".data");
6979
6980 if (section != NULL)
6981 {
6982 asym->section = section;
6983 /* MIPS_DATA is a bit special, the address is not an offset
6984 to the base of the .data section. So subtract the section
6985 base address to make it an offset. */
6986 asym->value -= section->vma;
6987 }
6988 }
6989 break;
6990 }
6991
6992 /* If this is an odd-valued function symbol, assume it's a MIPS16
6993 or microMIPS one. */
6994 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6995 && (asym->value & 1) != 0)
6996 {
6997 asym->value--;
6998 if (MICROMIPS_P (abfd))
6999 elfsym->internal_elf_sym.st_other
7000 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7001 else
7002 elfsym->internal_elf_sym.st_other
7003 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7004 }
7005 }
7006 \f
7007 /* Implement elf_backend_eh_frame_address_size. This differs from
7008 the default in the way it handles EABI64.
7009
7010 EABI64 was originally specified as an LP64 ABI, and that is what
7011 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7012 historically accepted the combination of -mabi=eabi and -mlong32,
7013 and this ILP32 variation has become semi-official over time.
7014 Both forms use elf32 and have pointer-sized FDE addresses.
7015
7016 If an EABI object was generated by GCC 4.0 or above, it will have
7017 an empty .gcc_compiled_longXX section, where XX is the size of longs
7018 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7019 have no special marking to distinguish them from LP64 objects.
7020
7021 We don't want users of the official LP64 ABI to be punished for the
7022 existence of the ILP32 variant, but at the same time, we don't want
7023 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7024 We therefore take the following approach:
7025
7026 - If ABFD contains a .gcc_compiled_longXX section, use it to
7027 determine the pointer size.
7028
7029 - Otherwise check the type of the first relocation. Assume that
7030 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7031
7032 - Otherwise punt.
7033
7034 The second check is enough to detect LP64 objects generated by pre-4.0
7035 compilers because, in the kind of output generated by those compilers,
7036 the first relocation will be associated with either a CIE personality
7037 routine or an FDE start address. Furthermore, the compilers never
7038 used a special (non-pointer) encoding for this ABI.
7039
7040 Checking the relocation type should also be safe because there is no
7041 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7042 did so. */
7043
7044 unsigned int
7045 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7046 {
7047 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7048 return 8;
7049 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7050 {
7051 bfd_boolean long32_p, long64_p;
7052
7053 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7054 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7055 if (long32_p && long64_p)
7056 return 0;
7057 if (long32_p)
7058 return 4;
7059 if (long64_p)
7060 return 8;
7061
7062 if (sec->reloc_count > 0
7063 && elf_section_data (sec)->relocs != NULL
7064 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7065 == R_MIPS_64))
7066 return 8;
7067
7068 return 0;
7069 }
7070 return 4;
7071 }
7072 \f
7073 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7074 relocations against two unnamed section symbols to resolve to the
7075 same address. For example, if we have code like:
7076
7077 lw $4,%got_disp(.data)($gp)
7078 lw $25,%got_disp(.text)($gp)
7079 jalr $25
7080
7081 then the linker will resolve both relocations to .data and the program
7082 will jump there rather than to .text.
7083
7084 We can work around this problem by giving names to local section symbols.
7085 This is also what the MIPSpro tools do. */
7086
7087 bfd_boolean
7088 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7089 {
7090 return SGI_COMPAT (abfd);
7091 }
7092 \f
7093 /* Work over a section just before writing it out. This routine is
7094 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7095 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7096 a better way. */
7097
7098 bfd_boolean
7099 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7100 {
7101 if (hdr->sh_type == SHT_MIPS_REGINFO
7102 && hdr->sh_size > 0)
7103 {
7104 bfd_byte buf[4];
7105
7106 BFD_ASSERT (hdr->contents == NULL);
7107
7108 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7109 {
7110 _bfd_error_handler
7111 (_("%pB: incorrect `.reginfo' section size; "
7112 "expected %" PRIu64 ", got %" PRIu64),
7113 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7114 (uint64_t) hdr->sh_size);
7115 bfd_set_error (bfd_error_bad_value);
7116 return FALSE;
7117 }
7118
7119 if (bfd_seek (abfd,
7120 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7121 SEEK_SET) != 0)
7122 return FALSE;
7123 H_PUT_32 (abfd, elf_gp (abfd), buf);
7124 if (bfd_bwrite (buf, 4, abfd) != 4)
7125 return FALSE;
7126 }
7127
7128 if (hdr->sh_type == SHT_MIPS_OPTIONS
7129 && hdr->bfd_section != NULL
7130 && mips_elf_section_data (hdr->bfd_section) != NULL
7131 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7132 {
7133 bfd_byte *contents, *l, *lend;
7134
7135 /* We stored the section contents in the tdata field in the
7136 set_section_contents routine. We save the section contents
7137 so that we don't have to read them again.
7138 At this point we know that elf_gp is set, so we can look
7139 through the section contents to see if there is an
7140 ODK_REGINFO structure. */
7141
7142 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7143 l = contents;
7144 lend = contents + hdr->sh_size;
7145 while (l + sizeof (Elf_External_Options) <= lend)
7146 {
7147 Elf_Internal_Options intopt;
7148
7149 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7150 &intopt);
7151 if (intopt.size < sizeof (Elf_External_Options))
7152 {
7153 _bfd_error_handler
7154 /* xgettext:c-format */
7155 (_("%pB: warning: bad `%s' option size %u smaller than"
7156 " its header"),
7157 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7158 break;
7159 }
7160 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7161 {
7162 bfd_byte buf[8];
7163
7164 if (bfd_seek (abfd,
7165 (hdr->sh_offset
7166 + (l - contents)
7167 + sizeof (Elf_External_Options)
7168 + (sizeof (Elf64_External_RegInfo) - 8)),
7169 SEEK_SET) != 0)
7170 return FALSE;
7171 H_PUT_64 (abfd, elf_gp (abfd), buf);
7172 if (bfd_bwrite (buf, 8, abfd) != 8)
7173 return FALSE;
7174 }
7175 else if (intopt.kind == ODK_REGINFO)
7176 {
7177 bfd_byte buf[4];
7178
7179 if (bfd_seek (abfd,
7180 (hdr->sh_offset
7181 + (l - contents)
7182 + sizeof (Elf_External_Options)
7183 + (sizeof (Elf32_External_RegInfo) - 4)),
7184 SEEK_SET) != 0)
7185 return FALSE;
7186 H_PUT_32 (abfd, elf_gp (abfd), buf);
7187 if (bfd_bwrite (buf, 4, abfd) != 4)
7188 return FALSE;
7189 }
7190 l += intopt.size;
7191 }
7192 }
7193
7194 if (hdr->bfd_section != NULL)
7195 {
7196 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7197
7198 /* .sbss is not handled specially here because the GNU/Linux
7199 prelinker can convert .sbss from NOBITS to PROGBITS and
7200 changing it back to NOBITS breaks the binary. The entry in
7201 _bfd_mips_elf_special_sections will ensure the correct flags
7202 are set on .sbss if BFD creates it without reading it from an
7203 input file, and without special handling here the flags set
7204 on it in an input file will be followed. */
7205 if (strcmp (name, ".sdata") == 0
7206 || strcmp (name, ".lit8") == 0
7207 || strcmp (name, ".lit4") == 0)
7208 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7209 else if (strcmp (name, ".srdata") == 0)
7210 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7211 else if (strcmp (name, ".compact_rel") == 0)
7212 hdr->sh_flags = 0;
7213 else if (strcmp (name, ".rtproc") == 0)
7214 {
7215 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7216 {
7217 unsigned int adjust;
7218
7219 adjust = hdr->sh_size % hdr->sh_addralign;
7220 if (adjust != 0)
7221 hdr->sh_size += hdr->sh_addralign - adjust;
7222 }
7223 }
7224 }
7225
7226 return TRUE;
7227 }
7228
7229 /* Handle a MIPS specific section when reading an object file. This
7230 is called when elfcode.h finds a section with an unknown type.
7231 This routine supports both the 32-bit and 64-bit ELF ABI.
7232
7233 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7234 how to. */
7235
7236 bfd_boolean
7237 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7238 Elf_Internal_Shdr *hdr,
7239 const char *name,
7240 int shindex)
7241 {
7242 flagword flags = 0;
7243
7244 /* There ought to be a place to keep ELF backend specific flags, but
7245 at the moment there isn't one. We just keep track of the
7246 sections by their name, instead. Fortunately, the ABI gives
7247 suggested names for all the MIPS specific sections, so we will
7248 probably get away with this. */
7249 switch (hdr->sh_type)
7250 {
7251 case SHT_MIPS_LIBLIST:
7252 if (strcmp (name, ".liblist") != 0)
7253 return FALSE;
7254 break;
7255 case SHT_MIPS_MSYM:
7256 if (strcmp (name, ".msym") != 0)
7257 return FALSE;
7258 break;
7259 case SHT_MIPS_CONFLICT:
7260 if (strcmp (name, ".conflict") != 0)
7261 return FALSE;
7262 break;
7263 case SHT_MIPS_GPTAB:
7264 if (! CONST_STRNEQ (name, ".gptab."))
7265 return FALSE;
7266 break;
7267 case SHT_MIPS_UCODE:
7268 if (strcmp (name, ".ucode") != 0)
7269 return FALSE;
7270 break;
7271 case SHT_MIPS_DEBUG:
7272 if (strcmp (name, ".mdebug") != 0)
7273 return FALSE;
7274 flags = SEC_DEBUGGING;
7275 break;
7276 case SHT_MIPS_REGINFO:
7277 if (strcmp (name, ".reginfo") != 0
7278 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7279 return FALSE;
7280 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7281 break;
7282 case SHT_MIPS_IFACE:
7283 if (strcmp (name, ".MIPS.interfaces") != 0)
7284 return FALSE;
7285 break;
7286 case SHT_MIPS_CONTENT:
7287 if (! CONST_STRNEQ (name, ".MIPS.content"))
7288 return FALSE;
7289 break;
7290 case SHT_MIPS_OPTIONS:
7291 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7292 return FALSE;
7293 break;
7294 case SHT_MIPS_ABIFLAGS:
7295 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7296 return FALSE;
7297 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7298 break;
7299 case SHT_MIPS_DWARF:
7300 if (! CONST_STRNEQ (name, ".debug_")
7301 && ! CONST_STRNEQ (name, ".zdebug_"))
7302 return FALSE;
7303 break;
7304 case SHT_MIPS_SYMBOL_LIB:
7305 if (strcmp (name, ".MIPS.symlib") != 0)
7306 return FALSE;
7307 break;
7308 case SHT_MIPS_EVENTS:
7309 if (! CONST_STRNEQ (name, ".MIPS.events")
7310 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7311 return FALSE;
7312 break;
7313 default:
7314 break;
7315 }
7316
7317 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7318 return FALSE;
7319
7320 if (flags)
7321 {
7322 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7323 (bfd_get_section_flags (abfd,
7324 hdr->bfd_section)
7325 | flags)))
7326 return FALSE;
7327 }
7328
7329 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7330 {
7331 Elf_External_ABIFlags_v0 ext;
7332
7333 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7334 &ext, 0, sizeof ext))
7335 return FALSE;
7336 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7337 &mips_elf_tdata (abfd)->abiflags);
7338 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7339 return FALSE;
7340 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7341 }
7342
7343 /* FIXME: We should record sh_info for a .gptab section. */
7344
7345 /* For a .reginfo section, set the gp value in the tdata information
7346 from the contents of this section. We need the gp value while
7347 processing relocs, so we just get it now. The .reginfo section
7348 is not used in the 64-bit MIPS ELF ABI. */
7349 if (hdr->sh_type == SHT_MIPS_REGINFO)
7350 {
7351 Elf32_External_RegInfo ext;
7352 Elf32_RegInfo s;
7353
7354 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7355 &ext, 0, sizeof ext))
7356 return FALSE;
7357 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7358 elf_gp (abfd) = s.ri_gp_value;
7359 }
7360
7361 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7362 set the gp value based on what we find. We may see both
7363 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7364 they should agree. */
7365 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7366 {
7367 bfd_byte *contents, *l, *lend;
7368
7369 contents = bfd_malloc (hdr->sh_size);
7370 if (contents == NULL)
7371 return FALSE;
7372 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7373 0, hdr->sh_size))
7374 {
7375 free (contents);
7376 return FALSE;
7377 }
7378 l = contents;
7379 lend = contents + hdr->sh_size;
7380 while (l + sizeof (Elf_External_Options) <= lend)
7381 {
7382 Elf_Internal_Options intopt;
7383
7384 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7385 &intopt);
7386 if (intopt.size < sizeof (Elf_External_Options))
7387 {
7388 _bfd_error_handler
7389 /* xgettext:c-format */
7390 (_("%pB: warning: bad `%s' option size %u smaller than"
7391 " its header"),
7392 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7393 break;
7394 }
7395 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7396 {
7397 Elf64_Internal_RegInfo intreg;
7398
7399 bfd_mips_elf64_swap_reginfo_in
7400 (abfd,
7401 ((Elf64_External_RegInfo *)
7402 (l + sizeof (Elf_External_Options))),
7403 &intreg);
7404 elf_gp (abfd) = intreg.ri_gp_value;
7405 }
7406 else if (intopt.kind == ODK_REGINFO)
7407 {
7408 Elf32_RegInfo intreg;
7409
7410 bfd_mips_elf32_swap_reginfo_in
7411 (abfd,
7412 ((Elf32_External_RegInfo *)
7413 (l + sizeof (Elf_External_Options))),
7414 &intreg);
7415 elf_gp (abfd) = intreg.ri_gp_value;
7416 }
7417 l += intopt.size;
7418 }
7419 free (contents);
7420 }
7421
7422 return TRUE;
7423 }
7424
7425 /* Set the correct type for a MIPS ELF section. We do this by the
7426 section name, which is a hack, but ought to work. This routine is
7427 used by both the 32-bit and the 64-bit ABI. */
7428
7429 bfd_boolean
7430 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7431 {
7432 const char *name = bfd_get_section_name (abfd, sec);
7433
7434 if (strcmp (name, ".liblist") == 0)
7435 {
7436 hdr->sh_type = SHT_MIPS_LIBLIST;
7437 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7438 /* The sh_link field is set in final_write_processing. */
7439 }
7440 else if (strcmp (name, ".conflict") == 0)
7441 hdr->sh_type = SHT_MIPS_CONFLICT;
7442 else if (CONST_STRNEQ (name, ".gptab."))
7443 {
7444 hdr->sh_type = SHT_MIPS_GPTAB;
7445 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7446 /* The sh_info field is set in final_write_processing. */
7447 }
7448 else if (strcmp (name, ".ucode") == 0)
7449 hdr->sh_type = SHT_MIPS_UCODE;
7450 else if (strcmp (name, ".mdebug") == 0)
7451 {
7452 hdr->sh_type = SHT_MIPS_DEBUG;
7453 /* In a shared object on IRIX 5.3, the .mdebug section has an
7454 entsize of 0. FIXME: Does this matter? */
7455 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7456 hdr->sh_entsize = 0;
7457 else
7458 hdr->sh_entsize = 1;
7459 }
7460 else if (strcmp (name, ".reginfo") == 0)
7461 {
7462 hdr->sh_type = SHT_MIPS_REGINFO;
7463 /* In a shared object on IRIX 5.3, the .reginfo section has an
7464 entsize of 0x18. FIXME: Does this matter? */
7465 if (SGI_COMPAT (abfd))
7466 {
7467 if ((abfd->flags & DYNAMIC) != 0)
7468 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7469 else
7470 hdr->sh_entsize = 1;
7471 }
7472 else
7473 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7474 }
7475 else if (SGI_COMPAT (abfd)
7476 && (strcmp (name, ".hash") == 0
7477 || strcmp (name, ".dynamic") == 0
7478 || strcmp (name, ".dynstr") == 0))
7479 {
7480 if (SGI_COMPAT (abfd))
7481 hdr->sh_entsize = 0;
7482 #if 0
7483 /* This isn't how the IRIX6 linker behaves. */
7484 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7485 #endif
7486 }
7487 else if (strcmp (name, ".got") == 0
7488 || strcmp (name, ".srdata") == 0
7489 || strcmp (name, ".sdata") == 0
7490 || strcmp (name, ".sbss") == 0
7491 || strcmp (name, ".lit4") == 0
7492 || strcmp (name, ".lit8") == 0)
7493 hdr->sh_flags |= SHF_MIPS_GPREL;
7494 else if (strcmp (name, ".MIPS.interfaces") == 0)
7495 {
7496 hdr->sh_type = SHT_MIPS_IFACE;
7497 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7498 }
7499 else if (CONST_STRNEQ (name, ".MIPS.content"))
7500 {
7501 hdr->sh_type = SHT_MIPS_CONTENT;
7502 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7503 /* The sh_info field is set in final_write_processing. */
7504 }
7505 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7506 {
7507 hdr->sh_type = SHT_MIPS_OPTIONS;
7508 hdr->sh_entsize = 1;
7509 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7510 }
7511 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7512 {
7513 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7514 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7515 }
7516 else if (CONST_STRNEQ (name, ".debug_")
7517 || CONST_STRNEQ (name, ".zdebug_"))
7518 {
7519 hdr->sh_type = SHT_MIPS_DWARF;
7520
7521 /* Irix facilities such as libexc expect a single .debug_frame
7522 per executable, the system ones have NOSTRIP set and the linker
7523 doesn't merge sections with different flags so ... */
7524 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7525 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7526 }
7527 else if (strcmp (name, ".MIPS.symlib") == 0)
7528 {
7529 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7530 /* The sh_link and sh_info fields are set in
7531 final_write_processing. */
7532 }
7533 else if (CONST_STRNEQ (name, ".MIPS.events")
7534 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7535 {
7536 hdr->sh_type = SHT_MIPS_EVENTS;
7537 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7538 /* The sh_link field is set in final_write_processing. */
7539 }
7540 else if (strcmp (name, ".msym") == 0)
7541 {
7542 hdr->sh_type = SHT_MIPS_MSYM;
7543 hdr->sh_flags |= SHF_ALLOC;
7544 hdr->sh_entsize = 8;
7545 }
7546
7547 /* The generic elf_fake_sections will set up REL_HDR using the default
7548 kind of relocations. We used to set up a second header for the
7549 non-default kind of relocations here, but only NewABI would use
7550 these, and the IRIX ld doesn't like resulting empty RELA sections.
7551 Thus we create those header only on demand now. */
7552
7553 return TRUE;
7554 }
7555
7556 /* Given a BFD section, try to locate the corresponding ELF section
7557 index. This is used by both the 32-bit and the 64-bit ABI.
7558 Actually, it's not clear to me that the 64-bit ABI supports these,
7559 but for non-PIC objects we will certainly want support for at least
7560 the .scommon section. */
7561
7562 bfd_boolean
7563 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7564 asection *sec, int *retval)
7565 {
7566 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7567 {
7568 *retval = SHN_MIPS_SCOMMON;
7569 return TRUE;
7570 }
7571 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7572 {
7573 *retval = SHN_MIPS_ACOMMON;
7574 return TRUE;
7575 }
7576 return FALSE;
7577 }
7578 \f
7579 /* Hook called by the linker routine which adds symbols from an object
7580 file. We must handle the special MIPS section numbers here. */
7581
7582 bfd_boolean
7583 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7584 Elf_Internal_Sym *sym, const char **namep,
7585 flagword *flagsp ATTRIBUTE_UNUSED,
7586 asection **secp, bfd_vma *valp)
7587 {
7588 if (SGI_COMPAT (abfd)
7589 && (abfd->flags & DYNAMIC) != 0
7590 && strcmp (*namep, "_rld_new_interface") == 0)
7591 {
7592 /* Skip IRIX5 rld entry name. */
7593 *namep = NULL;
7594 return TRUE;
7595 }
7596
7597 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7598 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7599 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7600 a magic symbol resolved by the linker, we ignore this bogus definition
7601 of _gp_disp. New ABI objects do not suffer from this problem so this
7602 is not done for them. */
7603 if (!NEWABI_P(abfd)
7604 && (sym->st_shndx == SHN_ABS)
7605 && (strcmp (*namep, "_gp_disp") == 0))
7606 {
7607 *namep = NULL;
7608 return TRUE;
7609 }
7610
7611 switch (sym->st_shndx)
7612 {
7613 case SHN_COMMON:
7614 /* Common symbols less than the GP size are automatically
7615 treated as SHN_MIPS_SCOMMON symbols. */
7616 if (sym->st_size > elf_gp_size (abfd)
7617 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7618 || IRIX_COMPAT (abfd) == ict_irix6)
7619 break;
7620 /* Fall through. */
7621 case SHN_MIPS_SCOMMON:
7622 *secp = bfd_make_section_old_way (abfd, ".scommon");
7623 (*secp)->flags |= SEC_IS_COMMON;
7624 *valp = sym->st_size;
7625 break;
7626
7627 case SHN_MIPS_TEXT:
7628 /* This section is used in a shared object. */
7629 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7630 {
7631 asymbol *elf_text_symbol;
7632 asection *elf_text_section;
7633 bfd_size_type amt = sizeof (asection);
7634
7635 elf_text_section = bfd_zalloc (abfd, amt);
7636 if (elf_text_section == NULL)
7637 return FALSE;
7638
7639 amt = sizeof (asymbol);
7640 elf_text_symbol = bfd_zalloc (abfd, amt);
7641 if (elf_text_symbol == NULL)
7642 return FALSE;
7643
7644 /* Initialize the section. */
7645
7646 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7647 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7648
7649 elf_text_section->symbol = elf_text_symbol;
7650 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7651
7652 elf_text_section->name = ".text";
7653 elf_text_section->flags = SEC_NO_FLAGS;
7654 elf_text_section->output_section = NULL;
7655 elf_text_section->owner = abfd;
7656 elf_text_symbol->name = ".text";
7657 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7658 elf_text_symbol->section = elf_text_section;
7659 }
7660 /* This code used to do *secp = bfd_und_section_ptr if
7661 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7662 so I took it out. */
7663 *secp = mips_elf_tdata (abfd)->elf_text_section;
7664 break;
7665
7666 case SHN_MIPS_ACOMMON:
7667 /* Fall through. XXX Can we treat this as allocated data? */
7668 case SHN_MIPS_DATA:
7669 /* This section is used in a shared object. */
7670 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7671 {
7672 asymbol *elf_data_symbol;
7673 asection *elf_data_section;
7674 bfd_size_type amt = sizeof (asection);
7675
7676 elf_data_section = bfd_zalloc (abfd, amt);
7677 if (elf_data_section == NULL)
7678 return FALSE;
7679
7680 amt = sizeof (asymbol);
7681 elf_data_symbol = bfd_zalloc (abfd, amt);
7682 if (elf_data_symbol == NULL)
7683 return FALSE;
7684
7685 /* Initialize the section. */
7686
7687 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7688 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7689
7690 elf_data_section->symbol = elf_data_symbol;
7691 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7692
7693 elf_data_section->name = ".data";
7694 elf_data_section->flags = SEC_NO_FLAGS;
7695 elf_data_section->output_section = NULL;
7696 elf_data_section->owner = abfd;
7697 elf_data_symbol->name = ".data";
7698 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7699 elf_data_symbol->section = elf_data_section;
7700 }
7701 /* This code used to do *secp = bfd_und_section_ptr if
7702 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7703 so I took it out. */
7704 *secp = mips_elf_tdata (abfd)->elf_data_section;
7705 break;
7706
7707 case SHN_MIPS_SUNDEFINED:
7708 *secp = bfd_und_section_ptr;
7709 break;
7710 }
7711
7712 if (SGI_COMPAT (abfd)
7713 && ! bfd_link_pic (info)
7714 && info->output_bfd->xvec == abfd->xvec
7715 && strcmp (*namep, "__rld_obj_head") == 0)
7716 {
7717 struct elf_link_hash_entry *h;
7718 struct bfd_link_hash_entry *bh;
7719
7720 /* Mark __rld_obj_head as dynamic. */
7721 bh = NULL;
7722 if (! (_bfd_generic_link_add_one_symbol
7723 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7724 get_elf_backend_data (abfd)->collect, &bh)))
7725 return FALSE;
7726
7727 h = (struct elf_link_hash_entry *) bh;
7728 h->non_elf = 0;
7729 h->def_regular = 1;
7730 h->type = STT_OBJECT;
7731
7732 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7733 return FALSE;
7734
7735 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7736 mips_elf_hash_table (info)->rld_symbol = h;
7737 }
7738
7739 /* If this is a mips16 text symbol, add 1 to the value to make it
7740 odd. This will cause something like .word SYM to come up with
7741 the right value when it is loaded into the PC. */
7742 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7743 ++*valp;
7744
7745 return TRUE;
7746 }
7747
7748 /* This hook function is called before the linker writes out a global
7749 symbol. We mark symbols as small common if appropriate. This is
7750 also where we undo the increment of the value for a mips16 symbol. */
7751
7752 int
7753 _bfd_mips_elf_link_output_symbol_hook
7754 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7755 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7756 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7757 {
7758 /* If we see a common symbol, which implies a relocatable link, then
7759 if a symbol was small common in an input file, mark it as small
7760 common in the output file. */
7761 if (sym->st_shndx == SHN_COMMON
7762 && strcmp (input_sec->name, ".scommon") == 0)
7763 sym->st_shndx = SHN_MIPS_SCOMMON;
7764
7765 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7766 sym->st_value &= ~1;
7767
7768 return 1;
7769 }
7770 \f
7771 /* Functions for the dynamic linker. */
7772
7773 /* Create dynamic sections when linking against a dynamic object. */
7774
7775 bfd_boolean
7776 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7777 {
7778 struct elf_link_hash_entry *h;
7779 struct bfd_link_hash_entry *bh;
7780 flagword flags;
7781 register asection *s;
7782 const char * const *namep;
7783 struct mips_elf_link_hash_table *htab;
7784
7785 htab = mips_elf_hash_table (info);
7786 BFD_ASSERT (htab != NULL);
7787
7788 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7789 | SEC_LINKER_CREATED | SEC_READONLY);
7790
7791 /* The psABI requires a read-only .dynamic section, but the VxWorks
7792 EABI doesn't. */
7793 if (!htab->is_vxworks)
7794 {
7795 s = bfd_get_linker_section (abfd, ".dynamic");
7796 if (s != NULL)
7797 {
7798 if (! bfd_set_section_flags (abfd, s, flags))
7799 return FALSE;
7800 }
7801 }
7802
7803 /* We need to create .got section. */
7804 if (!mips_elf_create_got_section (abfd, info))
7805 return FALSE;
7806
7807 if (! mips_elf_rel_dyn_section (info, TRUE))
7808 return FALSE;
7809
7810 /* Create .stub section. */
7811 s = bfd_make_section_anyway_with_flags (abfd,
7812 MIPS_ELF_STUB_SECTION_NAME (abfd),
7813 flags | SEC_CODE);
7814 if (s == NULL
7815 || ! bfd_set_section_alignment (abfd, s,
7816 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7817 return FALSE;
7818 htab->sstubs = s;
7819
7820 if (!mips_elf_hash_table (info)->use_rld_obj_head
7821 && bfd_link_executable (info)
7822 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7823 {
7824 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7825 flags &~ (flagword) SEC_READONLY);
7826 if (s == NULL
7827 || ! bfd_set_section_alignment (abfd, s,
7828 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7829 return FALSE;
7830 }
7831
7832 /* On IRIX5, we adjust add some additional symbols and change the
7833 alignments of several sections. There is no ABI documentation
7834 indicating that this is necessary on IRIX6, nor any evidence that
7835 the linker takes such action. */
7836 if (IRIX_COMPAT (abfd) == ict_irix5)
7837 {
7838 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7839 {
7840 bh = NULL;
7841 if (! (_bfd_generic_link_add_one_symbol
7842 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7843 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7844 return FALSE;
7845
7846 h = (struct elf_link_hash_entry *) bh;
7847 h->non_elf = 0;
7848 h->def_regular = 1;
7849 h->type = STT_SECTION;
7850
7851 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7852 return FALSE;
7853 }
7854
7855 /* We need to create a .compact_rel section. */
7856 if (SGI_COMPAT (abfd))
7857 {
7858 if (!mips_elf_create_compact_rel_section (abfd, info))
7859 return FALSE;
7860 }
7861
7862 /* Change alignments of some sections. */
7863 s = bfd_get_linker_section (abfd, ".hash");
7864 if (s != NULL)
7865 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7866
7867 s = bfd_get_linker_section (abfd, ".dynsym");
7868 if (s != NULL)
7869 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7870
7871 s = bfd_get_linker_section (abfd, ".dynstr");
7872 if (s != NULL)
7873 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7874
7875 /* ??? */
7876 s = bfd_get_section_by_name (abfd, ".reginfo");
7877 if (s != NULL)
7878 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7879
7880 s = bfd_get_linker_section (abfd, ".dynamic");
7881 if (s != NULL)
7882 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7883 }
7884
7885 if (bfd_link_executable (info))
7886 {
7887 const char *name;
7888
7889 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7890 bh = NULL;
7891 if (!(_bfd_generic_link_add_one_symbol
7892 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7893 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7894 return FALSE;
7895
7896 h = (struct elf_link_hash_entry *) bh;
7897 h->non_elf = 0;
7898 h->def_regular = 1;
7899 h->type = STT_SECTION;
7900
7901 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7902 return FALSE;
7903
7904 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7905 {
7906 /* __rld_map is a four byte word located in the .data section
7907 and is filled in by the rtld to contain a pointer to
7908 the _r_debug structure. Its symbol value will be set in
7909 _bfd_mips_elf_finish_dynamic_symbol. */
7910 s = bfd_get_linker_section (abfd, ".rld_map");
7911 BFD_ASSERT (s != NULL);
7912
7913 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7914 bh = NULL;
7915 if (!(_bfd_generic_link_add_one_symbol
7916 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7917 get_elf_backend_data (abfd)->collect, &bh)))
7918 return FALSE;
7919
7920 h = (struct elf_link_hash_entry *) bh;
7921 h->non_elf = 0;
7922 h->def_regular = 1;
7923 h->type = STT_OBJECT;
7924
7925 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7926 return FALSE;
7927 mips_elf_hash_table (info)->rld_symbol = h;
7928 }
7929 }
7930
7931 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7932 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7933 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7934 return FALSE;
7935
7936 /* Do the usual VxWorks handling. */
7937 if (htab->is_vxworks
7938 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7939 return FALSE;
7940
7941 return TRUE;
7942 }
7943 \f
7944 /* Return true if relocation REL against section SEC is a REL rather than
7945 RELA relocation. RELOCS is the first relocation in the section and
7946 ABFD is the bfd that contains SEC. */
7947
7948 static bfd_boolean
7949 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7950 const Elf_Internal_Rela *relocs,
7951 const Elf_Internal_Rela *rel)
7952 {
7953 Elf_Internal_Shdr *rel_hdr;
7954 const struct elf_backend_data *bed;
7955
7956 /* To determine which flavor of relocation this is, we depend on the
7957 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7958 rel_hdr = elf_section_data (sec)->rel.hdr;
7959 if (rel_hdr == NULL)
7960 return FALSE;
7961 bed = get_elf_backend_data (abfd);
7962 return ((size_t) (rel - relocs)
7963 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7964 }
7965
7966 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7967 HOWTO is the relocation's howto and CONTENTS points to the contents
7968 of the section that REL is against. */
7969
7970 static bfd_vma
7971 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7972 reloc_howto_type *howto, bfd_byte *contents)
7973 {
7974 bfd_byte *location;
7975 unsigned int r_type;
7976 bfd_vma addend;
7977 bfd_vma bytes;
7978
7979 r_type = ELF_R_TYPE (abfd, rel->r_info);
7980 location = contents + rel->r_offset;
7981
7982 /* Get the addend, which is stored in the input file. */
7983 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7984 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7985 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7986
7987 addend = bytes & howto->src_mask;
7988
7989 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7990 accordingly. */
7991 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7992 addend <<= 1;
7993
7994 return addend;
7995 }
7996
7997 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7998 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7999 and update *ADDEND with the final addend. Return true on success
8000 or false if the LO16 could not be found. RELEND is the exclusive
8001 upper bound on the relocations for REL's section. */
8002
8003 static bfd_boolean
8004 mips_elf_add_lo16_rel_addend (bfd *abfd,
8005 const Elf_Internal_Rela *rel,
8006 const Elf_Internal_Rela *relend,
8007 bfd_byte *contents, bfd_vma *addend)
8008 {
8009 unsigned int r_type, lo16_type;
8010 const Elf_Internal_Rela *lo16_relocation;
8011 reloc_howto_type *lo16_howto;
8012 bfd_vma l;
8013
8014 r_type = ELF_R_TYPE (abfd, rel->r_info);
8015 if (mips16_reloc_p (r_type))
8016 lo16_type = R_MIPS16_LO16;
8017 else if (micromips_reloc_p (r_type))
8018 lo16_type = R_MICROMIPS_LO16;
8019 else if (r_type == R_MIPS_PCHI16)
8020 lo16_type = R_MIPS_PCLO16;
8021 else
8022 lo16_type = R_MIPS_LO16;
8023
8024 /* The combined value is the sum of the HI16 addend, left-shifted by
8025 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8026 code does a `lui' of the HI16 value, and then an `addiu' of the
8027 LO16 value.)
8028
8029 Scan ahead to find a matching LO16 relocation.
8030
8031 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8032 be immediately following. However, for the IRIX6 ABI, the next
8033 relocation may be a composed relocation consisting of several
8034 relocations for the same address. In that case, the R_MIPS_LO16
8035 relocation may occur as one of these. We permit a similar
8036 extension in general, as that is useful for GCC.
8037
8038 In some cases GCC dead code elimination removes the LO16 but keeps
8039 the corresponding HI16. This is strictly speaking a violation of
8040 the ABI but not immediately harmful. */
8041 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8042 if (lo16_relocation == NULL)
8043 return FALSE;
8044
8045 /* Obtain the addend kept there. */
8046 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8047 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8048
8049 l <<= lo16_howto->rightshift;
8050 l = _bfd_mips_elf_sign_extend (l, 16);
8051
8052 *addend <<= 16;
8053 *addend += l;
8054 return TRUE;
8055 }
8056
8057 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8058 store the contents in *CONTENTS on success. Assume that *CONTENTS
8059 already holds the contents if it is nonull on entry. */
8060
8061 static bfd_boolean
8062 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8063 {
8064 if (*contents)
8065 return TRUE;
8066
8067 /* Get cached copy if it exists. */
8068 if (elf_section_data (sec)->this_hdr.contents != NULL)
8069 {
8070 *contents = elf_section_data (sec)->this_hdr.contents;
8071 return TRUE;
8072 }
8073
8074 return bfd_malloc_and_get_section (abfd, sec, contents);
8075 }
8076
8077 /* Make a new PLT record to keep internal data. */
8078
8079 static struct plt_entry *
8080 mips_elf_make_plt_record (bfd *abfd)
8081 {
8082 struct plt_entry *entry;
8083
8084 entry = bfd_zalloc (abfd, sizeof (*entry));
8085 if (entry == NULL)
8086 return NULL;
8087
8088 entry->stub_offset = MINUS_ONE;
8089 entry->mips_offset = MINUS_ONE;
8090 entry->comp_offset = MINUS_ONE;
8091 entry->gotplt_index = MINUS_ONE;
8092 return entry;
8093 }
8094
8095 /* Look through the relocs for a section during the first phase, and
8096 allocate space in the global offset table and record the need for
8097 standard MIPS and compressed procedure linkage table entries. */
8098
8099 bfd_boolean
8100 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8101 asection *sec, const Elf_Internal_Rela *relocs)
8102 {
8103 const char *name;
8104 bfd *dynobj;
8105 Elf_Internal_Shdr *symtab_hdr;
8106 struct elf_link_hash_entry **sym_hashes;
8107 size_t extsymoff;
8108 const Elf_Internal_Rela *rel;
8109 const Elf_Internal_Rela *rel_end;
8110 asection *sreloc;
8111 const struct elf_backend_data *bed;
8112 struct mips_elf_link_hash_table *htab;
8113 bfd_byte *contents;
8114 bfd_vma addend;
8115 reloc_howto_type *howto;
8116
8117 if (bfd_link_relocatable (info))
8118 return TRUE;
8119
8120 htab = mips_elf_hash_table (info);
8121 BFD_ASSERT (htab != NULL);
8122
8123 dynobj = elf_hash_table (info)->dynobj;
8124 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8125 sym_hashes = elf_sym_hashes (abfd);
8126 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8127
8128 bed = get_elf_backend_data (abfd);
8129 rel_end = relocs + sec->reloc_count;
8130
8131 /* Check for the mips16 stub sections. */
8132
8133 name = bfd_get_section_name (abfd, sec);
8134 if (FN_STUB_P (name))
8135 {
8136 unsigned long r_symndx;
8137
8138 /* Look at the relocation information to figure out which symbol
8139 this is for. */
8140
8141 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8142 if (r_symndx == 0)
8143 {
8144 _bfd_error_handler
8145 /* xgettext:c-format */
8146 (_("%pB: warning: cannot determine the target function for"
8147 " stub section `%s'"),
8148 abfd, name);
8149 bfd_set_error (bfd_error_bad_value);
8150 return FALSE;
8151 }
8152
8153 if (r_symndx < extsymoff
8154 || sym_hashes[r_symndx - extsymoff] == NULL)
8155 {
8156 asection *o;
8157
8158 /* This stub is for a local symbol. This stub will only be
8159 needed if there is some relocation in this BFD, other
8160 than a 16 bit function call, which refers to this symbol. */
8161 for (o = abfd->sections; o != NULL; o = o->next)
8162 {
8163 Elf_Internal_Rela *sec_relocs;
8164 const Elf_Internal_Rela *r, *rend;
8165
8166 /* We can ignore stub sections when looking for relocs. */
8167 if ((o->flags & SEC_RELOC) == 0
8168 || o->reloc_count == 0
8169 || section_allows_mips16_refs_p (o))
8170 continue;
8171
8172 sec_relocs
8173 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8174 info->keep_memory);
8175 if (sec_relocs == NULL)
8176 return FALSE;
8177
8178 rend = sec_relocs + o->reloc_count;
8179 for (r = sec_relocs; r < rend; r++)
8180 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8181 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8182 break;
8183
8184 if (elf_section_data (o)->relocs != sec_relocs)
8185 free (sec_relocs);
8186
8187 if (r < rend)
8188 break;
8189 }
8190
8191 if (o == NULL)
8192 {
8193 /* There is no non-call reloc for this stub, so we do
8194 not need it. Since this function is called before
8195 the linker maps input sections to output sections, we
8196 can easily discard it by setting the SEC_EXCLUDE
8197 flag. */
8198 sec->flags |= SEC_EXCLUDE;
8199 return TRUE;
8200 }
8201
8202 /* Record this stub in an array of local symbol stubs for
8203 this BFD. */
8204 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8205 {
8206 unsigned long symcount;
8207 asection **n;
8208 bfd_size_type amt;
8209
8210 if (elf_bad_symtab (abfd))
8211 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8212 else
8213 symcount = symtab_hdr->sh_info;
8214 amt = symcount * sizeof (asection *);
8215 n = bfd_zalloc (abfd, amt);
8216 if (n == NULL)
8217 return FALSE;
8218 mips_elf_tdata (abfd)->local_stubs = n;
8219 }
8220
8221 sec->flags |= SEC_KEEP;
8222 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8223
8224 /* We don't need to set mips16_stubs_seen in this case.
8225 That flag is used to see whether we need to look through
8226 the global symbol table for stubs. We don't need to set
8227 it here, because we just have a local stub. */
8228 }
8229 else
8230 {
8231 struct mips_elf_link_hash_entry *h;
8232
8233 h = ((struct mips_elf_link_hash_entry *)
8234 sym_hashes[r_symndx - extsymoff]);
8235
8236 while (h->root.root.type == bfd_link_hash_indirect
8237 || h->root.root.type == bfd_link_hash_warning)
8238 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8239
8240 /* H is the symbol this stub is for. */
8241
8242 /* If we already have an appropriate stub for this function, we
8243 don't need another one, so we can discard this one. Since
8244 this function is called before the linker maps input sections
8245 to output sections, we can easily discard it by setting the
8246 SEC_EXCLUDE flag. */
8247 if (h->fn_stub != NULL)
8248 {
8249 sec->flags |= SEC_EXCLUDE;
8250 return TRUE;
8251 }
8252
8253 sec->flags |= SEC_KEEP;
8254 h->fn_stub = sec;
8255 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8256 }
8257 }
8258 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8259 {
8260 unsigned long r_symndx;
8261 struct mips_elf_link_hash_entry *h;
8262 asection **loc;
8263
8264 /* Look at the relocation information to figure out which symbol
8265 this is for. */
8266
8267 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8268 if (r_symndx == 0)
8269 {
8270 _bfd_error_handler
8271 /* xgettext:c-format */
8272 (_("%pB: warning: cannot determine the target function for"
8273 " stub section `%s'"),
8274 abfd, name);
8275 bfd_set_error (bfd_error_bad_value);
8276 return FALSE;
8277 }
8278
8279 if (r_symndx < extsymoff
8280 || sym_hashes[r_symndx - extsymoff] == NULL)
8281 {
8282 asection *o;
8283
8284 /* This stub is for a local symbol. This stub will only be
8285 needed if there is some relocation (R_MIPS16_26) in this BFD
8286 that refers to this symbol. */
8287 for (o = abfd->sections; o != NULL; o = o->next)
8288 {
8289 Elf_Internal_Rela *sec_relocs;
8290 const Elf_Internal_Rela *r, *rend;
8291
8292 /* We can ignore stub sections when looking for relocs. */
8293 if ((o->flags & SEC_RELOC) == 0
8294 || o->reloc_count == 0
8295 || section_allows_mips16_refs_p (o))
8296 continue;
8297
8298 sec_relocs
8299 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8300 info->keep_memory);
8301 if (sec_relocs == NULL)
8302 return FALSE;
8303
8304 rend = sec_relocs + o->reloc_count;
8305 for (r = sec_relocs; r < rend; r++)
8306 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8307 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8308 break;
8309
8310 if (elf_section_data (o)->relocs != sec_relocs)
8311 free (sec_relocs);
8312
8313 if (r < rend)
8314 break;
8315 }
8316
8317 if (o == NULL)
8318 {
8319 /* There is no non-call reloc for this stub, so we do
8320 not need it. Since this function is called before
8321 the linker maps input sections to output sections, we
8322 can easily discard it by setting the SEC_EXCLUDE
8323 flag. */
8324 sec->flags |= SEC_EXCLUDE;
8325 return TRUE;
8326 }
8327
8328 /* Record this stub in an array of local symbol call_stubs for
8329 this BFD. */
8330 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8331 {
8332 unsigned long symcount;
8333 asection **n;
8334 bfd_size_type amt;
8335
8336 if (elf_bad_symtab (abfd))
8337 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8338 else
8339 symcount = symtab_hdr->sh_info;
8340 amt = symcount * sizeof (asection *);
8341 n = bfd_zalloc (abfd, amt);
8342 if (n == NULL)
8343 return FALSE;
8344 mips_elf_tdata (abfd)->local_call_stubs = n;
8345 }
8346
8347 sec->flags |= SEC_KEEP;
8348 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8349
8350 /* We don't need to set mips16_stubs_seen in this case.
8351 That flag is used to see whether we need to look through
8352 the global symbol table for stubs. We don't need to set
8353 it here, because we just have a local stub. */
8354 }
8355 else
8356 {
8357 h = ((struct mips_elf_link_hash_entry *)
8358 sym_hashes[r_symndx - extsymoff]);
8359
8360 /* H is the symbol this stub is for. */
8361
8362 if (CALL_FP_STUB_P (name))
8363 loc = &h->call_fp_stub;
8364 else
8365 loc = &h->call_stub;
8366
8367 /* If we already have an appropriate stub for this function, we
8368 don't need another one, so we can discard this one. Since
8369 this function is called before the linker maps input sections
8370 to output sections, we can easily discard it by setting the
8371 SEC_EXCLUDE flag. */
8372 if (*loc != NULL)
8373 {
8374 sec->flags |= SEC_EXCLUDE;
8375 return TRUE;
8376 }
8377
8378 sec->flags |= SEC_KEEP;
8379 *loc = sec;
8380 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8381 }
8382 }
8383
8384 sreloc = NULL;
8385 contents = NULL;
8386 for (rel = relocs; rel < rel_end; ++rel)
8387 {
8388 unsigned long r_symndx;
8389 unsigned int r_type;
8390 struct elf_link_hash_entry *h;
8391 bfd_boolean can_make_dynamic_p;
8392 bfd_boolean call_reloc_p;
8393 bfd_boolean constrain_symbol_p;
8394
8395 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8396 r_type = ELF_R_TYPE (abfd, rel->r_info);
8397
8398 if (r_symndx < extsymoff)
8399 h = NULL;
8400 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8401 {
8402 _bfd_error_handler
8403 /* xgettext:c-format */
8404 (_("%pB: malformed reloc detected for section %s"),
8405 abfd, name);
8406 bfd_set_error (bfd_error_bad_value);
8407 return FALSE;
8408 }
8409 else
8410 {
8411 h = sym_hashes[r_symndx - extsymoff];
8412 if (h != NULL)
8413 {
8414 while (h->root.type == bfd_link_hash_indirect
8415 || h->root.type == bfd_link_hash_warning)
8416 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8417 }
8418 }
8419
8420 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8421 relocation into a dynamic one. */
8422 can_make_dynamic_p = FALSE;
8423
8424 /* Set CALL_RELOC_P to true if the relocation is for a call,
8425 and if pointer equality therefore doesn't matter. */
8426 call_reloc_p = FALSE;
8427
8428 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8429 into account when deciding how to define the symbol.
8430 Relocations in nonallocatable sections such as .pdr and
8431 .debug* should have no effect. */
8432 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8433
8434 switch (r_type)
8435 {
8436 case R_MIPS_CALL16:
8437 case R_MIPS_CALL_HI16:
8438 case R_MIPS_CALL_LO16:
8439 case R_MIPS16_CALL16:
8440 case R_MICROMIPS_CALL16:
8441 case R_MICROMIPS_CALL_HI16:
8442 case R_MICROMIPS_CALL_LO16:
8443 call_reloc_p = TRUE;
8444 /* Fall through. */
8445
8446 case R_MIPS_GOT16:
8447 case R_MIPS_GOT_HI16:
8448 case R_MIPS_GOT_LO16:
8449 case R_MIPS_GOT_PAGE:
8450 case R_MIPS_GOT_OFST:
8451 case R_MIPS_GOT_DISP:
8452 case R_MIPS_TLS_GOTTPREL:
8453 case R_MIPS_TLS_GD:
8454 case R_MIPS_TLS_LDM:
8455 case R_MIPS16_GOT16:
8456 case R_MIPS16_TLS_GOTTPREL:
8457 case R_MIPS16_TLS_GD:
8458 case R_MIPS16_TLS_LDM:
8459 case R_MICROMIPS_GOT16:
8460 case R_MICROMIPS_GOT_HI16:
8461 case R_MICROMIPS_GOT_LO16:
8462 case R_MICROMIPS_GOT_PAGE:
8463 case R_MICROMIPS_GOT_OFST:
8464 case R_MICROMIPS_GOT_DISP:
8465 case R_MICROMIPS_TLS_GOTTPREL:
8466 case R_MICROMIPS_TLS_GD:
8467 case R_MICROMIPS_TLS_LDM:
8468 if (dynobj == NULL)
8469 elf_hash_table (info)->dynobj = dynobj = abfd;
8470 if (!mips_elf_create_got_section (dynobj, info))
8471 return FALSE;
8472 if (htab->is_vxworks && !bfd_link_pic (info))
8473 {
8474 _bfd_error_handler
8475 /* xgettext:c-format */
8476 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8477 abfd, (uint64_t) rel->r_offset);
8478 bfd_set_error (bfd_error_bad_value);
8479 return FALSE;
8480 }
8481 can_make_dynamic_p = TRUE;
8482 break;
8483
8484 case R_MIPS_NONE:
8485 case R_MIPS_JALR:
8486 case R_MICROMIPS_JALR:
8487 /* These relocations have empty fields and are purely there to
8488 provide link information. The symbol value doesn't matter. */
8489 constrain_symbol_p = FALSE;
8490 break;
8491
8492 case R_MIPS_GPREL16:
8493 case R_MIPS_GPREL32:
8494 case R_MIPS16_GPREL:
8495 case R_MICROMIPS_GPREL16:
8496 /* GP-relative relocations always resolve to a definition in a
8497 regular input file, ignoring the one-definition rule. This is
8498 important for the GP setup sequence in NewABI code, which
8499 always resolves to a local function even if other relocations
8500 against the symbol wouldn't. */
8501 constrain_symbol_p = FALSE;
8502 break;
8503
8504 case R_MIPS_32:
8505 case R_MIPS_REL32:
8506 case R_MIPS_64:
8507 /* In VxWorks executables, references to external symbols
8508 must be handled using copy relocs or PLT entries; it is not
8509 possible to convert this relocation into a dynamic one.
8510
8511 For executables that use PLTs and copy-relocs, we have a
8512 choice between converting the relocation into a dynamic
8513 one or using copy relocations or PLT entries. It is
8514 usually better to do the former, unless the relocation is
8515 against a read-only section. */
8516 if ((bfd_link_pic (info)
8517 || (h != NULL
8518 && !htab->is_vxworks
8519 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8520 && !(!info->nocopyreloc
8521 && !PIC_OBJECT_P (abfd)
8522 && MIPS_ELF_READONLY_SECTION (sec))))
8523 && (sec->flags & SEC_ALLOC) != 0)
8524 {
8525 can_make_dynamic_p = TRUE;
8526 if (dynobj == NULL)
8527 elf_hash_table (info)->dynobj = dynobj = abfd;
8528 }
8529 break;
8530
8531 case R_MIPS_26:
8532 case R_MIPS_PC16:
8533 case R_MIPS_PC21_S2:
8534 case R_MIPS_PC26_S2:
8535 case R_MIPS16_26:
8536 case R_MIPS16_PC16_S1:
8537 case R_MICROMIPS_26_S1:
8538 case R_MICROMIPS_PC7_S1:
8539 case R_MICROMIPS_PC10_S1:
8540 case R_MICROMIPS_PC16_S1:
8541 case R_MICROMIPS_PC23_S2:
8542 call_reloc_p = TRUE;
8543 break;
8544 }
8545
8546 if (h)
8547 {
8548 if (constrain_symbol_p)
8549 {
8550 if (!can_make_dynamic_p)
8551 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8552
8553 if (!call_reloc_p)
8554 h->pointer_equality_needed = 1;
8555
8556 /* We must not create a stub for a symbol that has
8557 relocations related to taking the function's address.
8558 This doesn't apply to VxWorks, where CALL relocs refer
8559 to a .got.plt entry instead of a normal .got entry. */
8560 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8561 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8562 }
8563
8564 /* Relocations against the special VxWorks __GOTT_BASE__ and
8565 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8566 room for them in .rela.dyn. */
8567 if (is_gott_symbol (info, h))
8568 {
8569 if (sreloc == NULL)
8570 {
8571 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8572 if (sreloc == NULL)
8573 return FALSE;
8574 }
8575 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8576 if (MIPS_ELF_READONLY_SECTION (sec))
8577 /* We tell the dynamic linker that there are
8578 relocations against the text segment. */
8579 info->flags |= DF_TEXTREL;
8580 }
8581 }
8582 else if (call_lo16_reloc_p (r_type)
8583 || got_lo16_reloc_p (r_type)
8584 || got_disp_reloc_p (r_type)
8585 || (got16_reloc_p (r_type) && htab->is_vxworks))
8586 {
8587 /* We may need a local GOT entry for this relocation. We
8588 don't count R_MIPS_GOT_PAGE because we can estimate the
8589 maximum number of pages needed by looking at the size of
8590 the segment. Similar comments apply to R_MIPS*_GOT16 and
8591 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8592 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8593 R_MIPS_CALL_HI16 because these are always followed by an
8594 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8595 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8596 rel->r_addend, info, r_type))
8597 return FALSE;
8598 }
8599
8600 if (h != NULL
8601 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8602 ELF_ST_IS_MIPS16 (h->other)))
8603 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8604
8605 switch (r_type)
8606 {
8607 case R_MIPS_CALL16:
8608 case R_MIPS16_CALL16:
8609 case R_MICROMIPS_CALL16:
8610 if (h == NULL)
8611 {
8612 _bfd_error_handler
8613 /* xgettext:c-format */
8614 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8615 abfd, (uint64_t) rel->r_offset);
8616 bfd_set_error (bfd_error_bad_value);
8617 return FALSE;
8618 }
8619 /* Fall through. */
8620
8621 case R_MIPS_CALL_HI16:
8622 case R_MIPS_CALL_LO16:
8623 case R_MICROMIPS_CALL_HI16:
8624 case R_MICROMIPS_CALL_LO16:
8625 if (h != NULL)
8626 {
8627 /* Make sure there is room in the regular GOT to hold the
8628 function's address. We may eliminate it in favour of
8629 a .got.plt entry later; see mips_elf_count_got_symbols. */
8630 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8631 r_type))
8632 return FALSE;
8633
8634 /* We need a stub, not a plt entry for the undefined
8635 function. But we record it as if it needs plt. See
8636 _bfd_elf_adjust_dynamic_symbol. */
8637 h->needs_plt = 1;
8638 h->type = STT_FUNC;
8639 }
8640 break;
8641
8642 case R_MIPS_GOT_PAGE:
8643 case R_MICROMIPS_GOT_PAGE:
8644 case R_MIPS16_GOT16:
8645 case R_MIPS_GOT16:
8646 case R_MIPS_GOT_HI16:
8647 case R_MIPS_GOT_LO16:
8648 case R_MICROMIPS_GOT16:
8649 case R_MICROMIPS_GOT_HI16:
8650 case R_MICROMIPS_GOT_LO16:
8651 if (!h || got_page_reloc_p (r_type))
8652 {
8653 /* This relocation needs (or may need, if h != NULL) a
8654 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8655 know for sure until we know whether the symbol is
8656 preemptible. */
8657 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8658 {
8659 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8660 return FALSE;
8661 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8662 addend = mips_elf_read_rel_addend (abfd, rel,
8663 howto, contents);
8664 if (got16_reloc_p (r_type))
8665 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8666 contents, &addend);
8667 else
8668 addend <<= howto->rightshift;
8669 }
8670 else
8671 addend = rel->r_addend;
8672 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8673 h, addend))
8674 return FALSE;
8675
8676 if (h)
8677 {
8678 struct mips_elf_link_hash_entry *hmips =
8679 (struct mips_elf_link_hash_entry *) h;
8680
8681 /* This symbol is definitely not overridable. */
8682 if (hmips->root.def_regular
8683 && ! (bfd_link_pic (info) && ! info->symbolic
8684 && ! hmips->root.forced_local))
8685 h = NULL;
8686 }
8687 }
8688 /* If this is a global, overridable symbol, GOT_PAGE will
8689 decay to GOT_DISP, so we'll need a GOT entry for it. */
8690 /* Fall through. */
8691
8692 case R_MIPS_GOT_DISP:
8693 case R_MICROMIPS_GOT_DISP:
8694 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8695 FALSE, r_type))
8696 return FALSE;
8697 break;
8698
8699 case R_MIPS_TLS_GOTTPREL:
8700 case R_MIPS16_TLS_GOTTPREL:
8701 case R_MICROMIPS_TLS_GOTTPREL:
8702 if (bfd_link_pic (info))
8703 info->flags |= DF_STATIC_TLS;
8704 /* Fall through */
8705
8706 case R_MIPS_TLS_LDM:
8707 case R_MIPS16_TLS_LDM:
8708 case R_MICROMIPS_TLS_LDM:
8709 if (tls_ldm_reloc_p (r_type))
8710 {
8711 r_symndx = STN_UNDEF;
8712 h = NULL;
8713 }
8714 /* Fall through */
8715
8716 case R_MIPS_TLS_GD:
8717 case R_MIPS16_TLS_GD:
8718 case R_MICROMIPS_TLS_GD:
8719 /* This symbol requires a global offset table entry, or two
8720 for TLS GD relocations. */
8721 if (h != NULL)
8722 {
8723 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8724 FALSE, r_type))
8725 return FALSE;
8726 }
8727 else
8728 {
8729 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8730 rel->r_addend,
8731 info, r_type))
8732 return FALSE;
8733 }
8734 break;
8735
8736 case R_MIPS_32:
8737 case R_MIPS_REL32:
8738 case R_MIPS_64:
8739 /* In VxWorks executables, references to external symbols
8740 are handled using copy relocs or PLT stubs, so there's
8741 no need to add a .rela.dyn entry for this relocation. */
8742 if (can_make_dynamic_p)
8743 {
8744 if (sreloc == NULL)
8745 {
8746 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8747 if (sreloc == NULL)
8748 return FALSE;
8749 }
8750 if (bfd_link_pic (info) && h == NULL)
8751 {
8752 /* When creating a shared object, we must copy these
8753 reloc types into the output file as R_MIPS_REL32
8754 relocs. Make room for this reloc in .rel(a).dyn. */
8755 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8756 if (MIPS_ELF_READONLY_SECTION (sec))
8757 /* We tell the dynamic linker that there are
8758 relocations against the text segment. */
8759 info->flags |= DF_TEXTREL;
8760 }
8761 else
8762 {
8763 struct mips_elf_link_hash_entry *hmips;
8764
8765 /* For a shared object, we must copy this relocation
8766 unless the symbol turns out to be undefined and
8767 weak with non-default visibility, in which case
8768 it will be left as zero.
8769
8770 We could elide R_MIPS_REL32 for locally binding symbols
8771 in shared libraries, but do not yet do so.
8772
8773 For an executable, we only need to copy this
8774 reloc if the symbol is defined in a dynamic
8775 object. */
8776 hmips = (struct mips_elf_link_hash_entry *) h;
8777 ++hmips->possibly_dynamic_relocs;
8778 if (MIPS_ELF_READONLY_SECTION (sec))
8779 /* We need it to tell the dynamic linker if there
8780 are relocations against the text segment. */
8781 hmips->readonly_reloc = TRUE;
8782 }
8783 }
8784
8785 if (SGI_COMPAT (abfd))
8786 mips_elf_hash_table (info)->compact_rel_size +=
8787 sizeof (Elf32_External_crinfo);
8788 break;
8789
8790 case R_MIPS_26:
8791 case R_MIPS_GPREL16:
8792 case R_MIPS_LITERAL:
8793 case R_MIPS_GPREL32:
8794 case R_MICROMIPS_26_S1:
8795 case R_MICROMIPS_GPREL16:
8796 case R_MICROMIPS_LITERAL:
8797 case R_MICROMIPS_GPREL7_S2:
8798 if (SGI_COMPAT (abfd))
8799 mips_elf_hash_table (info)->compact_rel_size +=
8800 sizeof (Elf32_External_crinfo);
8801 break;
8802
8803 /* This relocation describes the C++ object vtable hierarchy.
8804 Reconstruct it for later use during GC. */
8805 case R_MIPS_GNU_VTINHERIT:
8806 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8807 return FALSE;
8808 break;
8809
8810 /* This relocation describes which C++ vtable entries are actually
8811 used. Record for later use during GC. */
8812 case R_MIPS_GNU_VTENTRY:
8813 BFD_ASSERT (h != NULL);
8814 if (h != NULL
8815 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8816 return FALSE;
8817 break;
8818
8819 default:
8820 break;
8821 }
8822
8823 /* Record the need for a PLT entry. At this point we don't know
8824 yet if we are going to create a PLT in the first place, but
8825 we only record whether the relocation requires a standard MIPS
8826 or a compressed code entry anyway. If we don't make a PLT after
8827 all, then we'll just ignore these arrangements. Likewise if
8828 a PLT entry is not created because the symbol is satisfied
8829 locally. */
8830 if (h != NULL
8831 && (branch_reloc_p (r_type)
8832 || mips16_branch_reloc_p (r_type)
8833 || micromips_branch_reloc_p (r_type))
8834 && !SYMBOL_CALLS_LOCAL (info, h))
8835 {
8836 if (h->plt.plist == NULL)
8837 h->plt.plist = mips_elf_make_plt_record (abfd);
8838 if (h->plt.plist == NULL)
8839 return FALSE;
8840
8841 if (branch_reloc_p (r_type))
8842 h->plt.plist->need_mips = TRUE;
8843 else
8844 h->plt.plist->need_comp = TRUE;
8845 }
8846
8847 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8848 if there is one. We only need to handle global symbols here;
8849 we decide whether to keep or delete stubs for local symbols
8850 when processing the stub's relocations. */
8851 if (h != NULL
8852 && !mips16_call_reloc_p (r_type)
8853 && !section_allows_mips16_refs_p (sec))
8854 {
8855 struct mips_elf_link_hash_entry *mh;
8856
8857 mh = (struct mips_elf_link_hash_entry *) h;
8858 mh->need_fn_stub = TRUE;
8859 }
8860
8861 /* Refuse some position-dependent relocations when creating a
8862 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8863 not PIC, but we can create dynamic relocations and the result
8864 will be fine. Also do not refuse R_MIPS_LO16, which can be
8865 combined with R_MIPS_GOT16. */
8866 if (bfd_link_pic (info))
8867 {
8868 switch (r_type)
8869 {
8870 case R_MIPS16_HI16:
8871 case R_MIPS_HI16:
8872 case R_MIPS_HIGHER:
8873 case R_MIPS_HIGHEST:
8874 case R_MICROMIPS_HI16:
8875 case R_MICROMIPS_HIGHER:
8876 case R_MICROMIPS_HIGHEST:
8877 /* Don't refuse a high part relocation if it's against
8878 no symbol (e.g. part of a compound relocation). */
8879 if (r_symndx == STN_UNDEF)
8880 break;
8881
8882 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8883 and has a special meaning. */
8884 if (!NEWABI_P (abfd) && h != NULL
8885 && strcmp (h->root.root.string, "_gp_disp") == 0)
8886 break;
8887
8888 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8889 if (is_gott_symbol (info, h))
8890 break;
8891
8892 /* FALLTHROUGH */
8893
8894 case R_MIPS16_26:
8895 case R_MIPS_26:
8896 case R_MICROMIPS_26_S1:
8897 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8898 _bfd_error_handler
8899 /* xgettext:c-format */
8900 (_("%pB: relocation %s against `%s' can not be used"
8901 " when making a shared object; recompile with -fPIC"),
8902 abfd, howto->name,
8903 (h) ? h->root.root.string : "a local symbol");
8904 bfd_set_error (bfd_error_bad_value);
8905 return FALSE;
8906 default:
8907 break;
8908 }
8909 }
8910 }
8911
8912 return TRUE;
8913 }
8914 \f
8915 /* Allocate space for global sym dynamic relocs. */
8916
8917 static bfd_boolean
8918 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8919 {
8920 struct bfd_link_info *info = inf;
8921 bfd *dynobj;
8922 struct mips_elf_link_hash_entry *hmips;
8923 struct mips_elf_link_hash_table *htab;
8924
8925 htab = mips_elf_hash_table (info);
8926 BFD_ASSERT (htab != NULL);
8927
8928 dynobj = elf_hash_table (info)->dynobj;
8929 hmips = (struct mips_elf_link_hash_entry *) h;
8930
8931 /* VxWorks executables are handled elsewhere; we only need to
8932 allocate relocations in shared objects. */
8933 if (htab->is_vxworks && !bfd_link_pic (info))
8934 return TRUE;
8935
8936 /* Ignore indirect symbols. All relocations against such symbols
8937 will be redirected to the target symbol. */
8938 if (h->root.type == bfd_link_hash_indirect)
8939 return TRUE;
8940
8941 /* If this symbol is defined in a dynamic object, or we are creating
8942 a shared library, we will need to copy any R_MIPS_32 or
8943 R_MIPS_REL32 relocs against it into the output file. */
8944 if (! bfd_link_relocatable (info)
8945 && hmips->possibly_dynamic_relocs != 0
8946 && (h->root.type == bfd_link_hash_defweak
8947 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8948 || bfd_link_pic (info)))
8949 {
8950 bfd_boolean do_copy = TRUE;
8951
8952 if (h->root.type == bfd_link_hash_undefweak)
8953 {
8954 /* Do not copy relocations for undefined weak symbols that
8955 we are not going to export. */
8956 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8957 do_copy = FALSE;
8958
8959 /* Make sure undefined weak symbols are output as a dynamic
8960 symbol in PIEs. */
8961 else if (h->dynindx == -1 && !h->forced_local)
8962 {
8963 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8964 return FALSE;
8965 }
8966 }
8967
8968 if (do_copy)
8969 {
8970 /* Even though we don't directly need a GOT entry for this symbol,
8971 the SVR4 psABI requires it to have a dynamic symbol table
8972 index greater that DT_MIPS_GOTSYM if there are dynamic
8973 relocations against it.
8974
8975 VxWorks does not enforce the same mapping between the GOT
8976 and the symbol table, so the same requirement does not
8977 apply there. */
8978 if (!htab->is_vxworks)
8979 {
8980 if (hmips->global_got_area > GGA_RELOC_ONLY)
8981 hmips->global_got_area = GGA_RELOC_ONLY;
8982 hmips->got_only_for_calls = FALSE;
8983 }
8984
8985 mips_elf_allocate_dynamic_relocations
8986 (dynobj, info, hmips->possibly_dynamic_relocs);
8987 if (hmips->readonly_reloc)
8988 /* We tell the dynamic linker that there are relocations
8989 against the text segment. */
8990 info->flags |= DF_TEXTREL;
8991 }
8992 }
8993
8994 return TRUE;
8995 }
8996
8997 /* Adjust a symbol defined by a dynamic object and referenced by a
8998 regular object. The current definition is in some section of the
8999 dynamic object, but we're not including those sections. We have to
9000 change the definition to something the rest of the link can
9001 understand. */
9002
9003 bfd_boolean
9004 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9005 struct elf_link_hash_entry *h)
9006 {
9007 bfd *dynobj;
9008 struct mips_elf_link_hash_entry *hmips;
9009 struct mips_elf_link_hash_table *htab;
9010 asection *s, *srel;
9011
9012 htab = mips_elf_hash_table (info);
9013 BFD_ASSERT (htab != NULL);
9014
9015 dynobj = elf_hash_table (info)->dynobj;
9016 hmips = (struct mips_elf_link_hash_entry *) h;
9017
9018 /* Make sure we know what is going on here. */
9019 BFD_ASSERT (dynobj != NULL
9020 && (h->needs_plt
9021 || h->is_weakalias
9022 || (h->def_dynamic
9023 && h->ref_regular
9024 && !h->def_regular)));
9025
9026 hmips = (struct mips_elf_link_hash_entry *) h;
9027
9028 /* If there are call relocations against an externally-defined symbol,
9029 see whether we can create a MIPS lazy-binding stub for it. We can
9030 only do this if all references to the function are through call
9031 relocations, and in that case, the traditional lazy-binding stubs
9032 are much more efficient than PLT entries.
9033
9034 Traditional stubs are only available on SVR4 psABI-based systems;
9035 VxWorks always uses PLTs instead. */
9036 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9037 {
9038 if (! elf_hash_table (info)->dynamic_sections_created)
9039 return TRUE;
9040
9041 /* If this symbol is not defined in a regular file, then set
9042 the symbol to the stub location. This is required to make
9043 function pointers compare as equal between the normal
9044 executable and the shared library. */
9045 if (!h->def_regular)
9046 {
9047 hmips->needs_lazy_stub = TRUE;
9048 htab->lazy_stub_count++;
9049 return TRUE;
9050 }
9051 }
9052 /* As above, VxWorks requires PLT entries for externally-defined
9053 functions that are only accessed through call relocations.
9054
9055 Both VxWorks and non-VxWorks targets also need PLT entries if there
9056 are static-only relocations against an externally-defined function.
9057 This can technically occur for shared libraries if there are
9058 branches to the symbol, although it is unlikely that this will be
9059 used in practice due to the short ranges involved. It can occur
9060 for any relative or absolute relocation in executables; in that
9061 case, the PLT entry becomes the function's canonical address. */
9062 else if (((h->needs_plt && !hmips->no_fn_stub)
9063 || (h->type == STT_FUNC && hmips->has_static_relocs))
9064 && htab->use_plts_and_copy_relocs
9065 && !SYMBOL_CALLS_LOCAL (info, h)
9066 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9067 && h->root.type == bfd_link_hash_undefweak))
9068 {
9069 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9070 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9071
9072 /* If this is the first symbol to need a PLT entry, then make some
9073 basic setup. Also work out PLT entry sizes. We'll need them
9074 for PLT offset calculations. */
9075 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9076 {
9077 BFD_ASSERT (htab->root.sgotplt->size == 0);
9078 BFD_ASSERT (htab->plt_got_index == 0);
9079
9080 /* If we're using the PLT additions to the psABI, each PLT
9081 entry is 16 bytes and the PLT0 entry is 32 bytes.
9082 Encourage better cache usage by aligning. We do this
9083 lazily to avoid pessimizing traditional objects. */
9084 if (!htab->is_vxworks
9085 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9086 return FALSE;
9087
9088 /* Make sure that .got.plt is word-aligned. We do this lazily
9089 for the same reason as above. */
9090 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9091 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9092 return FALSE;
9093
9094 /* On non-VxWorks targets, the first two entries in .got.plt
9095 are reserved. */
9096 if (!htab->is_vxworks)
9097 htab->plt_got_index
9098 += (get_elf_backend_data (dynobj)->got_header_size
9099 / MIPS_ELF_GOT_SIZE (dynobj));
9100
9101 /* On VxWorks, also allocate room for the header's
9102 .rela.plt.unloaded entries. */
9103 if (htab->is_vxworks && !bfd_link_pic (info))
9104 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9105
9106 /* Now work out the sizes of individual PLT entries. */
9107 if (htab->is_vxworks && bfd_link_pic (info))
9108 htab->plt_mips_entry_size
9109 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9110 else if (htab->is_vxworks)
9111 htab->plt_mips_entry_size
9112 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9113 else if (newabi_p)
9114 htab->plt_mips_entry_size
9115 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9116 else if (!micromips_p)
9117 {
9118 htab->plt_mips_entry_size
9119 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9120 htab->plt_comp_entry_size
9121 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9122 }
9123 else if (htab->insn32)
9124 {
9125 htab->plt_mips_entry_size
9126 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9127 htab->plt_comp_entry_size
9128 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9129 }
9130 else
9131 {
9132 htab->plt_mips_entry_size
9133 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9134 htab->plt_comp_entry_size
9135 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9136 }
9137 }
9138
9139 if (h->plt.plist == NULL)
9140 h->plt.plist = mips_elf_make_plt_record (dynobj);
9141 if (h->plt.plist == NULL)
9142 return FALSE;
9143
9144 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9145 n32 or n64, so always use a standard entry there.
9146
9147 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9148 all MIPS16 calls will go via that stub, and there is no benefit
9149 to having a MIPS16 entry. And in the case of call_stub a
9150 standard entry actually has to be used as the stub ends with a J
9151 instruction. */
9152 if (newabi_p
9153 || htab->is_vxworks
9154 || hmips->call_stub
9155 || hmips->call_fp_stub)
9156 {
9157 h->plt.plist->need_mips = TRUE;
9158 h->plt.plist->need_comp = FALSE;
9159 }
9160
9161 /* Otherwise, if there are no direct calls to the function, we
9162 have a free choice of whether to use standard or compressed
9163 entries. Prefer microMIPS entries if the object is known to
9164 contain microMIPS code, so that it becomes possible to create
9165 pure microMIPS binaries. Prefer standard entries otherwise,
9166 because MIPS16 ones are no smaller and are usually slower. */
9167 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9168 {
9169 if (micromips_p)
9170 h->plt.plist->need_comp = TRUE;
9171 else
9172 h->plt.plist->need_mips = TRUE;
9173 }
9174
9175 if (h->plt.plist->need_mips)
9176 {
9177 h->plt.plist->mips_offset = htab->plt_mips_offset;
9178 htab->plt_mips_offset += htab->plt_mips_entry_size;
9179 }
9180 if (h->plt.plist->need_comp)
9181 {
9182 h->plt.plist->comp_offset = htab->plt_comp_offset;
9183 htab->plt_comp_offset += htab->plt_comp_entry_size;
9184 }
9185
9186 /* Reserve the corresponding .got.plt entry now too. */
9187 h->plt.plist->gotplt_index = htab->plt_got_index++;
9188
9189 /* If the output file has no definition of the symbol, set the
9190 symbol's value to the address of the stub. */
9191 if (!bfd_link_pic (info) && !h->def_regular)
9192 hmips->use_plt_entry = TRUE;
9193
9194 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9195 htab->root.srelplt->size += (htab->is_vxworks
9196 ? MIPS_ELF_RELA_SIZE (dynobj)
9197 : MIPS_ELF_REL_SIZE (dynobj));
9198
9199 /* Make room for the .rela.plt.unloaded relocations. */
9200 if (htab->is_vxworks && !bfd_link_pic (info))
9201 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9202
9203 /* All relocations against this symbol that could have been made
9204 dynamic will now refer to the PLT entry instead. */
9205 hmips->possibly_dynamic_relocs = 0;
9206
9207 return TRUE;
9208 }
9209
9210 /* If this is a weak symbol, and there is a real definition, the
9211 processor independent code will have arranged for us to see the
9212 real definition first, and we can just use the same value. */
9213 if (h->is_weakalias)
9214 {
9215 struct elf_link_hash_entry *def = weakdef (h);
9216 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9217 h->root.u.def.section = def->root.u.def.section;
9218 h->root.u.def.value = def->root.u.def.value;
9219 return TRUE;
9220 }
9221
9222 /* Otherwise, there is nothing further to do for symbols defined
9223 in regular objects. */
9224 if (h->def_regular)
9225 return TRUE;
9226
9227 /* There's also nothing more to do if we'll convert all relocations
9228 against this symbol into dynamic relocations. */
9229 if (!hmips->has_static_relocs)
9230 return TRUE;
9231
9232 /* We're now relying on copy relocations. Complain if we have
9233 some that we can't convert. */
9234 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9235 {
9236 _bfd_error_handler (_("non-dynamic relocations refer to "
9237 "dynamic symbol %s"),
9238 h->root.root.string);
9239 bfd_set_error (bfd_error_bad_value);
9240 return FALSE;
9241 }
9242
9243 /* We must allocate the symbol in our .dynbss section, which will
9244 become part of the .bss section of the executable. There will be
9245 an entry for this symbol in the .dynsym section. The dynamic
9246 object will contain position independent code, so all references
9247 from the dynamic object to this symbol will go through the global
9248 offset table. The dynamic linker will use the .dynsym entry to
9249 determine the address it must put in the global offset table, so
9250 both the dynamic object and the regular object will refer to the
9251 same memory location for the variable. */
9252
9253 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9254 {
9255 s = htab->root.sdynrelro;
9256 srel = htab->root.sreldynrelro;
9257 }
9258 else
9259 {
9260 s = htab->root.sdynbss;
9261 srel = htab->root.srelbss;
9262 }
9263 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9264 {
9265 if (htab->is_vxworks)
9266 srel->size += sizeof (Elf32_External_Rela);
9267 else
9268 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9269 h->needs_copy = 1;
9270 }
9271
9272 /* All relocations against this symbol that could have been made
9273 dynamic will now refer to the local copy instead. */
9274 hmips->possibly_dynamic_relocs = 0;
9275
9276 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9277 }
9278 \f
9279 /* This function is called after all the input files have been read,
9280 and the input sections have been assigned to output sections. We
9281 check for any mips16 stub sections that we can discard. */
9282
9283 bfd_boolean
9284 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9285 struct bfd_link_info *info)
9286 {
9287 asection *sect;
9288 struct mips_elf_link_hash_table *htab;
9289 struct mips_htab_traverse_info hti;
9290
9291 htab = mips_elf_hash_table (info);
9292 BFD_ASSERT (htab != NULL);
9293
9294 /* The .reginfo section has a fixed size. */
9295 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9296 if (sect != NULL)
9297 {
9298 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9299 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9300 }
9301
9302 /* The .MIPS.abiflags section has a fixed size. */
9303 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9304 if (sect != NULL)
9305 {
9306 bfd_set_section_size (output_bfd, sect,
9307 sizeof (Elf_External_ABIFlags_v0));
9308 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9309 }
9310
9311 hti.info = info;
9312 hti.output_bfd = output_bfd;
9313 hti.error = FALSE;
9314 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9315 mips_elf_check_symbols, &hti);
9316 if (hti.error)
9317 return FALSE;
9318
9319 return TRUE;
9320 }
9321
9322 /* If the link uses a GOT, lay it out and work out its size. */
9323
9324 static bfd_boolean
9325 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9326 {
9327 bfd *dynobj;
9328 asection *s;
9329 struct mips_got_info *g;
9330 bfd_size_type loadable_size = 0;
9331 bfd_size_type page_gotno;
9332 bfd *ibfd;
9333 struct mips_elf_traverse_got_arg tga;
9334 struct mips_elf_link_hash_table *htab;
9335
9336 htab = mips_elf_hash_table (info);
9337 BFD_ASSERT (htab != NULL);
9338
9339 s = htab->root.sgot;
9340 if (s == NULL)
9341 return TRUE;
9342
9343 dynobj = elf_hash_table (info)->dynobj;
9344 g = htab->got_info;
9345
9346 /* Allocate room for the reserved entries. VxWorks always reserves
9347 3 entries; other objects only reserve 2 entries. */
9348 BFD_ASSERT (g->assigned_low_gotno == 0);
9349 if (htab->is_vxworks)
9350 htab->reserved_gotno = 3;
9351 else
9352 htab->reserved_gotno = 2;
9353 g->local_gotno += htab->reserved_gotno;
9354 g->assigned_low_gotno = htab->reserved_gotno;
9355
9356 /* Decide which symbols need to go in the global part of the GOT and
9357 count the number of reloc-only GOT symbols. */
9358 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9359
9360 if (!mips_elf_resolve_final_got_entries (info, g))
9361 return FALSE;
9362
9363 /* Calculate the total loadable size of the output. That
9364 will give us the maximum number of GOT_PAGE entries
9365 required. */
9366 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9367 {
9368 asection *subsection;
9369
9370 for (subsection = ibfd->sections;
9371 subsection;
9372 subsection = subsection->next)
9373 {
9374 if ((subsection->flags & SEC_ALLOC) == 0)
9375 continue;
9376 loadable_size += ((subsection->size + 0xf)
9377 &~ (bfd_size_type) 0xf);
9378 }
9379 }
9380
9381 if (htab->is_vxworks)
9382 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9383 relocations against local symbols evaluate to "G", and the EABI does
9384 not include R_MIPS_GOT_PAGE. */
9385 page_gotno = 0;
9386 else
9387 /* Assume there are two loadable segments consisting of contiguous
9388 sections. Is 5 enough? */
9389 page_gotno = (loadable_size >> 16) + 5;
9390
9391 /* Choose the smaller of the two page estimates; both are intended to be
9392 conservative. */
9393 if (page_gotno > g->page_gotno)
9394 page_gotno = g->page_gotno;
9395
9396 g->local_gotno += page_gotno;
9397 g->assigned_high_gotno = g->local_gotno - 1;
9398
9399 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9400 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9401 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9402
9403 /* VxWorks does not support multiple GOTs. It initializes $gp to
9404 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9405 dynamic loader. */
9406 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9407 {
9408 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9409 return FALSE;
9410 }
9411 else
9412 {
9413 /* Record that all bfds use G. This also has the effect of freeing
9414 the per-bfd GOTs, which we no longer need. */
9415 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9416 if (mips_elf_bfd_got (ibfd, FALSE))
9417 mips_elf_replace_bfd_got (ibfd, g);
9418 mips_elf_replace_bfd_got (output_bfd, g);
9419
9420 /* Set up TLS entries. */
9421 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9422 tga.info = info;
9423 tga.g = g;
9424 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9425 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9426 if (!tga.g)
9427 return FALSE;
9428 BFD_ASSERT (g->tls_assigned_gotno
9429 == g->global_gotno + g->local_gotno + g->tls_gotno);
9430
9431 /* Each VxWorks GOT entry needs an explicit relocation. */
9432 if (htab->is_vxworks && bfd_link_pic (info))
9433 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9434
9435 /* Allocate room for the TLS relocations. */
9436 if (g->relocs)
9437 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9438 }
9439
9440 return TRUE;
9441 }
9442
9443 /* Estimate the size of the .MIPS.stubs section. */
9444
9445 static void
9446 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9447 {
9448 struct mips_elf_link_hash_table *htab;
9449 bfd_size_type dynsymcount;
9450
9451 htab = mips_elf_hash_table (info);
9452 BFD_ASSERT (htab != NULL);
9453
9454 if (htab->lazy_stub_count == 0)
9455 return;
9456
9457 /* IRIX rld assumes that a function stub isn't at the end of the .text
9458 section, so add a dummy entry to the end. */
9459 htab->lazy_stub_count++;
9460
9461 /* Get a worst-case estimate of the number of dynamic symbols needed.
9462 At this point, dynsymcount does not account for section symbols
9463 and count_section_dynsyms may overestimate the number that will
9464 be needed. */
9465 dynsymcount = (elf_hash_table (info)->dynsymcount
9466 + count_section_dynsyms (output_bfd, info));
9467
9468 /* Determine the size of one stub entry. There's no disadvantage
9469 from using microMIPS code here, so for the sake of pure-microMIPS
9470 binaries we prefer it whenever there's any microMIPS code in
9471 output produced at all. This has a benefit of stubs being
9472 shorter by 4 bytes each too, unless in the insn32 mode. */
9473 if (!MICROMIPS_P (output_bfd))
9474 htab->function_stub_size = (dynsymcount > 0x10000
9475 ? MIPS_FUNCTION_STUB_BIG_SIZE
9476 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9477 else if (htab->insn32)
9478 htab->function_stub_size = (dynsymcount > 0x10000
9479 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9480 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9481 else
9482 htab->function_stub_size = (dynsymcount > 0x10000
9483 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9484 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9485
9486 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9487 }
9488
9489 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9490 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9491 stub, allocate an entry in the stubs section. */
9492
9493 static bfd_boolean
9494 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9495 {
9496 struct mips_htab_traverse_info *hti = data;
9497 struct mips_elf_link_hash_table *htab;
9498 struct bfd_link_info *info;
9499 bfd *output_bfd;
9500
9501 info = hti->info;
9502 output_bfd = hti->output_bfd;
9503 htab = mips_elf_hash_table (info);
9504 BFD_ASSERT (htab != NULL);
9505
9506 if (h->needs_lazy_stub)
9507 {
9508 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9509 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9510 bfd_vma isa_bit = micromips_p;
9511
9512 BFD_ASSERT (htab->root.dynobj != NULL);
9513 if (h->root.plt.plist == NULL)
9514 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9515 if (h->root.plt.plist == NULL)
9516 {
9517 hti->error = TRUE;
9518 return FALSE;
9519 }
9520 h->root.root.u.def.section = htab->sstubs;
9521 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9522 h->root.plt.plist->stub_offset = htab->sstubs->size;
9523 h->root.other = other;
9524 htab->sstubs->size += htab->function_stub_size;
9525 }
9526 return TRUE;
9527 }
9528
9529 /* Allocate offsets in the stubs section to each symbol that needs one.
9530 Set the final size of the .MIPS.stub section. */
9531
9532 static bfd_boolean
9533 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9534 {
9535 bfd *output_bfd = info->output_bfd;
9536 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9537 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9538 bfd_vma isa_bit = micromips_p;
9539 struct mips_elf_link_hash_table *htab;
9540 struct mips_htab_traverse_info hti;
9541 struct elf_link_hash_entry *h;
9542 bfd *dynobj;
9543
9544 htab = mips_elf_hash_table (info);
9545 BFD_ASSERT (htab != NULL);
9546
9547 if (htab->lazy_stub_count == 0)
9548 return TRUE;
9549
9550 htab->sstubs->size = 0;
9551 hti.info = info;
9552 hti.output_bfd = output_bfd;
9553 hti.error = FALSE;
9554 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9555 if (hti.error)
9556 return FALSE;
9557 htab->sstubs->size += htab->function_stub_size;
9558 BFD_ASSERT (htab->sstubs->size
9559 == htab->lazy_stub_count * htab->function_stub_size);
9560
9561 dynobj = elf_hash_table (info)->dynobj;
9562 BFD_ASSERT (dynobj != NULL);
9563 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9564 if (h == NULL)
9565 return FALSE;
9566 h->root.u.def.value = isa_bit;
9567 h->other = other;
9568 h->type = STT_FUNC;
9569
9570 return TRUE;
9571 }
9572
9573 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9574 bfd_link_info. If H uses the address of a PLT entry as the value
9575 of the symbol, then set the entry in the symbol table now. Prefer
9576 a standard MIPS PLT entry. */
9577
9578 static bfd_boolean
9579 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9580 {
9581 struct bfd_link_info *info = data;
9582 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9583 struct mips_elf_link_hash_table *htab;
9584 unsigned int other;
9585 bfd_vma isa_bit;
9586 bfd_vma val;
9587
9588 htab = mips_elf_hash_table (info);
9589 BFD_ASSERT (htab != NULL);
9590
9591 if (h->use_plt_entry)
9592 {
9593 BFD_ASSERT (h->root.plt.plist != NULL);
9594 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9595 || h->root.plt.plist->comp_offset != MINUS_ONE);
9596
9597 val = htab->plt_header_size;
9598 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9599 {
9600 isa_bit = 0;
9601 val += h->root.plt.plist->mips_offset;
9602 other = 0;
9603 }
9604 else
9605 {
9606 isa_bit = 1;
9607 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9608 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9609 }
9610 val += isa_bit;
9611 /* For VxWorks, point at the PLT load stub rather than the lazy
9612 resolution stub; this stub will become the canonical function
9613 address. */
9614 if (htab->is_vxworks)
9615 val += 8;
9616
9617 h->root.root.u.def.section = htab->root.splt;
9618 h->root.root.u.def.value = val;
9619 h->root.other = other;
9620 }
9621
9622 return TRUE;
9623 }
9624
9625 /* Set the sizes of the dynamic sections. */
9626
9627 bfd_boolean
9628 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9629 struct bfd_link_info *info)
9630 {
9631 bfd *dynobj;
9632 asection *s, *sreldyn;
9633 bfd_boolean reltext;
9634 struct mips_elf_link_hash_table *htab;
9635
9636 htab = mips_elf_hash_table (info);
9637 BFD_ASSERT (htab != NULL);
9638 dynobj = elf_hash_table (info)->dynobj;
9639 BFD_ASSERT (dynobj != NULL);
9640
9641 if (elf_hash_table (info)->dynamic_sections_created)
9642 {
9643 /* Set the contents of the .interp section to the interpreter. */
9644 if (bfd_link_executable (info) && !info->nointerp)
9645 {
9646 s = bfd_get_linker_section (dynobj, ".interp");
9647 BFD_ASSERT (s != NULL);
9648 s->size
9649 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9650 s->contents
9651 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9652 }
9653
9654 /* Figure out the size of the PLT header if we know that we
9655 are using it. For the sake of cache alignment always use
9656 a standard header whenever any standard entries are present
9657 even if microMIPS entries are present as well. This also
9658 lets the microMIPS header rely on the value of $v0 only set
9659 by microMIPS entries, for a small size reduction.
9660
9661 Set symbol table entry values for symbols that use the
9662 address of their PLT entry now that we can calculate it.
9663
9664 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9665 haven't already in _bfd_elf_create_dynamic_sections. */
9666 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9667 {
9668 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9669 && !htab->plt_mips_offset);
9670 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9671 bfd_vma isa_bit = micromips_p;
9672 struct elf_link_hash_entry *h;
9673 bfd_vma size;
9674
9675 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9676 BFD_ASSERT (htab->root.sgotplt->size == 0);
9677 BFD_ASSERT (htab->root.splt->size == 0);
9678
9679 if (htab->is_vxworks && bfd_link_pic (info))
9680 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9681 else if (htab->is_vxworks)
9682 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9683 else if (ABI_64_P (output_bfd))
9684 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9685 else if (ABI_N32_P (output_bfd))
9686 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9687 else if (!micromips_p)
9688 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9689 else if (htab->insn32)
9690 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9691 else
9692 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9693
9694 htab->plt_header_is_comp = micromips_p;
9695 htab->plt_header_size = size;
9696 htab->root.splt->size = (size
9697 + htab->plt_mips_offset
9698 + htab->plt_comp_offset);
9699 htab->root.sgotplt->size = (htab->plt_got_index
9700 * MIPS_ELF_GOT_SIZE (dynobj));
9701
9702 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9703
9704 if (htab->root.hplt == NULL)
9705 {
9706 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9707 "_PROCEDURE_LINKAGE_TABLE_");
9708 htab->root.hplt = h;
9709 if (h == NULL)
9710 return FALSE;
9711 }
9712
9713 h = htab->root.hplt;
9714 h->root.u.def.value = isa_bit;
9715 h->other = other;
9716 h->type = STT_FUNC;
9717 }
9718 }
9719
9720 /* Allocate space for global sym dynamic relocs. */
9721 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9722
9723 mips_elf_estimate_stub_size (output_bfd, info);
9724
9725 if (!mips_elf_lay_out_got (output_bfd, info))
9726 return FALSE;
9727
9728 mips_elf_lay_out_lazy_stubs (info);
9729
9730 /* The check_relocs and adjust_dynamic_symbol entry points have
9731 determined the sizes of the various dynamic sections. Allocate
9732 memory for them. */
9733 reltext = FALSE;
9734 for (s = dynobj->sections; s != NULL; s = s->next)
9735 {
9736 const char *name;
9737
9738 /* It's OK to base decisions on the section name, because none
9739 of the dynobj section names depend upon the input files. */
9740 name = bfd_get_section_name (dynobj, s);
9741
9742 if ((s->flags & SEC_LINKER_CREATED) == 0)
9743 continue;
9744
9745 if (CONST_STRNEQ (name, ".rel"))
9746 {
9747 if (s->size != 0)
9748 {
9749 const char *outname;
9750 asection *target;
9751
9752 /* If this relocation section applies to a read only
9753 section, then we probably need a DT_TEXTREL entry.
9754 If the relocation section is .rel(a).dyn, we always
9755 assert a DT_TEXTREL entry rather than testing whether
9756 there exists a relocation to a read only section or
9757 not. */
9758 outname = bfd_get_section_name (output_bfd,
9759 s->output_section);
9760 target = bfd_get_section_by_name (output_bfd, outname + 4);
9761 if ((target != NULL
9762 && (target->flags & SEC_READONLY) != 0
9763 && (target->flags & SEC_ALLOC) != 0)
9764 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9765 reltext = TRUE;
9766
9767 /* We use the reloc_count field as a counter if we need
9768 to copy relocs into the output file. */
9769 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9770 s->reloc_count = 0;
9771
9772 /* If combreloc is enabled, elf_link_sort_relocs() will
9773 sort relocations, but in a different way than we do,
9774 and before we're done creating relocations. Also, it
9775 will move them around between input sections'
9776 relocation's contents, so our sorting would be
9777 broken, so don't let it run. */
9778 info->combreloc = 0;
9779 }
9780 }
9781 else if (bfd_link_executable (info)
9782 && ! mips_elf_hash_table (info)->use_rld_obj_head
9783 && CONST_STRNEQ (name, ".rld_map"))
9784 {
9785 /* We add a room for __rld_map. It will be filled in by the
9786 rtld to contain a pointer to the _r_debug structure. */
9787 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9788 }
9789 else if (SGI_COMPAT (output_bfd)
9790 && CONST_STRNEQ (name, ".compact_rel"))
9791 s->size += mips_elf_hash_table (info)->compact_rel_size;
9792 else if (s == htab->root.splt)
9793 {
9794 /* If the last PLT entry has a branch delay slot, allocate
9795 room for an extra nop to fill the delay slot. This is
9796 for CPUs without load interlocking. */
9797 if (! LOAD_INTERLOCKS_P (output_bfd)
9798 && ! htab->is_vxworks && s->size > 0)
9799 s->size += 4;
9800 }
9801 else if (! CONST_STRNEQ (name, ".init")
9802 && s != htab->root.sgot
9803 && s != htab->root.sgotplt
9804 && s != htab->sstubs
9805 && s != htab->root.sdynbss
9806 && s != htab->root.sdynrelro)
9807 {
9808 /* It's not one of our sections, so don't allocate space. */
9809 continue;
9810 }
9811
9812 if (s->size == 0)
9813 {
9814 s->flags |= SEC_EXCLUDE;
9815 continue;
9816 }
9817
9818 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9819 continue;
9820
9821 /* Allocate memory for the section contents. */
9822 s->contents = bfd_zalloc (dynobj, s->size);
9823 if (s->contents == NULL)
9824 {
9825 bfd_set_error (bfd_error_no_memory);
9826 return FALSE;
9827 }
9828 }
9829
9830 if (elf_hash_table (info)->dynamic_sections_created)
9831 {
9832 /* Add some entries to the .dynamic section. We fill in the
9833 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9834 must add the entries now so that we get the correct size for
9835 the .dynamic section. */
9836
9837 /* SGI object has the equivalence of DT_DEBUG in the
9838 DT_MIPS_RLD_MAP entry. This must come first because glibc
9839 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9840 may only look at the first one they see. */
9841 if (!bfd_link_pic (info)
9842 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9843 return FALSE;
9844
9845 if (bfd_link_executable (info)
9846 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9847 return FALSE;
9848
9849 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9850 used by the debugger. */
9851 if (bfd_link_executable (info)
9852 && !SGI_COMPAT (output_bfd)
9853 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9854 return FALSE;
9855
9856 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9857 info->flags |= DF_TEXTREL;
9858
9859 if ((info->flags & DF_TEXTREL) != 0)
9860 {
9861 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9862 return FALSE;
9863
9864 /* Clear the DF_TEXTREL flag. It will be set again if we
9865 write out an actual text relocation; we may not, because
9866 at this point we do not know whether e.g. any .eh_frame
9867 absolute relocations have been converted to PC-relative. */
9868 info->flags &= ~DF_TEXTREL;
9869 }
9870
9871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9872 return FALSE;
9873
9874 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9875 if (htab->is_vxworks)
9876 {
9877 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9878 use any of the DT_MIPS_* tags. */
9879 if (sreldyn && sreldyn->size > 0)
9880 {
9881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9882 return FALSE;
9883
9884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9885 return FALSE;
9886
9887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9888 return FALSE;
9889 }
9890 }
9891 else
9892 {
9893 if (sreldyn && sreldyn->size > 0)
9894 {
9895 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9896 return FALSE;
9897
9898 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9899 return FALSE;
9900
9901 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9902 return FALSE;
9903 }
9904
9905 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9906 return FALSE;
9907
9908 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9909 return FALSE;
9910
9911 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9912 return FALSE;
9913
9914 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9915 return FALSE;
9916
9917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9918 return FALSE;
9919
9920 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9921 return FALSE;
9922
9923 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9924 return FALSE;
9925
9926 if (IRIX_COMPAT (dynobj) == ict_irix5
9927 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9928 return FALSE;
9929
9930 if (IRIX_COMPAT (dynobj) == ict_irix6
9931 && (bfd_get_section_by_name
9932 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9933 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9934 return FALSE;
9935 }
9936 if (htab->root.splt->size > 0)
9937 {
9938 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9939 return FALSE;
9940
9941 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9942 return FALSE;
9943
9944 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9945 return FALSE;
9946
9947 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9948 return FALSE;
9949 }
9950 if (htab->is_vxworks
9951 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9952 return FALSE;
9953 }
9954
9955 return TRUE;
9956 }
9957 \f
9958 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9959 Adjust its R_ADDEND field so that it is correct for the output file.
9960 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9961 and sections respectively; both use symbol indexes. */
9962
9963 static void
9964 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9965 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9966 asection **local_sections, Elf_Internal_Rela *rel)
9967 {
9968 unsigned int r_type, r_symndx;
9969 Elf_Internal_Sym *sym;
9970 asection *sec;
9971
9972 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9973 {
9974 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9975 if (gprel16_reloc_p (r_type)
9976 || r_type == R_MIPS_GPREL32
9977 || literal_reloc_p (r_type))
9978 {
9979 rel->r_addend += _bfd_get_gp_value (input_bfd);
9980 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9981 }
9982
9983 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9984 sym = local_syms + r_symndx;
9985
9986 /* Adjust REL's addend to account for section merging. */
9987 if (!bfd_link_relocatable (info))
9988 {
9989 sec = local_sections[r_symndx];
9990 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9991 }
9992
9993 /* This would normally be done by the rela_normal code in elflink.c. */
9994 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9995 rel->r_addend += local_sections[r_symndx]->output_offset;
9996 }
9997 }
9998
9999 /* Handle relocations against symbols from removed linkonce sections,
10000 or sections discarded by a linker script. We use this wrapper around
10001 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10002 on 64-bit ELF targets. In this case for any relocation handled, which
10003 always be the first in a triplet, the remaining two have to be processed
10004 together with the first, even if they are R_MIPS_NONE. It is the symbol
10005 index referred by the first reloc that applies to all the three and the
10006 remaining two never refer to an object symbol. And it is the final
10007 relocation (the last non-null one) that determines the output field of
10008 the whole relocation so retrieve the corresponding howto structure for
10009 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10010
10011 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10012 and therefore requires to be pasted in a loop. It also defines a block
10013 and does not protect any of its arguments, hence the extra brackets. */
10014
10015 static void
10016 mips_reloc_against_discarded_section (bfd *output_bfd,
10017 struct bfd_link_info *info,
10018 bfd *input_bfd, asection *input_section,
10019 Elf_Internal_Rela **rel,
10020 const Elf_Internal_Rela **relend,
10021 bfd_boolean rel_reloc,
10022 reloc_howto_type *howto,
10023 bfd_byte *contents)
10024 {
10025 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10026 int count = bed->s->int_rels_per_ext_rel;
10027 unsigned int r_type;
10028 int i;
10029
10030 for (i = count - 1; i > 0; i--)
10031 {
10032 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10033 if (r_type != R_MIPS_NONE)
10034 {
10035 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10036 break;
10037 }
10038 }
10039 do
10040 {
10041 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10042 (*rel), count, (*relend),
10043 howto, i, contents);
10044 }
10045 while (0);
10046 }
10047
10048 /* Relocate a MIPS ELF section. */
10049
10050 bfd_boolean
10051 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10052 bfd *input_bfd, asection *input_section,
10053 bfd_byte *contents, Elf_Internal_Rela *relocs,
10054 Elf_Internal_Sym *local_syms,
10055 asection **local_sections)
10056 {
10057 Elf_Internal_Rela *rel;
10058 const Elf_Internal_Rela *relend;
10059 bfd_vma addend = 0;
10060 bfd_boolean use_saved_addend_p = FALSE;
10061
10062 relend = relocs + input_section->reloc_count;
10063 for (rel = relocs; rel < relend; ++rel)
10064 {
10065 const char *name;
10066 bfd_vma value = 0;
10067 reloc_howto_type *howto;
10068 bfd_boolean cross_mode_jump_p = FALSE;
10069 /* TRUE if the relocation is a RELA relocation, rather than a
10070 REL relocation. */
10071 bfd_boolean rela_relocation_p = TRUE;
10072 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10073 const char *msg;
10074 unsigned long r_symndx;
10075 asection *sec;
10076 Elf_Internal_Shdr *symtab_hdr;
10077 struct elf_link_hash_entry *h;
10078 bfd_boolean rel_reloc;
10079
10080 rel_reloc = (NEWABI_P (input_bfd)
10081 && mips_elf_rel_relocation_p (input_bfd, input_section,
10082 relocs, rel));
10083 /* Find the relocation howto for this relocation. */
10084 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10085
10086 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10087 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10088 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10089 {
10090 sec = local_sections[r_symndx];
10091 h = NULL;
10092 }
10093 else
10094 {
10095 unsigned long extsymoff;
10096
10097 extsymoff = 0;
10098 if (!elf_bad_symtab (input_bfd))
10099 extsymoff = symtab_hdr->sh_info;
10100 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10101 while (h->root.type == bfd_link_hash_indirect
10102 || h->root.type == bfd_link_hash_warning)
10103 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10104
10105 sec = NULL;
10106 if (h->root.type == bfd_link_hash_defined
10107 || h->root.type == bfd_link_hash_defweak)
10108 sec = h->root.u.def.section;
10109 }
10110
10111 if (sec != NULL && discarded_section (sec))
10112 {
10113 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10114 input_section, &rel, &relend,
10115 rel_reloc, howto, contents);
10116 continue;
10117 }
10118
10119 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10120 {
10121 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10122 64-bit code, but make sure all their addresses are in the
10123 lowermost or uppermost 32-bit section of the 64-bit address
10124 space. Thus, when they use an R_MIPS_64 they mean what is
10125 usually meant by R_MIPS_32, with the exception that the
10126 stored value is sign-extended to 64 bits. */
10127 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10128
10129 /* On big-endian systems, we need to lie about the position
10130 of the reloc. */
10131 if (bfd_big_endian (input_bfd))
10132 rel->r_offset += 4;
10133 }
10134
10135 if (!use_saved_addend_p)
10136 {
10137 /* If these relocations were originally of the REL variety,
10138 we must pull the addend out of the field that will be
10139 relocated. Otherwise, we simply use the contents of the
10140 RELA relocation. */
10141 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10142 relocs, rel))
10143 {
10144 rela_relocation_p = FALSE;
10145 addend = mips_elf_read_rel_addend (input_bfd, rel,
10146 howto, contents);
10147 if (hi16_reloc_p (r_type)
10148 || (got16_reloc_p (r_type)
10149 && mips_elf_local_relocation_p (input_bfd, rel,
10150 local_sections)))
10151 {
10152 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10153 contents, &addend))
10154 {
10155 if (h)
10156 name = h->root.root.string;
10157 else
10158 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10159 local_syms + r_symndx,
10160 sec);
10161 _bfd_error_handler
10162 /* xgettext:c-format */
10163 (_("%pB: can't find matching LO16 reloc against `%s'"
10164 " for %s at %#" PRIx64 " in section `%pA'"),
10165 input_bfd, name,
10166 howto->name, (uint64_t) rel->r_offset, input_section);
10167 }
10168 }
10169 else
10170 addend <<= howto->rightshift;
10171 }
10172 else
10173 addend = rel->r_addend;
10174 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10175 local_syms, local_sections, rel);
10176 }
10177
10178 if (bfd_link_relocatable (info))
10179 {
10180 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10181 && bfd_big_endian (input_bfd))
10182 rel->r_offset -= 4;
10183
10184 if (!rela_relocation_p && rel->r_addend)
10185 {
10186 addend += rel->r_addend;
10187 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10188 addend = mips_elf_high (addend);
10189 else if (r_type == R_MIPS_HIGHER)
10190 addend = mips_elf_higher (addend);
10191 else if (r_type == R_MIPS_HIGHEST)
10192 addend = mips_elf_highest (addend);
10193 else
10194 addend >>= howto->rightshift;
10195
10196 /* We use the source mask, rather than the destination
10197 mask because the place to which we are writing will be
10198 source of the addend in the final link. */
10199 addend &= howto->src_mask;
10200
10201 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10202 /* See the comment above about using R_MIPS_64 in the 32-bit
10203 ABI. Here, we need to update the addend. It would be
10204 possible to get away with just using the R_MIPS_32 reloc
10205 but for endianness. */
10206 {
10207 bfd_vma sign_bits;
10208 bfd_vma low_bits;
10209 bfd_vma high_bits;
10210
10211 if (addend & ((bfd_vma) 1 << 31))
10212 #ifdef BFD64
10213 sign_bits = ((bfd_vma) 1 << 32) - 1;
10214 #else
10215 sign_bits = -1;
10216 #endif
10217 else
10218 sign_bits = 0;
10219
10220 /* If we don't know that we have a 64-bit type,
10221 do two separate stores. */
10222 if (bfd_big_endian (input_bfd))
10223 {
10224 /* Store the sign-bits (which are most significant)
10225 first. */
10226 low_bits = sign_bits;
10227 high_bits = addend;
10228 }
10229 else
10230 {
10231 low_bits = addend;
10232 high_bits = sign_bits;
10233 }
10234 bfd_put_32 (input_bfd, low_bits,
10235 contents + rel->r_offset);
10236 bfd_put_32 (input_bfd, high_bits,
10237 contents + rel->r_offset + 4);
10238 continue;
10239 }
10240
10241 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10242 input_bfd, input_section,
10243 contents, FALSE))
10244 return FALSE;
10245 }
10246
10247 /* Go on to the next relocation. */
10248 continue;
10249 }
10250
10251 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10252 relocations for the same offset. In that case we are
10253 supposed to treat the output of each relocation as the addend
10254 for the next. */
10255 if (rel + 1 < relend
10256 && rel->r_offset == rel[1].r_offset
10257 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10258 use_saved_addend_p = TRUE;
10259 else
10260 use_saved_addend_p = FALSE;
10261
10262 /* Figure out what value we are supposed to relocate. */
10263 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10264 input_section, info, rel,
10265 addend, howto, local_syms,
10266 local_sections, &value,
10267 &name, &cross_mode_jump_p,
10268 use_saved_addend_p))
10269 {
10270 case bfd_reloc_continue:
10271 /* There's nothing to do. */
10272 continue;
10273
10274 case bfd_reloc_undefined:
10275 /* mips_elf_calculate_relocation already called the
10276 undefined_symbol callback. There's no real point in
10277 trying to perform the relocation at this point, so we
10278 just skip ahead to the next relocation. */
10279 continue;
10280
10281 case bfd_reloc_notsupported:
10282 msg = _("internal error: unsupported relocation error");
10283 info->callbacks->warning
10284 (info, msg, name, input_bfd, input_section, rel->r_offset);
10285 return FALSE;
10286
10287 case bfd_reloc_overflow:
10288 if (use_saved_addend_p)
10289 /* Ignore overflow until we reach the last relocation for
10290 a given location. */
10291 ;
10292 else
10293 {
10294 struct mips_elf_link_hash_table *htab;
10295
10296 htab = mips_elf_hash_table (info);
10297 BFD_ASSERT (htab != NULL);
10298 BFD_ASSERT (name != NULL);
10299 if (!htab->small_data_overflow_reported
10300 && (gprel16_reloc_p (howto->type)
10301 || literal_reloc_p (howto->type)))
10302 {
10303 msg = _("small-data section exceeds 64KB;"
10304 " lower small-data size limit (see option -G)");
10305
10306 htab->small_data_overflow_reported = TRUE;
10307 (*info->callbacks->einfo) ("%P: %s\n", msg);
10308 }
10309 (*info->callbacks->reloc_overflow)
10310 (info, NULL, name, howto->name, (bfd_vma) 0,
10311 input_bfd, input_section, rel->r_offset);
10312 }
10313 break;
10314
10315 case bfd_reloc_ok:
10316 break;
10317
10318 case bfd_reloc_outofrange:
10319 msg = NULL;
10320 if (jal_reloc_p (howto->type))
10321 msg = (cross_mode_jump_p
10322 ? _("cannot convert a jump to JALX "
10323 "for a non-word-aligned address")
10324 : (howto->type == R_MIPS16_26
10325 ? _("jump to a non-word-aligned address")
10326 : _("jump to a non-instruction-aligned address")));
10327 else if (b_reloc_p (howto->type))
10328 msg = (cross_mode_jump_p
10329 ? _("cannot convert a branch to JALX "
10330 "for a non-word-aligned address")
10331 : _("branch to a non-instruction-aligned address"));
10332 else if (aligned_pcrel_reloc_p (howto->type))
10333 msg = _("PC-relative load from unaligned address");
10334 if (msg)
10335 {
10336 info->callbacks->einfo
10337 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10338 break;
10339 }
10340 /* Fall through. */
10341
10342 default:
10343 abort ();
10344 break;
10345 }
10346
10347 /* If we've got another relocation for the address, keep going
10348 until we reach the last one. */
10349 if (use_saved_addend_p)
10350 {
10351 addend = value;
10352 continue;
10353 }
10354
10355 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10356 /* See the comment above about using R_MIPS_64 in the 32-bit
10357 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10358 that calculated the right value. Now, however, we
10359 sign-extend the 32-bit result to 64-bits, and store it as a
10360 64-bit value. We are especially generous here in that we
10361 go to extreme lengths to support this usage on systems with
10362 only a 32-bit VMA. */
10363 {
10364 bfd_vma sign_bits;
10365 bfd_vma low_bits;
10366 bfd_vma high_bits;
10367
10368 if (value & ((bfd_vma) 1 << 31))
10369 #ifdef BFD64
10370 sign_bits = ((bfd_vma) 1 << 32) - 1;
10371 #else
10372 sign_bits = -1;
10373 #endif
10374 else
10375 sign_bits = 0;
10376
10377 /* If we don't know that we have a 64-bit type,
10378 do two separate stores. */
10379 if (bfd_big_endian (input_bfd))
10380 {
10381 /* Undo what we did above. */
10382 rel->r_offset -= 4;
10383 /* Store the sign-bits (which are most significant)
10384 first. */
10385 low_bits = sign_bits;
10386 high_bits = value;
10387 }
10388 else
10389 {
10390 low_bits = value;
10391 high_bits = sign_bits;
10392 }
10393 bfd_put_32 (input_bfd, low_bits,
10394 contents + rel->r_offset);
10395 bfd_put_32 (input_bfd, high_bits,
10396 contents + rel->r_offset + 4);
10397 continue;
10398 }
10399
10400 /* Actually perform the relocation. */
10401 if (! mips_elf_perform_relocation (info, howto, rel, value,
10402 input_bfd, input_section,
10403 contents, cross_mode_jump_p))
10404 return FALSE;
10405 }
10406
10407 return TRUE;
10408 }
10409 \f
10410 /* A function that iterates over each entry in la25_stubs and fills
10411 in the code for each one. DATA points to a mips_htab_traverse_info. */
10412
10413 static int
10414 mips_elf_create_la25_stub (void **slot, void *data)
10415 {
10416 struct mips_htab_traverse_info *hti;
10417 struct mips_elf_link_hash_table *htab;
10418 struct mips_elf_la25_stub *stub;
10419 asection *s;
10420 bfd_byte *loc;
10421 bfd_vma offset, target, target_high, target_low;
10422
10423 stub = (struct mips_elf_la25_stub *) *slot;
10424 hti = (struct mips_htab_traverse_info *) data;
10425 htab = mips_elf_hash_table (hti->info);
10426 BFD_ASSERT (htab != NULL);
10427
10428 /* Create the section contents, if we haven't already. */
10429 s = stub->stub_section;
10430 loc = s->contents;
10431 if (loc == NULL)
10432 {
10433 loc = bfd_malloc (s->size);
10434 if (loc == NULL)
10435 {
10436 hti->error = TRUE;
10437 return FALSE;
10438 }
10439 s->contents = loc;
10440 }
10441
10442 /* Work out where in the section this stub should go. */
10443 offset = stub->offset;
10444
10445 /* Work out the target address. */
10446 target = mips_elf_get_la25_target (stub, &s);
10447 target += s->output_section->vma + s->output_offset;
10448
10449 target_high = ((target + 0x8000) >> 16) & 0xffff;
10450 target_low = (target & 0xffff);
10451
10452 if (stub->stub_section != htab->strampoline)
10453 {
10454 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10455 of the section and write the two instructions at the end. */
10456 memset (loc, 0, offset);
10457 loc += offset;
10458 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10459 {
10460 bfd_put_micromips_32 (hti->output_bfd,
10461 LA25_LUI_MICROMIPS (target_high),
10462 loc);
10463 bfd_put_micromips_32 (hti->output_bfd,
10464 LA25_ADDIU_MICROMIPS (target_low),
10465 loc + 4);
10466 }
10467 else
10468 {
10469 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10470 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10471 }
10472 }
10473 else
10474 {
10475 /* This is trampoline. */
10476 loc += offset;
10477 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10478 {
10479 bfd_put_micromips_32 (hti->output_bfd,
10480 LA25_LUI_MICROMIPS (target_high), loc);
10481 bfd_put_micromips_32 (hti->output_bfd,
10482 LA25_J_MICROMIPS (target), loc + 4);
10483 bfd_put_micromips_32 (hti->output_bfd,
10484 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10485 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10486 }
10487 else
10488 {
10489 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10490 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10491 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10492 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10493 }
10494 }
10495 return TRUE;
10496 }
10497
10498 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10499 adjust it appropriately now. */
10500
10501 static void
10502 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10503 const char *name, Elf_Internal_Sym *sym)
10504 {
10505 /* The linker script takes care of providing names and values for
10506 these, but we must place them into the right sections. */
10507 static const char* const text_section_symbols[] = {
10508 "_ftext",
10509 "_etext",
10510 "__dso_displacement",
10511 "__elf_header",
10512 "__program_header_table",
10513 NULL
10514 };
10515
10516 static const char* const data_section_symbols[] = {
10517 "_fdata",
10518 "_edata",
10519 "_end",
10520 "_fbss",
10521 NULL
10522 };
10523
10524 const char* const *p;
10525 int i;
10526
10527 for (i = 0; i < 2; ++i)
10528 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10529 *p;
10530 ++p)
10531 if (strcmp (*p, name) == 0)
10532 {
10533 /* All of these symbols are given type STT_SECTION by the
10534 IRIX6 linker. */
10535 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10536 sym->st_other = STO_PROTECTED;
10537
10538 /* The IRIX linker puts these symbols in special sections. */
10539 if (i == 0)
10540 sym->st_shndx = SHN_MIPS_TEXT;
10541 else
10542 sym->st_shndx = SHN_MIPS_DATA;
10543
10544 break;
10545 }
10546 }
10547
10548 /* Finish up dynamic symbol handling. We set the contents of various
10549 dynamic sections here. */
10550
10551 bfd_boolean
10552 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10553 struct bfd_link_info *info,
10554 struct elf_link_hash_entry *h,
10555 Elf_Internal_Sym *sym)
10556 {
10557 bfd *dynobj;
10558 asection *sgot;
10559 struct mips_got_info *g, *gg;
10560 const char *name;
10561 int idx;
10562 struct mips_elf_link_hash_table *htab;
10563 struct mips_elf_link_hash_entry *hmips;
10564
10565 htab = mips_elf_hash_table (info);
10566 BFD_ASSERT (htab != NULL);
10567 dynobj = elf_hash_table (info)->dynobj;
10568 hmips = (struct mips_elf_link_hash_entry *) h;
10569
10570 BFD_ASSERT (!htab->is_vxworks);
10571
10572 if (h->plt.plist != NULL
10573 && (h->plt.plist->mips_offset != MINUS_ONE
10574 || h->plt.plist->comp_offset != MINUS_ONE))
10575 {
10576 /* We've decided to create a PLT entry for this symbol. */
10577 bfd_byte *loc;
10578 bfd_vma header_address, got_address;
10579 bfd_vma got_address_high, got_address_low, load;
10580 bfd_vma got_index;
10581 bfd_vma isa_bit;
10582
10583 got_index = h->plt.plist->gotplt_index;
10584
10585 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10586 BFD_ASSERT (h->dynindx != -1);
10587 BFD_ASSERT (htab->root.splt != NULL);
10588 BFD_ASSERT (got_index != MINUS_ONE);
10589 BFD_ASSERT (!h->def_regular);
10590
10591 /* Calculate the address of the PLT header. */
10592 isa_bit = htab->plt_header_is_comp;
10593 header_address = (htab->root.splt->output_section->vma
10594 + htab->root.splt->output_offset + isa_bit);
10595
10596 /* Calculate the address of the .got.plt entry. */
10597 got_address = (htab->root.sgotplt->output_section->vma
10598 + htab->root.sgotplt->output_offset
10599 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10600
10601 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10602 got_address_low = got_address & 0xffff;
10603
10604 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10605 cannot be loaded in two instructions. */
10606 if (ABI_64_P (output_bfd)
10607 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10608 {
10609 _bfd_error_handler
10610 /* xgettext:c-format */
10611 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10612 "supported; consider using `-Ttext-segment=...'"),
10613 output_bfd,
10614 htab->root.sgotplt->output_section,
10615 (int64_t) got_address);
10616 bfd_set_error (bfd_error_no_error);
10617 return FALSE;
10618 }
10619
10620 /* Initially point the .got.plt entry at the PLT header. */
10621 loc = (htab->root.sgotplt->contents
10622 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10623 if (ABI_64_P (output_bfd))
10624 bfd_put_64 (output_bfd, header_address, loc);
10625 else
10626 bfd_put_32 (output_bfd, header_address, loc);
10627
10628 /* Now handle the PLT itself. First the standard entry (the order
10629 does not matter, we just have to pick one). */
10630 if (h->plt.plist->mips_offset != MINUS_ONE)
10631 {
10632 const bfd_vma *plt_entry;
10633 bfd_vma plt_offset;
10634
10635 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10636
10637 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10638
10639 /* Find out where the .plt entry should go. */
10640 loc = htab->root.splt->contents + plt_offset;
10641
10642 /* Pick the load opcode. */
10643 load = MIPS_ELF_LOAD_WORD (output_bfd);
10644
10645 /* Fill in the PLT entry itself. */
10646
10647 if (MIPSR6_P (output_bfd))
10648 plt_entry = mipsr6_exec_plt_entry;
10649 else
10650 plt_entry = mips_exec_plt_entry;
10651 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10652 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10653 loc + 4);
10654
10655 if (! LOAD_INTERLOCKS_P (output_bfd))
10656 {
10657 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10658 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10659 }
10660 else
10661 {
10662 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10663 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10664 loc + 12);
10665 }
10666 }
10667
10668 /* Now the compressed entry. They come after any standard ones. */
10669 if (h->plt.plist->comp_offset != MINUS_ONE)
10670 {
10671 bfd_vma plt_offset;
10672
10673 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10674 + h->plt.plist->comp_offset);
10675
10676 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10677
10678 /* Find out where the .plt entry should go. */
10679 loc = htab->root.splt->contents + plt_offset;
10680
10681 /* Fill in the PLT entry itself. */
10682 if (!MICROMIPS_P (output_bfd))
10683 {
10684 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10685
10686 bfd_put_16 (output_bfd, plt_entry[0], loc);
10687 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10688 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10689 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10690 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10691 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10692 bfd_put_32 (output_bfd, got_address, loc + 12);
10693 }
10694 else if (htab->insn32)
10695 {
10696 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10697
10698 bfd_put_16 (output_bfd, plt_entry[0], loc);
10699 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10700 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10701 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10702 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10703 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10704 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10705 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10706 }
10707 else
10708 {
10709 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10710 bfd_signed_vma gotpc_offset;
10711 bfd_vma loc_address;
10712
10713 BFD_ASSERT (got_address % 4 == 0);
10714
10715 loc_address = (htab->root.splt->output_section->vma
10716 + htab->root.splt->output_offset + plt_offset);
10717 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10718
10719 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10720 if (gotpc_offset + 0x1000000 >= 0x2000000)
10721 {
10722 _bfd_error_handler
10723 /* xgettext:c-format */
10724 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10725 "beyond the range of ADDIUPC"),
10726 output_bfd,
10727 htab->root.sgotplt->output_section,
10728 (int64_t) gotpc_offset,
10729 htab->root.splt->output_section);
10730 bfd_set_error (bfd_error_no_error);
10731 return FALSE;
10732 }
10733 bfd_put_16 (output_bfd,
10734 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10735 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10736 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10737 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10738 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10739 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10740 }
10741 }
10742
10743 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10744 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10745 got_index - 2, h->dynindx,
10746 R_MIPS_JUMP_SLOT, got_address);
10747
10748 /* We distinguish between PLT entries and lazy-binding stubs by
10749 giving the former an st_other value of STO_MIPS_PLT. Set the
10750 flag and leave the value if there are any relocations in the
10751 binary where pointer equality matters. */
10752 sym->st_shndx = SHN_UNDEF;
10753 if (h->pointer_equality_needed)
10754 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10755 else
10756 {
10757 sym->st_value = 0;
10758 sym->st_other = 0;
10759 }
10760 }
10761
10762 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10763 {
10764 /* We've decided to create a lazy-binding stub. */
10765 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10766 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10767 bfd_vma stub_size = htab->function_stub_size;
10768 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10769 bfd_vma isa_bit = micromips_p;
10770 bfd_vma stub_big_size;
10771
10772 if (!micromips_p)
10773 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10774 else if (htab->insn32)
10775 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10776 else
10777 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10778
10779 /* This symbol has a stub. Set it up. */
10780
10781 BFD_ASSERT (h->dynindx != -1);
10782
10783 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10784
10785 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10786 sign extension at runtime in the stub, resulting in a negative
10787 index value. */
10788 if (h->dynindx & ~0x7fffffff)
10789 return FALSE;
10790
10791 /* Fill the stub. */
10792 if (micromips_p)
10793 {
10794 idx = 0;
10795 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10796 stub + idx);
10797 idx += 4;
10798 if (htab->insn32)
10799 {
10800 bfd_put_micromips_32 (output_bfd,
10801 STUB_MOVE32_MICROMIPS, stub + idx);
10802 idx += 4;
10803 }
10804 else
10805 {
10806 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10807 idx += 2;
10808 }
10809 if (stub_size == stub_big_size)
10810 {
10811 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10812
10813 bfd_put_micromips_32 (output_bfd,
10814 STUB_LUI_MICROMIPS (dynindx_hi),
10815 stub + idx);
10816 idx += 4;
10817 }
10818 if (htab->insn32)
10819 {
10820 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10821 stub + idx);
10822 idx += 4;
10823 }
10824 else
10825 {
10826 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10827 idx += 2;
10828 }
10829
10830 /* If a large stub is not required and sign extension is not a
10831 problem, then use legacy code in the stub. */
10832 if (stub_size == stub_big_size)
10833 bfd_put_micromips_32 (output_bfd,
10834 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10835 stub + idx);
10836 else if (h->dynindx & ~0x7fff)
10837 bfd_put_micromips_32 (output_bfd,
10838 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10839 stub + idx);
10840 else
10841 bfd_put_micromips_32 (output_bfd,
10842 STUB_LI16S_MICROMIPS (output_bfd,
10843 h->dynindx),
10844 stub + idx);
10845 }
10846 else
10847 {
10848 idx = 0;
10849 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10850 idx += 4;
10851 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10852 idx += 4;
10853 if (stub_size == stub_big_size)
10854 {
10855 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10856 stub + idx);
10857 idx += 4;
10858 }
10859 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10860 idx += 4;
10861
10862 /* If a large stub is not required and sign extension is not a
10863 problem, then use legacy code in the stub. */
10864 if (stub_size == stub_big_size)
10865 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10866 stub + idx);
10867 else if (h->dynindx & ~0x7fff)
10868 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10869 stub + idx);
10870 else
10871 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10872 stub + idx);
10873 }
10874
10875 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10876 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10877 stub, stub_size);
10878
10879 /* Mark the symbol as undefined. stub_offset != -1 occurs
10880 only for the referenced symbol. */
10881 sym->st_shndx = SHN_UNDEF;
10882
10883 /* The run-time linker uses the st_value field of the symbol
10884 to reset the global offset table entry for this external
10885 to its stub address when unlinking a shared object. */
10886 sym->st_value = (htab->sstubs->output_section->vma
10887 + htab->sstubs->output_offset
10888 + h->plt.plist->stub_offset
10889 + isa_bit);
10890 sym->st_other = other;
10891 }
10892
10893 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10894 refer to the stub, since only the stub uses the standard calling
10895 conventions. */
10896 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10897 {
10898 BFD_ASSERT (hmips->need_fn_stub);
10899 sym->st_value = (hmips->fn_stub->output_section->vma
10900 + hmips->fn_stub->output_offset);
10901 sym->st_size = hmips->fn_stub->size;
10902 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10903 }
10904
10905 BFD_ASSERT (h->dynindx != -1
10906 || h->forced_local);
10907
10908 sgot = htab->root.sgot;
10909 g = htab->got_info;
10910 BFD_ASSERT (g != NULL);
10911
10912 /* Run through the global symbol table, creating GOT entries for all
10913 the symbols that need them. */
10914 if (hmips->global_got_area != GGA_NONE)
10915 {
10916 bfd_vma offset;
10917 bfd_vma value;
10918
10919 value = sym->st_value;
10920 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10921 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10922 }
10923
10924 if (hmips->global_got_area != GGA_NONE && g->next)
10925 {
10926 struct mips_got_entry e, *p;
10927 bfd_vma entry;
10928 bfd_vma offset;
10929
10930 gg = g;
10931
10932 e.abfd = output_bfd;
10933 e.symndx = -1;
10934 e.d.h = hmips;
10935 e.tls_type = GOT_TLS_NONE;
10936
10937 for (g = g->next; g->next != gg; g = g->next)
10938 {
10939 if (g->got_entries
10940 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10941 &e)))
10942 {
10943 offset = p->gotidx;
10944 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10945 if (bfd_link_pic (info)
10946 || (elf_hash_table (info)->dynamic_sections_created
10947 && p->d.h != NULL
10948 && p->d.h->root.def_dynamic
10949 && !p->d.h->root.def_regular))
10950 {
10951 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10952 the various compatibility problems, it's easier to mock
10953 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10954 mips_elf_create_dynamic_relocation to calculate the
10955 appropriate addend. */
10956 Elf_Internal_Rela rel[3];
10957
10958 memset (rel, 0, sizeof (rel));
10959 if (ABI_64_P (output_bfd))
10960 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10961 else
10962 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10963 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10964
10965 entry = 0;
10966 if (! (mips_elf_create_dynamic_relocation
10967 (output_bfd, info, rel,
10968 e.d.h, NULL, sym->st_value, &entry, sgot)))
10969 return FALSE;
10970 }
10971 else
10972 entry = sym->st_value;
10973 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10974 }
10975 }
10976 }
10977
10978 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10979 name = h->root.root.string;
10980 if (h == elf_hash_table (info)->hdynamic
10981 || h == elf_hash_table (info)->hgot)
10982 sym->st_shndx = SHN_ABS;
10983 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10984 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10985 {
10986 sym->st_shndx = SHN_ABS;
10987 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10988 sym->st_value = 1;
10989 }
10990 else if (SGI_COMPAT (output_bfd))
10991 {
10992 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10993 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10994 {
10995 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10996 sym->st_other = STO_PROTECTED;
10997 sym->st_value = 0;
10998 sym->st_shndx = SHN_MIPS_DATA;
10999 }
11000 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11001 {
11002 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11003 sym->st_other = STO_PROTECTED;
11004 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11005 sym->st_shndx = SHN_ABS;
11006 }
11007 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11008 {
11009 if (h->type == STT_FUNC)
11010 sym->st_shndx = SHN_MIPS_TEXT;
11011 else if (h->type == STT_OBJECT)
11012 sym->st_shndx = SHN_MIPS_DATA;
11013 }
11014 }
11015
11016 /* Emit a copy reloc, if needed. */
11017 if (h->needs_copy)
11018 {
11019 asection *s;
11020 bfd_vma symval;
11021
11022 BFD_ASSERT (h->dynindx != -1);
11023 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11024
11025 s = mips_elf_rel_dyn_section (info, FALSE);
11026 symval = (h->root.u.def.section->output_section->vma
11027 + h->root.u.def.section->output_offset
11028 + h->root.u.def.value);
11029 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11030 h->dynindx, R_MIPS_COPY, symval);
11031 }
11032
11033 /* Handle the IRIX6-specific symbols. */
11034 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11035 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11036
11037 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11038 to treat compressed symbols like any other. */
11039 if (ELF_ST_IS_MIPS16 (sym->st_other))
11040 {
11041 BFD_ASSERT (sym->st_value & 1);
11042 sym->st_other -= STO_MIPS16;
11043 }
11044 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11045 {
11046 BFD_ASSERT (sym->st_value & 1);
11047 sym->st_other -= STO_MICROMIPS;
11048 }
11049
11050 return TRUE;
11051 }
11052
11053 /* Likewise, for VxWorks. */
11054
11055 bfd_boolean
11056 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11057 struct bfd_link_info *info,
11058 struct elf_link_hash_entry *h,
11059 Elf_Internal_Sym *sym)
11060 {
11061 bfd *dynobj;
11062 asection *sgot;
11063 struct mips_got_info *g;
11064 struct mips_elf_link_hash_table *htab;
11065 struct mips_elf_link_hash_entry *hmips;
11066
11067 htab = mips_elf_hash_table (info);
11068 BFD_ASSERT (htab != NULL);
11069 dynobj = elf_hash_table (info)->dynobj;
11070 hmips = (struct mips_elf_link_hash_entry *) h;
11071
11072 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11073 {
11074 bfd_byte *loc;
11075 bfd_vma plt_address, got_address, got_offset, branch_offset;
11076 Elf_Internal_Rela rel;
11077 static const bfd_vma *plt_entry;
11078 bfd_vma gotplt_index;
11079 bfd_vma plt_offset;
11080
11081 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11082 gotplt_index = h->plt.plist->gotplt_index;
11083
11084 BFD_ASSERT (h->dynindx != -1);
11085 BFD_ASSERT (htab->root.splt != NULL);
11086 BFD_ASSERT (gotplt_index != MINUS_ONE);
11087 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11088
11089 /* Calculate the address of the .plt entry. */
11090 plt_address = (htab->root.splt->output_section->vma
11091 + htab->root.splt->output_offset
11092 + plt_offset);
11093
11094 /* Calculate the address of the .got.plt entry. */
11095 got_address = (htab->root.sgotplt->output_section->vma
11096 + htab->root.sgotplt->output_offset
11097 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11098
11099 /* Calculate the offset of the .got.plt entry from
11100 _GLOBAL_OFFSET_TABLE_. */
11101 got_offset = mips_elf_gotplt_index (info, h);
11102
11103 /* Calculate the offset for the branch at the start of the PLT
11104 entry. The branch jumps to the beginning of .plt. */
11105 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11106
11107 /* Fill in the initial value of the .got.plt entry. */
11108 bfd_put_32 (output_bfd, plt_address,
11109 (htab->root.sgotplt->contents
11110 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11111
11112 /* Find out where the .plt entry should go. */
11113 loc = htab->root.splt->contents + plt_offset;
11114
11115 if (bfd_link_pic (info))
11116 {
11117 plt_entry = mips_vxworks_shared_plt_entry;
11118 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11119 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11120 }
11121 else
11122 {
11123 bfd_vma got_address_high, got_address_low;
11124
11125 plt_entry = mips_vxworks_exec_plt_entry;
11126 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11127 got_address_low = got_address & 0xffff;
11128
11129 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11130 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11131 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11132 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11133 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11134 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11135 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11136 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11137
11138 loc = (htab->srelplt2->contents
11139 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11140
11141 /* Emit a relocation for the .got.plt entry. */
11142 rel.r_offset = got_address;
11143 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11144 rel.r_addend = plt_offset;
11145 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11146
11147 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11148 loc += sizeof (Elf32_External_Rela);
11149 rel.r_offset = plt_address + 8;
11150 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11151 rel.r_addend = got_offset;
11152 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11153
11154 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11155 loc += sizeof (Elf32_External_Rela);
11156 rel.r_offset += 4;
11157 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11158 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11159 }
11160
11161 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11162 loc = (htab->root.srelplt->contents
11163 + gotplt_index * sizeof (Elf32_External_Rela));
11164 rel.r_offset = got_address;
11165 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11166 rel.r_addend = 0;
11167 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11168
11169 if (!h->def_regular)
11170 sym->st_shndx = SHN_UNDEF;
11171 }
11172
11173 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11174
11175 sgot = htab->root.sgot;
11176 g = htab->got_info;
11177 BFD_ASSERT (g != NULL);
11178
11179 /* See if this symbol has an entry in the GOT. */
11180 if (hmips->global_got_area != GGA_NONE)
11181 {
11182 bfd_vma offset;
11183 Elf_Internal_Rela outrel;
11184 bfd_byte *loc;
11185 asection *s;
11186
11187 /* Install the symbol value in the GOT. */
11188 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11189 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11190
11191 /* Add a dynamic relocation for it. */
11192 s = mips_elf_rel_dyn_section (info, FALSE);
11193 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11194 outrel.r_offset = (sgot->output_section->vma
11195 + sgot->output_offset
11196 + offset);
11197 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11198 outrel.r_addend = 0;
11199 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11200 }
11201
11202 /* Emit a copy reloc, if needed. */
11203 if (h->needs_copy)
11204 {
11205 Elf_Internal_Rela rel;
11206 asection *srel;
11207 bfd_byte *loc;
11208
11209 BFD_ASSERT (h->dynindx != -1);
11210
11211 rel.r_offset = (h->root.u.def.section->output_section->vma
11212 + h->root.u.def.section->output_offset
11213 + h->root.u.def.value);
11214 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11215 rel.r_addend = 0;
11216 if (h->root.u.def.section == htab->root.sdynrelro)
11217 srel = htab->root.sreldynrelro;
11218 else
11219 srel = htab->root.srelbss;
11220 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11221 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11222 ++srel->reloc_count;
11223 }
11224
11225 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11226 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11227 sym->st_value &= ~1;
11228
11229 return TRUE;
11230 }
11231
11232 /* Write out a plt0 entry to the beginning of .plt. */
11233
11234 static bfd_boolean
11235 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11236 {
11237 bfd_byte *loc;
11238 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11239 static const bfd_vma *plt_entry;
11240 struct mips_elf_link_hash_table *htab;
11241
11242 htab = mips_elf_hash_table (info);
11243 BFD_ASSERT (htab != NULL);
11244
11245 if (ABI_64_P (output_bfd))
11246 plt_entry = mips_n64_exec_plt0_entry;
11247 else if (ABI_N32_P (output_bfd))
11248 plt_entry = mips_n32_exec_plt0_entry;
11249 else if (!htab->plt_header_is_comp)
11250 plt_entry = mips_o32_exec_plt0_entry;
11251 else if (htab->insn32)
11252 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11253 else
11254 plt_entry = micromips_o32_exec_plt0_entry;
11255
11256 /* Calculate the value of .got.plt. */
11257 gotplt_value = (htab->root.sgotplt->output_section->vma
11258 + htab->root.sgotplt->output_offset);
11259 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11260 gotplt_value_low = gotplt_value & 0xffff;
11261
11262 /* The PLT sequence is not safe for N64 if .got.plt's address can
11263 not be loaded in two instructions. */
11264 if (ABI_64_P (output_bfd)
11265 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11266 {
11267 _bfd_error_handler
11268 /* xgettext:c-format */
11269 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11270 "supported; consider using `-Ttext-segment=...'"),
11271 output_bfd,
11272 htab->root.sgotplt->output_section,
11273 (int64_t) gotplt_value);
11274 bfd_set_error (bfd_error_no_error);
11275 return FALSE;
11276 }
11277
11278 /* Install the PLT header. */
11279 loc = htab->root.splt->contents;
11280 if (plt_entry == micromips_o32_exec_plt0_entry)
11281 {
11282 bfd_vma gotpc_offset;
11283 bfd_vma loc_address;
11284 size_t i;
11285
11286 BFD_ASSERT (gotplt_value % 4 == 0);
11287
11288 loc_address = (htab->root.splt->output_section->vma
11289 + htab->root.splt->output_offset);
11290 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11291
11292 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11293 if (gotpc_offset + 0x1000000 >= 0x2000000)
11294 {
11295 _bfd_error_handler
11296 /* xgettext:c-format */
11297 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11298 "beyond the range of ADDIUPC"),
11299 output_bfd,
11300 htab->root.sgotplt->output_section,
11301 (int64_t) gotpc_offset,
11302 htab->root.splt->output_section);
11303 bfd_set_error (bfd_error_no_error);
11304 return FALSE;
11305 }
11306 bfd_put_16 (output_bfd,
11307 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11308 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11309 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11310 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11311 }
11312 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11313 {
11314 size_t i;
11315
11316 bfd_put_16 (output_bfd, plt_entry[0], loc);
11317 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11318 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11319 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11320 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11321 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11322 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11323 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11324 }
11325 else
11326 {
11327 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11328 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11329 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11330 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11331 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11332 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11333 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11334 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11335 }
11336
11337 return TRUE;
11338 }
11339
11340 /* Install the PLT header for a VxWorks executable and finalize the
11341 contents of .rela.plt.unloaded. */
11342
11343 static void
11344 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11345 {
11346 Elf_Internal_Rela rela;
11347 bfd_byte *loc;
11348 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11349 static const bfd_vma *plt_entry;
11350 struct mips_elf_link_hash_table *htab;
11351
11352 htab = mips_elf_hash_table (info);
11353 BFD_ASSERT (htab != NULL);
11354
11355 plt_entry = mips_vxworks_exec_plt0_entry;
11356
11357 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11358 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11359 + htab->root.hgot->root.u.def.section->output_offset
11360 + htab->root.hgot->root.u.def.value);
11361
11362 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11363 got_value_low = got_value & 0xffff;
11364
11365 /* Calculate the address of the PLT header. */
11366 plt_address = (htab->root.splt->output_section->vma
11367 + htab->root.splt->output_offset);
11368
11369 /* Install the PLT header. */
11370 loc = htab->root.splt->contents;
11371 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11372 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11373 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11374 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11375 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11376 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11377
11378 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11379 loc = htab->srelplt2->contents;
11380 rela.r_offset = plt_address;
11381 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11382 rela.r_addend = 0;
11383 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11384 loc += sizeof (Elf32_External_Rela);
11385
11386 /* Output the relocation for the following addiu of
11387 %lo(_GLOBAL_OFFSET_TABLE_). */
11388 rela.r_offset += 4;
11389 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11390 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11391 loc += sizeof (Elf32_External_Rela);
11392
11393 /* Fix up the remaining relocations. They may have the wrong
11394 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11395 in which symbols were output. */
11396 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11397 {
11398 Elf_Internal_Rela rel;
11399
11400 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11401 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11402 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11403 loc += sizeof (Elf32_External_Rela);
11404
11405 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11406 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11407 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11408 loc += sizeof (Elf32_External_Rela);
11409
11410 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11411 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11412 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11413 loc += sizeof (Elf32_External_Rela);
11414 }
11415 }
11416
11417 /* Install the PLT header for a VxWorks shared library. */
11418
11419 static void
11420 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11421 {
11422 unsigned int i;
11423 struct mips_elf_link_hash_table *htab;
11424
11425 htab = mips_elf_hash_table (info);
11426 BFD_ASSERT (htab != NULL);
11427
11428 /* We just need to copy the entry byte-by-byte. */
11429 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11430 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11431 htab->root.splt->contents + i * 4);
11432 }
11433
11434 /* Finish up the dynamic sections. */
11435
11436 bfd_boolean
11437 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11438 struct bfd_link_info *info)
11439 {
11440 bfd *dynobj;
11441 asection *sdyn;
11442 asection *sgot;
11443 struct mips_got_info *gg, *g;
11444 struct mips_elf_link_hash_table *htab;
11445
11446 htab = mips_elf_hash_table (info);
11447 BFD_ASSERT (htab != NULL);
11448
11449 dynobj = elf_hash_table (info)->dynobj;
11450
11451 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11452
11453 sgot = htab->root.sgot;
11454 gg = htab->got_info;
11455
11456 if (elf_hash_table (info)->dynamic_sections_created)
11457 {
11458 bfd_byte *b;
11459 int dyn_to_skip = 0, dyn_skipped = 0;
11460
11461 BFD_ASSERT (sdyn != NULL);
11462 BFD_ASSERT (gg != NULL);
11463
11464 g = mips_elf_bfd_got (output_bfd, FALSE);
11465 BFD_ASSERT (g != NULL);
11466
11467 for (b = sdyn->contents;
11468 b < sdyn->contents + sdyn->size;
11469 b += MIPS_ELF_DYN_SIZE (dynobj))
11470 {
11471 Elf_Internal_Dyn dyn;
11472 const char *name;
11473 size_t elemsize;
11474 asection *s;
11475 bfd_boolean swap_out_p;
11476
11477 /* Read in the current dynamic entry. */
11478 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11479
11480 /* Assume that we're going to modify it and write it out. */
11481 swap_out_p = TRUE;
11482
11483 switch (dyn.d_tag)
11484 {
11485 case DT_RELENT:
11486 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11487 break;
11488
11489 case DT_RELAENT:
11490 BFD_ASSERT (htab->is_vxworks);
11491 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11492 break;
11493
11494 case DT_STRSZ:
11495 /* Rewrite DT_STRSZ. */
11496 dyn.d_un.d_val =
11497 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11498 break;
11499
11500 case DT_PLTGOT:
11501 s = htab->root.sgot;
11502 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11503 break;
11504
11505 case DT_MIPS_PLTGOT:
11506 s = htab->root.sgotplt;
11507 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11508 break;
11509
11510 case DT_MIPS_RLD_VERSION:
11511 dyn.d_un.d_val = 1; /* XXX */
11512 break;
11513
11514 case DT_MIPS_FLAGS:
11515 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11516 break;
11517
11518 case DT_MIPS_TIME_STAMP:
11519 {
11520 time_t t;
11521 time (&t);
11522 dyn.d_un.d_val = t;
11523 }
11524 break;
11525
11526 case DT_MIPS_ICHECKSUM:
11527 /* XXX FIXME: */
11528 swap_out_p = FALSE;
11529 break;
11530
11531 case DT_MIPS_IVERSION:
11532 /* XXX FIXME: */
11533 swap_out_p = FALSE;
11534 break;
11535
11536 case DT_MIPS_BASE_ADDRESS:
11537 s = output_bfd->sections;
11538 BFD_ASSERT (s != NULL);
11539 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11540 break;
11541
11542 case DT_MIPS_LOCAL_GOTNO:
11543 dyn.d_un.d_val = g->local_gotno;
11544 break;
11545
11546 case DT_MIPS_UNREFEXTNO:
11547 /* The index into the dynamic symbol table which is the
11548 entry of the first external symbol that is not
11549 referenced within the same object. */
11550 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11551 break;
11552
11553 case DT_MIPS_GOTSYM:
11554 if (htab->global_gotsym)
11555 {
11556 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11557 break;
11558 }
11559 /* In case if we don't have global got symbols we default
11560 to setting DT_MIPS_GOTSYM to the same value as
11561 DT_MIPS_SYMTABNO. */
11562 /* Fall through. */
11563
11564 case DT_MIPS_SYMTABNO:
11565 name = ".dynsym";
11566 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11567 s = bfd_get_linker_section (dynobj, name);
11568
11569 if (s != NULL)
11570 dyn.d_un.d_val = s->size / elemsize;
11571 else
11572 dyn.d_un.d_val = 0;
11573 break;
11574
11575 case DT_MIPS_HIPAGENO:
11576 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11577 break;
11578
11579 case DT_MIPS_RLD_MAP:
11580 {
11581 struct elf_link_hash_entry *h;
11582 h = mips_elf_hash_table (info)->rld_symbol;
11583 if (!h)
11584 {
11585 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11586 swap_out_p = FALSE;
11587 break;
11588 }
11589 s = h->root.u.def.section;
11590
11591 /* The MIPS_RLD_MAP tag stores the absolute address of the
11592 debug pointer. */
11593 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11594 + h->root.u.def.value);
11595 }
11596 break;
11597
11598 case DT_MIPS_RLD_MAP_REL:
11599 {
11600 struct elf_link_hash_entry *h;
11601 bfd_vma dt_addr, rld_addr;
11602 h = mips_elf_hash_table (info)->rld_symbol;
11603 if (!h)
11604 {
11605 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11606 swap_out_p = FALSE;
11607 break;
11608 }
11609 s = h->root.u.def.section;
11610
11611 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11612 pointer, relative to the address of the tag. */
11613 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11614 + (b - sdyn->contents));
11615 rld_addr = (s->output_section->vma + s->output_offset
11616 + h->root.u.def.value);
11617 dyn.d_un.d_ptr = rld_addr - dt_addr;
11618 }
11619 break;
11620
11621 case DT_MIPS_OPTIONS:
11622 s = (bfd_get_section_by_name
11623 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11624 dyn.d_un.d_ptr = s->vma;
11625 break;
11626
11627 case DT_PLTREL:
11628 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11629 if (htab->is_vxworks)
11630 dyn.d_un.d_val = DT_RELA;
11631 else
11632 dyn.d_un.d_val = DT_REL;
11633 break;
11634
11635 case DT_PLTRELSZ:
11636 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11637 dyn.d_un.d_val = htab->root.srelplt->size;
11638 break;
11639
11640 case DT_JMPREL:
11641 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11642 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11643 + htab->root.srelplt->output_offset);
11644 break;
11645
11646 case DT_TEXTREL:
11647 /* If we didn't need any text relocations after all, delete
11648 the dynamic tag. */
11649 if (!(info->flags & DF_TEXTREL))
11650 {
11651 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11652 swap_out_p = FALSE;
11653 }
11654 break;
11655
11656 case DT_FLAGS:
11657 /* If we didn't need any text relocations after all, clear
11658 DF_TEXTREL from DT_FLAGS. */
11659 if (!(info->flags & DF_TEXTREL))
11660 dyn.d_un.d_val &= ~DF_TEXTREL;
11661 else
11662 swap_out_p = FALSE;
11663 break;
11664
11665 default:
11666 swap_out_p = FALSE;
11667 if (htab->is_vxworks
11668 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11669 swap_out_p = TRUE;
11670 break;
11671 }
11672
11673 if (swap_out_p || dyn_skipped)
11674 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11675 (dynobj, &dyn, b - dyn_skipped);
11676
11677 if (dyn_to_skip)
11678 {
11679 dyn_skipped += dyn_to_skip;
11680 dyn_to_skip = 0;
11681 }
11682 }
11683
11684 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11685 if (dyn_skipped > 0)
11686 memset (b - dyn_skipped, 0, dyn_skipped);
11687 }
11688
11689 if (sgot != NULL && sgot->size > 0
11690 && !bfd_is_abs_section (sgot->output_section))
11691 {
11692 if (htab->is_vxworks)
11693 {
11694 /* The first entry of the global offset table points to the
11695 ".dynamic" section. The second is initialized by the
11696 loader and contains the shared library identifier.
11697 The third is also initialized by the loader and points
11698 to the lazy resolution stub. */
11699 MIPS_ELF_PUT_WORD (output_bfd,
11700 sdyn->output_offset + sdyn->output_section->vma,
11701 sgot->contents);
11702 MIPS_ELF_PUT_WORD (output_bfd, 0,
11703 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11704 MIPS_ELF_PUT_WORD (output_bfd, 0,
11705 sgot->contents
11706 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11707 }
11708 else
11709 {
11710 /* The first entry of the global offset table will be filled at
11711 runtime. The second entry will be used by some runtime loaders.
11712 This isn't the case of IRIX rld. */
11713 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11714 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11715 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11716 }
11717
11718 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11719 = MIPS_ELF_GOT_SIZE (output_bfd);
11720 }
11721
11722 /* Generate dynamic relocations for the non-primary gots. */
11723 if (gg != NULL && gg->next)
11724 {
11725 Elf_Internal_Rela rel[3];
11726 bfd_vma addend = 0;
11727
11728 memset (rel, 0, sizeof (rel));
11729 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11730
11731 for (g = gg->next; g->next != gg; g = g->next)
11732 {
11733 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11734 + g->next->tls_gotno;
11735
11736 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11737 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11738 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11739 sgot->contents
11740 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11741
11742 if (! bfd_link_pic (info))
11743 continue;
11744
11745 for (; got_index < g->local_gotno; got_index++)
11746 {
11747 if (got_index >= g->assigned_low_gotno
11748 && got_index <= g->assigned_high_gotno)
11749 continue;
11750
11751 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11752 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11753 if (!(mips_elf_create_dynamic_relocation
11754 (output_bfd, info, rel, NULL,
11755 bfd_abs_section_ptr,
11756 0, &addend, sgot)))
11757 return FALSE;
11758 BFD_ASSERT (addend == 0);
11759 }
11760 }
11761 }
11762
11763 /* The generation of dynamic relocations for the non-primary gots
11764 adds more dynamic relocations. We cannot count them until
11765 here. */
11766
11767 if (elf_hash_table (info)->dynamic_sections_created)
11768 {
11769 bfd_byte *b;
11770 bfd_boolean swap_out_p;
11771
11772 BFD_ASSERT (sdyn != NULL);
11773
11774 for (b = sdyn->contents;
11775 b < sdyn->contents + sdyn->size;
11776 b += MIPS_ELF_DYN_SIZE (dynobj))
11777 {
11778 Elf_Internal_Dyn dyn;
11779 asection *s;
11780
11781 /* Read in the current dynamic entry. */
11782 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11783
11784 /* Assume that we're going to modify it and write it out. */
11785 swap_out_p = TRUE;
11786
11787 switch (dyn.d_tag)
11788 {
11789 case DT_RELSZ:
11790 /* Reduce DT_RELSZ to account for any relocations we
11791 decided not to make. This is for the n64 irix rld,
11792 which doesn't seem to apply any relocations if there
11793 are trailing null entries. */
11794 s = mips_elf_rel_dyn_section (info, FALSE);
11795 dyn.d_un.d_val = (s->reloc_count
11796 * (ABI_64_P (output_bfd)
11797 ? sizeof (Elf64_Mips_External_Rel)
11798 : sizeof (Elf32_External_Rel)));
11799 /* Adjust the section size too. Tools like the prelinker
11800 can reasonably expect the values to the same. */
11801 elf_section_data (s->output_section)->this_hdr.sh_size
11802 = dyn.d_un.d_val;
11803 break;
11804
11805 default:
11806 swap_out_p = FALSE;
11807 break;
11808 }
11809
11810 if (swap_out_p)
11811 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11812 (dynobj, &dyn, b);
11813 }
11814 }
11815
11816 {
11817 asection *s;
11818 Elf32_compact_rel cpt;
11819
11820 if (SGI_COMPAT (output_bfd))
11821 {
11822 /* Write .compact_rel section out. */
11823 s = bfd_get_linker_section (dynobj, ".compact_rel");
11824 if (s != NULL)
11825 {
11826 cpt.id1 = 1;
11827 cpt.num = s->reloc_count;
11828 cpt.id2 = 2;
11829 cpt.offset = (s->output_section->filepos
11830 + sizeof (Elf32_External_compact_rel));
11831 cpt.reserved0 = 0;
11832 cpt.reserved1 = 0;
11833 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11834 ((Elf32_External_compact_rel *)
11835 s->contents));
11836
11837 /* Clean up a dummy stub function entry in .text. */
11838 if (htab->sstubs != NULL)
11839 {
11840 file_ptr dummy_offset;
11841
11842 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11843 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11844 memset (htab->sstubs->contents + dummy_offset, 0,
11845 htab->function_stub_size);
11846 }
11847 }
11848 }
11849
11850 /* The psABI says that the dynamic relocations must be sorted in
11851 increasing order of r_symndx. The VxWorks EABI doesn't require
11852 this, and because the code below handles REL rather than RELA
11853 relocations, using it for VxWorks would be outright harmful. */
11854 if (!htab->is_vxworks)
11855 {
11856 s = mips_elf_rel_dyn_section (info, FALSE);
11857 if (s != NULL
11858 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11859 {
11860 reldyn_sorting_bfd = output_bfd;
11861
11862 if (ABI_64_P (output_bfd))
11863 qsort ((Elf64_External_Rel *) s->contents + 1,
11864 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11865 sort_dynamic_relocs_64);
11866 else
11867 qsort ((Elf32_External_Rel *) s->contents + 1,
11868 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11869 sort_dynamic_relocs);
11870 }
11871 }
11872 }
11873
11874 if (htab->root.splt && htab->root.splt->size > 0)
11875 {
11876 if (htab->is_vxworks)
11877 {
11878 if (bfd_link_pic (info))
11879 mips_vxworks_finish_shared_plt (output_bfd, info);
11880 else
11881 mips_vxworks_finish_exec_plt (output_bfd, info);
11882 }
11883 else
11884 {
11885 BFD_ASSERT (!bfd_link_pic (info));
11886 if (!mips_finish_exec_plt (output_bfd, info))
11887 return FALSE;
11888 }
11889 }
11890 return TRUE;
11891 }
11892
11893
11894 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11895
11896 static void
11897 mips_set_isa_flags (bfd *abfd)
11898 {
11899 flagword val;
11900
11901 switch (bfd_get_mach (abfd))
11902 {
11903 default:
11904 case bfd_mach_mips3000:
11905 val = E_MIPS_ARCH_1;
11906 break;
11907
11908 case bfd_mach_mips3900:
11909 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11910 break;
11911
11912 case bfd_mach_mips6000:
11913 val = E_MIPS_ARCH_2;
11914 break;
11915
11916 case bfd_mach_mips4010:
11917 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11918 break;
11919
11920 case bfd_mach_mips4000:
11921 case bfd_mach_mips4300:
11922 case bfd_mach_mips4400:
11923 case bfd_mach_mips4600:
11924 val = E_MIPS_ARCH_3;
11925 break;
11926
11927 case bfd_mach_mips4100:
11928 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11929 break;
11930
11931 case bfd_mach_mips4111:
11932 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11933 break;
11934
11935 case bfd_mach_mips4120:
11936 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11937 break;
11938
11939 case bfd_mach_mips4650:
11940 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11941 break;
11942
11943 case bfd_mach_mips5400:
11944 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11945 break;
11946
11947 case bfd_mach_mips5500:
11948 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11949 break;
11950
11951 case bfd_mach_mips5900:
11952 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11953 break;
11954
11955 case bfd_mach_mips9000:
11956 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11957 break;
11958
11959 case bfd_mach_mips5000:
11960 case bfd_mach_mips7000:
11961 case bfd_mach_mips8000:
11962 case bfd_mach_mips10000:
11963 case bfd_mach_mips12000:
11964 case bfd_mach_mips14000:
11965 case bfd_mach_mips16000:
11966 val = E_MIPS_ARCH_4;
11967 break;
11968
11969 case bfd_mach_mips5:
11970 val = E_MIPS_ARCH_5;
11971 break;
11972
11973 case bfd_mach_mips_loongson_2e:
11974 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11975 break;
11976
11977 case bfd_mach_mips_loongson_2f:
11978 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11979 break;
11980
11981 case bfd_mach_mips_sb1:
11982 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11983 break;
11984
11985 case bfd_mach_mips_loongson_3a:
11986 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11987 break;
11988
11989 case bfd_mach_mips_octeon:
11990 case bfd_mach_mips_octeonp:
11991 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11992 break;
11993
11994 case bfd_mach_mips_octeon3:
11995 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11996 break;
11997
11998 case bfd_mach_mips_xlr:
11999 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12000 break;
12001
12002 case bfd_mach_mips_octeon2:
12003 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12004 break;
12005
12006 case bfd_mach_mipsisa32:
12007 val = E_MIPS_ARCH_32;
12008 break;
12009
12010 case bfd_mach_mipsisa64:
12011 val = E_MIPS_ARCH_64;
12012 break;
12013
12014 case bfd_mach_mipsisa32r2:
12015 case bfd_mach_mipsisa32r3:
12016 case bfd_mach_mipsisa32r5:
12017 val = E_MIPS_ARCH_32R2;
12018 break;
12019
12020 case bfd_mach_mips_interaptiv_mr2:
12021 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12022 break;
12023
12024 case bfd_mach_mipsisa64r2:
12025 case bfd_mach_mipsisa64r3:
12026 case bfd_mach_mipsisa64r5:
12027 val = E_MIPS_ARCH_64R2;
12028 break;
12029
12030 case bfd_mach_mipsisa32r6:
12031 val = E_MIPS_ARCH_32R6;
12032 break;
12033
12034 case bfd_mach_mipsisa64r6:
12035 val = E_MIPS_ARCH_64R6;
12036 break;
12037 }
12038 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12039 elf_elfheader (abfd)->e_flags |= val;
12040
12041 }
12042
12043
12044 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12045 Don't do so for code sections. We want to keep ordering of HI16/LO16
12046 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12047 relocs to be sorted. */
12048
12049 bfd_boolean
12050 _bfd_mips_elf_sort_relocs_p (asection *sec)
12051 {
12052 return (sec->flags & SEC_CODE) == 0;
12053 }
12054
12055
12056 /* The final processing done just before writing out a MIPS ELF object
12057 file. This gets the MIPS architecture right based on the machine
12058 number. This is used by both the 32-bit and the 64-bit ABI. */
12059
12060 void
12061 _bfd_mips_elf_final_write_processing (bfd *abfd,
12062 bfd_boolean linker ATTRIBUTE_UNUSED)
12063 {
12064 unsigned int i;
12065 Elf_Internal_Shdr **hdrpp;
12066 const char *name;
12067 asection *sec;
12068
12069 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12070 is nonzero. This is for compatibility with old objects, which used
12071 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12072 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12073 mips_set_isa_flags (abfd);
12074
12075 /* Set the sh_info field for .gptab sections and other appropriate
12076 info for each special section. */
12077 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12078 i < elf_numsections (abfd);
12079 i++, hdrpp++)
12080 {
12081 switch ((*hdrpp)->sh_type)
12082 {
12083 case SHT_MIPS_MSYM:
12084 case SHT_MIPS_LIBLIST:
12085 sec = bfd_get_section_by_name (abfd, ".dynstr");
12086 if (sec != NULL)
12087 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12088 break;
12089
12090 case SHT_MIPS_GPTAB:
12091 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12092 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12093 BFD_ASSERT (name != NULL
12094 && CONST_STRNEQ (name, ".gptab."));
12095 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12096 BFD_ASSERT (sec != NULL);
12097 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12098 break;
12099
12100 case SHT_MIPS_CONTENT:
12101 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12102 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12103 BFD_ASSERT (name != NULL
12104 && CONST_STRNEQ (name, ".MIPS.content"));
12105 sec = bfd_get_section_by_name (abfd,
12106 name + sizeof ".MIPS.content" - 1);
12107 BFD_ASSERT (sec != NULL);
12108 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12109 break;
12110
12111 case SHT_MIPS_SYMBOL_LIB:
12112 sec = bfd_get_section_by_name (abfd, ".dynsym");
12113 if (sec != NULL)
12114 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12115 sec = bfd_get_section_by_name (abfd, ".liblist");
12116 if (sec != NULL)
12117 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12118 break;
12119
12120 case SHT_MIPS_EVENTS:
12121 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12122 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12123 BFD_ASSERT (name != NULL);
12124 if (CONST_STRNEQ (name, ".MIPS.events"))
12125 sec = bfd_get_section_by_name (abfd,
12126 name + sizeof ".MIPS.events" - 1);
12127 else
12128 {
12129 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12130 sec = bfd_get_section_by_name (abfd,
12131 (name
12132 + sizeof ".MIPS.post_rel" - 1));
12133 }
12134 BFD_ASSERT (sec != NULL);
12135 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12136 break;
12137
12138 }
12139 }
12140 }
12141 \f
12142 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12143 segments. */
12144
12145 int
12146 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12147 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12148 {
12149 asection *s;
12150 int ret = 0;
12151
12152 /* See if we need a PT_MIPS_REGINFO segment. */
12153 s = bfd_get_section_by_name (abfd, ".reginfo");
12154 if (s && (s->flags & SEC_LOAD))
12155 ++ret;
12156
12157 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12158 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12159 ++ret;
12160
12161 /* See if we need a PT_MIPS_OPTIONS segment. */
12162 if (IRIX_COMPAT (abfd) == ict_irix6
12163 && bfd_get_section_by_name (abfd,
12164 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12165 ++ret;
12166
12167 /* See if we need a PT_MIPS_RTPROC segment. */
12168 if (IRIX_COMPAT (abfd) == ict_irix5
12169 && bfd_get_section_by_name (abfd, ".dynamic")
12170 && bfd_get_section_by_name (abfd, ".mdebug"))
12171 ++ret;
12172
12173 /* Allocate a PT_NULL header in dynamic objects. See
12174 _bfd_mips_elf_modify_segment_map for details. */
12175 if (!SGI_COMPAT (abfd)
12176 && bfd_get_section_by_name (abfd, ".dynamic"))
12177 ++ret;
12178
12179 return ret;
12180 }
12181
12182 /* Modify the segment map for an IRIX5 executable. */
12183
12184 bfd_boolean
12185 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12186 struct bfd_link_info *info)
12187 {
12188 asection *s;
12189 struct elf_segment_map *m, **pm;
12190 bfd_size_type amt;
12191
12192 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12193 segment. */
12194 s = bfd_get_section_by_name (abfd, ".reginfo");
12195 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12196 {
12197 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12198 if (m->p_type == PT_MIPS_REGINFO)
12199 break;
12200 if (m == NULL)
12201 {
12202 amt = sizeof *m;
12203 m = bfd_zalloc (abfd, amt);
12204 if (m == NULL)
12205 return FALSE;
12206
12207 m->p_type = PT_MIPS_REGINFO;
12208 m->count = 1;
12209 m->sections[0] = s;
12210
12211 /* We want to put it after the PHDR and INTERP segments. */
12212 pm = &elf_seg_map (abfd);
12213 while (*pm != NULL
12214 && ((*pm)->p_type == PT_PHDR
12215 || (*pm)->p_type == PT_INTERP))
12216 pm = &(*pm)->next;
12217
12218 m->next = *pm;
12219 *pm = m;
12220 }
12221 }
12222
12223 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12224 segment. */
12225 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12226 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12227 {
12228 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12229 if (m->p_type == PT_MIPS_ABIFLAGS)
12230 break;
12231 if (m == NULL)
12232 {
12233 amt = sizeof *m;
12234 m = bfd_zalloc (abfd, amt);
12235 if (m == NULL)
12236 return FALSE;
12237
12238 m->p_type = PT_MIPS_ABIFLAGS;
12239 m->count = 1;
12240 m->sections[0] = s;
12241
12242 /* We want to put it after the PHDR and INTERP segments. */
12243 pm = &elf_seg_map (abfd);
12244 while (*pm != NULL
12245 && ((*pm)->p_type == PT_PHDR
12246 || (*pm)->p_type == PT_INTERP))
12247 pm = &(*pm)->next;
12248
12249 m->next = *pm;
12250 *pm = m;
12251 }
12252 }
12253
12254 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12255 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12256 PT_MIPS_OPTIONS segment immediately following the program header
12257 table. */
12258 if (NEWABI_P (abfd)
12259 /* On non-IRIX6 new abi, we'll have already created a segment
12260 for this section, so don't create another. I'm not sure this
12261 is not also the case for IRIX 6, but I can't test it right
12262 now. */
12263 && IRIX_COMPAT (abfd) == ict_irix6)
12264 {
12265 for (s = abfd->sections; s; s = s->next)
12266 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12267 break;
12268
12269 if (s)
12270 {
12271 struct elf_segment_map *options_segment;
12272
12273 pm = &elf_seg_map (abfd);
12274 while (*pm != NULL
12275 && ((*pm)->p_type == PT_PHDR
12276 || (*pm)->p_type == PT_INTERP))
12277 pm = &(*pm)->next;
12278
12279 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12280 {
12281 amt = sizeof (struct elf_segment_map);
12282 options_segment = bfd_zalloc (abfd, amt);
12283 options_segment->next = *pm;
12284 options_segment->p_type = PT_MIPS_OPTIONS;
12285 options_segment->p_flags = PF_R;
12286 options_segment->p_flags_valid = TRUE;
12287 options_segment->count = 1;
12288 options_segment->sections[0] = s;
12289 *pm = options_segment;
12290 }
12291 }
12292 }
12293 else
12294 {
12295 if (IRIX_COMPAT (abfd) == ict_irix5)
12296 {
12297 /* If there are .dynamic and .mdebug sections, we make a room
12298 for the RTPROC header. FIXME: Rewrite without section names. */
12299 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12300 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12301 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12302 {
12303 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12304 if (m->p_type == PT_MIPS_RTPROC)
12305 break;
12306 if (m == NULL)
12307 {
12308 amt = sizeof *m;
12309 m = bfd_zalloc (abfd, amt);
12310 if (m == NULL)
12311 return FALSE;
12312
12313 m->p_type = PT_MIPS_RTPROC;
12314
12315 s = bfd_get_section_by_name (abfd, ".rtproc");
12316 if (s == NULL)
12317 {
12318 m->count = 0;
12319 m->p_flags = 0;
12320 m->p_flags_valid = 1;
12321 }
12322 else
12323 {
12324 m->count = 1;
12325 m->sections[0] = s;
12326 }
12327
12328 /* We want to put it after the DYNAMIC segment. */
12329 pm = &elf_seg_map (abfd);
12330 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12331 pm = &(*pm)->next;
12332 if (*pm != NULL)
12333 pm = &(*pm)->next;
12334
12335 m->next = *pm;
12336 *pm = m;
12337 }
12338 }
12339 }
12340 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12341 .dynstr, .dynsym, and .hash sections, and everything in
12342 between. */
12343 for (pm = &elf_seg_map (abfd); *pm != NULL;
12344 pm = &(*pm)->next)
12345 if ((*pm)->p_type == PT_DYNAMIC)
12346 break;
12347 m = *pm;
12348 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12349 glibc's dynamic linker has traditionally derived the number of
12350 tags from the p_filesz field, and sometimes allocates stack
12351 arrays of that size. An overly-big PT_DYNAMIC segment can
12352 be actively harmful in such cases. Making PT_DYNAMIC contain
12353 other sections can also make life hard for the prelinker,
12354 which might move one of the other sections to a different
12355 PT_LOAD segment. */
12356 if (SGI_COMPAT (abfd)
12357 && m != NULL
12358 && m->count == 1
12359 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12360 {
12361 static const char *sec_names[] =
12362 {
12363 ".dynamic", ".dynstr", ".dynsym", ".hash"
12364 };
12365 bfd_vma low, high;
12366 unsigned int i, c;
12367 struct elf_segment_map *n;
12368
12369 low = ~(bfd_vma) 0;
12370 high = 0;
12371 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12372 {
12373 s = bfd_get_section_by_name (abfd, sec_names[i]);
12374 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12375 {
12376 bfd_size_type sz;
12377
12378 if (low > s->vma)
12379 low = s->vma;
12380 sz = s->size;
12381 if (high < s->vma + sz)
12382 high = s->vma + sz;
12383 }
12384 }
12385
12386 c = 0;
12387 for (s = abfd->sections; s != NULL; s = s->next)
12388 if ((s->flags & SEC_LOAD) != 0
12389 && s->vma >= low
12390 && s->vma + s->size <= high)
12391 ++c;
12392
12393 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12394 n = bfd_zalloc (abfd, amt);
12395 if (n == NULL)
12396 return FALSE;
12397 *n = *m;
12398 n->count = c;
12399
12400 i = 0;
12401 for (s = abfd->sections; s != NULL; s = s->next)
12402 {
12403 if ((s->flags & SEC_LOAD) != 0
12404 && s->vma >= low
12405 && s->vma + s->size <= high)
12406 {
12407 n->sections[i] = s;
12408 ++i;
12409 }
12410 }
12411
12412 *pm = n;
12413 }
12414 }
12415
12416 /* Allocate a spare program header in dynamic objects so that tools
12417 like the prelinker can add an extra PT_LOAD entry.
12418
12419 If the prelinker needs to make room for a new PT_LOAD entry, its
12420 standard procedure is to move the first (read-only) sections into
12421 the new (writable) segment. However, the MIPS ABI requires
12422 .dynamic to be in a read-only segment, and the section will often
12423 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12424
12425 Although the prelinker could in principle move .dynamic to a
12426 writable segment, it seems better to allocate a spare program
12427 header instead, and avoid the need to move any sections.
12428 There is a long tradition of allocating spare dynamic tags,
12429 so allocating a spare program header seems like a natural
12430 extension.
12431
12432 If INFO is NULL, we may be copying an already prelinked binary
12433 with objcopy or strip, so do not add this header. */
12434 if (info != NULL
12435 && !SGI_COMPAT (abfd)
12436 && bfd_get_section_by_name (abfd, ".dynamic"))
12437 {
12438 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12439 if ((*pm)->p_type == PT_NULL)
12440 break;
12441 if (*pm == NULL)
12442 {
12443 m = bfd_zalloc (abfd, sizeof (*m));
12444 if (m == NULL)
12445 return FALSE;
12446
12447 m->p_type = PT_NULL;
12448 *pm = m;
12449 }
12450 }
12451
12452 return TRUE;
12453 }
12454 \f
12455 /* Return the section that should be marked against GC for a given
12456 relocation. */
12457
12458 asection *
12459 _bfd_mips_elf_gc_mark_hook (asection *sec,
12460 struct bfd_link_info *info,
12461 Elf_Internal_Rela *rel,
12462 struct elf_link_hash_entry *h,
12463 Elf_Internal_Sym *sym)
12464 {
12465 /* ??? Do mips16 stub sections need to be handled special? */
12466
12467 if (h != NULL)
12468 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12469 {
12470 case R_MIPS_GNU_VTINHERIT:
12471 case R_MIPS_GNU_VTENTRY:
12472 return NULL;
12473 }
12474
12475 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12476 }
12477
12478 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12479
12480 bfd_boolean
12481 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12482 elf_gc_mark_hook_fn gc_mark_hook)
12483 {
12484 bfd *sub;
12485
12486 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12487
12488 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12489 {
12490 asection *o;
12491
12492 if (! is_mips_elf (sub))
12493 continue;
12494
12495 for (o = sub->sections; o != NULL; o = o->next)
12496 if (!o->gc_mark
12497 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12498 (bfd_get_section_name (sub, o)))
12499 {
12500 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12501 return FALSE;
12502 }
12503 }
12504
12505 return TRUE;
12506 }
12507 \f
12508 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12509 hiding the old indirect symbol. Process additional relocation
12510 information. Also called for weakdefs, in which case we just let
12511 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12512
12513 void
12514 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12515 struct elf_link_hash_entry *dir,
12516 struct elf_link_hash_entry *ind)
12517 {
12518 struct mips_elf_link_hash_entry *dirmips, *indmips;
12519
12520 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12521
12522 dirmips = (struct mips_elf_link_hash_entry *) dir;
12523 indmips = (struct mips_elf_link_hash_entry *) ind;
12524 /* Any absolute non-dynamic relocations against an indirect or weak
12525 definition will be against the target symbol. */
12526 if (indmips->has_static_relocs)
12527 dirmips->has_static_relocs = TRUE;
12528
12529 if (ind->root.type != bfd_link_hash_indirect)
12530 return;
12531
12532 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12533 if (indmips->readonly_reloc)
12534 dirmips->readonly_reloc = TRUE;
12535 if (indmips->no_fn_stub)
12536 dirmips->no_fn_stub = TRUE;
12537 if (indmips->fn_stub)
12538 {
12539 dirmips->fn_stub = indmips->fn_stub;
12540 indmips->fn_stub = NULL;
12541 }
12542 if (indmips->need_fn_stub)
12543 {
12544 dirmips->need_fn_stub = TRUE;
12545 indmips->need_fn_stub = FALSE;
12546 }
12547 if (indmips->call_stub)
12548 {
12549 dirmips->call_stub = indmips->call_stub;
12550 indmips->call_stub = NULL;
12551 }
12552 if (indmips->call_fp_stub)
12553 {
12554 dirmips->call_fp_stub = indmips->call_fp_stub;
12555 indmips->call_fp_stub = NULL;
12556 }
12557 if (indmips->global_got_area < dirmips->global_got_area)
12558 dirmips->global_got_area = indmips->global_got_area;
12559 if (indmips->global_got_area < GGA_NONE)
12560 indmips->global_got_area = GGA_NONE;
12561 if (indmips->has_nonpic_branches)
12562 dirmips->has_nonpic_branches = TRUE;
12563 }
12564 \f
12565 #define PDR_SIZE 32
12566
12567 bfd_boolean
12568 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12569 struct bfd_link_info *info)
12570 {
12571 asection *o;
12572 bfd_boolean ret = FALSE;
12573 unsigned char *tdata;
12574 size_t i, skip;
12575
12576 o = bfd_get_section_by_name (abfd, ".pdr");
12577 if (! o)
12578 return FALSE;
12579 if (o->size == 0)
12580 return FALSE;
12581 if (o->size % PDR_SIZE != 0)
12582 return FALSE;
12583 if (o->output_section != NULL
12584 && bfd_is_abs_section (o->output_section))
12585 return FALSE;
12586
12587 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12588 if (! tdata)
12589 return FALSE;
12590
12591 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12592 info->keep_memory);
12593 if (!cookie->rels)
12594 {
12595 free (tdata);
12596 return FALSE;
12597 }
12598
12599 cookie->rel = cookie->rels;
12600 cookie->relend = cookie->rels + o->reloc_count;
12601
12602 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12603 {
12604 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12605 {
12606 tdata[i] = 1;
12607 skip ++;
12608 }
12609 }
12610
12611 if (skip != 0)
12612 {
12613 mips_elf_section_data (o)->u.tdata = tdata;
12614 if (o->rawsize == 0)
12615 o->rawsize = o->size;
12616 o->size -= skip * PDR_SIZE;
12617 ret = TRUE;
12618 }
12619 else
12620 free (tdata);
12621
12622 if (! info->keep_memory)
12623 free (cookie->rels);
12624
12625 return ret;
12626 }
12627
12628 bfd_boolean
12629 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12630 {
12631 if (strcmp (sec->name, ".pdr") == 0)
12632 return TRUE;
12633 return FALSE;
12634 }
12635
12636 bfd_boolean
12637 _bfd_mips_elf_write_section (bfd *output_bfd,
12638 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12639 asection *sec, bfd_byte *contents)
12640 {
12641 bfd_byte *to, *from, *end;
12642 int i;
12643
12644 if (strcmp (sec->name, ".pdr") != 0)
12645 return FALSE;
12646
12647 if (mips_elf_section_data (sec)->u.tdata == NULL)
12648 return FALSE;
12649
12650 to = contents;
12651 end = contents + sec->size;
12652 for (from = contents, i = 0;
12653 from < end;
12654 from += PDR_SIZE, i++)
12655 {
12656 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12657 continue;
12658 if (to != from)
12659 memcpy (to, from, PDR_SIZE);
12660 to += PDR_SIZE;
12661 }
12662 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12663 sec->output_offset, sec->size);
12664 return TRUE;
12665 }
12666 \f
12667 /* microMIPS code retains local labels for linker relaxation. Omit them
12668 from output by default for clarity. */
12669
12670 bfd_boolean
12671 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12672 {
12673 return _bfd_elf_is_local_label_name (abfd, sym->name);
12674 }
12675
12676 /* MIPS ELF uses a special find_nearest_line routine in order the
12677 handle the ECOFF debugging information. */
12678
12679 struct mips_elf_find_line
12680 {
12681 struct ecoff_debug_info d;
12682 struct ecoff_find_line i;
12683 };
12684
12685 bfd_boolean
12686 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12687 asection *section, bfd_vma offset,
12688 const char **filename_ptr,
12689 const char **functionname_ptr,
12690 unsigned int *line_ptr,
12691 unsigned int *discriminator_ptr)
12692 {
12693 asection *msec;
12694
12695 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12696 filename_ptr, functionname_ptr,
12697 line_ptr, discriminator_ptr,
12698 dwarf_debug_sections,
12699 ABI_64_P (abfd) ? 8 : 0,
12700 &elf_tdata (abfd)->dwarf2_find_line_info)
12701 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12702 filename_ptr, functionname_ptr,
12703 line_ptr))
12704 {
12705 /* PR 22789: If the function name or filename was not found through
12706 the debug information, then try an ordinary lookup instead. */
12707 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12708 || (filename_ptr != NULL && *filename_ptr == NULL))
12709 {
12710 /* Do not override already discovered names. */
12711 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12712 functionname_ptr = NULL;
12713
12714 if (filename_ptr != NULL && *filename_ptr != NULL)
12715 filename_ptr = NULL;
12716
12717 _bfd_elf_find_function (abfd, symbols, section, offset,
12718 filename_ptr, functionname_ptr);
12719 }
12720
12721 return TRUE;
12722 }
12723
12724 msec = bfd_get_section_by_name (abfd, ".mdebug");
12725 if (msec != NULL)
12726 {
12727 flagword origflags;
12728 struct mips_elf_find_line *fi;
12729 const struct ecoff_debug_swap * const swap =
12730 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12731
12732 /* If we are called during a link, mips_elf_final_link may have
12733 cleared the SEC_HAS_CONTENTS field. We force it back on here
12734 if appropriate (which it normally will be). */
12735 origflags = msec->flags;
12736 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12737 msec->flags |= SEC_HAS_CONTENTS;
12738
12739 fi = mips_elf_tdata (abfd)->find_line_info;
12740 if (fi == NULL)
12741 {
12742 bfd_size_type external_fdr_size;
12743 char *fraw_src;
12744 char *fraw_end;
12745 struct fdr *fdr_ptr;
12746 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12747
12748 fi = bfd_zalloc (abfd, amt);
12749 if (fi == NULL)
12750 {
12751 msec->flags = origflags;
12752 return FALSE;
12753 }
12754
12755 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12756 {
12757 msec->flags = origflags;
12758 return FALSE;
12759 }
12760
12761 /* Swap in the FDR information. */
12762 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12763 fi->d.fdr = bfd_alloc (abfd, amt);
12764 if (fi->d.fdr == NULL)
12765 {
12766 msec->flags = origflags;
12767 return FALSE;
12768 }
12769 external_fdr_size = swap->external_fdr_size;
12770 fdr_ptr = fi->d.fdr;
12771 fraw_src = (char *) fi->d.external_fdr;
12772 fraw_end = (fraw_src
12773 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12774 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12775 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12776
12777 mips_elf_tdata (abfd)->find_line_info = fi;
12778
12779 /* Note that we don't bother to ever free this information.
12780 find_nearest_line is either called all the time, as in
12781 objdump -l, so the information should be saved, or it is
12782 rarely called, as in ld error messages, so the memory
12783 wasted is unimportant. Still, it would probably be a
12784 good idea for free_cached_info to throw it away. */
12785 }
12786
12787 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12788 &fi->i, filename_ptr, functionname_ptr,
12789 line_ptr))
12790 {
12791 msec->flags = origflags;
12792 return TRUE;
12793 }
12794
12795 msec->flags = origflags;
12796 }
12797
12798 /* Fall back on the generic ELF find_nearest_line routine. */
12799
12800 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12801 filename_ptr, functionname_ptr,
12802 line_ptr, discriminator_ptr);
12803 }
12804
12805 bfd_boolean
12806 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12807 const char **filename_ptr,
12808 const char **functionname_ptr,
12809 unsigned int *line_ptr)
12810 {
12811 bfd_boolean found;
12812 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12813 functionname_ptr, line_ptr,
12814 & elf_tdata (abfd)->dwarf2_find_line_info);
12815 return found;
12816 }
12817
12818 \f
12819 /* When are writing out the .options or .MIPS.options section,
12820 remember the bytes we are writing out, so that we can install the
12821 GP value in the section_processing routine. */
12822
12823 bfd_boolean
12824 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12825 const void *location,
12826 file_ptr offset, bfd_size_type count)
12827 {
12828 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12829 {
12830 bfd_byte *c;
12831
12832 if (elf_section_data (section) == NULL)
12833 {
12834 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12835 section->used_by_bfd = bfd_zalloc (abfd, amt);
12836 if (elf_section_data (section) == NULL)
12837 return FALSE;
12838 }
12839 c = mips_elf_section_data (section)->u.tdata;
12840 if (c == NULL)
12841 {
12842 c = bfd_zalloc (abfd, section->size);
12843 if (c == NULL)
12844 return FALSE;
12845 mips_elf_section_data (section)->u.tdata = c;
12846 }
12847
12848 memcpy (c + offset, location, count);
12849 }
12850
12851 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12852 count);
12853 }
12854
12855 /* This is almost identical to bfd_generic_get_... except that some
12856 MIPS relocations need to be handled specially. Sigh. */
12857
12858 bfd_byte *
12859 _bfd_elf_mips_get_relocated_section_contents
12860 (bfd *abfd,
12861 struct bfd_link_info *link_info,
12862 struct bfd_link_order *link_order,
12863 bfd_byte *data,
12864 bfd_boolean relocatable,
12865 asymbol **symbols)
12866 {
12867 /* Get enough memory to hold the stuff */
12868 bfd *input_bfd = link_order->u.indirect.section->owner;
12869 asection *input_section = link_order->u.indirect.section;
12870 bfd_size_type sz;
12871
12872 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12873 arelent **reloc_vector = NULL;
12874 long reloc_count;
12875
12876 if (reloc_size < 0)
12877 goto error_return;
12878
12879 reloc_vector = bfd_malloc (reloc_size);
12880 if (reloc_vector == NULL && reloc_size != 0)
12881 goto error_return;
12882
12883 /* read in the section */
12884 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12885 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12886 goto error_return;
12887
12888 reloc_count = bfd_canonicalize_reloc (input_bfd,
12889 input_section,
12890 reloc_vector,
12891 symbols);
12892 if (reloc_count < 0)
12893 goto error_return;
12894
12895 if (reloc_count > 0)
12896 {
12897 arelent **parent;
12898 /* for mips */
12899 int gp_found;
12900 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12901
12902 {
12903 struct bfd_hash_entry *h;
12904 struct bfd_link_hash_entry *lh;
12905 /* Skip all this stuff if we aren't mixing formats. */
12906 if (abfd && input_bfd
12907 && abfd->xvec == input_bfd->xvec)
12908 lh = 0;
12909 else
12910 {
12911 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12912 lh = (struct bfd_link_hash_entry *) h;
12913 }
12914 lookup:
12915 if (lh)
12916 {
12917 switch (lh->type)
12918 {
12919 case bfd_link_hash_undefined:
12920 case bfd_link_hash_undefweak:
12921 case bfd_link_hash_common:
12922 gp_found = 0;
12923 break;
12924 case bfd_link_hash_defined:
12925 case bfd_link_hash_defweak:
12926 gp_found = 1;
12927 gp = lh->u.def.value;
12928 break;
12929 case bfd_link_hash_indirect:
12930 case bfd_link_hash_warning:
12931 lh = lh->u.i.link;
12932 /* @@FIXME ignoring warning for now */
12933 goto lookup;
12934 case bfd_link_hash_new:
12935 default:
12936 abort ();
12937 }
12938 }
12939 else
12940 gp_found = 0;
12941 }
12942 /* end mips */
12943 for (parent = reloc_vector; *parent != NULL; parent++)
12944 {
12945 char *error_message = NULL;
12946 bfd_reloc_status_type r;
12947
12948 /* Specific to MIPS: Deal with relocation types that require
12949 knowing the gp of the output bfd. */
12950 asymbol *sym = *(*parent)->sym_ptr_ptr;
12951
12952 /* If we've managed to find the gp and have a special
12953 function for the relocation then go ahead, else default
12954 to the generic handling. */
12955 if (gp_found
12956 && (*parent)->howto->special_function
12957 == _bfd_mips_elf32_gprel16_reloc)
12958 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12959 input_section, relocatable,
12960 data, gp);
12961 else
12962 r = bfd_perform_relocation (input_bfd, *parent, data,
12963 input_section,
12964 relocatable ? abfd : NULL,
12965 &error_message);
12966
12967 if (relocatable)
12968 {
12969 asection *os = input_section->output_section;
12970
12971 /* A partial link, so keep the relocs */
12972 os->orelocation[os->reloc_count] = *parent;
12973 os->reloc_count++;
12974 }
12975
12976 if (r != bfd_reloc_ok)
12977 {
12978 switch (r)
12979 {
12980 case bfd_reloc_undefined:
12981 (*link_info->callbacks->undefined_symbol)
12982 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12983 input_bfd, input_section, (*parent)->address, TRUE);
12984 break;
12985 case bfd_reloc_dangerous:
12986 BFD_ASSERT (error_message != NULL);
12987 (*link_info->callbacks->reloc_dangerous)
12988 (link_info, error_message,
12989 input_bfd, input_section, (*parent)->address);
12990 break;
12991 case bfd_reloc_overflow:
12992 (*link_info->callbacks->reloc_overflow)
12993 (link_info, NULL,
12994 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12995 (*parent)->howto->name, (*parent)->addend,
12996 input_bfd, input_section, (*parent)->address);
12997 break;
12998 case bfd_reloc_outofrange:
12999 default:
13000 abort ();
13001 break;
13002 }
13003
13004 }
13005 }
13006 }
13007 if (reloc_vector != NULL)
13008 free (reloc_vector);
13009 return data;
13010
13011 error_return:
13012 if (reloc_vector != NULL)
13013 free (reloc_vector);
13014 return NULL;
13015 }
13016 \f
13017 static bfd_boolean
13018 mips_elf_relax_delete_bytes (bfd *abfd,
13019 asection *sec, bfd_vma addr, int count)
13020 {
13021 Elf_Internal_Shdr *symtab_hdr;
13022 unsigned int sec_shndx;
13023 bfd_byte *contents;
13024 Elf_Internal_Rela *irel, *irelend;
13025 Elf_Internal_Sym *isym;
13026 Elf_Internal_Sym *isymend;
13027 struct elf_link_hash_entry **sym_hashes;
13028 struct elf_link_hash_entry **end_hashes;
13029 struct elf_link_hash_entry **start_hashes;
13030 unsigned int symcount;
13031
13032 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13033 contents = elf_section_data (sec)->this_hdr.contents;
13034
13035 irel = elf_section_data (sec)->relocs;
13036 irelend = irel + sec->reloc_count;
13037
13038 /* Actually delete the bytes. */
13039 memmove (contents + addr, contents + addr + count,
13040 (size_t) (sec->size - addr - count));
13041 sec->size -= count;
13042
13043 /* Adjust all the relocs. */
13044 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13045 {
13046 /* Get the new reloc address. */
13047 if (irel->r_offset > addr)
13048 irel->r_offset -= count;
13049 }
13050
13051 BFD_ASSERT (addr % 2 == 0);
13052 BFD_ASSERT (count % 2 == 0);
13053
13054 /* Adjust the local symbols defined in this section. */
13055 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13056 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13057 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13058 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13059 isym->st_value -= count;
13060
13061 /* Now adjust the global symbols defined in this section. */
13062 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13063 - symtab_hdr->sh_info);
13064 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13065 end_hashes = sym_hashes + symcount;
13066
13067 for (; sym_hashes < end_hashes; sym_hashes++)
13068 {
13069 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13070
13071 if ((sym_hash->root.type == bfd_link_hash_defined
13072 || sym_hash->root.type == bfd_link_hash_defweak)
13073 && sym_hash->root.u.def.section == sec)
13074 {
13075 bfd_vma value = sym_hash->root.u.def.value;
13076
13077 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13078 value &= MINUS_TWO;
13079 if (value > addr)
13080 sym_hash->root.u.def.value -= count;
13081 }
13082 }
13083
13084 return TRUE;
13085 }
13086
13087
13088 /* Opcodes needed for microMIPS relaxation as found in
13089 opcodes/micromips-opc.c. */
13090
13091 struct opcode_descriptor {
13092 unsigned long match;
13093 unsigned long mask;
13094 };
13095
13096 /* The $ra register aka $31. */
13097
13098 #define RA 31
13099
13100 /* 32-bit instruction format register fields. */
13101
13102 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13103 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13104
13105 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13106
13107 #define OP16_VALID_REG(r) \
13108 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13109
13110
13111 /* 32-bit and 16-bit branches. */
13112
13113 static const struct opcode_descriptor b_insns_32[] = {
13114 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13115 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13116 { 0, 0 } /* End marker for find_match(). */
13117 };
13118
13119 static const struct opcode_descriptor bc_insn_32 =
13120 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13121
13122 static const struct opcode_descriptor bz_insn_32 =
13123 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13124
13125 static const struct opcode_descriptor bzal_insn_32 =
13126 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13127
13128 static const struct opcode_descriptor beq_insn_32 =
13129 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13130
13131 static const struct opcode_descriptor b_insn_16 =
13132 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13133
13134 static const struct opcode_descriptor bz_insn_16 =
13135 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13136
13137
13138 /* 32-bit and 16-bit branch EQ and NE zero. */
13139
13140 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13141 eq and second the ne. This convention is used when replacing a
13142 32-bit BEQ/BNE with the 16-bit version. */
13143
13144 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13145
13146 static const struct opcode_descriptor bz_rs_insns_32[] = {
13147 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13148 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13149 { 0, 0 } /* End marker for find_match(). */
13150 };
13151
13152 static const struct opcode_descriptor bz_rt_insns_32[] = {
13153 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13154 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13155 { 0, 0 } /* End marker for find_match(). */
13156 };
13157
13158 static const struct opcode_descriptor bzc_insns_32[] = {
13159 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13160 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13161 { 0, 0 } /* End marker for find_match(). */
13162 };
13163
13164 static const struct opcode_descriptor bz_insns_16[] = {
13165 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13166 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13167 { 0, 0 } /* End marker for find_match(). */
13168 };
13169
13170 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13171
13172 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13173 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13174
13175
13176 /* 32-bit instructions with a delay slot. */
13177
13178 static const struct opcode_descriptor jal_insn_32_bd16 =
13179 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13180
13181 static const struct opcode_descriptor jal_insn_32_bd32 =
13182 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13183
13184 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13185 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13186
13187 static const struct opcode_descriptor j_insn_32 =
13188 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13189
13190 static const struct opcode_descriptor jalr_insn_32 =
13191 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13192
13193 /* This table can be compacted, because no opcode replacement is made. */
13194
13195 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13196 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13197
13198 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13199 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13200
13201 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13202 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13203 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13204 { 0, 0 } /* End marker for find_match(). */
13205 };
13206
13207 /* This table can be compacted, because no opcode replacement is made. */
13208
13209 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13210 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13211
13212 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13213 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13214 { 0, 0 } /* End marker for find_match(). */
13215 };
13216
13217
13218 /* 16-bit instructions with a delay slot. */
13219
13220 static const struct opcode_descriptor jalr_insn_16_bd16 =
13221 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13222
13223 static const struct opcode_descriptor jalr_insn_16_bd32 =
13224 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13225
13226 static const struct opcode_descriptor jr_insn_16 =
13227 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13228
13229 #define JR16_REG(opcode) ((opcode) & 0x1f)
13230
13231 /* This table can be compacted, because no opcode replacement is made. */
13232
13233 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13234 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13235
13236 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13237 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13238 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13239 { 0, 0 } /* End marker for find_match(). */
13240 };
13241
13242
13243 /* LUI instruction. */
13244
13245 static const struct opcode_descriptor lui_insn =
13246 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13247
13248
13249 /* ADDIU instruction. */
13250
13251 static const struct opcode_descriptor addiu_insn =
13252 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13253
13254 static const struct opcode_descriptor addiupc_insn =
13255 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13256
13257 #define ADDIUPC_REG_FIELD(r) \
13258 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13259
13260
13261 /* Relaxable instructions in a JAL delay slot: MOVE. */
13262
13263 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13264 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13265 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13266 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13267
13268 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13269 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13270
13271 static const struct opcode_descriptor move_insns_32[] = {
13272 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13273 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13274 { 0, 0 } /* End marker for find_match(). */
13275 };
13276
13277 static const struct opcode_descriptor move_insn_16 =
13278 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13279
13280
13281 /* NOP instructions. */
13282
13283 static const struct opcode_descriptor nop_insn_32 =
13284 { /* "nop", "", */ 0x00000000, 0xffffffff };
13285
13286 static const struct opcode_descriptor nop_insn_16 =
13287 { /* "nop", "", */ 0x0c00, 0xffff };
13288
13289
13290 /* Instruction match support. */
13291
13292 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13293
13294 static int
13295 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13296 {
13297 unsigned long indx;
13298
13299 for (indx = 0; insn[indx].mask != 0; indx++)
13300 if (MATCH (opcode, insn[indx]))
13301 return indx;
13302
13303 return -1;
13304 }
13305
13306
13307 /* Branch and delay slot decoding support. */
13308
13309 /* If PTR points to what *might* be a 16-bit branch or jump, then
13310 return the minimum length of its delay slot, otherwise return 0.
13311 Non-zero results are not definitive as we might be checking against
13312 the second half of another instruction. */
13313
13314 static int
13315 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13316 {
13317 unsigned long opcode;
13318 int bdsize;
13319
13320 opcode = bfd_get_16 (abfd, ptr);
13321 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13322 /* 16-bit branch/jump with a 32-bit delay slot. */
13323 bdsize = 4;
13324 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13325 || find_match (opcode, ds_insns_16_bd16) >= 0)
13326 /* 16-bit branch/jump with a 16-bit delay slot. */
13327 bdsize = 2;
13328 else
13329 /* No delay slot. */
13330 bdsize = 0;
13331
13332 return bdsize;
13333 }
13334
13335 /* If PTR points to what *might* be a 32-bit branch or jump, then
13336 return the minimum length of its delay slot, otherwise return 0.
13337 Non-zero results are not definitive as we might be checking against
13338 the second half of another instruction. */
13339
13340 static int
13341 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13342 {
13343 unsigned long opcode;
13344 int bdsize;
13345
13346 opcode = bfd_get_micromips_32 (abfd, ptr);
13347 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13348 /* 32-bit branch/jump with a 32-bit delay slot. */
13349 bdsize = 4;
13350 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13351 /* 32-bit branch/jump with a 16-bit delay slot. */
13352 bdsize = 2;
13353 else
13354 /* No delay slot. */
13355 bdsize = 0;
13356
13357 return bdsize;
13358 }
13359
13360 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13361 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13362
13363 static bfd_boolean
13364 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13365 {
13366 unsigned long opcode;
13367
13368 opcode = bfd_get_16 (abfd, ptr);
13369 if (MATCH (opcode, b_insn_16)
13370 /* B16 */
13371 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13372 /* JR16 */
13373 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13374 /* BEQZ16, BNEZ16 */
13375 || (MATCH (opcode, jalr_insn_16_bd32)
13376 /* JALR16 */
13377 && reg != JR16_REG (opcode) && reg != RA))
13378 return TRUE;
13379
13380 return FALSE;
13381 }
13382
13383 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13384 then return TRUE, otherwise FALSE. */
13385
13386 static bfd_boolean
13387 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13388 {
13389 unsigned long opcode;
13390
13391 opcode = bfd_get_micromips_32 (abfd, ptr);
13392 if (MATCH (opcode, j_insn_32)
13393 /* J */
13394 || MATCH (opcode, bc_insn_32)
13395 /* BC1F, BC1T, BC2F, BC2T */
13396 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13397 /* JAL, JALX */
13398 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13399 /* BGEZ, BGTZ, BLEZ, BLTZ */
13400 || (MATCH (opcode, bzal_insn_32)
13401 /* BGEZAL, BLTZAL */
13402 && reg != OP32_SREG (opcode) && reg != RA)
13403 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13404 /* JALR, JALR.HB, BEQ, BNE */
13405 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13406 return TRUE;
13407
13408 return FALSE;
13409 }
13410
13411 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13412 IRELEND) at OFFSET indicate that there must be a compact branch there,
13413 then return TRUE, otherwise FALSE. */
13414
13415 static bfd_boolean
13416 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13417 const Elf_Internal_Rela *internal_relocs,
13418 const Elf_Internal_Rela *irelend)
13419 {
13420 const Elf_Internal_Rela *irel;
13421 unsigned long opcode;
13422
13423 opcode = bfd_get_micromips_32 (abfd, ptr);
13424 if (find_match (opcode, bzc_insns_32) < 0)
13425 return FALSE;
13426
13427 for (irel = internal_relocs; irel < irelend; irel++)
13428 if (irel->r_offset == offset
13429 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13430 return TRUE;
13431
13432 return FALSE;
13433 }
13434
13435 /* Bitsize checking. */
13436 #define IS_BITSIZE(val, N) \
13437 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13438 - (1ULL << ((N) - 1))) == (val))
13439
13440 \f
13441 bfd_boolean
13442 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13443 struct bfd_link_info *link_info,
13444 bfd_boolean *again)
13445 {
13446 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13447 Elf_Internal_Shdr *symtab_hdr;
13448 Elf_Internal_Rela *internal_relocs;
13449 Elf_Internal_Rela *irel, *irelend;
13450 bfd_byte *contents = NULL;
13451 Elf_Internal_Sym *isymbuf = NULL;
13452
13453 /* Assume nothing changes. */
13454 *again = FALSE;
13455
13456 /* We don't have to do anything for a relocatable link, if
13457 this section does not have relocs, or if this is not a
13458 code section. */
13459
13460 if (bfd_link_relocatable (link_info)
13461 || (sec->flags & SEC_RELOC) == 0
13462 || sec->reloc_count == 0
13463 || (sec->flags & SEC_CODE) == 0)
13464 return TRUE;
13465
13466 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13467
13468 /* Get a copy of the native relocations. */
13469 internal_relocs = (_bfd_elf_link_read_relocs
13470 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13471 link_info->keep_memory));
13472 if (internal_relocs == NULL)
13473 goto error_return;
13474
13475 /* Walk through them looking for relaxing opportunities. */
13476 irelend = internal_relocs + sec->reloc_count;
13477 for (irel = internal_relocs; irel < irelend; irel++)
13478 {
13479 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13480 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13481 bfd_boolean target_is_micromips_code_p;
13482 unsigned long opcode;
13483 bfd_vma symval;
13484 bfd_vma pcrval;
13485 bfd_byte *ptr;
13486 int fndopc;
13487
13488 /* The number of bytes to delete for relaxation and from where
13489 to delete these bytes starting at irel->r_offset. */
13490 int delcnt = 0;
13491 int deloff = 0;
13492
13493 /* If this isn't something that can be relaxed, then ignore
13494 this reloc. */
13495 if (r_type != R_MICROMIPS_HI16
13496 && r_type != R_MICROMIPS_PC16_S1
13497 && r_type != R_MICROMIPS_26_S1)
13498 continue;
13499
13500 /* Get the section contents if we haven't done so already. */
13501 if (contents == NULL)
13502 {
13503 /* Get cached copy if it exists. */
13504 if (elf_section_data (sec)->this_hdr.contents != NULL)
13505 contents = elf_section_data (sec)->this_hdr.contents;
13506 /* Go get them off disk. */
13507 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13508 goto error_return;
13509 }
13510 ptr = contents + irel->r_offset;
13511
13512 /* Read this BFD's local symbols if we haven't done so already. */
13513 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13514 {
13515 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13516 if (isymbuf == NULL)
13517 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13518 symtab_hdr->sh_info, 0,
13519 NULL, NULL, NULL);
13520 if (isymbuf == NULL)
13521 goto error_return;
13522 }
13523
13524 /* Get the value of the symbol referred to by the reloc. */
13525 if (r_symndx < symtab_hdr->sh_info)
13526 {
13527 /* A local symbol. */
13528 Elf_Internal_Sym *isym;
13529 asection *sym_sec;
13530
13531 isym = isymbuf + r_symndx;
13532 if (isym->st_shndx == SHN_UNDEF)
13533 sym_sec = bfd_und_section_ptr;
13534 else if (isym->st_shndx == SHN_ABS)
13535 sym_sec = bfd_abs_section_ptr;
13536 else if (isym->st_shndx == SHN_COMMON)
13537 sym_sec = bfd_com_section_ptr;
13538 else
13539 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13540 symval = (isym->st_value
13541 + sym_sec->output_section->vma
13542 + sym_sec->output_offset);
13543 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13544 }
13545 else
13546 {
13547 unsigned long indx;
13548 struct elf_link_hash_entry *h;
13549
13550 /* An external symbol. */
13551 indx = r_symndx - symtab_hdr->sh_info;
13552 h = elf_sym_hashes (abfd)[indx];
13553 BFD_ASSERT (h != NULL);
13554
13555 if (h->root.type != bfd_link_hash_defined
13556 && h->root.type != bfd_link_hash_defweak)
13557 /* This appears to be a reference to an undefined
13558 symbol. Just ignore it -- it will be caught by the
13559 regular reloc processing. */
13560 continue;
13561
13562 symval = (h->root.u.def.value
13563 + h->root.u.def.section->output_section->vma
13564 + h->root.u.def.section->output_offset);
13565 target_is_micromips_code_p = (!h->needs_plt
13566 && ELF_ST_IS_MICROMIPS (h->other));
13567 }
13568
13569
13570 /* For simplicity of coding, we are going to modify the
13571 section contents, the section relocs, and the BFD symbol
13572 table. We must tell the rest of the code not to free up this
13573 information. It would be possible to instead create a table
13574 of changes which have to be made, as is done in coff-mips.c;
13575 that would be more work, but would require less memory when
13576 the linker is run. */
13577
13578 /* Only 32-bit instructions relaxed. */
13579 if (irel->r_offset + 4 > sec->size)
13580 continue;
13581
13582 opcode = bfd_get_micromips_32 (abfd, ptr);
13583
13584 /* This is the pc-relative distance from the instruction the
13585 relocation is applied to, to the symbol referred. */
13586 pcrval = (symval
13587 - (sec->output_section->vma + sec->output_offset)
13588 - irel->r_offset);
13589
13590 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13591 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13592 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13593
13594 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13595
13596 where pcrval has first to be adjusted to apply against the LO16
13597 location (we make the adjustment later on, when we have figured
13598 out the offset). */
13599 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13600 {
13601 bfd_boolean bzc = FALSE;
13602 unsigned long nextopc;
13603 unsigned long reg;
13604 bfd_vma offset;
13605
13606 /* Give up if the previous reloc was a HI16 against this symbol
13607 too. */
13608 if (irel > internal_relocs
13609 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13610 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13611 continue;
13612
13613 /* Or if the next reloc is not a LO16 against this symbol. */
13614 if (irel + 1 >= irelend
13615 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13616 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13617 continue;
13618
13619 /* Or if the second next reloc is a LO16 against this symbol too. */
13620 if (irel + 2 >= irelend
13621 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13622 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13623 continue;
13624
13625 /* See if the LUI instruction *might* be in a branch delay slot.
13626 We check whether what looks like a 16-bit branch or jump is
13627 actually an immediate argument to a compact branch, and let
13628 it through if so. */
13629 if (irel->r_offset >= 2
13630 && check_br16_dslot (abfd, ptr - 2)
13631 && !(irel->r_offset >= 4
13632 && (bzc = check_relocated_bzc (abfd,
13633 ptr - 4, irel->r_offset - 4,
13634 internal_relocs, irelend))))
13635 continue;
13636 if (irel->r_offset >= 4
13637 && !bzc
13638 && check_br32_dslot (abfd, ptr - 4))
13639 continue;
13640
13641 reg = OP32_SREG (opcode);
13642
13643 /* We only relax adjacent instructions or ones separated with
13644 a branch or jump that has a delay slot. The branch or jump
13645 must not fiddle with the register used to hold the address.
13646 Subtract 4 for the LUI itself. */
13647 offset = irel[1].r_offset - irel[0].r_offset;
13648 switch (offset - 4)
13649 {
13650 case 0:
13651 break;
13652 case 2:
13653 if (check_br16 (abfd, ptr + 4, reg))
13654 break;
13655 continue;
13656 case 4:
13657 if (check_br32 (abfd, ptr + 4, reg))
13658 break;
13659 continue;
13660 default:
13661 continue;
13662 }
13663
13664 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13665
13666 /* Give up unless the same register is used with both
13667 relocations. */
13668 if (OP32_SREG (nextopc) != reg)
13669 continue;
13670
13671 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13672 and rounding up to take masking of the two LSBs into account. */
13673 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13674
13675 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13676 if (IS_BITSIZE (symval, 16))
13677 {
13678 /* Fix the relocation's type. */
13679 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13680
13681 /* Instructions using R_MICROMIPS_LO16 have the base or
13682 source register in bits 20:16. This register becomes $0
13683 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13684 nextopc &= ~0x001f0000;
13685 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13686 contents + irel[1].r_offset);
13687 }
13688
13689 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13690 We add 4 to take LUI deletion into account while checking
13691 the PC-relative distance. */
13692 else if (symval % 4 == 0
13693 && IS_BITSIZE (pcrval + 4, 25)
13694 && MATCH (nextopc, addiu_insn)
13695 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13696 && OP16_VALID_REG (OP32_TREG (nextopc)))
13697 {
13698 /* Fix the relocation's type. */
13699 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13700
13701 /* Replace ADDIU with the ADDIUPC version. */
13702 nextopc = (addiupc_insn.match
13703 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13704
13705 bfd_put_micromips_32 (abfd, nextopc,
13706 contents + irel[1].r_offset);
13707 }
13708
13709 /* Can't do anything, give up, sigh... */
13710 else
13711 continue;
13712
13713 /* Fix the relocation's type. */
13714 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13715
13716 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13717 delcnt = 4;
13718 deloff = 0;
13719 }
13720
13721 /* Compact branch relaxation -- due to the multitude of macros
13722 employed by the compiler/assembler, compact branches are not
13723 always generated. Obviously, this can/will be fixed elsewhere,
13724 but there is no drawback in double checking it here. */
13725 else if (r_type == R_MICROMIPS_PC16_S1
13726 && irel->r_offset + 5 < sec->size
13727 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13728 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13729 && ((!insn32
13730 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13731 nop_insn_16) ? 2 : 0))
13732 || (irel->r_offset + 7 < sec->size
13733 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13734 ptr + 4),
13735 nop_insn_32) ? 4 : 0))))
13736 {
13737 unsigned long reg;
13738
13739 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13740
13741 /* Replace BEQZ/BNEZ with the compact version. */
13742 opcode = (bzc_insns_32[fndopc].match
13743 | BZC32_REG_FIELD (reg)
13744 | (opcode & 0xffff)); /* Addend value. */
13745
13746 bfd_put_micromips_32 (abfd, opcode, ptr);
13747
13748 /* Delete the delay slot NOP: two or four bytes from
13749 irel->offset + 4; delcnt has already been set above. */
13750 deloff = 4;
13751 }
13752
13753 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13754 to check the distance from the next instruction, so subtract 2. */
13755 else if (!insn32
13756 && r_type == R_MICROMIPS_PC16_S1
13757 && IS_BITSIZE (pcrval - 2, 11)
13758 && find_match (opcode, b_insns_32) >= 0)
13759 {
13760 /* Fix the relocation's type. */
13761 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13762
13763 /* Replace the 32-bit opcode with a 16-bit opcode. */
13764 bfd_put_16 (abfd,
13765 (b_insn_16.match
13766 | (opcode & 0x3ff)), /* Addend value. */
13767 ptr);
13768
13769 /* Delete 2 bytes from irel->r_offset + 2. */
13770 delcnt = 2;
13771 deloff = 2;
13772 }
13773
13774 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13775 to check the distance from the next instruction, so subtract 2. */
13776 else if (!insn32
13777 && r_type == R_MICROMIPS_PC16_S1
13778 && IS_BITSIZE (pcrval - 2, 8)
13779 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13780 && OP16_VALID_REG (OP32_SREG (opcode)))
13781 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13782 && OP16_VALID_REG (OP32_TREG (opcode)))))
13783 {
13784 unsigned long reg;
13785
13786 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13787
13788 /* Fix the relocation's type. */
13789 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13790
13791 /* Replace the 32-bit opcode with a 16-bit opcode. */
13792 bfd_put_16 (abfd,
13793 (bz_insns_16[fndopc].match
13794 | BZ16_REG_FIELD (reg)
13795 | (opcode & 0x7f)), /* Addend value. */
13796 ptr);
13797
13798 /* Delete 2 bytes from irel->r_offset + 2. */
13799 delcnt = 2;
13800 deloff = 2;
13801 }
13802
13803 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13804 else if (!insn32
13805 && r_type == R_MICROMIPS_26_S1
13806 && target_is_micromips_code_p
13807 && irel->r_offset + 7 < sec->size
13808 && MATCH (opcode, jal_insn_32_bd32))
13809 {
13810 unsigned long n32opc;
13811 bfd_boolean relaxed = FALSE;
13812
13813 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13814
13815 if (MATCH (n32opc, nop_insn_32))
13816 {
13817 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13818 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13819
13820 relaxed = TRUE;
13821 }
13822 else if (find_match (n32opc, move_insns_32) >= 0)
13823 {
13824 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13825 bfd_put_16 (abfd,
13826 (move_insn_16.match
13827 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13828 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13829 ptr + 4);
13830
13831 relaxed = TRUE;
13832 }
13833 /* Other 32-bit instructions relaxable to 16-bit
13834 instructions will be handled here later. */
13835
13836 if (relaxed)
13837 {
13838 /* JAL with 32-bit delay slot that is changed to a JALS
13839 with 16-bit delay slot. */
13840 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13841
13842 /* Delete 2 bytes from irel->r_offset + 6. */
13843 delcnt = 2;
13844 deloff = 6;
13845 }
13846 }
13847
13848 if (delcnt != 0)
13849 {
13850 /* Note that we've changed the relocs, section contents, etc. */
13851 elf_section_data (sec)->relocs = internal_relocs;
13852 elf_section_data (sec)->this_hdr.contents = contents;
13853 symtab_hdr->contents = (unsigned char *) isymbuf;
13854
13855 /* Delete bytes depending on the delcnt and deloff. */
13856 if (!mips_elf_relax_delete_bytes (abfd, sec,
13857 irel->r_offset + deloff, delcnt))
13858 goto error_return;
13859
13860 /* That will change things, so we should relax again.
13861 Note that this is not required, and it may be slow. */
13862 *again = TRUE;
13863 }
13864 }
13865
13866 if (isymbuf != NULL
13867 && symtab_hdr->contents != (unsigned char *) isymbuf)
13868 {
13869 if (! link_info->keep_memory)
13870 free (isymbuf);
13871 else
13872 {
13873 /* Cache the symbols for elf_link_input_bfd. */
13874 symtab_hdr->contents = (unsigned char *) isymbuf;
13875 }
13876 }
13877
13878 if (contents != NULL
13879 && elf_section_data (sec)->this_hdr.contents != contents)
13880 {
13881 if (! link_info->keep_memory)
13882 free (contents);
13883 else
13884 {
13885 /* Cache the section contents for elf_link_input_bfd. */
13886 elf_section_data (sec)->this_hdr.contents = contents;
13887 }
13888 }
13889
13890 if (internal_relocs != NULL
13891 && elf_section_data (sec)->relocs != internal_relocs)
13892 free (internal_relocs);
13893
13894 return TRUE;
13895
13896 error_return:
13897 if (isymbuf != NULL
13898 && symtab_hdr->contents != (unsigned char *) isymbuf)
13899 free (isymbuf);
13900 if (contents != NULL
13901 && elf_section_data (sec)->this_hdr.contents != contents)
13902 free (contents);
13903 if (internal_relocs != NULL
13904 && elf_section_data (sec)->relocs != internal_relocs)
13905 free (internal_relocs);
13906
13907 return FALSE;
13908 }
13909 \f
13910 /* Create a MIPS ELF linker hash table. */
13911
13912 struct bfd_link_hash_table *
13913 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13914 {
13915 struct mips_elf_link_hash_table *ret;
13916 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13917
13918 ret = bfd_zmalloc (amt);
13919 if (ret == NULL)
13920 return NULL;
13921
13922 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13923 mips_elf_link_hash_newfunc,
13924 sizeof (struct mips_elf_link_hash_entry),
13925 MIPS_ELF_DATA))
13926 {
13927 free (ret);
13928 return NULL;
13929 }
13930 ret->root.init_plt_refcount.plist = NULL;
13931 ret->root.init_plt_offset.plist = NULL;
13932
13933 return &ret->root.root;
13934 }
13935
13936 /* Likewise, but indicate that the target is VxWorks. */
13937
13938 struct bfd_link_hash_table *
13939 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13940 {
13941 struct bfd_link_hash_table *ret;
13942
13943 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13944 if (ret)
13945 {
13946 struct mips_elf_link_hash_table *htab;
13947
13948 htab = (struct mips_elf_link_hash_table *) ret;
13949 htab->use_plts_and_copy_relocs = TRUE;
13950 htab->is_vxworks = TRUE;
13951 }
13952 return ret;
13953 }
13954
13955 /* A function that the linker calls if we are allowed to use PLTs
13956 and copy relocs. */
13957
13958 void
13959 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13960 {
13961 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13962 }
13963
13964 /* A function that the linker calls to select between all or only
13965 32-bit microMIPS instructions, and between making or ignoring
13966 branch relocation checks for invalid transitions between ISA modes. */
13967
13968 void
13969 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13970 bfd_boolean ignore_branch_isa)
13971 {
13972 mips_elf_hash_table (info)->insn32 = insn32;
13973 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13974 }
13975 \f
13976 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13977
13978 struct mips_mach_extension
13979 {
13980 unsigned long extension, base;
13981 };
13982
13983
13984 /* An array describing how BFD machines relate to one another. The entries
13985 are ordered topologically with MIPS I extensions listed last. */
13986
13987 static const struct mips_mach_extension mips_mach_extensions[] =
13988 {
13989 /* MIPS64r2 extensions. */
13990 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13991 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13992 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13993 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13994 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13995
13996 /* MIPS64 extensions. */
13997 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13998 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13999 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14000
14001 /* MIPS V extensions. */
14002 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14003
14004 /* R10000 extensions. */
14005 { bfd_mach_mips12000, bfd_mach_mips10000 },
14006 { bfd_mach_mips14000, bfd_mach_mips10000 },
14007 { bfd_mach_mips16000, bfd_mach_mips10000 },
14008
14009 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14010 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14011 better to allow vr5400 and vr5500 code to be merged anyway, since
14012 many libraries will just use the core ISA. Perhaps we could add
14013 some sort of ASE flag if this ever proves a problem. */
14014 { bfd_mach_mips5500, bfd_mach_mips5400 },
14015 { bfd_mach_mips5400, bfd_mach_mips5000 },
14016
14017 /* MIPS IV extensions. */
14018 { bfd_mach_mips5, bfd_mach_mips8000 },
14019 { bfd_mach_mips10000, bfd_mach_mips8000 },
14020 { bfd_mach_mips5000, bfd_mach_mips8000 },
14021 { bfd_mach_mips7000, bfd_mach_mips8000 },
14022 { bfd_mach_mips9000, bfd_mach_mips8000 },
14023
14024 /* VR4100 extensions. */
14025 { bfd_mach_mips4120, bfd_mach_mips4100 },
14026 { bfd_mach_mips4111, bfd_mach_mips4100 },
14027
14028 /* MIPS III extensions. */
14029 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14030 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14031 { bfd_mach_mips8000, bfd_mach_mips4000 },
14032 { bfd_mach_mips4650, bfd_mach_mips4000 },
14033 { bfd_mach_mips4600, bfd_mach_mips4000 },
14034 { bfd_mach_mips4400, bfd_mach_mips4000 },
14035 { bfd_mach_mips4300, bfd_mach_mips4000 },
14036 { bfd_mach_mips4100, bfd_mach_mips4000 },
14037 { bfd_mach_mips5900, bfd_mach_mips4000 },
14038
14039 /* MIPS32r3 extensions. */
14040 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14041
14042 /* MIPS32r2 extensions. */
14043 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14044
14045 /* MIPS32 extensions. */
14046 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14047
14048 /* MIPS II extensions. */
14049 { bfd_mach_mips4000, bfd_mach_mips6000 },
14050 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14051 { bfd_mach_mips4010, bfd_mach_mips6000 },
14052
14053 /* MIPS I extensions. */
14054 { bfd_mach_mips6000, bfd_mach_mips3000 },
14055 { bfd_mach_mips3900, bfd_mach_mips3000 }
14056 };
14057
14058 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14059
14060 static bfd_boolean
14061 mips_mach_extends_p (unsigned long base, unsigned long extension)
14062 {
14063 size_t i;
14064
14065 if (extension == base)
14066 return TRUE;
14067
14068 if (base == bfd_mach_mipsisa32
14069 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14070 return TRUE;
14071
14072 if (base == bfd_mach_mipsisa32r2
14073 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14074 return TRUE;
14075
14076 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14077 if (extension == mips_mach_extensions[i].extension)
14078 {
14079 extension = mips_mach_extensions[i].base;
14080 if (extension == base)
14081 return TRUE;
14082 }
14083
14084 return FALSE;
14085 }
14086
14087 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14088
14089 static unsigned long
14090 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14091 {
14092 switch (isa_ext)
14093 {
14094 case AFL_EXT_3900: return bfd_mach_mips3900;
14095 case AFL_EXT_4010: return bfd_mach_mips4010;
14096 case AFL_EXT_4100: return bfd_mach_mips4100;
14097 case AFL_EXT_4111: return bfd_mach_mips4111;
14098 case AFL_EXT_4120: return bfd_mach_mips4120;
14099 case AFL_EXT_4650: return bfd_mach_mips4650;
14100 case AFL_EXT_5400: return bfd_mach_mips5400;
14101 case AFL_EXT_5500: return bfd_mach_mips5500;
14102 case AFL_EXT_5900: return bfd_mach_mips5900;
14103 case AFL_EXT_10000: return bfd_mach_mips10000;
14104 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14105 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14106 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14107 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14108 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14109 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14110 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14111 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14112 default: return bfd_mach_mips3000;
14113 }
14114 }
14115
14116 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14117
14118 unsigned int
14119 bfd_mips_isa_ext (bfd *abfd)
14120 {
14121 switch (bfd_get_mach (abfd))
14122 {
14123 case bfd_mach_mips3900: return AFL_EXT_3900;
14124 case bfd_mach_mips4010: return AFL_EXT_4010;
14125 case bfd_mach_mips4100: return AFL_EXT_4100;
14126 case bfd_mach_mips4111: return AFL_EXT_4111;
14127 case bfd_mach_mips4120: return AFL_EXT_4120;
14128 case bfd_mach_mips4650: return AFL_EXT_4650;
14129 case bfd_mach_mips5400: return AFL_EXT_5400;
14130 case bfd_mach_mips5500: return AFL_EXT_5500;
14131 case bfd_mach_mips5900: return AFL_EXT_5900;
14132 case bfd_mach_mips10000: return AFL_EXT_10000;
14133 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14134 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14135 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14136 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14137 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14138 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14139 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14140 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14141 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14142 case bfd_mach_mips_interaptiv_mr2:
14143 return AFL_EXT_INTERAPTIV_MR2;
14144 default: return 0;
14145 }
14146 }
14147
14148 /* Encode ISA level and revision as a single value. */
14149 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14150
14151 /* Decode a single value into level and revision. */
14152 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14153 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14154
14155 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14156
14157 static void
14158 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14159 {
14160 int new_isa = 0;
14161 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14162 {
14163 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14164 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14165 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14166 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14167 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14168 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14169 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14170 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14171 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14172 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14173 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14174 default:
14175 _bfd_error_handler
14176 /* xgettext:c-format */
14177 (_("%pB: unknown architecture %s"),
14178 abfd, bfd_printable_name (abfd));
14179 }
14180
14181 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14182 {
14183 abiflags->isa_level = ISA_LEVEL (new_isa);
14184 abiflags->isa_rev = ISA_REV (new_isa);
14185 }
14186
14187 /* Update the isa_ext if ABFD describes a further extension. */
14188 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14189 bfd_get_mach (abfd)))
14190 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14191 }
14192
14193 /* Return true if the given ELF header flags describe a 32-bit binary. */
14194
14195 static bfd_boolean
14196 mips_32bit_flags_p (flagword flags)
14197 {
14198 return ((flags & EF_MIPS_32BITMODE) != 0
14199 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14200 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14201 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14202 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14203 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14204 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14205 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14206 }
14207
14208 /* Infer the content of the ABI flags based on the elf header. */
14209
14210 static void
14211 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14212 {
14213 obj_attribute *in_attr;
14214
14215 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14216 update_mips_abiflags_isa (abfd, abiflags);
14217
14218 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14219 abiflags->gpr_size = AFL_REG_32;
14220 else
14221 abiflags->gpr_size = AFL_REG_64;
14222
14223 abiflags->cpr1_size = AFL_REG_NONE;
14224
14225 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14226 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14227
14228 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14229 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14230 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14231 && abiflags->gpr_size == AFL_REG_32))
14232 abiflags->cpr1_size = AFL_REG_32;
14233 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14234 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14235 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14236 abiflags->cpr1_size = AFL_REG_64;
14237
14238 abiflags->cpr2_size = AFL_REG_NONE;
14239
14240 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14241 abiflags->ases |= AFL_ASE_MDMX;
14242 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14243 abiflags->ases |= AFL_ASE_MIPS16;
14244 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14245 abiflags->ases |= AFL_ASE_MICROMIPS;
14246
14247 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14248 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14249 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14250 && abiflags->isa_level >= 32
14251 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14252 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14253 }
14254
14255 /* We need to use a special link routine to handle the .reginfo and
14256 the .mdebug sections. We need to merge all instances of these
14257 sections together, not write them all out sequentially. */
14258
14259 bfd_boolean
14260 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14261 {
14262 asection *o;
14263 struct bfd_link_order *p;
14264 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14265 asection *rtproc_sec, *abiflags_sec;
14266 Elf32_RegInfo reginfo;
14267 struct ecoff_debug_info debug;
14268 struct mips_htab_traverse_info hti;
14269 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14270 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14271 HDRR *symhdr = &debug.symbolic_header;
14272 void *mdebug_handle = NULL;
14273 asection *s;
14274 EXTR esym;
14275 unsigned int i;
14276 bfd_size_type amt;
14277 struct mips_elf_link_hash_table *htab;
14278
14279 static const char * const secname[] =
14280 {
14281 ".text", ".init", ".fini", ".data",
14282 ".rodata", ".sdata", ".sbss", ".bss"
14283 };
14284 static const int sc[] =
14285 {
14286 scText, scInit, scFini, scData,
14287 scRData, scSData, scSBss, scBss
14288 };
14289
14290 htab = mips_elf_hash_table (info);
14291 BFD_ASSERT (htab != NULL);
14292
14293 /* Sort the dynamic symbols so that those with GOT entries come after
14294 those without. */
14295 if (!mips_elf_sort_hash_table (abfd, info))
14296 return FALSE;
14297
14298 /* Create any scheduled LA25 stubs. */
14299 hti.info = info;
14300 hti.output_bfd = abfd;
14301 hti.error = FALSE;
14302 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14303 if (hti.error)
14304 return FALSE;
14305
14306 /* Get a value for the GP register. */
14307 if (elf_gp (abfd) == 0)
14308 {
14309 struct bfd_link_hash_entry *h;
14310
14311 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14312 if (h != NULL && h->type == bfd_link_hash_defined)
14313 elf_gp (abfd) = (h->u.def.value
14314 + h->u.def.section->output_section->vma
14315 + h->u.def.section->output_offset);
14316 else if (htab->is_vxworks
14317 && (h = bfd_link_hash_lookup (info->hash,
14318 "_GLOBAL_OFFSET_TABLE_",
14319 FALSE, FALSE, TRUE))
14320 && h->type == bfd_link_hash_defined)
14321 elf_gp (abfd) = (h->u.def.section->output_section->vma
14322 + h->u.def.section->output_offset
14323 + h->u.def.value);
14324 else if (bfd_link_relocatable (info))
14325 {
14326 bfd_vma lo = MINUS_ONE;
14327
14328 /* Find the GP-relative section with the lowest offset. */
14329 for (o = abfd->sections; o != NULL; o = o->next)
14330 if (o->vma < lo
14331 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14332 lo = o->vma;
14333
14334 /* And calculate GP relative to that. */
14335 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14336 }
14337 else
14338 {
14339 /* If the relocate_section function needs to do a reloc
14340 involving the GP value, it should make a reloc_dangerous
14341 callback to warn that GP is not defined. */
14342 }
14343 }
14344
14345 /* Go through the sections and collect the .reginfo and .mdebug
14346 information. */
14347 abiflags_sec = NULL;
14348 reginfo_sec = NULL;
14349 mdebug_sec = NULL;
14350 gptab_data_sec = NULL;
14351 gptab_bss_sec = NULL;
14352 for (o = abfd->sections; o != NULL; o = o->next)
14353 {
14354 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14355 {
14356 /* We have found the .MIPS.abiflags section in the output file.
14357 Look through all the link_orders comprising it and remove them.
14358 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14359 for (p = o->map_head.link_order; p != NULL; p = p->next)
14360 {
14361 asection *input_section;
14362
14363 if (p->type != bfd_indirect_link_order)
14364 {
14365 if (p->type == bfd_data_link_order)
14366 continue;
14367 abort ();
14368 }
14369
14370 input_section = p->u.indirect.section;
14371
14372 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14373 elf_link_input_bfd ignores this section. */
14374 input_section->flags &= ~SEC_HAS_CONTENTS;
14375 }
14376
14377 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14378 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14379
14380 /* Skip this section later on (I don't think this currently
14381 matters, but someday it might). */
14382 o->map_head.link_order = NULL;
14383
14384 abiflags_sec = o;
14385 }
14386
14387 if (strcmp (o->name, ".reginfo") == 0)
14388 {
14389 memset (&reginfo, 0, sizeof reginfo);
14390
14391 /* We have found the .reginfo section in the output file.
14392 Look through all the link_orders comprising it and merge
14393 the information together. */
14394 for (p = o->map_head.link_order; p != NULL; p = p->next)
14395 {
14396 asection *input_section;
14397 bfd *input_bfd;
14398 Elf32_External_RegInfo ext;
14399 Elf32_RegInfo sub;
14400 bfd_size_type sz;
14401
14402 if (p->type != bfd_indirect_link_order)
14403 {
14404 if (p->type == bfd_data_link_order)
14405 continue;
14406 abort ();
14407 }
14408
14409 input_section = p->u.indirect.section;
14410 input_bfd = input_section->owner;
14411
14412 sz = (input_section->size < sizeof (ext)
14413 ? input_section->size : sizeof (ext));
14414 memset (&ext, 0, sizeof (ext));
14415 if (! bfd_get_section_contents (input_bfd, input_section,
14416 &ext, 0, sz))
14417 return FALSE;
14418
14419 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14420
14421 reginfo.ri_gprmask |= sub.ri_gprmask;
14422 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14423 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14424 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14425 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14426
14427 /* ri_gp_value is set by the function
14428 `_bfd_mips_elf_section_processing' when the section is
14429 finally written out. */
14430
14431 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14432 elf_link_input_bfd ignores this section. */
14433 input_section->flags &= ~SEC_HAS_CONTENTS;
14434 }
14435
14436 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14437 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14438
14439 /* Skip this section later on (I don't think this currently
14440 matters, but someday it might). */
14441 o->map_head.link_order = NULL;
14442
14443 reginfo_sec = o;
14444 }
14445
14446 if (strcmp (o->name, ".mdebug") == 0)
14447 {
14448 struct extsym_info einfo;
14449 bfd_vma last;
14450
14451 /* We have found the .mdebug section in the output file.
14452 Look through all the link_orders comprising it and merge
14453 the information together. */
14454 symhdr->magic = swap->sym_magic;
14455 /* FIXME: What should the version stamp be? */
14456 symhdr->vstamp = 0;
14457 symhdr->ilineMax = 0;
14458 symhdr->cbLine = 0;
14459 symhdr->idnMax = 0;
14460 symhdr->ipdMax = 0;
14461 symhdr->isymMax = 0;
14462 symhdr->ioptMax = 0;
14463 symhdr->iauxMax = 0;
14464 symhdr->issMax = 0;
14465 symhdr->issExtMax = 0;
14466 symhdr->ifdMax = 0;
14467 symhdr->crfd = 0;
14468 symhdr->iextMax = 0;
14469
14470 /* We accumulate the debugging information itself in the
14471 debug_info structure. */
14472 debug.line = NULL;
14473 debug.external_dnr = NULL;
14474 debug.external_pdr = NULL;
14475 debug.external_sym = NULL;
14476 debug.external_opt = NULL;
14477 debug.external_aux = NULL;
14478 debug.ss = NULL;
14479 debug.ssext = debug.ssext_end = NULL;
14480 debug.external_fdr = NULL;
14481 debug.external_rfd = NULL;
14482 debug.external_ext = debug.external_ext_end = NULL;
14483
14484 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14485 if (mdebug_handle == NULL)
14486 return FALSE;
14487
14488 esym.jmptbl = 0;
14489 esym.cobol_main = 0;
14490 esym.weakext = 0;
14491 esym.reserved = 0;
14492 esym.ifd = ifdNil;
14493 esym.asym.iss = issNil;
14494 esym.asym.st = stLocal;
14495 esym.asym.reserved = 0;
14496 esym.asym.index = indexNil;
14497 last = 0;
14498 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14499 {
14500 esym.asym.sc = sc[i];
14501 s = bfd_get_section_by_name (abfd, secname[i]);
14502 if (s != NULL)
14503 {
14504 esym.asym.value = s->vma;
14505 last = s->vma + s->size;
14506 }
14507 else
14508 esym.asym.value = last;
14509 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14510 secname[i], &esym))
14511 return FALSE;
14512 }
14513
14514 for (p = o->map_head.link_order; p != NULL; p = p->next)
14515 {
14516 asection *input_section;
14517 bfd *input_bfd;
14518 const struct ecoff_debug_swap *input_swap;
14519 struct ecoff_debug_info input_debug;
14520 char *eraw_src;
14521 char *eraw_end;
14522
14523 if (p->type != bfd_indirect_link_order)
14524 {
14525 if (p->type == bfd_data_link_order)
14526 continue;
14527 abort ();
14528 }
14529
14530 input_section = p->u.indirect.section;
14531 input_bfd = input_section->owner;
14532
14533 if (!is_mips_elf (input_bfd))
14534 {
14535 /* I don't know what a non MIPS ELF bfd would be
14536 doing with a .mdebug section, but I don't really
14537 want to deal with it. */
14538 continue;
14539 }
14540
14541 input_swap = (get_elf_backend_data (input_bfd)
14542 ->elf_backend_ecoff_debug_swap);
14543
14544 BFD_ASSERT (p->size == input_section->size);
14545
14546 /* The ECOFF linking code expects that we have already
14547 read in the debugging information and set up an
14548 ecoff_debug_info structure, so we do that now. */
14549 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14550 &input_debug))
14551 return FALSE;
14552
14553 if (! (bfd_ecoff_debug_accumulate
14554 (mdebug_handle, abfd, &debug, swap, input_bfd,
14555 &input_debug, input_swap, info)))
14556 return FALSE;
14557
14558 /* Loop through the external symbols. For each one with
14559 interesting information, try to find the symbol in
14560 the linker global hash table and save the information
14561 for the output external symbols. */
14562 eraw_src = input_debug.external_ext;
14563 eraw_end = (eraw_src
14564 + (input_debug.symbolic_header.iextMax
14565 * input_swap->external_ext_size));
14566 for (;
14567 eraw_src < eraw_end;
14568 eraw_src += input_swap->external_ext_size)
14569 {
14570 EXTR ext;
14571 const char *name;
14572 struct mips_elf_link_hash_entry *h;
14573
14574 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14575 if (ext.asym.sc == scNil
14576 || ext.asym.sc == scUndefined
14577 || ext.asym.sc == scSUndefined)
14578 continue;
14579
14580 name = input_debug.ssext + ext.asym.iss;
14581 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14582 name, FALSE, FALSE, TRUE);
14583 if (h == NULL || h->esym.ifd != -2)
14584 continue;
14585
14586 if (ext.ifd != -1)
14587 {
14588 BFD_ASSERT (ext.ifd
14589 < input_debug.symbolic_header.ifdMax);
14590 ext.ifd = input_debug.ifdmap[ext.ifd];
14591 }
14592
14593 h->esym = ext;
14594 }
14595
14596 /* Free up the information we just read. */
14597 free (input_debug.line);
14598 free (input_debug.external_dnr);
14599 free (input_debug.external_pdr);
14600 free (input_debug.external_sym);
14601 free (input_debug.external_opt);
14602 free (input_debug.external_aux);
14603 free (input_debug.ss);
14604 free (input_debug.ssext);
14605 free (input_debug.external_fdr);
14606 free (input_debug.external_rfd);
14607 free (input_debug.external_ext);
14608
14609 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14610 elf_link_input_bfd ignores this section. */
14611 input_section->flags &= ~SEC_HAS_CONTENTS;
14612 }
14613
14614 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14615 {
14616 /* Create .rtproc section. */
14617 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14618 if (rtproc_sec == NULL)
14619 {
14620 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14621 | SEC_LINKER_CREATED | SEC_READONLY);
14622
14623 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14624 ".rtproc",
14625 flags);
14626 if (rtproc_sec == NULL
14627 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14628 return FALSE;
14629 }
14630
14631 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14632 info, rtproc_sec,
14633 &debug))
14634 return FALSE;
14635 }
14636
14637 /* Build the external symbol information. */
14638 einfo.abfd = abfd;
14639 einfo.info = info;
14640 einfo.debug = &debug;
14641 einfo.swap = swap;
14642 einfo.failed = FALSE;
14643 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14644 mips_elf_output_extsym, &einfo);
14645 if (einfo.failed)
14646 return FALSE;
14647
14648 /* Set the size of the .mdebug section. */
14649 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14650
14651 /* Skip this section later on (I don't think this currently
14652 matters, but someday it might). */
14653 o->map_head.link_order = NULL;
14654
14655 mdebug_sec = o;
14656 }
14657
14658 if (CONST_STRNEQ (o->name, ".gptab."))
14659 {
14660 const char *subname;
14661 unsigned int c;
14662 Elf32_gptab *tab;
14663 Elf32_External_gptab *ext_tab;
14664 unsigned int j;
14665
14666 /* The .gptab.sdata and .gptab.sbss sections hold
14667 information describing how the small data area would
14668 change depending upon the -G switch. These sections
14669 not used in executables files. */
14670 if (! bfd_link_relocatable (info))
14671 {
14672 for (p = o->map_head.link_order; p != NULL; p = p->next)
14673 {
14674 asection *input_section;
14675
14676 if (p->type != bfd_indirect_link_order)
14677 {
14678 if (p->type == bfd_data_link_order)
14679 continue;
14680 abort ();
14681 }
14682
14683 input_section = p->u.indirect.section;
14684
14685 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14686 elf_link_input_bfd ignores this section. */
14687 input_section->flags &= ~SEC_HAS_CONTENTS;
14688 }
14689
14690 /* Skip this section later on (I don't think this
14691 currently matters, but someday it might). */
14692 o->map_head.link_order = NULL;
14693
14694 /* Really remove the section. */
14695 bfd_section_list_remove (abfd, o);
14696 --abfd->section_count;
14697
14698 continue;
14699 }
14700
14701 /* There is one gptab for initialized data, and one for
14702 uninitialized data. */
14703 if (strcmp (o->name, ".gptab.sdata") == 0)
14704 gptab_data_sec = o;
14705 else if (strcmp (o->name, ".gptab.sbss") == 0)
14706 gptab_bss_sec = o;
14707 else
14708 {
14709 _bfd_error_handler
14710 /* xgettext:c-format */
14711 (_("%pB: illegal section name `%pA'"), abfd, o);
14712 bfd_set_error (bfd_error_nonrepresentable_section);
14713 return FALSE;
14714 }
14715
14716 /* The linker script always combines .gptab.data and
14717 .gptab.sdata into .gptab.sdata, and likewise for
14718 .gptab.bss and .gptab.sbss. It is possible that there is
14719 no .sdata or .sbss section in the output file, in which
14720 case we must change the name of the output section. */
14721 subname = o->name + sizeof ".gptab" - 1;
14722 if (bfd_get_section_by_name (abfd, subname) == NULL)
14723 {
14724 if (o == gptab_data_sec)
14725 o->name = ".gptab.data";
14726 else
14727 o->name = ".gptab.bss";
14728 subname = o->name + sizeof ".gptab" - 1;
14729 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14730 }
14731
14732 /* Set up the first entry. */
14733 c = 1;
14734 amt = c * sizeof (Elf32_gptab);
14735 tab = bfd_malloc (amt);
14736 if (tab == NULL)
14737 return FALSE;
14738 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14739 tab[0].gt_header.gt_unused = 0;
14740
14741 /* Combine the input sections. */
14742 for (p = o->map_head.link_order; p != NULL; p = p->next)
14743 {
14744 asection *input_section;
14745 bfd *input_bfd;
14746 bfd_size_type size;
14747 unsigned long last;
14748 bfd_size_type gpentry;
14749
14750 if (p->type != bfd_indirect_link_order)
14751 {
14752 if (p->type == bfd_data_link_order)
14753 continue;
14754 abort ();
14755 }
14756
14757 input_section = p->u.indirect.section;
14758 input_bfd = input_section->owner;
14759
14760 /* Combine the gptab entries for this input section one
14761 by one. We know that the input gptab entries are
14762 sorted by ascending -G value. */
14763 size = input_section->size;
14764 last = 0;
14765 for (gpentry = sizeof (Elf32_External_gptab);
14766 gpentry < size;
14767 gpentry += sizeof (Elf32_External_gptab))
14768 {
14769 Elf32_External_gptab ext_gptab;
14770 Elf32_gptab int_gptab;
14771 unsigned long val;
14772 unsigned long add;
14773 bfd_boolean exact;
14774 unsigned int look;
14775
14776 if (! (bfd_get_section_contents
14777 (input_bfd, input_section, &ext_gptab, gpentry,
14778 sizeof (Elf32_External_gptab))))
14779 {
14780 free (tab);
14781 return FALSE;
14782 }
14783
14784 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14785 &int_gptab);
14786 val = int_gptab.gt_entry.gt_g_value;
14787 add = int_gptab.gt_entry.gt_bytes - last;
14788
14789 exact = FALSE;
14790 for (look = 1; look < c; look++)
14791 {
14792 if (tab[look].gt_entry.gt_g_value >= val)
14793 tab[look].gt_entry.gt_bytes += add;
14794
14795 if (tab[look].gt_entry.gt_g_value == val)
14796 exact = TRUE;
14797 }
14798
14799 if (! exact)
14800 {
14801 Elf32_gptab *new_tab;
14802 unsigned int max;
14803
14804 /* We need a new table entry. */
14805 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14806 new_tab = bfd_realloc (tab, amt);
14807 if (new_tab == NULL)
14808 {
14809 free (tab);
14810 return FALSE;
14811 }
14812 tab = new_tab;
14813 tab[c].gt_entry.gt_g_value = val;
14814 tab[c].gt_entry.gt_bytes = add;
14815
14816 /* Merge in the size for the next smallest -G
14817 value, since that will be implied by this new
14818 value. */
14819 max = 0;
14820 for (look = 1; look < c; look++)
14821 {
14822 if (tab[look].gt_entry.gt_g_value < val
14823 && (max == 0
14824 || (tab[look].gt_entry.gt_g_value
14825 > tab[max].gt_entry.gt_g_value)))
14826 max = look;
14827 }
14828 if (max != 0)
14829 tab[c].gt_entry.gt_bytes +=
14830 tab[max].gt_entry.gt_bytes;
14831
14832 ++c;
14833 }
14834
14835 last = int_gptab.gt_entry.gt_bytes;
14836 }
14837
14838 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14839 elf_link_input_bfd ignores this section. */
14840 input_section->flags &= ~SEC_HAS_CONTENTS;
14841 }
14842
14843 /* The table must be sorted by -G value. */
14844 if (c > 2)
14845 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14846
14847 /* Swap out the table. */
14848 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14849 ext_tab = bfd_alloc (abfd, amt);
14850 if (ext_tab == NULL)
14851 {
14852 free (tab);
14853 return FALSE;
14854 }
14855
14856 for (j = 0; j < c; j++)
14857 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14858 free (tab);
14859
14860 o->size = c * sizeof (Elf32_External_gptab);
14861 o->contents = (bfd_byte *) ext_tab;
14862
14863 /* Skip this section later on (I don't think this currently
14864 matters, but someday it might). */
14865 o->map_head.link_order = NULL;
14866 }
14867 }
14868
14869 /* Invoke the regular ELF backend linker to do all the work. */
14870 if (!bfd_elf_final_link (abfd, info))
14871 return FALSE;
14872
14873 /* Now write out the computed sections. */
14874
14875 if (abiflags_sec != NULL)
14876 {
14877 Elf_External_ABIFlags_v0 ext;
14878 Elf_Internal_ABIFlags_v0 *abiflags;
14879
14880 abiflags = &mips_elf_tdata (abfd)->abiflags;
14881
14882 /* Set up the abiflags if no valid input sections were found. */
14883 if (!mips_elf_tdata (abfd)->abiflags_valid)
14884 {
14885 infer_mips_abiflags (abfd, abiflags);
14886 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14887 }
14888 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14889 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14890 return FALSE;
14891 }
14892
14893 if (reginfo_sec != NULL)
14894 {
14895 Elf32_External_RegInfo ext;
14896
14897 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14898 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14899 return FALSE;
14900 }
14901
14902 if (mdebug_sec != NULL)
14903 {
14904 BFD_ASSERT (abfd->output_has_begun);
14905 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14906 swap, info,
14907 mdebug_sec->filepos))
14908 return FALSE;
14909
14910 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14911 }
14912
14913 if (gptab_data_sec != NULL)
14914 {
14915 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14916 gptab_data_sec->contents,
14917 0, gptab_data_sec->size))
14918 return FALSE;
14919 }
14920
14921 if (gptab_bss_sec != NULL)
14922 {
14923 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14924 gptab_bss_sec->contents,
14925 0, gptab_bss_sec->size))
14926 return FALSE;
14927 }
14928
14929 if (SGI_COMPAT (abfd))
14930 {
14931 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14932 if (rtproc_sec != NULL)
14933 {
14934 if (! bfd_set_section_contents (abfd, rtproc_sec,
14935 rtproc_sec->contents,
14936 0, rtproc_sec->size))
14937 return FALSE;
14938 }
14939 }
14940
14941 return TRUE;
14942 }
14943 \f
14944 /* Merge object file header flags from IBFD into OBFD. Raise an error
14945 if there are conflicting settings. */
14946
14947 static bfd_boolean
14948 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14949 {
14950 bfd *obfd = info->output_bfd;
14951 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14952 flagword old_flags;
14953 flagword new_flags;
14954 bfd_boolean ok;
14955
14956 new_flags = elf_elfheader (ibfd)->e_flags;
14957 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14958 old_flags = elf_elfheader (obfd)->e_flags;
14959
14960 /* Check flag compatibility. */
14961
14962 new_flags &= ~EF_MIPS_NOREORDER;
14963 old_flags &= ~EF_MIPS_NOREORDER;
14964
14965 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14966 doesn't seem to matter. */
14967 new_flags &= ~EF_MIPS_XGOT;
14968 old_flags &= ~EF_MIPS_XGOT;
14969
14970 /* MIPSpro generates ucode info in n64 objects. Again, we should
14971 just be able to ignore this. */
14972 new_flags &= ~EF_MIPS_UCODE;
14973 old_flags &= ~EF_MIPS_UCODE;
14974
14975 /* DSOs should only be linked with CPIC code. */
14976 if ((ibfd->flags & DYNAMIC) != 0)
14977 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14978
14979 if (new_flags == old_flags)
14980 return TRUE;
14981
14982 ok = TRUE;
14983
14984 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14985 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14986 {
14987 _bfd_error_handler
14988 (_("%pB: warning: linking abicalls files with non-abicalls files"),
14989 ibfd);
14990 ok = TRUE;
14991 }
14992
14993 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14994 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14995 if (! (new_flags & EF_MIPS_PIC))
14996 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14997
14998 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14999 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15000
15001 /* Compare the ISAs. */
15002 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15003 {
15004 _bfd_error_handler
15005 (_("%pB: linking 32-bit code with 64-bit code"),
15006 ibfd);
15007 ok = FALSE;
15008 }
15009 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15010 {
15011 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15012 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15013 {
15014 /* Copy the architecture info from IBFD to OBFD. Also copy
15015 the 32-bit flag (if set) so that we continue to recognise
15016 OBFD as a 32-bit binary. */
15017 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15018 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15019 elf_elfheader (obfd)->e_flags
15020 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15021
15022 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15023 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15024
15025 /* Copy across the ABI flags if OBFD doesn't use them
15026 and if that was what caused us to treat IBFD as 32-bit. */
15027 if ((old_flags & EF_MIPS_ABI) == 0
15028 && mips_32bit_flags_p (new_flags)
15029 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15030 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15031 }
15032 else
15033 {
15034 /* The ISAs aren't compatible. */
15035 _bfd_error_handler
15036 /* xgettext:c-format */
15037 (_("%pB: linking %s module with previous %s modules"),
15038 ibfd,
15039 bfd_printable_name (ibfd),
15040 bfd_printable_name (obfd));
15041 ok = FALSE;
15042 }
15043 }
15044
15045 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15046 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15047
15048 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15049 does set EI_CLASS differently from any 32-bit ABI. */
15050 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15051 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15052 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15053 {
15054 /* Only error if both are set (to different values). */
15055 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15056 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15057 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15058 {
15059 _bfd_error_handler
15060 /* xgettext:c-format */
15061 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15062 ibfd,
15063 elf_mips_abi_name (ibfd),
15064 elf_mips_abi_name (obfd));
15065 ok = FALSE;
15066 }
15067 new_flags &= ~EF_MIPS_ABI;
15068 old_flags &= ~EF_MIPS_ABI;
15069 }
15070
15071 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15072 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15073 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15074 {
15075 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15076 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15077 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15078 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15079 int micro_mis = old_m16 && new_micro;
15080 int m16_mis = old_micro && new_m16;
15081
15082 if (m16_mis || micro_mis)
15083 {
15084 _bfd_error_handler
15085 /* xgettext:c-format */
15086 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15087 ibfd,
15088 m16_mis ? "MIPS16" : "microMIPS",
15089 m16_mis ? "microMIPS" : "MIPS16");
15090 ok = FALSE;
15091 }
15092
15093 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15094
15095 new_flags &= ~ EF_MIPS_ARCH_ASE;
15096 old_flags &= ~ EF_MIPS_ARCH_ASE;
15097 }
15098
15099 /* Compare NaN encodings. */
15100 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15101 {
15102 /* xgettext:c-format */
15103 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15104 ibfd,
15105 (new_flags & EF_MIPS_NAN2008
15106 ? "-mnan=2008" : "-mnan=legacy"),
15107 (old_flags & EF_MIPS_NAN2008
15108 ? "-mnan=2008" : "-mnan=legacy"));
15109 ok = FALSE;
15110 new_flags &= ~EF_MIPS_NAN2008;
15111 old_flags &= ~EF_MIPS_NAN2008;
15112 }
15113
15114 /* Compare FP64 state. */
15115 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15116 {
15117 /* xgettext:c-format */
15118 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15119 ibfd,
15120 (new_flags & EF_MIPS_FP64
15121 ? "-mfp64" : "-mfp32"),
15122 (old_flags & EF_MIPS_FP64
15123 ? "-mfp64" : "-mfp32"));
15124 ok = FALSE;
15125 new_flags &= ~EF_MIPS_FP64;
15126 old_flags &= ~EF_MIPS_FP64;
15127 }
15128
15129 /* Warn about any other mismatches */
15130 if (new_flags != old_flags)
15131 {
15132 /* xgettext:c-format */
15133 _bfd_error_handler
15134 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15135 "(%#x)"),
15136 ibfd, new_flags, old_flags);
15137 ok = FALSE;
15138 }
15139
15140 return ok;
15141 }
15142
15143 /* Merge object attributes from IBFD into OBFD. Raise an error if
15144 there are conflicting attributes. */
15145 static bfd_boolean
15146 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15147 {
15148 bfd *obfd = info->output_bfd;
15149 obj_attribute *in_attr;
15150 obj_attribute *out_attr;
15151 bfd *abi_fp_bfd;
15152 bfd *abi_msa_bfd;
15153
15154 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15155 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15156 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15157 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15158
15159 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15160 if (!abi_msa_bfd
15161 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15162 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15163
15164 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15165 {
15166 /* This is the first object. Copy the attributes. */
15167 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15168
15169 /* Use the Tag_null value to indicate the attributes have been
15170 initialized. */
15171 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15172
15173 return TRUE;
15174 }
15175
15176 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15177 non-conflicting ones. */
15178 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15179 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15180 {
15181 int out_fp, in_fp;
15182
15183 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15184 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15185 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15186 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15187 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15188 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15189 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15190 || in_fp == Val_GNU_MIPS_ABI_FP_64
15191 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15192 {
15193 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15194 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15195 }
15196 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15197 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15198 || out_fp == Val_GNU_MIPS_ABI_FP_64
15199 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15200 /* Keep the current setting. */;
15201 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15202 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15203 {
15204 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15205 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15206 }
15207 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15208 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15209 /* Keep the current setting. */;
15210 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15211 {
15212 const char *out_string, *in_string;
15213
15214 out_string = _bfd_mips_fp_abi_string (out_fp);
15215 in_string = _bfd_mips_fp_abi_string (in_fp);
15216 /* First warn about cases involving unrecognised ABIs. */
15217 if (!out_string && !in_string)
15218 /* xgettext:c-format */
15219 _bfd_error_handler
15220 (_("warning: %pB uses unknown floating point ABI %d "
15221 "(set by %pB), %pB uses unknown floating point ABI %d"),
15222 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15223 else if (!out_string)
15224 _bfd_error_handler
15225 /* xgettext:c-format */
15226 (_("warning: %pB uses unknown floating point ABI %d "
15227 "(set by %pB), %pB uses %s"),
15228 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15229 else if (!in_string)
15230 _bfd_error_handler
15231 /* xgettext:c-format */
15232 (_("warning: %pB uses %s (set by %pB), "
15233 "%pB uses unknown floating point ABI %d"),
15234 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15235 else
15236 {
15237 /* If one of the bfds is soft-float, the other must be
15238 hard-float. The exact choice of hard-float ABI isn't
15239 really relevant to the error message. */
15240 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15241 out_string = "-mhard-float";
15242 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15243 in_string = "-mhard-float";
15244 _bfd_error_handler
15245 /* xgettext:c-format */
15246 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15247 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15248 }
15249 }
15250 }
15251
15252 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15253 non-conflicting ones. */
15254 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15255 {
15256 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15257 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15258 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15259 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15260 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15261 {
15262 case Val_GNU_MIPS_ABI_MSA_128:
15263 _bfd_error_handler
15264 /* xgettext:c-format */
15265 (_("warning: %pB uses %s (set by %pB), "
15266 "%pB uses unknown MSA ABI %d"),
15267 obfd, "-mmsa", abi_msa_bfd,
15268 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15269 break;
15270
15271 default:
15272 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15273 {
15274 case Val_GNU_MIPS_ABI_MSA_128:
15275 _bfd_error_handler
15276 /* xgettext:c-format */
15277 (_("warning: %pB uses unknown MSA ABI %d "
15278 "(set by %pB), %pB uses %s"),
15279 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15280 abi_msa_bfd, ibfd, "-mmsa");
15281 break;
15282
15283 default:
15284 _bfd_error_handler
15285 /* xgettext:c-format */
15286 (_("warning: %pB uses unknown MSA ABI %d "
15287 "(set by %pB), %pB uses unknown MSA ABI %d"),
15288 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15289 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15290 break;
15291 }
15292 }
15293 }
15294
15295 /* Merge Tag_compatibility attributes and any common GNU ones. */
15296 return _bfd_elf_merge_object_attributes (ibfd, info);
15297 }
15298
15299 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15300 there are conflicting settings. */
15301
15302 static bfd_boolean
15303 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15304 {
15305 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15306 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15307 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15308
15309 /* Update the output abiflags fp_abi using the computed fp_abi. */
15310 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15311
15312 #define max(a, b) ((a) > (b) ? (a) : (b))
15313 /* Merge abiflags. */
15314 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15315 in_tdata->abiflags.isa_level);
15316 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15317 in_tdata->abiflags.isa_rev);
15318 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15319 in_tdata->abiflags.gpr_size);
15320 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15321 in_tdata->abiflags.cpr1_size);
15322 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15323 in_tdata->abiflags.cpr2_size);
15324 #undef max
15325 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15326 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15327
15328 return TRUE;
15329 }
15330
15331 /* Merge backend specific data from an object file to the output
15332 object file when linking. */
15333
15334 bfd_boolean
15335 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15336 {
15337 bfd *obfd = info->output_bfd;
15338 struct mips_elf_obj_tdata *out_tdata;
15339 struct mips_elf_obj_tdata *in_tdata;
15340 bfd_boolean null_input_bfd = TRUE;
15341 asection *sec;
15342 bfd_boolean ok;
15343
15344 /* Check if we have the same endianness. */
15345 if (! _bfd_generic_verify_endian_match (ibfd, info))
15346 {
15347 _bfd_error_handler
15348 (_("%pB: endianness incompatible with that of the selected emulation"),
15349 ibfd);
15350 return FALSE;
15351 }
15352
15353 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15354 return TRUE;
15355
15356 in_tdata = mips_elf_tdata (ibfd);
15357 out_tdata = mips_elf_tdata (obfd);
15358
15359 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15360 {
15361 _bfd_error_handler
15362 (_("%pB: ABI is incompatible with that of the selected emulation"),
15363 ibfd);
15364 return FALSE;
15365 }
15366
15367 /* Check to see if the input BFD actually contains any sections. If not,
15368 then it has no attributes, and its flags may not have been initialized
15369 either, but it cannot actually cause any incompatibility. */
15370 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15371 {
15372 /* Ignore synthetic sections and empty .text, .data and .bss sections
15373 which are automatically generated by gas. Also ignore fake
15374 (s)common sections, since merely defining a common symbol does
15375 not affect compatibility. */
15376 if ((sec->flags & SEC_IS_COMMON) == 0
15377 && strcmp (sec->name, ".reginfo")
15378 && strcmp (sec->name, ".mdebug")
15379 && (sec->size != 0
15380 || (strcmp (sec->name, ".text")
15381 && strcmp (sec->name, ".data")
15382 && strcmp (sec->name, ".bss"))))
15383 {
15384 null_input_bfd = FALSE;
15385 break;
15386 }
15387 }
15388 if (null_input_bfd)
15389 return TRUE;
15390
15391 /* Populate abiflags using existing information. */
15392 if (in_tdata->abiflags_valid)
15393 {
15394 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15395 Elf_Internal_ABIFlags_v0 in_abiflags;
15396 Elf_Internal_ABIFlags_v0 abiflags;
15397
15398 /* Set up the FP ABI attribute from the abiflags if it is not already
15399 set. */
15400 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15401 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15402
15403 infer_mips_abiflags (ibfd, &abiflags);
15404 in_abiflags = in_tdata->abiflags;
15405
15406 /* It is not possible to infer the correct ISA revision
15407 for R3 or R5 so drop down to R2 for the checks. */
15408 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15409 in_abiflags.isa_rev = 2;
15410
15411 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15412 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15413 _bfd_error_handler
15414 (_("%pB: warning: inconsistent ISA between e_flags and "
15415 ".MIPS.abiflags"), ibfd);
15416 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15417 && in_abiflags.fp_abi != abiflags.fp_abi)
15418 _bfd_error_handler
15419 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15420 ".MIPS.abiflags"), ibfd);
15421 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15422 _bfd_error_handler
15423 (_("%pB: warning: inconsistent ASEs between e_flags and "
15424 ".MIPS.abiflags"), ibfd);
15425 /* The isa_ext is allowed to be an extension of what can be inferred
15426 from e_flags. */
15427 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15428 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15429 _bfd_error_handler
15430 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15431 ".MIPS.abiflags"), ibfd);
15432 if (in_abiflags.flags2 != 0)
15433 _bfd_error_handler
15434 (_("%pB: warning: unexpected flag in the flags2 field of "
15435 ".MIPS.abiflags (0x%lx)"), ibfd,
15436 in_abiflags.flags2);
15437 }
15438 else
15439 {
15440 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15441 in_tdata->abiflags_valid = TRUE;
15442 }
15443
15444 if (!out_tdata->abiflags_valid)
15445 {
15446 /* Copy input abiflags if output abiflags are not already valid. */
15447 out_tdata->abiflags = in_tdata->abiflags;
15448 out_tdata->abiflags_valid = TRUE;
15449 }
15450
15451 if (! elf_flags_init (obfd))
15452 {
15453 elf_flags_init (obfd) = TRUE;
15454 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15455 elf_elfheader (obfd)->e_ident[EI_CLASS]
15456 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15457
15458 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15459 && (bfd_get_arch_info (obfd)->the_default
15460 || mips_mach_extends_p (bfd_get_mach (obfd),
15461 bfd_get_mach (ibfd))))
15462 {
15463 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15464 bfd_get_mach (ibfd)))
15465 return FALSE;
15466
15467 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15468 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15469 }
15470
15471 ok = TRUE;
15472 }
15473 else
15474 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15475
15476 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15477
15478 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15479
15480 if (!ok)
15481 {
15482 bfd_set_error (bfd_error_bad_value);
15483 return FALSE;
15484 }
15485
15486 return TRUE;
15487 }
15488
15489 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15490
15491 bfd_boolean
15492 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15493 {
15494 BFD_ASSERT (!elf_flags_init (abfd)
15495 || elf_elfheader (abfd)->e_flags == flags);
15496
15497 elf_elfheader (abfd)->e_flags = flags;
15498 elf_flags_init (abfd) = TRUE;
15499 return TRUE;
15500 }
15501
15502 char *
15503 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15504 {
15505 switch (dtag)
15506 {
15507 default: return "";
15508 case DT_MIPS_RLD_VERSION:
15509 return "MIPS_RLD_VERSION";
15510 case DT_MIPS_TIME_STAMP:
15511 return "MIPS_TIME_STAMP";
15512 case DT_MIPS_ICHECKSUM:
15513 return "MIPS_ICHECKSUM";
15514 case DT_MIPS_IVERSION:
15515 return "MIPS_IVERSION";
15516 case DT_MIPS_FLAGS:
15517 return "MIPS_FLAGS";
15518 case DT_MIPS_BASE_ADDRESS:
15519 return "MIPS_BASE_ADDRESS";
15520 case DT_MIPS_MSYM:
15521 return "MIPS_MSYM";
15522 case DT_MIPS_CONFLICT:
15523 return "MIPS_CONFLICT";
15524 case DT_MIPS_LIBLIST:
15525 return "MIPS_LIBLIST";
15526 case DT_MIPS_LOCAL_GOTNO:
15527 return "MIPS_LOCAL_GOTNO";
15528 case DT_MIPS_CONFLICTNO:
15529 return "MIPS_CONFLICTNO";
15530 case DT_MIPS_LIBLISTNO:
15531 return "MIPS_LIBLISTNO";
15532 case DT_MIPS_SYMTABNO:
15533 return "MIPS_SYMTABNO";
15534 case DT_MIPS_UNREFEXTNO:
15535 return "MIPS_UNREFEXTNO";
15536 case DT_MIPS_GOTSYM:
15537 return "MIPS_GOTSYM";
15538 case DT_MIPS_HIPAGENO:
15539 return "MIPS_HIPAGENO";
15540 case DT_MIPS_RLD_MAP:
15541 return "MIPS_RLD_MAP";
15542 case DT_MIPS_RLD_MAP_REL:
15543 return "MIPS_RLD_MAP_REL";
15544 case DT_MIPS_DELTA_CLASS:
15545 return "MIPS_DELTA_CLASS";
15546 case DT_MIPS_DELTA_CLASS_NO:
15547 return "MIPS_DELTA_CLASS_NO";
15548 case DT_MIPS_DELTA_INSTANCE:
15549 return "MIPS_DELTA_INSTANCE";
15550 case DT_MIPS_DELTA_INSTANCE_NO:
15551 return "MIPS_DELTA_INSTANCE_NO";
15552 case DT_MIPS_DELTA_RELOC:
15553 return "MIPS_DELTA_RELOC";
15554 case DT_MIPS_DELTA_RELOC_NO:
15555 return "MIPS_DELTA_RELOC_NO";
15556 case DT_MIPS_DELTA_SYM:
15557 return "MIPS_DELTA_SYM";
15558 case DT_MIPS_DELTA_SYM_NO:
15559 return "MIPS_DELTA_SYM_NO";
15560 case DT_MIPS_DELTA_CLASSSYM:
15561 return "MIPS_DELTA_CLASSSYM";
15562 case DT_MIPS_DELTA_CLASSSYM_NO:
15563 return "MIPS_DELTA_CLASSSYM_NO";
15564 case DT_MIPS_CXX_FLAGS:
15565 return "MIPS_CXX_FLAGS";
15566 case DT_MIPS_PIXIE_INIT:
15567 return "MIPS_PIXIE_INIT";
15568 case DT_MIPS_SYMBOL_LIB:
15569 return "MIPS_SYMBOL_LIB";
15570 case DT_MIPS_LOCALPAGE_GOTIDX:
15571 return "MIPS_LOCALPAGE_GOTIDX";
15572 case DT_MIPS_LOCAL_GOTIDX:
15573 return "MIPS_LOCAL_GOTIDX";
15574 case DT_MIPS_HIDDEN_GOTIDX:
15575 return "MIPS_HIDDEN_GOTIDX";
15576 case DT_MIPS_PROTECTED_GOTIDX:
15577 return "MIPS_PROTECTED_GOT_IDX";
15578 case DT_MIPS_OPTIONS:
15579 return "MIPS_OPTIONS";
15580 case DT_MIPS_INTERFACE:
15581 return "MIPS_INTERFACE";
15582 case DT_MIPS_DYNSTR_ALIGN:
15583 return "DT_MIPS_DYNSTR_ALIGN";
15584 case DT_MIPS_INTERFACE_SIZE:
15585 return "DT_MIPS_INTERFACE_SIZE";
15586 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15587 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15588 case DT_MIPS_PERF_SUFFIX:
15589 return "DT_MIPS_PERF_SUFFIX";
15590 case DT_MIPS_COMPACT_SIZE:
15591 return "DT_MIPS_COMPACT_SIZE";
15592 case DT_MIPS_GP_VALUE:
15593 return "DT_MIPS_GP_VALUE";
15594 case DT_MIPS_AUX_DYNAMIC:
15595 return "DT_MIPS_AUX_DYNAMIC";
15596 case DT_MIPS_PLTGOT:
15597 return "DT_MIPS_PLTGOT";
15598 case DT_MIPS_RWPLT:
15599 return "DT_MIPS_RWPLT";
15600 }
15601 }
15602
15603 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15604 not known. */
15605
15606 const char *
15607 _bfd_mips_fp_abi_string (int fp)
15608 {
15609 switch (fp)
15610 {
15611 /* These strings aren't translated because they're simply
15612 option lists. */
15613 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15614 return "-mdouble-float";
15615
15616 case Val_GNU_MIPS_ABI_FP_SINGLE:
15617 return "-msingle-float";
15618
15619 case Val_GNU_MIPS_ABI_FP_SOFT:
15620 return "-msoft-float";
15621
15622 case Val_GNU_MIPS_ABI_FP_OLD_64:
15623 return _("-mips32r2 -mfp64 (12 callee-saved)");
15624
15625 case Val_GNU_MIPS_ABI_FP_XX:
15626 return "-mfpxx";
15627
15628 case Val_GNU_MIPS_ABI_FP_64:
15629 return "-mgp32 -mfp64";
15630
15631 case Val_GNU_MIPS_ABI_FP_64A:
15632 return "-mgp32 -mfp64 -mno-odd-spreg";
15633
15634 default:
15635 return 0;
15636 }
15637 }
15638
15639 static void
15640 print_mips_ases (FILE *file, unsigned int mask)
15641 {
15642 if (mask & AFL_ASE_DSP)
15643 fputs ("\n\tDSP ASE", file);
15644 if (mask & AFL_ASE_DSPR2)
15645 fputs ("\n\tDSP R2 ASE", file);
15646 if (mask & AFL_ASE_DSPR3)
15647 fputs ("\n\tDSP R3 ASE", file);
15648 if (mask & AFL_ASE_EVA)
15649 fputs ("\n\tEnhanced VA Scheme", file);
15650 if (mask & AFL_ASE_MCU)
15651 fputs ("\n\tMCU (MicroController) ASE", file);
15652 if (mask & AFL_ASE_MDMX)
15653 fputs ("\n\tMDMX ASE", file);
15654 if (mask & AFL_ASE_MIPS3D)
15655 fputs ("\n\tMIPS-3D ASE", file);
15656 if (mask & AFL_ASE_MT)
15657 fputs ("\n\tMT ASE", file);
15658 if (mask & AFL_ASE_SMARTMIPS)
15659 fputs ("\n\tSmartMIPS ASE", file);
15660 if (mask & AFL_ASE_VIRT)
15661 fputs ("\n\tVZ ASE", file);
15662 if (mask & AFL_ASE_MSA)
15663 fputs ("\n\tMSA ASE", file);
15664 if (mask & AFL_ASE_MIPS16)
15665 fputs ("\n\tMIPS16 ASE", file);
15666 if (mask & AFL_ASE_MICROMIPS)
15667 fputs ("\n\tMICROMIPS ASE", file);
15668 if (mask & AFL_ASE_XPA)
15669 fputs ("\n\tXPA ASE", file);
15670 if (mask & AFL_ASE_MIPS16E2)
15671 fputs ("\n\tMIPS16e2 ASE", file);
15672 if (mask & AFL_ASE_CRC)
15673 fputs ("\n\tCRC ASE", file);
15674 if (mask & AFL_ASE_GINV)
15675 fputs ("\n\tGINV ASE", file);
15676 if (mask == 0)
15677 fprintf (file, "\n\t%s", _("None"));
15678 else if ((mask & ~AFL_ASE_MASK) != 0)
15679 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15680 }
15681
15682 static void
15683 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15684 {
15685 switch (isa_ext)
15686 {
15687 case 0:
15688 fputs (_("None"), file);
15689 break;
15690 case AFL_EXT_XLR:
15691 fputs ("RMI XLR", file);
15692 break;
15693 case AFL_EXT_OCTEON3:
15694 fputs ("Cavium Networks Octeon3", file);
15695 break;
15696 case AFL_EXT_OCTEON2:
15697 fputs ("Cavium Networks Octeon2", file);
15698 break;
15699 case AFL_EXT_OCTEONP:
15700 fputs ("Cavium Networks OcteonP", file);
15701 break;
15702 case AFL_EXT_LOONGSON_3A:
15703 fputs ("Loongson 3A", file);
15704 break;
15705 case AFL_EXT_OCTEON:
15706 fputs ("Cavium Networks Octeon", file);
15707 break;
15708 case AFL_EXT_5900:
15709 fputs ("Toshiba R5900", file);
15710 break;
15711 case AFL_EXT_4650:
15712 fputs ("MIPS R4650", file);
15713 break;
15714 case AFL_EXT_4010:
15715 fputs ("LSI R4010", file);
15716 break;
15717 case AFL_EXT_4100:
15718 fputs ("NEC VR4100", file);
15719 break;
15720 case AFL_EXT_3900:
15721 fputs ("Toshiba R3900", file);
15722 break;
15723 case AFL_EXT_10000:
15724 fputs ("MIPS R10000", file);
15725 break;
15726 case AFL_EXT_SB1:
15727 fputs ("Broadcom SB-1", file);
15728 break;
15729 case AFL_EXT_4111:
15730 fputs ("NEC VR4111/VR4181", file);
15731 break;
15732 case AFL_EXT_4120:
15733 fputs ("NEC VR4120", file);
15734 break;
15735 case AFL_EXT_5400:
15736 fputs ("NEC VR5400", file);
15737 break;
15738 case AFL_EXT_5500:
15739 fputs ("NEC VR5500", file);
15740 break;
15741 case AFL_EXT_LOONGSON_2E:
15742 fputs ("ST Microelectronics Loongson 2E", file);
15743 break;
15744 case AFL_EXT_LOONGSON_2F:
15745 fputs ("ST Microelectronics Loongson 2F", file);
15746 break;
15747 case AFL_EXT_INTERAPTIV_MR2:
15748 fputs ("Imagination interAptiv MR2", file);
15749 break;
15750 default:
15751 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15752 break;
15753 }
15754 }
15755
15756 static void
15757 print_mips_fp_abi_value (FILE *file, int val)
15758 {
15759 switch (val)
15760 {
15761 case Val_GNU_MIPS_ABI_FP_ANY:
15762 fprintf (file, _("Hard or soft float\n"));
15763 break;
15764 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15765 fprintf (file, _("Hard float (double precision)\n"));
15766 break;
15767 case Val_GNU_MIPS_ABI_FP_SINGLE:
15768 fprintf (file, _("Hard float (single precision)\n"));
15769 break;
15770 case Val_GNU_MIPS_ABI_FP_SOFT:
15771 fprintf (file, _("Soft float\n"));
15772 break;
15773 case Val_GNU_MIPS_ABI_FP_OLD_64:
15774 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15775 break;
15776 case Val_GNU_MIPS_ABI_FP_XX:
15777 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15778 break;
15779 case Val_GNU_MIPS_ABI_FP_64:
15780 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15781 break;
15782 case Val_GNU_MIPS_ABI_FP_64A:
15783 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15784 break;
15785 default:
15786 fprintf (file, "??? (%d)\n", val);
15787 break;
15788 }
15789 }
15790
15791 static int
15792 get_mips_reg_size (int reg_size)
15793 {
15794 return (reg_size == AFL_REG_NONE) ? 0
15795 : (reg_size == AFL_REG_32) ? 32
15796 : (reg_size == AFL_REG_64) ? 64
15797 : (reg_size == AFL_REG_128) ? 128
15798 : -1;
15799 }
15800
15801 bfd_boolean
15802 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15803 {
15804 FILE *file = ptr;
15805
15806 BFD_ASSERT (abfd != NULL && ptr != NULL);
15807
15808 /* Print normal ELF private data. */
15809 _bfd_elf_print_private_bfd_data (abfd, ptr);
15810
15811 /* xgettext:c-format */
15812 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15813
15814 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15815 fprintf (file, _(" [abi=O32]"));
15816 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15817 fprintf (file, _(" [abi=O64]"));
15818 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15819 fprintf (file, _(" [abi=EABI32]"));
15820 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15821 fprintf (file, _(" [abi=EABI64]"));
15822 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15823 fprintf (file, _(" [abi unknown]"));
15824 else if (ABI_N32_P (abfd))
15825 fprintf (file, _(" [abi=N32]"));
15826 else if (ABI_64_P (abfd))
15827 fprintf (file, _(" [abi=64]"));
15828 else
15829 fprintf (file, _(" [no abi set]"));
15830
15831 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15832 fprintf (file, " [mips1]");
15833 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15834 fprintf (file, " [mips2]");
15835 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15836 fprintf (file, " [mips3]");
15837 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15838 fprintf (file, " [mips4]");
15839 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15840 fprintf (file, " [mips5]");
15841 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15842 fprintf (file, " [mips32]");
15843 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15844 fprintf (file, " [mips64]");
15845 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15846 fprintf (file, " [mips32r2]");
15847 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15848 fprintf (file, " [mips64r2]");
15849 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15850 fprintf (file, " [mips32r6]");
15851 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15852 fprintf (file, " [mips64r6]");
15853 else
15854 fprintf (file, _(" [unknown ISA]"));
15855
15856 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15857 fprintf (file, " [mdmx]");
15858
15859 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15860 fprintf (file, " [mips16]");
15861
15862 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15863 fprintf (file, " [micromips]");
15864
15865 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15866 fprintf (file, " [nan2008]");
15867
15868 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15869 fprintf (file, " [old fp64]");
15870
15871 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15872 fprintf (file, " [32bitmode]");
15873 else
15874 fprintf (file, _(" [not 32bitmode]"));
15875
15876 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15877 fprintf (file, " [noreorder]");
15878
15879 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15880 fprintf (file, " [PIC]");
15881
15882 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15883 fprintf (file, " [CPIC]");
15884
15885 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15886 fprintf (file, " [XGOT]");
15887
15888 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15889 fprintf (file, " [UCODE]");
15890
15891 fputc ('\n', file);
15892
15893 if (mips_elf_tdata (abfd)->abiflags_valid)
15894 {
15895 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15896 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15897 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15898 if (abiflags->isa_rev > 1)
15899 fprintf (file, "r%d", abiflags->isa_rev);
15900 fprintf (file, "\nGPR size: %d",
15901 get_mips_reg_size (abiflags->gpr_size));
15902 fprintf (file, "\nCPR1 size: %d",
15903 get_mips_reg_size (abiflags->cpr1_size));
15904 fprintf (file, "\nCPR2 size: %d",
15905 get_mips_reg_size (abiflags->cpr2_size));
15906 fputs ("\nFP ABI: ", file);
15907 print_mips_fp_abi_value (file, abiflags->fp_abi);
15908 fputs ("ISA Extension: ", file);
15909 print_mips_isa_ext (file, abiflags->isa_ext);
15910 fputs ("\nASEs:", file);
15911 print_mips_ases (file, abiflags->ases);
15912 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15913 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15914 fputc ('\n', file);
15915 }
15916
15917 return TRUE;
15918 }
15919
15920 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15921 {
15922 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15923 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15924 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15925 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15926 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15927 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15928 { NULL, 0, 0, 0, 0 }
15929 };
15930
15931 /* Merge non visibility st_other attributes. Ensure that the
15932 STO_OPTIONAL flag is copied into h->other, even if this is not a
15933 definiton of the symbol. */
15934 void
15935 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15936 const Elf_Internal_Sym *isym,
15937 bfd_boolean definition,
15938 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15939 {
15940 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15941 {
15942 unsigned char other;
15943
15944 other = (definition ? isym->st_other : h->other);
15945 other &= ~ELF_ST_VISIBILITY (-1);
15946 h->other = other | ELF_ST_VISIBILITY (h->other);
15947 }
15948
15949 if (!definition
15950 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15951 h->other |= STO_OPTIONAL;
15952 }
15953
15954 /* Decide whether an undefined symbol is special and can be ignored.
15955 This is the case for OPTIONAL symbols on IRIX. */
15956 bfd_boolean
15957 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15958 {
15959 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15960 }
15961
15962 bfd_boolean
15963 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15964 {
15965 return (sym->st_shndx == SHN_COMMON
15966 || sym->st_shndx == SHN_MIPS_ACOMMON
15967 || sym->st_shndx == SHN_MIPS_SCOMMON);
15968 }
15969
15970 /* Return address for Ith PLT stub in section PLT, for relocation REL
15971 or (bfd_vma) -1 if it should not be included. */
15972
15973 bfd_vma
15974 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15975 const arelent *rel ATTRIBUTE_UNUSED)
15976 {
15977 return (plt->vma
15978 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15979 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15980 }
15981
15982 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15983 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15984 and .got.plt and also the slots may be of a different size each we walk
15985 the PLT manually fetching instructions and matching them against known
15986 patterns. To make things easier standard MIPS slots, if any, always come
15987 first. As we don't create proper ELF symbols we use the UDATA.I member
15988 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15989 with the ST_OTHER member of the ELF symbol. */
15990
15991 long
15992 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15993 long symcount ATTRIBUTE_UNUSED,
15994 asymbol **syms ATTRIBUTE_UNUSED,
15995 long dynsymcount, asymbol **dynsyms,
15996 asymbol **ret)
15997 {
15998 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15999 static const char microsuffix[] = "@micromipsplt";
16000 static const char m16suffix[] = "@mips16plt";
16001 static const char mipssuffix[] = "@plt";
16002
16003 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16004 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16005 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16006 Elf_Internal_Shdr *hdr;
16007 bfd_byte *plt_data;
16008 bfd_vma plt_offset;
16009 unsigned int other;
16010 bfd_vma entry_size;
16011 bfd_vma plt0_size;
16012 asection *relplt;
16013 bfd_vma opcode;
16014 asection *plt;
16015 asymbol *send;
16016 size_t size;
16017 char *names;
16018 long counti;
16019 arelent *p;
16020 asymbol *s;
16021 char *nend;
16022 long count;
16023 long pi;
16024 long i;
16025 long n;
16026
16027 *ret = NULL;
16028
16029 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16030 return 0;
16031
16032 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16033 if (relplt == NULL)
16034 return 0;
16035
16036 hdr = &elf_section_data (relplt)->this_hdr;
16037 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16038 return 0;
16039
16040 plt = bfd_get_section_by_name (abfd, ".plt");
16041 if (plt == NULL)
16042 return 0;
16043
16044 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16045 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16046 return -1;
16047 p = relplt->relocation;
16048
16049 /* Calculating the exact amount of space required for symbols would
16050 require two passes over the PLT, so just pessimise assuming two
16051 PLT slots per relocation. */
16052 count = relplt->size / hdr->sh_entsize;
16053 counti = count * bed->s->int_rels_per_ext_rel;
16054 size = 2 * count * sizeof (asymbol);
16055 size += count * (sizeof (mipssuffix) +
16056 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16057 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16058 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16059
16060 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16061 size += sizeof (asymbol) + sizeof (pltname);
16062
16063 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16064 return -1;
16065
16066 if (plt->size < 16)
16067 return -1;
16068
16069 s = *ret = bfd_malloc (size);
16070 if (s == NULL)
16071 return -1;
16072 send = s + 2 * count + 1;
16073
16074 names = (char *) send;
16075 nend = (char *) s + size;
16076 n = 0;
16077
16078 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16079 if (opcode == 0x3302fffe)
16080 {
16081 if (!micromips_p)
16082 return -1;
16083 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16084 other = STO_MICROMIPS;
16085 }
16086 else if (opcode == 0x0398c1d0)
16087 {
16088 if (!micromips_p)
16089 return -1;
16090 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16091 other = STO_MICROMIPS;
16092 }
16093 else
16094 {
16095 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16096 other = 0;
16097 }
16098
16099 s->the_bfd = abfd;
16100 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16101 s->section = plt;
16102 s->value = 0;
16103 s->name = names;
16104 s->udata.i = other;
16105 memcpy (names, pltname, sizeof (pltname));
16106 names += sizeof (pltname);
16107 ++s, ++n;
16108
16109 pi = 0;
16110 for (plt_offset = plt0_size;
16111 plt_offset + 8 <= plt->size && s < send;
16112 plt_offset += entry_size)
16113 {
16114 bfd_vma gotplt_addr;
16115 const char *suffix;
16116 bfd_vma gotplt_hi;
16117 bfd_vma gotplt_lo;
16118 size_t suffixlen;
16119
16120 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16121
16122 /* Check if the second word matches the expected MIPS16 instruction. */
16123 if (opcode == 0x651aeb00)
16124 {
16125 if (micromips_p)
16126 return -1;
16127 /* Truncated table??? */
16128 if (plt_offset + 16 > plt->size)
16129 break;
16130 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16131 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16132 suffixlen = sizeof (m16suffix);
16133 suffix = m16suffix;
16134 other = STO_MIPS16;
16135 }
16136 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16137 else if (opcode == 0xff220000)
16138 {
16139 if (!micromips_p)
16140 return -1;
16141 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16142 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16143 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16144 gotplt_lo <<= 2;
16145 gotplt_addr = gotplt_hi + gotplt_lo;
16146 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16147 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16148 suffixlen = sizeof (microsuffix);
16149 suffix = microsuffix;
16150 other = STO_MICROMIPS;
16151 }
16152 /* Likewise the expected microMIPS instruction (insn32 mode). */
16153 else if ((opcode & 0xffff0000) == 0xff2f0000)
16154 {
16155 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16156 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16157 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16158 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16159 gotplt_addr = gotplt_hi + gotplt_lo;
16160 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16161 suffixlen = sizeof (microsuffix);
16162 suffix = microsuffix;
16163 other = STO_MICROMIPS;
16164 }
16165 /* Otherwise assume standard MIPS code. */
16166 else
16167 {
16168 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16169 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16170 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16171 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16172 gotplt_addr = gotplt_hi + gotplt_lo;
16173 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16174 suffixlen = sizeof (mipssuffix);
16175 suffix = mipssuffix;
16176 other = 0;
16177 }
16178 /* Truncated table??? */
16179 if (plt_offset + entry_size > plt->size)
16180 break;
16181
16182 for (i = 0;
16183 i < count && p[pi].address != gotplt_addr;
16184 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16185
16186 if (i < count)
16187 {
16188 size_t namelen;
16189 size_t len;
16190
16191 *s = **p[pi].sym_ptr_ptr;
16192 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16193 we are defining a symbol, ensure one of them is set. */
16194 if ((s->flags & BSF_LOCAL) == 0)
16195 s->flags |= BSF_GLOBAL;
16196 s->flags |= BSF_SYNTHETIC;
16197 s->section = plt;
16198 s->value = plt_offset;
16199 s->name = names;
16200 s->udata.i = other;
16201
16202 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16203 namelen = len + suffixlen;
16204 if (names + namelen > nend)
16205 break;
16206
16207 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16208 names += len;
16209 memcpy (names, suffix, suffixlen);
16210 names += suffixlen;
16211
16212 ++s, ++n;
16213 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16214 }
16215 }
16216
16217 free (plt_data);
16218
16219 return n;
16220 }
16221
16222 /* Return the ABI flags associated with ABFD if available. */
16223
16224 Elf_Internal_ABIFlags_v0 *
16225 bfd_mips_elf_get_abiflags (bfd *abfd)
16226 {
16227 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16228
16229 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16230 }
16231
16232 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16233 field. Taken from `libc-abis.h' generated at GNU libc build time.
16234 Using a MIPS_ prefix as other libc targets use different values. */
16235 enum
16236 {
16237 MIPS_LIBC_ABI_DEFAULT = 0,
16238 MIPS_LIBC_ABI_MIPS_PLT,
16239 MIPS_LIBC_ABI_UNIQUE,
16240 MIPS_LIBC_ABI_MIPS_O32_FP64,
16241 MIPS_LIBC_ABI_MAX
16242 };
16243
16244 void
16245 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16246 {
16247 struct mips_elf_link_hash_table *htab;
16248 Elf_Internal_Ehdr *i_ehdrp;
16249
16250 i_ehdrp = elf_elfheader (abfd);
16251 if (link_info)
16252 {
16253 htab = mips_elf_hash_table (link_info);
16254 BFD_ASSERT (htab != NULL);
16255
16256 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16257 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16258 }
16259
16260 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16261 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16262 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16263
16264 _bfd_elf_post_process_headers (abfd, link_info);
16265 }
16266
16267 int
16268 _bfd_mips_elf_compact_eh_encoding
16269 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16270 {
16271 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16272 }
16273
16274 /* Return the opcode for can't unwind. */
16275
16276 int
16277 _bfd_mips_elf_cant_unwind_opcode
16278 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16279 {
16280 return COMPACT_EH_CANT_UNWIND_OPCODE;
16281 }
This page took 0.362335 seconds and 4 git commands to generate.