* elfxx-mips.c (mips_elf_calculate_relocation): Fix a typo.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29
30 /* This file handles functionality common to the different MIPS ABI's. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
82 struct mips_got_entry
83 {
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to symbol in the GOT. The symbol's entry
98 is in the local area if h->global_got_area is GGA_NONE,
99 otherwise it is in the global area. */
100 struct mips_elf_link_hash_entry *h;
101 } d;
102
103 /* The TLS types included in this GOT entry (specifically, GD and
104 IE). The GD and IE flags can be added as we encounter new
105 relocations. LDM can also be set; it will always be alone, not
106 combined with any GD or IE flags. An LDM GOT entry will be
107 a local symbol entry with r_symndx == 0. */
108 unsigned char tls_type;
109
110 /* The offset from the beginning of the .got section to the entry
111 corresponding to this symbol+addend. If it's a global symbol
112 whose offset is yet to be decided, it's going to be -1. */
113 long gotidx;
114 };
115
116 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
117 The structures form a non-overlapping list that is sorted by increasing
118 MIN_ADDEND. */
119 struct mips_got_page_range
120 {
121 struct mips_got_page_range *next;
122 bfd_signed_vma min_addend;
123 bfd_signed_vma max_addend;
124 };
125
126 /* This structure describes the range of addends that are applied to page
127 relocations against a given symbol. */
128 struct mips_got_page_entry
129 {
130 /* The input bfd in which the symbol is defined. */
131 bfd *abfd;
132 /* The index of the symbol, as stored in the relocation r_info. */
133 long symndx;
134 /* The ranges for this page entry. */
135 struct mips_got_page_range *ranges;
136 /* The maximum number of page entries needed for RANGES. */
137 bfd_vma num_pages;
138 };
139
140 /* This structure is used to hold .got information when linking. */
141
142 struct mips_got_info
143 {
144 /* The global symbol in the GOT with the lowest index in the dynamic
145 symbol table. */
146 struct elf_link_hash_entry *global_gotsym;
147 /* The number of global .got entries. */
148 unsigned int global_gotno;
149 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
150 unsigned int reloc_only_gotno;
151 /* The number of .got slots used for TLS. */
152 unsigned int tls_gotno;
153 /* The first unused TLS .got entry. Used only during
154 mips_elf_initialize_tls_index. */
155 unsigned int tls_assigned_gotno;
156 /* The number of local .got entries, eventually including page entries. */
157 unsigned int local_gotno;
158 /* The maximum number of page entries needed. */
159 unsigned int page_gotno;
160 /* The number of local .got entries we have used. */
161 unsigned int assigned_gotno;
162 /* A hash table holding members of the got. */
163 struct htab *got_entries;
164 /* A hash table of mips_got_page_entry structures. */
165 struct htab *got_page_entries;
166 /* A hash table mapping input bfds to other mips_got_info. NULL
167 unless multi-got was necessary. */
168 struct htab *bfd2got;
169 /* In multi-got links, a pointer to the next got (err, rather, most
170 of the time, it points to the previous got). */
171 struct mips_got_info *next;
172 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
173 for none, or MINUS_TWO for not yet assigned. This is needed
174 because a single-GOT link may have multiple hash table entries
175 for the LDM. It does not get initialized in multi-GOT mode. */
176 bfd_vma tls_ldm_offset;
177 };
178
179 /* Map an input bfd to a got in a multi-got link. */
180
181 struct mips_elf_bfd2got_hash
182 {
183 bfd *bfd;
184 struct mips_got_info *g;
185 };
186
187 /* Structure passed when traversing the bfd2got hash table, used to
188 create and merge bfd's gots. */
189
190 struct mips_elf_got_per_bfd_arg
191 {
192 /* A hashtable that maps bfds to gots. */
193 htab_t bfd2got;
194 /* The output bfd. */
195 bfd *obfd;
196 /* The link information. */
197 struct bfd_link_info *info;
198 /* A pointer to the primary got, i.e., the one that's going to get
199 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
200 DT_MIPS_GOTSYM. */
201 struct mips_got_info *primary;
202 /* A non-primary got we're trying to merge with other input bfd's
203 gots. */
204 struct mips_got_info *current;
205 /* The maximum number of got entries that can be addressed with a
206 16-bit offset. */
207 unsigned int max_count;
208 /* The maximum number of page entries needed by each got. */
209 unsigned int max_pages;
210 /* The total number of global entries which will live in the
211 primary got and be automatically relocated. This includes
212 those not referenced by the primary GOT but included in
213 the "master" GOT. */
214 unsigned int global_count;
215 };
216
217 /* Another structure used to pass arguments for got entries traversal. */
218
219 struct mips_elf_set_global_got_offset_arg
220 {
221 struct mips_got_info *g;
222 int value;
223 unsigned int needed_relocs;
224 struct bfd_link_info *info;
225 };
226
227 /* A structure used to count TLS relocations or GOT entries, for GOT
228 entry or ELF symbol table traversal. */
229
230 struct mips_elf_count_tls_arg
231 {
232 struct bfd_link_info *info;
233 unsigned int needed;
234 };
235
236 struct _mips_elf_section_data
237 {
238 struct bfd_elf_section_data elf;
239 union
240 {
241 bfd_byte *tdata;
242 } u;
243 };
244
245 #define mips_elf_section_data(sec) \
246 ((struct _mips_elf_section_data *) elf_section_data (sec))
247
248 #define is_mips_elf(bfd) \
249 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
250 && elf_tdata (bfd) != NULL \
251 && elf_object_id (bfd) == MIPS_ELF_DATA)
252
253 /* The ABI says that every symbol used by dynamic relocations must have
254 a global GOT entry. Among other things, this provides the dynamic
255 linker with a free, directly-indexed cache. The GOT can therefore
256 contain symbols that are not referenced by GOT relocations themselves
257 (in other words, it may have symbols that are not referenced by things
258 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
259
260 GOT relocations are less likely to overflow if we put the associated
261 GOT entries towards the beginning. We therefore divide the global
262 GOT entries into two areas: "normal" and "reloc-only". Entries in
263 the first area can be used for both dynamic relocations and GP-relative
264 accesses, while those in the "reloc-only" area are for dynamic
265 relocations only.
266
267 These GGA_* ("Global GOT Area") values are organised so that lower
268 values are more general than higher values. Also, non-GGA_NONE
269 values are ordered by the position of the area in the GOT. */
270 #define GGA_NORMAL 0
271 #define GGA_RELOC_ONLY 1
272 #define GGA_NONE 2
273
274 /* Information about a non-PIC interface to a PIC function. There are
275 two ways of creating these interfaces. The first is to add:
276
277 lui $25,%hi(func)
278 addiu $25,$25,%lo(func)
279
280 immediately before a PIC function "func". The second is to add:
281
282 lui $25,%hi(func)
283 j func
284 addiu $25,$25,%lo(func)
285
286 to a separate trampoline section.
287
288 Stubs of the first kind go in a new section immediately before the
289 target function. Stubs of the second kind go in a single section
290 pointed to by the hash table's "strampoline" field. */
291 struct mips_elf_la25_stub {
292 /* The generated section that contains this stub. */
293 asection *stub_section;
294
295 /* The offset of the stub from the start of STUB_SECTION. */
296 bfd_vma offset;
297
298 /* One symbol for the original function. Its location is available
299 in H->root.root.u.def. */
300 struct mips_elf_link_hash_entry *h;
301 };
302
303 /* Macros for populating a mips_elf_la25_stub. */
304
305 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
306 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
307 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
308
309 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
310 the dynamic symbols. */
311
312 struct mips_elf_hash_sort_data
313 {
314 /* The symbol in the global GOT with the lowest dynamic symbol table
315 index. */
316 struct elf_link_hash_entry *low;
317 /* The least dynamic symbol table index corresponding to a non-TLS
318 symbol with a GOT entry. */
319 long min_got_dynindx;
320 /* The greatest dynamic symbol table index corresponding to a symbol
321 with a GOT entry that is not referenced (e.g., a dynamic symbol
322 with dynamic relocations pointing to it from non-primary GOTs). */
323 long max_unref_got_dynindx;
324 /* The greatest dynamic symbol table index not corresponding to a
325 symbol without a GOT entry. */
326 long max_non_got_dynindx;
327 };
328
329 /* The MIPS ELF linker needs additional information for each symbol in
330 the global hash table. */
331
332 struct mips_elf_link_hash_entry
333 {
334 struct elf_link_hash_entry root;
335
336 /* External symbol information. */
337 EXTR esym;
338
339 /* The la25 stub we have created for ths symbol, if any. */
340 struct mips_elf_la25_stub *la25_stub;
341
342 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
343 this symbol. */
344 unsigned int possibly_dynamic_relocs;
345
346 /* If there is a stub that 32 bit functions should use to call this
347 16 bit function, this points to the section containing the stub. */
348 asection *fn_stub;
349
350 /* If there is a stub that 16 bit functions should use to call this
351 32 bit function, this points to the section containing the stub. */
352 asection *call_stub;
353
354 /* This is like the call_stub field, but it is used if the function
355 being called returns a floating point value. */
356 asection *call_fp_stub;
357
358 #define GOT_NORMAL 0
359 #define GOT_TLS_GD 1
360 #define GOT_TLS_LDM 2
361 #define GOT_TLS_IE 4
362 #define GOT_TLS_OFFSET_DONE 0x40
363 #define GOT_TLS_DONE 0x80
364 unsigned char tls_type;
365
366 /* This is only used in single-GOT mode; in multi-GOT mode there
367 is one mips_got_entry per GOT entry, so the offset is stored
368 there. In single-GOT mode there may be many mips_got_entry
369 structures all referring to the same GOT slot. It might be
370 possible to use root.got.offset instead, but that field is
371 overloaded already. */
372 bfd_vma tls_got_offset;
373
374 /* The highest GGA_* value that satisfies all references to this symbol. */
375 unsigned int global_got_area : 2;
376
377 /* True if all GOT relocations against this symbol are for calls. This is
378 a looser condition than no_fn_stub below, because there may be other
379 non-call non-GOT relocations against the symbol. */
380 unsigned int got_only_for_calls : 1;
381
382 /* True if one of the relocations described by possibly_dynamic_relocs
383 is against a readonly section. */
384 unsigned int readonly_reloc : 1;
385
386 /* True if there is a relocation against this symbol that must be
387 resolved by the static linker (in other words, if the relocation
388 cannot possibly be made dynamic). */
389 unsigned int has_static_relocs : 1;
390
391 /* True if we must not create a .MIPS.stubs entry for this symbol.
392 This is set, for example, if there are relocations related to
393 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
394 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
395 unsigned int no_fn_stub : 1;
396
397 /* Whether we need the fn_stub; this is true if this symbol appears
398 in any relocs other than a 16 bit call. */
399 unsigned int need_fn_stub : 1;
400
401 /* True if this symbol is referenced by branch relocations from
402 any non-PIC input file. This is used to determine whether an
403 la25 stub is required. */
404 unsigned int has_nonpic_branches : 1;
405
406 /* Does this symbol need a traditional MIPS lazy-binding stub
407 (as opposed to a PLT entry)? */
408 unsigned int needs_lazy_stub : 1;
409 };
410
411 /* MIPS ELF linker hash table. */
412
413 struct mips_elf_link_hash_table
414 {
415 struct elf_link_hash_table root;
416 #if 0
417 /* We no longer use this. */
418 /* String section indices for the dynamic section symbols. */
419 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
420 #endif
421
422 /* The number of .rtproc entries. */
423 bfd_size_type procedure_count;
424
425 /* The size of the .compact_rel section (if SGI_COMPAT). */
426 bfd_size_type compact_rel_size;
427
428 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
429 entry is set to the address of __rld_obj_head as in IRIX5. */
430 bfd_boolean use_rld_obj_head;
431
432 /* This is the value of the __rld_map or __rld_obj_head symbol. */
433 bfd_vma rld_value;
434
435 /* This is set if we see any mips16 stub sections. */
436 bfd_boolean mips16_stubs_seen;
437
438 /* True if we can generate copy relocs and PLTs. */
439 bfd_boolean use_plts_and_copy_relocs;
440
441 /* True if we're generating code for VxWorks. */
442 bfd_boolean is_vxworks;
443
444 /* True if we already reported the small-data section overflow. */
445 bfd_boolean small_data_overflow_reported;
446
447 /* Shortcuts to some dynamic sections, or NULL if they are not
448 being used. */
449 asection *srelbss;
450 asection *sdynbss;
451 asection *srelplt;
452 asection *srelplt2;
453 asection *sgotplt;
454 asection *splt;
455 asection *sstubs;
456 asection *sgot;
457
458 /* The master GOT information. */
459 struct mips_got_info *got_info;
460
461 /* The size of the PLT header in bytes. */
462 bfd_vma plt_header_size;
463
464 /* The size of a PLT entry in bytes. */
465 bfd_vma plt_entry_size;
466
467 /* The number of functions that need a lazy-binding stub. */
468 bfd_vma lazy_stub_count;
469
470 /* The size of a function stub entry in bytes. */
471 bfd_vma function_stub_size;
472
473 /* The number of reserved entries at the beginning of the GOT. */
474 unsigned int reserved_gotno;
475
476 /* The section used for mips_elf_la25_stub trampolines.
477 See the comment above that structure for details. */
478 asection *strampoline;
479
480 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
481 pairs. */
482 htab_t la25_stubs;
483
484 /* A function FN (NAME, IS, OS) that creates a new input section
485 called NAME and links it to output section OS. If IS is nonnull,
486 the new section should go immediately before it, otherwise it
487 should go at the (current) beginning of OS.
488
489 The function returns the new section on success, otherwise it
490 returns null. */
491 asection *(*add_stub_section) (const char *, asection *, asection *);
492 };
493
494 /* Get the MIPS ELF linker hash table from a link_info structure. */
495
496 #define mips_elf_hash_table(p) \
497 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
498 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
499
500 /* A structure used to communicate with htab_traverse callbacks. */
501 struct mips_htab_traverse_info
502 {
503 /* The usual link-wide information. */
504 struct bfd_link_info *info;
505 bfd *output_bfd;
506
507 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
508 bfd_boolean error;
509 };
510
511 #define TLS_RELOC_P(r_type) \
512 (r_type == R_MIPS_TLS_DTPMOD32 \
513 || r_type == R_MIPS_TLS_DTPMOD64 \
514 || r_type == R_MIPS_TLS_DTPREL32 \
515 || r_type == R_MIPS_TLS_DTPREL64 \
516 || r_type == R_MIPS_TLS_GD \
517 || r_type == R_MIPS_TLS_LDM \
518 || r_type == R_MIPS_TLS_DTPREL_HI16 \
519 || r_type == R_MIPS_TLS_DTPREL_LO16 \
520 || r_type == R_MIPS_TLS_GOTTPREL \
521 || r_type == R_MIPS_TLS_TPREL32 \
522 || r_type == R_MIPS_TLS_TPREL64 \
523 || r_type == R_MIPS_TLS_TPREL_HI16 \
524 || r_type == R_MIPS_TLS_TPREL_LO16)
525
526 /* Structure used to pass information to mips_elf_output_extsym. */
527
528 struct extsym_info
529 {
530 bfd *abfd;
531 struct bfd_link_info *info;
532 struct ecoff_debug_info *debug;
533 const struct ecoff_debug_swap *swap;
534 bfd_boolean failed;
535 };
536
537 /* The names of the runtime procedure table symbols used on IRIX5. */
538
539 static const char * const mips_elf_dynsym_rtproc_names[] =
540 {
541 "_procedure_table",
542 "_procedure_string_table",
543 "_procedure_table_size",
544 NULL
545 };
546
547 /* These structures are used to generate the .compact_rel section on
548 IRIX5. */
549
550 typedef struct
551 {
552 unsigned long id1; /* Always one? */
553 unsigned long num; /* Number of compact relocation entries. */
554 unsigned long id2; /* Always two? */
555 unsigned long offset; /* The file offset of the first relocation. */
556 unsigned long reserved0; /* Zero? */
557 unsigned long reserved1; /* Zero? */
558 } Elf32_compact_rel;
559
560 typedef struct
561 {
562 bfd_byte id1[4];
563 bfd_byte num[4];
564 bfd_byte id2[4];
565 bfd_byte offset[4];
566 bfd_byte reserved0[4];
567 bfd_byte reserved1[4];
568 } Elf32_External_compact_rel;
569
570 typedef struct
571 {
572 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
573 unsigned int rtype : 4; /* Relocation types. See below. */
574 unsigned int dist2to : 8;
575 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
576 unsigned long konst; /* KONST field. See below. */
577 unsigned long vaddr; /* VADDR to be relocated. */
578 } Elf32_crinfo;
579
580 typedef struct
581 {
582 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
583 unsigned int rtype : 4; /* Relocation types. See below. */
584 unsigned int dist2to : 8;
585 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
586 unsigned long konst; /* KONST field. See below. */
587 } Elf32_crinfo2;
588
589 typedef struct
590 {
591 bfd_byte info[4];
592 bfd_byte konst[4];
593 bfd_byte vaddr[4];
594 } Elf32_External_crinfo;
595
596 typedef struct
597 {
598 bfd_byte info[4];
599 bfd_byte konst[4];
600 } Elf32_External_crinfo2;
601
602 /* These are the constants used to swap the bitfields in a crinfo. */
603
604 #define CRINFO_CTYPE (0x1)
605 #define CRINFO_CTYPE_SH (31)
606 #define CRINFO_RTYPE (0xf)
607 #define CRINFO_RTYPE_SH (27)
608 #define CRINFO_DIST2TO (0xff)
609 #define CRINFO_DIST2TO_SH (19)
610 #define CRINFO_RELVADDR (0x7ffff)
611 #define CRINFO_RELVADDR_SH (0)
612
613 /* A compact relocation info has long (3 words) or short (2 words)
614 formats. A short format doesn't have VADDR field and relvaddr
615 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
616 #define CRF_MIPS_LONG 1
617 #define CRF_MIPS_SHORT 0
618
619 /* There are 4 types of compact relocation at least. The value KONST
620 has different meaning for each type:
621
622 (type) (konst)
623 CT_MIPS_REL32 Address in data
624 CT_MIPS_WORD Address in word (XXX)
625 CT_MIPS_GPHI_LO GP - vaddr
626 CT_MIPS_JMPAD Address to jump
627 */
628
629 #define CRT_MIPS_REL32 0xa
630 #define CRT_MIPS_WORD 0xb
631 #define CRT_MIPS_GPHI_LO 0xc
632 #define CRT_MIPS_JMPAD 0xd
633
634 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
635 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
636 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
637 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
638 \f
639 /* The structure of the runtime procedure descriptor created by the
640 loader for use by the static exception system. */
641
642 typedef struct runtime_pdr {
643 bfd_vma adr; /* Memory address of start of procedure. */
644 long regmask; /* Save register mask. */
645 long regoffset; /* Save register offset. */
646 long fregmask; /* Save floating point register mask. */
647 long fregoffset; /* Save floating point register offset. */
648 long frameoffset; /* Frame size. */
649 short framereg; /* Frame pointer register. */
650 short pcreg; /* Offset or reg of return pc. */
651 long irpss; /* Index into the runtime string table. */
652 long reserved;
653 struct exception_info *exception_info;/* Pointer to exception array. */
654 } RPDR, *pRPDR;
655 #define cbRPDR sizeof (RPDR)
656 #define rpdNil ((pRPDR) 0)
657 \f
658 static struct mips_got_entry *mips_elf_create_local_got_entry
659 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
660 struct mips_elf_link_hash_entry *, int);
661 static bfd_boolean mips_elf_sort_hash_table_f
662 (struct mips_elf_link_hash_entry *, void *);
663 static bfd_vma mips_elf_high
664 (bfd_vma);
665 static bfd_boolean mips_elf_create_dynamic_relocation
666 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
667 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
668 bfd_vma *, asection *);
669 static hashval_t mips_elf_got_entry_hash
670 (const void *);
671 static bfd_vma mips_elf_adjust_gp
672 (bfd *, struct mips_got_info *, bfd *);
673 static struct mips_got_info *mips_elf_got_for_ibfd
674 (struct mips_got_info *, bfd *);
675
676 /* This will be used when we sort the dynamic relocation records. */
677 static bfd *reldyn_sorting_bfd;
678
679 /* True if ABFD is for CPUs with load interlocking that include
680 non-MIPS1 CPUs and R3900. */
681 #define LOAD_INTERLOCKS_P(abfd) \
682 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
683 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
684
685 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
686 This should be safe for all architectures. We enable this predicate
687 for RM9000 for now. */
688 #define JAL_TO_BAL_P(abfd) \
689 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
690
691 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
692 This should be safe for all architectures. We enable this predicate for
693 all CPUs. */
694 #define JALR_TO_BAL_P(abfd) 1
695
696 /* True if ABFD is for CPUs that are faster if JR is converted to B.
697 This should be safe for all architectures. We enable this predicate for
698 all CPUs. */
699 #define JR_TO_B_P(abfd) 1
700
701 /* True if ABFD is a PIC object. */
702 #define PIC_OBJECT_P(abfd) \
703 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
704
705 /* Nonzero if ABFD is using the N32 ABI. */
706 #define ABI_N32_P(abfd) \
707 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
708
709 /* Nonzero if ABFD is using the N64 ABI. */
710 #define ABI_64_P(abfd) \
711 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
712
713 /* Nonzero if ABFD is using NewABI conventions. */
714 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
715
716 /* The IRIX compatibility level we are striving for. */
717 #define IRIX_COMPAT(abfd) \
718 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
719
720 /* Whether we are trying to be compatible with IRIX at all. */
721 #define SGI_COMPAT(abfd) \
722 (IRIX_COMPAT (abfd) != ict_none)
723
724 /* The name of the options section. */
725 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
726 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
727
728 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
729 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
730 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
731 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
732
733 /* Whether the section is readonly. */
734 #define MIPS_ELF_READONLY_SECTION(sec) \
735 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
736 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
737
738 /* The name of the stub section. */
739 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
740
741 /* The size of an external REL relocation. */
742 #define MIPS_ELF_REL_SIZE(abfd) \
743 (get_elf_backend_data (abfd)->s->sizeof_rel)
744
745 /* The size of an external RELA relocation. */
746 #define MIPS_ELF_RELA_SIZE(abfd) \
747 (get_elf_backend_data (abfd)->s->sizeof_rela)
748
749 /* The size of an external dynamic table entry. */
750 #define MIPS_ELF_DYN_SIZE(abfd) \
751 (get_elf_backend_data (abfd)->s->sizeof_dyn)
752
753 /* The size of a GOT entry. */
754 #define MIPS_ELF_GOT_SIZE(abfd) \
755 (get_elf_backend_data (abfd)->s->arch_size / 8)
756
757 /* The size of a symbol-table entry. */
758 #define MIPS_ELF_SYM_SIZE(abfd) \
759 (get_elf_backend_data (abfd)->s->sizeof_sym)
760
761 /* The default alignment for sections, as a power of two. */
762 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
763 (get_elf_backend_data (abfd)->s->log_file_align)
764
765 /* Get word-sized data. */
766 #define MIPS_ELF_GET_WORD(abfd, ptr) \
767 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
768
769 /* Put out word-sized data. */
770 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
771 (ABI_64_P (abfd) \
772 ? bfd_put_64 (abfd, val, ptr) \
773 : bfd_put_32 (abfd, val, ptr))
774
775 /* The opcode for word-sized loads (LW or LD). */
776 #define MIPS_ELF_LOAD_WORD(abfd) \
777 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
778
779 /* Add a dynamic symbol table-entry. */
780 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
781 _bfd_elf_add_dynamic_entry (info, tag, val)
782
783 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
784 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
785
786 /* The name of the dynamic relocation section. */
787 #define MIPS_ELF_REL_DYN_NAME(INFO) \
788 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
789
790 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
791 from smaller values. Start with zero, widen, *then* decrement. */
792 #define MINUS_ONE (((bfd_vma)0) - 1)
793 #define MINUS_TWO (((bfd_vma)0) - 2)
794
795 /* The value to write into got[1] for SVR4 targets, to identify it is
796 a GNU object. The dynamic linker can then use got[1] to store the
797 module pointer. */
798 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
799 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
800
801 /* The offset of $gp from the beginning of the .got section. */
802 #define ELF_MIPS_GP_OFFSET(INFO) \
803 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
804
805 /* The maximum size of the GOT for it to be addressable using 16-bit
806 offsets from $gp. */
807 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
808
809 /* Instructions which appear in a stub. */
810 #define STUB_LW(abfd) \
811 ((ABI_64_P (abfd) \
812 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
813 : 0x8f998010)) /* lw t9,0x8010(gp) */
814 #define STUB_MOVE(abfd) \
815 ((ABI_64_P (abfd) \
816 ? 0x03e0782d /* daddu t7,ra */ \
817 : 0x03e07821)) /* addu t7,ra */
818 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
819 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
820 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
821 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
822 #define STUB_LI16S(abfd, VAL) \
823 ((ABI_64_P (abfd) \
824 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
825 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
826
827 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
828 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
829
830 /* The name of the dynamic interpreter. This is put in the .interp
831 section. */
832
833 #define ELF_DYNAMIC_INTERPRETER(abfd) \
834 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
835 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
836 : "/usr/lib/libc.so.1")
837
838 #ifdef BFD64
839 #define MNAME(bfd,pre,pos) \
840 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
841 #define ELF_R_SYM(bfd, i) \
842 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
843 #define ELF_R_TYPE(bfd, i) \
844 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
845 #define ELF_R_INFO(bfd, s, t) \
846 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
847 #else
848 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
849 #define ELF_R_SYM(bfd, i) \
850 (ELF32_R_SYM (i))
851 #define ELF_R_TYPE(bfd, i) \
852 (ELF32_R_TYPE (i))
853 #define ELF_R_INFO(bfd, s, t) \
854 (ELF32_R_INFO (s, t))
855 #endif
856 \f
857 /* The mips16 compiler uses a couple of special sections to handle
858 floating point arguments.
859
860 Section names that look like .mips16.fn.FNNAME contain stubs that
861 copy floating point arguments from the fp regs to the gp regs and
862 then jump to FNNAME. If any 32 bit function calls FNNAME, the
863 call should be redirected to the stub instead. If no 32 bit
864 function calls FNNAME, the stub should be discarded. We need to
865 consider any reference to the function, not just a call, because
866 if the address of the function is taken we will need the stub,
867 since the address might be passed to a 32 bit function.
868
869 Section names that look like .mips16.call.FNNAME contain stubs
870 that copy floating point arguments from the gp regs to the fp
871 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
872 then any 16 bit function that calls FNNAME should be redirected
873 to the stub instead. If FNNAME is not a 32 bit function, the
874 stub should be discarded.
875
876 .mips16.call.fp.FNNAME sections are similar, but contain stubs
877 which call FNNAME and then copy the return value from the fp regs
878 to the gp regs. These stubs store the return value in $18 while
879 calling FNNAME; any function which might call one of these stubs
880 must arrange to save $18 around the call. (This case is not
881 needed for 32 bit functions that call 16 bit functions, because
882 16 bit functions always return floating point values in both
883 $f0/$f1 and $2/$3.)
884
885 Note that in all cases FNNAME might be defined statically.
886 Therefore, FNNAME is not used literally. Instead, the relocation
887 information will indicate which symbol the section is for.
888
889 We record any stubs that we find in the symbol table. */
890
891 #define FN_STUB ".mips16.fn."
892 #define CALL_STUB ".mips16.call."
893 #define CALL_FP_STUB ".mips16.call.fp."
894
895 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
896 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
897 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
898 \f
899 /* The format of the first PLT entry in an O32 executable. */
900 static const bfd_vma mips_o32_exec_plt0_entry[] =
901 {
902 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
903 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
904 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
905 0x031cc023, /* subu $24, $24, $28 */
906 0x03e07821, /* move $15, $31 */
907 0x0018c082, /* srl $24, $24, 2 */
908 0x0320f809, /* jalr $25 */
909 0x2718fffe /* subu $24, $24, 2 */
910 };
911
912 /* The format of the first PLT entry in an N32 executable. Different
913 because gp ($28) is not available; we use t2 ($14) instead. */
914 static const bfd_vma mips_n32_exec_plt0_entry[] =
915 {
916 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
917 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
918 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
919 0x030ec023, /* subu $24, $24, $14 */
920 0x03e07821, /* move $15, $31 */
921 0x0018c082, /* srl $24, $24, 2 */
922 0x0320f809, /* jalr $25 */
923 0x2718fffe /* subu $24, $24, 2 */
924 };
925
926 /* The format of the first PLT entry in an N64 executable. Different
927 from N32 because of the increased size of GOT entries. */
928 static const bfd_vma mips_n64_exec_plt0_entry[] =
929 {
930 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
931 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
932 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
933 0x030ec023, /* subu $24, $24, $14 */
934 0x03e07821, /* move $15, $31 */
935 0x0018c0c2, /* srl $24, $24, 3 */
936 0x0320f809, /* jalr $25 */
937 0x2718fffe /* subu $24, $24, 2 */
938 };
939
940 /* The format of subsequent PLT entries. */
941 static const bfd_vma mips_exec_plt_entry[] =
942 {
943 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
944 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
945 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
946 0x03200008 /* jr $25 */
947 };
948
949 /* The format of the first PLT entry in a VxWorks executable. */
950 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
951 {
952 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
953 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
954 0x8f390008, /* lw t9, 8(t9) */
955 0x00000000, /* nop */
956 0x03200008, /* jr t9 */
957 0x00000000 /* nop */
958 };
959
960 /* The format of subsequent PLT entries. */
961 static const bfd_vma mips_vxworks_exec_plt_entry[] =
962 {
963 0x10000000, /* b .PLT_resolver */
964 0x24180000, /* li t8, <pltindex> */
965 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
966 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
967 0x8f390000, /* lw t9, 0(t9) */
968 0x00000000, /* nop */
969 0x03200008, /* jr t9 */
970 0x00000000 /* nop */
971 };
972
973 /* The format of the first PLT entry in a VxWorks shared object. */
974 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
975 {
976 0x8f990008, /* lw t9, 8(gp) */
977 0x00000000, /* nop */
978 0x03200008, /* jr t9 */
979 0x00000000, /* nop */
980 0x00000000, /* nop */
981 0x00000000 /* nop */
982 };
983
984 /* The format of subsequent PLT entries. */
985 static const bfd_vma mips_vxworks_shared_plt_entry[] =
986 {
987 0x10000000, /* b .PLT_resolver */
988 0x24180000 /* li t8, <pltindex> */
989 };
990 \f
991 /* Look up an entry in a MIPS ELF linker hash table. */
992
993 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
994 ((struct mips_elf_link_hash_entry *) \
995 elf_link_hash_lookup (&(table)->root, (string), (create), \
996 (copy), (follow)))
997
998 /* Traverse a MIPS ELF linker hash table. */
999
1000 #define mips_elf_link_hash_traverse(table, func, info) \
1001 (elf_link_hash_traverse \
1002 (&(table)->root, \
1003 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1004 (info)))
1005
1006 /* Find the base offsets for thread-local storage in this object,
1007 for GD/LD and IE/LE respectively. */
1008
1009 #define TP_OFFSET 0x7000
1010 #define DTP_OFFSET 0x8000
1011
1012 static bfd_vma
1013 dtprel_base (struct bfd_link_info *info)
1014 {
1015 /* If tls_sec is NULL, we should have signalled an error already. */
1016 if (elf_hash_table (info)->tls_sec == NULL)
1017 return 0;
1018 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1019 }
1020
1021 static bfd_vma
1022 tprel_base (struct bfd_link_info *info)
1023 {
1024 /* If tls_sec is NULL, we should have signalled an error already. */
1025 if (elf_hash_table (info)->tls_sec == NULL)
1026 return 0;
1027 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1028 }
1029
1030 /* Create an entry in a MIPS ELF linker hash table. */
1031
1032 static struct bfd_hash_entry *
1033 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1034 struct bfd_hash_table *table, const char *string)
1035 {
1036 struct mips_elf_link_hash_entry *ret =
1037 (struct mips_elf_link_hash_entry *) entry;
1038
1039 /* Allocate the structure if it has not already been allocated by a
1040 subclass. */
1041 if (ret == NULL)
1042 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1043 if (ret == NULL)
1044 return (struct bfd_hash_entry *) ret;
1045
1046 /* Call the allocation method of the superclass. */
1047 ret = ((struct mips_elf_link_hash_entry *)
1048 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1049 table, string));
1050 if (ret != NULL)
1051 {
1052 /* Set local fields. */
1053 memset (&ret->esym, 0, sizeof (EXTR));
1054 /* We use -2 as a marker to indicate that the information has
1055 not been set. -1 means there is no associated ifd. */
1056 ret->esym.ifd = -2;
1057 ret->la25_stub = 0;
1058 ret->possibly_dynamic_relocs = 0;
1059 ret->fn_stub = NULL;
1060 ret->call_stub = NULL;
1061 ret->call_fp_stub = NULL;
1062 ret->tls_type = GOT_NORMAL;
1063 ret->global_got_area = GGA_NONE;
1064 ret->got_only_for_calls = TRUE;
1065 ret->readonly_reloc = FALSE;
1066 ret->has_static_relocs = FALSE;
1067 ret->no_fn_stub = FALSE;
1068 ret->need_fn_stub = FALSE;
1069 ret->has_nonpic_branches = FALSE;
1070 ret->needs_lazy_stub = FALSE;
1071 }
1072
1073 return (struct bfd_hash_entry *) ret;
1074 }
1075
1076 bfd_boolean
1077 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1078 {
1079 if (!sec->used_by_bfd)
1080 {
1081 struct _mips_elf_section_data *sdata;
1082 bfd_size_type amt = sizeof (*sdata);
1083
1084 sdata = bfd_zalloc (abfd, amt);
1085 if (sdata == NULL)
1086 return FALSE;
1087 sec->used_by_bfd = sdata;
1088 }
1089
1090 return _bfd_elf_new_section_hook (abfd, sec);
1091 }
1092 \f
1093 /* Read ECOFF debugging information from a .mdebug section into a
1094 ecoff_debug_info structure. */
1095
1096 bfd_boolean
1097 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1098 struct ecoff_debug_info *debug)
1099 {
1100 HDRR *symhdr;
1101 const struct ecoff_debug_swap *swap;
1102 char *ext_hdr;
1103
1104 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1105 memset (debug, 0, sizeof (*debug));
1106
1107 ext_hdr = bfd_malloc (swap->external_hdr_size);
1108 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1109 goto error_return;
1110
1111 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1112 swap->external_hdr_size))
1113 goto error_return;
1114
1115 symhdr = &debug->symbolic_header;
1116 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1117
1118 /* The symbolic header contains absolute file offsets and sizes to
1119 read. */
1120 #define READ(ptr, offset, count, size, type) \
1121 if (symhdr->count == 0) \
1122 debug->ptr = NULL; \
1123 else \
1124 { \
1125 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1126 debug->ptr = bfd_malloc (amt); \
1127 if (debug->ptr == NULL) \
1128 goto error_return; \
1129 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1130 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1131 goto error_return; \
1132 }
1133
1134 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1135 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1136 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1137 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1138 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1139 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1140 union aux_ext *);
1141 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1142 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1143 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1144 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1145 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1146 #undef READ
1147
1148 debug->fdr = NULL;
1149
1150 return TRUE;
1151
1152 error_return:
1153 if (ext_hdr != NULL)
1154 free (ext_hdr);
1155 if (debug->line != NULL)
1156 free (debug->line);
1157 if (debug->external_dnr != NULL)
1158 free (debug->external_dnr);
1159 if (debug->external_pdr != NULL)
1160 free (debug->external_pdr);
1161 if (debug->external_sym != NULL)
1162 free (debug->external_sym);
1163 if (debug->external_opt != NULL)
1164 free (debug->external_opt);
1165 if (debug->external_aux != NULL)
1166 free (debug->external_aux);
1167 if (debug->ss != NULL)
1168 free (debug->ss);
1169 if (debug->ssext != NULL)
1170 free (debug->ssext);
1171 if (debug->external_fdr != NULL)
1172 free (debug->external_fdr);
1173 if (debug->external_rfd != NULL)
1174 free (debug->external_rfd);
1175 if (debug->external_ext != NULL)
1176 free (debug->external_ext);
1177 return FALSE;
1178 }
1179 \f
1180 /* Swap RPDR (runtime procedure table entry) for output. */
1181
1182 static void
1183 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1184 {
1185 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1186 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1187 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1188 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1189 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1190 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1191
1192 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1193 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1194
1195 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1196 }
1197
1198 /* Create a runtime procedure table from the .mdebug section. */
1199
1200 static bfd_boolean
1201 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1202 struct bfd_link_info *info, asection *s,
1203 struct ecoff_debug_info *debug)
1204 {
1205 const struct ecoff_debug_swap *swap;
1206 HDRR *hdr = &debug->symbolic_header;
1207 RPDR *rpdr, *rp;
1208 struct rpdr_ext *erp;
1209 void *rtproc;
1210 struct pdr_ext *epdr;
1211 struct sym_ext *esym;
1212 char *ss, **sv;
1213 char *str;
1214 bfd_size_type size;
1215 bfd_size_type count;
1216 unsigned long sindex;
1217 unsigned long i;
1218 PDR pdr;
1219 SYMR sym;
1220 const char *no_name_func = _("static procedure (no name)");
1221
1222 epdr = NULL;
1223 rpdr = NULL;
1224 esym = NULL;
1225 ss = NULL;
1226 sv = NULL;
1227
1228 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1229
1230 sindex = strlen (no_name_func) + 1;
1231 count = hdr->ipdMax;
1232 if (count > 0)
1233 {
1234 size = swap->external_pdr_size;
1235
1236 epdr = bfd_malloc (size * count);
1237 if (epdr == NULL)
1238 goto error_return;
1239
1240 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1241 goto error_return;
1242
1243 size = sizeof (RPDR);
1244 rp = rpdr = bfd_malloc (size * count);
1245 if (rpdr == NULL)
1246 goto error_return;
1247
1248 size = sizeof (char *);
1249 sv = bfd_malloc (size * count);
1250 if (sv == NULL)
1251 goto error_return;
1252
1253 count = hdr->isymMax;
1254 size = swap->external_sym_size;
1255 esym = bfd_malloc (size * count);
1256 if (esym == NULL)
1257 goto error_return;
1258
1259 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1260 goto error_return;
1261
1262 count = hdr->issMax;
1263 ss = bfd_malloc (count);
1264 if (ss == NULL)
1265 goto error_return;
1266 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1267 goto error_return;
1268
1269 count = hdr->ipdMax;
1270 for (i = 0; i < (unsigned long) count; i++, rp++)
1271 {
1272 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1273 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1274 rp->adr = sym.value;
1275 rp->regmask = pdr.regmask;
1276 rp->regoffset = pdr.regoffset;
1277 rp->fregmask = pdr.fregmask;
1278 rp->fregoffset = pdr.fregoffset;
1279 rp->frameoffset = pdr.frameoffset;
1280 rp->framereg = pdr.framereg;
1281 rp->pcreg = pdr.pcreg;
1282 rp->irpss = sindex;
1283 sv[i] = ss + sym.iss;
1284 sindex += strlen (sv[i]) + 1;
1285 }
1286 }
1287
1288 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1289 size = BFD_ALIGN (size, 16);
1290 rtproc = bfd_alloc (abfd, size);
1291 if (rtproc == NULL)
1292 {
1293 mips_elf_hash_table (info)->procedure_count = 0;
1294 goto error_return;
1295 }
1296
1297 mips_elf_hash_table (info)->procedure_count = count + 2;
1298
1299 erp = rtproc;
1300 memset (erp, 0, sizeof (struct rpdr_ext));
1301 erp++;
1302 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1303 strcpy (str, no_name_func);
1304 str += strlen (no_name_func) + 1;
1305 for (i = 0; i < count; i++)
1306 {
1307 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1308 strcpy (str, sv[i]);
1309 str += strlen (sv[i]) + 1;
1310 }
1311 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1312
1313 /* Set the size and contents of .rtproc section. */
1314 s->size = size;
1315 s->contents = rtproc;
1316
1317 /* Skip this section later on (I don't think this currently
1318 matters, but someday it might). */
1319 s->map_head.link_order = NULL;
1320
1321 if (epdr != NULL)
1322 free (epdr);
1323 if (rpdr != NULL)
1324 free (rpdr);
1325 if (esym != NULL)
1326 free (esym);
1327 if (ss != NULL)
1328 free (ss);
1329 if (sv != NULL)
1330 free (sv);
1331
1332 return TRUE;
1333
1334 error_return:
1335 if (epdr != NULL)
1336 free (epdr);
1337 if (rpdr != NULL)
1338 free (rpdr);
1339 if (esym != NULL)
1340 free (esym);
1341 if (ss != NULL)
1342 free (ss);
1343 if (sv != NULL)
1344 free (sv);
1345 return FALSE;
1346 }
1347 \f
1348 /* We're going to create a stub for H. Create a symbol for the stub's
1349 value and size, to help make the disassembly easier to read. */
1350
1351 static bfd_boolean
1352 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1353 struct mips_elf_link_hash_entry *h,
1354 const char *prefix, asection *s, bfd_vma value,
1355 bfd_vma size)
1356 {
1357 struct bfd_link_hash_entry *bh;
1358 struct elf_link_hash_entry *elfh;
1359 const char *name;
1360
1361 /* Create a new symbol. */
1362 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1363 bh = NULL;
1364 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1365 BSF_LOCAL, s, value, NULL,
1366 TRUE, FALSE, &bh))
1367 return FALSE;
1368
1369 /* Make it a local function. */
1370 elfh = (struct elf_link_hash_entry *) bh;
1371 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1372 elfh->size = size;
1373 elfh->forced_local = 1;
1374 return TRUE;
1375 }
1376
1377 /* We're about to redefine H. Create a symbol to represent H's
1378 current value and size, to help make the disassembly easier
1379 to read. */
1380
1381 static bfd_boolean
1382 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1383 struct mips_elf_link_hash_entry *h,
1384 const char *prefix)
1385 {
1386 struct bfd_link_hash_entry *bh;
1387 struct elf_link_hash_entry *elfh;
1388 const char *name;
1389 asection *s;
1390 bfd_vma value;
1391
1392 /* Read the symbol's value. */
1393 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1394 || h->root.root.type == bfd_link_hash_defweak);
1395 s = h->root.root.u.def.section;
1396 value = h->root.root.u.def.value;
1397
1398 /* Create a new symbol. */
1399 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1400 bh = NULL;
1401 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1402 BSF_LOCAL, s, value, NULL,
1403 TRUE, FALSE, &bh))
1404 return FALSE;
1405
1406 /* Make it local and copy the other attributes from H. */
1407 elfh = (struct elf_link_hash_entry *) bh;
1408 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1409 elfh->other = h->root.other;
1410 elfh->size = h->root.size;
1411 elfh->forced_local = 1;
1412 return TRUE;
1413 }
1414
1415 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1416 function rather than to a hard-float stub. */
1417
1418 static bfd_boolean
1419 section_allows_mips16_refs_p (asection *section)
1420 {
1421 const char *name;
1422
1423 name = bfd_get_section_name (section->owner, section);
1424 return (FN_STUB_P (name)
1425 || CALL_STUB_P (name)
1426 || CALL_FP_STUB_P (name)
1427 || strcmp (name, ".pdr") == 0);
1428 }
1429
1430 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1431 stub section of some kind. Return the R_SYMNDX of the target
1432 function, or 0 if we can't decide which function that is. */
1433
1434 static unsigned long
1435 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1436 const Elf_Internal_Rela *relocs,
1437 const Elf_Internal_Rela *relend)
1438 {
1439 const Elf_Internal_Rela *rel;
1440
1441 /* Trust the first R_MIPS_NONE relocation, if any. */
1442 for (rel = relocs; rel < relend; rel++)
1443 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1444 return ELF_R_SYM (sec->owner, rel->r_info);
1445
1446 /* Otherwise trust the first relocation, whatever its kind. This is
1447 the traditional behavior. */
1448 if (relocs < relend)
1449 return ELF_R_SYM (sec->owner, relocs->r_info);
1450
1451 return 0;
1452 }
1453
1454 /* Check the mips16 stubs for a particular symbol, and see if we can
1455 discard them. */
1456
1457 static void
1458 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1459 struct mips_elf_link_hash_entry *h)
1460 {
1461 /* Dynamic symbols must use the standard call interface, in case other
1462 objects try to call them. */
1463 if (h->fn_stub != NULL
1464 && h->root.dynindx != -1)
1465 {
1466 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1467 h->need_fn_stub = TRUE;
1468 }
1469
1470 if (h->fn_stub != NULL
1471 && ! h->need_fn_stub)
1472 {
1473 /* We don't need the fn_stub; the only references to this symbol
1474 are 16 bit calls. Clobber the size to 0 to prevent it from
1475 being included in the link. */
1476 h->fn_stub->size = 0;
1477 h->fn_stub->flags &= ~SEC_RELOC;
1478 h->fn_stub->reloc_count = 0;
1479 h->fn_stub->flags |= SEC_EXCLUDE;
1480 }
1481
1482 if (h->call_stub != NULL
1483 && ELF_ST_IS_MIPS16 (h->root.other))
1484 {
1485 /* We don't need the call_stub; this is a 16 bit function, so
1486 calls from other 16 bit functions are OK. Clobber the size
1487 to 0 to prevent it from being included in the link. */
1488 h->call_stub->size = 0;
1489 h->call_stub->flags &= ~SEC_RELOC;
1490 h->call_stub->reloc_count = 0;
1491 h->call_stub->flags |= SEC_EXCLUDE;
1492 }
1493
1494 if (h->call_fp_stub != NULL
1495 && ELF_ST_IS_MIPS16 (h->root.other))
1496 {
1497 /* We don't need the call_stub; this is a 16 bit function, so
1498 calls from other 16 bit functions are OK. Clobber the size
1499 to 0 to prevent it from being included in the link. */
1500 h->call_fp_stub->size = 0;
1501 h->call_fp_stub->flags &= ~SEC_RELOC;
1502 h->call_fp_stub->reloc_count = 0;
1503 h->call_fp_stub->flags |= SEC_EXCLUDE;
1504 }
1505 }
1506
1507 /* Hashtable callbacks for mips_elf_la25_stubs. */
1508
1509 static hashval_t
1510 mips_elf_la25_stub_hash (const void *entry_)
1511 {
1512 const struct mips_elf_la25_stub *entry;
1513
1514 entry = (struct mips_elf_la25_stub *) entry_;
1515 return entry->h->root.root.u.def.section->id
1516 + entry->h->root.root.u.def.value;
1517 }
1518
1519 static int
1520 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1521 {
1522 const struct mips_elf_la25_stub *entry1, *entry2;
1523
1524 entry1 = (struct mips_elf_la25_stub *) entry1_;
1525 entry2 = (struct mips_elf_la25_stub *) entry2_;
1526 return ((entry1->h->root.root.u.def.section
1527 == entry2->h->root.root.u.def.section)
1528 && (entry1->h->root.root.u.def.value
1529 == entry2->h->root.root.u.def.value));
1530 }
1531
1532 /* Called by the linker to set up the la25 stub-creation code. FN is
1533 the linker's implementation of add_stub_function. Return true on
1534 success. */
1535
1536 bfd_boolean
1537 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1538 asection *(*fn) (const char *, asection *,
1539 asection *))
1540 {
1541 struct mips_elf_link_hash_table *htab;
1542
1543 htab = mips_elf_hash_table (info);
1544 if (htab == NULL)
1545 return FALSE;
1546
1547 htab->add_stub_section = fn;
1548 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1549 mips_elf_la25_stub_eq, NULL);
1550 if (htab->la25_stubs == NULL)
1551 return FALSE;
1552
1553 return TRUE;
1554 }
1555
1556 /* Return true if H is a locally-defined PIC function, in the sense
1557 that it might need $25 to be valid on entry. Note that MIPS16
1558 functions never need $25 to be valid on entry; they set up $gp
1559 using PC-relative instructions instead. */
1560
1561 static bfd_boolean
1562 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1563 {
1564 return ((h->root.root.type == bfd_link_hash_defined
1565 || h->root.root.type == bfd_link_hash_defweak)
1566 && h->root.def_regular
1567 && !bfd_is_abs_section (h->root.root.u.def.section)
1568 && !ELF_ST_IS_MIPS16 (h->root.other)
1569 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1570 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1571 }
1572
1573 /* STUB describes an la25 stub that we have decided to implement
1574 by inserting an LUI/ADDIU pair before the target function.
1575 Create the section and redirect the function symbol to it. */
1576
1577 static bfd_boolean
1578 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1579 struct bfd_link_info *info)
1580 {
1581 struct mips_elf_link_hash_table *htab;
1582 char *name;
1583 asection *s, *input_section;
1584 unsigned int align;
1585
1586 htab = mips_elf_hash_table (info);
1587 if (htab == NULL)
1588 return FALSE;
1589
1590 /* Create a unique name for the new section. */
1591 name = bfd_malloc (11 + sizeof (".text.stub."));
1592 if (name == NULL)
1593 return FALSE;
1594 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1595
1596 /* Create the section. */
1597 input_section = stub->h->root.root.u.def.section;
1598 s = htab->add_stub_section (name, input_section,
1599 input_section->output_section);
1600 if (s == NULL)
1601 return FALSE;
1602
1603 /* Make sure that any padding goes before the stub. */
1604 align = input_section->alignment_power;
1605 if (!bfd_set_section_alignment (s->owner, s, align))
1606 return FALSE;
1607 if (align > 3)
1608 s->size = (1 << align) - 8;
1609
1610 /* Create a symbol for the stub. */
1611 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1612 stub->stub_section = s;
1613 stub->offset = s->size;
1614
1615 /* Allocate room for it. */
1616 s->size += 8;
1617 return TRUE;
1618 }
1619
1620 /* STUB describes an la25 stub that we have decided to implement
1621 with a separate trampoline. Allocate room for it and redirect
1622 the function symbol to it. */
1623
1624 static bfd_boolean
1625 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1626 struct bfd_link_info *info)
1627 {
1628 struct mips_elf_link_hash_table *htab;
1629 asection *s;
1630
1631 htab = mips_elf_hash_table (info);
1632 if (htab == NULL)
1633 return FALSE;
1634
1635 /* Create a trampoline section, if we haven't already. */
1636 s = htab->strampoline;
1637 if (s == NULL)
1638 {
1639 asection *input_section = stub->h->root.root.u.def.section;
1640 s = htab->add_stub_section (".text", NULL,
1641 input_section->output_section);
1642 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1643 return FALSE;
1644 htab->strampoline = s;
1645 }
1646
1647 /* Create a symbol for the stub. */
1648 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1649 stub->stub_section = s;
1650 stub->offset = s->size;
1651
1652 /* Allocate room for it. */
1653 s->size += 16;
1654 return TRUE;
1655 }
1656
1657 /* H describes a symbol that needs an la25 stub. Make sure that an
1658 appropriate stub exists and point H at it. */
1659
1660 static bfd_boolean
1661 mips_elf_add_la25_stub (struct bfd_link_info *info,
1662 struct mips_elf_link_hash_entry *h)
1663 {
1664 struct mips_elf_link_hash_table *htab;
1665 struct mips_elf_la25_stub search, *stub;
1666 bfd_boolean use_trampoline_p;
1667 asection *s;
1668 bfd_vma value;
1669 void **slot;
1670
1671 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1672 of the section and if we would need no more than 2 nops. */
1673 s = h->root.root.u.def.section;
1674 value = h->root.root.u.def.value;
1675 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1676
1677 /* Describe the stub we want. */
1678 search.stub_section = NULL;
1679 search.offset = 0;
1680 search.h = h;
1681
1682 /* See if we've already created an equivalent stub. */
1683 htab = mips_elf_hash_table (info);
1684 if (htab == NULL)
1685 return FALSE;
1686
1687 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1688 if (slot == NULL)
1689 return FALSE;
1690
1691 stub = (struct mips_elf_la25_stub *) *slot;
1692 if (stub != NULL)
1693 {
1694 /* We can reuse the existing stub. */
1695 h->la25_stub = stub;
1696 return TRUE;
1697 }
1698
1699 /* Create a permanent copy of ENTRY and add it to the hash table. */
1700 stub = bfd_malloc (sizeof (search));
1701 if (stub == NULL)
1702 return FALSE;
1703 *stub = search;
1704 *slot = stub;
1705
1706 h->la25_stub = stub;
1707 return (use_trampoline_p
1708 ? mips_elf_add_la25_trampoline (stub, info)
1709 : mips_elf_add_la25_intro (stub, info));
1710 }
1711
1712 /* A mips_elf_link_hash_traverse callback that is called before sizing
1713 sections. DATA points to a mips_htab_traverse_info structure. */
1714
1715 static bfd_boolean
1716 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1717 {
1718 struct mips_htab_traverse_info *hti;
1719
1720 hti = (struct mips_htab_traverse_info *) data;
1721 if (h->root.root.type == bfd_link_hash_warning)
1722 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1723
1724 if (!hti->info->relocatable)
1725 mips_elf_check_mips16_stubs (hti->info, h);
1726
1727 if (mips_elf_local_pic_function_p (h))
1728 {
1729 /* H is a function that might need $25 to be valid on entry.
1730 If we're creating a non-PIC relocatable object, mark H as
1731 being PIC. If we're creating a non-relocatable object with
1732 non-PIC branches and jumps to H, make sure that H has an la25
1733 stub. */
1734 if (hti->info->relocatable)
1735 {
1736 if (!PIC_OBJECT_P (hti->output_bfd))
1737 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1738 }
1739 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1740 {
1741 hti->error = TRUE;
1742 return FALSE;
1743 }
1744 }
1745 return TRUE;
1746 }
1747 \f
1748 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1749 Most mips16 instructions are 16 bits, but these instructions
1750 are 32 bits.
1751
1752 The format of these instructions is:
1753
1754 +--------------+--------------------------------+
1755 | JALX | X| Imm 20:16 | Imm 25:21 |
1756 +--------------+--------------------------------+
1757 | Immediate 15:0 |
1758 +-----------------------------------------------+
1759
1760 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1761 Note that the immediate value in the first word is swapped.
1762
1763 When producing a relocatable object file, R_MIPS16_26 is
1764 handled mostly like R_MIPS_26. In particular, the addend is
1765 stored as a straight 26-bit value in a 32-bit instruction.
1766 (gas makes life simpler for itself by never adjusting a
1767 R_MIPS16_26 reloc to be against a section, so the addend is
1768 always zero). However, the 32 bit instruction is stored as 2
1769 16-bit values, rather than a single 32-bit value. In a
1770 big-endian file, the result is the same; in a little-endian
1771 file, the two 16-bit halves of the 32 bit value are swapped.
1772 This is so that a disassembler can recognize the jal
1773 instruction.
1774
1775 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1776 instruction stored as two 16-bit values. The addend A is the
1777 contents of the targ26 field. The calculation is the same as
1778 R_MIPS_26. When storing the calculated value, reorder the
1779 immediate value as shown above, and don't forget to store the
1780 value as two 16-bit values.
1781
1782 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1783 defined as
1784
1785 big-endian:
1786 +--------+----------------------+
1787 | | |
1788 | | targ26-16 |
1789 |31 26|25 0|
1790 +--------+----------------------+
1791
1792 little-endian:
1793 +----------+------+-------------+
1794 | | | |
1795 | sub1 | | sub2 |
1796 |0 9|10 15|16 31|
1797 +----------+--------------------+
1798 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1799 ((sub1 << 16) | sub2)).
1800
1801 When producing a relocatable object file, the calculation is
1802 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1803 When producing a fully linked file, the calculation is
1804 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1805 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1806
1807 The table below lists the other MIPS16 instruction relocations.
1808 Each one is calculated in the same way as the non-MIPS16 relocation
1809 given on the right, but using the extended MIPS16 layout of 16-bit
1810 immediate fields:
1811
1812 R_MIPS16_GPREL R_MIPS_GPREL16
1813 R_MIPS16_GOT16 R_MIPS_GOT16
1814 R_MIPS16_CALL16 R_MIPS_CALL16
1815 R_MIPS16_HI16 R_MIPS_HI16
1816 R_MIPS16_LO16 R_MIPS_LO16
1817
1818 A typical instruction will have a format like this:
1819
1820 +--------------+--------------------------------+
1821 | EXTEND | Imm 10:5 | Imm 15:11 |
1822 +--------------+--------------------------------+
1823 | Major | rx | ry | Imm 4:0 |
1824 +--------------+--------------------------------+
1825
1826 EXTEND is the five bit value 11110. Major is the instruction
1827 opcode.
1828
1829 All we need to do here is shuffle the bits appropriately.
1830 As above, the two 16-bit halves must be swapped on a
1831 little-endian system. */
1832
1833 static inline bfd_boolean
1834 mips16_reloc_p (int r_type)
1835 {
1836 switch (r_type)
1837 {
1838 case R_MIPS16_26:
1839 case R_MIPS16_GPREL:
1840 case R_MIPS16_GOT16:
1841 case R_MIPS16_CALL16:
1842 case R_MIPS16_HI16:
1843 case R_MIPS16_LO16:
1844 return TRUE;
1845
1846 default:
1847 return FALSE;
1848 }
1849 }
1850
1851 static inline bfd_boolean
1852 got16_reloc_p (int r_type)
1853 {
1854 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1855 }
1856
1857 static inline bfd_boolean
1858 call16_reloc_p (int r_type)
1859 {
1860 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1861 }
1862
1863 static inline bfd_boolean
1864 hi16_reloc_p (int r_type)
1865 {
1866 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1867 }
1868
1869 static inline bfd_boolean
1870 lo16_reloc_p (int r_type)
1871 {
1872 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1873 }
1874
1875 static inline bfd_boolean
1876 mips16_call_reloc_p (int r_type)
1877 {
1878 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1879 }
1880
1881 static inline bfd_boolean
1882 jal_reloc_p (int r_type)
1883 {
1884 return r_type == R_MIPS_26 || r_type == R_MIPS16_26;
1885 }
1886
1887 void
1888 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1889 bfd_boolean jal_shuffle, bfd_byte *data)
1890 {
1891 bfd_vma extend, insn, val;
1892
1893 if (!mips16_reloc_p (r_type))
1894 return;
1895
1896 /* Pick up the mips16 extend instruction and the real instruction. */
1897 extend = bfd_get_16 (abfd, data);
1898 insn = bfd_get_16 (abfd, data + 2);
1899 if (r_type == R_MIPS16_26)
1900 {
1901 if (jal_shuffle)
1902 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1903 | ((extend & 0x1f) << 21) | insn;
1904 else
1905 val = extend << 16 | insn;
1906 }
1907 else
1908 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1909 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1910 bfd_put_32 (abfd, val, data);
1911 }
1912
1913 void
1914 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1915 bfd_boolean jal_shuffle, bfd_byte *data)
1916 {
1917 bfd_vma extend, insn, val;
1918
1919 if (!mips16_reloc_p (r_type))
1920 return;
1921
1922 val = bfd_get_32 (abfd, data);
1923 if (r_type == R_MIPS16_26)
1924 {
1925 if (jal_shuffle)
1926 {
1927 insn = val & 0xffff;
1928 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1929 | ((val >> 21) & 0x1f);
1930 }
1931 else
1932 {
1933 insn = val & 0xffff;
1934 extend = val >> 16;
1935 }
1936 }
1937 else
1938 {
1939 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1940 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1941 }
1942 bfd_put_16 (abfd, insn, data + 2);
1943 bfd_put_16 (abfd, extend, data);
1944 }
1945
1946 bfd_reloc_status_type
1947 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1948 arelent *reloc_entry, asection *input_section,
1949 bfd_boolean relocatable, void *data, bfd_vma gp)
1950 {
1951 bfd_vma relocation;
1952 bfd_signed_vma val;
1953 bfd_reloc_status_type status;
1954
1955 if (bfd_is_com_section (symbol->section))
1956 relocation = 0;
1957 else
1958 relocation = symbol->value;
1959
1960 relocation += symbol->section->output_section->vma;
1961 relocation += symbol->section->output_offset;
1962
1963 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1964 return bfd_reloc_outofrange;
1965
1966 /* Set val to the offset into the section or symbol. */
1967 val = reloc_entry->addend;
1968
1969 _bfd_mips_elf_sign_extend (val, 16);
1970
1971 /* Adjust val for the final section location and GP value. If we
1972 are producing relocatable output, we don't want to do this for
1973 an external symbol. */
1974 if (! relocatable
1975 || (symbol->flags & BSF_SECTION_SYM) != 0)
1976 val += relocation - gp;
1977
1978 if (reloc_entry->howto->partial_inplace)
1979 {
1980 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1981 (bfd_byte *) data
1982 + reloc_entry->address);
1983 if (status != bfd_reloc_ok)
1984 return status;
1985 }
1986 else
1987 reloc_entry->addend = val;
1988
1989 if (relocatable)
1990 reloc_entry->address += input_section->output_offset;
1991
1992 return bfd_reloc_ok;
1993 }
1994
1995 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1996 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1997 that contains the relocation field and DATA points to the start of
1998 INPUT_SECTION. */
1999
2000 struct mips_hi16
2001 {
2002 struct mips_hi16 *next;
2003 bfd_byte *data;
2004 asection *input_section;
2005 arelent rel;
2006 };
2007
2008 /* FIXME: This should not be a static variable. */
2009
2010 static struct mips_hi16 *mips_hi16_list;
2011
2012 /* A howto special_function for REL *HI16 relocations. We can only
2013 calculate the correct value once we've seen the partnering
2014 *LO16 relocation, so just save the information for later.
2015
2016 The ABI requires that the *LO16 immediately follow the *HI16.
2017 However, as a GNU extension, we permit an arbitrary number of
2018 *HI16s to be associated with a single *LO16. This significantly
2019 simplies the relocation handling in gcc. */
2020
2021 bfd_reloc_status_type
2022 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2023 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2024 asection *input_section, bfd *output_bfd,
2025 char **error_message ATTRIBUTE_UNUSED)
2026 {
2027 struct mips_hi16 *n;
2028
2029 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2030 return bfd_reloc_outofrange;
2031
2032 n = bfd_malloc (sizeof *n);
2033 if (n == NULL)
2034 return bfd_reloc_outofrange;
2035
2036 n->next = mips_hi16_list;
2037 n->data = data;
2038 n->input_section = input_section;
2039 n->rel = *reloc_entry;
2040 mips_hi16_list = n;
2041
2042 if (output_bfd != NULL)
2043 reloc_entry->address += input_section->output_offset;
2044
2045 return bfd_reloc_ok;
2046 }
2047
2048 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2049 like any other 16-bit relocation when applied to global symbols, but is
2050 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2051
2052 bfd_reloc_status_type
2053 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2054 void *data, asection *input_section,
2055 bfd *output_bfd, char **error_message)
2056 {
2057 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2058 || bfd_is_und_section (bfd_get_section (symbol))
2059 || bfd_is_com_section (bfd_get_section (symbol)))
2060 /* The relocation is against a global symbol. */
2061 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2062 input_section, output_bfd,
2063 error_message);
2064
2065 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2066 input_section, output_bfd, error_message);
2067 }
2068
2069 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2070 is a straightforward 16 bit inplace relocation, but we must deal with
2071 any partnering high-part relocations as well. */
2072
2073 bfd_reloc_status_type
2074 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2075 void *data, asection *input_section,
2076 bfd *output_bfd, char **error_message)
2077 {
2078 bfd_vma vallo;
2079 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2080
2081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2082 return bfd_reloc_outofrange;
2083
2084 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2085 location);
2086 vallo = bfd_get_32 (abfd, location);
2087 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2088 location);
2089
2090 while (mips_hi16_list != NULL)
2091 {
2092 bfd_reloc_status_type ret;
2093 struct mips_hi16 *hi;
2094
2095 hi = mips_hi16_list;
2096
2097 /* R_MIPS*_GOT16 relocations are something of a special case. We
2098 want to install the addend in the same way as for a R_MIPS*_HI16
2099 relocation (with a rightshift of 16). However, since GOT16
2100 relocations can also be used with global symbols, their howto
2101 has a rightshift of 0. */
2102 if (hi->rel.howto->type == R_MIPS_GOT16)
2103 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2104 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2105 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2106
2107 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2108 carry or borrow will induce a change of +1 or -1 in the high part. */
2109 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2110
2111 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2112 hi->input_section, output_bfd,
2113 error_message);
2114 if (ret != bfd_reloc_ok)
2115 return ret;
2116
2117 mips_hi16_list = hi->next;
2118 free (hi);
2119 }
2120
2121 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2122 input_section, output_bfd,
2123 error_message);
2124 }
2125
2126 /* A generic howto special_function. This calculates and installs the
2127 relocation itself, thus avoiding the oft-discussed problems in
2128 bfd_perform_relocation and bfd_install_relocation. */
2129
2130 bfd_reloc_status_type
2131 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2132 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2133 asection *input_section, bfd *output_bfd,
2134 char **error_message ATTRIBUTE_UNUSED)
2135 {
2136 bfd_signed_vma val;
2137 bfd_reloc_status_type status;
2138 bfd_boolean relocatable;
2139
2140 relocatable = (output_bfd != NULL);
2141
2142 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2143 return bfd_reloc_outofrange;
2144
2145 /* Build up the field adjustment in VAL. */
2146 val = 0;
2147 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2148 {
2149 /* Either we're calculating the final field value or we have a
2150 relocation against a section symbol. Add in the section's
2151 offset or address. */
2152 val += symbol->section->output_section->vma;
2153 val += symbol->section->output_offset;
2154 }
2155
2156 if (!relocatable)
2157 {
2158 /* We're calculating the final field value. Add in the symbol's value
2159 and, if pc-relative, subtract the address of the field itself. */
2160 val += symbol->value;
2161 if (reloc_entry->howto->pc_relative)
2162 {
2163 val -= input_section->output_section->vma;
2164 val -= input_section->output_offset;
2165 val -= reloc_entry->address;
2166 }
2167 }
2168
2169 /* VAL is now the final adjustment. If we're keeping this relocation
2170 in the output file, and if the relocation uses a separate addend,
2171 we just need to add VAL to that addend. Otherwise we need to add
2172 VAL to the relocation field itself. */
2173 if (relocatable && !reloc_entry->howto->partial_inplace)
2174 reloc_entry->addend += val;
2175 else
2176 {
2177 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2178
2179 /* Add in the separate addend, if any. */
2180 val += reloc_entry->addend;
2181
2182 /* Add VAL to the relocation field. */
2183 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2184 location);
2185 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2186 location);
2187 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2188 location);
2189
2190 if (status != bfd_reloc_ok)
2191 return status;
2192 }
2193
2194 if (relocatable)
2195 reloc_entry->address += input_section->output_offset;
2196
2197 return bfd_reloc_ok;
2198 }
2199 \f
2200 /* Swap an entry in a .gptab section. Note that these routines rely
2201 on the equivalence of the two elements of the union. */
2202
2203 static void
2204 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2205 Elf32_gptab *in)
2206 {
2207 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2208 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2209 }
2210
2211 static void
2212 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2213 Elf32_External_gptab *ex)
2214 {
2215 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2216 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2217 }
2218
2219 static void
2220 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2221 Elf32_External_compact_rel *ex)
2222 {
2223 H_PUT_32 (abfd, in->id1, ex->id1);
2224 H_PUT_32 (abfd, in->num, ex->num);
2225 H_PUT_32 (abfd, in->id2, ex->id2);
2226 H_PUT_32 (abfd, in->offset, ex->offset);
2227 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2228 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2229 }
2230
2231 static void
2232 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2233 Elf32_External_crinfo *ex)
2234 {
2235 unsigned long l;
2236
2237 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2238 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2239 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2240 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2241 H_PUT_32 (abfd, l, ex->info);
2242 H_PUT_32 (abfd, in->konst, ex->konst);
2243 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2244 }
2245 \f
2246 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2247 routines swap this structure in and out. They are used outside of
2248 BFD, so they are globally visible. */
2249
2250 void
2251 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2252 Elf32_RegInfo *in)
2253 {
2254 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2255 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2256 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2257 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2258 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2259 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2260 }
2261
2262 void
2263 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2264 Elf32_External_RegInfo *ex)
2265 {
2266 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2267 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2268 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2269 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2270 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2271 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2272 }
2273
2274 /* In the 64 bit ABI, the .MIPS.options section holds register
2275 information in an Elf64_Reginfo structure. These routines swap
2276 them in and out. They are globally visible because they are used
2277 outside of BFD. These routines are here so that gas can call them
2278 without worrying about whether the 64 bit ABI has been included. */
2279
2280 void
2281 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2282 Elf64_Internal_RegInfo *in)
2283 {
2284 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2285 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2286 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2287 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2288 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2289 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2290 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2291 }
2292
2293 void
2294 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2295 Elf64_External_RegInfo *ex)
2296 {
2297 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2298 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2299 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2300 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2301 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2302 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2303 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2304 }
2305
2306 /* Swap in an options header. */
2307
2308 void
2309 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2310 Elf_Internal_Options *in)
2311 {
2312 in->kind = H_GET_8 (abfd, ex->kind);
2313 in->size = H_GET_8 (abfd, ex->size);
2314 in->section = H_GET_16 (abfd, ex->section);
2315 in->info = H_GET_32 (abfd, ex->info);
2316 }
2317
2318 /* Swap out an options header. */
2319
2320 void
2321 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2322 Elf_External_Options *ex)
2323 {
2324 H_PUT_8 (abfd, in->kind, ex->kind);
2325 H_PUT_8 (abfd, in->size, ex->size);
2326 H_PUT_16 (abfd, in->section, ex->section);
2327 H_PUT_32 (abfd, in->info, ex->info);
2328 }
2329 \f
2330 /* This function is called via qsort() to sort the dynamic relocation
2331 entries by increasing r_symndx value. */
2332
2333 static int
2334 sort_dynamic_relocs (const void *arg1, const void *arg2)
2335 {
2336 Elf_Internal_Rela int_reloc1;
2337 Elf_Internal_Rela int_reloc2;
2338 int diff;
2339
2340 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2341 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2342
2343 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2344 if (diff != 0)
2345 return diff;
2346
2347 if (int_reloc1.r_offset < int_reloc2.r_offset)
2348 return -1;
2349 if (int_reloc1.r_offset > int_reloc2.r_offset)
2350 return 1;
2351 return 0;
2352 }
2353
2354 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2355
2356 static int
2357 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2358 const void *arg2 ATTRIBUTE_UNUSED)
2359 {
2360 #ifdef BFD64
2361 Elf_Internal_Rela int_reloc1[3];
2362 Elf_Internal_Rela int_reloc2[3];
2363
2364 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2365 (reldyn_sorting_bfd, arg1, int_reloc1);
2366 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2367 (reldyn_sorting_bfd, arg2, int_reloc2);
2368
2369 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2370 return -1;
2371 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2372 return 1;
2373
2374 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2375 return -1;
2376 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2377 return 1;
2378 return 0;
2379 #else
2380 abort ();
2381 #endif
2382 }
2383
2384
2385 /* This routine is used to write out ECOFF debugging external symbol
2386 information. It is called via mips_elf_link_hash_traverse. The
2387 ECOFF external symbol information must match the ELF external
2388 symbol information. Unfortunately, at this point we don't know
2389 whether a symbol is required by reloc information, so the two
2390 tables may wind up being different. We must sort out the external
2391 symbol information before we can set the final size of the .mdebug
2392 section, and we must set the size of the .mdebug section before we
2393 can relocate any sections, and we can't know which symbols are
2394 required by relocation until we relocate the sections.
2395 Fortunately, it is relatively unlikely that any symbol will be
2396 stripped but required by a reloc. In particular, it can not happen
2397 when generating a final executable. */
2398
2399 static bfd_boolean
2400 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2401 {
2402 struct extsym_info *einfo = data;
2403 bfd_boolean strip;
2404 asection *sec, *output_section;
2405
2406 if (h->root.root.type == bfd_link_hash_warning)
2407 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2408
2409 if (h->root.indx == -2)
2410 strip = FALSE;
2411 else if ((h->root.def_dynamic
2412 || h->root.ref_dynamic
2413 || h->root.type == bfd_link_hash_new)
2414 && !h->root.def_regular
2415 && !h->root.ref_regular)
2416 strip = TRUE;
2417 else if (einfo->info->strip == strip_all
2418 || (einfo->info->strip == strip_some
2419 && bfd_hash_lookup (einfo->info->keep_hash,
2420 h->root.root.root.string,
2421 FALSE, FALSE) == NULL))
2422 strip = TRUE;
2423 else
2424 strip = FALSE;
2425
2426 if (strip)
2427 return TRUE;
2428
2429 if (h->esym.ifd == -2)
2430 {
2431 h->esym.jmptbl = 0;
2432 h->esym.cobol_main = 0;
2433 h->esym.weakext = 0;
2434 h->esym.reserved = 0;
2435 h->esym.ifd = ifdNil;
2436 h->esym.asym.value = 0;
2437 h->esym.asym.st = stGlobal;
2438
2439 if (h->root.root.type == bfd_link_hash_undefined
2440 || h->root.root.type == bfd_link_hash_undefweak)
2441 {
2442 const char *name;
2443
2444 /* Use undefined class. Also, set class and type for some
2445 special symbols. */
2446 name = h->root.root.root.string;
2447 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2448 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2449 {
2450 h->esym.asym.sc = scData;
2451 h->esym.asym.st = stLabel;
2452 h->esym.asym.value = 0;
2453 }
2454 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2455 {
2456 h->esym.asym.sc = scAbs;
2457 h->esym.asym.st = stLabel;
2458 h->esym.asym.value =
2459 mips_elf_hash_table (einfo->info)->procedure_count;
2460 }
2461 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2462 {
2463 h->esym.asym.sc = scAbs;
2464 h->esym.asym.st = stLabel;
2465 h->esym.asym.value = elf_gp (einfo->abfd);
2466 }
2467 else
2468 h->esym.asym.sc = scUndefined;
2469 }
2470 else if (h->root.root.type != bfd_link_hash_defined
2471 && h->root.root.type != bfd_link_hash_defweak)
2472 h->esym.asym.sc = scAbs;
2473 else
2474 {
2475 const char *name;
2476
2477 sec = h->root.root.u.def.section;
2478 output_section = sec->output_section;
2479
2480 /* When making a shared library and symbol h is the one from
2481 the another shared library, OUTPUT_SECTION may be null. */
2482 if (output_section == NULL)
2483 h->esym.asym.sc = scUndefined;
2484 else
2485 {
2486 name = bfd_section_name (output_section->owner, output_section);
2487
2488 if (strcmp (name, ".text") == 0)
2489 h->esym.asym.sc = scText;
2490 else if (strcmp (name, ".data") == 0)
2491 h->esym.asym.sc = scData;
2492 else if (strcmp (name, ".sdata") == 0)
2493 h->esym.asym.sc = scSData;
2494 else if (strcmp (name, ".rodata") == 0
2495 || strcmp (name, ".rdata") == 0)
2496 h->esym.asym.sc = scRData;
2497 else if (strcmp (name, ".bss") == 0)
2498 h->esym.asym.sc = scBss;
2499 else if (strcmp (name, ".sbss") == 0)
2500 h->esym.asym.sc = scSBss;
2501 else if (strcmp (name, ".init") == 0)
2502 h->esym.asym.sc = scInit;
2503 else if (strcmp (name, ".fini") == 0)
2504 h->esym.asym.sc = scFini;
2505 else
2506 h->esym.asym.sc = scAbs;
2507 }
2508 }
2509
2510 h->esym.asym.reserved = 0;
2511 h->esym.asym.index = indexNil;
2512 }
2513
2514 if (h->root.root.type == bfd_link_hash_common)
2515 h->esym.asym.value = h->root.root.u.c.size;
2516 else if (h->root.root.type == bfd_link_hash_defined
2517 || h->root.root.type == bfd_link_hash_defweak)
2518 {
2519 if (h->esym.asym.sc == scCommon)
2520 h->esym.asym.sc = scBss;
2521 else if (h->esym.asym.sc == scSCommon)
2522 h->esym.asym.sc = scSBss;
2523
2524 sec = h->root.root.u.def.section;
2525 output_section = sec->output_section;
2526 if (output_section != NULL)
2527 h->esym.asym.value = (h->root.root.u.def.value
2528 + sec->output_offset
2529 + output_section->vma);
2530 else
2531 h->esym.asym.value = 0;
2532 }
2533 else
2534 {
2535 struct mips_elf_link_hash_entry *hd = h;
2536
2537 while (hd->root.root.type == bfd_link_hash_indirect)
2538 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2539
2540 if (hd->needs_lazy_stub)
2541 {
2542 /* Set type and value for a symbol with a function stub. */
2543 h->esym.asym.st = stProc;
2544 sec = hd->root.root.u.def.section;
2545 if (sec == NULL)
2546 h->esym.asym.value = 0;
2547 else
2548 {
2549 output_section = sec->output_section;
2550 if (output_section != NULL)
2551 h->esym.asym.value = (hd->root.plt.offset
2552 + sec->output_offset
2553 + output_section->vma);
2554 else
2555 h->esym.asym.value = 0;
2556 }
2557 }
2558 }
2559
2560 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2561 h->root.root.root.string,
2562 &h->esym))
2563 {
2564 einfo->failed = TRUE;
2565 return FALSE;
2566 }
2567
2568 return TRUE;
2569 }
2570
2571 /* A comparison routine used to sort .gptab entries. */
2572
2573 static int
2574 gptab_compare (const void *p1, const void *p2)
2575 {
2576 const Elf32_gptab *a1 = p1;
2577 const Elf32_gptab *a2 = p2;
2578
2579 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2580 }
2581 \f
2582 /* Functions to manage the got entry hash table. */
2583
2584 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2585 hash number. */
2586
2587 static INLINE hashval_t
2588 mips_elf_hash_bfd_vma (bfd_vma addr)
2589 {
2590 #ifdef BFD64
2591 return addr + (addr >> 32);
2592 #else
2593 return addr;
2594 #endif
2595 }
2596
2597 /* got_entries only match if they're identical, except for gotidx, so
2598 use all fields to compute the hash, and compare the appropriate
2599 union members. */
2600
2601 static hashval_t
2602 mips_elf_got_entry_hash (const void *entry_)
2603 {
2604 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2605
2606 return entry->symndx
2607 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2608 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2609 : entry->abfd->id
2610 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2611 : entry->d.h->root.root.root.hash));
2612 }
2613
2614 static int
2615 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2616 {
2617 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2618 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2619
2620 /* An LDM entry can only match another LDM entry. */
2621 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2622 return 0;
2623
2624 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2625 && (! e1->abfd ? e1->d.address == e2->d.address
2626 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2627 : e1->d.h == e2->d.h);
2628 }
2629
2630 /* multi_got_entries are still a match in the case of global objects,
2631 even if the input bfd in which they're referenced differs, so the
2632 hash computation and compare functions are adjusted
2633 accordingly. */
2634
2635 static hashval_t
2636 mips_elf_multi_got_entry_hash (const void *entry_)
2637 {
2638 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2639
2640 return entry->symndx
2641 + (! entry->abfd
2642 ? mips_elf_hash_bfd_vma (entry->d.address)
2643 : entry->symndx >= 0
2644 ? ((entry->tls_type & GOT_TLS_LDM)
2645 ? (GOT_TLS_LDM << 17)
2646 : (entry->abfd->id
2647 + mips_elf_hash_bfd_vma (entry->d.addend)))
2648 : entry->d.h->root.root.root.hash);
2649 }
2650
2651 static int
2652 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2653 {
2654 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2655 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2656
2657 /* Any two LDM entries match. */
2658 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2659 return 1;
2660
2661 /* Nothing else matches an LDM entry. */
2662 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2663 return 0;
2664
2665 return e1->symndx == e2->symndx
2666 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2667 : e1->abfd == NULL || e2->abfd == NULL
2668 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2669 : e1->d.h == e2->d.h);
2670 }
2671
2672 static hashval_t
2673 mips_got_page_entry_hash (const void *entry_)
2674 {
2675 const struct mips_got_page_entry *entry;
2676
2677 entry = (const struct mips_got_page_entry *) entry_;
2678 return entry->abfd->id + entry->symndx;
2679 }
2680
2681 static int
2682 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2683 {
2684 const struct mips_got_page_entry *entry1, *entry2;
2685
2686 entry1 = (const struct mips_got_page_entry *) entry1_;
2687 entry2 = (const struct mips_got_page_entry *) entry2_;
2688 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2689 }
2690 \f
2691 /* Return the dynamic relocation section. If it doesn't exist, try to
2692 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2693 if creation fails. */
2694
2695 static asection *
2696 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2697 {
2698 const char *dname;
2699 asection *sreloc;
2700 bfd *dynobj;
2701
2702 dname = MIPS_ELF_REL_DYN_NAME (info);
2703 dynobj = elf_hash_table (info)->dynobj;
2704 sreloc = bfd_get_section_by_name (dynobj, dname);
2705 if (sreloc == NULL && create_p)
2706 {
2707 sreloc = bfd_make_section_with_flags (dynobj, dname,
2708 (SEC_ALLOC
2709 | SEC_LOAD
2710 | SEC_HAS_CONTENTS
2711 | SEC_IN_MEMORY
2712 | SEC_LINKER_CREATED
2713 | SEC_READONLY));
2714 if (sreloc == NULL
2715 || ! bfd_set_section_alignment (dynobj, sreloc,
2716 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2717 return NULL;
2718 }
2719 return sreloc;
2720 }
2721
2722 /* Count the number of relocations needed for a TLS GOT entry, with
2723 access types from TLS_TYPE, and symbol H (or a local symbol if H
2724 is NULL). */
2725
2726 static int
2727 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2728 struct elf_link_hash_entry *h)
2729 {
2730 int indx = 0;
2731 int ret = 0;
2732 bfd_boolean need_relocs = FALSE;
2733 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2734
2735 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2736 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2737 indx = h->dynindx;
2738
2739 if ((info->shared || indx != 0)
2740 && (h == NULL
2741 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2742 || h->root.type != bfd_link_hash_undefweak))
2743 need_relocs = TRUE;
2744
2745 if (!need_relocs)
2746 return FALSE;
2747
2748 if (tls_type & GOT_TLS_GD)
2749 {
2750 ret++;
2751 if (indx != 0)
2752 ret++;
2753 }
2754
2755 if (tls_type & GOT_TLS_IE)
2756 ret++;
2757
2758 if ((tls_type & GOT_TLS_LDM) && info->shared)
2759 ret++;
2760
2761 return ret;
2762 }
2763
2764 /* Count the number of TLS relocations required for the GOT entry in
2765 ARG1, if it describes a local symbol. */
2766
2767 static int
2768 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2769 {
2770 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2771 struct mips_elf_count_tls_arg *arg = arg2;
2772
2773 if (entry->abfd != NULL && entry->symndx != -1)
2774 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2775
2776 return 1;
2777 }
2778
2779 /* Count the number of TLS GOT entries required for the global (or
2780 forced-local) symbol in ARG1. */
2781
2782 static int
2783 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2784 {
2785 struct mips_elf_link_hash_entry *hm
2786 = (struct mips_elf_link_hash_entry *) arg1;
2787 struct mips_elf_count_tls_arg *arg = arg2;
2788
2789 if (hm->tls_type & GOT_TLS_GD)
2790 arg->needed += 2;
2791 if (hm->tls_type & GOT_TLS_IE)
2792 arg->needed += 1;
2793
2794 return 1;
2795 }
2796
2797 /* Count the number of TLS relocations required for the global (or
2798 forced-local) symbol in ARG1. */
2799
2800 static int
2801 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2802 {
2803 struct mips_elf_link_hash_entry *hm
2804 = (struct mips_elf_link_hash_entry *) arg1;
2805 struct mips_elf_count_tls_arg *arg = arg2;
2806
2807 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2808
2809 return 1;
2810 }
2811
2812 /* Output a simple dynamic relocation into SRELOC. */
2813
2814 static void
2815 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2816 asection *sreloc,
2817 unsigned long reloc_index,
2818 unsigned long indx,
2819 int r_type,
2820 bfd_vma offset)
2821 {
2822 Elf_Internal_Rela rel[3];
2823
2824 memset (rel, 0, sizeof (rel));
2825
2826 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2827 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2828
2829 if (ABI_64_P (output_bfd))
2830 {
2831 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2832 (output_bfd, &rel[0],
2833 (sreloc->contents
2834 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2835 }
2836 else
2837 bfd_elf32_swap_reloc_out
2838 (output_bfd, &rel[0],
2839 (sreloc->contents
2840 + reloc_index * sizeof (Elf32_External_Rel)));
2841 }
2842
2843 /* Initialize a set of TLS GOT entries for one symbol. */
2844
2845 static void
2846 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2847 unsigned char *tls_type_p,
2848 struct bfd_link_info *info,
2849 struct mips_elf_link_hash_entry *h,
2850 bfd_vma value)
2851 {
2852 struct mips_elf_link_hash_table *htab;
2853 int indx;
2854 asection *sreloc, *sgot;
2855 bfd_vma offset, offset2;
2856 bfd_boolean need_relocs = FALSE;
2857
2858 htab = mips_elf_hash_table (info);
2859 if (htab == NULL)
2860 return;
2861
2862 sgot = htab->sgot;
2863
2864 indx = 0;
2865 if (h != NULL)
2866 {
2867 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2868
2869 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2870 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2871 indx = h->root.dynindx;
2872 }
2873
2874 if (*tls_type_p & GOT_TLS_DONE)
2875 return;
2876
2877 if ((info->shared || indx != 0)
2878 && (h == NULL
2879 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2880 || h->root.type != bfd_link_hash_undefweak))
2881 need_relocs = TRUE;
2882
2883 /* MINUS_ONE means the symbol is not defined in this object. It may not
2884 be defined at all; assume that the value doesn't matter in that
2885 case. Otherwise complain if we would use the value. */
2886 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2887 || h->root.root.type == bfd_link_hash_undefweak);
2888
2889 /* Emit necessary relocations. */
2890 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2891
2892 /* General Dynamic. */
2893 if (*tls_type_p & GOT_TLS_GD)
2894 {
2895 offset = got_offset;
2896 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2897
2898 if (need_relocs)
2899 {
2900 mips_elf_output_dynamic_relocation
2901 (abfd, sreloc, sreloc->reloc_count++, indx,
2902 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2903 sgot->output_offset + sgot->output_section->vma + offset);
2904
2905 if (indx)
2906 mips_elf_output_dynamic_relocation
2907 (abfd, sreloc, sreloc->reloc_count++, indx,
2908 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2909 sgot->output_offset + sgot->output_section->vma + offset2);
2910 else
2911 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2912 sgot->contents + offset2);
2913 }
2914 else
2915 {
2916 MIPS_ELF_PUT_WORD (abfd, 1,
2917 sgot->contents + offset);
2918 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2919 sgot->contents + offset2);
2920 }
2921
2922 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2923 }
2924
2925 /* Initial Exec model. */
2926 if (*tls_type_p & GOT_TLS_IE)
2927 {
2928 offset = got_offset;
2929
2930 if (need_relocs)
2931 {
2932 if (indx == 0)
2933 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2934 sgot->contents + offset);
2935 else
2936 MIPS_ELF_PUT_WORD (abfd, 0,
2937 sgot->contents + offset);
2938
2939 mips_elf_output_dynamic_relocation
2940 (abfd, sreloc, sreloc->reloc_count++, indx,
2941 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2942 sgot->output_offset + sgot->output_section->vma + offset);
2943 }
2944 else
2945 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2946 sgot->contents + offset);
2947 }
2948
2949 if (*tls_type_p & GOT_TLS_LDM)
2950 {
2951 /* The initial offset is zero, and the LD offsets will include the
2952 bias by DTP_OFFSET. */
2953 MIPS_ELF_PUT_WORD (abfd, 0,
2954 sgot->contents + got_offset
2955 + MIPS_ELF_GOT_SIZE (abfd));
2956
2957 if (!info->shared)
2958 MIPS_ELF_PUT_WORD (abfd, 1,
2959 sgot->contents + got_offset);
2960 else
2961 mips_elf_output_dynamic_relocation
2962 (abfd, sreloc, sreloc->reloc_count++, indx,
2963 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2964 sgot->output_offset + sgot->output_section->vma + got_offset);
2965 }
2966
2967 *tls_type_p |= GOT_TLS_DONE;
2968 }
2969
2970 /* Return the GOT index to use for a relocation of type R_TYPE against
2971 a symbol accessed using TLS_TYPE models. The GOT entries for this
2972 symbol in this GOT start at GOT_INDEX. This function initializes the
2973 GOT entries and corresponding relocations. */
2974
2975 static bfd_vma
2976 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2977 int r_type, struct bfd_link_info *info,
2978 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2979 {
2980 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2981 || r_type == R_MIPS_TLS_LDM);
2982
2983 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2984
2985 if (r_type == R_MIPS_TLS_GOTTPREL)
2986 {
2987 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2988 if (*tls_type & GOT_TLS_GD)
2989 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2990 else
2991 return got_index;
2992 }
2993
2994 if (r_type == R_MIPS_TLS_GD)
2995 {
2996 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2997 return got_index;
2998 }
2999
3000 if (r_type == R_MIPS_TLS_LDM)
3001 {
3002 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3003 return got_index;
3004 }
3005
3006 return got_index;
3007 }
3008
3009 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3010 for global symbol H. .got.plt comes before the GOT, so the offset
3011 will be negative. */
3012
3013 static bfd_vma
3014 mips_elf_gotplt_index (struct bfd_link_info *info,
3015 struct elf_link_hash_entry *h)
3016 {
3017 bfd_vma plt_index, got_address, got_value;
3018 struct mips_elf_link_hash_table *htab;
3019
3020 htab = mips_elf_hash_table (info);
3021 BFD_ASSERT (htab != NULL);
3022
3023 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3024
3025 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3026 section starts with reserved entries. */
3027 BFD_ASSERT (htab->is_vxworks);
3028
3029 /* Calculate the index of the symbol's PLT entry. */
3030 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3031
3032 /* Calculate the address of the associated .got.plt entry. */
3033 got_address = (htab->sgotplt->output_section->vma
3034 + htab->sgotplt->output_offset
3035 + plt_index * 4);
3036
3037 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3038 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3039 + htab->root.hgot->root.u.def.section->output_offset
3040 + htab->root.hgot->root.u.def.value);
3041
3042 return got_address - got_value;
3043 }
3044
3045 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3046 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3047 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3048 offset can be found. */
3049
3050 static bfd_vma
3051 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3052 bfd_vma value, unsigned long r_symndx,
3053 struct mips_elf_link_hash_entry *h, int r_type)
3054 {
3055 struct mips_elf_link_hash_table *htab;
3056 struct mips_got_entry *entry;
3057
3058 htab = mips_elf_hash_table (info);
3059 BFD_ASSERT (htab != NULL);
3060
3061 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3062 r_symndx, h, r_type);
3063 if (!entry)
3064 return MINUS_ONE;
3065
3066 if (TLS_RELOC_P (r_type))
3067 {
3068 if (entry->symndx == -1 && htab->got_info->next == NULL)
3069 /* A type (3) entry in the single-GOT case. We use the symbol's
3070 hash table entry to track the index. */
3071 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3072 r_type, info, h, value);
3073 else
3074 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3075 r_type, info, h, value);
3076 }
3077 else
3078 return entry->gotidx;
3079 }
3080
3081 /* Returns the GOT index for the global symbol indicated by H. */
3082
3083 static bfd_vma
3084 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3085 int r_type, struct bfd_link_info *info)
3086 {
3087 struct mips_elf_link_hash_table *htab;
3088 bfd_vma got_index;
3089 struct mips_got_info *g, *gg;
3090 long global_got_dynindx = 0;
3091
3092 htab = mips_elf_hash_table (info);
3093 BFD_ASSERT (htab != NULL);
3094
3095 gg = g = htab->got_info;
3096 if (g->bfd2got && ibfd)
3097 {
3098 struct mips_got_entry e, *p;
3099
3100 BFD_ASSERT (h->dynindx >= 0);
3101
3102 g = mips_elf_got_for_ibfd (g, ibfd);
3103 if (g->next != gg || TLS_RELOC_P (r_type))
3104 {
3105 e.abfd = ibfd;
3106 e.symndx = -1;
3107 e.d.h = (struct mips_elf_link_hash_entry *)h;
3108 e.tls_type = 0;
3109
3110 p = htab_find (g->got_entries, &e);
3111
3112 BFD_ASSERT (p->gotidx > 0);
3113
3114 if (TLS_RELOC_P (r_type))
3115 {
3116 bfd_vma value = MINUS_ONE;
3117 if ((h->root.type == bfd_link_hash_defined
3118 || h->root.type == bfd_link_hash_defweak)
3119 && h->root.u.def.section->output_section)
3120 value = (h->root.u.def.value
3121 + h->root.u.def.section->output_offset
3122 + h->root.u.def.section->output_section->vma);
3123
3124 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3125 info, e.d.h, value);
3126 }
3127 else
3128 return p->gotidx;
3129 }
3130 }
3131
3132 if (gg->global_gotsym != NULL)
3133 global_got_dynindx = gg->global_gotsym->dynindx;
3134
3135 if (TLS_RELOC_P (r_type))
3136 {
3137 struct mips_elf_link_hash_entry *hm
3138 = (struct mips_elf_link_hash_entry *) h;
3139 bfd_vma value = MINUS_ONE;
3140
3141 if ((h->root.type == bfd_link_hash_defined
3142 || h->root.type == bfd_link_hash_defweak)
3143 && h->root.u.def.section->output_section)
3144 value = (h->root.u.def.value
3145 + h->root.u.def.section->output_offset
3146 + h->root.u.def.section->output_section->vma);
3147
3148 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3149 r_type, info, hm, value);
3150 }
3151 else
3152 {
3153 /* Once we determine the global GOT entry with the lowest dynamic
3154 symbol table index, we must put all dynamic symbols with greater
3155 indices into the GOT. That makes it easy to calculate the GOT
3156 offset. */
3157 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3158 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3159 * MIPS_ELF_GOT_SIZE (abfd));
3160 }
3161 BFD_ASSERT (got_index < htab->sgot->size);
3162
3163 return got_index;
3164 }
3165
3166 /* Find a GOT page entry that points to within 32KB of VALUE. These
3167 entries are supposed to be placed at small offsets in the GOT, i.e.,
3168 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3169 entry could be created. If OFFSETP is nonnull, use it to return the
3170 offset of the GOT entry from VALUE. */
3171
3172 static bfd_vma
3173 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3174 bfd_vma value, bfd_vma *offsetp)
3175 {
3176 bfd_vma page, got_index;
3177 struct mips_got_entry *entry;
3178
3179 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3180 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3181 NULL, R_MIPS_GOT_PAGE);
3182
3183 if (!entry)
3184 return MINUS_ONE;
3185
3186 got_index = entry->gotidx;
3187
3188 if (offsetp)
3189 *offsetp = value - entry->d.address;
3190
3191 return got_index;
3192 }
3193
3194 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3195 EXTERNAL is true if the relocation was originally against a global
3196 symbol that binds locally. */
3197
3198 static bfd_vma
3199 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3200 bfd_vma value, bfd_boolean external)
3201 {
3202 struct mips_got_entry *entry;
3203
3204 /* GOT16 relocations against local symbols are followed by a LO16
3205 relocation; those against global symbols are not. Thus if the
3206 symbol was originally local, the GOT16 relocation should load the
3207 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3208 if (! external)
3209 value = mips_elf_high (value) << 16;
3210
3211 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3212 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3213 same in all cases. */
3214 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3215 NULL, R_MIPS_GOT16);
3216 if (entry)
3217 return entry->gotidx;
3218 else
3219 return MINUS_ONE;
3220 }
3221
3222 /* Returns the offset for the entry at the INDEXth position
3223 in the GOT. */
3224
3225 static bfd_vma
3226 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3227 bfd *input_bfd, bfd_vma got_index)
3228 {
3229 struct mips_elf_link_hash_table *htab;
3230 asection *sgot;
3231 bfd_vma gp;
3232
3233 htab = mips_elf_hash_table (info);
3234 BFD_ASSERT (htab != NULL);
3235
3236 sgot = htab->sgot;
3237 gp = _bfd_get_gp_value (output_bfd)
3238 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3239
3240 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3241 }
3242
3243 /* Create and return a local GOT entry for VALUE, which was calculated
3244 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3245 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3246 instead. */
3247
3248 static struct mips_got_entry *
3249 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3250 bfd *ibfd, bfd_vma value,
3251 unsigned long r_symndx,
3252 struct mips_elf_link_hash_entry *h,
3253 int r_type)
3254 {
3255 struct mips_got_entry entry, **loc;
3256 struct mips_got_info *g;
3257 struct mips_elf_link_hash_table *htab;
3258
3259 htab = mips_elf_hash_table (info);
3260 BFD_ASSERT (htab != NULL);
3261
3262 entry.abfd = NULL;
3263 entry.symndx = -1;
3264 entry.d.address = value;
3265 entry.tls_type = 0;
3266
3267 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3268 if (g == NULL)
3269 {
3270 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3271 BFD_ASSERT (g != NULL);
3272 }
3273
3274 /* This function shouldn't be called for symbols that live in the global
3275 area of the GOT. */
3276 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3277 if (TLS_RELOC_P (r_type))
3278 {
3279 struct mips_got_entry *p;
3280
3281 entry.abfd = ibfd;
3282 if (r_type == R_MIPS_TLS_LDM)
3283 {
3284 entry.tls_type = GOT_TLS_LDM;
3285 entry.symndx = 0;
3286 entry.d.addend = 0;
3287 }
3288 else if (h == NULL)
3289 {
3290 entry.symndx = r_symndx;
3291 entry.d.addend = 0;
3292 }
3293 else
3294 entry.d.h = h;
3295
3296 p = (struct mips_got_entry *)
3297 htab_find (g->got_entries, &entry);
3298
3299 BFD_ASSERT (p);
3300 return p;
3301 }
3302
3303 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3304 INSERT);
3305 if (*loc)
3306 return *loc;
3307
3308 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3309 entry.tls_type = 0;
3310
3311 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3312
3313 if (! *loc)
3314 return NULL;
3315
3316 memcpy (*loc, &entry, sizeof entry);
3317
3318 if (g->assigned_gotno > g->local_gotno)
3319 {
3320 (*loc)->gotidx = -1;
3321 /* We didn't allocate enough space in the GOT. */
3322 (*_bfd_error_handler)
3323 (_("not enough GOT space for local GOT entries"));
3324 bfd_set_error (bfd_error_bad_value);
3325 return NULL;
3326 }
3327
3328 MIPS_ELF_PUT_WORD (abfd, value,
3329 (htab->sgot->contents + entry.gotidx));
3330
3331 /* These GOT entries need a dynamic relocation on VxWorks. */
3332 if (htab->is_vxworks)
3333 {
3334 Elf_Internal_Rela outrel;
3335 asection *s;
3336 bfd_byte *rloc;
3337 bfd_vma got_address;
3338
3339 s = mips_elf_rel_dyn_section (info, FALSE);
3340 got_address = (htab->sgot->output_section->vma
3341 + htab->sgot->output_offset
3342 + entry.gotidx);
3343
3344 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3345 outrel.r_offset = got_address;
3346 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3347 outrel.r_addend = value;
3348 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3349 }
3350
3351 return *loc;
3352 }
3353
3354 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3355 The number might be exact or a worst-case estimate, depending on how
3356 much information is available to elf_backend_omit_section_dynsym at
3357 the current linking stage. */
3358
3359 static bfd_size_type
3360 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3361 {
3362 bfd_size_type count;
3363
3364 count = 0;
3365 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3366 {
3367 asection *p;
3368 const struct elf_backend_data *bed;
3369
3370 bed = get_elf_backend_data (output_bfd);
3371 for (p = output_bfd->sections; p ; p = p->next)
3372 if ((p->flags & SEC_EXCLUDE) == 0
3373 && (p->flags & SEC_ALLOC) != 0
3374 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3375 ++count;
3376 }
3377 return count;
3378 }
3379
3380 /* Sort the dynamic symbol table so that symbols that need GOT entries
3381 appear towards the end. */
3382
3383 static bfd_boolean
3384 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3385 {
3386 struct mips_elf_link_hash_table *htab;
3387 struct mips_elf_hash_sort_data hsd;
3388 struct mips_got_info *g;
3389
3390 if (elf_hash_table (info)->dynsymcount == 0)
3391 return TRUE;
3392
3393 htab = mips_elf_hash_table (info);
3394 BFD_ASSERT (htab != NULL);
3395
3396 g = htab->got_info;
3397 if (g == NULL)
3398 return TRUE;
3399
3400 hsd.low = NULL;
3401 hsd.max_unref_got_dynindx
3402 = hsd.min_got_dynindx
3403 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3404 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3405 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3406 elf_hash_table (info)),
3407 mips_elf_sort_hash_table_f,
3408 &hsd);
3409
3410 /* There should have been enough room in the symbol table to
3411 accommodate both the GOT and non-GOT symbols. */
3412 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3413 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3414 == elf_hash_table (info)->dynsymcount);
3415 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3416 == g->global_gotno);
3417
3418 /* Now we know which dynamic symbol has the lowest dynamic symbol
3419 table index in the GOT. */
3420 g->global_gotsym = hsd.low;
3421
3422 return TRUE;
3423 }
3424
3425 /* If H needs a GOT entry, assign it the highest available dynamic
3426 index. Otherwise, assign it the lowest available dynamic
3427 index. */
3428
3429 static bfd_boolean
3430 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3431 {
3432 struct mips_elf_hash_sort_data *hsd = data;
3433
3434 if (h->root.root.type == bfd_link_hash_warning)
3435 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3436
3437 /* Symbols without dynamic symbol table entries aren't interesting
3438 at all. */
3439 if (h->root.dynindx == -1)
3440 return TRUE;
3441
3442 switch (h->global_got_area)
3443 {
3444 case GGA_NONE:
3445 h->root.dynindx = hsd->max_non_got_dynindx++;
3446 break;
3447
3448 case GGA_NORMAL:
3449 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3450
3451 h->root.dynindx = --hsd->min_got_dynindx;
3452 hsd->low = (struct elf_link_hash_entry *) h;
3453 break;
3454
3455 case GGA_RELOC_ONLY:
3456 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3457
3458 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3459 hsd->low = (struct elf_link_hash_entry *) h;
3460 h->root.dynindx = hsd->max_unref_got_dynindx++;
3461 break;
3462 }
3463
3464 return TRUE;
3465 }
3466
3467 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3468 symbol table index lower than any we've seen to date, record it for
3469 posterity. FOR_CALL is true if the caller is only interested in
3470 using the GOT entry for calls. */
3471
3472 static bfd_boolean
3473 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3474 bfd *abfd, struct bfd_link_info *info,
3475 bfd_boolean for_call,
3476 unsigned char tls_flag)
3477 {
3478 struct mips_elf_link_hash_table *htab;
3479 struct mips_elf_link_hash_entry *hmips;
3480 struct mips_got_entry entry, **loc;
3481 struct mips_got_info *g;
3482
3483 htab = mips_elf_hash_table (info);
3484 BFD_ASSERT (htab != NULL);
3485
3486 hmips = (struct mips_elf_link_hash_entry *) h;
3487 if (!for_call)
3488 hmips->got_only_for_calls = FALSE;
3489
3490 /* A global symbol in the GOT must also be in the dynamic symbol
3491 table. */
3492 if (h->dynindx == -1)
3493 {
3494 switch (ELF_ST_VISIBILITY (h->other))
3495 {
3496 case STV_INTERNAL:
3497 case STV_HIDDEN:
3498 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3499 break;
3500 }
3501 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3502 return FALSE;
3503 }
3504
3505 /* Make sure we have a GOT to put this entry into. */
3506 g = htab->got_info;
3507 BFD_ASSERT (g != NULL);
3508
3509 entry.abfd = abfd;
3510 entry.symndx = -1;
3511 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3512 entry.tls_type = 0;
3513
3514 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3515 INSERT);
3516
3517 /* If we've already marked this entry as needing GOT space, we don't
3518 need to do it again. */
3519 if (*loc)
3520 {
3521 (*loc)->tls_type |= tls_flag;
3522 return TRUE;
3523 }
3524
3525 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3526
3527 if (! *loc)
3528 return FALSE;
3529
3530 entry.gotidx = -1;
3531 entry.tls_type = tls_flag;
3532
3533 memcpy (*loc, &entry, sizeof entry);
3534
3535 if (tls_flag == 0)
3536 hmips->global_got_area = GGA_NORMAL;
3537
3538 return TRUE;
3539 }
3540
3541 /* Reserve space in G for a GOT entry containing the value of symbol
3542 SYMNDX in input bfd ABDF, plus ADDEND. */
3543
3544 static bfd_boolean
3545 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3546 struct bfd_link_info *info,
3547 unsigned char tls_flag)
3548 {
3549 struct mips_elf_link_hash_table *htab;
3550 struct mips_got_info *g;
3551 struct mips_got_entry entry, **loc;
3552
3553 htab = mips_elf_hash_table (info);
3554 BFD_ASSERT (htab != NULL);
3555
3556 g = htab->got_info;
3557 BFD_ASSERT (g != NULL);
3558
3559 entry.abfd = abfd;
3560 entry.symndx = symndx;
3561 entry.d.addend = addend;
3562 entry.tls_type = tls_flag;
3563 loc = (struct mips_got_entry **)
3564 htab_find_slot (g->got_entries, &entry, INSERT);
3565
3566 if (*loc)
3567 {
3568 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3569 {
3570 g->tls_gotno += 2;
3571 (*loc)->tls_type |= tls_flag;
3572 }
3573 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3574 {
3575 g->tls_gotno += 1;
3576 (*loc)->tls_type |= tls_flag;
3577 }
3578 return TRUE;
3579 }
3580
3581 if (tls_flag != 0)
3582 {
3583 entry.gotidx = -1;
3584 entry.tls_type = tls_flag;
3585 if (tls_flag == GOT_TLS_IE)
3586 g->tls_gotno += 1;
3587 else if (tls_flag == GOT_TLS_GD)
3588 g->tls_gotno += 2;
3589 else if (g->tls_ldm_offset == MINUS_ONE)
3590 {
3591 g->tls_ldm_offset = MINUS_TWO;
3592 g->tls_gotno += 2;
3593 }
3594 }
3595 else
3596 {
3597 entry.gotidx = g->local_gotno++;
3598 entry.tls_type = 0;
3599 }
3600
3601 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3602
3603 if (! *loc)
3604 return FALSE;
3605
3606 memcpy (*loc, &entry, sizeof entry);
3607
3608 return TRUE;
3609 }
3610
3611 /* Return the maximum number of GOT page entries required for RANGE. */
3612
3613 static bfd_vma
3614 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3615 {
3616 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3617 }
3618
3619 /* Record that ABFD has a page relocation against symbol SYMNDX and
3620 that ADDEND is the addend for that relocation.
3621
3622 This function creates an upper bound on the number of GOT slots
3623 required; no attempt is made to combine references to non-overridable
3624 global symbols across multiple input files. */
3625
3626 static bfd_boolean
3627 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3628 long symndx, bfd_signed_vma addend)
3629 {
3630 struct mips_elf_link_hash_table *htab;
3631 struct mips_got_info *g;
3632 struct mips_got_page_entry lookup, *entry;
3633 struct mips_got_page_range **range_ptr, *range;
3634 bfd_vma old_pages, new_pages;
3635 void **loc;
3636
3637 htab = mips_elf_hash_table (info);
3638 BFD_ASSERT (htab != NULL);
3639
3640 g = htab->got_info;
3641 BFD_ASSERT (g != NULL);
3642
3643 /* Find the mips_got_page_entry hash table entry for this symbol. */
3644 lookup.abfd = abfd;
3645 lookup.symndx = symndx;
3646 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3647 if (loc == NULL)
3648 return FALSE;
3649
3650 /* Create a mips_got_page_entry if this is the first time we've
3651 seen the symbol. */
3652 entry = (struct mips_got_page_entry *) *loc;
3653 if (!entry)
3654 {
3655 entry = bfd_alloc (abfd, sizeof (*entry));
3656 if (!entry)
3657 return FALSE;
3658
3659 entry->abfd = abfd;
3660 entry->symndx = symndx;
3661 entry->ranges = NULL;
3662 entry->num_pages = 0;
3663 *loc = entry;
3664 }
3665
3666 /* Skip over ranges whose maximum extent cannot share a page entry
3667 with ADDEND. */
3668 range_ptr = &entry->ranges;
3669 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3670 range_ptr = &(*range_ptr)->next;
3671
3672 /* If we scanned to the end of the list, or found a range whose
3673 minimum extent cannot share a page entry with ADDEND, create
3674 a new singleton range. */
3675 range = *range_ptr;
3676 if (!range || addend < range->min_addend - 0xffff)
3677 {
3678 range = bfd_alloc (abfd, sizeof (*range));
3679 if (!range)
3680 return FALSE;
3681
3682 range->next = *range_ptr;
3683 range->min_addend = addend;
3684 range->max_addend = addend;
3685
3686 *range_ptr = range;
3687 entry->num_pages++;
3688 g->page_gotno++;
3689 return TRUE;
3690 }
3691
3692 /* Remember how many pages the old range contributed. */
3693 old_pages = mips_elf_pages_for_range (range);
3694
3695 /* Update the ranges. */
3696 if (addend < range->min_addend)
3697 range->min_addend = addend;
3698 else if (addend > range->max_addend)
3699 {
3700 if (range->next && addend >= range->next->min_addend - 0xffff)
3701 {
3702 old_pages += mips_elf_pages_for_range (range->next);
3703 range->max_addend = range->next->max_addend;
3704 range->next = range->next->next;
3705 }
3706 else
3707 range->max_addend = addend;
3708 }
3709
3710 /* Record any change in the total estimate. */
3711 new_pages = mips_elf_pages_for_range (range);
3712 if (old_pages != new_pages)
3713 {
3714 entry->num_pages += new_pages - old_pages;
3715 g->page_gotno += new_pages - old_pages;
3716 }
3717
3718 return TRUE;
3719 }
3720
3721 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3722
3723 static void
3724 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3725 unsigned int n)
3726 {
3727 asection *s;
3728 struct mips_elf_link_hash_table *htab;
3729
3730 htab = mips_elf_hash_table (info);
3731 BFD_ASSERT (htab != NULL);
3732
3733 s = mips_elf_rel_dyn_section (info, FALSE);
3734 BFD_ASSERT (s != NULL);
3735
3736 if (htab->is_vxworks)
3737 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3738 else
3739 {
3740 if (s->size == 0)
3741 {
3742 /* Make room for a null element. */
3743 s->size += MIPS_ELF_REL_SIZE (abfd);
3744 ++s->reloc_count;
3745 }
3746 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3747 }
3748 }
3749 \f
3750 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3751 if the GOT entry is for an indirect or warning symbol. */
3752
3753 static int
3754 mips_elf_check_recreate_got (void **entryp, void *data)
3755 {
3756 struct mips_got_entry *entry;
3757 bfd_boolean *must_recreate;
3758
3759 entry = (struct mips_got_entry *) *entryp;
3760 must_recreate = (bfd_boolean *) data;
3761 if (entry->abfd != NULL && entry->symndx == -1)
3762 {
3763 struct mips_elf_link_hash_entry *h;
3764
3765 h = entry->d.h;
3766 if (h->root.root.type == bfd_link_hash_indirect
3767 || h->root.root.type == bfd_link_hash_warning)
3768 {
3769 *must_recreate = TRUE;
3770 return 0;
3771 }
3772 }
3773 return 1;
3774 }
3775
3776 /* A htab_traverse callback for GOT entries. Add all entries to
3777 hash table *DATA, converting entries for indirect and warning
3778 symbols into entries for the target symbol. Set *DATA to null
3779 on error. */
3780
3781 static int
3782 mips_elf_recreate_got (void **entryp, void *data)
3783 {
3784 htab_t *new_got;
3785 struct mips_got_entry *entry;
3786 void **slot;
3787
3788 new_got = (htab_t *) data;
3789 entry = (struct mips_got_entry *) *entryp;
3790 if (entry->abfd != NULL && entry->symndx == -1)
3791 {
3792 struct mips_elf_link_hash_entry *h;
3793
3794 h = entry->d.h;
3795 while (h->root.root.type == bfd_link_hash_indirect
3796 || h->root.root.type == bfd_link_hash_warning)
3797 {
3798 BFD_ASSERT (h->global_got_area == GGA_NONE);
3799 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3800 }
3801 entry->d.h = h;
3802 }
3803 slot = htab_find_slot (*new_got, entry, INSERT);
3804 if (slot == NULL)
3805 {
3806 *new_got = NULL;
3807 return 0;
3808 }
3809 if (*slot == NULL)
3810 *slot = entry;
3811 else
3812 free (entry);
3813 return 1;
3814 }
3815
3816 /* If any entries in G->got_entries are for indirect or warning symbols,
3817 replace them with entries for the target symbol. */
3818
3819 static bfd_boolean
3820 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3821 {
3822 bfd_boolean must_recreate;
3823 htab_t new_got;
3824
3825 must_recreate = FALSE;
3826 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3827 if (must_recreate)
3828 {
3829 new_got = htab_create (htab_size (g->got_entries),
3830 mips_elf_got_entry_hash,
3831 mips_elf_got_entry_eq, NULL);
3832 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3833 if (new_got == NULL)
3834 return FALSE;
3835
3836 /* Each entry in g->got_entries has either been copied to new_got
3837 or freed. Now delete the hash table itself. */
3838 htab_delete (g->got_entries);
3839 g->got_entries = new_got;
3840 }
3841 return TRUE;
3842 }
3843
3844 /* A mips_elf_link_hash_traverse callback for which DATA points
3845 to the link_info structure. Count the number of type (3) entries
3846 in the master GOT. */
3847
3848 static int
3849 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3850 {
3851 struct bfd_link_info *info;
3852 struct mips_elf_link_hash_table *htab;
3853 struct mips_got_info *g;
3854
3855 info = (struct bfd_link_info *) data;
3856 htab = mips_elf_hash_table (info);
3857 g = htab->got_info;
3858 if (h->global_got_area != GGA_NONE)
3859 {
3860 /* Make a final decision about whether the symbol belongs in the
3861 local or global GOT. Symbols that bind locally can (and in the
3862 case of forced-local symbols, must) live in the local GOT.
3863 Those that are aren't in the dynamic symbol table must also
3864 live in the local GOT.
3865
3866 Note that the former condition does not always imply the
3867 latter: symbols do not bind locally if they are completely
3868 undefined. We'll report undefined symbols later if appropriate. */
3869 if (h->root.dynindx == -1
3870 || (h->got_only_for_calls
3871 ? SYMBOL_CALLS_LOCAL (info, &h->root)
3872 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3873 {
3874 /* The symbol belongs in the local GOT. We no longer need this
3875 entry if it was only used for relocations; those relocations
3876 will be against the null or section symbol instead of H. */
3877 if (h->global_got_area != GGA_RELOC_ONLY)
3878 g->local_gotno++;
3879 h->global_got_area = GGA_NONE;
3880 }
3881 else if (htab->is_vxworks
3882 && h->got_only_for_calls
3883 && h->root.plt.offset != MINUS_ONE)
3884 /* On VxWorks, calls can refer directly to the .got.plt entry;
3885 they don't need entries in the regular GOT. .got.plt entries
3886 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
3887 h->global_got_area = GGA_NONE;
3888 else
3889 {
3890 g->global_gotno++;
3891 if (h->global_got_area == GGA_RELOC_ONLY)
3892 g->reloc_only_gotno++;
3893 }
3894 }
3895 return 1;
3896 }
3897 \f
3898 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3899
3900 static hashval_t
3901 mips_elf_bfd2got_entry_hash (const void *entry_)
3902 {
3903 const struct mips_elf_bfd2got_hash *entry
3904 = (struct mips_elf_bfd2got_hash *)entry_;
3905
3906 return entry->bfd->id;
3907 }
3908
3909 /* Check whether two hash entries have the same bfd. */
3910
3911 static int
3912 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3913 {
3914 const struct mips_elf_bfd2got_hash *e1
3915 = (const struct mips_elf_bfd2got_hash *)entry1;
3916 const struct mips_elf_bfd2got_hash *e2
3917 = (const struct mips_elf_bfd2got_hash *)entry2;
3918
3919 return e1->bfd == e2->bfd;
3920 }
3921
3922 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3923 be the master GOT data. */
3924
3925 static struct mips_got_info *
3926 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3927 {
3928 struct mips_elf_bfd2got_hash e, *p;
3929
3930 if (! g->bfd2got)
3931 return g;
3932
3933 e.bfd = ibfd;
3934 p = htab_find (g->bfd2got, &e);
3935 return p ? p->g : NULL;
3936 }
3937
3938 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3939 Return NULL if an error occured. */
3940
3941 static struct mips_got_info *
3942 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3943 bfd *input_bfd)
3944 {
3945 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3946 struct mips_got_info *g;
3947 void **bfdgotp;
3948
3949 bfdgot_entry.bfd = input_bfd;
3950 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3951 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3952
3953 if (bfdgot == NULL)
3954 {
3955 bfdgot = ((struct mips_elf_bfd2got_hash *)
3956 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3957 if (bfdgot == NULL)
3958 return NULL;
3959
3960 *bfdgotp = bfdgot;
3961
3962 g = ((struct mips_got_info *)
3963 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3964 if (g == NULL)
3965 return NULL;
3966
3967 bfdgot->bfd = input_bfd;
3968 bfdgot->g = g;
3969
3970 g->global_gotsym = NULL;
3971 g->global_gotno = 0;
3972 g->reloc_only_gotno = 0;
3973 g->local_gotno = 0;
3974 g->page_gotno = 0;
3975 g->assigned_gotno = -1;
3976 g->tls_gotno = 0;
3977 g->tls_assigned_gotno = 0;
3978 g->tls_ldm_offset = MINUS_ONE;
3979 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3980 mips_elf_multi_got_entry_eq, NULL);
3981 if (g->got_entries == NULL)
3982 return NULL;
3983
3984 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3985 mips_got_page_entry_eq, NULL);
3986 if (g->got_page_entries == NULL)
3987 return NULL;
3988
3989 g->bfd2got = NULL;
3990 g->next = NULL;
3991 }
3992
3993 return bfdgot->g;
3994 }
3995
3996 /* A htab_traverse callback for the entries in the master got.
3997 Create one separate got for each bfd that has entries in the global
3998 got, such that we can tell how many local and global entries each
3999 bfd requires. */
4000
4001 static int
4002 mips_elf_make_got_per_bfd (void **entryp, void *p)
4003 {
4004 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4005 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4006 struct mips_got_info *g;
4007
4008 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4009 if (g == NULL)
4010 {
4011 arg->obfd = NULL;
4012 return 0;
4013 }
4014
4015 /* Insert the GOT entry in the bfd's got entry hash table. */
4016 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4017 if (*entryp != NULL)
4018 return 1;
4019
4020 *entryp = entry;
4021
4022 if (entry->tls_type)
4023 {
4024 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4025 g->tls_gotno += 2;
4026 if (entry->tls_type & GOT_TLS_IE)
4027 g->tls_gotno += 1;
4028 }
4029 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4030 ++g->local_gotno;
4031 else
4032 ++g->global_gotno;
4033
4034 return 1;
4035 }
4036
4037 /* A htab_traverse callback for the page entries in the master got.
4038 Associate each page entry with the bfd's got. */
4039
4040 static int
4041 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4042 {
4043 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4044 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4045 struct mips_got_info *g;
4046
4047 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4048 if (g == NULL)
4049 {
4050 arg->obfd = NULL;
4051 return 0;
4052 }
4053
4054 /* Insert the GOT entry in the bfd's got entry hash table. */
4055 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4056 if (*entryp != NULL)
4057 return 1;
4058
4059 *entryp = entry;
4060 g->page_gotno += entry->num_pages;
4061 return 1;
4062 }
4063
4064 /* Consider merging the got described by BFD2GOT with TO, using the
4065 information given by ARG. Return -1 if this would lead to overflow,
4066 1 if they were merged successfully, and 0 if a merge failed due to
4067 lack of memory. (These values are chosen so that nonnegative return
4068 values can be returned by a htab_traverse callback.) */
4069
4070 static int
4071 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4072 struct mips_got_info *to,
4073 struct mips_elf_got_per_bfd_arg *arg)
4074 {
4075 struct mips_got_info *from = bfd2got->g;
4076 unsigned int estimate;
4077
4078 /* Work out how many page entries we would need for the combined GOT. */
4079 estimate = arg->max_pages;
4080 if (estimate >= from->page_gotno + to->page_gotno)
4081 estimate = from->page_gotno + to->page_gotno;
4082
4083 /* And conservatively estimate how many local, global and TLS entries
4084 would be needed. */
4085 estimate += (from->local_gotno
4086 + from->global_gotno
4087 + from->tls_gotno
4088 + to->local_gotno
4089 + to->global_gotno
4090 + to->tls_gotno);
4091
4092 /* Bail out if the combined GOT might be too big. */
4093 if (estimate > arg->max_count)
4094 return -1;
4095
4096 /* Commit to the merge. Record that TO is now the bfd for this got. */
4097 bfd2got->g = to;
4098
4099 /* Transfer the bfd's got information from FROM to TO. */
4100 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4101 if (arg->obfd == NULL)
4102 return 0;
4103
4104 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4105 if (arg->obfd == NULL)
4106 return 0;
4107
4108 /* We don't have to worry about releasing memory of the actual
4109 got entries, since they're all in the master got_entries hash
4110 table anyway. */
4111 htab_delete (from->got_entries);
4112 htab_delete (from->got_page_entries);
4113 return 1;
4114 }
4115
4116 /* Attempt to merge gots of different input bfds. Try to use as much
4117 as possible of the primary got, since it doesn't require explicit
4118 dynamic relocations, but don't use bfds that would reference global
4119 symbols out of the addressable range. Failing the primary got,
4120 attempt to merge with the current got, or finish the current got
4121 and then make make the new got current. */
4122
4123 static int
4124 mips_elf_merge_gots (void **bfd2got_, void *p)
4125 {
4126 struct mips_elf_bfd2got_hash *bfd2got
4127 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4128 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4129 struct mips_got_info *g;
4130 unsigned int estimate;
4131 int result;
4132
4133 g = bfd2got->g;
4134
4135 /* Work out the number of page, local and TLS entries. */
4136 estimate = arg->max_pages;
4137 if (estimate > g->page_gotno)
4138 estimate = g->page_gotno;
4139 estimate += g->local_gotno + g->tls_gotno;
4140
4141 /* We place TLS GOT entries after both locals and globals. The globals
4142 for the primary GOT may overflow the normal GOT size limit, so be
4143 sure not to merge a GOT which requires TLS with the primary GOT in that
4144 case. This doesn't affect non-primary GOTs. */
4145 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4146
4147 if (estimate <= arg->max_count)
4148 {
4149 /* If we don't have a primary GOT, use it as
4150 a starting point for the primary GOT. */
4151 if (!arg->primary)
4152 {
4153 arg->primary = bfd2got->g;
4154 return 1;
4155 }
4156
4157 /* Try merging with the primary GOT. */
4158 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4159 if (result >= 0)
4160 return result;
4161 }
4162
4163 /* If we can merge with the last-created got, do it. */
4164 if (arg->current)
4165 {
4166 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4167 if (result >= 0)
4168 return result;
4169 }
4170
4171 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4172 fits; if it turns out that it doesn't, we'll get relocation
4173 overflows anyway. */
4174 g->next = arg->current;
4175 arg->current = g;
4176
4177 return 1;
4178 }
4179
4180 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4181 is null iff there is just a single GOT. */
4182
4183 static int
4184 mips_elf_initialize_tls_index (void **entryp, void *p)
4185 {
4186 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4187 struct mips_got_info *g = p;
4188 bfd_vma next_index;
4189 unsigned char tls_type;
4190
4191 /* We're only interested in TLS symbols. */
4192 if (entry->tls_type == 0)
4193 return 1;
4194
4195 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4196
4197 if (entry->symndx == -1 && g->next == NULL)
4198 {
4199 /* A type (3) got entry in the single-GOT case. We use the symbol's
4200 hash table entry to track its index. */
4201 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4202 return 1;
4203 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4204 entry->d.h->tls_got_offset = next_index;
4205 tls_type = entry->d.h->tls_type;
4206 }
4207 else
4208 {
4209 if (entry->tls_type & GOT_TLS_LDM)
4210 {
4211 /* There are separate mips_got_entry objects for each input bfd
4212 that requires an LDM entry. Make sure that all LDM entries in
4213 a GOT resolve to the same index. */
4214 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4215 {
4216 entry->gotidx = g->tls_ldm_offset;
4217 return 1;
4218 }
4219 g->tls_ldm_offset = next_index;
4220 }
4221 entry->gotidx = next_index;
4222 tls_type = entry->tls_type;
4223 }
4224
4225 /* Account for the entries we've just allocated. */
4226 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4227 g->tls_assigned_gotno += 2;
4228 if (tls_type & GOT_TLS_IE)
4229 g->tls_assigned_gotno += 1;
4230
4231 return 1;
4232 }
4233
4234 /* If passed a NULL mips_got_info in the argument, set the marker used
4235 to tell whether a global symbol needs a got entry (in the primary
4236 got) to the given VALUE.
4237
4238 If passed a pointer G to a mips_got_info in the argument (it must
4239 not be the primary GOT), compute the offset from the beginning of
4240 the (primary) GOT section to the entry in G corresponding to the
4241 global symbol. G's assigned_gotno must contain the index of the
4242 first available global GOT entry in G. VALUE must contain the size
4243 of a GOT entry in bytes. For each global GOT entry that requires a
4244 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4245 marked as not eligible for lazy resolution through a function
4246 stub. */
4247 static int
4248 mips_elf_set_global_got_offset (void **entryp, void *p)
4249 {
4250 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4251 struct mips_elf_set_global_got_offset_arg *arg
4252 = (struct mips_elf_set_global_got_offset_arg *)p;
4253 struct mips_got_info *g = arg->g;
4254
4255 if (g && entry->tls_type != GOT_NORMAL)
4256 arg->needed_relocs +=
4257 mips_tls_got_relocs (arg->info, entry->tls_type,
4258 entry->symndx == -1 ? &entry->d.h->root : NULL);
4259
4260 if (entry->abfd != NULL
4261 && entry->symndx == -1
4262 && entry->d.h->global_got_area != GGA_NONE)
4263 {
4264 if (g)
4265 {
4266 BFD_ASSERT (g->global_gotsym == NULL);
4267
4268 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4269 if (arg->info->shared
4270 || (elf_hash_table (arg->info)->dynamic_sections_created
4271 && entry->d.h->root.def_dynamic
4272 && !entry->d.h->root.def_regular))
4273 ++arg->needed_relocs;
4274 }
4275 else
4276 entry->d.h->global_got_area = arg->value;
4277 }
4278
4279 return 1;
4280 }
4281
4282 /* A htab_traverse callback for GOT entries for which DATA is the
4283 bfd_link_info. Forbid any global symbols from having traditional
4284 lazy-binding stubs. */
4285
4286 static int
4287 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4288 {
4289 struct bfd_link_info *info;
4290 struct mips_elf_link_hash_table *htab;
4291 struct mips_got_entry *entry;
4292
4293 entry = (struct mips_got_entry *) *entryp;
4294 info = (struct bfd_link_info *) data;
4295 htab = mips_elf_hash_table (info);
4296 BFD_ASSERT (htab != NULL);
4297
4298 if (entry->abfd != NULL
4299 && entry->symndx == -1
4300 && entry->d.h->needs_lazy_stub)
4301 {
4302 entry->d.h->needs_lazy_stub = FALSE;
4303 htab->lazy_stub_count--;
4304 }
4305
4306 return 1;
4307 }
4308
4309 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4310 the primary GOT. */
4311 static bfd_vma
4312 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4313 {
4314 if (g->bfd2got == NULL)
4315 return 0;
4316
4317 g = mips_elf_got_for_ibfd (g, ibfd);
4318 if (! g)
4319 return 0;
4320
4321 BFD_ASSERT (g->next);
4322
4323 g = g->next;
4324
4325 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4326 * MIPS_ELF_GOT_SIZE (abfd);
4327 }
4328
4329 /* Turn a single GOT that is too big for 16-bit addressing into
4330 a sequence of GOTs, each one 16-bit addressable. */
4331
4332 static bfd_boolean
4333 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4334 asection *got, bfd_size_type pages)
4335 {
4336 struct mips_elf_link_hash_table *htab;
4337 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4338 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4339 struct mips_got_info *g, *gg;
4340 unsigned int assign, needed_relocs;
4341 bfd *dynobj;
4342
4343 dynobj = elf_hash_table (info)->dynobj;
4344 htab = mips_elf_hash_table (info);
4345 BFD_ASSERT (htab != NULL);
4346
4347 g = htab->got_info;
4348 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4349 mips_elf_bfd2got_entry_eq, NULL);
4350 if (g->bfd2got == NULL)
4351 return FALSE;
4352
4353 got_per_bfd_arg.bfd2got = g->bfd2got;
4354 got_per_bfd_arg.obfd = abfd;
4355 got_per_bfd_arg.info = info;
4356
4357 /* Count how many GOT entries each input bfd requires, creating a
4358 map from bfd to got info while at that. */
4359 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4360 if (got_per_bfd_arg.obfd == NULL)
4361 return FALSE;
4362
4363 /* Also count how many page entries each input bfd requires. */
4364 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4365 &got_per_bfd_arg);
4366 if (got_per_bfd_arg.obfd == NULL)
4367 return FALSE;
4368
4369 got_per_bfd_arg.current = NULL;
4370 got_per_bfd_arg.primary = NULL;
4371 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4372 / MIPS_ELF_GOT_SIZE (abfd))
4373 - htab->reserved_gotno);
4374 got_per_bfd_arg.max_pages = pages;
4375 /* The number of globals that will be included in the primary GOT.
4376 See the calls to mips_elf_set_global_got_offset below for more
4377 information. */
4378 got_per_bfd_arg.global_count = g->global_gotno;
4379
4380 /* Try to merge the GOTs of input bfds together, as long as they
4381 don't seem to exceed the maximum GOT size, choosing one of them
4382 to be the primary GOT. */
4383 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4384 if (got_per_bfd_arg.obfd == NULL)
4385 return FALSE;
4386
4387 /* If we do not find any suitable primary GOT, create an empty one. */
4388 if (got_per_bfd_arg.primary == NULL)
4389 {
4390 g->next = (struct mips_got_info *)
4391 bfd_alloc (abfd, sizeof (struct mips_got_info));
4392 if (g->next == NULL)
4393 return FALSE;
4394
4395 g->next->global_gotsym = NULL;
4396 g->next->global_gotno = 0;
4397 g->next->reloc_only_gotno = 0;
4398 g->next->local_gotno = 0;
4399 g->next->page_gotno = 0;
4400 g->next->tls_gotno = 0;
4401 g->next->assigned_gotno = 0;
4402 g->next->tls_assigned_gotno = 0;
4403 g->next->tls_ldm_offset = MINUS_ONE;
4404 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4405 mips_elf_multi_got_entry_eq,
4406 NULL);
4407 if (g->next->got_entries == NULL)
4408 return FALSE;
4409 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4410 mips_got_page_entry_eq,
4411 NULL);
4412 if (g->next->got_page_entries == NULL)
4413 return FALSE;
4414 g->next->bfd2got = NULL;
4415 }
4416 else
4417 g->next = got_per_bfd_arg.primary;
4418 g->next->next = got_per_bfd_arg.current;
4419
4420 /* GG is now the master GOT, and G is the primary GOT. */
4421 gg = g;
4422 g = g->next;
4423
4424 /* Map the output bfd to the primary got. That's what we're going
4425 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4426 didn't mark in check_relocs, and we want a quick way to find it.
4427 We can't just use gg->next because we're going to reverse the
4428 list. */
4429 {
4430 struct mips_elf_bfd2got_hash *bfdgot;
4431 void **bfdgotp;
4432
4433 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4434 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4435
4436 if (bfdgot == NULL)
4437 return FALSE;
4438
4439 bfdgot->bfd = abfd;
4440 bfdgot->g = g;
4441 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4442
4443 BFD_ASSERT (*bfdgotp == NULL);
4444 *bfdgotp = bfdgot;
4445 }
4446
4447 /* Every symbol that is referenced in a dynamic relocation must be
4448 present in the primary GOT, so arrange for them to appear after
4449 those that are actually referenced. */
4450 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4451 g->global_gotno = gg->global_gotno;
4452
4453 set_got_offset_arg.g = NULL;
4454 set_got_offset_arg.value = GGA_RELOC_ONLY;
4455 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4456 &set_got_offset_arg);
4457 set_got_offset_arg.value = GGA_NORMAL;
4458 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4459 &set_got_offset_arg);
4460
4461 /* Now go through the GOTs assigning them offset ranges.
4462 [assigned_gotno, local_gotno[ will be set to the range of local
4463 entries in each GOT. We can then compute the end of a GOT by
4464 adding local_gotno to global_gotno. We reverse the list and make
4465 it circular since then we'll be able to quickly compute the
4466 beginning of a GOT, by computing the end of its predecessor. To
4467 avoid special cases for the primary GOT, while still preserving
4468 assertions that are valid for both single- and multi-got links,
4469 we arrange for the main got struct to have the right number of
4470 global entries, but set its local_gotno such that the initial
4471 offset of the primary GOT is zero. Remember that the primary GOT
4472 will become the last item in the circular linked list, so it
4473 points back to the master GOT. */
4474 gg->local_gotno = -g->global_gotno;
4475 gg->global_gotno = g->global_gotno;
4476 gg->tls_gotno = 0;
4477 assign = 0;
4478 gg->next = gg;
4479
4480 do
4481 {
4482 struct mips_got_info *gn;
4483
4484 assign += htab->reserved_gotno;
4485 g->assigned_gotno = assign;
4486 g->local_gotno += assign;
4487 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4488 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4489
4490 /* Take g out of the direct list, and push it onto the reversed
4491 list that gg points to. g->next is guaranteed to be nonnull after
4492 this operation, as required by mips_elf_initialize_tls_index. */
4493 gn = g->next;
4494 g->next = gg->next;
4495 gg->next = g;
4496
4497 /* Set up any TLS entries. We always place the TLS entries after
4498 all non-TLS entries. */
4499 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4500 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4501
4502 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4503 g = gn;
4504
4505 /* Forbid global symbols in every non-primary GOT from having
4506 lazy-binding stubs. */
4507 if (g)
4508 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4509 }
4510 while (g);
4511
4512 got->size = (gg->next->local_gotno
4513 + gg->next->global_gotno
4514 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4515
4516 needed_relocs = 0;
4517 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4518 set_got_offset_arg.info = info;
4519 for (g = gg->next; g && g->next != gg; g = g->next)
4520 {
4521 unsigned int save_assign;
4522
4523 /* Assign offsets to global GOT entries. */
4524 save_assign = g->assigned_gotno;
4525 g->assigned_gotno = g->local_gotno;
4526 set_got_offset_arg.g = g;
4527 set_got_offset_arg.needed_relocs = 0;
4528 htab_traverse (g->got_entries,
4529 mips_elf_set_global_got_offset,
4530 &set_got_offset_arg);
4531 needed_relocs += set_got_offset_arg.needed_relocs;
4532 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4533
4534 g->assigned_gotno = save_assign;
4535 if (info->shared)
4536 {
4537 needed_relocs += g->local_gotno - g->assigned_gotno;
4538 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4539 + g->next->global_gotno
4540 + g->next->tls_gotno
4541 + htab->reserved_gotno);
4542 }
4543 }
4544
4545 if (needed_relocs)
4546 mips_elf_allocate_dynamic_relocations (dynobj, info,
4547 needed_relocs);
4548
4549 return TRUE;
4550 }
4551
4552 \f
4553 /* Returns the first relocation of type r_type found, beginning with
4554 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4555
4556 static const Elf_Internal_Rela *
4557 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4558 const Elf_Internal_Rela *relocation,
4559 const Elf_Internal_Rela *relend)
4560 {
4561 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4562
4563 while (relocation < relend)
4564 {
4565 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4566 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4567 return relocation;
4568
4569 ++relocation;
4570 }
4571
4572 /* We didn't find it. */
4573 return NULL;
4574 }
4575
4576 /* Return whether an input relocation is against a local symbol. */
4577
4578 static bfd_boolean
4579 mips_elf_local_relocation_p (bfd *input_bfd,
4580 const Elf_Internal_Rela *relocation,
4581 asection **local_sections)
4582 {
4583 unsigned long r_symndx;
4584 Elf_Internal_Shdr *symtab_hdr;
4585 size_t extsymoff;
4586
4587 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4588 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4589 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4590
4591 if (r_symndx < extsymoff)
4592 return TRUE;
4593 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4594 return TRUE;
4595
4596 return FALSE;
4597 }
4598 \f
4599 /* Sign-extend VALUE, which has the indicated number of BITS. */
4600
4601 bfd_vma
4602 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4603 {
4604 if (value & ((bfd_vma) 1 << (bits - 1)))
4605 /* VALUE is negative. */
4606 value |= ((bfd_vma) - 1) << bits;
4607
4608 return value;
4609 }
4610
4611 /* Return non-zero if the indicated VALUE has overflowed the maximum
4612 range expressible by a signed number with the indicated number of
4613 BITS. */
4614
4615 static bfd_boolean
4616 mips_elf_overflow_p (bfd_vma value, int bits)
4617 {
4618 bfd_signed_vma svalue = (bfd_signed_vma) value;
4619
4620 if (svalue > (1 << (bits - 1)) - 1)
4621 /* The value is too big. */
4622 return TRUE;
4623 else if (svalue < -(1 << (bits - 1)))
4624 /* The value is too small. */
4625 return TRUE;
4626
4627 /* All is well. */
4628 return FALSE;
4629 }
4630
4631 /* Calculate the %high function. */
4632
4633 static bfd_vma
4634 mips_elf_high (bfd_vma value)
4635 {
4636 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4637 }
4638
4639 /* Calculate the %higher function. */
4640
4641 static bfd_vma
4642 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4643 {
4644 #ifdef BFD64
4645 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4646 #else
4647 abort ();
4648 return MINUS_ONE;
4649 #endif
4650 }
4651
4652 /* Calculate the %highest function. */
4653
4654 static bfd_vma
4655 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4656 {
4657 #ifdef BFD64
4658 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4659 #else
4660 abort ();
4661 return MINUS_ONE;
4662 #endif
4663 }
4664 \f
4665 /* Create the .compact_rel section. */
4666
4667 static bfd_boolean
4668 mips_elf_create_compact_rel_section
4669 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4670 {
4671 flagword flags;
4672 register asection *s;
4673
4674 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4675 {
4676 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4677 | SEC_READONLY);
4678
4679 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4680 if (s == NULL
4681 || ! bfd_set_section_alignment (abfd, s,
4682 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4683 return FALSE;
4684
4685 s->size = sizeof (Elf32_External_compact_rel);
4686 }
4687
4688 return TRUE;
4689 }
4690
4691 /* Create the .got section to hold the global offset table. */
4692
4693 static bfd_boolean
4694 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4695 {
4696 flagword flags;
4697 register asection *s;
4698 struct elf_link_hash_entry *h;
4699 struct bfd_link_hash_entry *bh;
4700 struct mips_got_info *g;
4701 bfd_size_type amt;
4702 struct mips_elf_link_hash_table *htab;
4703
4704 htab = mips_elf_hash_table (info);
4705 BFD_ASSERT (htab != NULL);
4706
4707 /* This function may be called more than once. */
4708 if (htab->sgot)
4709 return TRUE;
4710
4711 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4712 | SEC_LINKER_CREATED);
4713
4714 /* We have to use an alignment of 2**4 here because this is hardcoded
4715 in the function stub generation and in the linker script. */
4716 s = bfd_make_section_with_flags (abfd, ".got", flags);
4717 if (s == NULL
4718 || ! bfd_set_section_alignment (abfd, s, 4))
4719 return FALSE;
4720 htab->sgot = s;
4721
4722 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4723 linker script because we don't want to define the symbol if we
4724 are not creating a global offset table. */
4725 bh = NULL;
4726 if (! (_bfd_generic_link_add_one_symbol
4727 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4728 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4729 return FALSE;
4730
4731 h = (struct elf_link_hash_entry *) bh;
4732 h->non_elf = 0;
4733 h->def_regular = 1;
4734 h->type = STT_OBJECT;
4735 elf_hash_table (info)->hgot = h;
4736
4737 if (info->shared
4738 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4739 return FALSE;
4740
4741 amt = sizeof (struct mips_got_info);
4742 g = bfd_alloc (abfd, amt);
4743 if (g == NULL)
4744 return FALSE;
4745 g->global_gotsym = NULL;
4746 g->global_gotno = 0;
4747 g->reloc_only_gotno = 0;
4748 g->tls_gotno = 0;
4749 g->local_gotno = 0;
4750 g->page_gotno = 0;
4751 g->assigned_gotno = 0;
4752 g->bfd2got = NULL;
4753 g->next = NULL;
4754 g->tls_ldm_offset = MINUS_ONE;
4755 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4756 mips_elf_got_entry_eq, NULL);
4757 if (g->got_entries == NULL)
4758 return FALSE;
4759 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4760 mips_got_page_entry_eq, NULL);
4761 if (g->got_page_entries == NULL)
4762 return FALSE;
4763 htab->got_info = g;
4764 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4765 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4766
4767 /* We also need a .got.plt section when generating PLTs. */
4768 s = bfd_make_section_with_flags (abfd, ".got.plt",
4769 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4770 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4771 if (s == NULL)
4772 return FALSE;
4773 htab->sgotplt = s;
4774
4775 return TRUE;
4776 }
4777 \f
4778 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4779 __GOTT_INDEX__ symbols. These symbols are only special for
4780 shared objects; they are not used in executables. */
4781
4782 static bfd_boolean
4783 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4784 {
4785 return (mips_elf_hash_table (info)->is_vxworks
4786 && info->shared
4787 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4788 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4789 }
4790
4791 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4792 require an la25 stub. See also mips_elf_local_pic_function_p,
4793 which determines whether the destination function ever requires a
4794 stub. */
4795
4796 static bfd_boolean
4797 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4798 {
4799 /* We specifically ignore branches and jumps from EF_PIC objects,
4800 where the onus is on the compiler or programmer to perform any
4801 necessary initialization of $25. Sometimes such initialization
4802 is unnecessary; for example, -mno-shared functions do not use
4803 the incoming value of $25, and may therefore be called directly. */
4804 if (PIC_OBJECT_P (input_bfd))
4805 return FALSE;
4806
4807 switch (r_type)
4808 {
4809 case R_MIPS_26:
4810 case R_MIPS_PC16:
4811 case R_MIPS16_26:
4812 return TRUE;
4813
4814 default:
4815 return FALSE;
4816 }
4817 }
4818 \f
4819 /* Calculate the value produced by the RELOCATION (which comes from
4820 the INPUT_BFD). The ADDEND is the addend to use for this
4821 RELOCATION; RELOCATION->R_ADDEND is ignored.
4822
4823 The result of the relocation calculation is stored in VALUEP.
4824 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4825 is a MIPS16 jump to non-MIPS16 code, or vice versa.
4826
4827 This function returns bfd_reloc_continue if the caller need take no
4828 further action regarding this relocation, bfd_reloc_notsupported if
4829 something goes dramatically wrong, bfd_reloc_overflow if an
4830 overflow occurs, and bfd_reloc_ok to indicate success. */
4831
4832 static bfd_reloc_status_type
4833 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4834 asection *input_section,
4835 struct bfd_link_info *info,
4836 const Elf_Internal_Rela *relocation,
4837 bfd_vma addend, reloc_howto_type *howto,
4838 Elf_Internal_Sym *local_syms,
4839 asection **local_sections, bfd_vma *valuep,
4840 const char **namep,
4841 bfd_boolean *cross_mode_jump_p,
4842 bfd_boolean save_addend)
4843 {
4844 /* The eventual value we will return. */
4845 bfd_vma value;
4846 /* The address of the symbol against which the relocation is
4847 occurring. */
4848 bfd_vma symbol = 0;
4849 /* The final GP value to be used for the relocatable, executable, or
4850 shared object file being produced. */
4851 bfd_vma gp;
4852 /* The place (section offset or address) of the storage unit being
4853 relocated. */
4854 bfd_vma p;
4855 /* The value of GP used to create the relocatable object. */
4856 bfd_vma gp0;
4857 /* The offset into the global offset table at which the address of
4858 the relocation entry symbol, adjusted by the addend, resides
4859 during execution. */
4860 bfd_vma g = MINUS_ONE;
4861 /* The section in which the symbol referenced by the relocation is
4862 located. */
4863 asection *sec = NULL;
4864 struct mips_elf_link_hash_entry *h = NULL;
4865 /* TRUE if the symbol referred to by this relocation is a local
4866 symbol. */
4867 bfd_boolean local_p, was_local_p;
4868 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4869 bfd_boolean gp_disp_p = FALSE;
4870 /* TRUE if the symbol referred to by this relocation is
4871 "__gnu_local_gp". */
4872 bfd_boolean gnu_local_gp_p = FALSE;
4873 Elf_Internal_Shdr *symtab_hdr;
4874 size_t extsymoff;
4875 unsigned long r_symndx;
4876 int r_type;
4877 /* TRUE if overflow occurred during the calculation of the
4878 relocation value. */
4879 bfd_boolean overflowed_p;
4880 /* TRUE if this relocation refers to a MIPS16 function. */
4881 bfd_boolean target_is_16_bit_code_p = FALSE;
4882 struct mips_elf_link_hash_table *htab;
4883 bfd *dynobj;
4884
4885 dynobj = elf_hash_table (info)->dynobj;
4886 htab = mips_elf_hash_table (info);
4887 BFD_ASSERT (htab != NULL);
4888
4889 /* Parse the relocation. */
4890 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4891 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4892 p = (input_section->output_section->vma
4893 + input_section->output_offset
4894 + relocation->r_offset);
4895
4896 /* Assume that there will be no overflow. */
4897 overflowed_p = FALSE;
4898
4899 /* Figure out whether or not the symbol is local, and get the offset
4900 used in the array of hash table entries. */
4901 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4902 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4903 local_sections);
4904 was_local_p = local_p;
4905 if (! elf_bad_symtab (input_bfd))
4906 extsymoff = symtab_hdr->sh_info;
4907 else
4908 {
4909 /* The symbol table does not follow the rule that local symbols
4910 must come before globals. */
4911 extsymoff = 0;
4912 }
4913
4914 /* Figure out the value of the symbol. */
4915 if (local_p)
4916 {
4917 Elf_Internal_Sym *sym;
4918
4919 sym = local_syms + r_symndx;
4920 sec = local_sections[r_symndx];
4921
4922 symbol = sec->output_section->vma + sec->output_offset;
4923 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4924 || (sec->flags & SEC_MERGE))
4925 symbol += sym->st_value;
4926 if ((sec->flags & SEC_MERGE)
4927 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4928 {
4929 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4930 addend -= symbol;
4931 addend += sec->output_section->vma + sec->output_offset;
4932 }
4933
4934 /* MIPS16 text labels should be treated as odd. */
4935 if (ELF_ST_IS_MIPS16 (sym->st_other))
4936 ++symbol;
4937
4938 /* Record the name of this symbol, for our caller. */
4939 *namep = bfd_elf_string_from_elf_section (input_bfd,
4940 symtab_hdr->sh_link,
4941 sym->st_name);
4942 if (*namep == '\0')
4943 *namep = bfd_section_name (input_bfd, sec);
4944
4945 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4946 }
4947 else
4948 {
4949 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4950
4951 /* For global symbols we look up the symbol in the hash-table. */
4952 h = ((struct mips_elf_link_hash_entry *)
4953 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4954 /* Find the real hash-table entry for this symbol. */
4955 while (h->root.root.type == bfd_link_hash_indirect
4956 || h->root.root.type == bfd_link_hash_warning)
4957 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4958
4959 /* Record the name of this symbol, for our caller. */
4960 *namep = h->root.root.root.string;
4961
4962 /* See if this is the special _gp_disp symbol. Note that such a
4963 symbol must always be a global symbol. */
4964 if (strcmp (*namep, "_gp_disp") == 0
4965 && ! NEWABI_P (input_bfd))
4966 {
4967 /* Relocations against _gp_disp are permitted only with
4968 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4969 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4970 return bfd_reloc_notsupported;
4971
4972 gp_disp_p = TRUE;
4973 }
4974 /* See if this is the special _gp symbol. Note that such a
4975 symbol must always be a global symbol. */
4976 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4977 gnu_local_gp_p = TRUE;
4978
4979
4980 /* If this symbol is defined, calculate its address. Note that
4981 _gp_disp is a magic symbol, always implicitly defined by the
4982 linker, so it's inappropriate to check to see whether or not
4983 its defined. */
4984 else if ((h->root.root.type == bfd_link_hash_defined
4985 || h->root.root.type == bfd_link_hash_defweak)
4986 && h->root.root.u.def.section)
4987 {
4988 sec = h->root.root.u.def.section;
4989 if (sec->output_section)
4990 symbol = (h->root.root.u.def.value
4991 + sec->output_section->vma
4992 + sec->output_offset);
4993 else
4994 symbol = h->root.root.u.def.value;
4995 }
4996 else if (h->root.root.type == bfd_link_hash_undefweak)
4997 /* We allow relocations against undefined weak symbols, giving
4998 it the value zero, so that you can undefined weak functions
4999 and check to see if they exist by looking at their
5000 addresses. */
5001 symbol = 0;
5002 else if (info->unresolved_syms_in_objects == RM_IGNORE
5003 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5004 symbol = 0;
5005 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5006 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5007 {
5008 /* If this is a dynamic link, we should have created a
5009 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5010 in in _bfd_mips_elf_create_dynamic_sections.
5011 Otherwise, we should define the symbol with a value of 0.
5012 FIXME: It should probably get into the symbol table
5013 somehow as well. */
5014 BFD_ASSERT (! info->shared);
5015 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5016 symbol = 0;
5017 }
5018 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5019 {
5020 /* This is an optional symbol - an Irix specific extension to the
5021 ELF spec. Ignore it for now.
5022 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5023 than simply ignoring them, but we do not handle this for now.
5024 For information see the "64-bit ELF Object File Specification"
5025 which is available from here:
5026 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5027 symbol = 0;
5028 }
5029 else if ((*info->callbacks->undefined_symbol)
5030 (info, h->root.root.root.string, input_bfd,
5031 input_section, relocation->r_offset,
5032 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5033 || ELF_ST_VISIBILITY (h->root.other)))
5034 {
5035 return bfd_reloc_undefined;
5036 }
5037 else
5038 {
5039 return bfd_reloc_notsupported;
5040 }
5041
5042 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5043 }
5044
5045 /* If this is a reference to a 16-bit function with a stub, we need
5046 to redirect the relocation to the stub unless:
5047
5048 (a) the relocation is for a MIPS16 JAL;
5049
5050 (b) the relocation is for a MIPS16 PIC call, and there are no
5051 non-MIPS16 uses of the GOT slot; or
5052
5053 (c) the section allows direct references to MIPS16 functions. */
5054 if (r_type != R_MIPS16_26
5055 && !info->relocatable
5056 && ((h != NULL
5057 && h->fn_stub != NULL
5058 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5059 || (local_p
5060 && elf_tdata (input_bfd)->local_stubs != NULL
5061 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5062 && !section_allows_mips16_refs_p (input_section))
5063 {
5064 /* This is a 32- or 64-bit call to a 16-bit function. We should
5065 have already noticed that we were going to need the
5066 stub. */
5067 if (local_p)
5068 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5069 else
5070 {
5071 BFD_ASSERT (h->need_fn_stub);
5072 sec = h->fn_stub;
5073 }
5074
5075 symbol = sec->output_section->vma + sec->output_offset;
5076 /* The target is 16-bit, but the stub isn't. */
5077 target_is_16_bit_code_p = FALSE;
5078 }
5079 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5080 need to redirect the call to the stub. Note that we specifically
5081 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5082 use an indirect stub instead. */
5083 else if (r_type == R_MIPS16_26 && !info->relocatable
5084 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5085 || (local_p
5086 && elf_tdata (input_bfd)->local_call_stubs != NULL
5087 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5088 && !target_is_16_bit_code_p)
5089 {
5090 if (local_p)
5091 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5092 else
5093 {
5094 /* If both call_stub and call_fp_stub are defined, we can figure
5095 out which one to use by checking which one appears in the input
5096 file. */
5097 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5098 {
5099 asection *o;
5100
5101 sec = NULL;
5102 for (o = input_bfd->sections; o != NULL; o = o->next)
5103 {
5104 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5105 {
5106 sec = h->call_fp_stub;
5107 break;
5108 }
5109 }
5110 if (sec == NULL)
5111 sec = h->call_stub;
5112 }
5113 else if (h->call_stub != NULL)
5114 sec = h->call_stub;
5115 else
5116 sec = h->call_fp_stub;
5117 }
5118
5119 BFD_ASSERT (sec->size > 0);
5120 symbol = sec->output_section->vma + sec->output_offset;
5121 }
5122 /* If this is a direct call to a PIC function, redirect to the
5123 non-PIC stub. */
5124 else if (h != NULL && h->la25_stub
5125 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5126 symbol = (h->la25_stub->stub_section->output_section->vma
5127 + h->la25_stub->stub_section->output_offset
5128 + h->la25_stub->offset);
5129
5130 /* Calls from 16-bit code to 32-bit code and vice versa require the
5131 mode change. */
5132 *cross_mode_jump_p = !info->relocatable
5133 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5134 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5135 && target_is_16_bit_code_p));
5136
5137 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5138
5139 gp0 = _bfd_get_gp_value (input_bfd);
5140 gp = _bfd_get_gp_value (abfd);
5141 if (htab->got_info)
5142 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5143
5144 if (gnu_local_gp_p)
5145 symbol = gp;
5146
5147 /* Global R_MIPS_GOT_PAGE relocations are equivalent to R_MIPS_GOT_DISP.
5148 The addend is applied by the corresponding R_MIPS_GOT_OFST. */
5149 if (r_type == R_MIPS_GOT_PAGE && !local_p)
5150 {
5151 r_type = R_MIPS_GOT_DISP;
5152 addend = 0;
5153 }
5154
5155 /* If we haven't already determined the GOT offset, and we're going
5156 to need it, get it now. */
5157 switch (r_type)
5158 {
5159 case R_MIPS16_CALL16:
5160 case R_MIPS16_GOT16:
5161 case R_MIPS_CALL16:
5162 case R_MIPS_GOT16:
5163 case R_MIPS_GOT_DISP:
5164 case R_MIPS_GOT_HI16:
5165 case R_MIPS_CALL_HI16:
5166 case R_MIPS_GOT_LO16:
5167 case R_MIPS_CALL_LO16:
5168 case R_MIPS_TLS_GD:
5169 case R_MIPS_TLS_GOTTPREL:
5170 case R_MIPS_TLS_LDM:
5171 /* Find the index into the GOT where this value is located. */
5172 if (r_type == R_MIPS_TLS_LDM)
5173 {
5174 g = mips_elf_local_got_index (abfd, input_bfd, info,
5175 0, 0, NULL, r_type);
5176 if (g == MINUS_ONE)
5177 return bfd_reloc_outofrange;
5178 }
5179 else if (!local_p)
5180 {
5181 /* On VxWorks, CALL relocations should refer to the .got.plt
5182 entry, which is initialized to point at the PLT stub. */
5183 if (htab->is_vxworks
5184 && (r_type == R_MIPS_CALL_HI16
5185 || r_type == R_MIPS_CALL_LO16
5186 || call16_reloc_p (r_type)))
5187 {
5188 BFD_ASSERT (addend == 0);
5189 BFD_ASSERT (h->root.needs_plt);
5190 g = mips_elf_gotplt_index (info, &h->root);
5191 }
5192 else
5193 {
5194 BFD_ASSERT (addend == 0);
5195 g = mips_elf_global_got_index (dynobj, input_bfd,
5196 &h->root, r_type, info);
5197 if (h->tls_type == GOT_NORMAL
5198 && !elf_hash_table (info)->dynamic_sections_created)
5199 /* This is a static link. We must initialize the GOT entry. */
5200 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5201 }
5202 }
5203 else if (!htab->is_vxworks
5204 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5205 /* The calculation below does not involve "g". */
5206 break;
5207 else
5208 {
5209 g = mips_elf_local_got_index (abfd, input_bfd, info,
5210 symbol + addend, r_symndx, h, r_type);
5211 if (g == MINUS_ONE)
5212 return bfd_reloc_outofrange;
5213 }
5214
5215 /* Convert GOT indices to actual offsets. */
5216 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5217 break;
5218 }
5219
5220 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5221 symbols are resolved by the loader. Add them to .rela.dyn. */
5222 if (h != NULL && is_gott_symbol (info, &h->root))
5223 {
5224 Elf_Internal_Rela outrel;
5225 bfd_byte *loc;
5226 asection *s;
5227
5228 s = mips_elf_rel_dyn_section (info, FALSE);
5229 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5230
5231 outrel.r_offset = (input_section->output_section->vma
5232 + input_section->output_offset
5233 + relocation->r_offset);
5234 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5235 outrel.r_addend = addend;
5236 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5237
5238 /* If we've written this relocation for a readonly section,
5239 we need to set DF_TEXTREL again, so that we do not delete the
5240 DT_TEXTREL tag. */
5241 if (MIPS_ELF_READONLY_SECTION (input_section))
5242 info->flags |= DF_TEXTREL;
5243
5244 *valuep = 0;
5245 return bfd_reloc_ok;
5246 }
5247
5248 /* Figure out what kind of relocation is being performed. */
5249 switch (r_type)
5250 {
5251 case R_MIPS_NONE:
5252 return bfd_reloc_continue;
5253
5254 case R_MIPS_16:
5255 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5256 overflowed_p = mips_elf_overflow_p (value, 16);
5257 break;
5258
5259 case R_MIPS_32:
5260 case R_MIPS_REL32:
5261 case R_MIPS_64:
5262 if ((info->shared
5263 || (htab->root.dynamic_sections_created
5264 && h != NULL
5265 && h->root.def_dynamic
5266 && !h->root.def_regular
5267 && !h->has_static_relocs))
5268 && r_symndx != STN_UNDEF
5269 && (h == NULL
5270 || h->root.root.type != bfd_link_hash_undefweak
5271 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5272 && (input_section->flags & SEC_ALLOC) != 0)
5273 {
5274 /* If we're creating a shared library, then we can't know
5275 where the symbol will end up. So, we create a relocation
5276 record in the output, and leave the job up to the dynamic
5277 linker. We must do the same for executable references to
5278 shared library symbols, unless we've decided to use copy
5279 relocs or PLTs instead. */
5280 value = addend;
5281 if (!mips_elf_create_dynamic_relocation (abfd,
5282 info,
5283 relocation,
5284 h,
5285 sec,
5286 symbol,
5287 &value,
5288 input_section))
5289 return bfd_reloc_undefined;
5290 }
5291 else
5292 {
5293 if (r_type != R_MIPS_REL32)
5294 value = symbol + addend;
5295 else
5296 value = addend;
5297 }
5298 value &= howto->dst_mask;
5299 break;
5300
5301 case R_MIPS_PC32:
5302 value = symbol + addend - p;
5303 value &= howto->dst_mask;
5304 break;
5305
5306 case R_MIPS16_26:
5307 /* The calculation for R_MIPS16_26 is just the same as for an
5308 R_MIPS_26. It's only the storage of the relocated field into
5309 the output file that's different. That's handled in
5310 mips_elf_perform_relocation. So, we just fall through to the
5311 R_MIPS_26 case here. */
5312 case R_MIPS_26:
5313 if (was_local_p)
5314 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
5315 else
5316 {
5317 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
5318 if (h->root.root.type != bfd_link_hash_undefweak)
5319 overflowed_p = (value >> 26) != ((p + 4) >> 28);
5320 }
5321 value &= howto->dst_mask;
5322 break;
5323
5324 case R_MIPS_TLS_DTPREL_HI16:
5325 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5326 & howto->dst_mask);
5327 break;
5328
5329 case R_MIPS_TLS_DTPREL_LO16:
5330 case R_MIPS_TLS_DTPREL32:
5331 case R_MIPS_TLS_DTPREL64:
5332 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5333 break;
5334
5335 case R_MIPS_TLS_TPREL_HI16:
5336 value = (mips_elf_high (addend + symbol - tprel_base (info))
5337 & howto->dst_mask);
5338 break;
5339
5340 case R_MIPS_TLS_TPREL_LO16:
5341 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5342 break;
5343
5344 case R_MIPS_HI16:
5345 case R_MIPS16_HI16:
5346 if (!gp_disp_p)
5347 {
5348 value = mips_elf_high (addend + symbol);
5349 value &= howto->dst_mask;
5350 }
5351 else
5352 {
5353 /* For MIPS16 ABI code we generate this sequence
5354 0: li $v0,%hi(_gp_disp)
5355 4: addiupc $v1,%lo(_gp_disp)
5356 8: sll $v0,16
5357 12: addu $v0,$v1
5358 14: move $gp,$v0
5359 So the offsets of hi and lo relocs are the same, but the
5360 $pc is four higher than $t9 would be, so reduce
5361 both reloc addends by 4. */
5362 if (r_type == R_MIPS16_HI16)
5363 value = mips_elf_high (addend + gp - p - 4);
5364 else
5365 value = mips_elf_high (addend + gp - p);
5366 overflowed_p = mips_elf_overflow_p (value, 16);
5367 }
5368 break;
5369
5370 case R_MIPS_LO16:
5371 case R_MIPS16_LO16:
5372 if (!gp_disp_p)
5373 value = (symbol + addend) & howto->dst_mask;
5374 else
5375 {
5376 /* See the comment for R_MIPS16_HI16 above for the reason
5377 for this conditional. */
5378 if (r_type == R_MIPS16_LO16)
5379 value = addend + gp - p;
5380 else
5381 value = addend + gp - p + 4;
5382 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5383 for overflow. But, on, say, IRIX5, relocations against
5384 _gp_disp are normally generated from the .cpload
5385 pseudo-op. It generates code that normally looks like
5386 this:
5387
5388 lui $gp,%hi(_gp_disp)
5389 addiu $gp,$gp,%lo(_gp_disp)
5390 addu $gp,$gp,$t9
5391
5392 Here $t9 holds the address of the function being called,
5393 as required by the MIPS ELF ABI. The R_MIPS_LO16
5394 relocation can easily overflow in this situation, but the
5395 R_MIPS_HI16 relocation will handle the overflow.
5396 Therefore, we consider this a bug in the MIPS ABI, and do
5397 not check for overflow here. */
5398 }
5399 break;
5400
5401 case R_MIPS_LITERAL:
5402 /* Because we don't merge literal sections, we can handle this
5403 just like R_MIPS_GPREL16. In the long run, we should merge
5404 shared literals, and then we will need to additional work
5405 here. */
5406
5407 /* Fall through. */
5408
5409 case R_MIPS16_GPREL:
5410 /* The R_MIPS16_GPREL performs the same calculation as
5411 R_MIPS_GPREL16, but stores the relocated bits in a different
5412 order. We don't need to do anything special here; the
5413 differences are handled in mips_elf_perform_relocation. */
5414 case R_MIPS_GPREL16:
5415 /* Only sign-extend the addend if it was extracted from the
5416 instruction. If the addend was separate, leave it alone,
5417 otherwise we may lose significant bits. */
5418 if (howto->partial_inplace)
5419 addend = _bfd_mips_elf_sign_extend (addend, 16);
5420 value = symbol + addend - gp;
5421 /* If the symbol was local, any earlier relocatable links will
5422 have adjusted its addend with the gp offset, so compensate
5423 for that now. Don't do it for symbols forced local in this
5424 link, though, since they won't have had the gp offset applied
5425 to them before. */
5426 if (was_local_p)
5427 value += gp0;
5428 overflowed_p = mips_elf_overflow_p (value, 16);
5429 break;
5430
5431 case R_MIPS16_GOT16:
5432 case R_MIPS16_CALL16:
5433 case R_MIPS_GOT16:
5434 case R_MIPS_CALL16:
5435 /* VxWorks does not have separate local and global semantics for
5436 R_MIPS*_GOT16; every relocation evaluates to "G". */
5437 if (!htab->is_vxworks && local_p)
5438 {
5439 value = mips_elf_got16_entry (abfd, input_bfd, info,
5440 symbol + addend, !was_local_p);
5441 if (value == MINUS_ONE)
5442 return bfd_reloc_outofrange;
5443 value
5444 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5445 overflowed_p = mips_elf_overflow_p (value, 16);
5446 break;
5447 }
5448
5449 /* Fall through. */
5450
5451 case R_MIPS_TLS_GD:
5452 case R_MIPS_TLS_GOTTPREL:
5453 case R_MIPS_TLS_LDM:
5454 case R_MIPS_GOT_DISP:
5455 value = g;
5456 overflowed_p = mips_elf_overflow_p (value, 16);
5457 break;
5458
5459 case R_MIPS_GPREL32:
5460 value = (addend + symbol + gp0 - gp);
5461 if (!save_addend)
5462 value &= howto->dst_mask;
5463 break;
5464
5465 case R_MIPS_PC16:
5466 case R_MIPS_GNU_REL16_S2:
5467 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5468 overflowed_p = mips_elf_overflow_p (value, 18);
5469 value >>= howto->rightshift;
5470 value &= howto->dst_mask;
5471 break;
5472
5473 case R_MIPS_GOT_HI16:
5474 case R_MIPS_CALL_HI16:
5475 /* We're allowed to handle these two relocations identically.
5476 The dynamic linker is allowed to handle the CALL relocations
5477 differently by creating a lazy evaluation stub. */
5478 value = g;
5479 value = mips_elf_high (value);
5480 value &= howto->dst_mask;
5481 break;
5482
5483 case R_MIPS_GOT_LO16:
5484 case R_MIPS_CALL_LO16:
5485 value = g & howto->dst_mask;
5486 break;
5487
5488 case R_MIPS_GOT_PAGE:
5489 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5490 if (value == MINUS_ONE)
5491 return bfd_reloc_outofrange;
5492 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5493 overflowed_p = mips_elf_overflow_p (value, 16);
5494 break;
5495
5496 case R_MIPS_GOT_OFST:
5497 if (local_p)
5498 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5499 else
5500 value = addend;
5501 overflowed_p = mips_elf_overflow_p (value, 16);
5502 break;
5503
5504 case R_MIPS_SUB:
5505 value = symbol - addend;
5506 value &= howto->dst_mask;
5507 break;
5508
5509 case R_MIPS_HIGHER:
5510 value = mips_elf_higher (addend + symbol);
5511 value &= howto->dst_mask;
5512 break;
5513
5514 case R_MIPS_HIGHEST:
5515 value = mips_elf_highest (addend + symbol);
5516 value &= howto->dst_mask;
5517 break;
5518
5519 case R_MIPS_SCN_DISP:
5520 value = symbol + addend - sec->output_offset;
5521 value &= howto->dst_mask;
5522 break;
5523
5524 case R_MIPS_JALR:
5525 /* This relocation is only a hint. In some cases, we optimize
5526 it into a bal instruction. But we don't try to optimize
5527 when the symbol does not resolve locally. */
5528 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5529 return bfd_reloc_continue;
5530 value = symbol + addend;
5531 break;
5532
5533 case R_MIPS_PJUMP:
5534 case R_MIPS_GNU_VTINHERIT:
5535 case R_MIPS_GNU_VTENTRY:
5536 /* We don't do anything with these at present. */
5537 return bfd_reloc_continue;
5538
5539 default:
5540 /* An unrecognized relocation type. */
5541 return bfd_reloc_notsupported;
5542 }
5543
5544 /* Store the VALUE for our caller. */
5545 *valuep = value;
5546 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5547 }
5548
5549 /* Obtain the field relocated by RELOCATION. */
5550
5551 static bfd_vma
5552 mips_elf_obtain_contents (reloc_howto_type *howto,
5553 const Elf_Internal_Rela *relocation,
5554 bfd *input_bfd, bfd_byte *contents)
5555 {
5556 bfd_vma x;
5557 bfd_byte *location = contents + relocation->r_offset;
5558
5559 /* Obtain the bytes. */
5560 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5561
5562 return x;
5563 }
5564
5565 /* It has been determined that the result of the RELOCATION is the
5566 VALUE. Use HOWTO to place VALUE into the output file at the
5567 appropriate position. The SECTION is the section to which the
5568 relocation applies.
5569 CROSS_MODE_JUMP_P is true if the relocation field
5570 is a MIPS16 jump to non-MIPS16 code, or vice versa.
5571
5572 Returns FALSE if anything goes wrong. */
5573
5574 static bfd_boolean
5575 mips_elf_perform_relocation (struct bfd_link_info *info,
5576 reloc_howto_type *howto,
5577 const Elf_Internal_Rela *relocation,
5578 bfd_vma value, bfd *input_bfd,
5579 asection *input_section, bfd_byte *contents,
5580 bfd_boolean cross_mode_jump_p)
5581 {
5582 bfd_vma x;
5583 bfd_byte *location;
5584 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5585
5586 /* Figure out where the relocation is occurring. */
5587 location = contents + relocation->r_offset;
5588
5589 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5590
5591 /* Obtain the current value. */
5592 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5593
5594 /* Clear the field we are setting. */
5595 x &= ~howto->dst_mask;
5596
5597 /* Set the field. */
5598 x |= (value & howto->dst_mask);
5599
5600 /* If required, turn JAL into JALX. */
5601 if (cross_mode_jump_p && jal_reloc_p (r_type))
5602 {
5603 bfd_boolean ok;
5604 bfd_vma opcode = x >> 26;
5605 bfd_vma jalx_opcode;
5606
5607 /* Check to see if the opcode is already JAL or JALX. */
5608 if (r_type == R_MIPS16_26)
5609 {
5610 ok = ((opcode == 0x6) || (opcode == 0x7));
5611 jalx_opcode = 0x7;
5612 }
5613 else
5614 {
5615 ok = ((opcode == 0x3) || (opcode == 0x1d));
5616 jalx_opcode = 0x1d;
5617 }
5618
5619 /* If the opcode is not JAL or JALX, there's a problem. */
5620 if (!ok)
5621 {
5622 (*_bfd_error_handler)
5623 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5624 input_bfd,
5625 input_section,
5626 (unsigned long) relocation->r_offset);
5627 bfd_set_error (bfd_error_bad_value);
5628 return FALSE;
5629 }
5630
5631 /* Make this the JALX opcode. */
5632 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5633 }
5634
5635 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5636 range. */
5637 if (!info->relocatable
5638 && !cross_mode_jump_p
5639 && ((JAL_TO_BAL_P (input_bfd)
5640 && r_type == R_MIPS_26
5641 && (x >> 26) == 0x3) /* jal addr */
5642 || (JALR_TO_BAL_P (input_bfd)
5643 && r_type == R_MIPS_JALR
5644 && x == 0x0320f809) /* jalr t9 */
5645 || (JR_TO_B_P (input_bfd)
5646 && r_type == R_MIPS_JALR
5647 && x == 0x03200008))) /* jr t9 */
5648 {
5649 bfd_vma addr;
5650 bfd_vma dest;
5651 bfd_signed_vma off;
5652
5653 addr = (input_section->output_section->vma
5654 + input_section->output_offset
5655 + relocation->r_offset
5656 + 4);
5657 if (r_type == R_MIPS_26)
5658 dest = (value << 2) | ((addr >> 28) << 28);
5659 else
5660 dest = value;
5661 off = dest - addr;
5662 if (off <= 0x1ffff && off >= -0x20000)
5663 {
5664 if (x == 0x03200008) /* jr t9 */
5665 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5666 else
5667 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5668 }
5669 }
5670
5671 /* Put the value into the output. */
5672 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5673
5674 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5675 location);
5676
5677 return TRUE;
5678 }
5679 \f
5680 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5681 is the original relocation, which is now being transformed into a
5682 dynamic relocation. The ADDENDP is adjusted if necessary; the
5683 caller should store the result in place of the original addend. */
5684
5685 static bfd_boolean
5686 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5687 struct bfd_link_info *info,
5688 const Elf_Internal_Rela *rel,
5689 struct mips_elf_link_hash_entry *h,
5690 asection *sec, bfd_vma symbol,
5691 bfd_vma *addendp, asection *input_section)
5692 {
5693 Elf_Internal_Rela outrel[3];
5694 asection *sreloc;
5695 bfd *dynobj;
5696 int r_type;
5697 long indx;
5698 bfd_boolean defined_p;
5699 struct mips_elf_link_hash_table *htab;
5700
5701 htab = mips_elf_hash_table (info);
5702 BFD_ASSERT (htab != NULL);
5703
5704 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5705 dynobj = elf_hash_table (info)->dynobj;
5706 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5707 BFD_ASSERT (sreloc != NULL);
5708 BFD_ASSERT (sreloc->contents != NULL);
5709 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5710 < sreloc->size);
5711
5712 outrel[0].r_offset =
5713 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5714 if (ABI_64_P (output_bfd))
5715 {
5716 outrel[1].r_offset =
5717 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5718 outrel[2].r_offset =
5719 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5720 }
5721
5722 if (outrel[0].r_offset == MINUS_ONE)
5723 /* The relocation field has been deleted. */
5724 return TRUE;
5725
5726 if (outrel[0].r_offset == MINUS_TWO)
5727 {
5728 /* The relocation field has been converted into a relative value of
5729 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5730 the field to be fully relocated, so add in the symbol's value. */
5731 *addendp += symbol;
5732 return TRUE;
5733 }
5734
5735 /* We must now calculate the dynamic symbol table index to use
5736 in the relocation. */
5737 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5738 {
5739 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5740 indx = h->root.dynindx;
5741 if (SGI_COMPAT (output_bfd))
5742 defined_p = h->root.def_regular;
5743 else
5744 /* ??? glibc's ld.so just adds the final GOT entry to the
5745 relocation field. It therefore treats relocs against
5746 defined symbols in the same way as relocs against
5747 undefined symbols. */
5748 defined_p = FALSE;
5749 }
5750 else
5751 {
5752 if (sec != NULL && bfd_is_abs_section (sec))
5753 indx = 0;
5754 else if (sec == NULL || sec->owner == NULL)
5755 {
5756 bfd_set_error (bfd_error_bad_value);
5757 return FALSE;
5758 }
5759 else
5760 {
5761 indx = elf_section_data (sec->output_section)->dynindx;
5762 if (indx == 0)
5763 {
5764 asection *osec = htab->root.text_index_section;
5765 indx = elf_section_data (osec)->dynindx;
5766 }
5767 if (indx == 0)
5768 abort ();
5769 }
5770
5771 /* Instead of generating a relocation using the section
5772 symbol, we may as well make it a fully relative
5773 relocation. We want to avoid generating relocations to
5774 local symbols because we used to generate them
5775 incorrectly, without adding the original symbol value,
5776 which is mandated by the ABI for section symbols. In
5777 order to give dynamic loaders and applications time to
5778 phase out the incorrect use, we refrain from emitting
5779 section-relative relocations. It's not like they're
5780 useful, after all. This should be a bit more efficient
5781 as well. */
5782 /* ??? Although this behavior is compatible with glibc's ld.so,
5783 the ABI says that relocations against STN_UNDEF should have
5784 a symbol value of 0. Irix rld honors this, so relocations
5785 against STN_UNDEF have no effect. */
5786 if (!SGI_COMPAT (output_bfd))
5787 indx = 0;
5788 defined_p = TRUE;
5789 }
5790
5791 /* If the relocation was previously an absolute relocation and
5792 this symbol will not be referred to by the relocation, we must
5793 adjust it by the value we give it in the dynamic symbol table.
5794 Otherwise leave the job up to the dynamic linker. */
5795 if (defined_p && r_type != R_MIPS_REL32)
5796 *addendp += symbol;
5797
5798 if (htab->is_vxworks)
5799 /* VxWorks uses non-relative relocations for this. */
5800 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5801 else
5802 /* The relocation is always an REL32 relocation because we don't
5803 know where the shared library will wind up at load-time. */
5804 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5805 R_MIPS_REL32);
5806
5807 /* For strict adherence to the ABI specification, we should
5808 generate a R_MIPS_64 relocation record by itself before the
5809 _REL32/_64 record as well, such that the addend is read in as
5810 a 64-bit value (REL32 is a 32-bit relocation, after all).
5811 However, since none of the existing ELF64 MIPS dynamic
5812 loaders seems to care, we don't waste space with these
5813 artificial relocations. If this turns out to not be true,
5814 mips_elf_allocate_dynamic_relocation() should be tweaked so
5815 as to make room for a pair of dynamic relocations per
5816 invocation if ABI_64_P, and here we should generate an
5817 additional relocation record with R_MIPS_64 by itself for a
5818 NULL symbol before this relocation record. */
5819 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5820 ABI_64_P (output_bfd)
5821 ? R_MIPS_64
5822 : R_MIPS_NONE);
5823 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5824
5825 /* Adjust the output offset of the relocation to reference the
5826 correct location in the output file. */
5827 outrel[0].r_offset += (input_section->output_section->vma
5828 + input_section->output_offset);
5829 outrel[1].r_offset += (input_section->output_section->vma
5830 + input_section->output_offset);
5831 outrel[2].r_offset += (input_section->output_section->vma
5832 + input_section->output_offset);
5833
5834 /* Put the relocation back out. We have to use the special
5835 relocation outputter in the 64-bit case since the 64-bit
5836 relocation format is non-standard. */
5837 if (ABI_64_P (output_bfd))
5838 {
5839 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5840 (output_bfd, &outrel[0],
5841 (sreloc->contents
5842 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5843 }
5844 else if (htab->is_vxworks)
5845 {
5846 /* VxWorks uses RELA rather than REL dynamic relocations. */
5847 outrel[0].r_addend = *addendp;
5848 bfd_elf32_swap_reloca_out
5849 (output_bfd, &outrel[0],
5850 (sreloc->contents
5851 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5852 }
5853 else
5854 bfd_elf32_swap_reloc_out
5855 (output_bfd, &outrel[0],
5856 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5857
5858 /* We've now added another relocation. */
5859 ++sreloc->reloc_count;
5860
5861 /* Make sure the output section is writable. The dynamic linker
5862 will be writing to it. */
5863 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5864 |= SHF_WRITE;
5865
5866 /* On IRIX5, make an entry of compact relocation info. */
5867 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5868 {
5869 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5870 bfd_byte *cr;
5871
5872 if (scpt)
5873 {
5874 Elf32_crinfo cptrel;
5875
5876 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5877 cptrel.vaddr = (rel->r_offset
5878 + input_section->output_section->vma
5879 + input_section->output_offset);
5880 if (r_type == R_MIPS_REL32)
5881 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5882 else
5883 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5884 mips_elf_set_cr_dist2to (cptrel, 0);
5885 cptrel.konst = *addendp;
5886
5887 cr = (scpt->contents
5888 + sizeof (Elf32_External_compact_rel));
5889 mips_elf_set_cr_relvaddr (cptrel, 0);
5890 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5891 ((Elf32_External_crinfo *) cr
5892 + scpt->reloc_count));
5893 ++scpt->reloc_count;
5894 }
5895 }
5896
5897 /* If we've written this relocation for a readonly section,
5898 we need to set DF_TEXTREL again, so that we do not delete the
5899 DT_TEXTREL tag. */
5900 if (MIPS_ELF_READONLY_SECTION (input_section))
5901 info->flags |= DF_TEXTREL;
5902
5903 return TRUE;
5904 }
5905 \f
5906 /* Return the MACH for a MIPS e_flags value. */
5907
5908 unsigned long
5909 _bfd_elf_mips_mach (flagword flags)
5910 {
5911 switch (flags & EF_MIPS_MACH)
5912 {
5913 case E_MIPS_MACH_3900:
5914 return bfd_mach_mips3900;
5915
5916 case E_MIPS_MACH_4010:
5917 return bfd_mach_mips4010;
5918
5919 case E_MIPS_MACH_4100:
5920 return bfd_mach_mips4100;
5921
5922 case E_MIPS_MACH_4111:
5923 return bfd_mach_mips4111;
5924
5925 case E_MIPS_MACH_4120:
5926 return bfd_mach_mips4120;
5927
5928 case E_MIPS_MACH_4650:
5929 return bfd_mach_mips4650;
5930
5931 case E_MIPS_MACH_5400:
5932 return bfd_mach_mips5400;
5933
5934 case E_MIPS_MACH_5500:
5935 return bfd_mach_mips5500;
5936
5937 case E_MIPS_MACH_9000:
5938 return bfd_mach_mips9000;
5939
5940 case E_MIPS_MACH_SB1:
5941 return bfd_mach_mips_sb1;
5942
5943 case E_MIPS_MACH_LS2E:
5944 return bfd_mach_mips_loongson_2e;
5945
5946 case E_MIPS_MACH_LS2F:
5947 return bfd_mach_mips_loongson_2f;
5948
5949 case E_MIPS_MACH_OCTEON:
5950 return bfd_mach_mips_octeon;
5951
5952 case E_MIPS_MACH_XLR:
5953 return bfd_mach_mips_xlr;
5954
5955 default:
5956 switch (flags & EF_MIPS_ARCH)
5957 {
5958 default:
5959 case E_MIPS_ARCH_1:
5960 return bfd_mach_mips3000;
5961
5962 case E_MIPS_ARCH_2:
5963 return bfd_mach_mips6000;
5964
5965 case E_MIPS_ARCH_3:
5966 return bfd_mach_mips4000;
5967
5968 case E_MIPS_ARCH_4:
5969 return bfd_mach_mips8000;
5970
5971 case E_MIPS_ARCH_5:
5972 return bfd_mach_mips5;
5973
5974 case E_MIPS_ARCH_32:
5975 return bfd_mach_mipsisa32;
5976
5977 case E_MIPS_ARCH_64:
5978 return bfd_mach_mipsisa64;
5979
5980 case E_MIPS_ARCH_32R2:
5981 return bfd_mach_mipsisa32r2;
5982
5983 case E_MIPS_ARCH_64R2:
5984 return bfd_mach_mipsisa64r2;
5985 }
5986 }
5987
5988 return 0;
5989 }
5990
5991 /* Return printable name for ABI. */
5992
5993 static INLINE char *
5994 elf_mips_abi_name (bfd *abfd)
5995 {
5996 flagword flags;
5997
5998 flags = elf_elfheader (abfd)->e_flags;
5999 switch (flags & EF_MIPS_ABI)
6000 {
6001 case 0:
6002 if (ABI_N32_P (abfd))
6003 return "N32";
6004 else if (ABI_64_P (abfd))
6005 return "64";
6006 else
6007 return "none";
6008 case E_MIPS_ABI_O32:
6009 return "O32";
6010 case E_MIPS_ABI_O64:
6011 return "O64";
6012 case E_MIPS_ABI_EABI32:
6013 return "EABI32";
6014 case E_MIPS_ABI_EABI64:
6015 return "EABI64";
6016 default:
6017 return "unknown abi";
6018 }
6019 }
6020 \f
6021 /* MIPS ELF uses two common sections. One is the usual one, and the
6022 other is for small objects. All the small objects are kept
6023 together, and then referenced via the gp pointer, which yields
6024 faster assembler code. This is what we use for the small common
6025 section. This approach is copied from ecoff.c. */
6026 static asection mips_elf_scom_section;
6027 static asymbol mips_elf_scom_symbol;
6028 static asymbol *mips_elf_scom_symbol_ptr;
6029
6030 /* MIPS ELF also uses an acommon section, which represents an
6031 allocated common symbol which may be overridden by a
6032 definition in a shared library. */
6033 static asection mips_elf_acom_section;
6034 static asymbol mips_elf_acom_symbol;
6035 static asymbol *mips_elf_acom_symbol_ptr;
6036
6037 /* This is used for both the 32-bit and the 64-bit ABI. */
6038
6039 void
6040 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6041 {
6042 elf_symbol_type *elfsym;
6043
6044 /* Handle the special MIPS section numbers that a symbol may use. */
6045 elfsym = (elf_symbol_type *) asym;
6046 switch (elfsym->internal_elf_sym.st_shndx)
6047 {
6048 case SHN_MIPS_ACOMMON:
6049 /* This section is used in a dynamically linked executable file.
6050 It is an allocated common section. The dynamic linker can
6051 either resolve these symbols to something in a shared
6052 library, or it can just leave them here. For our purposes,
6053 we can consider these symbols to be in a new section. */
6054 if (mips_elf_acom_section.name == NULL)
6055 {
6056 /* Initialize the acommon section. */
6057 mips_elf_acom_section.name = ".acommon";
6058 mips_elf_acom_section.flags = SEC_ALLOC;
6059 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6060 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6061 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6062 mips_elf_acom_symbol.name = ".acommon";
6063 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6064 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6065 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6066 }
6067 asym->section = &mips_elf_acom_section;
6068 break;
6069
6070 case SHN_COMMON:
6071 /* Common symbols less than the GP size are automatically
6072 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6073 if (asym->value > elf_gp_size (abfd)
6074 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6075 || IRIX_COMPAT (abfd) == ict_irix6)
6076 break;
6077 /* Fall through. */
6078 case SHN_MIPS_SCOMMON:
6079 if (mips_elf_scom_section.name == NULL)
6080 {
6081 /* Initialize the small common section. */
6082 mips_elf_scom_section.name = ".scommon";
6083 mips_elf_scom_section.flags = SEC_IS_COMMON;
6084 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6085 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6086 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6087 mips_elf_scom_symbol.name = ".scommon";
6088 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6089 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6090 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6091 }
6092 asym->section = &mips_elf_scom_section;
6093 asym->value = elfsym->internal_elf_sym.st_size;
6094 break;
6095
6096 case SHN_MIPS_SUNDEFINED:
6097 asym->section = bfd_und_section_ptr;
6098 break;
6099
6100 case SHN_MIPS_TEXT:
6101 {
6102 asection *section = bfd_get_section_by_name (abfd, ".text");
6103
6104 BFD_ASSERT (SGI_COMPAT (abfd));
6105 if (section != NULL)
6106 {
6107 asym->section = section;
6108 /* MIPS_TEXT is a bit special, the address is not an offset
6109 to the base of the .text section. So substract the section
6110 base address to make it an offset. */
6111 asym->value -= section->vma;
6112 }
6113 }
6114 break;
6115
6116 case SHN_MIPS_DATA:
6117 {
6118 asection *section = bfd_get_section_by_name (abfd, ".data");
6119
6120 BFD_ASSERT (SGI_COMPAT (abfd));
6121 if (section != NULL)
6122 {
6123 asym->section = section;
6124 /* MIPS_DATA is a bit special, the address is not an offset
6125 to the base of the .data section. So substract the section
6126 base address to make it an offset. */
6127 asym->value -= section->vma;
6128 }
6129 }
6130 break;
6131 }
6132
6133 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6134 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6135 && (asym->value & 1) != 0)
6136 {
6137 asym->value--;
6138 elfsym->internal_elf_sym.st_other
6139 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6140 }
6141 }
6142 \f
6143 /* Implement elf_backend_eh_frame_address_size. This differs from
6144 the default in the way it handles EABI64.
6145
6146 EABI64 was originally specified as an LP64 ABI, and that is what
6147 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6148 historically accepted the combination of -mabi=eabi and -mlong32,
6149 and this ILP32 variation has become semi-official over time.
6150 Both forms use elf32 and have pointer-sized FDE addresses.
6151
6152 If an EABI object was generated by GCC 4.0 or above, it will have
6153 an empty .gcc_compiled_longXX section, where XX is the size of longs
6154 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6155 have no special marking to distinguish them from LP64 objects.
6156
6157 We don't want users of the official LP64 ABI to be punished for the
6158 existence of the ILP32 variant, but at the same time, we don't want
6159 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6160 We therefore take the following approach:
6161
6162 - If ABFD contains a .gcc_compiled_longXX section, use it to
6163 determine the pointer size.
6164
6165 - Otherwise check the type of the first relocation. Assume that
6166 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6167
6168 - Otherwise punt.
6169
6170 The second check is enough to detect LP64 objects generated by pre-4.0
6171 compilers because, in the kind of output generated by those compilers,
6172 the first relocation will be associated with either a CIE personality
6173 routine or an FDE start address. Furthermore, the compilers never
6174 used a special (non-pointer) encoding for this ABI.
6175
6176 Checking the relocation type should also be safe because there is no
6177 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6178 did so. */
6179
6180 unsigned int
6181 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6182 {
6183 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6184 return 8;
6185 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6186 {
6187 bfd_boolean long32_p, long64_p;
6188
6189 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6190 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6191 if (long32_p && long64_p)
6192 return 0;
6193 if (long32_p)
6194 return 4;
6195 if (long64_p)
6196 return 8;
6197
6198 if (sec->reloc_count > 0
6199 && elf_section_data (sec)->relocs != NULL
6200 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6201 == R_MIPS_64))
6202 return 8;
6203
6204 return 0;
6205 }
6206 return 4;
6207 }
6208 \f
6209 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6210 relocations against two unnamed section symbols to resolve to the
6211 same address. For example, if we have code like:
6212
6213 lw $4,%got_disp(.data)($gp)
6214 lw $25,%got_disp(.text)($gp)
6215 jalr $25
6216
6217 then the linker will resolve both relocations to .data and the program
6218 will jump there rather than to .text.
6219
6220 We can work around this problem by giving names to local section symbols.
6221 This is also what the MIPSpro tools do. */
6222
6223 bfd_boolean
6224 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6225 {
6226 return SGI_COMPAT (abfd);
6227 }
6228 \f
6229 /* Work over a section just before writing it out. This routine is
6230 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6231 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6232 a better way. */
6233
6234 bfd_boolean
6235 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6236 {
6237 if (hdr->sh_type == SHT_MIPS_REGINFO
6238 && hdr->sh_size > 0)
6239 {
6240 bfd_byte buf[4];
6241
6242 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6243 BFD_ASSERT (hdr->contents == NULL);
6244
6245 if (bfd_seek (abfd,
6246 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6247 SEEK_SET) != 0)
6248 return FALSE;
6249 H_PUT_32 (abfd, elf_gp (abfd), buf);
6250 if (bfd_bwrite (buf, 4, abfd) != 4)
6251 return FALSE;
6252 }
6253
6254 if (hdr->sh_type == SHT_MIPS_OPTIONS
6255 && hdr->bfd_section != NULL
6256 && mips_elf_section_data (hdr->bfd_section) != NULL
6257 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6258 {
6259 bfd_byte *contents, *l, *lend;
6260
6261 /* We stored the section contents in the tdata field in the
6262 set_section_contents routine. We save the section contents
6263 so that we don't have to read them again.
6264 At this point we know that elf_gp is set, so we can look
6265 through the section contents to see if there is an
6266 ODK_REGINFO structure. */
6267
6268 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6269 l = contents;
6270 lend = contents + hdr->sh_size;
6271 while (l + sizeof (Elf_External_Options) <= lend)
6272 {
6273 Elf_Internal_Options intopt;
6274
6275 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6276 &intopt);
6277 if (intopt.size < sizeof (Elf_External_Options))
6278 {
6279 (*_bfd_error_handler)
6280 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6281 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6282 break;
6283 }
6284 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6285 {
6286 bfd_byte buf[8];
6287
6288 if (bfd_seek (abfd,
6289 (hdr->sh_offset
6290 + (l - contents)
6291 + sizeof (Elf_External_Options)
6292 + (sizeof (Elf64_External_RegInfo) - 8)),
6293 SEEK_SET) != 0)
6294 return FALSE;
6295 H_PUT_64 (abfd, elf_gp (abfd), buf);
6296 if (bfd_bwrite (buf, 8, abfd) != 8)
6297 return FALSE;
6298 }
6299 else if (intopt.kind == ODK_REGINFO)
6300 {
6301 bfd_byte buf[4];
6302
6303 if (bfd_seek (abfd,
6304 (hdr->sh_offset
6305 + (l - contents)
6306 + sizeof (Elf_External_Options)
6307 + (sizeof (Elf32_External_RegInfo) - 4)),
6308 SEEK_SET) != 0)
6309 return FALSE;
6310 H_PUT_32 (abfd, elf_gp (abfd), buf);
6311 if (bfd_bwrite (buf, 4, abfd) != 4)
6312 return FALSE;
6313 }
6314 l += intopt.size;
6315 }
6316 }
6317
6318 if (hdr->bfd_section != NULL)
6319 {
6320 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6321
6322 /* .sbss is not handled specially here because the GNU/Linux
6323 prelinker can convert .sbss from NOBITS to PROGBITS and
6324 changing it back to NOBITS breaks the binary. The entry in
6325 _bfd_mips_elf_special_sections will ensure the correct flags
6326 are set on .sbss if BFD creates it without reading it from an
6327 input file, and without special handling here the flags set
6328 on it in an input file will be followed. */
6329 if (strcmp (name, ".sdata") == 0
6330 || strcmp (name, ".lit8") == 0
6331 || strcmp (name, ".lit4") == 0)
6332 {
6333 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6334 hdr->sh_type = SHT_PROGBITS;
6335 }
6336 else if (strcmp (name, ".srdata") == 0)
6337 {
6338 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6339 hdr->sh_type = SHT_PROGBITS;
6340 }
6341 else if (strcmp (name, ".compact_rel") == 0)
6342 {
6343 hdr->sh_flags = 0;
6344 hdr->sh_type = SHT_PROGBITS;
6345 }
6346 else if (strcmp (name, ".rtproc") == 0)
6347 {
6348 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6349 {
6350 unsigned int adjust;
6351
6352 adjust = hdr->sh_size % hdr->sh_addralign;
6353 if (adjust != 0)
6354 hdr->sh_size += hdr->sh_addralign - adjust;
6355 }
6356 }
6357 }
6358
6359 return TRUE;
6360 }
6361
6362 /* Handle a MIPS specific section when reading an object file. This
6363 is called when elfcode.h finds a section with an unknown type.
6364 This routine supports both the 32-bit and 64-bit ELF ABI.
6365
6366 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6367 how to. */
6368
6369 bfd_boolean
6370 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6371 Elf_Internal_Shdr *hdr,
6372 const char *name,
6373 int shindex)
6374 {
6375 flagword flags = 0;
6376
6377 /* There ought to be a place to keep ELF backend specific flags, but
6378 at the moment there isn't one. We just keep track of the
6379 sections by their name, instead. Fortunately, the ABI gives
6380 suggested names for all the MIPS specific sections, so we will
6381 probably get away with this. */
6382 switch (hdr->sh_type)
6383 {
6384 case SHT_MIPS_LIBLIST:
6385 if (strcmp (name, ".liblist") != 0)
6386 return FALSE;
6387 break;
6388 case SHT_MIPS_MSYM:
6389 if (strcmp (name, ".msym") != 0)
6390 return FALSE;
6391 break;
6392 case SHT_MIPS_CONFLICT:
6393 if (strcmp (name, ".conflict") != 0)
6394 return FALSE;
6395 break;
6396 case SHT_MIPS_GPTAB:
6397 if (! CONST_STRNEQ (name, ".gptab."))
6398 return FALSE;
6399 break;
6400 case SHT_MIPS_UCODE:
6401 if (strcmp (name, ".ucode") != 0)
6402 return FALSE;
6403 break;
6404 case SHT_MIPS_DEBUG:
6405 if (strcmp (name, ".mdebug") != 0)
6406 return FALSE;
6407 flags = SEC_DEBUGGING;
6408 break;
6409 case SHT_MIPS_REGINFO:
6410 if (strcmp (name, ".reginfo") != 0
6411 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6412 return FALSE;
6413 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6414 break;
6415 case SHT_MIPS_IFACE:
6416 if (strcmp (name, ".MIPS.interfaces") != 0)
6417 return FALSE;
6418 break;
6419 case SHT_MIPS_CONTENT:
6420 if (! CONST_STRNEQ (name, ".MIPS.content"))
6421 return FALSE;
6422 break;
6423 case SHT_MIPS_OPTIONS:
6424 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6425 return FALSE;
6426 break;
6427 case SHT_MIPS_DWARF:
6428 if (! CONST_STRNEQ (name, ".debug_")
6429 && ! CONST_STRNEQ (name, ".zdebug_"))
6430 return FALSE;
6431 break;
6432 case SHT_MIPS_SYMBOL_LIB:
6433 if (strcmp (name, ".MIPS.symlib") != 0)
6434 return FALSE;
6435 break;
6436 case SHT_MIPS_EVENTS:
6437 if (! CONST_STRNEQ (name, ".MIPS.events")
6438 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6439 return FALSE;
6440 break;
6441 default:
6442 break;
6443 }
6444
6445 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6446 return FALSE;
6447
6448 if (flags)
6449 {
6450 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6451 (bfd_get_section_flags (abfd,
6452 hdr->bfd_section)
6453 | flags)))
6454 return FALSE;
6455 }
6456
6457 /* FIXME: We should record sh_info for a .gptab section. */
6458
6459 /* For a .reginfo section, set the gp value in the tdata information
6460 from the contents of this section. We need the gp value while
6461 processing relocs, so we just get it now. The .reginfo section
6462 is not used in the 64-bit MIPS ELF ABI. */
6463 if (hdr->sh_type == SHT_MIPS_REGINFO)
6464 {
6465 Elf32_External_RegInfo ext;
6466 Elf32_RegInfo s;
6467
6468 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6469 &ext, 0, sizeof ext))
6470 return FALSE;
6471 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6472 elf_gp (abfd) = s.ri_gp_value;
6473 }
6474
6475 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6476 set the gp value based on what we find. We may see both
6477 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6478 they should agree. */
6479 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6480 {
6481 bfd_byte *contents, *l, *lend;
6482
6483 contents = bfd_malloc (hdr->sh_size);
6484 if (contents == NULL)
6485 return FALSE;
6486 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6487 0, hdr->sh_size))
6488 {
6489 free (contents);
6490 return FALSE;
6491 }
6492 l = contents;
6493 lend = contents + hdr->sh_size;
6494 while (l + sizeof (Elf_External_Options) <= lend)
6495 {
6496 Elf_Internal_Options intopt;
6497
6498 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6499 &intopt);
6500 if (intopt.size < sizeof (Elf_External_Options))
6501 {
6502 (*_bfd_error_handler)
6503 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6504 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6505 break;
6506 }
6507 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6508 {
6509 Elf64_Internal_RegInfo intreg;
6510
6511 bfd_mips_elf64_swap_reginfo_in
6512 (abfd,
6513 ((Elf64_External_RegInfo *)
6514 (l + sizeof (Elf_External_Options))),
6515 &intreg);
6516 elf_gp (abfd) = intreg.ri_gp_value;
6517 }
6518 else if (intopt.kind == ODK_REGINFO)
6519 {
6520 Elf32_RegInfo intreg;
6521
6522 bfd_mips_elf32_swap_reginfo_in
6523 (abfd,
6524 ((Elf32_External_RegInfo *)
6525 (l + sizeof (Elf_External_Options))),
6526 &intreg);
6527 elf_gp (abfd) = intreg.ri_gp_value;
6528 }
6529 l += intopt.size;
6530 }
6531 free (contents);
6532 }
6533
6534 return TRUE;
6535 }
6536
6537 /* Set the correct type for a MIPS ELF section. We do this by the
6538 section name, which is a hack, but ought to work. This routine is
6539 used by both the 32-bit and the 64-bit ABI. */
6540
6541 bfd_boolean
6542 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6543 {
6544 const char *name = bfd_get_section_name (abfd, sec);
6545
6546 if (strcmp (name, ".liblist") == 0)
6547 {
6548 hdr->sh_type = SHT_MIPS_LIBLIST;
6549 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6550 /* The sh_link field is set in final_write_processing. */
6551 }
6552 else if (strcmp (name, ".conflict") == 0)
6553 hdr->sh_type = SHT_MIPS_CONFLICT;
6554 else if (CONST_STRNEQ (name, ".gptab."))
6555 {
6556 hdr->sh_type = SHT_MIPS_GPTAB;
6557 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6558 /* The sh_info field is set in final_write_processing. */
6559 }
6560 else if (strcmp (name, ".ucode") == 0)
6561 hdr->sh_type = SHT_MIPS_UCODE;
6562 else if (strcmp (name, ".mdebug") == 0)
6563 {
6564 hdr->sh_type = SHT_MIPS_DEBUG;
6565 /* In a shared object on IRIX 5.3, the .mdebug section has an
6566 entsize of 0. FIXME: Does this matter? */
6567 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6568 hdr->sh_entsize = 0;
6569 else
6570 hdr->sh_entsize = 1;
6571 }
6572 else if (strcmp (name, ".reginfo") == 0)
6573 {
6574 hdr->sh_type = SHT_MIPS_REGINFO;
6575 /* In a shared object on IRIX 5.3, the .reginfo section has an
6576 entsize of 0x18. FIXME: Does this matter? */
6577 if (SGI_COMPAT (abfd))
6578 {
6579 if ((abfd->flags & DYNAMIC) != 0)
6580 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6581 else
6582 hdr->sh_entsize = 1;
6583 }
6584 else
6585 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6586 }
6587 else if (SGI_COMPAT (abfd)
6588 && (strcmp (name, ".hash") == 0
6589 || strcmp (name, ".dynamic") == 0
6590 || strcmp (name, ".dynstr") == 0))
6591 {
6592 if (SGI_COMPAT (abfd))
6593 hdr->sh_entsize = 0;
6594 #if 0
6595 /* This isn't how the IRIX6 linker behaves. */
6596 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6597 #endif
6598 }
6599 else if (strcmp (name, ".got") == 0
6600 || strcmp (name, ".srdata") == 0
6601 || strcmp (name, ".sdata") == 0
6602 || strcmp (name, ".sbss") == 0
6603 || strcmp (name, ".lit4") == 0
6604 || strcmp (name, ".lit8") == 0)
6605 hdr->sh_flags |= SHF_MIPS_GPREL;
6606 else if (strcmp (name, ".MIPS.interfaces") == 0)
6607 {
6608 hdr->sh_type = SHT_MIPS_IFACE;
6609 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6610 }
6611 else if (CONST_STRNEQ (name, ".MIPS.content"))
6612 {
6613 hdr->sh_type = SHT_MIPS_CONTENT;
6614 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6615 /* The sh_info field is set in final_write_processing. */
6616 }
6617 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6618 {
6619 hdr->sh_type = SHT_MIPS_OPTIONS;
6620 hdr->sh_entsize = 1;
6621 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6622 }
6623 else if (CONST_STRNEQ (name, ".debug_")
6624 || CONST_STRNEQ (name, ".zdebug_"))
6625 {
6626 hdr->sh_type = SHT_MIPS_DWARF;
6627
6628 /* Irix facilities such as libexc expect a single .debug_frame
6629 per executable, the system ones have NOSTRIP set and the linker
6630 doesn't merge sections with different flags so ... */
6631 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6632 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6633 }
6634 else if (strcmp (name, ".MIPS.symlib") == 0)
6635 {
6636 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6637 /* The sh_link and sh_info fields are set in
6638 final_write_processing. */
6639 }
6640 else if (CONST_STRNEQ (name, ".MIPS.events")
6641 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6642 {
6643 hdr->sh_type = SHT_MIPS_EVENTS;
6644 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6645 /* The sh_link field is set in final_write_processing. */
6646 }
6647 else if (strcmp (name, ".msym") == 0)
6648 {
6649 hdr->sh_type = SHT_MIPS_MSYM;
6650 hdr->sh_flags |= SHF_ALLOC;
6651 hdr->sh_entsize = 8;
6652 }
6653
6654 /* The generic elf_fake_sections will set up REL_HDR using the default
6655 kind of relocations. We used to set up a second header for the
6656 non-default kind of relocations here, but only NewABI would use
6657 these, and the IRIX ld doesn't like resulting empty RELA sections.
6658 Thus we create those header only on demand now. */
6659
6660 return TRUE;
6661 }
6662
6663 /* Given a BFD section, try to locate the corresponding ELF section
6664 index. This is used by both the 32-bit and the 64-bit ABI.
6665 Actually, it's not clear to me that the 64-bit ABI supports these,
6666 but for non-PIC objects we will certainly want support for at least
6667 the .scommon section. */
6668
6669 bfd_boolean
6670 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6671 asection *sec, int *retval)
6672 {
6673 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6674 {
6675 *retval = SHN_MIPS_SCOMMON;
6676 return TRUE;
6677 }
6678 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6679 {
6680 *retval = SHN_MIPS_ACOMMON;
6681 return TRUE;
6682 }
6683 return FALSE;
6684 }
6685 \f
6686 /* Hook called by the linker routine which adds symbols from an object
6687 file. We must handle the special MIPS section numbers here. */
6688
6689 bfd_boolean
6690 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6691 Elf_Internal_Sym *sym, const char **namep,
6692 flagword *flagsp ATTRIBUTE_UNUSED,
6693 asection **secp, bfd_vma *valp)
6694 {
6695 if (SGI_COMPAT (abfd)
6696 && (abfd->flags & DYNAMIC) != 0
6697 && strcmp (*namep, "_rld_new_interface") == 0)
6698 {
6699 /* Skip IRIX5 rld entry name. */
6700 *namep = NULL;
6701 return TRUE;
6702 }
6703
6704 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6705 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6706 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6707 a magic symbol resolved by the linker, we ignore this bogus definition
6708 of _gp_disp. New ABI objects do not suffer from this problem so this
6709 is not done for them. */
6710 if (!NEWABI_P(abfd)
6711 && (sym->st_shndx == SHN_ABS)
6712 && (strcmp (*namep, "_gp_disp") == 0))
6713 {
6714 *namep = NULL;
6715 return TRUE;
6716 }
6717
6718 switch (sym->st_shndx)
6719 {
6720 case SHN_COMMON:
6721 /* Common symbols less than the GP size are automatically
6722 treated as SHN_MIPS_SCOMMON symbols. */
6723 if (sym->st_size > elf_gp_size (abfd)
6724 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6725 || IRIX_COMPAT (abfd) == ict_irix6)
6726 break;
6727 /* Fall through. */
6728 case SHN_MIPS_SCOMMON:
6729 *secp = bfd_make_section_old_way (abfd, ".scommon");
6730 (*secp)->flags |= SEC_IS_COMMON;
6731 *valp = sym->st_size;
6732 break;
6733
6734 case SHN_MIPS_TEXT:
6735 /* This section is used in a shared object. */
6736 if (elf_tdata (abfd)->elf_text_section == NULL)
6737 {
6738 asymbol *elf_text_symbol;
6739 asection *elf_text_section;
6740 bfd_size_type amt = sizeof (asection);
6741
6742 elf_text_section = bfd_zalloc (abfd, amt);
6743 if (elf_text_section == NULL)
6744 return FALSE;
6745
6746 amt = sizeof (asymbol);
6747 elf_text_symbol = bfd_zalloc (abfd, amt);
6748 if (elf_text_symbol == NULL)
6749 return FALSE;
6750
6751 /* Initialize the section. */
6752
6753 elf_tdata (abfd)->elf_text_section = elf_text_section;
6754 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6755
6756 elf_text_section->symbol = elf_text_symbol;
6757 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6758
6759 elf_text_section->name = ".text";
6760 elf_text_section->flags = SEC_NO_FLAGS;
6761 elf_text_section->output_section = NULL;
6762 elf_text_section->owner = abfd;
6763 elf_text_symbol->name = ".text";
6764 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6765 elf_text_symbol->section = elf_text_section;
6766 }
6767 /* This code used to do *secp = bfd_und_section_ptr if
6768 info->shared. I don't know why, and that doesn't make sense,
6769 so I took it out. */
6770 *secp = elf_tdata (abfd)->elf_text_section;
6771 break;
6772
6773 case SHN_MIPS_ACOMMON:
6774 /* Fall through. XXX Can we treat this as allocated data? */
6775 case SHN_MIPS_DATA:
6776 /* This section is used in a shared object. */
6777 if (elf_tdata (abfd)->elf_data_section == NULL)
6778 {
6779 asymbol *elf_data_symbol;
6780 asection *elf_data_section;
6781 bfd_size_type amt = sizeof (asection);
6782
6783 elf_data_section = bfd_zalloc (abfd, amt);
6784 if (elf_data_section == NULL)
6785 return FALSE;
6786
6787 amt = sizeof (asymbol);
6788 elf_data_symbol = bfd_zalloc (abfd, amt);
6789 if (elf_data_symbol == NULL)
6790 return FALSE;
6791
6792 /* Initialize the section. */
6793
6794 elf_tdata (abfd)->elf_data_section = elf_data_section;
6795 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6796
6797 elf_data_section->symbol = elf_data_symbol;
6798 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6799
6800 elf_data_section->name = ".data";
6801 elf_data_section->flags = SEC_NO_FLAGS;
6802 elf_data_section->output_section = NULL;
6803 elf_data_section->owner = abfd;
6804 elf_data_symbol->name = ".data";
6805 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6806 elf_data_symbol->section = elf_data_section;
6807 }
6808 /* This code used to do *secp = bfd_und_section_ptr if
6809 info->shared. I don't know why, and that doesn't make sense,
6810 so I took it out. */
6811 *secp = elf_tdata (abfd)->elf_data_section;
6812 break;
6813
6814 case SHN_MIPS_SUNDEFINED:
6815 *secp = bfd_und_section_ptr;
6816 break;
6817 }
6818
6819 if (SGI_COMPAT (abfd)
6820 && ! info->shared
6821 && info->output_bfd->xvec == abfd->xvec
6822 && strcmp (*namep, "__rld_obj_head") == 0)
6823 {
6824 struct elf_link_hash_entry *h;
6825 struct bfd_link_hash_entry *bh;
6826
6827 /* Mark __rld_obj_head as dynamic. */
6828 bh = NULL;
6829 if (! (_bfd_generic_link_add_one_symbol
6830 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6831 get_elf_backend_data (abfd)->collect, &bh)))
6832 return FALSE;
6833
6834 h = (struct elf_link_hash_entry *) bh;
6835 h->non_elf = 0;
6836 h->def_regular = 1;
6837 h->type = STT_OBJECT;
6838
6839 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6840 return FALSE;
6841
6842 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6843 }
6844
6845 /* If this is a mips16 text symbol, add 1 to the value to make it
6846 odd. This will cause something like .word SYM to come up with
6847 the right value when it is loaded into the PC. */
6848 if (ELF_ST_IS_MIPS16 (sym->st_other))
6849 ++*valp;
6850
6851 return TRUE;
6852 }
6853
6854 /* This hook function is called before the linker writes out a global
6855 symbol. We mark symbols as small common if appropriate. This is
6856 also where we undo the increment of the value for a mips16 symbol. */
6857
6858 int
6859 _bfd_mips_elf_link_output_symbol_hook
6860 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6861 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6862 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6863 {
6864 /* If we see a common symbol, which implies a relocatable link, then
6865 if a symbol was small common in an input file, mark it as small
6866 common in the output file. */
6867 if (sym->st_shndx == SHN_COMMON
6868 && strcmp (input_sec->name, ".scommon") == 0)
6869 sym->st_shndx = SHN_MIPS_SCOMMON;
6870
6871 if (ELF_ST_IS_MIPS16 (sym->st_other))
6872 sym->st_value &= ~1;
6873
6874 return 1;
6875 }
6876 \f
6877 /* Functions for the dynamic linker. */
6878
6879 /* Create dynamic sections when linking against a dynamic object. */
6880
6881 bfd_boolean
6882 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6883 {
6884 struct elf_link_hash_entry *h;
6885 struct bfd_link_hash_entry *bh;
6886 flagword flags;
6887 register asection *s;
6888 const char * const *namep;
6889 struct mips_elf_link_hash_table *htab;
6890
6891 htab = mips_elf_hash_table (info);
6892 BFD_ASSERT (htab != NULL);
6893
6894 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6895 | SEC_LINKER_CREATED | SEC_READONLY);
6896
6897 /* The psABI requires a read-only .dynamic section, but the VxWorks
6898 EABI doesn't. */
6899 if (!htab->is_vxworks)
6900 {
6901 s = bfd_get_section_by_name (abfd, ".dynamic");
6902 if (s != NULL)
6903 {
6904 if (! bfd_set_section_flags (abfd, s, flags))
6905 return FALSE;
6906 }
6907 }
6908
6909 /* We need to create .got section. */
6910 if (!mips_elf_create_got_section (abfd, info))
6911 return FALSE;
6912
6913 if (! mips_elf_rel_dyn_section (info, TRUE))
6914 return FALSE;
6915
6916 /* Create .stub section. */
6917 s = bfd_make_section_with_flags (abfd,
6918 MIPS_ELF_STUB_SECTION_NAME (abfd),
6919 flags | SEC_CODE);
6920 if (s == NULL
6921 || ! bfd_set_section_alignment (abfd, s,
6922 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6923 return FALSE;
6924 htab->sstubs = s;
6925
6926 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6927 && !info->shared
6928 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6929 {
6930 s = bfd_make_section_with_flags (abfd, ".rld_map",
6931 flags &~ (flagword) SEC_READONLY);
6932 if (s == NULL
6933 || ! bfd_set_section_alignment (abfd, s,
6934 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6935 return FALSE;
6936 }
6937
6938 /* On IRIX5, we adjust add some additional symbols and change the
6939 alignments of several sections. There is no ABI documentation
6940 indicating that this is necessary on IRIX6, nor any evidence that
6941 the linker takes such action. */
6942 if (IRIX_COMPAT (abfd) == ict_irix5)
6943 {
6944 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6945 {
6946 bh = NULL;
6947 if (! (_bfd_generic_link_add_one_symbol
6948 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6949 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6950 return FALSE;
6951
6952 h = (struct elf_link_hash_entry *) bh;
6953 h->non_elf = 0;
6954 h->def_regular = 1;
6955 h->type = STT_SECTION;
6956
6957 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6958 return FALSE;
6959 }
6960
6961 /* We need to create a .compact_rel section. */
6962 if (SGI_COMPAT (abfd))
6963 {
6964 if (!mips_elf_create_compact_rel_section (abfd, info))
6965 return FALSE;
6966 }
6967
6968 /* Change alignments of some sections. */
6969 s = bfd_get_section_by_name (abfd, ".hash");
6970 if (s != NULL)
6971 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6972 s = bfd_get_section_by_name (abfd, ".dynsym");
6973 if (s != NULL)
6974 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6975 s = bfd_get_section_by_name (abfd, ".dynstr");
6976 if (s != NULL)
6977 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6978 s = bfd_get_section_by_name (abfd, ".reginfo");
6979 if (s != NULL)
6980 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6981 s = bfd_get_section_by_name (abfd, ".dynamic");
6982 if (s != NULL)
6983 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6984 }
6985
6986 if (!info->shared)
6987 {
6988 const char *name;
6989
6990 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6991 bh = NULL;
6992 if (!(_bfd_generic_link_add_one_symbol
6993 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6994 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6995 return FALSE;
6996
6997 h = (struct elf_link_hash_entry *) bh;
6998 h->non_elf = 0;
6999 h->def_regular = 1;
7000 h->type = STT_SECTION;
7001
7002 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7003 return FALSE;
7004
7005 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7006 {
7007 /* __rld_map is a four byte word located in the .data section
7008 and is filled in by the rtld to contain a pointer to
7009 the _r_debug structure. Its symbol value will be set in
7010 _bfd_mips_elf_finish_dynamic_symbol. */
7011 s = bfd_get_section_by_name (abfd, ".rld_map");
7012 BFD_ASSERT (s != NULL);
7013
7014 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7015 bh = NULL;
7016 if (!(_bfd_generic_link_add_one_symbol
7017 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7018 get_elf_backend_data (abfd)->collect, &bh)))
7019 return FALSE;
7020
7021 h = (struct elf_link_hash_entry *) bh;
7022 h->non_elf = 0;
7023 h->def_regular = 1;
7024 h->type = STT_OBJECT;
7025
7026 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7027 return FALSE;
7028 }
7029 }
7030
7031 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7032 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7033 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7034 return FALSE;
7035
7036 /* Cache the sections created above. */
7037 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7038 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7039 if (htab->is_vxworks)
7040 {
7041 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7042 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7043 }
7044 else
7045 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7046 if (!htab->sdynbss
7047 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7048 || !htab->srelplt
7049 || !htab->splt)
7050 abort ();
7051
7052 if (htab->is_vxworks)
7053 {
7054 /* Do the usual VxWorks handling. */
7055 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7056 return FALSE;
7057
7058 /* Work out the PLT sizes. */
7059 if (info->shared)
7060 {
7061 htab->plt_header_size
7062 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7063 htab->plt_entry_size
7064 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7065 }
7066 else
7067 {
7068 htab->plt_header_size
7069 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7070 htab->plt_entry_size
7071 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7072 }
7073 }
7074 else if (!info->shared)
7075 {
7076 /* All variants of the plt0 entry are the same size. */
7077 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7078 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7079 }
7080
7081 return TRUE;
7082 }
7083 \f
7084 /* Return true if relocation REL against section SEC is a REL rather than
7085 RELA relocation. RELOCS is the first relocation in the section and
7086 ABFD is the bfd that contains SEC. */
7087
7088 static bfd_boolean
7089 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7090 const Elf_Internal_Rela *relocs,
7091 const Elf_Internal_Rela *rel)
7092 {
7093 Elf_Internal_Shdr *rel_hdr;
7094 const struct elf_backend_data *bed;
7095
7096 /* To determine which flavor of relocation this is, we depend on the
7097 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7098 rel_hdr = elf_section_data (sec)->rel.hdr;
7099 if (rel_hdr == NULL)
7100 return FALSE;
7101 bed = get_elf_backend_data (abfd);
7102 return ((size_t) (rel - relocs)
7103 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7104 }
7105
7106 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7107 HOWTO is the relocation's howto and CONTENTS points to the contents
7108 of the section that REL is against. */
7109
7110 static bfd_vma
7111 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7112 reloc_howto_type *howto, bfd_byte *contents)
7113 {
7114 bfd_byte *location;
7115 unsigned int r_type;
7116 bfd_vma addend;
7117
7118 r_type = ELF_R_TYPE (abfd, rel->r_info);
7119 location = contents + rel->r_offset;
7120
7121 /* Get the addend, which is stored in the input file. */
7122 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7123 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7124 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7125
7126 return addend & howto->src_mask;
7127 }
7128
7129 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7130 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7131 and update *ADDEND with the final addend. Return true on success
7132 or false if the LO16 could not be found. RELEND is the exclusive
7133 upper bound on the relocations for REL's section. */
7134
7135 static bfd_boolean
7136 mips_elf_add_lo16_rel_addend (bfd *abfd,
7137 const Elf_Internal_Rela *rel,
7138 const Elf_Internal_Rela *relend,
7139 bfd_byte *contents, bfd_vma *addend)
7140 {
7141 unsigned int r_type, lo16_type;
7142 const Elf_Internal_Rela *lo16_relocation;
7143 reloc_howto_type *lo16_howto;
7144 bfd_vma l;
7145
7146 r_type = ELF_R_TYPE (abfd, rel->r_info);
7147 if (mips16_reloc_p (r_type))
7148 lo16_type = R_MIPS16_LO16;
7149 else
7150 lo16_type = R_MIPS_LO16;
7151
7152 /* The combined value is the sum of the HI16 addend, left-shifted by
7153 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7154 code does a `lui' of the HI16 value, and then an `addiu' of the
7155 LO16 value.)
7156
7157 Scan ahead to find a matching LO16 relocation.
7158
7159 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7160 be immediately following. However, for the IRIX6 ABI, the next
7161 relocation may be a composed relocation consisting of several
7162 relocations for the same address. In that case, the R_MIPS_LO16
7163 relocation may occur as one of these. We permit a similar
7164 extension in general, as that is useful for GCC.
7165
7166 In some cases GCC dead code elimination removes the LO16 but keeps
7167 the corresponding HI16. This is strictly speaking a violation of
7168 the ABI but not immediately harmful. */
7169 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7170 if (lo16_relocation == NULL)
7171 return FALSE;
7172
7173 /* Obtain the addend kept there. */
7174 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7175 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7176
7177 l <<= lo16_howto->rightshift;
7178 l = _bfd_mips_elf_sign_extend (l, 16);
7179
7180 *addend <<= 16;
7181 *addend += l;
7182 return TRUE;
7183 }
7184
7185 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7186 store the contents in *CONTENTS on success. Assume that *CONTENTS
7187 already holds the contents if it is nonull on entry. */
7188
7189 static bfd_boolean
7190 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7191 {
7192 if (*contents)
7193 return TRUE;
7194
7195 /* Get cached copy if it exists. */
7196 if (elf_section_data (sec)->this_hdr.contents != NULL)
7197 {
7198 *contents = elf_section_data (sec)->this_hdr.contents;
7199 return TRUE;
7200 }
7201
7202 return bfd_malloc_and_get_section (abfd, sec, contents);
7203 }
7204
7205 /* Look through the relocs for a section during the first phase, and
7206 allocate space in the global offset table. */
7207
7208 bfd_boolean
7209 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7210 asection *sec, const Elf_Internal_Rela *relocs)
7211 {
7212 const char *name;
7213 bfd *dynobj;
7214 Elf_Internal_Shdr *symtab_hdr;
7215 struct elf_link_hash_entry **sym_hashes;
7216 size_t extsymoff;
7217 const Elf_Internal_Rela *rel;
7218 const Elf_Internal_Rela *rel_end;
7219 asection *sreloc;
7220 const struct elf_backend_data *bed;
7221 struct mips_elf_link_hash_table *htab;
7222 bfd_byte *contents;
7223 bfd_vma addend;
7224 reloc_howto_type *howto;
7225
7226 if (info->relocatable)
7227 return TRUE;
7228
7229 htab = mips_elf_hash_table (info);
7230 BFD_ASSERT (htab != NULL);
7231
7232 dynobj = elf_hash_table (info)->dynobj;
7233 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7234 sym_hashes = elf_sym_hashes (abfd);
7235 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7236
7237 bed = get_elf_backend_data (abfd);
7238 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7239
7240 /* Check for the mips16 stub sections. */
7241
7242 name = bfd_get_section_name (abfd, sec);
7243 if (FN_STUB_P (name))
7244 {
7245 unsigned long r_symndx;
7246
7247 /* Look at the relocation information to figure out which symbol
7248 this is for. */
7249
7250 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7251 if (r_symndx == 0)
7252 {
7253 (*_bfd_error_handler)
7254 (_("%B: Warning: cannot determine the target function for"
7255 " stub section `%s'"),
7256 abfd, name);
7257 bfd_set_error (bfd_error_bad_value);
7258 return FALSE;
7259 }
7260
7261 if (r_symndx < extsymoff
7262 || sym_hashes[r_symndx - extsymoff] == NULL)
7263 {
7264 asection *o;
7265
7266 /* This stub is for a local symbol. This stub will only be
7267 needed if there is some relocation in this BFD, other
7268 than a 16 bit function call, which refers to this symbol. */
7269 for (o = abfd->sections; o != NULL; o = o->next)
7270 {
7271 Elf_Internal_Rela *sec_relocs;
7272 const Elf_Internal_Rela *r, *rend;
7273
7274 /* We can ignore stub sections when looking for relocs. */
7275 if ((o->flags & SEC_RELOC) == 0
7276 || o->reloc_count == 0
7277 || section_allows_mips16_refs_p (o))
7278 continue;
7279
7280 sec_relocs
7281 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7282 info->keep_memory);
7283 if (sec_relocs == NULL)
7284 return FALSE;
7285
7286 rend = sec_relocs + o->reloc_count;
7287 for (r = sec_relocs; r < rend; r++)
7288 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7289 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7290 break;
7291
7292 if (elf_section_data (o)->relocs != sec_relocs)
7293 free (sec_relocs);
7294
7295 if (r < rend)
7296 break;
7297 }
7298
7299 if (o == NULL)
7300 {
7301 /* There is no non-call reloc for this stub, so we do
7302 not need it. Since this function is called before
7303 the linker maps input sections to output sections, we
7304 can easily discard it by setting the SEC_EXCLUDE
7305 flag. */
7306 sec->flags |= SEC_EXCLUDE;
7307 return TRUE;
7308 }
7309
7310 /* Record this stub in an array of local symbol stubs for
7311 this BFD. */
7312 if (elf_tdata (abfd)->local_stubs == NULL)
7313 {
7314 unsigned long symcount;
7315 asection **n;
7316 bfd_size_type amt;
7317
7318 if (elf_bad_symtab (abfd))
7319 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7320 else
7321 symcount = symtab_hdr->sh_info;
7322 amt = symcount * sizeof (asection *);
7323 n = bfd_zalloc (abfd, amt);
7324 if (n == NULL)
7325 return FALSE;
7326 elf_tdata (abfd)->local_stubs = n;
7327 }
7328
7329 sec->flags |= SEC_KEEP;
7330 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7331
7332 /* We don't need to set mips16_stubs_seen in this case.
7333 That flag is used to see whether we need to look through
7334 the global symbol table for stubs. We don't need to set
7335 it here, because we just have a local stub. */
7336 }
7337 else
7338 {
7339 struct mips_elf_link_hash_entry *h;
7340
7341 h = ((struct mips_elf_link_hash_entry *)
7342 sym_hashes[r_symndx - extsymoff]);
7343
7344 while (h->root.root.type == bfd_link_hash_indirect
7345 || h->root.root.type == bfd_link_hash_warning)
7346 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7347
7348 /* H is the symbol this stub is for. */
7349
7350 /* If we already have an appropriate stub for this function, we
7351 don't need another one, so we can discard this one. Since
7352 this function is called before the linker maps input sections
7353 to output sections, we can easily discard it by setting the
7354 SEC_EXCLUDE flag. */
7355 if (h->fn_stub != NULL)
7356 {
7357 sec->flags |= SEC_EXCLUDE;
7358 return TRUE;
7359 }
7360
7361 sec->flags |= SEC_KEEP;
7362 h->fn_stub = sec;
7363 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7364 }
7365 }
7366 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7367 {
7368 unsigned long r_symndx;
7369 struct mips_elf_link_hash_entry *h;
7370 asection **loc;
7371
7372 /* Look at the relocation information to figure out which symbol
7373 this is for. */
7374
7375 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7376 if (r_symndx == 0)
7377 {
7378 (*_bfd_error_handler)
7379 (_("%B: Warning: cannot determine the target function for"
7380 " stub section `%s'"),
7381 abfd, name);
7382 bfd_set_error (bfd_error_bad_value);
7383 return FALSE;
7384 }
7385
7386 if (r_symndx < extsymoff
7387 || sym_hashes[r_symndx - extsymoff] == NULL)
7388 {
7389 asection *o;
7390
7391 /* This stub is for a local symbol. This stub will only be
7392 needed if there is some relocation (R_MIPS16_26) in this BFD
7393 that refers to this symbol. */
7394 for (o = abfd->sections; o != NULL; o = o->next)
7395 {
7396 Elf_Internal_Rela *sec_relocs;
7397 const Elf_Internal_Rela *r, *rend;
7398
7399 /* We can ignore stub sections when looking for relocs. */
7400 if ((o->flags & SEC_RELOC) == 0
7401 || o->reloc_count == 0
7402 || section_allows_mips16_refs_p (o))
7403 continue;
7404
7405 sec_relocs
7406 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7407 info->keep_memory);
7408 if (sec_relocs == NULL)
7409 return FALSE;
7410
7411 rend = sec_relocs + o->reloc_count;
7412 for (r = sec_relocs; r < rend; r++)
7413 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7414 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7415 break;
7416
7417 if (elf_section_data (o)->relocs != sec_relocs)
7418 free (sec_relocs);
7419
7420 if (r < rend)
7421 break;
7422 }
7423
7424 if (o == NULL)
7425 {
7426 /* There is no non-call reloc for this stub, so we do
7427 not need it. Since this function is called before
7428 the linker maps input sections to output sections, we
7429 can easily discard it by setting the SEC_EXCLUDE
7430 flag. */
7431 sec->flags |= SEC_EXCLUDE;
7432 return TRUE;
7433 }
7434
7435 /* Record this stub in an array of local symbol call_stubs for
7436 this BFD. */
7437 if (elf_tdata (abfd)->local_call_stubs == NULL)
7438 {
7439 unsigned long symcount;
7440 asection **n;
7441 bfd_size_type amt;
7442
7443 if (elf_bad_symtab (abfd))
7444 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7445 else
7446 symcount = symtab_hdr->sh_info;
7447 amt = symcount * sizeof (asection *);
7448 n = bfd_zalloc (abfd, amt);
7449 if (n == NULL)
7450 return FALSE;
7451 elf_tdata (abfd)->local_call_stubs = n;
7452 }
7453
7454 sec->flags |= SEC_KEEP;
7455 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7456
7457 /* We don't need to set mips16_stubs_seen in this case.
7458 That flag is used to see whether we need to look through
7459 the global symbol table for stubs. We don't need to set
7460 it here, because we just have a local stub. */
7461 }
7462 else
7463 {
7464 h = ((struct mips_elf_link_hash_entry *)
7465 sym_hashes[r_symndx - extsymoff]);
7466
7467 /* H is the symbol this stub is for. */
7468
7469 if (CALL_FP_STUB_P (name))
7470 loc = &h->call_fp_stub;
7471 else
7472 loc = &h->call_stub;
7473
7474 /* If we already have an appropriate stub for this function, we
7475 don't need another one, so we can discard this one. Since
7476 this function is called before the linker maps input sections
7477 to output sections, we can easily discard it by setting the
7478 SEC_EXCLUDE flag. */
7479 if (*loc != NULL)
7480 {
7481 sec->flags |= SEC_EXCLUDE;
7482 return TRUE;
7483 }
7484
7485 sec->flags |= SEC_KEEP;
7486 *loc = sec;
7487 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7488 }
7489 }
7490
7491 sreloc = NULL;
7492 contents = NULL;
7493 for (rel = relocs; rel < rel_end; ++rel)
7494 {
7495 unsigned long r_symndx;
7496 unsigned int r_type;
7497 struct elf_link_hash_entry *h;
7498 bfd_boolean can_make_dynamic_p;
7499
7500 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7501 r_type = ELF_R_TYPE (abfd, rel->r_info);
7502
7503 if (r_symndx < extsymoff)
7504 h = NULL;
7505 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7506 {
7507 (*_bfd_error_handler)
7508 (_("%B: Malformed reloc detected for section %s"),
7509 abfd, name);
7510 bfd_set_error (bfd_error_bad_value);
7511 return FALSE;
7512 }
7513 else
7514 {
7515 h = sym_hashes[r_symndx - extsymoff];
7516 while (h != NULL
7517 && (h->root.type == bfd_link_hash_indirect
7518 || h->root.type == bfd_link_hash_warning))
7519 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7520 }
7521
7522 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7523 relocation into a dynamic one. */
7524 can_make_dynamic_p = FALSE;
7525 switch (r_type)
7526 {
7527 case R_MIPS16_GOT16:
7528 case R_MIPS16_CALL16:
7529 case R_MIPS_GOT16:
7530 case R_MIPS_CALL16:
7531 case R_MIPS_CALL_HI16:
7532 case R_MIPS_CALL_LO16:
7533 case R_MIPS_GOT_HI16:
7534 case R_MIPS_GOT_LO16:
7535 case R_MIPS_GOT_PAGE:
7536 case R_MIPS_GOT_OFST:
7537 case R_MIPS_GOT_DISP:
7538 case R_MIPS_TLS_GOTTPREL:
7539 case R_MIPS_TLS_GD:
7540 case R_MIPS_TLS_LDM:
7541 if (dynobj == NULL)
7542 elf_hash_table (info)->dynobj = dynobj = abfd;
7543 if (!mips_elf_create_got_section (dynobj, info))
7544 return FALSE;
7545 if (htab->is_vxworks && !info->shared)
7546 {
7547 (*_bfd_error_handler)
7548 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7549 abfd, (unsigned long) rel->r_offset);
7550 bfd_set_error (bfd_error_bad_value);
7551 return FALSE;
7552 }
7553 break;
7554
7555 /* This is just a hint; it can safely be ignored. Don't set
7556 has_static_relocs for the corresponding symbol. */
7557 case R_MIPS_JALR:
7558 break;
7559
7560 case R_MIPS_32:
7561 case R_MIPS_REL32:
7562 case R_MIPS_64:
7563 /* In VxWorks executables, references to external symbols
7564 must be handled using copy relocs or PLT entries; it is not
7565 possible to convert this relocation into a dynamic one.
7566
7567 For executables that use PLTs and copy-relocs, we have a
7568 choice between converting the relocation into a dynamic
7569 one or using copy relocations or PLT entries. It is
7570 usually better to do the former, unless the relocation is
7571 against a read-only section. */
7572 if ((info->shared
7573 || (h != NULL
7574 && !htab->is_vxworks
7575 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7576 && !(!info->nocopyreloc
7577 && !PIC_OBJECT_P (abfd)
7578 && MIPS_ELF_READONLY_SECTION (sec))))
7579 && (sec->flags & SEC_ALLOC) != 0)
7580 {
7581 can_make_dynamic_p = TRUE;
7582 if (dynobj == NULL)
7583 elf_hash_table (info)->dynobj = dynobj = abfd;
7584 break;
7585 }
7586 /* Fall through. */
7587
7588 default:
7589 /* Most static relocations require pointer equality, except
7590 for branches. */
7591 if (h)
7592 h->pointer_equality_needed = TRUE;
7593 /* Fall through. */
7594
7595 case R_MIPS_26:
7596 case R_MIPS_PC16:
7597 case R_MIPS16_26:
7598 if (h)
7599 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7600 break;
7601 }
7602
7603 if (h)
7604 {
7605 /* Relocations against the special VxWorks __GOTT_BASE__ and
7606 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7607 room for them in .rela.dyn. */
7608 if (is_gott_symbol (info, h))
7609 {
7610 if (sreloc == NULL)
7611 {
7612 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7613 if (sreloc == NULL)
7614 return FALSE;
7615 }
7616 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7617 if (MIPS_ELF_READONLY_SECTION (sec))
7618 /* We tell the dynamic linker that there are
7619 relocations against the text segment. */
7620 info->flags |= DF_TEXTREL;
7621 }
7622 }
7623 else if (r_type == R_MIPS_CALL_LO16
7624 || r_type == R_MIPS_GOT_LO16
7625 || r_type == R_MIPS_GOT_DISP
7626 || (got16_reloc_p (r_type) && htab->is_vxworks))
7627 {
7628 /* We may need a local GOT entry for this relocation. We
7629 don't count R_MIPS_GOT_PAGE because we can estimate the
7630 maximum number of pages needed by looking at the size of
7631 the segment. Similar comments apply to R_MIPS*_GOT16 and
7632 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7633 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7634 R_MIPS_CALL_HI16 because these are always followed by an
7635 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7636 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7637 rel->r_addend, info, 0))
7638 return FALSE;
7639 }
7640
7641 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7642 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7643
7644 switch (r_type)
7645 {
7646 case R_MIPS_CALL16:
7647 case R_MIPS16_CALL16:
7648 if (h == NULL)
7649 {
7650 (*_bfd_error_handler)
7651 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7652 abfd, (unsigned long) rel->r_offset);
7653 bfd_set_error (bfd_error_bad_value);
7654 return FALSE;
7655 }
7656 /* Fall through. */
7657
7658 case R_MIPS_CALL_HI16:
7659 case R_MIPS_CALL_LO16:
7660 if (h != NULL)
7661 {
7662 /* Make sure there is room in the regular GOT to hold the
7663 function's address. We may eliminate it in favour of
7664 a .got.plt entry later; see mips_elf_count_got_symbols. */
7665 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
7666 return FALSE;
7667
7668 /* We need a stub, not a plt entry for the undefined
7669 function. But we record it as if it needs plt. See
7670 _bfd_elf_adjust_dynamic_symbol. */
7671 h->needs_plt = 1;
7672 h->type = STT_FUNC;
7673 }
7674 break;
7675
7676 case R_MIPS_GOT_PAGE:
7677 /* If this is a global, overridable symbol, GOT_PAGE will
7678 decay to GOT_DISP, so we'll need a GOT entry for it. */
7679 if (h)
7680 {
7681 struct mips_elf_link_hash_entry *hmips =
7682 (struct mips_elf_link_hash_entry *) h;
7683
7684 /* This symbol is definitely not overridable. */
7685 if (hmips->root.def_regular
7686 && ! (info->shared && ! info->symbolic
7687 && ! hmips->root.forced_local))
7688 h = NULL;
7689 }
7690 /* Fall through. */
7691
7692 case R_MIPS16_GOT16:
7693 case R_MIPS_GOT16:
7694 case R_MIPS_GOT_HI16:
7695 case R_MIPS_GOT_LO16:
7696 if (!h || r_type == R_MIPS_GOT_PAGE)
7697 {
7698 /* This relocation needs (or may need, if h != NULL) a
7699 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7700 know for sure until we know whether the symbol is
7701 preemptible. */
7702 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7703 {
7704 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7705 return FALSE;
7706 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7707 addend = mips_elf_read_rel_addend (abfd, rel,
7708 howto, contents);
7709 if (got16_reloc_p (r_type))
7710 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7711 contents, &addend);
7712 else
7713 addend <<= howto->rightshift;
7714 }
7715 else
7716 addend = rel->r_addend;
7717 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7718 addend))
7719 return FALSE;
7720 break;
7721 }
7722 /* Fall through. */
7723
7724 case R_MIPS_GOT_DISP:
7725 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7726 FALSE, 0))
7727 return FALSE;
7728 break;
7729
7730 case R_MIPS_TLS_GOTTPREL:
7731 if (info->shared)
7732 info->flags |= DF_STATIC_TLS;
7733 /* Fall through */
7734
7735 case R_MIPS_TLS_LDM:
7736 if (r_type == R_MIPS_TLS_LDM)
7737 {
7738 r_symndx = STN_UNDEF;
7739 h = NULL;
7740 }
7741 /* Fall through */
7742
7743 case R_MIPS_TLS_GD:
7744 /* This symbol requires a global offset table entry, or two
7745 for TLS GD relocations. */
7746 {
7747 unsigned char flag = (r_type == R_MIPS_TLS_GD
7748 ? GOT_TLS_GD
7749 : r_type == R_MIPS_TLS_LDM
7750 ? GOT_TLS_LDM
7751 : GOT_TLS_IE);
7752 if (h != NULL)
7753 {
7754 struct mips_elf_link_hash_entry *hmips =
7755 (struct mips_elf_link_hash_entry *) h;
7756 hmips->tls_type |= flag;
7757
7758 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7759 FALSE, flag))
7760 return FALSE;
7761 }
7762 else
7763 {
7764 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
7765
7766 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7767 rel->r_addend,
7768 info, flag))
7769 return FALSE;
7770 }
7771 }
7772 break;
7773
7774 case R_MIPS_32:
7775 case R_MIPS_REL32:
7776 case R_MIPS_64:
7777 /* In VxWorks executables, references to external symbols
7778 are handled using copy relocs or PLT stubs, so there's
7779 no need to add a .rela.dyn entry for this relocation. */
7780 if (can_make_dynamic_p)
7781 {
7782 if (sreloc == NULL)
7783 {
7784 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7785 if (sreloc == NULL)
7786 return FALSE;
7787 }
7788 if (info->shared && h == NULL)
7789 {
7790 /* When creating a shared object, we must copy these
7791 reloc types into the output file as R_MIPS_REL32
7792 relocs. Make room for this reloc in .rel(a).dyn. */
7793 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7794 if (MIPS_ELF_READONLY_SECTION (sec))
7795 /* We tell the dynamic linker that there are
7796 relocations against the text segment. */
7797 info->flags |= DF_TEXTREL;
7798 }
7799 else
7800 {
7801 struct mips_elf_link_hash_entry *hmips;
7802
7803 /* For a shared object, we must copy this relocation
7804 unless the symbol turns out to be undefined and
7805 weak with non-default visibility, in which case
7806 it will be left as zero.
7807
7808 We could elide R_MIPS_REL32 for locally binding symbols
7809 in shared libraries, but do not yet do so.
7810
7811 For an executable, we only need to copy this
7812 reloc if the symbol is defined in a dynamic
7813 object. */
7814 hmips = (struct mips_elf_link_hash_entry *) h;
7815 ++hmips->possibly_dynamic_relocs;
7816 if (MIPS_ELF_READONLY_SECTION (sec))
7817 /* We need it to tell the dynamic linker if there
7818 are relocations against the text segment. */
7819 hmips->readonly_reloc = TRUE;
7820 }
7821 }
7822
7823 if (SGI_COMPAT (abfd))
7824 mips_elf_hash_table (info)->compact_rel_size +=
7825 sizeof (Elf32_External_crinfo);
7826 break;
7827
7828 case R_MIPS_26:
7829 case R_MIPS_GPREL16:
7830 case R_MIPS_LITERAL:
7831 case R_MIPS_GPREL32:
7832 if (SGI_COMPAT (abfd))
7833 mips_elf_hash_table (info)->compact_rel_size +=
7834 sizeof (Elf32_External_crinfo);
7835 break;
7836
7837 /* This relocation describes the C++ object vtable hierarchy.
7838 Reconstruct it for later use during GC. */
7839 case R_MIPS_GNU_VTINHERIT:
7840 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7841 return FALSE;
7842 break;
7843
7844 /* This relocation describes which C++ vtable entries are actually
7845 used. Record for later use during GC. */
7846 case R_MIPS_GNU_VTENTRY:
7847 BFD_ASSERT (h != NULL);
7848 if (h != NULL
7849 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7850 return FALSE;
7851 break;
7852
7853 default:
7854 break;
7855 }
7856
7857 /* We must not create a stub for a symbol that has relocations
7858 related to taking the function's address. This doesn't apply to
7859 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7860 a normal .got entry. */
7861 if (!htab->is_vxworks && h != NULL)
7862 switch (r_type)
7863 {
7864 default:
7865 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7866 break;
7867 case R_MIPS16_CALL16:
7868 case R_MIPS_CALL16:
7869 case R_MIPS_CALL_HI16:
7870 case R_MIPS_CALL_LO16:
7871 case R_MIPS_JALR:
7872 break;
7873 }
7874
7875 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7876 if there is one. We only need to handle global symbols here;
7877 we decide whether to keep or delete stubs for local symbols
7878 when processing the stub's relocations. */
7879 if (h != NULL
7880 && !mips16_call_reloc_p (r_type)
7881 && !section_allows_mips16_refs_p (sec))
7882 {
7883 struct mips_elf_link_hash_entry *mh;
7884
7885 mh = (struct mips_elf_link_hash_entry *) h;
7886 mh->need_fn_stub = TRUE;
7887 }
7888
7889 /* Refuse some position-dependent relocations when creating a
7890 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7891 not PIC, but we can create dynamic relocations and the result
7892 will be fine. Also do not refuse R_MIPS_LO16, which can be
7893 combined with R_MIPS_GOT16. */
7894 if (info->shared)
7895 {
7896 switch (r_type)
7897 {
7898 case R_MIPS16_HI16:
7899 case R_MIPS_HI16:
7900 case R_MIPS_HIGHER:
7901 case R_MIPS_HIGHEST:
7902 /* Don't refuse a high part relocation if it's against
7903 no symbol (e.g. part of a compound relocation). */
7904 if (r_symndx == STN_UNDEF)
7905 break;
7906
7907 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7908 and has a special meaning. */
7909 if (!NEWABI_P (abfd) && h != NULL
7910 && strcmp (h->root.root.string, "_gp_disp") == 0)
7911 break;
7912
7913 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
7914 if (is_gott_symbol (info, h))
7915 break;
7916
7917 /* FALLTHROUGH */
7918
7919 case R_MIPS16_26:
7920 case R_MIPS_26:
7921 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7922 (*_bfd_error_handler)
7923 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7924 abfd, howto->name,
7925 (h) ? h->root.root.string : "a local symbol");
7926 bfd_set_error (bfd_error_bad_value);
7927 return FALSE;
7928 default:
7929 break;
7930 }
7931 }
7932 }
7933
7934 return TRUE;
7935 }
7936 \f
7937 bfd_boolean
7938 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7939 struct bfd_link_info *link_info,
7940 bfd_boolean *again)
7941 {
7942 Elf_Internal_Rela *internal_relocs;
7943 Elf_Internal_Rela *irel, *irelend;
7944 Elf_Internal_Shdr *symtab_hdr;
7945 bfd_byte *contents = NULL;
7946 size_t extsymoff;
7947 bfd_boolean changed_contents = FALSE;
7948 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7949 Elf_Internal_Sym *isymbuf = NULL;
7950
7951 /* We are not currently changing any sizes, so only one pass. */
7952 *again = FALSE;
7953
7954 if (link_info->relocatable)
7955 return TRUE;
7956
7957 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7958 link_info->keep_memory);
7959 if (internal_relocs == NULL)
7960 return TRUE;
7961
7962 irelend = internal_relocs + sec->reloc_count
7963 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7964 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7965 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7966
7967 for (irel = internal_relocs; irel < irelend; irel++)
7968 {
7969 bfd_vma symval;
7970 bfd_signed_vma sym_offset;
7971 unsigned int r_type;
7972 unsigned long r_symndx;
7973 asection *sym_sec;
7974 unsigned long instruction;
7975
7976 /* Turn jalr into bgezal, and jr into beq, if they're marked
7977 with a JALR relocation, that indicate where they jump to.
7978 This saves some pipeline bubbles. */
7979 r_type = ELF_R_TYPE (abfd, irel->r_info);
7980 if (r_type != R_MIPS_JALR)
7981 continue;
7982
7983 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7984 /* Compute the address of the jump target. */
7985 if (r_symndx >= extsymoff)
7986 {
7987 struct mips_elf_link_hash_entry *h
7988 = ((struct mips_elf_link_hash_entry *)
7989 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7990
7991 while (h->root.root.type == bfd_link_hash_indirect
7992 || h->root.root.type == bfd_link_hash_warning)
7993 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7994
7995 /* If a symbol is undefined, or if it may be overridden,
7996 skip it. */
7997 if (! ((h->root.root.type == bfd_link_hash_defined
7998 || h->root.root.type == bfd_link_hash_defweak)
7999 && h->root.root.u.def.section)
8000 || (link_info->shared && ! link_info->symbolic
8001 && !h->root.forced_local))
8002 continue;
8003
8004 sym_sec = h->root.root.u.def.section;
8005 if (sym_sec->output_section)
8006 symval = (h->root.root.u.def.value
8007 + sym_sec->output_section->vma
8008 + sym_sec->output_offset);
8009 else
8010 symval = h->root.root.u.def.value;
8011 }
8012 else
8013 {
8014 Elf_Internal_Sym *isym;
8015
8016 /* Read this BFD's symbols if we haven't done so already. */
8017 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8018 {
8019 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8020 if (isymbuf == NULL)
8021 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8022 symtab_hdr->sh_info, 0,
8023 NULL, NULL, NULL);
8024 if (isymbuf == NULL)
8025 goto relax_return;
8026 }
8027
8028 isym = isymbuf + r_symndx;
8029 if (isym->st_shndx == SHN_UNDEF)
8030 continue;
8031 else if (isym->st_shndx == SHN_ABS)
8032 sym_sec = bfd_abs_section_ptr;
8033 else if (isym->st_shndx == SHN_COMMON)
8034 sym_sec = bfd_com_section_ptr;
8035 else
8036 sym_sec
8037 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8038 symval = isym->st_value
8039 + sym_sec->output_section->vma
8040 + sym_sec->output_offset;
8041 }
8042
8043 /* Compute branch offset, from delay slot of the jump to the
8044 branch target. */
8045 sym_offset = (symval + irel->r_addend)
8046 - (sec_start + irel->r_offset + 4);
8047
8048 /* Branch offset must be properly aligned. */
8049 if ((sym_offset & 3) != 0)
8050 continue;
8051
8052 sym_offset >>= 2;
8053
8054 /* Check that it's in range. */
8055 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8056 continue;
8057
8058 /* Get the section contents if we haven't done so already. */
8059 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8060 goto relax_return;
8061
8062 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8063
8064 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8065 if ((instruction & 0xfc1fffff) == 0x0000f809)
8066 instruction = 0x04110000;
8067 /* If it was jr <reg>, turn it into b <target>. */
8068 else if ((instruction & 0xfc1fffff) == 0x00000008)
8069 instruction = 0x10000000;
8070 else
8071 continue;
8072
8073 instruction |= (sym_offset & 0xffff);
8074 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8075 changed_contents = TRUE;
8076 }
8077
8078 if (contents != NULL
8079 && elf_section_data (sec)->this_hdr.contents != contents)
8080 {
8081 if (!changed_contents && !link_info->keep_memory)
8082 free (contents);
8083 else
8084 {
8085 /* Cache the section contents for elf_link_input_bfd. */
8086 elf_section_data (sec)->this_hdr.contents = contents;
8087 }
8088 }
8089 return TRUE;
8090
8091 relax_return:
8092 if (contents != NULL
8093 && elf_section_data (sec)->this_hdr.contents != contents)
8094 free (contents);
8095 return FALSE;
8096 }
8097 \f
8098 /* Allocate space for global sym dynamic relocs. */
8099
8100 static bfd_boolean
8101 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8102 {
8103 struct bfd_link_info *info = inf;
8104 bfd *dynobj;
8105 struct mips_elf_link_hash_entry *hmips;
8106 struct mips_elf_link_hash_table *htab;
8107
8108 htab = mips_elf_hash_table (info);
8109 BFD_ASSERT (htab != NULL);
8110
8111 dynobj = elf_hash_table (info)->dynobj;
8112 hmips = (struct mips_elf_link_hash_entry *) h;
8113
8114 /* VxWorks executables are handled elsewhere; we only need to
8115 allocate relocations in shared objects. */
8116 if (htab->is_vxworks && !info->shared)
8117 return TRUE;
8118
8119 /* Ignore indirect and warning symbols. All relocations against
8120 such symbols will be redirected to the target symbol. */
8121 if (h->root.type == bfd_link_hash_indirect
8122 || h->root.type == bfd_link_hash_warning)
8123 return TRUE;
8124
8125 /* If this symbol is defined in a dynamic object, or we are creating
8126 a shared library, we will need to copy any R_MIPS_32 or
8127 R_MIPS_REL32 relocs against it into the output file. */
8128 if (! info->relocatable
8129 && hmips->possibly_dynamic_relocs != 0
8130 && (h->root.type == bfd_link_hash_defweak
8131 || !h->def_regular
8132 || info->shared))
8133 {
8134 bfd_boolean do_copy = TRUE;
8135
8136 if (h->root.type == bfd_link_hash_undefweak)
8137 {
8138 /* Do not copy relocations for undefined weak symbols with
8139 non-default visibility. */
8140 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8141 do_copy = FALSE;
8142
8143 /* Make sure undefined weak symbols are output as a dynamic
8144 symbol in PIEs. */
8145 else if (h->dynindx == -1 && !h->forced_local)
8146 {
8147 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8148 return FALSE;
8149 }
8150 }
8151
8152 if (do_copy)
8153 {
8154 /* Even though we don't directly need a GOT entry for this symbol,
8155 the SVR4 psABI requires it to have a dynamic symbol table
8156 index greater that DT_MIPS_GOTSYM if there are dynamic
8157 relocations against it.
8158
8159 VxWorks does not enforce the same mapping between the GOT
8160 and the symbol table, so the same requirement does not
8161 apply there. */
8162 if (!htab->is_vxworks)
8163 {
8164 if (hmips->global_got_area > GGA_RELOC_ONLY)
8165 hmips->global_got_area = GGA_RELOC_ONLY;
8166 hmips->got_only_for_calls = FALSE;
8167 }
8168
8169 mips_elf_allocate_dynamic_relocations
8170 (dynobj, info, hmips->possibly_dynamic_relocs);
8171 if (hmips->readonly_reloc)
8172 /* We tell the dynamic linker that there are relocations
8173 against the text segment. */
8174 info->flags |= DF_TEXTREL;
8175 }
8176 }
8177
8178 return TRUE;
8179 }
8180
8181 /* Adjust a symbol defined by a dynamic object and referenced by a
8182 regular object. The current definition is in some section of the
8183 dynamic object, but we're not including those sections. We have to
8184 change the definition to something the rest of the link can
8185 understand. */
8186
8187 bfd_boolean
8188 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8189 struct elf_link_hash_entry *h)
8190 {
8191 bfd *dynobj;
8192 struct mips_elf_link_hash_entry *hmips;
8193 struct mips_elf_link_hash_table *htab;
8194
8195 htab = mips_elf_hash_table (info);
8196 BFD_ASSERT (htab != NULL);
8197
8198 dynobj = elf_hash_table (info)->dynobj;
8199 hmips = (struct mips_elf_link_hash_entry *) h;
8200
8201 /* Make sure we know what is going on here. */
8202 BFD_ASSERT (dynobj != NULL
8203 && (h->needs_plt
8204 || h->u.weakdef != NULL
8205 || (h->def_dynamic
8206 && h->ref_regular
8207 && !h->def_regular)));
8208
8209 hmips = (struct mips_elf_link_hash_entry *) h;
8210
8211 /* If there are call relocations against an externally-defined symbol,
8212 see whether we can create a MIPS lazy-binding stub for it. We can
8213 only do this if all references to the function are through call
8214 relocations, and in that case, the traditional lazy-binding stubs
8215 are much more efficient than PLT entries.
8216
8217 Traditional stubs are only available on SVR4 psABI-based systems;
8218 VxWorks always uses PLTs instead. */
8219 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8220 {
8221 if (! elf_hash_table (info)->dynamic_sections_created)
8222 return TRUE;
8223
8224 /* If this symbol is not defined in a regular file, then set
8225 the symbol to the stub location. This is required to make
8226 function pointers compare as equal between the normal
8227 executable and the shared library. */
8228 if (!h->def_regular)
8229 {
8230 hmips->needs_lazy_stub = TRUE;
8231 htab->lazy_stub_count++;
8232 return TRUE;
8233 }
8234 }
8235 /* As above, VxWorks requires PLT entries for externally-defined
8236 functions that are only accessed through call relocations.
8237
8238 Both VxWorks and non-VxWorks targets also need PLT entries if there
8239 are static-only relocations against an externally-defined function.
8240 This can technically occur for shared libraries if there are
8241 branches to the symbol, although it is unlikely that this will be
8242 used in practice due to the short ranges involved. It can occur
8243 for any relative or absolute relocation in executables; in that
8244 case, the PLT entry becomes the function's canonical address. */
8245 else if (((h->needs_plt && !hmips->no_fn_stub)
8246 || (h->type == STT_FUNC && hmips->has_static_relocs))
8247 && htab->use_plts_and_copy_relocs
8248 && !SYMBOL_CALLS_LOCAL (info, h)
8249 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8250 && h->root.type == bfd_link_hash_undefweak))
8251 {
8252 /* If this is the first symbol to need a PLT entry, allocate room
8253 for the header. */
8254 if (htab->splt->size == 0)
8255 {
8256 BFD_ASSERT (htab->sgotplt->size == 0);
8257
8258 /* If we're using the PLT additions to the psABI, each PLT
8259 entry is 16 bytes and the PLT0 entry is 32 bytes.
8260 Encourage better cache usage by aligning. We do this
8261 lazily to avoid pessimizing traditional objects. */
8262 if (!htab->is_vxworks
8263 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8264 return FALSE;
8265
8266 /* Make sure that .got.plt is word-aligned. We do this lazily
8267 for the same reason as above. */
8268 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8269 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8270 return FALSE;
8271
8272 htab->splt->size += htab->plt_header_size;
8273
8274 /* On non-VxWorks targets, the first two entries in .got.plt
8275 are reserved. */
8276 if (!htab->is_vxworks)
8277 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8278
8279 /* On VxWorks, also allocate room for the header's
8280 .rela.plt.unloaded entries. */
8281 if (htab->is_vxworks && !info->shared)
8282 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8283 }
8284
8285 /* Assign the next .plt entry to this symbol. */
8286 h->plt.offset = htab->splt->size;
8287 htab->splt->size += htab->plt_entry_size;
8288
8289 /* If the output file has no definition of the symbol, set the
8290 symbol's value to the address of the stub. */
8291 if (!info->shared && !h->def_regular)
8292 {
8293 h->root.u.def.section = htab->splt;
8294 h->root.u.def.value = h->plt.offset;
8295 /* For VxWorks, point at the PLT load stub rather than the
8296 lazy resolution stub; this stub will become the canonical
8297 function address. */
8298 if (htab->is_vxworks)
8299 h->root.u.def.value += 8;
8300 }
8301
8302 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8303 relocation. */
8304 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8305 htab->srelplt->size += (htab->is_vxworks
8306 ? MIPS_ELF_RELA_SIZE (dynobj)
8307 : MIPS_ELF_REL_SIZE (dynobj));
8308
8309 /* Make room for the .rela.plt.unloaded relocations. */
8310 if (htab->is_vxworks && !info->shared)
8311 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8312
8313 /* All relocations against this symbol that could have been made
8314 dynamic will now refer to the PLT entry instead. */
8315 hmips->possibly_dynamic_relocs = 0;
8316
8317 return TRUE;
8318 }
8319
8320 /* If this is a weak symbol, and there is a real definition, the
8321 processor independent code will have arranged for us to see the
8322 real definition first, and we can just use the same value. */
8323 if (h->u.weakdef != NULL)
8324 {
8325 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8326 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8327 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8328 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8329 return TRUE;
8330 }
8331
8332 /* Otherwise, there is nothing further to do for symbols defined
8333 in regular objects. */
8334 if (h->def_regular)
8335 return TRUE;
8336
8337 /* There's also nothing more to do if we'll convert all relocations
8338 against this symbol into dynamic relocations. */
8339 if (!hmips->has_static_relocs)
8340 return TRUE;
8341
8342 /* We're now relying on copy relocations. Complain if we have
8343 some that we can't convert. */
8344 if (!htab->use_plts_and_copy_relocs || info->shared)
8345 {
8346 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8347 "dynamic symbol %s"),
8348 h->root.root.string);
8349 bfd_set_error (bfd_error_bad_value);
8350 return FALSE;
8351 }
8352
8353 /* We must allocate the symbol in our .dynbss section, which will
8354 become part of the .bss section of the executable. There will be
8355 an entry for this symbol in the .dynsym section. The dynamic
8356 object will contain position independent code, so all references
8357 from the dynamic object to this symbol will go through the global
8358 offset table. The dynamic linker will use the .dynsym entry to
8359 determine the address it must put in the global offset table, so
8360 both the dynamic object and the regular object will refer to the
8361 same memory location for the variable. */
8362
8363 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8364 {
8365 if (htab->is_vxworks)
8366 htab->srelbss->size += sizeof (Elf32_External_Rela);
8367 else
8368 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8369 h->needs_copy = 1;
8370 }
8371
8372 /* All relocations against this symbol that could have been made
8373 dynamic will now refer to the local copy instead. */
8374 hmips->possibly_dynamic_relocs = 0;
8375
8376 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8377 }
8378 \f
8379 /* This function is called after all the input files have been read,
8380 and the input sections have been assigned to output sections. We
8381 check for any mips16 stub sections that we can discard. */
8382
8383 bfd_boolean
8384 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8385 struct bfd_link_info *info)
8386 {
8387 asection *ri;
8388 struct mips_elf_link_hash_table *htab;
8389 struct mips_htab_traverse_info hti;
8390
8391 htab = mips_elf_hash_table (info);
8392 BFD_ASSERT (htab != NULL);
8393
8394 /* The .reginfo section has a fixed size. */
8395 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8396 if (ri != NULL)
8397 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8398
8399 hti.info = info;
8400 hti.output_bfd = output_bfd;
8401 hti.error = FALSE;
8402 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8403 mips_elf_check_symbols, &hti);
8404 if (hti.error)
8405 return FALSE;
8406
8407 return TRUE;
8408 }
8409
8410 /* If the link uses a GOT, lay it out and work out its size. */
8411
8412 static bfd_boolean
8413 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8414 {
8415 bfd *dynobj;
8416 asection *s;
8417 struct mips_got_info *g;
8418 bfd_size_type loadable_size = 0;
8419 bfd_size_type page_gotno;
8420 bfd *sub;
8421 struct mips_elf_count_tls_arg count_tls_arg;
8422 struct mips_elf_link_hash_table *htab;
8423
8424 htab = mips_elf_hash_table (info);
8425 BFD_ASSERT (htab != NULL);
8426
8427 s = htab->sgot;
8428 if (s == NULL)
8429 return TRUE;
8430
8431 dynobj = elf_hash_table (info)->dynobj;
8432 g = htab->got_info;
8433
8434 /* Allocate room for the reserved entries. VxWorks always reserves
8435 3 entries; other objects only reserve 2 entries. */
8436 BFD_ASSERT (g->assigned_gotno == 0);
8437 if (htab->is_vxworks)
8438 htab->reserved_gotno = 3;
8439 else
8440 htab->reserved_gotno = 2;
8441 g->local_gotno += htab->reserved_gotno;
8442 g->assigned_gotno = htab->reserved_gotno;
8443
8444 /* Replace entries for indirect and warning symbols with entries for
8445 the target symbol. */
8446 if (!mips_elf_resolve_final_got_entries (g))
8447 return FALSE;
8448
8449 /* Count the number of GOT symbols. */
8450 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8451
8452 /* Calculate the total loadable size of the output. That
8453 will give us the maximum number of GOT_PAGE entries
8454 required. */
8455 for (sub = info->input_bfds; sub; sub = sub->link_next)
8456 {
8457 asection *subsection;
8458
8459 for (subsection = sub->sections;
8460 subsection;
8461 subsection = subsection->next)
8462 {
8463 if ((subsection->flags & SEC_ALLOC) == 0)
8464 continue;
8465 loadable_size += ((subsection->size + 0xf)
8466 &~ (bfd_size_type) 0xf);
8467 }
8468 }
8469
8470 if (htab->is_vxworks)
8471 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8472 relocations against local symbols evaluate to "G", and the EABI does
8473 not include R_MIPS_GOT_PAGE. */
8474 page_gotno = 0;
8475 else
8476 /* Assume there are two loadable segments consisting of contiguous
8477 sections. Is 5 enough? */
8478 page_gotno = (loadable_size >> 16) + 5;
8479
8480 /* Choose the smaller of the two estimates; both are intended to be
8481 conservative. */
8482 if (page_gotno > g->page_gotno)
8483 page_gotno = g->page_gotno;
8484
8485 g->local_gotno += page_gotno;
8486 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8487 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8488
8489 /* We need to calculate tls_gotno for global symbols at this point
8490 instead of building it up earlier, to avoid doublecounting
8491 entries for one global symbol from multiple input files. */
8492 count_tls_arg.info = info;
8493 count_tls_arg.needed = 0;
8494 elf_link_hash_traverse (elf_hash_table (info),
8495 mips_elf_count_global_tls_entries,
8496 &count_tls_arg);
8497 g->tls_gotno += count_tls_arg.needed;
8498 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8499
8500 /* VxWorks does not support multiple GOTs. It initializes $gp to
8501 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8502 dynamic loader. */
8503 if (htab->is_vxworks)
8504 {
8505 /* VxWorks executables do not need a GOT. */
8506 if (info->shared)
8507 {
8508 /* Each VxWorks GOT entry needs an explicit relocation. */
8509 unsigned int count;
8510
8511 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8512 if (count)
8513 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8514 }
8515 }
8516 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8517 {
8518 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8519 return FALSE;
8520 }
8521 else
8522 {
8523 struct mips_elf_count_tls_arg arg;
8524
8525 /* Set up TLS entries. */
8526 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8527 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8528
8529 /* Allocate room for the TLS relocations. */
8530 arg.info = info;
8531 arg.needed = 0;
8532 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8533 elf_link_hash_traverse (elf_hash_table (info),
8534 mips_elf_count_global_tls_relocs,
8535 &arg);
8536 if (arg.needed)
8537 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8538 }
8539
8540 return TRUE;
8541 }
8542
8543 /* Estimate the size of the .MIPS.stubs section. */
8544
8545 static void
8546 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8547 {
8548 struct mips_elf_link_hash_table *htab;
8549 bfd_size_type dynsymcount;
8550
8551 htab = mips_elf_hash_table (info);
8552 BFD_ASSERT (htab != NULL);
8553
8554 if (htab->lazy_stub_count == 0)
8555 return;
8556
8557 /* IRIX rld assumes that a function stub isn't at the end of the .text
8558 section, so add a dummy entry to the end. */
8559 htab->lazy_stub_count++;
8560
8561 /* Get a worst-case estimate of the number of dynamic symbols needed.
8562 At this point, dynsymcount does not account for section symbols
8563 and count_section_dynsyms may overestimate the number that will
8564 be needed. */
8565 dynsymcount = (elf_hash_table (info)->dynsymcount
8566 + count_section_dynsyms (output_bfd, info));
8567
8568 /* Determine the size of one stub entry. */
8569 htab->function_stub_size = (dynsymcount > 0x10000
8570 ? MIPS_FUNCTION_STUB_BIG_SIZE
8571 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8572
8573 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8574 }
8575
8576 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8577 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8578 allocate an entry in the stubs section. */
8579
8580 static bfd_boolean
8581 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8582 {
8583 struct mips_elf_link_hash_table *htab;
8584
8585 htab = (struct mips_elf_link_hash_table *) data;
8586 if (h->needs_lazy_stub)
8587 {
8588 h->root.root.u.def.section = htab->sstubs;
8589 h->root.root.u.def.value = htab->sstubs->size;
8590 h->root.plt.offset = htab->sstubs->size;
8591 htab->sstubs->size += htab->function_stub_size;
8592 }
8593 return TRUE;
8594 }
8595
8596 /* Allocate offsets in the stubs section to each symbol that needs one.
8597 Set the final size of the .MIPS.stub section. */
8598
8599 static void
8600 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8601 {
8602 struct mips_elf_link_hash_table *htab;
8603
8604 htab = mips_elf_hash_table (info);
8605 BFD_ASSERT (htab != NULL);
8606
8607 if (htab->lazy_stub_count == 0)
8608 return;
8609
8610 htab->sstubs->size = 0;
8611 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8612 htab->sstubs->size += htab->function_stub_size;
8613 BFD_ASSERT (htab->sstubs->size
8614 == htab->lazy_stub_count * htab->function_stub_size);
8615 }
8616
8617 /* Set the sizes of the dynamic sections. */
8618
8619 bfd_boolean
8620 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8621 struct bfd_link_info *info)
8622 {
8623 bfd *dynobj;
8624 asection *s, *sreldyn;
8625 bfd_boolean reltext;
8626 struct mips_elf_link_hash_table *htab;
8627
8628 htab = mips_elf_hash_table (info);
8629 BFD_ASSERT (htab != NULL);
8630 dynobj = elf_hash_table (info)->dynobj;
8631 BFD_ASSERT (dynobj != NULL);
8632
8633 if (elf_hash_table (info)->dynamic_sections_created)
8634 {
8635 /* Set the contents of the .interp section to the interpreter. */
8636 if (info->executable)
8637 {
8638 s = bfd_get_section_by_name (dynobj, ".interp");
8639 BFD_ASSERT (s != NULL);
8640 s->size
8641 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8642 s->contents
8643 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8644 }
8645
8646 /* Create a symbol for the PLT, if we know that we are using it. */
8647 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8648 {
8649 struct elf_link_hash_entry *h;
8650
8651 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8652
8653 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8654 "_PROCEDURE_LINKAGE_TABLE_");
8655 htab->root.hplt = h;
8656 if (h == NULL)
8657 return FALSE;
8658 h->type = STT_FUNC;
8659 }
8660 }
8661
8662 /* Allocate space for global sym dynamic relocs. */
8663 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8664
8665 mips_elf_estimate_stub_size (output_bfd, info);
8666
8667 if (!mips_elf_lay_out_got (output_bfd, info))
8668 return FALSE;
8669
8670 mips_elf_lay_out_lazy_stubs (info);
8671
8672 /* The check_relocs and adjust_dynamic_symbol entry points have
8673 determined the sizes of the various dynamic sections. Allocate
8674 memory for them. */
8675 reltext = FALSE;
8676 for (s = dynobj->sections; s != NULL; s = s->next)
8677 {
8678 const char *name;
8679
8680 /* It's OK to base decisions on the section name, because none
8681 of the dynobj section names depend upon the input files. */
8682 name = bfd_get_section_name (dynobj, s);
8683
8684 if ((s->flags & SEC_LINKER_CREATED) == 0)
8685 continue;
8686
8687 if (CONST_STRNEQ (name, ".rel"))
8688 {
8689 if (s->size != 0)
8690 {
8691 const char *outname;
8692 asection *target;
8693
8694 /* If this relocation section applies to a read only
8695 section, then we probably need a DT_TEXTREL entry.
8696 If the relocation section is .rel(a).dyn, we always
8697 assert a DT_TEXTREL entry rather than testing whether
8698 there exists a relocation to a read only section or
8699 not. */
8700 outname = bfd_get_section_name (output_bfd,
8701 s->output_section);
8702 target = bfd_get_section_by_name (output_bfd, outname + 4);
8703 if ((target != NULL
8704 && (target->flags & SEC_READONLY) != 0
8705 && (target->flags & SEC_ALLOC) != 0)
8706 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8707 reltext = TRUE;
8708
8709 /* We use the reloc_count field as a counter if we need
8710 to copy relocs into the output file. */
8711 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8712 s->reloc_count = 0;
8713
8714 /* If combreloc is enabled, elf_link_sort_relocs() will
8715 sort relocations, but in a different way than we do,
8716 and before we're done creating relocations. Also, it
8717 will move them around between input sections'
8718 relocation's contents, so our sorting would be
8719 broken, so don't let it run. */
8720 info->combreloc = 0;
8721 }
8722 }
8723 else if (! info->shared
8724 && ! mips_elf_hash_table (info)->use_rld_obj_head
8725 && CONST_STRNEQ (name, ".rld_map"))
8726 {
8727 /* We add a room for __rld_map. It will be filled in by the
8728 rtld to contain a pointer to the _r_debug structure. */
8729 s->size += 4;
8730 }
8731 else if (SGI_COMPAT (output_bfd)
8732 && CONST_STRNEQ (name, ".compact_rel"))
8733 s->size += mips_elf_hash_table (info)->compact_rel_size;
8734 else if (s == htab->splt)
8735 {
8736 /* If the last PLT entry has a branch delay slot, allocate
8737 room for an extra nop to fill the delay slot. This is
8738 for CPUs without load interlocking. */
8739 if (! LOAD_INTERLOCKS_P (output_bfd)
8740 && ! htab->is_vxworks && s->size > 0)
8741 s->size += 4;
8742 }
8743 else if (! CONST_STRNEQ (name, ".init")
8744 && s != htab->sgot
8745 && s != htab->sgotplt
8746 && s != htab->sstubs
8747 && s != htab->sdynbss)
8748 {
8749 /* It's not one of our sections, so don't allocate space. */
8750 continue;
8751 }
8752
8753 if (s->size == 0)
8754 {
8755 s->flags |= SEC_EXCLUDE;
8756 continue;
8757 }
8758
8759 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8760 continue;
8761
8762 /* Allocate memory for the section contents. */
8763 s->contents = bfd_zalloc (dynobj, s->size);
8764 if (s->contents == NULL)
8765 {
8766 bfd_set_error (bfd_error_no_memory);
8767 return FALSE;
8768 }
8769 }
8770
8771 if (elf_hash_table (info)->dynamic_sections_created)
8772 {
8773 /* Add some entries to the .dynamic section. We fill in the
8774 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8775 must add the entries now so that we get the correct size for
8776 the .dynamic section. */
8777
8778 /* SGI object has the equivalence of DT_DEBUG in the
8779 DT_MIPS_RLD_MAP entry. This must come first because glibc
8780 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8781 looks at the first one it sees. */
8782 if (!info->shared
8783 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8784 return FALSE;
8785
8786 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8787 used by the debugger. */
8788 if (info->executable
8789 && !SGI_COMPAT (output_bfd)
8790 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8791 return FALSE;
8792
8793 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8794 info->flags |= DF_TEXTREL;
8795
8796 if ((info->flags & DF_TEXTREL) != 0)
8797 {
8798 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8799 return FALSE;
8800
8801 /* Clear the DF_TEXTREL flag. It will be set again if we
8802 write out an actual text relocation; we may not, because
8803 at this point we do not know whether e.g. any .eh_frame
8804 absolute relocations have been converted to PC-relative. */
8805 info->flags &= ~DF_TEXTREL;
8806 }
8807
8808 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8809 return FALSE;
8810
8811 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
8812 if (htab->is_vxworks)
8813 {
8814 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8815 use any of the DT_MIPS_* tags. */
8816 if (sreldyn && sreldyn->size > 0)
8817 {
8818 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8819 return FALSE;
8820
8821 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8822 return FALSE;
8823
8824 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8825 return FALSE;
8826 }
8827 }
8828 else
8829 {
8830 if (sreldyn && sreldyn->size > 0)
8831 {
8832 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8833 return FALSE;
8834
8835 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8836 return FALSE;
8837
8838 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8839 return FALSE;
8840 }
8841
8842 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8843 return FALSE;
8844
8845 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8846 return FALSE;
8847
8848 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8849 return FALSE;
8850
8851 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8852 return FALSE;
8853
8854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8855 return FALSE;
8856
8857 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8858 return FALSE;
8859
8860 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8861 return FALSE;
8862
8863 if (IRIX_COMPAT (dynobj) == ict_irix5
8864 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8865 return FALSE;
8866
8867 if (IRIX_COMPAT (dynobj) == ict_irix6
8868 && (bfd_get_section_by_name
8869 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8870 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8871 return FALSE;
8872 }
8873 if (htab->splt->size > 0)
8874 {
8875 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8876 return FALSE;
8877
8878 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8879 return FALSE;
8880
8881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8882 return FALSE;
8883
8884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
8885 return FALSE;
8886 }
8887 if (htab->is_vxworks
8888 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8889 return FALSE;
8890 }
8891
8892 return TRUE;
8893 }
8894 \f
8895 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8896 Adjust its R_ADDEND field so that it is correct for the output file.
8897 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8898 and sections respectively; both use symbol indexes. */
8899
8900 static void
8901 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8902 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8903 asection **local_sections, Elf_Internal_Rela *rel)
8904 {
8905 unsigned int r_type, r_symndx;
8906 Elf_Internal_Sym *sym;
8907 asection *sec;
8908
8909 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
8910 {
8911 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8912 if (r_type == R_MIPS16_GPREL
8913 || r_type == R_MIPS_GPREL16
8914 || r_type == R_MIPS_GPREL32
8915 || r_type == R_MIPS_LITERAL)
8916 {
8917 rel->r_addend += _bfd_get_gp_value (input_bfd);
8918 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8919 }
8920
8921 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8922 sym = local_syms + r_symndx;
8923
8924 /* Adjust REL's addend to account for section merging. */
8925 if (!info->relocatable)
8926 {
8927 sec = local_sections[r_symndx];
8928 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8929 }
8930
8931 /* This would normally be done by the rela_normal code in elflink.c. */
8932 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8933 rel->r_addend += local_sections[r_symndx]->output_offset;
8934 }
8935 }
8936
8937 /* Relocate a MIPS ELF section. */
8938
8939 bfd_boolean
8940 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8941 bfd *input_bfd, asection *input_section,
8942 bfd_byte *contents, Elf_Internal_Rela *relocs,
8943 Elf_Internal_Sym *local_syms,
8944 asection **local_sections)
8945 {
8946 Elf_Internal_Rela *rel;
8947 const Elf_Internal_Rela *relend;
8948 bfd_vma addend = 0;
8949 bfd_boolean use_saved_addend_p = FALSE;
8950 const struct elf_backend_data *bed;
8951
8952 bed = get_elf_backend_data (output_bfd);
8953 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8954 for (rel = relocs; rel < relend; ++rel)
8955 {
8956 const char *name;
8957 bfd_vma value = 0;
8958 reloc_howto_type *howto;
8959 bfd_boolean cross_mode_jump_p;
8960 /* TRUE if the relocation is a RELA relocation, rather than a
8961 REL relocation. */
8962 bfd_boolean rela_relocation_p = TRUE;
8963 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8964 const char *msg;
8965 unsigned long r_symndx;
8966 asection *sec;
8967 Elf_Internal_Shdr *symtab_hdr;
8968 struct elf_link_hash_entry *h;
8969 bfd_boolean rel_reloc;
8970
8971 rel_reloc = (NEWABI_P (input_bfd)
8972 && mips_elf_rel_relocation_p (input_bfd, input_section,
8973 relocs, rel));
8974 /* Find the relocation howto for this relocation. */
8975 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
8976
8977 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
8978 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8979 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
8980 {
8981 sec = local_sections[r_symndx];
8982 h = NULL;
8983 }
8984 else
8985 {
8986 unsigned long extsymoff;
8987
8988 extsymoff = 0;
8989 if (!elf_bad_symtab (input_bfd))
8990 extsymoff = symtab_hdr->sh_info;
8991 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8992 while (h->root.type == bfd_link_hash_indirect
8993 || h->root.type == bfd_link_hash_warning)
8994 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8995
8996 sec = NULL;
8997 if (h->root.type == bfd_link_hash_defined
8998 || h->root.type == bfd_link_hash_defweak)
8999 sec = h->root.u.def.section;
9000 }
9001
9002 if (sec != NULL && elf_discarded_section (sec))
9003 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9004 rel, relend, howto, contents);
9005
9006 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9007 {
9008 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9009 64-bit code, but make sure all their addresses are in the
9010 lowermost or uppermost 32-bit section of the 64-bit address
9011 space. Thus, when they use an R_MIPS_64 they mean what is
9012 usually meant by R_MIPS_32, with the exception that the
9013 stored value is sign-extended to 64 bits. */
9014 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9015
9016 /* On big-endian systems, we need to lie about the position
9017 of the reloc. */
9018 if (bfd_big_endian (input_bfd))
9019 rel->r_offset += 4;
9020 }
9021
9022 if (!use_saved_addend_p)
9023 {
9024 /* If these relocations were originally of the REL variety,
9025 we must pull the addend out of the field that will be
9026 relocated. Otherwise, we simply use the contents of the
9027 RELA relocation. */
9028 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9029 relocs, rel))
9030 {
9031 rela_relocation_p = FALSE;
9032 addend = mips_elf_read_rel_addend (input_bfd, rel,
9033 howto, contents);
9034 if (hi16_reloc_p (r_type)
9035 || (got16_reloc_p (r_type)
9036 && mips_elf_local_relocation_p (input_bfd, rel,
9037 local_sections)))
9038 {
9039 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9040 contents, &addend))
9041 {
9042 if (h)
9043 name = h->root.root.string;
9044 else
9045 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9046 local_syms + r_symndx,
9047 sec);
9048 (*_bfd_error_handler)
9049 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9050 input_bfd, input_section, name, howto->name,
9051 rel->r_offset);
9052 }
9053 }
9054 else
9055 addend <<= howto->rightshift;
9056 }
9057 else
9058 addend = rel->r_addend;
9059 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9060 local_syms, local_sections, rel);
9061 }
9062
9063 if (info->relocatable)
9064 {
9065 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9066 && bfd_big_endian (input_bfd))
9067 rel->r_offset -= 4;
9068
9069 if (!rela_relocation_p && rel->r_addend)
9070 {
9071 addend += rel->r_addend;
9072 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9073 addend = mips_elf_high (addend);
9074 else if (r_type == R_MIPS_HIGHER)
9075 addend = mips_elf_higher (addend);
9076 else if (r_type == R_MIPS_HIGHEST)
9077 addend = mips_elf_highest (addend);
9078 else
9079 addend >>= howto->rightshift;
9080
9081 /* We use the source mask, rather than the destination
9082 mask because the place to which we are writing will be
9083 source of the addend in the final link. */
9084 addend &= howto->src_mask;
9085
9086 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9087 /* See the comment above about using R_MIPS_64 in the 32-bit
9088 ABI. Here, we need to update the addend. It would be
9089 possible to get away with just using the R_MIPS_32 reloc
9090 but for endianness. */
9091 {
9092 bfd_vma sign_bits;
9093 bfd_vma low_bits;
9094 bfd_vma high_bits;
9095
9096 if (addend & ((bfd_vma) 1 << 31))
9097 #ifdef BFD64
9098 sign_bits = ((bfd_vma) 1 << 32) - 1;
9099 #else
9100 sign_bits = -1;
9101 #endif
9102 else
9103 sign_bits = 0;
9104
9105 /* If we don't know that we have a 64-bit type,
9106 do two separate stores. */
9107 if (bfd_big_endian (input_bfd))
9108 {
9109 /* Store the sign-bits (which are most significant)
9110 first. */
9111 low_bits = sign_bits;
9112 high_bits = addend;
9113 }
9114 else
9115 {
9116 low_bits = addend;
9117 high_bits = sign_bits;
9118 }
9119 bfd_put_32 (input_bfd, low_bits,
9120 contents + rel->r_offset);
9121 bfd_put_32 (input_bfd, high_bits,
9122 contents + rel->r_offset + 4);
9123 continue;
9124 }
9125
9126 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9127 input_bfd, input_section,
9128 contents, FALSE))
9129 return FALSE;
9130 }
9131
9132 /* Go on to the next relocation. */
9133 continue;
9134 }
9135
9136 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9137 relocations for the same offset. In that case we are
9138 supposed to treat the output of each relocation as the addend
9139 for the next. */
9140 if (rel + 1 < relend
9141 && rel->r_offset == rel[1].r_offset
9142 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9143 use_saved_addend_p = TRUE;
9144 else
9145 use_saved_addend_p = FALSE;
9146
9147 /* Figure out what value we are supposed to relocate. */
9148 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9149 input_section, info, rel,
9150 addend, howto, local_syms,
9151 local_sections, &value,
9152 &name, &cross_mode_jump_p,
9153 use_saved_addend_p))
9154 {
9155 case bfd_reloc_continue:
9156 /* There's nothing to do. */
9157 continue;
9158
9159 case bfd_reloc_undefined:
9160 /* mips_elf_calculate_relocation already called the
9161 undefined_symbol callback. There's no real point in
9162 trying to perform the relocation at this point, so we
9163 just skip ahead to the next relocation. */
9164 continue;
9165
9166 case bfd_reloc_notsupported:
9167 msg = _("internal error: unsupported relocation error");
9168 info->callbacks->warning
9169 (info, msg, name, input_bfd, input_section, rel->r_offset);
9170 return FALSE;
9171
9172 case bfd_reloc_overflow:
9173 if (use_saved_addend_p)
9174 /* Ignore overflow until we reach the last relocation for
9175 a given location. */
9176 ;
9177 else
9178 {
9179 struct mips_elf_link_hash_table *htab;
9180
9181 htab = mips_elf_hash_table (info);
9182 BFD_ASSERT (htab != NULL);
9183 BFD_ASSERT (name != NULL);
9184 if (!htab->small_data_overflow_reported
9185 && (gprel16_reloc_p (howto->type)
9186 || howto->type == R_MIPS_LITERAL))
9187 {
9188 msg = _("small-data section exceeds 64KB;"
9189 " lower small-data size limit (see option -G)");
9190
9191 htab->small_data_overflow_reported = TRUE;
9192 (*info->callbacks->einfo) ("%P: %s\n", msg);
9193 }
9194 if (! ((*info->callbacks->reloc_overflow)
9195 (info, NULL, name, howto->name, (bfd_vma) 0,
9196 input_bfd, input_section, rel->r_offset)))
9197 return FALSE;
9198 }
9199 break;
9200
9201 case bfd_reloc_ok:
9202 break;
9203
9204 default:
9205 abort ();
9206 break;
9207 }
9208
9209 /* If we've got another relocation for the address, keep going
9210 until we reach the last one. */
9211 if (use_saved_addend_p)
9212 {
9213 addend = value;
9214 continue;
9215 }
9216
9217 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9218 /* See the comment above about using R_MIPS_64 in the 32-bit
9219 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9220 that calculated the right value. Now, however, we
9221 sign-extend the 32-bit result to 64-bits, and store it as a
9222 64-bit value. We are especially generous here in that we
9223 go to extreme lengths to support this usage on systems with
9224 only a 32-bit VMA. */
9225 {
9226 bfd_vma sign_bits;
9227 bfd_vma low_bits;
9228 bfd_vma high_bits;
9229
9230 if (value & ((bfd_vma) 1 << 31))
9231 #ifdef BFD64
9232 sign_bits = ((bfd_vma) 1 << 32) - 1;
9233 #else
9234 sign_bits = -1;
9235 #endif
9236 else
9237 sign_bits = 0;
9238
9239 /* If we don't know that we have a 64-bit type,
9240 do two separate stores. */
9241 if (bfd_big_endian (input_bfd))
9242 {
9243 /* Undo what we did above. */
9244 rel->r_offset -= 4;
9245 /* Store the sign-bits (which are most significant)
9246 first. */
9247 low_bits = sign_bits;
9248 high_bits = value;
9249 }
9250 else
9251 {
9252 low_bits = value;
9253 high_bits = sign_bits;
9254 }
9255 bfd_put_32 (input_bfd, low_bits,
9256 contents + rel->r_offset);
9257 bfd_put_32 (input_bfd, high_bits,
9258 contents + rel->r_offset + 4);
9259 continue;
9260 }
9261
9262 /* Actually perform the relocation. */
9263 if (! mips_elf_perform_relocation (info, howto, rel, value,
9264 input_bfd, input_section,
9265 contents, cross_mode_jump_p))
9266 return FALSE;
9267 }
9268
9269 return TRUE;
9270 }
9271 \f
9272 /* A function that iterates over each entry in la25_stubs and fills
9273 in the code for each one. DATA points to a mips_htab_traverse_info. */
9274
9275 static int
9276 mips_elf_create_la25_stub (void **slot, void *data)
9277 {
9278 struct mips_htab_traverse_info *hti;
9279 struct mips_elf_link_hash_table *htab;
9280 struct mips_elf_la25_stub *stub;
9281 asection *s;
9282 bfd_byte *loc;
9283 bfd_vma offset, target, target_high, target_low;
9284
9285 stub = (struct mips_elf_la25_stub *) *slot;
9286 hti = (struct mips_htab_traverse_info *) data;
9287 htab = mips_elf_hash_table (hti->info);
9288 BFD_ASSERT (htab != NULL);
9289
9290 /* Create the section contents, if we haven't already. */
9291 s = stub->stub_section;
9292 loc = s->contents;
9293 if (loc == NULL)
9294 {
9295 loc = bfd_malloc (s->size);
9296 if (loc == NULL)
9297 {
9298 hti->error = TRUE;
9299 return FALSE;
9300 }
9301 s->contents = loc;
9302 }
9303
9304 /* Work out where in the section this stub should go. */
9305 offset = stub->offset;
9306
9307 /* Work out the target address. */
9308 target = (stub->h->root.root.u.def.section->output_section->vma
9309 + stub->h->root.root.u.def.section->output_offset
9310 + stub->h->root.root.u.def.value);
9311 target_high = ((target + 0x8000) >> 16) & 0xffff;
9312 target_low = (target & 0xffff);
9313
9314 if (stub->stub_section != htab->strampoline)
9315 {
9316 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9317 of the section and write the two instructions at the end. */
9318 memset (loc, 0, offset);
9319 loc += offset;
9320 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9321 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9322 }
9323 else
9324 {
9325 /* This is trampoline. */
9326 loc += offset;
9327 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9328 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9329 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9330 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9331 }
9332 return TRUE;
9333 }
9334
9335 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9336 adjust it appropriately now. */
9337
9338 static void
9339 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9340 const char *name, Elf_Internal_Sym *sym)
9341 {
9342 /* The linker script takes care of providing names and values for
9343 these, but we must place them into the right sections. */
9344 static const char* const text_section_symbols[] = {
9345 "_ftext",
9346 "_etext",
9347 "__dso_displacement",
9348 "__elf_header",
9349 "__program_header_table",
9350 NULL
9351 };
9352
9353 static const char* const data_section_symbols[] = {
9354 "_fdata",
9355 "_edata",
9356 "_end",
9357 "_fbss",
9358 NULL
9359 };
9360
9361 const char* const *p;
9362 int i;
9363
9364 for (i = 0; i < 2; ++i)
9365 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9366 *p;
9367 ++p)
9368 if (strcmp (*p, name) == 0)
9369 {
9370 /* All of these symbols are given type STT_SECTION by the
9371 IRIX6 linker. */
9372 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9373 sym->st_other = STO_PROTECTED;
9374
9375 /* The IRIX linker puts these symbols in special sections. */
9376 if (i == 0)
9377 sym->st_shndx = SHN_MIPS_TEXT;
9378 else
9379 sym->st_shndx = SHN_MIPS_DATA;
9380
9381 break;
9382 }
9383 }
9384
9385 /* Finish up dynamic symbol handling. We set the contents of various
9386 dynamic sections here. */
9387
9388 bfd_boolean
9389 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9390 struct bfd_link_info *info,
9391 struct elf_link_hash_entry *h,
9392 Elf_Internal_Sym *sym)
9393 {
9394 bfd *dynobj;
9395 asection *sgot;
9396 struct mips_got_info *g, *gg;
9397 const char *name;
9398 int idx;
9399 struct mips_elf_link_hash_table *htab;
9400 struct mips_elf_link_hash_entry *hmips;
9401
9402 htab = mips_elf_hash_table (info);
9403 BFD_ASSERT (htab != NULL);
9404 dynobj = elf_hash_table (info)->dynobj;
9405 hmips = (struct mips_elf_link_hash_entry *) h;
9406
9407 BFD_ASSERT (!htab->is_vxworks);
9408
9409 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9410 {
9411 /* We've decided to create a PLT entry for this symbol. */
9412 bfd_byte *loc;
9413 bfd_vma header_address, plt_index, got_address;
9414 bfd_vma got_address_high, got_address_low, load;
9415 const bfd_vma *plt_entry;
9416
9417 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9418 BFD_ASSERT (h->dynindx != -1);
9419 BFD_ASSERT (htab->splt != NULL);
9420 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9421 BFD_ASSERT (!h->def_regular);
9422
9423 /* Calculate the address of the PLT header. */
9424 header_address = (htab->splt->output_section->vma
9425 + htab->splt->output_offset);
9426
9427 /* Calculate the index of the entry. */
9428 plt_index = ((h->plt.offset - htab->plt_header_size)
9429 / htab->plt_entry_size);
9430
9431 /* Calculate the address of the .got.plt entry. */
9432 got_address = (htab->sgotplt->output_section->vma
9433 + htab->sgotplt->output_offset
9434 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9435 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9436 got_address_low = got_address & 0xffff;
9437
9438 /* Initially point the .got.plt entry at the PLT header. */
9439 loc = (htab->sgotplt->contents
9440 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9441 if (ABI_64_P (output_bfd))
9442 bfd_put_64 (output_bfd, header_address, loc);
9443 else
9444 bfd_put_32 (output_bfd, header_address, loc);
9445
9446 /* Find out where the .plt entry should go. */
9447 loc = htab->splt->contents + h->plt.offset;
9448
9449 /* Pick the load opcode. */
9450 load = MIPS_ELF_LOAD_WORD (output_bfd);
9451
9452 /* Fill in the PLT entry itself. */
9453 plt_entry = mips_exec_plt_entry;
9454 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9455 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9456
9457 if (! LOAD_INTERLOCKS_P (output_bfd))
9458 {
9459 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9460 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9461 }
9462 else
9463 {
9464 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9465 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9466 }
9467
9468 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9469 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9470 plt_index, h->dynindx,
9471 R_MIPS_JUMP_SLOT, got_address);
9472
9473 /* We distinguish between PLT entries and lazy-binding stubs by
9474 giving the former an st_other value of STO_MIPS_PLT. Set the
9475 flag and leave the value if there are any relocations in the
9476 binary where pointer equality matters. */
9477 sym->st_shndx = SHN_UNDEF;
9478 if (h->pointer_equality_needed)
9479 sym->st_other = STO_MIPS_PLT;
9480 else
9481 sym->st_value = 0;
9482 }
9483 else if (h->plt.offset != MINUS_ONE)
9484 {
9485 /* We've decided to create a lazy-binding stub. */
9486 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9487
9488 /* This symbol has a stub. Set it up. */
9489
9490 BFD_ASSERT (h->dynindx != -1);
9491
9492 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9493 || (h->dynindx <= 0xffff));
9494
9495 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9496 sign extension at runtime in the stub, resulting in a negative
9497 index value. */
9498 if (h->dynindx & ~0x7fffffff)
9499 return FALSE;
9500
9501 /* Fill the stub. */
9502 idx = 0;
9503 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9504 idx += 4;
9505 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9506 idx += 4;
9507 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9508 {
9509 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9510 stub + idx);
9511 idx += 4;
9512 }
9513 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9514 idx += 4;
9515
9516 /* If a large stub is not required and sign extension is not a
9517 problem, then use legacy code in the stub. */
9518 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9519 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9520 else if (h->dynindx & ~0x7fff)
9521 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9522 else
9523 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9524 stub + idx);
9525
9526 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9527 memcpy (htab->sstubs->contents + h->plt.offset,
9528 stub, htab->function_stub_size);
9529
9530 /* Mark the symbol as undefined. plt.offset != -1 occurs
9531 only for the referenced symbol. */
9532 sym->st_shndx = SHN_UNDEF;
9533
9534 /* The run-time linker uses the st_value field of the symbol
9535 to reset the global offset table entry for this external
9536 to its stub address when unlinking a shared object. */
9537 sym->st_value = (htab->sstubs->output_section->vma
9538 + htab->sstubs->output_offset
9539 + h->plt.offset);
9540 }
9541
9542 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9543 refer to the stub, since only the stub uses the standard calling
9544 conventions. */
9545 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9546 {
9547 BFD_ASSERT (hmips->need_fn_stub);
9548 sym->st_value = (hmips->fn_stub->output_section->vma
9549 + hmips->fn_stub->output_offset);
9550 sym->st_size = hmips->fn_stub->size;
9551 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9552 }
9553
9554 BFD_ASSERT (h->dynindx != -1
9555 || h->forced_local);
9556
9557 sgot = htab->sgot;
9558 g = htab->got_info;
9559 BFD_ASSERT (g != NULL);
9560
9561 /* Run through the global symbol table, creating GOT entries for all
9562 the symbols that need them. */
9563 if (hmips->global_got_area != GGA_NONE)
9564 {
9565 bfd_vma offset;
9566 bfd_vma value;
9567
9568 value = sym->st_value;
9569 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9570 R_MIPS_GOT16, info);
9571 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9572 }
9573
9574 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
9575 {
9576 struct mips_got_entry e, *p;
9577 bfd_vma entry;
9578 bfd_vma offset;
9579
9580 gg = g;
9581
9582 e.abfd = output_bfd;
9583 e.symndx = -1;
9584 e.d.h = hmips;
9585 e.tls_type = 0;
9586
9587 for (g = g->next; g->next != gg; g = g->next)
9588 {
9589 if (g->got_entries
9590 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9591 &e)))
9592 {
9593 offset = p->gotidx;
9594 if (info->shared
9595 || (elf_hash_table (info)->dynamic_sections_created
9596 && p->d.h != NULL
9597 && p->d.h->root.def_dynamic
9598 && !p->d.h->root.def_regular))
9599 {
9600 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9601 the various compatibility problems, it's easier to mock
9602 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9603 mips_elf_create_dynamic_relocation to calculate the
9604 appropriate addend. */
9605 Elf_Internal_Rela rel[3];
9606
9607 memset (rel, 0, sizeof (rel));
9608 if (ABI_64_P (output_bfd))
9609 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9610 else
9611 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9612 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9613
9614 entry = 0;
9615 if (! (mips_elf_create_dynamic_relocation
9616 (output_bfd, info, rel,
9617 e.d.h, NULL, sym->st_value, &entry, sgot)))
9618 return FALSE;
9619 }
9620 else
9621 entry = sym->st_value;
9622 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9623 }
9624 }
9625 }
9626
9627 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9628 name = h->root.root.string;
9629 if (strcmp (name, "_DYNAMIC") == 0
9630 || h == elf_hash_table (info)->hgot)
9631 sym->st_shndx = SHN_ABS;
9632 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9633 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9634 {
9635 sym->st_shndx = SHN_ABS;
9636 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9637 sym->st_value = 1;
9638 }
9639 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9640 {
9641 sym->st_shndx = SHN_ABS;
9642 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9643 sym->st_value = elf_gp (output_bfd);
9644 }
9645 else if (SGI_COMPAT (output_bfd))
9646 {
9647 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9648 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9649 {
9650 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9651 sym->st_other = STO_PROTECTED;
9652 sym->st_value = 0;
9653 sym->st_shndx = SHN_MIPS_DATA;
9654 }
9655 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9656 {
9657 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9658 sym->st_other = STO_PROTECTED;
9659 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9660 sym->st_shndx = SHN_ABS;
9661 }
9662 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9663 {
9664 if (h->type == STT_FUNC)
9665 sym->st_shndx = SHN_MIPS_TEXT;
9666 else if (h->type == STT_OBJECT)
9667 sym->st_shndx = SHN_MIPS_DATA;
9668 }
9669 }
9670
9671 /* Emit a copy reloc, if needed. */
9672 if (h->needs_copy)
9673 {
9674 asection *s;
9675 bfd_vma symval;
9676
9677 BFD_ASSERT (h->dynindx != -1);
9678 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9679
9680 s = mips_elf_rel_dyn_section (info, FALSE);
9681 symval = (h->root.u.def.section->output_section->vma
9682 + h->root.u.def.section->output_offset
9683 + h->root.u.def.value);
9684 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9685 h->dynindx, R_MIPS_COPY, symval);
9686 }
9687
9688 /* Handle the IRIX6-specific symbols. */
9689 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9690 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9691
9692 if (! info->shared)
9693 {
9694 if (! mips_elf_hash_table (info)->use_rld_obj_head
9695 && (strcmp (name, "__rld_map") == 0
9696 || strcmp (name, "__RLD_MAP") == 0))
9697 {
9698 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9699 BFD_ASSERT (s != NULL);
9700 sym->st_value = s->output_section->vma + s->output_offset;
9701 bfd_put_32 (output_bfd, 0, s->contents);
9702 if (mips_elf_hash_table (info)->rld_value == 0)
9703 mips_elf_hash_table (info)->rld_value = sym->st_value;
9704 }
9705 else if (mips_elf_hash_table (info)->use_rld_obj_head
9706 && strcmp (name, "__rld_obj_head") == 0)
9707 {
9708 /* IRIX6 does not use a .rld_map section. */
9709 if (IRIX_COMPAT (output_bfd) == ict_irix5
9710 || IRIX_COMPAT (output_bfd) == ict_none)
9711 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9712 != NULL);
9713 mips_elf_hash_table (info)->rld_value = sym->st_value;
9714 }
9715 }
9716
9717 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9718 treat MIPS16 symbols like any other. */
9719 if (ELF_ST_IS_MIPS16 (sym->st_other))
9720 {
9721 BFD_ASSERT (sym->st_value & 1);
9722 sym->st_other -= STO_MIPS16;
9723 }
9724
9725 return TRUE;
9726 }
9727
9728 /* Likewise, for VxWorks. */
9729
9730 bfd_boolean
9731 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9732 struct bfd_link_info *info,
9733 struct elf_link_hash_entry *h,
9734 Elf_Internal_Sym *sym)
9735 {
9736 bfd *dynobj;
9737 asection *sgot;
9738 struct mips_got_info *g;
9739 struct mips_elf_link_hash_table *htab;
9740 struct mips_elf_link_hash_entry *hmips;
9741
9742 htab = mips_elf_hash_table (info);
9743 BFD_ASSERT (htab != NULL);
9744 dynobj = elf_hash_table (info)->dynobj;
9745 hmips = (struct mips_elf_link_hash_entry *) h;
9746
9747 if (h->plt.offset != (bfd_vma) -1)
9748 {
9749 bfd_byte *loc;
9750 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9751 Elf_Internal_Rela rel;
9752 static const bfd_vma *plt_entry;
9753
9754 BFD_ASSERT (h->dynindx != -1);
9755 BFD_ASSERT (htab->splt != NULL);
9756 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9757
9758 /* Calculate the address of the .plt entry. */
9759 plt_address = (htab->splt->output_section->vma
9760 + htab->splt->output_offset
9761 + h->plt.offset);
9762
9763 /* Calculate the index of the entry. */
9764 plt_index = ((h->plt.offset - htab->plt_header_size)
9765 / htab->plt_entry_size);
9766
9767 /* Calculate the address of the .got.plt entry. */
9768 got_address = (htab->sgotplt->output_section->vma
9769 + htab->sgotplt->output_offset
9770 + plt_index * 4);
9771
9772 /* Calculate the offset of the .got.plt entry from
9773 _GLOBAL_OFFSET_TABLE_. */
9774 got_offset = mips_elf_gotplt_index (info, h);
9775
9776 /* Calculate the offset for the branch at the start of the PLT
9777 entry. The branch jumps to the beginning of .plt. */
9778 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9779
9780 /* Fill in the initial value of the .got.plt entry. */
9781 bfd_put_32 (output_bfd, plt_address,
9782 htab->sgotplt->contents + plt_index * 4);
9783
9784 /* Find out where the .plt entry should go. */
9785 loc = htab->splt->contents + h->plt.offset;
9786
9787 if (info->shared)
9788 {
9789 plt_entry = mips_vxworks_shared_plt_entry;
9790 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9791 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9792 }
9793 else
9794 {
9795 bfd_vma got_address_high, got_address_low;
9796
9797 plt_entry = mips_vxworks_exec_plt_entry;
9798 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9799 got_address_low = got_address & 0xffff;
9800
9801 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9802 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9803 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9804 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9805 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9806 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9807 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9808 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9809
9810 loc = (htab->srelplt2->contents
9811 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9812
9813 /* Emit a relocation for the .got.plt entry. */
9814 rel.r_offset = got_address;
9815 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9816 rel.r_addend = h->plt.offset;
9817 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9818
9819 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9820 loc += sizeof (Elf32_External_Rela);
9821 rel.r_offset = plt_address + 8;
9822 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9823 rel.r_addend = got_offset;
9824 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9825
9826 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9827 loc += sizeof (Elf32_External_Rela);
9828 rel.r_offset += 4;
9829 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9830 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9831 }
9832
9833 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9834 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9835 rel.r_offset = got_address;
9836 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9837 rel.r_addend = 0;
9838 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9839
9840 if (!h->def_regular)
9841 sym->st_shndx = SHN_UNDEF;
9842 }
9843
9844 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9845
9846 sgot = htab->sgot;
9847 g = htab->got_info;
9848 BFD_ASSERT (g != NULL);
9849
9850 /* See if this symbol has an entry in the GOT. */
9851 if (hmips->global_got_area != GGA_NONE)
9852 {
9853 bfd_vma offset;
9854 Elf_Internal_Rela outrel;
9855 bfd_byte *loc;
9856 asection *s;
9857
9858 /* Install the symbol value in the GOT. */
9859 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9860 R_MIPS_GOT16, info);
9861 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9862
9863 /* Add a dynamic relocation for it. */
9864 s = mips_elf_rel_dyn_section (info, FALSE);
9865 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9866 outrel.r_offset = (sgot->output_section->vma
9867 + sgot->output_offset
9868 + offset);
9869 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9870 outrel.r_addend = 0;
9871 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9872 }
9873
9874 /* Emit a copy reloc, if needed. */
9875 if (h->needs_copy)
9876 {
9877 Elf_Internal_Rela rel;
9878
9879 BFD_ASSERT (h->dynindx != -1);
9880
9881 rel.r_offset = (h->root.u.def.section->output_section->vma
9882 + h->root.u.def.section->output_offset
9883 + h->root.u.def.value);
9884 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9885 rel.r_addend = 0;
9886 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9887 htab->srelbss->contents
9888 + (htab->srelbss->reloc_count
9889 * sizeof (Elf32_External_Rela)));
9890 ++htab->srelbss->reloc_count;
9891 }
9892
9893 /* If this is a mips16 symbol, force the value to be even. */
9894 if (ELF_ST_IS_MIPS16 (sym->st_other))
9895 sym->st_value &= ~1;
9896
9897 return TRUE;
9898 }
9899
9900 /* Write out a plt0 entry to the beginning of .plt. */
9901
9902 static void
9903 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9904 {
9905 bfd_byte *loc;
9906 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
9907 static const bfd_vma *plt_entry;
9908 struct mips_elf_link_hash_table *htab;
9909
9910 htab = mips_elf_hash_table (info);
9911 BFD_ASSERT (htab != NULL);
9912
9913 if (ABI_64_P (output_bfd))
9914 plt_entry = mips_n64_exec_plt0_entry;
9915 else if (ABI_N32_P (output_bfd))
9916 plt_entry = mips_n32_exec_plt0_entry;
9917 else
9918 plt_entry = mips_o32_exec_plt0_entry;
9919
9920 /* Calculate the value of .got.plt. */
9921 gotplt_value = (htab->sgotplt->output_section->vma
9922 + htab->sgotplt->output_offset);
9923 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
9924 gotplt_value_low = gotplt_value & 0xffff;
9925
9926 /* The PLT sequence is not safe for N64 if .got.plt's address can
9927 not be loaded in two instructions. */
9928 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
9929 || ~(gotplt_value | 0x7fffffff) == 0);
9930
9931 /* Install the PLT header. */
9932 loc = htab->splt->contents;
9933 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
9934 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
9935 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
9936 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9937 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9938 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9939 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9940 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9941 }
9942
9943 /* Install the PLT header for a VxWorks executable and finalize the
9944 contents of .rela.plt.unloaded. */
9945
9946 static void
9947 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9948 {
9949 Elf_Internal_Rela rela;
9950 bfd_byte *loc;
9951 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9952 static const bfd_vma *plt_entry;
9953 struct mips_elf_link_hash_table *htab;
9954
9955 htab = mips_elf_hash_table (info);
9956 BFD_ASSERT (htab != NULL);
9957
9958 plt_entry = mips_vxworks_exec_plt0_entry;
9959
9960 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9961 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9962 + htab->root.hgot->root.u.def.section->output_offset
9963 + htab->root.hgot->root.u.def.value);
9964
9965 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9966 got_value_low = got_value & 0xffff;
9967
9968 /* Calculate the address of the PLT header. */
9969 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9970
9971 /* Install the PLT header. */
9972 loc = htab->splt->contents;
9973 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9974 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9975 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9976 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9977 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9978 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9979
9980 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9981 loc = htab->srelplt2->contents;
9982 rela.r_offset = plt_address;
9983 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9984 rela.r_addend = 0;
9985 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9986 loc += sizeof (Elf32_External_Rela);
9987
9988 /* Output the relocation for the following addiu of
9989 %lo(_GLOBAL_OFFSET_TABLE_). */
9990 rela.r_offset += 4;
9991 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9992 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9993 loc += sizeof (Elf32_External_Rela);
9994
9995 /* Fix up the remaining relocations. They may have the wrong
9996 symbol index for _G_O_T_ or _P_L_T_ depending on the order
9997 in which symbols were output. */
9998 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
9999 {
10000 Elf_Internal_Rela rel;
10001
10002 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10003 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10004 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10005 loc += sizeof (Elf32_External_Rela);
10006
10007 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10008 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10009 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10010 loc += sizeof (Elf32_External_Rela);
10011
10012 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10013 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10014 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10015 loc += sizeof (Elf32_External_Rela);
10016 }
10017 }
10018
10019 /* Install the PLT header for a VxWorks shared library. */
10020
10021 static void
10022 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10023 {
10024 unsigned int i;
10025 struct mips_elf_link_hash_table *htab;
10026
10027 htab = mips_elf_hash_table (info);
10028 BFD_ASSERT (htab != NULL);
10029
10030 /* We just need to copy the entry byte-by-byte. */
10031 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10032 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10033 htab->splt->contents + i * 4);
10034 }
10035
10036 /* Finish up the dynamic sections. */
10037
10038 bfd_boolean
10039 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10040 struct bfd_link_info *info)
10041 {
10042 bfd *dynobj;
10043 asection *sdyn;
10044 asection *sgot;
10045 struct mips_got_info *gg, *g;
10046 struct mips_elf_link_hash_table *htab;
10047
10048 htab = mips_elf_hash_table (info);
10049 BFD_ASSERT (htab != NULL);
10050
10051 dynobj = elf_hash_table (info)->dynobj;
10052
10053 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10054
10055 sgot = htab->sgot;
10056 gg = htab->got_info;
10057
10058 if (elf_hash_table (info)->dynamic_sections_created)
10059 {
10060 bfd_byte *b;
10061 int dyn_to_skip = 0, dyn_skipped = 0;
10062
10063 BFD_ASSERT (sdyn != NULL);
10064 BFD_ASSERT (gg != NULL);
10065
10066 g = mips_elf_got_for_ibfd (gg, output_bfd);
10067 BFD_ASSERT (g != NULL);
10068
10069 for (b = sdyn->contents;
10070 b < sdyn->contents + sdyn->size;
10071 b += MIPS_ELF_DYN_SIZE (dynobj))
10072 {
10073 Elf_Internal_Dyn dyn;
10074 const char *name;
10075 size_t elemsize;
10076 asection *s;
10077 bfd_boolean swap_out_p;
10078
10079 /* Read in the current dynamic entry. */
10080 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10081
10082 /* Assume that we're going to modify it and write it out. */
10083 swap_out_p = TRUE;
10084
10085 switch (dyn.d_tag)
10086 {
10087 case DT_RELENT:
10088 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10089 break;
10090
10091 case DT_RELAENT:
10092 BFD_ASSERT (htab->is_vxworks);
10093 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10094 break;
10095
10096 case DT_STRSZ:
10097 /* Rewrite DT_STRSZ. */
10098 dyn.d_un.d_val =
10099 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10100 break;
10101
10102 case DT_PLTGOT:
10103 s = htab->sgot;
10104 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10105 break;
10106
10107 case DT_MIPS_PLTGOT:
10108 s = htab->sgotplt;
10109 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10110 break;
10111
10112 case DT_MIPS_RLD_VERSION:
10113 dyn.d_un.d_val = 1; /* XXX */
10114 break;
10115
10116 case DT_MIPS_FLAGS:
10117 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10118 break;
10119
10120 case DT_MIPS_TIME_STAMP:
10121 {
10122 time_t t;
10123 time (&t);
10124 dyn.d_un.d_val = t;
10125 }
10126 break;
10127
10128 case DT_MIPS_ICHECKSUM:
10129 /* XXX FIXME: */
10130 swap_out_p = FALSE;
10131 break;
10132
10133 case DT_MIPS_IVERSION:
10134 /* XXX FIXME: */
10135 swap_out_p = FALSE;
10136 break;
10137
10138 case DT_MIPS_BASE_ADDRESS:
10139 s = output_bfd->sections;
10140 BFD_ASSERT (s != NULL);
10141 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10142 break;
10143
10144 case DT_MIPS_LOCAL_GOTNO:
10145 dyn.d_un.d_val = g->local_gotno;
10146 break;
10147
10148 case DT_MIPS_UNREFEXTNO:
10149 /* The index into the dynamic symbol table which is the
10150 entry of the first external symbol that is not
10151 referenced within the same object. */
10152 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10153 break;
10154
10155 case DT_MIPS_GOTSYM:
10156 if (gg->global_gotsym)
10157 {
10158 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10159 break;
10160 }
10161 /* In case if we don't have global got symbols we default
10162 to setting DT_MIPS_GOTSYM to the same value as
10163 DT_MIPS_SYMTABNO, so we just fall through. */
10164
10165 case DT_MIPS_SYMTABNO:
10166 name = ".dynsym";
10167 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10168 s = bfd_get_section_by_name (output_bfd, name);
10169 BFD_ASSERT (s != NULL);
10170
10171 dyn.d_un.d_val = s->size / elemsize;
10172 break;
10173
10174 case DT_MIPS_HIPAGENO:
10175 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10176 break;
10177
10178 case DT_MIPS_RLD_MAP:
10179 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10180 break;
10181
10182 case DT_MIPS_OPTIONS:
10183 s = (bfd_get_section_by_name
10184 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10185 dyn.d_un.d_ptr = s->vma;
10186 break;
10187
10188 case DT_RELASZ:
10189 BFD_ASSERT (htab->is_vxworks);
10190 /* The count does not include the JUMP_SLOT relocations. */
10191 if (htab->srelplt)
10192 dyn.d_un.d_val -= htab->srelplt->size;
10193 break;
10194
10195 case DT_PLTREL:
10196 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10197 if (htab->is_vxworks)
10198 dyn.d_un.d_val = DT_RELA;
10199 else
10200 dyn.d_un.d_val = DT_REL;
10201 break;
10202
10203 case DT_PLTRELSZ:
10204 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10205 dyn.d_un.d_val = htab->srelplt->size;
10206 break;
10207
10208 case DT_JMPREL:
10209 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10210 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10211 + htab->srelplt->output_offset);
10212 break;
10213
10214 case DT_TEXTREL:
10215 /* If we didn't need any text relocations after all, delete
10216 the dynamic tag. */
10217 if (!(info->flags & DF_TEXTREL))
10218 {
10219 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10220 swap_out_p = FALSE;
10221 }
10222 break;
10223
10224 case DT_FLAGS:
10225 /* If we didn't need any text relocations after all, clear
10226 DF_TEXTREL from DT_FLAGS. */
10227 if (!(info->flags & DF_TEXTREL))
10228 dyn.d_un.d_val &= ~DF_TEXTREL;
10229 else
10230 swap_out_p = FALSE;
10231 break;
10232
10233 default:
10234 swap_out_p = FALSE;
10235 if (htab->is_vxworks
10236 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10237 swap_out_p = TRUE;
10238 break;
10239 }
10240
10241 if (swap_out_p || dyn_skipped)
10242 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10243 (dynobj, &dyn, b - dyn_skipped);
10244
10245 if (dyn_to_skip)
10246 {
10247 dyn_skipped += dyn_to_skip;
10248 dyn_to_skip = 0;
10249 }
10250 }
10251
10252 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10253 if (dyn_skipped > 0)
10254 memset (b - dyn_skipped, 0, dyn_skipped);
10255 }
10256
10257 if (sgot != NULL && sgot->size > 0
10258 && !bfd_is_abs_section (sgot->output_section))
10259 {
10260 if (htab->is_vxworks)
10261 {
10262 /* The first entry of the global offset table points to the
10263 ".dynamic" section. The second is initialized by the
10264 loader and contains the shared library identifier.
10265 The third is also initialized by the loader and points
10266 to the lazy resolution stub. */
10267 MIPS_ELF_PUT_WORD (output_bfd,
10268 sdyn->output_offset + sdyn->output_section->vma,
10269 sgot->contents);
10270 MIPS_ELF_PUT_WORD (output_bfd, 0,
10271 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10272 MIPS_ELF_PUT_WORD (output_bfd, 0,
10273 sgot->contents
10274 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10275 }
10276 else
10277 {
10278 /* The first entry of the global offset table will be filled at
10279 runtime. The second entry will be used by some runtime loaders.
10280 This isn't the case of IRIX rld. */
10281 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10282 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10283 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10284 }
10285
10286 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10287 = MIPS_ELF_GOT_SIZE (output_bfd);
10288 }
10289
10290 /* Generate dynamic relocations for the non-primary gots. */
10291 if (gg != NULL && gg->next)
10292 {
10293 Elf_Internal_Rela rel[3];
10294 bfd_vma addend = 0;
10295
10296 memset (rel, 0, sizeof (rel));
10297 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10298
10299 for (g = gg->next; g->next != gg; g = g->next)
10300 {
10301 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10302 + g->next->tls_gotno;
10303
10304 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10305 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10306 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10307 sgot->contents
10308 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10309
10310 if (! info->shared)
10311 continue;
10312
10313 while (got_index < g->assigned_gotno)
10314 {
10315 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10316 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10317 if (!(mips_elf_create_dynamic_relocation
10318 (output_bfd, info, rel, NULL,
10319 bfd_abs_section_ptr,
10320 0, &addend, sgot)))
10321 return FALSE;
10322 BFD_ASSERT (addend == 0);
10323 }
10324 }
10325 }
10326
10327 /* The generation of dynamic relocations for the non-primary gots
10328 adds more dynamic relocations. We cannot count them until
10329 here. */
10330
10331 if (elf_hash_table (info)->dynamic_sections_created)
10332 {
10333 bfd_byte *b;
10334 bfd_boolean swap_out_p;
10335
10336 BFD_ASSERT (sdyn != NULL);
10337
10338 for (b = sdyn->contents;
10339 b < sdyn->contents + sdyn->size;
10340 b += MIPS_ELF_DYN_SIZE (dynobj))
10341 {
10342 Elf_Internal_Dyn dyn;
10343 asection *s;
10344
10345 /* Read in the current dynamic entry. */
10346 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10347
10348 /* Assume that we're going to modify it and write it out. */
10349 swap_out_p = TRUE;
10350
10351 switch (dyn.d_tag)
10352 {
10353 case DT_RELSZ:
10354 /* Reduce DT_RELSZ to account for any relocations we
10355 decided not to make. This is for the n64 irix rld,
10356 which doesn't seem to apply any relocations if there
10357 are trailing null entries. */
10358 s = mips_elf_rel_dyn_section (info, FALSE);
10359 dyn.d_un.d_val = (s->reloc_count
10360 * (ABI_64_P (output_bfd)
10361 ? sizeof (Elf64_Mips_External_Rel)
10362 : sizeof (Elf32_External_Rel)));
10363 /* Adjust the section size too. Tools like the prelinker
10364 can reasonably expect the values to the same. */
10365 elf_section_data (s->output_section)->this_hdr.sh_size
10366 = dyn.d_un.d_val;
10367 break;
10368
10369 default:
10370 swap_out_p = FALSE;
10371 break;
10372 }
10373
10374 if (swap_out_p)
10375 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10376 (dynobj, &dyn, b);
10377 }
10378 }
10379
10380 {
10381 asection *s;
10382 Elf32_compact_rel cpt;
10383
10384 if (SGI_COMPAT (output_bfd))
10385 {
10386 /* Write .compact_rel section out. */
10387 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10388 if (s != NULL)
10389 {
10390 cpt.id1 = 1;
10391 cpt.num = s->reloc_count;
10392 cpt.id2 = 2;
10393 cpt.offset = (s->output_section->filepos
10394 + sizeof (Elf32_External_compact_rel));
10395 cpt.reserved0 = 0;
10396 cpt.reserved1 = 0;
10397 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10398 ((Elf32_External_compact_rel *)
10399 s->contents));
10400
10401 /* Clean up a dummy stub function entry in .text. */
10402 if (htab->sstubs != NULL)
10403 {
10404 file_ptr dummy_offset;
10405
10406 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10407 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10408 memset (htab->sstubs->contents + dummy_offset, 0,
10409 htab->function_stub_size);
10410 }
10411 }
10412 }
10413
10414 /* The psABI says that the dynamic relocations must be sorted in
10415 increasing order of r_symndx. The VxWorks EABI doesn't require
10416 this, and because the code below handles REL rather than RELA
10417 relocations, using it for VxWorks would be outright harmful. */
10418 if (!htab->is_vxworks)
10419 {
10420 s = mips_elf_rel_dyn_section (info, FALSE);
10421 if (s != NULL
10422 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10423 {
10424 reldyn_sorting_bfd = output_bfd;
10425
10426 if (ABI_64_P (output_bfd))
10427 qsort ((Elf64_External_Rel *) s->contents + 1,
10428 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10429 sort_dynamic_relocs_64);
10430 else
10431 qsort ((Elf32_External_Rel *) s->contents + 1,
10432 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10433 sort_dynamic_relocs);
10434 }
10435 }
10436 }
10437
10438 if (htab->splt && htab->splt->size > 0)
10439 {
10440 if (htab->is_vxworks)
10441 {
10442 if (info->shared)
10443 mips_vxworks_finish_shared_plt (output_bfd, info);
10444 else
10445 mips_vxworks_finish_exec_plt (output_bfd, info);
10446 }
10447 else
10448 {
10449 BFD_ASSERT (!info->shared);
10450 mips_finish_exec_plt (output_bfd, info);
10451 }
10452 }
10453 return TRUE;
10454 }
10455
10456
10457 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10458
10459 static void
10460 mips_set_isa_flags (bfd *abfd)
10461 {
10462 flagword val;
10463
10464 switch (bfd_get_mach (abfd))
10465 {
10466 default:
10467 case bfd_mach_mips3000:
10468 val = E_MIPS_ARCH_1;
10469 break;
10470
10471 case bfd_mach_mips3900:
10472 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10473 break;
10474
10475 case bfd_mach_mips6000:
10476 val = E_MIPS_ARCH_2;
10477 break;
10478
10479 case bfd_mach_mips4000:
10480 case bfd_mach_mips4300:
10481 case bfd_mach_mips4400:
10482 case bfd_mach_mips4600:
10483 val = E_MIPS_ARCH_3;
10484 break;
10485
10486 case bfd_mach_mips4010:
10487 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10488 break;
10489
10490 case bfd_mach_mips4100:
10491 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10492 break;
10493
10494 case bfd_mach_mips4111:
10495 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10496 break;
10497
10498 case bfd_mach_mips4120:
10499 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10500 break;
10501
10502 case bfd_mach_mips4650:
10503 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10504 break;
10505
10506 case bfd_mach_mips5400:
10507 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10508 break;
10509
10510 case bfd_mach_mips5500:
10511 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10512 break;
10513
10514 case bfd_mach_mips9000:
10515 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10516 break;
10517
10518 case bfd_mach_mips5000:
10519 case bfd_mach_mips7000:
10520 case bfd_mach_mips8000:
10521 case bfd_mach_mips10000:
10522 case bfd_mach_mips12000:
10523 case bfd_mach_mips14000:
10524 case bfd_mach_mips16000:
10525 val = E_MIPS_ARCH_4;
10526 break;
10527
10528 case bfd_mach_mips5:
10529 val = E_MIPS_ARCH_5;
10530 break;
10531
10532 case bfd_mach_mips_loongson_2e:
10533 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10534 break;
10535
10536 case bfd_mach_mips_loongson_2f:
10537 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10538 break;
10539
10540 case bfd_mach_mips_sb1:
10541 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10542 break;
10543
10544 case bfd_mach_mips_octeon:
10545 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10546 break;
10547
10548 case bfd_mach_mips_xlr:
10549 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10550 break;
10551
10552 case bfd_mach_mipsisa32:
10553 val = E_MIPS_ARCH_32;
10554 break;
10555
10556 case bfd_mach_mipsisa64:
10557 val = E_MIPS_ARCH_64;
10558 break;
10559
10560 case bfd_mach_mipsisa32r2:
10561 val = E_MIPS_ARCH_32R2;
10562 break;
10563
10564 case bfd_mach_mipsisa64r2:
10565 val = E_MIPS_ARCH_64R2;
10566 break;
10567 }
10568 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10569 elf_elfheader (abfd)->e_flags |= val;
10570
10571 }
10572
10573
10574 /* The final processing done just before writing out a MIPS ELF object
10575 file. This gets the MIPS architecture right based on the machine
10576 number. This is used by both the 32-bit and the 64-bit ABI. */
10577
10578 void
10579 _bfd_mips_elf_final_write_processing (bfd *abfd,
10580 bfd_boolean linker ATTRIBUTE_UNUSED)
10581 {
10582 unsigned int i;
10583 Elf_Internal_Shdr **hdrpp;
10584 const char *name;
10585 asection *sec;
10586
10587 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10588 is nonzero. This is for compatibility with old objects, which used
10589 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10590 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10591 mips_set_isa_flags (abfd);
10592
10593 /* Set the sh_info field for .gptab sections and other appropriate
10594 info for each special section. */
10595 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10596 i < elf_numsections (abfd);
10597 i++, hdrpp++)
10598 {
10599 switch ((*hdrpp)->sh_type)
10600 {
10601 case SHT_MIPS_MSYM:
10602 case SHT_MIPS_LIBLIST:
10603 sec = bfd_get_section_by_name (abfd, ".dynstr");
10604 if (sec != NULL)
10605 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10606 break;
10607
10608 case SHT_MIPS_GPTAB:
10609 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10610 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10611 BFD_ASSERT (name != NULL
10612 && CONST_STRNEQ (name, ".gptab."));
10613 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10614 BFD_ASSERT (sec != NULL);
10615 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10616 break;
10617
10618 case SHT_MIPS_CONTENT:
10619 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10620 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10621 BFD_ASSERT (name != NULL
10622 && CONST_STRNEQ (name, ".MIPS.content"));
10623 sec = bfd_get_section_by_name (abfd,
10624 name + sizeof ".MIPS.content" - 1);
10625 BFD_ASSERT (sec != NULL);
10626 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10627 break;
10628
10629 case SHT_MIPS_SYMBOL_LIB:
10630 sec = bfd_get_section_by_name (abfd, ".dynsym");
10631 if (sec != NULL)
10632 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10633 sec = bfd_get_section_by_name (abfd, ".liblist");
10634 if (sec != NULL)
10635 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10636 break;
10637
10638 case SHT_MIPS_EVENTS:
10639 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10640 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10641 BFD_ASSERT (name != NULL);
10642 if (CONST_STRNEQ (name, ".MIPS.events"))
10643 sec = bfd_get_section_by_name (abfd,
10644 name + sizeof ".MIPS.events" - 1);
10645 else
10646 {
10647 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10648 sec = bfd_get_section_by_name (abfd,
10649 (name
10650 + sizeof ".MIPS.post_rel" - 1));
10651 }
10652 BFD_ASSERT (sec != NULL);
10653 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10654 break;
10655
10656 }
10657 }
10658 }
10659 \f
10660 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10661 segments. */
10662
10663 int
10664 _bfd_mips_elf_additional_program_headers (bfd *abfd,
10665 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10666 {
10667 asection *s;
10668 int ret = 0;
10669
10670 /* See if we need a PT_MIPS_REGINFO segment. */
10671 s = bfd_get_section_by_name (abfd, ".reginfo");
10672 if (s && (s->flags & SEC_LOAD))
10673 ++ret;
10674
10675 /* See if we need a PT_MIPS_OPTIONS segment. */
10676 if (IRIX_COMPAT (abfd) == ict_irix6
10677 && bfd_get_section_by_name (abfd,
10678 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10679 ++ret;
10680
10681 /* See if we need a PT_MIPS_RTPROC segment. */
10682 if (IRIX_COMPAT (abfd) == ict_irix5
10683 && bfd_get_section_by_name (abfd, ".dynamic")
10684 && bfd_get_section_by_name (abfd, ".mdebug"))
10685 ++ret;
10686
10687 /* Allocate a PT_NULL header in dynamic objects. See
10688 _bfd_mips_elf_modify_segment_map for details. */
10689 if (!SGI_COMPAT (abfd)
10690 && bfd_get_section_by_name (abfd, ".dynamic"))
10691 ++ret;
10692
10693 return ret;
10694 }
10695
10696 /* Modify the segment map for an IRIX5 executable. */
10697
10698 bfd_boolean
10699 _bfd_mips_elf_modify_segment_map (bfd *abfd,
10700 struct bfd_link_info *info)
10701 {
10702 asection *s;
10703 struct elf_segment_map *m, **pm;
10704 bfd_size_type amt;
10705
10706 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10707 segment. */
10708 s = bfd_get_section_by_name (abfd, ".reginfo");
10709 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10710 {
10711 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10712 if (m->p_type == PT_MIPS_REGINFO)
10713 break;
10714 if (m == NULL)
10715 {
10716 amt = sizeof *m;
10717 m = bfd_zalloc (abfd, amt);
10718 if (m == NULL)
10719 return FALSE;
10720
10721 m->p_type = PT_MIPS_REGINFO;
10722 m->count = 1;
10723 m->sections[0] = s;
10724
10725 /* We want to put it after the PHDR and INTERP segments. */
10726 pm = &elf_tdata (abfd)->segment_map;
10727 while (*pm != NULL
10728 && ((*pm)->p_type == PT_PHDR
10729 || (*pm)->p_type == PT_INTERP))
10730 pm = &(*pm)->next;
10731
10732 m->next = *pm;
10733 *pm = m;
10734 }
10735 }
10736
10737 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10738 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10739 PT_MIPS_OPTIONS segment immediately following the program header
10740 table. */
10741 if (NEWABI_P (abfd)
10742 /* On non-IRIX6 new abi, we'll have already created a segment
10743 for this section, so don't create another. I'm not sure this
10744 is not also the case for IRIX 6, but I can't test it right
10745 now. */
10746 && IRIX_COMPAT (abfd) == ict_irix6)
10747 {
10748 for (s = abfd->sections; s; s = s->next)
10749 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10750 break;
10751
10752 if (s)
10753 {
10754 struct elf_segment_map *options_segment;
10755
10756 pm = &elf_tdata (abfd)->segment_map;
10757 while (*pm != NULL
10758 && ((*pm)->p_type == PT_PHDR
10759 || (*pm)->p_type == PT_INTERP))
10760 pm = &(*pm)->next;
10761
10762 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10763 {
10764 amt = sizeof (struct elf_segment_map);
10765 options_segment = bfd_zalloc (abfd, amt);
10766 options_segment->next = *pm;
10767 options_segment->p_type = PT_MIPS_OPTIONS;
10768 options_segment->p_flags = PF_R;
10769 options_segment->p_flags_valid = TRUE;
10770 options_segment->count = 1;
10771 options_segment->sections[0] = s;
10772 *pm = options_segment;
10773 }
10774 }
10775 }
10776 else
10777 {
10778 if (IRIX_COMPAT (abfd) == ict_irix5)
10779 {
10780 /* If there are .dynamic and .mdebug sections, we make a room
10781 for the RTPROC header. FIXME: Rewrite without section names. */
10782 if (bfd_get_section_by_name (abfd, ".interp") == NULL
10783 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10784 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10785 {
10786 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10787 if (m->p_type == PT_MIPS_RTPROC)
10788 break;
10789 if (m == NULL)
10790 {
10791 amt = sizeof *m;
10792 m = bfd_zalloc (abfd, amt);
10793 if (m == NULL)
10794 return FALSE;
10795
10796 m->p_type = PT_MIPS_RTPROC;
10797
10798 s = bfd_get_section_by_name (abfd, ".rtproc");
10799 if (s == NULL)
10800 {
10801 m->count = 0;
10802 m->p_flags = 0;
10803 m->p_flags_valid = 1;
10804 }
10805 else
10806 {
10807 m->count = 1;
10808 m->sections[0] = s;
10809 }
10810
10811 /* We want to put it after the DYNAMIC segment. */
10812 pm = &elf_tdata (abfd)->segment_map;
10813 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10814 pm = &(*pm)->next;
10815 if (*pm != NULL)
10816 pm = &(*pm)->next;
10817
10818 m->next = *pm;
10819 *pm = m;
10820 }
10821 }
10822 }
10823 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10824 .dynstr, .dynsym, and .hash sections, and everything in
10825 between. */
10826 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10827 pm = &(*pm)->next)
10828 if ((*pm)->p_type == PT_DYNAMIC)
10829 break;
10830 m = *pm;
10831 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10832 {
10833 /* For a normal mips executable the permissions for the PT_DYNAMIC
10834 segment are read, write and execute. We do that here since
10835 the code in elf.c sets only the read permission. This matters
10836 sometimes for the dynamic linker. */
10837 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10838 {
10839 m->p_flags = PF_R | PF_W | PF_X;
10840 m->p_flags_valid = 1;
10841 }
10842 }
10843 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10844 glibc's dynamic linker has traditionally derived the number of
10845 tags from the p_filesz field, and sometimes allocates stack
10846 arrays of that size. An overly-big PT_DYNAMIC segment can
10847 be actively harmful in such cases. Making PT_DYNAMIC contain
10848 other sections can also make life hard for the prelinker,
10849 which might move one of the other sections to a different
10850 PT_LOAD segment. */
10851 if (SGI_COMPAT (abfd)
10852 && m != NULL
10853 && m->count == 1
10854 && strcmp (m->sections[0]->name, ".dynamic") == 0)
10855 {
10856 static const char *sec_names[] =
10857 {
10858 ".dynamic", ".dynstr", ".dynsym", ".hash"
10859 };
10860 bfd_vma low, high;
10861 unsigned int i, c;
10862 struct elf_segment_map *n;
10863
10864 low = ~(bfd_vma) 0;
10865 high = 0;
10866 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10867 {
10868 s = bfd_get_section_by_name (abfd, sec_names[i]);
10869 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10870 {
10871 bfd_size_type sz;
10872
10873 if (low > s->vma)
10874 low = s->vma;
10875 sz = s->size;
10876 if (high < s->vma + sz)
10877 high = s->vma + sz;
10878 }
10879 }
10880
10881 c = 0;
10882 for (s = abfd->sections; s != NULL; s = s->next)
10883 if ((s->flags & SEC_LOAD) != 0
10884 && s->vma >= low
10885 && s->vma + s->size <= high)
10886 ++c;
10887
10888 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
10889 n = bfd_zalloc (abfd, amt);
10890 if (n == NULL)
10891 return FALSE;
10892 *n = *m;
10893 n->count = c;
10894
10895 i = 0;
10896 for (s = abfd->sections; s != NULL; s = s->next)
10897 {
10898 if ((s->flags & SEC_LOAD) != 0
10899 && s->vma >= low
10900 && s->vma + s->size <= high)
10901 {
10902 n->sections[i] = s;
10903 ++i;
10904 }
10905 }
10906
10907 *pm = n;
10908 }
10909 }
10910
10911 /* Allocate a spare program header in dynamic objects so that tools
10912 like the prelinker can add an extra PT_LOAD entry.
10913
10914 If the prelinker needs to make room for a new PT_LOAD entry, its
10915 standard procedure is to move the first (read-only) sections into
10916 the new (writable) segment. However, the MIPS ABI requires
10917 .dynamic to be in a read-only segment, and the section will often
10918 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10919
10920 Although the prelinker could in principle move .dynamic to a
10921 writable segment, it seems better to allocate a spare program
10922 header instead, and avoid the need to move any sections.
10923 There is a long tradition of allocating spare dynamic tags,
10924 so allocating a spare program header seems like a natural
10925 extension.
10926
10927 If INFO is NULL, we may be copying an already prelinked binary
10928 with objcopy or strip, so do not add this header. */
10929 if (info != NULL
10930 && !SGI_COMPAT (abfd)
10931 && bfd_get_section_by_name (abfd, ".dynamic"))
10932 {
10933 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10934 if ((*pm)->p_type == PT_NULL)
10935 break;
10936 if (*pm == NULL)
10937 {
10938 m = bfd_zalloc (abfd, sizeof (*m));
10939 if (m == NULL)
10940 return FALSE;
10941
10942 m->p_type = PT_NULL;
10943 *pm = m;
10944 }
10945 }
10946
10947 return TRUE;
10948 }
10949 \f
10950 /* Return the section that should be marked against GC for a given
10951 relocation. */
10952
10953 asection *
10954 _bfd_mips_elf_gc_mark_hook (asection *sec,
10955 struct bfd_link_info *info,
10956 Elf_Internal_Rela *rel,
10957 struct elf_link_hash_entry *h,
10958 Elf_Internal_Sym *sym)
10959 {
10960 /* ??? Do mips16 stub sections need to be handled special? */
10961
10962 if (h != NULL)
10963 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10964 {
10965 case R_MIPS_GNU_VTINHERIT:
10966 case R_MIPS_GNU_VTENTRY:
10967 return NULL;
10968 }
10969
10970 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10971 }
10972
10973 /* Update the got entry reference counts for the section being removed. */
10974
10975 bfd_boolean
10976 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
10977 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10978 asection *sec ATTRIBUTE_UNUSED,
10979 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
10980 {
10981 #if 0
10982 Elf_Internal_Shdr *symtab_hdr;
10983 struct elf_link_hash_entry **sym_hashes;
10984 bfd_signed_vma *local_got_refcounts;
10985 const Elf_Internal_Rela *rel, *relend;
10986 unsigned long r_symndx;
10987 struct elf_link_hash_entry *h;
10988
10989 if (info->relocatable)
10990 return TRUE;
10991
10992 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10993 sym_hashes = elf_sym_hashes (abfd);
10994 local_got_refcounts = elf_local_got_refcounts (abfd);
10995
10996 relend = relocs + sec->reloc_count;
10997 for (rel = relocs; rel < relend; rel++)
10998 switch (ELF_R_TYPE (abfd, rel->r_info))
10999 {
11000 case R_MIPS16_GOT16:
11001 case R_MIPS16_CALL16:
11002 case R_MIPS_GOT16:
11003 case R_MIPS_CALL16:
11004 case R_MIPS_CALL_HI16:
11005 case R_MIPS_CALL_LO16:
11006 case R_MIPS_GOT_HI16:
11007 case R_MIPS_GOT_LO16:
11008 case R_MIPS_GOT_DISP:
11009 case R_MIPS_GOT_PAGE:
11010 case R_MIPS_GOT_OFST:
11011 /* ??? It would seem that the existing MIPS code does no sort
11012 of reference counting or whatnot on its GOT and PLT entries,
11013 so it is not possible to garbage collect them at this time. */
11014 break;
11015
11016 default:
11017 break;
11018 }
11019 #endif
11020
11021 return TRUE;
11022 }
11023 \f
11024 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11025 hiding the old indirect symbol. Process additional relocation
11026 information. Also called for weakdefs, in which case we just let
11027 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11028
11029 void
11030 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11031 struct elf_link_hash_entry *dir,
11032 struct elf_link_hash_entry *ind)
11033 {
11034 struct mips_elf_link_hash_entry *dirmips, *indmips;
11035
11036 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11037
11038 dirmips = (struct mips_elf_link_hash_entry *) dir;
11039 indmips = (struct mips_elf_link_hash_entry *) ind;
11040 /* Any absolute non-dynamic relocations against an indirect or weak
11041 definition will be against the target symbol. */
11042 if (indmips->has_static_relocs)
11043 dirmips->has_static_relocs = TRUE;
11044
11045 if (ind->root.type != bfd_link_hash_indirect)
11046 return;
11047
11048 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11049 if (indmips->readonly_reloc)
11050 dirmips->readonly_reloc = TRUE;
11051 if (indmips->no_fn_stub)
11052 dirmips->no_fn_stub = TRUE;
11053 if (indmips->fn_stub)
11054 {
11055 dirmips->fn_stub = indmips->fn_stub;
11056 indmips->fn_stub = NULL;
11057 }
11058 if (indmips->need_fn_stub)
11059 {
11060 dirmips->need_fn_stub = TRUE;
11061 indmips->need_fn_stub = FALSE;
11062 }
11063 if (indmips->call_stub)
11064 {
11065 dirmips->call_stub = indmips->call_stub;
11066 indmips->call_stub = NULL;
11067 }
11068 if (indmips->call_fp_stub)
11069 {
11070 dirmips->call_fp_stub = indmips->call_fp_stub;
11071 indmips->call_fp_stub = NULL;
11072 }
11073 if (indmips->global_got_area < dirmips->global_got_area)
11074 dirmips->global_got_area = indmips->global_got_area;
11075 if (indmips->global_got_area < GGA_NONE)
11076 indmips->global_got_area = GGA_NONE;
11077 if (indmips->has_nonpic_branches)
11078 dirmips->has_nonpic_branches = TRUE;
11079
11080 if (dirmips->tls_type == 0)
11081 dirmips->tls_type = indmips->tls_type;
11082 }
11083 \f
11084 #define PDR_SIZE 32
11085
11086 bfd_boolean
11087 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11088 struct bfd_link_info *info)
11089 {
11090 asection *o;
11091 bfd_boolean ret = FALSE;
11092 unsigned char *tdata;
11093 size_t i, skip;
11094
11095 o = bfd_get_section_by_name (abfd, ".pdr");
11096 if (! o)
11097 return FALSE;
11098 if (o->size == 0)
11099 return FALSE;
11100 if (o->size % PDR_SIZE != 0)
11101 return FALSE;
11102 if (o->output_section != NULL
11103 && bfd_is_abs_section (o->output_section))
11104 return FALSE;
11105
11106 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11107 if (! tdata)
11108 return FALSE;
11109
11110 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11111 info->keep_memory);
11112 if (!cookie->rels)
11113 {
11114 free (tdata);
11115 return FALSE;
11116 }
11117
11118 cookie->rel = cookie->rels;
11119 cookie->relend = cookie->rels + o->reloc_count;
11120
11121 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11122 {
11123 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11124 {
11125 tdata[i] = 1;
11126 skip ++;
11127 }
11128 }
11129
11130 if (skip != 0)
11131 {
11132 mips_elf_section_data (o)->u.tdata = tdata;
11133 o->size -= skip * PDR_SIZE;
11134 ret = TRUE;
11135 }
11136 else
11137 free (tdata);
11138
11139 if (! info->keep_memory)
11140 free (cookie->rels);
11141
11142 return ret;
11143 }
11144
11145 bfd_boolean
11146 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11147 {
11148 if (strcmp (sec->name, ".pdr") == 0)
11149 return TRUE;
11150 return FALSE;
11151 }
11152
11153 bfd_boolean
11154 _bfd_mips_elf_write_section (bfd *output_bfd,
11155 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11156 asection *sec, bfd_byte *contents)
11157 {
11158 bfd_byte *to, *from, *end;
11159 int i;
11160
11161 if (strcmp (sec->name, ".pdr") != 0)
11162 return FALSE;
11163
11164 if (mips_elf_section_data (sec)->u.tdata == NULL)
11165 return FALSE;
11166
11167 to = contents;
11168 end = contents + sec->size;
11169 for (from = contents, i = 0;
11170 from < end;
11171 from += PDR_SIZE, i++)
11172 {
11173 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11174 continue;
11175 if (to != from)
11176 memcpy (to, from, PDR_SIZE);
11177 to += PDR_SIZE;
11178 }
11179 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11180 sec->output_offset, sec->size);
11181 return TRUE;
11182 }
11183 \f
11184 /* MIPS ELF uses a special find_nearest_line routine in order the
11185 handle the ECOFF debugging information. */
11186
11187 struct mips_elf_find_line
11188 {
11189 struct ecoff_debug_info d;
11190 struct ecoff_find_line i;
11191 };
11192
11193 bfd_boolean
11194 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11195 asymbol **symbols, bfd_vma offset,
11196 const char **filename_ptr,
11197 const char **functionname_ptr,
11198 unsigned int *line_ptr)
11199 {
11200 asection *msec;
11201
11202 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11203 filename_ptr, functionname_ptr,
11204 line_ptr))
11205 return TRUE;
11206
11207 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11208 filename_ptr, functionname_ptr,
11209 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11210 &elf_tdata (abfd)->dwarf2_find_line_info))
11211 return TRUE;
11212
11213 msec = bfd_get_section_by_name (abfd, ".mdebug");
11214 if (msec != NULL)
11215 {
11216 flagword origflags;
11217 struct mips_elf_find_line *fi;
11218 const struct ecoff_debug_swap * const swap =
11219 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11220
11221 /* If we are called during a link, mips_elf_final_link may have
11222 cleared the SEC_HAS_CONTENTS field. We force it back on here
11223 if appropriate (which it normally will be). */
11224 origflags = msec->flags;
11225 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11226 msec->flags |= SEC_HAS_CONTENTS;
11227
11228 fi = elf_tdata (abfd)->find_line_info;
11229 if (fi == NULL)
11230 {
11231 bfd_size_type external_fdr_size;
11232 char *fraw_src;
11233 char *fraw_end;
11234 struct fdr *fdr_ptr;
11235 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11236
11237 fi = bfd_zalloc (abfd, amt);
11238 if (fi == NULL)
11239 {
11240 msec->flags = origflags;
11241 return FALSE;
11242 }
11243
11244 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11245 {
11246 msec->flags = origflags;
11247 return FALSE;
11248 }
11249
11250 /* Swap in the FDR information. */
11251 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11252 fi->d.fdr = bfd_alloc (abfd, amt);
11253 if (fi->d.fdr == NULL)
11254 {
11255 msec->flags = origflags;
11256 return FALSE;
11257 }
11258 external_fdr_size = swap->external_fdr_size;
11259 fdr_ptr = fi->d.fdr;
11260 fraw_src = (char *) fi->d.external_fdr;
11261 fraw_end = (fraw_src
11262 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11263 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11264 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11265
11266 elf_tdata (abfd)->find_line_info = fi;
11267
11268 /* Note that we don't bother to ever free this information.
11269 find_nearest_line is either called all the time, as in
11270 objdump -l, so the information should be saved, or it is
11271 rarely called, as in ld error messages, so the memory
11272 wasted is unimportant. Still, it would probably be a
11273 good idea for free_cached_info to throw it away. */
11274 }
11275
11276 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11277 &fi->i, filename_ptr, functionname_ptr,
11278 line_ptr))
11279 {
11280 msec->flags = origflags;
11281 return TRUE;
11282 }
11283
11284 msec->flags = origflags;
11285 }
11286
11287 /* Fall back on the generic ELF find_nearest_line routine. */
11288
11289 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11290 filename_ptr, functionname_ptr,
11291 line_ptr);
11292 }
11293
11294 bfd_boolean
11295 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11296 const char **filename_ptr,
11297 const char **functionname_ptr,
11298 unsigned int *line_ptr)
11299 {
11300 bfd_boolean found;
11301 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11302 functionname_ptr, line_ptr,
11303 & elf_tdata (abfd)->dwarf2_find_line_info);
11304 return found;
11305 }
11306
11307 \f
11308 /* When are writing out the .options or .MIPS.options section,
11309 remember the bytes we are writing out, so that we can install the
11310 GP value in the section_processing routine. */
11311
11312 bfd_boolean
11313 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11314 const void *location,
11315 file_ptr offset, bfd_size_type count)
11316 {
11317 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11318 {
11319 bfd_byte *c;
11320
11321 if (elf_section_data (section) == NULL)
11322 {
11323 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11324 section->used_by_bfd = bfd_zalloc (abfd, amt);
11325 if (elf_section_data (section) == NULL)
11326 return FALSE;
11327 }
11328 c = mips_elf_section_data (section)->u.tdata;
11329 if (c == NULL)
11330 {
11331 c = bfd_zalloc (abfd, section->size);
11332 if (c == NULL)
11333 return FALSE;
11334 mips_elf_section_data (section)->u.tdata = c;
11335 }
11336
11337 memcpy (c + offset, location, count);
11338 }
11339
11340 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11341 count);
11342 }
11343
11344 /* This is almost identical to bfd_generic_get_... except that some
11345 MIPS relocations need to be handled specially. Sigh. */
11346
11347 bfd_byte *
11348 _bfd_elf_mips_get_relocated_section_contents
11349 (bfd *abfd,
11350 struct bfd_link_info *link_info,
11351 struct bfd_link_order *link_order,
11352 bfd_byte *data,
11353 bfd_boolean relocatable,
11354 asymbol **symbols)
11355 {
11356 /* Get enough memory to hold the stuff */
11357 bfd *input_bfd = link_order->u.indirect.section->owner;
11358 asection *input_section = link_order->u.indirect.section;
11359 bfd_size_type sz;
11360
11361 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11362 arelent **reloc_vector = NULL;
11363 long reloc_count;
11364
11365 if (reloc_size < 0)
11366 goto error_return;
11367
11368 reloc_vector = bfd_malloc (reloc_size);
11369 if (reloc_vector == NULL && reloc_size != 0)
11370 goto error_return;
11371
11372 /* read in the section */
11373 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11374 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11375 goto error_return;
11376
11377 reloc_count = bfd_canonicalize_reloc (input_bfd,
11378 input_section,
11379 reloc_vector,
11380 symbols);
11381 if (reloc_count < 0)
11382 goto error_return;
11383
11384 if (reloc_count > 0)
11385 {
11386 arelent **parent;
11387 /* for mips */
11388 int gp_found;
11389 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11390
11391 {
11392 struct bfd_hash_entry *h;
11393 struct bfd_link_hash_entry *lh;
11394 /* Skip all this stuff if we aren't mixing formats. */
11395 if (abfd && input_bfd
11396 && abfd->xvec == input_bfd->xvec)
11397 lh = 0;
11398 else
11399 {
11400 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11401 lh = (struct bfd_link_hash_entry *) h;
11402 }
11403 lookup:
11404 if (lh)
11405 {
11406 switch (lh->type)
11407 {
11408 case bfd_link_hash_undefined:
11409 case bfd_link_hash_undefweak:
11410 case bfd_link_hash_common:
11411 gp_found = 0;
11412 break;
11413 case bfd_link_hash_defined:
11414 case bfd_link_hash_defweak:
11415 gp_found = 1;
11416 gp = lh->u.def.value;
11417 break;
11418 case bfd_link_hash_indirect:
11419 case bfd_link_hash_warning:
11420 lh = lh->u.i.link;
11421 /* @@FIXME ignoring warning for now */
11422 goto lookup;
11423 case bfd_link_hash_new:
11424 default:
11425 abort ();
11426 }
11427 }
11428 else
11429 gp_found = 0;
11430 }
11431 /* end mips */
11432 for (parent = reloc_vector; *parent != NULL; parent++)
11433 {
11434 char *error_message = NULL;
11435 bfd_reloc_status_type r;
11436
11437 /* Specific to MIPS: Deal with relocation types that require
11438 knowing the gp of the output bfd. */
11439 asymbol *sym = *(*parent)->sym_ptr_ptr;
11440
11441 /* If we've managed to find the gp and have a special
11442 function for the relocation then go ahead, else default
11443 to the generic handling. */
11444 if (gp_found
11445 && (*parent)->howto->special_function
11446 == _bfd_mips_elf32_gprel16_reloc)
11447 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11448 input_section, relocatable,
11449 data, gp);
11450 else
11451 r = bfd_perform_relocation (input_bfd, *parent, data,
11452 input_section,
11453 relocatable ? abfd : NULL,
11454 &error_message);
11455
11456 if (relocatable)
11457 {
11458 asection *os = input_section->output_section;
11459
11460 /* A partial link, so keep the relocs */
11461 os->orelocation[os->reloc_count] = *parent;
11462 os->reloc_count++;
11463 }
11464
11465 if (r != bfd_reloc_ok)
11466 {
11467 switch (r)
11468 {
11469 case bfd_reloc_undefined:
11470 if (!((*link_info->callbacks->undefined_symbol)
11471 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11472 input_bfd, input_section, (*parent)->address, TRUE)))
11473 goto error_return;
11474 break;
11475 case bfd_reloc_dangerous:
11476 BFD_ASSERT (error_message != NULL);
11477 if (!((*link_info->callbacks->reloc_dangerous)
11478 (link_info, error_message, input_bfd, input_section,
11479 (*parent)->address)))
11480 goto error_return;
11481 break;
11482 case bfd_reloc_overflow:
11483 if (!((*link_info->callbacks->reloc_overflow)
11484 (link_info, NULL,
11485 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11486 (*parent)->howto->name, (*parent)->addend,
11487 input_bfd, input_section, (*parent)->address)))
11488 goto error_return;
11489 break;
11490 case bfd_reloc_outofrange:
11491 default:
11492 abort ();
11493 break;
11494 }
11495
11496 }
11497 }
11498 }
11499 if (reloc_vector != NULL)
11500 free (reloc_vector);
11501 return data;
11502
11503 error_return:
11504 if (reloc_vector != NULL)
11505 free (reloc_vector);
11506 return NULL;
11507 }
11508 \f
11509 /* Create a MIPS ELF linker hash table. */
11510
11511 struct bfd_link_hash_table *
11512 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
11513 {
11514 struct mips_elf_link_hash_table *ret;
11515 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
11516
11517 ret = bfd_malloc (amt);
11518 if (ret == NULL)
11519 return NULL;
11520
11521 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
11522 mips_elf_link_hash_newfunc,
11523 sizeof (struct mips_elf_link_hash_entry),
11524 MIPS_ELF_DATA))
11525 {
11526 free (ret);
11527 return NULL;
11528 }
11529
11530 #if 0
11531 /* We no longer use this. */
11532 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
11533 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
11534 #endif
11535 ret->procedure_count = 0;
11536 ret->compact_rel_size = 0;
11537 ret->use_rld_obj_head = FALSE;
11538 ret->rld_value = 0;
11539 ret->mips16_stubs_seen = FALSE;
11540 ret->use_plts_and_copy_relocs = FALSE;
11541 ret->is_vxworks = FALSE;
11542 ret->small_data_overflow_reported = FALSE;
11543 ret->srelbss = NULL;
11544 ret->sdynbss = NULL;
11545 ret->srelplt = NULL;
11546 ret->srelplt2 = NULL;
11547 ret->sgotplt = NULL;
11548 ret->splt = NULL;
11549 ret->sstubs = NULL;
11550 ret->sgot = NULL;
11551 ret->got_info = NULL;
11552 ret->plt_header_size = 0;
11553 ret->plt_entry_size = 0;
11554 ret->lazy_stub_count = 0;
11555 ret->function_stub_size = 0;
11556 ret->strampoline = NULL;
11557 ret->la25_stubs = NULL;
11558 ret->add_stub_section = NULL;
11559
11560 return &ret->root.root;
11561 }
11562
11563 /* Likewise, but indicate that the target is VxWorks. */
11564
11565 struct bfd_link_hash_table *
11566 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
11567 {
11568 struct bfd_link_hash_table *ret;
11569
11570 ret = _bfd_mips_elf_link_hash_table_create (abfd);
11571 if (ret)
11572 {
11573 struct mips_elf_link_hash_table *htab;
11574
11575 htab = (struct mips_elf_link_hash_table *) ret;
11576 htab->use_plts_and_copy_relocs = TRUE;
11577 htab->is_vxworks = TRUE;
11578 }
11579 return ret;
11580 }
11581
11582 /* A function that the linker calls if we are allowed to use PLTs
11583 and copy relocs. */
11584
11585 void
11586 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
11587 {
11588 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
11589 }
11590 \f
11591 /* We need to use a special link routine to handle the .reginfo and
11592 the .mdebug sections. We need to merge all instances of these
11593 sections together, not write them all out sequentially. */
11594
11595 bfd_boolean
11596 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11597 {
11598 asection *o;
11599 struct bfd_link_order *p;
11600 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
11601 asection *rtproc_sec;
11602 Elf32_RegInfo reginfo;
11603 struct ecoff_debug_info debug;
11604 struct mips_htab_traverse_info hti;
11605 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11606 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
11607 HDRR *symhdr = &debug.symbolic_header;
11608 void *mdebug_handle = NULL;
11609 asection *s;
11610 EXTR esym;
11611 unsigned int i;
11612 bfd_size_type amt;
11613 struct mips_elf_link_hash_table *htab;
11614
11615 static const char * const secname[] =
11616 {
11617 ".text", ".init", ".fini", ".data",
11618 ".rodata", ".sdata", ".sbss", ".bss"
11619 };
11620 static const int sc[] =
11621 {
11622 scText, scInit, scFini, scData,
11623 scRData, scSData, scSBss, scBss
11624 };
11625
11626 /* Sort the dynamic symbols so that those with GOT entries come after
11627 those without. */
11628 htab = mips_elf_hash_table (info);
11629 BFD_ASSERT (htab != NULL);
11630
11631 if (!mips_elf_sort_hash_table (abfd, info))
11632 return FALSE;
11633
11634 /* Create any scheduled LA25 stubs. */
11635 hti.info = info;
11636 hti.output_bfd = abfd;
11637 hti.error = FALSE;
11638 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
11639 if (hti.error)
11640 return FALSE;
11641
11642 /* Get a value for the GP register. */
11643 if (elf_gp (abfd) == 0)
11644 {
11645 struct bfd_link_hash_entry *h;
11646
11647 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
11648 if (h != NULL && h->type == bfd_link_hash_defined)
11649 elf_gp (abfd) = (h->u.def.value
11650 + h->u.def.section->output_section->vma
11651 + h->u.def.section->output_offset);
11652 else if (htab->is_vxworks
11653 && (h = bfd_link_hash_lookup (info->hash,
11654 "_GLOBAL_OFFSET_TABLE_",
11655 FALSE, FALSE, TRUE))
11656 && h->type == bfd_link_hash_defined)
11657 elf_gp (abfd) = (h->u.def.section->output_section->vma
11658 + h->u.def.section->output_offset
11659 + h->u.def.value);
11660 else if (info->relocatable)
11661 {
11662 bfd_vma lo = MINUS_ONE;
11663
11664 /* Find the GP-relative section with the lowest offset. */
11665 for (o = abfd->sections; o != NULL; o = o->next)
11666 if (o->vma < lo
11667 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
11668 lo = o->vma;
11669
11670 /* And calculate GP relative to that. */
11671 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
11672 }
11673 else
11674 {
11675 /* If the relocate_section function needs to do a reloc
11676 involving the GP value, it should make a reloc_dangerous
11677 callback to warn that GP is not defined. */
11678 }
11679 }
11680
11681 /* Go through the sections and collect the .reginfo and .mdebug
11682 information. */
11683 reginfo_sec = NULL;
11684 mdebug_sec = NULL;
11685 gptab_data_sec = NULL;
11686 gptab_bss_sec = NULL;
11687 for (o = abfd->sections; o != NULL; o = o->next)
11688 {
11689 if (strcmp (o->name, ".reginfo") == 0)
11690 {
11691 memset (&reginfo, 0, sizeof reginfo);
11692
11693 /* We have found the .reginfo section in the output file.
11694 Look through all the link_orders comprising it and merge
11695 the information together. */
11696 for (p = o->map_head.link_order; p != NULL; p = p->next)
11697 {
11698 asection *input_section;
11699 bfd *input_bfd;
11700 Elf32_External_RegInfo ext;
11701 Elf32_RegInfo sub;
11702
11703 if (p->type != bfd_indirect_link_order)
11704 {
11705 if (p->type == bfd_data_link_order)
11706 continue;
11707 abort ();
11708 }
11709
11710 input_section = p->u.indirect.section;
11711 input_bfd = input_section->owner;
11712
11713 if (! bfd_get_section_contents (input_bfd, input_section,
11714 &ext, 0, sizeof ext))
11715 return FALSE;
11716
11717 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
11718
11719 reginfo.ri_gprmask |= sub.ri_gprmask;
11720 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
11721 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
11722 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
11723 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
11724
11725 /* ri_gp_value is set by the function
11726 mips_elf32_section_processing when the section is
11727 finally written out. */
11728
11729 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11730 elf_link_input_bfd ignores this section. */
11731 input_section->flags &= ~SEC_HAS_CONTENTS;
11732 }
11733
11734 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11735 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
11736
11737 /* Skip this section later on (I don't think this currently
11738 matters, but someday it might). */
11739 o->map_head.link_order = NULL;
11740
11741 reginfo_sec = o;
11742 }
11743
11744 if (strcmp (o->name, ".mdebug") == 0)
11745 {
11746 struct extsym_info einfo;
11747 bfd_vma last;
11748
11749 /* We have found the .mdebug section in the output file.
11750 Look through all the link_orders comprising it and merge
11751 the information together. */
11752 symhdr->magic = swap->sym_magic;
11753 /* FIXME: What should the version stamp be? */
11754 symhdr->vstamp = 0;
11755 symhdr->ilineMax = 0;
11756 symhdr->cbLine = 0;
11757 symhdr->idnMax = 0;
11758 symhdr->ipdMax = 0;
11759 symhdr->isymMax = 0;
11760 symhdr->ioptMax = 0;
11761 symhdr->iauxMax = 0;
11762 symhdr->issMax = 0;
11763 symhdr->issExtMax = 0;
11764 symhdr->ifdMax = 0;
11765 symhdr->crfd = 0;
11766 symhdr->iextMax = 0;
11767
11768 /* We accumulate the debugging information itself in the
11769 debug_info structure. */
11770 debug.line = NULL;
11771 debug.external_dnr = NULL;
11772 debug.external_pdr = NULL;
11773 debug.external_sym = NULL;
11774 debug.external_opt = NULL;
11775 debug.external_aux = NULL;
11776 debug.ss = NULL;
11777 debug.ssext = debug.ssext_end = NULL;
11778 debug.external_fdr = NULL;
11779 debug.external_rfd = NULL;
11780 debug.external_ext = debug.external_ext_end = NULL;
11781
11782 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
11783 if (mdebug_handle == NULL)
11784 return FALSE;
11785
11786 esym.jmptbl = 0;
11787 esym.cobol_main = 0;
11788 esym.weakext = 0;
11789 esym.reserved = 0;
11790 esym.ifd = ifdNil;
11791 esym.asym.iss = issNil;
11792 esym.asym.st = stLocal;
11793 esym.asym.reserved = 0;
11794 esym.asym.index = indexNil;
11795 last = 0;
11796 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11797 {
11798 esym.asym.sc = sc[i];
11799 s = bfd_get_section_by_name (abfd, secname[i]);
11800 if (s != NULL)
11801 {
11802 esym.asym.value = s->vma;
11803 last = s->vma + s->size;
11804 }
11805 else
11806 esym.asym.value = last;
11807 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11808 secname[i], &esym))
11809 return FALSE;
11810 }
11811
11812 for (p = o->map_head.link_order; p != NULL; p = p->next)
11813 {
11814 asection *input_section;
11815 bfd *input_bfd;
11816 const struct ecoff_debug_swap *input_swap;
11817 struct ecoff_debug_info input_debug;
11818 char *eraw_src;
11819 char *eraw_end;
11820
11821 if (p->type != bfd_indirect_link_order)
11822 {
11823 if (p->type == bfd_data_link_order)
11824 continue;
11825 abort ();
11826 }
11827
11828 input_section = p->u.indirect.section;
11829 input_bfd = input_section->owner;
11830
11831 if (!is_mips_elf (input_bfd))
11832 {
11833 /* I don't know what a non MIPS ELF bfd would be
11834 doing with a .mdebug section, but I don't really
11835 want to deal with it. */
11836 continue;
11837 }
11838
11839 input_swap = (get_elf_backend_data (input_bfd)
11840 ->elf_backend_ecoff_debug_swap);
11841
11842 BFD_ASSERT (p->size == input_section->size);
11843
11844 /* The ECOFF linking code expects that we have already
11845 read in the debugging information and set up an
11846 ecoff_debug_info structure, so we do that now. */
11847 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11848 &input_debug))
11849 return FALSE;
11850
11851 if (! (bfd_ecoff_debug_accumulate
11852 (mdebug_handle, abfd, &debug, swap, input_bfd,
11853 &input_debug, input_swap, info)))
11854 return FALSE;
11855
11856 /* Loop through the external symbols. For each one with
11857 interesting information, try to find the symbol in
11858 the linker global hash table and save the information
11859 for the output external symbols. */
11860 eraw_src = input_debug.external_ext;
11861 eraw_end = (eraw_src
11862 + (input_debug.symbolic_header.iextMax
11863 * input_swap->external_ext_size));
11864 for (;
11865 eraw_src < eraw_end;
11866 eraw_src += input_swap->external_ext_size)
11867 {
11868 EXTR ext;
11869 const char *name;
11870 struct mips_elf_link_hash_entry *h;
11871
11872 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
11873 if (ext.asym.sc == scNil
11874 || ext.asym.sc == scUndefined
11875 || ext.asym.sc == scSUndefined)
11876 continue;
11877
11878 name = input_debug.ssext + ext.asym.iss;
11879 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
11880 name, FALSE, FALSE, TRUE);
11881 if (h == NULL || h->esym.ifd != -2)
11882 continue;
11883
11884 if (ext.ifd != -1)
11885 {
11886 BFD_ASSERT (ext.ifd
11887 < input_debug.symbolic_header.ifdMax);
11888 ext.ifd = input_debug.ifdmap[ext.ifd];
11889 }
11890
11891 h->esym = ext;
11892 }
11893
11894 /* Free up the information we just read. */
11895 free (input_debug.line);
11896 free (input_debug.external_dnr);
11897 free (input_debug.external_pdr);
11898 free (input_debug.external_sym);
11899 free (input_debug.external_opt);
11900 free (input_debug.external_aux);
11901 free (input_debug.ss);
11902 free (input_debug.ssext);
11903 free (input_debug.external_fdr);
11904 free (input_debug.external_rfd);
11905 free (input_debug.external_ext);
11906
11907 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11908 elf_link_input_bfd ignores this section. */
11909 input_section->flags &= ~SEC_HAS_CONTENTS;
11910 }
11911
11912 if (SGI_COMPAT (abfd) && info->shared)
11913 {
11914 /* Create .rtproc section. */
11915 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11916 if (rtproc_sec == NULL)
11917 {
11918 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11919 | SEC_LINKER_CREATED | SEC_READONLY);
11920
11921 rtproc_sec = bfd_make_section_with_flags (abfd,
11922 ".rtproc",
11923 flags);
11924 if (rtproc_sec == NULL
11925 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
11926 return FALSE;
11927 }
11928
11929 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11930 info, rtproc_sec,
11931 &debug))
11932 return FALSE;
11933 }
11934
11935 /* Build the external symbol information. */
11936 einfo.abfd = abfd;
11937 einfo.info = info;
11938 einfo.debug = &debug;
11939 einfo.swap = swap;
11940 einfo.failed = FALSE;
11941 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
11942 mips_elf_output_extsym, &einfo);
11943 if (einfo.failed)
11944 return FALSE;
11945
11946 /* Set the size of the .mdebug section. */
11947 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
11948
11949 /* Skip this section later on (I don't think this currently
11950 matters, but someday it might). */
11951 o->map_head.link_order = NULL;
11952
11953 mdebug_sec = o;
11954 }
11955
11956 if (CONST_STRNEQ (o->name, ".gptab."))
11957 {
11958 const char *subname;
11959 unsigned int c;
11960 Elf32_gptab *tab;
11961 Elf32_External_gptab *ext_tab;
11962 unsigned int j;
11963
11964 /* The .gptab.sdata and .gptab.sbss sections hold
11965 information describing how the small data area would
11966 change depending upon the -G switch. These sections
11967 not used in executables files. */
11968 if (! info->relocatable)
11969 {
11970 for (p = o->map_head.link_order; p != NULL; p = p->next)
11971 {
11972 asection *input_section;
11973
11974 if (p->type != bfd_indirect_link_order)
11975 {
11976 if (p->type == bfd_data_link_order)
11977 continue;
11978 abort ();
11979 }
11980
11981 input_section = p->u.indirect.section;
11982
11983 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11984 elf_link_input_bfd ignores this section. */
11985 input_section->flags &= ~SEC_HAS_CONTENTS;
11986 }
11987
11988 /* Skip this section later on (I don't think this
11989 currently matters, but someday it might). */
11990 o->map_head.link_order = NULL;
11991
11992 /* Really remove the section. */
11993 bfd_section_list_remove (abfd, o);
11994 --abfd->section_count;
11995
11996 continue;
11997 }
11998
11999 /* There is one gptab for initialized data, and one for
12000 uninitialized data. */
12001 if (strcmp (o->name, ".gptab.sdata") == 0)
12002 gptab_data_sec = o;
12003 else if (strcmp (o->name, ".gptab.sbss") == 0)
12004 gptab_bss_sec = o;
12005 else
12006 {
12007 (*_bfd_error_handler)
12008 (_("%s: illegal section name `%s'"),
12009 bfd_get_filename (abfd), o->name);
12010 bfd_set_error (bfd_error_nonrepresentable_section);
12011 return FALSE;
12012 }
12013
12014 /* The linker script always combines .gptab.data and
12015 .gptab.sdata into .gptab.sdata, and likewise for
12016 .gptab.bss and .gptab.sbss. It is possible that there is
12017 no .sdata or .sbss section in the output file, in which
12018 case we must change the name of the output section. */
12019 subname = o->name + sizeof ".gptab" - 1;
12020 if (bfd_get_section_by_name (abfd, subname) == NULL)
12021 {
12022 if (o == gptab_data_sec)
12023 o->name = ".gptab.data";
12024 else
12025 o->name = ".gptab.bss";
12026 subname = o->name + sizeof ".gptab" - 1;
12027 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
12028 }
12029
12030 /* Set up the first entry. */
12031 c = 1;
12032 amt = c * sizeof (Elf32_gptab);
12033 tab = bfd_malloc (amt);
12034 if (tab == NULL)
12035 return FALSE;
12036 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
12037 tab[0].gt_header.gt_unused = 0;
12038
12039 /* Combine the input sections. */
12040 for (p = o->map_head.link_order; p != NULL; p = p->next)
12041 {
12042 asection *input_section;
12043 bfd *input_bfd;
12044 bfd_size_type size;
12045 unsigned long last;
12046 bfd_size_type gpentry;
12047
12048 if (p->type != bfd_indirect_link_order)
12049 {
12050 if (p->type == bfd_data_link_order)
12051 continue;
12052 abort ();
12053 }
12054
12055 input_section = p->u.indirect.section;
12056 input_bfd = input_section->owner;
12057
12058 /* Combine the gptab entries for this input section one
12059 by one. We know that the input gptab entries are
12060 sorted by ascending -G value. */
12061 size = input_section->size;
12062 last = 0;
12063 for (gpentry = sizeof (Elf32_External_gptab);
12064 gpentry < size;
12065 gpentry += sizeof (Elf32_External_gptab))
12066 {
12067 Elf32_External_gptab ext_gptab;
12068 Elf32_gptab int_gptab;
12069 unsigned long val;
12070 unsigned long add;
12071 bfd_boolean exact;
12072 unsigned int look;
12073
12074 if (! (bfd_get_section_contents
12075 (input_bfd, input_section, &ext_gptab, gpentry,
12076 sizeof (Elf32_External_gptab))))
12077 {
12078 free (tab);
12079 return FALSE;
12080 }
12081
12082 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
12083 &int_gptab);
12084 val = int_gptab.gt_entry.gt_g_value;
12085 add = int_gptab.gt_entry.gt_bytes - last;
12086
12087 exact = FALSE;
12088 for (look = 1; look < c; look++)
12089 {
12090 if (tab[look].gt_entry.gt_g_value >= val)
12091 tab[look].gt_entry.gt_bytes += add;
12092
12093 if (tab[look].gt_entry.gt_g_value == val)
12094 exact = TRUE;
12095 }
12096
12097 if (! exact)
12098 {
12099 Elf32_gptab *new_tab;
12100 unsigned int max;
12101
12102 /* We need a new table entry. */
12103 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
12104 new_tab = bfd_realloc (tab, amt);
12105 if (new_tab == NULL)
12106 {
12107 free (tab);
12108 return FALSE;
12109 }
12110 tab = new_tab;
12111 tab[c].gt_entry.gt_g_value = val;
12112 tab[c].gt_entry.gt_bytes = add;
12113
12114 /* Merge in the size for the next smallest -G
12115 value, since that will be implied by this new
12116 value. */
12117 max = 0;
12118 for (look = 1; look < c; look++)
12119 {
12120 if (tab[look].gt_entry.gt_g_value < val
12121 && (max == 0
12122 || (tab[look].gt_entry.gt_g_value
12123 > tab[max].gt_entry.gt_g_value)))
12124 max = look;
12125 }
12126 if (max != 0)
12127 tab[c].gt_entry.gt_bytes +=
12128 tab[max].gt_entry.gt_bytes;
12129
12130 ++c;
12131 }
12132
12133 last = int_gptab.gt_entry.gt_bytes;
12134 }
12135
12136 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12137 elf_link_input_bfd ignores this section. */
12138 input_section->flags &= ~SEC_HAS_CONTENTS;
12139 }
12140
12141 /* The table must be sorted by -G value. */
12142 if (c > 2)
12143 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
12144
12145 /* Swap out the table. */
12146 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
12147 ext_tab = bfd_alloc (abfd, amt);
12148 if (ext_tab == NULL)
12149 {
12150 free (tab);
12151 return FALSE;
12152 }
12153
12154 for (j = 0; j < c; j++)
12155 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
12156 free (tab);
12157
12158 o->size = c * sizeof (Elf32_External_gptab);
12159 o->contents = (bfd_byte *) ext_tab;
12160
12161 /* Skip this section later on (I don't think this currently
12162 matters, but someday it might). */
12163 o->map_head.link_order = NULL;
12164 }
12165 }
12166
12167 /* Invoke the regular ELF backend linker to do all the work. */
12168 if (!bfd_elf_final_link (abfd, info))
12169 return FALSE;
12170
12171 /* Now write out the computed sections. */
12172
12173 if (reginfo_sec != NULL)
12174 {
12175 Elf32_External_RegInfo ext;
12176
12177 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
12178 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
12179 return FALSE;
12180 }
12181
12182 if (mdebug_sec != NULL)
12183 {
12184 BFD_ASSERT (abfd->output_has_begun);
12185 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
12186 swap, info,
12187 mdebug_sec->filepos))
12188 return FALSE;
12189
12190 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
12191 }
12192
12193 if (gptab_data_sec != NULL)
12194 {
12195 if (! bfd_set_section_contents (abfd, gptab_data_sec,
12196 gptab_data_sec->contents,
12197 0, gptab_data_sec->size))
12198 return FALSE;
12199 }
12200
12201 if (gptab_bss_sec != NULL)
12202 {
12203 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
12204 gptab_bss_sec->contents,
12205 0, gptab_bss_sec->size))
12206 return FALSE;
12207 }
12208
12209 if (SGI_COMPAT (abfd))
12210 {
12211 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
12212 if (rtproc_sec != NULL)
12213 {
12214 if (! bfd_set_section_contents (abfd, rtproc_sec,
12215 rtproc_sec->contents,
12216 0, rtproc_sec->size))
12217 return FALSE;
12218 }
12219 }
12220
12221 return TRUE;
12222 }
12223 \f
12224 /* Structure for saying that BFD machine EXTENSION extends BASE. */
12225
12226 struct mips_mach_extension {
12227 unsigned long extension, base;
12228 };
12229
12230
12231 /* An array describing how BFD machines relate to one another. The entries
12232 are ordered topologically with MIPS I extensions listed last. */
12233
12234 static const struct mips_mach_extension mips_mach_extensions[] = {
12235 /* MIPS64r2 extensions. */
12236 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
12237
12238 /* MIPS64 extensions. */
12239 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
12240 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
12241 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
12242
12243 /* MIPS V extensions. */
12244 { bfd_mach_mipsisa64, bfd_mach_mips5 },
12245
12246 /* R10000 extensions. */
12247 { bfd_mach_mips12000, bfd_mach_mips10000 },
12248 { bfd_mach_mips14000, bfd_mach_mips10000 },
12249 { bfd_mach_mips16000, bfd_mach_mips10000 },
12250
12251 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12252 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12253 better to allow vr5400 and vr5500 code to be merged anyway, since
12254 many libraries will just use the core ISA. Perhaps we could add
12255 some sort of ASE flag if this ever proves a problem. */
12256 { bfd_mach_mips5500, bfd_mach_mips5400 },
12257 { bfd_mach_mips5400, bfd_mach_mips5000 },
12258
12259 /* MIPS IV extensions. */
12260 { bfd_mach_mips5, bfd_mach_mips8000 },
12261 { bfd_mach_mips10000, bfd_mach_mips8000 },
12262 { bfd_mach_mips5000, bfd_mach_mips8000 },
12263 { bfd_mach_mips7000, bfd_mach_mips8000 },
12264 { bfd_mach_mips9000, bfd_mach_mips8000 },
12265
12266 /* VR4100 extensions. */
12267 { bfd_mach_mips4120, bfd_mach_mips4100 },
12268 { bfd_mach_mips4111, bfd_mach_mips4100 },
12269
12270 /* MIPS III extensions. */
12271 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
12272 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
12273 { bfd_mach_mips8000, bfd_mach_mips4000 },
12274 { bfd_mach_mips4650, bfd_mach_mips4000 },
12275 { bfd_mach_mips4600, bfd_mach_mips4000 },
12276 { bfd_mach_mips4400, bfd_mach_mips4000 },
12277 { bfd_mach_mips4300, bfd_mach_mips4000 },
12278 { bfd_mach_mips4100, bfd_mach_mips4000 },
12279 { bfd_mach_mips4010, bfd_mach_mips4000 },
12280
12281 /* MIPS32 extensions. */
12282 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
12283
12284 /* MIPS II extensions. */
12285 { bfd_mach_mips4000, bfd_mach_mips6000 },
12286 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
12287
12288 /* MIPS I extensions. */
12289 { bfd_mach_mips6000, bfd_mach_mips3000 },
12290 { bfd_mach_mips3900, bfd_mach_mips3000 }
12291 };
12292
12293
12294 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12295
12296 static bfd_boolean
12297 mips_mach_extends_p (unsigned long base, unsigned long extension)
12298 {
12299 size_t i;
12300
12301 if (extension == base)
12302 return TRUE;
12303
12304 if (base == bfd_mach_mipsisa32
12305 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
12306 return TRUE;
12307
12308 if (base == bfd_mach_mipsisa32r2
12309 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
12310 return TRUE;
12311
12312 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
12313 if (extension == mips_mach_extensions[i].extension)
12314 {
12315 extension = mips_mach_extensions[i].base;
12316 if (extension == base)
12317 return TRUE;
12318 }
12319
12320 return FALSE;
12321 }
12322
12323
12324 /* Return true if the given ELF header flags describe a 32-bit binary. */
12325
12326 static bfd_boolean
12327 mips_32bit_flags_p (flagword flags)
12328 {
12329 return ((flags & EF_MIPS_32BITMODE) != 0
12330 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
12331 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
12332 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
12333 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
12334 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
12335 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
12336 }
12337
12338
12339 /* Merge object attributes from IBFD into OBFD. Raise an error if
12340 there are conflicting attributes. */
12341 static bfd_boolean
12342 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
12343 {
12344 obj_attribute *in_attr;
12345 obj_attribute *out_attr;
12346
12347 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12348 {
12349 /* This is the first object. Copy the attributes. */
12350 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12351
12352 /* Use the Tag_null value to indicate the attributes have been
12353 initialized. */
12354 elf_known_obj_attributes_proc (obfd)[0].i = 1;
12355
12356 return TRUE;
12357 }
12358
12359 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12360 non-conflicting ones. */
12361 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
12362 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
12363 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
12364 {
12365 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
12366 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12367 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
12368 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12369 ;
12370 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12371 _bfd_error_handler
12372 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
12373 in_attr[Tag_GNU_MIPS_ABI_FP].i);
12374 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12375 _bfd_error_handler
12376 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
12377 out_attr[Tag_GNU_MIPS_ABI_FP].i);
12378 else
12379 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
12380 {
12381 case 1:
12382 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12383 {
12384 case 2:
12385 _bfd_error_handler
12386 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12387 obfd, ibfd);
12388 break;
12389
12390 case 3:
12391 _bfd_error_handler
12392 (_("Warning: %B uses hard float, %B uses soft float"),
12393 obfd, ibfd);
12394 break;
12395
12396 case 4:
12397 _bfd_error_handler
12398 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12399 obfd, ibfd);
12400 break;
12401
12402 default:
12403 abort ();
12404 }
12405 break;
12406
12407 case 2:
12408 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12409 {
12410 case 1:
12411 _bfd_error_handler
12412 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12413 ibfd, obfd);
12414 break;
12415
12416 case 3:
12417 _bfd_error_handler
12418 (_("Warning: %B uses hard float, %B uses soft float"),
12419 obfd, ibfd);
12420 break;
12421
12422 case 4:
12423 _bfd_error_handler
12424 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12425 obfd, ibfd);
12426 break;
12427
12428 default:
12429 abort ();
12430 }
12431 break;
12432
12433 case 3:
12434 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12435 {
12436 case 1:
12437 case 2:
12438 case 4:
12439 _bfd_error_handler
12440 (_("Warning: %B uses hard float, %B uses soft float"),
12441 ibfd, obfd);
12442 break;
12443
12444 default:
12445 abort ();
12446 }
12447 break;
12448
12449 case 4:
12450 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12451 {
12452 case 1:
12453 _bfd_error_handler
12454 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12455 ibfd, obfd);
12456 break;
12457
12458 case 2:
12459 _bfd_error_handler
12460 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12461 ibfd, obfd);
12462 break;
12463
12464 case 3:
12465 _bfd_error_handler
12466 (_("Warning: %B uses hard float, %B uses soft float"),
12467 obfd, ibfd);
12468 break;
12469
12470 default:
12471 abort ();
12472 }
12473 break;
12474
12475 default:
12476 abort ();
12477 }
12478 }
12479
12480 /* Merge Tag_compatibility attributes and any common GNU ones. */
12481 _bfd_elf_merge_object_attributes (ibfd, obfd);
12482
12483 return TRUE;
12484 }
12485
12486 /* Merge backend specific data from an object file to the output
12487 object file when linking. */
12488
12489 bfd_boolean
12490 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
12491 {
12492 flagword old_flags;
12493 flagword new_flags;
12494 bfd_boolean ok;
12495 bfd_boolean null_input_bfd = TRUE;
12496 asection *sec;
12497
12498 /* Check if we have the same endianess */
12499 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
12500 {
12501 (*_bfd_error_handler)
12502 (_("%B: endianness incompatible with that of the selected emulation"),
12503 ibfd);
12504 return FALSE;
12505 }
12506
12507 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
12508 return TRUE;
12509
12510 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
12511 {
12512 (*_bfd_error_handler)
12513 (_("%B: ABI is incompatible with that of the selected emulation"),
12514 ibfd);
12515 return FALSE;
12516 }
12517
12518 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
12519 return FALSE;
12520
12521 new_flags = elf_elfheader (ibfd)->e_flags;
12522 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
12523 old_flags = elf_elfheader (obfd)->e_flags;
12524
12525 if (! elf_flags_init (obfd))
12526 {
12527 elf_flags_init (obfd) = TRUE;
12528 elf_elfheader (obfd)->e_flags = new_flags;
12529 elf_elfheader (obfd)->e_ident[EI_CLASS]
12530 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
12531
12532 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
12533 && (bfd_get_arch_info (obfd)->the_default
12534 || mips_mach_extends_p (bfd_get_mach (obfd),
12535 bfd_get_mach (ibfd))))
12536 {
12537 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
12538 bfd_get_mach (ibfd)))
12539 return FALSE;
12540 }
12541
12542 return TRUE;
12543 }
12544
12545 /* Check flag compatibility. */
12546
12547 new_flags &= ~EF_MIPS_NOREORDER;
12548 old_flags &= ~EF_MIPS_NOREORDER;
12549
12550 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12551 doesn't seem to matter. */
12552 new_flags &= ~EF_MIPS_XGOT;
12553 old_flags &= ~EF_MIPS_XGOT;
12554
12555 /* MIPSpro generates ucode info in n64 objects. Again, we should
12556 just be able to ignore this. */
12557 new_flags &= ~EF_MIPS_UCODE;
12558 old_flags &= ~EF_MIPS_UCODE;
12559
12560 /* DSOs should only be linked with CPIC code. */
12561 if ((ibfd->flags & DYNAMIC) != 0)
12562 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
12563
12564 if (new_flags == old_flags)
12565 return TRUE;
12566
12567 /* Check to see if the input BFD actually contains any sections.
12568 If not, its flags may not have been initialised either, but it cannot
12569 actually cause any incompatibility. */
12570 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
12571 {
12572 /* Ignore synthetic sections and empty .text, .data and .bss sections
12573 which are automatically generated by gas. */
12574 if (strcmp (sec->name, ".reginfo")
12575 && strcmp (sec->name, ".mdebug")
12576 && (sec->size != 0
12577 || (strcmp (sec->name, ".text")
12578 && strcmp (sec->name, ".data")
12579 && strcmp (sec->name, ".bss"))))
12580 {
12581 null_input_bfd = FALSE;
12582 break;
12583 }
12584 }
12585 if (null_input_bfd)
12586 return TRUE;
12587
12588 ok = TRUE;
12589
12590 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
12591 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
12592 {
12593 (*_bfd_error_handler)
12594 (_("%B: warning: linking abicalls files with non-abicalls files"),
12595 ibfd);
12596 ok = TRUE;
12597 }
12598
12599 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
12600 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
12601 if (! (new_flags & EF_MIPS_PIC))
12602 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
12603
12604 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12605 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12606
12607 /* Compare the ISAs. */
12608 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
12609 {
12610 (*_bfd_error_handler)
12611 (_("%B: linking 32-bit code with 64-bit code"),
12612 ibfd);
12613 ok = FALSE;
12614 }
12615 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
12616 {
12617 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12618 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
12619 {
12620 /* Copy the architecture info from IBFD to OBFD. Also copy
12621 the 32-bit flag (if set) so that we continue to recognise
12622 OBFD as a 32-bit binary. */
12623 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
12624 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12625 elf_elfheader (obfd)->e_flags
12626 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12627
12628 /* Copy across the ABI flags if OBFD doesn't use them
12629 and if that was what caused us to treat IBFD as 32-bit. */
12630 if ((old_flags & EF_MIPS_ABI) == 0
12631 && mips_32bit_flags_p (new_flags)
12632 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
12633 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
12634 }
12635 else
12636 {
12637 /* The ISAs aren't compatible. */
12638 (*_bfd_error_handler)
12639 (_("%B: linking %s module with previous %s modules"),
12640 ibfd,
12641 bfd_printable_name (ibfd),
12642 bfd_printable_name (obfd));
12643 ok = FALSE;
12644 }
12645 }
12646
12647 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12648 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12649
12650 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12651 does set EI_CLASS differently from any 32-bit ABI. */
12652 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
12653 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12654 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12655 {
12656 /* Only error if both are set (to different values). */
12657 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
12658 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12659 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12660 {
12661 (*_bfd_error_handler)
12662 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12663 ibfd,
12664 elf_mips_abi_name (ibfd),
12665 elf_mips_abi_name (obfd));
12666 ok = FALSE;
12667 }
12668 new_flags &= ~EF_MIPS_ABI;
12669 old_flags &= ~EF_MIPS_ABI;
12670 }
12671
12672 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12673 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
12674 {
12675 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
12676
12677 new_flags &= ~ EF_MIPS_ARCH_ASE;
12678 old_flags &= ~ EF_MIPS_ARCH_ASE;
12679 }
12680
12681 /* Warn about any other mismatches */
12682 if (new_flags != old_flags)
12683 {
12684 (*_bfd_error_handler)
12685 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12686 ibfd, (unsigned long) new_flags,
12687 (unsigned long) old_flags);
12688 ok = FALSE;
12689 }
12690
12691 if (! ok)
12692 {
12693 bfd_set_error (bfd_error_bad_value);
12694 return FALSE;
12695 }
12696
12697 return TRUE;
12698 }
12699
12700 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12701
12702 bfd_boolean
12703 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
12704 {
12705 BFD_ASSERT (!elf_flags_init (abfd)
12706 || elf_elfheader (abfd)->e_flags == flags);
12707
12708 elf_elfheader (abfd)->e_flags = flags;
12709 elf_flags_init (abfd) = TRUE;
12710 return TRUE;
12711 }
12712
12713 char *
12714 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
12715 {
12716 switch (dtag)
12717 {
12718 default: return "";
12719 case DT_MIPS_RLD_VERSION:
12720 return "MIPS_RLD_VERSION";
12721 case DT_MIPS_TIME_STAMP:
12722 return "MIPS_TIME_STAMP";
12723 case DT_MIPS_ICHECKSUM:
12724 return "MIPS_ICHECKSUM";
12725 case DT_MIPS_IVERSION:
12726 return "MIPS_IVERSION";
12727 case DT_MIPS_FLAGS:
12728 return "MIPS_FLAGS";
12729 case DT_MIPS_BASE_ADDRESS:
12730 return "MIPS_BASE_ADDRESS";
12731 case DT_MIPS_MSYM:
12732 return "MIPS_MSYM";
12733 case DT_MIPS_CONFLICT:
12734 return "MIPS_CONFLICT";
12735 case DT_MIPS_LIBLIST:
12736 return "MIPS_LIBLIST";
12737 case DT_MIPS_LOCAL_GOTNO:
12738 return "MIPS_LOCAL_GOTNO";
12739 case DT_MIPS_CONFLICTNO:
12740 return "MIPS_CONFLICTNO";
12741 case DT_MIPS_LIBLISTNO:
12742 return "MIPS_LIBLISTNO";
12743 case DT_MIPS_SYMTABNO:
12744 return "MIPS_SYMTABNO";
12745 case DT_MIPS_UNREFEXTNO:
12746 return "MIPS_UNREFEXTNO";
12747 case DT_MIPS_GOTSYM:
12748 return "MIPS_GOTSYM";
12749 case DT_MIPS_HIPAGENO:
12750 return "MIPS_HIPAGENO";
12751 case DT_MIPS_RLD_MAP:
12752 return "MIPS_RLD_MAP";
12753 case DT_MIPS_DELTA_CLASS:
12754 return "MIPS_DELTA_CLASS";
12755 case DT_MIPS_DELTA_CLASS_NO:
12756 return "MIPS_DELTA_CLASS_NO";
12757 case DT_MIPS_DELTA_INSTANCE:
12758 return "MIPS_DELTA_INSTANCE";
12759 case DT_MIPS_DELTA_INSTANCE_NO:
12760 return "MIPS_DELTA_INSTANCE_NO";
12761 case DT_MIPS_DELTA_RELOC:
12762 return "MIPS_DELTA_RELOC";
12763 case DT_MIPS_DELTA_RELOC_NO:
12764 return "MIPS_DELTA_RELOC_NO";
12765 case DT_MIPS_DELTA_SYM:
12766 return "MIPS_DELTA_SYM";
12767 case DT_MIPS_DELTA_SYM_NO:
12768 return "MIPS_DELTA_SYM_NO";
12769 case DT_MIPS_DELTA_CLASSSYM:
12770 return "MIPS_DELTA_CLASSSYM";
12771 case DT_MIPS_DELTA_CLASSSYM_NO:
12772 return "MIPS_DELTA_CLASSSYM_NO";
12773 case DT_MIPS_CXX_FLAGS:
12774 return "MIPS_CXX_FLAGS";
12775 case DT_MIPS_PIXIE_INIT:
12776 return "MIPS_PIXIE_INIT";
12777 case DT_MIPS_SYMBOL_LIB:
12778 return "MIPS_SYMBOL_LIB";
12779 case DT_MIPS_LOCALPAGE_GOTIDX:
12780 return "MIPS_LOCALPAGE_GOTIDX";
12781 case DT_MIPS_LOCAL_GOTIDX:
12782 return "MIPS_LOCAL_GOTIDX";
12783 case DT_MIPS_HIDDEN_GOTIDX:
12784 return "MIPS_HIDDEN_GOTIDX";
12785 case DT_MIPS_PROTECTED_GOTIDX:
12786 return "MIPS_PROTECTED_GOT_IDX";
12787 case DT_MIPS_OPTIONS:
12788 return "MIPS_OPTIONS";
12789 case DT_MIPS_INTERFACE:
12790 return "MIPS_INTERFACE";
12791 case DT_MIPS_DYNSTR_ALIGN:
12792 return "DT_MIPS_DYNSTR_ALIGN";
12793 case DT_MIPS_INTERFACE_SIZE:
12794 return "DT_MIPS_INTERFACE_SIZE";
12795 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12796 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12797 case DT_MIPS_PERF_SUFFIX:
12798 return "DT_MIPS_PERF_SUFFIX";
12799 case DT_MIPS_COMPACT_SIZE:
12800 return "DT_MIPS_COMPACT_SIZE";
12801 case DT_MIPS_GP_VALUE:
12802 return "DT_MIPS_GP_VALUE";
12803 case DT_MIPS_AUX_DYNAMIC:
12804 return "DT_MIPS_AUX_DYNAMIC";
12805 case DT_MIPS_PLTGOT:
12806 return "DT_MIPS_PLTGOT";
12807 case DT_MIPS_RWPLT:
12808 return "DT_MIPS_RWPLT";
12809 }
12810 }
12811
12812 bfd_boolean
12813 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
12814 {
12815 FILE *file = ptr;
12816
12817 BFD_ASSERT (abfd != NULL && ptr != NULL);
12818
12819 /* Print normal ELF private data. */
12820 _bfd_elf_print_private_bfd_data (abfd, ptr);
12821
12822 /* xgettext:c-format */
12823 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12824
12825 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12826 fprintf (file, _(" [abi=O32]"));
12827 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12828 fprintf (file, _(" [abi=O64]"));
12829 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12830 fprintf (file, _(" [abi=EABI32]"));
12831 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12832 fprintf (file, _(" [abi=EABI64]"));
12833 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12834 fprintf (file, _(" [abi unknown]"));
12835 else if (ABI_N32_P (abfd))
12836 fprintf (file, _(" [abi=N32]"));
12837 else if (ABI_64_P (abfd))
12838 fprintf (file, _(" [abi=64]"));
12839 else
12840 fprintf (file, _(" [no abi set]"));
12841
12842 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
12843 fprintf (file, " [mips1]");
12844 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
12845 fprintf (file, " [mips2]");
12846 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
12847 fprintf (file, " [mips3]");
12848 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
12849 fprintf (file, " [mips4]");
12850 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
12851 fprintf (file, " [mips5]");
12852 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
12853 fprintf (file, " [mips32]");
12854 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
12855 fprintf (file, " [mips64]");
12856 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
12857 fprintf (file, " [mips32r2]");
12858 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
12859 fprintf (file, " [mips64r2]");
12860 else
12861 fprintf (file, _(" [unknown ISA]"));
12862
12863 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
12864 fprintf (file, " [mdmx]");
12865
12866 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
12867 fprintf (file, " [mips16]");
12868
12869 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
12870 fprintf (file, " [32bitmode]");
12871 else
12872 fprintf (file, _(" [not 32bitmode]"));
12873
12874 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
12875 fprintf (file, " [noreorder]");
12876
12877 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
12878 fprintf (file, " [PIC]");
12879
12880 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
12881 fprintf (file, " [CPIC]");
12882
12883 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
12884 fprintf (file, " [XGOT]");
12885
12886 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
12887 fprintf (file, " [UCODE]");
12888
12889 fputc ('\n', file);
12890
12891 return TRUE;
12892 }
12893
12894 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
12895 {
12896 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12897 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12898 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12899 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12900 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12901 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12902 { NULL, 0, 0, 0, 0 }
12903 };
12904
12905 /* Merge non visibility st_other attributes. Ensure that the
12906 STO_OPTIONAL flag is copied into h->other, even if this is not a
12907 definiton of the symbol. */
12908 void
12909 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12910 const Elf_Internal_Sym *isym,
12911 bfd_boolean definition,
12912 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12913 {
12914 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12915 {
12916 unsigned char other;
12917
12918 other = (definition ? isym->st_other : h->other);
12919 other &= ~ELF_ST_VISIBILITY (-1);
12920 h->other = other | ELF_ST_VISIBILITY (h->other);
12921 }
12922
12923 if (!definition
12924 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12925 h->other |= STO_OPTIONAL;
12926 }
12927
12928 /* Decide whether an undefined symbol is special and can be ignored.
12929 This is the case for OPTIONAL symbols on IRIX. */
12930 bfd_boolean
12931 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12932 {
12933 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12934 }
12935
12936 bfd_boolean
12937 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12938 {
12939 return (sym->st_shndx == SHN_COMMON
12940 || sym->st_shndx == SHN_MIPS_ACOMMON
12941 || sym->st_shndx == SHN_MIPS_SCOMMON);
12942 }
12943
12944 /* Return address for Ith PLT stub in section PLT, for relocation REL
12945 or (bfd_vma) -1 if it should not be included. */
12946
12947 bfd_vma
12948 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
12949 const arelent *rel ATTRIBUTE_UNUSED)
12950 {
12951 return (plt->vma
12952 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
12953 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
12954 }
12955
12956 void
12957 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
12958 {
12959 struct mips_elf_link_hash_table *htab;
12960 Elf_Internal_Ehdr *i_ehdrp;
12961
12962 i_ehdrp = elf_elfheader (abfd);
12963 if (link_info)
12964 {
12965 htab = mips_elf_hash_table (link_info);
12966 BFD_ASSERT (htab != NULL);
12967
12968 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
12969 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
12970 }
12971 }
This page took 0.350996 seconds and 4 git commands to generate.